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Zusammenfassung

In dieser Dissertation entwickeln wir einen neuartigen Ansatz zur Untersuchung natürlicher

Phänomene in (gekrümmten) Raumzeiten und bieten eine Alternative zu herkömmlichen

(1 + 3)-dimensionalen Feldtheorien, wann immer diese unzureichend sind. Inspiriert von

der Einfachheit nieder-dimensionaler Theorien, insbesondere (1+ 1)-dimensionaler, die oft

komplexe Phänomene stark vereinfachen und teils exakte Lösungen liefern, konstruieren

wir theoretische Strukturen, Netzwerke und deren Weltflächen, an die (Quanten-)Felder

gebunden sind. Jede Kante des Netzwerks trägt eine einfache, räumlich eindimensionale

Feldtheorie, während die Knoten die Ausbreitung der Felder steuern. Da Netzwerke in

die (1 + 3)-dimensionale (gekrümmte) Raumzeit eingebettet sind, können Felder durch

verschiedene Regionen der Raumzeit entlang eindimensionaler Pfade propagieren.

Die zentrale Idee besteht darin, Felder auf Netzwerkweltflächen als Instrumente zur

Untersuchung (1+3)-dimensionaler Phänomene vorzuschlagen, anstatt Felder, die im voll-

dimensionalen Hintergrund eingebettet sind.

Um unseren Ansatz zu prüfen, untersuchten wir die Verschränkungseigenschaften von

Vakuumfluktuationen auf Netzwerken in der Minkowski-Raumzeit. Bemerkenswerterweise

zeigt die Verschränkungsentropie, obwohl die Felder eindimensional lokalisiert sind, die

gleiche Flächen-Skalierung wie Felder in der (1+3)-dimensionalen Raumzeit. Insbesondere,

lösen unter bestimmten Bedingungen die Felder die grobe Struktur des Netzwerks nicht

auf und verhalten sich wie in einer voll-dimensionalen Raumzeit. Zusätzlich untersuchten

wir die Abhängigkeit bezüglich der Form des Subsystems von der Verschränkungsentropie

in der (1 + 3)-dimensionalen Minkowski-Raumzeit, was die Gültigkeit unseres Ansatzes

bestätigte und ein erstes neues Ergebnis lieferte.

So haben sich Netzwerke als starke theoretische Strukturen erwiesen, um voll-dimensionale

Phänomene mit nieder-dimensionalen Instrumente zu erforschen.



Abstract

In this thesis we develop and propose a novel approach for investigating natural phenomena

in (curved) spacetimes, offering an alternative to conventional (1 + 3)-dimensional field

theory methods, whenever these may prove insufficient. Inspired by the simplicity of

lower-dimensional theories – particularly (1 + 1)-dimensional ones, which offer significant

simplifications in describing complex phenomena and, in some cases, provide exact solutions

– we construct theoretical devices, networks and their histories, to which (quantum) fields

are confined. Specifically, each edge of the network is equipped with a simple, spatial one-

dimensional field theory with the nodes ruling fields propagation throughout the network.

Since networks are embedded within the (1+3)-dimensional (curved) spacetime and extend

throughout it, fields on networks can propagate through different regions of the embedding

spacetime, albeit confined to one-dimensional paths.

The key idea is to propose fields confined to network histories as probes for (1 + 3)-

dimensional phenomena, instead of fields embedded in the full-dimensional background.

To test the validity of our proposal, we explored the entanglement properties of vacuum

fluctuations confined to network histories embedded in Minkowski spacetime. Remarkably,

even though the fields are spatially localized along the one-dimensional edges of the net-

work, the entanglement entropy exhibits the same area scaling characteristic of fields in

the full (1+ 3)-dimensional embedding spacetime. In particular, under specific conditions,

fields populating the network do not resolve its coarse-grained structure, effectively expe-

riencing the full background. As an additional test, we examined the shape dependence

of the entanglement entropy for fields in (1 + 3)-dimensional Minkowski spacetime, with

fields confined to network histories. This analysis not only reinforced the validity of our

approach but also yielded its first novel result.

Through these investigations, networks have proven to be potent arenas in which full-

dimensional phenomena can be investigated through the lens of lower-dimensional probes.



Chapter 1

Introduction

Quantum field theory has proven to be one of the most accurate and experimentally ver-

ifiable frameworks available for physicists to explore the fundamental aspects of nature.

However, several field-theoretic phenomena remain inaccessible. Despite the theory pro-

viding us with well-established principles and equations ruling them, their solutions are

often unknown. For instance, exact solutions to the equations of motion for (quantum)

fields often turn out to be unavailable in curved spacetimes [1]; most known solutions in

fact rely either on approximations or require a high degree of symmetry. Even in the

well-known case of a static (Schwarzschild) black hole, a general field propagator remains

inaccessible and, as a consequence, even a simple phenomenon like light propagation is not

fully comprehended. This challenge, however, is not exclusive to curved spacetimes. The

Navier-Stokes equations, which describe the dynamics of fluid-flow fields such as that of

water, exemplify how, when a system becomes too complex, we are left without general

solutions.

Conversely, focusing on lower spatial dimensions often reduces the complexity of the sys-

tem remarkably. In particular, considering only a single spatial dimension usually enables

for a complete understanding of the system and, in many cases, provides exact solvability,

even for interacting theories or in curved backgrounds, where it also drastically simplifies

the spacetime, allowing for conformally flat metrics [2–4].

However, by reducing the dimensions of the spacetime itself, such methods are lim-

ited to analyze a simplified – often different – version of the initial phenomenon within

a lower-dimensional framework. For example, exact solutions for photon propagation in

curved spacetimes are presented in [5]; however, they are limited to the case of a photon

propagating in a (1 + 2)-dimensional curved background. While models involving space-
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times of reduced dimensions can offer valuable insights and may reveal previously unknown

solutions, they do not fully capture the complexity or provide a complete description of

the original full-dimensional phenomena.

This highlights the need for a new, alternative description that, while relying on the

simplicity of lower-dimensional theories, still aims to grasp and convey properties of full-

dimensional natural phenomena.

In this work, we take on this challenge by proposing an approach that strikes this bal-

ance, offering a new way to investigate the most complex processes in nature. Rather than

simplifying the background by reducing its dimensions, we keep the full four-dimensional

spacetime as the natural arena for phenomena. What we simplify, instead, are the probes

we use – classical or quantum fields – by confining them spatially to one-dimensional sup-

ports, which are then embedded into the higher-dimensional ambient space. Therefore,

although relying on the simplicity of (1 + 1)-dimensional field theories, our focus still lies

on processes occurring in the full embedding spacetime.

Yet, a fair question naturally arises: Can a lower-dimensional theory, such as a (1+1)-

dimensional field theory, accurately describe and provide insights into higher-dimensional

natural phenomena?

Suppose we perform a simple experiment in which light is confined to propagate through

a single optical fiber (a one-dimensional spatial support) placed in our lab, i.e. a system

of clocks and rulers approximated as a (1 + 3)-dimensional, flat spacetime. This single

optical fiber can certainly be used to study light propagation in one spatial dimension

and similar lower-dimensional experiments. However, no matter how we turn or bend

the fiber, it cannot capture phenomena such as the relation between the incident and

transmitted angles of light at an interface, as governed by Snell’s law of refraction. In our

lab, light within the optical fiber carries no information about the angle at which the fiber

is positioned within the surrounding space.

Nevertheless, the use of (1 + 1)-dimensional theories seems far too powerful not to

pursue their implementation. It is exactly from this challenge that our new approach is

forged. How do we reconcile working with spatially one-dimensional field theories while

probing an higher-dimensional ambient space and the phenomena occurring therein?

If light confined to an optical fiber – or, more generally, fields spatially confined to any

one-dimensional support – cannot convey information about the surrounding spacetime,

then our idea is to connect multiple one-dimensional supports together, forming a structure

that extends into three spatial dimensions within the ambient space (Fig. 1.1). The emerg-



3

ing physical structure is composed of one-dimensional supports of finite size (idealized as

edges), e.g. optical fibers, electrical cables, water pipes, or any form of communication

channels, connected at their endpoints into junctions (idealized as point-like vertices) to

form a network-like structure of finite size. Light, water or any field initially confined to the

edges of the structure remain spatially confined to one-dimensional channels, but can now

propagate and extend throughout the entire network. This allows the degrees of freedom

to travel, still along one-dimensional paths, through different regions of the embedding

spacetime.

The choice of background can vary depending on the particular system of interest. It

may be as simple as our lab on Earth, resembling a flat spacetime, or alternatively, we

could place our physical network in the exterior of a compact star, or even across the

horizon of a black hole.

Figure 1.1: Visualization of a quantum field (depicted in gray shades) spatially confined to
a physical structure, idealized as a network, which extends into three spatial dimensions
within the ambient space.

By considering this new, bizarre physical object, idealized as a network, or graph, and

equipped with fields, we can now refine our initial question: Can such a network, relying

on a collection of (1 + 1)-dimensional field theories, describe phenomena occurring in the

full (1 + 3)-dimensional embedding spacetime?
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Throughout this work, we aim to answer this question. If the answer is affirmative,

we will demonstrate that networks, or graphs, equipped with fields and embedded in ar-

bitrary spacetimes can serve as powerful diagnostic tools. By relying on the simplicity of

(1 + 1)-dimensional field theories, they could achieve objectives that conventional (1 + 3)-

dimensional field theory methods have yet to reach.

We dedicate Chapter 2 to the geometric construction of such networks and their embed-

ding in arbitrary, curved spacetimes. Once a network, or any of its elements, is embedded

in a background, its dynamics and evolution with respect to a (time) parameter, referred

to as its worldsheet or history, becomes central to our analysis. In Section 2.1, we begin

by exploring the simple case of a graph consisting of a single edge, constructing its history

and embedding it in arbitrary spacetimes. Then, in Section 2.2, we introduce a general

(1 + 1)-dimensional field theory on this history and lay the groundwork for a general de-

scription of fields spatially confined to single-edge graphs embedded in arbitrary, curved

spacetimes.

After fully constructing and investigating the single-edge case, in Chapter 3 we move on

to consider a collection of such finite-sized single-edge graphs and explore how to connect

them to forge a network and its history, as detailed in Section 3.1. In Section 3.2, a field

theory is then defined on the network’s history, through intermediate steps of increasing

complexity, considering elementary building blocks of the network. By embedding the

resulting network in an arbitrary, curved spacetime, we establish a general prescription

which rules, at each vertex, the (one-dimensional) spatial propagation of arbitrary fields

throughout the network.

With the developments in these first two chapters, we constructed innovative, theoreti-

cal devices, ready to be implemented in arbitrary curved spacetimes, allowing us to address

higher-dimensional physical phenomena through lower-dimensional theories confined to the

network’s histories. In the final chapter of this thesis, we put these diagnostic tools to the

test, probing their validity and tackling the central question of our investigation.

To this end, we need an initial pilot phenomenon. Specifically, we seek a phenomenon

that has been thoroughly studied within (1+3)-dimensional field theories, thereby serving

as a robust test. Simultaneously, we aim for this phenomenon to pave the way for our

exploration of quantum fields in black hole backgrounds – particularly across horizons –

investigating black hole thermodynamics, entanglement, and, more broadly, information

processing at causal boundaries.

Since Bekenstein’s groundbreaking proposal of black hole entropy’s dependence on the
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horizon’s area [6], numerous efforts have attempted to uncover the physical nature of black

hole entropy and its proportionality to the area of the horizon [7, 8]. However, the puzzle

of black hole entropy remains unsolved.

Among the various attempts, the explanations that most naturally account for why the

entropy of black holes is proportional to the area are those that understand the entropy

in terms of quantum field correlations between the exterior and interior of the black hole.

Notably, seminal works [9, 10] demonstrate a direct proportionality between the entangle-

ment entropy of quantum field degrees of freedom outside the black hole and its horizon

area. This suggests that black hole entropy is fundamentally quantum in nature, arising

specifically from quantum correlations across the horizon. However, in these approaches,

black holes are typically modeled as flat (1 + 3)-dimensional spacetime regions intersected

with the interior of an artificial sphere, made inaccessible to an external observer. The need

of this simplification roots from the lack of a (1 + 3)-dimensional propagator for quantum

fields in black hole spacetimes, rendering direct entropy computations and comparisons

with Bekenstein’s proposal impractical.

This is where our alternative approach becomes crucial. By placing a network across

the black hole horizon within a full (1+3)-dimensional Schwarzschild background, we could

directly study quantum correlations across the causal boundary on the network, potentially

revealing an area scaling that, through direct comparison with Bekenstein’s proposal, could

deliver a verdict on the nature of black hole entropy.

To initiate our program, we first test our model by naturally identifying, as a pilot phe-

nomenon, the area scaling of entanglement entropy for vacuum fluctuations in Minkowski

spacetime, as investigated in [9, 10]. Instead of embedding a quantum field in its ground

state in the (1+ 3)-dimensional Minkowski spacetime, we embed a network equipped with

a ground-state quantum field on its edges. By tracing out a spherical region, we can in-

vestigate whether the resulting entanglement entropy for the field on the network follows

the same area scaling of, for example, [10]. A visualization of the setup within our ap-

proach is shown in Fig. 1.2. The computation of the entanglement entropy is detailed in

Chapter 4. We begin by examining entanglement entropy for subgraphs of the network

shown in Fig. 1.2, progressively considering, in Sec. 4.2, the same elementary building

blocks presented in Chapter 3 as they increase in complexity. Sec. 4.3 culminates in the

full computation of the entanglement entropy for quantum fields confined to the entire

network.

If quantum fields on network histories, serving as an alternative to quantum fields in
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Figure 1.2: Three-dimensional visualization of a quantum field ϕ (depicted in gray shades
along the edges) spatially confined to an arbitrary network N embedded in Minkowski
spacetime (M, η). An arbitrary sphere divides the network setup into an interior and
an exterior sector. If the interior of the sphere is inaccessible, an external observer loses
information about the internal quantum field degrees of freedom. Due to quantum field
correlations across the sphere’s surface, the exterior and interior sectors of the network
may be entangled, with the entanglement entropy quantifying the degree of entanglement.

the full (1 + 3)-dimensional spacetime, capture the same entanglement properties by also

exhibiting an area-dependent entropy, this would reveal that the properties of quantum

fields in full spacetime emerge from fields confined to lower-dimensional supports. Con-

sequently, the alternative method of fields on network histories could stand as a powerful

and robust approach to probe higher-dimensional spacetimes and the phenomena therein,

while relying solely on simple lower-dimensional theories. Throughout this work, we use

the metric signature diag(−,+,+,+) and units such that c = G = ℏ = 1.



Chapter 2

Physics on Single-Edge Graphs in

Arbitrary Spacetimes

Physical networks can be idealized mathematically as graphs. Graphs are meant, in this

work, as ordered triples G = (V , E , ι), where V is a set of vertices, or nodes, E is a set

of edges and ι is an incident function ι : E → V × V mapping every edge e in E to an

unordered pair of vertices in V .
Loop structures arise when the two vertices are not distinct, with the map ι associating

an edge to the same vertex. When a node is joined by only one edge, it is called the

endpoint of that edge. Under these definitions, a single edge is itself a graph with two

endpoints. Note that ι always maps an edge to two vertices, such that in our investigation

we do not consider infinitely long edges – i.e. edges with an open end – in agreement with

what we would expect when modeling physical infrastructures.

Before considering more complex idealized structures made up of several nodes and

edges, we may want to focus on the simple case of a single edge. This configuration is an

idealization of many physical setups, like one-dimensional optical fibers, electrical wires,

free space laser links, or one-dimensional potential wells in which particles are trapped. It

might also model a simple one-dimensional communication channel.

To implement graphs as models for such devices, additional mathematical concepts

must be incorporated into the graph definitions provided above. In fact, in our theory, the

edge of the graph acts as a support for degrees of freedom, in the same way a physical

optical fiber provides the medium which light is confined to and propagates on. The

endpoints of the edge, on the contrary, idealize the physical boundaries (or junctions for

nodes) as appropriate boundary conditions.
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Therefore, in our work, edges -and thus graphs- are not considered as fundamental

structures, but rather as mathematical devices on which physics occurs, as is the case of

physical networks. Consequently, in the same way physical networks undergo phenomena

and are used as physical devices to perform experiments in the natural world, our theoret-

ical devices also serve as arenas for experiments for physics happening on them. They are

mathematical structures to which physics is confined to and which are thus embedded in

a higher dimensional background. Only in this way, graphs can be used to probe the full

dimensional spacetime and full dimensional natural phenomena happening in it.

In the following, based on our work [11], we will incorporate all the mathematical

properties necessary to model physical networks, leading to the constructions of our the-

oretical devices, which we will simply refer to as networks, network histories, or graphs

interchangeably.

2.1 The History of a Single-Edge Graph

As previously mentioned, networks or graphs are not considered as fundamental structures.

Fields, or degrees of freedom, defined on the fully dimensional manifold are confined to

these devices. This means that even a simple single edge is embedded in a background

spacetime.

If the single edge were a fundamental structure, the entire spacetime would simply

consist of a compact (1 + 1)-dimensional manifold and the edge would no longer be a

theoretical device that we can place and use to perform measurements in the spacetime we

live in. To this aim, the edge needs to be embedded in an higher dimensional manifold [11].

Consider a globally hyperbolic spacetime (M, g) and, for some parameter τ , its foliation

in three-dimensional spacelike hypersurfaces Στ . Then, consider an edge e in E that we

aim to embed in (M, g). The finite history, or worldsheet, of the single edge e in (M, g) is

a two-dimensional compact and connected Lorentzian submanifold (He, he) of M , where

he is the induced metric on He obtained from g through the pullback to He. The fact that

it is a Lorentzian submanifold ensures that causality is incorporated on the edge.

Let U be an open subset of the parameter plane R2 such that horizontal and vertical

lines intersect U either in intervals or not at all. The history of the edge e is given by a

smooth two-parameter map P : U → He, such that (τ, σ) 7→ P (τ, σ), which is composed of

two families of one-parameter curves: The τ -parameter curve σ = σ0 of P is τ → P (τ, σ0),

and the σ-parameter curve τ = τ0 of P is σ → P (τ0, σ). In this way, the edge is a
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Figure 2.1: Finite history (He, he) of a single edge e embedded in a globally hyperbolic
spacetime (M, g). If τ is a time parameter and σ a spatial one, then the history He can
be visualized as the worldsheet of the edge e. Note that each Στ is a three-dimensional
spacelike hypersurface.

homeomorphic image of the σ-parameter curve and the endpoints of e are identified with

the endpoints of the image P (τ0, σ). Therefore, we can think of the embedding of an edge

e on He ⊂ M as a representation of this edge on He. Note that τ and σ are intended

as general parameters, not yet defining any specific coordinate system. In particular, τ

should not be confused with the proper time of a given observer, unless explicitly stated

otherwise.

The above mathematical construction is illustrated in Fig. 2.1. As an instructive exam-

ple, let τ be the time parameter through which we describe the time evolution of our system.

A given initial time τi determines an interval for σ in U . Through the two-parameter map

P , at the time τi the edge is parametrized by the σ-parameter curve P (τi, σ) with σ in the

specified interval. Hence, at each time τ , each point on e ⊂ He is expressed in terms of the

parameter σ. On the other hand, by fixing a value of σ = σ0 and hence a specific point on

e, the τ -parameter curve evolves the considered point of the edge in time. The worldline of

the point is then parametrized through τ as P (τ, σ0). If we consider, for each time τ , the

entire interval of values for σ, and consequently the whole image of the σ-parameter curve,

we obtain, for all times, the time evolution of the whole edge and hence its two-dimensional
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worldsheet, or history He.

Note that we allow the edge to be in principle deformable such that it can lengthen,

shorten, or bend during the τ -evolution. This might be crucial especially when we consider

curved spacetimes where, for example, different points of the edge can move at different

velocities.

In the following, let us assume τ is indeed a time parameter and σ a spatial one. The

finite history (He, he) is constituted by a boundary ∂He. In particular, as depicted in

Fig. 2.1, ∂He consists of four boundary terms, two spatial and two temporal. At each

history parameter τ ∈ U , the spatial boundaries of the history are the endpoints of the

image of σ-parameter curve, and hence the endpoints of the edge. As an optical fiber

is finitely extended in space, so we want the edge to be of finite size. The entire spatial

boundaries of He are then given by the worldlines of the edge endpoints, i.e. P (τ, σi) where

i ∈ {1, 2} denotes the two endpoints of the edge. The two P (τ, σi) curves are depicted as

vertical dashed lines in Fig. 2.1. On the other hand, for each history parameter σ ∈ U , the

temporal boundaries of the edge history are the endpoints of the image of the τ -parameter

curve. The entire temporal boundaries of He are then given by P (τA, σ), where A ∈ {i, f}
labels the initial and final time τi ∈ U , τf ∈ U respectively. Hence, the edge at initial

time and the same edge at a final time are the temporal boundaries of the history. The

existence of temporal boundaries ensures the accurate modeling of physical experiments on

graphs as devices. In fact, in an experiment, we are interested in specific initial conditions

and their evolution till the time a measurement is performed at a later time, when the

signal is absorbed. In other words, we consider the history of the edge in the lifespan of the

experiment or phenomenon of interest. The boundaries ∂He of the finite history can then be

mathematically expressed in the following way. Let τi, τf , σ1, σ2 ∈ U be history parameters.

Let ∂e1 be a τ -parameter curve, i.e. ∂e1 : [τi, τf ] → He, τ 7→ ∂e1(τ) := P (τ, σ1). If σ1 is

such that, for each given τ = τ0, P (τ, σ1) is the first endpoint of the image P (τ0, σ), then

∂e1(τ) is the worldline of that edge endpoint and consequently the spatial boundary of

He. Accordingly, the same definition holds for the worldline of the second edge endpoint

∂e2(τ). Thus, we can define the two spatial boundaries of He as the following two τ -

parameter curves

∂He|∂e1 := ∂e1(τ)

∂He|∂e2 := ∂e2(τ) ∀τ ∈ U . (2.1)

Furthermore, let eτi be a σ-parameter curve eτi : [σ1, σ2] → He, such that σ 7→ eτi(σ) :=
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P (τi, σ). If τi is such that, for each given σ = σ0, P (τi, σ) is the initial endpoint of the

image P (τ, σ0), then eτi(σ) is the initial temporal boundary of He. Accordingly, similar

definitions hold for eτf (σ). In other words, the two temporal boundaries are nothing else

than the two homeomorphic images of the σ-parameter curves, that is, the edge in He at

the initial time τi and final time τf . Thus, we can define the two temporal boundaries of

He as the following two σ-parameter curves

∂He|eτi := eτi(σ)

∂He|eτf := eτf (σ) ∀σ ∈ U . (2.2)

For illustrative purposes, the two spatial boundaries ∂e1(τ) and ∂e2(τ) and the two tem-

poral boundaries eτi(σ) and eτf (σ) are depicted in Fig. 2.1.

In conclusion, it is important to emphasize that although the edge is homeomorphic to

points in He through the two-parameter map P , the edge itself is an object embedded in

M , that is, the collection of points eτ := {eτ (σ)
∣∣ τ = const. , σ ∈ {σ1, σ2}} in He satisfies

a geodesic equation and evolves in spacetime. As we will see, this fact will be crucial when

studying boundary conditions and observers on the edge.

The Induced Metric on the History He

The metric he is the metric on the history He which is induced by embedding the edge in

the background spacetime (M, g). In particular, it is obtained through the pullback from

g on M to He. In components,

he ab = gµν ∂ax
µ ∂bx

ν , (2.3)

where xµ = xµ(ξa) with µ, ν ∈ {0, 1, 2, 3} are coordinates on M . In fact, if ξa are coordi-

nates on He with a, b ∈ {0, 1}, the embedding of the edge in the manifold M is expressed

through xµ(ξa) on M .

Consider a globally hyperbolic spacetime (M, g) and its foliation in spacelike hypersur-

faces Στ for a time parameter τ , which implies a 1 + 3 splitting of the metric. For any

given pair of initial and final hypersurfaces Σi, Σf we can find the induced metric on the

edge history he.
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A single edge embedded in the Minkowski spacetime

As a first application, let us embed the single edge in a (1 + 3)-dimensional Minkowski

spacetime. Hence, let us consider as the embedding background the flat spacetime (M, η)

where η is the Minkowski metric tensor. In order to embed the edge, let us find the

coordinates ξa such that we can write xµ(ξa) accordingly. Given that the edge is spatially

one-dimensional, we can write ξa = (ξ0, ξ1). Since we performed an ADM foliation, we

can choose ξ0 to be the same time coordinate as the one on the Minkowski background.

We aim now to write xµ(ξa). Given a coordinate chart (U,φ) with U ⊂ M , we can write

xµ = (T, x, y, z) for each point in the neighborhood U of an arbitrary point in Minkowski

spacetime (M, η). In terms of these Cartesian coordinates, the two endpoints of the edge

can be expressed as the two vectors x⃗1 = (x1, y1, z1) and x⃗2 = (x2, y2, z2) respectively. In

this way, an arbitrarily displaced edge in Minkowski can be spatially parametrized as

x⃗ = (x1, y1, z1) + ξ1 ((x2, y2, z2)− (x1, y1, z1)) , (2.4)

with ξ1 ∈ [0, 1]. Note that we have assumed the edge to be rigid, non-deformable, and

straight. Therefore, we can write

x0(ξ0, ξ1) = ξ0 = T

x(ξ0, ξ1) = x1 + ξ1(x2 − x1)

y(ξ0, ξ1) = y1 + ξ1(y2 − y1)

z(ξ0, ξ1) = z1 + ξ1(z2 − z1) . (2.5)

Recalling Eq. (2.3), we obtain he ab = ηµν ∂ax
µ ∂bx

ν and hence

he 00 = −1

he 01 = 0 = he 10

he 11 = ηµν ∂1x
µ ∂1x

ν = ∂1x ∂1x+ ∂1y ∂1y + ∂1z ∂1z , (2.6)

which finally leads to

he 00 = −1

he 01 = he 10 = 0

he 11 = (x2 − x1)
2 + (y2 − y1)

2 + (z2 − z1)
2 . (2.7)
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By identifying the edge length Le as Le =
√

(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2, the line

element for the induced metric he reads

ds2he
= −dT 2 + L2

e dξ
1 2
. (2.8)

Since Le is constant, the metric components are constant, and thus we have a globally flat

metric tensor on the edge, regardless of which point on the edge we consider. If we re-scale

the spatial coordinate ξ1 by introducing ξ̃ as ξ̃ = Leξ
1 with a coordinates transformation

(T, ξ) → (T, ξ̃), the metric tensor transforms as h̃e uv = he ab ∂uξ
a ∂vξ

b and we can rewrite

the line element in the new coordinates as

ds2
h̃e

= −dT 2 + dξ̃
2
, (2.9)

which is the (1 + 1)-dimensional Minkowski metric in the coordinates (T, ξ̃). Notice that

this line element holds for every point on the edge, such that it is a globally Minkowski-like

metric on the edge.

This metric describes an observer always at rest with respect to the coordinates (T, ξ̃),

as can be shown as follows: The observer speed is the time-like vector ua = d
dτ
(T, ξ̃) =

dT
dτ

(
1, dξ̃

dT

)
. In order to calculate the motion of the observer following a geodesic ξa(τ)

with proper time T , we set dT
dτ

= 1. Hence, ua =
(
1, dξ̃

dT

)
, which has to satisfy h̃e abu

aub =

−1 + u1 2
!
= −1, and hence u1 = dξ̃

dT
= 0. Alternatively, this could be directly derived from

the line element. In fact, since −dτ 2 = ds2, in order for dτ = dT to be true, dξ̃ has to

vanish. Therefore, the observer follows a worldline with a fixed spatial coordinate ξ̃, i.e.

is at rest on the edge. More generally, all coordinate systems for which he reduces to the

two-dimensional Minkowski metric, or more generally, to he 00 = −1 and he 01 = 0, describe

observers at rest on the edge, with ua = (1, 0).

On the other hand, if we allow a dynamics for the single edge, that is, the edge can

move around in (M, g) with a given velocity or acceleration, or even can stretch and shrink

(i.e. Le = Le(T )), the coordinates of the edge endpoints would have a time dependence:

x⃗1,2 = x⃗1,2(T ). In this case, the induced metric on He would include additional terms in

he 00 as well as new terms he 01 = he 10, and analogously for h̃e. These types of metrics do

not necessarily describe an observer at rest on the edge; in fact, the observer following a

geodesic with proper time T might now not necessarily be at rest and choosing T as proper

time might not imply u1 = dξ̃
dτ

= 0 for the observer velocity. Therefore, for an edge moving

in the background, the same coordinates (T, ξ̃) might not describe an observer at rest,
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comoving with the edge. However, as long as the edge velocity is constant, a Minkowski-

like induced metric can be anyway obtained through a further coordinate transformation

to a local comoving observer, at the cost of a re-parametrization of time.

In conclusion, regardless of how the edge is displaced and oriented in the embedding

Minkowski background, as long as the edge does not undergo an acceleration, the induced

metric he on He can be always expressed as a simple (1 + 1)-dimensional Minkowski-like

metric.

A single edge embedded in curved spacetimes

As already mentioned, one of the main aims of confining (quantum) fields on networks is

to obtain a significant simplification of the calculations, since we reduce the three spatial

coordinates to just one spatial parameter. The field theory is simplified to two dimensions,

which hopefully facilitates the analysis of field propagation on the graph and the computa-

tion of related observables. In the Minkowski background, the use of networks as supports

for degrees of freedom confined on them tackles complications on the field theory side,

since the induced metric on the edge history reduces anyway to a simple two dimensional

Minkowski metric.

However, an additional difficulty arises when embedding a single-edge graph in a curved,

possibly dynamical, spacetime. In arbitrary curved backgrounds, the locality of the metric

tensor – which makes it change at different spacetime points – is such that even the

solution to the equation of motion for a simple free scalar field may not be known, and

the propagator in the full-dimensional background might not be found. In the curved

and/or dynamical case, the reduction of spatial dimensions provided by graphs could not

only address potential complications that may arise from a field theory perspective, but

also drastically simplify the metric on the edge history in contrast to the full-dimensional,

curved one.

On the other hand, if we have shown that in a flat Minkowski background, the induced

metric he on the edge history is always globally flat on the edge, this does not necessarily

hold in curved spacetimes. In fact, the curvature of the embedding manifold prevents an

observer to be globally inertial on the edge history (if the edge extension is larger than

the size of a normal neighborhood of the spacetime); the induced metric will inevitably be

different at each different point on the edge history. Consequently, even in the mentioned

case of free scalar fields propagating on the edge, the equations of motion may exhibit

non-trivial terms due to the metric, and in some cases, even in two dimensions a solution
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may not be found.

However, the potential of networks resides precisely in their dimensionality. In fact,

it has been demonstrated [12] in the context of Lorentzian geometry that the following

theorem holds:

Theorem 1. Every two-dimensional Lorentzian manifold (H, h) is conformally flat, that

is there are local parametrizations ϕ, such that for the induced metric h one has

ϕ∗h = Ω2η = Ω2

(
−1 0

0 1

)
, (2.10)

where Ω is a smooth function, referred to as conformal factor.

Since the edge history (He, he) is by definition a two-dimensional Lorentzian submani-

fold, we obtain that, no matter how curved or dynamical the embedding spacetime (M, g)

is, we can always find a local parametrization such that the induced metric on the edge

history can be written in conformally flat form. Therefore, for a single edge embedded in

an arbitrary curved, dynamical spacetime, we can always write

he = Ω2η . (2.11)

As we will see, the two-dimensionality of the edge history is the key ingredient for

modeling physics with fields on networks, since the metric on each network’s edge can be

brought in this simple conformally flat form. Although the conformal factor might still be

a complicated function of the coordinates, in some cases it anyway simplifies the computa-

tions significantly. For free massless scalar fields, for example, the action functional even

assumes the same form as the action functional for the same fields in the two-dimensional

Minkowski spacetime, no matter how Ω looks. In this case, free massless scalar fields

propagating on a single edge would not be able to probe the curved embedding spacetime.

In the following, we consider as an example the spacetime of an eternal black hole as

the embedding background (M, g) and hence we consider the case where the edge is placed

in the exterior of a Schwarzschild black hole. The four-dimensional Schwarzschild metric

gs is expressed in isotropic coordinates xµ = (T, x, y, z) as

ds2 = −
(1− 2M

4R
)2

(1 + 2M
4R

)2
dT 2 +

(
1 +

2M

4R

)4 (
dx2 + dy2 + dz2

)
, (2.12)

where R =
√
x2 + y2 + z2. This metric describes exclusively the black hole exterior, i.e.
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R > M
2
.

Similarly to the flat spacetime case, we are interested in placing the edge – which models

a physical edge such as an optical fiber or an electric wire – near a black hole, to study

possible effects of gravity on fields propagating on the edge. Therefore, we need to embed

the edge into the four-dimensional background (M, gs). A rigid edge outside the black hole

horizon can be spatially parameterized, analogously to the flat case, as

x⃗ = (x1, y1, z1) + ξ1 ((x2, y2, z2)− (x1, y1, z1)) , (2.13)

with ξ1 ∈ [0, 1]. Again, x⃗1 and x⃗2 are the spatial coordinates of the two edge endpoints.

Note that, in this example, we let the endpoints spatial coordinates be constant, hence

we assume the edge to be at rest in the four-dimensional Schwarzschild spacetime. If the

edge were assumed to be free falling towards the black hole, we would have to introduce

the dynamics of the edge by writing x⃗1 = x⃗1(T ) and x⃗2 = x⃗2(T ). Furthermore, it is

worth noting that the assumption of a rigid edge is actually a simplification of the system

since, when embedded in a curved spacetime, the edge points follow distinct geodesics and

acquire different velocities, which may result in the edge no longer being rigid. For a proper

parametrization of an arbitrary curved edge, we need to consider the edge displacement

and orientation in the embedding spacetime case to case. Here, we consider the case of a

rigid straight edge only as an instructive example.

In terms of the coordinates ξa = (T, ξ1) on the edge history, the coordinates of the

isotropic Schwarzschild observer xµ = xµ(ξa) lead to the induced metric he ab = gµν ∂ax
µ ∂bx

ν ,

with gµν the four-dimensional Schwarzschild metric in isotropic coordinates. We obtain

he 00 = −
(1− 2M

4R
)2

(1 + 2M
4R

)2

he 01 = 0 = he 10

he 11 = gµν ∂1x
µ ∂1x

ν =

(
1 +

2M

4R

)4 [
(x2 − x1)

2 + (y2 − y1)
2 + (z2 − z1)

2
]
. (2.14)

Hence, the line element for a rigid edge embedded in the exterior of a Schwarzschild black

hole reads, in the coordinates ξa = (T, ξ1),

ds2he
= −

(1− 2M
4R

)2

(1 + 2M
4R

)2
dT 2 +

(
1 +

2M

4R

)4

L2
e dξ

1 2 . (2.15)
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Notice that the radius R =
√
x2 + y2 + z2 is now evaluated at points (x(ξ1), y(ξ1), z(ξ1))

on the edge.

Analogously to the Minkowski case, we can rescale the spatial coordinate by introducing

a new coordinate system ξ̃a = (T, ξ̃) such that dξ̃ =
(
1 + 2M

4R

)2
Ledξ

1. In terms of these

coordinates the line element related to the induced metric on the edge history in a black

hole background reads

ds2
h̃e

= −
(1− 2M

4R
)2

(1 + 2M
4R

)2
dT 2 + dξ̃2 . (2.16)

It is important to notice that although the metric h̃e is defined on the two-dimensional

edge history, the observer measures events on the edge with time T of an observer sitting

far away from the horizon at R ≫M/2.

In contrast to the flat spacetime case, we now observe that the temporal components

of the metric are no longer constant but instead vary with the position ξ̃ along the edge,

as determined by R = R(ξ̃). Hence, the proper time of a local observer at rest on the edge

would flow differently depending on where the observer sits and a globally Minkowski-like

two-dimensional metric is not available.

Furthermore, we can perform one final coordinate transformation which, according to

Theorem 1, brings the line element in a conformally flat form. To this aim we introduce a

new spatial coordinate ξ′ such that

dξ′ =
(1 + 2M

4R
)

(1− 2M
4R

)
dξ̃ . (2.17)

Then, in the new coordinates (T, ξ′), the line element of the induced metric on the edge

history reads

ds2h′
e
=

(1− 2M
4R

)2

(1 + 2M
4R

)2

(
−dT 2 + dξ′2

)
, (2.18)

where Ω(R) =
(1− 2M

4R
)

(1+ 2M
4R

)
is the conformal factor. Since R = R(ξ′), the conformal factor is a

function of the spatial coordinate ξ′ and will vary at each different point of the edge. Note

that, more generally, if the embedding spacetime would not be static as the Schwarzschild

one, but dynamical, the conformal factor would in general depend also on the time coor-

dinate, i.e. Ω = Ω(x0, x1).

The line element Eq. 2.18 is related to an observer which measures time with the same

time coordinate T as the four-dimensional Schwarzschild observer and space with the local

spatial coordinate ξ′ on the edge. In particular, the observer is moving on the edge with
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a velocity u1(R) = dξ′

dT
=
√
1− 1

Ω2(R)
. Therefore, the observer’s velocity is a vector field

that changes at each edge point, showing that the observer is not an inertial observer as in

Minkowski, but is accelerating along the edge. Furthermore, note that the induced metric

on the edge does not explicitly depend on the edge orientation.

2.2 Fields on a Single-Edge History

As already announced, the core idea of our method is to spatially constrain degrees of free-

dom, so that they are confined and propagate on one-dimensional supports, that serve as

models for physical cables, optical fibers, or one-dimensional traps. Experimentally, there

are various methods to confine fields propagating through full space onto one-dimensional

supports, using mechanisms such as Snell’s law for total internal reflection, optical lattices,

or magnetic fields. However, complete confinement is physically impossible to achieve, and

both classical and (especially) quantum fields leak beyond the one-dimensional support.

While most of the field remains on the support, describing fields confined to histories with

(1+1)-dimensional field theories is, in fact, an approximation. Moreover, in our theoretical

framework we do not explicitly include the confinement mechanism; instead, for simplicity,

we begin by assuming an intrinsic (1 + 1)-dimensional field theory.

In the previous section, we modeled each one-dimensional support by a single-edge

graph e, and after defining a single-edge history He, its boundaries, and the induced metric

he on it, we identified points of the edge with points on the two-dimensional compact

Lorentzian history (He, he).

The next ingredient needed to model experiments on theoretical devices such as graphs,

e.g. modeling light confined to an optical fiber, is to establish the mathematical framework

that allows degrees of freedom to propagate on them. In particular, as degrees of freedom,

we want to confine classical – and eventually quantum – fields to single edges.

The idea of studying quantum fields on graphs has been developed in the last two

decades and finds its roots in quantum graph theory, a field of studies in which metric

graphs are equipped with differential operators, like for example Hamiltonians [13]. On

a quantum graph, differential operators act along the edges with appropriate conditions

as junction conditions at the vertices. Over the years, metric graphs have been the arena

to analyze partial differential equations with junction conditions, spectral theory of linear

operators, quantum chaos and scattering of waves on vertices, for instance, [14–18]. With

the increasing attention acquired by the Laplacian operator, even the quantum theory of



2.2 Fields on a Single-Edge History 19

fields was introduced on graphs [19], and a thorough discussion of quantum fields on star

graphs has been given in [20,21].

However, the main difference between our method and the quantum graph theory lit-

erature is that in our case the graph itself is not a fundamental structure but, as we have

seen, it is a theoretical device embedded in a background and hence with an induced met-

ric on it. In fact, in the network histories approach, fields are confined to the graph and

consequently can probe the embedding background.

In this subsection, we want to consider a single-edge graph embedded in an arbitrary

spacetime and introduce a field theory on it. For a geometrical introduction of the field

theory on a single edge we refer the reader to [11]. In the following, a simpler but less geo-

metric and rigorous approach is favoured. Furthermore, in this section we refer exclusively

to classical fields, while for a construction of the field theory which is already suitable for

a possible quantization program on networks, we again refer to [11].

Firstly, for the sake of simplicity, we consider the case of a real scalar field ϕ. Consider

a single edge e and its history (He, he), embedded in a arbitrary globally hyperbolic back-

ground (M, g). We define the action functional Ae[ϕ] for the field ϕ confined to the history

He, by

Ae[ϕ] :=

∫
He

Le(x, ϕ, dϕ) dvolhe , (2.19)

where, for some abstract coordinate system x = {ξa} = (T, ξ), Le(T, ξ, ϕ, dϕ) denotes

the Lagrangian of the theory and dvolhe the volume element with he the two-dimensional

metric tensor induced on the history of the edge e.

In order to find the field evolution along the edge, we make use of the variational

principle: given two field configurations at initial and final time Ti and Tf respectively, we

look for the stationary point of the action functional, for arbitrary and independent field

variations δϕ,

δAe =

∫
He

(
∂Le

∂ϕ
δϕ+

∂Le

∂∂aϕ
∂aδϕ

)√
−he dTdξ

!
= 0, (2.20)

where a = 0, 1 and in our notation we define
√
−he :=

√
− dethe. By using the identity

for the divergence and including
√
−he in it, we can rewrite Eq. (2.20) as

δAe =

∫
He

∂Le

∂ϕ
δϕ
√

−he dTdξ+
∫
He

[
∂a

(√
−he

∂Le

∂∂aϕ
δϕ

)
− ∂a

(√
−he

∂Le

∂∂aϕ

)
δϕ

]
dTdξ

!
= 0.

(2.21)
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By applying the divergence theorem, the above equation yields

δAe =

∫
He

(
∂Le

∂ϕ

√
−he − ∂a

(√
−he

∂Le

∂∂aϕ

))
δϕdTdξ +

∫
∂He

∂Le

∂∂aϕ
δϕna

√
−h∂e dq

!
= 0,

(2.22)

where h∂e indicates the determinant of the induced metric at the boundary, q are coordinates

on it and n is the vector field normal to the considered boundary.

The two terms of Eq. (2.22) have different supports for the field ϕ except at the bound-

aries of the edge history ∂He. This implies that in the interior of He the first term must

vanish independently in order for the total variation of the action functional to be zero.

This leads to the Euler-Lagrange equation,

∂Le

∂ϕ
− 1√

−he
∂a

(√
−he

∂Le

∂∂aϕ

)
= 0 , (2.23)

i.e. the equation of motion for the field along the edge. At the boundaries ∂He both terms

of Eq. (2.22) contribute and their sum has to vanish,∫
∂He

(
∂Le

∂ϕ

√
−h∂e − ∂a

(√
−h∂e

∂Le

∂∂aϕ

))
δϕdq +

∫
∂He

∂Le

∂∂aϕ
δϕna

√
−h∂edq

!
= 0 . (2.24)

Both boundary terms in Eq. (2.24) are actually consisting of four different terms each for

one of the four boundaries of ∂He. Mathematically,∫
∂He

(
∂Le

∂ϕ

√
−h∂e − ∂a

(√
−h∂e

∂Le

∂∂aϕ

))
δϕdq =

=

∫
∂He|∂e1

(
∂Le

∂ϕ

√
−h∂e − ∂a

(√
−h∂e

∂Le

∂∂aϕ

))
δϕdT+

+

∫
∂He|∂e2

(
∂Le

∂ϕ

√
−h∂e − ∂a

(√
−h∂e

∂Le

∂∂aϕ

))
δϕdT +

+

∫
∂He|eτi

(
∂Le

∂ϕ

√
−h∂e − ∂a

(√
−h∂e

∂Le

∂∂aϕ

))
δϕdξ+

+

∫
∂He|eτf

(
∂Le

∂ϕ

√
−h∂e − ∂a

(√
−h∂e

∂Le

∂∂aϕ

))
δϕdξ , (2.25)
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and, for the second term,∫
∂He

∂Le

∂∂aϕ
δϕna

√
−h∂edq =

=

∫
∂He|∂e1

∂Le

∂∂aϕ
nσ a

√
−h∂eδϕdT +

∫
∂He|∂e2

∂Le

∂∂aϕ
nσ a

√
−h∂eδϕdT +

+

∫
∂He|eτi

∂Le

∂∂aϕ
nτ a

√
−h∂eδϕdξ +

∫
∂He|eτf

∂Le

∂∂aϕ
nτ a

√
−h∂eδϕdξ . (2.26)

For temporal boundaries, nτ ⊥ ∂He|eτi is chosen to be a vector field normal to the

initial edge eτi and pointing to the past. On the other hand, for spatial boundaries nσ ⊥
∂He|∂ej , with j ∈ {1, 2} is the vector field normal to the worldline of the edge endpoint

∂ej and chosen to be oriented away from the edge. Both types of normal vector fields are

depicted in Fig. 2.2, through two exemplary vectors at the first edge endpoint ∂e1(τi) =

(τi, σ1). Note that whenever we explicitly refer to the history or its structure, we use the

general parameter τ and σ instead of T , ξ, for consistency with the figures and the general

construction of Sec. 2.1.

The last two terms of Eq. (2.25) and Eq. (2.26), relative to the temporal boundaries of

∂He, do vanish according to the variational principle; in fact, at the initial and final time

the field configuration is known and the field variations δϕ are constrained to be zero, i.e.

δϕ = δϕ(Ti, ξ) = δϕ(Tf , ξ) = 0, for all values of ξ. These terms actually reflect the choice

of initial - and final - conditions for the field configuration.

Concerning Eq. (2.25), the two remaining terms on ∂He|∂e1 and ∂He|∂e2 are also van-

ishing, since by continuity we can set the term ∂Le

∂ϕ

√
−h∂e − ∂a

(√
−h∂e ∂Le

∂∂aϕ

)
to zero at the

spatial boundaries as well. Consequently, this implies that the first term of Eq. (2.24) is

zero. Therefore, for the total variation of the action functional to vanish, we obtain∫
∂He

∂Le

∂∂aϕ
δϕna

√
−h∂edq

!
= 0 , (2.27)

or, according to Eq. (2.26)∫
∂He

∂Le

∂∂aϕ
δϕna

√
−h∂edq =

=

∫
∂He|∂e1

∂Le

∂∂aϕ
nσ a

√
−h∂eδϕdT +

∫
∂He|∂e2

∂Le

∂∂aϕ
nσ a

√
−h∂eδϕdT

!
= 0 . (2.28)
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Figure 2.2: Temporal and spatial boundaries of the finite history (He, he) of a single edge
e. If τ is a time parameter and σ a spatial one, then the history He can be visualized as the
worldsheet of the edge e. In the figure, the two normal vectors fields nτ (τi, σ) and nσ(τ, σ1)
are shown representatively at the spacetime point ∂e1(τi) = (τi, σ1), the first endpoint of
the edge.

These remaining two terms lead to actual boundary conditions for the field on the edge.

Since they have non-overlapping supports, the action variation can only vanish if each of

the two integrals vanishes individually. As the fields variations δϕ = δϕ(T, ξ) are arbitrary

functions, the two integrals vanish if and only if the respective integrand is zero, that is

∂Le

∂∂aϕ
nσ a

√
−h∂e

∣∣∣∣
∂He|∂ej

!
= 0 with j ∈ {1, 2} (2.29)

for each time T , at the two endpoints of the edge ∂e1 and ∂e2, respectively.

Therefore, the variational principle implemented in Eq. (2.20) yields the following con-
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ditions, for arbitrary, non-vanishing, field variations δϕ

∂Le

∂ϕ
− 1√

−he
∂a

(√
−he

∂Le

∂∂aϕ

)
= 0 ∧ ∂Le

∂∂aϕ
nσ a

√
−h∂e

∣∣∣∣
∂He|∂ej

= 0 with j ∈ {1, 2}

(2.30)

which are the equation of motion for the field ϕ along the edge and the boundary conditions

at its two endpoints, respectively.

To see how the conditions Eq. (2.29) turn into boundary conditions for the field, let us

consider, as an example, the Lagrangian density Le of a free real scalar field of mass µ,

spatially confined to the edge e

Le =
1

2

(
habe ∂aϕ ∂bϕ− µ2ϕ2

)
. (2.31)

The metric he is the induced metric on the edge history and therefore a, b ∈ {0, 1}. Note

that, although in this work we will focus on free scalar fields, the same construction holds

for interacting fields or for other spin values.

By introducing the Lagrangian density Eq. (2.31) in Eq. (2.30), we obtain

(
□he + µ2

)
ϕ = 0 (2.32)

as equation of motion for the field ϕ on the edge and, for the boundary conditions,

habe ∂aϕnσ b

√
−h∂e

∣∣∣
∂He|∂ej

!
= 0 with j ∈ {1, 2} . (2.33)

The vector field nσ, normal to the worldline of each edge endpoint, can be computed by

considering the two-velocity ua∂ej of the two endpoints ∂e1 and ∂e2. In fact, nσ is defined

to be orthogonal to the tangent two-vector ua∂ej of each worldline. We also require nσ to

be normalized to unity. For an arbitrary observer on the edge, the two-velocity of the

endpoint ∂ej is a timelike future-directed vector expressed, in the coordinates on the edge,

as

ua∂ej =
dξa

dτ
=

d

dτ
(T, ξ) =

dT

∂τ

d

dT
(T, ξ) =

dT

dτ

(
1,
dξ

dT

)
. (2.34)

As a matter of fact, unless the observer is a comoving observer on the edge, the spatial

velocities of the edge endpoints are a priori not vanishing. Since the normal vector field is

orthogonal to ua∂ej and consequently a spacelike unit vector, it has to satisfy the following
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relations:

he abu
a
∂ej
nb
σ = 0

he abn
a
σn

b
σ = 1 . (2.35)

By inserting the induced metric he on the edge history, we can use the above equations to

find the components of the normal vector field at the spatial boundaries.

2.2.1 Single-Edge Graphs Embedded in Minkowski Spacetime

In the following, we will examine the conditions given by Eq. (2.35) for an edge embedded

in a four-dimensional Minkowski background. For the purposes of this analysis, we will

assume that the edge does not shrink or stretch over time; in particular, we assume that it

is in free fall. If the edge is embedded in the Minkowski spacetime (M, η), we have shown

in Subsec. 2.1 that, no matter how the edge is displaced, the induced metric reduces to

the two-dimensional Minkowski metric tensor he ab =

(
−1 0

0 1

)
. Accordingly, the induced

metric h∂e of the spatial boundaries reads h
∂
e = −1 and hence its determinant is deth∂e = −1.

Let ξa = (T, ξ) be the coordinates such that he is the two-dimensional Minkowski metric.

The line element is then ds2he
= −dT 2 + dξ2 and the observer is at rest on the edge. If we

insert he ab in the conditions Eq. (2.35), we find

−u0∂ejn
0
σ + u1∂ejn

1
σ = 0

−n0
σn

0
σ + n1

σn
1
σ = 1 . (2.36)

The two two-velocities of the endpoints of the edge are given, for the observer at rest on

the edge, as ua∂ej = (1, 0), for both endpoints ∂ej with j ∈ {1, 2}. In fact, we have used the

fact that the endpoint coordinates are constant
dξ∂ej
dT

= 0 and hence dτ = dT . According

to Eq. (2.36), the normal vector field na
σ is then given by

na
σ = (0,±1) , (2.37)

which is constant along each spatial boundary of He. Hence, for an edge embedded in the

Minkowski spacetime, Eq. (2.33) simplifies to

∂ξϕ
!
= 0 , (2.38)
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at the two endpoints ∂e1, ∂e2 of the edge, for all times T .

Physically, this condition ensures that there is no leakage of degrees of freedom out

of the edge while they propagate and approach the endpoints. As an illustrative physical

example, light confined to an optical fiber (idealized as the edge) with two mirrors at its

extremities is totally reflected back to the fiber and when approaching the endpoints the

optical signal is kept on the fiber and cannot leave to other materials or air. In this example,

the two mirrors are the physical boundaries which ensure Eq. (2.38) for the electromagnetic

field. The above condition Eq. (2.38) is a Neumann boundary condition for the field at

the spatial boundaries. Alternatively, we could have assumed the arbitrary field variations

δϕ(T, ξ) to be vanishing for all times on the spatial boundaries in Eq. (2.26). Consequently,

the value of the field would have been set to constant at the spatial boundaries, resulting in

Dirichlet boundary conditions for the field, i.e. ϕ(T, ξ) = const. at the two edge endpoints.

Thus, the stationarity condition for the action functional of a field confined to a single

edge embedded in the Minkowski background ensures that, regardless of the boundary

conditions, the degrees of freedom are confined to the edge and cannot leave it.

2.2.2 Single-Edge Graphs Embedded in Curved Spacetimes

We have seen in Subsec. 2.1 that for a single edge embedded in a curved, possibly dynamical

spacetime, the induced metric he on the edge history He can always be brought into the

conformally flat form he = Ω2η, where η is the two-dimensional Minkowski metric.

In these coordinates, the calculations for the boundary conditions simplify significantly.

Let ξa = (T, ξ) be the – conformal – coordinates in which, for an arbitrary choice of

the embedding spacetime, the induced metric takes the conformally flat form with line

element ds2he
= −Ω2(T, ξ)dT 2 + Ω2(T, ξ)dξ2. More explicitly, he ab = Ω2(T, ξ)

(
−1 0

0 1

)
.

The conditions in Eq. (2.33) become, for the single edge in conformally flat form,

habe ∂aϕnσ b

√
−h∂e

∣∣∣
∂He|∂ej

=
1

Ω2(T, ξ)
(−∂Tϕnσ 0 + ∂ξϕnσ 1)

√
−h∂e

∣∣∣∣
∂He|∂ej

!
= 0 . (2.39)

In order to find the normal vector field na
σ, we need to compute the endpoints two-

velocities ua∂ej , for both j ∈ {1, 2}. The observer’s velocity, and consequently the edge

endpoints worldlines, depends on the conformal factor Ω(T, ξ). In fact, from the line
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element ds2he
= −Ω2(T, ξ)dT 2 + Ω2(T, ξ)dξ2, the observer velocity reads

u1(T, ξ) =

√
1− 1

Ω2(T, ξ)
, (2.40)

and depends generally on both the time and space coordinates. Thus, the observer on the

edge in conformally flat form is, in general, not at rest with the edge.

The two-velocities ua∂ej of the edge endpoints have to satisfy, together with the normal

vector field to the spatial boundaries na
σ, the conditions given by Eq. (2.35). However,

for an observer moving on the edge, we cannot a priori assume dξ
dτ

= 0. As a result, the

temporal component of the normal vector field is not necessary vanishing. Therefore, for

an edge embedded in an arbitrary spacetime and in conformal coordinates, the boundary

conditions for a free scalar field is given by Eq. (2.39); in particular, in the general case

the boundary condition is not only a Neumann condition on the field spatial derivative but

also on the time derivative of the field at the spatial boundary.

The conditions in Eq. (2.35), read, for he in conformally flat form,

−Ω2(T, ξ)u0∂ejn
0
σ + Ω2(T, ξ)u1∂ejn

1
σ = 0

−Ω2(T, ξ)n0
σn

0
σ + Ω2(T, ξ)n1

σn
1
σ = 1 . (2.41)

Solving for n1
σ, we obtain n1

σ = ±
√

1
Ω2(T,ξ)

+ n0 2
σ , and hence n0

σ = ± dξ
dT

1
Ω(T,ξ)

√
1

1−( dξ
dT )

2 ,

where we have used that
u1
∂ej

u0
∂ej

=
dξj
dT

. Finally, at the edge endpoints ∂ej with j ∈ {1, 2} we

can write

n0
σ = ±dξj

dT

1

Ω(T, ξj)

√√√√ 1

1−
(

dξj
dT

)2 n1
σ = ± 1

Ω(T, ξj)

√√√√√1 +

(
dξj
dT

)2
1

1−
(

dξj
dT

)2 ,
(2.42)

and

nσ 0 = ∓dξj
dT

Ω(T, ξj)

√√√√ 1

1−
(

dξj
dT

)2 nσ 1 = ±Ω(T, ξj)

√√√√√1 +

(
dξj
dT

)2
1

1−
(

dξj
dT

)2 .
(2.43)
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Note that, as a consistency check, when we consider the embedding background to be the

four-dimensional Minkowski spacetime, we have Ω(T, ξ) = 1 and dξ
dT

= 0. Then, the above

equations yield na
σ = nσ a = (0,±1), in agreement with normal vector field obtained in the

previous subsection.

Therefore, the general form for the boundary conditions for a free scalar field confined

to a single edge embedded in an arbitrary curved, dynamical spacetime, is given by±∂Tϕ ( dξ

dT

√
1

1−
(
dξ
dT

)2
)

± ∂ξϕ

√√√√1 +

(
dξ

dT

)2
1

1−
(
dξ
dT

)2
∣∣∣∣∣∣

∂He|∂ej

!
= 0 . (2.44)

Again, in the case of an edge embedded in the Minkowski spacetime, Eq. (2.44) reduces to

∂ξϕ
!
= 0 at the spatial boundaries, in agreement with the result of the previous section.

As noted above, if the observer is not comoving with the edge endpoints, the boundary

conditions obtained from the variation of the action will generalize the Neumann conditions

to include an additional term involving the time derivative of the field, at the spatial

boundaries ∂He|∂e1 and ∂He|∂e2 of He. Alternatively, Dirichlet boundary conditions could

have been imposed by assuming the field variations δϕ(T, ξ) to be vanishing for all times

at the spatial boundaries, i.e. ϕ = const. at ∂He|∂ej .
In this section we constructed the field theory on a single-edge graph, embedded in an

arbitrary background. The propagation of the field along the edge is known and determined

by the equation of motion while the behavior of the field at the edge endpoints is controlled

by the above boundary conditions. Whether Dirichlet or Neumann, the degrees of freedom

confined on the edge cannot leak out to the embedding spacetime.





Chapter 3

Physics on Network Histories in

Arbitrary Spacetimes

As already introduced, the main leitmotiv of our investigation is to be able to describe

and study four-dimensional natural phenomena, with lower dimensional theories. In fact,

a (spatially) lower dimensional theory might simplify significantly computations, creating

the opportunity to solve equations which are not yet solved in full dimensions. However,

the question which naturally arises is whether and how a lower dimensional theory, e.g.

a (1 + 1)-dimensional field theory, can be employed to gain insights and describe a four-

dimensional phenomenon. As a matter of fact, light propagating in a single fiber can for

sure be used to study light propagation in one dimension and related (1 + 1)-dimensional

experiments, however it will never be able to provide a description of, for example, Snell’s

law of refraction of light at an interface. Nevertheless, the employment of lower dimensional

theories seems too powerful not to pursue an innovative method that, on the one hand,

do not give up on the use of lower dimensions, but still aims to describe full-dimensional

physics.

The core idea to achieve this objective is the following. Instead of one single-edge

graph, consider a collection C of N single-edge graphs, as the one depicted in Fig. 3.1.

We know that this is a triple C = (E ,V , ι) of a set E of N edges, equipped through ι with

two vertices each, the endpoints. According to the previous section, this collection can be

embedded in an arbitrary background (M, g), by embedding each single-edge graph in a

four-dimensional background and defining a field theory on it. Although each theory would

have support extending spatially in only one direction, we would have multiple copies of

the (1 + 1)-dimensional theory covering an extended region of the embedding spacetime.
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Figure 3.1: Collection C of N single edges, each equipped with endpoints. The graphs are
all disconnected.

Nevertheless, each field theory would be independent, and degrees of freedom could not

leak out of each edge.

However, if we modified the mapping of edges in E to the vertices in V such that the

single-edge graphs in C were connected into a network N , we would obtain a structure

of finite extent in the embedding spacetime on which the field could propagate, as shown

in Fig. 3.2. Thus, although just along one-dimensional paths, the field on the network

could effectively propagate in different directions and regions of the embedding spacetime.

Therefore, the key idea of our method would be to keep the field theory spatially one-

Figure 3.2: Example of a network, i.e. a collection of N single-edge graphs connected
together through vertices.

dimensional by confining the field to single edges, but at the same time to increase the

number of possible paths and directions the field can travel, by constructing an arbitrarily
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extended network in spacetime. Hence, within this new framework, the four-dimensional

natural phenomenon is not described by a spatially three-dimensional theory, but by a

spatially one-dimensional field theory on a three-dimensional structure.

Therefore, the first main objective of our work is to validate this idea by answering

the question as to whether a field theory spatially confined to a network can describe

phenomena occurring in the full embedding spacetime. Reformulated in terms of our

framework, we can rephrase it as

Can field theories confined to network histories describe phenomena occurring in the

full embedding spacetime?

If we have a positive answer to this question, we can employ our theoretical devices to

investigate the most challenging phenomena occurring in backgrounds of our choice.

3.1 The History of an Arbitrary Network

Let us see how such a spatially three-dimensional network, extended in the embedding

spacetime, can be constructed mathematically. Consider a four-dimensional globally hy-

perbolic spacetime (M, g) and, for a given time parameter τ , its foliation in spacelike three-

dimensional hypersurfaces Στ , for each τ . Consider the collection of single-edge graphs C of

Fig. 3.1. For each edge ei we apply the mathematical structure of Sec. 2.1, i.e. we define its

history as the two-dimensional compact and connected Lorentzian submanifold (Hei , hei)

of M and we introduce the smooth two-parameter map P to identify the edge points with

points of the two-dimensional history Hei . In this way, each edge is represented on each

hypersurface Στ and embedded in M . For illustrative purposes, we show in Fig. 3.3 the

embedding of the collection of single-edge graphs. As we will see, the definitions given in

Sec. 2.1 for single-edge histories will set the basis for constructing the definition of network

histories.

Each edge of the embedded collection is supplied with a (1+1)-dimensional field theory.

As long as the single edges are disconnected from each other, each field is confined to one

edge solely – as the boundary conditions studied in Sec. 2.2 prescribe – and we simply

obtain a collection of copies of the (1+1)-dimensional field theory on a single-edge history

that we analyzed above. In fact, if we vary the action functional as in Eq. (2.20) on each

edge, we obtain boundary terms at the edge endpoints, the two integrals on ∂He|∂ej in

Eq. (2.26). However, since the endpoints of each edge are disconnected from all other
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Figure 3.3: Embedded collection C of single-edge graphs in a globally hyperbolic spacetime
(M, g). For each edge e, we define a history (He, he) as in Sec. 2.2. Each history is
disconnected from the others. If τ is a time parameter, each edge history is visualized as
the worldsheet of the specific edge considered. On each edge, a (1 + 1)-dimensional field
theory is defined as in the previous section.

endpoints, no boundary terms in C have common support and therefore the integrals in

Eq. (2.26) must again vanish individually, leading to the boundary conditions Eq. (2.29)

for each edge. Consequently, each field is spatially confined to its respective edge.

Suppose we now allow the embedded edges in Fig. 3.3 to be connected, that is, we let

each edge of C have at least one endpoint in common with another edge. In terms of two

smooth maps Pi and Pj, this means that we identify two endpoints of two edges ei, ej

with the same spacetime point, the joining vertex v, i.e. v = Pi(τ, σk) = Pj(τ, σl) with

k, l ∈ {1, 2} for all times τ . In this way, we obtain an arbitrary network N = (V , E , ι), like
the one in Fig. 3.2, embedded in (M, g). We depict this resulting embedded network in

Fig. 3.4. Each edge history Hei now shares a common spatial boundary with the history
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Figure 3.4: Arbitrary networkN embedded in a globally hyperbolic spacetime (M, g). If τ
is a time parameter, the history of the network can be visualized as the network worldsheet.
For the sake of clarity, only a part of the network history HN is shown in the picture. On
the history of each edge of the network, a (1+1)-dimensional field theory is defined as in the
previous section. At each node, junction conditions control field propagation throughout
the network.

of the adjacent edge Hej , as exemplified for two adjacent edges in Fig. 3.4. Without losing

generality, we refer to this common spatial boundary as the worldline v(τ) of the joining

vertex v.

The network history HN is then defined as the two-dimensional compact and connected,

piecewise smooth Lorentzian submanifold (HN , h) ofM , given by the union of the histories

Hei of all the N edges constituting the network, i.e. HN = ∪N
i=1Hei . The metric tensor

h is the induced metric on the whole network history and, on each edge history Hei , it

reduces to the induced metric hei . On each vertex worldline, Israel junction conditions are

imposed for h. It is worth noting that the vertices worldlines are boundaries for the edge
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histories Hei but not for the whole network history HN , which is smooth at each node

worldline. On the other hand, the worldlines of free endpoints, i.e. endpoints which are

not connected to further edges, are spatial boundaries for the edge history Hei as well as

for the network history HN .

In fact, the network history boundaries ∂HN are defined in the following way. The

two temporal boundaries ∂HN |τi and ∂HN |τf are the union of the initial and final tem-

poral boundaries of each edge history respectively: ∂HN |τi = ∪N
k=1 ∂Hek |eτi and ∂HN |τf =

∪N
k=1 ∂Hek |eτf . Thus, the two temporal boundaries of the network history are nothing other

than the network at the initial time τi and at the final time τf .

The spatial boundaries ∂HN |∂e of the network history are defined as the worldlines of

the free endpoints or, in other words, as the union of the one spatial boundary of each edge

history Hei that is not a node worldline, i.e. it is not a common spatial boundary of two

adjacent edge histories. Mathematically, ∂HN |∂e = ∪s ∂Hes |∂e, where by ∂e we refer here

to the free endpoint of the edge and with s we label the edges with a free endpoint. In

Fig. 3.4, the vertical curves representing the worldlines of the free endpoints are examples

of spatial boundaries of the network history. Note that if the network is such that each edge

endpoint is shared by at least two edges, i.e. there are no free endpoints, then HN admits

no spatial boundaries. Physically, this simply means that potential degrees of freedom on

the network are free to propagate on it along paths that have no endpoints.

The fact that the edges are now connected to form a network is the core feature of

the method of network histories. In fact, the presence of nodes instead of endpoints turns

boundaries into junctions. At each vertex, the degrees of freedom can propagate further

to other edges, spreading and reaching different regions of the network. While the edges

of the network serve as support for the field propagation, the nodes of the network play a

fundamental role by controlling the propagation throughout the network via the junction

conditions. Depending on the choice of junction conditions, at each node fields can transmit

or reflect back to the edge, so that the dynamics on the network is strongly determined by

its nodes.

3.2 Fields on Network Histories

So far we have constructed a mathematical structure on which fields or arbitrary degrees of

freedom can propagate through nodes and edges. Now we want to focus on the degrees of

freedom themselves and investigate how to define their dynamics over the whole network
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history. Similarly to the previous section, we will focus on field theories and, for simplicity,

on real scalar fields. As already mentioned, the same construction holds for different spin

values or interacting theories. To equip networks with fields confined to them we base our

construction on the analysis developed for the single-edge graph.

Consider the network of Fig. 3.4. A subgraph of this network is another graph/network

formed from a subset of the vertices and edges of N . Instead of directly constructing a field

theory extended over the whole network, it is instructive to start locally by investigating

the field theory on elementary subgraphs of N . In fact, by knowing how the theory is

constructed in the presence of a node connecting two or more edges, the knowledge of the

field theory on the whole network follows naturally.

After the single-edge graph, the second simplest subgraph is the one that contains at

least one node. In particular, the simplest configuration containing a node is a subgraph

given by two edges connected by a vertex.

3.2.1 Two Edges Connected by a Vertex

In this subsection we then focus on a subgraph G2 = (V , E , ι) of N , for which E = {ei, ej}
and V = {∂e1i, ∂e2j, v}, with v the node connecting the two arbitrary edges ei and ej of

the network, as highlighted in Fig. 3.5. Notice that, even if the two edges are actually

connected to other elements of the network, the subgraph G2 is considered as disconnected

from the rest in this initial analysis. Once we know how a field evolves across a node

connecting two or more edges, we will be able to study G2 with all the real connections it

has in the network.

Consider the histories of the two edges Hei and Hej between an initial and final hy-

persurface Σi and Σf . Let xi = {ξai } = (T, ξi) be a coordinate system on (Hei , hei) and

define for a field ϕi on Hei an action functional as in Eq. (2.19). Similarly, we consider a

coordinate system xj = {ξaj } = (T, ξj) on (Hej , hej), and an action functional for a field ϕj

on Hej . Note that in principle, due to our foliation, we can always choose the time T to

be the same parameter on both histories.

If we were interested in studying the propagation of a single field ϕ along the subgraph

G2, we could define the field locally at one edge of G2 and set its initial conditions. By

studying the field evolution in time and imposing continuity, we would obtain the prop-

agated field at the second edge of G2. In this case, ϕi and ϕj would not be independent

from each other, but would satisfy specific initial conditions. In the following, however, we

consider the more general case of two independent fields ϕi, ϕj which, by continuity at the
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Figure 3.5: Two-dimensional finite history (HG2 , hG2) of a two-edge subgraph configuration
G2, embedded in a globally hyperbolic spacetime (M, g). If τ is a time parameter and σ
a spatial one, then the history HG2 = Hei ∪ Hej can be visualized as the worldsheet of
the two connected edges ei and ej. Note that each Στ is a three-dimensional spacelike
hypersurface.

node, form a continuum field configuration on the subgraph.

Although two of the spatial boundaries of the edges histories are identified in the

vertex worldline, we need to specify how this condition translates for the field theory on

G2. Consider for a moment the two edges to be disjoint from each other. The total

action for the two disconnected edges would be the sum of the two single edge actions,

Aeiej = Aei+Aej . If we consider the field theory defined as in Sec. 2.2 on each edge history,

then Aei and Aej are defined also on the boundaries of Hei and Hej . Thus, the fields ϕi

and ϕj have the endpoints of ei and ej in their domains. Consequently, if we now connect

the two edges by identifying two endpoints in the same spacetime point, i.e. the vertex,

the worldline of the vertex belongs to both fields supports. Since now Aei and Aej have

an overlapping domain, a sum over the two action functionals would yield two terms at
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the vertex worldline. If we require the two fields to coincide at the vertex worldline, i.e.

ϕi = ϕj at v(T ) for all T , we obtain two times the same action functional at v(T ). However,

in our work we are interested in analysing a single field ϕ populating the subgraph and,

more generally, the network. In this perspective, we would like the two independent fields

ϕi and ϕj to form a continuum field configuration on the subgraph.

To avoid the double term at the vertex worldline, we can proceed in two ways: either

we consider the fields domains as open subsets, that is, they do not include the spatial

boundaries of the histories and we consider the vertex as a defect, as for example in [21];

or we assume that the vertex worldline belongs either to one or the other field domain.

Without loss of generality, we assume the following intervals as the spatial domains for the

fields ϕi = ϕi(T, ξi) and ϕj = ϕj(T, ξj) respectively,

ξi ∈ [∂e1i, ∂e2i)

ξj ∈ [∂e1j, ∂e2j] . (3.1)

Recall that, in our current analysis, ∂e2i and ∂e1j are identified in the vertex v, so that in

the following we write Hei \ ∂Hei|∂e2i or Hei \ v(τ) interchangeably for the domain of ϕi.

The total action AG2 for the fields on the subgraph G2 is thus given by

AG2 [ϕi, ϕj, λ] = Aei [ϕi] +Aej [ϕj] + J [ϕi, ϕj, λ] =

=

∫
Hei\ v(τ)

Lei(xi, ϕi, dϕi)dvolhei
+

∫
Hej

Lej(xj, ϕj, dϕj)dvolhej
+

+ lim
ϵ→0

[∫
Hei\ v(τ)

Xv−ϵλϕi dvolhei
−
∫
Hej

Xvλϕj dvolhej

]
, (3.2)

where, for all times, Xv and Xv−ϵ project the fields at the vertex v and at a distance

ϵ away from it respectively. Note that whenever we explicitly refer to histories or their

structures, or when the coordinate system is not specified in the integral measure, we

use the general parameters τ and σ instead of T and ξ, for consistency with the figures

and the general construction of Sec. 3.1. The term J [ϕi, ϕj, λ] represents the constraint,

imposed by the continuous Lagrange multiplier field λ, that the two fields have the same

value at the common boundary of the two histories, giving rise to a piecewise continuous

field configuration on G2. In fact, if we vary the action functional with respect to λ we

obtain, from the variational principle, limϵ→0 ϕi|v−ϵ = ϕj|v at the vertex v for all times.

Specifically, the definitions in Eq. (3.1) for the fields domains imply that the vertex is not
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included in the spatial support of ϕi, thus requiring a limit procedure to approach ∂e2i.

With the limit ϵ → 0 and the notation “v − ϵ”, we mean to approach the vertex v by an

infinitesimal distance ϵ, from the edge ei. This condition is fundamental in the general case

when we want to analyze a field configuration defined on the whole network, which must

therefore be continuous at each node.

To find the equation of motion for the total field configuration on HG2 = Hei ∪Hej we

apply the variational principle for the total action between the two field configurations ϕi

and ϕj on the two edges, at initial and final time Ti and Tf respectively,

δAG2 = δAei + δAej + δJ =

=

∫
Hei\ v(τ)

(
∂Lei

∂ϕi

δϕi +
∂Lei

∂∂aϕi

∂aδϕi

)
dvolhei

+

+

∫
Hej

(
∂Lej

∂ϕj

δϕj +
∂Lej

∂∂aϕj

∂aδϕj

)
dvolhej

+ δJ !
= 0 . (3.3)

Let us first focus on the variation δJ of the junction term J [ϕi, ϕj, λ]. Since J depends

on the fields ϕi, ϕj and on the Lagrange multiplier field λ, we can write,

δJ =

∫
Hei\ v(T )

δJ
δϕi(xi)

δϕi(xi) d
2xi +

∫
Hej

δJ
δϕj(xj)

δϕj(xj) d
2xj+

+

∫
Hei\ v(T )

δJ
δλ(xi)

δλ(xi) d
2xi +

∫
Hej

δJ
δλ(xj)

δλ(xj) d
2xj , (3.4)

for some coordinates xi = {ξai }, xj = {ξaj } on Hei and Hej respectively. Throughout this

thesis, whenever we use the notation d2xi, we also implicitly account for the determinant

of the induced metric. The Lagrange multiplier field λ is independent of the scalar fields

ϕi and ϕj, i.e. δλ does not produce a variation in Aei [ϕi] and Aej [ϕj] and for Eq. (3.3)

to be satisfied, the variations of J with respect to λ have to be independently zero. This

leads to ∫
Hei\ v(T )

δJ
δλ(xi)

δλ(xi) d
2xi +

∫
Hej

δJ
δλ(xj)

δλ(xj) d
2xj

!
= 0 . (3.5)

Explicitly, for arbitrary variations δλ,

lim
ϵ→0

[∫
Hei\ v(τ)

Xv−ϵϕi dvolhei
−
∫
Hej

Xvϕj dvolhej

]
!
= 0 , (3.6)
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which gives the (piecewise) continuity condition for ϕi and ϕj mentioned above,

lim
ϵ→0

ϕi|v−ϵ
!
= ϕj|v (3.7)

for all times, where ϕj|v and ϕi|v−ϵ are the fields at the vertex v and at a distance ϵ from it

respectively. Note that, since the fields are required to agree on the vertex worldline, they

are not independent anymore and the variations δϕi of ϕi vary ϕj as well.

Let us now consider the variations of J with respect to the fields ϕi and ϕj. We can

write them explicitly as∫
Hei\ v(T )

δJ
δϕi(xi)

δϕi(xi) d
2xi =

∫
Hei\ v(T )

lim
ϵ→0

∫
Hei\ v(τ)

Xv−ϵλ
δϕi

δϕi(xi)
dvolhei

δϕi(xi)d
2xi =

= lim
ϵ→0

∫
Hei\ v(τ)

Xv−ϵλ δϕidvolhei
, (3.8)

and, similarly,∫
Hej

δJ
δϕj(xj)

δϕj(xj) d
2xj = −

∫
Hej

∫
Hej

Xvλ
δϕj

δϕj(xj)
dvolhej

δϕj(xj)d
2xj =

= −
∫
Hej

Xvλ δϕj dvolhej
. (3.9)

Therefore, we can rewrite the total variation of the action functional δAG2 as

δAG2 = δAei + δAej + δJ =

=

∫
Hei\ v(τ)

(
∂Lei

∂ϕi

δϕi +
∂Lei

∂∂aϕi

∂aδϕi

)
dvolhei

+

+

∫
Hej

(
∂Lej

∂ϕj

δϕj +
∂Lej

∂∂aϕj

∂aδϕj

)
dvolhej

+

+ lim
ϵ→0

∫
Hei\ v(τ)

Xv−ϵλ δϕi dvolhei
−
∫
Hej

Xvλ δϕj dvolhej

!
= 0 , (3.10)

In Sec. 2.2, we have seen that each term δAeλ , with λ ∈ {i, j}, yields two terms: one

integral with support on the history Heλ and one with support only on its boundaries

∂Heλ , as in Eq. (2.22). This implies that the first two integrals in Eq. (3.10) yield two

terms each. Mathematically, using the same notation as in the previous section and with

the two normal vector fields ni
σ and nj

σ related to each edge respectively and not necessarily
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the same,

δAei + δAej =∫
Hei\ v(T )

(
∂Lei

∂ϕi

√
−hei − ∂a

(√
−hei

∂Lei

∂∂aϕi

))
δϕidTdξi +

∫
∂Hei

∂Lei

∂∂aϕi

δϕi n
i
a

√
−h∂eidq+

+

∫
Hej

(
∂Lej

∂ϕj

√
−hej − ∂a

(√
−hej

∂Lej

∂∂aϕj

))
δϕjdTdξj +

∫
∂Hej

∂Lej

∂∂aϕj

δϕj n
j
a

√
−h∂ejdq.

(3.11)

By looking at Fig. 3.5, we notice that the two histories only share a boundary, i.e. the

bulks of the two histories Hei and Hej have an empty intersection. Therefore, in or-

der for the variation of the total action in Eq. (3.3) to vanish, the integrals on Hei and

Hej in Eq. (3.11) must vanish individually. According to Sec. 2.2, this leads to Euler-

Lagrange equations on both histories Heλ . Recall that by continuity, we can require the

term
(

∂Leλ

∂ϕλ

√
−heλ − ∂a

(√
−heλ

∂Leλ

∂∂aϕλ

))
to be zero at the spatial boundaries as well, in

particular at the vertex worldline or at a distance ϵ from it. The field propagation on each

edge is thus determined. However, any propagation through the node to the other edge is

dictated by the junction conditions. Thus, let us study which conditions follow Eq. (3.11)

at the common boundary.

Consider Fig. 3.6. As previously mentioned, we consider only the two edges ei and

ej, ignoring the other edges that join them at the node. Each edge history entails four

boundaries, two spatial and two temporal. Accordingly, each integral on ∂Heλ in Eq. (3.11)

consists of four integrals on the four boundaries of each Heλ as in Eq. (2.25) and Eq. (2.26).

As already analyzed in Sec. 2.2, the field variations δϕ are vanishing on the temporal

boundaries as they reflect the choice of initial and final conditions for the field configuration;

δϕ(Ti, ξλ) = 0 and δϕ(Tf , ξλ) = 0 for all values of ξλ, with λ ∈ {i, j}. This implies that the

integrals on temporal boundaries are vanishing. Therefore, we can write∫
∂Hei

∂Lei

∂∂aϕ
δϕi n

i
a

√
−h∂eidq +

∫
∂Hej

∂Lej

∂∂aϕj

δϕj n
j
a

√
−h∂ejdq =

=

∫
∂Hei |∂e1i

∂Lei

∂∂aϕi

ni
σ a

√
−h∂eiδϕi dT + lim

ϵ→0

∫
∂Hei |∂e2i−ϵ

∂Lei

∂∂aϕi

ni
σ a

√
−h∂eiδϕi dT+

+

∫
∂Hej |∂e1j

∂Lej

∂∂aϕj

nj
σ a

√
−h∂ejδϕj dT +

∫
∂Hej |∂e2j

∂Lej

∂∂aϕj

nj
σ a

√
−h∂ejδϕj dT . (3.12)
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This allows us to rewrite the condition of Eq. (3.10) as∫
∂Hei|∂e1i

∂Lei

∂∂aϕi

ni
σ a

√
−h∂eiδϕi dT + lim

ϵ→0

∫
∂Hei |∂e2i−ϵ

∂Lei

∂∂aϕi

ni
σ a

√
−h∂eiδϕi dT+

+

∫
∂Hej |∂e1j

∂Lej

∂∂aϕj

nj
σ a

√
−h∂ejδϕj dT +

∫
∂Hej |∂e2j

∂Lej

∂∂aϕj

nj
σ a

√
−h∂ejδϕj dT+

+ lim
ϵ→0

∫
Hei\ v(τ)

Xv−ϵ λ δϕi dvolhei
−
∫
Hej

Xvλ δϕj dvolhej

!
= 0 . (3.13)

Let us analyse the first four integrals. The first two are over the spatial boundaries of

Hei , which are nothing more than the worldlines of the two endpoints ∂e1i and ∂e2i of the

edge ei. The spatial boundaries of Hei are shown as dashed lines in Fig. 3.6. Recall that

the worldline of ∂e2i is not contained in the domain of ϕi and hence the limit procedure

is required. The last two integrals are instead on the spatial boundaries of Hej , which, in

analogy to the previous case, are the two worldlines of the endpoints of the second edge ej.

They are shown as dotted lines in the figure. As mentioned above, in this first analysis we

consider the endpoint ∂e1i of the edge ei as well as the endpoint ∂e2j of ej as disconnected

from other edges, i.e. they are both free endpoints and not nodes. On the other hand,

the endpoint ∂e2i of the edge ei and the endpoint ∂e1j of the edge ej are connected by a

vertex v, that is, the two boundaries ∂e2i(τ) and ∂e1j(τ) are actually identified for all τ in

the worldline of the vertex, v(τ). Under the current assumption that we only focus on the

two edges ei and ej, the node is considered to connect only these two edges, contrary to

the real case of the network in Fig. 3.5.

According to the considered configuration, in order for the sum of Eq. (3.13) to be

vanishing, the integral on ∂Hei |∂e1i and the one over ∂Hej

∣∣
∂e2j

– the worldlines of the

first endpoint ∂e1i of ei and of the second endpoint ∂e2j of ej respectively – have to

vanish independently, since they have non-overlapping supports. Since the field variations

δϕλ = δϕλ(T, ξλ), with λ ∈ {i, j}, are arbitrary functions, the two integrals vanish if and

only if their respective integrands are zero, that is

∂Leλ

∂∂aϕλ

nλ
σ a

√
−h∂eλ

∣∣∣∣
∂He|∂ek λ

!
= 0 with λ ∈ {i, j} ∧ k ∈ {1, 2} , (3.14)

for each time T , at the two endpoints ∂e1i and ∂e2j, respectively. Alternatively, the condi-

tions for the integrals to vanish are also satisfied if we assume that the field variations are

identically zero at ∂e1i and ∂e2j for all T , i.e. δϕλ|∂He|∂ek λ

= δϕλ(T )|∂He|∂ek λ

= 0, which
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Figure 3.6: Details of the two-dimensional finite history (HG2 = Hei ∪ Hej , hei∪ej) of a
two-edge subgraph configuration G2, embedded in a globally hyperbolic spacetime (M, g).
The common spatial boundary of the two histories Hei and Hei is the worldline v(τ) of
the vertex. The spatial boundaries of HG2 are the two free endpoint worldlines ∂e1i(τ) and
∂e2j(τ), depicted with dashed and dotted lines respectively. The two-edge configuration
G2 at initial and final time defines the two temporal boundaries of HG2 . Two, generally
different, normal vector fields ni

σ and nj
σ point out of each edge ei and ej; the normal vector

field nτ is instead the same on both edges of G2.

implies that the field is constant at the considered boundary.

The first of these two conditions, Eq. (3.14), corresponds to Neumann boundary condi-

tions at the endpoints of the edges. In fact, as already analysed in Sec. 2.2 for a real scalar

field on a single edge, such a condition implies for the field

habeλ∂aϕλ n
λ
σ b

√
−h∂eλ

∣∣∣
∂He|∂ek λ

!
= 0 with λ ∈ {i, j} ∧ k ∈ {1, 2} , (3.15)

for all times T , which can be seen as a Neumann boundary condition generalized to arbi-

trary spacetimes. By setting the field derivatives along the normal vector fields to vanish

at the free endpoints, the variational principle ensures that there can be no leakage of de-

grees of freedom from the two-edge configuration and that the field is confined to it. The

second condition, ϕ = const. at ∂e1i(τ) and ∂e2j(τ), is a Dirichlet boundary conditions for

the field. Whether Dirichlet or Neumann, the boundary conditions derived with the vari-
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ational principle prevent the field or degrees of freedom from escaping the two edges into

the ambient space. Therefore, we have found that two integrals of Eq. (3.12) constrain the

field to the two-edge configuration. We still need a condition at the node that will regulate

the propagation through it.

Since the two integrals over the free endpoint worldlines must vanish individually, we

can rewrite Eq. (3.13) as

lim
ϵ→0

∫
v(T )−ϵ

∂Lei

∂∂aϕi

ni
σ a

√
−h∂eiδϕi dT +

∫
v(T )

∂Lej

∂∂aϕj

nj
σ a

√
−h∂ejδϕj dT+

+ lim
ϵ→0

∫
Hei\ v(τ)

Xv−ϵ λ δϕi dvolhei
−
∫
Hej

Xvλ δϕj dvolhej

!
= 0 . (3.16)

Note that the integrals related to the two boundaries ∂Hei |∂e2i and ∂Hej

∣∣
∂e1j

, that we

identified together as v(T ), share the same support as the λ integrals. As a consequence,

they do not necessarily have to vanish individually. If this would be the case, we would

obtain exactly the same Neumann conditions as in Eq. (3.14) for each edge – or Dirichlet

for vanishing field variations δϕ = 0 – and the degrees of freedom would not be allowed to

leave each edge. The two edges would in fact act as effectively disconnected.

However, since they share a common support with another term, if one of the two

integrals does not vanish, then the other integral must cancel it out to zero. In fact, we

can write

lim
ϵ→0

[∫
v(T )−ϵ

∂Lei

∂∂aϕi

ni
σ a

√
−h∂eiδϕi dT +

∫
Hei\ v(τ)

Xv−ϵ λ δϕi dvolhei

]
!
= 0 (3.17)

and ∫
v(T )

∂Lej

∂∂aϕj

nj
σ a

√
−h∂ejδϕj dT −

∫
Hej

Xvλ δϕj dvolhej

!
= 0 , (3.18)

for Eq. (3.16) to be satisfied.

Since the field variations δϕi and δϕj are arbitrary functions, the above conditions are

satisfied if and only if

lim
ϵ→0

∂Lei

∂∂aϕi

ni
σ a

√
−h∂ei

∣∣∣∣
v(T )−ϵ

!
= − lim

ϵ→0
λ
∣∣∣
v(T )−ϵ

(3.19)

and
∂Lej

∂∂aϕj

nj
σ a

√
−h∂ej

∣∣∣∣
v(T )

!
= λ

∣∣∣
v(T )

. (3.20)
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Due to continuity of the Lagrange multiplier field λ at the vertex, if we now perform the

limit we obtain limϵ→0 λ |v(T )−ϵ = λ|v(T ) . Therefore,

lim
ϵ→0

∂Lei

∂∂aϕi

ni
σ a

√
−h∂ei

∣∣∣∣
v(T )−ϵ

!
= − lim

ϵ→0
λ
∣∣∣
v(T )−ϵ

= − λ
∣∣∣
v(T )

!
= −

∂Lej

∂∂aϕj

nj
σ a

√
−h∂ej

∣∣∣∣
v(T )

,

(3.21)

or, equivalently,

lim
ϵ→0

∂Lei

∂∂aϕi

ni
σ a

√
−h∂ei

∣∣∣∣
v(T )−ϵ

+
∂Lej

∂∂aϕj

nj
σ a

√
−h∂ej

∣∣∣∣
v(T )

!
= 0 , (3.22)

for all times T . Note that at the vertex, the two normal vectors are parallel but pointing

on opposite directions, that is, they both point into their relative edge. This equation is

fundamental. It determines the behavior of the field at the node of the graph configuration.

Let us see what this condition implies for the case of a free massive real scalar field ϕ, as

an instructive example. Consider the Lagrangian density Leλ = 1
2

(
habeλ∂aϕλ ∂bϕλ − µ2ϕ2

λ

)
with λ ∈ {i, j}. Then, Eq. (3.22) reads

lim
ϵ→0

habei ∂aϕi n
i
σ b

√
−h∂ei

∣∣∣
v(T )−ϵ

+ habej∂aϕj n
j
σ b

√
−h∂ej

∣∣∣
v(T )

!
= 0 , (3.23)

or,

lim
ϵ→0

habei ∂aϕi n
i
σ b

√
−h∂ei

∣∣∣
v(T )−ϵ

!
= − habej∂aϕj n

j
σ b

√
−h∂ej

∣∣∣
v(T )

. (3.24)

Thus, the condition Eq. (3.22) translates in a condition on the field derivatives, which we

refer to as junction condition. Recalling Eq. (2.22) in Sec. 2.2, we can notice that each side

of this equation is the outcome of the divergence theorem. In fact, each side quantifies the

flux ∂ϕλ from the edge eλ, along the normal vector field nλ
σ at the node. By setting the

two fluxes towards the vertex to be equal, it is ensured that the node does not act as a

sink or a source and the total flux at the vertex is conserved.

It is important to note that if the spacetime in which the edge configuration is embedded

is the Minkowski spacetime, that is, the globally hyperbolic spacetime of Fig. 3.5 is (M, η),

then the above junction condition reduces to

lim
ϵ→0

∂ξiϕi

∣∣∣
v(T )−ϵ

!
= ∂ξjϕj

∣∣∣
v(T )

. (3.25)

In this specific case, the variation of the field ϕi is fully transferred in a variation of ϕj,

such that in terms of propagation, whatever enters the node from one edge, is totally
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Figure 3.7: Subgraph of the network consisting of four edges connected to form a loop
configuration. On the right is shown the history of the loop, i.e., the four-edge configuration
considered as disjoint from any other edge of the network.

transmitted to the other. This reflects the fact that, in the Minkowski spacetime, the

vertex is not a special point since physically there is no reason for the field to be reflected

or only partially transmitted. Mathematically, Eq. (3.25) sets piecewise continuity for the

fields derivatives. In addition with the continuity condition of Eq. (3.7), the vertex between

two edges embedded in the Minkowski spacetime can be eliminated in favor of a longer

single edge. In fact, the conditions at the node guarantee that two fields match into a

single field on the resulting long edge, which is continuous and with continuous derivative.

Therefore, if the ambient space is the Minkowski spacetime, any node connecting only

two edges can be eliminated; connecting two field theories at a vertex is equivalent to

considering a single field theory on a (longer) single edge as in Sec. 2.2.

The fact that a node connecting two edges is not relevant when embedded in the

Minkowski spacetime can be further explored by analyzing the interesting case of a sub-

graph of Fig. 3.4 that consists of a closed circuit, or a loop.

In Fig. 3.7, an example of a subgraph is shown, consisting of four edges combined to

form a loop. If we extract these four edges from the network and idealize them as disjoint

from any other edges, we find that each vertex in the subgraph connects only two edges.

According to the previous result, if the embedding background is the Minkowski spacetime,

or any spacetime where Eq. (3.25) holds, then all four vertices can be removed from the

subgraph, resulting in a longer single edge with periodic boundary conditions. Therefore,

whenever we study a graph consisting of a loop, we can equivalently consider a single field

theory on a single edge. Thus, a (1 + 1)-dimensional field theory is sufficient to describe

fields on single edges, two edges connected at a vertex, and loop graphs. In the following

section, we will study the first example of a subgraph containing a node that cannot be

removed, where a (1+1)-dimensional field theory alone is insufficient for its description. It
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is precisely in this case that network histories, as a new and pioneering approach, become

essential.

3.2.2 Three-Edge Star Graph

In the previous section, we analyzed fundamental graph configurations, such as two edges

connected at a node or forming a loop configuration. However, we have seen that when

embedded in particular ambient spaces, they are equivalent to a single edge configuration,

and a (1+ 1)-dimensional field theory is sufficient for their description. Therefore, we now

aim to find the minimal subgraph for which a simple (1+1)-dimensional field theory ceases

to be sufficient, regardless of the embedding spacetime in which the network configuration

is placed.

Consider again the arbitrary network N constructed in the previous section and em-

bedded in an arbitrary globally hyperbolic spacetime (M, g). Besides the two-edge or the

loop configurations, the minimal structure we can consider is the subgraph G3 of N formed

by three edges connected at a vertex v, i.e. a star graph with three legs, as highlighted

in Fig. 3.8. Mathematically, G3 = (V , E , ι) is a subgraph for which E = {ei, ej, ez} and

V = {∂e1i, ∂e2j, ∂e1z , v}.

Just as we did for G2 in the previous section, we treat G3 as disconnected from the

rest of the network for the following analysis. We want to construct a continuous field

configuration on the subgraph. To this aim, consider the three histories (Hei , hei), (Hej , hej)

and (Hez , hez) of the three edges. Each history, as for single-edge histories, is a two-

dimensional compact Lorentzian submanifold of M with induced metric heλ , λ ∈ {i, j, z}.
As explained in the previous section, the total history of G3 is given by the union of the

three histories, G3 = Hei ∪ Hej ∪ Hez , while the spatial boundaries ∂e2i(τ), ∂e1j(τ) and

∂e2z(τ), for some time parameter τ , are all identified in the same spacetime curve v(τ),

the worldline of the vertex.

Following the procedure of Sec. 3.2.1, we define a (1+1)-dimensional scalar field theory

on each edge history. Thus, we obtain three field configurations ϕi, ϕj, and ϕz on Hei , Hej ,

and Hez , respectively. As already explained, we want the vertex worldline v(τ) to belong

only to one of the field domains. Therefore, given some coordinates xλ = {ξaλ} = (T, ξλ)

on each history Heλ , the spatial coordinate ξλ for the fields ranges within the following
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Figure 3.8: Two-dimensional finite history (HG3 , hG3) of a subgraph G3 of the network, con-
sisting of three edges connected by a vertex, embedded in a globally hyperbolic spacetime
(M, g). If τ is a time parameter and σ a spatial one, then the history HG3 = Hei∪Hej ∪Hez

can be visualized as the worldsheet spanned by the three connected edges ei, ej, and ez.

intervals:

ξi ∈ [∂e1i, ∂e2i)

ξj ∈ [∂e1j, ∂e2j]

ξz ∈ [∂e1z, ∂e2z) . (3.26)

Without loss of generality, we have chosen the vertex worldline to lie solely in the

domain of ϕj. As a consequence, we will refer to the domain of the fields ϕi and ϕz as

Hei \ v(τ) and Hez \ v(τ), for some time parameter τ .

As in Sec. 3.2.1, we define an action functional Aeλ [ϕλ] for each field ϕλ and consider
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the total action functional AG3 defined on the entire history of the subgraph as,

AG3 [ϕi, ϕj,ϕz, λ
ij, λjz] = Aei [ϕi] +Aej [ϕj] +Aez [ϕz] + J [ϕi, ϕj, ϕz, λ

ij, λjz] =

=

∫
Hei\ v(τ)

Lei(xi, ϕi, dϕi)dvolhei
+

∫
Hej

Lej(xj, ϕj, dϕj)dvolhej
+

+

∫
Hez\ v(τ)

Lez(xz, ϕz, dϕz)dvolhez
+ lim

ϵ→0

∫
Hei\ v(τ)

X i→v
v−ϵ λ

ijϕi dvolhei
+

−
∫
Hej

Xvλ
ijϕj dvolhej

+ lim
ϵ→0

∫
Hez\ v(τ)

X z→v
v−ϵ λ

jzϕz dvolhez
+

−
∫
Hej

Xvλ
jzϕj dvolhej

. (3.27)

The functional J [ϕi, ϕj, ϕz, λ
ij, λjz] sets the continuity conditions for the fields at the ver-

tex, in fact as we will show, if we vary the action functional with respect to the two

Lagrange multiplier fields λij and λjz, defined on Hei , Hej and Hej , Hez respectively, we

obtain limϵ→0 ϕi|i→v
v(τ)−ϵ

!
= ϕj|v(τ) and limϵ→0 ϕz|z→v

v(τ)−ϵ

!
= ϕj|v(τ) such that, limϵ→0 ϕi|i→v

v(τ)−ϵ =

ϕj|v(τ) = limϵ→0 ϕz|z→v
v(τ)−ϵ and the field configuration is continuous at the vertex, for all times

τ . Note that when using the notation λ → v for superscripts, it indicates that the limit

is taken along the edge eλ towards the vertex v. Furthermore, the Lagrange field λij is

assumed to be continuous across the vertex on Hei ∪Hej , and similarly, λjz is assumed to

be continuous across the vertex on Hej ∪Hez .

As in the previous section, to derive the equation of motion for the field configuration

on G3, we apply the variational principle and require that the first-order variations of the

action functional AG3 vanish, given the field configurations at the initial and final times τi

and τf ,

δAG3 = δAei [ϕi] + δAej [ϕj] + δAez [ϕz] + δJ [ϕi, ϕj, ϕz, λ
ij, λjz]

!
= 0 . (3.28)

First, let us focus on variations of the action functional due to arbitrary variations of

the Lagrange multiplier fields δλ. Given that the Lagrange multiplier fields λij and λjz

are independent of the fields ϕi, ϕj, and ϕz, any variation in λij or λjz does not cause

variations in ϕi, ϕj, or ϕz. As a result, the only functional affected by these variations

is J [ϕi, ϕj, ϕz, λ
ij, λjz]. Therefore, for δAG3

!
= 0 to be satisfied, the variations of J with
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respect to δλ must vanish independently. Mathematically,

δλJ =

∫
Hei\ v(T )

δJ
δλij(xi)

δλij(xi) d
2xi +

∫
Hej

δJ
δλij(xj)

δλij(xj) d
2xj+

+

∫
Hej

δJ
δλjz(xj)

δλjz(xj) d
2xj +

∫
Hez\ v(T )

δJ
δλjz(xz)

δλjz(xz) d
2xz

!
= 0 , (3.29)

where δλJ refers to the variations of J induced by λij and λjz.

Furthermore, λij and λjz are also independent of each other. Since variations with

respect to one of the two fields do not imply a change in the other, for Eq. (3.29) to vanish,

the terms involving each field must independently sum to zero. This leads to

lim
ϵ→0

∫
Hei\ v(τ)

X i→v
v−ϵ ϕi δλ

ij dvolhei
−
∫
Hej

Xvϕj δλ
ij dvolhej

!
= 0 (3.30)

for variations induced by δλij and

lim
ϵ→0

∫
Hez\ v(τ)

X z→v
v−ϵ ϕz δλ

jz dvolhez
−
∫
Hej

Xvϕj δλ
jz dvolhej

!
= 0 (3.31)

for the ones induced by δλjz. Since these two equations have to hold for arbitrary variations

δλij and δλjz, we can write, at the vertex worldline v(T ),

lim
ϵ→0

ϕi

∣∣∣i→v

v(T )−ϵ
− ϕj

∣∣∣
v(T )

!
= 0

lim
ϵ→0

ϕz

∣∣∣z→v

v(T )−ϵ
− ϕj

∣∣∣
v(T )

!
= 0 (3.32)

which can be rewritten as

lim
ϵ→0

ϕi

∣∣∣i→v

v(T )−ϵ

!
= ϕj

∣∣∣
v(T )

!
= lim

ϵ→0
ϕz

∣∣∣z→v

v(T )−ϵ
(3.33)

which states continuity of the total field configuration at the vertex for all times. For a

visualization of the above condition, we refer to the following Fig. 3.9 A.
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Figure 3.9: A. Visualization of the continuity condition across the vertex for the total
field configuration on G3, given by the agreement of the three field configurations ϕi, ϕj

and ϕz at the vertex worldline. At a given time, each field’s spatial domain is highlighted
with the same color as for the corresponding field. Note that the vertex only belongs to the
domain of ϕj. B. As an example, Dirichlet boundary conditions ϕλ = 0 for λ ∈ {i, j, z}
are assumed at the free endpoints of the subgraph, for all times. At the vertex worldline,
together with the continuity condition, boundary conditions on the fields derivatives are
applied, resulting in the Kirchhoff-Neumann conditions.

The variations of AG3 induced by δϕi, δϕj and δϕz yield, analogously to Eq. (3.10),

δAG3 = δAei + δAej + δAez + δJ =

∫
Hei\ v(τ)

(
∂Lei

∂ϕi

δϕi +
∂Lei

∂∂aϕi

∂aδϕi

)
dvolhei

+

+

∫
Hej

(
∂Lej

∂ϕj

δϕj +
∂Lej

∂∂aϕj

∂aδϕj

)
dvolhej

+

∫
Hez\ v(τ)

(
∂Lez

∂ϕz

δϕz +
∂Lez

∂∂aϕz

∂aδϕz

)
dvolhez

+

+ lim
ϵ→0

∫
Hei\ v(τ)

X i→v
v−ϵ λ

ij δϕidvolhei
−
∫
Hej

Xvλ
ij δϕj dvolhej

+

+ lim
ϵ→0

∫
Hez\ v(τ)

X z→v
v−ϵ λ

jz δϕz dvolhez
−
∫
Hej

Xvλ
jz δϕj dvolhej

!
= 0 , (3.34)

where the last four terms are derived by varying J with respect to the fields ϕi, ϕj and

ϕz, i.e. by computing

δJ =

∫
Hei\ v(T )

δJ
δϕi(xi)

δϕi(xi)d
2xi +

∫
Hej

δJ
δϕj(xj)

δϕj(xj) d
2xj+

+

∫
Hez\ v(T )

δJ
δϕz(xz)

δϕz(xz)d
2xz . (3.35)
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The first three integrals of Eq. (3.34) yield once again the same terms as those analyzed

in the previous section, in Eq. (3.11). In fact, if we use the divergence theorem, for each

integral we obtain two terms, one integral over the entire field domain and one boundary

term. Explicitly, in terms of the coordinates xλ = {ξaλ} = (T, ξλ),

δAG3 = δAei + δAej + δAez + δJ =

=

∫
Hei\ v(T )

(
∂Lei

∂ϕi

√
−hei − ∂a

(√
−hei

∂Lei

∂∂aϕi

))
δϕidTdξi+

+

∫
∂Hei

∂Lei

∂∂aϕi

δϕi n
i
a

√
−h∂eidq+

+

∫
Hej

(
∂Lej

∂ϕj

√
−hej − ∂a

(√
−hej

∂Lej

∂∂aϕj

))
δϕjdTdξj+

+

∫
∂Hej

∂Lej

∂∂aϕj

δϕj n
j
a

√
−h∂ejdq+

+

∫
Hez\ v(T )

(
∂Lez

∂ϕz

√
−hez − ∂a

(√
−hez

∂Lez

∂∂aϕz

))
δϕzdTdξz+

+

∫
∂Hez

∂Lez

∂∂aϕz

δϕz n
z
a

√
−h∂ezdq+

+ lim
ϵ→0

∫
Hei\ v(τ)

X i→v
v−ϵ λ

ij δϕi dvolhei
−
∫
Hej

Xvλ
ij δϕj dvolhej

+

+ lim
ϵ→0

∫
Hez\ v(τ)

X z→v
v−ϵ λ

jz δϕz dvolhez
−
∫
Hej

Xvλ
jz δϕj dvolhej

!
= 0 . (3.36)

First, we can observe that the integrals induced by variations of J are also boundary

terms. Therefore, for the total variation of the action functional to be zero, each integral

supported on the bulk of the corresponding history must independently vanish, as they all

have disjoint support. Since we assume the field variations to be arbitrary on the bulk of

each history, we obtain that for all λ ∈ {i, j, z}, ∂Leλ

∂ϕλ

√
−heλ−∂a

(√
−heλ

∂Leλ

∂∂aϕλ

)
!
= 0. This

leads to the equations of motion for the fields ϕi, ϕj, and ϕz on their respective histories.

As shown explicitly for Eq. (2.25), the same integrals must also be performed over

the temporal and spatial boundaries of each history, in particular at the vertex worldline

or on curves at a distance ϵ from it. However, by continuity, we can set
∂Leλ

∂ϕλ

√
−heλ −

∂a

(√
−heλ

∂Leλ

∂∂aϕλ

)
to vanish at spatial boundaries as well. On temporal boundaries, all

integrals vanish. By implementing these results into Eq. (3.36), we can rewrite the same
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condition as follows∫
∂Hei

∂Lei

∂∂aϕi

δϕi n
i
a

√
−h∂eidq+

+

∫
∂Hej

∂Lej

∂∂aϕj

δϕj n
j
a

√
−h∂ejdq +

∫
∂Hez

∂Lez

∂∂aϕz

δϕz n
z
a

√
−h∂ezdq+

+ lim
ϵ→0

∫
Hei\ v(τ)

X i→v
v−ϵ λ

ij δϕidvolhei
−
∫
Hej

Xvλ
ij δϕj dvolhej

+

+ lim
ϵ→0

∫
Hez\ v(τ)

X z→v
v−ϵ λ

jz δϕz dvolhez
−
∫
Hej

Xvλ
jz δϕj dvolhej

!
= 0 . (3.37)

The first three integrals are on the boundaries of each history and therefore contain four

terms each, two on spatial boundaries and two on temporal ones. To facilitate the anal-

ysis of each term, we refer to Fig. 3.10, for a clearer visualization of the mathematical

expressions.

The integrals on the temporal boundaries are all vanishing. This is because, according

to the variational principle, the field variations are zero at the temporal boundaries; that

is, for λ ∈ {i, j, z}, ϕλ(Ti, ξλ) = const. and ϕλ(Tf , ξλ) = const. for all values of ξλ, reflecting

the choice of initial and final conditions for the field configurations.

Therefore, the integrals on the boundaries of each history ∂Heλ reduce to∫
∂Hei

∂Lei

∂∂aϕi

δϕi n
i
a

√
−h∂eidq +

∫
∂Hej

∂Lej

∂∂aϕj

δϕj n
j
a

√
−h∂ejdq+

+

∫
∂Hez

∂Lez

∂∂aϕz

δϕz n
z
a

√
−h∂ezdq =

=

∫
∂Hei |∂e1i

∂Lei

∂∂aϕi

ni
σ a

√
−h∂eiδϕi dT + lim

ϵ→0

∫
∂Hei |∂e2i−ϵ

∂Lei

∂∂aϕi

ni
σ a

√
−h∂eiδϕi dT+

+

∫
∂Hej |∂e1j

∂Lej

∂∂aϕj

nj
σ a

√
−h∂ejδϕj dT +

∫
∂Hej |∂e2j

∂Lej

∂∂aϕj

nj
σ a

√
−h∂ejδϕj dT

+

∫
∂Hez |∂e1z

∂Lez

∂∂aϕz

nz
σ a

√
−h∂ezδϕz dT + lim

ϵ→0

∫
∂Hez |∂e2z−ϵ

∂Lez

∂∂aϕz

nz
σ a

√
−h∂ezδϕz dT . (3.38)



3.2 Fields on Network Histories 53

Figure 3.10: Details of the two-dimensional finite history (HG3 , hG3) of a three-edge sub-
graph configuration G3, embedded in a globally hyperbolic spacetime (M, g). The common
spatial boundary of the three histories Hei , Hei and Hez is the worldline v(τ) of the vertex.
The spatial boundaries of HG3 are the three free endpoints worldlines ∂e1i(τ), ∂e2j(τ) and
∂e1z(τ), depicted with dashed, dashed-dotted and dotted lines respectively. The three-edge
star graph configuration G3 at initial and final time defines the two temporal boundaries of
HG3 . Three, generally different, normal vector fields ni

σ, n
j
σ and nz

σ point out of each edge
ei, ej and ez; the normal vector field nτ is instead the same on all edges of G3.

Thus, we can rewrite Eq. (3.37) as∫
∂Hei |∂e1i

∂Lei

∂∂aϕi

ni
σ a

√
−h∂eiδϕi dT + lim

ϵ→0

∫
∂Hei |∂e2i−ϵ

∂Lei

∂∂aϕi

ni
σ a

√
−h∂eiδϕi dT+

+

∫
∂Hej |∂e1j

∂Lej

∂∂aϕj

nj
σ a

√
−h∂ejδϕj dT +

∫
∂Hej |∂e2j

∂Lej

∂∂aϕj

nj
σ a

√
−h∂ejδϕj dT+

+

∫
∂Hez |∂e1z

∂Lez

∂∂aϕz

nz
σ a

√
−h∂ezδϕz dT + lim

ϵ→0

∫
∂Hez |∂e2z−ϵ

∂Lez

∂∂aϕz

nz
σ a

√
−h∂ezδϕz dT+

+ lim
ϵ→0

∫
Hei\ v(τ)

X i→v
v−ϵ λ

ij δϕidvolhei
−
∫
Hej

Xvλ
ij δϕj dvolhej

+

+ lim
ϵ→0

∫
Hez\ v(τ)

X z→v
v−ϵ λ

jz δϕz dvolhez
−
∫
Hej

Xvλ
jz δϕj dvolhej

!
= 0 . (3.39)
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Therefore, for the variations of the action functional AG3 to be vanishing, the variational

principle requires that the above integrals must sum to zero. As we can see from the picture

in Fig. 3.10, the three free endpoints worldines ∂e1i(τ), ∂e2j(τ) and ∂e1z(τ), for some time

parameter τ , are distinct and do not intersect with each other or with the vertex worldline.

Consequently, the three integrals performed along these specific worldlines do not share

any common support with other integrals in the sum and thus, for the sum to be zero,

they must vanish individually. This yields∫
∂Hei |∂e1i

∂Lei

∂∂aϕi

ni
σ a

√
−h∂eiδϕi dT

!
= 0∫

∂Hej |∂e2j

∂Lej

∂∂aϕj

nj
σ a

√
−h∂ejδϕj dT

!
= 0

∫
∂Hez |∂e1z

∂Lez

∂∂aϕz

nz
σ a

√
−h∂ezδϕz dT

!
= 0 , (3.40)

which, according to Sec. 2.2, depending on the choice of the fields variations, lead to

generalized Dirichlet or Neumann conditions at the free endpoints of the subgraph, for

each time T . In fact, if the fields variations are arbitrary and non-vanishing, then we

obtain

∂Lei

∂∂aϕi

ni
σ a

√
−h∂ei

!
= 0

∂Lej

∂∂aϕj

nj
σ a

√
−h∂ej

!
= 0

∂Lez

∂∂aϕz

nz
σ a

√
−h∂ez

!
= 0 , (3.41)

at the free endpoints, for all times T . If we consider free real scalar massive fields on

each edge, we can write Leλ = 1
2

(
habeλ∂aϕλ ∂bϕλ − µ2ϕ2

λ

)
for each λ ∈ {i, j, z}. The above

conditions then reduce to

habei ∂aϕi n
i
σ a

√
−h∂ei

!
= 0

habej∂aϕj n
j
σ a

√
−h∂ej

!
= 0

habez∂aϕz n
z
σ a

√
−h∂ez

!
= 0 , (3.42)

for all T , which are a generalized version of the Neumann boundary conditions to arbi-
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trary spacetimes. As already explained in previous sections, these conditions, along with

the Dirichlet ones, ensure that there is no leakage of degrees of freedom out of the sub-

graph G3, i.e. particles or fields are confined to G3 and cannot propagate or leak into the

surrounding ambient space. As an example, Dirichlet boundary conditions are chosen at

the free endpoints of G3 in Fig. 3.9, B.

We still need a condition for the fields at the node. The remaining integrals of Eq. (3.39)

have to sum to zero, otherwise the overall variation of the action functional is not vanishing.

This implies,

lim
ϵ→0

∫
∂Hei |∂e2i−ϵ

∂Lei

∂∂aϕi

ni
σ a

√
−h∂eiδϕi dT +

∫
∂Hej |∂e1j

∂Lej

∂∂aϕj

nj
σ a

√
−h∂ejδϕj dT+

+ lim
ϵ→0

∫
∂Hez |∂e2z−ϵ

∂Lez

∂∂aϕz

nz
σ a

√
−h∂ezδϕz dT+

+ lim
ϵ→0

∫
Hei\ v(τ)

X i→v
v−ϵ λ

ij δϕidvolhei
−
∫
Hej

Xvλ
ij δϕj dvolhej

+

+ lim
ϵ→0

∫
Hez\ v(τ)

X z→v
v−ϵ λ

jz δϕz dvolhez
−
∫
Hej

Xvλ
jz δϕj dvolhej

!
= 0 . (3.43)

Recall that the worldline of the endpoints ∂e2i, ∂e1j and ∂e2z are all identified together

in the vertex worldline v(τ), where τ is a time parameter. This implies that the first and

third integrals are performed at a distance ϵ away from the vertex along the edge ei and ez,

respectively, in the same way as the fourth and sixth integrals. The fact that they share a

common support allows us to write,

lim
ϵ→0

∫
v(T )−ϵ

∂Lei

∂∂aϕi

ni
σ a

√
−h∂eiδϕi dT

!
= − lim

ϵ→0

∫
Hei\ v(τ)

X i→v
v−ϵ λ

ij δϕidvolhei
,∫

v(T )

∂Lej

∂∂aϕj

nj
σ a

√
−h∂ejδϕj dT

!
=

∫
Hej

Xvλ
ij δϕj dvolhej

+

∫
Hej

Xvλ
jz δϕj dvolhej

,

lim
ϵ→0

∫
v(T )−ϵ

∂Lez

∂∂aϕz

nz
σ a

√
−h∂ezδϕz dT

!
= − lim

ϵ→0

∫
Hez\ v(τ)

X z→v
v−ϵ λ

jz δϕz dvolhez
, (3.44)

as the only way for Eq. (3.43) to be satisfied is that the time integrals performed at the

same spatial point cancel each other to zero.

If the field variations δϕi, δϕj and δϕz are vanishing for all times τ at the vertex

worldline or at a distance ϵ from it along the edges ei and ez, then the above conditions

are satisfied and we obtain constant field configurations at the vertex for all times, i.e.
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limϵ→0 ϕi|i→v
v(τ)−ϵ = const., ϕj|v(τ) = const. and limϵ→0 ϕz|z→v

v(τ)−ϵ = const. . Which, by

setting the constant to be the same for all fields, agree with the continuity condition

Eq. (3.33). These conditions represent Dirichlet boundary conditions at the vertex of

the subgraph. Note that imposing these conditions at the node effectively results in a

configuration equivalent to three disconnected edges. Any propagation from the edges

towards the node leads to total reflection. Although continuous at the node, the total field

configuration on G3 behaves as three independent field configurations that exist separately

from one another.

Conversely, if we assume δϕi, δϕj and δϕz to be arbitrary and independent, then we

obtain the following conditions respectively:

lim
ϵ→0

∂Lei

∂∂aϕi

ni
σ a

√
−h∂ei

∣∣∣∣i→v

v(T )−ϵ

!
= − lim

ϵ→0
λij
∣∣∣i→v

v(T )−ϵ
,

∂Lej

∂∂aϕj

nj
σ a

√
−h∂ej

∣∣∣∣
v(T )

!
= λij

∣∣∣
v(T )

+ λjz
∣∣∣
v(T )

,

lim
ϵ→0

∂Lez

∂∂aϕz

nz
σ a

√
−h∂ez

∣∣∣∣z→v

v(T )−ϵ

!
= − lim

ϵ→0
λjz
∣∣∣z→v

v(T )−ϵ
. (3.45)

By continuity of the Lagrange fields λij and λjz through the node along the edges ei, ej

and ej, ez respectively, i.e. limϵ→0 λ
ij|i→v

v(T )−ϵ = λij|v(T ) and limϵ→0 λ
jz|z→v

v(T )−ϵ = λjz|v(T ), we

can write,

lim
ϵ→0

∂Lei

∂∂aϕi

ni
σ a

√
−h∂ei

∣∣∣∣i→v

v(T )−ϵ

!
= − lim

ϵ→0
λij
∣∣∣i→v

v(T )−ϵ
= − λij

∣∣∣
v(T )

,

lim
ϵ→0

∂Lez

∂∂aϕz

nz
σ a

√
−h∂ez

∣∣∣∣z→v

v(T )−ϵ

!
= − lim

ϵ→0
λjz
∣∣∣z→v

v(T )−ϵ
= − λjz

∣∣∣
v(T )

, (3.46)

which finally brings to

lim
ϵ→0

∂Lei

∂∂aϕi

ni
σ a

√
−h∂ei

∣∣∣∣i→v

v(T )−ϵ

+
∂Lej

∂∂aϕj

nj
σ a

√
−h∂ej

∣∣∣∣
v(T )

+ lim
ϵ→0

∂Lez

∂∂aϕz

nz
σ a

√
−h∂ez

∣∣∣∣z→v

v(T )−ϵ

!
= 0 ,

(3.47)

at the worldline of the node of G3. When considered together with the continuity condition

Eq. (3.33), the two pair of equations are a generalized version of the known Kirchhoff-

Neumann boundary conditions to arbitrary spacetimes. For free real scalar fields on each
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edge of G3, we can rewrite the Kirchhoff-Neumann conditions as

lim
ϵ→0

ϕi

∣∣∣i→v

v(T )−ϵ

!
= ϕj

∣∣∣
v(T )

!
= lim

ϵ→0
ϕz

∣∣∣z→v

v(T )−ϵ
,

lim
ϵ→0

habei ∂aϕi n
i
σ b

√
−h∂ei

∣∣∣i→v

v(T )−ϵ
+ habej ∂aϕj n

j
σ b

√
−h∂ej

∣∣∣
v(T )

+

+ lim
ϵ→0

habez ∂aϕz n
z
σ b

√
−h∂ez

∣∣∣z→v

v(T )−ϵ

!
= 0 .

(3.48)

Each term summed in the second condition originally arises from the divergence theorem

and quantifies the flux ∂ϕλ along the normal nλ
σ of each edge eλ, evaluated at or near

the node. The fact that these terms are summed to zero implies that the fluxes are

conserved through the node and the vertex does not act as a source or sink for the total

field configuration on G3. In particular, Eq. (3.45) offers room for physical interpretation.

Specifically, we note that the Lagrange fields are acting as auxiliary sources to impose

junction conditions at the vertex. In fact, if for instance the Lagrangian density Lej would

contain a source term Jϕj at the vertex, for example through a point-like source J(T, ξj)

vanishing for ξj ̸= v, the third term of Eq. (3.36) would also contribute to Eq. (3.45) with

a term
∫
Hej

J δϕj dvolhej
. Mathematically, Eq. (3.45) would read

lim
ϵ→0

∂Lei

∂∂aϕi

ni
σ a

√
−h∂ei

∣∣∣∣i→v

v(T )−ϵ

!
= − lim

ϵ→0
λij
∣∣∣i→v

v(T )−ϵ
,

∂Lej

∂∂aϕj

nj
σ a

√
−h∂ej

∣∣∣∣
v(T )

!
= λij

∣∣∣
v(T )

+ λjz
∣∣∣
v(T )

+ J
∣∣∣
v(T )

,

lim
ϵ→0

∂Lez

∂∂aϕz

nz
σ a

√
−h∂ez

∣∣∣∣z→v

v(T )−ϵ

!
= − lim

ϵ→0
λjz
∣∣∣z→v

v(T )−ϵ
. (3.49)

This equation suggests that the source J at the vertex and the Lagrange fields λij and

λjz contribute in a similar way to the flux balance along the edge ej. Essentially, the

equation indicates that the total flux term for the edge ej,
∂Lej

∂∂aϕj
nj
σ a

√
−h∂ej , calculated at

the vertex, is influenced not only by the external source J at the vertex but also by two

additional contributions: λij, λjz. The continuity of the Lagrange fields shows that these

contributions correspond to the fluxes
∂Lei

∂∂aϕi
ni
σ a

√
−h∂ei and

∂Lez

∂∂aϕz
nz
σ a

√
−h∂ez from the edges

ei and ez, respectively. Thus, the Lagrange multiplier act as auxiliary sources, which, while

not physical sources themselves, represent additional flux contributions arising because the

edge ej is connected to two other edges. In fact, this connection allows the fields ϕi and
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ϕz to influence the flux on ej by propagating into it.

If the three edges were treated as disconnected, without enforcing the continuity condi-

tion specified in Eq. (3.33), the terms λij and λjz would be zero. In that scenario, the flux on

ej would solely originate from the external source J , with the equation
∂Lej

∂∂aϕj
nj
σ a

√
−h∂ej = J

ensuring flux conservation at the vertex. However, because of the continuity condition, the

three field theories are linked, and the Lagrange fields account for flux contributions to ej

that are independent of J and arise from field variations in other edges of the subgraph.

When the subgraph G3 is embedded in the Minkowski spacetime (M, η), the above

generalized Kirchhoff-Neumann conditions Eq. (3.48), for free real scalar fields on the

subgraph, simplify to
lim
ϵ→0

ϕi

∣∣∣i→v

v(T )−ϵ

!
= ϕj

∣∣∣
v(T )

!
= lim

ϵ→0
ϕz

∣∣∣z→v

v(T )−ϵ
,

lim
ϵ→0

∂ξiϕi

∣∣∣i→v

v(T )−ϵ
+ ∂ξjϕj

∣∣∣
v(T )

+ lim
ϵ→0

∂ξzϕz

∣∣∣z→v

v(T )−ϵ

!
= 0 .

(3.50)

These are the commonly known Kirchhoff-Neumann conditions. As the above equation

shows, it is ensured that the spatial variation of one field at the vertex has to be fully

compensated by a variation of the other two fields.

The physical nature of these conditions becomes even clearer when considering complex

scalar fields on G3, since in this case the Kirchhoff-Neumann conditions guarantee that

the sum of the Noether currents related to the three fields is zero at the vertex, highly

resembling the Kirchhoff’s law at a node in electrical circuits, for which what enters in has

to come out, without the node being a source or sink for the electrical currents. At the

same time, the conservation of the corresponding charge is ensured [13,20].

For convenience, whenever the normal vector field has a vanishing temporal component,

the junction conditions Eq. (3.48) at the vertex v of the subgraph can be jointly expressed

in the general form

AΦ(T, v) +B Φ′(T, v) = 0 , (3.51)

where A and B are complex n× n matrices and Φ together with Φ′ are vectors including

the field and its derivative for all n edges. Note that if C is any invertible matrix, the pairs

{A,B} and {CA,CB}, define equivalent boundary conditions [20]. If we define the fields

ϕi and ϕz at the vertex worldline as ϕi |v := limϵ→0 ϕi|i→v
v(T )−ϵ and ϕz |v := limϵ→0 ϕz|z→v

v(T )−ϵ

and their spatial derivatives as ∂ξλϕλ |v := limϵ→0 ∂ξλϕλ |λ→v
v(T )−ϵ, where λ = {i, z}, we can
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write Φ and Φ′ explicitly as

Φ(T, v) :=

 ϕi |v
ϕj |v
ϕz |v

 , Φ′(T, v) :=

 ∂ξiϕi |v
∂ξjϕj

∣∣
v

∂ξzϕz |v

 . (3.52)

Accordingly, since the studied subgraph is G3, consisting of n = 3 edges connected in one

node, the matrices A and B are both 3× 3 matrices.

Although the choice of boundary conditions is arbitrary, it should guarantee that certain

symmetries for the field theory are preserved, as already suggested above. In particular, if

we are interested in quantum fields or components of wave packets on G3, the Laplace oper-

ator defined on the subgraph has to be self-adjoint everywhere and hence also at the node.

This is crucial because, in this case, the Laplace operator eigenfunctions satisfy the com-

pleteness relations, enabling the construction of quantum field and conjugate momentum

operators on the whole subgraph, which satisfy the equal-time commutation relation.

The fact that the Laplace operator is self-adjoint has also another crucial consequence

for the field theory on the subgraph. In fact, in this case the scattering matrix associated

to the vertex is ensured to be unitary. Since the scattering matrix encodes the transmis-

sion and reflection coefficients for the field across the node, its unitarity implies that the

probability current, or Noether current for classical fields, is conserved at the node.

Remarkably, it has been proved that if the n× 2n composite matrix (A,B) has rank n

and AB† is self-adjoint, then the Laplace operator on G3 is also self-adjoint [16,19].

If Eq. (3.51) satisfies the above requirements for the matrices A and B, the Laplace

operator is self-adjoint and the scattering matrix unitary on G3. Therefore, in quantum field

theory on a graph, the Kirchhoff-Neumann conditions emerge as the quantum counterpart

of Kirchhoff’s law.

If we consider G3 to be embedded in the Minkowski spacetime (M, η), then the matrices

A and B are given by

A =

1 −1 0

0 1 −1

0 0 0

 , B =

0 0 0

0 0 0

1 1 1

 , (3.53)

according to Eq. (3.50). With this form of A and B, the 3 × 6 composite matrix (A,B)

has rank 3 and AB† is self-adjoint. Thus, the Kirchhoff-Neumann conditions for three

edges embedded in Minkowski and joined at a vertex – visualized in Fig. 3.9 B –, ensure a
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unitary scattering matrix and a quantizable field configuration on it.

As reflected in the conditions of Eq. (3.48), a single (1 + 1)-dimensional field theory

has proven to be insufficient to fully capture the physics on the subgraph, as the presence

of the vertex and two additional edges causes each field theory to be influenced by the

fields on other edges. In contrast to two edges connected at a node, the vertex of G3 is

not removable, and we must depart from a simple (1 + 1)-dimensional field theoretical

framework in favor of a full network-histories description.

3.2.3 Arbitrary Networks

We are finally ready to set the field theory framework on arbitrary networks by generalizing

what we have studied for two edges connected at a node, G2, a loop, and the minimal graph

configuration of a non-removable vertex: three edges connected together into a vertex, G3.

Consider again the arbitrary network N = (V , E , ι) embedded in an arbitrary globally

hyperbolic spacetime (M, g) that we considered in Fig. 3.4. Recall that V is the set of

vertices and E the set of edges of the network. Let V := ♯V denote the cardinality of V ,
i.e. the number of vertices of N and N := ♯E the number of its edges. Furthermore, let a

be an index that runs over the set of edges E and b an index that labels each node in V ,
with a ∈ {1, . . . , N} and b ∈ {1, . . . , V }. The arbitrary network N can be thought of as

being constructed from V star graphs, each with Nb legs, connected together. Therefore, at

each vertex we apply the result of the previous section, generalizing it to star graphs with

an arbitrary number of edges. Furthermore, note that we consider networks consisting

of at least one minimal star graph, i.e. such that V ≥ 4 and N ≥ 3, otherwise the

network-histories method is equivalent to a simple (1 + 1)-dimensional field theory on a

line. Whenever a vertex v of V is connected to only two edges, we know that it can

be removed and thus discarded (Sec. 3.2.1). Vertices corresponding to free endpoints are

included in this construction by considering them as star graphs with only one leg Nb = 1.

All remaining vertices connect at least three edges. For convenience, the network is reported

again in Fig. 3.11, with only non-removable nodes depicted.

As constructed in Sec. 3.1, the network’s history (HN , h) is given by the union of all

the histories of each edge of the network, i.e. HN = ∪N
a=1Hea . Recall that the metric tensor

h is the induced metric on the network and reduces to each edge’s induced metric hea on

each history Hea . Accordingly, we can introduce a coordinate system xa = {ξca} = (T, ξa)

on each (Hea , hea). We define a (1 + 1)-dimensional field theory for a real scalar field ϕa

on each edge history Hea of the network.
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Figure 3.11: Arbitrary network N embedded in a globally hyperbolic spacetime (M, g).
If τ is a time parameter, the history of the network can be visualized as the network
worldsheet. For the sake of clarity, only a part of the network history HN is shown
in the picture. On the history of each edge of the network, a (1 + 1)-dimensional field
theory is defined as in the previous section. At each node, junction conditions control field
propagation throughout the network. Removable nodes have been omitted.

Suppose that for each vertex vb in the network, there are Nb edges connected to it, that

is, it is a star graph with Nb legs. Among these Nb edges, we select an edge eb such that

the field ϕb on Heb includes the vertex within its domain.1 The fields on the remaining

Nb − 1 edges do not have the vertex included in their domains. By generalizing the results

of Sec. 3.2.2 for three edges, we can express the total action functional AN for the total

field configuration on N as the sum of the N action functionals Aea , each defined on the

history Hea of the corresponding edge in the network, along with junction terms for each

1Please note that although we label the field ϕb with the same index b of the vertex vb, when labeling
the field, b only aims to single out the field ϕa with the vertex vb in its domain, and as such, is a special
value of a, running over the Nb edges connected to the node.
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vertex vb of N , setting boundary conditions at vb for fields on the edges connected to it.

Mathematically,

AN [ϕ1, ϕ2, . . . ϕN , λ ] =
N∑
a=1

Aea [ϕa] + J [ϕ1, ϕ2, . . . ϕN , λ] , (3.54)

where by λ we indicate the
∑V

b=1(Nb− 1) continuous Lagrange fields λab, that connect, for

each vertex vb, Nb edges together. Furthermore, for all vb ∈ V ,

Aea [ϕa] =


∫
Hea\ vb(τ)

Lea(xa, ϕa, dϕa)dvolhea
if a ̸= b∫

Heb

Leb(xb, ϕb, dϕb)dvolheb
if a = b

. (3.55)

The functional J introduced in Sec. 3.2.2 for three edges, can be generalized for an arbitrary

network of N edges as

J [ϕ1, ϕ2, . . . ϕN , λ ] =

=
V∑
b=1

[
Nb∑
a=1

(1− δab)

(
lim
ϵ→0

∫
Hea\ vb(τ)

X a→vb
vb−ϵ λ

abϕa dvolhea
−
∫
Heb

Xvbλ
abϕb dvolheb

)]
,

(3.56)

where, for clarity, we relabeled the Nb edges connected to the node vb from 1 to Nb. As

a consistency check we can notice that by setting V = 4 and N = 3, we obtain again the

junction functional J of Eq. (3.27), for the graph consisting of three edges connected in

one vertex.

Generalizing the same steps as for the case of three edges, we consider an initial and

final field configuration on the network and apply the variational principle to the total

action functional AN , ultimately setting its first variations to zero. Mathematically,

δAN =
N∑
a=1

δAea + δJ !
= 0 . (3.57)

The variations of AN with respect to the Lagrange multiplier fields lead to continuity

conditions at each vertex for the fields on edges connected to it. In fact, for each vertex
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vb, we can write

δλJ |vb =
Nb∑
a=1

(1− δab)

(
lim
ϵ→0

∫
Hea\ vb(τ)

X a→vb
vb−ϵ δλ

abϕa dvolhea
−
∫
Heb

Xvbδλ
abϕb dvolheb

)
,

(3.58)

since the Lagrange fields are independent of the scalar fields ϕa, ∀a. This leads, for all

vertices, to

δλJ =

=
V∑
b=1

[
Nb∑
a=1

(1− δab)

(
lim
ϵ→0

∫
Hea\ vb(τ)

X a→vb
vb−ϵ δλ

abϕa dvolhea
−
∫
Heb

Xvbδλ
abϕb dvolheb

)]
!
= 0 .

(3.59)

Note that for different values of a and b, the λab are different Lagrange multiplier fields

and are independent of each other. Furthermore, note also that each Lagrange field is

evaluated at the corresponding vertex, and hence, even if labeled by the same pair a, b,

Lagrange fields corresponding to different vertices are to be considered independent.

This implies that for the above equation to vanish integrals involving the same field λab

must independently sum to zero. In this way, for each vertex vb of the network, we obtain

Nb − 1 equations of the form:

lim
ϵ→0

∫
Hea\ vb(τ)

X a→vb
vb−ϵ δλ

abϕa dvolhea
−
∫
Heb

Xvbδλ
abϕb dvolheb

!
= 0 . (3.60)

Since the Lagrange field variations δλab are arbitrary, we can write for each vertex

Nb∑
a=1

(1− δab)

[
lim
ϵ→0

ϕa

∣∣∣a→vb

vb(T )−ϵ
− ϕb

∣∣∣
vb(T )

]
!
= 0 , (3.61)

which sets that at each vertex worldline, each field configuration ϕa equals the value of

ϕb|vb(T ), under the limit of an infinitesimal distance ϵ away from the vertex, from each

edge ea respectively. In other words, Eq. (3.61) establishes continuity for the total field

configuration on the arbitrary network at each vertex for all times, and we can explicitly
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write

lim
ϵ→0

ϕ1

∣∣∣1→vb

vb(T )−ϵ

!
= lim

ϵ→0
ϕ2

∣∣∣2→vb

vb(T )−ϵ

!
= . . .

!
= ϕb

∣∣∣
vb(T )

!
= . . .

!
= lim

ϵ→0
ϕNb

∣∣∣Nb→vb

vb(T )−ϵ
, (3.62)

at an arbitrary vertex vb of the network. Recall that in our notation, by writing “a→ vb”

we mean that in the limit ϵ→ 0, we approach the vertex vb from the edge ea.

Finally, as a general continuity condition for an arbitrary network N populated by

scalar fields and consisting of N edges {ea} and V vertices {vb} with a ∈ {1, . . . , N} and

b ∈ {1, . . . , V }, we can write

ϕ1 |v1(T )

!
= lim

ϵ→0
ϕ2

∣∣∣2→v1

v1(T )−ϵ

!
= lim

ϵ→0
ϕ3

∣∣∣3→v1

v1(T )−ϵ

!
= . . .

!
= . . .

!
= lim

ϵ→0
ϕN1

∣∣∣N1→v1

v1(T )−ϵ

ϕ1 |v2(T )

!
= lim

ϵ→0
ϕ2

∣∣∣2→v2

v2(T )−ϵ

!
= lim

ϵ→0
ϕ3

∣∣∣3→v2

v2(T )−ϵ

!
= . . .

!
= . . .

!
= lim

ϵ→0
ϕN2

∣∣∣N2→v2

v2(T )−ϵ

...
...

...
...

...
...

...
...

ϕ1 |vV (T )

!
= lim

ϵ→0
ϕ2

∣∣∣2→vV

vV (T )−ϵ

!
= lim

ϵ→0
ϕ3

∣∣∣3→vV

vV (T )−ϵ

!
= . . .

!
= . . .

!
= lim

ϵ→0
ϕNV

∣∣∣NV →vV

vV (T )−ϵ

(3.63)

where each vertex vb connects Nb edges. Specifically, in the above equations, we choose the

edge eb to always denote the edge e1. By direct comparison with Eq. (3.33), we can observe

that the above conditions simplify to the result for the minimal graph when V = 4 and

N = 3. For an illustrative visualization of the above condition, we refer to the following

Fig. 3.12.

The analysis of the first variations of the total action functional AN with respect to

the real scalar fields populating the network follows directly the results for three edges

connected together in a vertex studied in Sec. 3.2.2. In fact, consider again the condition

imposed by the variational principle. If Ev is the subset of E consisting of edges that
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Figure 3.12: Visualization of the continuity conditions across the worldlines of two vertices
for the total field configuration on an arbitrary network N . The two edges e1 and e2,
shown in blue, were specifically chosen to support the fields ϕ1 and ϕ2 defined to include
the vertices v1 and v2 within their respective domains.

support fields containing two vertices of the network within their domains, we can write

δAN =
N∑
a=1

δAea + δϕJ =

=
∑

ea∈E\Ev

[∫
Hea\ v(T )

(
∂Lea

∂ϕa

√
−hea − ∂ν

(√
−hea

∂Lea

∂∂νϕa

))
δϕadTdξa+

+

∫
∂Hea

∂Lea

∂∂νϕa

δϕa n
a
ν

√
−h∂eadq

]
+

+
∑
ea∈Ev

[∫
Hea

(
∂Lea

∂ϕa

√
−hea − ∂ν

(√
−hea

∂Lea

∂∂νϕa

))
δϕadTdξa+

+

∫
∂Hea

∂Lea

∂∂νϕa

δϕa n
a
ν

√
−h∂eadq

]
+

+
V∑
b=1

[
Nb∑
a=1

(1− δab)

(
lim
ϵ→0

∫
Hea\ vb(τ)

X a→vb
vb−ϵ λ

abδϕa dvolhea
−
∫
Heb

Xvbλ
abδϕb dvolheb

)]
=

!
= 0 , (3.64)

where δϕJ denotes the variations of J induced by variations in the fields and v(T ) generally

denotes the vertices to which each edge is connected for any time. Recall that each integral

of the form
∫
∂Hea

∂Lea

∂∂νϕa
δϕa n

a
ν

√
−h∂eadq is performed on the entire boundary ∂Hea of the

edge history: temporal and spatial boundaries. For these integrals, for the sake of generality
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and clarity in the notation, we do not differentiate whether the spatial boundaries of the

edge history are included in the domain of ϕa. By referring to Eq. (3.64) and extending

the steps outlined in Sec. 3.2.2, we can directly derive the following results:

• Equations of motion on N : On each edge history Hea of the network, following

the same arguments as in Sec. 3.2.2, we find that, in the bulk of the history, Eq. (3.64)

leads to ∫
Hea\ v(T )

(
∂Lea

∂ϕa

√
−hea − ∂ν

(√
−hea

∂Lea

∂∂νϕa

))
δϕa dTdξa

!
= 0

∫
Heb

(
∂Leb

∂ϕb

√
−heb − ∂ν

(√
−heb

∂Leb

∂∂νϕb

))
δϕb dTdξb

!
= 0 , (3.65)

where Hea \ v(T ) refers generally to the edge history Hea excluding, at any time, one

or both vertices to which ea is connected. Since the field variations δϕa are arbitrary

on the bulk of the edge history, we can rewrite the above equations as

∂Lea

∂ϕa

− 1√
−hea

∂ν

(√
−hea

∂Lea

∂∂νϕa

)
!
= 0 , (3.66)

for all edges ea of the network. These are the well-known Euler-Lagrange equations for

the fields populating the edges and determine their equations of motion. Note that the

integrals of Eq. (3.65) must also be performed at the temporal and spatial boundaries

of each history Hea , in particular at the vertex wordline or along curves that are at a

distance ϵ from it. However, we can once again set ∂Lea

∂ϕa

√
−hea − ∂ν

(√
−hea

∂Lea

∂∂νϕa

)
to vanish there as well, by continuity. On temporal boundaries, all integrals vanish.

For a free real massive scalar field with Lea = 1
2

(
hcdea∂cϕa ∂dϕa − µ2ϕ2

a

)
, we find, on

each edge of the network, (
□hea

+ µ2
)
ϕa = 0 . (3.67)

• Boundary conditions at free endpoints of N : At the free endpoints ∂HN |∂e =
∪s ∂Hes|∂e of the network, if any, we obtain in agreement with the discussion of

Sec. 3.2.2, ∫
∂Hes |∂e

∂Les

∂∂aϕs

ns
σ a

√
−h∂esδϕs dT

!
= 0 , ∀ es ∈ N (3.68)

according to Eq. (3.40). Recall that in our notation, by es we refer to an edge
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containing a free endpoint and ∂e denotes the free endpoint itself. Depending on

whether the field variations δϕs for each es are arbitrary or vanishing at ∂e for any

time T , we obtain Neumann or Dirichlet boundary conditions respectively. In fact, if

the field variations are vanishing, the field is constant at the free endpoint worldlines

and Dirichlet boundary conditions are imposed; if the variations are arbitrary and

independent of each other we obtain, at the free endpoints

∂Les

∂∂aϕs

ns
σ a

√
−h∂es

!
= 0 ∀ es ∈ N , (3.69)

for all time T . If we consider free real massive scalar fields on each edge es, we can

write Les =
1
2

(
habes∂aϕs ∂bϕs − µ2ϕ2

s

)
. The above conditions then reduce to

habes∂aϕs n
s
σ b

√
−h∂es

!
= 0 ∀ es ∈ N , (3.70)

which once again, are a generalized version of the Neumann conditions to arbitrary

embedding spacetimes. If the arbitrary network contains any free endpoints, the

above conditions – whether Dirichlet or generalized Neumann – ensure that there

is no leakage of degrees of freedom out of the network and fields populating N are

entirely confined within it, without diffusing into the surrounding ambient space.

• Junction conditions at the nodes of N : Finally, we are left with the junction

conditions at the nodes of the network. Indeed, applying the same reasoning as in

Sec. 3.2.2, for Eq. (3.64) to be satisfied, the following condition must hold indepen-

dently at each node vb of the network:

Nb−1∑
a=1

(
lim
ϵ→0

∫
vb(T )−ϵ

∂Lea

∂∂νϕa

na
σ ν

√
−h∂eaδϕa dT

)
+

∫
vb(T )

∂Leb

∂∂νϕb

nb
σ ν

√
−h∂ebδϕb dT+

+

Nb∑
a=1

(1− δab)

(
lim
ϵ→0

∫
Hea\ vb(τ)

X a→vb
vb−ϵ λ

abδϕa dvolhea
−
∫
Heb

Xvbλ
abδϕb dvolheb

)
=

!
= 0 . (3.71)

This implies, by considering each field ϕa separately, that

lim
ϵ→0

∫
vb(T )−ϵ

∂Lea

∂∂νϕa

na
σ ν

√
−h∂eaδϕa dT

!
= − lim

ϵ→0

∫
Hea\ vb(τ)

X a→vb
vb−ϵ λ

abδϕa dvolhea
, (3.72)
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and for the field ϕb containing the vertex worldline vb(T ) in its domain,

∫
vb(T )

∂Leb

∂∂νϕb

nb
σ ν

√
−h∂ebδϕb dT

!
=

Nb∑
a=1

(1− δab)

∫
Heb

Xvbλ
abδϕb dvolheb

. (3.73)

If we consider the field variations δϕa and δϕb to be vanishing at the vertex worldline

vb(T ) or at a distance ϵ to it, then the field is constant and we are imposing Dirichlet

boundary conditions. As a consequence, if this assumption holds for all vertices, the

degrees of freedom cannot propagate across the nodes and the network acts effectively

as the collection of N edges considered in Fig. 3.3. However, if for each vertex vb of

the network, we assume the field variations to be arbitrary and independent of each

other, we find

lim
ϵ→0

∂Lea

∂∂νϕa

na
σ ν

√
−h∂ea

∣∣∣∣a→vb

vb(T )−ϵ

!
= − lim

ϵ→0
λab
∣∣∣a→vb

vb(T )−ϵ
, (3.74)

for all the fields ϕa incident to vb, for all times T , and

∂Leb

∂∂νϕb

nb
σ ν

√
−h∂eb

∣∣∣∣
vb(T )

!
=

Nb∑
a=1

(1− δab)λ
ab

∣∣∣∣∣
vb(T )

, (3.75)

for the only field ϕb with the vertex worldline vb(T ) in its domain, for all times T .

Recall that in our notation “a → vb” indicates that in the limit procedure we are

approaching the vertex vb from the edge ea. Furthermore, note that for free endpoints

Nb = 1, es = eb and we reduce to the condition of Eq. (3.69). By continuity of the

Lagrange multiplier fields across the vertex, i.e.

lim
ϵ→0

λab
∣∣∣a→vb

vb(T )−ϵ
= λab

∣∣∣
vb(T )

, (3.76)

for all a, we can couple the two equations Eq. (3.74) and Eq. (3.75). In fact, Eq. (3.74)

can be further expressed as

lim
ϵ→0

∂Lea

∂∂νϕa

na
σ ν

√
−h∂ea

∣∣∣∣a→vb

vb(T )−ϵ

!
= − lim

ϵ→0
λab
∣∣∣a→vb

vb(T )−ϵ
= −λab

∣∣∣∣
vb(T )

, (3.77)
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and thus, we can finally write

∂Leb

∂∂νϕb

nb
σ ν

√
−h∂eb

∣∣∣∣
vb(T )

+

Nb∑
a=1

(1− δab) lim
ϵ→0

∂Lea

∂∂νϕa

na
σ ν

√
−h∂ea

∣∣∣∣a→vb

vb(T )−ϵ

!
= 0 , (3.78)

at each vertex vb of the network N . Note that this condition is the generalization of

Eq. (3.47) to an arbitrary network, originally derived for a graph consisting of three

edges connected to a single vertex. Indeed, if we set V = 4 and N = 3, Eq. (3.78)

naturally reduces to Eq. (3.47). At each node of the network, the above Eq. (3.78),

together with the continuity condition Eq. (3.62), establishes a generalized version of

the Kirchhoff-Neumann conditions to curved spacetimes, for an arbitrary number of

edges Nb incident at the vertex. More concisely, the generalized Kirchhoff-Neumann

conditions can be rewritten in the following form:
lim
ϵ→0

ϕ1

∣∣∣1→vb

vb(T )−ϵ

!
= lim

ϵ→0
ϕ2

∣∣∣2→vb

vb(T )−ϵ

!
= . . .

!
= ϕb

∣∣∣
vb(T )

!
= . . .

!
= lim

ϵ→0
ϕNb

∣∣∣Nb→vb

vb(T )−ϵ
,

∂Leb

∂∂νϕb

nb
σ ν

√
−h∂eb

∣∣∣∣
vb(T )

+

Nb∑
a=1

(1− δab) lim
ϵ→0

∂Lea

∂∂νϕa

na
σ ν

√
−h∂ea

∣∣∣∣a→vb

vb(T )−ϵ

!
= 0 .

(3.79)

For real scalar fields, the Kirchhoff-Neumann conditions read
lim
ϵ→0

ϕ1

∣∣∣1→vb

vb(T )−ϵ

!
= lim

ϵ→0
ϕ2

∣∣∣2→vb

vb(T )−ϵ

!
= . . .

!
= ϕb

∣∣∣
vb(T )

!
= . . .

!
= lim

ϵ→0
ϕNb

∣∣∣Nb→vb

vb(T )−ϵ
,

hµνeb ∂µϕb n
b
σ ν

√
−h∂eb

∣∣∣
vb(T )

+ lim
ϵ→0

Nb∑
a=1

(1− δab) h
µν
ea ∂µϕa n

a
σ ν

√
−h∂ea

∣∣∣a→vb

vb(T )−ϵ

!
= 0 ,

(3.80)

in analogy with Eq. (3.48). As in Sec. 3.2.2, if we denote ϕa|vb(T ) := limϵ→0 ϕa |a→vb
vb(T )−ϵ

and hµνea ∂µϕa n
a
σ ν

√
−h∂ea

∣∣
vb(T )

:= limϵ→0 h
µν
ea ∂µϕa n

a
σ ν

√
−h∂ea

∣∣a→vb

vb(T )−ϵ
, we can rewrite

the above conditions as
ϕ1

∣∣∣
vb(T )

!
= ϕ2

∣∣∣
vb(T )

!
= . . .

!
= ϕb

∣∣∣
vb(T )

!
= . . .

!
= ϕNb

∣∣∣
vb(T )

,

Nb∑
a=1

√
−h∂ea h

µν
ea n

a
σ ν ∂µϕa

∣∣∣∣∣
vb(T )

!
= 0 .

(3.81)

Note that if the arbitrary network N is embedded in the Minkowski spacetime, the

normal vector field na
σ has a vanishing temporal component and the above conditions
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reduce to the common Kirchhoff-Neumann conditions for Nb edges connected to a

vertex vb. Therefore, by enforcing continuity at each vertex for the total field config-

uration populating the network and applying the variational principle to its action

functional, we naturally obtain junction conditions at each node when allowing the

field variations to be arbitrary and independent. From the field theory perspective,

these conditions differentiate a collection of N edges (Fig. 3.3) to a fully connected

network where fields and degrees of freedom can propagate and are partially trans-

mitted at every node. Analogously to the previous section, if the above conditions

ensure a self-adjont Laplace operator at the node worldline, then the scattering ma-

trix associated with the vertex is unitary. According to the cluster decomposition

principle, the scattering matrix for the entire network can be factorized into the scat-

tering matrices of individual nodes. As a consequence, if the S-matrix of each node

is unitary, then the total scattering matrix is also unitary.

In conclusion, in this first chapter, we introduced and defined the concept of a network

N = (V , E , ι) embedded in an arbitrary, possibly curved, spacetime, and we introduced

a field theory confined to it. By variational principles, we established a prescription to

prevent the degrees of freedom from leaking into the surrounding space and set the condi-

tions that control, at each node, the propagation of fields throughout the network. If these

junction conditions ensure a self-adjoint Laplace operator at each node, the fields on the

histories can be quantized. This enables the introduction of quantum field and conjugate

momentum operators, paving the way for the development of a quantum field theory on

networks histories.

With these theoretical tools in hand, we are now equipped to conduct (quantum) field

theory experiments, enabling us to explore the structure of curved spacetimes and address

unresolved questions in nature where a simple (1 + 3)-dimensional field description falls

short.



Chapter 4

Emerging Entanglement on Network

Histories

In this chapter we are interested in a first application of networks as devices to investigate

natural phenomena. In particular, we need a first analysis to verify our model and its back-

ground idea: Can a network and its history, built upon a collection of (1 + 1)-dimensional

field theories, really tell something about (1 + 3)-dimensional phenomena? Although ini-

tial, simpler answers could be obtained by analyzing phenomena involving classical fields

on networks, in this section, we aim to focus on quantum phenomena, which will ultimately

play a fundamental role in our exploration of quantum field theory (QFT) in curved back-

grounds. Indeed, phenomena such as entanglement and information processing at causal

boundaries or trapping surfaces are crucial in deepening our understanding of gravity, the

fundamental nature of spacetime, and its interaction with the most advanced quantum

theories. If we were able to describe entanglement with networks histories, we would prove

that networks can serve to investigate (1 + 3)-dimensional phenomena and, at the same

time, develop diagnostic devices to tackle the most recent and unsolved questions on the

quantum nature of black holes.

The initial pieces of the black hole information puzzle can be traced back to initial

observations that black holes exhibit a tendency to increase their horizon surface area

during any transformation [22,23]. More generally, it was proven that the black-hole surface

area cannot decrease in any classical process, a principle later formalized as Hawking’s area

theorem [24]. It was precisely this crucial insight that, in the early 1970s, led physicist Jacob

Bekenstein to draw parallels with the second law of thermodynamics, which states that

changes in a closed thermodynamic system occur in the direction of increasing entropy.
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Bekenstein’s intuition suggested that the area of the event horizon could be related to

the entropy of the black hole. By proposing the concept of entropy for a black hole as a

measure of the information about its interior that is inaccessible to an exterior observer [6],

Bekenstein suggested that it should be a monotonically increasing function of the horizon’s

area. Only a few years later, within the framework of quantum field theory, Stephen

Hawking’s derivation of black hole radiation [25] confirmed Bekenstein’s conjecture by

demonstrating that black hole horizons possess a temperature inversely proportional to

the black hole’s mass, thereby establishing the thermodynamic nature of black holes. The

so-called Bekenstein-Hawking entropy for black holes, not only was an increasing function

of the area A, as Bekenstein had proposed, but was found to be directly proportional to

it, SBH ∼ A.

One question that naturally arises is the real nature of black hole entropy and why it

is proportional to the horizon’s area. Providing a full explanation for this proportionality

remains one of the profound open questions in the intersection of quantum mechanics,

thermodynamics, and gravity. Since Bekenstein’s groundbreaking suggestion, various at-

tempts have been made to explain what is the meaning of a black hole entropy and why its

proportionality to the horizon area [7, 8], with approaches ranging from Euclidean quan-

tum gravity to string theory. Among these, the explanations that most naturally account

for why the entropy of black holes is proportional to the area are those that understand

the entropy in terms of quantum field correlations between the exterior and interior of the

black hole. Notably, the seminal work by Sorkin et al. [9] was the first to demonstrate a

direct proportionality between the entanglement entropy of quantum field theoretic degrees

of freedom outside the black hole and its horizon area. Independently, a few years later,

Srednicki [10] arrived at the same result using different arguments. This suggests that

black hole entropy is fundamentally quantum in nature, arising specifically from quantum

correlations across the horizon.

In light of our two-fold objective – demonstrating the potential of the network histories

method and simultaneously paving the way for its application to curved spacetimes – we

require an initial pilot phenomenon. This phenomenon must serve as a thorough test,

fully studied within (1+3) dimensions, while also being crucial for exploring the quantum

nature of black holes. By looking closer into approaches like [9,10] we can notice that they

typically model black holes as flat (1 + 3)-dimensional spacetime regions, intersected by

an artificial surface whose interior is rendered inaccessible to simulate a causal boundary.

In fact, performing a direct computation in an actual black hole spacetime would require
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knowledge of the exact (1 + 3)-dimensional propagator for the black hole background

– a quantity that remains unknown to this day. As a matter of fact, fully established

calculations of entanglement entropy for fields in a curved black hole spacetime are still

lacking. Although it does not yet provide a fully comprehensive solution to the black

hole entropy puzzle [7], this phenomenon has already been comprehensively analyzed since

the works of Sorkin and Srednicki. This would make it an excellent test and reference

point for our pioneering approach. At the same time, it lays the foundation for a full

black hole analysis by substituting the artificial sphere’s surface with a real horizon. It

therefore seems natural for us to choose as our pilot phenomenon the proportionality

between the entanglement entropy of vacuum fluctuations of a quantum field in Minkowski

spacetime and the area of an artificial sphere made inaccessible to an external observer, as

illustratively analyzed by Srednicki [10].

Notably, this test phenomenon is particularly well-suited to the network approach, as

it naturally links entropy with a geometric quantity – the area of the inaccessible region

– allowing us to explore the implications of dimensionality. In fact, unlike fields that

extend across the full spacetime, those confined to network histories are restricted to a

two-dimensional framework, where the conventional concept of area does not apply in

the usual sense. If quantum fields on network histories, as an alternative to fields in the

full (1 + 3)-dimensional spacetime, can capture entanglement properties supported in the

embedding geometry by exhibiting an area-dependent entropy, we would demonstrate that

the quantum information properties observed in full spacetime are emergent phenomena

of the fields confined to the lower-dimensional network histories and that (quantum) fields

on network histories, referred to as quantum networks, are a robust new tool for probing

higher-dimensional spacetimes and the phenomena within them.

In the following sections, we will therefore delve into the study of entanglement en-

tropy related to quantum fields in Minkowski spacetime, employing networks to capture

the phenomenon found by Sorkin and Srednicki. If we successfully describe the area pro-

portionality as emerging on these lower-dimensional devices, we will pave the way towards

addressing the more challenging phenomenon of entanglement entropy for quantum fields

across a black hole’s horizon using quantum networks, providing the long-awaited alter-

native for directly computing the entanglement entropy in a full black hole scenario and

thereby gaining new insights that will contribute to our understanding of the nature of

black hole entropy.
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4.1 Entropy of Entanglement

One of the most natural measurements of loss of information about a quantum system

is the entropy of entanglement, or entanglement entropy. In particular, in a bipartite or

multipartite system, the entanglement entropy quantifies the extent to which one or more

subsystems are entangled with others from which information has been lost. Therefore, the

Figure 4.1: Spatial two-dimensional visualization of a quantum field ϕ supported on a
spacetime (M, g), in a specific state |Ψ⟩. An arbitrary sphere (represented as a disk in this
2D depiction) divides the setup into an interior and an exterior sector. If the interior of the
sphere is inaccessible, an external observer loses information about the internal quantum
field degrees of freedom. Due to quantum field correlations across the sphere’s surface, the
exterior and interior sectors may be entangled, with the entanglement entropy quantifying
the degree of entanglement. For this reason, we refer to the sphere as the entangling sphere.

entanglement entropy is always associated with a system in which one or more subsystems

have been traced out, preventing the observer from obtaining any information about them.

For example, if we consider a quantum field ϕ in a spacetime (M, g) Fig. 4.1, in a given

specific state |Ψ⟩, we can choose a region, e.g. a sphere, inaccessible to an external observer,

splitting the system into an interior and an exterior sector. If ρE is the density matrix

reduced to the exterior E of the sphere, ρE = TrI |Ψ⟩ ⟨Ψ|, then the entanglement entropy
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is formally expressed as the Von Neumann entropy of ρE [26],

SE = −Tr (ρE ln ρE) . (4.1)

Depending on its value, SE measures the possible entanglement between the two sectors,

arising from quantum field correlations across the sphere’s surface. Since the surface defines

the two sectors that may be entangled with each other, it is referred to as the entangling

surface, e.g. entangling sphere.

It is natural to draw an analogy between the entangling surface and regions of spacetime

to which an observer has no access, such as causal boundaries or, less irrevocably, trapping

surfaces. In fact, black hole horizons prevent an observer from obtaining any information

about what lies within their radius. Fields and particles on opposite sides of the horizon

may be entangled, and the entanglement entropy provides a useful measure of the amount

of information about the total system that is lost to an observer outside the black hole.

The entanglement entropy seems to provide a natural measure for the black hole entropy,

as resulting from quantum field correlations across the horizon.

However, it is a well-known fact that the entanglement entropy Eq. (4.1) for the ground

state of a quantum field in adjoining spacetime regions is divergent, due to the high-energy

vacuum fluctuations of the field [26, 27] (and references therein). To overcome this issue,

physicists and mathematicians have introduced and developed different strategies to deal

with this divergence. One of the most natural strategy is to introduce a UV regulator

in the theory, which can be a lattice, like in [10], or regulators of different types [26].

However, the entanglement entropy will depend on the choice of the regulator and each

different regulator introduced defines a different quantity, such that comparing different

calculations might be difficult. Within the various approaches, another strategy is to

introduce the concept of relative entropies [28] or mutual information [29, 30], such that

the divergences are subtracted resulting in a finite quantity.

Among all the available strategies, we choose to tackle the ultraviolet divergence by

introducing a UV cutoff, thereby considering a regularized version of the entanglement

entropy. In fact, by performing any physical measurement it is inevitable to introduce a

spatial resolution limit of the hardware infrastructure, or for example, a finite physical

thickness of the entangling surface. Accordingly, by choosing a finite resolution structure,

we impose a minimal separation for the entangling quantum fluctuations, effectively intro-

ducing a short-distance cutoff. If the separation of the quantum field correlations across

the horizon or the entangling surface is not infinitesimal, but finite, an upper bound for the
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entanglement entropy is introduced and SE in Eq. (4.1) is a finite, regularized quantity.

Note that the entanglement entropy, as introduced above, is a quantity designed as

an instantaneous measure of entanglement, quantifying the degree of entanglement be-

tween subsystems at a specific moment in time for a given quantum state. On its own,

entanglement entropy does not capture the evolution of entanglement over time unless

time-dependence is explicitly introduced. While such time-dependence can arise naturally

in curved spacetimes or be artificially implemented in Minkowski space, in the following

sections, we focus on a scenario where the entangling sphere remains stationary. Since the

ground state of a free quantum field in Minkowski spacetime is time-independent, we can

focus on computing the entanglement entropy at a single, fixed point in time. In the context

of our network histories model, this implies that, for this first analysis in Minkowski, we

are interested in only one specific spacelike hypersurface of the network’s history, partially

tracing out the network lying on it.

Therefore, to investigate the proportionality between the entropy and the area with

quantum fields confined to network histories, consider an arbitrary, globally hyperbolic

spacetime (M, g), which, in this initial investigation, will be the (1 + 3)-dimensional

Minkowski spacetime (M, η). Furthermore, consider an arbitrary network N as defined

in the previous chapter, embedded therein. On its history HN , let us focus on a specific

moment in time τ , and consider the network on the corresponding hypersurface Στ . For

the purpose of studying the (1 + 3)-dimensional phenomenon of entanglement entropy for

quantum fields, we construct the network to extend across all three spatial dimensions.

To study entanglement entropy with such a configuration, let us consider again the setup

of Fig. 4.1, where instead of a quantum field supported in the full spacetime, we confine it

spatially to the embedded network, as depicted in Fig. 4.2. The entangling sphere defines

a region of the spacetime inaccessible to an external observer, such that, considering the

density matrix ρNE reduced to the network in the exterior E of the sphere, we can measure

the degree of entanglement through SN
E = −Tr

(
ρNE ln ρNE

)
. Due to the finite resolution

structure typical of all experiments, by introducing a short-distance cutoff a as a regulator,

we obtain a finite, regularized value for SN
E . The presence of a short-distance cutoff implies

that on each edge of the network, the spatial coordinate is discretized. As we will see in

details, for the field theory on the network, this means that at each hypersurface Στ , the

field on each edge is discretized on a one-dimensional lattice with spacing a.
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Figure 4.2: Three-dimensional visualization of a quantum field ϕ (depicted in gray shades
along the edges) spatially confined to an arbitrary network N embedded in a spacetime
(M, g). The gray fuzzy shading representing the field extends beyond the edges, depicting
the experimental limitations in achieving full confinement (Sec. 2.2). An arbitrary sphere
divides the network setup into an interior and an exterior sector. If the interior of the
sphere is inaccessible, an external observer loses information about the internal quantum
field degrees of freedom. Due to quantum field correlations across the sphere’s surface,
the exterior and interior sectors of the network may be entangled, with the entanglement
entropy quantifying the degree of entanglement.

If the regularized entanglement entropy SN
E shows a proportionality to the sphere’s

surface area, we demonstrate quantum networks to be able to probe physical phenomena

supported in the embedding spacetime, by solely employing fields confined to the networks

and their histories. By achieving this goal, we will be ready to implement the configuration

depicted in Fig. 4.2 to investigate black hole scenarios. In fact, by placing the network

partially across the horizon we can probe its processing of information as an emerging

phenomenon on the network.
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4.2 Entanglement Entropy on Subgraph Histories in

Minkowski

In this initial part of our analysis, we restrict our investigation to Minkowski spacetime

(M, η), in order to test our model against established results for quantum fields in flat

(1 + 3)-dimensional spacetimes, e.g. [9, 10]. To investigate the entanglement entropy for

the quantum network configuration of Fig. 4.2, it is instructive to first analyze how en-

tanglement arises on elementary subgraphs of the network partially traced out by the

entangling sphere. In fact, as shown in the picture and more clearly in its two-dimensional

spatial section in Fig. 4.3, the entangling sphere is pierced and intersected by single edges,

which are then connected to other edges to form more complex subgraphs of the network.

Figure 4.3: Spatial two-dimensional section of Fig. 4.2 for a quantum field ϕ (depicted in
gray shades) spatially confined to the arbitrary three-dimensional network N embedded in
Minkowski spacetime (M, η). An entangling sphere (disk in the 2D visualization) divides
the network setup into an interior and an exterior sector. Due to quantum field correlations
across the sphere’s surface (dashed circumference in the 2D section), the exterior and inte-
rior sectors of the network may be entangled, with the entanglement entropy quantifying
the degree of entanglement. Note that the entangling sphere is pierced by single edges.
Highlighted are examples of subgraphs to which these edges belong.
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As a result, if we aim to study the entanglement entropy for a quantum field on the

entire network, we must first understand, at a local level, quantum field correlations across

the entangling sphere along partially traced-out single edges. By gradually expanding the

scale of locality, we consider increasingly complex subgraphs until, at a macroscopic level,

we can analyze the entanglement of the quantum field across the entire network.

As shown in Fig. 4.3, when we consider the most elementary subgraphs that include

a partially traced-out single edge, we once again encounter, in increasing order of com-

plexity, the subgraphs discussed in previous chapters: the single edge itself, two edges

connected at a node (G2), a loop, and a star graph formed by three edges (G3). Accord-

ingly, in the following sections we will investigate the entanglement entropy for quantum

fields spatially confined to all these subgraphs, in order of increasing complexity. Since in

Sec. 3.2.3 we noticed that an arbitrary network can be constructed by connecting multiple

star graphs, understanding the entanglement entropy for quantum fields spatially confined

to star graphs will ultimately allow us to compute the entanglement entropy for quantum

fields spatially confined to the entire arbitrary network N .

To start, we consider the simplest possible subgraph: a single edge that pierces the

entangling sphere.

4.2.1 Entanglement Entropy on Single-Edge Graphs

Among all the single edges piercing the entangling sphere, consider, without loss of gen-

erality, the one highlighted in Fig. 4.4. Even though the edge is actually connected to

other elements of the network, in this initial analysis we instructively treat the edge as

completely disconnected from the rest. Once we understand how a node connecting two

or more edges influences the quantum field correlations across the entangling sphere, and

consequently the entanglement entropy, we will be able to study the entanglement entropy

for a quantum field spatially supported on the edge, considering all the real connections

the edge has in the network.

In Sec. 3.2.1, we learned that when a graph consisting of two single edges connected by

a node (G2) is embedded in Minkowski spacetime, the node can be removed, reducing the

quantum field theory on the graph to a (1+ 1)-dimensional theory on a single-edge graph.

Consequently, in this initial analysis of entanglement entropy for quantum fields confined

to single-edge graphs embedded in Minkowski spacetime, we automatically account for the

case of quantum fields spatially confined to two edges connected at a node or to multiple

edges forming a loop. Specifically, when considering the arbitrary network N embedded in
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Minkowski spacetime (M, η) and initially treating its subgraphs as disconnected from the

rest, the first three subgraphs of N listed above and shown in Fig. 4.3, are all treated as

subgraphs containing no nodes. As a result, their entanglement entropy is fully captured

by the same simple (1+ 1)-dimensional theory used for the single-edge case, in contrast to

the minimal subgraph that contains a node, as well as more complex subgraphs, where a

simple (1 + 1)-dimensional field theory is no longer adequate.

R

1

Figure 4.4: Spatial two-dimensional section of Fig. 4.2 for a quantum field ϕ (depicted in
gray shades) spatially confined to the arbitrary three-dimensional network N embedded in
Minkowski spacetime (M, η). The entangling sphere of radius R (disk in the 2D visualiza-
tion) divides the network into an interior and an exterior sector. The depicted red single
edge and blue one loop represent essential building blocks of this network. On the single
edge highlighted in red, the entangling sphere reduces to an entangling point, depicted with
a red square. Accordingly, the edge is divided into an interior and an exterior sector. Due
to quantum field correlations across the entangling point, the exterior and interior sectors
of the edge may be entangled, with the entanglement entropy quantifying the degree of
entanglement.

In order to study the entanglement entropy for a quantum field confined to the history

of the considered single edge, we introduce a (1 + 1)-dimensional field theory as presented

in Sec. 2.2, imposing, at the worldlines of the edge endpoints, either Dirichlet or Neumann
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boundary conditions. We define the action functional Ae[ϕ] for a scalar field ϕ confined to

the edge’s history He by

Ae[ϕ] :=

∫
He

Le(x, ϕ, dϕ) dvolhe , (4.2)

where, as in Sec. 2.2, for some abstract coordinate system x = {ξa} = (T, ξ), Le(T, ξ, ϕ, dϕ)

denotes the Lagrangian of the theory and dvolhe the volume element, with he the (1 + 1)-

dimensional metric tensor induced on the history of the edge, which, in our case, corre-

sponds to the two-dimensional Minkowski metric (Sec. 2.1).

To validate our model against established results for the entanglement entropy of free

real scalar quantum fields in the ground state in (1 + 3) dimensions, it is natural to focus,

within our network approach, on the Lagrangian density for a free real scalar field of mass

µ confined to the two-dimensional edge’s history, i.e. Le = 1
2

(
ηab∂aϕ ∂bϕ− µ2ϕ2

)
. From

this, we introduce the conjugate field momentum π(T, ξ) = ∂Le

∂(∂Tϕ)
.

According to Sec. 2.2, by applying the variational principle to the action functional in

Eq. (4.2), we derive the equation of motion −∂2Tϕ+∂2ξϕ+µ2ϕ = 0 for the field on the edge

history, along with the associated boundary conditions. Since the operator ∂2ξ is self-adjoint

on the single edge with Dirichlet or Neumann boundary conditions at its endpoints, we

can use its eigenfunctions to construct quantum field and conjugate momentum operators

on the single edge history. The quantum field ϕ and the conjugate momentum operator π

then satisfy the canonical equal-time commutation relations

[ϕ(T, ξ), π(T, ξ′)] = iδ(ξ − ξ′) ,

[ϕ(T, ξ), ϕ(T, ξ′)] = [π(T, ξ), π(T, ξ′)] = 0 . (4.3)

As shown in Fig. 4.4, for each time T , an entangling sphere of radius R, traces out part

of the field spatial support and, accordingly, the field configuration on the edge divides in

two subsystems, one part I lying in the interior of the entangling sphere and one part E

in its exterior. On the single edge, the entangling surface between interior and exterior

reduces to an entangling point, depicted as a square in the figure. To measure a possible

entanglement within the two subsystems, due to quantum field correlations along the edge

and across the entangling point, we want to compute the entanglement entropy SE for the

quantum field on the single edge as

SE = −Tr (ρE ln ρE) , (4.4)
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as introduced in Sec. 4.1, with ρE being the density matrix ρ reduced to the exterior,

ρE = TrIρ. Note that, vice versa, we can equivalently compute Eq. (4.4) related to the

reduced density matrix to the interior ρI , since the entanglement entropy is symmetric

under exchange of the two subsystems, i.e. SE = SI = S.

The entanglement entropy for quantum fields defined on an interval of finite size, equiv-

alent to the single-edge graph within our model, has been extensively analysed in the lit-

erature [31–35]. Among the different techniques, to compute Eq. (4.4) for a quantum field

in the ground state spatially confined to the single edge, we implement the same approach

as in [10], although adapted to a (1 + 1)-dimensional system.

According to [10], we focus on the Schrödinger picture of quantum field theory [36].

Within this picture, the field operator ϕ is time-independent and by considering a basis of

the Fock space such that ϕ is diagonal, we can write for an eigenstate |ϕ⟩ of ϕ,

ϕ(ξ) |ϕ⟩ = ϕ(ξ) |ϕ⟩ . (4.5)

Note that although the notation is the same, the ϕ(ξ) on the left-hand side of the equa-

tion represents the field operator acting on the eigenstate |ϕ⟩, whereas the ϕ(ξ) on the

right-hand side is a scalar function – specifically, the classical scalar field ϕ – which is

the eigenvalue corresponding to the eigenstate |ϕ⟩, by which it is multiplied. The major

advantage of choosing the Schrödinger picture is that, similar to quantum mechanics, we

can introduce a coordinate representation for an arbitrary, now time-dependent, state |Ψ⟩,
in the basis {|ϕ⟩}, represented by the wave functional Ψ[ϕ] = ⟨ϕ|Ψ⟩. Through a Legen-

dre transformation, we obtain from the Lagrangian density Le the associated Hamiltonian

density He(T, ξ, ϕ, π) on the edge history, He = 1
2

[
π2(T, ξ) + (∂ξϕ(T, ξ))

2 + µ2ϕ2(T, ξ)
]
.

Within the Schrödinger picture, we can promote it to the Hamiltonian operator

H =

∫
He dξ =

1

2

∫ [
π2(ξ) + (∂ξϕ(ξ))

2 + µ2ϕ2(ξ)
]
dξ , (4.6)

where, in its functional differential representation, the conjugate momentum field π is

expressed as π(ξ) = −i δ
δϕ(ξ)

. Having defined the Hamiltonian operator, we can write a

Schrödinger-like equation for the quantum field theory on the single edge history,

i
∂

∂T
|Ψ⟩ = H |Ψ⟩ , (4.7)

which fully characterizes the time evolution of the quantum field’s state and can be ex-
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pressed, in the functional differential form, as i ∂
∂T

Ψ[ϕ] = HΨ[ϕ]. The normalized ground

state wave functional for a free real scalar field can be found to be [36]

Ψ0[ϕ] = ⟨ϕ|0⟩ =
(
det
(
Ω
π

))1/4
exp

(
−1

2

∫
dξ

∫
dξ′ϕ(ξ) Ω(ξ, ξ′)ϕ(ξ′)

)
=

=
(
det
(
Ω
π

))1/4
exp

(
−1

2
ϕ · Ω · ϕ

)
, (4.8)

where Ω is given as Ω(ξ, ξ′) =
∫

dk
2π
ωk e

ik(ξ−ξ′), with ωk =
√
k2 + µ2. In order to compute

the entanglement entropy Eq. (4.4) for the quantum field spatially confined to the single

edge highlighted in Fig. 4.4, we consider the quantum field in the ground state |0⟩ and

describe the state through the density operator ρ = |0⟩ ⟨0|.

As already mentioned, under the assumption of a classical spacetime, which allows for

coincidence limits, the entanglement entropy becomes a divergent quantity in quantum

field theory. For the entanglement entropy to be a meaningful concept, there must be a

mechanism that prevents these limits. In practice, events are measured over regions rather

than at exact points, with experiments approximating these regions as points through error

estimation within a given resolution limit. This creates a discrete localization structure,

where the smallest distance scale a is determined by the measurement devices. In this way,

the experiment’s resolution naturally prevents coincidence limits, effectively introducing an

extrinsic UV cutoff into the theory. As a result, although dependent on a, the entanglement

entropy becomes a regularized, finite quantity.

To reflect this finite resolution structure, the quantum field spatially confined to the

edge is discretized on a one-dimensional lattice of N sites, each separated by a fixed spacing

a ∈ R+ (Fig. 4.5). Each lattice point is labeled by i ∈ {1, ..., N}, being ξi = ia its position

along the edge. The edge endpoints are denoted by ξ0 and ξN+1. Note that while a

implements a short-distance cutoff a−1, the size of the edge L = (N + 1)a introduces the

infrared cutoff L−1. As discussed before, the entanglement entropy will depend on those

cutoffs. Furthermore, as a general prescription, recall that if we discretize ξ as ξi = ia,

then ∫
dξ → a

∑
i

∂f(ξ)

∂ξ
→ f(a(i+ 1))− f(ai)

a
,

∂2f(ξ)

∂ξ2
→ f(a(i+ 1))− 2f(ai) + f(a(i− 1))

a2

δ(ξ − ξ′) → δij
a
, π(ξ) → πi

a
, ϕ(ξ) → ϕi , (4.9)
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where πi and ϕi are taken to be dimensionless.

Figure 4.5: Detail of Fig. 4.4. The illustration depicts the finite resolution structure
introduced by experimental devices on the quantum field theory spatially confined to the
single edge. The quantum field is discretized on a one-dimensional lattice of N sites, with
constant spacing a. The length of the edge L is given as L = (N + 1)a. The entangling
sphere separates the edge setup into an interior interval I and an exterior interval E.
The label n denotes the last traced-out lattice point. The boundary sites ϕ0 and ϕN+1

are represented by white circles. Note that, based on the choice of Dirichlet boundary
conditions, ϕ0 = ϕN+1 = 0.

Integrating by parts Eq. (4.6), we can write the discretized Hamiltonian operator as

H =
1

2a

N∑
i=1

(
π2
i − ϕi(ϕi+1 − 2ϕi + ϕi−1) + µ2a2ϕ2

i

)
. (4.10)

Note that µa is dimensionless and πi and ϕi satisfy [ϕj,
πj′

a
] = i

δjj′

a
. Furthermore, note

that by integrating by parts, we obtain boundary terms for H that satisfy the boundary

conditions imposed through the variational principle. We start by imposing the Dirichlet

boundary conditions ϕ(ξ) = 0 at the worldlines of the endpoints of the edge. In particular,

this specific choice leads the mentioned boundary terms in H to vanish. The discretized

version of these conditions imposes ϕ0 = 0 and ϕN+1 = 0, assuming ξ = 0 coincides with

one of the edge’s endpoints. Hence, in a more compact way, we can rewrite the discretized
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Hamiltonian operator as

H =
1

2a

N∑
i=1

(
π2
i +

N∑
j=1

ϕiKijϕj

)
, (4.11)

where K is a real symmetric N×N matrix with positive eigenvalues which, with the above

introduced Dirichlet boundary conditions, is given by

Kij =M2δij − δi,j+1 − δi+1,j , (4.12)

with M =
√
2 + µ2a2.

By looking at the form of the Hamiltonian in Eq. (4.11), we can interpret the field on

the lattice points ϕi as N coupled harmonic oscillators with (next-neighbor) interactions

determined by the entries of the matrix K. It is in this specific sense that, for illustrative

purposes, we will refer to the lattice points as oscillators throughout our investigation.

Within the discretization scheme, the function Ω(ξ, ξ′) in Eq. (4.8), reduces to a matrix

Ω =
√
K, defined such that if there is an orthogonal matrix U with K = UTKDU , where

KD is diagonal, then Ω = UT
√
KDU . Then, the ground state wave functional of Eq. (4.8)

reduces to the wavefunction

Ψ0(ϕ) = aN/2 π−N/4 (det (Ω))1/4 exp
(
−1

2
ϕ · (Ωϕ)

)
, (4.13)

where ϕ := (ϕ1, . . . , ϕi, . . . , ϕN) and aN/2 (det (Ω))1/4 is a dimensionless quantity. The

form of the ground state wavefunction highlights the similarity to a system of N coupled

harmonic oscillators [10]. As a result, the entanglement entropy for the quantum field

spatially confined to the single edge can be calculated in the same way as for a system

of N coupled harmonic oscillators. In particular, Ω fully characterizes Ψ0(ϕ) and, with

it, the density operator ρ = |0⟩ ⟨0|, which in coordinate representation reads ρ(ϕ,ϕ′) =

Ψ0(ϕ)Ψ
∗
0(ϕ

′). By computing the reduced density matrix ρE = TrIρ, the entanglement

entropy is given by SE = −Tr (ρE ln ρE). Therefore, it is evident that the matrix Ω plays

a crucial role in the computation.

Along the lines of [9, 10], and according to Fig. 4.5, we divide the matrix Ω into four

blocks, i.e.

Ω =

(
ΩII ΩIE

ΩEI ΩEE

)
, (4.14)
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where ΩII and ΩEE are submatrices that couple oscillators within regions I and E, re-

spectively, while ΩIE = ΩT
EI is the submatrix that couples oscillators inside the entangling

sphere to those outside [9].

Let n be the number of oscillators on the edge which are traced out by the entangling

sphere, i.e. belonging to I. The reduced density matrix ρE (ϕ,ϕ
′) to the exterior of the

entangling sphere is obtained by integrating out the n lattice points in I in ρ(ϕ,ϕ′), that

is

ρE (ϕ,ϕ
′) =

∫ n∏
i=1

dϕiΨ0(ϕ)Ψ
∗
0(ϕ

′) , (4.15)

where ϕ, ϕ′ on the left-hand side refer only to lattice points in the exterior of the entangling

sphere, i.e. ϕ = (ϕn+1 . . . , ϕN).

By implementing the form in Eq. (4.14) for Ω, we obtain

ρE (ϕ,ϕ
′) ∼ exp

(
−1

2
(ϕ · (γϕ) + ϕ′ · (γϕ′)) + ϕ′ · (βϕ)

)
, (4.16)

where

β =
1

2
ΩIEΩ

−1
II ΩIE, γ = ΩEE − β . (4.17)

Note that if there were no coupling between the lattice points inside and outside the

entangling sphere, β would be a zero matrix and ρE (ϕ,ϕ
′) would describe a pure state.

Therefore, entanglement is encoded in the submatrix ΩIE.

To find the spectrum of the reduced density matrix ρE, we need to diagonalize it.

This first requires an orthogonal transformation V such that ϕ 7→ γ
1/2
D (V ϕ) so that

γ =: V TγDV , where γD is diagonal, and subsequently another orthogonal transforma-

tion W that diagonalizes the matrix Λ := γ
−1/2
D V βV Tγ

−1/2
D , i.e. Λ =: WTΛDW [10]. Let

λi with i ∈ {n+1, . . . , N} be the eigenvalues of Λ and note that they are the same as those

of the matrix γ−1β. Since Λ is now diagonal, we can write the reduced density matrix

ρE (ϕ,ϕ
′) as

ρE (ϕ,ϕ
′) ∼

∏
ϕi,ϕ′

i∈E

ρE (ϕi, ϕi
′) , (4.18)

where each ρE (ϕi, ϕi
′) = e−

1
2(ϕ

2
i+ϕi

′2)+λiϕiϕi
′
is the reduced density matrix of a single lattice

point ϕi on the interval E of the single edge in the exterior of the entangling sphere. Given
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that the eigenvalues of each ρE (ϕi, ϕi
′) are given by pli = (1− ξi)ξ

li
i , with li ∈ N0 [10], the

spectrum of the reduced density matrix ρE (ϕ,ϕ
′) reads

pE ln+1...lN =
N∏

i=n+1

(1− ξi)ξ
li
i , (4.19)

with ξi = λi

/(
1 +

√
1− λ2i

)
. As a result, the entanglement entropy SE for free massive

vacuum fluctuations on the single-edge graph history, Eq. (4.4), is finally given by

S = SE =
N∑

i=n+1

(
− ln(1− ξi)−

ξi
1− ξi

ln ξi

)
. (4.20)

By discretizing the field theory spatially along the edge, the computation of the entangle-

ment entropy reduces to solving the eigenvalue problem for the matrix γ−1β.

As mentioned above, the entanglement entropy in Eq. (4.20) serves as an instantaneous

measure of entanglement. Due to the time-independence of the ground state in Minkowski

space and our assumption of a stationary entangling surface, the entanglement entropy

calculated above is invariant over time. Since in (1 + 1)-dimensional free field theories

the matrix K explicitly depends only on M =
√
2 + µ2a2, as shown in Eq. (4.12), we

expect the eigenvalues {ξi} and consequently the entanglement entropy S to depend solely

on µa. Once the short-distance cutoff a−1 is set by the specific measurement devices,

the regularized entanglement entropy is fully determined by the field mass µ. This seems

consistent with the continuum case. In fact, in quantum field theory, we know that for

spacelike-separated events, the two-point correlation function in one spatial dimension is

expressed in terms of the modified Bessel function of the second kind K1(µ∥σ∥) [37], where
∥σ∥ is the spatial distance between the two locations. Specifically, for large values of

µ∥σ∥, K1 assumes the asymptotic form K1(µ∥σ∥) ∼ 1
µ∥σ∥e

−µ∥σ∥. Consequently, spacelike

quantum correlations along the edge decay significantly by distances sufficiently larger than

the characteristic correlation length ξ := 1/µ. Thus, along the edge, spacelike quantum

correlations have a shorter or longer range depending on the quantum field mass µ. This

variation results in fewer or more vacuum fluctuations being quantum correlated across the

entangling surface. Since the entanglement entropy serves as an instantaneous measure of

the amount of quantum field correlations (i.e. of spacelike quantum correlations) within

vacuum fluctuations in the interior and exterior of the entangling sphere, a longer or shorter

correlation range leads to a higher or lower total entanglement entropy for the system.
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Therefore, the quantum field mass µ, or equivalently, the correlation length ξ = 1/µ

totally determines the entanglement entropy. Intuitively, in the following we will refer

to the correlation length ξ as the characteristic reference scale for the system. As a is an

extrinsic length scale determined by the experimental devices, ξ is the intrinsic length scale

of the system.

By comparing the intrinsic length scale of the system with the external length scales –

specifically, the short-distance scale a and the long-distance scale L – we identify a window

of wavelengths that are operationally allowed for the vacuum fluctuations contributing to

the entanglement. In fact, the minimal distance scale a prevents wavelengths shorter than

this threshold, thereby providing an ultraviolet cutoff. Furthermore, when the correlation

length is much larger than the short-distance scale, i.e. ξ ≫ a, the long-distance behavior

of the correlations gives rise to an effective field behavior of the one-dimensional lattice,

which can be effectively described in terms of a (1+1)-dimensional (massive) quantum field

theory [33]. However, the finite size of the edge, as part of a finitely extended network,

introduces a long-distance scale L. Due to Dirichlet boundary conditions at the edge’s

endpoints, the intrinsic length scale cannot increase indefinitely but it has to be finite and

restricted to ξ ≪ L. This gives rise to a range a ≪ 1/µ ≪ L for the correlation length

in which an effective quantum field theory description is possible. For ξ ≤ a, which reads

µa ≥ 1 in terms of the mass µ, the effective field theory interpretation ceases to hold,

and the system effectively reduces to a quantum mechanical chain of finitely many, weakly

coupled harmonic oscillators.

Numerical Entanglement Entropy

Implementing a numerical computation of the entanglement entropy in Eq. (4.20) results in

the plot in Fig. 4.6 for two different choices of µa. Note that since a is fixed by the specific

experimental setup, varying µa corresponds to different choices of mass µ. Accordingly,

we will often refer to different values of µa as corresponding to different mass values. For

numerical details, we refer the reader to the code written for this analysis and published

in [38]. Since we are currently only interested in the relative change of the entanglement

entropy with respect to the radius of the entangling sphere, rather than its exact value, we

rescaled it using its value at the radius RL/2 = 2.5L for µa = 10−1 as a reference, that is,

S̄(R) = S(R)/S(RL/2). In the configuration depicted in Fig. 4.4, the single edge intersects

the surface of the traced-out sphere once. For half the radius of the entangling sphere,

there would be no intersections and the entanglement entropy would be zero since no part
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Figure 4.6: Entanglement entropy for vacuum fluctuations confined to elementary sub-
graphs (histories) of a network N as shown in Fig. 4.4, in terms of the radius of the
entangling sphere. In particular, the entanglement entropy is given for the red edge and
the blue loop equipped with a finite resolution structure consisting of N = 300 lattice
points on each edge, for two different choices of µa. The radius of the entangling sphere
is expressed in multiples of the length L of the single edge. The value explicitly chosen in
Fig. 4.4, R = RL/2 = 2.5L which traces out precisely half of the red edge, is marked by a
vertical dashed line.

of the red edge is traced out. Similarly, the entanglement entropy also vanishes for twice

the radius, since the entire edge is then traced out. Consequently, the behavior of S shown

in Fig. 4.6 emerges.

As can be seen from the plot, in both cases µa = 1 and µa = 10−1, the entanglement

entropy on the edge does not depend on how many lattice points ϕi are traced out; it

remains constant with respect to R. Intuitively, this result can be expected in (1 + 1)

dimensions, since the cross section of a single edge with the surface of the entangling sphere

is a single point. Any communication channel along the edge between vacuum fluctuations

residing inside and outside the entangling sphere must pass through this cross section. Since

this cross section remains constant as the radius increases – unlike in higher dimensions –

there is no increase in the amount of possible quantum field correlations across it as the

radius grows. Furthermore, the off-diagonal terms in K in Eq. (4.12), which connect a

lattice point ϕi with its next neighbor ϕi+1, are constant and independent of the specific

lattice point i, i.e. the coupling between each pair of oscillators does not depend on their

position in the lattice. It is important to note that this is not necessarily true for three-

dimensional Hamiltonians [10,35]. Since the entries of Ω are fully determined byK through
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Ω =
√
K, they are also constant and independent of any label i. As a consequence, the

eigenvalues {λk} carry no information about the oscillators labels, nor do the eigenvalues

{ξk}. Thus, the entanglement entropy in Eq. (4.4) does not explicitly depend on the

positions of the lattice points, including that of the last traced-out oscillator, labeled by n.

Since this label determines the number of traced-out oscillators, the entanglement entropy

does not explicitly depend on R.

Moreover, it is crucial to note that the value of the entanglement entropy for a quantum

field confined to an embedded single-edge graph is independent of the angle at which the

edge intersects the entangling sphere. In fact, in the Minkowski background, the (1 + 1)-

dimensional field theory on the edge history carries no information about the extrinsic

geometry. This will not necessarily be the case when we study entanglement properties of

quantum fields on networks embedded in curved spacetimes.

For values of the mass µ such that µa = 10−1, we can notice that the value of the

entanglement entropy is increased with respect to the larger mass case µa = 1, as shown in

Fig. 4.6. Intuitively, since the characteristic correlation length is ξ = 1/µ, which increases

as the mass decreases, it follows that, along the edge, quantum correlations have a longer

range for lower masses. Therefore, for the lower mass case µa = 10−1, the correlations

across the entangling sphere encompass more lattice points compared to the case of µa = 1,

introducing new correlations between the interior and exterior of the entangling sphere and

thus increasing the overall entanglement.

This also explains the apparent dependence on R of the entanglement entropy close

to the edge endpoints, as shown in Fig. 4.6. In fact, we have seen that the entanglement

entropy should be independent of R for one-dimensional systems, independently of the

mass. However, far-ranging correlations may be sensible to the finite size of the edge,

leading to effects such as a dependence on R as in Fig. 4.6, close to the edge’s endpoints.

In fact, as explained above, for a given non-vanishing mass µ, the correlation length is

determined and finite. This implies that a lattice point in E is correlated with lattice points

in I that are approximately within a distance ξ from the considered site. However, if the

size of I decreases, as the radius of the entangling sphere diminishes and approaches the

endpoint of the edge, the distance from the considered lattice point to the edge’s endpoint

may become smaller than ξ. This implies that there might be fewer oscillators in I that are

correlated with the considered site in E, compared to the case where the edge boundary

is at a distance greater than ξ from the considered site. The same reasoning applies

symmetrically to a given site in I, where the correlation length determines the number of
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oscillators in E to which it is correlated. Similarly, as R increases and approaches the other

endpoint of the edge, there may be fewer oscillators correlated with the considered site in

I. Consequently, this results in a decrease in entanglement entropy as R approaches the

edge’s endpoints. Although this effect is not very pronounced for µa = 10−1, it certainly

has a stronger influence on the entanglement entropy for lower masses.

In particular, if ξ is comparable to the length L of the edge, or even for ξ ≥ L/2, this

finite size effect might influence even the value of the entanglement entropy computed for

R crossing the edge at its midpoint, S(RL/2). This reflects that, for ξ ∼ L, the infrared

cutoff L−1 introduced by the finite size of the edge excludes too many vacuum fluctuations

from the computations that would otherwise contribute to the entanglement properties of

the ground state. The quantum field theory introduced on the edge’s history would fail to

fully capture the entanglement properties of ground states of free quantum fields in (1+1)

dimensions, leading to an entanglement entropy that strongly depends on the finite size of

the system.

However, if l is the length of the interval of the edge residing within the entangling

sphere, for characteristic correlation lengths in the range 1/µ ≪ min(l, L − l), finite size

effects are significant only near the endpoints of the edge. As a result, we can refine

the previously established range of values for the intrinsic length scale – required for an

effective quantum field theory description – to the condition: a ≪ 1/µ ≪ min(l, L − l).

Correlation lengths within this range enable an accurate description of the entanglement

properties of the ground state of the field, independent of the infrared regulator. Note that

1/µ≪ min(l, L− l) automatically satisfies 1/µ≪ L.

Perturbative Entanglement Entropy

An extreme case occurs when ξ approaches the boundary of the effective theory’s validity

for the field, specifically when 1/µ ≤ a. In fact, for µ ≥ a−1 and beyond, the correlation

length diminishes to a point where it is shorter than the lattice spacing and the oscillators

act as mostly decoupled, with only a few contributing to the entanglement entropy. This

marks a transition into a fully quantum mechanical (QM) regime.

Nonetheless, such large values of the mass enable a perturbative analytical calculation

of Eq. (4.20), as showed in [34,35]. The off diagonal terms of K in Eq. (4.12) do not include

any mass term such that, for large masses, the diagonal components of K dominate over

the non-diagonal entries. Therefore, we can split K into K = KD + Koff introducing a

dominant diagonal component KD and a sub-leading off-diagonal matrix Koff . This allows
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for a perturbative expansion of Ω =
√
K in powers of 1/M [34], where we recall that

M =
√
2 + µ2a2. Physically, the leading order of the expansion corresponds to the limit

where the interaction terms in (4.12) become negligible and the oscillators are effectively

decoupled, resulting in a vanishing entanglement entropy. In this 1/M expansion, up to

the first order O(M−1), Ω becomes

ΩII ij =M δij −
δi+1,j + δi,j+1

2M
+O(M−3)

ΩEE ij =M δij −
δi+1,j + δi,j+1

2M
+O(M−3)

ΩIE ij = −δi,nδj,1
2M

+O(M−3) (4.21)

where we recall that ΩII is a n × n matrix, ΩEE is a (N − n) × (N − n) matrix and ΩIE

is a n× (N − n) matrix. Up to the order O(M0), the matrices ΩII and ΩEE are diagonal

and ΩIE is a null matrix as it contains no coupling between the interior and exterior of the

entangling sphere. Consequently, the oscillators are not correlated, leading to a vanishing

entanglement entropy.

However, at the first order O(M−1) in the inverse mass expansion, next-neighbor cou-

plings are introduced in Ω. In particular, the next-neighbor coupling between the last

traced-out lattice point ϕn in I and ϕn+1 in E is introduced in ΩIE. It is important to

note that next-to-next-neighbor couplings will be introduced in the next order of the ex-

pansion, along with additional longer-range couplings as the expansion continues [35]. As

previously mentioned, the cross section between the single edge and the entangling sphere

reduces to a single point. Thus, any possible correlations that contribute to entanglement,

that is between I and E, must pass through this point, specifically through the coupling

between ϕn and ϕn+1. Since ΩIE n,1 is the sole term in ΩIE at this order, because only

next-neighbor couplings are taken into account, the total contribution to the entanglement

arises exclusively from the correlation between ϕn and ϕn+1. Therefore, solving the eigen-

value problem for γ−1β up to the first order O(M−1) [35] yields a single non-vanishing

eigenvalue λn+1 = 1/8M4. As anticipated, the eigenvalue λn+1, and consequently ξn+1

in Eq. (4.20), is independent of n, such that the entanglement entropy is expected to be

independent of the number of traced out lattice points and consequently of R. Inserting

λn+1 into Eq. (4.20) results in the entanglement entropy at the first order O(M−1) given

by S(1) = (1 + 4 ln(2M))/16M4. If we expand further in the inverse mass expansion, we
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obtain [35], up to the third order,

S(3) ≈ S(1) +
1 + 328 ln(2M)

512M8
+

−599 + 5880 ln(2M)

3072M12
, (4.22)

with M =
√
2 + µ2a2.

As in the numerical investigation, for large masses the entanglement entropy remains

constant with respect to R. In particular, for µa = 1 Eq. (4.22) agrees quantitatively

with the numerical value to 97%. Consequently, for this value of the mass, we can assume

that the entanglement across the surface of the entangling sphere is exclusively due to

up to three next-neighbor couplings, as indicated by the third order of the inverse mass

expansion. In other words, the correlations relevant for entanglement at µa = 1 involve

the lattice points ϕn+3 and ϕn−2 at most.

Analytical Entanglement Entropy

For µa≪ 1, an analytical expression for the total entanglement entropy has been found in

[33] for infinite (1+1)-dimensional quantum systems of finite ξ: Splat = 1/6 ln (ξ/a), which

also agrees with the constant numerical result for the entanglement entropy of Fig. 4.6 for

µa = 10−1. In fact, for finite correlation lengths within the range a≪ 1/µ≪ min(l, L− l),
finite-size effects are significant only near the endpoints of the edge. When R is sufficiently

far from these endpoints, the setup becomes equivalent to that considered in [33] for an

infinitely long edge.

Furthermore, for the same condition µa ≪ 1 with finite ξ but for (1 + 1)-dimensional

quantum systems of finite size L, an analytical expression for the entanglement entropy of

a subsystem of length L/2, is asserted to be [33]

Sfin(L, ξ) =
1

6

[
ln

(
L

2a

)
+ Sfs

(
L

2ξ

)]
, (4.23)

where Sfs(L/(2ξ)) accounts for finite size effects. For lengths L much greater than ξ,

Sfs(L/(2ξ)) ≈ − ln(L/(2ξ)) such that, at L/2, Sfin(L, ξ) reduces again to the constant

plateau value

Splat (L, ξ) =
1

6
ln

(
ξ

a

)
, (4.24)

confirming once again the numerical result in Fig. 4.6 for µa = 10−1 at R = RL/2. However,
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as previously explained, for correlation lengths comparable to L, the boundaries influence

the value of the entanglement entropy even at L/2 and the general expression Sfin for

the entanglement entropy aligns perfectly with the behavior observed numerically in [38].

Finally, for finite systems where ξ → ∞, for which L≪ 1/µ, our numerical implementation

agrees with the analytical result found in [33].

In conclusion, when 1/µ≪ a the assumptions of the perturbative expansion are satisfied

and the entanglement entropy S(3) is determined by Eq. (4.22). In the range a≪ 1/µ≪ L

Eq. (4.24) provides the correct value Splat for the entanglement entropy. When 1/µ ≥ L

or for larger values, we transition into a new regime described by the general analytical

expression Sfin at least for the entanglement entropy evaluated at the midpoint of the

edge. The numerical implementation covers all mass ranges. To summarize the ranges
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Figure 4.7: Entanglement entropy of degrees of freedom spatially confined to a single
edge that intersects the entangling surface at its midpoint, as a function of µa. The length
L of the edge allows for N = 500 lattice points with equidistant lattice spacing a. This
guarantees µa ≫ 0.004 in the displayed domain µa ∈ (0.05, 1.5) so that finite-size effects
do not affect the entanglement entropy. The red curve shows the numerical value obtained
with the code [38], while the blue and green curves, respectively, show Splat and S(3) given
in the main text. The background shading indicates the domain of validity of quantum
field theory as an effective theory for the one-dimensional lattice.

of validity for the various methods, we plotted in Fig. 4.7 the entanglement entropy as a
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function of µa for the single edge of Fig. 4.4, which intersects the entangling surface at its

midpoint. The finite resolution structure is reflected, on the edge, in a one-dimensional

lattice of constant spacing a and N = 500 lattice points, such that L = (N + 1)a. This

specific choice implies a lower bound µa≫ 0.004, such that size effects are negligible at the

edge midpoint. The red curve represents the numerical value of the entanglement entropy,

the blue curve shows the analytical result [33] Splat evaluated at the edge midpoint, as

given in Eq. (4.24) and, finally, the green curve shows S(3) as given in Eq. (4.22). As can

be seen from the picture, the function Splat is a good approximation for values of µa up

to 0.2. For values µa > 0.9 the perturbative result S(3) is in good agreement with the

numerical result. However, in the intermediate range, specifically for 0.2 < µa < 0.9, no

analytical approximation is available, to the best of our knowledge.

Experimental Entanglement Entropy

Strikingly, the entanglement entropy for a single-edge graph has received even experimental

verification [39]. In fact, in this very recent experiment, an ultracold atom simulator of a

(1 + 1)-dimensional scalar quantum field theory was employed to measure entanglement

properties of the ground state at T ≈ 48 nK. The effective free field was shown to satisfy a

massive Klein-Gordon equation with µ ≈ 5 · 104m−1, resulting in a correlation length ξ ≈
20µm. In this experiment, the finite resolution structure is determined by the resolution

of the imaging system, which enforces a short-distance cutoff a ≈ 7µm. Additionally, the

one-dimensional field support extended over L ≈ 49µm.

After dividing the field configuration in two subsystems, the mutual information is ex-

perimentally observed to follow a plateau value. At zero temperature and for pure states of

the total field configuration, the mutual information equals twice the entanglement entropy

of either of the subsystems. Therefore, this leads to the first experimental verification of

the constant plateau value of the entanglement entropy for free scalar (1 + 1)-dimensional

field theories. Notably, despite the presence of a very low temperature, the experimental

entanglement entropy agrees with numerical results for the same µa value. In addition,

the field mass satisfies the hierarchy of scales a < 1/µ < L, allowing the plateau value

to be described by the analytical expression Splat (L, ξ) = 1
6
ln
(
ξ
a

)
, which also accurately

approximates the experimental result.
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Periodic boundary conditions: the loop graph

Consider again the arbitrary network depicted in Fig. 4.3. So far, we have fully analyzed

how the entanglement properties of the quantum field on the single edge are affected by

the entangling sphere. We learned that in Minkowski spacetime, a vertex connecting only

two edges can be removed without affecting the system, and that the angles at which the

edges intersect the entangling sphere, as well as their relative orientations, are irrelevant.

Therefore, the subgraph of Fig. 4.3 formed by connecting two edges at a vertex is equivalent

to the case of a single edge analyzed above, although with a larger value of L, and thus

encodes the same entanglement properties.

In the following, we focus on the elementary subgraph consisting of four edges ei of

length Lei connected together to form a loop, as highlighted in blue in Fig. 4.8. In this

subsection, similar to the single-edge case, we first consider the loop as disconnected from

the network, treating the four vertices of the loop in Fig. 4.8 as each connecting only

two edges. As previously mentioned, once we understand how entanglement properties

behave in the presence of a non-removable node – connecting more than two edges – we

can then analyze the loop with all its actual connections in the network. Since each of the

four vertices of the loop is thought to connect only two edges, they can all be removed in

Minkowski spacetime.

Thus, in Minkowski, such a loop configuration can be described by a field spatially

confined on a single edge of length
∑4

i=1 Lei , with periodic boundary conditions at its

endpoints, that is, its endpoints are topologically identified. Exactly as we did for the

single edge with Dirichlet boundary conditions, we equip the edge with a finite resolution

structure, that is, the field spatially confined to the edge is discretized on a one-dimensional

lattice {ϕ1, . . . , ϕN} of constant spacing a. The position of the lattice point is labeled

by ξi = ia. The discretized Hamiltonian reads as in Eq. (4.10). However, the periodic

boundary conditions now translate to ϕ0 = ϕN and ϕN+1 = ϕ1, which effectively means

that the lattice points ϕ1 and ϕN interact as nearest neighbors. Accordingly, we consider

K, Eq. (4.12), with an additional coupling:

Kij =M2δij − δi,j+1 − δi+1,j − δi,1δN,j − δi,Nδ1,j .

Using this new form of the matrix K, we can compute Eq. (4.20) as before and examine

the entanglement properties along the loop arising from the intersection with the entangling

sphere. In particular, the entangling surface intersects the loop at two points, shown as
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R
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Figure 4.8: Spatial two-dimensional section of Fig. 4.2 for a quantum field ϕ (depicted in
gray shades) spatially confined to the arbitrary three-dimensional network N embedded
in Minkowski spacetime (M, η). The entangling sphere of radius R (disk in the 2D visual-
ization) divides the network into an interior and an exterior sector. On the loop subgraph
highlighted in blue, the entangling surface reduces to two entangling points, depicted with
blue squares. Accordingly, the loop is divided into an interior and an exterior sector. Due
to quantum field correlations across the entangling points, the exterior and interior sectors
of the loop may be entangled, with the entanglement entropy quantifying the degree of
entanglement.

small blue squares in Fig. 4.8, dividing the loop into an interior sector I and an exterior

sector E that may be entangled.

The corresponding numerical entanglement entropy is shown in Fig. 4.6, in terms of the

radius of the entangling sphere R, for two different values of µa. For numerical details we

refer the reader to the code written for this analysis and published in [38]. For both cases

µa = 1 and µa = 10−1, the value of the entanglement entropy for fluctuations spatially

confined to a loop crossing the entangling sphere at two different locations is twice the

value computed for the single edge, i.e. S̄loop = 2S̄edge. For µa = 10−1, this leads to

S̄loop = 2S̄edge = 2.

This result is supported by the analytical computation of the entanglement entropy.
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In fact, in the perturbative approach (Sec. 4.2.1), the matrix Ω for the loop configuration

differs from Eq. (4.21) only in its submatrix ΩIE, which is now given by

ΩIE ij = −δi,nδj,1
2M

− δi,1δj,N−n

2M
, (4.25)

at first order in 1/M . Moreover, recall that ΩIE is a n×(N−n) matrix. We observe that ΩIE

now contains two non-vanishing elements, both corresponding to next-neighbor couplings.

In fact, at this order in the inverse mass expansion, only next-neighbor couplings are

relevant. This means that along the loop, any correlation between the interior and exterior

can arise solely from correlations between lattice points that are adjacent to each other on

opposite sides of the entangling sphere. The new term in ΩIE suggests that the additional

connection in K established a new communication channel along the loop, linking the

interior and exterior of the entangling sphere. As a result, there are now two next-neighbor

correlations contributing to entanglement, facilitated by the two intersections with the

entangling sphere, represented as small blue squares in Fig. 4.8. Compared to ΩIE as given

in Eq. (4.21), the additional coupling introduces a new non-vanishing eigenvalue λN =

1/8M4. This eigenvalue contributes an extra term independent of n to S in Eq. (4.20),

effectively adding the same value as that introduced by λn+1. As a result, we obtain

Sloop = 2Sedge, as in the numerical derivation.

This result can be understood also in terms of correlation lengths. Consider the en-

tangling sphere radius R to be as in Fig. 4.8 such that two edges e1, e2 of the loop are

intersected. Let l1,2 be the size of the traced out subsystems along the first and second

edge respectively, such that the total size of the traced out sector I of the loop is l1 + l2.

If 1/µ ≪ min (l1, l2, Le1 − l1, Le2 − l2), quantum field fluctuations residing in the exterior

(interior) of each edge are solely entangled with those residing in the interior (exterior) of

the same edge. In other words, for correlation lengths that meet the above condition, the

loop configuration is effectively reduced to two decoupled single edges each piercing the en-

tangling sphere at distinct locations. In this case, according to Sec. 4.2.1, the entanglement

entropy on each edge can be expressed as Splat
e1

(ξ) = 1/6 ln(ξ/a) and Splat
e2

(ξ) = 1/6 ln(ξ/a)

since 1/µ ≪ min(l1, Le1 − l1) and 1/µ ≪ min(l2, Le2 − l2) on each edge, respectively.

Therefore, the total entanglement entropy for a field spatially confined to the loop results

in Sloop(R) = 1/3 ln(ξ/a) = 2Splat. As a consequence, it appears that for a quantum field

mass µ such that 1/µ ≪ min(li, Lei − li) on each intersected edge ei, the entanglement

entropy is fully determined by the number of communication channels established across

the entangling sphere.
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This result can be generalized to any configuration of A single edges intersecting the en-

tangling sphere, provided that 1/µ≪ min(li, Lei − li) for each edge ei, with i ∈ {1, . . . ,A}.
As indicated by the analysis above, even if the edges are connected through vertices, if the

field confined to them has a mass satisfying the above condition for each edge, the total

entanglement entropy for this configuration is given by

S(R) = ASplat =
A
6
ln

(
ξ

a

)
. (4.26)

Therefore, within this range of masses, the total entanglement entropy can be determined

by solely knowing the entanglement entropy for a field confined to a single edge. Note that

this is in agreement with the proposal suggested in [33] based on the cluster decomposition

principle of QFT.

Lastly, in the case of very long correlation lengths, i.e. 1/µ ≫ Lei on each edge of the

loop, our numerical computation aligns with the analytical results for a single edge with

periodic boundary conditions as investigated in [33,40].

Having thoroughly examined the behavior of the entanglement entropy in elementary

single-edge graph configurations intersected by the entangling sphere – gaining new insights

while also reconciling established findings in the literature – we are now ready to embark on

a completely new investigation into the entanglement properties of fields spatially confined

to subgraphs where single edges connect at non-removable nodes, such as a star graph with

three edges, as introduced in Sec. 3.2.2.

4.2.2 Entanglement Entropy on Three-Edge Star Graphs

With the above analysis of entanglement properties for quantum fields spatially confined

to single-edge graphs, arising from the presence of an entangling sphere, we are now one

step closer to investigating the same entanglement properties in the configuration shown

in Fig. 4.2. It is evident that the entire network consists of single-edge graphs connected

into nodes. After a comprehensive analysis of the entanglement entropy along these edges,

we now only need to focus on what occurs at the nodes, where three or more edges meet.

Once we achieve this, the entanglement entropy of quantum fields confined to the history

of the arbitrary network considered above will be determined, and its possible agreement

with (1 + 3)-dimensional results [9, 10] will be verified.

The most fundamental subgraph configuration of the network containing a single non-

removable node consists of three edges connected at a vertex, forming a star graph G3
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as depicted in Fig. 4.3. In the following, we aim to compute the entanglement entropy

for a quantum field spatially confined to this subgraph. For simplicity, as in the previous

section, we first consider the three-edge star graph to be completely disconnected from the

rest of the network, such that for each edge, we impose Dirichlet boundary conditions at

the endpoints that are not common to all three edges.

Following the construction of Sec. 3.2.2, we introduce a quantum field theory on the

three-edge star graph. To this end, in each edge history Hei , we introduce a coordinate

system xi = {ξai } = (T, ξi) and an action functional Aei [ϕi] for a field ϕi. For the sake of

notation, we let i ∈ {1, 2, 3} in the following discussion. At the node worldline, we require

continuity of the total field configuration on G3 by introducing Lagrange multiplier fields

λ12, λ23 so that the total action functional AG3 reads (Eq. (3.27))

AG3 [ϕ1, ϕ2, ϕ3, λ
12, λ23] = Ae1 [ϕ1] +Ae2 [ϕ2] +Ae3 [ϕ3] + J [ϕ1, ϕ2, ϕ3, λ

12, λ23] , (4.27)

where, as introduced in Sec. 3.2.2, J is a functional designed to ensure continuity for the

total field configuration at the node worldline.

Within our analysis of the entanglement entropy, it is natural to focus on Lagrangian

densities for free massive real scalar fields. Accordingly, on each two-dimensional edge’s

history Hei , we consider Lei = 1
2

(
ηab∂aϕi ∂bϕi − µ2ϕ2

i

)
, where µ is the mass of the field

and η the two-dimensional Minkowski metric. As derived in Sec. 3.2.2, when the subgraph

G3 is embedded in the Minkowski spacetime, along with the equations of motion −∂2Tϕi +

∂2ξiϕi+µ
2ϕi = 0 for each ϕi on Hei , the following Kirchhoff-Neumann conditions on G3 hold

at the node worldline v(T ) (Eq. (3.50))
lim
ϵ→0

ϕ1

∣∣∣1→v

v(T )−ϵ

!
= ϕ2

∣∣∣
v(T )

!
= lim

ϵ→0
ϕ3

∣∣∣3→v

v(T )−ϵ
,

lim
ϵ→0

∂ξ1ϕ1

∣∣∣1→v

v(T )−ϵ
+ ∂ξ2ϕ2

∣∣∣
v(T )

+ lim
ϵ→0

∂ξ3ϕ3

∣∣∣3→v

v(T )−ϵ

!
= 0 ,

(4.28)

where ϵ is a constant, infinitesimal distance from v(T ) and we assume that the vertex

worldline belongs to the domain of ϕ2. For additional details regarding this construction,

we refer the reader to Sec. 3.2.2. We recall that Dirichlet boundary conditions hold at the

free endpoints of the three edges. For a visualization of the continuity condition, the first

equation of Eq. (4.28), we refer to Fig. 3.9.

The matrices A and B (Eq. (3.51)) associated with the above Kirchhoff-Neumann
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conditions read,

A =

1 −1 0

0 1 −1

0 0 0

 , B =

0 0 0

0 0 0

1 1 1

 . (4.29)

Since the 3 × 6 composite matrix (A,B) has rank 3 and AB† is self-adjoint for this form

of A and B, the Laplace operator – defined as ∂2ξiϕi on each ei – is also self-adjoint on

G3 [16, 19]. Thus, on each edge history Hei , we can use its eigenfunctions to construct

quantum field and conjugate momentum operators.

To this aim, from each Lagrangian density Lei , we introduce the corresponding conju-

gate field momentum πi(T, ξi) =
∂Lei

∂(∂Tϕi)
. The quantum field ϕi and the conjugate momen-

tum operator πi then satisfy the canonical equal-time commutation relations on each edge

history Hei ,

[ϕi(T, ξi), πi(T, ξ
′
i)] = iδ(ξi − ξ′i) ,

[ϕi(T, ξi), ϕi(T, ξ
′
i)] = [πi(T, ξi), πi(T, ξ

′
i)] = 0 . (4.30)

with i ∈ {1, 2, 3}.

By performing a Legendre transformation, we derive the associated Hamiltonian density

Hei(T, ξi, ϕi, πi) from each Lagrangian density Lei defined on the history of each edge of G3.

Each Hamiltonian density is given by Hei =
1
2

[
π2
i (T, ξi) + (∂ξiϕi(T, ξi))

2 + µ2ϕ2
i (T, ξi)

]
.

As explained in Sec. 4.2.1, in order to compute the entanglement entropy for a field

spatially confined to G3, it is convenient to adopt the Schrödinger representation of quan-

tum field theory. For the construction of the quantum field theory on the star graph in

the Heisenberg representation, we refer the reader to [20,21]. Within the Schrödinger pic-

ture, we can promote the Hamiltonian on each edge history to the following Hamiltonian

functional differential operator

Hi =

∫
Hei dξi =

1

2

∫ [
π2
i (ξi) + (∂ξiϕi(ξi))

2 + µ2ϕ2
i (ξi)

]
dξi , (4.31)

where the functional differential representation of the conjugate momentum field πi is

πi(ξi) = −i δ
δϕi(ξi)

. Note that both ϕi, πi and consequently the Hamiltonian operator Hi,

are time-independent. Furthermore, the form of the Kirchhoff-Neumann conditions in

Eq. (4.28) ensures that the scattering matrix associated with the node of G3 is unitary

[16,19].
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Consider a basis of eigenstates {|ϕi⟩} of ϕi. By introducing the wave functional Ψi[ϕi] =

⟨ψi|ϕi⟩, which represents the coordinate representation of the time-dependent state |ψi⟩ in
terms of {|ϕi⟩}, we can write, on each edge history, a Schrödinger-like equation for the

quantum field theory in functional differential form

i
∂

∂T
Ψi[ϕi] = HiΨi[ϕi] . (4.32)

The above equation fully characterizes the time evolution of the wave functional Ψi[ϕi]. On

each edge history Hei , the normalized ground state wave functional for a free real scalar

field operator ϕi can be found to be [36],

Ψ0 i[ϕi] = ⟨ϕi|0⟩ =
(
det
(
Ωi

π

))1/4
exp

(
−1

2

∫
dξi

∫
dξ′iϕi(ξi) Ωi(ξi, ξ

′
i)ϕi(ξ

′
i)

)
=

=
(
det
(
Ωi

π

))1/4
exp

(
−1

2
ϕi · Ωi · ϕi

)
, (4.33)

where Ωi is given as Ωi(ξi, ξ
′
i) =

∫
dk
2π
ωk e

ik(ξi−ξ′i). In what follows, we assume that each

field ϕi is in its ground state on the corresponding edge history Hei , and we consider the

total ground state wave functional on the history of G3 as Ψ0G3 = (Ψ0 1,Ψ0 2,Ψ0 3).

Now that we have defined a quantum field configuration spatially confined to the el-

ementary subgraph G3, we perform instantaneous measurements to study entanglement

properties arising from an entangling sphere intersecting the subgraph.

Consider the three-edge star graph highlighted in green in Fig. 4.9. On a spacelike

hypersurface ΣT , the entangling sphere divides the quantum field configuration on G3 in

an interior sector I and an exterior one E. The cross section between the star graph and

the entangling sphere, at the radius shown in the figure, consists of two entangling points,

depicted as green squares in the figure. The entangling points trace out an interval along

each intersected edge, effectively reducing the entanglement analysis on G3 to the same

framework used for single-edge graphs. However, one endpoint of each edge is connected to

the other two edges via a (non-removable) node. We now aim to explore how the presence of

this node influences the entanglement entropy for the quantum field configuration spatially

confined to G3.

According to our discussion of previous sections, we equip the star graph with a finite

resolution structure, obtaining a regularized entanglement entropy SG3 for the quantum

field spatially confined to the subgraph. On each edge ei, the quantum field is spatially

restricted to a one-dimensional lattice of Nei sites, with constant spacing a ∈ R+. Note that
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R

1

Figure 4.9: Spatial two-dimensional section of Fig. 4.2 for a quantum field ϕ (depicted in
gray shades) spatially confined to the arbitrary three-dimensional network N embedded
in Minkowski spacetime (M, η). The entangling sphere of radius R (disk in the 2D visual-
ization) divides the network into an interior and an exterior sector.
On the three-edge star graph highlighted in green, the entangling surface reduces to two
entangling points, depicted with small green squares. Accordingly, the star graph is di-
vided into an interior and an exterior sector. Due to quantum field correlations across
the entangling points, the exterior and interior sectors of G3 may be entangled, with the
entanglement entropy quantifying the degree of entanglement.

since a represents the extrinsic distance scale determined by the experimental apparatus,

it is assumed to be identical for each edge. For clarity, we introduce the notation (i, k)

where i labels the edge, and k denotes the sites along the lattice; i ∈ {1, 2, 3} and k ∈
{1, . . . , Nei}. Each lattice point has the position ξ(i,k) = ka along the edge ei. Note that

the edge endpoints are denoted by ξ(i, 0) and ξ(i, Nei+1). Finally, the length of each edge is

Lei = (Nei + 1)a.

According to the finite resolution structure, each Hamiltonian Hi given in Eq. (4.31) is
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reduced to

Hi =
1

2a


Nei∑
k=1

[
π2
(i, k) − ϕ(i, k)

(
ϕ(i, k+1) − 2ϕ(i, k) + ϕ(i, k−1)

)
+ µ2a2 ϕ2

(i, k)

] , (4.34)

where we integrated by parts Eq. (4.31) and we discretized according to Eq. (4.9). Note

that µa is dimensionless and π(i, k) and ϕ(i, k) satisfy [ϕ(i, k),
π(i, k′)

a
] = i

δkk′
a
. Furthermore, by

integrating by parts, we obtain boundary terms for each Hi, which satisfy the boundary

conditions imposed through the variational principle and result, in our case, in a total

vanishing contribution. The discretized version of Dirichlet boundary conditions at one

endpoint of each edge leads to ϕ(1, Ne1+1) = ϕ(2, Ne2+1) = ϕ(3, Ne3+1) = 0. The Kirchhoff-

Neumann conditions at the node v are discretized in the following way [41]. Consider

Eq. (4.28) and the associated form of the matrices A and B as in Eq. (4.29). As discussed

in Sec. 3.2.2, the Kirchhoff-Neumann conditions can be expressed in the general form:

AΦ(T, v) +B Φ′(T, v) = 0 , (4.35)

at the node worldline. In our case, it reads1 −1 0

0 1 −1

0 0 0


 ϕ1 |v
ϕ2 |v
ϕ3 |v

+

0 0 0

0 0 0

1 1 1


∂ξ1ϕ1 |v
∂ξ2ϕ2 |v
∂ξ3ϕ3 |v

 = 0 . (4.36)

Recall that while ϕi |v denotes the value of the field ϕi at the vertex v of G3 for each

time T , we introduced the field theory on the star graph such that the vertex worldline

belongs only to the domain of ϕ2. Since the node is located at ξ(i, 0) for each edge ei,

ϕ2 |v translates to ϕ(2, 0) in the discretization scheme. However, based on our construction,

ϕ1 |v = limϵ→0 ϕ1 |1→v
v(T )−ϵ and ϕ3 |v = limϵ→0 ϕ3 |3→v

v(T )−ϵ. Due to the resolution structure, the

field at locations between ξ(i, 0) and ξ(i, 1) cannot be resolved and an infinitesimal distance

ϵ away from the vertex is still associated with the node. Therefore, given the minimal dis-

tance scale a, within the finite resolution structure we can claim that also limϵ→0 ϕ1 |1→v
v(T )−ϵ

and limϵ→0 ϕ3 |3→v
v(T )−ϵ reduce to ϕ(1, 0) and ϕ(3, 0), respectively. On the other hand, following

the discretization rule given in Eq. (4.9), ∂ξiϕi corresponds to
(
ϕ(i, k+1) − ϕ(i, k)

)
/a. In the

light of the previous discussion, when evaluated at the vertex worldline, ∂ξiϕi |v becomes(
ϕ(i, 1) − ϕ(i, 0)

)
/a for all values of i.
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Therefore, the discretized version of the Kirchhoff-Neumann conditions in Eq. (4.36),

can be expressed as1 −1 0

0 1 −1

0 0 0


ϕ(1, 0)

ϕ(2, 0)

ϕ(3, 0)

+
1

a

0 0 0

0 0 0

1 1 1


ϕ(1, 1) − ϕ(1, 0)

ϕ(2, 1) − ϕ(2, 0)

ϕ(3, 1) − ϕ(3, 0)

 = 0 . (4.37)

In particular, solving this equation for ϕ(1, 0), ϕ(2, 0) and ϕ(3, 0), the Kirchhoff-Neumann

conditions provide

ϕ(i, 0) =
1

3

3∑
j=1

ϕ(j, 1) . (4.38)

Note that, unlike the single-edge case where Dirichlet boundary conditions were imposed

at each edge endpoint, ϕ(i, 0) is now non-vanishing. Specifically, each boundary value ϕ(i, 0)

is expressed in terms of internal sites, which are also associated with other edges. This

suggests that the three lattices are indeed connected, further highlighting the junction-like

nature of the Kirchhoff-Neumann conditions.

Finally, along the lines of Sec. 4.2.1, due to the finite resolution structure the function

Ωi(ξi, ξ
′
i) in Eq. (4.33), reduces to a matrix Ωi =

√
Ki, defined such that if there is a

orthogonal matrix U with Ki = UTKiDU , where KiD is diagonal, then Ωi = UT
√
KiDU .

Recall that the label i refers to the considered edge ei on which Ki or Ωi are defined and it

is not to be considered as an index. As a result, the ground state wave functional Ψ0 i[ϕi]

of Eq. (4.33) reduces to the wavefunction

Ψ0 i(ϕi) = aNei/2 π−Nei/4 (det (Ωi))
1/4 exp

(
−1

2
ϕi · (Ωiϕi)

)
, (4.39)

where ϕi := (ϕ(i, 1), . . . , ϕ(i, k), . . . , ϕ(i, Nei )
) and aNei/2 (det (Ωi))

1/4 is a dimensionless quan-

tity. Consequently, Ψ0G3 = (Ψ0 1,Ψ0 2,Ψ0 3) also reduces to the total wave function on the

history of G3.

With all this in mind, we can express the total Hamiltonian operator HG3 on G3, acting
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on Ψ0G3 = (Ψ0 1,Ψ0 2,Ψ0 3) as a (Ne1 +Ne2 +Ne3)× (Ne1 +Ne2 +Ne3) matrix of the form

HG3 =



. . . 0

...
...

0 . . .

H1

H2

H3


+ C , (4.40)

where C is a matrix that accounts for possible couplings between lattice sites on different

edges. Note that each Hamiltonian operator Hi acts on the corresponding ground state

wave function Ψ0 i(ϕi).

Considering the form of each discretized Hamiltonian Hi as given in Eq. (4.34), together

with the boundary conditions specified above, we can find the matrix KG3 associated with

the above matrix HG3 . Note that KG3 is also a (Ne1 +Ne2 +Ne3)× (Ne1 +Ne2 +Ne3) matrix

and encodes all the couplings between the Ne1 +Ne2 +Ne3 lattice sites located on G3.

The above condition ϕ(i, 0) =
1
3

[
ϕ(1, 1) + ϕ(2, 1) + ϕ(3, 1)

]
for all i, produces a non-vanishing

term of the form −ϕ(i, 1)ϕ(i, 0) = −1
3
ϕ(i, 1)

(
ϕ(1, 1) + ϕ(2, 1) + ϕ(3, 1)

)
in HG3 , specifically in C.

In particular, this term couples the first lattice point of the edge ei with the first lattice

sites of the other two edges as next-neighbors. For instance, in the case of i = 1 this pro-

vides the terms −1
3
ϕ(1, 1) ϕ(2, 1) and −1

3
ϕ(1, 1) ϕ(3, 1). As a consequence, new coupling terms

in KG3 , between the first lattice points located on each edge, are introduced, effectively

junctioning the three lattices together. It is important to note that the coupling strength

of −1
3
is equally distributed among the three sites ϕ(i, 1) and is weaker than the couplings

between consecutive sites along the same edge, −ϕ(i, k) ϕ(i, k+1). For a clearer understanding

of how the discretized Kirchhoff-Neumann conditions give rise to an effective node between

the first sites of the three lattices, we refer to Fig. 4.10.

Numerical Entanglement Entropy

Incorporating all the boundary conditions, we obtain the final form of the matrix KG3

related to the subgraph G3 of Fig. 4.9. Therefore, following the same steps as in Sec. 4.2.1,

we can introduce the matrix ΩG3 to compute the entanglement entropy as in Eq. (4.4), for

vacuum fluctuations spatially confined to G3 and reduced to a system of Ne1 +Ne2 +Ne3
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Figure 4.10: Visualization of the discretized Kirchhoff-Neumann conditions at the node of
a three-edge star graph. The extrinsic distance scale a imposes a finite resolution structure
on the three edges e1, e2 and e3 restricting the fields ϕ1, ϕ2 and ϕ3 to spatial one-dimensional
lattices of Nei sites with constant spacing a. The white circles represent the boundary sites
of the lattices, denoted by ϕ(i, 0) and ϕ(i, Nei+1) for all i. Couplings between lattice sites on
the same edge ei are depicted as black lines and are of the form −ϕ(i, k)ϕ(i, k+1). Note that for
clarity, the figure only depicts the three lattices themselves and omits the underlying edges,
which are of course connected at the node, forming the star graph structure. Dirichlet
boundary conditions are applied at the free endpoints, so that ϕ(i, Nei+1) = 0 for all i.
Reading the figure clockwise, the first condition in Eq. (4.28) enforces that, at the vertex,
all boundary sites must agree, resulting in ϕ(1, 0) = ϕ(2, 0) = ϕ(3, 0). Consequently, the
lattices are connected through each −ϕ(i,1)ϕ(i,0) term. Together with the second condition
in Eq. (4.28) then this dictates that, since ϕ(i, 0) =

1
3

[
ϕ(1, 1) + ϕ(2, 1) + ϕ(3, 1)

]
, each ϕ(i, 1) is

coupled to ϕ(j, 1) for all i, j, (dark gray lines in the picture) as next-neighbors, with the
coupling strength equally distributed as −1/3. This results in the emergence of an effective
node between the first sites of the lattices.

lattice points.

To this end, we developed and implemented the code published in [38], assuming, for

simplicity, the same number of lattice sites N on each edge. The entanglement entropy in

terms of the radius of the entangling sphere is reported in Fig. 4.11, for different values of

µa. To facilitate reading the plot, we refer to Fig. 4.9.
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Figure 4.11: Entanglement entropy for vacuum fluctuations spatially confined to the
elementary subgraph G3 of a network N as shown in Fig. 4.9, in terms of the radius of
the entangling sphere. In particular, the entanglement entropy is given for the three-
edge star graph equipped with a finite resolution structure consisting of N = 300 lattice
sites on each edge, for two different choices of µa. The radius of the entangling sphere is
expressed in multiples of the length L of the single edge. The value explicitly chosen in
Fig. 4.9, R = 2.5L, is marked by a vertical dashed line. For comparison, the entanglement
entropy of vacuum fluctuations spatially confined to a single edge with Dirichlet boundary
conditions at both endpoints is depicted by dashed green lines, also for N = 300 lattice
sites and the same two values of µa.

As a starting point, consider the radius R of the entangling sphere to have values

smaller than R = 1.4L. In this configuration, the entangling sphere does not cross G3 and

no lattice sites are traced out, resulting in a vanishing entanglement entropy, as confirmed

by Fig. 4.11. As the radius of the entangling sphere grows, it begins to intersect the first

edge of G3, gradually tracing out more sites along this edge. Since, for these values of R,

the cross section between G3 and the entangling sphere is only a point, there is only one

communication channel between the interior and the exterior of the entangling surface,

along G3. As the radius continues to grow and approaches R = 2.4L, the vertex of the

subgraph is reached. Increasing the radius further, part of the second and third edge is

traced out, while the first edge is completely traced out and fully enclosed within the

interior of the entangling sphere. In particular, Fig. 4.9 illustrates the configuration at

R = 2.5L. As a result, for values of R in the range 2.4L < R < 2.7L, two communication

channels are established between the interior and exterior of the entangling sphere. Finally,
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for R ≥ 2.7L the second edge is also entirely within the entangling sphere (Fig. 4.9), leaving

only the third edge partially traced out. This configuration is fully symmetric to the initial

one, where only the first edge crossed the entangling sphere, and the other two edges

resided completely in its exterior.

As a first observation, we notice that for lower values of µa, the entanglement entropy

increases, as discussed and explained in Sec. 4.2.1. Specifically, for µa = 10−1, we find that

for R < 2.4L and R ≥ 2.7L the entanglement entropy matches that of vacuum fluctuations

with the same mass spatially confined to a single edge with Dirichlet boundary conditions:

S̄ = S̄edge = 1. In fact, in these two ranges of radii, only a single communication channel

exists between the interior and exterior of the entangling sphere. Since µa = 10−1 satisfies

a ≪ 1/µ ≪ L on each edge, it ensures that, sufficiently far from the edge endpoints, the

entanglement entropy is described by Eq. (4.26) with A = 1, just as it would be in the

case of a single-edge graph. Since Dirichlet boundary conditions are imposed at the free

endpoints of each edge in G3, the two configurations become indistinguishable for values

of R sufficiently far from the node of G3. For comparison, the entanglement entropies of

vacuum fluctuations spatially confined to a single edge of the same length L, with Dirichlet

boundary conditions at both endpoints, are shown as green dashed lines for R < 2.4L, again

considering N = 300 sites and the two values of µa.

Similarly, for 2.4L < R < 2.7L, the entangling sphere intersects G3 at two points, and

for µa = 10−1 we obtain S̄ = 2S̄edge = 2, sufficiently away from the node of G3 and the free

endpoint of the second edge, consistent with our previous discussion.

For R = 2.4L, the entangling sphere reaches the vertex of the graph. Due to the

implementation of Kirchhoff-Neumann conditions at the node of G3, the field content at

the vertex is represented by the final configuration in the bottom left of Fig. 4.10, that

is, the first three lattice sites of each edge are coupled together. As the entangling sphere

reaches the vertex, it resolves this structure, which in turn affects the entanglement entropy.

Therefore, the specific configuration of the Kirchhoff-Neumann conditions at the node plays

a fundamental role in the analysis. Fig. 4.11 captures its influence on the entanglement

entropy. As discussed earlier, the three sites at the vertex, responsible for connecting the

three lattices, are coupled through weaker interactions. Specifically, the coupling terms

−1
3
ϕ(i, 1)ϕ(j, 1) set interactions three times weaker as the usual −ϕ(i, k)ϕ(i, k+1) interactions.

Consequently, when the radius of the entangling sphere approaches the node and the lattice

points contributing to entanglement – those within a distance ξ = 1/µ from the intersection

point – include some located beyond the vertex on a different edge, the total contribution
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to the entanglement entropy becomes smaller than it would be if they were all along the

same edge. In fact, any possible correlations that contribute to entanglement must pass

through the vertex, and thus through the weaker couplings −1
3
ϕ(i, 1)ϕ(j, 1). As a result, the

entanglement entropy is decreased compared to its value for radii sufficiently smaller than

R = 2.4L, as shown in the plot Fig. 4.11. Note that the minimum entanglement entropy

is reached when the entangling surface lies between a pair of lattice points ϕ(i, 1), ϕ(j, 1). In

fact, although two communication channels are now established in the system, their weaker

direct correlations contributes the most to the entanglement.

In particular, note that if the Kirchhoff-Neumann conditions were not implemented and

Dirichlet boundary conditions were instead imposed at R = 2.4L, the lattice site ϕ(i, 1) on

the first edge ei would not be coupled to the ones of other edges. As a result, no correlations

would occur through these couplings to other edges, and as the intersection point on the

edge approaches its endpoint, fewer lattice sites would contribute to the entanglement

compared to the case where a node replaces the endpoint. In fact, as shown in Fig. 4.11,

as the radius approaches R = 2.4L, the entanglement entropy for vacuum fluctuation

spatially confined to G3 is larger than that for vacuum fluctuations confined to the single-

edge configuration with Dirichlet boundary conditions at both endpoints, depicted by the

dashed green lines. For lower masses, e.g. µa = 10−2, the effect becomes even more

pronounced. In fact, due to the longer correlation length ξ = 1/µ, more lattice sites on

G3 contribute to entanglement, resulting in a much larger deviation in the entanglement

entropy compared to that of the same vacuum fluctuations on a single edge with Dirichlet

boundary conditions. In particular, the entanglement entropy in Fig. 4.11 does not vanish

at R = 2.4L, unlike in the single-edge case with Dirichlet boundary conditions. This

highlights the fact that, under the Kirchhoff-Neumann conditions, the vertex functions as

a junction rather than a boundary, allowing the system to extend to the other two edges.

Furthermore, an interesting effect arises when the free endpoints of two edges of G3

are connected to form a loop. Since the subgraph is embedded in Minkowski spacetime,

the configuration is equivalent to the one depicted in green in Fig. 4.12. To investigate

the entanglement entropy for such a graph configuration, we developed the code available

in [38]. The entanglement entropy in terms of the radius of the entangling sphere is

shown in Fig. 4.13, for µa = 10−1. As a result, we find that for R close to the vertex,

the entanglement entropy for vacuum fluctuations on this configuration is significantly

increased – surpassing even the plateau value Splat – compared to the entanglement entropy

relative to G3, provided the size of the loop is sufficiently small. To understand this result,
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Figure 4.12: Spatial two-dimensional section of Fig. 4.2 for a quantum field ϕ (depicted in
gray shades) spatially confined to the arbitrary three-dimensional network N embedded in
Minkowski spacetime (M, η). The entangling sphere of radius R (disk in the 2D visualiza-
tion) divides the network into an interior and an exterior sector. The subgraph highlighted
in green is equivalent to the configuration of the three-edge star graph of Fig. 4.9, with
two edges’ free endpoints connected together.

recall that, for R < 2.4L the entangling sphere intersects only the first edge in Fig. 4.12,

while the loop resides entirely in its exterior. As R approaches the node at R = 2.4L,

the presence of the loop introduces additional correlations between lattice sites inside and

outside the entangling surface along the subgraph, compared to the configuration of G3.

In fact, if the loop length is comparable to or smaller than the correlation length ξ = 1/µ

for a given mass, a lattice site inside the entangling sphere on the first edge of Fig. 4.12

can be correlated with a site on the loop outside the entangling sphere both directly and

through an extended correlation that travels around the entire loop, eventually reaching

the same site on the loop again.

If the loop size exceeds the typical correlation length, such that ξ is not even sufficient to

span half of the loop, the loop is effectively “cut” with respect to the quantum information

measure we use, and the network configuration becomes effectively equivalent to G3. This
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Figure 4.13: Entanglement entropy for vacuum fluctuations spatially confined to the el-
ementary subgraph of a network N , highlighted in green in Fig. 4.12, in terms of the
radius of the entangling sphere. The subgraph is equipped with a finite resolution struc-
ture consisting of N = 140 lattice sites along the edge with a free endpoint, with the
entanglement entropy shown for two different choices of the number of lattice sites along
the loop: Nloop = 120 (orange) and Nloop = 8 (green). The radius of the entangling sphere
explicitly chosen in Fig. 4.12, R = 2.5L, is marked by a vertical dashed line.

demonstrates that near the vertex, although the entanglement entropy decreases due to the

Kirchhoff-Neumann conditions, the influence of the loop is still strong enough to counteract

this effect and significantly increase the entanglement.

In conclusion, we have learned that the entanglement entropy for vacuum fluctuations

spatially confined to the most elementary subgraph of N containing a node, is determined

by the interplay of all these effects. When considering the radius of the entangling sphere

crossing one of the three edges, for example, R < 2.4L, and approaching the node, we first

observe deviations from the entanglement properties of the same vacuum fluctuations on

a single edge with Dirichlet boundary conditions at both endpoints. The presence of a

node at one of the edge endpoints, along with the implementation of Kirchhoff-Neumann

conditions, introduces a range of new effects.

As a general rule, we can conclude that three key factors appear to influence the entan-

glement in the system, that is, the amount and strength of quantum correlations between

the interior and exterior of the entangling surface. First, entanglement can be increased

by increasing the number of lattice points correlated across the entangling sphere for the



4.2 Entanglement Entropy on Subgraph Histories in Minkowski 113

same vacuum fluctuation mass. This is facilitated by the presence of a node, which allows

new correlations between lattice points within the traced-out interval on one edge and

sites on different edges. The more edges connected to the node, the more new lattice sites

can be correlated, resulting in an overall increase in entanglement. Second, the correla-

tions across the node are weaker than those between sites on the same lattice due to the

Kirchhoff-Neumann conditions at the vertex worldline, as illustrated in Fig. 4.10. Thus,

although the node introduces additional correlations into the system, these correlations

are weaker, leading to a decrease in entanglement compared to the case where the same

amount of lattice sites would be coupled with the usual strength along a single, longer lat-

tice. Third, the configuration of edges beyond the vertex also influences the entanglement

entropy; for instance, for the same number of lattice sites, loop configurations joining the

node introduce additional correlations between the interior and exterior of the entangling

surface.

As a result, even though for R < 2.4L only one communication channel across the

entangling sphere is established, sufficiently close to the node the entanglement entropy

of the entire subgraph is governed by its topology, rather than solely by the number of

intersections with the entangling sphere. For the first time, the quantum information

measure we use proves to be sensitive to the local structure of the network, probing the

freedom to explore different spatial directions enabled by the non-removable node and

consequently resolving the spatial extension of the network in the ambient space.

In this sense, for vacuum fluctuations with masses such that ξ > Lei on the partially

traced-out edge ei, or for values within the range a ≪ 1/µ ≪ Lei but with the entangling

surface sufficiently close to the node, the simple three-edge star graph G3 becomes the first

graph configuration where a (1 + 1)-dimensional quantum field theory description proves

insufficient, highlighting the relevance of a broader theoretical framework, such as our

quantum network model.

With these findings for the entanglement entropy of quantum fields spatially confined

to the most elementary subgraph of N containing a non-removable node, we are ready

to investigate arbitrary, more complex networks, constructed by connecting multiple star

graphs together.
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4.3 Entanglement on Network Histories in Minkowski

Before constructing and detailing the procedure required to compute the entanglement

entropy for general, arbitrary networks, we can use the results and intuition developed

from the analysis of entanglement entropy on elementary graphs, to infer its qualitative

behavior on more complex networks.

In fact, consider an arbitrary quantum network N such as the one depicted in Fig. 4.2,

along with its two-dimensional spatial section shown in Fig. 4.14. Consider the crossing

Figure 4.14: Spatial two-dimensional section of Fig. 4.2 for a quantum field ϕ (depicted in
gray shades) spatially confined to the arbitrary three-dimensional network N embedded in
Minkowski spacetime (M, η). An entangling sphere (disk in the 2D visualization) divides
the network into an interior and an exterior sector. The crossing points are depicted as
small green squares. Highlighted in green an example of a sub-region of N defined such
that the locations A, B, C and D on the network are all at a distance ξ along N from
the considered crossing point. In the particular case shown in the picture, the resulting
sub-region forms a four-edge star graph. It is important to note that the edges of the
sub-region do not necessarily correspond to entire edges of N .

points of N with the entangling sphere, depicted as small green squares in the spatial two-

dimensional section. From each crossing point, the correlation length defines paths starting

at the crossing point and extending to a length of ξ along the network. The collection of
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all these paths defines a finite local sub-region of the network, including the considered

crossing point itself. Whenever a path extends through a node of N , the node is part of

the sub-region as well, however, note that these sub-regions do not necessary correspond

to subgraphs of N as defined in Sec. 3.2, since they may contain sub-intervals of the edges

of N . As an example, a two-dimensional sub-region is highlighted in green in Fig. 4.14.

Recall that, by definition, each sub-region represents the support of those vacuum

fluctuations that are entangled across the entangling sphere, thereby localizing, near each

crossing point, the correlations contributing to the entanglement entropy. If the correlation

length ξ is such that, locally, each sub-region is disconnected from the others then, based

on the effects studied in the previous sections, we can conclude that the entanglement

entropy of the quantum field spatially confined to the network N is given by the sum of

contributions Sn from each sub-region n,

SN =
Ns∑
n

Sn , (4.41)

where Ns is the number of sub-regions of the network under consideration. In particular,

if all the sub-regions are equivalent relative to the quantum information measure we use,

then the total entanglement entropy is given by SN = Ns Sn. Note that this naturally

includes the specific case where ξ ≪ min{li, Lei − li} on each intersected edge ei of N ,

causing Eq. (4.41) to reduce to Eq. (4.26). In fact, this formula generalizes to arbitrary

networks the idea of Sec. 4.2.1, up to identifying each sub-region with an edge of N , or

part of it.

If, on the other hand, the mass of the quantum field is sufficiently small, or equivalently

ξ is sufficiently large, the sub-regions associated with the crossing points begin to overlap,

becoming entangled and creating a crossover between them. In this case, the entanglement

entropy is no longer a simple sum – or multiple – of the entropies relative to each sub-region.

Instead, due to correlations between sub-regions, the entanglement increases throughout

the system, resulting in a larger overall value of the entanglement entropy,

SN >

Ns∑
n

Sn . (4.42)

To summarize, three different regimes of entanglement arise on the network, depending

on the relation between the correlation length ξ and each Lei . When the correlation length

on ei of N is such that ξ ≪ min{li, Lei − li}, the entanglement entropy does not capture
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any underlying graph structure and remains independent of the network’s topology. In

this case, the network configuration traced out by the entangling sphere behaves, relative

to entanglement, as a collection of disconnected edges. As a result, entanglement between

vacuum fluctuations confined to the network history can be treated on each edge using

standard (1 + 1)-dimensional QFT methods, with the entanglement entropy described by

a specific case of Eq. (4.41), behaving as an extensive quantity. As an intermediate step, if

the correlation length exceeds the size Lei of ei, (i.e. 1/µ ∼ Lei or larger), but a new set of

effectively disconnected sub-regions can still be identified, then the entanglement entropy

remains an extensive quantity on larger scales and is given by Eq. (4.41). However, if

the correlation length causes the sub-regions to overlap, thus becoming entangled, then

a complex interplay of effects – similar to those discussed in Sec. 4.2.2 – arises on the

network, significantly impacting the entanglement entropy. It is exactly in this regime

that we leave the usual (1 + 1)-dimensional QFT treatment in favor of a full quantum

network description.

4.3.1 Area Scaling of Entanglement Entropy on Networks His-

tories

After developing a solid intuition about the entanglement properties on arbitrary networks

and constructing the theoretical framework to study them in detail, we are now prepared

to complete our investigation by examining the key pilot phenomenon introduced at the

start of this chapter: the area scaling of entanglement entropy for free quantum fields in

their ground states in Minkowski spacetime.

As discussed in the beginning of the chapter, this investigation seeks to address the core

question of whether quantum networks can serve as effective diagnostic tools for probing

physical phenomena embedded in spacetime, using only fields confined to the networks

and their histories. Through this pioneering study, we aim to determine whether the

entanglement entropy for vacuum fluctuations spatially confined to a network, for example

the one depicted in Fig. 4.2, follows the same area-scaling behavior as that of vacuum

fluctuations in full Minkowski spacetime.

The first step to this end is to select the specific network structure we wish to implement

in our investigation. As discussed in Sec. 3.2.3, a general, arbitrary network N can be

thought as constructed by several star graphs connected together, each with an arbitrary

number of legs. However, the way we select, position, and arrange these star graphs is

crucial, as different configurations result in different network structures.
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To probe physical phenomena embedded in spacetime using only fields confined to net-

work histories, the network must be shaped in a way that allows these fields to approximate

quantum fields in the full embedding spacetime as closely as possible. For instance, as pre-

viously mentioned, photons in a single optical fiber can certainly provide valuable insights

into photon propagation in one dimension and related (1+1)-dimensional experiments, but

they cannot capture higher-dimensional phenomena, such as the relationship between the

incident and transmitted angles at an interface, as encoded in the Snell’s law. Generally,

the more complex the network design, the more details and subtleties it can capture about

higher-dimensional phenomena.

To further specify the structure and complexity of a network, it can be helpful to

introduce the concept of local vertex density. Consider an arbitrary network N embedded

in a globally hyperbolic background (M, g), as shown in Fig. 4.15. By specifying a value for

Figure 4.15: Arbitrary network N embedded in a globally hyperbolic spacetime (M, g).
If τ is a time parameter, the history of the network can be visualized as the network
worldsheet. For the sake of clarity, only a part of the network history HN is shown in the
picture. Note that each Στ is a three-dimensional spacelike hypersurface.
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the (time) parameter τ , the network lies on the three-dimensional spacelike hypersurface

Στ . We define the local vertex density dv of the network as the number of vertices per unit

hypersurface volume. In other words, it is a measure for the local filling of the hypersurface

Στ by the network. Ideally, the more the hypersurface is locally covered by network nodes,

the more accurately quantum fields on the network history approximate their counterparts

embedded in the full spacetime. However, this could lead to networks that are so complex

that they become impractical, with an almost diverging vertex density. In such cases, the

advantages of using network histories to explore natural phenomena, as an alternative to

(1 + 3)-dimensional field theories, would be lost.

To fully capture the properties of phenomena in the full embedding spacetime, but with

a finite vertex density, we consider quantum fields confined to the network history, with the

mass chosen such that the network satisfies dvN ≫ 1/ξ3, where ξ = 1/µ is the correlation

length. In fact, in this limit, the quantum field spatially confined to the network does not

resolve its coarse-grained structure and can effectively approximate a full-dimensional field

theory. This gives us the freedom to opt for a much simpler structure, while employing

fields with a sufficiently large correlation length, still allowing us to approximate their

full-dimensional counterparts. As a result, quantum networks prove to be a versatile tool,

allowing us to strike a balance between capturing as much detail as possible about a

phenomenon while maintaining the simplicity of the network design. Nevertheless, it is

important to note that in some cases the network can be designed to capture only specific

aspects or a particular level of detail about a phenomenon, for which a simple structure,

like a basic star graph, may be sufficient.

Furthermore, note that although for dvN ≫ 1/ξ3 the field does not resolve the coarse-

grained structure of the network and effectively populates the full embedding spacetime, the

large-scale structure of the network must still ensure that the effective field theory satisfies

the same symmetries as those of fields in the full spacetime. For example, inhomogeneities

in the network design on scales larger than the correlation length will be resolved by the

field, potentially resulting in an effective field theory that does not preserve the same spatial

symmetries as fields in the full embedding spacetime. It follows that generally, the more

we know about a phenomenon, the more constrained and specific the network structure

becomes, as it aims to reflect the same quantum field theory as in the full spacetime.

However, when quantum networks are implemented to explore an unknown phenomenon,

we aim to use networks that are as arbitrary as possible.

Building on the previous discussion, in our investigation of the entanglement entropy
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for fields confined to network histories, we can implement any three-dimensional network

with a finite vertex density dvN , as long as the field mass satisfies dvN ≫ 1/ξ3, since

the field spatially confined to the network will not resolve its coarse-grained structure.

Moreover, since vacuum fluctuations in Minkowski spacetime exhibit Poincaré invariance,

we need to constrain the network to have a homogeneous vertex density. The simplest

three-dimensional network that meets these constraints is a regular grid, with all edges

having the same length L. In fact, in this case, the vertex density is given by dvN = 1/L3

and is homogeneous throughout the network. Consequently, our setup of Fig. 4.2 simplifies

to the configuration shown in Fig. 4.16. In what follows, we aim to compute the resulting

Figure 4.16: Three-dimensional visualization of a quantum field ϕ (depicted in gray shades)
spatially confined to a network N , designed as a regular grid of finite size, embedded in
Minkowski spacetime (M, η). An arbitrary sphere divides the network setup into an interior
and an exterior sector. If the interior of the sphere is inaccessible, an external observer
loses information about the internal quantum field degrees of freedom. Due to quantum
field correlations across the sphere’s surface, the exterior and interior sectors of the network
may be entangled, with the entanglement entropy quantifying the degree of entanglement.

entanglement entropy for a free, real scalar quantum field of mass µ, spatially confined to

the three-dimensional grid.
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Emerging spacetime properties of entanglement

The three-dimensional network N of Fig. 4.16 is a network N = (V , E , ι) constructed

entirely by connecting star graphs together. Specifically, the eight corners of the network

consist of three-edge star graphs G3, while the central core of N is formed by six-edge star

graphs G6. The six external surfaces of the network are made up of five-edge star graphs G5,

with four-edge star graphs G4 forming the borders between adjacent surfaces. In particular,

the star graphs are connected by pairing free endpoints together with Neumann conditions,

reflected, in Minkowski spacetime, by removable nodes. As a result, every edge is connected

to two nodes, leaving no free endpoints.

Following the notation of Sec. 3.2.3, we let V := ♯V denote the cardinality of V , i.e.
the number of vertices of N and N := ♯E the number of its edges. Furthermore, let a

be an index that runs over the set of edges E and b an index that labels each node in V ,
with a ∈ {1, . . . , N} and b ∈ {1, . . . , V }. By construction, we assume that all edges of the

network have the same length L. Furthermore, each vertex of the network is labeled as vb,

and Nb denotes the number of edges incident to each vb. For details on the construction of

the network history and the introduction of a field configuration on it, we refer to Sec. 3.2.3.

At each node vb of the network, a continuity condition is enforced for the fields on the

histories of the edges incident to the node through the introduction of Lagrange multiplier

fields. This accounts for an additional functional J in the total action functional AN

defined on the entire network history. Along the lines of Sec. 3.2.3, applying the varia-

tional principle to AN yields equations of motion of the form (□ηa + µ2)ϕa = 0 on each

edge history Hea , along with the Kirchhoff-Neumann junction conditions at each node vb.

The Kirchhoff-Neumann conditions are given in their general form for real scalar fields in

Eq. (3.81). In Minkowski spacetime, given a coordinate system xa = {ξca} = (T, ξa) on

each edge history Hea , they take the form
ϕ1

∣∣∣
vb(T )

!
= ϕ2

∣∣∣
vb(T )

!
= . . .

!
= ϕb

∣∣∣
vb(T )

!
= . . .

!
= ϕNb

∣∣∣
vb(T )

,

Nb∑
a=1

∂ξaϕa

∣∣∣∣∣
vb(T )

!
= 0 ,

(4.43)

for each vertex worldline vb(T ) of the network.
1 Depending on the position of the considered

1Please recall that although we label the field ϕb with the same index of the vertex vb, when labeling
the field, b only aims to single out the field ϕa with the vertex in its domain, and as such, is a special value
of a, running over the Nb edges connected to the node.
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node vb in N , that is, whether it belongs locally to G3, G4, G5 or G6, the matrices A and B

(Eq. (3.51)) associated with the above Kirchhoff-Neumann conditions read,

AG3 =

1 −1 0

0 1 −1

0 0 0

 , BG3 =

0 0 0

0 0 0

1 1 1

 ,

AG4 =


1 −1 0 0

0 1 −1 0

0 0 1 −1

0 0 0 0

 , BG4 =


0 0 0 0

0 0 0 0

0 0 0 0

1 1 1 1

 ,

AG5 =


1 −1 0 0 0

0 1 −1 0 0

0 0 1 −1 0

0 0 0 1 −1

0 0 0 0 0

 , BG5 =


0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

1 1 1 1 1

 ,

AG6 =



1 −1 0 0 0 0

0 1 −1 0 0 0

0 0 1 −1 0 0

0 0 0 1 −1 0

0 0 0 0 1 −1

0 0 0 0 0 0


, BG6 =



0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

1 1 1 1 1 1


, (4.44)

where each pair of A and B matrices are Nb ×Nb matrices.

Since for each node vb we can show that, for the corresponding form of A and B,

the Nb × 2Nb composite matrix (A, B) has rank Nb and AB† is self-adjoint, the Laplace

operator defined as ∂2ξaϕa on each edge ea, is also self-adjoint on ea, regardless of the specific

structure of the nodes at the edge endpoints, and consequently is self-adjoint on N [16,19].

Therefore, on each edge history Hea we can employ its eigenfunctions to construct the

quantum field and the conjugate momentum operators.

In fact, by defining πa(T, ξa) = ∂Lea

∂(∂Tϕa)
for each Lagrangian density Lea on Hea , the

quantum field ϕa and the conjugate field operator πa satisfy the canonical equal-time
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commutation relations on each edge history Hea ,

[ϕa(T, ξa), πa(T, ξ
′
a)] = iδ(ξa − ξ′a) ,

[ϕa(T, ξa), ϕa(T, ξ
′
a)] = [πa(T, ξa), πa(T, ξ

′
a)] = 0 . (4.45)

Through a Legendre transformation, we derive the associated Hamiltonian density

Hea(T, ξa, ϕa, πa) from each Lagrangian density Lea on the history of each edge of N . Each

Hamiltonian density is given by Hea = 1
2

[
π2
a(T, ξa) + (∂ξaϕa(T, ξa))

2 + µ2ϕ2
a(T, ξa)

]
. As a

result, we constructed a networkN = (V , E , ι) where each edge history supports a quantum

field theory, and the junction conditions between them are ruled by Kirchhoff-Neumann

conditions at each vertex worldline.

We have seen (Sections 4.2.1, 4.2.2) that for the specific task of computing the entangle-

ment entropy, it is convenient to formulate the quantum field theory in the Schrödinger pic-

ture. Building on its introduction for G3 in Sec. 4.2.2, we now extend this formulation to the

network case. For each edge history, we can promote the Hamiltonian function to the func-

tional differential operator Ha =
∫
Hea dξa = 1

2

∫ [
π2
a(ξa) + (∂ξaϕa(ξa))

2 + µ2ϕ2
a(ξa)

]
dξa

where the conjugate momentum field πa reads, in its functional differential representation

πa(ξa) = −i δ
δϕa(ξa)

. Note that, according to the Schrödinger representation of QFT, ϕa, πa

and consequently Ha are now time-independent operators.

In particular, we can write the ground state wave functional on the history of the

network N as

Ψ0N = (Ψ0 1,Ψ0 2, . . .Ψ0N) , (4.46)

where each Ψ0 a = Ψ0 a[ϕa], with a ∈ {1, . . . , N}, is the ground state wave functional

(Eq. (4.33)) introduced for the quantum field ϕa confined to the history of the edge ea of

the network and satisfying i ∂
∂T

Ψ0 a[ϕa] = HaΨ0 a[ϕa].

Consider Fig. 4.16. The quantum field configuration on the network, continuous through

the nodes as enforced by the continuity conditions in Eq. (4.43), is partly traced out by

an entangling sphere. We perform an instantaneous measurement of the entanglement

entropy to quantify the degree of entanglement between the exterior and interior sectors

of the network.

The extrinsic distance scale a, introduced as a consequence of the finite resolution of

experimental devices, leads to a discretization of the quantum field ϕa on each edge on a

one-dimensional lattice with Nea = Ne sites, each separated by constant spacing a. The

length of the edges is L = (Ne+1)a. Note that in the current analysis, each edge supports
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the same number of lattice sites denoted by Ne.

According to the discretization scheme Eq. (4.9), each Hamiltonian operator Ha reads,

in its discretized form

Ha =
1

2a

{
Ne∑
k=1

[
π2
(a, k) − ϕ(a, k)

(
ϕ(a, k+1) − 2ϕ(a, k) + ϕ(a, k−1)

)
+ µ2a2 ϕ2

(a, k)

]}
, (4.47)

where ϕ(a, k) and π(a, k) satisfy [ϕ(a, k),
π(a, k′)

a
] = i

δkk′
a

and are dimensionless.

Since both endpoints of each edge are connected to a node, both ϕ(a, 0) and ϕ(a,Ne+1)

independently satisfy a discretized version of the Kirchhoff-Neumann conditions given in

Eq. (4.43). We refer to vb and v
′
b as the nodes related to ϕ(a, 0) and ϕ(a,Ne+1) respectively.

In the case where the node is connected to three edges (G3), the discretized version of

the Kirchhoff-Neumann conditions, as given in Eq. (4.37), results in the relation ϕ(a, 0) =
1
3

∑3
a′=1 ϕ(a′, 1) at vb, for all times. Note that, symmetrically, ϕ(a,Ne+1) =

1
3

∑3
a′=1 ϕ(a′, Ne)

at v′b.
2 In a similar fashion to Sec. 4.2.2, for a node connected to four edges (G4), we can

derive the following discretized form of the junction conditions at vb, for all times
1 −1 0 0

0 1 −1 0

0 0 1 −1

0 0 0 0



ϕ(1, 0)

ϕ(2, 0)

ϕ(3, 0)

ϕ(4, 0)

+
1

a


0 0 0 0

0 0 0 0

0 0 0 0

1 1 1 1



ϕ(1, 1) − ϕ(1, 0)

ϕ(2, 1) − ϕ(2, 0)

ϕ(3, 1) − ϕ(3, 0)

ϕ(4, 1) − ϕ(4, 0)

 = 0 . (4.48)

Solving for ϕ(a, 0), yields ϕ(a, 0) =
1
4

∑4
a′=1 ϕ(a′, 1). More generally, we can show that for Nb

edges joining a node vb, the discretized version of the Kirchhoff-Neumann conditions yields

ϕ(a, 0) =
1

Nb

Nb∑
a′=1

ϕ(a′, 1) , (4.49)

for all times, or, symmetrically, ϕ(a,Ne+1) =
1
N ′

b

∑N ′
b

a′=1 ϕ(a′, Ne) at v
′
b. Therefore, depending

on the displacement of each edge in the three-dimensional grid of Fig. 4.16, ϕ(a, 0) and

ϕ(a,Ne+1) satisfy ϕ(a, 0) = 1
Nb

∑Nb

a′=1 ϕ(a′, 1) and ϕ(a,Ne+1) = 1
N ′

b

∑N ′
b

a′=1 ϕ(a′, Ne) at the node

worldlines vb(T ) and v′b(T ) respectively. Recall that for the network under consideration

Nb, N
′
b ∈ {3, 4, 5, 6}.

Finally, on the history of each edge, according to the final resolution structure, the

2For notational simplicity, when focusing on ϕ(a, 0), we have considered boundary sites on other edges
ea′ as ϕ(a′, 0). However, for geometrical reasons, they could just as well be ϕ(a′, Ne) sites.



124 4. Emerging Entanglement on Network Histories

ground state wave functional reduces (See Sec. 4.2.2 for details) to the following ground

state wave function

Ψ0 a(ϕa) = aNe/2 π−Ne/4 (det (Ωa))
1/4 exp

(
−1

2
ϕa · (Ωaϕa)

)
, (4.50)

where ϕa := (ϕ(a, 1), . . . , ϕ(a, k), . . . , ϕ(a,Ne)), Ωa is a Ne ×Ne matrix and aNe/2 (det (Ωa))
1/4

is a dimensionless quantity.

As a result, the ground state wave functional reduces to the total ground state wave

function on the network

Ψ0N (ϕ1, . . . ,ϕN) = (Ψ0 1(ϕ1), . . . ,Ψ0N(ϕN)) . (4.51)

Accordingly, the total Hamiltonian HN on the network N , acting on the above wave

function Ψ0N = (Ψ0 1, . . . ,Ψ0N), can be expressed as a (NNe)× (NNe) matrix of the form

HN =



0

. . .

0

H1

H2

HN



+ C , (4.52)

where, again, C is a matrix that accounts for possible couplings between lattice sites on

different edges, while each Hamiltonian operatorHa acts on the corresponding ground state

wave function Ψ0 a(ϕa). Finally, we can find the NNe ×NNe matrix KN associated with

the above Hamiltonian HN . Note that KN encodes all the couplings between the NNe

lattice sites located on N .

In particular, when substituted in Eq. (4.47), the boundary value ϕ(a, 0) (or, symmet-

rically, ϕ(a,Ne+1)), expressed as in Eq. (4.49), generates a non-vanishing term of the form

− 1
Nb
ϕ(a, 1)

(
ϕ(1, 1) + ϕ(2, 1) + · · ·+ ϕ(Nb, 1)

)
in the matrix C in HN , coupling the first lattice

site ϕ(a, 1) on the edge ea with the first lattice sites on the other Nb − 1 edges, as next-

neighbors (or, in terms of ϕ(a,Ne+1), the last lattice site ϕ(a,Ne) on ea with the last lattice
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points on the other N ′
b − 1 edges).

As a result, new coupling terms are introduced in KN , connecting lattice points located

on different edges and effectively joining Nb lattices at each node vb of the network. Again,

it is important to note that the coupling strength, − 1
Nb
, is equally distributed among the

sites ϕ(a, 1) (or ϕ(a,Ne)) and is weaker than the couplings between consecutive sites along

the same edge, given by −ϕ(a, k) ϕ(a, k+1) with strength −1.

As mentioned above, in our specific case of the three-dimensional networkN of Fig. 4.16,

Nb ∈ {3, 4, 5, 6}. Similar to Fig. 4.10, which illustrates the case for Nb = 3, we refer to

Fig. 4.17 for a visualization of how the Kirchhoff-Neumann conditions give rise to effective

nodes connecting four, five, and six edges, respectively. The resulting G3 graphs form cor-

ners of the grid, G5 graphs form the structure of its external surfaces, while G4 graphs the

borders between them. Finally, G6 graphs make up the bulk structure of the network N .

With the specific form of KN resulting from the couplings dictated by the network

design, we ultimately obtain the matrix ΩN =
√
KN . Consequently, we can follow the

steps outlined in Sec. 4.2.1 to compute the entanglement entropy as expressed in Eq. 4.4,

for vacuum fluctuations confined to N as in Fig. 4.16 and reduced to a system of NNe

lattice points, in the presence of an entangling sphere. To this aim, we developed and

implemented the code published in [38].

A few words deserve to be dedicated to the exact configuration of the setup. In the

(1 + 3)-dimensional case, the setup consists of quantum fields embedded in Minkowski

spacetime, where a spherical region is traced out and made inaccessible, as shown in

Fig. 4.1. For free real scalar quantum fields, the resulting entanglement entropy follows

an area scaling, as demonstrated in [10]. The larger the area of the entangling sphere, the

greater the entanglement entropy of the system, with the entropy depending solely on the

surface area of the sphere and being insensitive to its volume.

In our network experiment, the setup is depicted in Fig. 4.16. Here, the entangling

sphere defines a region of the network that supports field degrees of freedom which are

traced out and made inaccessible to an external observer. However, there is a notable

difference compared to the setup for fields in full Minkowski spacetime. When comparing

the entanglement entropies for the same surface area, a discrepancy arises. The part

of the network traced out by the entangling sphere occupies a spacetime volume that

only approximates the sphere’s interior, due to the structure of the regular Cartesian

grid. Although for dvN ≫ 1/ξ3, the approximation improves significantly, the area of

the traced-out region, which approximates the surface area of the entangling sphere, will
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Figure 4.17: Visualization of the discretized Kirchhoff-Neumann conditions at the node of
a three-edge star graph G3, a four-edge star graph G4, a five-edge star graph G5 and a six-
edge star graph G6, respectively. The extrinsic distance scale a imposes a finite resolution
structure on the edges reducing the fields ϕa, for a ∈ {1, . . . , Nb} to spatial one-dimensional
lattices of Ne sites with constant spacing a. The white circles represent the boundary sites
of the lattices, ϕ(a, 0) or ϕ(a,Ne+1) for all a. For clarity and without loss of generality, we
focus on ϕ(a, 0) in this figure. Couplings between lattice sites on the same edge are depicted
as black lines and are of the form −ϕ(a, k)ϕ(a, k+1). The first condition in Eq. (4.43) enforces
that, at the vertex, all boundary sites must agree, resulting in ϕ(1, 0) = · · · = ϕ(Nb, 0).
Consequently, the lattices are connected through each −ϕ(a, 1)ϕ(a, 0) term. Together with

the second condition in Eq. (4.43) then this dictates that, since ϕ(a, 0) =
1
Nb

∑Nb

a′=1 ϕ(a′, 1),

each ϕ(a, 1) is coupled to ϕ(a′, 1) for all a, a
′, (dark gray lines in the picture) as next-neighbors

with the coupling strength equally distributed as −1/Nb. This results in the emergence of
effective nodes between the first sites of the lattices.

always overestimate it by a factor of 4/π. This intrinsic geometrical discrepancy arises from

approximating a spherical region using a regular Cartesian grid, which cannot perfectly

capture the sphere’s curvature, regardless how large the vertex density is.

Consequently, unlike in the full spacetime case, the surface of the entangling sphere

and that of the traced-out region do not necessarily coincide when using quantum net-



4.3 Entanglement on Network Histories in Minkowski 127

works. As a result, for the same radius of the entangling sphere, the actual surface of the

traced-out region may be inequivalent between the two setups, making direct comparison

challenging. In light of this discrepancy, and to facilitate a meaningful comparison with

the (1+3)-dimensional result, we multiply all numerical entanglement entropies by a factor

of π/4. This ensures that, in the limit dvN ≫ 1/ξ3, the entanglement entropy values are

appropriately adjusted and ready for direct comparison.

Note that two distance scales now play a role in determining the entanglement entropy.

The extrinsic distance scale a introduces a minimal distance resolved by measurement

devices, such that, in our construction, the minimum length for each edge is L = (Ne+1)a =

2a, which corresponds to only one lattice point Ne = 1 per edge. For the lattice sites to

spatially approximate a quantum field on the network, we require ξ = 1/µ ≫ a. On

the other hand, for the regular grid under consideration, the edge length L sets a lower

bound for the correlation length ξ such that the field spatially confined to N does not

resolve the coarse-grained structure of the network. In fact, for the chosen regular grid

with dvN = 1/L3, if ξ = 1/µ ≫ L we have dvN = 1/L3 ≫ 1/ξ3. By combining these

two conditions, we find that ξ = 1/µ ≫ L automatically satisfies ξ ≫ a, indicating that

for values of the correlation length such that dvN = 1/L3 ≫ 1/ξ3, vacuum fluctuations

confined to the regular grid are not only effectively described by the lattice points of the

finite resolution structure, but can also be considered as effectively populating the full

embedding spacetime.

To compute the entanglement entropy, we take as a first concrete example the length L

of each edge in the network to be L = 7a and set µa = 10−3 accordingly. In fact, the value

µa = 10−3 is sufficiently small to ensure that dvN = 1/L3 ≫ 1/ξ3. As discussed, for such

values of the mass not only can the lattice points effectively describe a quantum field, but

this effective quantum field also does not resolve the coarse-grained structure of the network

itself. The network vertex density may be large enough to approximate quantum fields in

the full (1+ 3)-dimensional Minkowski spacetime. Consequently, an area scaling behavior,

similar to that in full spacetime, could be expected. On the other hand, as suggested by

the intuition developed in the previous subsection, if ξ is sufficiently large, correlations

across the entangling sphere entangle the sub-regions associated with the crossing points.

These correlations are no longer localized near the surface of the entangling sphere, but

instead spread throughout the bulk of the network. As they reach deeper regions within

the network inside the entangling sphere, an area scaling may no longer be feasible for such

a system.
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The numerical entanglement entropy in terms of the area A of the entangling sphere is

shown in Fig. 4.18, for µa = 10−3.
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Figure 4.18: Entanglement entropy for vacuum fluctuations spatially confined to the
three-dimensional network N shown in Fig. 4.16, in terms of the area of the entangling
sphere for µa = 10−3. A fitted curve is depicted with a dashed line. The grid consists of
10x10x10 edges and is equipped with a finite resolution structure of Ne = 6 lattice sites
with spacing a on each edge, such that L = 7a. Note that the entanglement entropy has
been multiplied by a factor of π/4.

Remarkably, the entanglement entropy still exhibits a linear dependence on the area of

the entangling sphere.

This result is particularly striking, as the area scaling of the entanglement entropy is a

phenomenon characteristic of entangled fields extending throughout full spacetime [9, 10].

Yet, we are probing the entanglement properties of fields confined to two-dimensional

Lorentzian histories, with field configurations spatially confined to the edges of the network.

Specifically, in (1+ 3) dimensions, fields that are not confined to a network history but

extend freely into compact regions of spacetime carry angular momentum, which acts as

an effective contribution to the field mass µ. The presence of angular momentum – and the

summation over all its possible values – ensures that the total mass remains large, thereby

shortening the correlation length and localizing the entanglement between the interior and

exterior of the entangling sphere near its surface, even when the intrinsic mass µ of the

field vanishes [10]. Consequently, an area law for the entanglement entropy of the ground
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state in (1 + 3) dimensions is inevitable. However, quantum fields on two-dimensional

network histories are spatially confined to one-dimensional edges and, therefore, do not

carry angular momentum. In this case, the correlation length is solely determined by the

field mass µ. When µ is small, correlations across the surface of the entangling sphere

spread deep into its volume and throughout the network. For mass values such that

ξ = 1/µ ≫ L, various local phenomena, such as those discussed in Sec. 4.2.2, arise.

The interplay of these phenomena effectively makes the entanglement entropy sensitive

only to the surface of the entangling sphere, rather than to its volume or to the finite

size of the network, simulating the role of angular momentum as seen in the full (1 + 3)-

dimensional theory. In particular, it is exactly in this mass regime that dvN = 1/L3 ≫ 1/ξ3

and fields spatially confined to one-dimensional edges effectively emerge as fields in full

Minkowski spacetime, no longer resolving the coarse-grained structure of the network.

Although not carrying angular momentum by definition, these emerging fields nonetheless

exhibit an area scaling of the entanglement entropy, characteristic of fields with angular

momentum. This striking result suggests that Fig. 4.18 captures the emergence of an

effective angular momentum on the quantum network, giving rise to the observed area

scaling of the entanglement entropy.

It is important to note that, to obtain the same proportionality factor as in the (1+3)-

dimensional result, we would need to continuously increase the density of the quantum

network such that, ideally, the support of the field confined to the network approximates

a portion of the embedding four-dimensional Minkowski spacetime to arbitrary accuracy.

However, this limit cannot be achieved, as the minimal distance scale a, as previously

discussed, imposes a minimal edge length L, which in turn sets an upper bound on the

vertex density dv. As a result, the proportionality factor Λ determining the slope of the

curve in Fig. 4.18 will approach, but not exactly match, its three-dimensional counterpart.

In general, we expect the proportionality factor to depend on the vertex density, specifically

on L and a and on the mass of the field µ, Λ = Λ(L, a, µ).

The curve in Fig. 4.18 presents a dip for A = 180L2. This is due to the specific local

structure of the three-dimensional grid, as visualized in Fig. 4.17. When the radius of the

entangling sphere resolves the nodes of the network, crossing the couplings between lattice

sites involved in the effective node structure, the entanglement entropy decreases. As

discussed, at the nodes of the network, the couplings between lattice sites have a strength

of 1/Nb. For example, when the surface of the entangling sphere crosses the node of a

G6 graph located in the bulk of the network, next-neighboring sites on opposite sides of
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the sphere surface are coupled via an interaction that is 1/6 the strength of the coupling

between sites on the same edge. Although the presence of the node increases the number

of communication channels, the weaker next-neighbor couplings result in a decrease in the

overall entanglement entropy compared to when the sphere surface crosses the edges of the

network.

This effect arises in Fig. 4.18 specifically due to the curvature of the entangling sphere

intersecting a regular Cartesian grid and is, therefore, inevitable. However, by using a

cubical entangling surface instead of a spherical one, the nodes of the network can be

bypassed, thereby avoiding this systematic effect. To this end, and to further investigate

the area scaling for free quantum fields in the Minkowski ground state, we explore in the

following subsection whether the entanglement entropy is sensitive to the shape of the

entangling surface rather than solely to its area.

The area scaling observed in Fig. 4.18 demonstrates that quantum networks and their

histories can effectively capture the behavior of higher-dimensional phenomena in the full

embedding spacetime using lower-dimensional theories. The central question posed at the

beginning of this chapter has been affirmatively answered: quantum networks are emerging

as potent arenas, capable of investigating phenomena experiencing all spacetime dimensions

through lower-dimensional probes.

Shape dependence

The linear dependence of the entanglement entropy on the surface area of the traced-out

region should be preserved even when the shape of the entangling surface differs from the

spherical one. As mentioned above, choosing to trace out a cubical region could further im-

prove the linearity of the curve. Therefore, in what follows, we aim to investigate the entan-

glement entropy for vacuum fluctuations spatially confined to the same three-dimensional

grid as in Fig. 4.16, but with an entangling surface of a different shape. Investigations em-

ploying a spatially deformed entangling sphere or entangling surfaces containing corners

have been developed in the context of conformal field theories [42,43]. In our analysis, we

trace out a cubical region, as depicted in the following Fig. 4.19.

For the corresponding code developed for this analysis we refer the reader to [38]. To

compute the entanglement entropy, we choose the value L = 4a for the length of each edge

of the network and, accordingly, µa = 10−3. The entanglement entropy in terms of the

surface area A of the cube, is shown in Fig. 4.20. As a first result, we observe that the

entanglement entropy still exhibits a linear dependence on the area A of the entangling
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Figure 4.19: Spatial three-dimensional visualization of a quantum field ϕ (depicted in
gray shades) spatially confined to a network N , designed as a regular grid of finite size,
embedded in Minkowski spacetime (M, η). An arbitrary cube divides the network setup
into an interior and an exterior sector. If the interior of the cube is inaccessible, an external
observer loses information about the internal quantum field degrees of freedom. Due to
quantum field correlations across the cube’s surface, the exterior and interior sectors of
the network may be entangled, with the entanglement entropy quantifying the degree of
entanglement.

surface, in this case, the surface of a cube. This result confirms that the entanglement

entropy of vacuum fluctuations spatially confined to the networkN embedded in Minkowski

spacetime, depends linearly on the surface area of the traced-out region, regardless of its

shape.

Furthermore, as expected, the dip observed in Fig. 4.18 for A = 180L2 is no longer

present. This is because, when tracing out a cubic region from a regular three-dimensional

grid network, it is possible to select cube sizes that do not resolve the vertices of the net-

work. As a result, the linear dependence on the area is achieved with greater accuracy.

In particular, it is interesting to compare the entanglement entropy values for vacuum

fluctuations spatially confined to N when tracing out spherical and cubic regions with

the same surface area A. To this end, in Fig. 4.20 we depict the fitted curve for the en-

tanglement entropy in the spherical case, shown as a red dashed line, for the same area



132 4. Emerging Entanglement on Network Histories

0 300 600 900 1,200

0

90

180

270

360

A[L2]

µa = 10−3 cube

µa = 10−3 sphere

S

1

Figure 4.20: Entanglement entropy for vacuum fluctuations spatially confined to the
three-dimensional network N shown in Fig. 4.19, in terms of the area of the entangling
cube for µa = 10−3. A fitted curve is depicted with a dashed line. The grid consists of
16x16x16 edges and is equipped with a finite resolution structure of Ne = 3 lattice sites
with spacing a on each edge, such that L = 4a. For comparison, the fit of the entanglement
entropy related to the case of an entangling sphere introduced in Fig. 4.18, is shown in red.

values. Surprisingly, the entanglement entropy differs between the two cases. Specifically,

the entanglement is larger when a spherical region is traced out compared to a cubical one

with the same surface area. Although an area scaling emerges in both cases, the quan-

tum information measure distinguishes between the two shapes. While the cause of this

discrepancy remains under investigation, we can state as a first result of our quantum net-

work analysis that the entanglement entropy of vacuum fluctuations in the full Minkowski

spacetime depends not only on the area of the traced-out region but also on its shape, with

the shape information encoded in the proportionality factor.

The emergence of area scaling in Fig. 4.18 and the shape dependence in Fig. 4.20 for

mass regimes 1/µ = ξ ≫ L, demonstrate that quantum networks and their histories can

effectively capture and reveal the behavior of higher-dimensional phenomena within the

full embedding spacetime using lower-dimensional theories. The characteristic properties

of these higher-dimensional phenomena emerge naturally on the network. In particular,

Fig. 4.18 serves as a reference signature for applying this analysis in curved spacetimes. If,

by placing the quantum network across a black hole horizon or in a curved background,

we observe a discrepancy when tracing out a spherical region compared to the result in
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Minkowski spacetime, it indicates that the fields confined to the network history have

detected the curvature of the background, highlighting quantum networks as effective tools

for probing the geometry of the embedding spacetime.

Extensive entanglement entropy on the network

So far we have proposed quantum networks as arenas where, in the limit dvN ≫ 1/ξ3, the

(1 + 1)-dimensional field theories on each edge history of the network combine to give rise

to an effective (1 + 3)-dimensional field theory emerging on N , which can describe and

reveal phenomena occurring in the full embedding spacetime.

As noted, in such a mass regime, the entanglement entropy is not an extensive quantity.

Instead, it is qualitatively characterized by a larger value than the sum of the contributions

from each sub-region, as expressed in Eq. (4.42).

In the following, we set aside the descriptive power of quantum networks for higher-

dimensional physics to focus on the regime where the entanglement entropy becomes ex-

tensive. As discussed in previous subsections, this is only possible in a mass regime where

each sub-region (defined as in Fig. 4.14) of the network is disconnected from the others,

and its corresponding entanglement entropy simply adds up to the total entanglement en-

tropy, as shown in Eq. (4.41). In this mass regime, quantum fields spatially confined to the

network resolve its structure, and the resulting entanglement entropy depends on the local

design of the network. There are cases where this regime becomes particularly important,

for example, when the network is designed to capture only specific local aspects or a par-

ticular level of detail about a phenomenon, making the network’s local structure crucial.

In this subsection, we want to further explore this alternative use of network histories by

considering the mass range a ≪ 1/µ ≪ min(l, L − l) on each edge of the network shown

in Fig. 4.16. For these mass values, the lattice points imposed by the finite resolution

structure still effectively describe a quantum field theory on each edge, but the emerging

quantum field theories are independent and locally influenced by the network structure,

and do not manifest as a full-dimensional field theory throughout the network.

Consider the setups in Fig. 4.16 and Fig. 4.19 and denote by ei each edge of N that

is crossed by the entangling surface. For illustrative purposes, we highlight the edges

ei in Fig. 4.21, which depicts a two-dimensional spatial section of the considered setup.

Quantum correlations across the entangling surface, and thus responsible for entanglement

throughout the network, are all occurring through the crossing points on the edges ei. If,

on each of these edges, the field mass µ satisfies 1/µ ≪ min(li, L − li), then, as discussed
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Figure 4.21: Spatial two-dimensional visualization of a quantum field ϕ (depicted in gray
shades) spatially confined to a networkN , designed as a regular grid of finite size, embedded
in Minkowski spacetime (M, η). An arbitrary sphere (left) and cube (right) divides the
network setup into an interior and an exterior sector. Highlighted are the edges ei of
the network that are intersected by the entangling surface, along with their corresponding
crossing points.

in Sec. 4.2.1, quantum correlations through the intersection between the edge ei and the

entangling surface, are fully localized on the respective edge ei. In particular, they are

supported only on sub-regions – defined by the correlation length ξ = 1/µ – which con-

sist of intervals along the edges ei, centered at the crossing points. No contributions to

entanglement arise from vacuum fluctuations located in any other region of the network.

As a consequence, relative to the quantum information measure we use, the network N
is effectively equivalent to a collection of single edges piercing the entangling surface. As

a result, the total entanglement entropy for vacuum fluctuations spatially confined to the

network N is given, in this mass regime, as a sum of all contributions Sei coming from the

sub-regions of the network localized on the edges ei. According to Eq. (4.41), for a given

size of the entangling surface, the total entanglement entropy reduces to

SN =

AN∑
i=1

Sei , (4.53)

where AN is the number of the crossing points with the entangling surface, determined by

the specific structure of the network N .

The entanglement entropy Sei associated with each edge partially traced out by the

entangling surface has already been thoroughly analyzed in Sec. 4.2.1. Specifically, for
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1/µ ≪ min(li, L − li) quantum fields on different edges contribute equally to the entan-

glement entropy, as for each edge only a single communication channel exists across the

entangling sphere. Moreover, the value of Sei is independent of the angle at which each

edge intersects the entangling surface, since quantum fields on the edge histories carry no

information about the external embedding. Consequently, Eq. (4.53) simplifies to

SN = AN Sei , (4.54)

which aligns with the conjecture leading to Eq. (4.26). The exact value of Sei can be

obtained numerically or analytically with Sei = Splat = 1
6
ln
(
ξ
a

)
. For simplicity, note that,

in light of our discussion, the described setup is entirely equivalent to considering the edges

as being crossed at arbitrary locations sufficiently far away from the endpoints. In the case

of an entangling sphere, we align them along the radial direction and let them cross at

L/2, as illustrated in Fig. 4.22.

Figure 4.22: Equivalent configurations to the ones of Fig. 4.21 of a quantum field ϕ spatially
confined to a network N , designed as a regular grid of finite size, embedded in Minkowski
spacetime (M, η). An arbitrary sphere (left) and cube (right) divide the network setup
into an interior and an exterior sector. Highlighted are the edges ei of the network that
are intersected by the entangling surface, adjusted to be crossed precisely at L/2 in the
case of an entangling sphere and aligned along the radial direction.

In order to compute exactly the entanglement entropy related to the three-dimensional

grid when the field mass satisfies 1/µ≪ min(li, L− li) on each edge ei, the remaining task

is to determine the form of the factor AN . In general, as the size of the entangling surface

changes, the number of crossings with the network will vary. Therefore, AN depends not

only on the local structure of the network but also on the radius R of the entangling sphere,
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i.e., AN = AN (R), or the side length Lc of the entangling cube, AN = AN (Lc). For a

three-dimensional regular grid, the function AN can be estimated analytically. Recall that

each edge of the regular grid has length L. In terms of the surface area of the traced out

region defined by the grid, which approximates the interior of the entangling surface, the

number of crossing points per unit area can be approximated by the constant value 1/L2

for R,Lc ≫ L. By multiplying this density with the surface area of the traced out region,

we obtain the total number AN of edges partially traced out, for any given value of R

or Lc.

In the case of an entangling cube, the surface of the traced out region coincides with

that of the cube. Consequently, this gives

AN (Lc) =
1

L2
6L2

c . (4.55)

On the other hand, calculating the exact surface area of the traced out region becomes non-

trivial in the case of an entangling sphere, as it requires detailed knowledge of the network’s

configuration near the sphere’s surface for each value of R. For a regular grid with a high

vertex density, this can be extremely challenging to compute. Nevertheless, as discussed

previously, the total surface area of the traced out region is known to overestimate the

surface area of the corresponding entangling sphere by a factor of 4/π for each R. Thus,

we can rely on this relationship to calculate the surface area based on that of the sphere.

Consequently, the function AN can be expressed analytically in terms of the radius R of

the entangling sphere as

AN (R) =
1

L2

4

π
4πR2 . (4.56)

Therefore, for each value of R or Lc and for a field mass in the range 1/µ≪ min(li, L−li)
on each edge ei, the network N is, in terms of entanglement, equivalent to a collection of

AN (Lc) = 6 L2
c

L2 or AN (R) = 16 R2

L2 single edges crossing the entangling surface. The

corresponding total entanglement entropy is given analytically by

SN (Lc) =
1

L2
6L2

c Sei =
L2
c

L2
ln

(
ξ

a

)
, (4.57)

for the case of an entangling cube, and

SN (R) =
1

L2

4

π
4πR2 Sei =

8

3L2
R2 ln

(
ξ

a

)
, (4.58)
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for an entangling sphere.

Since for a given mass µ the above expressions for the entanglement entropy are deter-

mined solely by the number of crossing points with the entangling surface – or equivalently,

by the number of communication channels established between the interior and exterior

sectors of the network – they naturally depend on the area of the traced out region.

To compare each analytical expression for the entanglement entropy with the corre-

sponding numerical result for sufficiently large masses, we plot Eq. (4.57) and Eq. (4.58)

as a function of the corresponding entangling surface’s area, together with the numerical

values for the same field mass, obtained by reapplying the code used previously [38]. The

resulting entanglement entropies in terms of the surface area A of the entangling sphere

or cube are shown in green in Fig. 4.23, for µa = 1 and using the respective parameters

previously implemented for the three-dimensional grid in each case. Recall that since the

numerical entanglement entropies for an entangling sphere were multiplied by a factor of

π/4 to facilitate comparison with the (1+3)-dimensional result in full Minkowski spacetime,

we apply the same adjustment to Eq. (4.58) when plotting it in terms of the entangling

sphere’s area.

From the plots, we observe that for both shapes of the entangling surface, the analytical

entanglement entropy SN agrees with the numerical results. This confirms the conjecture

that for sufficiently large masses – ideally when 1/µ ≪ min(li, L − li) on each crossed

edge ei of N – the entanglement entropy of vacuum fluctuations spatially confined to the

entire network N is equivalent to that of vacuum fluctuations spatially confined solely

to the local collection of single edges ei of N , as shown in Fig. 4.21. Consequently, the

entanglement between the interior and exterior sectors of the network is confirmed to be

localized near the entangling surface, with only short-range quantum correlations across

the surface contributing significantly to the total entanglement entropy. An area scaling

follows naturally.

Note that the specific geometry of the network N ensures that an entangling cube

achieves a more accurate linear dependence on the area even for larger values of µa. This

is a consequence of the cube’s alignment with the underlying grid structure, which allows

the nodes of the network to be avoided by the entangling surface, as previously discussed.

Furthermore, for the same entangling surface area A, the entanglement entropies for both

configurations agree, as the data points closely follow the same analytical curve. This

demonstrates that, for large masses, the quantum information measure employed in our

network experiment is insensitive to the shape of the entangling surface, unlike in the
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Figure 4.23: Entanglement entropy for vacuum fluctuations spatially confined to the three-
dimensional network N shown in Fig. 4.16, in terms of the area A of the entangling sphere
(left) and cube (right) for µa = 1. The analytical approximation π

4
SN (R) = SN (Lc) =

1
L2ASe1 is shown with a solid line, while data points correspond to a numerical experiment
for the same mass. The numerical results for µa = 10−3 (Fig. 4.18 and Fig. 4.20) are
reported again for comparison. For the left plot, the grid consists of 10x10x10 edges and
is equipped with a finite resolution structure of Ne = 6 lattice sites with spacing a on each
edge, such that L = 7a. In contrast, for the right plot, we choose a grid of 16x16x16 edges,
equipped with Ne = 3 lattice sites with spacing a on each edge, such that L = 4a.

case where ξ = 1/µ ≫ L, where the entanglement entropy shows a shape dependence

(Fig. 4.20).

Due to its simplicity, this analytical approach can serve as a substitute for numerical

experiments when calculating the entanglement entropy of quantum fields confined to

complex network configurations, provided the field masses satisfy certain constraints. This

makes it particularly useful for more intricate scenarios, such as networks embedded in

curved spacetimes, whenever AN is known or can be easily approximated, as demonstrated

in the example above. Although within this mass range we lose the full predictive power

of quantum networks for (1 + 3)-dimensional quantum field phenomena, this alternative,

yet simpler analytical approach remains a powerful tool for probing and understanding

phenomena on a local scale.



Chapter 5

Conclusion and Outlook

In this investigation, we developed and presented a novel framework for addressing nat-

ural phenomena in (curved) spacetimes, providing an alternative to conventional (1 + 3)-

dimensional field theory methods, whenever these may prove insufficient. We relied on the

key observation that lower-dimensional theories, particularly (1+1)-dimensional field the-

ory, often offer significant simplifications in describing complex phenomena and, in some

cases, provide exact solutions.

Rather than studying natural processes within a lower-dimensional framework, reducing

the spacetime dimensions, we pursued an innovative approach by confining our probes,

classical or quantum fields, to network-like structures as spatial supports. These physical

structures, idealized as graphs or networks, are embedded within the surrounding (1 + 3)-

dimensional background and exhibit their own dynamics, characterized by their histories.

As such, they serve as theoretical devices that can be placed within the ambient space

and employed as arenas where phenomena experiencing all spacetime dimensions can be

investigated using lower-dimensional probes.

On the network history, by variational principles, we established a prescription to pre-

vent degrees of freedom to leak into the surrounding space and set the conditions that

control, at each node, the propagation of fields throughout the network. These conditions

emerged as a generalization of Kirchhoff-Neumann conditions to arbitrary, curved space-

times. Whenever these conditions ensure a self-adjoint Laplace operator, the fields on the

network can be quantized.

The leitmotif of our analysis was to determine whether these (quantum) fields, confined

to networks and their histories, can probe higher-dimensional phenomena and capture the

same properties as fields within the full embedding spacetime.
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To provide an answer, we have explored entanglement properties of vacuum fluctua-

tions confined to networks histories embedded in the Minkowski spacetime. Strikingly,

although the fields are spatially localized on the one-dimensional edges of the network, the

entanglement entropy shows the same area scaling typical of fields in the full embedding

(1 + 3)-dimensional spacetime, for any field mass µ. In particular, we observed that for

sufficiently small masses, such that the correlation length ξ = 1/µ is larger than the length

of the edges, fields populating the networks do not resolve their coarse-grained structure

and they effectively describe a full-dimensional field theory. This is particularly remarkable

since the area scaling in (1+3) dimensions is rooted to the fact that fields in the full embed-

ding spacetime carry angular momentum. Summing over all momenta for the field’s ground

state, results in a correlation length sufficiently short to localize entanglement across the

entangling sphere close to its surface area, regardless of the field mass µ. In contrast,

fields confined to network histories are restricted to a single spatial dimension along the

edges and therefore lack any notion of angular momentum. Consequently, when the mass

is sufficiently small, the correlation length increases unrestricted and entanglement across

the entangling surface spreads throughout the network. The fact that, precisely within this

range of masses, the fields on the network histories still give rise to an area law – rather

than, for example, a volume scaling – is intriguing and suggests an effective emergence of

angular momentum on the network.

Lastly, we investigated numerically the shape dependence of entanglement entropy by

computing it for two different entangling surfaces: a sphere and a cube. We observed

(Fig. 4.20) that for the same surface area, the entanglement on the network is equal for

both shapes when the mass is sufficiently large. However, for sufficiently small masses, the

entanglement entropy decreases when tracing out a cubical region. Since this mass regime

is precisely where the network’s coarse-grained structure is not resolved, with fields on

the network effectively describing their counterparts in the full embedding spacetime, the

shape dependence of entanglement entropy emerges as a property of fields in the (1 + 3)-

dimensional Minkowski spacetime. Therefore, networks have not only proven capable of

reproducing higher-dimensional phenomena with lower-dimensional field theories, but they

have also delivered their first, new result, by capturing an insight on a still unknown

phenomenon like the scaling of the entanglement entropy for vacuum fluctuations in the

(1 + 3)-dimensional Minkowski spacetime, when tracing out a cubical region.

Throughout this work, we have found the theoretical devices we constructed to be

highly versatile. Depending on the specific task, our approach allows for the design of
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networks that either yield exact analytical results on specific aspects of a phenomenon

or, alternatively, serve as arenas where higher-dimensional phenomena emerge alongside

an effective full-dimensional theory. In the latter case, as observed with the shape depen-

dence of entanglement entropy, the network approach may provide numerical results rather

than exact analytical solutions but can nonetheless offer pioneering insights into otherwise

unknown phenomena. With further tuning of the network design based on these initial

findings, a subsequent iteration could then yield targeted analytical results.

Although being forged as theoretical devices, networks also allow for experimental re-

alization, and predictions from the network approach could be experimentally verified.

For instance, as discussed with some authors of [39], there is potential to measure the

entanglement entropy in experimental setups that resemble the graph configurations we

considered, though technical limitations may constrain the complexity of networks that

can be realized. In fact, more complex networks are already being manufactured, such as

photon integrated circuits used in optical quantum computing applications [44], where, on

a chip scale, squeezed states of light are fed into an optical network consisting of multiple

optical paths and beam splitters. This setup could also serve as an excellent experimental

model to study how, in the limit of large field correlation length, a one-dimensional photon

propagator might effectively emerge within its three-dimensional counterpart.

Throughout this work, networks have been proposed as idealized representations of

physical structures embedded within an ambient space. However, it is noteworthy that they

could also be envisioned as fundamental structures of nature, not embedded but instead

constituting the very fabric of the universe. From this perspective, the (1+3)-dimensional

physics we observe might emerge as an effective theory on these four-dimensional networks,

offering a revolutionary approach to our understanding of physics.

The area scaling of the numerical entanglement entropy found with networks, Fig. 4.18,

also serves as a reference case for implementing the configuration depicted in Fig. 4.1

to investigate black hole scenarios. In fact, if we place the network partially across a

Schwarzschild black hole horizon we can probe its processing of information as an emerging

phenomenon on the network. In particular, if the area scaling of entanglement entropy

deviates from the area law observed in Minkowski space, this discrepancy would indicate

that the quantum information measure we use is sensitive to spacetime curvature. Building

on this, it would be interesting to investigate the minimal network configuration capable

of probing spacetime curvature. This feature would naturally lead to an implementation

of networks to study horizon formation during a shell collapse. In fact, by positioning
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the network equipped with quantum fields across the surface of the collapsing shell at each

instant of time, we could refer to the Schwarzschild result to investigate possible fingerprints

of horizon formation left on the quantum information configuration on the network. Such

a comparison could ultimately deliver a decisive verdict on black hole formation.
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