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Introduction  
 
Schizophrenia is a chronic recurring illness and the most common psychotic disorder. The 

prevalence of schizophrenia is consistently about 1% throughout the world (Schultz and 

Andreasen, 1999). It characteristically begins in late adolescence or young adulthood 

(Carpenter, Jr. and Buchanan, 1994; Heaton et al., 1994) and lasts a lifetime with only 

occasional recovery (Braff et al., 1991). In most cases, schizophrenia first appears in men 

during their late teens or early 20s, while female schizophrenics often first onset during their 

late 20s or early 30s. The initial years of illness are often the most symptomatic and include 

severe psychosocial deterioration. Middle-aged years are more benign; in the elderly, 

symptom recovery has been described. Most commonly, people who have schizophrenia are 

unable to continue in employment or education.  

 

Up to date, how schizophrenic symptoms arise remains unclear. After over century extensive 

research, still no agreement regarding the pathophysiology of schizophrenia has been reached 

among experts. Substantial contributions from multiple genes with small or moderate effects 

have been implicated. Nevertheless, various designs of genetic studies also indicate the 

essential role of environmental factors because the concordance rate for the monozygotic 

twins who grew up in a very similar surrounding is far less than 100% (Prescott and 

Gottesman, 1993). Epidemiological data further suggest a linkage between viral infection as 

an environmental factor and schizophrenia (Koponen et al., 2004; Limosin et al., 2003; 

Brown and Susser, 2002). Moreover, positive antibody titers against diverse viruses were 

detected in one part of schizophrenics (Dickerson et al., 2003; Chen et al., 1999; Yamaguchi 

et al., 1999; Waltrip et al., 1997; Adams et al., 1993; Barr et al., 1990; Pelonero et al., 1990; 

Bartova et al., 1987). Eliminating intra- and extra-cellular pathogens to defend the host is the 

responsibility of the immune system. Diverse immune dysfunctions have been reported in 

schizophrenia for over 3 decades (Muller et al., 2004). Immune aberrations possibly raised by 

viral infections during the pre-, peri- or postnatal phase have been thus described in 

schizophrenia (Munn, 2000). In various viral infections such as influenza virus, measles virus, 

rubella, herpes simplex virus 2 (HSV2), and Epstein-Barr virus (EBV), a shift towards the T 

helper type 2 system was indicated (Dhiman et al., 2004; Nakayama et al., 2004; Akaboshi et 

al., 2001; Oh and Eichelberger, 2000; Nakajima et al., 2000). Recently, Müller et al. and 

Schwarz et al. likewise suggested Th2 as a possible patho-mechanism in at least one subgroup 
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of schizophrenia (Schwarz et al., 2001a; Schwarz et al., 2001b; Muller et al., 2000). Direct 

empirical evidence evaluating the Th1/Th2 ratio in schizophrenia is, however, lacking.  

 

Hence, this study attempted to explore Th2-shift in schizophrenia. This report contains mainly 

an introduction and an empirical section. The introduction  is further divided into (1) 

Schizophrenia, (2) Th1/Th2 systems, and (3) Th1/Th2 cytokines in schizophrenia. The 

empirical section largely consists of the subsequent issues: (4) Questions and hypothesis, (5) 

Methods, (6) Results, and (7) Conclusion and discussion. 
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1 Schizophrenia 

 

Schizophrenia has been deemed as a disorder in the central nervous system (CNS). Thus, 

distinct hypotheses or researches attempting to elucidate the biological etiology of 

schizophrenia assumed genetic- and/or environment-induced abnormalities in diverse 

neurotransmitter(s) within certain brain structure(s)/region(s). The most famous hypothesis of 

schizophrenia is the dopamine hypothesis. Originally, it postulates that the symptoms of 

schizophrenia are related to hyperactivity of central dopaminergic system (Meltzer and Stahl, 

1976).  

 

Schizophrenia includes a wide spectrum of  “exophenotypes”. The defining features of 

schizophrenia can be divided into three main categories: psychotic or positive symptoms, 

deficit or negative symptoms, and cognitive impairment (Kelly and Murray, 2000). Positive 

symptoms can be classified into three main groups, that is, hallucinations, delusions, and 

thought disorder/formal thought disorder. Formal thought disorder is described as a 

disturbance rather in the form of thinking than abnormality of content as occurred in 

hallucinations and delusions. The negative symptoms consist of severe disturbances in social 

interaction, motivation, expression of affect, ability to experience pleasure, and spontaneous 

speech (Rey et al., 1994; Schmand et al., 1994). Cognitive deficits in schizophrenia affect 

executive function, attention, memory, and general intellectual functioning (Weickert et al., 

2000). The negative and cognitive symptoms are more persistent and chronic, whereas the 

positive symptoms have an episodic pattern. If the positive symptoms are active, then 

hospitalization is usually necessary (Andreasen, 1995). Negative symptoms are the least 

likely to improve over the course of illness and usually result in cognitive dysfunction; they 

contribute more strongly to overall psychosocial disability than do residual positive symptoms 

(Green, 1996). Both negative and cognitive symptoms together are referred to as prodromal 

symptoms; prodromal symptoms often precede the positive symptoms (Cornblatt et al., 1999).  

 

To date exist two well-accepted diagnostic systems to facilitate an approximation of the entity 

of the disease. That is, the International Classification of Diseases, tenth edition (ICD-10) 

(World Health Organization, 1994) and the Diagnostic & Statistical Manual of Mental 

Disorders, fourth edition (DSM-IV) (American Psychiatric Association, 1994). These two 

systems are criterion-based. Both ICD-10 & DSM-IV describe characteristic symptoms of 



 

9 

schizophrenia; they include delusions, hallucinations, disorganized speech (e.g., frequent 

derailment or incoherence), grossly disorganized or catatonic behavior, and negative 

symptoms (i.e., affective flattening, alogia, or avolition). In ICD-10, severe symptoms should 

have been present for at least 1 month, whereas in DSM-IV, a minimum of 6 months’ 

duration is required (i.e., including less severe prodromal and residual symptoms). The DSM-

IV criteria also require deterioration in social and/or occupational functioning, specified as 

dysfunction in work, interpersonal relations, or self-care. If during adolescence, then failure to 

reach level of interpersonal, academic, or occupational achievement is required.  

 

According to DSM-IV, schizophrenia is divided into paranoid, catatonic, disorganized, 

undifferentiated, and residual schizophrenia (American Psychiatric Association, 1994). 

Nevertheless, apart from the 5 subgroups of DSM-IV, further subgroups such as hebephrenic, 

post-schizophrenic depression, simple, other, and unspecified schizophrenia are also 

described in ICD-10 (World Health Organization, 1994). Paranoid schizophrenia is 

characterized by a preoccupation with one or more delusions or frequent auditory 

hallucinations. For catatonic schizophrenia, presence of the following features is required, that 

is, psychomotor disturbances, such as stupor (lack of a motor response to stimulus), 

negativism, excessive motor activity, an absence of speech (alogia), peculiar movements, and 

repetitions of words and phrases (echolalia) or another’s movements (echopraxia). 

Undifferentiated schizophrenia is defined as presence of schizophrenic symptoms without 

meeting any criteria for paranoid, disorganized, and catatonic schizophrenia. Residual 

schizophrenia is predominated by absence of prominent delusions, hallucinations, 

disorganized speech, as well as grossly disorganized and catatonic behavior despite 

continuing evidence of a disturbance. Hebephrenia is characterized by hallucinations, 

delusion, severe disintegration of personality including erratic speech, childish mannerisms, 

senseless laughter as well as bizarre, foolish, and regressive behavior; it usually becomes 

evident during puberty. Nowadays, hebephrenia is renamed as disorganized schizophrenia. 

The main features of disorganized schizophrenia contain disorganized speech and behavior as 

well as a flat or inappropriate affect. Simple schizophrenia is characterized by withdrawal, 

apathy, indifference, and impoverishment of human relationships without overt psychotic 

features. Post-schizophrenic depression is described as predominance by depressive 

symptoms and meeting the criteria of depression for at least 2 weeks as well as simultaneous 

presence of some schizophrenic symptoms with a schizophrenic history in the past one year. 
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Various subgroups stated above are classified according to preponderance of certain symptom 

complexes. They represent rather distinct symptom complexes than separable entities. They 

often merge together during the course of disease (Bondy, 2002). 
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2 Th1/Th2 systems 

2.1 Innate and adaptive immunity 

 

The innate and adaptive immunity are the basic functional units of the immune system which 

are involved in host defense and removing pathogens in viral infections (Rempel et al., 2004). 

Innate (natural/congenital/aspecific) immunity refers to antigen-nonspecific defense 

mechanisms. A host uses nonspecific mechanism immediately or within several hours after 

exposure to an antigen (Akpek and Gottsch, 2003). Innate immunity only recognizes a few 

highly conserved pathogen-associated molecular patterns present in many different 

microorganisms (Delclaux and Azoulay, 2003). In contrast, adaptive (acquired/specific) 

immunity refers to antigen-specific defense mechanisms. The antigen-specific mechanisms 

take several days to become protective and are designed to remove a specific antigen (Akpek 

and Gottsch, 2003). The adaptive immune system has the hallmarks of learning, adaptability, 

and memory. It possesses two main features which are absent in the innate immune system: 

(a) clonal selection and expansion of cells expressing antigen-specific receptors and (b) 

challenge memory facilitating faster and more rigorous responses to previously encountered 

antigens (Fabbri et al., 2003; Stenzel-Poore et al., 1988). 

 

The adaptive immunity can be further subdivided into 2 branches – humoral and cell-

mediated immunity (CMI)/cellular immunity. They are very important for proper immune 

responses (Woodland, 2003). Humoral immunity involves the production of antibody 

molecules in response to an antigen and is mediated by B-lymphocytes. Cell-mediated 

immunity involves the production of cytotoxic T-lymphocytes, activated macrophages, 

activated NK cells, and cytokines in response to an antigen; it is mediated by T-lymphocytes 

(Fabbri et al., 2003).  

 

2.2 Th1/Th2 systems 

 

T lymphocytes are the most important cells in coordinating the immune response and are a 

major source of cytokines. Cytokines participate in various aspects of adaptive and innate 

immunity (Fabbri et al., 2003; Stenzel-Poore et al., 1988). T cells have several functions 

executed by different subpopulations such as T helper (Th), T suppressor, and cytotoxic T 
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cells. Th cells direct other cells such as B cells or macrophages to carry out their tasks. Upon 

activation, naive CD4+ T helper cells differentiate into at least two distinct subpopulations, 

Th1 and Th2. Th1- and Th2-system which are originally defined on the basis of their cytokine 

profiles and effector functions, are effective against intracellular and extra-cellular pathogens, 

respectively (Mosmann and Coffman, 1989). The balance between both Th-subsets is thought 

to be pivotal in determining the outcome of an immune response towards an infectious 

organism (Breytenbach et al., 2001) and is therefore critical for host defense and the 

pathogenesis of immune-mediated diseases (Agnello et al., 2003; McGuirk and Mills, 2002).  

 

Th1 cells mainly produce IFN-γ, IL-2, TNF-α, and IL-12, while Th2 lymphocytes 

predominantly release IL-4, IL-13, IL-10, and IL-6. However, both TNF-α and IL-10 can be 

secreted by Th1 and Th2 cells (Romagnani, 1999; Katsikis et al., 1995). The development of 

Th1 and Th2 cells from a common undifferentiated precursor is regulated at many levels 

(Agnello et al., 2003). Some examples for those are interactions of peptide antigen with the T 

cell receptor (TCR), cytokine signaling, actions of co-stimulatory molecules, induction of 

transcription factors, and antigen dose (Agnello et al., 2003; Rothoeft et al., 2003; Farrar et 

al., 2002; Ben Sasson et al., 2001; Murphy et al., 2000; Ausubel et al., 1997; Carballido et al., 

1997; Kuchroo et al., 1995; Prabhu Das et al., 1995). IL-4 activates the Janus kinase 1 (JAK1) 

and JAK3, leading to activation of the signal transducer and activator of transcription 6 

(STAT6), whereas IL-12 activates JAK1 and TYK2 conducting to STAT4 activation (Santana 

and Rosenstein, 2003). STAT6 and STAT4 are essential for the development of Th1 and Th2, 

correspondingly (Anderson et al., 2003). IL-4 drives the development of the Th2-system. IL-

12 is in most cases not necessary for maintaining Th1 responses once Th1 responses are 

induced (Gazzinelli et al., 1994). Instead, IFN-γR signaling is required for Th1 further 

differentiation (Tau et al., 2000). Binding of IFN-γ to its receptor IFN-γR activates JAK1 and 

JAK2, leading to phosphrylation of STAT1 (Bach et al., 1997). In addition to STAT4 and 

STAT6, there are some other transcription factors specific for Th1/Th2 systems. They are 

GATA3 and c-Maf in Th2 cells as well as ERM and T-bet in Th1 cells (Murphy et al., 2000). 

IFN-γ and IL-4 were characterized as the key cytokines of the Th1 and Th2 system due to 

their roles in the differentiation and development of the Th1/Th2 system. The ratio between 

both major cytokines is thought to implicate the balance between both Th1/Th2 systems 

(Giannakoulas et al., 2004; Li et al., 2003; Sakami et al., 2002). Newly, the IFN-γ/IL-10 ratio 

is likewise regarded as an indicator of Th1/Th2 balance in various viral infections ((Avery 

and Hoover, 2004; McElhaney et al., 2004; Zhang et al., 2000)).  
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The Th1 system induces cell-mediated immune responses and is associated with inflammation 

and tissue destruction that leads to organ-specific autoimmune diseases (Chen et al., 2000; 

Golding and Scott, 1995). On the contrary, the Th2 system promotes humoral immune 

responses, allergic reactions to environmental antigens as well as anti-inflammatory activities 

(Chen et al., 2000; Mosmann and Sad, 1996). Activation of Th2 cells may inhibit the central 

nervous system (CNS) inflammation and limit the noxious effects of Th1-mediated immunity 

(Chen et al., 2000; Racke et al., 1994).  

 

2.2.1 Th1 cytokines and their principal biological functions 

2.2.1.1 IFN-γ: the major Th1 cytokine 

 

IFN-γ is a 40-50 kDa homodimer with 146 amino acids. The human IFN-γ gene contains four 

exons and maps to chromosome 12q24.1(Naylor et al., 1983). IFN-γ is produced by Th1 cells, 

natural killer (NK) cells (Trinchieri, 1995), NK T cells, CD8+ T cells, T cells expression γδ 

T-cell receptors (TCRs) (Almanzar et al., 2004; Mocchegiani et al., 2004; 

Lertmemongkolchai et al., 2001), macrophages/monocytes, dendritic cells (DCs), and B cells 

(Della et al., 2004; Durali et al., 2003; Airoldi et al., 2000; Ohteki et al., 1999). The IFN-γ 

receptor (IFN-γR = CD119) is composed of a ligand binding α chain and a signaling β chain 

(Bach et al., 1997). IFN-γR signaling is required for Th1 differentiation (Tau et al., 2000). 

IFN-γR are expressed on all types of human cells except mature erythrocytes. The IFN-γR 

gene maps to human chromosome 6 (Pfizenmaier et al., 1988). Signaling through IFN-γR 

utilized the JAK/STAT pathway. Binding of IFN-γ to its receptor induces receptor 

dimerization and activation of JAK1 and JAK2 that recruit and phosphorylate STAT1 (Bach 

et al., 1997). 

IFN-γ & CNS 

In the CNS, IFN-γ is mainly responsible for the activation of microglial cells, induction and 

up-regulation of the major histocompatibility complex II (MHC-II) antigens in all three types 

of glial cells including astrocytes, oligodendrocytes as well as microglial cells (Neumann et 

al., 1996; Colton et al., 1992; Satoh et al., 1991; Vidovic et al., 1990). In addition, IFN-γ also 

exerts several impacts on astrocytes: induction of co-stimulatory molecules, conversion of 

astrocytes into effective antigen-presenting-cell (APC), promotion of inducible nitric oxide 

synthase (iNOS) transcription, elevation of nitric oxide (NO) production, induction of TNF-α 
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mRNA and protein (Dell'Albani et al., 2001; Nikcevich et al., 1997; Neumann et al., 1996; 

Hewett et al., 1993; Lee et al., 1993; Colton et al., 1992; Satoh et al., 1991; Vidovic et al., 

1990; Chung and Benveniste, 1990; Pfizenmaier et al., 1988). All neurons seem to express 

IFN-γRα and exposure to IFN-γ induces cell surface expression of MHC-I protein (Neumann 

et al., 1997). IFN-γ appears to play a potential role in neuronal development since it promotes 

neurite outgrowth and matures neurofilament protein expression which are usually associated 

with neuronal differentiation on cultured hippocampal and cortical neuroblasts (Barish et al., 

1991). 

IFN-γ & PS 

IFN-γ has antiviral and antiparasitic activities. However, the main biological activity of IFN-γ 

appears to be immunomodulatory. In contrast, the other IFNs are mainly antiviral (Schroder et 

al., 2004). IFN-γ stimulates the expression of CD4 in T-helper cells and is a modulator of T-

cell growth and functional differentiation (Boehm et al., 1997). IFN-γ inhibits the growth of 

B-cells induced by IL4 and the production of IgG1 and IgE elicited by IL4 in bacterial 

lipopolysaccharides (LPS) stimulated B-cells (Collins and Dunnick, 1993; Snapper and Paul, 

1987). IFN-γ regulates the expression of MHC-II genes in cell such as B cells, DCs, and 

professional APCs and is the only IFN that stimulates the expression of these proteins (Mach, 

2002). In macrophages, IFN-γ stimulates the release of reactive oxygen species (Widner et al., 

2000) and up-regulates IL-1, IL-1RA, IL-6, IL-8, IL-10, IL-12, TNF-α, IFN-α, IFN-γ, 

monocyte chemoattractant protein 1 (MCP-1), MCP-3, macrophage migration inhibitory 

factor (MIF), macrophage colony stimulating factor (M-CSF), granulocyte-CSF (G-CSF), 

granulocyte macrophage-CSF (GM-CSF), macrophage inflammatory protein 1 (MIP-1), MIP-

2, leukocyte inhibitory factor (LIF), oncostatin M (OSM), and TGF-β (Cavaillon, 1994). 

Furthermore, IFN-γ also regulates a number of genes which contain IFN-stimulated response 

element (ISRE) or IFN response sequence (IRS) within their promoter regions; several of 

those genes are themselves components of transcription factors (Boehm et al., 1997).  

 

2.2.1.2 IL-2: T cell growth factor 

 

IL-2 was first described as “T-cell growth factor”; it is a protein of 133 amino acids with a 

molecular weight of 15 kDa (Malek, 2003). The main secretory source of IL-2 is the T-helper 

cell, particularly naïve T cells and Th1 cells. The human IL-2 gene contains four exons and 

maps to human chromosome 4q26-28 (Sykora et al., 1984). 

IL-2R 
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Three different types of IL-2Rs with high, intermediate, and low affinity are distinguished. 

They are expressed differentially and independently. The high-affinity IL-2R consists of 

subunits IL-2Rα (p55), IL-2Rβ (p75), and a γ chain (64 kDa). The intermediate-affinity IL-

2R comprises IL-2Rβ and γ chain, while the low-affinity IL-2R contains solely IL-2Rα. IL-

2Rα functions as a T-cell activation (TAC) antigen, IL-2Rβ as the ligand binding domains, 

and γ chain as a signaling component. The γ-subunit is required for the generation of high and 

intermediate affinity IL-2R, but does not bind IL-2 by itself (Minami et al., 1993). The genes 

encoding these three subunits map to human chromosome 10p14-15, 22q11.2-12, and Xq13, 

respectively. Besides, activated lymphocytes continuously secrete a 42 kDa/55 kDa fragment 

of the TAC antigen, a soluble IL-2 receptor (sIL-2R), which circulates in the serum and 

plasma (Miska and Mahmoud, 1993; Pizzolo et al., 1992). Brain IL-2Rs are enriched in the 

hippocampal formation, an area critical for the acquisition and consolidation of spatial 

learning and memory (Petitto et al., 1999). 

Producing cells of IL-2 

IL-2 is produced mainly by activation of CD4+ T-cells (de Waal et al., 1993c; Ferrer et al., 

1992). Resting cells do not produce IL-2. There are detectable levels of IL-2-like material in 

the hippocampus, striatum, and frontal cortex; however, specific IL-2 binding sites were 

observed only in the hippocampus (de Waal et al., 1993c; Ferrer et al., 1992; Araujo et al., 

1989). 

Biological activities 

IL-2 is a growth factor for all subpopulations of T-lymphocytes (Abbas, 2003). It is an 

antigen-unspecific proliferation factor for T-cells that induces cell cycle progression in resting 

cells and thus allows clonal expansion of activated T-lymphocytes (Malek, 2003). This effect 

is modulated by hormones such as prolactin (Moreno et al., 1998). In addition, IL-2 mediates 

multiple biological processes including growth and differentiation of B cells, generation of 

lymphokine-activated killer cells, augmentation of NK cells (Wustrow, 1991), In the CNS, 

IL-2 stimulates the growth of oligodendroglial cells in vitro (Benveniste and Merrill, 1986), 

modulates N-methyl-D-aspartate receptors (NMDA-R) of native mesolimbic neurons (Ye et 

al., 2001), and influences mesocorticolimbic dopamine release (Ye et al., 2001). IL-2 

damages the blood-brain-barrier (BBB) and the integrity of the endothelium of brain vessel 

(Ellison et al., 1987); however, it does not cross the BBB via a saturable transport system 

(Waguespack et al., 1994) 

 

2.2.1.3 IL-12: guide of Th1 development 
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IL-12 is a heterodimeric 70 kDa glycoprotein (IL-12p70) consisting of a 40 kDa subunit (IL-

12β or IL-12p40, 306 amino acids) and a 35 kDa subunit (IL-12α or IL-12p35, 197 amino 

acids) (Liu et al., 2003; Li et al., 1996b). The two genes encoding IL-12p40 and IL-12p35 are 

unrelated and located on separate chromosomes (5q31-33 and 3p12-13.2) in humans; their 

expressions are regulated independently of each other (Sieburth et al., 1992). IL-12 is 

primarily produced by (1) phagocytic cells and (2) antigen-presenting cells (APC) such as 

monocytes, dendrite cells (DC), activated B lymphocytes, and to a lesser extent by (3) T-cells 

(Schultze et al., 1999; Heufler et al., 1996; Trinchieri, 1995).  

IL-12R 

The IL-12 receptor (CD212), about 110 kDa, is composed of IL-12Rβ1 and IL-12Rβ2 chains 

(Presky et al., 1996b). Binding of IL-12R activates the JAK-STAT pathway of signal 

transduction. Signaling transduction through IL-12R induces tyrosine phosphorylation, 

primarily of the Janus family kinases JAK2 and TYK2, which, in turn, phosphorylate and 

activate STAT1, STAT3, STAT4, and STAT5 (Presky et al., 1996a). STAT4 is particularly 

crucial for Th1 responses (Murphy et al., 1999; Kaplan and Grusby, 1998; Thierfelder et al., 

1996). IL-12R is expressed mainly by activated CD4+ T cells, CD8+ T cells, and CD56+ NK 

cells, but also on other cell types such as (APC) DCs, B-cell lines, and certain subsets of T 

cell (Airoldi et al., 2000; Grohmann et al., 1999; Presky et al., 1996b). Activation of T cells 

through TCR up-regulates the transcription and expression of both chains of IL-12R; its up-

regulation, in particular that of IL-12Rβ1 (19p13.1) (Yamamoto et al., 1997), is enhanced by 

IL-12 itself, IFN-α, IFN-γ, TNF, and co-stimulation through CD28. In T cells, the expression 

of IL-12Rβ2 (1p31.2-31.3) (Morton et al., 1997) is confined to Th1 cells and correlates with 

responsiveness to IL-12 (Rogge et al., 1997; Szabo et al., 1997). 

Biological activities of IL-12 

IL-12 has effects on both innate and adaptive immune systems (Stern et al., 1996). On the 

innate immune system, IL-12 induces IFN-γ (Sugimoto et al., 2003). However, repeated 

administrations of IL-12 are associated with persistently elevated plasma levels of IL-10 and 

declining IFN-γ, TNF-α, IL-6, and IL-8 responses (Portielje et al., 2003). IFN-γ operates in a 

positive feedback mechanism since IFN-γ in turn stimulates IL-12 synthesis by phagocytic 

cells (Cassatella et al., 1995). In addition, IL-12 activates NK cells, promotes NK cell 

cytotoxicity, cytokine production, in particular high levels of IFN-γ, and mediates NK cell 

chemotaxis (Aste-Amezaga et al., 1994; Naume et al., 1992).  
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On the adaptive immune system, IL-12 has impacts on both cellular immune responses and 

humoral immune responses. IL-12 is an important co-stimulus for proliferation and further 

activation of fully differentiated Th1 cells and IFN-γ secretion (Germann et al., 1993). 

However, animal models have revealed that IL-12 is not an absolute requirement for Th1 

differentiation or IFN-γ production (Magram et al., 1996). On humoral immune response, a 

two-step model of humoral enhancement of IL-12 was proposed (Metzger et al., 1996). IL-12-

induced IFN-γ by Th1 and NK cells mediates early switching of B cells towards IgG2 with 

temporal suppression of IgG1 production. Afterwards, IL-12 stimulates the switched B cells 

to secret more antibody, regardless of their isotypes (Metzger et al., 1996). 

 

2.2.1.4 TNF-α: crucial neuro-endo-immunological mediator 

 

Tumor necrosis factor-alpha (TNF-α), also called cachectin, is 17 kDa and has a length of 157 

amino acids (Perez et al., 1990). The gene encoding for TNF-α is found within the MHC on 

chromosome 6 (Schwab et al., 2003). 

TNF producers 

TNF-α is widely expressed in several cell types of the immune system (including B cells, T 

cells, basophils, eosinophils, DC, NK, neutrophils, and mast cells), microglia, and astrocytes 

(Gould et al., 2004; Nadeau and Rivest, 2000; Aggarwal, 1992).  

TNF-R  

There are two types of TNF receptors: TNF receptor type I (TNF-RI = 55 kDa = CD120a) and 

type II (TNF-RII = 75 kDa = CD120b) (Bazzoni and Beutler, 1996; Tartaglia et al., 1991). 

TNF-Rs are widely distributed throughout most cells and tissues, including the brain 

(microglia, astrocytes, and oligodendrocytes) (Wilt et al., 1995; Tada et al., 1994; Kinouchi et 

al., 1991). The expression of TNF-Rs was up-regulated by IL-1β, IFN-γ, and TNF-α in vitro 

(Wilt et al., 1995; Tada et al., 1994; Winzen et al., 1993; Pandita et al., 1992; Kinouchi et al., 

1991). These two different TNF-Rs mediate distinct cellular responses; TNF-RII initiates 

signals for the proliferation of thymocytes and cytotoxic T cells, whereas TNF-RI initiates 

signals for cytotoxicity and the induction of the protective activity (Schottelius et al., 2004; 

Tartaglia et al., 1991). In addition, soluble TNF-RI was 30-fold more potent to interfere with 

TNF binding to its receptors and 5 to 10-fold more potent to inhibit TNF mediated 

cytotoxicity than sTNF-RII (Hale et al., 1995). Soluble TNF-R (sTNF-R) blocks the 

antiproliferative effects of TNF and, therefore, may modulate the harmful effects of TNF 

(Aderka et al., 1992). 
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Biological activities of TNF-α 

The biologic effects of TNF-α are remarkably broad. For example, TNF-α has effects on (1) 

various immune cells including monocyte/macrophages (e.g. induction of cytokines, 

chemotaxis, inhibition of differentiation), polymorphonuclear leukocytes (e.g. increasing 

phagocytic capacity), and lymphocytes (e.g. activation of cytotoxic T-cell invasiveness) as 

well as (2) non-immune cells (e.g. vascular endothelial cells, fibroblasts, adipocytes, 

endocrine system) (Schottelius et al., 2004; Ellerin et al., 2003). On the endocrine system, 

TNF-α stimulates adrenocorticotrophic hormone (ACTH), corticotropin releasing hormone 

(CRH), and prolactin, nevertheless, inhibits thyroid-stimulating hormone (TSH), follicle-

stimulating hormone (FSH), and growth hormone (GH) (Schottelius et al., 2004; Bernardini et 

al., 1990). 

TNF-α and CNS  

TNF-α acts on the CNS to cause fever and sickness behavior (Johnson, 1977). Pro-

inflammatory activities of TNF-α in the brain may (1) alter BBB integrity by inducing 

expression of adhesion molecules on the surface of endothelial cells (Barten and Ruddle, 

1994; Shrikant et al., 1994a), (2) stimulate glial cells (Ruedig and Dringen, 2004), and (3) 

trigger apoptosis of microvascular endothelium via TNF-RI signaling (Lou et al., 1997). TNF 

displays various effects on the vascular endothelium (Booth et al., 2004; Ferrero, 2004), 

including the release of pro-inflammatory cytokines, the increase of endothelial permeability, 

and up-regulation of adhesion molecules such as ICAM-1, VCAM-1, and E- selectin (Omari 

and Dorovini-Zis, 2003b; Lucas et al., 1997). 

 

2.2.2 Th2 cytokines and their essential biological activities 

2.2.2.1 IL-4: the key Th2 cytokine 

 

IL-4 is a 20 kDa glycoprotein with 129 amino acids (Kuhnle et al., 1996). The human IL-4 

gene maps to chromosome 5q23-31 (Dolganov et al., 1996). The IL-4 gene is in close 

proximity to other genes encoding hematopoietic growth factors such as GM-CSF, M-CSF, 

IL-3, and IL-5 (van Leeuwen et al., 1989). 

IL-4 receptor 

Two types of IL-4 receptors (IL-4R) exist, both using subunit IL-4Rα. Type I IL-4R 

comprises the IL-4Rα and the common γ chain (γc); signaling via this receptor activates 

JAK1 and JAK3. The γ subunit of the IL2R serves as a signaling component (Essner et al., 

2001). Type II IL-4R comprises IL-4Rα and IL-13R; signaling via this receptor activates 
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JAK1, JAK2, and TYK2 (Murata et al., 1998). IL-4 binding to either of these receptors 

activates STAT6. Deficiency in IL-4Rα (140 kDa) impairs signaling via both types of IL-4 

receptors (Jankovic et al., 2000). Mitogenic effects of IL-4 involve activation of IL-4-induced 

phosphotyrosine substrate (4PS) (Ryan et al., 1996), while IL-4-specific gene induction 

involved STAT6 (Quelle et al., 1995; Hou et al., 1994). 

IL-4 producing cells  

IL-4 is produced by mature Th2 cells, mast cells, and basophils (Gauchat et al., 1993; Brunner 

et al., 1993; Heller et al., 1983). The production of IL4 by non-B or non-T-cells like mast 

cells is stimulated, if these cells interact with other cells via their Fc receptors for IgE or IgG 

(Brunner et al., 1993; Plaut et al., 1989).  

Biological activities of IL-4 

The biological activities of IL-4 are species-specific in which murine IL-4 acts only upon 

mouse cells and human IL-4 only upon human cells (Morrison and Leder, 1992). Early 

secretion of IL-4 leads to polarization of Th cell differentiation toward Th2-like cells 

(Mosmann and Coffman, 1989). Th2 cells secrete their own IL-4 and subsequent autocrine 

production of IL-4 supports Th2 cell proliferation. The Th2-cell secretion of IL-4 and IL-10 

leads to the suppression of Th1 responses by down-regulating the production of macrophage-

derived IL-12 (Morrison and Leder, 1992) and inhibiting the differentiation of Th1 cells 

(Mosmann and Coffman, 1989). In activated B-cells, IL-4 stimulates the synthesis of IgG1 

and IgE and inhibits the synthesis of IgG3, IgG2a, and IgG2b (Mathers and Cuff, 2004; 

Tangye et al., 2002; Grunewald et al., 1998; Honer et al., 1993; Roper et al., 1990). This 

Isotype switching induced by IL-4 in B-cells is antagonized by IFN-γ (Yssel et al., 1993; 

Thyphronitis et al., 1989). In addition, IL-4 has marked inhibitory effects on the expression 

and release of the proinflammatory cytokines. It is able to block or suppress the monocyte-

derived cytokines, including IL-1, TNF-α, IL-6, IL-8, and MIP-1α (te Velde et al., 1990; Hart 

et al., 1989). In contrast to its inhibitory effects on the production of proinflammatory 

cytokines, IL-4 stimulates the synthesis of the cytokine inhibitor IL-1RA (Vannier et al., 

1992). Furthermore, IL-4 inhibits NK cell activation induced by IL-2 and stimulates the 

proliferation of thymocytes (Che and Huston, 1994; Barcena et al., 1991).  

 

2.2.2.2 IL-13: shares similarities with IL-4 

 

IL-13 is a 132-amino-acid long protein of about 10 kDa. The human IL-13 gene has been 

mapped close to the IL-4 gene on chromosome 5q31 (Izuhara and Arima, 2004; Smirnov et 
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al., 1995; McKenzie et al., 1993). IL-13R comprised three components: IL-13Rα, IL-4Rα, 

and the common γ chain of IL-2R (IL-2Rγ). IL-13Rα again contains IL-13Rα1 and IL-13Rα2 

(Roy et al., 2002b). IL-13Rα chain alone has weak binding activity for IL-13. IL-13Rα1 

binds IL-13 with subsequent recruitment of IL-4Rα to efficiently transduce a signal, whereas 

the IL-13Rα2 can bind IL-13 in the absence of IL-4Rα. IL-4R and IL-13R share more 

components including IL-4Rα, IL-2Rγ, and STAT6 (Blanchard et al., 2004; Terabe et al., 

2004). JAK2 is associated with IL-4Rα and TYK2 is associated with the IL-13Rα1 

component of the IL-13R complex (Roy et al., 2002a). Human B-lymphocytes and monocytes 

expressed a very small number of IL- 13R, while resting or activated human T cells expressed 

little or no IL-13R (Obiri et al., 1995). IL-13 competes for IL-4 binding, while IL-4 does not 

compete for the IL-13 binding on some cell types (Obiri et al., 1995). IL-4 does not always 

bind well to cells that bind IL-13, but the reverse is also true. IL-4 can compete more 

effectively for IL- 13R binding than IL-13 itself. IL-4Rα also participates in the formation of 

the IL-13R complex in some cell types (Obiri et al., 1997).  

IL-13 producing cells 

Murine IL-13 is produced primarily by activated Th2-cells, while in humans IL-13 is secreted 

by CD4+ and CD8+ T cells. In CD4+ T cell clones, all Th0, Th1-like, and Th2-like subsets 

released IL-13 following antigen-specific or polyclonal activation (de Waal et al., 1993b). 

Moreover, mast cells, basophils, eosinophils, NK cells, and DC were also reported to produce 

IL-13 (Izuhara and Arima, 2004; Hoshino et al., 1999; Saint-Vis et al., 1998; Peritt et al., 

1998; Gibbs et al., 1996; Li et al., 1996a; Burd et al., 1995). In the CNS, although human 

microglia stimulated by LPS did not produce IL-13, human microglia did express mRNA 

transcripts for IL-13Rα2 (Lee et al., 2002; Wu and Low, 2002). 

IL-13 biological activities 

IL-13 and IL-4 share a common cellular receptor IL-4Rα; this accounts for many of the 

similarities between these two anti-inflammatory cytokines (Kotowicz et al., 1996; Callard et 

al., 1996; Zurawski et al., 1993). IL-4 and IL-13 share only 20% to 25% primary amino acid 

homology, but the major α-helical regions which are essential for their activity are highly 

homologous (de Waal et al., 1993a; de Waal et al., 1993b). Both IL-4 and IL-13 induce IgE 

class switching in B cells (Punnonen et al., 1993), enhance monocyte/macrophage antigen 

presentation ability, down-regulate inflammatory cytokine production by 

monocytes/macrophages, produce anti-inflammatory molecules (de Waal et al., 1993b), 

chemokines (Fujii-Maeda et al., 2004; de Waal et al., 1993b), adhesion molecules such as 

VCAM-1 (Bochner et al., 1995), and suppress apoptosis (Tangye and Raison, 1997). The 
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principal functional difference between IL-4 and IL-13 lies in their effects on T cells. IL-4 is a 

dominant mediator of Th2 cell differentiation, proliferation, and activity, whereas IL-13 has 

minimal effects on T-cell function (Wynn, 2003; Zurawski and de Vries, 1994). Surprisingly, 

both IL-4 and IL-13 are also potent enhancers of IL-12 production by human peripheral blood 

mononuclear cells (Bullens et al., 2001; D'Andrea et al., 1995). In addition, IL-13 was 

suggested to act as a proinflammatory cytokine in the brain since IL-13 could regulate LPS-

induced sickness behavior (Bluthe et al., 2001).  

 

2.2.2.3 IL-10: primary anti-inflammatory/inhibitory cytokine  

 

IL-10 is a 18 kDa homodimeric protein having a length of 160 amino acids (Haddad et al., 

2003; Powell et al., 2000). It is initially found as cytokine synthesis inhibitory factor (CSIF) 

(Haddad et al., 2003; Opal et al., 1998; Lalani et al., 1997; Howard et al., 1992). The human 

IL-10 gene contains four exons and maps to chromosome 1 (1q31-32) (Haddad et al., 2003). 

Human IL-10RI (IL10RA) is a 90-110-kDa protein that is expressed on a limited number of 

cell types (Liu et al., 1994). Human IL-10RII (IL10RB) is a 60-kDa protein that contains 325 

amino acids. IL-10RI is associated with STAT3/JAK1, while IL-10RII is associated with 

TYK2 kinase (Kotenko et al., 1997). The human IL-10RI and IL-10RII genes are located 

within chromosome 11 (11q23.3) and 21 (21q22.1), respectively (Reboul et al., 1999; 

Taniyama et al., 1995).   

IL-10 producing cells 

IL-10 is produced by murine Th2-cells, but not Th1-cells. In humans, IL-10 is predominantly 

secreted by activated CD8+ T cells, CD4+ T cells (resembling Th0, Th1, and Th2) after both 

antigen-specific and polyclonal activation (Reboul et al., 1999; Taniyama et al., 1995; Yssel 

et al., 1992), and secondarily also by macrophages/monocytes following activation by 

bacterial lipopolysaccharides (LPS) as well as by mast cells (Haddad et al., 2003). The 

synthesis of IL-10 by monocytes is primarily and effectively inhibited by IL-4 and IL-10 

(Haddad et al., 2003). 

Biological activities of IL-10  

IL-10 is a pleiotropic cytokine with important immunoregulatory functions whose actions 

influence activities of many cell-types in the immune system (Gallagher et al., 2000). It exerts 

inhibiting effects on distinct immune cells, particularly on T, B, NK cells, and monocyte/ 

macrophages.  
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On T cells, IL-10 inhibits the synthesis of Th1 cytokines such as IFN-γ, IL-2, and TNF-β (De 

Smedt et al., 1997). The effect on IFN-γ release appears to result from the IL-12 suppression 

by accessory cell (Haddad et al., 2003; D'Andrea et al., 1993). Additional effects on T cells 

include: (1) inducing CD8+ T cell chemotaxis, (2) inhibiting CD4+ T cell chemotaxis towards 

IL-8 (Gesser et al., 1997), T cell apoptosis via Bcl-2 up-regulation (Alas et al., 2001) and IL-2 

production following activation (Taga et al., 1993; de Waal et al., 1993c) as well as (3) 

interrupting T cell proliferation following low antigen exposure accompanied by B7/CD28 

co-stimulation. Besides, IL-10 exerts various effects on B cells as well: (1) initiating B cell 

differentiation and growth (Weiss et al., 2004; Itoh and Hirohata, 1995; Rousset et al., 1992), 

(2) inducing/enhancing IgA and IgM (Austin et al., 2003; Armitage et al., 1993; Rousset et 

al., 1992), (3) directly switching IgG isotypes due to being able to induce IgG1 and IgG3 in 

humans in the absence of TGF-β (Beniguel et al., 2003), and (4) having divergent effects on 

IL-4-induced IgE secretion. If IL-10 is present at the time of IL-4 induced class switching, it 

reverses the effect; if it is present after IgE commitment, it augments IgE secretion (Jeannin et 

al., 1998). The synthesis of immunoglobulins induced by IL-10 is antagonized by TGF-β 

(Armitage et al., 1993). On NK cells, IL-10 (1) facilitates IFN-γ secretion in NK cells primed 

by IL-18 (Cai et al., 1999), (2) potentiates IL-2-induced NK cell proliferation (Carson et al., 

1995) and (3) NK cell cytotoxicity, in concert with both IL-12 and/or IL-18 (Cai et al., 1999; 

Micallef et al., 1999). Nevertheless, IL-10 enhances NK cell production of IFN-γ, but inhibits 

macrophage production of IFN-γ-inducing factors (Shibata et al., 1998). On 

monocyte/macrophages, IL-10 (1) inhibits various cytokines and chemokines including IL-6, 

TNF-α, IL-12, MIP-1α, and MIP-2α (Tryzmel et al., 2003; Clarke et al., 1998; de Waal et al., 

1991), (2) reduces cell surface MHC-II expression (Chadban et al., 1998), and (3) inhibits 

prostaglandin E2 (PGE2) stimulated by LPS (Niiro et al., 1994). Additionally, IL-10 and IFN-

γ antagonize each other’s production and function in human monocytes (Chomarat et al., 

1993). 

 

2.2.2.4 IL-6: essential neuro-endo-immunological mediator 

 

IL-6, also called IFN-β2/B-cell stimulatory factor 2/hepatocyte stimulating factor (Ferguson-

Smith et al., 1988), is a 26 kDa protein with 185 amino acids (Conti et al., 2002). The human 

IL-6 gene contains five exons and maps to human chromosome 7p15-21(Ferguson-Smith et 

al., 1988). The IL-6R is a protein of 80 kDa (Fujisawa et al., 2002). IL-6R consists of 2 

chains: IL-6Rα and IL-6Rβ. The IL-6/IL-6R complex associates with a 130-kDa 
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transmembrane glycoprotein (gp130). Glycoprotein 130 is involved in signal transduction. 

The IL-6R is expressed on various cell types such as lymphocytes, monocytes, fibroblasts, 

vascular endothelial cells, and pituitary cells (Barton, 1997). In addition, soluble IL6 receptor 

(sIL-6R) enhances the effect of IL-6 (Schobitz et al., 1995). 

IL-6 producing cells 

Many different cell types produce IL-6. The main sources in vivo are stimulated 

monocytes/macrophages, fibroblasts, and endothelial cells (Coil et al., 2004; Dalal et al., 

2003; Ng et al., 2003; Soderquist et al., 1998; Yachie et al., 1990). Additionally, T-cells, B-

lymphocytes, eosinophils, mast cells, astrocytes, and microglia also produce IL-6 after 

stimulation (Azzolina et al., 2003; Delgado et al., 2003; Inoue, 2002; Diehl and Rincon, 2002; 

Hoenstein et al., 2001; Lorentz et al., 2000; Frei et al., 1989). IL-6 mRNA was found to be 

generally low in the brain (Schobitz et al., 1993); it was present in the hippocampal formation 

with highest signal in the dentate gyrus, habenular nucleus, piriform cortex, hypothalamus, 

and striatum (Chen et al., 2003; Gadient and Otten, 1994; Schobitz et al., 1992). 

Biological activities of IL-6 

IL-6 is involved in regulating a wide variety of immune functions, such as B- and cytotoxic 

T-cell differentiation, induction of IL-2 production and IL-2R expression in T cells, T cell 

growth, acute-phase reactions, and hematopoiesis (Hirano, 1998; Taga and Kishimoto, 1997).   

 

Newly, Diehl and Rincón (Diehl and Rincon, 2002) suggested that APC IL-6 promotes Th2 

differentiation and simultaneously inhibits Th1 polarization through IL-12 independent 

molecular mechanisms. IL-6 activates transcription mediated by the transcription factor 

Nuclear Factor of Activated T cells (NFAT), leading to IL-4 production by naïve CD4+ T 

cells and their differentiation into effector Th2 cells. The induction of Th2 differentiation by 

IL-6 is dependent upon endogenous IL-4. In addition, IL-6 binds to IL-6Rα, leading to the 

dimerization of gp130/IL-6Rβ (Brakenhoff et al., 1995). Dimerization of gp130 by IL-6 

causes the activation of two signaling pathways: (1) the JAK/STAT pathway and (2) the 

CCAAT/enhancer binding protein (C/EBP) pathway (Weihua et al., 2000; Heinrich et al., 

1998). IL-6 inhibits Th1 differentiation via the JAK/STAT1 pathway by inducing the 

suppressor of cytokine signaling 1 (SOCS1) expression (Siewert et al., 1999). IL-6 up-

regulates SOCS1 expression in activated CD4+ T cells, thereby interfering with signal 

transducer and activator of transcription 1 (STAT1) phosphorylation induced by IFN-γ. 

Inhibition of IFN-γR-mediated signals by IL-6 prevents auto-regulation of IFN-γ gene 
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expression by IFN-γ during CD4+ T cell activation, thus preventing Th1 differentiation. This 

pathway is IL-4- and IL-12-independent (Diehl and Rincon, 2002). 

 

Furthermore, IL-6 exerts distinct effects on the CNS; they include activation of the 

hypothalamic-pituitary-adrenal axis (HPA), reduction of food intake, induction of fever, and 

neuronal growth (Godbout and Johnson, 2004; Path et al., 2000). IL-6 induces nerve growth 

factor (NGF) in astrocytes, enhances NGF-stimulated astrocyte proliferation (Levison et al., 

2000; Marz et al., 1999; Schafer et al., 1999; Kossmann et al., 1996), promotes survival of the 

mesencephalic catecholaminergic and septal cholinergic neurons in vitro (Kushima and 

Hatanaka, 1992; Hama et al., 1991), and attenuates the neurotoxic effects of NMDA on 

striatal cholinergic neurons (Toulmond et al., 1992).  
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3 Th1/Th2 cytokines in schizophrenia 

3.1 Possibilities from peripheral viral infections to CNS disorders 

 

The concept that the central nervous system (CNS) is an immunological privileged site due to 

lack of immunocompetent cells and antigen presentation per se has dominated the relevant 

field for decades; the blood-brain-barrier (BBB) exists between the CNS and the peripheral 

system and prevents the entrance of large proteins and leukocytes into the CNS (Engelhardt et 

al., 1997). Lately, growing evidence supports the possibilities of peripheral viral infections to 

develop diseases in the CNS, despite of the blockage of the BBB. 

 

3.1.1 Permeability of the blood-brain-barrier (BBB) 

3.1.1.1 Under certain pathological conditions 

 

The BBB is under certain pathological conditions permeable such as brain damage, infections 

or application of prostaglandins (PGE) (Jaworowicz, Jr. et al., 1998), other inflammatory 

mediators, viral, bacterial, parasitic compounds (Descamps et al., 2003), or products of tissue 

damage such as arachidonic acid (Unterberg et al., 1987). The most profound activator of 

inflammatory cytokine expression in the brain is damage to the CNS; that is, mechanical 

injury, inflammation, neurotoxins, ischemia or infection causing an increase in the 

concentration of several proinflammatory cytokines (e.g. IL-1, TNF-α, IL-6) in the CSF and 

in the brain (Merrill and Benveniste, 1996b; Hopkins and Rothwell, 1995a). Brain injury 

induced BBB dysfunction is mediated by intra-cerebral neutrophil accumulation, chemokine 

release (e.g., IL-8), and upregulation of adhesion molecules (e.g., ICAM-1) (Otto et al., 

2000).  

 

3.1.1.2 No barrier in few places of the CNS 

 

In addition, the brain's three sensory circum-ventricular organs including the subfornical 

organ, organum vasculosum of the lamina terminalis, and the area postrema lack a functional 

BBB; they are the only regions in the brain in which neurons are exposed to the chemical 

environment of the systemic circulation (McKinley et al., 2003). Cytokines from the 

peripheral system may also affect the brain at those sites.  
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3.1.1.3 Changeability of BBB permeability 

 

Furthermore, some cytokines can have an effect on the permeability of the BBB and/or act, 

probably indirectly, as vasomodulator agents of the cerebral microvessel endothelium. For 

instance, injection of IL-2 and IL-6 significantly enhances the permeability of the BBB, while 

injection of TNF-α reduces it (Saija et al., 1995). Neutrophils were newly found to be able to 

reduce or increase permeability of the BBB, depending upon their proximity and migration 

through the endothelium (Inglis et al., 2004).  

 

3.1.2 CNS expresses cytokines and their receptors 

 

The CNS expresses cytokines and their receptors per se. It can produce cytokines such as IL-

1, IL-6, TNF-α, IFN-γ, and lymphotoxin-alpha (LT-α) during the inflammatory response or 

even during their normal development. Normal unstimulated human microglia expressed 

constitutively mRNA transcripts for IL-1β, IL-6, IL-8, IL-10, IL-12, IL-15, TNF-α, and IFN-γ 

(Lee et al., 2002; Morris and Esiri, 1998), while treatment with lipopolysaccharide (LPS) or 

amyloid β peptides (Aβ) led to increased expression of mRNA levels of IL-8, IL-10, IL-12, 

and TNF-α as well as elevated protein levels of IL-1β, IL-8, and TNF-α (Lee et al., 2002). 

Activated microglia, therefore, represents a source of cytokine producing cells in the CNS 

(Benveniste, 1997; Gehrmann, 1995). In addition, human microglia also expressed mRNA 

transcripts for IL-1RI, IL-1RII, IL-5R, IL-6R, IL-8R, IL-9R, IL-10R, IL-12R, IL-13R, and 

IL-15R (Lee et al., 2002). IL-1R, IL-2R, IL-6R, IL-7R, IL-12R, TGB-βR, TNF-R, and a 

number of growth factors have been localized in the brain being expressed at the highest 

levels generally in the hippocampus and hypothalamus (Mehler and Kessler, 1997; Hopkins 

and Rothwell, 1995b; Otero and Merrill, 1994). Furthermore, astrocytes express not only the 

mRNA of sIL-4R but also IL-4Rα; nevertheless, they do not secret IL-4 (Barna et al., 2001; 

Brodie et al., 1998).  

 

3.1.3 Presence of APC equivalents in the CNS 

 

Microglia and astrocytes are the APC equivalents in the CNS. Microglial cells are one type of 

highly differentiated and quiescent tissue macrophages; they are located within the CNS 

parenchyma (Kielian, 2004; Cosenza et al., 2002). Human microglial cells exhibit cell-type-
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specific antigens for macrophage/microglia lineage cells including CD11b (Mac-1), CD68 

(macrophage antigen), B7-2 (CD86), human leukocyte antigen-ABC (HLA-ABC), HLA-DR, 

ricinus communis aggulutinin lectin-1 (RCA-1), CD45 (leukocyte common antigen), CD64 

(Fc receptor), CR3 (complement type 3 receptor), and MHC (major histocompatibility 

complex) class I and II (Lee et al., 2002; Kreutzberg, 1996; McGeer et al., 1993; Thomas, 

1992). MHC-II molecules are essential for lymphocyte development, antigen presentation, the 

activation of APC and T-cells (Clark, 1995). Upon stimulation with Th1 supernatants or IFN-

γ, microglia express CD80, CD86, MHC-II, CD40, as well intercellular adhesion molecule-1 

(ICAM-1 = CD54) and efficiently present antigen leading to T cell proliferation and 

production of IL-2 and IFN-γ by Th1 as well as release of IL-4 by Th2 cells (Seguin et al., 

2003; Aloisi et al., 1998).  

 

Astrocytes are the most numerous cell type and the major glial cell type within the CNS 

(Croitoru-Lamoury et al., 2003; Dong and Benveniste, 2001). Astrocytes can be induced by 

TNF-α, IL-1, and IFN-γ to express ICAM-1, MHC-I, MHC-II, vascular cell adhesion 

molecule-1 (VCAM-1), and leukocyte function-associated antigen-3 (LFA-3 = CD58) 

(Ballestas and Benveniste, 1995; Hery et al., 1995; Weber et al., 1994; Shrikant et al., 1994b; 

Williams, Jr. et al., 1993). Activated lymphocytes and monocytes can bind to astrocytes in an 

ICAM-1 dependent manner (Hery et al., 1995). Despite that IFN-γ-treated astrocytes express 

MHC-II and ICAM-1 and present antigens less efficiently to Th1 cells, but they were as 

efficient as microglia in inducing IL-4 secretion by Th2 cells (Aloisi et al., 1998). So, 

astrocytes are also regarded as immunocompetent cells within the brain (Dong and 

Benveniste, 2001). 

 

3.1.4 CNS produces adhesion molecules required for leukocyte migration 

 

The CNS also expresses or produces the adhesion molecules required for leukocyte migration. 

The CNS resident glial cells such as microglia and astrocytes, neurons, and brain vascular 

endothelial cells were found to express ICAM-1 and VCAM-1 (Hery et al., 1995; Brosnan et 

al., 1995; Sobel et al., 1990). TNF-α, also produced by the brain itself, is the most important 

cytokine being able to up-regulate ICAM-1 and VCAM-1 and, thus, influences the adhesive 

properties of both astrocytes and brain endothelium; to a lesser extend, IFN-γ and IL-1 also 

showed such effects (Merrill and Benveniste, 1996a; McCarron et al., 1993). Cytokines 

initiate the inflammatory response first through up-regulation of several adhesion molecules 
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in the BBB endothelium such as selectin E, selectin P, ICAM-1, and VCAM-1. Particularly, 

VCAM-1 expression at the BBB is essential for leukocyte entry. ICAM-1 is involved in cell 

extravasation into inflamed tissue and is, therefore, crucial for antigen presentation to T cells 

and required for a complete activation of T cells (Sibson et al., 2004; Omari and Dorovini-Zis, 

2003a; Bernardes-Silva et al., 2001; Engelhardt et al., 1997; Engelhardt et al., 1995). 

Moreover, induction of ICAM-1 and VCAM-1 by cytokines on the CNS resident glial cells 

such as astrocytes, microglia, and neurons may guide inflammatory leukocytes to express 

LFA-1/Mac-1 and/or late activation antigen-4 (VLA-4) into and through the brain, thereby 

further contributing to impairment of the BBB (Hailer et al., 1998; Hery et al., 1995).  

 

3.1.5 Facts: migration of peripheral immune cells through the BBB 

 

Recent evidence suggests that activated T cells cross the intact BBB and that a series of 

immunological events is initiated when T cells recognize antigens in the CNS (Toda, 2003). 

Monocytes were also shown to be able to migrate across human brain-derived endothelial 

cells (HBEC) in the absence of inflammatory conditions, at rates exceeding those of 

lymphocytes (Seguin et al., 2003). Another in vitro model demonstrated that Th1 and Th2 

cells migration were differently regulated by HBEC. Migration of both lymphocyte subsets 

was dependent on LFA-1/ICAM-1 interaction on HBEC and the BBB; the BBB seemed to 

favor the migration of Th2 cells (Biernacki et al., 2001).  

 

The BBB is thus no more a “forbidden city” for pro- and anti-inflammatory cytokines. It is, 

hence, possible to develop a disease in the CNS such as schizophrenia from a peripheral viral 

infection during the pre- or peri- or post-natal phase.  

 

3.2 Th1/Th2 cytokines in schizophrenia 

3.2.1 Th1 abnormalities in Schizophrenia 

3.2.1.1 IFN-γ: reduced in diverse schizophrenic subgroups 

 

So far, no report relating to Th1/Th2 ratios in schizophrenia was published. Findings 

regarding Th1/Th2 cytokines in schizophrenia are numerous, nonetheless, contradictory.  

IFN-γ in vitro production 

The vast majority of studies showed reduced in vitro IFN-γ production in schizophrenia 

(Kaminska et al., 2001; Rothermundt et al., 2000; Arolt et al., 2000; Rothermundt et al., 1998; 
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Arolt et al., 1997; Wilke et al., 1996; Hornberg et al., 1995; Katila et al., 1989; Moises et al., 

1985). The decrease in IFN-γ in the study of Hornberg et al. (1995) simply exhibited a trend 

to be significant, while the reduction in the study of Katila et al. (1989) was not noticeable. As 

a matter of fact, most of the studies cited above investigated only a subgroup of 

schizophrenics. The studies of Kaminiska et al. (2001) and Wilke et al. (1996) included only 

or mainly paranoid schizophrenics, that of Arolt et al. (2000) contained schizophrenics having 

positive family schizophrenic history, and that of Rothermundt et al. (1998, 2000) merely 

consisted of acute schizophrenic patients. The schizophrenic subjects included in the study of 

Katila et al. (1989) were mixed with drug-naïve and chronic patients. Only Wilke et al. (1996) 

found the reduction observed not only in paranoid schizophrenics but also in the whole group 

of schizophrenic patients including paranoid and residual schizophrenia. Moreover, the 

decrease of IFN-γ in vitro secretion in acute schizophrenics remained clear even if compared 

to the first-degree relatives of schizophrenics (Arolt et al., 1997). Nevertheless, three further 

reports from Cazzullo et al. (Cazzullo et al., 2002; Cazzullo et al., 2001; Cazzullo et al., 1998) 

revealed different results; two studies (2001, 2002) showed enhanced IFN-γ in vitro 

production, while one (1998) revealed no alteration. The patients participated in those three 

studies of Cazzullo et al. (2002, 2001, 1998) were mostly paranoid schizophrenics, drug-free 

schizophrenic subjects, and chronic patients with schizophrenia, respectively.  

Serum IFN-γ 

To date, three studies investigating serum IFN-γ showed no diversity between the whole 

schizophrenic group or any schizophrenic subgroup and healthy controls (Kim et al., 2001; 

Gattaz et al., 1992; Becker et al., 1990), while one revealed a remarkable increase in paranoid 

schizophrenic patients (Kaminska et al., 2001).  

 

3.2.1.2 IL-2: controversial 

 

On the contrary, the findings in connection with another Th1 cytokine IL-2 that is often 

deemed as an indicator of T-cell activation were controversial.  

IL-2 in vitro production 

Some studies investigated drug-naïve schizophrenics and revealed decreased IL-2 in vitro 

production (Ganguli et al., 1995; Ganguli et al., 1992; Villemain et al., 1989). Nevertheless, 

some other studies examined drug-free schizophrenic patients and showed the same results as 

those from drug-naive patients (Zhang et al., 2002a; Kim et al., 1998). Similar findings were 

also reported in acute schizophrenics (Rothermundt et al., 1998; Ganguli et al., 1992). Other 
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studies without further characterizing their schizophrenic subjects demonstrated similar 

outcomes as well (Arolt et al., 2000; Hornberg et al., 1995; Yang et al., 1994; Ganguli et al., 

1989). However, abundant findings showed no change in vitro IL-2 secretion in distinct 

schizophrenic subgroups such as paranoid, residual, chronic, drug-free schizophrenics, 

patients dominated with positive symptoms, and schizophrenics having positive family 

psychiatric history (Kowalski et al., 2000; Cazzullo et al., 1998; Arolt et al., 1997; Wilke et 

al., 1996). And almost equal number of studies demonstrated an increased IL-2 in vitro 

production in paranoid, residual, drug-free/drug-naïve, and acute schizophrenics (Cazzullo et 

al., 2002; Cazzullo et al., 2001; Rothermundt et al., 1998; O'Donnell et al., 1996).  

Serum IL-2 

Outcomes regarding serum/plasma IL-2 were also conflicting; some studies reported of 

increases, some showed no alteration, and only one demonstrated a reduction in schizophrenia 

or in a subgroup with a certain feature (Ebrinc et al., 2002; Zhang et al., 2002b; Kaminska et 

al., 2001; Theodoropoulou et al., 2001; Kim et al., 2001; Erbagci et al., 2001; Kim et al., 

2000; Kim et al., 1998; Barak et al., 1995; Xu et al., 1994; Gattaz et al., 1992). The 

schizophrenic subjects in those studies stated above differed from one another not only in 

their ethnic groups but also in distinct clinical features.  

CSF IL-2 

Results concerning CSF IL-2 are rare; Barak et al. (1995) showed enhanced CSF IL-2, while 

two other studies failed to find any diversity between medicated or non-medicated 

schizophrenics and controls in this regard (Rapaport et al., 1997; el Mallakh et al., 1993). 

IL-2R & sIL-2R 

Serum IL-2R was found to be unaltered in drug-naïve schizophrenics (Villemain et al., 1989). 

The findings pertaining to serum sIL-2R were more positive (increase) than negative (no 

change) in schizophrenia or in various schizophrenic subgroups (Rothermundt et al., 1998; 

Maes et al., 1997; Arolt et al., 1997; Naudin et al., 1997; Muller et al., 1997; O'Donnell et al., 

1996; Maes et al., 1996; Barak et al., 1995; Maes et al., 1995b; Rapaport and Stein, 1994; 

Maes et al., 1994; Rapaport and Lohr, 1994; Rapaport et al., 1993; Ganguli and Rabin, 1989; 

Rapaport et al., 1989). Newly, increased sIL-2R was also observed in siblings, but neither 

fathers nor mothers, of schizophrenics (Gaughran, 2002). Barak et al. (Barak et al., 1995) 

examined CSF sIL-2R in schizophrenics and Gaughran et al. (Gaughran et al., 1998) 

investigated sIL-2R α subunit in patients either with schizophrenia or schizophreniform 

disorders; both studies exhibited an elevation in CSF sIL-2R and sIL-2Rα. Soluble IL-2Rα 

was regarded as a marker of T-lymphocyte activation and proliferation (Lawn et al., 2001). 
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Only Kowalski et al. (Kowalski et al., 2000) found a reduced PHA-stimulated whole blood 

sIL-2R production in drug-free schizophrenics predominated with positive symptoms. It’s 

noteworthy that the results from most of the relevant studies involved solely one 

schizophrenic subgroup, but not the whole group of schizophrenic patients. 

 

3.2.1.3 Other Th1-related molecules 

 

Plasma IL-12 levels were found to be higher in patients with major depression, but between 

schizophrenics and healthy controls no clear difference was shown in this respect (Kim et al., 

2002; Kim et al., 2001). Nevertheless, medicated schizophrenic patients did exhibit higher 

serum IL-18 levels than their healthy counterparts (Tanaka et al., 2000).  

 

Neopterin is an indicator of the activity in the Th1 cellular immune system (Gaughran, 2002). 

Baseline urine neopterin of schizophrenics was reduced and raised to the same level as those 

in controls after haloperidol or clozapine treatment (Sperner-Unterweger et al., 1992). 

However, Nikkilä et al. (Nikkila et al., 2002) reported of no alteration in CSF neopterin at 

admission and after treatment in schizophrenics. ICAM-1 is thought to be another marker for 

the Th1 activation (Gaughran, 2002). Schizophrenic patients were found to have more cells 

expressing CD54+ (ICAM-1) (Theodoropoulou et al., 2001). Nevertheless, soluble CD14 

(sCD14), a monocyte activation marker, was shown to be unchanged in schizophrenia 

(Naudin et al., 1997). 

 

3.2.2 Th2 alterations in schizophrenic patients 

IL-4 

The key Th2 cytokine, IL-4, was less well studied for its barely measurable level in most 

subjects by using many available analysis methods. Results published in this regard were 

limited. IL-4 in vitro production and serum level were shown to be decreased and unaltered, 

respectively (Kaminska et al., 2001). On the contrary, Wilke et al., (Wilke et al., 1996) 

demonstrated an increased IL-4 in vitro production; however, the increase was not significant. 

The only publication regarding CSF IL-4 showed that it was only detectable in some 

childhood-onset schizophrenia, but not patients with obsessive-compulsive disorder or 

attention deficit hyperactivity disorder (Mittleman et al., 1997). 

IL-6 
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The outcomes concerning IL-6, produced by Th2 cells as well, showed a relative consistency. 

Most studies reported (1) increased IL-6 in serum, plasma, and CSF (Garver et al., 2003; 

Zhang et al., 2002b; Kaminska et al., 2001; van Kammen et al., 1999; Lin et al., 1998; Naudin 

et al., 1997; Frommberger et al., 1997; Naudin et al., 1996; Maes et al., 1995a; Xu et al., 

1994; Maes et al., 1994; Shintani et al., 1991), (2) enhanced plasma IL-6R (Maes et al., 1997) 

as well as (3) an augmentation in the endogenous agonist of IL-6, sIL-6R (Lin et al., 1998; 

Maes et al., 1995a). Furthermore, serum gp130 levels in schizophrenics also showed a trend 

to be higher, despite of the family histories of patients (Lin et al., 1998). Nonetheless, no 

change was shown in (1) IL-6 in vitro production in paranoid or drug-free schizophrenic 

patients (Kaminska et al., 2001; Kim et al., 1998), (2) plasma IL-6 in drug-free male 

schizophrenics and schizophrenics in remission (Kim et al., 2001; Kim et al., 2000; 

Frommberger et al., 1997) as well as (3) serum and CSF IL-6 in the whole schizophrenic 

subjects (van Kammen et al., 1999; Kim et al., 1998; Barak et al., 1995). In addition, 

increased serum IL-6 was found to be associated with duration of illness (Naudin et al., 1997) 

(Ganguli et al., 1994). It’s worthy to note that the enhanced serum/plasma IL-6 in most of 

studies stated above involved only a certain schizophrenic subgroup, but not the whole group 

of schizophrenic patients.  

 

Results pertaining to the association between schizophrenia and IL-5 are quite rare. The only 

one study showed that the CSF IL-5 levels of schizophrenics were undetectable (Mittleman et 

al., 1997). Leukaemia inhibitory factor (LIF) is related mainly to Th2 (Piccinni et al., 2001). 

LIF, essential for embryo implantation, can be up-regulated by IL-4 and progesterone 

(Piccinni et al., 2000). Serum LIF-R levels in schizophrenia were found to be similar to those 

in controls (Maes et al., 2002). 

 

3.2.3 Schizophrenia and Th1/Th2-produced cytokines 

 

Both TNF-α and IL-10 can be released by Th1- and Th2-cells. Few studies investigating IL-

10 revealed that IL-10 in vitro production of schizophrenia was similar to that of controls 

(Cazzullo et al., 2002; Kaminska et al., 2001; Rothermundt et al., 1998). Only Cazzullo et al. 

found (1) that IL-10 in vitro release was apparently higher in schizophrenia and (2) that 

paranoid schizophrenics had the lowest IL-10 production among distinct schizophrenic 

clinical subgroups (Cazzullo et al., 1998). Two further studies examined serum IL-10 levels; 

Maes et al. demonstrated increased serum IL-10 in schizophrenia (Maes et al., 2002), while 
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Kaminiska et al. showed a reduction in paranoid schizophrenics (Kaminska et al., 2001). 

Solely Mittleman et al. (Mittleman et al., 1997) studied CSF IL-10 and found hardly 

detectable CSF IL-10 in children with schizophrenia. 

 

Outcomes regarding TNF-α were contradictory. Serum or plasma TNF-α was found to be 

either increased or unaltered (Kaminska et al., 2001; Theodoropoulou et al., 2001; Erbagci et 

al., 2001; Monteleone et al., 1999; Naudin et al., 1997; Xu et al., 1994). Similar results were 

obtained in terms of TNF-α in vitro production (Kaminska et al., 2001; Kowalski et al., 

2001).  

 

3.3 Effects of anti-psychotics on Th1/Th2 cytokines 

 

There are a number of studies examining the effects of various neuroleptics on different 

Th1/Th2 cytokines. However, none of them investigated the impacts of anti-psychotics on the 

ratio between IFN-γ and any of the major Th2 cytokines including IL-4, IL-10, and IL-13. In 

the following section, the findings concerning the influences of neuroleptic medication on 

diverse Th1/Th2 cytokines were summarized in order to offer an overview of the topics in this 

regard. 

Atypical neuroleptics & Th1/Th2 cytokines 

  Atypical neuroleptic and Th1 cytokines 

Although the results of Rothermundt et al. and Katila et al. did not support that neuroleptic 

medication might influence IL-2 and IFN-γ in vitro production in schizophrenia (Rothermundt 

et al., 2000; Katila et al., 1989), some others showed that neuroleptic medications differently 

affect IL-2 production (Cazzullo et al., 1998) and that the addition of clozapine induced sIL-

2R secretion in peripheral blood mononuclear cells (Hinze-Selch et al., 1998).  

 

Clozapine was shown to increase various Th1 cytokines such as IL-2, sIL-2R, IFN-γ, TNF-α, 

sTNF-Rp55, and sTNF-αp75 either in serum/plasma or in vitro production (Rudolf et al., 

2002; Haack et al., 1999; Hinze-Selch et al., 1998; Muller et al., 1997; Maes et al., 1996; 

Hinze-Selch et al., 1996; Pollmacher et al., 1995; Maes et al., 1994). However, Monteleone et 

al. reported of clozapine treatment leading to a reduction in TNF-α (Monteleone et al., 1997), 

while Song et al. found a bi-modal effect of clozapine on IFN-γ in vitro production (Song et 

al., 2000). 10-6 M of clozapine significantly increased LPS/PHA-induced IFN-γ in vitro 
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production, whereas 10-4 M of clozapine led to a reduction in IFN-γ secretion in healthy 

subjects (Song et al., 2000). 

 

Another atypical neuroleptic risperidone was shown to enhance sIL-2R (Maes et al., 1996) 

and IL-2 production; nevertheless, the increase was not statistically significant (Cazzullo et 

al., 2002). The effects of risperidone on IFN-γ were, nonetheless, dependent upon the length 

of treatment; it firstly reduced, but later increased IFN-γ release (Cazzullo et al., 2002). 

However, Kim et al. did not find any effect of risperidone on plasma IL-2 and IFN-γ levels; 

but after 4-week treatment, risperidone significantly enhanced plasma IL-2 levels in acute 

schizophrenics (Kim et al., 2001). 

  Atypical neuroleptic and Th2 cytokines 

Reports regarding the effects of clozapine on Th2 cytokines are rare. Clozapine was shown to 

have no effect on the IL-6/sIL-6R ratios in schizophrenia (Maes et al., 1994).  Monteleone et 

al. also failed to detect any effect of clozapine on plasma IL-6 (Monteleone et al., 1997). But 

Maes et al. found that clozapine led to increased serum/plasma IL-6 after short-term 

treatment, nonetheless, decreased IL-6R levels after prolonged treatment in acute 

schizophrenic patients (Maes et al., 2002; Maes et al., 1997). In healthy subjects, clozapine 

was found to reduce LPS/PHA stimulated whole blood IL-6 and IL-10 in vitro production 

(Song et al., 2000). It was, however, shown to increase serum IL-10 in subjects with 

schizophrenia, although the enhancement was not significant (Maes et al., 2002). 

 

Risperidone was newly shown to increase plasma IL-6 (Maes et al., 2002), IL-10 production 

(Cazzullo et al., 2002), and serum IL-10 (Maes et al., 2002), while it exerted its effects on IL-

4 secretion in a time-dependent manner (first reduction and later enhancement) (Cazzullo et 

al., 2002). However, Kim et al. found no effect of risperidone on plasma IL-6 in acute 

schizophrenics (Kim et al., 2001). 

 

Olanzapine, a further atypical neuroleptic, shares with clozapine various similarities including 

its chemical structure and the binding profiles of diverse neurotransmitter receptors. Both 

olanzapine and clozapine were found to be able to induce transient agranulocytosis. To date, 

no report about the effects of olanzapine on diverse typical Th1/Th2 cytokines was published. 

Olanzapine was shown to increase CD8+ cells, an important source of various cytokines. 

However, no effect of olanzapine was observed on CD14, CD19, CD3, CD4, and CD45 
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(Bilici et al., 2003). Olanzapine could have influences on Th1/Th2 cytokines indirectly 

through its effects on CD8+ cells. 

Typical neuroleptics & Th1/Th2 cytokines 

  Typical neuroleptics and Th1 cytokines 

Results regarding the effects of typical neuroleptic haloperidol on Th1 parameters were 

conflicting.  

 

Haloperidol was shown either to increase sIL-2R (Kowalski et al., 2000), IL-2 (Rudolf et al., 

2002), and IFN-γ in vitro production (Rudolf et al., 2002) or to decrease TNF-α, IL-2 

(Kowalski et al., 2000) in vitro production, and serum IL-2 (Kim et al., 2000) or to have no 

effect on IL-2 in vitro production (Rudolf et al., 2002; Boukhris et al., 1988), plasma sIL-2R, 

and TNF-α at a medium dosage (Pollmacher et al., 1997). The increase in sIL-2R levels was 

higher in patients with a predominance of positive symptoms compared with those whom 

dominated with both positive and negative symptoms (Kowalski et al., 2000). In addition, 

perazine, anther typical neuroleptic, was found to decrease TNF-α in vitro production 

(Kowalski et al., 2000). 

  Typical neuroleptics and Th2 cytokines 

Reports regarding the effects of haloperidol on Th2 cytokines are rare. Only Pollmächer et al. 

found no influence of haloperidol on plasma IL-6 at medium dosage (Pollmacher et al., 1997).  

 

The findings in this regard originated mostly from in vitro data gained from clinical studies or 

in less extent from in vivo data obtained from animal experiments. The problem of the clinical 

data from schizophrenic subjects is that most of the patients did not have the same 

experimental conditions. It occurred very frequently that different patients had been treated 

with different medicines for various lengths of period, some treated with different 

neuroleptics one after another, and some even under distinct neuroleptics simultaneously. The 

comparisons from the clinical data are often hard to explain. The in vivo data from animal 

experiments have advantages over those from schizophrenic patients in this regard; 

nonetheless, whether the results from animals can be totally transferred to humans remains as 

an unsolved issue. 
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4 Questions and hypothesis 

 

Based on the findings regarding (1) the associations between the increased prevalence rates in 

schizophrenia and diverse epidemics of distinct viral infections a few decades ago, (2) 

positive antibody titers against distinct viruses in one part of schizophrenics, (3) the role of 

the immune system, especially Th2-shift in various viral infections, (4) distinct immune 

dysfunctions found in schizophrenia, and (5) the suggestions of two recent reviews (Schwarz 

et al., 2001b; Muller et al., 2000), the following questions were posed: 

 

(1) Did a Th1/Th2 imbalance in favor of Th2-shift occur in any subgroup of 

schizophrenic patients? 

(2) If yes, in which of the epidemiological and/or clinical schizophrenic subgroup(s) could 

a clear Th2-shift be observed? 

(3) If yes, had any of those immunological and endocrinological parameter(s) measured in 

this study significantly contributed to the variances of diverse Th1/Th2 ratios in 

schizophrenia? 

 

To the first question, we assumed that there was at least one schizophrenic subgroup having 

an apparent Th2-shift. The others were open questions, no hypothesis was supposed. Th2-

shift was defined as significantly reduced IFN-γγγγ/IL-4  and/or IFN- γγγγ/IL-10  and/or IFN- γγγγ/IL-

13 ratio compared to healthy subjects.   

 

Firstly, Th2-shift was examined in the whole group of schizophrenic subjects. Then, the 

schizophrenic patients were subdivided into diverse subgroups according to either genders 

(male/female) or distinct clinical features including (1) paranoid/non-paranoid schizophrenia, 

(2) drug-naïve/drug-free (pre-medicated) schizophrenia, (3) patients in the first-/other disease 

episode, (4) schizophrenics having different lengths of washout period (≤ 1 week or ≥ 3 

months), (5) schizophrenia with negative/positive family psychiatric history, (6) acute/chronic 

schizophrenia, (7) early/late onset schizophrenia, (8) schizophrenic patients with high/low 

scores on distinct PANSS subscales (negative, positive, and global), and (9) patients having 

different degrees of symptom severity. According to the scores on the Clinical Global 

Impressions (CGI : National Institute of Mental Health) at admission, at discharge, and the 

difference between both time points, schizophrenic patients were clustered into different 
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subgroups with distinct symptom severity. Moreover, the effects of nicotine abuse on 

Th1/Th2 cytokines were also scrutinized because it was believe to have impacts on cytokines.  

 

In addition, despite of the well-known correlations between the immune and endocrine system 

(Egger, 1992), so far, no immunological investigation in schizophrenia has considered the 

influences from the endocrine system simultaneously. This is the first immunological study in 

schizophrenia research to have taken distinct endocrinological parameters into account. 

Diverse endocrinological parameters such as prolactin, cortisol, testosterone, estradiol, and 

the sex hormone binding globuline (SHBG) were measured. Those hormones were included 

into the analysis as co-variants in order to control their impacts on Th1/Th balance since they 

were found to have either promoting or inhibitory effects on Th1/Th2 cytokines 

(Protonotariou et al., 2004; Dimitrov et al., 2004; Iwata et al., 2004; Elenkov, 2004; Xie et al., 

2002; Elenkov and Chrousos, 2002; Miyaura and Iwata, 2002; Angele et al., 2001). The 

inclusion of the endocrinological variables stated above into the analysis could further ensure 

that Th2-shift in schizophrenia was rather a result of disease process, but not just an 

interactive outcome of distinct hormones. 

 

However, mainly due to the space limit, this report focuses on the findings from the whole 

schizophrenic group and both gender subgroups. The outcomes concerning various 

schizophrenic clinical subgroups were only briefly summarized in a table without presenting 

the detailed results from MANCOVA. The other reasons were that (1) there were a lot of 

missing data in many clinical variables and (2) that, therefore, different clinical parameters 

had different case numbers. In many circumstances, the case number of a schizophrenic 

clinical subgroup was so much smaller than that of healthy subjects. If including the 

significance tests of all demographical and endocrinological parameters of each single clinical 

subgroup, this report would become very complicated and confusing. Even if only the 

outcomes from multi-variance-analysis in all clinical subgroups presented, the content of this 

report would be too much.  

 

However, even there was a big difference in case numbers, the diversities in Th1/Th2 ratios 

between many schizophrenic clinical subgroups and healthy controls reached a statistic 

significance level. They could, thus, offer a good insight into Th2-shift in distinct 

schizophrenic clinical subgroups. This was also one of our goals. Therefore, the results 

relating to distinct clinical subgroups were briefly presented in a table in order to give an 
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overview of “Th1/Th2 imbalance in diverse schizophrenic clinical subgroups” and 

simultaneously to reduce the complexity of this report.  
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5 Methods 

5.1 Subjects 

 

Totally, 114 schizophrenic patients, 36 psychiatric patients with schizophrenia-related 

disorders, and 101 healthy controls were included into the study. Ninety of the 114 

schizophrenics, 36 patients with schizophrenia-related diseases, and 78 of the 101 healthy 

controls had complete serum data including serum Th1/Th2 cytokines/ratios, hormones, 

SHBG, age, and gender. Fifty-nine of the 114 schizophrenics, 25 of the 36 patients with 

schizophrenia-related disorders, and 78 control subjects had complete whole blood assay data 

which contained whole blood assay Th1/Th2 cytokines/ratios, hormones, SHBG, age, and 

gender. And 44 of the 114 schizophrenics, 14 of the 36 patients with schizophrenia-related 

disorders as well as 76 of the 101 healthy subjects had complete lymphocyte data regarding 

lymphocyte Th1/Th2 cytokines/ratios, hormones, SHBG, age, and gender. Altogether, 40 

schizophrenic patients and 72 normal subjects had complete serum, whole blood assay, and 

lymphocyte data. The final 40 schizophrenics and 72 controls having complete data in serum, 

whole blood assay, and lymphocyte were included into the “multiple regression analysis” in 

order to compare data from diverse materials (serum, whole blood assay, lymphocyte) in the 

same subjects. The demographical data of both patient and control group as well as the 

clinical data of schizophrenic patients were described in “Results”. All participants of this 

study had given their written informed consents to take part into the study. 

 

The inclusion criteria for all subjects were: no severe medical disease, free of acute allergies, 

inflammatory disorders, autoimmune diseases, and clinically apparent infections. Further 

essential inclusion criteria for schizophrenic patients to fulfill were (1) the diagnosis of 

schizophrenia, (2) no history of psychotropic substance addiction or abuse except nicotine, 

and (3) no personality disorders according to DSM-IV (American Psychiatric Association, 

1994). In addition, healthy controls were free of any psychiatric disorder and had no first-

degree biological relative who had ever suffered or been suffering under any psychiatric 

disease.  

 

5.2 Materials and preparation 
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Serum, whole blood as well as isolated lymphocytes of subjects were used to investigate the 

balance between both T-helper systems. The main analysis methods comprised Cytometric 

Bead Array (CBA), Enzyme-linked ImmunoSPOT (Elispot), and Enzyme-Linked 

Immunosorbent Assay (Elisa). 

 

In order to prepare the blood samples for diverse methods, two different kinds of culture 

medium were needed. The first one (Medium I) contains RPMI 1640 medium with 2 g/l 

NaHCO3 as well as 0.532 g/l L-glutamate (Biochrom; Berlin, Germany) and 1% of sodium 

pyruvate (Biochrom; Berlin, Germany). The second kind of medium (Medium II) is Medium I 

supplemented with 10% of fetal bovine serum (Biochrom; Berlin, Germany). 

 

All blood samples of subjects were drawn between 8 and 9 AM every morning. Two tubes of 

blood samples were collected in ethylene diamine tetra acetate (EDTA) tubes (Sarstedt 

Monovette; Nürmbrecht, Germany) and two further in anticoagulant citrate phosphate 

dextrose adenine (CPDA) tubes (Sarstedt Monovette; Nürmbrecht, Germany). 

Preparation of blood samples  

Right after collection, EDTA samples were centrifuged in an electronic centrifuge (Omnifuge 

2.0 RS: Heraeus Sepatech, Germany) at 6°C with a speed of 4000 rpm for 10 minutes. Then 

the serum samples were transferred into distinct micro-tubes (Sarstedt; Nümbrecht, Germany) 

and stored at –80°C until use. CDPA blood samples were for the Whole Blood Assay and the 

Elispot analysis. For each subject, 200 µl of blood was firstly taken out of one CDPA tube, 

mixed with 3ml Medium II (Biochrom; Berlin, Germany) supplemented with 1% of penicillin 

streptomycin (Biochrom; Berlin, Germany), and kept in a 50ml-polypropylene falcon 

(Sarstedt; Nümbrecht, Germany). A final concentration of 5µg/ml phytohemagglutinin (PHA) 

(Biochrom; Berlin, Germany) was secondly added to the mixture of whole blood and culture 

medium. Then the mixture of whole blood, medium, and PHA was incubated at 37°C in 5% 

CO2/95% humidity for 46 hours. After 46 hours, the stimulated whole blood was centrifuged 

at 6°C by 3270 rpm for 10 minutes; the resultant supernatant was distributed into several 

micro-tubes (SARSTEDT; Nümbrecht, Germany) and kept at –80°C until analysis. The 

leftover CDPA blood sample was mixed thoroughly with approximately 3 times as much 

Medium I for Elispot-analysis. About 30 ml of diluted whole blood was transferred slowly to 

a falcon containing 15 ml of biocoll separating isotonic solution (density = 1.077, Biochrom; 

Berlin, Germany) so that the diluted whole blood floated right on the surface of the separating 

solution. Afterwards, the blood sample with separating solution was centrifuged at 30°C by 
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1400 rpm for 40 minutes. This resulted in three clearly separable layers – the top one was the 

isolated lymphocytes. The lymphocytes were then washed with 50 ml of Medium I by 

centrifuging them twice at 1400 rpm for 10 minutes. After washing, 1400 µl of Medium II, 

180 µl of dimethyl sulfoxide (DMSO) (Sigma; Steinheim, Germany), and additional 180 µl of 

fetal bovine serum were added to the isolated lymphocytes in a vial (Nunc, Denmark). It was 

firstly kept at –20°C for 2 hours and finally stored at –80°C until use.  

 

5.3 Cytokine measurements 

5.3.1 Cytometric Bead Array (CBA) 

 

CBA is a newly developed Elisa-variant. The Human Th1/Th2 Cytokine CBA Kit-II (Becton 

Dickinson Pharmingen, USA) was used to quantify IL-2, IL-4, IL-6, IL-10, TNF-α, and IFN-γ 

protein levels in serum and PHA-stimulated whole blood. The BD CBA system uses the 

sensitivity of amplified fluorescence detection by flow cytometry to measure soluble analytes 

in a particle-based immunoassay. Flow cytometry allows discriminating different particles on 

the basis of size and color. The BD CBA employs a series of particles with discrete 

fluorescence intensities to simultaneously detect multiple soluble analytes. Each bead in CBA 

provides a capture surface for a specific protein and is analogous to an individually coated 

well in an ELISA plate. Compared to conventional ELISA, CBA has the following 

advantages: (a) the comparability among distinct cytokine productions of interest is much 

higher due to using the same sample to measure different cytokines. (b) Only a small volume 

of sample is required in order to measure several cytokines at one time. (c) The detectable 

ranges are much greater and thus particularly well suited to assessing in-vitro production of 

cytokines such as IFN-γ. (d) That the method could be conducted with falcons, in addition to 

microplates, and assessed by FACS flow cytometer allows flexibility of test volumes used. 

This is particularly advantageous for proteins having very low in vivo concentrations. CBA is 

thus more flexible than conventional ELISA. However, its precision remains at least as good 

as conventional ELISA. According to the manual of the manufacturer, the intra-assay 

coefficients of variation for IL-2, IL-4, IL-6, IL-10, TNF-α, and IFN-γ are 2-5%, 3-4%, 2-3%, 

2-3%, 2-4%, and 3-4%, respectively. The inter-assay coefficients of variation for cytokines in 

the same order as stated above are 4-9%, 3-7%, 3-7%, 4-6%, 3-6%, and 5-11%, 

correspondingly. The sensitivities of each cytokine measured here in the same order as the 

above stated are 2.6, 2.6, 3.0, 2.8, 2.8, and 7.1 pg/ml, respectively.  

Whole blood assay 



 

42 

The procedure consists of (1) preparation of human Th1/Th2 cytokine standards, (2) 

preparation of mixed human Th1/Th2 cytokine capture beads, (3) CBA, cytometer setup, (4) 

data acquisition and analysis. For each vial of lyophilized human Th1/Th2 cytokine standards, 

200 µl of assay diluent was added; this was the original cytokine standard. Afterwards, both 

standards vials were agitated in order to mix thoroughly and then let stand for 30 minutes.  

 Preparation of cytokine standards 

Sixteen 12×75 mm BD Falcons were labeled with a red marker from 0 to 15. Another 14 BD 

falcons were labeled with a blue marker from 1 to 14; in each of the blue #1 to #13 tubes, 200 

µl of assay diluent was added. Three hundred µl of cytokine standards and 25 µl of assay 

diluent were firstly added into the falcon blue #14, and then mixed thoroughly; this was the 

top diluted cytokine standard. Secondly, 200 µl of the diluted cytokine standard from blue #14 

was then transferred to the falcon “blue #13” and mixed with 200 µl of assay diluent in it. 

After thoroughly mixing, 200 µl of standard diluent from the falcon “blue #13” was added to 

the falcon “blue #12”. So through transferring 200 µl of diluted standard to the next tube with 

a lower number, a series of standard diluents was done. In the final, 50 µl of diluted cytokine 

standard from each tube marked with blue labels was transferred into the red-labeled falcon 

with a corresponding number. The falcon “red #0” was filled with 50 µl of pure assay diluent 

and the one with “red #15” with 50 µl of the original cytokine standard without any further 

dilution. 

Preparation of cytokine capture beads 

Depending on the number of test samples, each falcon was labeled with a unique 

identification number in order to distinguish various samples, which were filled in the falcons. 

Fifty µl of the supernatant from each subject was transferred into the corresponding falcon. 

Then, all falcons filled with cytokine standards or supernatants were stored in a cool box until 

the next step.  

 

Before each capture bead suspension was transferred into a new falcon, it must be vigorously 

mixed for a few seconds. The volume of each capture bead suspension depends upon the 

number of assay tubes, including all cytokine standards and test samples. Usually, except 

cytokine standards only maximum 50 samples can be measured; therefore, there were total 65 

assay tubes. For each cytokine standard or test sample tube, 10 µl of capture bead for each 

cytokine was needed. So for 6 different cytokines and 65 assay tubes (cytokine standards plus 

test samples), it summed up to be 3900 µl (10µl × 6 × 65 = 3900 µl). The mixture of diverse 

cytokine capture beads was then mixed thoroughly. 
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To each cytokine standard and test sample tube, further 50 µl of the capture bead mixture and 

50 µl of the PE detection reagent were added. The final mixture of standards/samples, capture 

beads, and PE detection reagent let stand at room temperature, protected from exposure to 

light, and incubated for 3 hours. Three hours later, each final assay tube was washed with 1 

ml of wash buffer (centrifuged at 200 × g for 5 minutes) and then drained carefully. 

Afterwards, another 300 µl of fresh wash buffer was added to each assay tube in order to re-

suspend the bead pellet. Right before analyzing standards/samples on a flow cytometer, each 

assay tube was agitated for 3-5 seconds. 

Serum samples 

The procedure to measure cytokine levels in sera was basically the same as that for whole 

blood assay. The only diversity was the volumes of serum, diverse capture beads, and PE 

detection reagent. In each case, 100 µl, instead of 50 µl, of serum, capture beads, and PE 

detection reagent were added to each assay tube due too low cytokine levels in serum in many 

subjects, especially IL-2 and IL-4, as well as due to lower sensitivity of IFN-γ capture 

antibodies. Nevertheless, for each standard tube, the volumes of cytokine standards, capture 

beads, and PE detection reagent were the same as those for the whole blood samples. After 

this minor modification, all 6 cytokine levels measured in serum were detectable in all 

subjects, including healthy controls and schizophrenic patients. So, the final resulted measures 

for distinct Th1/Zh2 cytokines were divided by 2 in order to obtain the original cytokine 

levels.      

                                                                                                                                        

5.3.2 Enzyme-linked ImmunoSPOT (ELISPOT) 

 

ELISPOT was used to assess the in vitro productions of IFN-γ, IL-4, IL-12, IL-13, and IL-10 

by isolated lymphocytes. The antibodies against the cytokines stated above are from 

MABTECH (Sweden). The first/capture antibodies applied in the order mentioned above 

were Mab1-DIK, MabIL-4-I, Mab IL12-I, MabIL13-II, and Mab 9D7. The second/detection 

antibodies used were Mab-1-Biotin, Mab IL4-II Biotin, Mab IL12-II Biotin, Mab IL13-II-

Biotin, and Mab 12G8-Biotin. And the enzyme applied was Streptavidin-Alkaline 

Phosphatase-PQ. The micro-plates used to perform ELISPOT were from Millipore 

(Molsheim, France) MultiScreen Sterile Clear Plates with 0.45 µm surfactant and had mixed 

cellulose ester membranes. 
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The ELISPOT technique was originally used to enumerate antibody secreting B cells. It is a 

variation of the ELISA. The ELISPOT assay is a sensitive assay for analysis of cell activation 

at the single-cell level. Compared to ELISA, ELISPOT is more suitable to detect cytokines 

with very low in vitro productions since the detection sensitivity can be improved through 

manipulating cell concentrations. In order to compare the balance of the main Th1/Th2 

cytokines within the same length of period, the incubation duration for all Th1/Th2 cytokines 

was the same – 46 hours, although according to the instructions of the Mabtech and relevant 

literature, the Th1 cytokines require much shorter time to be released than the Th2 ones. In 

addition, due to the great variations in productions among distinct cytokines, diverse cell 

concentrations were use to detect different cytokines; for IFN-γ 40,000 cells/well and 80,000 

cells/well were used, for IL-4 and IL-13 200,000 cells/well and 160,000 cells/well, and for IL-

10 and IL-12 80,000 cells/well and 160,000 cells/well.  

 

The assay was performed in 96-well microtiter plates. Firstly, the wells were coated with 100 

µl of high affinity monoclonal capture antibodies with a concentration of 7.5µg/ml (diluted 

with coating buffer NaHCO3 + Na2CO3, pH = 9.6) and incubated at 4°C overnight to let the 

capture antibodies bind to the plate membrane. The very next day, the plate was washed with 

200 µl/well of filtered PBS (pH = 7.4) for 6 times. Then cells with various concentrations, 

depending on the cytokine detected, were added to each well and incubated at 37°C/5% 

CO2/95% humidity for 46 hours. This procedure was performed under a sterile flow. Forty-six 

hours later, cells were removed by washing with PBS for 6 times as the previous description. 

Then 100 µl of the biotinylated detection antibodies (1µg/ml) were added to each well and 

incubated for 2 hours. During this period antigen-specific responding cells released the 

cytokine that was captured in the immediate vicinity of the cells. After 2-hour incubation and 

6-time washing, 100 µl of streptavidin conjugated with enzyme alkaline phosphatase (1µg/ml) 

was added to each well and the plate was incubated for 2 hours until spots emerged at the site 

of the responding cells. The spots were examined and counted by KS ELISPOT release 

4.4.11.2001 (Carl Zeiss, Germany).  

 

5.3.3 Enzyme-Linked ImmunoSorbent Assay (ELISA) 

 

The ELISA is a fundamental tool of clinical immunology. Based on the principle of antibody-

antibody interaction, this test allows for easy visualization of results and can be completed 

without the additional concern of radioactive materials use. Purified antibodies against  
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proteins of interest were pre-coated onto an ELISA plate. If sera or supernatants tested contain 

the proteins of interest, those antibodies will bind to the proteins on the plate. Anti-human 

immunoglobulins, the second antibodies, are coupled to an enzyme. The second antibody is 

added to the plate and binds to proteins of interest. In the end, substrate is added to the plate, 

changing the color of the wells when substrate is cleaved by the enzyme attached to the 

second antibody. The darker the color of each well, the greater the quantity of proteins studied 

in each well. 

 

R&D ELISA kits (Minneapolis, USA) were used to measure IL-12 and IL-13 due to 

exclusion of these two cytokines in the human Th1/Th1 cytokine CBA-kit. The assay 

procedure is similar to that of CBA, however, impossible to be modified except lowering the 

bottom standard. The highest detectable range for IL-12 is 500 pg/ml and for IL-13 is 4000 

pg/ml. For whole blood and plasma/serum IL-12, the coefficients of variation for intra- and 

inter-assay were 1.1-1.5% and 3.3-7.7%, respectively, while 2.4-6.3% and 3.8-6.5% for IL-

13.  

 

The samples used to measure IL-12 and IL-13 were only supernatants of whole blood because 

the majority of serum samples probably lie under the detectable levels of the kits since most 

of the attained measures for in-vitro production, particularly those of IL-13, were 

undetectable. Basically, the steps to detect IL-12 and IL-13 are the same; the only diversity 

lies in the volumes of various solutions/reagents required. Firstly, the required 

reagents/solutions such as wash buffer and cytokine standards were prepared. Secondly, 50 µl 

and 100 µl of assay diluent were added to each well of the IL-12 and IL-13 microplate, 

respectively. Thirdly, 200 µl and 100 µl of standards or supernatants were added to each well 

of the IL-12 and IL-13 microplate, correspondingly. Fourthly, the mixtures of the microplate 

were incubated for 2 hours at room temperature. After 2 hours, the microplate was repeatedly 

washed and aspirated for three times. Fifthly, the microplate was added with 200 µl of 

conjugate to each well and incubated for another 2 hours. Two hours later, washing and 

aspiration were repeated for 3 times. Then, 200 µl of substrate solution was added to each 

well; the substrate solutions were incubated in darkness for 20 and 30 minutes for IL-12 and 

IL-13, correspondingly. Finally, 50 µl of stop solution was added to each well. Right after 

addition of stop solution, the optical density of each well was determined using a microplate 

reader. 
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5.4 Hormone assessment 

The serum levels of various hormones including prolactin, cortisol, estradiol, testosterone, 

and the sex hormone binding globuline (SHBG) were measured by using corresponding 

Elecsys Kits  (Roche Diagnostics; Mannheim, Germany). The sensitivities of diverse Kits for 

the hormones in the order stated above were 0.47 ng/ml, 0.036 µg/dl, 5 pg/ml, 0.02 ng/ml, and 

0.35 nmol/l, respectively. 

 

5.5 Statistic analysis 

 

The immunological parameters included Th1 cytokines IFN-γ, IL-2, TNF-α, and IL-12 as 

well as Th2 cytokines IL-4, IL-10, IL-6, and IL-13. The endocrinological parameters 

including stress hormones like cortisol, prolactin, sex hormones such as estradiol, 

testosterone, and the sex hormone binding protein (SHBG) were also assessed since they were 

reported to have impacts on Th1/Th2 cytokines. The independent variables contained distinct 

diagnostic groups (e.g. schizophrenia, schizophrenia-related disorders, controls) and various 

schizophrenic subgroups (e.g. male schizophrenics vs. male controls or paranoid/non-

paranoid schizophrenics vs. normal subjects). The dependent variables consisted of different 

Th1/Th2 cytokines and ratios obtained from serum, whole blood assay, and lymphocyte data. 

The endocrinological parameters stated above and age were included into the analysis as co-

variant(s) if any of them clearly distinguished the corresponding index-groups. 

 

Depending on the questions addressed, diverse statistics were applied to evaluate the data. 

Cluster-center analysis was used to divide subjects or patients into distinct subgroups. One-

way ANOVA was applied to compare the differences in age, illness duration, number of 

disease episode, and onset age between 2 groups. Cross-table analysis was conducted to 

compare variables with nominal levels such as case number of nicotine abuse, family 

psychiatric history, pre-medication (yes vs. no), washout period, drug-free/drug-naïve, 

first/other-episode, acute/chronic, early/late onset, and clinical diagnostic subgroups. 

MANOVA  was used to compare the diversity in various hormones, SHBG levels, scores on 

the PANSS scale and the CGI. Additionally, MAN(C)OVA was also applied to compare 

cytokine productions/levels and Th1/Th2 ratios. Multiple regression analysis was conducted 

to detect the partial relationships between a criterion (e.g. IFN-γ/IL-4) and distinct predictors 

(e.g. hormones and cytokines). Furthermore, Pearson correlations were calculated for 

cytokine levels/productions, Th1/Th2 ratios, and the scores on the PANSS scale. 
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6 Results 

 

The results contain the following parts: (1) Demographical data, (2) Endocrinological data, 

(3) Clinical data, (4) Th1/Th2 cytokines and ratios in schizophrenia: the whole 

schizophrenic group & distinct schizophrenic subgroups – results from MAN(C)OVA, (5) 

Contributors of Th1/Th2 imbalance in schizophrenia – outcomes from Multiple 

Regression, (6) Influencing factors of Th1/Th2 cytokines in schizophrenia – findings from 

Multiple Regression, as well as (7) Correlations between Th1/Th2 cytokines/ratios and 

psychopathology in schizophrenics – results from Pearson correlations. 

 

6.1 Demographical data 

 

Altogether, there were 114 patients with schizophrenia, 36 patients having related disorders 

(such as schizoaffective disorder, acute psychotic disorder etc.), and 101 healthy controls 

participated into the study. The total subjects were divided into 3 different groups for various 

analyses (serum CBA, whole blood CBA, ELISA, and lymphocyte ELISPOT). Therefore, this 

report contains serum, whole blood, and lymphocyte data. These 3 kinds of data overlapped 

only partially with one another. 

Serum data   

Totally, 90 schizophrenic subjects (abbreviated as SCH), 36 patients with schizophrenia-

related diseases (SCH-R), and 78 healthy controls (CON) had serum cytokine data. Among 

them, there were 76 schizophrenics, 75 healthy controls, and 26 patients with schizophrenia-

related disorders having complete data for gender, age, hormones, SHBG, and serum Th1/Th2 

ratios. Schizophrenics were averagely 36.08 years (SD = 13.31), patients with schizophrenia-

related disorders were 32.77 years (SD = 10.54), and controls were 29.59 years old (SD = 

8.32). ANOVA post-hoc Schéffe tests revealed that only the diversity between schizophrenics 

and healthy subjects reached a significance level (SCH vs. CON: F = 12.88, p < .001; SCH-R 

vs. CON: F = 2.45, p = .12; SCH vs. SCH-R: F = 1.32, p = .25). Furthermore, the female/male 

ratios among these three diagnostic groups did not significantly differ from one another. 

There were 42 males and 34 females in the schizophrenic group, 11 men and 15 women in the 

group having schizophrenia-related disorders as well as 40 males and 35 females in the 
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control group (SCH vs. CON: χ² = .06, p = .81; SCH-R vs. CON: χ² = .94, p = .33; SCH vs. 

SCH-R: χ² = 1.30, p = .25). 

 Whole blood data 

Whole blood assay Th1/Th2 cytokine data were collected from 59 schizophrenics, 25 patients 

having schizophrenia-related disorders, and 78 control subjects. Among those subjects stated 

above, there were only 44 schizophrenics, 14 patients with schizophrenia-related disorders, 

and 76 healthy subjects having complete data for whole blood assay Th1/Th2 ratios, age, 

gender, hormones, and SHBG. The average ages of the schizophrenic and control group were 

evidently different, but those of patients having schizophrenia-related disorders and normal 

subjects as well as those of both patient groups were not clearly distinguishable (SCH vs. 

CON: F = 11.39, p < .001; SCH-R vs. CON: F = 3.41, p = .07; SCH vs. SCH-R: F = 1.32, p = 

.25). Schizophrenics were the oldest ones having an average age of 36.25 years (SD = 12.68), 

then patients with schizophrenia-related disorders having a mean age of 34.36 years (SD = 

9.61), and the controls were the youngest ones with an average age of 29.75 years (SD = 

8.39). Moreover, the male/female ratios were relatively similar among these three diagnostic 

groups. The schizophrenic group consisted of 26 males and 18 females, the schizophrenia-

related patient group contained 9 men and 5 women, while the control group comprised 41 

male and 35 female subjects (SCH vs. CON: χ² = .30, p = .59; SCH-R vs. CON: χ² = .51, p = 

.47; SCH vs. SCH-R: χ² = .12, p = .73). 

 

In addition, there were 25 schizophrenics (12 males + 13 females) and 39 healthy controls (24 

males + 15 females) whose IL-12 and IL-13 in PHA-stimulated whole blood were also 

measured. Nevertheless, only 9 schizophrenics (6 males and 3 females) and 23 controls (12 

males and 11 females) had completed demographical, endocrinological data as well as 

detectable IL-12 in vitro productions. No clear disparity was found between these two 

diagnostic groups regarding gender distribution and age (SCH – age: M = 33.89 yrs, SD = 

13.92; CON – age: M = 29.78, SD = 7.70; F = 1.15, p = .29; gender distribution: χ² = .55, p = 

.46). Totally, there were 10 schizophrenics (4 males and 6 females) and 25controls (18 males 

and 7 females) having completed data for age, gender, hormones, SHBG, and detectable IL-

13. Schizophrenics were apparently older than controls (gender distribution: χ² = 3.13, p = 

.08; SCH – age: M = 37.40 yrs, p = 14.77; CON – age: M = 28.84, SD = 5.48; F = 6.44, p = 

.02). Moreover, the schizophrenic group tended to have significantly less males than the 

control group.  

Lymphocyte data 
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Altogether, there were 72 schizophrenics, 30 patients with schizophrenia-related disorders, 

and 101 controls having lymphocyte-produced cytokine data. However, only 54 

schizophrenics, 18 schizophrenia-related patients, and 98 healthy controls had complete data 

for lymphocyte Th1/Th2 cytokines/ratios, hormones, SHBG, age, and gender. The 54 

schizophrenics were averagely 34.43 years old (SD = 12.42), the controls were 29.24 years 

(SD = 8.90), and the patients with schizophrenia-related disorders were 34.00 years old (SD = 

10.50). The disparities between any one patient group and the control group were 

conspicuously different, however, not that between both patient groups (SCH vs. CON: F = 

8.84, p = .003; SCH-R vs. CON: F = 4.10, p = .05; SCH vs. SCH-R: F = .02, p = .90).  

     

Table 6-1(1): A summary of subject numbers (N), ages (means/standard deviations), and 
gender distributions (male = ♂, female = ♀) in both schizophrenic and control group who had 
either complete serum or whole blood assay or lymphocyte data. 

Diagnostic group SCH CON 

Gender 
Analysis-materials 

♀ 
N; M of age (SD) 

♂ 
N; M of age (SD) 

♀ 
N; M of age (SD) 

♂ 
N; M of age (SD) 

34; 39.97 (12.14) 42; 32.93 (13.51) 35; 29.34(7.84) 40; 29.80 (8.81) Serum 
 Σ = 76; 36.08 (13.31) Σ = 75; 29.59 (8.32) 

18; 39.17 (12.39) 26; 34.23 (12.72) 35; 29.34(7.84) 41; 30.10(8.91) Whole blood assay 
 Σ = 44; 36.25 (12.68) Σ = 76; 29.75(8.39) 

22; 38.41 (13.14) 32; 31.69 (11.31) 45; 29.80(9.01) 53; 28.77(8.86) Lymphocyte 
 Σ = 54; 34.42 (12.42) Σ = 98; 27.24 (8.90) 
Note  M = mean; SD = standard deviation. 

SCH = schizophrenia; CON = healthy controls; age (years old). 

 

SummarySummarySummarySummary : Table 6-1(1) offers an overview for the demographical data of schizophrenics and 

healthy controls. Totally, 76 schizophrenics, 26 patients with schizophrenia-related disorders, 

and 75 controls had complete data for serum Th1/Th2 ratios, hormones, SHBG, ages, and 

genders. The whole blood data for all the parameters stated above were also available in 44 

schizophrenics, 14 patients with schizophrenia-related disorders, and 76 healthy subjects. 

Furthermore, 54 patients with schizophrenia, 18 psychiatric patients having schizophrenia-

related disorders as well as 98 control persons had data regarding lymphocyte Th1/Th2 ratios 

and the rest of parameters mentioned above. Those subjects were included in the following 

analyses. 

 

6.2 Endocrinological data 
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Details regarding the means and standard deviations of the hormone-data in schizophrenics 

and normal controls are summarized in Table 6-2(1). It’s noteworthy that the aim to measure 

diverse hormones was to examine whether there was any significant difference in any of the 

stress/sex hormones between two index-groups because they were believed to have impacts 

on Th1/Th2 balance. If there were, then they would be included into the corresponding multi-

variance analysis as co-variants. 

Serum data 

In general, patients with schizophrenia-related disorders had the lowest cortisol and 

testosterone levels, nonetheless, the highest prolactin and estradiol levels among these three 

diagnostic groups. The controls had the highest cortisol, testosterone, SHBG, but the lowest 

prolactin levels. Nevertheless, schizophrenics had all values in-between but SHBG; they had 

the lowest SHBG levels among these three groups.  

 

Multi-variant comparisons between the 75 healthy subjects and the 76 schizophrenic patients 

who had complete data for serum Th1/Th2 ratios, hormones, ages, and gender demonstrated 

evident disparities between both diagnostic groups in cortisol, prolactin, testosterone, and 

SHBG (cortisol: F = 7.47, p = .007; prolactin: F = 12.68, p < .001; testosterone: F = 6.29, p = 

.01; SHBG: F = 10.55, p = .001; estradiol: F = .01, p = .91). Between the 26 patients with 

schizophrenia-related disorders and control subjects existed also marked diversities in terms 

of their cortisol and prolactin levels; in addition, the difference in testosterone showed a trend 

to be significant as well (cortisol: F = 6.21, p = .01; prolactin: F = 15.36, p < .001; estradiol: F 

= 1.19, p = .28; testosterone: F = 2.86, p = .09; SHBG: F = .71, p = .40). However, between 

both patient groups no obvious diversity was observed in those regards (cortisol: F = .82, p = 

.37; prolactin: F = .24, p = .63; estradiol: F = 1.47, p = .23; testosterone: F = .01, p = .93; 

SHBG: F = 2.76, p = .10). 

Whole blood data 

Whole blood assay data demonstrated that schizophrenics had the lowest levels of cortisol and 

testosterone, but the highest estradiol levels. Patients with schizophrenia-related disorders had 

the highest prolactin, but the lowest SHBG levels. However, the controls had the highest 

cortisol, testosterone, and SHBG levels, although their prolactin and estradiol levels were the 

lowest among these three groups. 
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The findings from multi-variance analysis revealed no distinct discrepancy between both 

patient groups regarding cortisol, prolactin, estradiol, testosterone, and SHBG levels. 

Compared to controls, schizophrenics had significantly lower cortisol and SHBG, 

nevertheless, higher prolactin, while patients with schizophrenia-related diseases had 

markedly higher prolactin levels (SCH vs. CON – cortisol: F = 4.60, p = .03; prolactin: F = 

15.20, p < .001; SHBG: F= 3.84, p = .05; testosterone: F = 2.89, p = .09; estradiol: F = .17, p 

= .68; SCH-R vs. CON – prolactin: F = 11.91, p = .001; cortisol: F = 1.39, p = .24; SHBG: F 

= 2.18, p = .14; testosterone: F = .13, p = .72; estradiol: F = .02, p = .88; SCH vs. SCH-R – 

cortisol: F = .02, p = .89; prolactin: F = .03, p = .87; estradiol: F = .01, p = .91; testosterone: F 

= .52, p = .48; SHBG: F = .07, p = .79).  

 

Additionally, between the 9 schizophrenics and 23 healthy controls having complete ELISA 

IL-12 data, the diversities in prolactin and estradiol tended to be significantly different. 

Schizophrenics tended to have markedly higher prolactin and lower estradiol levels than 

healthy controls (IL-12 – cortisol: F = 1.30, p = .26; prolactin: F = 3.83, p = .06; estradiol: F = 

3.96, p = .06; testosterone: F = .90, p = .35; SHBG: F = 2.10, p = .16). Ten schizophrenic 

patients and 25 controls had complete ELISA IL-13 data; between these 2 groups, the 

disparity in testosterone levels was significant as well. Schizophrenics had remarkably lower 

testosterone than their healthy counterparts (IL-13 – cortisol: F = .81, p = .38; prolactin: F = 

.10, p = .76; estradiol: F = .25, p = .62; testosterone: F = 6.40, p = .02; SHBG: F = .59, p = 

.45). 

Lymphocyte data 

Generally speaking, among the subjects who had complete lymphocyte data, schizophrenics 

had the highest prolactin, nevertheless, the lowest estradiol, testosterone, and SHBG levels. 

The controls had the highest cortisol, testosterone, and SHBG, but the lowest prolactin levels. 

However, the patients with schizophrenia-related disorders had the highest estradiol, 

nonetheless, the lowest cortisol levels among these three diagnostic groups. 

 

Similar outcomes were obtained from multi-variance analysis of lymphocyte data. Between 

the 18 patients with schizophrenia-related disorders and the controls or the schizophrenic 

group, no marked difference was shown in cortisol, prolactin, estradiol, testosterone, and 

SHBG. Nevertheless, the 54 schizophrenics did have noticeably lower SHBG and tended to 

have significantly lower cortisol and testosterone levels than the 98 healthy subjects (SCH vs. 

CON – SHBG: F = 9.21, p = .003; cortisol: F = 3.74, p = .06; testosterone: F = 3.01, p = .09; 
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prolactin: F = 2.50, p = .12; estradiol: F = .01, p = .91; SCH-R vs. CON – cortisol: F = 2.30, p 

= .13; prolactin: F = .41, p = .52; estradiol: F = .52, p = .47; testosterone: F = .06, p = .81; 

SHBG: F = 2.48, p = .12; SCH vs. SCH-R – cortisol: F = .18, p = .68; prolactin: F = .17, p = 

.68; estradiol: F = .57, p = .45; testosterone: F = .84, p = .36; SHBG: F = .23, p = .64).  

 

Table 6-2(1): A summary of hormone levels including cortisol, prolactin, estradiol, 
testosterone, and the sex hormone-binding globulin (SHBG) in schizophrenics and healthy 
controls. 

Diagnostic group SCH: M(SD) CON: M (SD) 

Hormone Material  ♀ ♂ ♀ ♂ 
Serum 160.25 (65.68) 172.18 (66.51) 233.86 (116.24) 176.27 (60.94) 
Σ 166.85 (65.97) 203.14 (94.88) 
WB 160.00 (70.21) 172.57 (58.25) 233.86 (116.24) 174.52 (61.20) 
Σ 167.43 (62.93) 201.85 (94.92) 
Lymph 165.17 (70.40) 175.87 (70.05) 233.85 (128.21) 174.41 (63.01) 

Cortisol  
(µg/L) 

Σ 171.51 (69.73) 201.70 (102.33) 
Serum 36.61 (51.82) 27.78 (23.00) 14.81 (5.80) 15.87 (12.06) 
Σ 31.73 (38.60) 15.37 (9.61) 
WB 36.65 (47.75) 28.22 (21.43) 14.81 (5.80) 15.74 (11.94) 
Σ 31.67 (34.44) 15.31 (9.56) 
Lymph 44.63 (24.85) 24.85 (20.03) 17.40 (14.86) 23.58 (62.90) 

Prolactin 
(ng/ml)  

Σ 32.91 (41.83) 20.74 (47.23) 
Serum 63.01 (66.44) 31.57 (8.08) 62.28 (69.01) 32.72 (9.32) 
Σ 45.64 (47.17) 46.51 (49.54) 
WB 77.23 (86.09) 31.94 (8.84) 62.28 (69.01) 32.65 (9.21) 
Σ 50.47 (59.02) 46.30 (49.24) 
Lymph 64.08 (69.93) 30.98 (8.50) 61.73 (66.70) 31.57 (9.58) 

Estradiol 
(pg/ml) 

Σ 44.46 (47.43) 45.42 (47.91) 
Serum .53 (.27) 4.56 (2.13) .73 (.93) 6.82 (1.74) 
Σ 2.75 (2.56) 3.97 (3.37) 
WB .49 (.26) 4.77 (2.06) .73 (.93) 6.84 (1.73) 
Σ 3.02 (2.65) 4.03 (3.38) 
Lymph .58 (.30) 4.65 (2.03) .84 (1.43) 6.53 (2.19) 

(Total) 
Testosterone 
(ng/ml) 

Σ 3.00 (2.56) 3.92 (3.41) 
Serum 73.49 (45.98) 33.02 (13.41) 116.38 (62.63) 42.41 (17.21) 
Σ 51.12 (37.93) 76.93 (57.78) 
WB 91.26 (52.67) 32.90 (13.07) 116.38 (62.63) 42.60 (17.04) 
Σ 56.77 (45.15) 76.58 (57.48) 
Lymph 76.25 (45.15) 32.01 (11.20) 116.09 (65.04) 44.42 (27.46) 

SHBG 
(nmol/L) 

Σ 50.04 (36.91) 77.33 (60.10) 
 

Note 
Schizophrenia (SCH) – serum: female N = 34, male N = 42; WB (whole blood): female N = 
18, male N = 26; lymph (lymphocyte): female N = 22, male N = 32;  
Control (CON) – serum: female N = 35, male N = 40; whole blood: female N = 35, male N = 
41; lymphocyte: female N = 45, male N = 53. 
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SummarSummarSummarSummaryyyy : Therefore, regardless of analysis material (serum or whole blood or lymphocyte), 

schizophrenic patients had usually lower cortisol, testosterone, and SHBG, nevertheless, 

higher prolactin levels. Their estradiol levels were comparable to those of healthy subjects. 

Those hormones and SHBG may have interacted with the cytokine network dynamically 

when cytokines were produced in vivo. They were also constantly present in whole blood as it 

was stimulated with PHA to release cytokines in vitro. They together or alone might, hence, 

have direct impacts on the balance between the Th1 and Th2 system according to several lines 

of evidence. Thus, they were included into the analysis of serum and whole blood assay data 

in order to control their effects on Th1/Th2 ratios if any of them was clearly distinguishable 

between two index-groups.  

 

6.3 Clinical data 

 

In the following sections, the clinical data are reported. There were missing data in distinct 

clinical variables including body weight, onset age, pre-medication, number of episode, wash-

out-period, nicotine abuse, CGI (Clinical Global Impressions scale) and PANSS (the Positive 

and Negative Syndrome Scale) scores. The total numbers (Ns) of distinct clinical parameters 

vary not only with analysis material (serum, whole blood, lymphocyte) but also with clinical 

variables. The clinical data of schizophrenic patients are summarized in Table 6-3(1) as 

followed. 

 

Table 6-3(1): A summary of clinical data in male, female, and the whole schizophrenic 
patients.  

Clinical data of schizophrenic patients 

Clinical Variable Material ♀ ♂ Total (is) Missing 
Diagnostic  Serum  29:4:1  28:9:5  57:13:6  0 
subgroup WB 15:2:1 20:4:2 35:6:3 0 
(par:dis:oth) Lymph  17:4:1 25:5:2 42:9:3 0 
Illness duration Serum  6.68 (7.39) 4.86 (7.88) 5.79 (7.60) 33 
(years) WB 6.00 (6.25) 6.00 (8.39) 6.00 (7.25) 18 
 Lymph  6.00 (5.79) 3.43 (5.44) 4.46 (5.64) 19 
Onset age Serum  32.23 (10.41) 26.43 (9.73) 29.40 (10.39) 33 
(years old) WB 31.56 (10.36) 26.24 (9.98) 28.08 (10.23) 18 
 Lymph  30.50 (9.58) 26.00 (9.76) 27.80 (9.81) 19 
Number of   Serum  2.57 (2.14) 3.10 (4.10) 2.83 (3.24) 34 
disease episode WB 1.75 (1.04) 3.59 (4.43) 3.00 (3.76) 19 
 Lymph  2.15 (1.46) 2.24 (1.90) 2.21 (1.72) 20 
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1.episode vs.  Serum  8:13 9:12 17:25 34 
other episode  WB 4:4 5:12 9:16 19 
 Lymph  5:8 10:11 15:19 20 
Drug-naïve vs. Serum  6:16 7:14 13:30 33 
drug-free WB 3:6 3:14 6:20 18 
 Lymph  4:10 8:13 12:23 19 
Drug free  Serum  10:2:8 8:1:9 18:3:17 38 
≤ 1w: >1w&<3m:≥3m WB 4:0:5 8:1:5 12:1:10 18 
 Lymph  6:1:6 8:1:10 14:2:16 19 
Family psychiatric Serum  4:16 9:9 13:25 38 
history WB 2:10 8:7 10:17 17 
(yes vs. no) Lymph  2:10 9:10 11:20 23 
Pre-medication  Serum  12 :10 11 :10 23 :20 33 
(yes vs. no) WB 4 :5 11 :6 15 :11 18 
 Lymph  7 :7 10 :11 17 :18 19 
Nicotine abuse Serum  10 :11 12 :11 22 :22 32 
(yes vs. no) WB 4:4 9:8 13:12 19 
 Lymph  8:5 13:9 21:14 19 
PANSS (global) Serum  49.09 (11.59) 50.30 (13.70) 49.65 (12.48) 33 
 WB 52.40 (9.00) 53.06 (12.76) 52.81 (11.27) 18 
 Lymph  50.55 (13.49) 49.73 (11.87) 50.20 (12.64) 19 
PANSS (positive) Serum  24.35 (7.34) 22.00 (5.41) 23.26 (6.55) 33 
 WB 25.90 (6.12) 23.00 (5.59) 24.12 (5.85) 18 
 Lymph  24.60 (6.06) 22.15 (5.30) 23.20 (5.69) 19 
PANSS (negative) Serum  25.43 (7.06) 27.80 (9.72) 26.53 (8.38) 33 
 WB 26.70 (6.11) 30.88 (7.44) 29.27 (7.14) 18 
 Lymph  26.73 (6.08) 27.35 (9.68) 27.09 (8.22) 19 
CGI: admission Serum  5.97 (.78) 5.88 (.81) 5.91 (.79) 6 

 WB 6.00 (.76) 5.81 (.85) 5.88 (.82) 1 
 Lymph  6.00 (.79) 5.88 (.83) 5.92 (.81) 2 
CGI: discharge Serum  3.90 (.98) 4.02 (.91) 3.97 (.93) 6 
 WB 4.06 (1.09) 4.04 (.96) 4.05 (1.00) 1 
 Lymph  4.00 (1.08) 4.09 (1.03) 4.06 (1.04) 2 
Note  (1) WB = whole blood; Lymph = lymphocytes;  

(2) par = paranoid schizophrenia, dis = disorganized schizophrenia, oth = other 
diagnostic subgroups (including catatonic, residual, simple, other schizophrenia);  

(3) ≤ 1w = ≤ 1 week; >1w&<3m = >1 week & < 3 months; ≥3m = ≥ 3 months. 
(4) PANSS = the Positive and Negative Syndrome Scale; CGI = Clinical Global 

Impressions. 

 

Totally, 76 schizophrenics had total data for in vivo serum Th1/Th2 ratios, age, gender, and 

diverse endocrinological parameters, 44 schizophrenic patients had entire whole blood data, 

and 54 patients had complete data for in vitro lymphocyte Th1/Th2 ratios and further 

variables stated above. 

Serum data 
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The 76 schizophrenics included 57 paranoid, 13 disorganized, 2 catatonic, 2 residual, 1 

simple, and 1 other schizophrenia. Forty-two schizophrenic patients had data regarding their 

disease episode (first vs. other); 17 of them were in the first, while 25 of them were in the 

other episode. Thirty-eight schizophrenics had information about their family psychiatric 

history; 13 of them had positive family history, while 25 of them had no family psychiatric 

history. Forty-three of the 76 schizophrenics had data concerning anti-psychotic medication 

before recruitment; 23 of them had ever been treated with any neuroleptic, whereas 20 of 

them had never taken any anti-psychotic before admission in the hospital. Equal numbers of 

smokers (N = 22) and non-smokers (N = 22) were found among the 44 schizophrenics who 

had data regarding nicotine abuse. Thirty-eight patients had data concerning how long they 

had been free of neuroleptics as they were recruited; 18 of them had been drug-free for one 

week or less (but minimum 3 days), 17 of them being free of neuroleptics for at least 3 

months, and 3 of them for a period in-between. The distributions of various clinical diagnostic 

subgroups, disease episode, neuroleptic medication, nicotine abuse, and washout period were 

relatively similar in male and female schizophrenics (diagnostic subgroups: χ² = 5.16, p = .40; 

disease episode: χ2 = .10, p = .75; pre-medication: χ² = .02, p = .89; nicotine: χ² = .21, p = 

.65; length of wash-out: χ² = 1.45, p = .49). The only exception was family psychiatric 

history; it appeared that there were significantly more male than female schizophrenics having 

biological relatives who had ever suffered or been suffering under any psychiatric disorder (χ² 

= 3.79, p = .05).  

 
In addition, the CGI scores at admission and discharge of 70 schizophrenics were available. 

Forty-three schizophrenic patients had data regarding onset age, illness duration, and scores 

on the PANSS positive, negative, and global scale. They had averagely been ill for 5.79 years 

(SD = 7.60) and had a mean disease-episode of 2.83 years (SD = 3.24). The average of their 

onset ages was 29.40 years old (SD = 10.39); male patients had an earlier onset than their 

female schizophrenic counterparts (♂: M = 26.43 yrs, SD = 9.73; ♀: M = 32.23 yrs, SD = 

10.41). The mean scores on the PANSS negative, positive, and global subscale were 26.53 

(SD =8.38), 23.26 (SD = 6.55), and 49.65 (SD = 12.48), respectively. Those for the CGI were 

5.91 (SD = .79) at admission and 3.97 (SD = .93) as they were discharged. Between male and 

female schizophrenics, no noteworthy diversity in those regards stated above was observed 

except onset age. The difference between male and female schizophrenics in onset age tended 

to reach a statistic significance level (onset age: F = 3.55, p = .07; episode number: F= .27, p 

= .61; PANSS positive: F = 1.39, p = .25; PANSS negative: F = .85, p = .36; PANSS global: 
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F = .10, p = .76; CGI at admission: F = .20, p = .65; CGI at discharge: F = .32, p = .58). 

Female schizophrenics tended to have later onsets than their male schizophrenic counterparts.  

Whole blood assay data 

Among the 44 schizophrenic patients who had complete data for whole blood assay Th1/Th2 

ratios, hormones, SHBG, age, and gender, there were 23 schizophrenics having data for wash-

out period, 26 having data for drug-naïve/free, onset age, illness duration, and scores for the 

PANSS negative, positive, and global scale, 43 having data for the CGI at admission and 

discharge, 25 having information about disease episode, number of episode, and nicotine 

abuse, and 27 of the 44 schizophrenics having data for family psychiatric history.  

 

On average, their diseases were manifested at the age of 28.08 years old (SD = 10.23). They 

had been suffering under schizophrenia averagely for 6 years (SD = 7.58) and had on average 

3 disease episodes (SD = 3.76). There were 35 paranoid, 6 disorganized, 1 catatonic, 1 

residual, and 1 other schizophrenia among them. Nine were in the first, while 16 were in other 

episode of disease. Ten of them had positive family psychiatric history, but 17 of them did 

not. Fifteen of them had ever been under neuroleptic medication, while 11 had never been 

treated with any anti-psychotic. Thirteen were smokers and 12 were non-smokers. Twelve of 

them had been neuroleptic-free for one week or less (but ≥ 3 days), 10 had a drug-free period 

of at least 3 months, and 1 had been free of neuroleptics for a period between 1 week and 3 

months. If both pre-medication and disease episode are considered as standards for being 

drug-naïve/free, then 6 patients were drug-naïve (no pre-medication + 1. episode) and 20 of 

them were drug-free. At admission, their average scores on the PANSS positive, negative, 

global, and the CGI were 24.12 (SD = 5.85), 29.27 (SD = 7.14), 52.81 (SD = 11.27), and 5.88 

(SD = .82), correspondingly. As they were discharged, the mean score on the CGI was 4.05 

(SD = 1.00).  

 

Similar to the serum data, between male and female schizophrenics, no clear diversity was 

found in any of those variables except family psychiatric history. There were proportionally 

more schizophrenic men than women who had positive family psychiatric history (family 

history: χ² = 3.84, p = .05; diagnostic subgroup: χ² = 3.01, p = .55; episode: χ² = 1.00, p = .32; 

pre-medication: χ² = .99, p = .32; nicotine abuse: χ² = .01, p = .89; wash-out period: χ² = 3.07, 

p = .22; naïve/free: χ² = .82, p = .37; CGI at admission: F = .56, p = .46; CGI at discharge: F = 

.004, p = .95; PANSS positive: F = 1.54, p = .23; PANSS negative: F = 2.21, p = .15; PANSS 
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global: F = .02, p = .89; illness duration: F = .00, p = 1.00; episode number: F = 1.32, p = .26; 

onset age: F = 1.63, p = .21).  

Lymphocyte data 

Among the 54 schizophrenics, 52 of them had data concerning CGI scores at admission and 

discharge, 32 of them had data about wash-out period and family history, 34 of them had data 

concerning number of episode and disease episode (first vs. other), and 35 of them had data 

regarding pre-medication, nicotine abuse, drug-naïve/free, scores on the PANSS positive, 

negative, global scale, onset age, and illness duration. 

 

The schizophrenic patients who had complete lymphocyte Th1/Th2 data and other parameters 

measured in this study started their diseases at an average age of 27.80 years (SD = 9.81). 

They had been through 2.21 disease episodes (SD = 1.72) and been ill for 4.46 years (SD = 

5.64). As they were recruited in this study, the average scores on the CGI, the PANSS 

positive, negative, and global scale were 5.92 (SD = .81), 23.20 (SD = 5.69), 27.09 (SD = 

8.22), and 50.20 (SD = 12.64), respectively. Totally, there were 42 paranoid, 9 disorganized, 

1 catatonic, 1 residual, and 1 other schizophrenia having complete lymphocyte data. Fifteen 

were in their first disease episode, while 19 were in other episode. Eleven patients had 

positive family psychiatric history, while 20 of them did not. Seventeen schizophrenics had 

been pre-medicated, whereas 18 patients had never been treated with any neuroleptic. 

Twenty-one were smokers, while 14 of them were non-smokers. Fourteen schizophrenic 

patients had been drug-free maximum for one week, but at least for three days, 16 of them 

had been drug-free for at least 3 months; additionally, 2 of them had been free of neuroleptics 

for a period in-between. 

 

Nonetheless, no significant diversity was observed between male and female schizophrenics 

in any of those clinical variables assessed in this study (family history: χ² = 3.03, p = .08; 

diagnostic subgroup: χ² = 2.88, p = .58; episode: χ² = .27, p = .60; pre-medication: χ² = .02, p 

= .89; nicotine: χ² = .02, p = .89; wash-out period: χ² = .42, p = .81; CGI at admission: F = 

.29, p = .60; CGI at discharge: F = .10, p = .76; PANSS positive: F = 1.62, p = .21; PANSS 

negative: F = .05, p = .83; PANSS global: F = .04, p = .85; illness duration: F = .61, p = .44; 

episode number: F = .27, p = .61; onset age: F = 3.55, p = .07). Female schizophrenics tended 

to have clear later onsets than their male schizophrenic counterparts. Moreover, it showed a 

trend to have more male than female schizophrenics with positive family psychiatric history.  
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Due to incomplete data regarding nicotine abuse in schizophrenics, it won’t be included in the 

multi-variant comparisons between controls and various schizophrenic subgroups, although it 

was thought to have impacts on cytokine productions (Hinze-Selch and Pollmacher, 2001). 

Instead, it were be analyzed separately and reported in the section “6.4.3. Nicotine abuse, 

Th1/Th2 cytokines and ratios“ in order to examine whether or not nicotine use had influences 

on Th1/Th2 cytokines and ratios. 

 

6.4 Th1/Th2 cytokines and ratios in schizophrenia 

 

In the subsequent sections, various figures regarding corresponding results are presented. Due 

to great deviations of extreme values from the majority and numerous significance markers on 

one figure (box-plot) in many cases, the figures are barely visible or differentiable from one 

another if without excluding the extreme values and outliers. Therefore, no extreme value and 

no outlier is shown in all the figures presented here.  

 

In addition, because of great diversities in distinct cytokine levels/productions, it’s impossible 

to present the results of different cytokines in one figure. So, all cytokine levels/productions 

and Th1/Th2 ratios shown in all figures of this report were standardized; that is, all cytokines 

and Th1/Th2 ratios had a mean of 0 and a standard deviation of 1. 

 

6.4.1 The whole schizophrenic group 

6.4.1.1 Schizophrenia vs. normal subjects 

Serum data 

Figure 6-4-1-1-1(1) to Figure 6-4-1-1-1(3) offer an overview of the results from comparing 

the serum Th1/Th2 cytokine data of all study participants. 

 

Totally, 76 schizophrenic patients and 75 healthy subjects were included into this analysis. 

The schizophrenics were significantly older and had clearly reduced cortisol, testosterone, and 

SHBG, nevertheless, highly enhanced prolactin levels if compared to healthy controls. 

Therefore, those variables would be involved in the following multi-variance analysis as co-

variants. 

 

Generally speaking, the control group had greater ranges than the schizophrenic group in all 

cytokines measured. Schizophrenic patients had lower serum cytokine levels and both serum 
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Th1/Th2 ratios. Multi-variance analysis demonstrated that although no obvious diversity was 

found between schizophrenics and controls at single cytokine level, both diagnostic groups 

remarkably differed from each other in both serum Th1/Th2 ratios if including age, cortisol, 

testosterone, SHBG, and prolactin as co-variants (IFN-γ: F = .49, p = .48; IL-2: F = .36, p = 

.55; TNF-α: F = .28, p = .60; IL-4: F = .17, p = .68; IL-10: F = .24, p = .62; IL-6: .15, p = 

.70). The schizophrenic group had a mean of 14.10 (SD = 12.49) for IFN-γ/IL-4 and 15.50 

(SD = 19.66) for IFN-γ/IL-10 ratio. In contrast, the controls obtained an average of 20.34 (SD 

= 18.12) for IFN-γ/IL-4 and 19.66 (SD = 9.73) for IFN-γ/IL-10 ratio. The diversity in IFN-

γ/IL-4 achieved a significance level of .02 (F = 6.02) and that in IFN-γ/IL-10 ratio reached a 

significance level of .002 (F = 10.41). 

 

 

 
 

Figure 6-4-1-1-1(1): Standardized serum IFN-γ/IL-4 (IFN/IL4) and IFN-
γ/IL-10 (IFN/IL10) ratio in patients with schizophrenia, schizophrenia-
related disorders, and healthy subjects (SCH = schizophrenia; SCH-R = 
schizophrenia-related disorders; CON = controls). 

 

Even if without co-varying with any parameter or if only including age as covariant or if 

including age, all hormones assessed in this study, and SHBG as co-variants, the findings 

regarding serum cytokine levels and Th1/Th2 ratios remained relatively constant (no 

covariant – IFN-γ/IL-4: F = 6.10, p = .02; IFN-γ/IL-10: F = 8.06, p = .005; IFN-γ: F = .88, p = 

.35; IL-2: F = .65, p = .42; TNF-α: F = .49, p = .49; IL-4: F = .48, p = .49; IL-10: F = .45, p = 

.50; IL-6: F = .31, p = .58; age as covariant – IFN-γ/IL-4: F = 4.96, p = .03; IFN-γ/ILI-10: F = 

6.63, p = .01; IFN-γ: F = .67, p = .41; IL-2: F = .46, p = .50; TNF-α: F = .33, p = .57; IL-4: F 
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= .37, p = .54; IL-10: F = .31, p = .58; IL-6: F = .24, p = .63; co-vary with all hormones, 

SHBG, and age – IFN-γ/IL-4: F = 6.08, p = .02; IFN-γ/IL-10: F = 10.51, p = .001; IFN-γ: F = 

.48, p = .49; IL-2: F = .35, p = .55; TNF-α: F = .28, p = .60; IL-4: F = .16, p = .69; IL-10: F = 

.24, p = .63; IL-6: F = .15, p = .70). That is, schizophrenic patients had markedly decreased 

serum IFN-γ/IL-4 and IFN-γ/IL-10 ratios than their healthy counterparts, despite of 

remarkable disparities in age, hormone, and SHBG between both groups. 
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Figure 6-4-1-1-1(2): Comparisons of distinct 
serum Th1 cytokine levels among patients with 
schizophrenia, schizophrenia-related disorders, 
and controls. 

Figure 6-4-1-1-1(3): Comparisons of diverse 
serum Th2 cytokine levels among patients with 
schizophrenia, schizophrenia-related disorders, 
and normal controls. 

  

Note: Schizophrenics as a whole group appeared to have similar serum cytokine levels to 

healthy controls. However, if classifying both schizophrenics and controls together into four 

serum IFN-γ subgroups through conducting cluster analysis and excluding the 2 extreme 

cases/subgroups (one control the highest one 13345.6 pg/ml and one schizophrenic patient 

1635.3 pg/ml), one way ANCOVA demonstrated that schizophrenics had significantly lower 

serum IFN-γ than controls if including age, cortisol, prolactin, testosterone, and SHBG as co-

variants (F = 6.73, p = .01). Schizophrenics had averagely 39.41 pg/ml IFN-γ (SD = 20.94) 

and controls obtained 48.89 pg/ml IFN-γ (SD = 28.93). If dividing the subjects into 5 serum 

IL-2 subgroups and excluding the first two highest subgroups/cases (the highest one control 

310.0 pg/ml and the second highest one subject with schizophrenia 83.7 pg/ml), the left over 

75 schizophrenics tended to have lower serum IL-2 levels than the left over 74 controls if 

including age, cortisol, prolactin, testosterone, and SHBG as co-variants (F = 3.21, p = .08). 
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The mean serum IL-2 levels for schizophrenics and controls were 1.82 pg/ml (SD = .55) and 

2.06 pg/ml (SD = .75), correspondingly. If the third highest case also excluded (one 

schizophrenic patient 11.3 pg/ml), the comparison between the low serum IL-2 schizophrenic 

patients (N = 72) and the low serum IL-2 normal controls (N = 69) revealed a clear 

discrepancy between both serum IL-2 subgroups if co-varying with age, cortisol, prolactin, 

testosterone, and SHBG (F = 5.15, p = .03). The average serum IL-2 level was 1.76 pg/ml 

(SD = .40) for the low serum IL-2 schizophrenics and 1.94 pg/ml (SD = .47) for controls. 

That is, one schizophrenic subgroup might have significantly lower serum IL-2 than healthy 

controls. However, excluding the two extreme serum TNF-α values (one schizophrenic 

subject 179.2 pg/ml and one control person 56.5 pg/ml), schizophrenics had lower TNF-α 

than controls; but the reduction failed to reach any significance level (SCH: M = 1.78 pg/ml, 

SD = .42; CON: M = 1.85, SD = .53; F = .89, p = .35). 

 

If clustering subjects of both diagnostic groups into various serum IL-6 subgroups and 

excluding the extreme cases/subgroups (one control: the highest one 450 pg/ml; one 

schizophrenic: 112.1 pg/ml; two schizophrenics: 35.2 pg/ml; 2 subjects of each group: 8.2 

pg/ml), the left over 71 schizophrenics did have significantly higher serum IL-6 levels than 

the remaining 72 controls if including age, cortisol, prolactin, testosterone, and SHBG as co-

variants (F = 5.33, p = .02). Schizophrenic patients had a mean of 2.52 pg/ml (SD = .93) and 

controls had an average of 2.25 pg/ml (SD = .78) serum IL-6. If dividing both schizophrenic 

and control subjects into three IL-4 subgroups, 3 extreme cases were found; one control had 

the highest serum IL-4 (104.1 pg/ml), another control case and one schizophrenic subject 

together obtained a mean serum IL-4 of 15.2 pg/ml. If excluding the 3 extreme values, the 75 

schizophrenics tended to have higher serum IL-4 than the remaining 73 controls (F = 3.64, p = 

.06). The mean of serum IL-4 was 3.40 pg/ml (SD = 1.26) for schizophrenics and 3.04 pg/ml 

(SD = 1.30) for healthy controls. In addition, cluster analysis divided subjects of both 

diagnostic groups into 4 serum IL-10 subgroups. Excluding the extreme cases (one control 

subject 471.6 pg/ml and one schizophrenic patient 143.7 pg/ml), uni-variant comparison 

revealed that the left over 75 schizophrenics had a higher average of serum IL-10 levels than 

the remaining 74 controls; however, the enhancement was not statistically significant (F = .11, 

p = .74). The mean serum IL-10 levels for schizophrenics and controls were 2.71 pg/ml (SD = 

1.07) and 2.66 pg/ml (SD = 1.27), respectively. 
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SummarySummarySummarySummary : Serum data (see Table 6-4-1(1)) exhibited no disparity between controls and 

schizophrenic patients at single serum cytokine level if including extreme cases. Nevertheless, 

conspicuous differences were observed in both serum IFN-γ/IL-4 and IFN-γ/IL-10 ratio. If 

excluding extreme values, then schizophrenics had significantly lower serum IFN-γ, however, 

markedly higher IL-6; additionally, they showed a tendency to have lower serum IL-2, but 

higher IL-4 levels than normal subjects.  

 

Table 6-4-1(1): Comparisons of serum cytokine levels and Th1/Th2 ratios among 
schizophrenics, patients with schizophrenia-related disorders, and healthy subjects. 

 Serum Th1/Th2 cytokine levels and Th1/Th2 ratios: comparisons among 
schizophrenia, schizophrenia-related disorders, and healthy controls [M(SD)] 

 Group Schizophrenia (N = 76) Related disorder (N = 26) Controls (N = 75) 
 IFN-γ 60.41 (184.24)/ 

39.41(20.94)** 
64.44 (136.48) 226.49 (1535.25)/ 

48.89 (28.93) 
 IL-2 2.91 (9.40) 2.71 (4.03) 6.29 (35.56) 
 TNF-α 2.50 (6.29) 1.75 (.50) 4.22 (20.48) 
 IL-4 3.58 (1.97)/3.40 (1.26) 3.22 (1.31) 4.53 (11.78)/3.04 (1.30) 
 IL-10 4.56 (16.21) 3.79 (7.14) 8.91 (54.16) 
 IL-6 4.99 (13.57)/2.50 (.93)* 3.29 (5.15) 8.39 (51.78)/2.25(.78) 
 IFN/IL4 14.10 (12.49)*  20.09 (33.57) 20.34 (18.12) 
 IFN/IL10 15.50 (8.26)***  16.48 (7.81) 19.66 (9.73) 

 Note (1) Unit of cytokines (IFN-γ, IL-2…IL-6) = pg/ml ;  
(2) IFN/IL4 = IFN-γ/IL-4; IFN/IL10 = IFN-γ/IL-10;  
(3) Compared to controls: * p ≤ .05; ** p ≤ .01; *** p ≤ .005; 
(4) /... (The results from excluding extreme cases)  

 

Whole blood assay data 

Figure 6-4-1-1-2(1) to Figure 6-4-1-1-2(3) display the global comparisons and significant 

results from multi-variance analysis in schizophrenics, patients with schizophrenia-related 

diseases, and healthy subjects. 

 

Between those 44 schizophrenics and 76 control subjects who had complete data for whole 

blood assay Th1/Th2 ratios, obvious diversities in ages, cortisol, prolactin, and SHBG levels 

were found. 

 

Using diagnostic group (schizophrenia vs. control) as independent variable and whole blood 

assay cytokine productions as well as Th1/Th2 ratios as dependent variables, multi-variant 
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comparisons showed overall reductions in all cytokines and Th1/Th2 ratios except IL-4 if 

including age, cortisol, prolactin, and SHBG as co-variants into the analysis. Schizophrenics 

produced less IFN-γ, IL-2, TNF-α, IL-10, and IL-6 in whole blood assay, but secreted more 

IL-4 than their healthy counterparts. Nevertheless, only the decreases in whole blood assay 

IFN-γ and IL-6 production reached statistic significance levels. On average, schizophrenic 

patients released 30469.26 pg/ml of IFN-γ (SD = 20852.69), 1635.61 pg/ml of IL-6 (SD = 

1098.39), while controls secreted 45391.47 (SD = 33158.28) and 2913.99 pg/ml (SD = 

3031.21) of IFN-γ and IL-6, respectively. The discrepancies in both IFN-γ and IL-6 achieved 

a significance level of .008 (see Table 4-1(2) – IFN-γ: F = 6.74, p = .008; IL-6: F = 5.87, p = 

.008; IL-2: F = .52, p = .47; TNF-γ: F = 1.81, p = .18; IL-4: F = .03, p = .86; IL-10: F = .58, p 

= .45). Furthermore, the means of IFN-γ/IL-10 and IFN-γ/IL-4 were 29.80 (SD = 20.14) and 

889.75 (SD = 1260.87) for schizophrenics and those for controls’ were 39.72 (SD = 26.86) 

and 1285.00 (SD = 1427.55), correspondingly. However, only the disparity in IFN-γ/IL-10 

ratio was unmistakably distinguishable between schizophrenics and healthy controls (IFN-

γ/IL-10: F = 4.45, p = .04; IFN-γ/IL-4: F = .74, p = .39). 

 
 

 
 

Figure 6-4-1-1-2(1): Standardized whole blood assay IFN-γ/IL-4 (IFN/IL4) 
and IFN-γ/IL-10 (IFN/IL10) ratio in patients with schizophrenia, 
schizophrenia-related disorders, and healthy subjects (SCH = schizophrenia; 
SCH-R = schizophrenia-related disorders; CON = controls). 
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In contrast to the results from serum data which, despite of co-varying with various 

parameters, remained relatively consistent, the findings from whole blood assay data varied 

with covariant(s) included. If without including any variable as covariant, the results 

demonstrated a similar picture as the outcomes reported above; schizophrenics had noticeably 

decreased whole blood assay IFN-γ, IL-6 production, and IFN-γ/IL-10 ratios (IFN-γ/IL-10: F 

= 4.52, p = .04; IFN-γ: F = 7.24, p = .008; IL-6: F = 7.25, p = .008; IL-2: F = .11, p = .74; 

TNF-α: F = 1.72, p = .19; IL-4: F = .37, p = .55; IL-10: F = .60, p = .44). If only including age 

as covariant, the clear reductions in whole blood assay IFN-γ and IL-6 remained as they were 

and that of TNF-α showed a trend to be significant as well (IFN-γ: F = 8.13, p = .005; IL-6: F 

= 6.41, p = .01; TNF-α: F = 3.43, p = .07; IL-2: F = .55, p = .46; IL-4: F = .01, p = .93; IL-10: 

F = 1.59, p = .21). Nevertheless, the decrease in IFN-γ/IL-10 ratio became less clear (IFN-

γ/IL-10: F = 3.56, p = .06; IFN-γ/IL-4: F = 1.33, p = .25). If all hormones, SHBG, and age 

taken into account and included into the analysis, then exclusively the diversities in IFN-γ and 

IL-6 remained significant (whole blood assay IFN-γ/IL-4: F = .24, p = .62; IFN-γ/IL-10: F = 

2.49, p = .12; IFN-γ: F = 4.05, p = .05; IL-6: F = 6.19, p = .01; IL-2: F = .14, p = .71; TNF-α: 

F = .92, p = .34; IL-4: F = .14, p = .71; IL-10: F = .42, p = .52). 

 

  

Figure 6-4-1-1-2(2): Comparisons of whole 
blood assay Th1 cytokine releases among patients 
with schizophrenia, schizophrenia-related 
disorders, and controls. 

Figure 6-4-1-1-2(3): Comparisons of whole 
blood assay Th2 cytokine productions among 
patients with schizophrenia, schizophrenia-related 
disorders, and healthy subjects. 
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Table 6-4-1(2): Comparisons of whole blood assay cytokine secretions and Th1/Th2 ratios 
among schizophrenics, patients with schizophrenia-related disorders, and healthy subjects. 

 Whole blood assay Th1/Th2 cytokine productions and Th1/Th2 ratios: comparisons 
among schizophrenia, schizophrenia-related disorders, and healthy controls [M(SD)] 

 Group Schizophrenia (N = 44) Related disorder (N = 14) Controls (N = 76) 
 IFN-γ 30469.26 (20852.26)**  25190.84 (18382.03)*  45391.47 (33158.28) 
 IL-2 377.11 (318.32) 289.96 (258.55) 398.99 (360.20) 
 TNF-α 340.73 (221.26) 333.30 (247.61) 412.58 (322.06) 
 IL-4 60.61 (47.03) 51.56 (47.93) 54.70 (53.90) 
 IL-10 1172.98 (699.56) 883.86 (403.35) 1299.87 (947.15) 
 IL-6 1635.61 (1098.39)** 2246.13 (2310.54) 2913.99 (3031.21) 
 IFN/IL4 889.75 (1260.87)  810.90 (797.61) 1285.00 (1427.55) 
 IFN/IL10 29.80 (20.14)*  34.35 (27.46) 39.72 (26.86) 

  
Note 

(1) Unit of cytokines (IFN-γ, IL-2…IL-6) = pg/ml;  
(2) IFN/IL4 = IFN-γ/IL-4; IFN/IL10 = IFN-γ/IL-10;  
(3) Compared to controls:  * p ≤ .05; ** p ≤ .01. 

 

In addition, comparisons between those 9 schizophrenic patients and 23 healthy controls who 

had whole blood assay IL-12 (ELISA) data showed no clear difference between both groups 

without including any covariant since both groups were similar in age, hormones, and SHBG 

(ELISA IL-12: F = 1.18, p = .29). Schizophrenics had a mean of 1.54 pg/ml IL-12 (SD = 

1.83), while their healthy counterparts had an average of 2.71 pg/ml IL-12 (SD = 3.00). 

Similarly, comparing the whole blood assay IL-13 productions (ELISA) of schizophrenics to 

those of controls demonstrated no noticeable disparity between both groups if including age 

and testosterone as co-variants due to marked disparities between them in those parameters 

(SCH: ELISA IL-13 – M = 52.44 pg/ml, SD = 65.21; CON: M = 34.01, SD = 29.50; F = 1.42, 

p = .24). Because the male/female ratios in both diagnostic groups who had whole blood 

assay IL-13 data tended to be markedly different, the whole blood assay IL-13 of both 

genders were analyzed separately. No noticeable disparity in whole blood assay IL-13 was 

found between both gender subgroups, although both male and female schizophrenics 

averagely produced more IL-13 than controls of corresponding sex (♂SCH vs. ♂CON – age: 

F = .98, p = .33; cortisol: F = .27, p = .61; prolactin: F = .33, p = .57; estradiol: F = .02, p = 

.89; testosterone: F = 4.26, p = .05; SHBG: F = 1.83, p = .19; ELISA IL-13: F = .44, p = .51; 

♀SCH vs. ♀CON – age: F = 4.64, p = .05; cortisol: F = 1.30, p = .28; prolactin: F = .01, p = 

.94; estradiol: F = .53, p = .48; testosterone: F = 2.61, p = .13; SHBG: F = .98, p = .35; ELISA 

IL-13: F = .004, p = .95). Averagely, male schizophrenics released 69.57 pg/ml of IL-13 (SD 

= 100.91), male controls produced 38.64 pg/ml (SD = 31.93), female schizophrenic patients 
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had 41.02 pg/ml (SD = 33.96), and healthy women secreted 22.11 pg/ml IL-13 (SD = 19.05) 

in PHA-stimulated whole blood.  

 
SummarySummarySummarySummary : Schizophrenics showed reduced whole blood assay IFN-γ/IL-4 and IFN-γ/IL-10 

ratios. However, only the decrease in IFN-γ/IL-10 reached a significance level. In addition, 

schizophrenics also had markedly lower whole blood assay IFN-γ and IL-6 than normal 

controls.   

Lymphocyte data 

Figure 6-4-1-1-3(1) to Figure 6-4-1-1-3(3) give a glance at the findings of comparisons in 

lymphocyte data among schizophrenics, healthy controls, and patients with schizophrenia-

related disorders. 
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Figure 6-4-1-1-3(1): Standardized lymphocyte IFN-γ/IL-4 
(IFN/IL4), IFN-γ/IL-10 (IFN/IL10), and IFN-γ/IL-13 (IFN/IL13) 
ratios in patients with schizophrenia, schizophrenia-related 
disorders, and healthy subjects (SCH = schizophrenia; SCH-R = 
schizophrenia-related disorders; CON = controls). 

 

Nevertheless, MANCOVA of lymphocyte data failed to discover any conspicuous imbalance 

between the Th1 and Th2 system in schizophrenia, despite of with or without co-varying with 

age (no covariant – IFN-γ/IL-4: F = .52, p = .47; IFN-γ/IL-10: F = 1.83, p = .18; IFN-γ/IL-13: 

F = 1.13, p = .29; age as covariant – IFN-γ/IL-4: F = .03, p = .86; IFN-γ/IL-10: F = .75, p = 

.39; IFN-γ/IL-13: F = .27, p = .60). Generally speaking, schizophrenics produced less 

lymphocyte IFN-γ, IL-4, IL-13, and IL-10; however, they released more IL-12 and had higher 
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lymphocyte IFN-γ/IL-4, IFN-γ/IL-10, and IFN-γ/IL-13 ratios. Nevertheless, only the 

reductions in lymphocyte IFN-γ, IL-4, and IL-13 in schizophrenic patients were remarkable if 

compared with healthy subjects (see Table 6-4-1(3) – IFN-γ: F = 11.76, p = .001; IL-4: F = 

6.83, p = .01; IL-13: F = 6.47, p = .01; IL-12: F = .71, p = .40; IL-10: F = 1.12, p = .29). 

Averagely, schizophrenics produced 716.92 IFN-γ spots pro 40,000 lymphocytes (SD = 

443.74), 338.78 IL-4 spots pro 200,000 cells (SD = 202.56), and 588.87 IL-13 spots pro 

200,000 lymphocytes (SD = 390.58), while their healthy counterparts released 1045.25 IFN-γ 

spots (SD = 820.16), 410.47 IL-4 spots (SD = 161.43), and 806.80 IL-13 spots (SD = 514.61) 

with the same cell concentrations as mentioned in schizophrenics. 

 

  

Figure 6-4-1-1-3(2): Comparisons of lymphocyte 
Th1 cytokine in vitro productions among patients 
with schizophrenia, schizophrenia-related 
disorders, and controls. 

Figure 6-4-1-1-3(3): Comparisons of 
lymphocyte Th2 cytokine in vitro productions 
among patients with schizophrenia, 
schizophrenia-related disorders, and controls. 

 

SummarySummarySummarySummary : No clear reduction in any of the lymphocyte IFN-γ/IL-4, IFN-γ/IL-10, and IFN-

γ/IL-13 ratio was found in schizophrenics as a whole group. Nevertheless, schizophrenic 

patients released tremendously less lymphocyte IFN-γ, IL-4, and IL-13 than healthy subjects. 

 

6.4.1.2 Schizophrenia vs. schizophrenia-related disorders 

 

In order to find out which of the above discovered Th1/Th2 abnormalities was specific for 

schizophrenia, we compared schizophrenics with other psychiatric patients suffering under 
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schizophrenia-related disorders such as other psychotic and schizoaffective disorders etc. Due 

to no significant difference in age, hormones, and SHBG between both patient groups, no 

further variable except cytokines and Th1/Th2 ratios were included into the multi-variance 

analysis.  

 

Table 6-4-1(3): Comparisons of lymphocyte cytokine releases and Th1/Th2 ratios among 
schizophrenics, patients with schizophrenia-related disorders, and healthy subjects. 

 Lymphocyte data: comparisons among schizophrenia, schizophrenia-related disorders, 
and healthy controls [M(SD)] 

 Group Schizophrenia (N = 54) Related disorder (N = 18) Controls (N = 98) 
 IFN-γ 716.92 (443.74)****  768.38 (648.96)*  1045.25 (820.16) 
 IL-12 371.74 (487.40) 237.31 (190.15) 301.97 (196.73) 
 IL-4 338.78 (202.56)**  395.33 (180.15) 410.47 (161.43) 
 IL-10 480.65 (509.95) 290.13 (225.43)**  535.28 (458.92) 
 IL-13 588.87 (390.58)**  700.65 (409.66) 806.80 (514.61) 
 IFN/IL4 3.26 (4.17) 2.23 (2.09) 2.88 (2.37) 
 IFN/IL10 5.11 (11.71) 3.76 (2.90) 3.34 (4.10) 
 IFN/IL13 2.37 (4.80) 1.21 (.75) 1.77 (2.21) 

 Note (1) Unit of cytokines (IFN-γ, IL-12…IL-13) = spot; cell concentration: IFN-γ = pro 40 000 cells; 
IL-12 = pro 160 000 cells; IL-4 & IL-13 = pro 200 000 cells; IL-10 = pro 80 000 cells;  

(2) IFN/IL4 = IFN-γ/IL-4; IFN/IL10 = IFN-γ/IL-10; IFN/IL13 = IFN-γ/IL-13;  
(3) Compared to controls: * p ≤ .05; ** p ≤ .01, **** p ≤ .001. 

 

In general, schizophrenics had higher serum IL-2, TNF-α, IL-4, IL-10, and IL-6, nevertheless, 

lower IFN-γ, IFN-γ/IL-4, and IFN-γ/IL-10 than patients with schizophrenia-related disorders. 

Schizophrenic patients produced more whole blood assay IFN-γ, IL-2, TNF-α, IL-4, IL-10 

and had higher IFN-γ/IL-4. But they released less whole blood assay IL-6 and had lower IFN-

γ/IL-10 than other psychiatric patients having schizophrenia-related disorders. In addition, 

patients with schizophrenia secreted lower IFN-γ, IL-4, and IL-13 in PHA-stimulated 

lymphocytes, but had higher lymphocyte Th1/Th2 ratios including IFN-γ/IL-4, IFN-γ/IL-10, 

and IFN-γ/IL-13 than their patient counterparts with schizophrenia-related psychiatric 

diseases. 

 

However, regardless of which analysis material used (serum or whole blood or lymphocyte), 

no noteworthy alteration was observed in schizophrenics if compared with their psychiatric 

counterparts having schizophrenia-related disorders (see Tables 6-4-1(1), 6-4-1(2) & 6-4-

1(3): serum – IFN-γ/IL-4: F = 1.75, p = .19; IFN-γ/IL-10: F = .28, p = .60; IFN-γ: F = .01, p = 
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.92; IL-2: F = .01, p = .92; TNF-α: F = .37, p = .55; IL-4: F = .77, p = .38; IL-10: F = .05, p = 

.82; IL-6: F = .39, p = .54; whole blood assay – IFN-γ/IL-4: F = .05, p = .83; IFN-γ/IL-10: F = 

.45, p = .50; IFN-γ: F = .72, p = .40; IL-2: F = .86, p = .36; TNF-α: F = .01, p = .92; IL-4: F = 

.39, p = .54; IL-10: F = 2.15, p = .15; IL-6: F = 1.83, p = .18; lymphocyte – IFN-γ/IL-4: F = 

.23, p = .63; IFN-γ/IL-13: F = 1.04, p = .31; IFN-γ/IL-10: F = .23, p = .63; IFN-γ: F = .14, p = 

.71; IL-12: F = 1.29, p = .26; IL-4: F = 1.11, p = .30; IL-13: F = 1.08, p = .30; IL-10: F = 2.34, 

p = .13). 

 

SummarySummarySummarySummary : Schizophrenics and patients with related disorders seemed to be undistinguishable 

in those endocrinological and immunological parameters measured in this study. The next 

step is to detect whether the immunological alterations found in schizophrenics were also 

observed in patients with schizophrenia-related disorders if compared to healthy controls.  

 

6.4.1.3 Schizophrenia-related disorders vs. controls 

 

Generally speaking, patients with schizophrenia-related disorders had decreased serum 

cytokine levels and Th1/Th2 ratios if compared to normal subjects. Similar findings were 

found in both whole blood assay and lymphocyte data. Controls had higher cytokine 

productions in PHA-stimulated lymphocytes and whole blood as well as higher Th1/Th2 

ratios than patients with schizophrenia-related disorders. The only exception was lymphocyte 

IFN-γ/IL-10 ratio; patients with schizophrenia-related disorders had higher lymphocyte IFN-

γ/IL-10 ratios than controls.  

 

Because normal controls and patients having schizophrenia-related disorders were of similar 

ages, only cortisol and prolactin were included into the analysis since both groups were 

clearly distinguishable in these respects. However, multi-variance analysis showed no marked 

alteration in serum and whole blood assay Th1/Th2 cytokines/ratios of patients with 

schizophrenia-related disorders if compared to those of normal subjects except the whole 

blood assay IFN-γ production (see Tables 6-4-1(1) & 6-4-1(2): serum – IFN-γ/IL-4: F = .03, 

p = .86; IFN-γ/IL-10: F = 2.77, p = .10; IFN-γ: F = .98, p = .32; IL-2: F = .94, p = .34; TNF-α: 

F = 1.12, p = .29; IL-4: F = 1.20, p = .28; IL-10: F = .86, p  = .36; IL-6: F = .88, p = .35; 

whole blood assay – IFN-γ/IL-4: F = 1.18, p = .28; IFN-γ/IL-10: F = .42, p = .52; IFN-γ: F = 

4.09, p = .05; IL-2: F = .62, p = .43; TNF-α: F = .24, p = .62; IL-4: F = .02, p = .89; IL-10: F 



 

70 

= 1.75, p = .19; IL-6: F = .71, p = .40). Nonetheless, lymphocyte data demonstrated distinct 

changes in IFN-γ and IL-10 productions as well as a tendency to have decreased lymphocyte 

IFN-γ/IL-4 ratios in psychiatric patients suffering under schizophrenia-related disorders (see 

Table 6-4-1(3): lymphocyte – IFN-γ/IL-4: F = 3.41, p = .07; IFN-γ/IL-10: F = .30, p = .59; 

IFN-γ/IL-13: F = 2.00, p = .16; IFN-γ: F = 4.53, p = .04; IL-12: F = 2.71, p = .10; IL-4: F = 

.31, p = .58; IL-13: F = .79, p = .38; IL-10: F = 7.85, p = .006). Patients with schizophrenia-

related disorders released markedly less whole blood assay IFN-γ as well as lymphocyte IFN-

γ and IL-10 if compared to controls. 

 

SummarySummarySummarySummary : The comparisons between schizophrenics, controls, and patients with 

schizophrenia-related disorders revealed that significantly reduced serum Th1/Th2 ratios were 

only found in schizophrenia, but not in patients having related diseases. Additional 

characteristic Th1/Th2 abnormalities for schizophrenia include lower whole blood assay IFN-

γ/IL-10, reduced PHA-stimulated whole blood IL-6, decreased PHA-stimulated lymphocyte 

IFN-γ, IL-4, and IL-13 production. Schizophrenics and patients having related disorders 

shared deficits in whole blood assay and lymphocyte IFN-γ secretion. However, patients with 

schizophrenia-related disorders had noticeably reduced lymphocyte IL-10 secretion. 

 

6.4.2 Distinct schizophrenic subgroups 

 

Since schizophrenia has been considered as a heterogeneous disease, in the following 

sections, we attempted to divide the schizophrenic patients into various subgroups and to 

examine whether or not any apparent diversity existed between/among those schizophrenic 

subgroups. However, due to the limited space of this report, many missing data in distinct 

clinical variables, and the great diversity in case numbers between schizophrenic subgroups 

with 2 polarized clinical features (e.g. early-onset vs. late-onset), the focus of this report lies 

on the comparisons between gender subgroups. The outcomes from MANCOVA regarding 

different clinical subgroups were briefly summarized in two tables in order to offer an 

overview of Th1/Th2 imbalance in diverse schizophrenic clinical subgroups. 

 

6.4.2.1 Schizophrenic gender subgroups vs. normal controls 
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Gender is being increasingly recognized as an important factor influencing CNS structure and 

function (Zubieta et al., 1999). The possible role of gender in the etiology of schizophrenia 

was likewise lately emphasized (Halbreich and Kahn, 2003; Hafner, 2003). In the following 

paragraphs, schizophrenic subjects were divided into a male and a female subgroup and 

compared to the normal subjects of corresponding sex. 

 

6.4.2.1.1 Female schizophrenics vs. female controls 

6.4.2.1.1.1 The whole group of schizophrenic and normal females 

 

Figure 6-4-2-1-1(1) to Figure 6-4-2-1-1(1-2) give an overview of the differences in serum 

Th1/Th2 cytokines/ratios among schizophrenic females, normal female subjects, and female 

patients having schizophrenia-related disorders. 

 

 

 
 

Figure 6-4-2-1-1(1): Standardized serum IFN-γ/IL-4 (IFN/IL4) and IFN-
γ/IL-10 (IFN/IL10) ratios in female patients with schizophrenia, 
schizophrenia-related disorders, and female healthy subjects (SCH = 
schizophrenia; SCH-R = schizophrenia-related disorders; CON = controls). 

 

Serum data   

Compared to the 35 normal females, the 34 schizophrenic women were tremendously older 

and had significantly enhanced prolactin, but markedly decreased cortisol and SHBG levels 
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(♀SCH vs. ♀CON – age: F = 18.76, p < .001; prolactin: F = 6.12, p = .02; SHBG: F = 10.46, 

p = .002; cortisol: F = 10.40, p = .002; estradiol: F = .002, p = .97; testosterone: F = 1.44, p = 

.23). The 15 females with schizophrenia-related diseases and the 35 control women were of 

relatively similar ages, females patients with schizophrenia-related disorders had 

tremendously higher prolactin, however, lower cortisol levels than healthy women (♀SCH-R 

vs. ♀CON – age: F = 2.74, p = .10; cortisol: F = 5.20, p = .03; prolactin: F = 22.43, p < .001; 

estradiol: F = .45, p = .50; testosterone: F = .05, p = .83; SHBG: F = 3.58, p = .06). Between 

females of both patient groups, almost no disparity was found except that schizophrenic 

females had markedly reduced testosterone levels than their female counterparts with 

schizophrenia-related disorders (♀SCH vs. ♀SCH-R – age: F = 2.48, p = .12; testosterone: F 

= 4.95, p = .03; cortisol: F = .001, p = .98; prolactin: F = 1.29, p = .26; estradiol: F = .43, p = 

.52; SHBG: F = .27, p = .60). Those diversities reported here were included into the following 

multi-variant comparisons. 

 

 

Figure 6-4-2-1-1(1-1): Comparisons of serum Th1 
cytokine levels among female patients with 
schizophrenia, schizophrenia-related disorders, and 
female controls. 

Figure 6-4-2-1-1(1-2): Comparisons of serum 
Th2 cytokine levels among female patients with 
schizophrenia, schizophrenia-related disorders, 
and female controls. 

 

Although the data regarding nicotine abuse (the ratio between smoker and non-smoker) were 

not complete for all subjects, according to those data available, no noteworthy disparity was 

observed between each pair of the three female subgroups (♀SCH vs. ♀SCH-R – nicotine: χ² 

= .01, p  = .93; ♀SCH vs. ♀CON – nicotine: χ² = .66, p = .42; ♀SCH-R vs. ♀CON – 

nicotine: χ² = .11, p = .74).  
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SCH females vs. CON females 

If including age, prolactin, cortisol, and SHBG into the analysis due to clear diversities 

between schizophrenic and control females, extremely clear alterations in both serum IFN-

γ/IL-4 and IFN-γ/IL-10 ratios were found in female schizophrenics (see Table 6-4-2-1(1): 

IFN-γ/IL-4: F = 12.85, p = .001; IFN-γ/IL-10: F = 10.01, p = .002). The means obtained for 

both serum IFN-γ/IL-4 and IFN-γ/IL-10 were 10.96 (SD = 5.82) and 14.29 (SD = 6.94) for 

female schizophrenic subjects as well as 21.31 (SD = 14.77) and 19.29 (SD = 8.98) for 

control women, correspondingly. Schizophrenic women had clearly reduced serum Th1/Th2 

ratios, compared to their healthy female counterparts. Additionally, female schizophrenic 

patients had remarkably lower serum IFN-γ, nevertheless, clearly higher serum IL-4 levels 

than healthy women (IFN-γ: F = 6.70, p = .01; IL-4: F = 6.77, p = .01). The schizophrenic 

females had a mean IFN-γ level of 35.93 pg/ml (SD = 16.26) and an average IL-4 level of 

3.62 pg/ml (SD = 1.41), while the normal women had averagely 45.69 pg/ml IFN-γ (SD = 

24.22) and 2.67 pg/ml IL-4 (SD = 1.32) in serum. Furthermore, schizophrenic females had 

lower serum IL-2, however, higher IL-10 and IL-6 levels than control females; nevertheless, 

those disparities were not clear between both female diagnostic groups (♀SCH vs. ♀CON – 

IL-2: F = .83, p = .37; TNF-α: F = .68, p = .41; IL-10: F = 1.11, p = .30; IL-6: F = 2.60, p = 

.11). 

  SCH-R females vs. CON females 

However, the comparisons between the 15 female patients with schizophrenia-related 

disorders and the 35 control females showed another pictures if including cortisol and 

prolactin into the analysis for the reason that females of both groups were obviously different 

in both stress hormones. Female patients with schizophrenia-related disorders had apparently 

enhanced serum IL-6 levels and tended to have increased serum IL-2 and IL-10 levels if 

compared to healthy female subjects (IL-6: F = 4.41, p = .04; IL-2: F = 3.32, p = .08; IL-10: F 

= 3.44, p = .07). Female patients with schizophrenia-related disorders obtained averagely 4.02 

pg/ml for IL-6 (SD = 6.75), 3.26 pg/ml for IL-2 (SD = 5.30), and 4.78 pg/ml for IL-10 (SD = 

9.38). In addition to the disparities stated above, females of both groups were relatively 

comparable in the remaining cytokines as well as both serum Th1/Th2 ratios (♀SCH-R vs. 

♀CON – IFN-γ/IL-4: F = 1.28, p = .26; IFN-γ/IL-10: F = .72, p = .40; IFN-γ: F = 2.75, p = 

.10; TNF-α: F = .49, p = .49; IL-4: F = 1.14, p = .29).  

  SCH females vs. SCH-R females 
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Compared to female patients having schizophrenia-related disorders, schizophrenic females 

had generally higher serum levels in Th1 cytokines such as IFN-γ, IL-2, and TNF-α, however, 

lower Th1/Th2 ratios and Th2 cytokines including IL-4, IL-6, and IL-10. Nevertheless, multi-

variance analysis showed no obvious diversity in diverse serum cytokine levels and IFN-γ/IL-

10 ratio between both female patient groups (♀SCH vs. ♀SCH-R – IFN-γ: F = 2.42, p = .13; 

IL-2: F = 2.44, p = .13; IL-4: F = .17, p = .68; IL-6: F = .04, p = .84; TNF-α: F = 1.24, p = 

.27; IL-10: F = 1.65, p = .21). However, schizophrenic women tended to have lower IFN-γ/IL-

4 ratios than female patients having related-diseases (IFN-γ/IL-4: F = 3.09, p = .09; IFN-γ/IL-

10: F = 1.01, p = .32). 

 

Table 6-4-2-1(1): Comparisons of serum cytokine levels and Th1/Th2 ratios between 
schizophrenic and control males/females who had complete data for age, gender, hormones, 
SHBG, and both Th1/Th2 ratios. 

Serum Th1/Th2 ratios and cytokines: comparisons (1) between schizophrenic and 
control females & (2) between schizophrenic and control males [M(SD)] 

Group Female  Male  
Gender SCH (N = 34) CON (N = 35) SCH (N = 42) CON (N = 40) 

IFN-γ 35.93 (16.26)**  45.69 (24.22) 80.22 (246.94) 384.69 (2101.60) 
IL-2 1.85 (.43) 2.04 (.54) 3.76 (12.64) 10.01 (48.67) 
TNF-α 1.87 (.45) 1.81 (.43) 3.02 (8.46) 6.32 (28.04) 
IL-4 3.62 (1.41)**  2.67 (1.32) 3.56 (2.35) 6.16 (16.00) 
IL-10 2.71 (1.09) 2.39 (.83) 6.06 (21.78) 14.61 (74.12) 
IL-6 4.50 (7.84) 2.32 (.94) 5.39 (16.95) 13.70 (70.88) 
IFN/IL4 10.96 (5.82)****  21.31 (14.77) 16.64 (15.60) 19.49 (20.76) 
IFN/IL10 14.29 (6.93)***  19.65 (8.98) 16.47 (9.16)*  19.67 (10.47) 

Note  (1) Unit of cytokines (IFN-γ, IL-2…IL-6) = pg/ml;  
(2) IFN/IL4 = IFN-γ/IL-4; IFN/IL10 = IFN-γ/IL-10;  
(3) Compared to corresponding sex: * p ≤ .05; ** p ≤ .01; *** p ≤ .005; **** p ≤ .001. 

 

Whole blood assay data 

Figure 6-4-2-1-1(2) to Figure 6-4-2-1-1(2-2) offer a glance at the discrepancies in whole 

blood assay Th1/Th2 cytokines/ratios among schizophrenic females, normal female subjects, 

and female patients having schizophrenia-related disorders. 

 

According to the whole blood assay data, the 18 female schizophrenics were extremely older 

and had significantly higher prolactin, nevertheless, lower cortisol levels than the 35 female 

controls (♀SCH vs. ♀CON – age: F = 12.44, p = .001; cortisol: F = 6.09, p = .02; prolactin: F 
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= 7.25, p = .01; estradiol: F = .47, p = .50; testosterone: F = 1.11, p = -30; SHBG: F = 2.12, p 

= .15). The 5 females with schizophrenia-related disorders were not significantly older, but 

they did have clearly enhanced prolactin, nonetheless, decreased SHBG levels than normal 

women (♀SCH-R vs. ♀CON – age: F = 3.77, p = .06; prolactin: F = 50.33, p < .001; SHBG: 

F = 4.22, p = .05; cortisol: F = .90, p = .35; estradiol: F = .11, p = .75; testosterone: F = .003, 

p = .95). Nevertheless, women of both patient groups were relatively comparable in all 

respects stated above (♀SCH vs. ♀SCH-R – age: F = .10, p = .76; cortisol: F = .41, p = .53; 

prolactin: F = 2.18, p = .16; estradiol: F = .01, p = .93; testosterone: F = 2.05, p = .17; SHBG: 

F = 1.86, p = .19). Furthermore, between those female patients and control females who had 

complete whole blood assay Th1/Th2 ratios and endocrinological data, no clear diversity was 

shown between each pair of them regarding the smoker/no-smoker ratios (♀SCH vs. ♀CON – 

χ² = .21, p = .65; ♀SCH-R vs. ♀CON – χ² = .73, p = .39; ♀SCH vs. ♀SCH-R – χ² = .24, p = 

.62).  

 

 

 
 

Figure 6-4-2-1-1(2): Standardized whole blood assay IFN-γ/IL-4 
(IFN/IL4) and IFN-γ/IL-10 (IFN/IL10) ratios in female patients with 
schizophrenia, schizophrenia-related disorders, and female healthy 
subjects (SCH = schizophrenia; SCH-R = schizophrenia-related 
disorders; CON = controls). 

 

  SCH females vs. CON females 

Multi-variance analysis revealed that schizophrenic females had highly reduced whole blood 

assay IFN-γ/IL-10 ratios than healthy women (see Table 6-4-2-1(2): F = 7.86, p = .007). 
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Female schizophrenics obtained a mean of 19.64 IFN-γ/IL-10 (SD = 12.07), whereas female 

controls had an average IFN-γ/IL-10 34.77 (SD = 21.52). Schizophrenic women also had 

reduced whole blood assay IFN-γ/IL-4 ratios, nevertheless, the difference only showed a trend 

to be significant (F = 3.30, p = .08). The mean whole blood assay IFN-γ/IL-4 ratios for both 

schizophrenic and control female groups were 462.03 (SD = 310.06) and 1290.69 (SD = 

1620.74), respectively. Additionally, female schizophrenics produced markedly less IFN-γ 

and tended to release less IL-6 than their healthy female counterparts; however, no marked 

disparity was found in the productions of the remaining cytokines (♀SCH vs. ♀CON – IL-2: 

F = .19, p = .67; TNF-α: F = .91, p = .34; IL-4: F = .31, p = .58; IL-10: F = .04, p = .85). The 

means of whole blood IFN-γ and IL-6 were 23410.06 pg/ml (SD = 13379.42) and 1326.20 

pg/ml (SD = 751.37) for schizophrenic women as well as 45221.91 pg/ml (SD = 32808.98) 

and 3300.15 pg/ml (SD = 3259.17) for control females, correspondingly (IFN-γ: F = 5.56, p = 

.02; IL-6: F = 3.44, p = .07).  

 

  

Figure 6-4-2-1-1(2-1): Comparisons of whole 
blood assay Th1 cytokine releases among female 
patients with schizophrenia, schizophrenia-
related disorders, and female controls. 

Figure 6-4-2-1-1(2-2): Comparisons of whole 
blood assay Th2 cytokine releases among female 
patients with schizophrenia, schizophrenia-
related disorders, and female controls. 

 

  SCH-R females vs. CON females & SCH-R females vs. SCH females  

Nevertheless, the comparisons between female patients with schizophrenia-related disorders 

and controls as well as those between both female patient groups (schizophrenia vs. 

schizophrenia-related disorders) showed similarities in all regards measured (♀SCH-R vs. 

♀CON – whole blood assay IFN-γ/IL-4: F = .002, p = .96; IFN-γ/IL-10: F = 2.05, p = .16; 
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IFN-γ: F = .25, p = .62 ;IL-2: F = .002, p = .97; TNF-α: F = .10, p = .76; IL-4: F = .65, p = 

.43; IL-10: F = .04, p = .84; IL-6: F = .64, p = .43; ♀SCH-R vs. ♀SCH – IFN-γ/IL-4: F = 

.1.41, p = .25; IFN-γ/IL-10: F = .002, p = .97; IFN-γ: F = 1.27, p = .27; IL-2: F = .08; p = .78; 

TNF-α: F = .14, p = .71; IL-4: F = .65, p = .43; IL-10: F = 1.40, p = .25; IL-6: F = 1.17, p = 

.29).  

 
Table 6-4-2-1(2): Comparisons of whole blood assay cytokine levels and Th1/Th2 ratios 
among schizophrenic and control males/females who had complete data for age, gender, 
hormones, SHBG, and both Th1/Th2 ratios. 

Whole blood assay Th1/Th2 ratios and cytokines: comparisons (1) between 
schizophrenic and control females & (2) between schizophrenic and control males 

[M(SD)] 

Group Female  Male  
Gender SCH (N = 18) CON (N = 35) SCH (N = 26) CON (N = 41) 

IFN-γ 23410.06 (13379.42) 
**  

45221.91 
(32808.98) 

35356.40 (23779.62) 45536.21 (33859.97) 

IL-2 286.66 (194.80) 358.56 (361.86) 439.74 (372.17) 433.50 (359.60) 
TNF-α 293.78 (264.20) 413.25 (284.68) 373.24 (184.54) 412.01 (354.39) 
IL-4 63.30 (49.37) 54.85 (38.84) 58.75 (46.24) 54.58 (64.55) 
IL-10 1368.32 (926.69) 1397.22 (800.39) 1037.74 (459.66) 1216.78 (1059.32) 
IL-6 1326.20 (751.37) 3300.15 (3259.17) 1849.35 (1254.81) 2584.35 (2820.86) 
IFN/IL4 462.03 (310.06) 1290.69 (1620.74) 1185.87 (1564.02) 1280.13 (1260.25) 
IFN/IL10 19.64 (12.07)**  34.77 (21.52) 36.84 (21.74) 43.95 (30.31) 

Note  (1) Unit of cytokines (IFN-γ, IL-2…IL-6) = pg/ml;  
(2) IFN/IL4 = IFN-γ/IL-4; IFN/IL10 = IFN-γ/IL-10;  
(3) Compared to corresponding sex: ** p ≤ .01. 

 

Lymphocyte data 

Figure 6-4-2-1-1(3) to Figure 6-4-2-1-1(3-2) give a glance at the results from comparing the 

lymphocyte Th1/Th2 data of schizophrenic women, normal females, and female patients 

having schizophrenia-related diseases.  

 

The diversities in the epidemiological and endocrinological data among these three female 

subgroups who had complete lymphocyte data, hormones, SHBG, and age are as followed. 

Apart from being significantly older, the 22 schizophrenic females were also evidently 

distinguishable from the 45 normal women in cortisol, prolactin, and SHBG levels. 

Schizophrenic females had remarkably lower cortisol and SHBG, but higher prolactin levels 

than their healthy female counterparts (♀SCH vs. ♀ CON – age: F = 9.89, p = .003; cortisol: 

F = 5.48, p = .02; prolactin: F = 8.38, p = .005; SHBG: F = 6.66, p = .01; estradiol: F = .02, p 
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= .90; testosterone: F = .73, p = .40). Between the 7 female patients having schizophrenia-

related disorders and the 45 female controls, only the diversities in prolactin and SHBG 

reached statistic significance levels, but not age, both sex hormones, and cortisol (♀SCH-R 

vs. ♀CON – prolactin: F = 17.96, p < .001; SHBG: F = 4.83, p = .03; age: F = 2.48, p = .12; 

cortisol: F = 1.86, p = .18; estradiol: F = .71, p = .41; testosterone: F = .01, p = .92). Female 

patients with schizophrenia-related diseases had highly higher prolactin, but lower SBHG 

levels than the female controls. However, between both patient groups, no clear disparity was 

observed in those respects (♀SCH vs. ♀SCH-R – age: F = .58, p = .45; cortisol: F = .001, p = 

.98; prolactin: F = .19, p = .67; estradiol: F = .46, p = .51; testosterone: F = 1.94, p = .18; 

SHBG: F = .71, p = .41).  
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Figure 6-4-2-1-1(3): Standardized lymphocyte IFN-γ/IL-4 
(IFN/IL4), IFN-γ/IL-10 (IFN/IL10), and IFN-γ/IL-13 (IFN/IL13) 
ratios in female patients with schizophrenia, schizophrenia-related 
disorders, and female healthy subjects (SCH = schizophrenia; 
SCH-R = schizophrenia-related disorders; CON = controls). 

 

In addition, comparing the ratios of smoker/non-smoker demonstrated similarities among 

these 3 female diagnostic groups (♀SCH vs. ♀CON – χ2 = .28, p = .60; ♀SCH vs. ♀SCH-R – 

χ² = .17, p = .68; ♀SCH-R vs. ♀CON – χ² = .02, p = .90). 

  SCH females vs. CON females 

MANCOVA demonstrated that, in addition to a marked reduction in lymphocyte IFN-γ 

production and a tendency to release less IL-4 in schizophrenic women, no further 

discrepancy was found in the other lymphocyte parameters between schizophrenic and control 

females (see Table 6-4-2-1(3): lymphocyte IFN-γ/IL-4: F = .21, p = .65; IFN-γ/IL-10: F = .03, 
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p = .87; IFN-γ/IL-13: F = .01, p = .94; IFN-γ: F = 8.33, p = .005; IL-4: F = 3.00, p = .09; IL-

12: F = .71, p = .40; IL-13: F = 2.49, p = .12; IL-10: F = .01, p = .94).  

 

  

Figure 6-4-2-1-1(3-1): Comparisons of 
lymphocyte Th1 cytokine productions among 
female patients with schizophrenia, 
schizophrenia-related disorders, and female 
controls. 

Figure 6-4-2-1-1(3-2): Comparisons of 
lymphocyte Th2 cytokine productions among 
female patients with schizophrenia, 
schizophrenia-related disorders, and female 
controls. 

 

  SCH-R females vs. CON females & SCH-R females vs. SCH females 

Nevertheless, comparisons between either female patient group and normal females failed to 

show any marked disparity in lymphocyte cytokine production and Th1/Th2 ratio (♀SCH-R 

vs. ♀CON – IFN-γ/IL-4: F = 2.29, p = .14; IFN-γ/IL-10: F = .25, p = .62; IFN-γ/IL-13: F = 

.76, p = .39; IFN-γ: F = 2.62, p = .11; IL-12: F = .002, p = .96; IL-4: F = .42, p = .52; IL-13: F 

= 1.06, p = .31; IL-10: F = .76, p = .39; ♀SCH-R vs. ♀SCH – IFN-γ/IL-4: F = 1.02, p = .32; 

IFN-γ/IL-10: F = .28, p = .60; IFN-γ/IL-13: F = .50, p = .49; IFN-γ: F = .30, p = .59; IL-12: F 

= .37, p = .55; IL-4: F = .46, p = .51; IL-13: F = .03, p = .87; IL-10: F = .59, p = .45). 

 

SummarySummarySummarySummary : Schizophrenic females had significantly lower serum IFN-γ/IL-4, IFN-γ/IL-10, 

whole blood assay IFN-γ/IL-10, serum, whole blood assay, and lymphocyte IFN-γ, however, 

higher serum IL-4 than female normal subjects, but not female patients having schizophrenia-

related disorders. In addition, schizophrenic women also tended to have markedly decreased 

whole blood assay IFN-γ/IL-4, IL-6, and lymphocyte IL-4 if compared to female controls. 

Nevertheless, female patients having schizophrenia-related disorders had significantly 
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enhanced serum IL-6 and tended to have elevated serum IL-10 levels if compared with 

normal female controls. Furthermore, schizophrenic women tended to have lower serum IFN-

γ/IL-4 than their female patient counterparts having schizophrenia-related diseases. 

 

Table 6-4-2-1(3): Comparisons of lymphocyte cytokine levels and Th1/Th2 ratios between 
schizophrenic and control males/females who had complete data for age, gender, hormones, 
SHBG, and both Th1/Th2 ratios. 

Lymphocyte Th1/Th2 ratios and cytokines: comparisons (1) between schizophrenic 
and control females & (2) between schizophrenic and control males [M(SD)] 

Group Female  Male  
Gender SCH (N = 22) CON (N = 45) SCH (N = 32) CON (N = 53) 

IFN-γ 617.13 (435.92)***  1121.88 (969.10) 785.53 (442.71) 980.19 (671.36) 
IL-12 394.95 (459.68) 287.16 (158.10) 355.78 (512.20) 314.54 (225.15) 
IL-4 311.48 (211.81) 416.50 (164.66) 357.56 (197.14) 405.35 (160.04) 
IL-10 577.52 (634.72) 553.35 (493.19) 414.05 (400.56) 519.91 (431.89) 
IL-13 540.22 (413.49) 766.80 (493.92) 622.31 (377.04)*  840.76 (533.87) 
IFN/IL4 3.64 (5.64) 3.00 (2.67) 3.00 (2.83) 2.78 (2.09) 
IFN/IL10 6.27 (17.58) 3.66 (4.80) 4.31 (4.83) 3.07 (3.43) 
IFN/IL13 3.00 (7.19) 2.05 (3.03) 1.94 (1.95) 1.53 (1.12) 

Note  (1) Unit of cytokines (IFN-γ, IL-12…IL-13) = spot; cell concentration: IFN-γ = pro 40 000 
cells; IL-12 = pro 160 000 cells; IL-4 & IL-13 = pro 200 000 cells; IL-10 = pro 80 000 cells;  

(2) IFN/IL4 = IFN-γ/IL-4; IFN/IL10 = IFN-γ/IL-10; 
(3) Compared to corresponding sex: * p ≤ .05; *** p ≤ .005. 

 

6.4.2.1.1.2 Th1/Th2 subgroups of female schizophrenic patients 

 

Although female schizophrenics as a whole group had significantly reduced Th1/Th2 ratios 

than normal women, they can be further divided into various heterogeneous subgroups 

according to their Th1/Th2 ratios. The following sections are the report of such attempts. 

Serum Th1/Th2 subgroups of female schizophrenics   

If including serum IFN-γ/IL-4 and IFN-γ/IL-10 as clustering standards at the same time to 

classify the female patients, two extremely heterogeneous subgroups were obtained: one low 

IFN-γ/IL-4 and IFN-γ/IL-10 (abbreviated as low Th1/Th2) as well as one high Th1/Th2 

subgroup (low Th1/Th2 ♀SCH – IFN-γ/IL-4: M = 8.21, SD = 3.78; IFN-γ/IL-10: M = 9.70, 

SD = 3.73; high Th1/Th2 ♀SCH – IFN-γ/IL-4: M = 14.88, SD = 6.08; IFN-γ/IL-10: M = 

20.84, SD = 4.83). There were 20 females in the low Th1/Th2 subgroup and 14 in the high 

Th1/Th2 female schizophrenic group. These two female schizophrenic subgroups had highly 

different serum IFN-γ/IL-4 and IFN-γ/IL-10 ratios (IFN-γ/IL-4: F = 15.58, p < .0001; IFN-
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γ/IL-10: F = 57.55, p < .00001). The low Th1/Th2 female subgroup tended to have higher 

scores on the PANSS negative subscale than the high one (low Th1/Th2 group: M = 27.13, 

SD = 6.43; high: M = 21.57, SD = 7.37; F = 3.34, p = .08). In contrast, the high Th1/Th2 

female subgroup had a higher average on the PANSS positive subscale (low Th1/Th2 ♀SCH: 

M = 23.19, SD = 7.57; high Th1/Th2 ♀SCH: M = 27.00, SD = 6.51). It’s worthy to note that 

although the low Th1/Th2 female schizophrenics tended to have higher scores on the PANSS 

negative scale, their average score was still smaller than 28; the mean of all 7 PANSS 

negative subscales is 28.  

Serum IFN-γ/IL-4 female schizophrenic subgroups   

Further attempts to classify female patients into 3 serum IFN-γ/IL-4 subgroups showed a 

tendency - lower serum IFN-γ/IL-4 ratio, lower PANSS positive and negative score as well as 

higher serum IFN-γ/IL-4 ratio, higher PANSS positive and negative score; however, this 

tendency was statistically not significant. Nevertheless, serum IFN-γ/IL-10 seemed not to 

have similar associations with the PANSS scores as those described above with IFN-γ/IL-4.  

Whole blood assay Th1/Th2 subgroups of females with schizophrenia   

If including both whole blood assay IFN-γ/IL-4 and IFN-γ/IL-10 together as classification 

criteria into the cluster-center analysis, two female schizophrenic subgroups were obtained; 

they were very different from each other in both whole blood assay IFN-γ/IL-4 and IFN-γ/IL-

10 ratios (IFN-γ/IL-4: F = 54.52, p < .001; IFN-γ/IL-10: F = 8.78, p = .009). Four patients 

were divided into the high whole blood assay Th1/Th2 subgroups, while 14 of them were 

classified as the low Th1/Th2 group. The high Th1/Th2 female schizophrenics had an average 

of 957.70 (SD = 249.95) for IFN-γ/IL-4 and 32.70 (SD = 20.35) for IFN-γ/IL-10, while the 

low female group had a mean of 320.41 (SD = 118.78) for IFN-γ/IL-4 and 15.90 (SD = 5.24) 

for IFN-γ/IL-10. Nevertheless, none of those demographical, clinical, and endocrinological 

variables was able to distinguish both female schizophrenic subgroups from each other.  

Lymphocyte Th1/Th2 subgroups of female schizophrenia  

Similarly, through clustering the female schizophrenics according to their lymphocyte IFN-

γ/IL-4 ratios, two extremely heterogeneous subgroups in terms of lymphocyte IFN-γ/IL-4 

ratio were obtained, despite that female schizophrenics as a whole group did not have 

markedly decreased lymphocyte Th1/Th2 ratios (lymphocyte IFN-γ/IL-4: F = 14.60, p = .001; 

IFN-γ/IL-13: F = 6.20, p = .02; IFN-γ/IL-10: F = .29, p = .60). The high lymphocyte IFN-

γ/IL-4 female patient group consisted of 6 persons, while the low one contained 16 patients. 
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These two lymphocyte IFN-γ/IL-4 female schizophrenic subgroups were, however, similar in 

all clinical and endocrinological parameters which were available in this study.  

 

6.4.2.1.2 Schizophrenic males vs. healthy men 

6.4.2.1.2.1 The whole group of schizophrenic and control males 

Serum data 

Figure 6-4-2-1-2(1) to Figure 6-4-2-1-2(1-2) offer an overview of the results from comparing 

the serum Th1/Th2 data of schizophrenic men, normal males, and male patients having 

schizophrenia-related diseases.  

 

The 42 schizophrenic and the 40 control men were of similar ages, however, the 

schizophrenic males had noticeably lower testosterone and SHBG, but higher prolactin levels 

than the control men (♂SCH vs. ♂CON – age: F = 1.53, p  = .22; prolactin: F = 8.50, p = 

.005; testosterone: F = 27.64, p < .001; SHBG: F = 7.64, p = .007; cortisol: F = .08, p = .77; 

estradiol: F = .35, p = .55). No clear disparity was shown regarding the distributions of non-

smoker/smoker in both groups (χ² = .12, p = .73). Comparisons between the 11 male patients 

with schizophrenia-related disorders and the 40 healthy male subjects revealed that male 

patients had noticeably reduced testosterone levels compared to male controls. But both 

schizophrenic and control males had relatively similar cortisol, prolactin, estradiol, SHBG 

levels, smoker/non-smoker ratios, and ages. (♂SCH-R: ♂CON – testosterone: F = 4.11, p = 

.05; cortisol: F = 2.55, p  = .12; prolactin: F = 1.73, p = .20; estradiol: F = .68, p = .42; SHBG: 

F = .28, p = .60; age: F = .16, p = .69; nicotine: χ² = 1.61, p = .21). Between both male patient 

groups exhibited similarities regarding cortisol, estradiol, testosterone, age, and non-

smoker/smoker ratio (♂SCH vs. ♂SCH-R – cortisol: F = 1.70, p = .20; estradiol: F = 1.76, p = 

.19: testosterone: F = .85, p = .36; age: F = .20, p = .66; nicotine: χ² = 1.09, p = .30). 

Remarkable disparities were found in prolactin and SHBG (prolactin: F = 5.74, p = .02; 

SHBG: F = 5.10, p = .03). Schizophrenic males had highly enhanced prolactin, however, 

significantly reduced SHBG levels compared with male patients suffering under other related 

psychiatric disorders. 

  SCH males vs. CON males vs. SCH-R males 

On average, both male patient groups had lower serum cytokine levels and Th1/Th2 ratios 

than the control males. But schizophrenic males had higher in vivo cytokine levels and serum 

IFN-γ/IL-4 than male patients having schizophrenia-related disorders.  
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Figure 6-4-2-1-2(1): Standardized serum IFN-γ/IL-4 (IFN/IL4) and IFN-
γ/IL-10 (IFN/IL10) ratios in male patients with schizophrenia, 
schizophrenia-related disorders, and male healthy subjects (SCH = 
schizophrenia; SCH-R = schizophrenia-related disorders; CON = 
controls). 

 

MANCOVA comparisons between each pair of these three male groups failed to detect any 

obvious diversity in terms of serum cytokine levels and Th1/Th2 ratios (♂SCH vs. ♂CON – 

serum IFN-γ/IL-4: F = 1.90, p = .17; IFN-γ: F = .61, p = .44; IL-2: F = .52, p = .47; TNF-α: F 

= .47, p = .50; IL-4: F = .64, p = .43; IL-10: F = .45, p = .51; IL-6: F = .43, p = .51; ♂SCH vs. 

♂CON – IFN-γ/IL-4: F = .24, p = .63; IFN-γ/IL-10: F = 1.15, p = .29; IFN-γ: F = .08, p = .78; 

IL-2: F = .08, p = .78; TNF-α: F = .08, p = .79; IL-4: F = .19, p = .67; IL-10: F = .08, p = .78; 

IL-6: F = .07, p = .79; ♂SCH vs. ♂SCH-R – IFN-γ/IL-4: F = .003, p = .96; IFN-γ/IL-10: F = 

.45, p = .50; IFN-γ: F = .08, p = .78; IL-2: F = .06, p = .81; TNF-α: F = .06, p = .81; IL-4: F = 

.62, p = .44; IL-10: F = .12, p = .74; IL-6: F = .20, p = .66). The only exception was the 

disparity between the male schizophrenics and normal males in serum IFN-γ/IL-10 ratio. 

Schizophrenic males had significantly reduced IFN-γ/IL-10 ratios compared to control men (F 

= 4.09, p = .05); the mean IFN-γ/IL-10 ratios for schizophrenic and control men were 16.47 

(SD = 9.16) and 19.67 (SD = 10.47). Table 6-4-2-1(1) which was presented in the 

comparisons among various female subject groups summarizes the parameters stated above in 

both male schizophrenics and controls. 
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Figure 6-4-2-1-2(1-1): Comparisons of serum 
Th1 cytokine levels among male patients with 
schizophrenia, schizophrenia-related disorders, 
and male controls. 

Figure 6-4-2-1-2(1-2): Comparisons of serum 
Th2 cytokine levels among male patients with 
schizophrenia, schizophrenia-related disorders, 
and male controls. 

 

Whole blood assay data 

Figure 6-4-2-1-2(2) to Figure 6-4-2-1-2(2-2) offer a global view of the outcomes from 

comparing the whole blood assay Th1/Th2 data of schizophrenic men, normal males, and 

male patients having schizophrenia-related diseases.  

 

Totally, 26 male schizophrenics and 41 normal males had complete whole blood assay data. 

They had relatively similar ages, cortisol, and estradiol levels (♂SCH vs. ♂CON – age: F = 

2.45, p = .12; cortisol: F = .02, p = .90; estradiol: F = .10, p = .75). However, the 

schizophrenic males had evidently lower SHBG and testosterone, but higher prolactin levels 

(SHBG: F = 6.13, p = .02; testosterone: F = 19.77, p < .001; prolactin: F = 9.37, p  =.003). 

Concerning the smoker/non-smoker ratio, no apparent disparity was shown between both 

male groups (χ² = .04, p = .84). Nevertheless, (1) between the 9 male patients with 

schizophrenia-related disorders and healthy males as well as (2) between both male patient 

groups, no clear diversity was found in age, nicotine abuse, SHBG, and all hormones 

measured except the SHBG and prolactin levels between both male patient groups (♂SCH-R 

vs. ♂CON – age: F = .69, p = .41; nicotine: χ² = 1.61, p = .21; cortisol: F = .23, p = .64; 

prolactin: F = .91, p = .35; estradiol: F = .35, p = .56; testosterone: F = 3.67, p= .06; SHBG: F 

= 1.49, p = .23; ♂SCH-R vs. ♂SCH –age: F = .10, p = .75; nicotine: χ.2  = 1.17, p = .28; 

cortisol: F = .14, p = .71; estradiol: F = .62, p = .44; testosterone: F = .30, p = .59; prolactin: F 
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= 5.03, p = .03; SHBG: F = 7.43, p = .01). Schizophrenic patients had significantly higher 

prolactin, but lower SHBG levels than male patients with schizophrenia-related disorders. 
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Figure 6-4-2-1-2(2): Standardized whole blood assay IFN-γ/IL-4 
(IFN/IL4) and IFN-γ/IL-10 (IFN/IL10) ratios in male patients with 
schizophrenia, schizophrenia-related disorders, and male healthy 
subjects (SCH = schizophrenia; SCH-R = schizophrenia-related 
disorders; CON = controls). 

 

Averagely, schizophrenic men had lower whole blood assay Th1/Th2 ratios and cytokine 

productions than normal males except IL-2 and IL-4. Male patients with schizophrenia-related 

disorders had lower whole blood assay Th1/Th2 ratios and cytokine in vitro releases than 

healthy men except IL-4. Nevertheless, schizophrenic men secreted less TNF-α and IL-6, but 

more IFN-γ, IL-2, and IL-4 than male schizophrenia-related psychiatric patients. Moreover, 

schizophrenic male patients had increased whole blood assay IFN-γ/IL-4, but decreased IFN-

γ/IL-10 ratio if compared with their male patient counterparts with schizophrenia-related 

diseases. 

 

Despite of various disparities in age and hormones, no single diversity in terms of whole 

blood assay cytokine productions and Th1/Th2 ratios was shown (1) between schizophrenic 

and control males, (2) between male patients with schizophrenia-related diseases and healthy 

men as well as (3) between both male patient groups (♂SCH vs. ♂CON – whole blood assay 

IFN-γ/IL-4: F = .26, p = .61; IFN-γ/IL-10: F = .21, p = .65; IFN-γ: F = .09, p = .76; IL-2: F = 
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.00, p = 1.00; TNF-α: F = .09, p = .77; IL-4: F = .71, p = .40; IL-10: F = .08, p = .77; IL-6: F 

= 1.30, p = .26; ♂SCH-R vs. ♂CON – IFN-γ/IL-4: F .76, p = .39; IFN-γ/IL-10: F = .02, p = 

.89; IFN-γ: F = 1.67, p = .20; IL-2: F= .96, p = .33; TNF-α: F = .06, p = .81; IL-4: F = .01, p = 

.95; IL-10: F = .77, p  =.38; IL-6: F = .01, p = .92; ♂SCH vs. ♂SCH-R – IFN-γ/IL-4: F = .84, 

p = .37; IFN-γ/IL-10: F = .02, p = .89; IFN-γ: F = 2.18, p  =.15; IL-2: F = .23, p = .64; TNF-α: 

F = .25, p = .62; IL-4: F = .05, p = .82; IL-10: F = 1.07, p = .31; IL-6: F = .05, p = .82). The 

results of both the schizophrenic and control male group were summarized in Table 6-4-2-

1(2) which is shown in the former section concerning the comparisons among various female 

subject groups. 
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Figure 6-4-2-1-2(2-1): Comparisons of whole 
blood assay Th1 cytokine productions among 
male patients with schizophrenia, schizophrenia-
related disorders, and male controls. 

Figure 6-4-2-1-2(2-2): Comparisons of whole 
blood assay Th2 cytokine productions among male 
patients with schizophrenia, schizophrenia-related 
disorders, and male controls. 

 

Lymphocyte data 

Figure 6-4-2-1-2(3) to Figure 6-4-2-1-2(3-1) give a glance at the findings from comparing 

the lymphocyte Th1/Th2 data of schizophrenic men, normal males, and male patients having 

schizophrenia-related diseases.  

 

Thirty-two schizophrenic and 53 control males had complete lymphocyte data. They had 

similar ages, smoker/non-smoker ratios, cortisol, prolactin, and estradiol levels. But the male 

schizophrenics had lower testosterone and SHBG levels than the healthy men (♂SCH vs. 

♂CON – age: F = 1.75, p = .19; nicotine: χ² = .75, p = .39; cortisol: F = .01, p = .92; 



 

87 

prolactin: F = .01, p = .91; estradiol: F = .08, p = .78; testosterone: F = 15.30, p < .001; 

SHBG: F = 5.92, p = .02). Between the 11 male patients with schizophrenia-related disorders 

and the control males, no clear diversity in all regards mentioned above was detected (♂SCH-

R vs. ♂CON – age: F = 2.92, p = .09; nicotine: χ² = 2.68, p = .10; cortisol: F = .33, p = .57; 

prolactin: F = .44, p = .51; estradiol: F = 1.16, p = .29; testosterone: F = 1.42, p= .24; SHBG: 

F = .49, p = .49). However, male patients with schizophrenia-related disorders had 

significantly lower prolactin, however, higher SHBG than schizophrenic men (♂SCH vs. 

♂SCH-R – prolactin: F = 5.11, p = .03; SHBG: F = 12.23, p = .001). Other than these two 

diversities stated above, no further disparity was observed between both male patient groups 

(age: F = .33, p = .57; nicotine: F = 1.21, p = .27; cortisol: F = .31, p = .58; estradiol: F = 1.72, 

p = .20; testosterone: F = 1.10, p = .30). 

  SCH males vs. CON males vs. SCH-R males 

Generally speaking, schizophrenic males had reduced lymphocyte IFN-γ, IL-4, IL-13, and IL-

10 productions, however, increased IL-12 releases and all 3 lymphocyte Th1/Th2 ratios if 

compared with normal males. In contrast, male patients with schizophrenia-related disorders 

had lower lymphocyte cytokine secretions and Th1/Th2 ratios but IFN-γ/IL-10 if compared to 

healthy males. However, compared to schizophrenic men, male patients with schizophrenia-

related diseases produced less IFN-γ, IL-4, and IL-13, but more IL-12 and IL-10; in addition, 

they had increased lymphocyte IFN-γ/IL-4 and IFN-γ/IL-13, however, decreased IFN-γ/IL-10 

ratios. 

 

Multi-variance analysis showed that (1) schizophrenic males produced remarkably less 

lymphocyte IL-13 (F = 4.11, p = .05) and that (2) male patients with schizophrenia-related 

disorders released markedly less lymphocyte IL-10 than control males (F = 4.79, p = .03). 

Apart from these two noticeable alterations in both male patient groups, no other noteworthy 

diversity was shown between any pair of these three diagnostic male subgroups (♂SCH vs. 

♂CON – lymphocyte IFN-γ/IL-4: F = .17, p = .69; IFN-γ/IL-10: F = 1.91, p = .17; IFN-γ/IL-

13: F = 1.58, p = .21; IFN-γ: F = 2.13, p = .15; IL-12: F = .26, p = .61; IL-4: F = 1.49, p = .23; 

IL-10: F = 1.27, p = .26; ♂SCH-R vs. ♂CON – IFN-γ/IL-4: F = .01, p = .93; IFN-γ/IL-10: F = 

1.49, p = .23; IFN-γ/IL-13: F = .36, p = .55; IFN-γ: F = .06, p = .81; IL-12: F = 2.21, p = .14; 

IL-4: F = .01, p = ,93; IL-13: F = .10, p = .75; ♂SCH vs. ♂SCH-R – IFN-γ/IL-4: F = .09, p = 

.77; IFN-γ/IL-10: F = .01, p = .95; IFN-γ/IL-13: F = 1.08, p = .31; IFN-γ: F = .54, p = .47; IL-

12: F = .88, p = .36; IL-4: F = .60, p = .44; IL-13: F = 1.37, p = .25; IL-10: F = 2.19, p = .15). 
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The results from both male schizophrenics and controls are presented in Table 6-4-2-1(3) 

which is shown in the previous section regarding the Th1/Th2 cytokines and ratios in females. 
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Figure 6-4-2-1-2(3): Standardized lymphocyte 
IFN-γ/IL-4 (IFN/IL4), IFN-γ/IL-10 (IFN/IL10), 
and IFN-γ/IL-13 (IFN/IL13) ratios in male 
patients with schizophrenia, schizophrenia-
related disorders, and male healthy subjects 
(SCH = schizophrenia; SCH-R = schizophrenia-
related disorders; CON = controls). 

Figure 6-4-2-1-2(3-1): Comparisons of 
lymphocyte Th1/Th2 cytokine productions 
among male patients with schizophrenia, 
schizophrenia-related disorders, and male 
controls (SCH = schizophrenia; SCH-R = 
schizophrenia-related disorders; CON = 
controls). 

 

SummarySummarySummarySummary : The only characteristic alteration observed in male schizophrenics as a whole 

group might be reduced serum IFN-γ/IL-10 ratio and decreased lymphocyte IL-13 production. 

 

6.4.2.1.2.2 Serum IFN-γ/IL-4 subgroups of males with schizophrenia 

Serum data  

Male schizophrenics as a whole group did not have significantly reduced serum IFN-γ/IL-4 

ratios. In this section, we attempted to sub-divide schizophrenic males into various serum 

IFN-γ/IL-4 subgroups to detect whether or not a subgroup of male schizophrenic patients 

existed, having significantly reduced serum IFN-γ/IL-4 ratios compared to healthy males. 

Cluster analysis resulted in two distinct serum IFN-γ/IL-4 male schizophrenic subgroups. The 

high group contained 20 patients and the low one consisted of 22 male schizophrenics. Both 

groups were of similar ages as well as had similar levels of hormones, SHBG, and in vivo 

cytokine levels (high IFN4 ♂SCH vs. low IFN4 ♂SCH – age: F = .90, p = .35; cortisol: F = 

1.51, p = .23; prolactin: F = 1.41, p = .24; estradiol: F = .12, p = .74; testosterone: F = 1.60, p 
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= .21; SHBG: F = .03, p = .87; IFN-γ: F = 1.95, p = .17; IL-2: F = 1.15, p = .29; TNF-α: F = 

1.17, p = .29; IL-4: F = .43, p = .52; IL-10: F = 1.16, p = .29; IL-6: F = 1.04, p = .31).  

 

However, both serum IFN-γ/IL-4 male subgroups tremendously differed from each other in 

both serum Th1/Th2 ratios (high IFN4 ♂SCH vs. low IFN4 ♂SCH – IFN-γ/IL-4: F = 20.64, p 

< .001; IFN-γ/IL-10: F = 6.27, p = .02). In addition to significantly decreased IFN-γ/IL-4, the 

low IFN-γ/IL-4 male schizophrenics had markedly reduced IFN-γ/IL-10 ratios compared to 

the high ones. The means of IFN-γ/IL-4 and IFN-γ/IL-10 ratio were 26.01 (SD = 18.38), 

19.97 (SD = 8.95) for the high IFN-γ/IL-4 subgroup and 8.12 (SD = 3.10), 13.30 (SD = 8.31) 

for the low IFN-γ/IL-4 schizophrenic males. Nevertheless, none of the clinical data measured 

in this study was sufficient to distinguish both subgroups of male schizophrenics from each 

other. 

 

Comparisons between the 20 high IFN-γ/IL-4 male schizophrenics and the 40 male controls 

showed no noticeable diversity in serum cytokine levels and Th1/Th2 ratios, despite of having 

significantly higher prolactin, however, lower testosterone and SHBG levels in the high IFN-

γ/IL-4 male schizophrenics (high IFN4 ♂SCH vs. ♂CON – serum IFN-γ/IL-4: F = .24, p = 

.63; IFN-γ/IL-10: F = .37, p = .55; IFN-γ: F = .18, p = .67; IL-2: F = .11, p = .74; TNF-α: F = 

.08, p = .78; IL-4: F = .38, p = .54; IL-10: F = .07, p = .79; IL-6: F = .08, p = .77; age: F = .12, 

p = .73; cortisol: F = 1.14, p = .29; estradiol: F = .46, p = .50; prolactin: F = 10.92, p = .002; 

testosterone: F = 27.65, p < .001; SHBG: F = 4.31, p = .04). The high IFN-γ/IL-4 male 

schizophrenics had lower serum levels in all Th1/Th2 cytokines assessed in this study, but 

higher IFN-γ/IL-4 and IFN-γ/IL-10 than male controls.  

 

In general, the low IFN-γ/IL-4 schizophrenic males had low serum cytokine levels and 

Th1/Th2 ratios than male controls. Multi-variance analysis demonstrated that, unlike the 

female schizophrenics, the low IFN-γ/IL-4 male patient subgroup did not have significantly 

decreased serum IFN-γ and elevated IL-4 levels if compared to healthy male subjects. 

However, they did have clearly lower IFN-γ/IL-4 and IFN-γ/IL-10 ratios than the normal men 

if including prolactin, testosterone, and SHBG into the analysis as co-variants due to 

remarkable disparities between both male groups in these variables (low IFN4 ♂SCH vs. 

♂CON – IFN-γ/IL-4: F = 6.80, p = .01; IFN-γ/IL-10: F = 5.78, p = .02; IFN-γ: F = .61, p = 

.44; IL-2: F = .60, p = .44; TNF-α: F = .58, p = .45; IL-4: F = .44, p = .51; IL-10: F = .56, p = 
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.46; IL-6: F = .51, p = .48; age: F = 3.45, p = .07; cortisol: F = .20, p = .66; estradiol: F = .09, 

p = .77; prolactin: F = 3.96, p = .05; testosterone: F = 14.10, p < .001; SHBG: F = 5.23, p = 

.03). 

 

SummarySummarySummarySummary : Male schizophrenics as a whole group showed a significantly reduced serum IFN-

γ/IL-10. However, there was also a subgroup of male schizophrenics who had significantly 

decreased serum IFN-γ/IL-4 and IFN-γ/IL-10. 

 

6.4.2.2 Schizophrenic clinical subgroups vs. healthy subjects 

 

The case numbers and the outcomes regarding Th1/Th2 imbalance in diverse schizophrenic 

clinical subgroups are summarized in Table 6-4-2-2(1) and Table 4-4-2-2(2). 

 

As shown in Table 6-4-2-2(1), a number of schizophrenic clinical subgroups only contain a 

small number of cases, particularly if compared to healthy controls. The results of 

comparisons between distinct schizophrenic clinical subgroups and healthy subjects are 

briefly summarized in Table 6-4-2-2(2) in order to reduce the complexity of this report as 

elucidated in a previous section and offer an impression of Th1/Th2 imbalance in different 

clinical subgroups.  

 

Table 6-4-2-2(1): The case numbers in diverse schizophrenic clinical subgroups. 

Case numbers of diverse schizophrenic clinical subgroups 
Analysis materials Serum Whole blood Lymphocyte  

Schizophrenic Subgroup Female Male Female Male Female Male 
Paranoid  29 28 15 20 17 25 
Non-paranoid  5 14 3 6 5 7 
Drug-naive 6 7 3 3 4 8 
Drug-free 16 14 6 14 10 13 
Premed 12 11 4 11 7 10 
No premed 10 10 5 6 7 11 
First episode 8 9 4 5 5 10 
Other episode 13 12 4 12 8 11 
Drug-free ≤ 1 week 10 8 4 8 6 8 
Drug-free ≥ 3 months 8 9 5 5 6 10 
Positive FH 4 9 2 8 2 9 
Negative FH 16 9 10 7 10 10 
Acute 7 5 3 5 8 4 
Chronic 15 16 6 12 6 17 
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Early onset 5 11 2 10 3 12 
Middle onset 12 8     
Late onset 5 11 7 9 11 9 
PANSS positive (>28) 7 3 3 3 3 3 
PANSS positive (≤28) 16 17 8 13 12 17 
PANSS negative (>28) 9 8 5 8 7 7 
PANSS negative (≤ 28) 14 12 6 8 8 13 
PANSS global (> 56) 6 5 4 5 4 5 
PANSS global (≤ 56) 17 15 7 11 11 15 
Low CGI-difference 6 15 5 10 15 20 
High CGI-difference 23 26 12 16 5 12 
≥Severely ill (High CGI-t1) 20 27 12 16 14 21 
≤Markedly ill (Low CGI-t1) 9 14 5 10 6 11 
≥Markedly ill (High CGI-t9) 7 13 5 8 14 23 
≤ Moderate ill (Low CGI-t9) 22 28 12 18 6 9 

Note Whole blood = PHA-stimulated whole blood; lymphocyte = 
PHA-stimulated lymphocytes 

 

Table 6-4-2-2(2): An overview of Th1/Th2 imbalance in various schizophrenic clinical 
subgroups – results of significance tests from MANCOVA. 

Th1/Th2 imbalance in different schizophrenic clinical subgroups 

Serum Whole Blood lymphocyte Schizophrenic 
Subgroup IFN- γγγγ/IL4  IFN- γγγγ/IL10 IFN- γγγγ/IL4  IFN- γγγγ/IL10 IFN- γγγγ/IL4 IFN- γγγγ/IL10 IFN- γγγγ/IL-13 

Paranoid  F = 4.18, 
p = .04↓↓↓↓ 

F = 10.52, 
p = .002↓↓↓↓ 

n.s. F = 1.95, 
p = .17↓ 

n.s. n.s. n.s. 

Non-paranoid F = 3.88, 
p = .05↓↓↓↓ 

F = 2.32, 
p = .13↓ 

F = 3.19, 
p = .08↓ 

F = 6.17, 
p = .02↓↓↓↓ 

F = 2.57, 
p = .11↓ 

n.s. n.s. 

Drug-naive F = 2.11, 
p = .15↓ 

F = 1.76, 
p = .19↓ 

F = 2.34, 
p = .13↓ 

F = 3.42. 
P = .07↓ 

F = 2.04, 
p = .16↑ 

n.s. n.s. 

Drug-free F = 7.69, 
P = .007↓↓↓↓ 

F = 11.65, 
p = .001↓↓↓↓ 

n.s. n.s. F = 1.88, 
P = .17↓ 

n.s. n.s. 

Premed F = 9.31, 
P = .003↓↓↓↓ 

F = 11.65, 
p = .001↓↓↓↓ 

n.s. F = 2.22, 
P = .14↓ 

F = 1.72, 
P = .19↓ 

n.s. n.s. 

No premed F = 1.71,  
p = .19↓ 

F = 2.83, 
P = .10↓ 

n.s. F = 1.73, 
p = .19↓ 

n.s. n.s. n.s. 

First episode F = 3.14, 
p = .08↓ 

F = 3.66, 
p = .06↓ 

n.s. F = 1.71, 
p = .19↓ 

n.s. n.s. n.s. 

Other episode F = 6.87, 
p = .01↓↓↓↓ 

F = 9.68, 
p = .002↓↓↓↓ 

n.s. n.s. F = 2.73, 
P = .10↓ 

n.s. F = 2.40, 
P = .12↓ 

Drug-free  
≤ 1 week 

F = 8.83, 
p = .004↓↓↓↓ 

F = 12.98, 
p = .001↓↓↓↓ 

n.s. F = 2.05, 
p = .16↓ 

F = 1.83, 
p = .18↓ 

n.s. n.s. 

Drug-free 
≥ 3 months 

n.s. n.s. n.s. F = 5.26, 
p = .02↓↓↓↓ 

n.s. n.s. n.s. 

Positive FH F = 5.44, 
P = .02↓↓↓↓ 

F = 5.45, 
p = .02↓↓↓↓ 

n.s. F = 4.24, 
P = .04↓↓↓↓ 

n.s. n.s. n.s. 

Negative FH F  = 7.46, 
P = .008↓↓↓↓ 

F =15.48, n.s. n.s. F = 2.41, n.s. n.s. 
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P < .001↓↓↓↓ P = .12↓ 
Acute F = 8.82, 

P = .004↓↓↓↓ 
F = 9.33,  
P = .003↓↓↓↓ 

n.s. n.s. n.s. n.s. n.s. 

Chronic F = 3.46, 
P = .07↓ 

F = 5.64, 
P = .02↓↓↓↓ 

F = 3.29, 
P = .07↓ 

F = 4.54, 
P = .04↓↓↓↓ 

F = 8.78, 
P = .004↓↓↓↓ 

n.s. n.s. 

Early onset F = 4.72, 
p = .03↓↓↓↓ 

F =9.39, 
p = .003↓↓↓↓ 

n.s. n.s. F = 4.48, 
p = .04↑↑↑↑ 

n.s. F = 1.84, 
p = .18↑ 

Middle onset F = 6.07, 
p = .02↓↓↓↓ 

F = 8.53, 
p = .004↓↓↓↓ 

     

Late onset n.s. n.s. n.s. F = 2.26, 
p = .14↓ 

F = 6.33, 
P = .01↓↓↓↓ 

n.s. F = 3.94, 
P = .05↓↓↓↓ 

PANSS 
Positive (>28) 

n.s. n.s. n.s. n.s. n.s. n.s. n.s. 

PANSS 
positive (≤28) 

F = 8.88, 
p = .004↓↓↓↓ 

F = 16.48,  
p < .001↓↓↓↓ 

n.s. n.s. n.s. n.s. n.s. 

PANSS 
negative (>28) 

F = 2.54, 
p = .12↓ 

F = 2.93, 
p = .09↓ 

n.s. n.s. n.s. n.s. n.s. 

PANSS 
negative (≤ 28) 

F = 5.49, 
p = .02↓↓↓↓ 

F = 10.50, 
p = .002↓↓↓↓ 

n.s. F = 3.94, 
p = .05↓↓↓↓ 

n.s. n.s. n.s. 

PANSS global 
(> 56) 

F = 2.87, 
p = .09↓ 

F = 7.49, 
p = .008↓↓↓↓ 

n.s. n.s. n.s. n.s. n.s. 

PANSS global 
(≤ 56) 

F = 7.88, 
p = .006↓↓↓↓ 

F = 9.18, 
p = .003↓↓↓↓ 

n.s. 
 

F = 2.20, 
p = .14↓ 

n.s. n.s. n.s. 

Low CGI-d F = 2.39, 
p = .13↓ 

F = 4.09, 
p = .05↓↓↓↓ 

F = 4.25, 
p = .04↓↓↓↓ 

F = 7.38, 
p = .008 ↓↓↓↓ 

n.s. n.s. n.s. 

High CGI-d F = 5.59, 
p = .02↓↓↓↓ 

F = 8.71, 
p = .004↓↓↓↓ 

n.s. n.s. n.s. n.s. n.s. 

≥Severely ill 
High CGI-t1 

F = 4.25, 
p = .04↓↓↓↓ 

F = 6.10, 
p = .02↓↓↓↓ 

n.s. n.s. n.s. n.s. n.s. 

≤Markedly ill 
Low CGI-t1 

F = 4.52, 
p = .04↓↓↓↓ 

F = 9.26, 
p = .003↓↓↓↓ 

F = 4.48, 
p = .04↓↓↓↓ 

F = 6.40, 
p = .01↓↓↓↓ 

n.s. n.s. n.s. 

≥Markedly ill 
High CGI-t9 

F = 4.13, 
p = .05↓↓↓↓ 

F = 3.59, 
p = .06↓ 

F = 4.25, 
p = .04↓↓↓↓ 

F = 5.51, 
p = .02↓↓↓↓ 

n.s. n.s. n.s. 

≤Moderate ill 
Low CGI-t9 

F = 4.29, 
p = .04↓↓↓↓ 

F = 10.83, 
p = .001↓↓↓↓ 

n.s. n.s. n.s. n.s. n.s. 

 
Note 

(1) The p-values which are ≥ .10 and ≤ .19 are also listed in order to offer a better overview of 
detailed results SINCE the case numbers of all the clinical schizophrenic subgroups are so 
much lower than those of healthy controls (vary between 2/3 and 1/13).   
(2) n.s. = not significant. 
(3) CGI-d = score difference in CGI between at admission and discharge; CGI-t1: CGI score 
at admission; CGI-t9 = CGI score at discharge (CGI = Clinical Global Impressions).  

 

6.4.3 Nicotine abuse Th1/Th2 cytokines and ratios 

 

Due to nicotine being deemed to have impacts on cytokine productions (Jiao et al., 1998), the 

effects of nicotine abuse on Th1/Th2 cytokines and ratios were also examined. Both healthy 

controls and patients were included into the analysis. 
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Serum data 

Totally, 62 smokers and 55 non-smokers had complete data for serum Th1/Th2 ratios, 

hormones, SHBG, age, and gender. No remarkable diversity between both groups was shown 

regarding those respects stated above except cortisol levels (age: F = .23, p = .63; cortisol: F = 

3.76, p = .06; prolactin: F = .37, p = .55; estradiol: F = .59, p = .45; testosterone: F = .20, p = 

.66; SHBG: F = .70, p = .41). The smokers tended to have higher cortisol levels than the non-

smokers. Multi-variant analysis exhibited no marked disparity between both nicotine 

subgroups in terms of their serum cytokine levels and Th1/Th2 ratios without co-varying with 

any parameter. Smokers had higher serum cytokine levels and IFN-γ/IL-4; however, the 

increases were not significant (IFN-γ/IL-4: F= .84, p = .36; IFN-γ/IL-10: F = .57, p = .45; 

IFN-γ: F = .90, p = .35; IL-2: F = .83, p = .37; TNF-α: F = .83, p = .36; IL-4: F = .72, p = .40; 

IL-10: F = .98, p= .32; IL-6: F = 1.10, p= .30).  

Whole blood  assay data 

Complete data for whole blood assay Th1/Th2 ratios, hormones, age, and gender of 53 

smokers and 46 non-smokers were available. No clear discrepancy was detected between both 

groups regarding their ages, hormones, and SHBG levels except cortisol (age: F = .41, p = 

.52; cortisol: F = 3.20, p = .08; prolactin: F = .18, p = .67; estradiol: F = .76, p = .38; 

testosterone: F = .08, p = .78; SHBG: F = .22, p = .64). Smokers tended to have higher 

cortisol levels than their non-smoker counterparts. On average, smokers produced more 

cytokines in whole blood assay than non-smokers. However, multi-variance analysis revealed 

that none of the diversities was significant (IFN-γ: F = .003, p = .96; IL-2: F = 2.14, p = .15; 

TNF-α: F = .003, p = .96; IL-4: F = .43, p = .52; IL-10: F = .14, p = .71; IL-6: F = .08, p = 

.77). Similarly, they had higher whole blood assay Th1/Th2 ratios than non-smokers. But the 

enhancements were not remarkable (IFN-γ/IL-4: F = 1.01, p = .32; IFN-γ/IL-10: F = .16, p = 

.69). 

Lymphocyte data 

Seventy smokers and 62 non-smokers had complete data for lymphocyte Th1/Th2 ratios, 

hormones, age, and gender. Both groups were of similar ages and had similar levels of diverse 

hormones and SHBG except that smokers tended to have higher cortisol levels (age: F = .18, 

p = .68; cortisol: F = 3.23, p = .07; prolactin: F = 1.34, p = .25; estradiol: F = 1.42, p = .24; 

testosterone: F = .05, p= .82; SHBG: F = .00, p = .98). Generally, smokers had lower averages 

for lymphocyte Th1/Th2 cytokines and ratios than non-smokers except IL-12. Nevertheless, 

MANOVA demonstrated that smokers had obviously lower lymphocyte IFN-γ and tended to 

release less IL-4 and IL-13 than non-smokers. But no noteworthy disparity in lymphocyte 



 

94 

Th1/Th2 ratios was found between both groups (IFN-γ: F = 5.04, p = .03; IL-4: F = 3.29, p = 

.07; IL-13: F = 3.07, p = .08; IL-12: F = .02, p = .90; IL-10: F = .02, p = .89; IFN-γ/IL-4:  F = 

.09, p = .89; IFN-γ/IL-10: F = 1.47, p = .23; IFN-γ/IL-13: F = .01, p = .92).  

 

SummarySummarySummarySummary : MANOVA showed that nicotine abuse could have a substantial impact on 

lymphocyte IFN-γ productions, but it did not exert any clear influence on serum, whole blood 

assay cytokines and Th1/Th2 ratios. 

 

Sub-sample  (having entire serum, whole blood assay, lymphocyte immunological variables, 
endocrinological parameters, age, and gender data) 
 

In order to explore the possible sources of Th1/Th2 imbalance within the same schizophrenics 

in a later section, a sub-sample only including those subjects who had complete data for 

serum, whole blood assay, lymphocyte cytokines, age, gender, hormones, and SHBG was 

chosen. This sub-sample contained 40 schizophrenics and 72 healthy subjects; it merely 

contains about 50% of the original schizophrenic subjects who had complete data for serum 

Th1/Th2 cytokines, age, gender, and distinct hormones.  

(1) Whole SCH vs. whole CON   

This sub-sample shared many similarities with the original total samples; they were 

significantly older, had remarkably lower cortisol and SHBG, but higher prolactin levels than 

their healthy counterparts. However, no remarkable diversity in estradiol and testosterone was 

found between both groups (age: F = 7.06, p = .009; cortisol: F = 4.18. p = .04; prolactin: F = 

14.83, p < .001; estradiol: F = .01, p = .94; testosterone: F = 1.52, p = .22; SHBG: F = 6.22, p 

= .01). This schizophrenic sub-sample was averagely 34.93 years old (SD = 12.32). The mean 

cortisol, prolactin, estradiol, testosterone, and SHBG level for schizophrenic patients were 

169.25 µg/l (SD = 65.34), 32.55 ng/ml (SD = 35.68), 47.90 pg/ml (SD = 54.04), 3.18 ng/ml 

(SD = 2.67), and 51.63 nmol/l (SD = 40.57), correspondingly. Nonetheless, the control sub-

sample was 29.68 years old (SD = 8.47) and had averagely 204.27 µg/l cortisol (SD = 96.68), 

15.35 ng/ml prolactin (SD = 9.79), 47.11 pg/ml estradiol (SD = 50.44), 3.94 ng/ml 

testosterone (SD = 3.38), and 77.62 nmol/l SHBG (SD = 58.50). The significant differences in 

those parameters stated above were included into the following multi-variance analysis of 

serum and whole blood assay data. For the lymphocyte data, only the age was considered as 

covariant since isolated lymphocytes were not directly exposed to those influencing factors 

such as hormones when they were in vitro stimulated to produce cytokines. 
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 Serum data 

Multi-variant comparisons between both schizophrenic and control sub-sample showed 

comparable results to those of the original total serum sample. As a whole group, 

schizophrenics had clearly reduced serum IFN-γ/IL-4 and IFN-γ/IL-10 ratios compared with 

healthy controls. The schizophrenics had a mean of 11.42 (SD = 5.84) for IFN-γ/IL-4 and an 

average of 13.48 (SD = 8.09) for IFN-γ/IL-10, while the controls obtained an average of 20.49 

(SD = 18.42) for IFN-γ/IL-4 and 19.75 (SD = 9.75) for IFN-γ/IL-10. The discrepancies in 

both serum Th1/Th2 ratios achieved very significant levels (serum IFN-γ/IL-4: F = 8.94, p = 

.003; IFN-γ/IL-10: F = 14.08, p < .001). At single cytokine level, no marked difference was 

observed between both diagnostic groups if including all extreme values and outliers (IFN-γ: 

F = 1.47, p = .23; IL-2: F = 1.48, p = .23; TNF-α: F = 1.38, p = .24; IL-4: F = 1.40, p = .24; 

IL-10: F = 1.30, p = .26; IL-6: F = .81, p = .37).  

 Whole blood assay data 

Besides, the schizophrenic sub-sample tended to have decreased whole blood assay IFN-γ/IL-

10 if compared to controls (whole blood assay IFN-γ/IL-10: F = 3.55, p = .06). 

Schizophrenics had an average of 29.82 (SD = 20.66) for whole blood assay IFN-γ/IL-10, 

while the average for the control group was 38.59 (SD = 26.41). Additionally, schizophrenics 

had markedly decreased whole blood assay IFN-γ and IL-6. The mean IFN-γ and IL-6 

production for schizophrenic patients were 28989.78 (SD = 17477.00) and 1592.50 pg/ml (SD 

= 1011.81), correspondingly. In contrast, those of control subjects were 44745.33 (SD = 

32904.80) and 2830.09 pg/ml (SD = 2820.63) in the same order as mentioned in 

schizophrenia (IFN-γ: F = 5.66, p = .02; IL-6: F = 5.15, p = .03). Concerning the remaining 

cytokine productions, no noteworthy outcome was found (IL-2: F = .40, p = .53; TNF-α: F = 

2.55, p = .11; IL-4: F = .03, p = .87; IL-10: F= .39, p = .53). 

 Lymphocyte data 

Generally, lymphocyte data also confirmed the findings from the original total lymphocyte 

sample. In addition to IFN-γ, IL-4, and IL-13, no further remarkable alteration was shown in 

schizophrenia as a whole group (lymphocyte IFN-γ: F = 11.98, p = .001; IL-4: F = 6.34, p = 

.01; IL-13: F = 6.27, p = .01; IL-12: F = .33, p = .57; IL-10: F = 2.72, p = .10; IFN-γ/IL-4: F = 

.60, p = .44; IFN-γ/IL-10: F = .30, p = .59; IFN-γ/IL-13: F = .18, p = .67). Schizophrenics 

released noticeably less lymphocyte IFN-γ, IL-4, and IL-13 than controls. The average 

productions of IFN-γ, IL-4, and IL-13 were 714.61 (SD = 433.90), 345.03 (SD = 200.94), and 
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556.35 spots (SD = 333.42) for schizophrenics, while those for normal controls were 1094.75 

(SD = 874.98), 426.22 (SD = 152.45), and 792.87 spots (SD = 505.88).  

(2) Female SCH vs. female CON 

Totally, 15 female schizophrenics and 34 female controls had serum, whole blood assay, and 

lymphocyte Th1/Th2 data. Schizophrenic females were averagely 37.80 years old (SD = 

13.01), while control females were 29.29 years old (SD = 7.96). Female patients were 

obviously older and had apparently higher prolactin, but lower cortisol levels than healthy 

females (age: F = 7.94, p = .007; cortisol: F = 4.70, p = .04; prolactin: F = 9.10, p = .004). The 

average cortisol and prolactin level for schizophrenic women were 163.37 µg/ml (SD = 

76.00) and 41.23 ng/ml (SD = 41.23), whereas those for female controls were 235.24 µg/ml 

(SD = 117.70) and 14.79 ng/ml (SD = 5.81), respectively. In addition, female patients tended 

to have lower SHBG concentrations than control women (F = 2.97, p = .09). However, both 

female groups have relatively comparable testosterone and estradiol concentrations 

(testosterone: F = .72, p = .40; estradiol: F = .26, p = .61). 

 Serum data  

On average, female schizophrenics had lower typical Th1 cytokine levels including IFN-γ and 

IL-2, however, higher Th2-released cytokine serum levels such as IL-4, IL-6, IL-10, TNF-α 

as well as lower serum Th1/Th2 ratios. Nevertheless, only the diversities in IFN-γ, IL-6, IFN-

γ/IL-4, and IFN-γ/IL-10 reached significance levels (serum IFN-γ/IL-10: F = 9.04, p = .004; 

IFN-γ/IL-4: F = 5.52, p = .02; IL-6: F = 5.50, p = .02; IFN-γ: F = 5.54, p = .02; IL-2: F = .53, 

p = .47; TNF-α: F = .36, p = .55; IL-4: F = 1.23, p = .27; IL-10: F = 2.61, p = .11). The 

average IFN-γ and IL-6 level for the schizophrenic females were 31.67 pg/ml (SD = 13.51) 

and 6.59 pg/ml (SD = 11.63), whereas those for the control women were 45.77 pg/ml (SD = 

24.58) and 2.33 pg/ml (SD = .96), respectively. The schizophrenic females obtained averagely 

10.78 (SD = 4.47) for serum IFN-γ/IL-4 and 11.85 (SD = 5.61) for IFN-γ/IL-10, while their 

healthy female counterparts had a mean of 21.19 (SD = 14.98) for IFN-γ/IL-4 and 19.71 (SD 

= 9.10) for IFN-γ/IL-10. 

 Whole blood assay data 

On the whole, schizophrenic females produced less cytokines in PHA-stimulated whole blood 

and had lower Th1/Th2 ratios than healthy females except IL-4. However, only the 

differences in IFN-γ and IFN-γ/IL-10 achieved significance levels; additionally, the disparity 

in IL-6 also tended to be significant (whole blood assay IFN-γ/IL-10: F = 6.56, p = .01; IFN-

γ/IL-4: F = 2.38, p = .13; IFN-γ: F = 4.36, p = .04; IL-6: F = 3.13, p = .08; IL-2: F = .27, p = 



 

97 

.61; TNF-α: F = 1.90, p = .18; IL-4: F = .38, p = .54; IL-10: F = .00, p = 1.00). The mean of 

IFN-γ/IL-10 for female schizophrenic patients was 19.21 (SD = 13.13), whereas that for 

healthy women was 34.52 (SD = 21.79). Schizophrenic females produced averagely 23162.80 

pg/ml IFN-γ (SD = 12862.94) and 1354.95 pg/ml IL-6 (SD = 745.11), whereas control 

females secreted averagely 45134.33 pg/ml IFN-γ (SD = 33298.22) and 3365.67 pg/ml IL-6 

(SD = 3284.69).  

 Lymphocyte data   

Although the original total female sample did not show any diversity in any of the 

lymphocyte Th1/Th2 ratios, the sub-sample did reveal a significant discrepancy between both 

female groups. In general, female schizophrenic patients released less lymphocyte cytokines 

and had lower lymphocyte Th1/Th2 ratios including IFN-γ/IL-4 and IFN-γ/IL-13, but not 

IFN-γ/IL-10. However, both female groups were only remarkably distinguishable in IFN-

γ/IL-4 ratio and IFN-γ production (lymphocyte IFN-γ/IL-4: F = 4.58, p = .04; IFN-γ/IL-10: F 

= .05, p = .82; IFN-γ/IL-13: F = 1.33, p = .25; IFN-γ: F = 6.28, p = .02; IL-12: F = .36, p = 

.55; IL-4: F = .67, p = .42; IL-13: F = 1.15, p = .29; IL-10: F = .47, p = .50). Female 

schizophrenics obtained an average of 2.61 (SD = 2.25) and control women had a mean of 

2.99 (SD = 2.90) for IFN-γ/IL-4 ratio. The female patients produced averagely 625.21 IFN-γ 

spots (SD = 439.99); in contrast, the female controls released averagely 1083.05 IFN-γ spots 

(SD = 1032.02) pro 40000 lymphocytes. 

(3) Male SCH vs. male CON  

Comparisons between male schizophrenics (N = 25) and controls males (N = 38 ) showed that 

schizophrenic males had significantly higher prolactin, nevertheless, lower testosterone and 

SHBG than male normal subjects, although they were of relatively similar ages and had 

comparable estradiol and cortisol levels (prolactin: F = 7.15, p = .01; testosterone: F = 17.17, 

p < .001; SHBG: F = 7.58, p = .008; age: F = 1.46, p = .23; cortisol: F = .06, p = .81; 

estradiol: F = .24, p = .63). Schizophrenic males were averagely 33.20 (SD = 11.83), while 

their healthy male counterparts were 29.80 years old (SD = 8.82). Furthermore, the mean 

prolactin, testosterone, and SHBG level were 27.35 ng/ml (SD = 21.40), 4.77 ng/ml (SD = 

2.10), and 31.68 nmol/l (SD = 11.75) for schizophrenic men as well as 15.97 ng/ml (SD = 

12.37), 6.81 ng/ml (SD = 1.78), and 42.61 nmol/l (SD = 17.75) for control males, 

correspondingly. 

 Serum data 

In contrast to the results from both female groups, multi-variance analysis showed that male 

schizophrenics had not only lower serum Th1/Th2 ratios but also cytokine levels than normal 
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males. Nevertheless, these two male diagnostic groups could be evidently differentiated from 

each other exclusively in both serum Th1/Th2 ratios (serum IFN-γ/IL-4: F = 4.46, p = .04; 

IFN-γ/IL-10: F = 8.69, p = .005; IFN-γ: F = .70, p = .41; IL-2: F = .70, p = .41; TNF-α: F = 

.67, p = .42; IL-4: F = .75, p = .39; IL-10: F = .65, p = .42; IL-6: F = .59, p = .45). The 

averages of IFN-γ/IL-4 and IFN-γ/IL-10 were 11.81 (SD = 6.59), 14.46 (SD = 9.23) for 

schizophrenic males and 19.86 (SD = 21.21), 19.78 (SD = 10.42) for male controls. 

 Whole blood assay data 

Male schizophrenics generally produced more IL-2, IL-4 and had higher IFN-γ/IL-10 ratios 

than male controls. However, they released less IFN-γ, TNF-α, IL-6, IL-10 and had lower 

IFN-γ/IL-4 ratios than control men. Nevertheless, contrary to the whole blood assay data of 

female subjects, no single apparent diversity was found between both male groups in terms of 

their whole blood assay Th1/Th2 ratios and cytokine secretions (whole blood assay IFN-γ/IL-

4: F = .71, p = .40; IFN-γ/IL-10: F = .04, p = .84; IFN-γ: F = .14, p = .71; IL-2: F = .01, p = 

.91; TNF-α: F = .001, p = .98; IL-4: F = .46, p = .50; IL-10: F = .20, p = .65; IL-6: F = 1.09, p 

= .30).  

 Lymphocyte data 

By and large, male schizophrenics had lower lymphocyte cytokine productions, nevertheless, 

higher lymphocyte Th1/Th2 ratios than control males. Multi-variance analysis failed to reveal 

any conspicuous disparity between both male subgroups in lymphocyte Th1/Th2 ratios. 

However, male schizophrenics released significantly less IFN-γ, IL-4, and IL-13 than their 

healthy male counterparts (lymphocyte IFN-γ/IL-4: F = .05, p = .82; IFN-γ/IIL-10: F = .61, p 

= .44; IFN-γ/IL-13: F = 1.30, p = .26; IFN-γ: F = 4.42, p = .04; IL-4: F = 4.16, p = .05; IFN-

γ/IL-13: F = 6.92, p = .01). The mean IFN-γ, IL-4, and IL-13 were 768.27 spots pro 40000 

lymphocytes (SD = 430.14), 352.47 spots pro 200000 lymphocytes (SD = 188.79), and 

569.77 spots pro 200000 cells (SD = 317.21) for schizophrenic men, while those for male 

controls were 1105.22 (SD = 720.39), 436.62 (SD = 138.70), and 873.62 spots (SD = 515.94) 

with the same cell concentrations as stated in schizophrenics. 

 

The main Th2-shift findings in the sub-sample are summarized in Table 6-4. 
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Table 6-4: A summary of Th2-shifts in the sub-sample which included the subjects who had 
complete data for serum, whole blood assay, lymphocyte cytokines, endocrinological 
parameters, gender, and age. 

Comparisons between schizophrenic and control subjects who had complete serum, 
whole blood assay, and lymphocyte data 

 Serum Whole Blood lymphocyte 
Th1/Th2  IFN- γγγγ/IL4  IFN- γγγγ/IL10 IFN- γγγγ/IL4 IFN- γγγγ/IL10 IFN- γγγγ/IL4  IFN- γγγγ/IL10 IFNγγγγ/IL13 
SCH vs. 
CON 

F = 8.94, 
p = .003↓↓↓↓ 

F = 14.08, 
p < .001↓↓↓↓ 

n.s. F = 3.55, 
P = .06↓↓↓↓ 

n.s. n.s. n.s. 

♀ SCH vs. 
♀ CON 

F = 5.52, 
p = .02↓↓↓↓ 

F = 9.04, 
P = .004↓↓↓↓ 

n.s. F = 6.56, 
P = .01↓↓↓↓ 

F = 4.58, 
p = .04↓↓↓↓ 

n.s. n.s. 

♂ SCH vs. 
♂ CON 

F = 4.46, 
p = .04↓↓↓↓ 

F = 8.69, 
P = .005↓↓↓↓ 

n.s. n.s. n.s. n.s. n.s. 

Note Total SCH N = 40; ♀SCH N = 15; ♂SCH N = 25; total CON N = 72; ♀CON N = 34; ♂CON N = 38.  

 

6.5 Contributors of Th1/Th2 imbalance in schizophrenia 

 

In order to detect the individual contribution of each parameter measured in this study to the 

imbalance of Th1/Th2 systems in schizophrenic patients, multiple regression were used to 

explore the relationships between various Th1/Th2 ratios and other possible influencing 

factors measured in this study, using IFN-γ/IL-4 or IFN-γ/IL-10 or IFN-γ/IL-13 as criterion 

and age, hormones, SHBG, and Th1/Th2 cytokines as predictors. Although the isolated 

lymphocytes applied in ELISPOT were not directly exposed to other possible influencing 

factors in serum and whole blood, for the reason that the cytokine producing ability of 

lymphocytes could reflect (partially) biological processes such as aging or degeneration, a 

complete model including all Th1/Th2 cytokines assessed in this study, age, hormones, and 

SHBG were firstly utilized to predict all serum, whole blood assay, and lymphocyte Th1/Th2 

ratios. Then depending upon the fitness of the complete model, predictor(s) could be excluded 

in order to improve the envisaging power of the model and to enable a reliable prediction of a 

Th1/Th2 ratio.  

 

Due to the small case number in schizophrenic subjects and the great number of predictors 

involved, the aim to conduct multiple regression analysis to the data of schizophrenic patients 

was not to generate a multiple regression formula in order to predict further unknown 

schizophrenic cases. The goal was to detect which of those predictors made a significant 

contribution to the variance of a Th1/Th2 ratio within the same subject group. The t-test of β-
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coefficient (regression coefficient) for each predictor was presented as the individual 

predictive power or as the magnitude of importance of each predictor in forecasting Th1/Th2 

ratios. Because the case numbers of the control and schizophrenic group were somewhat 

different, the β-coefficients of various predictors in distinct groups won’t be directly 

comparable. The case numbers in various groups of this study lied between 15 (♀SCH) and 

72 (whole CON). The t-values for case numbers within the range of our subjects are relatively 

comparable. For example, the t-value of p = .0005 for N = 15 is about 4.07, for N = 25 

(♂SCH) is about 3.72, for N = 40 (whole SCH) is about 3.55, while that for N = 72 is around 

3.46 etc. Therefore, the t- and p-value of each predictor (see Table 6-5-1(1) to Table 6-5-

3(3)) were presented in the following sections in order to compare their magnitudes of 

importance in envisaging Th1/Th2 ratios between different groups. Furthermore, the F-value 

represents the cumulative predictive power of predictor assembly included in the 

corresponding model. R²-value is the portion of a criterion that can be explicated through the 

predictors included in the model of multiple regression analysis. 

 

6.5.1 Serum data 

 

The complete model using age, cortisol, prolactin, estradiol, testosterone, SHBG, IFN-γ, IL-2, 

TNF-α, IL-4, IL-10, and IL-6 as predictors appeared to be sufficient to envisage both serum 

IFN-γ/IL-4 and IFN-γ/IL-10 ratios in the whole group of schizophrenics, the whole control 

group, the male schizophrenics, the male controls, and the female control group, but not the 

female schizophrenic group (whole SCH – IFN-γ/IL-4: F = 22.10, p < .001; IFN-γ/IL-10: F = 

35.49, p < .0001; whole CON – IFN-γ/IL-4: F = 13.30, p < .001; IFN-γ/IL-10: F = 11.64, p < 

.001; ♂SCH – IFN-γ/IL-4: F = 23.59, p < .0001; IFN-γ/IL-10: F = 105.12, p < .0001; ♂CON 

– IFN-γ/IL-4: F = 13.44, p < .001; IFN-γ/IL-10: F = 5.27, p < .001; ♀CON – IFN-γ/IL-4: F = 

6.36, p < .001; IFN-γ/IL-10: F = 17.31, p < .001; ♀SCH – IFN-γ/IL-4: F = 6.21, p = .15; IFN-

γ/IL-10: F = 8.58, p = .11). 

Whole SCH vs. whole CON  

Comparisons of the predictive power of individual cytokine in serum (see Table 6-5-1(1)) 

showed that the principal abnormalities of schizophrenics were (1) much too strong influence 

from IFN-γ (+) as well as (2) IL-4 (-) and IL-10 (-) if the whole schizophrenic group was 

regarded as a homogenous entity and compared with the whole controls. Within the 

schizophrenic group, IFN-γ and IL-4 significantly correlated with serum IFN-γ/IL-4 (IFN-γ: t 
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= 10.38, p < .001; IL-4: t = -8.93, p < .001). Similar outcomes were found between IFN-γ, IL-

10 and serum IFN-γ/IL-10 in schizophrenia (whole SCH – serum IFN-γ: t = 14.85, p < .001; 

IFN-γ/IL-10: t = -9.12, p < .001). In controls, IFN-γ, IL-4, and IL-10 likewise played 

important roles in predicting serum IFN-γ/IL-4 and IFN-γ/IL-10 variances, the importance 

magnitudes of these three cytokines were not as overwhelming as those in schizophrenics 

(whole CON – serum IFN-γ/IL-4 – IFN-γ: t = 4.23, p < .001; IL-4: t  = -5.11, p < .001; serum 

IFN-γ/IL-10: IFN-γ: t = 10.05, p < .001; IL-10: t = -6.40, p < .001). For serum IFN-γ/IL-4 

ratio, no other important factor existed among those parameters measured except IFN-γ and 

IL-4, while for serum IFN-γ/IL-10 ratio, estradiol and IL-6 additionally tended to play a role 

in the balancing between IFN-γ and IL-10 in schizophrenics and controls, respectively (whole 

SCH – estradiol: t  =1.97, p = .06; whole CON – IL-6: t = -1.89, p = .06).  

 

Table 6-5-1(1): A summary of the individual contributions of predictors in serum IFN-γ/IL-4 
and IFN-γ/IL-10 variance in the whole schizophrenic and control group (results from multiple 
regression). 

 The individual contributions of predictors in forecasting serum Th1/Th2 ratios  
(Whole SCH vs. Whole CON) 

 Criteria Serum IFN-γγγγ/IL-4 Serum IFN-γγγγ/IL-10 
  SCH (N = 40) CON (N = 72) SCH (N = 40) CON (N = 72) 

 Predictor T p T p T p T p 
 IFN-γ 10.38 .000***** 4.12 .000***** 14.85 .000***** 9.83 .000***** 
 IL-2 -.16 .87 .72 .47 .85 .41 -.30 .76 
 TNF-α .91 .37 -1.65 .11 -.67 .51 -.69 .49 
 IL-4 -8.93 .000***** -5.19 .000***** .08 .94 -.94 .35 
 IL-10 .23 .82 -.93 .36 -9.12 .000***** -6.28 .000***** 
 IL-6 -.68 .50 -.97 .34 1.19 .25 -1.80 .08 
 Cortisol  -1.14 .26 1.42 .16 -.22 .83 .54 .59 
 Prolactin  .47 .65 -.25 .80 -.91 .37 .16 .87 
 Estradiol  -.92 .37 .09 .93 1.97 .06 -.62 .54 
 Testosterone  .91 .37 -.06 .95 -.78 .44 .14 .89 
 SHBG  1.21 .24 -.31 .76 -.36 .72 -.91 .37 
 Age  -.50 .62 .21 .84 -1.27 .22 -.13 .90 
 Adjusted R² = .87 R² = .68 R² = .91 R² = .64 
 Signif. test F = 22.10, p < .0001 F = 13.30, p < .0001 F = 35.49, p < .0001 F = 11.64, p < .0001 

 

Besides, the complete model explained higher percentages of serum IFN-γ/IL-4 and IFN-γ/IL-

10 variance in schizophrenics, compared to healthy subjects (whole SCH – serum IFN-γ/IL-4:  

adjusted R² = .87, F = 22.10, p < .0001; IFN-γ/IL-10: adjusted R² = .91, F = 35.49, p < .0001; 
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whole CON – IFN-γ/IL-4: adjusted R² = .67, F = 35.49, p < .0001; IFN-γ/IL-10: adjusted R² = 

.65, F = 12.07, p < .0001).      

 

Table 6-5-1(2): The individual contributions of predictors in envisaging the variances of 
serum IFN-γ/IL-4 and IFN-γ/IL-10 in schizophrenic and control females (results from 
multiple regression analysis: underlined = complete model; shaded = new model) 

 The individual contributions of predictors in forecasting serum Th1/Th2 
ratios (♀SCH vs. ♀CON) 

 Criteria Serum IFN-γγγγ/IL-4 Serum IFN-γγγγ/IL-10 
  SCH (N = 15) CON (N = 34) SCH (N = 15) CON (N = 34) 

 Predictor T p T p T p T p 
 IFN-γ 2.77 

3.27 
.11 
.05* 

5.24 
5.32 

.000*****  

.000*****  
.91 
1.25 

.46 

.30 
11.68 
11.95 

.000*****  

.000***** 
 IL-2 -.77 

-.68 
.52 
.55 

-.01 
-.06 

1.00 
.95 

2.81 
3.74 

.11 

.03* 
.78 
.83 

.44 

.42 
 TNF-α 1.24 

1.29 
.34 
.29 

-.68 
-.70 

.50 

.49 
-.65 
-.84 

.58 

.46 
-.04 
-.03 

.97 

.97 
 IL-4 -1.36 

-1.79 
.31 
.17 

-4.13 
-4.27 

.000*****  

.000*****  
-3.23 
-4.312 

.08 

.03* 
-.63 
-.63 

.53 

.54 
 IL-10 .37 

.20 
.75 
.86 

.03 

.10 
.97 
.92 

-5.19 
-6.83 

.04* 

.006*** 
-6.48 
-6.70 

.000*****  

.000***** 
 IL-6 -.57 

-.40 
.63 
.72 

.02 
-.07 

.99 

.95 
2.62 
3.64 

.12 

.04* 
-.86 
-.85 

.40 

.41 
 Cortisol  -.96 

-.98 
.44 
.40 

.57 

.56 
.58 
.58 

2.82 
3.53 

.11 

.04* 
-1.66 
-1.69 

.11 

.11 
 Prolactin  -.37 

.04 
.75 
.97 

-.28 
-.38 

.78 

.71 
1.45 
2.49 

.28 

.09 
.09 
.13 

.93 

.90 
 Estradiol  -.93 

-.87 
.45 
.45 

.32 

.27 
.75 
.79 

3.52 
4.68 

.07 

.02** 
-1.31 
-1.32 

.21 

.20 
 Testosterone  .78 

.60 
.52 
.59 

.09 
-.001 

.93 
1.00 

-1.89 
-3.49 

.20 

.04* 
-.71 
-.69 

.49 

.50 
 SHBG  1.20 

1.25 
.36 
.30 

.65 

.57 
.53 
.58 

-1.63 
-2.05 

.24 

.13 
1.06 
1.15 

.30 

.26 
 Age  .57 .63 .50 .62 .06 .96 -.23 .82 

 Adjusted  R² = .82 (.86) R² = .66 (.67)  R² = .87 (.91) R² = .86 (.86) 
 Signif.test F = 6.21, p = .15 

F = 8.70, p = .05 
F = 6.36, p < .001 
F = 9.37, p < .001 

F = 8.58, p = .11 
F = 14.01, p = .03 

F = 17.31, p <.0001 
F = 19.73, p < .0001 

 

Female SCH vs. female CON  

In contrast to female controls whose serum IFN-γ/IL-4 and IFN-γ/IL-10 could be significantly 

and only explained by IFN-γ, IL-4, and IL-10, none of the predictors included in this study 

was able to reliably envisage serum IFN-γ/IL-4 and IFN-γ/IL-10 in schizophrenic women if 

using the complete model. The only exception was IL-10 for IFN-γ/IL-10; however, the 

extent of importance dropped if compared to that in healthy females (see Table 6-5-1(2) – (in 



 

103 

black) ♀CON serum IFN-γ/IL-4 –IFN-γ: t = 5.24, p < .001; IL-4: t = -4.13, p < .001; IFN-

γ/IL-10 – IFN-γ: t = 11.68, p < .001; IL-10: t = -6.48, p < .001; ♀SCH serum IFN-γ/IL-4 – 

IFN-γ: t = 2.77, p = .11; IL-4: t = -1.36, p = .31; IFN-γ/IL-10 – IFN-γ: t = .91, p = .46).  

 

Table 6-5-1(2-1): The inter-correlations among the predictors which were included in the 
model to forecast serum IFN-γ/IL-4 and IFN-γ in female schizophrenic patients and normal 
female controls. 

Serum Data: female schizophrenics versus female controls (inter-correlations among 
the predictors of serum IFN-γγγγ/IL-4 and IFN- γγγγ/IL-10). 

 Age SHBG IL-4 IL-6 IFN-γ E2 IL-10 Cort Testo TNF Prl IL-2 

Age  .20 .09 .16 .02 .12 .12 .04 .19 .01 .17 .11 
SHBG .20  -.11 .10 .27 -.05 -.49 -.61 .29 .12 .11 .07 
IL-4 .28 .44  .02 .14 .19 .16 .18 .09 -.40 -.25 .19 
IL-6 -.45 -.45 -.69  -.11 .08 -.36 -.32 .03 -.22 .20 .08 
IFN-γ .51 .20 .61 -.65  .09 -.34 -.01 .21 -.23 -.16 -.18 
E2 -.38 -.69 -.84 .81 -.67  .03 .37 .10 -.10 -.15 -.04 
IL-10 .36 .60 .41 -.52 .09 -.48  .39 -.16 -.04 -.10 .01 
Cort  -.20 -.83 -.74 .64 -.38 .89 -.53  -.04 -.10 -.36 -.17 
Testo  .74 .54 .70 -.77 .77 -.86 .49 -.67  .19 .14 -.16 
TNF .24 .74 .06 -.24 .11 -.45 .35 -.55 .40  .17 -.38 
Prl  -.68 -.19 -.65 .73 -.91 .71 -.24 .41 -.88 -.12  -.09 
IL-2 -.38 -.66 -.87 .82 -.65 .96 -.58 .86 -.84 -.40 .70  
Note  

The left bottom corner = schizophrenic females (N = 15) ; the right above corner = control females (N = 
34). E2 = estradiol; Cort = cortisol; Testo = testosterone; Prl = prolactin; TNF = TNF-α; SHBG = sex 
hormone-binding globulin 

 

After various attempts, a new model dropping age resulted in similar outcomes in female 

controls (IFN-γ: t = 5.32, p < .001; IL-4: t = -4.27, p < .001). Nevertheless, those of 

schizophrenic females had changed a lot; the predictive power of IFN-γ was significant, but 

not that of IL-4 (IFN-γ: t = 3.27, p = .05; IL-4: t = -1.79, p = .17). The new model could only 

predict 67% serum IFN-γ/IL-4 variance in control females, but 86% in schizophrenic women 

(♀CON: F = 7.16, p < .001; ♀SCH: F = 8.70, p = .05). The new model also revealed that the 

imbalance in serum IFN-γ/IL-4 in schizophrenic females could be a consequence of 

interactive effects of cytokines, hormones, and age. That is, among the predictors included in 

the model existed close inter-correlations as shown in Table 6-5-1(2-1) which were obtained 

simultaneously with the outcomes from multiple regression stated above; however, they were 

totally different in normal females.  
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Male SCH vs. male CON  

Table 6-5-1(3): An overlook of the importance indexes of predictors for serum IFN-γ/IL-4 
and IFN-γ/IL-10 variance in schizophrenic and control males (results from multiple 
regression) 

 The individual contributions of predictors in forecasting serum Th1/Th2 
ratios (♂SCH vs. ♂CON) 

 Criteria Serum IFN-γγγγ/IL-4 Serum IFN-γγγγ/IL-10 
  SCH (N = 25) CON (N = 38) SCH (N = 25) CON (N = 38) 

 Predictor T p T p T p T p 
 IFN-γ 8.62 .000***** 2.08 .05* 20.15 .000***** 5.75 .000***** 
 IL-2 -.15 .89 .44 .67 1.71 .11 -.26 .80 
 TNF-α .96 .36 -1.29 .21 -.37 .72 -1.17 .25 
 IL-4 -8.68 .000***** -3.37 .002*** -.04 .97 -.76 .46 
 IL-10 2.29 .04* -1.28 .21 -6.87 .000***** -3.51 .002*** 
 IL-6 -2.03 .07 -.15 .88 -.15 .89 -.99 .33 
 Cortisol  -.20 .85 1.35 .19 -.03 .98 .80 .43 
 Prolactin  1.18 .26 .07 .95 2.20 .05* .10 .92 
 Estradiol  1.96 .07 -.63 .54 2.07 .06 -.30 .77 
 Testosterone  -1.38 .19 .96 .35 -.88 .40 .81 .43 
 SHBG  2.68 .02* -1.32 .20 -1.23 .24 -1.13 .27 
 Age  -.77 .46 .08 .94 -2.25 .04* .19 .85 

 Adjusted R² = .92 R² = .79 R² = .98 R² = .56 
 Signif. test F = 23.59, p < .0001 F = 13.44, p < .001 F = 105.12, p < .0001 F = 5.27, p < .001 

 

The same new model stated above also improved the power of predictor assembly for serum 

IFN-γ/IL-10 in schizophrenic women. Nevertheless, it caused almost no change in female 

controls (♀SCH – the complete model: F = 8.58, p = .11; new model: F = 14.01, p = .03; 

♀CON – the complete model: F = 17.31, p < .0001; new model: F = 19.73, p < .001). The 

new model could interpret 91% and 86% variance of serum IFN-γ/IL-10 ratio in female 

schizophrenics and controls, respectively. In control females, the most essential factors which 

made the greatest contributions to IFN-γ/IL-10 variance were IFN-γ and IL-10 (IFN-γ: t = 

11.95, p < .001; IL-10: t = -6.70, p < .001). However, it was not that case in schizophrenic 

women. IL-10, with a slightly weakened effect, still played the most important role. 

Nonetheless, a variety of other factors except IFN-γ seemed to be involved in the balancing 

between IFN-γ and IL-10 in female schizophrenic patients (IL-10: t = -6.83, p = .006; IFN-γ: t 

= 1.25, p = .30). They included estradiol, IL-4, testosterone, IL-2, IL-6, prolactin, and cortisol 

(estradiol: t = 4.68, p = .02; IL-4: t = -4.13, p = .03; testosterone: t = -3.48, p = .04; IL-2: t = 

3.74, p = .03; IL-6: t = 3.64, p = .04; prolactin: t = 2.49, p = .09; cortisol: t = 3.53, p = .04). 

The significant contributors of serum IFN-γ/IL-10 ratio for schizophrenic females were much 
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more widespread than those for healthy females. However, the importance of IFN-γ in 

predicting IFN-γ/IL-4 remained unnoticeable in female schizophrenic subjects (t = 1.25, p = 

.30). 

 

If compared male schizophrenics to male controls, in addition to enhanced influences from 

IFN-γ, IL-4, and IL-10 on IFN-γ/IL-4 as well as IFN-γ/IL-10 in schizophrenic males, there 

were further influencing factors which remarkably contributed to the imbalance of serum 

IFN-γ/IL-4 and IFN-γ/IL-10 in male schizophrenics (see Table 6-5-1(3) – ♂CON: serum 

IFN-γ/IL-4 – IFN-γ: t = 2.08, p = .05; IL-4: t = -3.37, p = .002; IFN-γ/IL-10 – IFN-γ: t = 5.75, 

t < .001; IL-10: t = -3.51, p = .002; ♂SCH: serum IFN-γ/IL-4 – IFN-γ: t = 8.62, p < .001; IL-

4: t = -8.68, p < .001; IFN-γ/IL-10 – IFN-γ: t = 20.15, p < .001; IL-10: t = -6.87, p < .001). 

They include serum IL-10 and SHBG for IFN-γ/IL-4 as well as prolactin and age for IFN-

γ/IL-10. Nevertheless, those factors did not play any role in serum IFN-γ/IL-4 and IFN-γ/IL-

10 in controls (♂SCH serum IFN-γ/IL-4 – IL-10: t = 2.29, p = .04; SHBG: t = 2.68, p = .02; 

IFN-γ/IL-10 – prolactin: t = 2.20, p = .05; age: t = -2.25, p = .04; ♂CON serum IFN-γ/IL-4 – 

IL-10: t = -1.29, p = .21; SHBG: t = -1.32, p = .20; IFN-γ/IL-10 – prolactin: t = .10, p = .92; 

age: t = .19, p = .85). 

 

Similar to the findings concerning female schizophrenics, the complete model could elucidate 

more Th1/Th2 ratio variance in schizophrenic males than in control men (♂SCH – serum 

IFN-γ/IL-4: adjusted R² = .92, F = 23.59, p < .0001; IFN-γ/IL-10: adjusted R² = .98, F = 

105.12, p < .0001; ♂CON – serum IFN-γ/IL-4: adjusted R² = .79, F = 13.44, p < .0001; IFN-

γ/IL-10: adjusted R² = .56, F = 5.26, p < .001). 

 

6.5.2 Whole blood assay data 

 

The complete model was also able to significantly predict whole blood assay IFN-γ/IL-4 and 

IFN-γ/IL-10 in the whole schizophrenic patients, the whole control group, the male and 

female control group (whole CON – whole blood assay IFN-γ/IL-4: F = 15.38, p < .001; IFN-

γ/IL-10: F = 15.26, p < .001; whole SCH – IFN-γ/IL-4: F = 3.62, p = .003; IL-4: F = 9.94, p < 

.001; ♂CON – IFN-γ/IL-4: F = 6.77, p < .001; IFN-γ/IL-10: F = 9.28, p < .001; ♀CON – IFN-

γ/IL-4: F = 9.64, p < .001; IFN-γ/IL-10: F = 23.72, p < .001). For male schizophrenics, the 

model was only capable of envisaging the variance of whole blood assay IFN-γ/IL-10, but not 
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that of IFN-γ/IL-4. However, for schizophrenic females, it failed to predict whole blood assay 

IFN-γ/IL-4 and IFN-γ/IL-10 sufficiently (♂SCH – whole blood assay IFN-γ/IL-4: F = 2.07, p 

= .11; IFN-γ/IL-10: F = 9.00, p < .001; ♀SCH – IFN-γ/IL-4: F = 6.26, p = .15; IFN-γ/IL-10: F 

= 9.83, p = .10). 

Whole SCH vs. whole CON  

In controls, apart from both key cytokines IFN-γ and IL-4, TNF-α seemed to have an essential 

contribution to whole blood assay IFN-γ/IL-4 ratio (see Table 6-5-2(1) – whole CON – whole 

blood assay IFN-γ: t = 7.70, p < .001; IL-4: t = -4.79, p < .001; TNF-α: t = -2.45, p = .02). On 

the contrary, schizophrenics had reduced influences from both IFN-γ and IL-4 on IFN-γ/IL-4, 

nevertheless, an enhanced impact from IL-6 (whole SCH – whole blood IFN-γ: t = 2.24, p = 

.03; IL-4: t = -3.40, p  =.002; IL-6: t = 2.06, p = .05). 

 

Table 6-5-2(1): A summary of the individual contributions of predictors for whole blood 
assay IFN-γ/IL-4 and IFN-γ/IL-10 variance in the whole schizophrenic and control group 
(results from multiple regression). 

 The individual contributions of predictors in forecasting whole blood assay 
Th1/Th2 ratio (whole SCH vs. whole CON) 

 Criteria Whole blood IFN-γγγγ/IL-4 Whole blood IFN-γγγγ/IL-10 
  SCH (N = 40) CON (N = 72) SCH (N = 40) CON (N = 72) 

 Predictor T p T p T p T p 
 IFN-γ 2.24 .03* 7.70 .000***** 5.43 .000*****  10.39 .000***** 
 IL-2 -1.60 .12 .20 .84 -1.64 .11 .82 .41 
 TNF-α .68 .50 -2.45 .02*** 1.632 .11 -.81 .42 
 IL-4 -3.40 .002*** -4.79 .000****** -1.46 .16 3.02 .004*** 
 IL-10 -.38 .71 1.67 .10 -4.93 .000*****  -9.16 .000***** 
 IL-6 2.06 .05* .40 .69 1.23 .23 -1.12 .27 
 Cortisol  .49 .63 .12 .91 .52 .61 .13 .90 
 Prolactin  -.35 .73 -1.00 .32 .16 .87 1.12 .27 
 Estradiol  -.33 .74 .15 .88 -.92 .37 -.42 .67 
 Testosterone  .38 .71 .13 .90 .47 .64 -1.17 .25 
 SHBG  .47 .64 -.10 .92 1.50 .15 -1.64 .11 
 Age  .15 .89 .75 .45 2.02 .05* -1.15 .26 

 Adjusted  R² = .45 R² = .71 R² = .73 R² = .71 
 Signif. test F = 3.62, p  = .003 F = 15.83, p < .0001 F = 9.94, p < .0001 F = 15.26, p < .001 

 

For the variance of whole blood assay IFN-γ/IL-10, in addition to IFN-γ and IL-10, the ages 

of schizophrenic men also exerted marked impacts on IFN-γ/IL-10 ratios. However, instead of 

age in schizophrenia, IL-4 appeared to have considerable influences on IFN-γ/IL-10 ratios in 

healthy subjects, in addition to IFN-γ and IL-10 (whole SCH – whole blood assay IFN-γ: t = 
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5.43, p < .001; IL-10: t = -4.93, p < .001; age: t = 2.02, p = .05; whole CON – IFN-γ: t = 

10.39, p < .001; IL-10: t = -9.16, p < .001; IL-4: t = 3.02, p = .004). Whole blood assay data 

suggested that the major resources of Th1/Th2 imbalance in schizophrenia were rather 

decreased, but not increased IFN-γ, IL-4, and IL-10 impacts. Additionally, other factors could 

have been involved; they include TNF-α, IL-4, IL-6, and age. TNF-α made a markedly 

negative contribution to whole blood assay IFN-γ/IL-4 variance in normal controls, while IL-

6 made a noticeably positive one to IFN-γ/IL-4 in schizophrenics. IL-4 and age also markedly 

contributed to IFN-γ/IL-10 variance in healthy controls and schizophrenics, respectively. In 

addition, the explainable portions of whole blood assay IFN-γ/IL-4 and IFN-γ/IL-10 variance 

through the complete model were 45% and 73% for schizophrenics as well as 71% and 71% 

for controls.  

Female schizophrenics vs. control females  

Although the complete model was able to predict 76% variance of whole blood assay IFN-

γ/IL-4 ratio in female controls, it failed to make a reliable prediction of whole blood assay 

IFN-γ/IL-4 in female schizophrenics (see Table 6-5-2(2) – ♀CON: F = 9.64, p < .001; 

♀SCH: F = 6.26, p = .15). For healthy female subjects, IFN-γ and IL-4 played the major roles 

in the balance between IFN-γ and IL-4 (whole blood assay IFN-γ: t = 5.20, p < .001; IL-4: t = 

-3.06, p = .006). Besides, TNF-α might play a crucial role and IL-10 seemed to be effectively 

involved in the balancing process between IFN-γ and IL-4 (♀CON – whole blood assay TNF-

α: t = -2.46, p = .02; IL-10: t = 1.76, p = .09). 

 

New model keeping all parameters but SHBG was able to efficiently predict whole blood 

assay IFN-γ/IL-4 ratio in both schizophrenic and control females (♀SCH: R² = 88, F = 10.09, 

p = .04; ♀CON: R² = 76, F = 10.58, p < .001). Compared to the complete model, no obvious 

change was observed in control females regarding the importance magnitudes of various 

predictors (whole blood assay IFN-γ: t = 5.16, p < .001; IL-4: t = -2.98, p = .007; TNF-α: t = -

2.56, p = .02). However, the alterations in female schizophrenics were manifold regarding the 

forecasting powers of various predictors. Almost every predictor significantly contributed to 

the imbalance between IFN-γ and IL-4 except SHBG (age: t = 5.45, p = .01; prolactin: t = -

4.93, p = .02; IL-4: t = -4.52, p = .02; testosterone: t = 4.01, p = .03; IL-6: t = -3.23, p  =.05; 

IFN-γ: t = 3.04, p = .06; estradiol: t = -2.81, p = .07; cortisol: t = 2.58, p = .08; IL-10: t = 2.39, 

p = .10; TNF-α: t = 2.36, p = .10). Interestingly, the first two most important contributors of 
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IFN-γ/IL-4 variance were neither IFN-γ nor IL-4, but age and prolactin. IFN-γ was on the 

sixth and IL-4 on the third place. 

 

Table 6-5-2(2): The individual contributions of predictors in envisaging whole blood assay 
IFN-γ/IL-4 and IFN-γ/IL-10 in female schizophrenics and controls (results of multiple 
regression: underlined = complete model; shaded = new model). 

 The individual contributions of predictors in forecasting whole blood assay 
Th1/Th2 ratios (♀SCH vs. ♀CON) 

 Criteria Whole blood IFN-γγγγ/IL-4 Whole blood IFN-γγγγ/IL-10 
  SCH (N = 15) CON (N = 34) SCH (N = 15) CON (N = 34) 

 Predictor T p T p T p T p 
 IFN-γ 2.49 

3.04 
.13 
.06 

5.20 
5.16 

.000*****  

.000***** 
3.57 
4.31 

.07 

.02* 
10.18 
10.11 

.000*****  

.000*****  
 IL-2 -.61 

-.89 
.61 
.44 

-.06 
.02 

.95 

.98 
1.25 
1.78 

.34 

.17 
2.07 
2.17 

.05* 

.04* 
 TNF-α 1.95 

2.36 
.19 
.10 

-2.46 
-2.56 

.02* 

.02* 
2.63 
3.26 

.12 

.05* 
-.78 
-.86 

.45 

.40 
 IL-4 -3.68 

-4.52 
.07 
.02* 

-3.06 
-2.98 

.006** 

.007** 
-1.08 
-1.39 

.39 

.26 
1.24 
1.40 

.23 

.18 
 IL-10 1.82 

2.39 
.21 
.10 

1.76 
1.66 

.09 

.11 
-4.30 
-5.73 

.05* 

.01** 
-10.82 
-11.07 

.000*****  

.000*****  
 IL-6 -2.63 

-3.23 
.12 
.05* 

-.79 
-.59 

.44 

.56 
-3.79 
-4.75 

.06 

.02* 
1.74 
2.08 

.10 

.05* 
 Cortisol  1.49 

2.58 
.28 
.08 

.24 
-.07 

.81 

.95 
.35 
1.00 

.76 

.39 
.28 
-.10 

.78 

.92 
 Prolactin  -2.80 

-4.93 
.11 
.02* 

-.04 
-.04 

.97 

.97 
-1.58 
-3.21 

.26 

.05* 
.82 
.82 

.42 

.42 
 Estradiol  -2.31 

-2.81 
.15 
.07 

.39 

.40 
.70 
.70 

-4.37 
-5.35 

.05* 

.01** 
-.44 
-.43 

.67 

.67 
 Testosterone  2.58 

4.01 
.12 
.03* 

-.54 
-.29 

.60 

.77 
.74 
1.45 

.54 

.24 
-.17 
.17 

.87 

.87 
 SHBG  -.17 .88 -.86 .40 .23 .84 -1.05 .31 
 Age  3.98 

5.45 
.06 
.01* 

-.68 
-.49 

.51 

.63 
2.22 
3.25 

.16 

.05* 
2.39 
2.73 

.03* 

.01** 
 Adjusted R² = .82 (.88) R² = .76 (.76) R² = .88 (.92) R² = .89 (.89) 
 Signif.test F = 6.26, p = .15 

F = 10.09, p = .04 
F = 9.64, p < .001 
F = 10.58, p < .001 

F = 9.83, p = .10 
F = 15.65, p = .02 

F = 23.72, p < .0001 
F = 25.65, p < .0001 

 

The complete model also failed to reliably envisage whole blood assay IFN-γ/IL-10 in 

schizophrenic females (F = 9.83, p = .10). A new model dropping SHBG improved the 

collective envisaging power of all predictors in envisaging IFN-γ/IL-10 in female patients (R² 

= .92, F = 15.65, p = .02). The exclusion of SHBG led to solely a minor alteration in IL-6 in 

female controls; IL-10 and IFN-γ kept their dominant roles as usual, IL-2, IL-6, and age still 
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played crucial roles in the IFN-γ/IL-10 balancing process (♀CON – whole blood assay IL-10: 

t = -11.07, p < .001; IFN-γ: t = 10.11, p < .001; age: t = 2.73, p = .01; IL-2: t = 2.17, p = .04; 

IL-6: t = 2.08, p = .05).  

 

Table 6-5-2(2-1): A summary of the inter-correlations among the predictors which were 
included in the model to envisage whole blood assay IFN-γ/IL-4 and IFN-γ in female 
schizophrenic patients and normal women. 

Whole blood assay data: female schizophrenics versus female controls (inter-
correlations among the predictors of whole blood assay IFN-γγγγ/IL-4 and IFN- γγγγ/IL-10). 

 Age SHBG E2 Prl IL-6 IL-4 Cort IL-2 Testo IFN-γ IL-10 TNF 

Age  .24 .25 -.13 .46 -.18 .34 .18 .27 -.18 -.16 -.14 
SHBG -.50  .00 .00 .26 .14 -.36 .10 .31 -.12 -.15 -.08 
E2 -.46 .12  -.32 .28 -.18 .57 -.02 .17 .19 -.24 -.22 
Prl -.73 .75 .46  -.29 .27 -.53 .07 .01 -.06 .36 .34 
IL-6 -.61 .22 .67 .47  -.11 .33 .23 .29 -.39 -.06 -.32 
IL-4 -.58 .20 .63 .46 .77  -.28 .07 .09 .35 -.26 -.27 
Cort  .56 -.77 -.15 -.70 -.38 -.50  .14 .10 .06 -.25 -.26 
IL-2 .05 -.40 .12 -.11 .09 .39 .13  .16 .08 -.34 -.65 
Testo  .81 -.66 -.50 -.89 -.43 -.44 .60 .19  .04 -.16 -.22 
IFN-γ -.06 .04 -.27 -.28 .02 -.12 .01 -.60 .14  -.59 -.34 
IL-10 .48 -.47 .00 -.40 -.46 -.51 .57 .23 .42 -.47  .29 
TNF .57 -.16 -.77 -.41 -.78 -.91 .38 -.38 .40 .14 .24  
 
Note The left bottom corner = schizophrenic females (N = 15) ; the right above corner = control females (N = 

34). E2 = estradiol; Cort = cortisol; Testo = testosterone; Prl = prolactin; TNF = TNF-α; SHBG = sex 
hormone-binding globulin 

 

The new model could predict as much variance of whole blood assay IFN-γ/IL-10 as the 

complete one in control females (R² = .89, F = 25.65, p < .001). In contrast, distinct changes 

occurred in female schizophrenics after excluding SHBG regarding the predictive power of 

individual predictor. The new model significantly predicted 92% variance of IFN-γ/IL-10 in 

female patients (F = 15.65, p = .02), in contrast to 89% in control females. A variety of 

additional parameters made significant contributions in envisaging whole blood assay IFN-

γ/IL-10; estradiol, IL-6, TNF-α, age and prolactin seemed to be effectively involved in the 

balancing process between IFN-γ and IL-10 (♀SCH – whole blood assay IFN-γ: t = 4.31, p = 

.02; IL-10: -5.73, p = .01;estradiol: t = -5.35, p = .01; IL-6: t = -4.75, p = .02; TNF-α: t = 3.26, 

p = .05; age: t = 3.25, p = .05; prolactin: t = -3.21, p = .05). IL-10 played the most important 

role in the balancing process, but not IFN-γ; instead, estradiol took over the role of IFN-γ. The 

predictive powers of IFN-γ and IL-10 were also much weakened in schizophrenic females if 
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compared with those in control women. Furthermore, the results from whole blood assay data 

likewise demonstrated that instead of a few dominant contributors, there were various primary 

influencing factors being able to predict whole blood assay Th1/Th2 ratios in female 

schizophrenics. Those essential influencing factors correlated closely with one another in 

schizophrenic women, whereas those in normal females did not (see Table 6-5-2(2-1)). 

Male schizophrenics vs. male controls (whole blood)  

The complete model enabled the predictor assembly to make a significant prediction of both 

whole blood assay Th1/Th2 ratios in control men, however, only IFN-γ/IL-10 in 

schizophrenic males (see Table 6-5-2(3) – ♂SCH – IFN-γ/IL-4: F = 2.07, p = .11; IFN-γ/IL-

10: F = 9.00, p < .001; ♂CON – IFN-γ/IL-4: F = 6.77, p < .001; IFN-γ/IL-10: F = 9.28, p < 

.001). 

 

Comparisons showed that schizophrenic males had tremendously decreased impacts rather 

from IFN-γ than from IL-10 on whole blood assay IFN-γ/IL-10 ratio. Healthy subjects had 

additional remarkable contributions from testosterone and SHBG, whereas schizophrenics had 

an extra marked input from IL-6, in addition to dominant influences from both IFN-γ and IL-

10 (♂SCH – whole blood assay IFN-γ: t = 4.40, p = .001; IL-10: t = -4.47, p = .001; IL-6: t = 

2.38, p = .04; ♂CON – IFN-γ: t = 7.26, p < .001; IL-10: t = -5.47, p < .001; testosterone: t = -

3.03, p = .006; SHBG: t = 2.30, p = .02). Moreover, IL-4 and estradiol also tended to exert 

evident effects on whole blood assay IFN-γ/IL-10 ratio in male controls (IL-4: T = 1.77, p = 

.09; estradiol: F = 1.85, p = .08). The explainable portions of IFN-γ/IL-10 ratios through the 

complete model were relatively comparable in both groups (♂SCH: adjusted R² = .80, F = 

9.00, p < .001; ♂CON: adjusted R² = .73, F = 9.28, p < .001). 

 

The explicable part of whole blood assay IFN-γ/IL-4 variance through the alternative model 

excluding age and prolactin was similar to that via the complete model in controls. 

Nevertheless, in contrast to the complete model, the new one was able to predict the variance 

of IFN-γ/IL-4 sufficiently in the schizophrenic group (♂CON: R² = .65, F = 7.91, p < .001; 

♂SCH: R² = .52, F = 4.69, p = .004). The new model exposed a significant shortage in whole 

blood assay IFN-γ production in male schizophrenics, compared to healthy men (♂SCH: t = 

1.42, p = .18; ♂CON: t  = 6.02, p < .001). However, the predictive powers of whole blood 

assay IL-4 in envisaging IFN-γ/IL-4 variances were relatively comparable in both male 

groups (♂SCH: t = -2.61, p = .02; ♂CON: t = -2.69, p = .01). IL-6 also showed a tendency to 
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predict whole blood assay IFN-γ/IL-4 significantly in male patients, but not in male controls 

(♂SCH: t = 2.10, p = .06; ♂CON: t = -.57, p = .57). Besides, only 42% and 65% of the IFN-

γ/IL-4 variance could be clarified by the model in schizophrenic and control males, 

correspondingly. 

 

Table 6-5-2(3): The individual contributions of predictors in envisaging whole blood assay 
IFN-γ/IL-4 and IFN-γ/IL-10 in male schizophrenics and controls (results of multiple 
regression: underlined = complete model; shaded = new model). 

 The individual contributions of predictors in forecasting whole blood assay 
Th1/Th2 ratios (♂SCH vs. ♂CON) 

 Criteria Whole blood IFN-γγγγ/IL-4 Whole blood IFN-γγγγ/IL-10 
  SCH (N = 25) CON (N = 38) SCH (N = 25) CON (N = 38) 

 Predictor T p T p T p T p 
 IFN-γ 1.20 

1.42 
.25 
.18 

6.06 
6.02 

.000*****  

.000***** 
4.40 .001****  7.26 .000*****  

 IL-2 -.67 
-1.18 

.52 

.26 
-.96 
-.59 

.35 

.56 
-1.39 .19 -.28 .78 

 TNF-α -.194 
-.01 

.85 

.99 
-.08 
-.15 

.94 

.89 
.61 .55 -.27 .79 

 IL-4 -2.35 
-2.61 

.04* 

.02* 
-2.60 
-2.69 

.02* 

.01** 
-2.00 .07 1.77 .09 

 IL-10 -.77 
-.75 

.46 

.46 
-.42 
-.30 

.68 

.77 
-4.47 .001****  -5.47 .000*****  

 IL-6 1.93 
2.10 

.08 

.06 
-.67 
-.57 

.51 

.57 
2.38 .04* -1.43 .16 

 Cortisol  .70 
.83 

.50 

.42 
-.72 
-.77 

.48 

.45 
1.01 .33 .14 .89 

 Prolactin  -.70 .50 -1.14 .27 .47 .65 .14 .89 
 Estradiol  .03 

.24 
.98 
.81 

1.23 
.88 

.23 

.39 
.06 .95 1.85 .08 

 Testosterone  -.36 
-.40 

.73 

.69 
-1.04 
-.73 

.31 

.47 
.18 .86 -3.03 .006* 

 SHBG  .71 
.69 

.49 

.51 
-.09 
.19 

.93 

.85 
.21 .84 2.30 .03* 

 Age  -.26 .80 .87 .39 1.22 .25 -1.30 .21 
 Adjusted R² = .35  (.42) R² = .65 (.65) R² = .80 R² = .73 
 Signif.test F = 2.07, p = .11 

F = 2.72, p = .04 
F = 6.77, p < .001 
F = 7.91, p < .0001 

F = 9.00, p < .001 F = 9.28, p < .001 

 

6.5.3 Lymphocyte data 

Whole schizophrenic group vs. whole control group  

The complete model enabled reliable predictions of lymphocyte IFN-γ/IL-4, IFN-γ/IL-10 as 

well as IFN-γ/IL-13 ratio in both controls and schizophrenics (whole CON – IFN-γ/IL-4: F = 
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55.30, p < .001; IFN-γ/IL-10: F = 4.50, p < .001; IFN-γ/IL-13: F = 4.10, p < .001; whole SCH 

– IFN-γ/IL-4: F = 4.26, p = .001; IFN-γ/IL-10: F = 8.04, p < .001; IFN-γ/IL-13: F = 4.21, p = 

.01). It was able to explicate 89%, 35%, and 32% variance of lymphocyte IFN-γ/IL-4, IFN-

γ/IL-10, and IFN-γ/IL-13 in controls, respectively. On the contrary, it elucidated 48%, 67%, 

and 48% Th1/Th2 variance in schizophrenics in the same order as stated in controls (see 

Table 6-5-3(1)). 

 

Apart from the predominant factors IFN-γ and IL-4, other parameters such as testosterone, 

SHBG, and age also played crucial roles in envisaging lymphocyte IFN-γ/IL-4 in controls. 

Instead, IL-13 and estradiol additionally exerted noticeable powers in forecasting IFN-γ/IL-4 

ratio in schizophrenics (whole CON – lymphocyte IFN-γ: t = 15.36, p < .0001; IL-4: t = -9.58, 

p < .001; age: t  = 3.11, p = .003; SHBG: t = -2.88, p = .006; testosterone: t = -2.58, p = .01; 

whole SCH – IL-13: t = 2.20, p = .04; estradiol: t = -1.85, p = .08).  

 

Table 6-5-3(1): A summary of the individual contributions of predictors in lymphocyte IFN-
γ/IL-4, IFN-γ/IL-10, and IFN-γ/IL-13 variance in the whole schizophrenic and control group 
(results from multiple regression). 

 The individual contributions of predictors in forecasting lymphocyte 
Th1/Th2 ratio (whole SCH vs. whole CON) 

 Criteria Lymphocyte IFN-γγγγ/IL-4 Lymphocyte IFN-γγγγ/IL-10 Lymphocyte IFN-γγγγ/IL-13 
  SCH (N=40) CON (N=72) SCH (N=40) CON (N=72) SCH (N=40) CON (N=72) 

 Predictor T p T p T p T p T p T p 
 IFN-γ 4.46 .000***** 15.36 .000***

** 
.41 .68 3.42 .001**** 3.39 .002*** 4.01 .000*****  

 IL-12 -.29 .78 -1.22 .23 3.58 .001**** -
1.23 

.22 -.41 .68 -.30 .76 

 IL-4 -5.55 .000***** -9.58 .000***
** 

-1.11 .28 1.74 .09 1.40 .17 -2.07 .04* 

 IL-13 2.20 .04* -1.59 .12 .09 .93 -.83 .41 -5.15 .000****
* 

-3.33 .001**** 

 IL-10 .10 .92 -.29 .77 -3.42 .002*** -
4.41 

.000***** -.40 .69 -1.30 .20 

 Cortisol  -1.66 .11 -.07 .94 1.02 .32 -.76 .45 -.08 .94 -.30 .76 

 Prolactin  .73 .47 -.35 .73 3.73 .001**** .86 .39 .23 .82 -.39 .70 

 Estradiol  -1.85 .08 -.92 .36 .61 .55 -
1.44 

.16 .23 .82 -.88 .38 

 Testosterone  .23 .82 -2.58 .01** -.65 .52 -
1.34 

.19 .52 .61 -1.71 .09 

 SHBG  .76 .45 -2.88 .006** -.43 .67 .27 .79 .003 1.00 -1.35 .18 

 Age  -.12 .91 3.11 .003*** 3.04 .005*** .38 .71 .13 .90 .36 .72 

 Adjusted R² = .48 R² = .89 R² = .67 R² =  .35 R² = .48 R² = .32 
 Signif.test F = 4.26,  

p = .001 
F = 55.30,  
p < .0001 

F = 8.04,  
p < .001 

F = 4.50,  
p < .001 

F = 4.21,  
p = .001 

F = 4.10,  
p < .001 
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However, prolactin, IL-12, and age were further essential predictors for lymphocyte IFN-γ/IL-

10 ratio in schizophrenic patients, in addition to IL-10 (whole SCH – prolactin: t = 3.73, p = 

.001; IL-12: t = 3.58, p = .001; IL-10: t = -3.42, p = .002; age: t = 3.04, p = .005). 

Interestingly, lymphocyte IFN-γ production was unable to significantly predict IFN-γ/IL-10 

ratio in schizophrenia (t = .41, p = .68). IL-10 was not even on the first or the second 

important place, either. Instead, prolactin and IL-12 took over the first two most essential 

roles. However, in controls, IL-10 and IFN-γ took the dominant roles in predicting IFN-γ/IL-

10 ratio; besides, IL-4 also tended to make a marked contribution (whole CON: lymphocyte 

IL-10: t = -4.41, p < .001; IFN-γ: t = 3.42, p = .001; IL-4: t = 1.74, p = .09).  

 

For lymphocyte IFN-γ/IL-13 ratio, the diversity between both groups was not clear. The 

complete model could only enlighten 32% of IFN-γ/IL-13 variance in controls, however, 48% 

in schizophrenics (whole CON: F = 4.10, p < .001; whole SCH: F = 4.21, p = .001). In both 

controls and schizophrenics, IFN-γ and IL-13 took over the first and the second central role in 

envisaging IFN-γ/IL-13 (whole CON – lymphocyte IFN-γ: t = 4.01, p < .001; IL-13: t = -3.33, 

p = .001; whole SCH – IFN-γ: t = 3.39, p = .002; IL-13: t = -5.15, p < .001). The predicting 

power of IFN-γ was somewhat reduced and that of IL-13 slightly increased in schizophrenics, 

compared to those in normal controls. In addition, IL-4 could significantly and testosterone 

showed a tendency to predict IFN-γ/IL-13 ratio in control subjects, but not in schizophrenic 

patients (whole CON – IL-4: t = -2.07, p = .04; testosterone: t = -1.71, p = .09). 

Female schizophrenic patients vs. control females  

The complete model could reliably predict lymphocyte IFN-γ/IL-4, IFN-γ/IL-13, and IFN-

γ/IL-10 in female controls, but not those in schizophrenic women (see Table 6-5-3(2): ♀SCH 

– lymphocyte IFN-γ/IL-4: F = 2.45, p = .25; IFN-γ/IL-13: F = 4.57, p = .12; IFN-γ/IL-10: F = 

1.98, p = .31; ♀CON – IFN-γ/IL-4: F = 28.16, p < .001; IFN-γ/IL-13: F = 2.29, p = .05; IFN-

γ/IL-10: F = 2.42, p = .04).  

 

An alternative model dropping IL-10 and prolactin led to amendment of the collective 

forecasting power of the remaining predictors in schizophrenic females. But it did not cause 

any remarkable alteration in control females (♀SCH: R² = .72, F = 4.94, p = .05; ♀CON: R² = 

.90, F = 32.69, p < .001). Comparing the individual predictive power of each predictor in both 

groups showed that in control women, IFN-γ and IL-4 took over the most dominant two 
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places in envisaging lymphocyte IFN-γ/IL-4 ratio. Additionally, age, IL-12, and testosterone 

also made remarkable contributions in this regard (♀CON – lymphocyte IFN-γ: t  =10.43, p < 

.001; IL-4: t = -5.07, p < .001; age: t = 2.53, p = .02; IL-12: t = -2.27, p = .03; testosterone: t = 

-2.06, p = .05; IL-13: t = -1.45, p = .16; cortisol: t = -1.20, p = .24; estradiol: t = -1.15, p = .26; 

SHBG: t = -1.51, p = .15). Nonetheless, it was not that case in female schizophrenics; 

testosterone was the most crucial one within the predictors included, then age and IFN-γ 

(♀SCH – testosterone: t = 3.50, p = .02; age: t = 3.01, p = .03; cortisol: t = -3.00, p = .06; 

SHBG: t = 2.39, p = .06; estradiol: t = -1.80, p = .13; IFN-γ: t = 2.97, p = .03; IL-13: F = -

2.49, p = .06; IL-4: t = .10, p = .92; IL-12: t = -1.76, p = .14). In addition, SHBG, cortisol, and 

IL-13 tended to have significant predicting powers to envisage IFN-γ/IL-4 in schizophrenics. 

Surprisingly, IL-4 did not even play a minor role in the balance of lymphocyte IFN-γ/IL-4 in 

female patients. 

 

Table 6-5-3(2): The individual contributions of predictors in envisaging lymphocyte IFN-
γ/IL-4, IFN-γ/IL-10, and IFN-γ/IL-13 in female schizophrenics and controls (results of 
multiple regression: underlined = complete model; shaded = new model) 

 The individual contributions of predictors in forecasting lymphocyte 
Th1/Th2 ratios (♀SCH vs. ♀CON) 

 Criteria Lymphocyte IFN-γγγγ/IL-4 Lymphocyte IFN-γγγγ/IL-10 Lymphocyte IFN-γγγγ/IL-13 
  SCH (N=15) CON (N=34) SCH (N=15) CON (N=34) SCH (N=15) CON (N=34) 

 Predictor T p T p T p T p T p T p 
 IFN-γ 2.14 

2.97 
.12 
.03* 

10.28 
10.34 

.000*****  

.000***** 

-.89 
-1.02 

.44 

.37 
1.38 
1.28 

.18 

.22 
1.52 
2.18 

.23 

.07 
2.87 
2.76 

.009** 

.01** 

 IL-12 -.65 
-1.76 

.56 

.14 
-1.04 
-2.27 

.31 

.03* 
2.40 
2.84 

.10 

.05* 
-1.63 
-1.80 

.12 

.07 
-.63 
-.34 

.58 

.75 
-.10 
-.94 

.92 

.36 

 IL-4 .14 
.10 

.90 

.92 
-4.81 
-5.07 

.000*****  

.000***** 

.45 

.92 
.68 
.41 

1.80 
1.77 

.09 

.09 
1.30 
2.56 

.29 

.04* 
-.88 
-1.04 

.39 

.31 

 IL-13 -1.63 
-2.49 

.20 

.06 
-2.02 
-1.45 

.06 

.16 
-.12 
 

.91 -.61 
 

.55 -2.64 
-3.83 

.08 

.009** 
-2.25 
-2.35 

.04* 

.03* 

 IL-10 -.12 .92 -1.71 .10 -.74 
-.87 

.51 

.43 
-2.14 
-2.16 

.04* 

.04* 
-.39 
 

.72 -1.42 
 

.17 
 

 Cortisol  -1.81 
-3.00 

.17 

.06 
-.96 
-1.20 

.35 

.24 
1.21 
1.40 

.31 

.23 
-.21 
-.14 

.84 

.89 
-.94 
-1.29 

.42 

.25 
-.37 
-.86 

.72 

.40 

 Prolactin  -.08 .94 -.24 .82 -.89 
-1.16 

.44 

.31 
-1.53 
-1.56 

.14 

.13 
-.32 
-1.40 

.77 

.21 
-1.03 
-1.10 

.32 

.28 

 Estradiol  -1.14 
-1.80 

.34 

.13 
-1.26 
-1.15 

.22 

.26 
.68 
.77 

.55 

.48 
-1.00 
-1.09 

.33 

.29 
-.16 
 

.88 -.66 .52 

 Testosterone  1.60 
3.50 

.21 

.02* 
-2.48 
-2.06 

.02* 

.05* 
.93 
1.38 

.42 

.24 
-1.04 
-1.03 

.31 

.31 
1.56 
2.58 

.22 

.04* 
-1.38 
-.89 

.18 

.38 

 SHBG  1.37 
2.39 

.27 

.06 
-1.64 
-1.51 

.12 

.15 
-1.30 
-.67 

.29 

.53 
-.39 
-.60 

.70 

.55 
.72 
 

.52 -.75 .46 

 Age  1.65 
3.01 

.20 

.03* 
2.87 
2.53 

.009** 

.02* 
1.50 
-1.50 

.23 

.21 
.28 
.24 

.78 

.82 
1.52 
3.23 

.23 

.02* 
-.23 
-.49 

.82 

.63 

 Adjusted R² = .53 (.72) R² = .90 (.90) R² = .74 (.80) R² =  .32 (.34) R² = .44 (.66) R² = .30 (.31) 

 Signif.test F = 2.45, p = .25 
F= 4.94, p = .05 

F = 28.16, p < .0001 
F = 32.69, p < .0001 

F = 4.57, p = .12 
F = 6.66, p = .04 

F = 2.42, p = .04 
F  =3.13, p = .01 

F = 1.98, p = .31 
F = 4.47, p = .04 

F = 2.29, p = .05 
F = 2.82, p = .02 
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According to the complete model, IFN-γ and IL-13 had made the most crucial contributions to 

lymphocyte IFN-γ/IL-13 in healthy women, however, not in schizophrenic females (♀CON – 

lymphocyte IFN-γ: t = 2.87, p = .009; IL-13: t = -2.25, p = .04; ♀SCH – lymphocyte IFN-γ: t 

= 1.52, p = .23; IL-13: t = -2.64, p = .08). An alternative model dropping IL-10, estradiol, and 

SHBG enabled the remaining predictors to reliably forecast lymphocyte IFN-γ/IL-13 in both 

schizophrenic and control females (♀SCH: adjusted R² = .66, F = 4.47, p = .04; ♀CON: 

adjusted R² = .31, F = 2.82, p = .02). The important “donors” of IFN-γ/IL-13 balance in 

female schizophrenics were IL-13, age, testosterone, and IL-4  (♀SCH – lymphocyte IL-13: t 

= -3.83, p = .009; age: t = 3.23, p = .02; testosterone: t = 2.58, p = .04; IL-4: t = 2.56, p = .04; 

IFN-γ: t = 2.18, p = .07). IFN-γ only showed a tendency to be able to predict IFN-γ/IL-13 

variance. The power of IFN-γ in envisaging IFN-γ/IL-13 in schizophrenic females was also 

weaker compared to that in healthy women. Nevertheless, the predicting power of IL-13 was 

stronger than that in female controls. Furthermore, the alternative model explicated 31% of 

IFN-γ/IL-13 variance in female controls, however, 66% in schizophrenic women (♀CON: F = 

3.70, p = .007; ♀SCH: F = 4.53, p = .03).  

 

A alternative model dropping IL-13 could predict lymphocyte IFN-γ/IL-10 significantly and 

explain about 80% of its variance in schizophrenic women (F = 6.66, p = .04), in contrast to 

34% in female controls (F = 3.13, p = .01). However, no single predictor except IL-12 

showing an obvious contribution to the variance of IFN-γ/IL-10 in female schizophrenics 

(♀SCH – lymphocyte IFN-γ: t = -1.02, p = .37; IL-12: t = 2.84, p = .05; IL-4: t = .92, p = .41; 

IL-10: t = -.87, p = .43; prolactin: t = -1.16, p = .31; estradiol: t = .77, p = .48; testosterone: t = 

1.38, p = .24; age: t = -1.50, p = .21; SHBG: t = -.67, p = .53). Similar findings were found in 

normal female subjects; no other parameter except IL-10 significantly predicted lymphocyte 

IFN-γ/IL-10 variance (♀CON – lymphocyte IL-10: t  = -2.09, p = .05; IL-4: t = 1.77, p = .09; 

IL-12: t = -1.80, p = .08; IFN-γ: t = 1.32, p = .20; age: t = .24, p = .82; cortisol: t = -.14, p = 

.89; prolactin: t = -1.56, p = .13; estradiol: t = -1.09, p = .29; testosterone: t = -1.03, p = .31; 

SHBG: t = -.60, p = .55). In addition, IL-4 and IL-12 tended to have marked impacts on 

lymphocyte IFN-γ/IL-10 balance in control women.  

Male schizophrenics vs. male controls   

The complete model could reliably predict all 3 lymphocyte Th1/Th2 ratios in control males, 

although it failed to predict any lymphocyte Th1/Th2 ratio significantly except IFN-γ/IL-13 in 

male schizophrenics (see Table 6-5-3(3) – ♂CON – lymphocyte IFN-γ/IL-4: R² = .95, F = 
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71.10, p < .001; IFN-γ/IL-10: R² = .62, F = 6.53, p < .001; IFN-γ/IL-13: R² = .81, F = 15.02, p 

< .001; ♂SCH – IFN-γ/IL-4: F = 2.55, p = .06; IFN-γ/IL-10: F = 1.85, p = .15; IFN-γ/IL-13: 

R² = .70, F = 2.78, p = .04).  

 

Multiple regression analysis showed that the predictive power of lymphocyte IFN-γ to 

envisage IFN-γ/IL-13 in schizophrenic males was much weaker than that in control males, 

while those of IL-13 were relatively comparable between both male groups (♂SCH – 

lymphocyte IFN-γ: t = 1.80, p = .10; IL-13: t = -4.16, p = .001; ♂CON – IFN-γ: t  =4.34, p < 

.001; IL-13: t = -5.13, p < .001). Besides, SHBG seemed to play a role in this regard in 

healthy males (F = 1.83, p = .08). 

 

Table 6-5-3(3): The importance indexes of predictors for lymphocyte IFN-γ/IL-4, IFN-γ/IL-
10, and IFN-γ/IL-13 variance in schizophrenic and control males (results from multiple 
regression: underlined = complete model; shaded = new model) 

 The individual contributions of predictors in forecasting lymphocyte 
Th1/Th2 ratios (♂SCH vs. ♂CON) 

 Criteria Lymphocyte IFN-γγγγ/IL-4 Lymphocyte IFN-γγγγ/IL-10 Lymphocyte IFN-γγγγ/IL-13 
  SCH (N=25) CON (N=38) SCH (N=25) CON (N=38) SCH (N=25) CON (N=38) 

 Predictor T p T p T p T p T p T p 
 IFN-γ 2.88 

2.99 
.01** 
.01** 

13.61 
13.76 

.000*****  

.000*****  
1.83 
1.99 

.09 

.07 
3.34 
3.47 

.003***  

.002***  
1.80 .10 4.34 .000*****  

 IL-12 .13 
.14 

.90 

.89 
-.81 
-.72 

.43 

.48 
1.02 
1.15 

.33 

.27 
-.04 
.19 

.97 

.86 
.44 .67 .06 .96 

 IL-4 -3.45 
-3.70 

.004***  

.002***  
-9.78 
-9.94 

.000*****  

.000***** 
-.93 
-1.06 

.37 

.30 
1.08 
1.18 

.29 

.25 
.89 .39 -1.13 .27 

 IL-13 2.13 
2.23 

.05* 

.04* 
-.51 
-.57 

.62 

.58 
-1.02 
-1.21 

.33 

.24 
.32 
.02 

.75 

.99 
-4.16 .001****  -5.13 .000*****  

 IL-10 -.002 
-.02 

1.00 
.99 

1.45 
1.41 

.16 

.17 
-2.84 
-3.15 

.01** 

.007** 
-4.80 
-4.92 

.000*****  

.000***** 
-.42 .68 1.22 .23 

 Cortisol  -.95 
-1.05 

.36 

.31 
1.05 
1.03 

.30 

.31 
-.22 
 

.83 
 

-.65 .52 
 

.71 .49 -.31 .76 

 Prolactin  -.39 
-.42 

.70 

.68 
-1.56 
-1.54 

.13 

.14 
-.45 
-.49 

.66 

.63 
2.70 
2.71 

.01** 

.01** 
.64 .53 -.30 .77 

 Estradiol  -.95 
-.97 

.36 

.35 
1.73 
1.71 

.10 

.10 
.13 
.19 

.90 

.85 
.44 
.06 

.67 

.95 
1.07 .30 -.86 .40 

 Testosterone  .61 
.63 

.55 

.54 
-1.45 
-1.33 

.16 

.19 
-.67 
-1.02 

.51 

.33 
-1.23 
-.48 

.23 

.64 
-.60 .56 .13 .90 

 SHBG  -.13 .90 .61 .55 -.20 .85 1.42 .17 -.05 .96 1.83 .08 

 Age  .42 
.46 

.68 

.65 
.94 
1.16 

.35 

.26 
1.86 
2.04 

.09 

.06 
-.86 
-.57 

.40 

.57 
-.58 .57 .03 .98 

 Adjusted R² = .42 (.46) R² = .95 (.96) R² = .28 (.37) R² = .62 (.61) R² = .45 R² = .81 
 Signif.test F = 2.55, p = .06 

F= 3.02, p= .03 
F = 71.10, p < .0001 
F = 80.05, p < .0001 

F = 1.85, p = .15 
F = 2.59, p = .05 

F = 6.53, p < .001 
F = 7.55, p < .001 

F = 2.78, p = .04 F = 15.02, p < .0001 

 

A new model dropping SHBG enhanced the cumulative envisaging power of the included 

predictors to forecast the variance of IFN-γ/IL-4 in schizophrenics (R² = .46, F = 3.02, p = 

.03). Comparisons showed that the predictive powers of both IFN-γ and IL-4 were much 
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weaker in schizophrenic males than control men (♂CON – lymphocyte IFN-γ: t = 13.76, p < 

.001; IL-4: t = -9.94, p < .001; ♂SCH – IFN-γ: t = 2.99, p = .01; IL-4: t = -3.70, p = .002). 

Moreover, IL-13 also played an essential role in predicting lymphocyte IFN-γ/IL-4 in male 

schizophrenics (t = 2.23, p = .04). This model enlightened 96% IFN-γ/IL-4 variance in 

healthy males, in contrast to 46% in schizophrenic men. 

 

A model excluding cortisol and SHBG improved the predictive power of the model to 

forecast IFN-γ/IL-10 in schizophrenic males, nevertheless, almost did not change that in 

control men (♂SCH: from R² = .28, F = 1.85, p = .15 to R² = .37, F = 2.59, p = .05; ♂CON: 

from R² = .62, F = 7.71, p < .001 to R² = .61, F = 7.55, p < .001). In male subject with 

schizophrenia, both IFN-γ and IL-10, particularly IFN-γ, had markedly weakened predictive 

powers to forecast IFN-γ/IL-10 if compared to those in control males (♂CON – lymphocyte 

IFN-γ: t = 3.47, p = .002; IL-10: t = -4.92, p < .001; ♂SCH – IFN-γ: t = 1.99, p = .07; IL-10: t 

= -3.15, p = .007). Additionally, prolactin appeared to play an essential role in healthy males, 

while age seemed to have a marked impact on IFN-γ/IL-10 in schizophrenics (prolactin: t = 

2.71, p = .01; age: t = 2.04, p = .06). Moreover, this reduced model explicated exclusively 

37% IFN-γ/IL-10 variance in schizophrenic men, in contrast to 61% in male controls. 

 

6.6 Influencing factors of Th1/Th2 cytokines in schizophrenia 

 

In the subsequent sections, the inter-correlations among various cytokines, hormones, and 

SHBG were examined in order to discover possible sources of Th1/Th2 cytokines deficits in 

schizophrenia from those parameters measured in this study. Such comparisons might offer an 

overview for the possible consequences of changing a certain cytokine in order to restore 

Th1/Th2 balance, if re-balance of Th1/Th2 regarded as a co-target of treatment in 

schizophrenics. The outcomes from the complete model are summarized in Appendix 6-6(1) 

to 6-6(8). 

 

6.6.1 IFN-γγγγ: cortisol, prolactin (serum), IL-10, IL-6, IL-4 (whole blood) 

Serum data 

The complete model, including serum IL-2, TNF-α, IL-4, IL-10, IL-6, hormones, SHBG, and 

age as predictors, was able to predict 100% variance of serum IFN-γ level in the whole 

control group and male controls (whole CON: F = 18575.53, p < .001; male CON: F = 
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13914.45, p < .001). However, it could not sufficiently predict the variance of serum IFN-γ in 

the whole schizophrenic group, males with schizophrenia, female schizophrenics and control 

females (whole SCH: F = 1.62, p = .15; male SCH: F = 1.85, p = .15; female SCH: F = 2.01, p 

= .31; female CON: F = 1.45, p = .22). 

Whole SCH vs. whole CON 

Dropping testosterone, age, and SHBG, the predictive power of the remaining predictors was 

improved; it could explain 21% variance of serum IFN-γ in the whole schizophrenic group, 

while it only caused minor changes in controls (whole SCH: R² = .21, F = 2.28, p = .05; 

whole CON: R² = 1.00, F = 25558.02, p < .001). In schizophrenia, cortisol played a 

significant role and prolactin tended to make a marked contribution to the variance of serum 

IFN-γ (whole SCH – cortisol: t = -2.42, p = .02; prolactin: t = 1.99, p = .06). In contrast, both 

prolactin and cortisol played only secondary roles in envisaging serum IFN-γ level in 

controls; instead, serum IL-6 was the most important contributor. In addition, IL-10 also 

tended to make a remarkable contribution to IFN-γ variance (whole CON – IL-6: t = 3.15, p = 

.003; IL-10: t = 1.93, p = .06). The results revealed that barely 80% IFN-γ variance in 

schizophrenics were unexplainable through the parameters assessed in this study. 

Male SCH vs. male CON 

An alterative model dropping prolactin and SHBG out of the multiple regression analysis 

improved the forecasting power of the remaining predictors in the male schizophrenic group. 

It could explain 38% variance of serum IFN-γ (F = 2.60, p = .05). Nevertheless, none of the 

predictors alone was able to make a significant prediction for serum IFN-γ in schizophrenic 

men (IL-2: t = .82, p = .42; TNF-α: p = 1.07, p = .30; IL-4: t = 1.34, p = .20; IL-10: t = .80, p 

= .44; IL-6: t = -.06, p = .95; cortisol: t = -1.57, p = .14; estradiol: t = -1.07, p = .30; 

testosterone: t = -1.28, p = .22). The new model did not cause too much alteration and 

explained, as the complete model, 100% variance of serum IFN-γ in control males (F = 

17771.93, p < .001). In contrast to male schizophrenics, serum IL-2 and IL-6 played essential 

roles in envisaging IFN-γ variance in control males (IL-2: t = 3.46, p = .002; IL-6: t = 2.28, p 

= .03). 

Female SCH vs. Female CON 

For both female groups, the only alternative model being able to make a sufficient prediction 

for serum IFN-γ was to keep IL-2, IL-10, prolactin, and testosterone. The new model 

explained 46% serum IFN-γ variance in female schizophrenics, while it explicated solely 18% 

variance of IFN-γ in female controls (♀SCH: F = 3.92, p = .04; ♀CON: F = 2.78, p = .05). 
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For schizophrenic women, prolactin seemed to play the most dominant role. Instead, both IL-

2 and IL-10 made significant contributions to serum IFN-γ variance in healthy females 

(♀SCH – prolactin: t = 3.42, p = .007; ♀CON – IL-10: t = 2.25, p  = .03; IL-2: t = 2.02, p = 

.05).  

 

SummarySummarySummarySummary : Serum data exhibited,  

(1) IL-10, IL-6 were the primary predictors and IL-2 was the secondary contributor for 

serum IFN-γ in the whole control group, while cortisol was the dominant and prolactin 

was the secondary influencing factor for serum IFN-γ in the whole schizophrenic 

group. 

(2) Healthy males had clear contributions from IL-2 and IL-6, while no single dominant 

factor was found in females.  

(3) No single primary “donor” of serum IFN-γ variance was found among the parameters 

measured in this study in male schizophrenics, whereas prolactin played an essential 

role in predicting serum IFN-γ in female schizophrenics. 

Whole blood assay data 

  Whole SCH vs. whole CON 

Comparisons of whole blood assay data between the whole schizophrenic and control group 

showed that IL-10, IL-4, and IL-6 were the most important contributors of whole blood assay 

IFN-γ variance, although the magnitudes of importance of these three parameters were much 

weaker in schizophrenics than those in controls (whole SCH – whole blood assay IL-10: t = 

5.70, p < .001; IL-4: t = -3.05, p = .003; IL-6: t = 3.09, p = .003; whole CON – IL-10: t = 

2.90, p = .007; IL-4: t = -2.12, p = .04; IL-6: t = 2.02, p = .05). In addition, prolactin and 

testosterone also played essential roles in predicting whole blood IFN-γ in vitro production in 

schizophrenics and controls, respectively (prolactin: t = 2.07, p = .04; testosterone: t = 2.18, p 

= .04). Apparently, all the parameters together could envisage 61% and 63% variance of IFN-

γ in the whole schizophrenic and control group, correspondingly (SCH: F = 10.98, p < .001; 

CON: F = 4.37, p = .001). 

  Male SCH vs. male CON 

Although the complete model could predict 58% variance of whole blood IFN-γ in vitro 

production in control males, it failed to achieve that in schizophrenic men (♂CON: F = 5.65, 

p < .001; male SCH: F = 2.35, p = .07). A new model dropping cortisol enhanced the 

predicting power of the remaining parameters in envisaging whole blood assay IFN-γ in male 
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schizophrenics. It enabled the predictors included in the model to explicate 42% variance of 

IFN-γ (F = 2.76, p = .04) in male schizophrenic patients. Nonetheless, none of the predictors 

dominated over the others and made a noticeable contribution to IFN-γ variance. The only 

exception was IL-10; it tended to make a significant prediction for whole blood IFN-γ in vitro 

production in schizophrenic men (♂SCH – whole blood IL-10: t = 1.85, p = .09). The new 

model only raised minor alterations in control males (R² = .58, F = 6.27, p < .001). IL-10, 

prolactin, IL-6, and IL-2 all made significant contributions to whole blood assay IFN-γ 

variance in male controls (♂CON – whole blood assay IL-10: t = 3.47, p = .002; prolactin: t = 

2.20, p = .04; IL-6: t = 2.20, p = .04; IL-2: t = 2.17, p = .04). 

  Female SCH vs. female CON 

The complete model could significantly predict the variance of whole blood assay IFN-γ 

production in female healthy subjects and explain 62% of IFN-γ variance. Nevertheless, it did 

not succeed in making a reliable prediction for IFN-γ secretion in schizophrenic females 

(♀CON: F = 5.86, p < .001; ♀SCH: F = 2.99, p = .20). The complete model revealed that IL-

10 played a dominant role in predicting whole blood IFN-γ in vitro production and IL-6 also 

tended to do so in control women (♀CON – IL-10: t = 3.45, p = .002; IL-6: t = 1.99, p = .06). 

 

An alternative model dropping SHBG and cortisol led to improvement of the cumulative 

forecasting power of the remaining predictors in schizophrenic females. It explained 76% 

variance of whole blood IFN-γ in vitro production (F = 6.05, p = .03). Nevertheless, none of 

the parameters kept in the model alone was able to make a marked contribution to the 

variance of whole blood assay IFN-γ in schizophrenic females (IL-2: t = 1.92, p = .11; TNF-

α: t = -.29, p = .78; IL-4: t = .25, p = .81; IL-10: t = 1.58, p = .18; IL-6: t = -.08, p = .94; 

prolactin: t = 1.16, p = .30; estradiol: t = .64, p = .55; testosterone: t = -.48, p = .65; age: t = 

.16, p = .88). The new model explicated 65% variance of whole blood assay IFN-γ in control 

women (F = 7.66, p < .001); IL-10, IL-6, and IL-4 were essential in envisaging IFN-γ. 

Besides, TNF-α tended to make a marked contribution as well (♀CON – IL-10: t = 4.19, p < 

.001; IL-6: t = 2.38, p = .03; IL-4: t = -2.07, p = .05; TNF-α: t = 1.93, p = .07). 

 

SummarySummarySummarySummary : Whole blood assay data showed:  

(1) IL-10, IL-6, and IL-4 were the 3 most important predictors for whole blood assay IFN-

γ in both schizophrenic and control group. 
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(2) Both IL-10 and IL-6 were crucial contributors for whole blood assay IFN-γ variance in 

normal males. Nevertheless, IL-10 was the only remarkable and IL-6 was rather a 

secondary influencing factor in healthy females. 

(3) In addition, no single factor among those variables measured in this study was found 

to be able to predict whole blood assay IFN-γ significantly in both male and female 

schizophrenics. 

Lymphocyte data 

Despite that the complete model explained 44%, 61%, and 42% variance of lymphocyte IFN-

γ release in the whole control group, male normal subjects, and control females, the model 

failed to make a reliable prediction for lymphocyte IFN-γ secretion in the whole 

schizophrenic group and both schizophrenic gender subgroups (whole CON: F = 6.49, p < 

.001; ♂CON: F = 6.71, p < .001; ♀CON: F = 3.39, p = .007; whole SCH: F = .79, p = .64; 

♂SCH: F = 1.53, p = .23; ♀SCH: F = .60, p  = .77). For the whole control group, IL-13, IL-

10, and age dominated over the other parameters in envisaging lymphocyte IFN-γ production 

(whole CON – IL-13: t = 3.51, p = .001; IL-10: t = 3.14, p = .003; age: t = 2.07, p = .04). 

Similarly, IL-13 and IL-10 also made remarkable contributions to the variance of lymphocyte 

IFN-γ production in female control subjects (♀CON – IL-13: t = 3.34, p = .003; IL-10: t = 

2.09, p = .05). For the male controls, prolactin, IL-10, and IL-12 played essential roles in 

predicting lymphocyte IFN-γ release (♂SCH – prolactin: t = 2.53, p = .02; IL-10: t = 2.55, p = 

.02; IL-12: t = 2.52, p = .02).  

 

Attempts to find an alternative model within the parameters measured in this study for the 

whole schizophrenic group and female schizophrenics failed. However, a model dropping IL-

13, testosterone, SHBG, and age improved the reliability of the remaining predictors in 

forecasting IFN-γ in schizophrenic men. It explicated 31% variance of lymphocyte IFN-γ (F = 

2.76, p = .04). IL-4 took over the dominant role among those parameters assessed in 

contributing to lymphocyte IFN-γ variance in male patients (t = 2.54, p = .02). Nevertheless, 

the new model could clarify 64% of lymphocyte IFN-γ variance in control males (F = 11.77, p 

< .001). Among the predictors included, IL-12, estradiol, prolactin, and IL-10 made the 

substantial contributions to lymphocyte IFN-γ variance in male healthy controls (IL-12: t = 

3.54, p = .001; estradiol: t = -2.87, p = .007; prolactin: t = 2.79, p = .009; IL-10: t = 2.68, p = 

.02). 
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SummarySummarySummarySummary : Lymphocyte data demonstrated,  

(1) IL-13, IL-10, and age were the crucial contributors for lymphocyte IFN-γ variance in 

the whole control group. Nevertheless, no single essential “donor” of lymphocyte 

IFN-γ variance was found in the whole schizophrenic group. 

(2) Prolactin, IL-10, and IL-12 were very important in forecasting lymphocyte IFN-γ in 

control males, while IL-4 was the only crucial factor in this regard in schizophrenic 

men. 

(3) IL-13 and IL-10 were essential for lymphocyte IFN-γ production in healthy females, 

whereas none of the parameters measured made a significant contribution to 

lymphocyte IFN-γ in female schizophrenics. 

 

6.6.2 IL-12: prolactin, IL-10 (lymphocyte) 

 

The complete model facilitated reliable predictions of lymphocyte IL-12 production in the 

whole control group and male controls, however, not the other groups (whole CON: F = 5.64, 

p < .001; ♂CON: F = 5.38, p < .001; ♀CON: F = 2.04, p = .08; whole SCH: F = 1.39, p = .24; 

♂SCH: F = 1.14, p = .40; ♀SCH: F = 3.21, p = .14).  

  Whole SCH vs. whole CON 

A new model keeping IL-10, IL-4, IL-13, prolactin, testosterone, and age improved the 

reliability of predictor assembly in the whole schizophrenic group. It enlightened 20% and 

39% lymphocyte IL-12 variance in the whole schizophrenic and control group, respectively 

(whole SCH: F = 2.59, p = .04; whole CON: F = 8.62, p < .001). IL-10 and age were the most 

dominant contributors for lymphocyte IL-12 release in controls; instead, prolactin was the 

only primary “donor” of IL-12 variance in schizophrenia (whole CON – IL-10: t = 4.25, p < 

.001; age: t = 3.12, p  = .003; whole SCH – prolactin: t = 3.03, p = .005). 

  Male SCH vs. male CON 

A reduced model including IFN-γ, IL-10, IL-4, testosterone, and age led to amelioration of 

predictive reliability of the model in schizophrenic males (F = 2.89, p = .04). The new model 

explicated 28% and 54% lymphocyte IL-12 variance in schizophrenic and control men, 

correspondingly. IL-10 offered the primary contribution to IL-12 variance in male 

schizophrenics; instead, the individual predictive powers of age and IFN-γ were significant in 

control men (♂SCH – IL-10: t = 2.40, p = .03; ♂CON – age: t = 2.33, p = .03; IFN-γ: t = 2.11, 
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p = .04). In addition, IL-10 tended to make a marked contribution to lymphocyte IL-12 

secretion in control males as well (t = 1.91, p = .07). 

  Female SCH vs. female CON 

Excluding IFN-γ, cortisol, and estradiol, the new model explained 69% and 26% of 

lymphocyte IL12 variance in control and schizophrenic females, respectively (♀CON: F = 

5.38, p = .02; ♀SCH: F = 2.68, p = .03). The primary contributor of IL-12 production was 

prolactin in schizophrenic females, but that in female controls was IL-10 (♀SCH – prolactin: t 

= 3.96, p = .005; ♀CON – IL-10: t = 2.91, p = .007). Additionally, testosterone tended to have 

a marked contribution to IL-12 variance in schizophrenic women (t = -2.02, p  = .08). 

 

SummarySummarySummarySummary :  

(1) IL-10 and age were the essential contributors for lymphocyte IL-12 production in the 

whole control group, while prolactin made a marked contribution to IL-12 release in 

the whole schizophrenic patients. 

(2) IFN-γ was the dominant influencing factor for lymphocyte IL-12 in male controls, 

while IL-10 significantly contributed to lymphocyte IL-12 variance in male 

schizophrenics. 

(3) IL-10 was important in lymphocyte IL-12 production in female controls, while 

prolactin was essential in this regard in female schizophrenics. 

 

6.6.3 IL-2: cortisol, estradiol, testosterone, IL-4 (serum), TNF-α (whole blood) 

Serum data 

For both the whole schizophrenic and control group as well as both female groups, no 

common model could be found due to having different influencing factors for serum IL-2 in 

these groups.  

  Whole SCH vs. whole CON 

The complete model enabled an explication of 100% serum IL-2 variance in the whole control 

group, but not in the schizophrenic one (whole CON: F = 15375.15, p < .001; whole SCH: F 

= 1.17, p = .35). TNF-α dominated over the others included in the model and made a clear 

contribution to serum IL-2 variance in controls (t = 9.88, p < .001). Besides, IFN-γ tended to 

be able to predict serum IL-2 variance significantly in controls (t = 1.50, p = .08). 

 

A model keeping TNF-α, cortisol, and estradiol showed that (1) cortisol was the primary 

contributor for serum IL-2 in schizophrenics and (2) estradiol also played a secondary role in 
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this regard, although the new model was only able to envisage 13% variance of serum IL-2 

(whole SCH: F = 2.99, p = .04; cortisol: t = -2.44, p = .02; estradiol: t = -1.78, p = .08). 

  Male SCH vs. male CON   

Similar findings were obtained for healthy males; (1) the model explained 100% serum IL-2 

variance and (2) TNF-α was the primary influencing factor among those included in the 

model (♂CON: F = 16692.27, p < .001; TNF-α: t = 10.00, p < .001). In addition, IL-10 

tended to have a noticeable effect on serum IL-2 in male controls (t = -1.85, p = .08). 

Nevertheless, no single parameter assessed in this study was able to make a significant 

prediction of serum IL-2 in male schizophrenics. 

  Female SCH vs. female CON 

For both female groups, no common model could be found since serum IL-2 of both groups 

obviously had diverse influencing factors. However, an individual model dropping age for 

schizophrenic females showed that (1) estradiol, testosterone, cortisol, and IL-4 could 

significantly predict serum IL-2, (2) that IL-6 tended to be able to forecast IL-2 sufficiently, 

and (3) the model was able to explain 84% of serum IL-2 variance (♀SCH: F = 8.06, p = .03; 

estradiol: t = -6.17, p = .004; testosterone: t = 4.08, p = .02; cortisol: t = -3.52, p = .02; IL-4: t 

= 3.40, p = .03; IL-6: t = -2.51, p = .07). A model keeping IFN-γ, TNF-α, IL-4, cortisol, and 

testosterone for control females was found. It exhibited a single dominant predictor TNF-α 

for serum IL-2. However, the new model could explicate only 20% IL-2 variance (♀CON: F 

= 2.62, p = .05; TNF-α: t = 2.13, p = .04). 

 

SummarySummarySummarySummary : 

(1) TNF-α was the dominant factor in the whole control group, whereas cortisol was the 

essential one in the whole schizophrenic group in envisaging serum IL-2. The 

explainable portion of serum IL-2 through the predictors included was only 13% in the 

schizophrenic group. 

(2) TNF-α was the only important contributor of serum IL-2 in male controls, while none 

of those parameters assessed made a significant contribution to serum IL-2 in 

schizophrenic men. Serum IL-2 variance in male schizophrenics was impossible to be 

reliably explained by any of the parameters assessed in this study. 

(3) TNF-α was crucial in predicting serum IL-2 in female controls, However, estradiol, 

testosterone, cortisol, and IL-4 were important in this regard in schizophrenic women. 

The explainable part of serum IL-2 variance was 84% in female schizophrenics. 
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Whole blood assay data 

The complete model could predict whole blood assay IL-2 variance reliably in all groups but 

female schizophrenics (whole SCH: F = 9.45, p < .001; whole CON: F = 4.06, p < .001; 

♂SCH: F = 11.20, p < .001; ♂CON: F = 3.10, p = .03; ♀CON: F = 3.22, p = .009; ♀SCH: F = 

2.04, p = .30). 

  Whole SCH vs. whole CON 

TNF-α played a dominant role in envisaging whole blood IL-2 in vitro production in both the 

whole schizophrenic and control group (whole CON: t = 7.50, p < .001; whole SCH: t = 4.01, 

p < .001). IL-6 and age also tended to have marked impacts on whole blood assay IL-2 release 

in schizophrenics and controls, respectively (whole CON – IL-6: t = -1.81, p = .08; whole 

SCH – age: t = 1.83, p = .08). Furthermore, the explainable portions of whole blood assay IL-

2 were 57% and 62% for schizophrenics and controls, correspondingly. 

  Male SCH vs. male CON 

The results from male patients were similar to those of the whole schizophrenic group. TNF-α 

was the major contributor and age tended to make a significant contribution to whole blood 

assay IL-2 variance (TNF-α: t = 3.23, p < .001; age: t = 1.81, p = .09). In contrast to the 

findings in the whole control group, a series of variables were involved or tended to be 

involved in whole blood assay IL-2 release in male controls; they included TNF-α, IL-6, IFN-

γ, testosterone, age, and SHBG. Nevertheless, the model explicated similar portions of IL-2 

variance in both male groups (♂CON: 75%; ♂SCH: 72%). 

  Female SCH vs. female CON 

Similar outcomes were gained from female controls; TNF-α was the primary “donor” of 

whole blood IL-2 in vitro secretion and, additionally, prolactin likewise tended to exert a 

marked influence on IL-2 (TNF-α: t = 4.03, p = .001; prolactin: t  = 1.80, p = .09). 

 

A reduced model dropping IL-6, age, and cortisol improved the envisaging reliability of the 

predictors in schizophrenic women. However, the model also led to a change in control 

females (♀SCH: F = 5.35, p = .03; ♀CON: F = 4.54, p = .002). The new model explicated, 

instead of 62% by the complete model, only 46% whole blood assay IL-2 variance in female 

controls. It explained, nevertheless, 71% of IL-2 variance in schizophrenic females. TNF-α 

kept its dominant role in the new model in healthy females, while no single predictor alone 

could significantly predict whole blood IL-2 in vitro production in female subjects with 

schizophrenia (♀CON – TNF-α: t = 4.10, p < .001). 
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SummarySummarySummarySummary :  

(1) TNF-α seemed to play an essential role in predicting whole blood IL-2 in vitro 

production in all groups but female schizophrenics. 

(2) No single parameter was able to make a noticeable contribution to whole blood asssay 

IL-2 variance in schizophrenic women. 

 

6.6.4 TNF-αααα: IL-4, testosterone, SHBG (serum), IL-2, IL-4 (whole blood) 

Serum data 

The complete model could make a reliable prediction of serum TNF-α in all groups but both 

schizophrenic gender subgroups and normal female subjects. It explained 100% serum TNF-α 

variance in the whole controls and healthy males (whole CON: R² = 1.00, F = 25598.08, p < 

.001; ♂CON: R² = .47, F = 38493.99, p < .001; whole SCH: F = 2.24, p = .04; ♂SCH: F = 

1.40, p = .28; ♀SCH: F = .82, p = .65; ♀CON: F = 1.57, p = .18). 

  Whole SCH vs. whole CON 

IL-2 was the primary source of serum TNF-α level in the whole control group. Instead, IL-4, 

testosterone, and SHBG offered the major contributions to serum TNF-α variance in the 

whole schizophrenic group (whole CON – IL-2: t = 9.88, p < .001; whole SCH – IL-4: t = 

3.15, p < .001; testosterone: t = -2.69, p = .01; SHBG: t = -2.44, p = .02). 

  Male SCH vs. male CON 

No common model was found for both male groups in order to compare the forecasting 

powers of diverse predictors. The major influencing factors of serum TNF-α in male controls 

consisted of IL-2, IL-10, and cortisol (♂CON – IL-2: t = 10.00, p < .001; IL-10: t = 2.54, p = 

.02; cortisol: t = -2.15, p = .04). A new model keeping IL-4, IL-10, and estradiol could explain 

25% serum TNF-α variance in male schizophrenics (F= 3.67, p = .03). Among them, IL-4 and 

estradiol made significant contributions to the variance of serum TNF-α (♂SCH – IL-4: t = 

2.77, p = .01; estradiol: t = -2.48, p = .02). 

  Female SCH vs. female CON 

However, no reliable model could be found among the parameters assessed in this study for 

predict serum TNF-α in female schizophrenics. Nevertheless, a model dropping IL-10, 

testosterone, and age ameliorated the predicting reliability in female controls. It enlightened 

25% serum TNF-α variance (F = 2.40, p = .05). IL-4 had a significant predicting power and 

IL-2 tended to have one in envisaging TNF-α variance in female controls (IL-4: t = 2.29, p = 

.03; IL-2: t = 2.00, p = .06). 
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SummarySummarySummarySummary :  

(1) IL-2 was essential in predicting serum TNF-α in the whole controls, while IL-4, 

testosterone, and SHBG were important in this respect in the whole schizophrenics. 

The explainable portion of serum TNF-α in schizophrenia was only 47%, in contrast 

to 100% in control. 

(2) IL-2, IL-10, and cortisol were crucial for serum TNF-α in male controls, whereas IL-4 

was the only primary influencing factor for serum TNF-α in male schizophrenics. The 

explainable part of serum TNF-α was only 25% in schizophrenic men. 

(3) IL-4 was important to predict serum TNF-α in female controls, while no single 

variable could make a significant prediction of serum TNF-α in schizophrenic women. 

Serum TNF-α variance in female schizophrenics was impossible to be explicated by 

any variable assessed in this study. 

Whole blood assay data 

The complete model could predict whole blood assay TNF-α reliably in all groups but male 

schizophrenics (whole CON: F = 17.39, p < .001; whole SCH: F  =5.84, p < .001; ♂CON: F = 

14.69, p < .001; ♂SCH: F = 2.56, p = .06; ♀CON: F = 5.31, p < .001; ♀SCH: F = 12.92, p = 

.03). It allowed to envisage 72%, 70%, 80%, 73%, and 98% whole blood assay TNF-α 

variance in the whole schizophrenic group, the whole controls, male controls, healthy females 

as well as female schizophrenics, respectively. 

  Whole SCH vs. whole CON 

IL-2, IL-4, and IL-6 were the primary contributors for TNF-α variance in the whole control 

group, while IL-2 and age played dominant roles in envisaging whole blood TNF-α in vitro 

secretion in schizophrenics (whole CON – IL-2: t = 7.50, p < .001; IL-4: t = 3.30, p = .002; 

IL-6: t = 2.45, p = .02; whole SCH – IL-2: t = 4.01, p < .001; age: t = -2.05, p = .05). 

  Male SCH vs. male CON 

Excluding estradiol out of the model improved the predictive reliability of parameters 

included in the model in male schizophrenics and raised only minor alterations in control men 

(♂SCH: F = 3.03, p = .03; ♂CON: F = 15.55, p < .001). IL-2 was the most essential factor in 

predicting whole blood TNF-α in vitro production in both male groups (♂CON – IL-2: t = 

6.88, p < .001; ♂SCH – IL-2: t = 3.36, p = .005). In addition, IL-6 also made a significant 

contribution to TNF-α variance in control men (t = 2.36, p = .03). 

  Female SCH vs. female CON 
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In the female control group, IL-2 made a marked contribution to whole blood TNF-α in vitro 

secretion. IL-4, instead of IL-2, was the essential “donor” of TNF-α variance in the female 

schizophrenics (♀CON – IL-2: t = 4.03, p = .001; ♀SCH – IL-2: t = 3.77, p = .03). 

 

SummarySummarySummarySummary : Generally, IL-2 appeared to be indispensable for predicting whole blood TNF-α in 

vitro production. In addition, IL-4 was also important in this regard in the whole control 

group and the female schizophrenic subgroup. 

 

6.6.5 IL-4: TNF-α, estradiol, IL-2 (serum), IL-10, IFN-γ, TNF-α (whole blood) 

Serum data 

The complete model was not sufficient to make a reliable prediction for the variance of serum 

IL-4 in female controls, the whole schizophrenic group as well as both schizophrenic gender 

subgroups, although it could explain 98% serum IL-4 variance in the whole control group and 

healthy males (whole SCH: F = 1.86, p = .09; ♂SCH: F = 1.64, p = .20; ♀SCH: F = 2.25, p = 

.27; ♀CON: F = .76, p = .68; whole CON: F = 258.05, p < .001; ♂CON: F = 192.14, p < 

.001). However, the outcomes for the whole control group and normal males indicated no 

single dominant contributor for serum IL-4 variance. But all predictors together could 

envisage serum IL-4 variance reliably and sufficiently. Nevertheless, for female controls, it 

was not that case; neither essential nor reliable “donor” of serum IL-4 variance could be found 

among those parameters measured in this study.  

  Whole SCH vs. whole CON 

An alternative model dropping both IL-6 and cortisol improved the reliability of the 

predictive power in the whole schizophrenic group without causing any major alteration in the 

whole control group (whole SCH: F = 2.43, p  = .03; whole CON: F = 288.00, p < .001). The 

new model was capable of illuminating 25% and 98% serum IL-4 variance in schizophrenics 

and controls. As in the complete model, no single dominant contributor of IL-4 variance was 

observed in controls, while TNF-α and testosterone played dominant roles in predicting 

serum IL-4 in schizophrenics (whole SCH – TNF-α: t = 3.51, p = .001; testosterone: t = 3.15, 

p = .004). Additionally, SHBG in schizophrenia tended to make a significant contribution to 

IL-4 variance as well (t = 1.98, p = .06). 

  Male SCH vs. male CON 

Dropping IL-2 and IL-10 out of the model, the reduced model could enlighten 35% and 98% 

serum IL-4 variance in male schizophrenics and controls, respectively (♂SCH: F = 2.65, p = 

.05; ♂CON: F = 250.27, p < .001). For healthy control men existed no single dominant 
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contributor for serum IL-4 variance, whereas estradiol and TNF-α took over the crucial roles 

in predicting serum IL-4 in schizophrenic males (estradiol: t = 2.65, p = .02; TNF-α: t = 2.57, 

p = .02). Furthermore, prolactin in schizophrenic males likewise tended to make a noticeable 

contribution to IL-4 variance (t = 2.06, p = .06). 

  Female SCH vs. female CON 

Various attempts did not succeed in finding a common reliable model for both female groups. 

A new model keeping IL-2, TNF-α, cortisol, prolactin, estradiol, and testosterone could make 

a reliable prediction for serum IL-4 variance. It elucidated 54% serum IL-4 variance in 

schizophrenic females (F = 3.77, p  = .04). 

 

SummarySummarySummarySummary :  

(1) No single dominant influencing factor was found for serum IL-4 in the whole control 

group and healthy males. 

(2) TNF-α and testosterone were crucial for serum IL-4 in the whole schizophrenic group, 

while TNF-α and estradiol made significant contributions to serum IL-4 variance in 

the male schizophrenic group. The explainable portion of IL-4 variance was only 25% 

in the whole schizophrenic group. 

(3) IL-2 was the primary predictor in female schizophrenics. Nevertheless, none of the 

variables measured in this study was able to make a reliable prediction of serum IL-4 

in normal women. 

Whole blood  assay data 

The complete model enabled a reliable prediction of whole blood assay IL-4 variance in the 

whole schizophrenic group, the whole control group, male controls, and female 

schizophrenics, nonetheless, not in male schizophrenics and female controls (whole SCH: R² 

= .55, F = 8.94, p < .001; whole CON: R² = .58, F = 3.56, p = .003; ♂CON: R² = .72, F = 

9.57, p < .001; ♀SCH: R² = .98, F = 11.38, p = .04; ♂SCH: F = 1.17, p = .39; ♀CON: F = 

1.47, p = .21). 

  Whole SCH vs. whole CON 

IL-10 and IFN-γ dominated over the others in envisaging whole blood assay IL-4 variance in 

both schizophrenic and control group (whole CON – IL-10: t = 6.54, p < .001; IFN.γ: t = -

3.05, p = .003; whole SCH – IL-10: t = 3.80, p = .001; IFN-γ: t = -2.12, p =.04). Compared to 

the control group, the influences of IL-10 and IFN-γ were much weaker in the whole 

schizophrenic group. Moreover, TNF-α also played a very important role in this regard in 
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controls, but it was not that case in the schizophrenic group (whole CON – TNF-α: t = 3.30, p 

= .002; whole SCH – TNF-α: t = 1.57, p = .13). 

  Male SCH vs. male CON 

A new model keeping IFN-γ, TNF-α, IL-10, and IL-6 enabled a reliable prediction of whole 

blood assay IL-4 in male schizophrenics and led simply minor changes in control male 

subjects (♂SCH: F  = 2.81, p = .05; ♂CON: F = 19.29, p < .001). It enlightened 71% whole 

blood assay IL-4 variance in control men, but only 27% in schizophrenic males. IL-10 was 

the most important, then IL-6, and finally IFN-γ, in envisaging whole blood assay IL-4 in 

male schizophrenics. The importance magnitudes of IL-6 and IFN-γ only showed a trend to be 

significant (♂SCH – whole blood assay IL-10: t = 2.93, p = .009; IL-6: t = 1.95, p = .07; IFN-

γ: t = -1.78, p = .09). IL-10 was likewise the most dominant contributor of whole blood assay 

IL-4 variance in control males. Besides, TNF-α played an essential role in this regard as well 

(♂CON – IL-10: t = 6.45, p < .001; TNF-α: t = 2.47, p = .02). 

  Female SCH vs. female CON 

Dropping IL-2, both sex hormones, and SHBG improved the predictive reliability of the 

remaining parameters in both female groups (♀SCH: F = 17.52, p < .001; ♀CON: F = 2.50, p 

= .05). The new model could explain 21%, however, 89% whole blood assay IL-4 variance in 

schizophrenic and control females, respectively. For the female controls, IFN-γ made an 

important contribution to whole blood IL-4 in vitro production and TNF-α showed such a 

tendency as well (IFN-γ: t = -2.17, p = .04; TNF-α: t = 2.00, p = .06). It’s noteworthy that the 

new model changed the relative magnitudes of importance among the predictors in female 

schizophrenic patients. TNF-α was the most important factor in the complete model, while 

IL-10 dominated over the remaining parameters in the new one. However, the role of TNF-α 

in envisaging whole blood assay IL-4 in female patients remained noticeable in the new 

model (♀SCH – IL-10: t = 3.77, p = .005; TNF-α: t = 3.22, p = .01). Moreover, cortisol also 

tended to make a clear contribution to whole blood assay IL-4 variance in schizophrenic 

females (t = 1.90, p = .09). 

 

SummarySummarySummarySummary : 

(1) Both IL-10 and IFN-γ were important in forecasting whole blood IL-4 in vitro 

production in both schizophrenic and control group. 

(2) IL-10 was essential for envisaging whole blood assay IL-4 release in both male 

subgroups 
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(3) TNF-α made a significant contribution to whole blood assay IL-4 variance in female 

schizophrenics; nevertheless, no single dominant factor was found in healthy females. 

Lymphocyte data 

The complete model could generally predict lymphocyte IL-4 production reliably in distinct 

groups except the male controls (whole CON: F = 2.93, p = .005; whole SCH: F = 3.84, p = 

.002; ♂SCH: F = 3.60, p = .02; ♀SCH: F = 2.45, p = .04; ♀CON: F = 10.14, p = .02; ♂CON: 

F = 1.23, p = .31). It forecasted 22%, 57%, 72%, 52%, and 96% lymphocyte IL-4 variance in 

the whole control group, the whole schizophrenic group, male schizophrenics, female 

controls, and schizophrenic women, respectively. Various attempts failed to find any proper 

model to envisage lymphocyte IL-4 in control males.  

 

Lymphocyte IL-13 was the most crucial contributor for lymphocyte IL-4 variance in both the 

whole schizophrenic group, the whole control group as well as both female subgroups (whole 

SCH: t = 3.40, p = .001; whole CON: t = 4.55, p < .001; ♀CON: t = 3.02, p = .006; ♀SCH: t 

= 4.19, p = .01). In addition, prolactin and age noticeably contributed to lymphocyte IL-4 

variance in the whole schizophrenics and female patients as well (prolactin: t = 2.17, p = .03; 

age: t = -2.98, p = .04). However, for the male schizophrenics, instead of IL-13 and prolactin, 

IFN-γ and age were the first two dominant influencing factors for lymphocyte IL-4 (age: t  = 

3.00, p  = .01; IFN-γ: t = 2.36, p  = .03).  

 

SummarySummarySummarySummary :  

(1) IL-13 was important in both schizophrenic and control group; additionally, prolactin 

was very important for predicting lymphocyte IL-4 in the whole control group. 

(2) Prolactin played an important role in lymphocyte IL-4 secretion in male controls, 

while IFN-γ and age were essential in this regard in male schizophrenics. 

(3) IL-13 was crucial in both female subgroups. Besides, age also made a significant 

contribution to lymphocyte IL-4 variance in female schizophrenic patients. 

 

6.6.6 IL-10: IL-4, IFN-γ (whole blood) 

Serum data 

In general, the complete model was sufficient to make a reliable prediction of serum IL-10 in 

the whole schizophrenic group and male controls, however, not in the other groups (whole 

CON: F = 20654.58, p < .001; ♂CON: F = 20553.89, p < .001; whole SCH: F = .71, p = .72; 

♂SCH: F = 1.11, p = .42; ♀SCH: F = .66, p  = .74; ♀CON: F = 1.65, p = .15). 
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  Whole SCH vs. whole CON 

No further model out of the parameters assessed in this study was able to predict serum IL-10 

reliably in the whole schizophrenic patients. For the whole controls, IL-6 and IFN-γ were the 

most essential predictors for serum IL-10; together with the others, they could explain 100% 

variance of serum IL-10 (whole CON – F = 20654.58, p < .001; serum IL-6: t = 6.27, p < 

.001; IFN-γ: t = 2.11, p = .04).    

  Male SCH vs. male CON 

In the complete model, IL-6, TNF-α, and age were the first 3 dominant influencing factors for 

serum IL-10 in male controls (adjusted R² = 1.00, F = 20553.89, p < .001; serum IL-6: t = 

6.16, p < .001; TNF-α: t = 2.54, p = .02; age: t = 2.03, p = .05). Nevertheless, no model could 

be found in this study enabling a reliable prediction of serum IL-10 in male schizophrenics.  

  Female SCH vs. female CON 

Similarly, we failed to find any reliable model among the variables included in this study to 

predict serum IL-10 in the schizophrenic females. Nevertheless, dropping IL-2, TNF-α, and 

estradiol improved the model reliability; but it enlightened only 28% IL-10 variance in female 

controls (F = 2.57, p = .03). Among those parameters kept in the new model, SHBG, cortisol, 

IL-6, and IFN-γ significantly contributed to the variance of serum IL-10 in control women 

(SHBG: t = 2.83, p = .009; cortisol: t = -2.31, p = .03 ;IL-6: t = 2.07, p = .05; IFN-γ: t = 2.06, 

p = .05). 

 

SummarySummarySummarySummary : 

(1) Apparently, the important influencing factors of serum IL-10 in all schizophrenic 

subgroups were beyond the scope of our assessments. 

(2) IL-6 and IFN-γ in the whole control group, IL-6 and age in the male controls as well 

as SHBG, cortisol, IL-6, and IFN-γ in healthy women are likely crucial for serum IL-

10 variance. 

Whole blood  assay data 

The complete model was able to make a sufficient prediction for whole blood IL-10 in vitro 

production in the whole schizophrenic group, the whole control group as well as both control 

gender subgroups (whole SCH: F = 5.48, p < .001; whole CON: F = 12.99, p < .001; ♂CON: 

F = 10.56, p < .001; ♀CON: F = 4.21, p = .002). It explicated relatively similar portions of 

whole blood assay IL-10 variance in distinct groups; they were 68%, 65%, 74%, and 68% for 
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the whole schizophrenic patients, the whole controls, male controls, and normal females, 

correspondingly. 

  Whole SCH vs. whole CON 

Both IL-4 and IFN-γ played dominant roles in envisaging whole blood assay IL-10 in the 

whole schizophrenic and control group (whole CON – IL-4: t = 6.54, p < .001; IFN-γ: t = 

5.70, p < .001; whole SCH – IL-4: t = 3.80, p = .001; IFN-γ: t = 2.90, p = .007). Besides, 

SHBG also tended to make a marked contribution to whole blood assay IL-10 release in 

schizophrenia (t = 1.99, p = .06). 

  Male SCH vs. male CON 

As in the whole control group, both IL-6 and IFN-γ took over the dominant roles in predicting 

whole blood assay IL-10 release in male controls, although the model failed to predict whole 

blood assay IL-10 reliably in schizophrenic men (♂CON – IL-6: t = 5.51, p < .001; IFN-γ: t = 

3.25, p = .003; ♂SCH: F = .98, p = .51). 

 

A new model keeping IFN-γ, TNF-α, IL-4, and SHBG led to improvement of the predictive 

power of the model in male schizophrenics (♂CON: F = 31.74, p < .001; ♂SCH: F = 2.94, p 

= .05). It explicated 77%, nevertheless, only 24% whole blood assay IL-10 variance in control 

and schizophrenic men, correspondingly. For both male groups, IL-4 and IFN-γ were the first 

two most essential contributors for whole blood assay IL-10, although the magnitudes of both 

parameters in envisaging IL-10 were much weaker in male patients (♂CON – IL-4: t = 7.14, p 

< .001; IFN-γ: t = 3.93, p < .001; ♂SCH – IL-4: t = 2.81, p = .01; IFN-γ: t = 2.00, p = .06). 

Furthermore, SHBG appeared to play an important role in predicting whole blood assay IL-10 

release in healthy males as well (t = -2.24, p  = .03). 

  Female SCH vs. female CON 

Regardless of in the complete or reduced model, IFN-γ was the dominant contributor for 

whole blood assay IL-10 variance in female controls (complete model – IFN-γ: t = 3.45, p = 

.002; reduced model – IFN-γ: t = 3.36, p = .003). The complete model could explain 68%, 

while the reduced one only explicated 51% whole blood assay IL-10 variance in normal 

women (complete model: F = 4.21, p = .002; reduced model: F = 4.42, p = .002). However, 

the reduced model improved the predictive reliability of all included predictors and explicated 

82% whole blood assay IL-10 variance in female schizophrenics (F = 7.38, p = .04). 

Nevertheless, no single dominant contributor was found in schizophrenic females. 
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SummarySummarySummarySummary : 

(1) IL-4 and IFN-γ were the dominant contributors for whole blood assay IL-10 release in 

the whole schizophrenic group, the whole control group, and male controls. 

(2) IL-4 could have made a significant contribution to whole blood assay IL-10 variance 

in male schizophrenics. 

(3) IFN-γ was the primary factor for predicting whole blood assay IL-10 in female 

controls, while no single dominant one was found in female schizophrenics. 

Lymphocyte data 

The complete model enabled a reliable prediction of lymphocyte IL-10 in all control groups, 

but not in any schizophrenic group (whole CON: F = 5.44, p < .001; ♂CON: F  = 3.36, p = 

.006; ♀CON: F = 3.04, p = .01; whole SCH: F = 1.52, p = .18; ♂SCH: F = 1.00, p = .49; 

♀SCH: F = .52, p = .82).  

  Whole SCH vs. whole CON 

According to the complete model, only IFN-γ and IL-12 made significant contributions to 

lymphocyte IL-10 variance. Nevertheless, a new model dropping IL-4, testosterone, and age 

increased the importance of IL-13 in envisaging lymphocyte IL-10 in healthy subjects, in 

addition to IFN-γ and IL-12 (complete model – IFN-γ: t = 3.14, p = .003; IL-12: t = 3.27, p = 

.002; new model – IFN-γ: t = 3.68, p < .001; IL-12: t = 3.49, p = .001; IL-13: t = -2.31, p = 

.02). Although the new model ameliorated the predicting reliability in schizophrenia (F = 

3.38, p = .04), no single predictor in the new model made a significant contribution except 

SHBG (t = 2.02, p = .05). Besides, the new model only explained 20% lymphocyte IL-10 

variance in schizophrenia, whereas 40% in controls (SCH: F = 2.38, p = .04; CON: F = 7.78, 

p < .001). 

  Male SCH vs. male CON 

A new model keeping IFN-γ, IL-12, IL-13, and cortisol enhanced the predictive reliability of 

the included parameters. It explicated 27% lymphocyte IL-10 variance in male schizophrenics 

(F = 3.18, p = .04). Among those predictors, IL-12 made a significant contribution to 

lymphocyte IL-10 production (t = 2.64, p = .02). On the contrary, IFN-γ played the primary 

role, while IL-12 was only secondary for lymphocyte IL-10 release in schizophrenic men 

(IFN-γ: t = 2.46, p = .02; IL-12: t = 1.86, p = .07). 

  Female SCH vs. female CON 

Among the parameters involved in this study, no model was found to make a reliable 

prediction for lymphocyte IL-10 secretion in female schizophrenics. 
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The complete model exhibited that IL-12 and IFN-γ could significantly predict the 

lymphocyte IL-10 variance in control females. Additionally, IL-13 showed a trend to make a 

remarkable contribution as well (♀SCH – IL-12: t = 2.73, p = .01; IFN-γ: t = 2.09, p = .05; 

IL-13: t = -1.99, p = .06). 

 

SummarySummarySummarySummary :  

(1) IFN-γ and IL-12 were the major contributors of lymphocyte IL-10 release in the whole 

control group, while no single dominant one was found in the schizophrenic group. 

(2) IFN-γ was the primary influencing factor for lymphocyte IL-10 in male controls, 

whereas IL-12 had a noticeable impact on lymphocyte IL-10 in male schizophrenic 

patients. 

(3) IFN-γ and IL-12 were also important for predicting lymphocyte IL-10 in female 

controls. However, the essential factors of lymphocyte IL-10 in female schizophrenics 

remained unknown. 

 

6.6.7 IL-13: IL-4 (lymphocyte) 

 

The complete model facilitated a reliable prediction of lymphocyte IL-13 production in both 

the whole schizophrenic and control group as well as both female groups, however, not both 

male subgroups (whole CON: R² = .26, F = 3.45, p = .001; whole SCH: R² = .48, F = 2.63, p 

= .02; ♀CON: R² = .69, F = 5.22, p  = .001; ♀SCH: R² = .95, F = 7.60, p = .03; ♂CON: F = 

.86, p = .58; ♂SCH: F = 1.03, p = .47).  

 

For the whole controls as well as healthy females, both IL-4 and IFN-γ made significant 

contributions to lymphocyte IL-13 variance, while in the whole schizophrenic group and 

female patients, IL-4 took over the only dominant role in predicting IL-13 release (whole 

CON – IFN-γ: t = 3.51, p = .001; IL-4: t = 3.40, p = .001; ♀CON – IFN-γ: t = 3.34, p = .003; 

IL-4: t = 3.02, p = .006; whole SCH – IL-4: t = 4.55, p < .001; ♀SCH – IL-4: t = 4.19, p = 

.01). Nonetheless, no reliable model within the measurements of this study could be found in 

order to forecast the lymphocyte IL-13 secretion in both male groups.  

 

SummarySummarySummarySummary :  
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(1) For both the whole control group and female controls, IL-4 and IFN-γ were essential 

for forecasting lymphocyte IL-13 production. 

(2) Nevertheless, for both the whole schizophrenic group and female patients, IL-4 was 

the only dominant parameter in this regard. 

(3) For both male subgroups, the essential contributors of lymphocyte IL-13 remained 

unclear. 

 

6.6.8 IL-6: IFN-γ, TNF-α, estradiol, IL-4, IL-2 (whole blood) 

Serum data 

Multiple regression demonstrated that a model including IFN-γ, IL-2, TNF-α, IL-4, IL-10, 

various hormones, SHBG, and age allowed a reliable prediction of serum IL-6 in the whole 

control group and the healthy males, nevertheless, not the remaining groups (whole CON: F = 

22507.37, p < .001; ♂CON: t = 22131.61, p < .001; ♀CON: t = 1.47, p = .21; whole SCH: F = 

.91, p = .55; ♂SCH: F = .85, p = .60; ♀SCH: F = .93, p = .60). 

 

No proper model within our measurements could be generated to predict serum IL-6 reliably 

in all schizophrenic groups. However, the completed model explained 100% variance of 

serum IL-6 in both the whole control and male control group. Among the parameters 

assessed, the individual predictive powers of IL-10 and IFN-γ reached significance levels in 

both control groups stated above (whole CON – IL-10: t = 6.27, p < .001; IFN-γ: t = 2.97, p = 

.004; ♂CON – IL-10: t = 6.16, p < .001; IFN-γ: t = 2.21, p = .04). For female controls, a new 

model dropping TNF-α, IL-4, age, and both sex hormones was able to make a reliable 

prediction for serum IL-6. Nevertheless, it explicated only 23% serum IL-6 variance in female 

controls (F = 2.74, p = .04). Among the predictors, exclusively cortisol make a significant 

contribution to serum IL-6 variance and IL-10 tended to do so in healthy females (cortisol: t = 

2.24, p = .03 ;IL-10: t = 2.00, p  = .06). 

 

SummarySummarySummarySummary :  

(1) The crucial factors involved in serum IL-6 variance remained unknown in all 

schizophrenic subgroups. 

(2) For the whole control group and normal males, IL-10 and IFN-γ were essential to 

predict serum IL-6. Instead, cortisol could play an important role in this regard in 

female controls. 
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Whole blood assay data 

  Whole SCH vs. whole CON 

Comparisons between the whole schizophrenic and control group demonstrated that no single 

parameter made a substantial contribution to whole blood assay IL-6 variance in the whole 

schizophrenic group, while IFN-γ, testosterone, and TNF-α were the crucial influencing 

factors for whole blood IL-6 in vitro production in the whole control group (whole CON – 

IFN-γ: t = 3.09, p = .003; testosterone: t = -2.59, p = .01; TNF-α: t = 2.45, p = .02). In 

addition, IL-2 also showed a tendency to have a noticeable contribution to IL-6 in controls (t 

= -1.81, p = .08). 

  Male SCH vs. male CON 

Dropping IL-10 and prolactin ameliorated the predicting reliability of the model in male 

schizophrenics. The model enlightened 39% whole blood assay IL-6 variance in 

schizophrenic men (F = 2.74, p = .04). Nevertheless, no single parameter was observed to 

make a significant contribution to the variance of whole blood assay IL-6 in schizophrenic 

males.  

 

The new model improved the collective forecasting power of predictors and explained 27% 

whole blood assay IL-6 variance in healthy males (F = 2.51, p = .03). In contrast to the 

findings in male schizophrenics, there were a variety of parameters being able to predict 

whole blood assay IL-6 significantly. They included IFN-γ, IL-2, TNF-α, IL-4, cortisol, and 

estradiol (♂CON – IFN-γ: t = 3.30, p = .003; IL-2: t = -2.81, p = .009; TNF-α: t = 2.68, p = 

.01; IL-4: t = -2.31, p = .03; cortisol: t = -2.01, p = .05; estradiol: t = 1.78, p = .09). 

  Female SCH vs. female CON 

The complete model allowed a reliable prediction of whole blood assay IL-6 in healthy 

female subjects, however, not in the female schizophrenic patients (♀CON: F = 2.99, p = .01; 

♀SCH: F = 1.65, p = .37). A model keeping IFN-γ, TNF-α, IL-4, cortisol, estradiol, and age 

ameliorated the predicting power of the model in schizophrenic women. The new model 

explained 58% and 40% whole blood assay IL-6 variance in schizophrenic and control 

females, correspondingly (♀CON: F = 4.17, p = .003; ♀SCH: F = 4.23, p = .03). The essential 

predictors of whole blood assay IL-6 in schizophrenic women included TNF-α, estradiol, and 

IL-4, whereas those in healthy females contained IFN-γ, cortisol, and age (♀ CON – IFN-γ: t 

= 2.93, p = .007; cortisol: t = -2.67, p = .01; age: t = -2.16, p = .04; ♀SCH – TNF-α: t = 3.62, 

p = .007; IL-4: t = -2.61, p = .03; estradiol: t = -2.81, p = .02). 
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SummarySummarySummarySummary :  

(1) The essential predictors for whole blood assay IL-6 in the whole control group were 

IFN-γ, testosterone, and TNF-α, whereas IFN-γ was the only noticeable contributor in 

this regard in the whole schizophrenic group. 

(2) No single dominant influencing factor was found for male schizophrenics, although 

TNF-α, IL-2, and IFN-γ were shown to be essential in predicting whole blood assay 

IL-6 in normal men,  

(3) TNF-α, estradiol, and IL-4 were important for whole blood assay IL-6 production in 

female schizophrenics. In contrast, IFN-γ, cortisol, and age might play primary roles in 

predicting whole blood assay IL-6 release in female controls. 

 

6.7 Correlations between Th1/Th2 cytokines/ratios and psychopathology in 

schizophrenic subjects 

 

Since so far no theoretical or biological base indicates any relationship between cytokines and 

the scores on various PANSS scales (negative, positive, global), instead of multiple regression 

analysis, the Pearson-correlations between the scores on various PANSS scales and cytokines 

from distinct materials were calculated. The results are summarized in Table 6-7. 

Serum data 

Serum data included 48 schizophrenic patients who had information about serum cytokines, 

Th1/Th2 ratios as well as scores on various PANSS scales. They revealed no noteworthy 

correlation between any Th1/Th2 cytokine or ratio and any subscale of the PANSS. The only 

exception was the correlation between serum IL-2 and the score on the PANSS global 

subscale (PANSS positive – serum IFN-γ: r = .05, p = .73; IL-2: r = .01, p = .97; TNF-α: r = 

.04, p = .80; IL-4: r = -.06, p = .68; IL-10: r = -.02, p = .88; IL-6: r = .07, p = .64; IFN-y/IL-4: 

r = .06, p = .64; IFN-γ/IL-10: r = .10, p = .09; PANSS negative – serum IFN-γ: r = -.01, p = 

.96; IL-2: r = .22, p = .14; TNF-α: r = -.06, p = .71; IL-4: r = .01, p = .93; IL-10: r = -.13, p = 

.39; IL-6: r = .10, p = .50; IFN-γ/IL-4: r = .03, p = .82; IFN-γ/IL-10: r = .09, p = .53; PANSS 

global – serum IFN-γ: r = .15, p = .32; TNF-α: r = .12, p = .40; IL-4: r = -.06, p = .68; IL-10: r 

= .05, p = .75: IL-6: r = .16, p = .29; IFN-γ/IL-4: r = .22, p = .13; IFN-γ/IL-10: r = .13, p = 

.39). Serum IL-2 levels correlated positively with the scores on the PANSS global scale (r = 

.36, p = .01). 
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Table 6-7: The Pearson correlations between the scores on various subscales of the PANSS 
(negative, positive, global) and cytokine levels/productions in serum, PHA-stimulated whole 
blood and lymphocytes in the whole group of schizophrenic patients. 

Summary of correlations between Th1/Th2 cytokines/ratios and psychopathology 

material Serum Whole blood assay lymphocyte 
PANSS PANSS PANSS PANSS 
subscale Positive Negative  Global  Positive Negative  Global  Positive Negative  Global  

IFN-γ .05 .01 .15 -.07 .32² -.05 -.04 -.04 -.11 
IL-12    -.09 -.51* -.44 -.02 .12 .05 
IL-2 .01 .22 .36* -.03 .17 .03    
TNF .04 -.06 .12 .02 .26 .07    
IL-4 -.06 .01 -.06 -.38* -.09 -.23 .06 .09 -.03 
IL-10 -.02 -.13 .05 -.25 .04 -.04 .02 .15 -.01 
IL-13    .14 .49 .56* .06 .06 -.05 
IL-6 .07 .10 .16 .02 .08 .01    
IFN4 .06 .03 .22 .16 .47** .38* .13 -.22 -.01 
IFN10 .10 .09 .13 .07 .42* .15 -.05 -.18 -.03 
IFN13       -.01 -.20 -.07 

N 48 48 48 (18)(13) 
(33)34 

(18)(13) 
(33)34 

(18)(13) 
(33)34 

(43) 47 (43) 47 (43) 47 

Note  IFN4 = IFN-γ/IL-4; IFN10 = IFN-γ/IL-10; IFN13 = IFN-γ/IL-13. 

 

 

Whole blood assay data 

Totally, 34 schizophrenics had data for whole blood cytokine in vitro productions, Th1/Th2 

ratios as well as diverse PANSS scores. Obvious associations were found (1) between whole 

blood IL-4 in vitro productions and scores on the PANSS positive scale, (2) between IFN-

γ/IL-4 ratios and the PANSS negative scores, (3) between IFN-γ/IL-10 ratios and the PANSS 

negative scores as well as (4) between IFN-γ/IL-4 ratios and scores on the PANSS global 

subscale. The corresponding Pearson correlation coefficients were -.38 (p = .03), .47 (p = 

.006), .42 (p = .02), and .38 (p = .03). Furthermore, the relationship between IFN-γ and the 

PANSS negative scale tended to be significant as well (r = .32, p = .06). In addition to those 

significant findings stated above, no further remarkable correlation was observed between any 

other cytokine and score of any PANSS subscale (PANSS positive – whole blood assay IFN-

γ: r = -.07, p = .68; IL-2: r = -.03, p = .89; TNF-α: r = .02, p = .90; IL-10: r = -.25, p = .16; IL-

6: r = .02, p = .91; IFN-γ/IL-4: r = .16, p = .38; IFN-γ/IL-10: r = .07, p = .68; PANSS negative 

– whole blood assay IL-2: r = .17, p = .35; TNF-α: r = .26, p = .14; IL-4: r = -.09, p = .62; IL-

10: r = .04, p = .81; IL-6: r = .08, p = .65; PANSS global – whole blood assay IFN-γ: r = -.05, 
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p = .79; IL-2: r = .03, p = .89; TNF-α: r = .07, p = .69; IL-4: r = -.23, p = .19; IL-10: r = -.04, 

p = .82; IL-6: r = .01, p = .96; IFN-γ/IL-10: r = .15, p = .40). 

 

Moreover, 18 schizophrenic patients had whole blood assay IL-12 data (ELISA) and distinct 

PANSS scores. Thirteen schizophrenics had data regarding whole blood assay IL-13 (ELISA) 

and diverse PANSS scores. However, no noteworthy link was found between whole blood 

assay IL-12 or IL-13 and various PANSS scores except (1) that between scores on the PANSS 

negative scale and whole blood assay IL-12 (r = .51, p < .05) and (2) that between scores on 

the PANSS global scale and whole blood assay IL-13 (r = .56, p < .05). 

Lymphocyte data 

Nevertheless, the results from the 47 schizophrenics who had lymphocyte Th1/Th2 data and 

PANSS scores showed no marked correlation between any lymphocyte cytokine production 

or Th1/Th2 ratio and scores on any PANSS subscale (PANSS positive – lymphocyte IFN-γ: r 

= -.04, p = .81; IL-12: r = -.02, p = .92; IL-4: r = -.06, p = .71; IL-10: r = .02, p = .90; IL-13: r 

= .06, p = .70; IFN-γ/IL-4: r = .13, p = .38; IFN-γ/IL-10: r = -.06, p = .74; IFN-γ/IL-13: r = -

.01, p = .93; PANSS negative – lymphocyte IFN-γ: r = -.04, p = .80; IL-2: r = .12, p = .45; IL-

4: r = .09, p = .55; IL-10: r = .15, p = .34; IL-13: r = .06, p = .70; IFN-γ/IL-4: r = -.22, p = .13; 

IFN-γ/IL-10: r = -.18, p = .24; IFN-γ/IL-13: r = -.20, p = .19; PANSS global – lymphocyte 

IFN-γ: r = -.11, p = .45; IL-12: r = .05, p = .74; IL-4: r = -.03, p = .87; IL-10: r = -.01, p = .97; 

IL-13: r = -.05, p = .74; IFN-γ/IL-4: r = -.01, p = .95 ; IFN-γ/IL-10: r = -.03, p = .85; IFN-

γ/IL-13: r = -.07, p = .62). 

 

Others: In addition, (1) the scores on the CGI at admission correlated positively with serum 

IL-6 levels (N = 39, r = .36, p = .02) and (2) onset age was positively associated with 

lymphocyte IL-4 production and lymphocyte IFN-γ/IL-10 ratio (N = 24; IL-4: r = .41, p = .05; 

IFN-γ/IL-10: r = .41, p = .05). 
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7 Conclusion and discussion 

A summary from epidemiological studies and the relevant literature indicates Th2-shift is 

possibly found in at least a subgroup of schizophrenia. The related literature includes (1) 

distinct immune dysfunctions described in schizophrenia, (2) the correlations between one 

part of schizophrenic patients and viral infections during the pre-, peri-, or postnatal phase, (3) 

the substantial role of the immune system in viral infections, and (4) the relationships between 

Th2-shift and some viral infections. Therefore, this study aimed at investigating Th2-shift in 

schizophrenia. Th2-shift was defined as a reduced IFN-γ/IL-4 or IFN-γ/IL-10 or IFN-γ/IL-13 

ratio, compared to healthy controls.  

 

Additionally, the close relationships between the immune and endocrine system have been 

suggested. Various hormones such as cortisol, prolactin, testosterone, and estradiol were 

shown to influence Th1/Th2 balance. In order to ensure Th1/Th2 imbalance in schizophrenia 

is rather a result of disease process than an outcome of distinct hormones, those hormones 

stated above were also included into the multi-variance analysis as co-variants. The purpose 

to include those endocrinological parameters into the analysis was (1) to control their effects 

on Th1/Th2 cytokines/ratios and (2) to examine their individual contributions towards 

Th1/Th2 imbalance in schizophrenia. 

 

Th2-shift in schizophrenia was explored at serum, whole blood, and lymphocyte three 

different levels. The collected CPDA blood sample was partially used for whole blood assay 

and partially for lymphocyte isolation. Both whole blood and lymphocytes were stimulated in 

vitro with PHA for 46 hours. The analysis methods contained Cytometric Bead Array (CBA), 

Enzyme-linked ImmunoSPOT (ELISPOT), and Enzyme-Linked ImmunoSorbent Assay 

(ELISA). CBA was applied to analyze IFN-γ, IL-2, TNF-α, IL-4, IL-10, and IL-6 in serum 

and stimulated whole blood, ELISA was for the analysis of IL-12 and IL-13 in whole blood 

after 46-hour PHA stimulation, while ELISPOT was used to detect IFN-γ, IL-12, IL-4, IL-13, 

and IL-10 in PHA-stimulated lymphocytes. 

 

The key questions of this study were: (1) whether or not a Th2-shift occurred in any 

schizophrenic subgroup, (2) if it did, which of the epidemiological and clinical parameters 
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could characterize the specific schizophrenic subgroup(s), and (3) if it did, which of those 

immunological and endocrinological parameters measured in this study had contributed to the 

variance of the Th1/Th2 imbalance in schizophrenia. Our hypothesis was that Th2-shift was 

observed in at least a subgroup of schizophrenics. The results provided supporting evidence 

for Th2-shift hypothesis in at least one schizophrenic subgroup. 

 

7.1 Primary findings of this study 

 

The main results regarding Th2-shift in schizophrenia include: 

� Significant serum Th2-shifts including reduced IFN-γ/IL-4 and IFN-γ/IL-10 occurred 

in schizophrenia; 

� The whole female schizophrenics, whereas only one subgroup of male patients 

showed marked serum Th2-shifts. The whole group of male schizophrenics had only 

significantly reduced serum IFN-γ/IL-10 ratios; 

� Serum Th2-shifts seemed to be schizophrenia-specific because no noticeable serum 

Th2-shift was observed in patients with schizophrenia-related disorders. 

� Serum Th2-shift (either reduced IFN-γ/IL-4 or IFN-γ/IL-10) was also observed in 

distinct clinical subgroups except schizophrenics pre-dominated with positive 

symptoms;  

� Whole blood assay Th2-shifts (significantly reduced whole blood assay IFN-γ/IL-4 

and IFN-γ/IL-10 ratio) were related to no response towards treatments; 

� Non-paranoid schizophrenic patients, chronic schizophrenics, patients having positive 

family psychiatric, and patients being drug-free for ≥ 3 months had markedly reduced 

whole blood assay IFN-γ/IL-10 ratios.  

� Early-onset schizophrenics had significantly reduced serum IFN-γ/IL-4 and IFN-γ/IL-

10, nonetheless, increased lymphocyte IFN-γ/IL-4 and IFN-γ/IL-13. Late-onset 

schizophrenics had noticeably decreased lymphocyte IFN-γ/IL-4 and IFN-γ/IL-13, but 

no clear alteration in serum IFN-γ/IL-4 and IFN-γ/IL-10 ratios if compared to normal 

subjects. 

� Chronic schizophrenics had markedly reduced lymphocyte IFN-γ/IL-4 ratios. 

 

Further major outcomes concerning the important influencing factors for the variances of 

diverse Th1/Th2 ratios in schizophrenia are as followed: 
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• IFN-γ, IL-4, IL-10, IL-6, and TNF-α were the essential contributors for (both serum 

and whole blood assay) Th1/Th2 ratios in the whole schizophrenic group; 

• IFN-γ, IL-4, IL-10, SHBG, prolactin, age, IL-6, and testosterone had made substantial 

contributions to the variance of Th1/Th2 ratios in male schizophrenics; 

• IFN-γ, IL-4, IL-10, IL-2, IL-6, cortisol, estradiol, testosterone, prolactin, and age could 

significantly predict Th1/Th2 ratios in schizophrenic women. 

 

In addition, other principal findings regarding the relationships between various cytokine 

levels/productions, Th1/Th2 ratios, and psychopathology include: 

� Scores on the PANSS positive scale were inversely related to whole blood assay IL-4; 

� Scores on the PANSS negative scale correlated negatively with whole blood assay IL-

12, however, positively with IFN-γ/IL-4 and IFN-γ/IL-10 ratio; 

� Scores on the PANSS global scale associated positively with serum IL-2, whole blood 

assay IL-13, and IFN-γ/IL-4 ratio in schizophrenia. 

 

7.2 Comparisons with other cytokine studies 

 

Hitherto, no result was published regarding Th1/Th2 imbalance in schizophrenia. However, 

there are a number of studies investigating cytokine in vivo levels and in vitro productions in 

schizophrenics. In general, the variances of cytokine level/production in serum and in PHA-

stimulated whole blood as well as Th1/Th2 ratios in healthy controls were greater than those 

in schizophrenia and these in males were greater than those in females. 

 

7.2.1 IFN-γγγγ: reduced in vitro IFN-γ in a schizophrenic subgroup 

 

IFN-γ is the major Th1 cytokine. The main biological activity of IFN-γ in the CNS is to 

activate microglia, to induce and up-regulate MHC-II in glial cells. In the peripheral system, 

IFN-γ modulates T-cell growth and functional differentiation as well as inhibits the IL-4-

induced B-cell growth. 

In vivo IFN-γ levels 

Serum IFN-γ has been rarely studied for the reason that its serum level is often under the 

detectable limitations of various available commercial analysis methods. Corresponding to the 

results of Gattaz et al. (1992) and Becker et al. (1990), we found no marked difference 
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between schizophrenics as a whole group and healthy controls. However, if excluding the 

only extreme control case out of the analysis according to the results of cluster-center 

analysis, schizophrenics as a whole group had significantly decreased serum IFN-γ if 

compared to normal controls. Furthermore, if male/female schizophrenic patients were 

compared to controls of their corresponding sex, then only the decrease in female 

schizophrenics reached a significance level, but not that in male patients. 

In vitro IFN-γ productions 

As the vast majority of studies investigating whole blood in vitro IFN-γ production, we also 

found that schizophrenics as a whole group had significantly reduced whole blood assay IFN-

γ productions if compared to healthy subjects (Kaminska et al., 2001; Arolt et al., 2000; 

Rothermundt et al., 1998; Arolt et al., 1997; Wilke et al., 1996; Hornberg et al., 1995; Katila 

et al., 1989; Moises et al., 1985). In addition, the IFN-γ deficit in schizophrenia was observed 

not only at whole blood but also at lymphocyte level. Nevertheless, IFN-γ reductions at both 

whole blood and lymphocyte level also occurred in one subgroup of psychiatric patients 

having schizophrenia-related disorders. It might indicate that decreased whole blood assay 

and/or lymphocyte IFN-γ reduction is likely rather a common deficit among psychiatric 

patients with schizophrenia or schizophrenia-related diseases.  

 

If both genders were compared separately, only the decrease in female schizophrenics 

remained significant. Male schizophrenic patients had lower whole blood assay IFN-γ 

productions than male controls; however, the decrease did not reach any statistic significance 

level. Similar findings exhibited in lymphocyte IFN-γ release; female patients had markedly 

reduced lymphocyte IFN-γ, while the reduction in male schizophrenics was not obvious if 

compared with their healthy counterparts of the same sex.  

 

7.2.2 IL-2: likely decreased in a subgroup of schizophrenics 

 

IL-2 is another typical Th1 cytokine. It is an antigen-unspecific T-cell growth factor in the 

peripheral system. In the CNS, IL-2 is able (1) to modulate NMDA receptor of mesolimibic 

neurons and (2) to damage the blood brain barrier (BBB). 

In vivo serum IL-2 levels 

Reports regarding serum IL-2 level in schizophrenia were not many also due to its 

undetectable in-vivo level in some subjects. Our study included 76 schizophrenics and 75 

controls and had no missing data. Similar to the outcomes of Erbagci et al. (2001), Kaminska 
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et al. (2001), Theodoropoulou et al. (2001), Xu et al. (1994), and Gattaz et al. (1992) , 

nevertheless, in contrast to those of Zhang et al. (2002) and Kim et al. (1998), schizophrenics 

as a whole group were found to have decreased serum IL-2 levels in this study; however, the 

decrease was not significant . As a matter of fact, the study of Zhang et al (2002). included 

only treatment-resistant schizophrenics (criteria: no response to at least 3 anti-psychotics after 

a treatment for ≥ 3 months or over at full dose, equivalent to chlorpromazine 1000 mg/day). 

We did not have any data in this regard of our patients. The study of Kim et al. (1998) 

contained almost 50% (7 of 16) undifferentiated schizophrenics, while no single 

undifferentiated schizophrenic was recruited in our study. Furthermore, another reason why 

serum IL-2 was enhanced in Kim’s study, but not ours, could be that the patients in Kim’s 

study were either drug-naïve or had been drug-free for a longer time (≥ 6 months) than ours (≥ 

3 days). We also found that drug-naïve schizophrenic patients or schizophrenics with longer 

washout periods had higher serum IL-2 than drug-free or patients with shorter washout 

periods, although the increases were not statistically significant. 

In vitro IL-2 secretion 

Similar to the findings of the majority of relevant studies (Kaminska et al., 2001; Kowalski et 

al., 2000; Arolt et al., 2000; Kim et al., 1998; Cazzullo et al., 1998; Rothermundt et al., 1998; 

Ausubel et al., 1997; Wilke et al., 1996; Hornberg et al., 1995; Ganguli et al., 1995; Ganguli 

et al., 1992; Ganguli et al., 1989; Villemain et al., 1987), we showed decreased whole blood 

IL-2 in vitro production in schizophrenia. Nevertheless, the reduction was not statistically 

significant. However, two further studies demonstrated increased whole blood assay IL-2 in 

schizophrenia (Cazzullo et al., 2002; Cazzullo et al., 2001). In these 2 studies, exclusively or 

almost only paranoid schizophrenics were recruited. Our study included nearly 2 to 4 times as 

many paranoid patients as those two studies mentioned above. Paranoid schizophrenics were 

found to produce more IL-2 in stimulated whole blood not only than their non-paranoid 

schizophrenic counterparts but also than normal subjects. However, the increases didn’t reach 

any statistic significance level. The reason for the discrepancy might be that the drug-free-

periods in both studies stated above were much longer (≥ 2 weeks & < 104 weeks) than ours 

(≥ 3 days). We compared schizophrenics with distinct drug-free-periods to controls and found 

the longer the drug-free period, the higher the whole blood IL-2 in vitro production. 

 

Furthermore, as Arolt et al. (2000) reported, we also failed to find any noteworthy correlation 

between IFN-γ, IL-2 whole blood in vitro production with psychopathology measured with 
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the PANSS scale. Nonetheless, a significant correlation between serum IL-2 and scores on the 

PANSS global scale was shown in our schizophrenic patients. 

 

7.2.3 IL-12: reduced in a female patient subgroup? 

 

IL-12 is a Th1-cytokine and important for Th1-differentiation and IFN-γ production. Binding 

of IL-12 to IL-12R induces STAT4, which is particularly crucial for Th1-responses. The 

major biological activities of IL-12 contain inducing IFN-γ, activating NK cells, and 

promoting NK cytotoxicity. 

 

The only report regarding IL-12 in schizophrenia was from Kim et al. (2000). Kim’s study 

contained 25 male schizophrenic patients; 60% of them were drug-naïve and the remaining 

40% patients had been free from neuroleptics for at least 6 months. They found no difference 

in plasma IL-12 between schizophrenics and healthy controls. We also replicated no marked 

disparity between schizophrenics and controls in both whole blood assay and lymphocyte IL-

12 in vitro production. However, if males and females analyzed separately, no noticeable 

disparity in lymphocyte and whole blood assay IL-12 was found between both male groups as 

Kim et al. (2000) reported. Nevertheless, female schizophrenics tended to have lower whole 

blood assay IL-12 production than female controls.  

 

7.2.4 TNF-αααα: unaltered 

 

TNF-α can be produced by both Th1- and Th2-cells. It has effects on various immune and 

non-immune cells. On the endocrine system, TNF-α stimulates hormones such as ACTH, 

CRH, prolactin, but inhibits some others like TSH, FSH, and GH. On the CNS, it may alter 

the integrity of the BBB, stimulate glial cells, trigger apoptosis, and up-regulate different 

adhesion molecules. 

 

In accordance with the relevant studies (Kaminska et al., 2001; Erbagci et al., 2001; Xu et al., 

1994), we likewise found unaltered serum TNF-α level and whole blood TNF-α in vitro 

production in schizophrenia. Nevertheless, Theodoropoulou et al. (2001) reported of 

increased serum TNF-α in schizophrenia. Theodoropoulou’s study included 53 drug-naïve, 

first-episode schizophrenics (ca. 65%) and further 29 being ill for at least 2 years. Our 

schizophrenic subjects exclusively contained less than 17% drug-naïve patients. Drug-naïve 
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schizophrenics were found to have higher serum TNF-α levels than drug-free patients in our 

study, although the enhancement was not statistically significant. Maybe, proportionally less 

drug-naïve schizophrenics in our study was the explanation for the diversity in serum TNF-α 

between our study and that of Theodoropoulou et al. (2001). Furthermore, Naudin et al. 

(1997) also found that enhanced serum TNF-α in 18 chronic schizophrenics (illness duration: 

range 5 – 20 years, M = 14.1 years); besides, 15 of them (81%) were medicated. However, no 

medicated schizophrenic patient was included in our study. We found that patients being 

drug-free for ≤ 1 week had higher serum TNF-α levels than those being free of neuroleptics 

for at least 3 months, although the increase was not significant. Likely, medication was the 

cause leading to the discrepancy between our study and that of Naudin et al. (1997). 

 

7.2.5 IL-4: increased serum IL-4 in female schizophrenics 

 

IL-4 is the key Th2 cytokine. IL-4 is important not only for Th2-differentiation but also for its 

development. IL-4 stimulates the synthesis of IgG1 and IgE, but inhibits that of IgG3, IgG2a, 

and IgG2b in activated B-cells. In addition, IL-4 exerts inhibitory effects on the pro-

inflammatory cytokines such as IL-1β, IL-6, IL-8, and TNF-α as well as IL-2-induced NK cell 

activation. 

 

Reports concerning IL-4 in schizophrenia are rare. In line with the finding regarding paranoid 

schizophrenics in the study of Kaminska et al. (2001), we found no alteration in serum IL-4 

level in either the whole group of schizophrenic patients or only paranoid schizophrenics, if 

compared to normal controls. However, we found that female schizophrenics had clearly 

higher serum IL-4 levels than their normal female counterparts. On the contrary, male patients 

had reduced serum IL-4 if compared to healthy males. Nevertheless, the decrease in serum IL-

4 failed to reach any statistic significance level. 

 

Corresponding to the result of Wilke et al. (1996), our data showed that schizophrenics as a 

whole group had increased whole blood IL-4 in vitro production than healthy subjects, despite 

of their genders. However, the augmentations in IL-4 whole blood in vitro production were 

statistically insignificant. 

 

7.2.6 IL-10: unchanged 
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IL-10 can be secreted by Th1- and Th2-cells in humans. It is found as cytokine synthesis 

inhibitory factor and able to inhibit diverse immune cells, especially on T, B, NK, and 

monocytes/macrophages. On T cells, IL-10 inhibits the synthesis of Th1 cytokines such as 

IFN-γ, IL-2, and TNF-β. 

 

In line with most findings regarding whole blood IL-10 in vitro production, we found that 

schizophrenics as a whole group and healthy controls released similar amounts of IL-10 

(Cazzullo et al., 2002; Kaminska et al., 2001; Rothermundt et al., 1998). Hitherto, two studies 

examined serum IL-10 in schizophrenics; one found an increase in serum IL-10 in 

schizophrenics (Maes et al., 2002) and the other showed a reduction in paranoid patients 

(Kaminska et al., 2001). Our results revealed that schizophrenics (ca. 2/3 of them paranoid 

schizophrenics) as a whole group had decreased serum IL-10. However, if excluding these 

two extreme cases (one control and one schizophrenic), schizophrenics had higher serum IL-

10 levels than normal subjects, although the increase did not reach any statistic significance 

level. 

 

7.2.7 IL-6: possibly increased serum IL-6 in a schizophrenic subgroup 

 

IL-6 is released by many cell-types including Th2-cells. But the major producing cells are 

monocytes/macrophages, fibroblasts, and endothelial cells. IL-6 is involved in various 

immune functions such as B- and cytotoxic T-cell differentiation, acute-phase reactions, and 

hematopoiesis. In addition, IL-6 exerts distinct effects on the CNS including activating the 

hypothalamic-pituitary-adrenal axis. 

 

In accordance with the majority of reports concerning serum IL-6, our schizophrenics as a 

whole group had also higher serum IL-6 levels than controls if excluding extreme cases 

(Zhang et al., 2002; Kaminska et al., 2001; Maes et al., 2000; Lin et al., 1998; Naudin et al., 

1997; Maes et al., 1996; Naudin et al., 1996; Xu et al., 1994; Maes et al., 1994; Ganguli et al., 

1994; Shintani et al., 1991).  

 

In fact, most of the studies stated above investigated only a schizophrenic subgroup with a 

certain clinical feature. For example, Kaminska et al. (2001) investigated only paranoid 

schizophrenics in their study. The studies of Zhang et al. (2002) and Maes et al. (2000) only 

contained treatment-resistant schizophrenics. These 2 studies of Naudin et al. (1996; 1997) 
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solely examined schizophrenics under neuroleptic medication and chronic patients, 

respectively. The study of Xu et al. (1994) merely included schizophrenics under neuroleptic 

medication and control subjects. The schizophrenic patients in the study of Shintani et al. 

(1991) were in remission. Lin et al. (1998) found that enhanced serum IL-6 was shown 

exclusively in treatment-resistant schizophrenics, but not in non-treatment-resistant patients. 

Furthermore, elevated serum IL-6 was only found in schizophrenics younger than 35 years 

old in the study of Maes et al. (1994). Therefore, taken together, increased serum IL-6 is 

supposed to be observed rather in one schizophrenic subgroup than the whole schizophrenic 

patients. 

 

To date, solely Kaminska et al. (2001) reported of whole blood IL-6 in vitro production in 

paranoid schizophrenia; they found no alteration. However, our results revealed that 

schizophrenia as a whole group had highly reduced whole blood IL-6 in vitro production 

compared with controls. If only compared paranoid schizophrenics to healthy subjects, the 

reduction in whole blood IL-6 in vitro production only showed a trend to be significant. 

 

7.2.8 IL-13: decreased in a female schizophrenic subgroup? 

 

IL-13 is another major Th2 cytokine. The receptor of IL-13  (IL-13R) shares IL-4Rα, IL-2Rγ, 

and STAT6 with IL-4R. Thus, IL-13 and IL-4 have functional similarities such as inducing 

IgE switching in B-cells. But the principal functional difference between both cytokines lies 

in their effects on T cells. In contrast to IL-4, IL-13 has barely effects on T-cells because T-

cells don’t express IL-13R.  

 

So far, no report regarding IL-13 in schizophrenia was published. We found that 

schizophrenics as a whole group had significantly reduced lymphocyte IL-13 in vitro 

production. However, at whole blood level, no marked diversity was found among those 

schizophrenics and controls whose IL-13 productions in PHA-stimulated whole blood were 

over the detectable limitation of ELISA. Nevertheless, there were clearly more controls than 

schizophrenics having undetectable whole blood assay IL-13. Besides, if both genders were 

analyzed separately, female schizophrenics exhibited a tendency to have higher whole blood 

IL-13 in vitro production than their healthy female counterparts. 

 

7.3 Interpretations of results regarding Th1/Th2 imbalance in schizophrenia 
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In this study, Th2-shift was examined not only in the whole schizophrenic group but also in 

diverse schizophrenic subgroups because schizophrenia has been regarded as a very 

heterogeneous disease (Riley, 2004). Th1/Th2 imbalance described in the whole group of 

schizophrenic patients doesn’t hint at mandatory alterations in all subgroups with diverse 

epidemiological or clinical features. The magnitudes of Th1/Th2 imbalance could vary with 

their characteristic features. Since distinct schizophrenic subgroups to identify in order to 

improve therapeutic effects is one of the goals in schizophrenia research, examining Th1/Th2 

imbalance in diverse schizophrenic subgroups seems to be requisite. However, due to the 

limit of space, this report concerning statistic findings focuses on gender subgroups. The 

other important reason for focusing on gender schizophrenic subgroups was that the role of 

gender in the structures and functions of the CNS has been increasingly emphasized 

(Halbreich and Kahn, 2003; Hafner, 2003; Zubieta et al., 1999). Therefore, the test results for 

diverse schizophrenic clinical subgroups were only briefly presented. Nevertheless, they were 

also discussed in the following sections. 

 

7.3.1 Serum Th2-shift found in most schizophrenic subgroups 

 

Clear reduction in both serum IFN-γ/IL-4 and IFN-γ/IL-10 was observed in many 

schizophrenic subgroups as patients were hospitalized. Th2-shift in serum could represent 

only one of many common dysfunctions that led to schizophrenic symptoms or deterioration 

of symptoms in subjects with schizophrenia. Schizophrenia is regarded as a heterogeneous 

disorder with diversity in symptoms, course, prognosis, and probably etiology . Th2-shift per 

se could indicate a heterogeneous abnormality because either reduction in IFN-γ or elevation 

in IL-4, IL-10 or both could, but not necessarily, give rise to Th2-shift.  

A few schizophrenic subgroups without serum Th2-shift 

Although schizophrenics as a whole group had clearly reduced serum IFN-γ/IL-4 and IFN-

γ/IL-10 ratio (Th2-shifts), there were also some schizophrenic subgroups in whom no 

noticeable serum Th2-shift (either reduced IFN-γ/IL-4 or IFN-γ/IL-10) was observed. Those 

subgroups include one subgroup of male patients, schizophrenics pre-dominated with positive 

symptoms, schizophrenic patients being drug-free for at least 3 months, and late-onset 

patients. However, if examining the means, standard deviations, and case numbers of those 

schizophrenic subgroups stated above with care, it might be more proper to claim that (1) 
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schizophrenics pre-dominated with positive symptoms did not have clear serum Th2-shifts 

and (2) one subgroup of male schizophrenics had even increased serum Th1/Th2 ratios.  

  Schizophrenic patients dominated with positive symptoms 

The reason why schizophrenic patients dominated with positive symptoms had no Th2-shift is 

unknown. So far, no direct evidence in this regard was reported. Depressive or psychotic 

symptoms are well-known side effects of IFN therapy (Dobmeier et al., 2000). One decade 

ago, Inglot et al. demonstrated that the schizophrenic patients with high IFN response had 

dominant positive symptoms (Inglot et al., 1994). Nevertheless, in the patients with low IFN 

response dominated rather the negative symptoms. Paranoid schizophrenia was found to have 

significantly increased serum IL-6 and IFN-γ, but reduced IL-2, IL-4, and IFN-γ in PHA-

stimulated or Newcastle virus-induced in vitro production (Kaminska et al., 2001). 

Accordingly, Th1-shift, Instead of serum Th2-shift, is likely observed in one subgroup of 

paranoid schizophrenia since increased serum IFN-γ was found in paranoid schizophrenia 

(Kaminska et al., 2001). Positive symptoms might dominate paranoid schizophrenia in the 

earlier period of hospitalization, but both are not identical (Loza et al., 2003). That subjects 

with schizophrenia dominated with positive symptoms had no clear Th2-shift was not the 

result of any endocrinological parameters measured in this study. Schizophrenic patients 

dominated and those not dominated with positive symptoms had comparable cortisol, 

prolactin, estradiol, testosterone, and SHBG levels. Schizophrenic patients not dominated 

with positive symptoms had, however, noticeably reduced serum IFN-γ/IL-4 and IFN-γ/IL-10, 

but not patients dominated with positive symptoms if compared with healthy subjects. Both 

schizophrenic subgroups had significantly lower testosterone levels than normal subjects. 

Schizophrenics dominated with positive symptoms had even lower testosterone than their 

schizophrenic counterparts not dominated with positive symptoms. Lower testosterone levels 

are supposed to favor Th2-shift since testosterone was found to inhibit Th2 cytokines (Huber 

et al., 1999). In contrast to schizophrenic patients not dominated with positive symptoms, 

those patients dominated with positive symptoms had no Th2-shift, despite of having lower 

testosterone levels. Schizophrenics not dominated with positive symptoms had extremely 

higher prolactin levels than controls, but not patients dominated with positive symptoms. 

Prolactin was found to shift the development of T-helper subpopulations towards Th1 

(Matalka, 2003b). Schizophrenic patients dominated with positive symptoms had no Th2-

shfit, despite of having lower prolactin levels than their schizophrenic counterparts not 

dominated with positive symptoms. Even prolactin exerts its effects on IFN-γ not 

monotonically as Matera and Mori (2000) reported, the outcomes regarding Th1/Th2 



 

152 

imbalance in schizophrenic subgroups dominated and not dominated with positive symptoms 

remained similar after considering the influences of prolactin.  

 

In addition, there were proportionally more females in the subgroup dominated with positive 

symptoms than control subjects. The probability for females to have Th2-shift is higher 

(Giron-Gonzalez et al., 2000). So “gender” must be not the cause of lacking Th2-shift in 

schizophrenics dominated with positive symptoms. Th1/Th2 imbalance could be not involved 

in the occurrence of positive symptoms. 

  One subgroup of male schizophrenic patients 

Further dividing the male patient subgroup resulted in one subgroup having significantly 

reduced serum IFN-γ/IL-4 and IFN-γ/IL-10 ratio and another subgroup having enhanced both 

Th1/Th2 ratios. However, none of the epidemiological and endocrinological measures 

obtained in this study was able to clearly distinguish both subgroups of male schizophrenic 

patients from each other. The subgroup of male patients having enhanced Th1/Th2 ratios was 

more heterogeneous than the other one with Th2-shifts regarding their Th1/Th2 ratios. There 

could exist one subgroup of male schizophrenics having a clear Th1-shift. Typical Th1 

cytokines such as IFN-γ and IL-2 were ever found to be enhanced in schizophrenia or diverse 

schizophrenic subgroups in some studies (Zhang et al., 2002; Ebrinc et al., 2002; Kaminska et 

al., 2001; Kim et al., 2000; Hornberg et al., 1995). Among them, only Kim et al. (2000) 

investigated male schizophrenic patients. On the contrary, the major Th2 cytokines such as 

IL-4 and IL-10 were decreased in PHA-stimulated whole blood and serum, respectively 

(Kaminska et al., 2001). Whether or not one subgroup of male schizophrenics has Th1-shift 

requires further examination because the results from comparing both major cytokines of 

Th1/Th2 systems separately could be different from those investigating the ratios between 

both key cytokines.  

Clear, but heterogeneous serum Th2-shift in female schizophrenia 

In addition, although the female schizophrenic patients as a whole group had markedly 

reduced serum IFN-γ/IL-4 and IFN-γ/IL-10, they could be further divided into 2 very 

heterogeneous subgroups. The discrepancy between these two subgroups of female patients 

was even greater than that between the whole female schizophrenic group and healthy 

women. Similar to those two subgroups of male schizophrenics, no variable assessed in this 

study enabled a clear differentiation between both subgroups of female schizophrenic 

patients. Th2-shift in this study, defined as significantly reduced ratio between two major 

Th1/Th2 cytokines, could be raised by either (1) only markedly reduced serum IFN-γ or (2) 
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solely significantly enhanced IL-4, IL-10 or (3) both. The causes of Th2-shifts in female 

subjects with schizophrenia might contain at least 2 of the 3 possibilities stated above. Thus, 2 

very heterogeneous subgroups could be gained within the female schizophrenic patients. In 

order to detect whether Th2-shift in female schizophrenic patients was caused by different 

abnormalities, multiple regression was conducted. Multiple regression analysis is used to 

examine the inter-correlations between a criterion and various predictors. The results 

regarding the causes of Th2-shift in female people with schizophrenia were discussed in a 

latter section. 

More reduction in IFN-γ/IL-10 than in IFN-γ/IL-4 

Moreover, the magnitudes of Th2-shifts were different in various subgroups as well as in 

distinct Th1/Th2 indicators (IFN-γ/IL-4, IFN-γ/IL-10). Generally, the reduction in serum IFN-

γ/IL-10 was greater than that in serum IFN-γ/IL-4 ratio in most schizophrenic subgroups. The 

reason why the reduction in serum IFN-γ/IL-10 was normally more severe than that in serum 

IFN-γ/IL-4 could be that there are more cell types producing IL-10 than those producing IL-4 

(Yssel et al., 1993; Yssel et al., 1992). The chance to enforce the positive feedback for IL-10 

production was, hence, also increased. These findings further suggest that deficits in 

schizophrenia or in at least one subgroup of schizophrenics could be not limited within the 

Th1/Th2 systems. Schizophrenia has been suggested as a disorder with multiple abnormalities 

(Miyamoto et al., 2003). The other IL-10 producing cells such as Th0 or Th3 or 

macrophages/monocytes could have been involved in Th1/Th2-imbalance in at least one 

subgroup of schizophrenia. The exceptions were schizophrenics having positive family 

psychiatric history, patients with more severe symptoms at admission (Clinical Global 

Impressions CGI  score ≥ 6), at discharge (CGI score ≥ 5) as well as those patients with barely 

changed symptoms after 8-week-treatment (mean CGI score difference between admission 

and discharge = .52, SD = .60).  

  Exception 1: schizophrenic patients having positive family psychiatric history 

Schizophrenic patients with positive family psychiatric history had not only less significantly 

reduced serum IFN-γ/IL-10 but also IFN-γ/IL-4 than their schizophrenic counterparts with 

negative family history. The explanation might be that there were proportionally more women 

in the schizophrenic subgroup with negative family history than in the one with positive 

family history. In contrast to male subjects, the Th2-system usually dominates over the Th1 in 

females (Giron-Gonzalez et al., 2000).  

  Exception 2: schizophrenic patients having severe symptoms or non-responders 
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The outcomes from diverse CGI-variables showed that around 2/3 of the schizophrenics 

having severe symptoms at admission and discharge were males. More than 70% of the 

schizophrenic patients who did not respond to antipsychotic treatment were men.  

 

The schizophrenic subgroups having higher CGI scores at admission and at discharge as well 

as the subgroup having less improvement in symptom severity (smaller CGI difference) 

contained proportionally more males if compared to the corresponding schizophrenic 

subgroup with the opposite clinical feature. The schizophrenic subgroup having smaller CGI-

difference had particularly more men than the subgroup having greater CGI-difference 

between admission and discharge. Compared to females, males usually tend to have a shift 

towards Th1 (Giron-Gonzalez et al., 2000). Thus, those subgroups having more severe 

symptoms and the small CGI-difference schizophrenic subgroup had less pronounced 

reduction in both serum IFN-γ/IL-4 and IFN-γ/IL-10. Similar to the finding of Maes et al. 

(Maes et al., 2002), we found that patients having small CGI-difference between admission 

and discharge (non-responders) had relatively enhanced serum IL-10 (reduced serum IFN-

γ/IL-10 ratios) if compared to healthy subjects. 

 

The findings stated above could indicate that the sources of Th2-shift in the schizophrenic 

patients having severe symptoms (CGI scores ≥ 5) could be rather principally limited within 

the Th1/Th2-systems because they had comparable reductions in serum IFN-γ/IL-4 and IFN-

γ/IL-10. The sources of Th2-shift in those schizophrenic subgroups mentioned above could be 

originated from the common producing cells of IL-4 and IL-10 in serum – Th2 and/or mast 

cells. Hence, although IL-10 is produced by much more cell-types in serum than IL-4 (Yssel 

et al., 1993; Yssel et al., 1992), the magnitudes of relative elevation in both Th2 cytokines 

were similar. In contrast, the low CGI patients or neuroleptic responders (higher CGI 

difference) likely had further deficits in other IL-10 producing systems such as Th0, Th3, 

macrophages/monocytes, or others. Therefore, the extent of the relative increase in serum 

IFN-γ/IL-10 was higher than that in IFN-γ/IL-4. Further deficiency in other IL-10-producing 

systems could lead to even more overproduction in IL-10 relative to IFN-γ. As Maes et al. 

(2002) suggested, schizophrenia may be accompanied by an activation of the monocytic and 

Th2 system as well as various alterations in the Th1 lymphocyte subpopulation. Macrophage-

T-lymphocyte was once postulated to explicate how the schizophrenic symptoms occur 

(Smith, 1992). According to the macrophage-T-lymphocyte theory, chronic macrophage 
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activation with subsequent failure of activated macrophages to properly control T-lymphocyte 

secretion of IL-2 and IL-2R is proposed as the basic biological mechanism of schizophrenia. 

 

7.3.2 Th2-shift = likely characteristic for schizophrenia 

 

Schizophrenia-specific: reduced both serum Th1/Th2 ratios and whole blood assay IFN-γ/IL-10 

Markedly reduced serum IFN-γ/IL-4, IFN-γ/IL-10, and whole blood assay IFN-γ/IL-10 ratio 

were possibly schizophrenia-specific since they were not observed in psychiatric patients 

having schizophrenia-related disorders. Schizophrenics might have either pro-Th2 or contra-

Th1 or both factors, whereas patients having schizophrenia-related disorders possibly had 

either contra-IL-4 or pro-IFN-γ or both factors in serum and PHA-stimulated whole blood. So, 

people with schizophrenia had enhanced lymphocyte Th1/Th2 ratios, but significantly 

reduced serum und whole blood assay Th1/Th2 ratios. On the contrary, patients with 

schizophrenia-related disorders had reduced lymphocyte, whole blood assay, and serum 

Th1/Th2 ratios. However, the extents of reduction in whole blood assay and serum Th1/Th2 

ratios were less evident than those in PHA-stimulated lymphocytes. Those pro- or contra-Th1 

or Th2 factors could be endocrinological parameters such as prolactin, cortisol, testosterone, 

estradiol, and SHBG since they were reported to have impacts on Th1/Th2 cytokines 

(Protonotariou et al., 2004; Dimitrov et al., 2004; Elenkov, 2004; Matalka, 2003b; Xie et al., 

2002; Elenkov and Chrousos, 2002; Miyaura and Iwata, 2002; Angele et al., 2001; Giltay et 

al., 2000; Franchimont et al., 1998). Nevertheless, both patient groups were relatively 

comparable in terms of those endocrinological variables mentioned above. The differences 

between both patient groups could be, hence, either raised by other unknown factors or 

disease process.  

 

At lymphocyte levels, schizophrenic patients had significantly reduced IL-4 and IL-13, while 

patients having schizophrenia-related disorders had remarkably decreased IL-10. However, 

both patient groups had noticeably reduced IFN-γ if compared with healthy subjects. It could 

hint at that altered lymphocyte IL-4 and IL-13 are rather characteristic for schizophrenia, but 

changed IL-10 is more possibly found in schizophrenia-related disorders. Reduced IFN-γ 

could be just a common deficit of patients with schizophrenia and schizophrenia-related 

diseases. That is, the disparity in Th1/Th2 imbalance between patients with schizophrenia and 

those having schizophrenia-related disorders might be caused by the abnormalities in the Th2-

sytem, but not in the Th1-subset. 
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Th2-shift defined as reduced IFN-γ/IL-4 ratio in PHA-stimulated whole blood was lately 

described in insomniac men (Sakami et al., 2002). Our study showed no significant reduction 

in IFN-γ/IL-4 ratio obtained from PHA-stimulated whole blood in the whole schizophrenic 

group. Among diverse schizophrenic subgroups, no subgroup but those having severe 

symptoms either at admission or discharge (CGI score ≥5) as well as those non-responders 

(less symptom improvement after 8-week-treatment) showed Th2-shift in PHA-stimulated 

whole blood. However, those 3 CGI schizophrenic subgroups in our study showed 

additionally Th1/Th2 aberrations if compared to insomniac men. They include significantly 

reduced IFN-γ/IL-4 and IFN-γ/IL-10 in serum as well as IFN-γ/IL-10 in PHA-stimulated 

whole blood. Besides, in our study, significantly reduced IFN-γ/IL-4 in stimulated whole 

blood in those CGI schizophrenic subgroups resulted from simultaneously considering the 

impacts of different hormones, whereas that of Sakami et al. (2002) did not. Lately, chronic 

alcohol use was reported to shift the development of T-helper lymphocytes towards Th2, 

using IgE and IFN-γ as Th2 and Th1 indicator (Starkenburg et al., 2001; Dominguez-Santalla 

et al., 2001). In our study, schizophrenic patients who had alcohol abuse or addiction were 

excluded. Thus, Th2-shift in schizophrenia found in this study was not a consequence of 

chronic alcohol consumption. Th2-shift was also found in phorbol myristate acetate (PMA)- 

and ionomycin-stimulated whole blood in autistic children (Gupta et al., 1998). The study of 

Gupta et al. (1998) and ours differ from each other in many aspects such as mitogen(s), 

mitogen concentration, incubation duration, and many other procedures. Most important of 

all, we calculated the ratio between IFN-γ and IL-4 to determine the balance between Th1 and 

Th2, but not Gupta et al. (1998). As shown in our results, the outcomes from examining IFN-γ 

and IL-4 separately and those from simultaneously considering both IFN-γ and IL-4 as a ratio 

could be different. Moreover, Gupta et al. (1998) did not demonstrate significantly reduced 

serum IFN-γ/IL-4 or IFN-γ/IL-10 or decreased IFN-γ/IL-10 in PHA-stimulated whole blood 

in autistic children. Reduction in whole blood assay IFN-γ/IL-4 doesn’t mean a necessary 

decrease in serum IFN-γ/IL-4 because different endocrinological and immunological 

components are involved in Th1/Th2 balancing in serum and PHA-stimulated whole blood. 

So, significantly reduced IFN-γ/IL-4, IFN-γ/IL-10 in serum und IFN-γ/IL-10 in whole blood 

after 46-hour-PHA-stimulation could be rather specific for schizophrenia. 

Lymphocyte IFN-γ/IL-10: no relationship with schizophrenia 
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Lymphocyte IFN-γ/IL-10 appeared not to be associated with any schizophrenic subgroup due 

to none of the schizophrenic subgroups showing any alteration in this regard. Altered IFN-

γ/IL-10 in stimulated leukocytes could still occur in schizophrenia. Our study won’t be able to 

offer any evidence in this respect. However, our results implicate that changes in IFN-γ/IL-10 

obtained from serum und stimulated whole blood in schizophrenics could rather an interactive 

effect of diverse components at least between the immune and endocrine system than just a 

simple deficit at lymphocyte level. In fact, a few years ago a bio-pathogenetic hypothesis in 

schizophrenia was postulated (Altamura et al., 1999). According to the bio-pathogenetic 

hypothesis, dysfunctions in both the hypothalamic-pituitary-adrenal axis (HPA) and the 

inflammatory response system, especially cytokines, in schizophrenia were claimed. 

Endocrinological parameters such as prolactin, cortisol, estradiol, testosterone, and the sex 

hormone binding globuline (SHBG) could have been involved in the pathogenesis of 

schizophrenia. Those hormones were also measured in this study. The effects of those 

endocrinological parameters were discussed in a latter section “7.4. Possible causes of Th2-

shift in schizophrenia”. 

Reduced lymphocyte IFN-γ/IL-4: shared by patients with schizophrenia and related disorders  

Older schizophrenic subgroups such as chronic and late-onset schizophrenia were found to 

have significantly reduced lymphocyte IFN-γ/IL-4, especially chronic schizophrenics. Patients 

with schizophrenia-related diseases also showed a tendency to have reduced lymphocyte IFN-

γ/IL-4 ratio. It might indicate that within the very heterogeneous patient group with 

schizophrenia-related disorders likely existed one subgroup sharing the deficit, reduced 

lymphocyte IFN-γ/IL-4, with chronic and late-onset schizophrenia. Some studies investigated 

Th1/Th2 balance in peripheral blood mononuclear cells and found that the magnitude of Th2-

shift seems to correlate positively with age (Protonotariou et al., 2004; Gasparoni et al., 2003; 

Sandmand et al., 2002). Age could have contributed to lymphocyte Th2-shift in chronic and 

late-onset schizophrenia. However, age is not the only cause of Th2-shift in chronic and late-

onset schizophrenia since lymphocyte Th2-shift remained after the effect of age was 

controlled. Th2-shift in PHA-stimulated lymphocytes in chronic and late-onset schizophrenia 

was not the result of age-induced alterations in various endocrinological parameters, either. 

The isolated lymphocytes examined in this study were not exposed to any endocrinological 

parameter as they were stimulated to secrete cytokines. Furthermore, in addition to reduced 

lymphocyte IFN-γ/IL-4, noticeably decreased IFN-γ/IL-4 and IFN-γ/IL-10 in serum und in 

PHA-stimulated whole blood were also observed in chronic schizophrenia, but not in 

schizophrenia-related disorders. 
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7.3.3 Gender differences in Th1/Th2 imbalance by schizophrenics 

 

More marked serum Th2-shift in schizophrenic females 

Female schizophrenics as a whole group had clear serum Th2-shifts, whereas rather only one 

subgroup than the whole male schizophrenics had Th2-shifts if both serum IFN-γ/IL-4 and 

IFN-γ/IL-10 taken into account. As a whole group, male schizophrenics had merely 

noticeably reduced serum IFN-γ/IL-10 ratios. In addition, there could be one subgroup of 

male schizophrenic patients having enhanced serum IFN-γ/IL-4 and IFN-γ/IL-10 ratios, but 

not female patients. However, those epidemiological and clinical data obtained in this study 

failed to characterize this subgroup of male patients. Furthermore, female patients had 

remarkably lower serum IFN-γ, but significantly higher serum IL-4 levels than their healthy 

female counterparts. In contrast, the whole male schizophrenic patients and normal males did 

not have obviously distinguishable serum IFN-γ and IL-4 levels. Those findings from multi-

variance-analysis presented above appeared to suggest that the paradigm of Th1/Th2 

antagonism (Wang et al., 2002) was observed in female schizophrenic patients, but not in 

male patients. Thus, significantly reduced serum IFN-γ in female schizophrenics seemed to be 

caused by noticeably enhanced IL-4. It’s noteworthy that both significantly decreased IFN-γ 

und increased IL-4 in female schizophrenic patients were the results from comparing to the 

IFN-γ and IL-4 of healthy females separately. They are not the results from comparing the 

ratios between IFN-γ and IL-4. Thus, the outcomes from multi-variance analysis actually 

indicated that the paradigm of Th1/Th2 antagonism is likely to find in at least one subgroup of 

female patients, but not necessarily in the whole female schizophrenic group.  

 

On the contrary, no significantly elevated serum IL-4 and no reduced IFN-γ in male 

schizophrenic patients don’t obligatorily hint at “no Th1/Th2 antagonism in male patients”. 

The reason is that multi-variance-analysis serves to examine the diversities in certain 

variables between/among distinct groups, but not to detect the relationships among various 

parameters within the same group as in the case of multi-regression. The differences in serum 

IFN-γ/IL-4 and IFN-γ/IL-10 between male and female schizophrenic patients could be raised 

by testosterone and estradiol because females usually have higher estradiol and lower 

testosterone levels than males. Testosterone was found to be more inhibitory to Th2 

cytokines, whereas estradiol rather promoted them (Giltay et al., 2000; Huber et al., 1999). 

Males were, thus, found to have higher Th1/Th2 ratios, but females were shown to have lower 
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ones (Giron-Gonzalez et al., 2000). Therefore, Th2-shifts including decreased IFN-γ/IL-4 and 

IFN-γ/IL-10 were more explicit in female patients than in male schizophrenics.  

Different influencing factors for serum Th1/Th2 imbalance 

The results from multiple-regression showed which of IFN-γ, IL-2, TNF-α, IL-4, IL-10, IL-6, 

cortisol, prolactin, estradiol, testosterone, SHBG, and age could significantly predict the 

values of Th1/Th2 ratio (IFN-γ/IL-4 or IFN-γ/IL-10) within the same group of subjects and 

which could not. That is, which variables have more and which have less influence on the 

Th1/Th2 balance.  

 

Multiple regression of serum Th1/Th2 ratios demonstrated that male schizophrenics had 

highly enhanced influences from IL-4, IL-10, and IFN-γ. In contrast, female patients had 

markedly reduced impacts from IL-4, IL-10, and IFN-γ on their Th1/Th2 ratios if compared to 

their healthy counterparts of the same sex. Additional essential influencing factors in male 

schizophrenics included SHBG and IL-10 for IFN-γ/IL-4 as well as age and prolactin for IFN-

γ/IL-10. However, those important contributors for IFN-γ/IL-10 in female patients were 

estradiol, SHBG, IL-4, IL-2, IL-6, prolactin, and cortisol, while no single remarkable 

predictor was found for IFN-γ/IL-4.  

 

Instead of both testosterone and estradiol, SHBG was important to predict IFN-γ/IL-4 in male 

schizophrenic patients. So far, no direct evidence showed a connection between SHBG and 

IFN-γ/IL-4. However, SHBG binds to both testosterone and estradiol (Anderson, 1974). Even 

if SHBG doesn’t have direct influence on Th1/Th2 ratios, it’s still possible for SHBG to exert 

its impacts indirectly through both sex hormones on Th1/Th2 balance. Our finding regarding 

SHBG implicated that it was rather the balance between estradiol and testosterone essential 

for generating IFN-γ/IL-4 in male schizophrenic patients, but not testosterone and estradiol 

separately. If combined the findings from both serum IFN-γ/IL-4 and IFN-γ/IL-10 in male 

schizophrenic patients together, they seem to indicate additional deficits in the hypothalamic-

pituitary-adrenal (HPA) axis and gonadal functions. Deficiency in the pituitary-gonadal 

function was already described over 2 decades ago in male schizophrenic patients (Brambilla, 

1980). In female schizophrenic patients, there were even more influencing factors contributed 

to the variance of IFN-γ/IL-10 than those in male schizophrenic patients. Except testosterone 

and TNF-α, the other immunological and endocrinological variables measured in this study 

were significantly correlated to IFN-γ/IL-10. For the variance of IFN-γ/IL-4, no single factor 
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assessed in our study alone was able to predict the measure of IFN-γ/IL-4 significantly. 

However, all the predictors together enabled a reliable prediction of IFN-γ/IL-4. The reason 

was that among those predictors IFN-γ, IL-2, TNF-α, IL-4, IL-10, IL-6, prolactin, cortisol, 

testosterone, estradiol, SHBG, and age existed very tangled inter-correlations in female 

subjects with schizophrenia. That is, serum Th1/Th2 imbalance in female patients was more a 

collective effect of many factors than of a few important factors. Another alternative 

explanation for the wide-spreading influencing factors for Th2-shift in female subjects with 

schizophrenia could be that Th2-shift in female schizophrenics was not homogeneous. 

Multiple regression concerning Th1/Th2 ratios in female schizophrenic patients also showed 

no or less evident correlations between IFN-γ, IL-4, IL-10, and IFN-γ/IL-4, IFN-γ/IL-10. 

These outcomes actually indicated that within the whole female schizophrenic group likely 

existed at least 3 different subgroups; one subgroup has only highly enhanced IL-4, a second 

one has only markedly reduced IFN-γ, and a third one had increased IL-4, IL-10 as well as 

decreased IFN-γ. So, if all 3 subgroups of female schizophrenic patients mixed together, the 

associations between the major Th1/Th2 cytokines and Th1/Th2 ratios become less clear. It 

could be the reason why there were so many important influencing factors or no clearly 

dominant influencing factor in female schizophrenics. Different influencing factors could 

have contributed to the variance of Th1/Th2 ratio in distinct subgroups. We also detected 2 

very heterogeneous subgroups within the whole group of female patients. That schizophrenia 

is etiologically heterogeneous was already suggested long time ago (Kinney and Matthysse, 

1978). 

More Th1/Th2 cytokines less sufficiently explained in male schizophrenic patients 

Multiple regression analysis at single cytokine level revealed that in male schizophrenics, (1) 

less than 40% of the IFN-γ, IL-12, TNF-α, and IL-4 variance could be explained and (2) those 

of IL-2, IL-6, and IL-10 were not explicable through the other parameters assessed in this 

study. Nevertheless, in female patients, the variance of IL-12 could not be explicated 

sufficiently, while those of TNF-α, IL-6, and IL-10 were unexplainable through the remaining 

variables measured. The variables including IFN-γ, IL-2, TNF-α, IL-4, IL-10, IL-6, prolactin, 

cortisol, estradiol, testosterone, SHBG, and age were only able to explain about 1/3 of the 

variance of the major Th1/Th2 cytokines including IFN-γ, IL-4, and IL-10 in male subjects 

with schizophrenia. 

 

Taken together, similar to the findings of Pellegrini et al. (Pellegrini et al., 2003), our results 

lead us to the conclusion that the physiological network of Th1/Th2 cytokines regulating T-



 

161 

helper polarization may be different in men and women. The diversities in this regard is 

schizophrenia appeared to be likely due to dysfunction in other Th1/Th2 related systems even 

greater and more complicated. Apart from testosterone and estradiol, there are many other 

factors believed to be able to induce gender difference in Th1/Th2 balance. One such example 

is progesterone; progesterone receptor-A/-B ratios were higher in the brains of males than in 

those of females at all ages (Camacho-Arroyo et al., 2003). Gender and endogenous sex 

steroids are, thus, thought to be responsible for neuroendocrine-immunological sexual 

dimorphism (Chisari et al., 2000). 

 

7.3.4 Sources of Th2-shift in schizophrenia: beyond lymphocyte and whole blood 

 

In our study, Th1/Th2 cytokines were examined at three different levels - serum, PHA-

stimulated whole blood and lymphocytes. The findings from lymphocyte and whole blood 

were resulted from 46-hour stimulation with PHA; comparisons of the outcomes from both 

analysis materials offered a possibility to examine whether Th1/Th2 imbalance in 

schizophrenia was an aberration within the lymphocyte system or rather a deficit involved 

additional factors such as the endocrine system. Comparing the findings from serum to those 

from PHA-stimulated whole blood could further confirm whether the sources of Th2-shift in 

schizophrenia were limited within the whole blood system or more. The serum Th1/Th2 ratios 

likely represented an in-vivo equilibrium between both subsets of T-helper cells and others. 

However, the Th1/Th2 ratios in PHA-stimulated whole blood were rather the in vitro 

approximations of the Th1/Th2 balancing in vivo after 46-hour PHA-stimulation. The crucial 

diversities between the in-vitro whole blood and the in-vivo serum system were manifold. (1) 

First, the endocrinological (and other) system(s), due to excluding the involvement of the 

CNS and others, did not react dynamically, but likely remained constant as cytokines were 

produced in the whole blood system. (2) Secondly, different mitogens were shown to have 

distinct effects on lymphocytes (Sofuni and Yoshida, 1992; Stiernberg et al., 1987; Freund 

and Blair, 1982). The unspecific effects of mitogen such as PHA and those of natural stimuli 

in vivo might be different on diverse cell types or distinct cytokines. These two major reasons 

may have led to the discrepancies between the findings from serum and whole blood assay.  

 

In the whole schizophrenic group and most schizophrenic subgroups, lymphocyte Th1/Th2 

ratios including IFN-γ/IL-4, IFN-γ/IL-10, and IFN-γ/IL-13 were averagely enhanced if 

compared to normal subjects. The data from PHA-stimulated whole blood revealed, 
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nevertheless, opposite outcomes. Those findings indicated that the sources of Th2-shift in 

schizophrenia probably lied outside of lymphocytes. Th2-shift in schizophrenics is still likely 

to observe at leukocyte level. However, this study could not offer any evidence in this regard 

since only lymphocytes were analyzed. Comparisons between the results from serum and 

whole blood assay data among various schizophrenic subgroups revealed that Th2-shifts were 

more pronounced in serum than in whole blood assay. In addition to those reasons stated in 

the previous paragraph, they also suggested that there were more “pro-Th2” and/or “contra-

Th1” factors in the in-vivo system than in the in-vitro whole blood system. That is, factors 

outside of the lymphocyte and whole blood system had noticeably contributed to the serum 

Th2-shift in schizophrenia. Schizophrenia has been implicated as much more likely to be a 

heterogeneous disorder resulting from interactions between multiple factors (Kirch, 1993). 

Our study also confirmed the statement of Kirch (1993). Some of those pro- and contra-Th1 

or Th2 factors could be parameters from the endocrine system such as diverse hormones. The 

impacts of distinct hormones on Th1/Th2 balance were discussed in the section “7.4. Possible 

causes of Th2-shifts in schizophrenia”.  

 

7.3.5 Other essential factors than those measured involved in Th1/Th2 balancing in 

schizophrenic patients 

 

Comparisons between the serum and whole blood assay data resulted from multiple 

regression in the whole schizophrenic and control group further implicated that there might be 

some other factors involving in Th1/Th2 balancing in stimulated whole blood. Those factors 

were, nevertheless, not examined in this study. Thus, the explainable portions of whole blood 

assay Th1/Th2 ratios in schizophrenics through the predictors included were lower than those 

in serum. However, it’s not that case in normal subjects.  

 

The data from both male subgroups also indicated the possible involvement of other crucial 

factors than those assessed in this study in the IFN-γ/IL-4 balancing in stimulated whole 

blood in schizophrenic men. That’s why only barely 40% IFN-γ/IL-4 variance in stimulated 

whole blood, but over 90% serum IFN-γ/IL-4 variance was explainable through predictors 

included in this study in male schizophrenics. Contrarily, data regarding IFN-γ/IL-10 revealed 

that further factors took part into the process of serum IFN-γ/IL-10 balancing in controls; 

however, they were not investigated in this study and likely missing or “not required” in the 

balancing of serum IFN-γ/IL-10 in male schizophrenics. Therefore, 73% whole blood assay 
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IFN-γ/IL-10 variance, nonetheless, only 56% serum IFN-γ/IL-10 variance in male controls 

was explicable. But in schizophrenic males, the explainable portions of serum and whole 

blood assay IFN-γ/IL-10 were 98% and 80%, respectively. The lymphocyte data of male 

subjects further confirmed the insufficiencies of those variables assessed in this study to 

envisage the variances of Th1/Th2 ratios in schizophrenia. So, the explicable portions of 

lymphocyte IFN-γ/IL-4, IFN-γ/IL-10, and IFN-γ/IL-13 in schizophrenic men were 46%, 37%, 

and 45%, whereas those in male controls were 96%, 61%, and 81%, correspondingly.  

 

Nevertheless, the comparisons between both female subgroups showed that there could be 

further factors which were involved in serum IFN-γ/IL-4 balancing in healthy females, but not 

“required/present” in IFN-γ/IL-4 balancing in female schizophrenics. Hence, the explainable 

parts of serum and whole blood assay IFN-γ/IL-4 in female controls were 76% and 67%, 

while those in female patients were 88% and 86%, correspondingly. Those factors could be 

not as many and important as those in male patients; so, the diversities in the explainable 

portions of Th1/Th2 ratios were smaller between both female groups. Nevertheless, those 

parameters included in the multiple regression model enabled a sufficient and reliable 

prediction of serum IFN-γ/IL-10 variance in female patients.  

 

The possible candidates for other influencing factors of Th1/Th2 imbalance in schizophrenia 

than those hormones measured in this study could be catecholamines, progesterone, 

melatonin, dihydroepiandrostene sulphate (DHEAS), and human growth hormone (Yamashita 

et al., 2000; Petrovsky and Harrison, 1998). Catecholamines were lately found to inhibit Th1 

cytokines such as IL-2, IL-12, and TNF-α, but to enhance Th2 cytokines like IL-4, IL-10, and 

IL-6 (Qiu et al., 2003). Progesterone was shown to be able to suppress Th1, but to enhance 

Th2 development directly (Miyaura and Iwata, 2002). Melatonin, the main hormone of the 

pineal gland, was found to be abnormal in schizophrenia (Jiang and Wang, 1998) and to have 

impacts on Th1/Th2 cell mediated immune responses (Raghavendra et al., 2001; Kuhlwein 

and Irwin, 2001). 

 

7.3.6 Th2-shift = function of disease process, age-related changes, anti-psychotic 

medication, distinct hormones etc. 

Disease process 

Th2-shift appeared to be rather a result of disease process since drug-naïve schizophrenics 

also showed reduced serum and whole blood assay Th1/Th2 ratios, although drug-naïve 
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patients and healthy subjects were relatively comparable in terms of their ages, cortisol, 

prolactin, estradiol, testosterone, and SHBG levels. Additionally, many schizophrenic 

subgroups demonstrated reduced serum and whole blood assay IFN-γ/IL-4 and IFN-γ/IL-10 

ratios after the effects of age and distinct hormones were controlled. Disease process per se 

could have contributed to Th2-shift in schizophrenia.  

Neuroleptic treatments 

Neuroleptic treatment could alter IFN-γ/IL-4 ratio since (1) Song et al. (2000) showed a bi-

modal effect of clozapine on whole blood IFN-γ in vitro production and (2) Cazzullo et al. 

(2002) reported of time-dependent actions of risperidone on IFN-γ and IL-4 in vitro secretion. 

Our data implicated that anti-psychotics appeared to suppress both serum IFN-γ and IL-4 in 

schizophrenics. The reason was that pre-medicated schizophrenics had lower serum IFN-γ, 

IL-4, and serum Th1/Th2 ratios than drug-naïve patients. However, the repressive effects of 

neuroleptics on serum IL-4 seem to be weaker than those on IFN-γ because the reductions in 

both serum Th1/Th2 ratios were more evident in schizophrenics with pre-medication than in 

drug-naïve patients. That is, neuroleptic medication could have contributed to serum Th2-shift 

in schizophrenia. Nevertheless, neuroleptics appeared to have promoting effects on whole 

blood assay IFN-γ, but suppressive effects on whole blood assay IL-4 and IL-10 in favor of 

Th1-shift. So, pre-medicated patients had higher whole blood assay IFN-γ and Th1/Th2 ratios, 

however, lower IL-4 and IL-10 productions than drug-naïve schizophrenics. Diverse effects 

of neuroleptics on the same cytokine at serum and whole blood level were described; for 

example, clozapine was found to reduce IL-10 in vitro production (Song et al., 2000), 

however, to increase serum IL-10 (Maes et al., 2002). The effects of (some) neuroleptics on 

Th1/Th2 balance might be mediated primarily by prolactin (Meaney et al., 2004) and 

indirectly by gonadal hormones (Smith, 2003). The effects of these hormones on Th1/Th2 

ratios were discussed in “ 7.4. Possible causes of Th2-shift in schizophrenia”. 

  

Nevertheless, serum Th2-shifts in schizophrenia were not only the effects of neuroleptic 

treatment since pre-medicated schizophrenics still exhibited tremendously decreased serum 

Th1/Th2 ratios after excluding the effects of prolactin, a crucial indicator of neuroleptic 

medication, and testosterone. In addition, drug-naïve patients also had reduced serum 

Th1/Th2 ratios. 

Age-related abnormalities 

Younger schizophrenic subgroups such as drug-naïve and early-onset schizophrenics 

exhibited increased lymphocyte IFN-γ/IL-4 (Th1-shift), while older subgroups like chronic 
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and late-onset patients showed decreased lymphocyte IFN-γ/IL-4 ratios (Th2-shift). An age-

related shift towards Th2 in peripheral blood mononuclear cells was lately described 

(Sandmand et al., 2002; Karanfilov et al., 1999). The productions of the major Th2 cytokines 

IL-4 and IL-10 were increased with age, nevertheless, no change was found in Th1 cytokines 

such as IFN-γ and IL-12 (Plackett et al., 2003). The lymphocyte Th1/Th2 imbalance in 

schizophrenia could be partly ascribed to the age-component. However, serum Th2-shift 

remained clearly observable in diverse schizophrenic subgroups after the effect of age was 

controlled. 

Hormones 

Distinct hormones were shown to have impacts on Th1/Th2 balance (Dimitrov et al., 2004; 

Zhang et al., 2004; Skjolaas et al., 2002; Huber et al., 1999). The influences of diverse 

hormones on Th1/Th2 balance were elucidated in a latter section “7.4 Possible causes of Th2-

shift in schizophrenia”. 

 

7.3.7 Whole blood assay Th2-shifts reflect no response towards treatment? 

 

In addition, data from diverse CGI (Clinical Global Impressions) subgroups pointed out that 

there was at least one schizophrenic subgroup whose symptoms at discharge remained as 

severe as they were hospitalized, despite of 8-week-treatment. This subgroup (ca. 1/3 – 2/5 of 

the whole schizophrenic subjects) had noticeably reduced whole blood assay Th1/Th2 ratios 

as well as, to a less extent, decreased serum Th1/Th2 ratios. Marked shifts in both whole 

blood assay Th1/Th2 ratios in the schizophrenic subgroup with low CGI-difference might 

implicate that Th2-shift in PHA-stimulated whole blood was either stronger and/or 

maintained longer (≥ 46 hrs) than the other subgroup having high CGI-difference. Findings 

from serum/whole blood assay IL-10 and IL-4 also supported both explanations. The 

schizophrenics with low CGI-difference had higher whole blood IL-4 and IL-10 in vitro 

productions, nonetheless, lower serum IL-4 and IL-10 levels than their schizophrenic 

counterparts with high CGI-difference. The average whole blood assay IL-4 of the 

schizophrenics with low CGI-difference was even higher than that of normal subjects. 

Another alternative explanation is that there could be further essential, however, unknown 

“pro-Th2” and/or “contra-Th1” factors that triggered Th2 overproductions in stimulated 

whole blood. But those factors did not exist and/or worked differently due to interactions with 

other influencing factors in serum. Those factors could be diverse endocrinological 

parameters such as cortisol, prolactin, testosterone, and estradiol. Those hormones were 
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shown to influence Th1/T2 balance (Dimitrov et al., 2004; Elenkov, 2004; Skjolaas et al., 

2002; Huber et al., 1999). They were discussed in the next sections. Until now, no 

examination investigates the relationship between treatment resistance in schizophrenia and 

Th1/Th2 balance. However, serum IL-10 was found to be elevated in schizophrenic patients 

resistant to treatment with neuroleptics (Maes et al., 2002). In line with the finding of Maes et 

al. (2002), our schizophrenic patients resistant towards neuroleptic treatments also showed a 

relative enhancement in serum IL-10. 

 

7.4 Possible causes of Th2-shift in schizophrenia 

 

In the following sections, the results from multi-variance analysis and multiple regression 

analysis were combined. Multiple regression analysis was used to detect the inter-variable 

relationships within the same group of subjects. The inter-variable correlations between the 

criterion Th1/Th2 ratios (either IFN-γ/IL-4 or IFN-γ/IL-10) and the predictors including IFN-

γ, IL-2, TNF-α, IL-4, IL-10, IL-6, prolactin, cortisol, testosterone, estradiol, SHBG, and age 

were evaluated in schizophrenia and controls separately. They serve to examine the 

importance of each predictor in forecasting the measure of Th1/Th2 ratio within the same 

group. According to the findings from multiple regression, which of those predictors 

mentioned above significantly predicted the criterion (IFN-γ/IL-4, IFN-γ/IL-10) could be 

determined for schizophrenia and controls separately. The outcomes from multi-variance 

analysis revealed in which of the predictors and criteria stated above differentiated 

schizophrenic patients significantly from their healthy counterparts. If a predictor is essential 

in envisaging the variance of Th1/Th2 ratio(s) within the same group and is significantly 

different between schizophrenics and healthy subjects, then the predictor might be the cause 

of the Th1/Th2 imbalance in schizophrenia.  

 

The findings discussed here are mainly originated from the serum data because they reflect 

the real, complex inter-correlations among those parameters stated above in vivo. In addition, 

serum Th2-shift was observed in the majority of schizophrenic subgroups examined in this 

study, but not whole blood assay or lymphocyte Th2-shift. Secondarily, whole blood assay 

data are considered for the following reasons: (1) the data from whole blood assay are better 

approximations of settings in vivo than lymphocyte data. (2) The serum and whole blood 

assay data were analyzed by the same analysis method (CBA). The comparability between the 

data from serum and whole blood assay is, hence, higher than those between serum or whole 
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blood assay and lymphocyte data. (3) Whole blood assay data could offer further information 

regarding reactions of Th1/Th2 and other system(s) in vitro towards short-term stimulation. In 

contrast, sera were obtained after at least 3-day washout period and likely gave a view at a 

different stage of Th1/Th2 balancing from that shown in whole blood assay.  Figure 7-4 gives 

a glance at the key causes of Th2-shifts in schizophrenia. 

 

7.4.1 The whole group of schizophrenic patients 

 

Disrupted Th1/Th2 antagonism in the whole schizophrenic group 

The serum data in both schizophrenia and controls did show a noticeable Th1/Th2 antagonism 

as described by Mosmann and Coffman (1989). That is, IFN-γ positively correlated to the 

IFN-γ/IL-4 and IFN-γ/IL-10 ratio, while both IL-4 and IL-10 were negatively related to IFN-

γ/IL-4 and IFN-γ/IL-10, respectively. The antagonism between IFN-γ and IL-4 as well as 

between IFN-γ and IL-10 in PHA-stimulated whole blood was still clearly to observe in 

healthy controls. In schizophrenia, the extent of antagonism between whole blood assay IFN-γ 

and IL-4 seemed to be reduced after 46-hour PHA-stimulation, but not that between IFN-γ 

and IL-10. Data from PHA-stimulated lymphocytes demonstrated antagonism between IFN-γ 

and IL-4 or IL-10 or IL-13 in healthy subjects. However, the antagonistic relationship 

between lymphocyte IFN-γ and IL-10 appeared to be disrupted in the whole schizophrenic 

group. 

Less or insufficiently or unreliably explained Th1/Th2 ratios/cytokines in schizophrenia 

In general, the explainable parts of both Th1/Th2 ratios through the predictors included in this 

study were similar in serum and PHA-stimulated whole blood in controls. Nevertheless, the 

explicable portion of the IFN-γ/IL-4 variance in stimulated whole blood was exclusively 

about 50% of that in serum IFN-γ/IL-4 ratio in schizophrenics. The explainable part of the 

whole blood assay IFN-γ/IL-10 variance was only around 80% of that in serum IFN-γ/IL-10 

in schizophrenic patients. In addition, the predictors assessed in this study could either not 

sufficiently or not reliably envisage serum cytokine levels such as IFN-γ, IL-4, IL-10, and IL-

6 in schizophrenia. On the contrary, it was not that case in controls.  

Summarized findings from multiple regression and multi-variance analysis 

Multiple regression analysis from both serum and whole blood assay data demonstrated that 

the major causes of Th1/Th2 imbalance in schizophrenia were primarily from IFN-γ, IL-4, 

and IL-10. IL-6, TNF-α, and age might be additionally involved in the whole blood assay 
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Th1/Th2 balancing in schizophrenics. The results at single cytokine level further pointed out 

that cortisol, prolactin, and testosterone/SHBG could indirectly play a role in Th2-shift in 

schizophrenics since they were significantly related to IFN-γ, IL-4, and IL-10.  

 

 
Figure 7-4: The major causes of Th1/Th2 imbalance in schizophrenia (the red arrows: 
specific for female schizophrenics; the blue arrows: characteristic for male 
schizophrenics; the black arrows: likely common for both genders). 

 

 

Schizophrenics as a whole group had generally lower serum cytokine levels, Th1/Th2 ratios, 

SHBG, testosterone, and cortisol, however, higher prolactin levels than healthy controls. If 

excluding extreme values out of analysis, the whole schizophrenic group had significantly 

decreased serum IFN-γ, noticeably enhanced serum IL-4 and IL-6. The abnormalities 

described above and eventually Th2-shifts in schizophrenia could be caused by deficiencies in 

at least one of the following biological regulatory circuits: (1) the typical Th1/Th2 

development/regulation pathways, (2) the newly described APC-IL-6/SOCS/CIS pathways 

(Diehl and Rincon, 2002), (3) the cytokines-HPA-prolactin-Th1/Th2 loop, (4) the cortisol-

HPA-prolactin-Th1/Th2 circuit, and (5) the prolactin-SHBG-testosterone-Th1/Th2 

connections. In addition, (6) CD30 was lately described as an important co-stimulator 

molecule being able to regulate the balance between Th1 and Th2 (Pellegrini et al., 2003). 
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Possible causes of Th2-shift in schizophrenia 

Deficits in the IL-6/SOCS/CIS pathways  

Since both key cytokines of the Th1/Th2 systems and serum IL-6 were remarkably altered in 

schizophrenia, they implicated the cause(s) of Th2-shifts was/were likely located at a site 

where both systems were involved. Newly, Diehl and Rincón (2002) suggested that APC-

derived IL-6 has two faces on Th1/Th2 differentiation. On one hand, IL-6 is capable of 

activating Nuclear Factor of Activated T cells (NFAT), indirectly increasing IL-4 gene 

transcription and IL-4 production. On the other hand, APC-derived IL-6 is also able to inhibit 

IFN-γ releases through inducing SOCS1, SOCS3, and CIS of the SOCS/CIS family along the 

JAK1/STAT3 pathway. These two pathways are independent to each other. This route of the 

APC IL-6 to inhibit IFN-γ is not related to IL-12 or IL-4 (Diehl and Rincon, 2002). Since 

serum IL-6 was enhanced in the whole schizophrenic group in addition to IFN-γ and IL-4, 

possibly the APC IL-6 pathways to inhibit IFN-γ and to promote IL-4 were malfunctioning. 

Deficiencies in the IL-12/STAT4/erm/T-bet &/or IL-4/STAT6/GATA3/c-maf pathway  

Another alternative site(s) being able to cause abnormalities in both Th1/Th2 systems could 

be within the typical Th1/Th2 differentiation pathways because activating either pathway 

promotes the development of its own system, but inhibits that of the other. The classical Th1 

developmental/regulatory route is through the IL-12/STAT4/erm/T-bet pathway (Agnello et 

al., 2003; Rao and Avni, 2000). The typical differentiation pathway for the Th2 system is via 

the IL-4/STAT6/GATA3/c-maf loop (Agnello et al., 2003; Rao and Avni, 2000). Particularly, 

T-bet and GATA-3 are major inducers of Th1 and Th2 differentiation by controlling the 

productions of their respective cytokines. Additionally, they are also involved in the 

commitment and stable maintenance of the Th1 and Th2 phenotypes (O'Garra and Arai, 

2000). Therefore, maybe one or more components of these two classical pathways were 

defective in schizophrenia.  

CD30 & Th1/Th2 balance 

The CD30 antigen is a member of the TNF receptor superfamily (Gruss et al., 1994). The 

function of CD30 in mature peripheral T lymphocytes is unclear, but there is evidence that 

CD30 can act as a signal transduction molecule (Pellegrini et al., 2003). Ligation of CD30 by 

its ligand CD30L leads to rapid activation of the transcription factor NF-κB (linked to Bcl 2 

expression) in T cells (McDonald et al., 1995). NF-κB was found to bind to IL-4 promoter in 

vivo upon T cell activation and is, therefore, directly involved in IL-4 transcription (Li-Weber 

et al., 2004). Besides, signaling through CD30 promotes the development of Th2 cells (Del 

Prete et al., 1995). So, CD30 is generally used as a marker for Th2 cell populations (Okumura 
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et al., 1999). Although the detailed working mechanisms remained unknown, CD30 likely 

triggered mechanisms which may regulate (1) the physiological balance between Th1 and Th2 

functions by integrating Th1 and Th2 specific cytokine production including IFN-γ, IL-4, IL-

10, IL-2, IL-12p40, IL-12p70, IL-5 and (2) Bcl 2 molecule expression (Pellegrini et al., 

2003). Th2-shifts in schizophrenia could be raised by abnormality in CD30 since Th2-shifts in 

schizophrenia in this study resulted rather from over-production in IL-4 and IL-10 as well as 

from under-secretion of IFN-γ. 

 Diverse hormones and Th1/Th2 balance 

In addition, the lymphocyte Th1/Th2 ratios including IFN-γ/IL-4, IFN-γ/IL-10, and IFN-γ/IL-

13 were slightly enhanced in schizophrenia. However, the serum and whole blood assay IFN-

γ/IL-4 and IFN-γ/IL-10 were (significantly) decreased if compared to healthy subjects. They 

indicated that some unknown “contra-Th1” and/or “pro-Th2” factors possibly had suppressed 

Th1 and/or promoted Th2 cytokines in serum and PHA-stimulated whole blood. Candidates 

being able to influence Th1/Th2 balance in schizophrenia might be prolactin, cortisol, and 

SHBG/testosterone according to the results of multiple regression and MANCOVA. The 

reason was that they were found to have impacts on Th1/Th2 balance and clearly 

distinguishable between schizophrenics and controls.  

Prolactin & Th1/Th2 

Highly elevated prolactin seemed to be an overwhelming aberration in schizophrenics. 

Enhanced prolactin levels in schizophrenic patients may be the results of anti-psychotic 

medication (Meaney et al., 2004). Nevertheless, prolactin abnormality was already described 

in un-medicated, drug-naive schizophrenics about one decade ago (Abel et al., 1996; Van 

Cauter et al., 1991). Hyperprolactin in schizophrenia is not an obligatory consequence of 

neuroleptic treatments. Apart from neuroleptic treatments, there are some other factors such 

as stress or cytokines (e.g. IFN-γ and TNF-α) that could have impacts on prolactin release. 

IFN-γ and TNF-α have the potential to act directly on anterior pituitary cells to slow the rate 

of prolactin release (Abel et al., 1996; Van Cauter et al., 1991; Walton and Cronin, 1990). The 

hyperprolactin in our patients could be partly due to decreased TNF-α and, particularly, IFN-

γ. But both IFN-γ and TNF-α have no effect on the inhibition of prolactin release mediated by 

dopamine (Abel et al., 1996; Van Cauter et al., 1991; Walton and Cronin, 1990). The 

dopaminergic tuberoinfundibular pathway is responsible for dopamine-mediated prolactin 

release; this pathway is inhibited in acute stress, leading to increased prolactin levels. Over 2 

decades ago, a model of schizophrenic susceptibility to environmental stress was constructed 

(Leff et al., 1983). The stress could be either acute stress in the form of life events and/or 
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chronic stress in the form of the emotional atmosphere in the patient's home (Leff, 1981).  

Increased prolactin levels in schizophrenia could be raised partially by acute stress. Another 

possible rationale for the hyperprolactin in our schizophrenics could be reduced cortisol since 

cortisol was newly found to have inhibitory effects on prolactin releases from pituitary (Hyde 

et al., 2004; Uchida et al., 2004). 

 

Regardless of the resources of increased prolactin, prolactin was reported to amplify IFN-γ 

release (Hyde et al., 2004; Matalka, 2003a; Breidthardt et al., 2002; Rovensky et al., 1999). It 

was ever regarded as a Th1 phenotype due to its ability to activate IFN-γ and interact with IL-

12 (Matera, 1997). Our schizophrenic patients had, despite of having higher prolactin levels 

than controls, reduced serum and whole blood assay Th1/Th2 ratios. The results implicated 

that the prolactin pathway to promote IFN-γ release could be somehow deficient, so leading to 

IFN-γ deficiency. Moreover, the impacts of prolactin on IFN-γ could be not monotonic. A 

high concentration of prolactin likely leads to rather a decrease than an increase of IL-2-

induced IFN-γ synthesis (Matera and Mori, 2000). So, the tremendously reduced IFN-γ in 

schizophrenia could be induced by hyperprolactin. In addition, activation of T lymphocytes 

mediated by the interaction of prolactin, prolactin receptors, and the JAK2/STAT5 pathways 

leads to production and release of various Th2 cytokines including IL-4, IL-5, IL-6, and IL-10 

(Vera-Lastra et al., 2002). Enhanced serum IL-4 and IL-6 in our schizophrenic patients was 

possibly, at least in part, attributed to hyperprolactin. Hence, it could be that either down-

regulation in the IFN-γ promoting route and/or up-regulation in the Th2 cytokine-promoting 

pathway via prolactin occurred in schizophrenia. In addition, SOCS3 can be enhanced and 

CIS can be induced by prolactin (Dogusan et al., 2000). Highly reduced IFN-γ in 

schizophrenics could be additionally raised by hyperprolactinism via SOCS3 and CIS.  

 

Prolactin appears to be able to exert its impacts on the Th1/Th2 system via distinct routes. 

Nevertheless, excluding the effect of prolactin, Th2-shifts in schizophrenia remained clear, 

especially, in serum.  

Cortisol, SHBG/testosterone & Th1/Th2 

Corresponding to the outcomes of Taherianfard and Shariaty (2004), we found that 

schizophrenics had lower cortisol, total testosterone, and estradiol levels. But the diversity in 

estradiol between schizophrenics and controls did not reach any significance level in our 

study. However, the sex-hormone binding globulin (SHBG), an agonist of estradiol, was 

found to be extremely lower in schizophrenics than in healthy subjects. Both markedly 
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reduced cortisol and SHBG appeared to be age-inconsistent abnormalities since they were 

lately found to vary positively with age in normal subjects (Purnell et al., 2004; Elmlinger et 

al., 2002).  

 

Cortisol in humans can act as more than just stress hormones; they were newly shown (1) to 

have a significant influence on neuroenergetics as they could modulate activity-related 

changes in brain glycogen metabolism (Allaman et al., 2004) and (2) to be involved in 

modulation of hippocampal neuron excitability, memory formation, and neurodegeneration 

(Davies and MacKenzie, 2003). Moreover, DHEA/cortisol ratios (DHEA = 

dehydroepiandrosterone) were implicated to be able to identify a particularly impaired 

subgroup of medicated chronic schizophrenia (Harris et al., 2001). An attenuated cortisol 

response towards psychosocial stress was described in diverse patient groups (Buske-

Kirschbaum et al., 2003).  We also found markedly reduced cortisol levels in schizophrenia as 

a whole group if compared with healthy subjects. Decreased cortisol levels in our 

schizophrenic patients could be raised by psychosocial stress. However, reduced cortisol 

levels in our schizophrenic patients could also hint at an altered regulation of DHEA-S 

(Dehydroepiandrosterone sulphat) since DHEA-S may act as an anti-glucocorticoid agent 

(Marklund et al., 2004). Regardless of the possible sources of cortisol abnormality, cortisol 

was found to induce a shift from Th1 to Th2 (Visser et al., 1998; Franchimont et al., 1998). 

Despite that cortisol was shown to be reduced in schizophrenics in this study, our 

schizophrenic patients showed clear Th2-shifts in serum.  

 

SHBG, a protein binding to testosterone with high affinity, was newly implicated in 

Alzheimer’s disease (Hoskin et al., 2004). Testosterone was significantly associated with 

cognitive function in elderly males (Yaffe et al., 2002) and found to be lower in men with 

Alzheimer’s disease (Hogervorst et al., 2003). Lower androgen levels are linked to increased 

plasma amyloid β peptide 40 in older men with memory loss or dementia (Gillett et al., 2003). 

The abnormalities in SHBG and testosterone likely suggested a cognitive alteration in 

schizophrenia. The reason for reduced SHBG levels in our schizophrenic subjects was 

unknown. SHBG normally responds to circulating testosterone and estrogen (Hoskin et al., 

2004); therefore, reduced SHBG in schizophrenia suggested an abnormal decrease in its 

production and regulation. But decreased testosterone in our schizophrenic patients might be 

resulted from hyper-prolactin since prolactin-infusion led to reduction of testosterone 

(Romanowicz et al., 2004). Decreased testosterone could have somewhat diminished Th2-
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shifts in the schizophrenics of this study since it was reported to inhibit Th2 and to promote 

Th1 cytokines (Huber et al., 1999). Up to now, no report concerning the influence of SHBG 

on Th1/Th2 balance was published. SHBG could, however, have impacts on Th1/Th2 balance 

at least indirectly via testosterone and estradiol since changes in SHBG levels lead to 

alterations in estrogen production and testosterone activity (Anderson, 1974). Nevertheless, 

excluding the effect of testosterone and SHBG, marked Th2-shifts were still observed in our 

schizophrenic patients.  

 

Somehow, it’s very difficult to differentiate causes and results in this case since Th1/Th2 

cytokines, prolactin, SHBG/testosterone, and cortisol have influences on and are influenced 

by one another reciprocally. Not only diverse hormones have influences on cytokines. 

Cytokines such as IL-6, TNF, and IFN-γ could also play an important role in modulation of 

hormone secretion by directly influencing specific enzymes of steroid genesis in various 

endocrine cell types (Herrmann et al., 2002). 

 

7.4.2 Male subjects with schizophrenia 

 

Disturbed Th1/Th2 antagonism in male schizophrenic patients 

Similar to the results in the whole group of healthy controls, all serum, whole blood assay, 

and lymphocyte Th1/Th2 ratios of control males showed clear antagonisms between IFN-γ 

and IL-4, IL-10, IL-13 according to the findings from multiple regression. That is, IFN-γ 

significantly positively correlated to IFN-γ/IL-4, IFN-γ/IL-10, and IFN-γ/IL-13 in healthy 

controls. In contrast, the major Th2 cytokines IL-4, IL-10, and IL-13 were markedly 

negatively associated with IFN-γ/IL-4, IFN-γ/IL-10, and IFN-γ/IL-13, correspondingly. 

However, the antagonism between whole blood assay IFN-γ/IL-4 and that between 

lymphocyte IFN-γ/IL-10 and IFN-γ/IL-13 were lacking in schizophrenic males. Male subjects 

with schizophrenia appeared to have a disturbed antagonistic mechanism between both T 

helper-systems in both in vitro systems. 

Except cortisol, all parameters measured were involved in Th1/Th2 balance in male patients 

Even though both the whole schizophrenic group and the male schizophrenic subgroup had a 

disrupted Th1/Th2 antagonism, the results concerning the possible causes of Th2-shift from 

multiple regression in male schizophrenic subjects showed a different picture from that in the 

whole schizophrenic group. Except cortisol, all the other parameters measured in this study 

such as SHBG, age, prolactin, estradiol, testosterone, and IL-6 might be directly involved in 
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serum and whole blood assay Th1/Th2 imbalance in male schizophrenics, in addition to the 

key factors IFN-γ, IL-4, and IL-10. In addition, IL-2 and TNF-α likely played an indirect role 

in the Th1/Th2 balancing in schizophrenic men because they were significantly related to 

IFN-γ and IL-4, respectively. 

Involvement of various endocrinological parameters in male schizophrenic patients 

Male schizophrenics had in general lower serum cytokine levels, testosterone, SHBG, 

however, higher prolactin levels than control men. In contrast to the results from the whole 

group of schizophrenic patients, all hormones except cortisol measured in this study exerted 

effects on the Th1/Th2 ratios in males with schizophrenia according to the findings from 

multiple regression analysis.  

 

Generally, Th2-shift in male schizophrenic patients was less explicit than that in their female 

schizophrenic counterparts. Males were found to show a higher Th1/Th2 ratio compared with 

females (Giron-Gonzalez et al., 2000). The reason might be that males had higher levels of 

testosterone than females since testosterone was shown to favor Th1-shift (Huber et al., 

1999). However, testosterone was not the explanation for the diversity in Th1/Th2 ratios 

between both male subject groups in our study because male subjects with schizophrenia had 

markedly lower testosterone levels than male controls. Reduced testosterone levels in male 

schizophrenic patients might be the outcomes of noticeably elevated prolactin since injection 

of prolactin resulted in decreased testosterone (Romanowicz et al., 2004). Various factors 

could have effects on prolactin; they include neuroleptic medication, cortisol, TNF-α, and 

IFN-γ (Hyde et al., 2004; Wallaschofski et al., 2003; Walton and Cronin, 1990). Higher 

prolactin in male schizophrenics probably was a result of neuroleptic medication. But it was 

unlikely an outcome of changes in cortisol, TNF-α, and IFN-γ, because male schizophrenic 

patients and controls had comparable levels in those parameters.  

Summarized findings from multi-variance and multiple regression analysis in male patients 

Schizophrenic men as a whole group had neither markedly higher serum IL-4 nor noticeably 

lower serum IFN-γ than male controls. The findings from multi-variance analysis in which 

IFN-γ and IL-4 were surveyed separately seemed to implicate that IFN-γ and IL-4 did not 

antagonize each other in male schizophrenics. Multi-variance analysis is applied to compare 

the differences in diverse variables between or among various groups. The outcomes from 

multi-variance analysis only suggested no marked diversity in IFN-γ, IL-4, and IFN-γ/IL-4 

ratio between both male diagnostic subgroups. However, the findings from multiple 

regression of serum Th1/Th2 ratios revealed that IFN-γ correlated tremendously positively, 
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while IL-4 and IL-10 associated extremely negatively with IFN-γ/IL-4 and IFN-γ/IL-10 in 

schizophrenic men. That is, those male schizophrenics who had lower serum IFN-γ also had 

higher serum IL-4 and IL-10 and vice versa. Compared to female subjects with schizophrenia, 

male schizophrenic patients had less marked reductions in both serum IFN-γ/IL-4 and IFN-

γ/IL-10 ratios. The reason could be that males had higher levels of testosterone than females 

since testosterone was shown to favor Th1-shift (Lambert et al., 2004; Burger and Dayer, 

2002).  Reduced testosterone levels in male schizophrenic patients could, therefore, have 

contributed to the less pronounced reductions in both serum IFN-γ/IL-4 and IFN-γ/IL-10 

ratios. The explanation for why the reduction in serum IFN-γ/IL-4 in male subjects with 

schizophrenia was less obvious than in female schizophrenics could be that IL-4 mRNA 

expression were found to be lower in males than in females; testosterone, at least in part, may 

be responsible for the decreased Th2 cell responses in males in vivo (Hayashi et al., 2003). 

Possible causes of Th2-shift in schizophrenic males 

Further deficit(s) in the macrophage system in male schizophrenia? 

Male schizophrenic patients had significantly reduced serum IFN-γ/IL-10, but not IFN-γ/IL-4 

ratios if compared with healthy males. Deficits within the typical Th1/Th2 differentiation 

routes could be less explicit in schizophrenic males because IL-10 is not a typical Th2 

cytokine. Th1/Th2 imbalance caused by deficits within the classical Th1/Th2 developmental 

pathways might have been compensated by testosterone since testosterone was found to favor 

Th1 development (Giltay et al., 2000). In addition, it could indicate further deficit(s) in other 

sites than the typical Th1/Th2 pathways. In humans, IL-10 is produced by activated CD8+ T 

cells, CD4+ T cells (Yssel et al., 1992), macrophages/monocytes, and mast cells (Verreck et 

al., 2004; Haddad et al., 2003). Reduced serum IFN-γ/IL-10, but not in whole blood assay 

IFN-γ/IL-10, could suggest that the sources of imbalance in serum IFN-γ/IL-10 lie at least 

partially in the factors which were excluded in the stimulated whole blood system. The 

candidate factors could be macrophages or mast cells since both cell types were not or less 

likely found in whole blood. Macrophages were more likely than mast cells as another 

possible sites of deficit in male subjects with schizophrenia because macrophages produce 

both IFN-γ and IL-10, but not IL-4 (Yanagawa et al., 1999; Havell and Spitalny, 1983). Over-

activation in the macrophage/monocytes system could happen in male subjects with 

schizophrenia. Abnormality in macrophages was actually already observed in schizophrenia 

over 2 decades ago (Livni et al., 1979). Possible pathogenic mechanisms behind lymphocyte 

activation and macrophage dominance were once considered as the causes of acute psychotic 

symptoms (Nikkila et al., 2001). The macrophage-T-lymphocyte theory was ever postulated 
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as a possible etiological mechanism in schizophrenia (Smith and Maes, 1995). Accordingly, 

chronically activated macrophages and T-lymphocytes were previously proposed as the 

fundamental mediators of schizophrenia. Over-activation of macrophages could have led to 

over-production of IL-12 and IL-10. Additionally, a consistent hyper-production of IL-12 

could again result in persistently elevated IL-10 and reduced IFN-γ, TNF-α, and IL-6 levels 

(Portielje et al., 2003). 

Hormones: prolactin, SHBG/testosterone 

Further factors such as prolactin and SHBG/testosterone could have partly contributed to 

Th1/Th2 imbalance in male schizophrenics since both male subgroups were remarkably 

different in those variables. They were elucidated in the previous section “7.4.1.The whole 

group of schizophrenic patients”. The male schizophrenics of this study had evidently 

“accelerated aging” regarding their testosterone levels. Their testosterone levels were much 

lower than those in male controls, despite that both male subgroups were of similar ages. Our 

male patients had only about 2/3 of the average control testosterone level. The reduction ratio 

in testosterone of our male schizophrenics was similar to that of normal men at the age of 70 

yrs (Vermeulen, 2003). Decreased testosterone levels in male people with schizophrenia may 

be caused by significantly elevated prolactin as prolactin injection led to reduction in 

testosterone (Romanowicz et al., 2004). The roles of gonadal steroids such as testosterone in 

neurite outgrowth, cell differentiation, cell death, synaptogenesis, and the determination of 

cell position in earlier developmental phases were reported over one decade ago (Tobet et al., 

1994). Neuronal loss was prevented by simultaneous administration of testosterone in vivo 

and in vitro (Mizoguchi et al., 1992). Progressive and long-term sex hormone imbalance was 

found to lead to degenerative changes in the CNS (Danilovich et al., 2003). Markedly reduced 

testosterone and SHBG could hint at a neurodegenerative process occurring in one subgroup 

of male schizophrenic patients. In addition, they implicate possible cognitive dysfunctions in 

schizophrenic males since they were shown to be linked to cognitive function in Alzheimer’s 

disease (Hoskin et al., 2004; Hogervorst et al., 2003). Moreover, reduced testosterone and 

SHBG likely explained why the Th1/Th2 ratios were less overt in male schizophrenics than in 

their female schizophrenic counterparts because testosterone is thought to shift the 

development of T-helper cells towards Th1 (Huber et al., 1999). Although elevated serum 

prolactin concentrations often correlate with abnormalities in immune responses (Brand et al., 

2004), increased prolactin levels in male schizophrenic patients were probably raised by 

neuroleptic medication (Meaney et al., 2004). Prolactin was found to trigger the production of 

Th1 cytokines like IFN-γ, IL-12 and TNF-α, but not Th2 cytokines such as IL-6 and IL-10 
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(Carreno et al., 2004; Rovensky et al., 1999). Less clear Th2-shift in male people with 

schizophrenia could be ascribed to the elevation in prolactin levels.  

 

Those endocrinological parameters might have direct or indirect impacts on Th1/Th2 balance. 

Nevertheless, they were not the only causes. Serum Th2-shift defined as significantly reduced 

IFN-γ/IL-10 ratio in schizophrenic males remained clear after the effects of those hormones 

mentioned above were controlled.   

 

7.4.3 Females with schizophrenia 

 

Disturbed Th1/Th2 antagonism at serum, whole blood, and lymphocyte levels 

The results from MANCOVA showed that female schizophrenics had noticeably reduced 

serum IFN-γ, but enhanced IL-4 if compared to healthy women. They seemed to suggest 

Th1/Th2 antagonism in female subjects with schizophrenia. In contrast, the findings from 

multiple regression revealed no antagonism between both T-helper systems because IFN-γ did 

not significantly correlate to IFN-γ/IL-4, IFN-γ/IL-10, and IFN-γ/IL-13, while IL-4, IL-10, 

and IL-13 were not markedly related to the 3 Th1/Th2 ratios stated above, respectively. The 

findings from both MANCOVA and multiple regression together actually implicated that 

female schizophrenics could be further subdivided into at least 3 heterogeneous subgroups 

according to their Th1/Th2 ratios. One subgroup could only have highly elevated IL-4 or IL-

13 or IL-10, a second one might have noticeably reduced IFN-γ, and a third one likely had 

abnormalities in the key cytokines of both Th1/Th2 systems. Th2-shift in female patients 

appeared to be more heterogeneous than that in their male schizophrenic counterparts. 

Summarized findings from MANCOVA and multiple regression in schizophrenic females 

MANCOVA demonstrated that schizophrenic females had generally (1) lower serum Th1/Th2 

ratios, characteristic Th1 cytokines such as IFN-γ, IL-2, cortisol, and SHBG, however, (2) 

higher prolactin, Th2 cytokines such as IL-4, IL-6, as well as Th1/Th2 produced cytokines 

like IL-10 and TNF-α levels if compared to control females. Nevertheless, both female 

subgroups were quite comparable regarding testosterone and estradiol.  

 

Nevertheless, the findings from multiple regression analysis of Th1/Th2 ratios in which both 

IFN-γ and IL-4 of the same subject were considered at the same time offered another picture. 

They demonstrated that all parameters assessed in this study except SHBG obviously had 

been involved in Th1/Th2 balancing. As elucidated above, superficially, female 
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schizophrenics appeared to be more homogenous regarding Th1/Th2 ratios; the whole female 

patients had clear Th2-shifts. If considering the causes of Th2-shifts, schizophrenic females 

were heterogeneous as a whole group; this could partially explain why the contributors of 

Th1/Th2 variances were so widespread in schizophrenic women. 

Possible causes of Th2-shift in female schizophrenic patients 

 The APC IL-6/SOCS/CIS pathways  

Thus, for those female patients who had primarily increased IL-4 or predominantly decreased 

IFN-γ, deficits in the APC IL-6/SOCS/CIS loops stated in the foregoing section were more 

likely because the pathways of IL-6 to inhibit IFN-γ and to promote IL-4 function 

independently (Diehl and Rincon, 2002). Maybe, the down-stream component(s) of the 

pathway to promote IL-4 or the route to inhibit IFN-γ was/were somehow up-regulated.  

 Typical routs for Th1/Th2 development 

For those schizophrenic women who had alterations in IFN-γ and IL-4 simultaneously, 

shortages in both classical Th1/Th2 differentiation routs are also possible except the IL-6 

alternative pathways. So, up-regulation of the Th2 system results in down-regulation of the 

Th1 system (Finkelman and Urban, Jr., 2001; Kroemer et al., 1996). 

 Stress hormones 

Furthermore, hormones such as cortisol and prolactin could also have made their contribution 

to Th2-shift in schizophrenic women because they were shown to influence Th1/Th2 balance 

(Dimitrov et al., 2004; Elenkov, 2004) and significantly different between schizophrenic and 

control females.  

 Cortisol  

Female schizophrenic patients as a whole group were found to have markedly reduced 

cortisol, but not males with schizophrenia if compared to healthy subjects of corresponding 

sex. Males have normally higher cortisol levels than females in response to stress (Sauro et 

al., 2003). Alterations in cortisol in female subjects with schizophrenia might be associated 

with stress (Raison and Miller, 2003). Nevertheless, cortisol can act more than just as a stress 

hormone. It was found to be able to modulate neuron activity-related changes in brain 

glycogen metabolism (Allaman et al., 2004). There is also evidence for a relationship between 

chronic changes in circulating cortisol and the memory impairments in schizophrenic patients 

(Walder et al., 2000; Newcomer et al., 1998).  In addition, it was thought to (1) play a 

potential role in the expression of psychosis (Walder et al., 2000) and to (2) positively 

correlate with ratings of positive, disorganized, and overall symptom severity, but not with 

negative symptoms (Walder et al., 2000). The plasma cortisol response to apomorphine (a 
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dopamine agonist) and to ipsapirone (a 5HT1A partial agonist) were also found to be 

markedly blunted in patients with schizophrenia compared to normal controls (Lee and 

Meltzer, 2001; Meltzer et al., 2001). The finding concerning ipsapirone was only observed in 

female people with schizophrenia (Lee and Meltzer, 2001). Furthermore, neuroleptic 

responders were shown to have a higher cortisol response towards apomorphine compared to 

non-responders (Meltzer et al., 2001). Reduced cortisol levels in female schizophrenics of this 

study might be not only caused by stress but likely also by certain cognitive dysfunction; in 

addition, they could also implicate the responses of female schizophrenic patients to 

neuroleptic treatments. 

 

Although Braun et al. (1997) found that Th1 and Th2 responses were equally affected by 

cortisol, evidence accumulated over the last 5-10 years indicates that glucocorticoids inhibit 

the production of IL-12, IFN-γ, IFN-α, and TNF-α by antigen-presenting cells and Th1 cells, 

but up-regulate the production of IL-4, IL- 10, and IL-13 by Th2 cells (Elenkov, 2004). 

Schizophrenic females had noticeably reduced cortisol that could have contributed to Th2-

shift. No matter how cortisol impacts Th1/Th2 balance, after controlling the effects of 

cortisol, Th2-shift remained clear in female patients. 

  Prolactin  

Elevated prolactin levels were also detected in female schizophrenic patients. Increased 

prolactin might be a result of neuroleptic medication (Meaney et al., 2004); however, it’s not 

an obligatory consequence of anti-psychotic treatment. Prolactin abnormality was ever 

described in drug-naïve schizophrenics over 1 decade ago (Abel et al., 1996; Van Cauter et 

al., 1991). Prolactin was even found to be able to differentiate distinct schizophrenic 

subgroups such as paranoid and disorganized schizophrenia from each other (Segal et al., 

2004). Schizophrenic patients reacted towards neuroleptic treatment with hyperprolactinaemia 

were found to have increased probability to have DRD2(*)A1allele (Young et al., 2004). 

Enhanced prolactin in schizophrenia could be partially resulted from the abnormal reaction to 

neuroleptic treatments that was caused by genetic deficits. In addition, many other factors 

could influence prolactin levels in schizophrenia. Examples include IFN-γ, TNF-α, and 

cortisol. They can slow down or inhibit the release of prolactin on anterior pituitary cells 

(Hyde et al., 2004; Uchida et al., 2004; Walton and Cronin, 1990). 

 

Despite of the source and nature of elevated prolactin in schizophrenia, prolactin was shown 

to favor Th1 shift (Dimitrov et al., 2004). Prolactin could exert its effects on Th1/Th2 cells 
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via diverse pathways such as JAK2/STAT5, prolactin receptor, IL-2, SOCS3/CIS, NF-κB, 

and IRF-1 (interferon regulatory factor 1) (Brand et al., 2004; Vera-Lastra et al., 2002; Matera 

and Mori, 2000; Dogusan et al., 2000; Matera, 1997). Schizophrenic women had significantly 

reduced Th1/Th2 ratios, regardless of having higher prolactin than healthy females. Even if 

prolactin impacts IFN-γ in a bi-modal manner as Matera and Mori (2000) described, Th2-shift 

in female schizophrenic patients remained significant after the effects of prolactin were taken 

into account. 

  

7.5 Strategies to restore Th1/Th2 balance in schizophrenia 

 

In the subsequent sections, the strategies to re-balance Th1/Th2 are recommended within the 

framework of neuroleptic treatment in schizophrenia ii ff Th2-shifts regarded as biological 

features of schizophrenics which might contribute to the outbreak of disease and therefore as 

a co-target of treatment. 

 

7.5.1 The whole group of schizophrenic patients 

 

The whole schizophrenic group had lower cortisol, SHBG, however, higher prolactin than the 

control group. In addition, they had significantly lower IFN-γ, nevertheless, higher IL-4 and 

IL-6 than controls if excluding extreme values. The key issues in conceptualizing 

pharmacological therapies for schizophrenic patients include: (1) increasing IFN-γ and 

lowering IL-4, IL-6 simultaneously, (3) down-regulating prolactin, (4) up-regulating cortisol 

and (5) SHBG/testosterone. Generally, the medicine administered to schizophrenic subjects in 

order to restore the balance between both Th1/Th2 systems has to promote IFN-γ and 

suppress IL-4 in both serum and whole blood assay. Additionally, it must promote IL-6 in 

whole blood assay, but suppress IL-6 in serum. To achieve the therapeutic issues stated 

above, further investigation using multiple regression analysis is required. More 

schizophrenic patients are also needed due to involvement of many essential predictors in 

Th1/Th2 balancing in schizophrenia and due to the complicated inter-correlations among 

those predictors. 

 

To date, schizophrenics are treated principally with neuroleptics. However, so far, no study 

systematically investigates the effects of distinct medicines/neuroleptics on diverse serum and 
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whole blood assay Th1/Th2 ratios in schizophrenic patients and healthy controls, 

simultaneously considering the effects of diverse factors from the endocrine system. Which 

neuroleptic should be administered to schizophrenic patients in order to redirect the Th2-shift 

still remains unknown. Nevertheless, within the framework of present neuroleptic treatment in 

schizophrenia, generally speaking, anti-psychotics having high affinity for dopamine D2 

receptors, particularly typical neuroleptics (Hall and Sallemark, 1987), are not suitable to treat 

schizophrenics with Th2-shift. Typical neuroleptics were found to have a rather long-lived 

prolactin increasing effect (Meltzer et al., 1989). Elevated prolactin is in turn not preferred. 

However, a newest study showed that haloperidol only led to a minor, non-significant 

increase in serum prolactin levels of schizophrenic and schizoaffective patients (Volavka et 

al., 2004).  

 

According to available evidence, the effects of haloperidol on Th1 cytokines are controversial 

(Rudolf et al., 2002; Kowalski et al., 2000; Kim et al., 2000; Pollmacher et al., 1997; 

Boukhris et al., 1988). Nearly no report regarding the effects of haloperidol or other typical 

neuroleptics on Th2 cytokines was published. Only Pollmächer et al. (1997) showed no effect 

of haloperidol on plasma IL-6 at medium dosage. Therefore, haloperidol is likely due to its 

effect of provoking prolactin production and that of decreasing serum/whole blood assay IL-2 

less suitable for schizophrenics having Th2-shift.  

 

Atypical neuroleptic risperidone also caused significant elevation of prolactin levels that 

appeared to be dose-dependent (Volavka et al., 2004), although another study showed that the 

risperidone-induced hyperprolactin declined after 3-to-5-month treatment in children and 

adolescents (Findling et al., 2003). Risperidone was found, additionally, to increase serum IL-

10, IL-6, sIL-2R as well as IL-10 and IL-2 in vitro production (Cazzullo et al., 2002; Maes et 

al., 2002; Maes et al., 1996). Besides, risperidone had impacts on both IFN-γ and IL-4 

production in a time-dependent manner (firstly reduced and later increased) (Cazzullo et al., 

2002). The effects of risperidone on Th1/Th2 cytokines seem to be highly complicated. But 

another atypical neuroleptic clozapine demonstrated prolactin-sparing effects due to its low 

affinity to dopamine D2 receptors in the dopaminergic tuberoinfundibular pathway (Hamner, 

2002). Moreover, the relevant literature mostly suggests that clozapine increases several Th1 

cytokines and/or their receptors including IFN-γ, IL-2 in vitro production, plasma TNF-α, 

sTNF-Rp55, sTNF-Rp75, and sIL-2R (Rudolf et al., 2002; Song et al., 2000; Haack et al., 

1999; Hinze-Selch et al., 1998; Muller et al., 1997; Maes et al., 1996; Pollmacher et al., 1995; 
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Maes et al., 1994). However, clozapine was also found to increase serum and plasma IL-6 in 

(acute) schizophrenics (Maes et al., 2002; Maes et al., 1997). That is, it’s possible for 

clozapine to cause Th2-shift via the APC IL-6/SOCS/CIS pathways (Diehl and Rincon, 

2002). Nevertheless, clozapine is relatively more suitable than the other neuroleptics to treat 

schizophrenics with Th2-shift because it increases Th1 cytokines and has less hyperprolactin 

effect. 

 

7.5.2 Male schizophrenic patients 

 

Male schizophrenics had in general lower serum cytokine levels, testosterone, SHBG, 

however, higher prolactin than control men. The major concerns to redirect Th2-shifts in male 

patients contain: (1) increasing IFN-γ, (2) lowering prolactin, and (3) increasing 

testosterone/SHBG. Clozapine, supplemented with testosterone, might be beneficial in 

schizophrenic males having Th2-shift for the reasons that (1) clozapine could increase IFN-γ, 

IL-2, IL-6, TNF-α (Rudolf et al., 2002; Song et al., 2000; Haack et al., 1999; Hinze-Selch et 

al., 1998; Maes et al., 1994), (2) that clozapine has less prolactin-provoking effects (Volavka 

et al., 2004), and (3) that testosterone promotes Th1, while inhibits Th2 cytokines (Giltay et 

al., 2000; Huber et al., 1999). Elderly men (≥ 70 years) who had a total testosterone level 

lower than 3 ng/ml were suggested to undertake testosterone replacement (Basaria et al., 

2002). The average total testosterone level of our male schizophrenic patients was 4.56 ng/ml 

(SD = 2.13 ng/ml). That is, one subgroup of our male schizophrenic patients had extremely 

low testosterone levels; their testosterone levels were comparable to those of males older than 

70 years old. This subgroup of male patients may profit from testosterone supplement. 

However, whether or not a combination with testosterone is proper to treat male 

schizophrenic patients required further examinations because (1) Th2 cytokines were lower in 

male schizophrenics and (2) use of testosterone could lead to further decrease in SHBG which 

might be not favorable due to noticeably decreased SHBG in male schizophrenics. In 

addition, one subgroup of male schizophrenic patients had rather enhanced Th1/Th2 ratios 

compared to healthy male subjects; for this subgroup, additional supplement of testosterone 

could be detrimental. 

 

7.5.3 Female patients with schizophrenia 
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In female schizophrenics, all parameters measured obviously had participated in Th1/Th2 

balancing in accordance with the findings from multiple regression analysis. Additionally, the 

major cause of Th1/Th2 imbalance in female patients was either extremely reduced IFN-γ or 

highly enhanced IL-4 or both. Schizophrenic females had generally lower serum IFN-γ, IL-2, 

cortisol, SHBG, and both serum Th1/Th2 ratios, however, higher prolactin, TNF-α, IL-4, IL-

6, and IL-10 levels if compared to control females. Female schizophrenic patients had the 

lowest serum and whole blood assay IFN-γ, IL-2, nonetheless, the highest whole blood assay 

IL-4 and serum prolactin level among these 4 gender subgroups.  

 

Medicines administered to female schizophrenics having Th2-shifts had to enhance 

serum/whole blood assay IFN-γ and/or decrease serum/whole blood assay IL-4, however, 

decrease serum IL-6, but increase whole blood assay IL-6, depending on their Th1/Th2 

deficits. As elucidated in the section “7.5.1. The whole group of schizophrenic patients”, it 

requires further examinations in order to find out which medicine/neuroleptic can achieve 

such therapeutic effects. Hitherto, investigations in this regard are lacking. Before conducting 

such a study, systematic examinations of diverse neuroleptics on distinct Th1/Th2 ratios 

under the consideration of various endocrinological parameters in schizophrenia and controls 

are firstly needed. In the following sections, recommendations are made within the framework 

of present anti-psychotic treatment because neuroleptics are currently the most often used 

psychotic agents in schizophrenia. 

 

As the results from MANCOVA and multiple regression analysis shown, Th2-shift in 

schizophrenic women is very heterogeneous. So, it’s very essential to ascertain which factors 

could contribute to Th2-shfit of which subgroup of female patients. That is, which of those 

predictors contribute to Th2-shift mainly resulted from reduced IFN-γ, which influencing 

factors contribute to Th2-shift primarily originated from elevated IL-4, and which parameters 

contribute to Th2-shift caused by both decreased IFN-γ and augmented IL-4. 

 

So far, clozapine appears to have advantages over the other neuroleptics in terms of restoring 

Th1/Th2 balance. Clozapine was shown to (1) increase various Th1 cytokine productions 

such as IFN-γ and IL-2 (Rudolf et al., 2002; Song et al., 2000; Haack et al., 1999; Hinze-

Selch et al., 1998; Muller et al., 1997; Maes et al., 1996; Pollmacher et al., 1995; Maes et al., 

1994) and (2) to have less hyperprolactin effects (Volavka et al., 2004), although it was found 

to increase serum IL-6 (Maes et al., 2002; Maes et al., 1997) which is not desired. 
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Furthermore, it’s noteworthy that among distinct cytokines, prolactin, cortisol, estradiol, 

testosterone, and SHBG existed very tangled inter-correlations in schizophrenic females as 

shown in the results from multiple regression. Changes in one variable could lead to 

alterations in many other factors. So, if restoration of Th1/Th2 is considered as a co-target of 

treatment in female schizophrenics, then how those factors vary with one another might be 

crucial to achieve favorable effects and require further examinations. 

 

Currently, due to the neuroprotective role of estrogen (Sortino et al., 2004; Alexaki et al., 

2004),  there is so-called estrogen hypothesis (Salokangas, 2004). The estrogen hypothesis 

proposes that the lower need for neuroleptic drugs in female schizophrenia patients is caused 

by the antidopaminergic effect of estrogens, and that when estrogen production decreases at 

menopause, the need for neuroleptic drugs increases in female schizophrenia patients 

(Salokangas, 2004). Estrogen add-on therapy is, therefore, deemed as promising (Moller, 

2003) because it can augment the treatment effects of antipsychotic medication (Liao et al., 

2002; Grigoriadis and Seeman, 2002). If  Th2-shifts are some of the many primary biological 

defects leading to (certain) schizophrenic symptoms, then the supplement could be harmful 

for those schizophrenic women having Th2-shift since (1) estradiol was found to exert rather 

inhibitory effects on Th1 cytokines, but promoting effects on Th2 cytokines and (2) 

schizophrenic and control women had relatively comparable estradiol levels (Lambert et al., 

2004; Burger and Dayer, 2002; McMurray et al., 2001; Huber et al., 1999; Salem et al., 1999). 

In addition, the use of estrogen replacement therapy in conjunction with antipsychotic 

medication in postmenopausal women with schizophrenia has its limit. It may help reduce 

negative, but not positive, symptoms (Lindamer et al., 2001). Besides, there is individual 

variability for response to estrogen supplementation, possibly associated with onset age (Liao 

et al., 2002). Probably, estrogen supplement can be applied to female schizophrenic subjects 

having late onset because late-onset schizophrenic patients did not have serum Th2-shift. 

Neuroleptic combined with estrogen won’t deteriorate serum Th2-shift in schizophrenic 

women and could be, thus, helpful for this subgroup of female schizophrenic patients.  

 

7.6 Critics and questions for further investigations 

7.6.1 Critics on this study 

 

In this study, the major cytokine levels in serum and productions in stimulated whole blood 

were assessed with Cytometric Bead Array (CBA). The biggest advantage of CBA is that 
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both Th1 and Th2 key cytokines of the same individual were measured together with the same 

material (serum/supernatant). Unlike in conventional ELISA, for each single cytokine, a 

certain amount of material is required to measure each cytokine separately. Therefore, the 

comparability of the indicators of both Th1/Th2 systems in the same subject is very high due 

to no inter-assay variance among distinct cytokines within the same participant. 

  

The principal shortage of this study concerns the lymphocyte data (ELISPOT). Using the 

separating isotonic solution with a density of 1.077, not only lymphocytes but also 8-9% of 

monocytes and 1-2% of mast cells/basophils were isolated. It would be better if either only 

lymphocytes or complete leukocytes were separated, but not cells mixed with a small amount 

of different cell types. It’s harder to draw a clear conclusion using partly mixed cell types for 

analysis than just using one or all leukocytes. Another drawback of this study is that no other 

psychiatric patients with the same disorder (e.g. patients only with schizoaffective disorder or 

patients only having bipolar disorder) were included as reference group to compare with the 

schizophrenics. Comparisons with a patient group having mixed diseases won’t be able to 

clarify whether or not schizophrenics share which deficit(s) with which disorder(s) due to the 

heterogeneity in a patient group with mixed illnesses. Additionally, the case numbers of 

diverse schizophrenic clinical subgroups are relatively small. Some schizophrenic subgroups 

had only about 1/13 of the cases in healthy controls. Particularly for multiple regression 

analysis, it would be better to have a higher number of schizophrenic cases because there 

were so many predictors involved. Other drawbacks include no data regarding the menstrual 

cycles of females with schizophrenia and no information relating to precise washout periods. 

Nevertheless, the purpose to obtain the menstrual cycles was to control their effects on 

Th1/Th2 balance in female patients. In this study, serum estradiol levels were measured and 

included as a possible covariant of Th1/Th2 imbalance in schizophrenic women. It’s rather a 

biological parameter like estradiol than a clinical variable such as menstrual cycle exerting 

direct effects on Th1/Th2 ratios. Therefore, including estradiol into the study should have 

compensated the shortage of no data concerning the menstrual cycles of female subjects. In 

addition, the precise washout periods were missing in some patients. The aim to obtain 

washout periods is also to control their effects on Th1/Th2 balance. Serum prolactin is an 

indicator of neuroleptic treatment and was assessed in this study. As stated above, it’s rather 

biological parameters like prolactin having direct impacts on a biological process such as 

Th1/Th2 balancing. It’s not a clinical variable like washout period having direct influences on 

Th1/Th2 cytokines. So, inclusion of prolactin as a co-variant into the analysis should have 
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countervailed the drawback of not having completed data regarding washout period in 

schizophrenic patients. 

 

7.6.2 Questions for further investigations 

 

Th2-shifts appeared to be schizophrenia-specific immuno-endocrinological deficits. However, 

in this study, we won’t be able to detect which schizophrenic symptoms are Th2-shifts related 

to. We only found out that Th2-shifts had no obvious connection with positive symptoms. So 

the first question is: which schizophrenic symptom(s) is/are Th2-shift-relevant?  

 

Neurotransmitter, particularly dopamine, hypothesis of schizophrenia has been dominating 

this field for many decades. Despite of the insufficiency of dopamine hypothesis to elucidate 

all schizophrenic cases, it may be able to illuminate the pathogenesis of at least one 

schizophrenic subgroup and therefore remains as the focus of neurochemical research in the 

past five years. Since (1) we found serum Th2-shifts were observed in most schizophrenic 

subgroups and (2) various elements in the dopamine synthesis were lately found to have 

diverse impacts on distinct Th1/Th2 cytokines (Carr et al., 2003; Ghosh et al., 2003; Alaniz et 

al., 1999), possibly there is one schizophrenic subgroup having both dopamine and Th1/Th2 

abnormalities. Therefore, the second question is: is there any connection between dopamine 

abnormalities and Th2-shifts in schizophrenia? If there is, what kind of relationship exists 

between both biological features in schizophrenic patients? Clarifying questions of this kind 

might be helpful to select “proper patients” for “suitable neuroleptics targeting the dopamine 

system” and thus avoid diverse side effects since neuroleptics are frequently administered to 

schizophrenic patients. 

 

To the end, some more questions are addressed for investigations in the future: 

(1) In this study, serum/whole blood assay/lymphocyte IFN-γ/IL-4, IFN-γ/IL-10, and 

lymphocyte IFN-γ/IL-13 ratio were used to indicate Th1/Th2 balance in 

schizophrenia. We found that one subgroup of schizophrenics who had markedly 

reduced whole blood assay IFN-γ/IL-4 and IFN-γ/IL-10 ratio might be treatment-

resistant due to barely change in severity of symptoms after 8-week-treatment. In 

addition, we also found early-onset schizophrenics had reduced lymphocyte IFN-γ/IL-

4 and IFN-γ/IL-13, while late-onset schizophrenics had enhanced both lymphocyte 
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Th1/Th2 ratios. Are these three Th1/Th2 indicators together or separately able to 

differentiate distinct schizophrenic subgroups from one another?   

(2) Obviously, neuroleptics have direct or indirect impacts on Th1/Th2 ratios. Since (a) 

neuroleptics belong to the psychotic agents often prescribed to schizophrenics and (b) 

Th1/Th2 imbalance has been associated with a variety of diseases, it might be 

important to clarify which neuroleptic has what kind of effect on which (Th1/Th2) 

cytokine under what kind of experimental condition in order to optimized therapeutic 

effects. 

(3) Hyperprolactin is frequently associated to anti-psychotic treatment. But according to 

the latest literature, it is not necessary the result of neuroleptic therapies. Since 

prolactin could influence Th1/Th2 cytokines via distinct routes, it could be also 

indispensable to disentangle the relationships between prolactin and diverse Th1/Th2 

cytokines in order to (a) restore Th1/Th2 balance and (b) to avoid prolactin-induced 

side effects such as sexual dysfunction in schizophrenics. 
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Schizophrenia is a complex disease, in which except a genetic component external 

influencing factors also play an important role. Epidemiological data further indicate a 

possible role of viral infection as an environmental factor in the etiology of schizophrenia. 

Th2-shift has been associated with distinct viral infections. Diverse lines of immunological 

evidence point out that a Th2-dominated condition could be observed in at least one subgroup 

of schizophrenia. 

 

(1) Aims: This study is designed to explore (a) the balance between Th1/Th2 systems and (b) 

eventually to detect the possible causes of Th1/Th2 imbalance among the parameters 

investigated in this study in schizophrenic patients. 

(2) Questions:  

(a) Is a significant Th2-shift observed in any schizophrenic subgroup after the effects of 

diverse endocrinological parameters are taken into account?  

(b) If yes, can this schizophrenic subgroup be characterized through any clinical or 

epidemiological variable?  

(c) If yes, which of those immunological and endocrinological parameter(s) assessed in 

this study could make remarkable contribution(s) to the variances of the Th1/Th2 

ratios in schizophrenia? 

(3) Hypothesis:  

(a) To question (2a), A Th2-shift is supposed to occur in at least one subgroup of 

schizophrenics; that is, the Th1/Th2 ratio(s) is/are significantly reduced. The IFN-γ/IL-

4, IFN-γ/IL-10, and IFN-γ/IL-13 ratio are used as indicators of Th1/Th2 balance. 

(b) Question (2b) and (2c) are open questions; no hypothesis in these regards is assumed.   

(4) Methods:  

(a) Analysis materials include serum, whole blood, and isolated lymphocytes. “Total 

serum data” means that all data for serum cytokine levels, serum Th1/Th2 ratios, 

hormones, SHBG, gender, and age were available. Similarly, “complete whole blood 

assay data” means that all data for whole blood assay cytokine productions, whole 

blood assay Th1/Th2 ratios, hormones, SHBG, gender, and age were obtained. “Entire 

lymphocyte data” means that all data for lymphocyte cytokine secretions, Th1/Th2 

ratios, hormones, SHBG, gender, and age were collected. 
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(b) Subjects: Totally, 114 schizophrenic patients and 101 healthy subjects had participated 

in this study. Among them, 76 schizophrenics and 75 normal subjects had total serum 

data, 44 patients and 76 normal controls had complete whole blood assay data as well 

as 72 schizophrenic patients and 98 controls had entire lymphocyte data. 

(c) Variables comprised immunological, endocrinological, and diverse clinical 

parameters. The immunological variables consisted of Th1 cytokines such as IFN-γ, 

IL-12, IL-2, and TNF-α as well as Th2 cytokines including IL-4, IL-10, IL-13, and IL-

6. The endocrinological parameters contained two stress-hormones cortisol and 

prolactin, two sex-hormones estradiol and testosterone as well as the sex hormone 

binding globulin (SHBG). Clinical data included information regarding clinical 

diagnostic subgroups, family psychiatric history, pre-medication, disease episode, 

drug-naïve/drug-free, washout-period, onset age, illness duration, scores on the CGI 

(at admission & discharge) as well as on diverse subscales of the PANSS (positive, 

negative, global).  

(d) Analysis methods contained Cytometric Bead Array (CBA), ELISA, and ELISPOT. 

CBA was used to measure serum and whole blood assay IFN-γ, IL-2, TNF-α, IL-4, 

IL-10, and IL-6. ELISA was applied to assess whole blood assay IL-12 and IL-13, 

while ELISPOT was utilized to detect IFN-γ, IL-4, IL-10, IL-13, and IL-12 production 

at lymphocyte level. Furthermore, hormone levels in serum such as cortisol, prolactin, 

estradiol, testosterone, and SHBG were obtained by using corresponding Elecsys Kit. 

(e) Design: All schizophrenic patients were firstly analyzed as a whole group and then 

divided into distinct subgroups according to their genders and various clinical 

features; these were the independent variables. The main dependent variables were 

Th1/Th2 ratios including IFN-γ/IL-4, IFN-γ/IL-10 (serum, whole blood, lymphocyte), 

and IFN-γ/IL-13 (lymphocyte). If any marked disparity in age, various hormones, and 

SHBG between any schizophrenic subgroup and controls, they were included into the 

analysis as co-variants in order to control their effects on Th1/Th2 balance in the 

corresponding index-groups. 

(f) Major statistics: MAN(C)OVA and multiple regression analysis. MAN(C)OVA was 

applied to unravel the question (2a) and (2b), while multiple regression analysis was 

utilized to solve the question (2c). 

(5) Primary results: 

(a) The results supported our hypothesis “Th2-shift in at least one schizophrenic 

subgroup”. 
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(b) Findings regarding Th1/Th2 imbalance in schizophrenia (outcomes from 

MANCOVA): 

• The in vivo serum data indicated a clear Th2-shift in schizophrenia as a whole 

group after excluding the effects of age and various hormones (particularly 

prolactin). 

• Serum Th2-shift appeared to be schizophrenia-specific as the data shown no Th2-

shift in patients with schizophrenia-related disorders. 

• Female schizophrenics as a whole group had significantly decreased serum IFN-

γ/IL-4 and IFN-γ/IL-10 ratios, whereas male schizophrenics as a whole group had 

only noticeably reduced serum IFN-γ/IL-10 ratios if compared to the 

corresponding sex of controls.  

• Reduced serum IFN-γ/IL-4 and IFN-γ/IL-10 were likewise observed in various 

clinical schizophrenic subgroups with noticeably increased probabilities except 

schizophrenics pre-dominated with positive symptoms.  

• Significantly reduced whole blood assay IFN-γ/IL-10 ratios were found in non-

paranoid, chronic schizophrenics, patients with positive family history or being 

drug-free for longer than 3 months, and schizophrenics having lower scores on the 

PANSS negative scale. It’s worthy to note that drug-naïve schizophrenics also 

showed a tendency to have decreased whole blood assay IFN-γ/IL-10 ratios. 

• Those schizophrenics whose symptom severities remained nearly unaltered after 

8-week treatment had tremendously lower whole blood assay IFN-γ/IL-4 and IFN-

γ/IL-10 ratios than their healthy counterparts. 

• Early-onset schizophrenics had noticeably reduced serum IFN-γ/IL-4 and IFN-

γ/IL-10, nonetheless, enhanced lymphocyte IFN-γ/IL-4 and IFN-γ/IL-13 ratios. 

Late-onset schizophrenic patients did not have markedly decreased serum Th1/Th2 

ratios. But they did show significantly reduced lymphocyte IFN-γ/IL-4 and IFN-

γ/IL-13 ratios. 

(c) The possible causes of Th1/Th2 imbalance in schizophrenia (results from multiple 

regression): 

• For schizophrenics as a whole group, mainly IFN-γ, IL-4, and IL-10 had been 

involved in serum Th1/Th2 balancing. IL-6 and TNF-α could have contributed to 

the balancing between IFN-γ and IL-4 in whole blood assay, while IL-4 and age 
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might have impacts on the whole blood assay IFN-γ/IL-10 imbalance in 

schizophrenia. 

• For schizophrenic females, although the variables measured in this study were able 

to predict serum IFN-γ/IL-4 sufficiently (≥ 67% or 2/3), no clear source for the 

variance of serum IFN-γ/IL-4 could be found. On the contrary, the balance 

between whole blood assay IFN-γ and IL-4 was markedly influenced by a variety 

of parameters including IFN-γ, IL-4, TNF-α, IL-6, prolactin, estradiol, 

testosterone, and age. Similarly, numerous variables could significantly predict the 

serum and whole blood assay IFN-γ/IL-10 in schizophrenic women. Among those 

predictors existed very tangled inter-correlations, in contrast to those in female 

controls. 

• For the whole group of male schizophrenics, there were likely some other crucial 

factors than those measured in this study involved in the IFN-γ/IL-10 balancing. 

Age, prolactin, and estradiol were important for the variance of serum IFN-γ/IL-

10, while IL-6 was essential for the whole blood assay IFN-γ/IL-10 in male 

patients, in addition to IFN-γ and IL-10. Furthermore, no significant influence 

from testosterone, SHBG, and estradiol on the whole blood assay IFN-γ/IL-10 was 

found in schizophrenic men as in the case of male controls.  

(d) Psychopathology and Th1/Th2 ratios in schizophrenia: The scores on the PANSS 

negative subscale were found to correlate positively with the whole blood assay IFN-

γ/IL-4 and IFN-γ/IL-10 ratios. In addition, the scores on the PANSS global scale also 

had a positive association with the whole blood assay IFN-γ/IL-4. 

(6) Conclusion and Discussion: 

(a) The results of this study revealed clear serum Th2-shifts in distinct schizophrenic 

subgroups and offered supporting evidence for the Th2-shift hypothesis of 

schizophrenia. 

(b) Th2-shifts in schizophrenia seemed to be rather the consequences of complicated 

interactions among disease process, age-related abnormalities (particularly in 

hormones), and anti-psychotic medication. But they were not simply the results of 

anti-psychotic treatment and/or aging-induced alterations. 
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Zusammenfassung 

 
Die Schizophrenie ist eine komplexe Erkrankung, bei der neben einer genetischen 

Komponente äußere Einflussfaktoren eine wichtige Rolle spielen. Epidemiologische Studien 

weisen auf eine mögliche Rolle von Virusinfektionen als Umwelt-Faktor in der Ätiologie der 

Schizophrenie hin. Eine Verschiebung der spezifischen Immunantwort in Richtung T-helfer-

2-Antwort (ein sogenannter Th2-shift) wurde bei verschiedenen Virusinfektionen beobachtet. 

Einige immunologische Untersuchungen weisen auch zumindest bei einer Subgruppe der 

Schizophrenie auf einen Th2-shift hin. 

 

(1) Ziele: Diese Studie dient (a) der Untersuchung der Th1/Th2-Balance der spezifischen 

Immunantwort unter Berücksichtigung der Effekte verschiedener endokrinologischer 

Parameter und (b) der Identifizierung der möglichen Ursachen des gestörten Th1/Th2-

Gleichgewichts; die hier untersuchten Einflussgrößen beziehen sich auf unterschiedliche 

Hormone. 

(2) Fragestellungen:  

(a) Lässt sich eine Th2-Verschiebung bei einer Subgruppe der Schizophrenie beobachten, 

nachdem die Einflüsse diverser endokrinologischer Parameter mitberücksichtigt 

worden sind? 

(b) Wenn ja, ist diese Subgruppe durch klinische oder epidemiologische Variablen 

charakterisierbar? 

(c) Wenn ja, welcher oder welche der untersuchten immunologischen und 

endokrinologischen Parameter tragen zur Streuung des Th1/Th2-Verhältnises bei 

schizophrenen Patienten bei? 

(3) Hypothese:  

(a) Zur Frage (2a) ist eine Th2-Verschiebung angenommen; d.h., die Th1/Th2-Quotienten 

sind deutlich reduziert. Die Quotienten IFN-γ/IL-4, IFN-γ/IL-10 und IFN-γ/IL-13 

wurden als Indikatoren der Th1/Th2-Balance betrachtet. 

(b) Frage (2b) und (2c) sind offene Fragen, weshalb keine Hypothese im Bezug auf diese 

beiden Fragen gestellt wurde. 

(4) Methoden:  

(a) Analyse-Materialien schließen Serum, Voll-Blut und isolierte Lymphozyten ein. 

„Vollständige Serum-Daten“ bedeutet, dass alle Daten für Serum-Zytokin-

Konzentrationen, Serum Th1/Th2-Quotienten, Hormone, SHBG (Sexhormon-



 

193 

bindendes Globulin), Geschlecht und Alter vorhanden waren. Ebenso bedeutet 

„vollständige Voll-Blut-Daten“, dass alle Daten bezüglich der in vitro Zytokin-

Produktion im Voll-Blut nach einer 46-stündigen PHA-Stimulation, Voll-Blut-

Th1/Th2 Quotienten, Hormone, SHBG, Geschlecht und Alter erhoben wurden. 

„Vollständige Lymphozyten-Daten“  bedeutet, dass alle Daten hinsichtlich der in-vitro 

Zytokin-Freisetzung bei Lymphozyten, Th1/Th2-Quotienten, Hormone, Geschlecht 

und Alter verfügbar waren.   

(b) Studien-Teilnehmer: Insgesamt nahmen 114 schizophrene Patienten und 101 gesunde 

Probanden an die Studie teil. Unter ihnen hatten 76 schizophrene Patienten und 75 

Kontrollen vollständige Serum-Daten, 44 Patienten und 76 normale Kontrollen hatten 

vollständige Voll-Blut-Daten, 72 schizophrene Patienten und 98 gesunde Teilnehmer 

hatten vollständige Lymphozyten-Daten. 

(c) Variablen umfassen hauptsächlich immunologische, endokrinologische und 

verschiedene klinische Parameter. Die immunologischen Variablen bestehen aus Th1-

Zytokinen wie IFN-γ, IL-12, IL-2, TNF-α und Th2-Zytokinen einschließlich IL-4, IL-

10, IL-13 und IL-6. Die endokrinologischen Kenngrößen setzen sich aus den 

folgenden Parametern zusammen: zwei Stress-Hormone Cortisol und Prolactin, zwei 

Geschlechts-Hormone Östradiol und Testosteron, sowie das Geschlechts-Hormon-

bindende Globulin (SHBG). Die erhobenen klinischen Daten schließen die Folgenden 

ein: klinische diagnostische Subgruppen, Familienanamnese bezüglich psychiatrischer 

Erkrankungen,  Medikation vor der Aufnahme, Krankheitsepisode, Antipsychotika-

frei/Antipsychotika-naiv, Wash-out-Periode, Erstmanifestationsalter der Erkrankung, 

Krankheitsdauer, CGI-Werte bei der Aufnahme und Entlassung (CGI = Clinical 

Global Impressions), sowie die verschieden PANSS Subskalen (Negativ-

Symptomatik, Positiv-Symptomatik und Globale Symtpomatik; PANSS = Posivtive 

and Negative Syndrome Scale). 

(d) Analyse-Methoden enthalten Cytometric Bead Array (CBA), ELISA und ELISPOT. 

CBA wurde zur Messung von IFN-γ, IL-2, TNF-α, IL-4, IL-10 und IL-6 im 

Zellkulturüberstand des Voll-Blut-Assays und im Serum verwendet, ELISA wurde zur 

Bestimmung der IL-12- und IL-13-Produktion im PHA-stimulierten Voll-Blut-Assay 

eingesetzt, während ELISPOT zum Erfassen der in-vitro-Produktion von IFN-γ, IL-

12, IL-4, IL-13 und IL-10 bei Lymphozyten benutzt wurde. Die 

Serumkonzentrationen der Hormone Prolactin, Cortisol, Östradiol, Testosteron, sowie 



 

194 

SHBG wurden mit entsprechenden Reagenzienkits am Analysenautomaten Elecsys 

2010 erhoben. 

(e) Auswertung: Die schizophrenen Patienten wurden zuerst als eine ganze Gruppe 

untersucht, danach nach Geschlecht und verschiedenen klinischen Eigenschaften in 

unterschiedliche Subgruppen eingeteilt; die so gebildeten verschiedenen Subgruppen 

sind die unabhängigen Variablen. Die wichtigen abhängigen Variablen sind Th1/Th2-

Quotienten einschließlich IFN-γ/IL-4, IFN-γ/IL-10 (Serum, Voll-Blut-Assay, 

Lymphozyten) und IFN-γ/IL-13 (Lymphozyten). Bei auffälligen Unterschied(en) 

bezüglich Alter, oder Hormonkonzentrationen und SHBG zwischen einer 

schizophrenen Subgruppe und den entsprechenden Kontrollen wurden diese Parameter 

als Kovarianten in die Analyse eingeschlossen, um ihre Effekte auf die Th1/Th2-

Balance bei den zu vergleichenden Gruppen zu kontrollieren. 

(f) Statistik: MAN(C)OVA und Multiple Regression. MAN(C)OVA wurde verwendet, 

um die Fragestellung (2a) und (2b) zu untersuchen, während Multiple Regression zur 

Beantwortung der Fragestellung (2c) diente.  

(5) Primäre Ergebnisse: 

(a) Die Ergebnisse dieser Studie unterstützen unsere Hypothese einer Th2-Verschiebung 

zumindest bei einer Subgruppe der Schizophrenie. 

(b) Befunde bezüglich der Th1/Th2-Balance in Schizophrenie (Resultate der 

MAN(C)OVA): 

• Die Serum-Daten deuteten auf eine eindeutige Th2-Verschiebung bei schizophrenen 

Patienten als Gesamtgruppe hin, nachdem die Effekte von Alter und verschiedener 

Hormone (insbesondere Prolactin) ausgeschlossen worden waren. 

• Die Th2-Verschiebung im Serum scheint Schizophrenie-spezifisch zu sein, wie die 

Daten der Patienten mit schizophrenie-ähnlicher Symptomatik zeigen. 

• Im geschlechts-spezifischen Vergleich zu gesunden Probanden hatten weibliche 

schizophrene Patienten signifikant reduzierte Quotient sowohl für Serum IFN-γ/IL-4 

als auch für IFN-γ/IL-10, während männliche Patienten ausschließlich einen deutlich 

verminderten Serum IFN-γ/IL-10 Quotient zeigten.  

• Reduzierte Serum IFN-γ/IL-4- und IFN-γ/IL-10-Quotienten wurden ebenfalls bei 

diversen klinischen Subgruppen beobachtet außer bei schizophrenen Patienten mit 

vorwiegender Positivsymptomatik. 

• Ein deutlich reduzierter IFN-γ/IL-10-Quotient im PHA-stimulierten Voll-Blut wurde 

(a) bei Nicht-Paranoid oder chronischen schizophrenen Patienten gezeigt, bei 
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Patienten, die (b) eine positive psychiatrische Familienanamnese hatten und (c) vor 

Einschluss in die Studie länger als 3 Monate Antipsychotika-frei gewesen waren 

oder (d) bei Aufnahme in die stationär-psychiatrische Behandlung niedrigere Werte 

auf der PANSS-Negativ-Skala hatten. Bemerkenswerter weise zeigten auch 

Antipsychotika-naive Patienten mit Schizophrenie tendenziell einen beträchtlich 

reduzierten IFN-γ/IL-10-Quotient im Voll-Blut. 

• Die schizophrenen Patienten, deren Symptome nach einer 8-wöchigen Behandlung 

fast unverändert blieben, hatten auffallend niedrigere IFN-γ/IL-4- und IFN-γ/IL-10-

Quotienten im Voll-Blut als die gesunden Probanden. 

• Die schizophrenen Patienten mit einem frühen Krankheitsausbruch hatten 

außergewöhnlich reduzierte Serum IFN-γ/IL-4- und IFN-γ/IL-10-Quotienten, aber 

einen erhöhten IFN-γ/IL-4 und IFN-γ/IL-13 in PHA-stimulierten Lymphozyten. Im 

Gegensatz zeigten diejenigen mit einem späten Ausbruch keine Änderung der 

beiden Serum Th1/Th2-Quotienten, jedoch auffallend reduzierte IFN-γ/IL-4- und 

IFN-γ/IL-13-Quotienten bei in-vitro stimulierten Lymphozyten. 

(c) Die möglichen Ursachen der Th1/Th2-Dysbalance bei Schizophrenie-Patienten 

(Ergebnisse von Multiple-Regression): 

• Für die schizophrenen Patienten als ganze Gruppe waren vorwiegend IFN-γ, IL-4 

und IL-10 an die Balance zwischen dem Th1- und Th2-System beteiligt. IL-6 und 

TNF-α könnten zur Balance zwischen IFN-γ und IL-4 im PHA-stimulierten Voll-

Blut beigetragen haben, während IL-4 und das Alter offensichtliche Einflüsse auf 

die Balance zwischen IFN-γ und IL-10 im Voll-Blut bei Patienten mit Schizophrenie 

gehabt haben dürften. 

• Für die schizophrenen Patientinnen wurde keine eindeutige Quelle für das 

Ausbalancieren zwischen Serum IFN-γ und IL-4 gefunden, obwohl die gemessenen 

Variablen in der Lage waren, die IFN-γ/IL-4-Varianz zuverlässig vorherzusagen 

(d.h. ≥67% oder 2/3 der Varianz waren dadurch erklärbar). Das Abgleichen 

zwischen IFN-γ und IL-4 im Voll-Blut nach PHA-Stimulation wurde eher von den 

komplexen wechselseitigen Korrelationen unter IFN-γ, IL-4, TNF-α, IL-6, Prolactin, 

Östradiol, Testosteron und Alter beeinflusst. Ähnlich komplexe Inter-Korrelationen 

unter diesen obengenannten Kenngrößen wurden ebenfalls beim Ausgleichen 

zwischen IFN-γ und IL-10 sowohl im Serum als auch im PHA-stimulierten Voll-

Blut beobachtet. 
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• Für männliche schizophrene Patienten gab es vermutlich einige andere 

entscheidende Faktoren, welche in dieser Studie nicht geprüft worden waren, die 

jedoch an der Balancierung zwischen IFN-γ und IL-10 im Voll-Blut beteiligt 

gewesen waren. Im Gegensatz zu gesunden Probanden könnten Alter, Prolactin und 

Östradiol zusätzlich am Abgleichen von Serum IFN-γ/IL-10 beteiligt gewesen sein. 

Hingegen war IL-6 am Abgleichen von IFN-γ/IL-10 Voll-Blut-Assay bei 

männlichen schizophrenen Patienten beteiligt. Beachtenswerte Beiträge von 

Testosteron, SHBG und Östradiol zur Balancierung vom Voll-Blut IFN-γ/IL-10 wie 

im Fall der Kontrollen waren bei männlichen Patienten mit Schizophrenie nicht zu 

beobachten. 

(d) Psychopathologie und Th1/Th2-Quotienten: Der durchschnittliche Messwert auf der 

PANSS-Negativ-Skala korrelierte positiv mit Voll-Blut-Assay IFN-γ/IL-4 und IFN-

γ/IL-10. Außerdem war der Mittelwert auf der PANSS Global Skala ebenfalls positiv 

mit Voll-Blut IFN-γ/IL-4 assoziiert.  

(6) Schlussfolgerung und Diskussion: 

(a) Die Ergebnisse dieser Studie zeigen deutliche Th2-Verschiebungen im Serum bei 

verschiedenen schizophrenen Subgruppen und bieten einen eher unterstützenden 

Hinweis für die Hypothese der Th2-Verschiebung von Schizophrenie. 

(b) Th2-Verschiebungen bei schizophrenen Patienten scheinen eine komplexe Folge von 

Wechselwirkungen von Krankheitsprozess, Hormonen und antipsychotischer 

Medikation, jedoch wahrscheinlich nicht nur ein Resultat der antipsychotischen 

Behandlung oder der durch Alterung ausgelösten Veränderungen zu sein. 
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Appendix 6-6(1): The resources of serum, whole blood assay , and lymphocyte IFN-γ in 
schizophrenics and controls (results from the complete model).  

Criteria = IFN- γγγγ: magnitude of importance by individual predictor 
 
Serum 

Whole CON 
(N = 72) 

Whole SCH 
(N = 40) 

♂ CON 
(N = 38) 

♂ SCH 
(N = 25) 

♀ CON 
(N = 34) 

♀ SCH 
(N = 15) 

IL-2 1.80 (.08) .40 (.69) 3.18 (.004) .75 (.47) .86 (.40) 1.48 (.24) 

TNF-α .82 (.42) 1.07 (.29) .77 (.45) .86 (.41) 1.08 (.29) -.18 (.87) 

IL-4 -.10 (.92) .54 (.60) -.11 (.91) 1.09 (.30) -.68 (.50) -1.33 (.28) 
IL-10 2.11 (.04) -.02 (.99) 1.00 (.33) .60 (.56) 1.72 (.10) -.16 (.89) 
IL-6 2.97 (.004) -.03 (.98) 2.21 (.04) -.04 (.97) .51 (.61) 1.46 (.24) 
Cortisol -.42 (.68) -2.18 (.04) .42 (.68) -1.28 (.22) .07 (.95) .72 (.52) 
Prolactin 1.38 (.17) 1.76 (.09) 1.11 (.28) .01 (.99) .78 (.44) 3.78 (.03) 
Estradiol -.08 (.94) -1.23 (.23) -1.30 (.20) -.84 (.41) -.40 (.69) 1.55 (.22) 
Testosterone -1.12 (.27) -.25 (.81) .66 (.52) -1.05 (.31) -1.01 (.32) -2.11 (.13) 
SHBG -1.13 (.26) .01 (1.00) .37 (.72) -.08 (.93) -1.30 (.21) -.35 (.75) 
Age -.96 (.34) -.93 (.36) -1.52 (.14) -.94 (.37) -.08 (.94) -1.02 (.38) 
       Adjusted R 
             Signif.Test 

WB 

R² = 1.00 
F = 18575.53, 
p < .001 

R² = .39 
F = 1.62, 
p = .15 

R² = 1.00 
F = 13914.45,  
p < .001 

R² = .61 
F = 1.85,  
p = .15 

R² = .42 
F = 1.45, 
p = .22 

R² = .44 
F = 2.01, 
p = .31 

IL-2 .57 (.57) .23 (.82) 2.27 (.03) .05 (.96) -.38 (.71) 1.30 (.28) 

TNF-α 1.50 (.14) 1.38 (.18) -.90 (.38) 1.05 (.31) 1.71 (.10) -.24 (.83) 

IL-4 -3.05 (.003) -2.12 (.04) -1.20 (.24) -1.35 (.20) -1.74 (.10) .21 (.85) 
IL-10 5.70 (.000) 2.90 (.007) 3.24 (.003) 1.67 (.12) 3.45 (.002) .92 (.43) 
IL-6 3.09 (.003) 2.02 (.05) 2.30 (.03) 1.42 (.18) 1.99 (.06) -.03 (.98) 
Cortisol -.74 (.46) .62 (.54) .73 (.47) .28 (.78) -.28 (.78) -.02 (.98) 
Prolactin 2.07 (.04) .40 (.69) 1.99 (.06) -.34 (.74) .28 (.78) .50 (.65) 
Estradiol -1.16 (.25) 1.20 (.24) -1.26 (.22) 1.08 (.30) -.93 (.36) .49 (.66) 
Testosterone 1.43 (.16) 2.18 (.04) 1.45 (.16) .72 (.49) -.17 (.87) -.24 (.83) 
SHBG 1.30 (.20) -.50 (.62) 1.42 (.17) .20 (.84) .55 (.59) -.07 (.95) 
Age .88 (.38) -.17 (.97) -1.06 (.30) -.84 (.42) .87 (.39) .10 (.93) 
         Adjusted  
             Signif.Test 

Lymph  

R² = .61 
F = 10.98,  
p < .001 

R² = .63 
F = 4.37, 
p = .001 

R² = .58 
F = 5.65,  
p < .001 

R² = .67 
F = 2.35,  
p = .07 

R² = .62 
F = 5.86, 
p < .001 

R² = .92 
F = 2.99, 
p = .20 

IL-12 1.00 (.32) .13 (.89) 2.52 (.02) .01 (.99) -.39 (.70) .48 (.66) 
IL-10 3.14 (.003) .80 (.43) 2.55 (.02) .17 (.87) 2.09 (.05) .17 (.87) 
IL-4 -.01 (.99) 1.57 (.13) -.78 (.44) 2.36 (.03) -.45 (.66) .89 (.42) 
IL-13 3.51 (.001) -.42 (.68) 1.05 (.30) -.73 (.48) 3.34 (.003) -.31 (.77) 
Cortisol -1.72 (.09) .10 (.92) -1.12 (.27) .91 (.38) .02 (.98) .86 (.44) 
Prolactin .66 (.51) .38 (.71) 2.56 (.02) 1.52 (.15) -.80 (.44) -.70 (.52) 
Estradiol -1.23 (.22) .77 (.45) -1.69 (.10) -.79 (.44) -.62 (.54) 1.41 (.23) 
Testosterone -.97 (.34) .33 (.75) .18 (.86) -.22 (.83) -.51 (.61) .16 (.88) 
SHBG 1.10 (.27) -.73 (.47) -.26 (.80) .08 (.94) -.41 (.69) -.96 (.39) 
Age 2.07 (.04) .45 (.66) .84 (.41) -.89 (.39) .87 (.39) .92 (.41) 

Adjusted  
Signif. test 

R² = .44 
F = 6.49,  
p < .001 

R² = -.06 
F = .79, 
p = .64 

R² = .61 
F = 6.71,  
p < .001 

R² = .18 
F = 1.53, 
p = .23 

R² = .42 
F = 3.39, 
p = .007 

R² = -.40 
F = .60, 
p = .77 

Note  WB = whole blood; Lymph = lymphocyte; Adjusted = adjusted R²; Signif. = significance. 
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Appendix 6-6(2): The resources of lymphocyte IL-12 in schizophrenics and controls  (results 
from the complete model).  

Criteria = IL-12: magnitude of importance by indivi dual predictor 
 
Lymph  

Whole CON 
(N = 72) 

Whole SCH 
(N = 40) 

♂ CON 
(N = 38) 

♂ SCH 
(N = 25) 

♀ CON 
(N = 34) 

♀ SCH 
(N = 15) 

IFN-γ 1.00 (.32) .13 (.89) 2.52 (.02) .01 (.95) -.39 (.70) .48 (.66) 

IL-10 3.27 (.002) .78 (.44) 1.27 (.22) 2.11 (.05) 2.73 (.01) -1.09 (.34) 
IL-4 1.14 (.26) .67 (.51) 1.15 (.26) .79 (.44) -.04 (.97) -.66 (.54) 
IL-13 -.48 (.64) -.44 (.66) -.15 (.89) .16 (.88) .94 (.36) .58 (.60) 
Cortisol -.77 (.45) .15 (.88) .21 (.84) -.61 (.55) -1.12 (.27) -.53 (.62) 
Prolactin -.39 (.70) 2.80 (.009) -1.53 (.14) -.08 (.94) .91 (.37) 3.17 (.03) 
Estradiol 1.07 (.29) .16 (.87) .97 (.34) -.19 (.86) .33 (.75) .10 (.93) 
Testosterone 1.65 (.10) 1.00 (.33) -.10 (.92) 1.20 (.25) .97 (.34) -1.75 (.16) 
SHBG 1.08 (.28) .24 (.82) .93 (.36) .14 (.89) .02 (.99) 1.12 (.33) 
Age 2.33 (.02) 1.11 (.28) 1.56 (.13) -.63 (.54) .25 (.81) -.79 (.48) 

Adjusted  
Signif. test 

R² = .40 
F = 5.64,  
p < .001 

R² = .32 
F = 1.39, 
p = .24 

R² = .54 
F = 5.38,  
p < .001 

R² = .45 
F = 1.14, 
p = .40 

R² = .47 
F = 2.04, 
p = .08 

R² = .89 
F = 3.21, 
p = .14 

Note  Lymph = lymphocyte; Adjusted = adjusted R²; Signif. = significance. 
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Appendix 6-6(3): The resources of serum and whole blood assay IL-2 in schizophrenics and 
controls  (results from the complete model).  

Criteria = IL-2: magnitude of importance by individ ual predictor 
 
Serum  

Whole CON 
(N = 72) 

Whole SCH 
(N = 40) 

♂ CON 
(N = 38) 

♂ SCH 
(N = 25) 

♀ CON 
(N = 34) 

♀ SCH 
(N = 15) 

IFN-γ 1.50 (.08) .40 (.69) .52 (.61) .75 (.47) .86 (.40) 1.48 (.24) 

TNF-α 9.88 (.000) .77 (.45) 10.0 (.000) -.08 (.94) 1.91 (.07) .76 (.50) 

IL-4 -.08 (.94) .42 (.68) .81 (.42) -.16 (.88) -.92 (.37) 3.07 (.05) 
IL-10 -.61 (.54) 1.13 (.27) -1.85 (.08) -.20 (.85) -.05 (.96) 1.22 (.31) 
IL-6 -1.13 (.26) -.98 (.34) -.28 (.78) .02 (.98) -.37 (.71) -2.45 (.09) 
Cortisol -.02 (.99) -2.10 (.05) 1.04 (.31) -1.32 (.21) .82 (.42) -2.98 (.06) 
Prolactin -.50 (.62) .16 (.87) -.76 (.46) -.27 (.79) .42 (.68) -1.69 (.19) 
Estradiol -.02 (.99) -1.92 (.07) -.64 (.53) -.32 (.76) .21 (.84) -5.80 (.01) 
Testosterone 1.23 (.22) .19 (.85) .91 (.37) .83 (.42) .75 (.46) 2.70 (.07) 
SHBG .72 (.48) 1.26 (.22) -.65 (.52) -.39 (.71) -.32 (.75) 1.53 (.22) 
Age .39 (.70) -.60 (.55) .64 (.53) .32 (.75) -.53 (.60) .71 (.53) 
       Adjusted R 
            Signif.Test 
                                  

WB 

R² = 1.00 
F = 15375.15, 
p <.001 

R² = .32 
F = 1.17, 
p = .35 

R² = 1.00 
F = 16692.27, 
p <.001 

R² = .27 
F = .44, 
p = .91 

R² = .35 
F = 1.08, 
p = .42 

R² = .81 
F = 6.46, 
p = .08 

IFN-γ .57 (.57) .23 (.82) 2.27 (.03) .05 (.96) -.38 (.71) 1.30 (.28) 

TNF-α 7.50 (.000) 4.01 (.000) 7.08 (.000) 3.23 (.007) 4.03 (.001) .72 (.53) 

IL-4 -1.33 (.19) -.65 (.52) -.86 (.40) -.61 (.56) -.31 (.76) -.73 (.52) 
IL-10 .28 (.78) -.88 (.39) -.82 (.42) .58 (.57) 1.67 (.11) -.41 (.71) 
IL-6 -1.81 (.08) 1.57 (.13) -2.60 (.02) 1.49 (.16) -1.09 (.29) -.15 (.89) 
Cortisol -.21 (.83) -.74 (.47) -1.75 (.09) -.02 (.99) -.64 (.53) .23 (.84) 
Prolactin .43 (.67) .88 (.39) -.56 (.58) 1.10 (.29) 1.80 (.09) .19 (.86) 
Estradiol .57 (.57) .09 (.93) 1.41 (.17) -.09  (.93) .09 (.93) -.20 (.85) 
Testosterone .02 (.99) -.58 (.57) -1.85 (.08) -.96 (.35) -.74 (.47) -.33 (.76) 
SHBG -.42 (.68) -.04 (.97) -.74 (.47) .49 (.64) -.46 (.65) .76 (.51) 
Age .10 (.92) 1.83 (.08) 1.76 (.09) 1.81 (.09) -.84 (.41) -.09 (.93) 

Adjusted  
Signif. Test 
 

R² = .57 
F = 9.49,  
p < .001 

R² = .62 
F = 4.09, 
p = .001 

R² = .75 
F = 11.20,  
p < .001 

R² = .72 
F = 3.10,  
p = .03 

R² = .62 
F = 3.22, 
p = .009 

R² = .88 
F = 2.04, 
p = .30 

Note  WB = whole blood; Adjusted = adjusted R²; Signif. = significance. 
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Appendix 6-6(4): The resources of serum and whole blood assay TNF-α in schizophrenics 
and controls (results from the complete model).  

Criteria = TNF- αααα: magnitude of importance by individual predictor 
 
Serum  

Whole CON 
(N = 72) 

Whole SCH 
(N = 40) 

♂ CON 
(N = 38) 

♂ SCH 
(N = 25) 

♀ CON 
(N = 34) 

♀ SCH 
(N = 15) 

IFN-γ .82 (.42) 1.07 (.29) .77 (.45) .86 (.41) 1.08 (.29) -.18 (.87) 

IL-2 9.88 (.000) .77 (.45) 10.0 (.000) -.08 (.94) 1.91 (.07) .76 (.50) 
IL-4 .45 (.66) 3.15 (.004) -.50 (.62) 2.25 (.04) 2.05 (.05) -.10 (.93) 
IL-10 1.13 (.26) .24 (.81) 2.54 (.02) -.62 (.55) .18 (.86) -.64 (.57) 
IL-6 1.38 (.17) -.43 (.67) -.04 (.97) .62 (.55) 1.04 (.31) .43 (.69) 
Cortisol -.75 (.46) 1.59 (.12) -2.15 (.04) -.35 (.73) .45 (.66) 1.15 (.34) 
Prolactin .47 (.64) -1.20 (.24) .78 (.45) -1.68 (.12) -.80 (.43) .21 (.85) 
Estradiol -.21 (.83) .93 (.36) 1.16 (.26) -1.99 (.07) .48 (.64) .86 (.45) 
Testosterone -1.36 (.18) -2.69 (.01) -1.49 (.15) .38 (.71) -.43 (.67) -.76 (.50) 
SHBG -.17 (.86) -2.44 (.02) 1.02 (.32) -1.02 (.33) -.56 (.58) -1.89 (.16) 
Age .05 (.96) -.13 (.90) -.46 (.65) .41 (.69) -.06 (.95) -.42 (.70) 
       Adjusted R 
             Signif.Test 

WB  

R² = 1.00 
F = 25598.08, 
p < .001 

R² = .47 
F = 2.24, 
p = .04 

R² = 1.00 
F = 38493.99, 
p < .001 

R² = .54 
F = 1.40, 
p = .28 

R² = .44 
F = 1.57, 
p = .18 

R² = .75 
F = .82, 
p = .65 

IFN-γ 1.50 (.14) 1.38 (.18) -.91 (.38) 1.05 (.31) 1.71 (.10) -.24 (.83) 

TNF-α 7.50 (.000) 4.01 (.000) 7.08 (.000) 3.23 (.007) 4.03 (.001) .72 (.53) 

IL-4 3.30 (.002) 1.57 (.13) 1.68 (.11) 1.07 (.30) 1.30 (.21) 3.77 (.03) 
IL-10 -.41 (.68) .36 (.72) .71 (.49) -1.08 (.30) -1.44 (.16) -.43 (.70) 
IL-6 2.45 (.02) -.16 (.88) 2.62 (.01) -.46 (.66) 1.56 (.13) 2.19 (.12) 
Cortisol 1.22 (.23) -.12 (.90) 2.07 (.05) .04 (.97) 1.28 (.21) -.72 (.52) 
Prolactin -1.54 (.13) -.55 (.59) .04 (.97) -.57 (.58) -1.68 (.11) .77 (.50) 
Estradiol .54 (.59) .05 (.96) -1.32 (.20) .04 (.97) 1.03 (.31) 2.07 (.13) 
Testosterone .82 (.42) .80 (.43) 1.35 (.19) .20 (.85) 1.05 (.30) -.75 (.51) 
SHBG .39 (.70) .42 (.68) 1.03 (.31) .07 (.94) .28 (.71) .29 (.79) 
Age .84 (.40) -2.05 (.05) -.75 (.46) -1.58 (.14) .64 (.53) -1.21 (.31) 

Adjusted  
Signif. test 

R² = .72 
F = 17.39, 
p < .001 

R² = .70 
F = 5.84, 
p < .001 

R² = .80 
F = 14.69, 
p < .001 

R² = .68 
F = 2.56, 
p = .06 

R² = .73 
F = 5.31, 
p < .001 

R² = .98 
F = 12.92, 
p = .03 

Note  WB = whole blood; Adjusted = adjusted R²; Signif. = significance. 
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Appendix 6-6(5): The resources of serum, whole blood assay, and lymphocyte IL-4 in 
schizophrenics and controls (results from the complete model).  

Criteria = IL-4: magnitude of importance by individ ual predictor 
 
Serum  

Whole CON 
(N = 72) 

Whole SCH 
(N = 40) 

♂ CON 
(N = 38) 

♂ SCH 
(N = 25) 

♀ CON 
(N = 34) 

♀ SCH 
(N = 15) 

IFN-γ -.10 (.92) .54 (.60) -.11 (.91) 1.09 (.30) -.68 (.50) -1.33 (.28) 
IL-2 -.08 (.94) .42 (.68) .82 (.42) -.16 (.88) -.93 (.37) 3.07 (.05) 
TNF-α .45 (.66) 3.15 (.004) -.50 (.62) 2.25 (.04) 2.05 (.05) -.10 (.93) 
IL-10 .03 (.98) .31 (.76) -.42 (.68) .41 (.69) -.75 (.46) -.78 (.49) 
IL-6 .35 (.73) .03 (.98) .65 (.52) -.52 (.61) -.08 (.94) 1.67 (.19) 
Cortisol .44 (.66) .05 (.96) 1.35 (.19) .74 (.48) -.87 (.40) 1.92 (.15) 
Prolactin .01 (1.00) .98 (.34) -.32 (.75) 1.78 (.10) 1.19 (.25) 1.47 (.24) 
Estradiol -.50 (.62) .53 (.60) -.92 (.36) 2.27 (.04) -.89 (.38) 2.69 (.07) 
Testosterone 1.05 (.30) 2.85 (.008) .54 (.59) .63 (.54) -.44 (.66) -1.70 (.19) 
SHBG -.55 (.58) 1.73 (.09) -.36 (.72) .98 (.35) .52 (.61) -.84 (.46) 
Age .09 (.93) .81 (.43) .49 (.63) .41 (.69) -.43 (.67) -.50 (.65) 
        Adjusted  
          Signif.Test 

WB 

R² = .98 
F = 258.05,  
p < .001 

R² = .42 
F = 1.86, 
p = .09 

R² = .98 
F = 192.14,  
p < .001 

R² = .58 
F = 1.64, 
p = .20 

R² = .27 
F = .76, 
p = .68 

R² = .89 
F = 2.25, 
p = .27 

IFN-γ -3.05 (.003) -2.12 (.04) -1.20 (.24) -1.35 (.20) -1.74 (.10) .21 (.85) 
IL-2 -1.33 (.19) -.65 (.52) -.86 (.40) -.61 (.56) -.31 (.76) -.73 (.52) 
TNF-α 3.30 (.002) 1.57 (.13) 1.68 (.11) 1.07 (.30) 1.30 (.21) 3.77 (.03) 
IL-10 6.54 (.000) 3.80 (.001) 5.51 (.000) 2.64 (.02) 1.24 (.23) 1.03 (.38) 
IL-6 -.79 (.43) 1.72 (.10) -1.29 (.21) 1.26 (.23) .53 (.60) -2.08 (.13) 
Cortisol -.67 (.51) .54 (.59) -1.83 (.08) -.45 (.66) 1.39 (.18) 1.01 (.39) 
Prolactin 1.05 (.30) .26 (.80) .81 (.42) .01 (.99) -1.32 (.20) -.89 (.44) 
Estradiol .04 (.97) .53 (.60) 1.50 (.15) -.10 (.92) .85 (.41) -1.42 (.25) 
Testosterone .32 (.75) .84 (.41) -1.22 (.23) .67 (.51) -.44 (.67) .84 (.46) 
SHBG -.13 (.90) -.34 (.74) .73 (.47) -.53 (.60) -.67 (.51) -.36 (.75) 
Age 1.18 (.24) .76 (.46) 1.29 (.21) .87 (.40) .86 (.40) 1.24 (.30) 
          Adjusted  
            Signif. Test 
Lymph  

R² = .55 
F = 8.94,  
p < .001 

R² = .58 
F = 3.56, 
p = .003 

R² = .72 
F = 9.57,  
p < .001 

R² = .50 
F = 1.17, 
p = .39 

R² = .42 
F = 1.47, 
p = .21 

R² = .98 
F = 11.38, 
p = .04 

IFN-γ -.01 (.99) 1.57 (.13) -.78 (.44) 2.36 (.03) -.45 (.66) .89 (.42) 

IL-12 1.14 (.26) .67 (.51) 1.15 (.26) .79 (.44) -.04 (.97) -.66 (.54) 
IL-10 -.75 (.45) .06 (.95) -.53 (.60) .12 (.91) .59 (.56) -.11 (.92) 
IL-13 3.40 (.001) 4.55 (.000) 1.29 (.21) 1.37 (.19) 3.02 (.006) 4.19 (.01) 
Cortisol -1.78 (.08) -.04 (.97) -1.08 (.29) .24 (.82) -1.03 (.31) -1.17 (.31) 
Prolactin 2.17 (.03) .44 (.66) 2.17 (.04) -1.03 (.32) .76 (.46) 1.79 (.15) 
Estradiol -.89 (.38) -.81 (.43) .08 (.94) .27 (.79) -.63 (.54) -1.41 (.23) 
Testosterone -.78 (.44) .92 (.36) -1.11 (.28) .10 (.92) -.05 (.96) -1.47 (.22) 
SHBG .82 (.42) .57 (.57) -.23 (.82) .85 (.41) .33 (.75) .98 (.39) 
Age -.93 (.35) 1.08 (.29) .44 (.66) 3.00 (.01) -1.51 (.15) -2.98 (.04) 

Adjusted  
Signif. test 

R² = .22 
F = 2.93,  
p = .005 

R² = .57 
F =  3.84, 
p = .002 

R² = .06 
F = 1.23,  
p = .31 

R² = .72 
F = 3.60, 
p =.02 

R² = .52 
F = 2.45, 
p = .04 

R² = .96 
F = 10.14, 
p = .02 

Note  WB = whole blood; Lymph = lymphocyte; Adjusted = adjusted R²; Signif. = significance. 
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Appendix 6-6(6): The resources of serum, whole blood assay, and lymphocyte IL-10 in 
schizophrenics and controls (results from the complete model).  

Criteria = IL-10: magnitude of importance by indivi dual predictor 
 
Serum  

Whole CON 
(N = 72) 

Whole SCH 
(N = 40) 

♂ CON 
(N = 38) 

♂ SCH 
(N = 25) 

♀ CON 
(N = 34) 

♀ SCH 
(N = 15) 

IFN-γ 2.11 (.04) -.02 (.99) 1.00 (.33) .60 (.56) 1.72 (.10) -.16 (.89) 
IL-2 -.61 (.54) 1.13 (.27) -.72 (.48) -.20 (.85) -.05 (.96) 1.22 (.31) 
TNF-α 1.13 (.26) .24 (.81) 2.54 (.02) -.62 (.55) .18 (.86) -.64 (.57) 
IL-4 .03 (.98) .31 (.76) -.42 (.68) .41 (.69) -.75 (.46) -.78 (.49) 
IL-6 6.27 (.000) 1.64 (.11) 6.16 (.000) .89 (.39) 1.82 (.08) 1.04 (.38) 
Cortisol -.31 (.74) .29 (.78) 1.06 (.30) -.65 (.53) -2.01 (.06) 1.08 (.36) 
Prolactin -.10 (.93) -.41 (.68) -.33 (.74) -1.88 (.08) .47 (.64) .43 (.70) 
Estradiol .45 (.65) -.12 (.91) .43 (.67) -.30 (.77) -.15 (.88) .96 (.41) 
Testosterone .81 (.42) -.87 (.40) -.81 (.43) 1.29 (.22) .75 (.46) .97 (.40) 
SHBG .16 (.88) -1.11 (.28) -.81 (.43) -1.49 (.16) 2.64 (.02) -1.30 (.29) 
Age 1.44 (.15) -.27 (.79) 2.03 (.05) .22 (.83) .57 (.57) -.67 (.55) 
         Adjusted  
            Signif. Test 
WB 

R² = 1.00 
F = 20654.58, 
p < .001 

R² = .22 
F = .71, 
p = .72 

R² = 1.00 
F = 20553.89, 
p < .001 

R² = .49 
F = 1.11, 
p = .42 

R² = .45 
F = 1.65, 
p = .15 

R² = .71 
F = .66, 
p = .74 

IFN-γ 5.70 (.000) 2.90 (.007) 3.25 (.003) 1.67 (.12) 3.45 (.002) .92 (.43) 
IL-2 .28 (.78) -.88 (.39) -.82 (.42) .58 (.57) 1.67 (.11) -.41 (.71) 
TNF-α -.41 (.68) .36 (.72) .71 (.49) -1.08 (.30) -1.44 (.16) -.43 (.70) 
IL-4 6.54 (.000) 3.80 (.001) 5.51 (.000) 2.64 (.02) 1.24 (.23) 1.03 (.38) 
IL-6 -.58 (.57) -.67 (.51) -.17 (.86) -.58 (.57) .29 (.77) .91 (.43) 
Cortisol .60 (.55) -.38 (.71) .39 (.70) .63 (.54) 1.19 (.25) -1.19 (.32) 
Prolactin -1.57 (.12) .23 (.82) -1.12 (.27) -.20 (.84) -1.80 (.09) .75 (.51) 
Estradiol .44 (.66) -1.16 (.26) -.16 (.88) .02 (.99) 1.18 (.25) -.002 (1.00) 
Testosterone -.76 (.45) -1.53 (.14) .16 (.88) -.72 (.49) .74 (.47) -.80 (.49) 
SHBG .04 (.97) 1.99 (.06) -1.37 (.18) .49 (.63) .71 (.49) .92 (.43) 
Age -1.06 (.29) .72 (.48) -.67 (.51) -.35 (.73) .74 (.47) -.94 (.42) 
          Adjusted  
            Signif. Test 
Lymph  

R² = .65, 
F = 12.99, 
p < .001 

R² = .68 
F = 5.48, 
p < .001 

R² = .74, 
F = 10.56, 
p < .001 

R² = .45 
F = .98, 
p = .51 

R² = .68 
F = 4.21, 
p = .002 

R² = .95 
F = 5.03, 
p = .11 

IFN-γ 3.14 (.003) .80 (.43) 2.54 (.02) .17 (.87) 2.09 (.05) .17 (.87) 

IL-12 3.27 (.002) .78 (.44) 1.27 (.22) 2.11 (.05) 2.73 (.01) -1.09 (.34) 
IL-4 -.75 (.45) .06 (.95) -.53 (.60) .12 (.91) .59 (.56) -.11 (.92) 
IL-13 -1.54 (.13) .66 (.51) -.65 (.52) .41 (.69) -1.99 (.06) .21 (.84) 
Cortisol .25 (.80) 1.27 (.22) -.14 (.89) .77 (.45) .17 (.87) .21 (.85) 
Prolactin -.18 (.86) -.76 (.45) -1.01 (.32) -.24 (.81) .23 (.82) .82 (.46) 
Estradiol -.51 (.62) 1.32 (.20) .61 (.55) -.08 (.94) -.38 (.71) .67 (.54) 
Testosterone -.83 (.41) .22 (.83) .16 (.88) -.60 (.56) -1.23 (.23) -.78 (.48) 
SHBG -1.12 (.27) 1.72 (.10) -.55 (.59) .39 (.70) .23 (.82) .80 (.47) 
Age .34 (.74) .19 (.85) -.20 (.85) .15 (.88) 1.16 (.26) -.21 (.84) 

Adjusted  
Signif. test 

R² = .38 
F = 5.44,  
p < .001 

R² = .34 
F = 1.52, 
p = .18 

R² = .39 
F = 3.36,  
p = .006 

R² = .42 
F = 1.00, 
p = .49 

R² = .57 
F = 3.04, 
p = .01 

R² = .57 
F = .52, 
p = .82 

Note  WB = whole blood; Lymph = lymphocyte; Adjusted = adjusted R²; Signif. = significance. 
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Appendix 6-6(7): The resources of lymphocyte IL-13 in schizophrenics and controls (results 
from the complete model).  

Criteria = IL-13: magnitude of importance by indivi dual predictor 
 
Lymph 

Whole CON 
(N = 72) 

Whole SCH 
(N = 40) 

♂ CON 
(N = 38) 

♂ SCH 
(N = 25) 

♀ CON 
(N = 34) 

♀ SCH 
(N = 15) 

IFN-γ 3.51 (.001) -.42 (.68) 1.05 (.30) -.73 (.48) 3.34 (.003) -.31 (.77) 

IL-12 -.48 (.64) -.44 (.66) -.15 (.89) .16 (.88) .94 (.36) .58 (.60) 
IL-10 -1.54 (.13) .66 (.51) -.65 (.52) .41 (.69) -1.99 (.06) .21 (.84) 
IL-4 3.40 (.001) 4.55 (.000) 1.29 (.21) 1.37 (.19) 3.02 (.006) 4.19 (.01) 
Cortisol .51 (.61) -.21 (.84) 1.35 (.19) 1.01 (.33) -.57 (.58) .48 (.66) 
Prolactin -.40 (.69) .37 (.72) -.11 (.91) .61 (.56) .05 (.96) -1.43 (.23) 
Estradiol .59 (.56) .31 (.76) -.79 (.44) 1.06 (.31) .57 (.58) .63 (.57) 
Testosterone .88 (.38) -.57 (.57) .43 (.67) -1.80 (.09) -.22 (.83) 2.02 (.11) 
SHBG -.39 (.70) -.39 (.70) -.43 (.67) .74 (.47) 1.47 (.16) -.41 (.70) 
Age -.99 (.33) -.57 (.58) -.83 (.41) -.55 (.60) .40 (.69) 2.52 (.07) 

Adjusted  
Signif. test 

R² = .26 
F = 3.45,  
p = .001 

R² = .48 
F = 2.63, 
p = .02 

R² = -.04 
F = .86,  
p = .58 

R² = .43 
F = 1.03, 
p = .47 

R² = .69 
F = 5.22, 
p = .001 

R² = .95 
F = 7.60, 
p = .03 

Note  Lymph = lymphocyte; Adjusted = adjusted R²; Signif. = significance. 
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Appendix 6-6(8): The resources of serum and whole blood assay IL-6 in schizophrenics and 
controls (results from the complete model).  

Criteria = IL-6: magnitude of importance by individ ual predictor 
 
Serum  

Whole CON 
(N = 72) 

Whole SCH 
(N = 40) 

♂ CON 
(N = 38) 

♂ SCH 
(N = 25) 

♀ CON 
(N = 34) 

♀ SCH 
(N = 15) 

IFN-γ 2.97 (.004) -.03 (.98) 2.21 (.04) -.04 (.97) .51 (.61) 1.46 (.24) 

IL-2 -1.13 (.26) -.98 (.34) -.73 (.47) .02 (.98) -.37 (.71) -2.45 (.09) 

TNF-α 1.38 (.17) -.43 (.67) -.04 (.97) .62 (.55) 1.04 (.31) .43 (.69) 

IL-4 .35 (.73) .03 (.98) .65 (.52) -.52 (.61) -.08 (.94) 1.67 (.19) 
IL-10 6.27 (.000) 1.64 (.11) 6.16 (.000) .89 (.39) 1.82 (.08) 1.04 (.38) 
Cortisol 1.44 (.16) .49 (.63) -.69 (.50) .35 (.73) 1.59 (.13) -1.45 (.24) 
Prolactin -1.19 (.24) -.99 (.33) -.42 (.68) .37 (.72) -.94 (.36) -1.85 (.16) 
Estradiol -.10 (.93) -1.23 (.23) .31 (.76) 1.67 (.12) -.35 (.73) -2.37 (.10) 
Testosterone .56 (.58) -.95 (.35) .59 (.56) -1.51 (.16) -.14 (.89) 2.09 (.13) 
SHBG .53 (.60) .44 (.67) .27 (.79) .73 (.48) -.49 (.63) .88 (.44) 
Age -.79 (.43) .50 (.62) -.95 (.35) .76 (.46) -.76 (.45) .88 (.44) 
         Adjusted  
            Signif. Test 
WB 

R² = 1.00 
F = 22507.37,  
p < .001 

R² = .26 
F = .91, 
p = .55 

R² = 1.00 
F = 22131.61, 
p < .001 

R² = .42 
F = .85, 
p = .60 

R² = .42 
F = 1.47, 
p = .21 

R² = .77 
F = .93, 
p = .60 

IFN-γ 3.09 (.003) 2.02 (.05) 2.30 (.03) 1.42 (.18) 1.99 (.06) -.03 (.98) 

IL-2 -1.81 (.08) 1.57 (.13) -2.60 (.02) 1.49 (.16) -1.09 (.29) -.15 (.89) 

TNF-α 2.45 (.02) -.16 (.88) 2.62 (.01) -.46 (.66) 1.56 (.13) 2.19 (.12) 

IL-4 -.79 (.43) 1.72 (.10) -1.29 (.21) 1.26 (.23) .53 (.60) -2.08 (.13) 
IL-10 -.58 (.57) -.67 (.51) -.17 (.86) -.58 (.57) .29 (.77) .91 (.43) 
Cortisol -1.23 (.22) -1.38 (.18) -1.97 (.06) -1.46 (.17) -1.66 (.11) .71 (.53) 
Prolactin .98 (.33) -.66 (.52) -.56 (.58) -.13 (.90) 1.43 (.17) -.92 (.43) 
Estradiol -.73 (.47) -1.33 (.20) 1.59 (.12) -.19 (.85) -1.36 (.19) -1.54 (.22) 
Testosterone -2.59 (.01) .33 (.75) -1.36 (.19) 1.18 (.26) -1.40 (.18) .83 (.47) 
SHBG -.90 (.37) .69 (.50) -1.12 (.27) -1.24 (.24) -1.27 (.22) -.39 (.73) 
Age -1.12 (.27) -.04 (.97) 1.57 (.13) -.31 (.76) -2.46 (.02) 1.33 (.28) 

Adjusted  
Signif. test 

R² = .30, 
F = 3.71,  
p < .001 

R² = .54 
F = 2.98, 
p = .01 

R² = .22, 
F = 1.97,  
p = .08 

R² = .63 
F = 2.02, 
p = .11 

R² = .60 
F = 2.99, 
p = .01 

R² = .86 
F = 1.65, 
p = .37 

Note  WB = whole blood; Adjusted = adjusted R²; Signif. = significance. 
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