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Abstract (English): 

The prevalence of somatic comorbidities in psychiatric disorders is a well-established 

phenomenon. Incidences of somatic comorbidities such as cardiovascular diseases significantly 

contribute to the high mortality rate observed in psychiatric populations, thereby impacting the 

global health burden. Metabolic syndromes, defined as the key risk factors for cardiovascular 

disease, have been widely studied, with obesity being a predominant factor. Notably, obesity is 

also a common comorbid condition in psychiatric disorders. Moreover, overweight and obese 

individuals are at higher risk of developing psychiatric disorders, while patients with psychiatric 

disorders are susceptible to becoming overweight and obese. However, the interaction between 

obesity and psychiatric disorders remains elusive, and there is a lack of brain-derived measures 

to study obesity specifically in psychiatric patients. Moreover, age is a significant metabolic risk 

factor that contributes to the occurrence of metabolic syndromes and appears to influence 

psychiatric groups as well, yet this relationship remains poorly understood. 

Against this background, the current dissertation aims to unravel the association between obesity 

and psychiatric disorders as well as develop a novel tool to capture obesity related brain changes 

by using multi-site large cohort neuroimaging datasets and the machine learning (ML) methods. 

Furthermore, we aim to shed light on the already established brain-ageing phenomena in 

psychiatric disorders. In this regard we will develop brain-age predicting models by using multiple 

modality neuroimaging data sets in two analyses. Furthermore, by using the newly developed tool 

to quantify the measures of obesity, we will understand the association between obesity, brain-

ageing and clinically relevant variables in psychiatric group.  

In the first study, we developed a ML based body mass index (BMI) predictor by using voxelized 

whole brain structural images to study the intricate relationship between gray matter volume 

(GMV) and BMI in a selected healthy control (HC) sample including 770 participants. To assess 

the model generalizability, we applied this model to a separate HC sample including 734 

individuals. Next, we computed a brain-based BMI gap score (BMIgap) for each individual 

quantifying the difference between brain-estimated and measured BMI. Similarly, we obtained the 

BMIgap scores in clinical samples comprising individuals with schizophrenia (SCZ, N=146), 

clinical high-risk states for psychosis (CHR, N=213) and recent-onset depression (ROD, N=200). 

Finally, we explored associations between BMIgap scores and clinically relevant variables 

specifically for SCZ patients. 

In the second study, we addressed the complexities of brain-ageing at multiple levels. Initially, we 

developed a ML based age-predictor using region-of-interest (ROI) GMV data. ROIs were 

extracted using multiple brain atlases from a cohort of 1170 HC individuals. Subsequently, we 

created a second ML age-predictor using voxelized whole-brain GMV data derived from an 

independent HC sample obtained from multi-site studies (N=770). We computed the brain age 

estimation (BrainAGE) score by subtracting the model predicted age and chronological age. Both 

models were independently applied to separate HC samples to assess their generalizability and 
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subsequently to various patient groups. The first model was applied to patients with SCZ (N=503) 

and major depressive disorder (MDD, N=519). The second model was applied to patients with 

SCZ (N=146), CHR (N=213) and ROD (N=200) individuals. To understand the association 

between brain-ageing and obesity as well as their association with psychiatric disorders, we 

leveraged the utility of the established BMIgap scores and associated them with the computed 

BrainAGE scores as well as other clinically relevant variables. 

In the first study, we established an efficient BMI-predictor robustly predicting BMI (R2=0.28, 

MAE=2.75) in the HC sample. The BMIgap scores of SCZ and CHR individuals were higher, while 

the BMIgap scores of ROD individuals were lower compared to HC individuals. Brain patterns 

associating diagnostic separability and BMI-predictiveness were associated with longer illness-

duration, later disease onset and higher hospitalization frequency.  

The brain-age predictor using ROI data performed with an MAE of 6.35 years and successfully 

generalized to the independent HC sample showing no significant differences. The second 

BrainAGE model developed using voxelized whole brain GMV images demonstrated robust 

performance, achieving a MAE of 4.73 years surpassing the performance of the model using ROI 

data, even though a similar methodology was applied. In both cases, the application of the brain-

age models to psychiatric patients, particularly those with SCZ, revealed a positive BrainAGE 

deviation compared to HC samples. When the ROI-based model was applied to the MDD group, 

a positive BrainAGE deviation was observed, but this was limited to specific atlases. The 

voxelized BrainAGE model was also applied to CHR and ROD individuals. The CHR group 

exhibited a positive deviation, whereas the ROD individuals did not show significant differences 

compared to HC individuals. We found that the brain regions predictive of both BMI and BrainAGE 

overlapped, potentially suggesting that somatic conditions may share similar brain signatures, 

particularly in frontal areas and the control network. However, other regions did not overlap, 

indicating that while the two conditions may share common neurobiological pathways leading to 

shared brain alterations, they also possess independent pathways. The clinical variables showed 

associations at distinct levels, with signatures displaying patterns of comorbidity between obesity, 

brain-ageing and SCZ expression, as well as a pattern independent of brain-ageing. 

We introduce the concept of 'BMIgap' as a potential tool to disentangle the personalized risk of 

obesity-related brain alterations in individuals with psychiatric disorders and further used it as a 

brain-obesity estimate to identify shared commonalities between obesity, brain-ageing and 

psychiatric condition.  
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1. Introduction 

1.1 Understanding the complex relationship of psychiatric 

disorders and associated comorbidities 

1.1.1 Mental health as a crucial health challenge 

Mental disorders are considered one of the central health challenges of the 21st century (Wittchen 

et al., 2011). Over the past three decades, psychiatric disorders including Major depressive 

disorder (MDD) and Schizophrenia (SCZ) have become leading contributors to the global disease 

burden. Moreover, the number of individuals affected by psychiatric disorders has risen from 80.8 

million in 1960 to 125.3 million, highlighting the growing impact of these conditions. This increase 

persists despite gradual but significant improvements in healthcare focus and treatment 

management compared to previous decades. Furthermore, psychiatric disorders represent 

approximately one-quarter of the global disability burden. For example, global statistics indicate 

that over one-tenth of the global population is affected by a psychiatric disorder, specifically more 

than one-third of the EU population are impacted annually (Patel & Saxena, 2014; Wittchen et al., 

2011). Furthermore, research by the United Nations estimates that approximately 264 millions of 

global population is affected by depression (GBD 2017 Causes of Death Collaborators, 2018).  

Identifying challenges stemming from mental health problems has been recognized as a 

significant societal issue, particularly in light of the psychological consequences brought about by 

the global COVID-19 pandemic. In fact, World Health Organization (WHO) has reported a 

massive surge in the global incidence of anxiety and depression as a result of the COVID-19 

pandemic, estimating 53.2 million additional cases (COVID-19 Mental Disorders Collaborators, 

2021). Moreover, psychiatric disorders have been identified as one of the greatest challenges that 

society must address in the coming decades, particularly given the psychological ramifications of 

the COVID-19 pandemic (COVID-19 Mental Disorders Collaborators, 2021). These findings 

underscore that psychiatry faces more significant challenges compared to other branches of 

medicine. The figures are particularly concerning, given the substantial public healthcare costs 

associated in tackling psychiatric disorders.  

Furthermore, research has indicated that individuals with psychiatric disorders have a higher 

likelihood of experiencing additional diseases throughout their lifetime—a phenomenon known as 

comorbidity (Maj, 2005; McGrath et al., 2020). Examples of comorbid conditions frequently 

associated with psychiatric disorders include other psychiatric illnesses, metabolic syndromes 

(such as diabetes), cardiovascular diseases and risk factors for ageing-related conditions. The 

presence of these comorbid diseases significantly influences the global burden of psychiatric 

disorders (McGrath et al., 2020). 
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Schizophrenia 

SCZ is a profound psychiatric disorder that impacts an individual’s cognitive, perceptual, and 

emotional functioning (Anticevic et al., 2015). Though less prevalent than other psychiatric 

disorders, SCZ affects approximately 24 million people of the global population. The WHO 

estimates its prevalence approximately 1 person in 222 adults (GBD Results). Despite extensive 

research, no single cause of SCZ has been identified; it is understood that SCZ arises from a 

combination of genetic predispositions and various environmental factors including stressful life 

events or extensive drug use (Kahn et al., 2015). While SCZ is classified as a severe mental 

illness, early diagnosis and treatment can enable patients to lead fulfilling lives and maintain their 

daily routines. However, SCZ is a heterogeneous disorder, posing challenges for early diagnosis. 

Patients often do not present with "pure" diagnoses but rather have coexisting psychiatric and 

medical comorbidities (Abdullah et al., 2020). The clinical presentation of SCZ is further 

complicated by substantial psychiatric comorbidity, affecting both early diagnosis and 

understanding of the condition's etiology. Psychiatric disorders such as depression, anxiety, and 

substance abuse frequently co-occur with SCZ, exacerbating its clinical manifestations. 

Additionally, somatic diseases such as cardiovascular risk factors as well as type 2 diabetes often 

co-occur with SCZ, contributing significantly to the early and high mortality rates observed in these 

patients (Dieset et al., 2016). Furthermore, SCZ has been associated with ageing related brain 

structural abnormalities which further exacerbate the condition. 

Clinical high-risk (CHR)  

Conceptualization of the CHR state for psychosis was introduced in 1996 to facilitate the early 

identification of individuals with higher risk to develop a first episode of psychosis (Fusar-Poli et 

al., 2013; Huber & Gross, 1989). This state is characterized by the presence of mild positive 

psychotic symptoms which are not sufficiently severe or persistent to meet the criteria for a full-

blown psychotic disorder diagnosis (Fusar-Poli et al., 2013). The simultaneous occurrence of 

these milder symptoms allows for the identification of vulnerable individuals before the onset of a 

more severe psychotic disorder (Solmi et al., 2023). Epidemiological studies indicate that CHR 

status exists in approximately 1.7% of the general population and notably higher prevalence at 

19.2% in clinical groups (Salazar de Pablo et al., 2021). Over the past three decades, research 

has demonstrated that around 20-25% of individuals identified as being at high risk for psychosis 

develop the condition within 2 to 3 years of initial assessment, with the risk extending up to 10 

years post-initial presentation (Fusar-Poli, 2017). 

Depression 

Worldwide MDD stands as the most common psychiatric disorder which exerts the greatest 

impact on the global burden of diseases amongst other psychiatric disorders (Stein et al., 2020). 

It is characterized by persistent lowered mood significantly affecting an individual’s everyday life. 

It was ranked third in the global burden of disease in 2008 by WHO and has estimated that the 

disorder will rank first by 2030 due to the constant increase annually. Globally, approximately 280 
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million individuals are impacted by depression, constituting 5% of adults, with an additional 5.7% 

of individuals aged over 60 years. The rates are higher among women (6%) compared to men 

(4%) (Bains & Abdijadid, 2024). Depression is caused from a multifaceted interplay of social, 

psychological and biological factors, including adverse life events such as unemployment, 

traumatic experiences, genetic, neurochemical, hormonal and psychological dimensions (Remes 

et al., 2021). Similar to other psychiatric disorders, depression can arise as a symptom or 

consequence of another underlying condition, such as SCZ or bipolar disorder. This comorbidity 

complicates the clinical picture, making it challenging to discern whether depression is a primary 

disorder or secondary to the other psychiatric condition. Furthermore, epidemiological research 

indicates a significant overlap between depression and other psychiatric disorders, particularly 

anxiety disorders and substance use disorders (Steffen et al., 2020). Research indicates that 

around 50–60% of people who have dealt with depression also acknowledge having encountered 

at least one anxiety disorder at some point in their lives. Furthermore, depression has been 

identified as a contributing factor for many somatic diseases including type 2 diabetes, 

cardiovascular disease, hypertension (Brenes, 2007). Due to these factors, recent studies are 

focusing on a specific subtype of the phenomenon characterized by recent onset of depressive 

(ROD) episodes emerging within a relatively short timeframe (Koutsouleris et al., 2021; Lalousis 

et al., 2022). 

1.1.2 Brain abnormalities in common psychiatric disorders 

The evolution of diverse neuroimaging techniques in the past four decades has proven 

instrumental in examining common phenomena observed across psychiatric disorders (Yen et 

al., 2023). Recent advancements in various neuroimaging modalities, particularly quantitative 

structural imaging techniques including voxel-based morphometry (VBM) as well as functional 

neuroimaging have significantly contributed to this field. There has been a progressive utilization 

of structural neuroimaging techniques, particularly structural MRI (sMRI), in the diagnosis of 

psychiatric disorders (Falkai et al., 2018). The predominant focus of studies has been on 

assessing the clinical potential of such neuroimaging techniques to understand the aberrant 

structural brain changes associated with psychotic and affective disorders, as well as finding 

potential biomarkers. 

SCZ and CHR 

It has long been recognized that SCZ is characterized by clinical and cognitive changes, along 

with structural anomalies in the brain. This understanding dates to Kraepelin's early observations, 

particularly documented in 1919, where he speculated on the potential cellular damage to the 

cortex associated with the disorder. However, since the late 1920s, pneumoencephalographic 

studies have revealed that enlarged ventricles are a characteristic feature among patients with 

chronic SCZ, at a macroscopic level (Bleuler, 1950; “Dementia Praecox and Paraphrenia.,” 1972). 

Moreover, since the 1990s, SCZ has been increasingly perceived as a psychiatric disorder 
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characterized by “disrupted structural brain connectivity” (Friston & Frith, 1995; Pettersson-Yeo 

et al., 2011). These findings increased the interest in studying the brain structural changes in SCZ 

patients. Among all the structural brain abnormalities observed in SCZ, alterations in GMV change 

have been examined thoroughly, specifically using VBM (Kubicki et al., 2002; Shenton et al., 

2001). A plethora of studies have shown that patients with SCZ have consistently shown GMV 

deficits in extensive brain regions relative to the HC individuals specifically in the frontal and 

temporal lobe, cingulate and insular cortex and the thalamus. Moreover, these patients exhibit 

enlarged lateralized ventricular structures and diminished regional brain volume, particularly in 

the frontal operculum and lateral temporal lobes (Fornito et al., 2009; Shenton et al., 2001) 

(Fornito et al., 2009; Shenton et al., 2001). Furthermore, recent review article has highlighted 

GMV abnormalities progressing from first episodic stages to later chronic stages in SCZ showing 

lower GMV relative to controls in the thalamus, bilateral insular cortex as well as left 

parahippocampal, anterior cingulate, middle frontal, postcentral gyri (Howes et al., 2023). 

Interestingly, research has been directed towards identifying the anatomical brain changes 

occurring during first-episode SCZ specifically since these findings may indicate a progression of 

brain changes after disease onset, which may be beneficial for early disease diagnosis. These 

findings have revealed that CHR individuals display similar volumetric abnormalities akin to 

patients with SCZ, specifically cortical brain abnormalities (Borgwardt et al., 2008; Damme et al., 

2020). However, whether these brain changes persist unchanged or progress throughout the 

disease course, remains elusive. While recent findings indicate that these brain changes are less 

widespread in early stages with gradual increase in the GMV deficits at later disease course. 

Specifically, longitudinal analysis using neuroanatomical datasets of patients with SCZ across 25 

years have revealed that initially brain-functional changes are brain region-specific, while both 

functional and GMV-structural abnormalities occur later and affect broader brain regions, while 

abnormalities in structural connectivity emerge during the later stages of SCZ disease 

progression (Shen et al., 2023). 

Depression 

Meta-analyses have revealed that adult individuals displaying past experiences of depression 

exhibit lower GMV specifically in frontal cortical regions, specifically the prefrontal cortex (PFC)   

and orbitofrontal cortices (OFC) dorsal striatal areas, including the putamen and caudate nucleus 

as well as limbic regions such as the amygdala, anterior cingulate cortex and hippocampus 

compared to HC individuals without depressive episodes (Arnone et al., 2012, 2016; Vandermeer 

et al., 2020). Furthermore, ROD individuals exhibit GMV alterations in brain regions, including 

parietal-temporal regions, PFC, thalamus, insular lobe, cerebellum, basal ganglia and limbic 

structures (Amidfar et al., 2021).  

Moreover, it has been observed that brain abnormalities observed in depression samples are not 

as extensive and widespread as those seen in association with SCZ. This is because SCZ is 

associated with GMV abnormalities in a broader set of brain regions (Bora et al., 2011). Yet, there 
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are considerable overlapping patterns of brain abnormalities across the 2 diagnostic categories 

such as in the hippocampus, PFC, and insula which are recurrent in subjects with MDD or SCZ 

as compared HC individuals, notably at early stages of these disorders as well (Busatto, 2013). 

1.1.3 Neurobiological pathways 

Kraepelin's last contribution, "The Manifestations of Insanity", towards psychiatric nosology was 

pivotal in delineating SCZ and depression as distinct diagnostic entities (Heckers et al., 2022; 

Kraepelin & Beer, 1992). This work has been both acknowledged and critiqued by numerous 

researchers, due to the increasing evidence indicating substantial overlap among major 

psychiatric disorders in terms of genetic risk factors, endocrine and metabolic markers, brain 

structure and function, clinical symptomatology, and cognitive impairments (Heckers et al., 2022).  

Schizophrenia 

The neurobiology underlying the symptoms seen in patients with SCZ has consistently been 

linked to neurotransmitters and their pathways (Brisch et al., 2014; Howes et al., 2023). 

Particularly, dysfunction in presynaptic subcortical region-specific dopamine transmission 

appears to play a central role in mediating psychosis in SCZ(Brisch et al., 2014; Howes et al., 

2023). Therefore, changes in dopamine function have been correlated with the manifestation of 

delusional and psychotic-like symptoms in individuals with SCZ. Furthermore, the thalamus, 

recognized as a pivotal relay station for transmitting information to and from the cerebral cortex, 

plays a critical role in the primary circuit responsible for psychotic symptoms, which connects the 

thalamus, cerebral cortex and striatum. Any alteration in these brain regions has been noted to 

disrupt the entire network, leading to the manifestation of psychotic symptoms. In particular, 

dysfunction in the thalamus and cerebral cortex predominantly affects the striatum and dopamine 

D2 receptors causing hallucinations and delusional symptoms (Luvsannyam et al., 2022). 

Dopaminergic neurons release dopamine and glutamate and gamma-aminobutyric acid (GABA) 

which are the co-transmitters during synaptic signaling. Glutamate and GABA act in the excitatory 

inhibitory pathways respectively, aiding in the transmission of dopamine neuronal activity to the 

striatum. Furthermore, the antagonists of the key glutamate N-methyl-D-aspartate (NMDA) 

receptor such as ketamine and phencyclidine, have the potential to disrupt thalamic circuitry, 

resulting in cognitive dysfunction and psychotic symptoms (Luvsannyam et al., 2022).  

In addition, significant contributions of genetic factors to the etiology of SCZ have been 

demonstrated. Genome-wide association studies (GWAS) have uncovered hundreds of distinct 

loci of genes implicated in SCZ. These findings suggest a highly pleiotropic genetic risk across 

major psychiatric disorders, indicating common risk variants shared between SCZ, MDD, bipolar 

disorder and autism spectrum disorder. Numerous suspected genetic loci predispose individuals 

to the neurological disruptions observed in SCZ. Notably, genes such as COMT, DISC1, RGS4, 

PPP3CC, ZDHHC8, AKT1, neuregulin, dysbindin, G72/G30, TRAR4, and alpha-7 nicotinic 
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receptor genes have been associated with SCZ, primarily through their roles in dopamine 

regulation, thereby contributing to the underlying pathogenesis of the disorder (Cannon, 2005). 

Depression 

The neurobiology of depression has been associated with alteration in levels of one or more of 

the monoamines, including serotonin, norepinephrine and dopamine, commonly referred to as 

the monoamine hypothesis. 5-HT1A, a serotonin auto-receptor existing on the soma and 

dendrites of 5-HT neurons is a crucial element which controls the 5-HT release all over the brain. 

It functions by exerting a negative feedback influence on the firing activity of these neurons (Blier 

et al., 1998). Dysfunctioning in this 5-HT1A receptor is vital in the pathophysiology of MDD 

(Kaufman et al., 2016). These studies indicate that variations in the 5-HT transporter are 

associated with heightened reactivity of the amygdala, potentially causing negative attentional 

bias and may further contribute to the development of cognitive distortions such as 

personalization, overgeneralization and exaggeration in patients suffering from depression. 

Similarly, depletion of an essential amino acid, tryptophan, a crucial element for 5-HT synthesis, 

has been associated with inducing depressive symptoms in such patients (Blier et al., 1998; 

Kaufman et al., 2016). 

Depression has also been conceptualized as disorder of the mesolymbic system (Nestler & 

Carlezon, 2006). This system comprising dopaminergic neurons originating in the ventral 

tegmental area and connecting to the nucleus accumbens, plays is pivotal in mediating the reward 

pathway and motivation. Several lines of evidence implicate altered dopaminergic transmission 

and dysfunction within the mesolimbic pathway in the pathophysiology of depression (Dean & 

Keshavan, 2017). In this perspective, depression emerges when individuals encounter significant 

stress or loss, resulting in a suppression of the reward pathway, which manifests in symptoms 

such as anhedonia and despair. Correspondingly, studies suggest that chronic stress triggers 

adaptive changes within the dopaminergic mesolimbic pathway. These alterations are associated 

with disturbances in the regulations of brain-derived neurotrophic factor and impaired 

neuroplasticity (Nestler & Carlezon, 2006). Furthemore, GWAS have extracted 178 genetic risk 

loci and suggested more than 200 candidate genes linked to MDD. Amongst these, genes with 

zinc finger domains have been identified (Flint, 2023).  

1.2 Somatic comorbidities associated with psychiatric 

disorders 

1.2.1 Overview of associations and implications 

Due to the multifactorial etiology of common psychiatric disorders, medical comorbidities are a 

common occurrence among patients with psychiatric disorders compared to general populations. 

Particularly, people with psychiatric disorders often have somatic comorbidities. Infact, individuals 
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with somatic diseases exhibit higher susceptibility towards developing psychiatric disorders. 

Conversely, the likelihood of having a somatic disease is approximately doubled among those 

with psychiatric disorders as compared to HC individuals (Weiss et al., 2020). Notably, 

approximately 30-50% of individuals with psychiatric disorders present somatic comorbidities, 

such as cardiovascular disease, type II diabetes, respiratory issues and lung diseases (Dornquast 

et al., 2017). For example, depression occurs in comorbidity with many somatic diseases such as 

patients with myocardial infarction (40–65%), patients with cancer (25%), patients with 

cerebrovascular diseases (25%), multiple sclerosis relative to healthy individuals (Kupfer & Frank, 

2003). Additionally, among individuals with SCZ and CHR, the co-occurrence of somatic 

diseases, particularly associated with cardiovascular diseases, is a major contributor to the high 

mortality rate (Abdullah et al., 2020; De Micheli et al., 2024; Dieset et al., 2016).  

Metabolic syndrome, typically characterized as a cluster of risk determinants associated with the 

development of cardiovascular diseases, has been observed in approximately every second 

patient aged above 45 years with SCZ (DE HERT et al., 2009; Wilson et al., 2005). Common 

features of metabolic syndrome include obesity, insulin resistance, elevated blood sugar levels, 

low high-density cholesterol, Type-II diabetes, dyslipidemia, and fatty liver. This clustering of 

health conditions in individuals with cardiovascular disease ultimately contributes to higher 

mortality rates observed specifically in patients with psychiatric disorders (Shen et al., 2023). 

Several factors contribute to the prevalence of metabolic comorbidities in psychiatric disorders, 

including the psychopharmacological effects of medications and suboptimal lifestyle changes 

such as insufficient exercise, inadequate dietary patterns, substance abuse and elevated rates of 

smoking (Penninx & Lange, 2018). One of the most prevalent risk factors frequently addressed 

in research on metabolic syndrome is obesity. The onset of obesity and weight gain is also 

commonly observed in the course of psychiatric disorders (Chao et al., 2019). Furthermore, there 

is a notable prevalence of obesity among individuals with psychiatric disorders who develop 

metabolic syndromes during their lifespan making it crucial to investigate obesity within the 

context of psychiatric disorders.  

A notable correlation is the association between psychiatric medications and weight gain, which 

often leads to obesity. Yet, it remains unclear whether the increased incidence of metabolic 

syndrome observed in psychiatric patients is primarily due to poor lifestyle choices, medication 

side-effects or the disease condition itself. Nevertheless, drug-naive individuals experiencing their 

first episode of SCZ have been shown to exhibit lower levels of fasting glucose tolerance and 

higher levels of plasma glucose, insulin, and cortisol compared to HC individuals, suggesting that 

the association between psychiatric disorders and obesity may be independent of medication 

effects (Ryan et al., 2003).  

Neurobiological studies have indicated the existence of independent associations between 

psychiatric disorders and somatic illnesses, attributed to shared inflammatory pathways (Meyer 

et al., 2020; Najjar et al., 2013). Additionally, genetic studies have provided evidence of pleiotropy 

between somatic illness and psychotic disorders, suggesting a potential underlying mechanism 
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(Andreassen et al., 2023). Hence, there is a strong imperative to identify biological markers for 

stratifying patients with psychiatric disorders and to uncover the biological underpinnings of 

somatic comorbidity. Given the robust association between obesity and the development of 

metabolic syndromes, it is imperative for researchers to consider obesity as a trait to understand 

somatic comorbidities in psychiatric disorders. This is particularly crucial to address the high 

prevalence of metabolic syndromes and to implement effective mitigation strategies. Moreover, 

obesity, a central component of many somatic diseases, has been intricately linked to psychiatric 

disorders through clinical observations and shared biological mechanisms (Chao et al., 2019; 

Lopresti & Drummond, 2013; Weiss et al., 2020). Such endeavors will enhance the clinical 

delineation of psychotic conditions, enabling innovative intervention strategies aimed at mitigating 

such comorbidity risks, thereby reducing both mortality and morbidity rates. 

Obesity 

As per the WHO, obesity is a complex disease marked by an increase in body fat mass thereby 

causing health issues (Panuganti et al., 2024). Over the last decades, it has taken the form of a 

global pandemic and poses a major public health problem (Weiss et al., 2020). Moreover, it has 

been exacerbated by the COVID-19 pandemic, contributing to a substantial increase in mortality 

(Arulanandam et al., 2023; Steenblock et al., 2022). Based on the survey conducted by WHO in 

2022, approximately one in every eight individuals suffers from obesity worldwide. Approximately 

20% of the world's population are overweight, 11% are obese as well as 43% of adults above 18 

years of age are overweight and 16% of adults are obese. Furthermore, 37 million children under 

5 years worldwide are overweight (Phelps et al., 2024). The same survey showed that the 

prevalence of obesity has doubled in adults and, specifically in children and adolescents, obesity 

has become four-times in the past three decades (Phelps et al., 2024). The alarming rise of 

obesity worldwide is concerning, especially due to its associations with multiple 

noncommunicable diseases such as the diabetes, cardiovascular diseases, respiratory diseases, 

cancers as well as psychiatric disorders. In 2019, there were 5 million deaths among individuals 

affected by both overweight or obesity and noncommunicable diseases. Additionally, obesity can 

affect reproductive health, contributing to conditions like hyperthyroidism, polycystic ovary 

syndrome and disturbances in sleep patterns. Over the past decade, researchers have observed 

a greater incidence of obesity among individuals with psychiatric disorders compared to control 

groups. Moreover, obese individuals with psychiatric disorders tend to display higher treatment 

resistance than non-obese patients. However, interventions such as weight loss have shown 

promise in ameliorating the condition (Lopresti & Drummond, 2013). 

Body mass index 

In common practice, body mass index (BMI) is a widely accepted scale to measure and categorize 

the different levels of obesity. The BMI is computed by dividing weight measured in kilograms (kg) 

by square of height measured in meters (m2) (Wolin, 2009). The concept of using height and 

weight was first devised by Adolphe Quetelet between 1830 and 1850. While conducting studies 
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to understand human growth, Quetelet observed that during infancy and puberty, “the weight 

increases as the square of the height”, which was then termed as the Quetelet Index (Eknoyan, 

2008). The modern-day term ‘body mass index’ was later coined by Ancel Keys in 1972 (Keys et 

al., 1972). In his 1972 article, Keys promoted the usage of BMI as a measure to study body 

fatness and stated that “"if not fully satisfactory, at least as good as any other relative weight index 

as an indicator of relative obesity" due to the simple calculation as compared to the other used 

measures (Keys et al., 1972). 

Classification of obesity based on BMI scale 

According to the guidelines provided by the WHO broadly an adult with a BMI of less than 18.5 is 

considered as underweight, which may indicate eating disorders, malnutrition or other health 

issues. Next, a BMI of 25 or more is classified as overweight and a BMI of 30 or more is 

recognized as obese (Organization, 2005). A basic categorization has been outlined in Table 1. 

However, these scales can vary for different countries.  

Table 1. Basic categorization of the BMI scale. 

Category BMI (kg/m2) 

Underweight (Severe thinness) < 16.0 

Underweight (Moderate thinness) 16.0 – 16.9 

Underweight (Mild thinness) 17.0 – 18.4 

Normal range 18.5 – 24.9 

Overweight  25.0 – 29.9 

Obese (Class I) 30.0 – 34.9 

Obese (Class II) 35.0 – 39.9 

Obese (Class III) ≥ 40.0 

Note. BMI = Body mass index 
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Causes of obesity 

The accumulation of fat leading to obesity stems from a physiological imbalance in energy, 

characterized by higher calorie intake and lower calorie expenditure. Excess energy is stored in 

the fat cells, a common characteristic of obesity pathology. Various factors contribute to the 

pathology of developing obesity such as the quality of food, genetic, epigenetic and environmental 

factors (X. Lin & Li, 2021). 

Food intake 

The primary cause of fueling the sudden increase in global obesity is due to the widespread 

availability of energy-dense food and a sedentary lifestyle, resulting in surplus energy 

accumulation as compared to expenditure, leading to fat accumulation (Yoo, 2018). Furthermore, 

the significant rise in fast-food culture, which promotes the consumption of sugary and fatty foods 

that are often irresistible in taste, stimulates the brain's reward region. Brain’s reward region is 

also stimulated by intake of addictive substances such as heroin and cocaine. Put simply, foods 

which are high in sugar and are fat-rich are tailored to impact our brains much like drugs, thus, 

making them addictive  (Sadeghirad et al., 2016). Individuals with obesity show higher levels of 

glucose, triglycerides, cholesterol and low-density lipoprotein levels and lower levels of high-

density lipoprotein which are primary risk factors of somatic diseases such as cardiovascular 

disease. Most fast-foods are rich in cholesterol, trans-fat, and sugar, which can potentially 

contribute to obesity (Stadler & Marsche, 2020). 

Genetic and epigenetic factors 

Moreover, both genetic and epigenetic factors play vital roles in causing obesity. Some individuals 

show higher genetic susceptibility toward fat accumulation, attributed to problematic interactions 

between the homeostatic and reward circuits resulting in higher caloric intake. Increasing studies 

are showing that family history, lifestyle and psychological impact the likelihood of becoming 

obese due to fat accumulation or poor exercise habits. A cross-sectional study revealed that a 

child whose both the parents are obese has is ten times more susceptible to develop obesity as 

an adult, while a child with only one parent as obese is three times more susceptible to develop 

obesity as compared to a child whose parents are not obese (Corica et al., 2018). Furthermore, 

twin studies have revealed that over 40-70% of differences in obesity results from genetic factors. 

GWAS studies have identified 74 key genes for obesity. These genes are extensively 

interconnected and enriched in various biological processes associated with energy expenditure 

and homeostasis (Ang et al., 2023). Primarily, genetic mutations in the genes associated with 

obesity may lead to disruption of the homeostatic pathway causing more hunger, increased caloric 

intake, reduced control leading to overeating, causing fat accumulation and increased fat storage 

causing obesity (Koochakpour et al., 2019). Interestingly, epigenetic changes during early 

postnatal development may implicate the risk of obesity for a child, potentially leading to 

transgenerational transmission of this risk (Herrera et al., 2011). 
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Gut microbiota 

Recent evidence has implicated the role of having healthy gut microbiome as a key to staying 

healthy without developing obesity. The gut microenvironment in obese individuals have been 

shown to support a more diverse range of viral species compared to leaner hosts. This 

environment is prone to generating pathogenic variants causing severe disease. Moreover, 

mouse studies have shown that germ-free mice with normal microbiota and normal total body fat 

gained body fat after cecal colonization with gut microbes, suggesting a role in metabolic rates 

and adipose tissue deposition (Bäckhed et al., 2004). 

Although the exact causing mechanisms of obesity remains elusive, recent findings have 

suggested discrepancies in the hypothalamic–pituitary–adrenal axis (HPA) axis leads to the 

energy-homeostasis-imbalance. The imbalance affects brain regions such as the reward system, 

which are also implicated in many psychiatric disorders, making it necessary to address obesity 

within the context of psychiatric disorders. 

Obesity in psychiatric disorders 

Both overweight and obese individuals have a consistently higher risk of developing psychiatric 

disorders (Blasco et al., 2020). Conversely, patients suffering from psychiatric disorders are at 

risk of being overweight or obese (Mangurian et al., 2016). Patients with psychiatric disorders 

who exhibit higher risk factors for somatic diseases, including physical inactivity, poor diet and 

obesity have an elevated mortality risk of ~10 years earlier compared to the general population, 

primarily attributed to coexisting medical comorbidities (Schneider-Thoma et al., 2019).  Clinical 

studies consistently showed an association of higher BMI with mental disorders such as SCZ, 

depression, bipolar, personality and anxiety disorders (Afzal et al., 2021). Furthermore, the 

prevalence of obesity and diabetes is also 2 to 3 times higher in individuals with psychiatric 

disorders than in the general population (Bellass et al., 2021).  

1.2.2 Common neurobiological pathway between obesity and psychiatric 

disorders 

Several reports have shown that both obesity and psychiatric disorders share multiple biological 

pathways, such as the neuroinflammatory pathway, hypothalamic–pituitary–adrenal (HPA) axis 

and the gut–brain axis (Martins et al., 2019). 

Neuroinflammatory pathway 

In obesity, an increase in adipocyte levels triggers the recruitment of immune cells, which in turn 

stimulates the production of inflammatory mediators (Gregor & Hotamisligil, 2011). Subsequently, 

adipocytes release cytokines that can reach the central nervous system, leading to 

neuroinflammation, particularly affecting regions like the hypothalamus and hippocampus 

(Castanon et al., 2015). Consumption of a high-fat diet, particularly one rich in saturated fats, has 
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been linked to inflammation in the hypothalamus, resulting in apoptosis of anorexigenic neurons 

within the arcuate nucleus. These neurons are vital for regulating satiety, and their reduced 

activity contributes to gain in weight (Velloso, 2009). Furthermore, peripheral cytokines can 

influence various processes within the central nervous system, including neurotransmitter 

metabolism and neuroendocrine activities, potentially leading to mood changes and behaviors 

commonly associated with depression (Dantzer et al., 2008). 

HPA axis 

Neuroendocrine changes are often reported in obesity, specifically concerning the HPA axis and 

with a particular involvement of the stress hormone, cortisol. This is noteworthy because 

activation of the stress system is commonly viewed as a perpetuating factor for mood episodes, 

worsening of psychosis and decline in cognitive functioning (Martins et al., 2019).  

Gut microbiota 

Emerging evidence indicate that the gut microbiota influences both brain function and obesity 

through its regulation of inflammatory responses and the HPA axis. It is possible that the 

development of obesity and psychiatric disorders stems from changes in the composition of gut 

microbiota, influenced by factors such as diet, medications, concurrent illnesses and genetic 

predispositions (Baothman et al., 2016). Changes in the gut environment may trigger immune cell 

activity in the intestinal lining, potentially affecting the communication between the gut-brain axis. 

This intricate relationship involves interactions between the gut, the brain and components such 

as the vagus nerve and enteric system. Notably, alterations in gut microbiota have been linked to 

increased permeability of the gut to large molecules, potentially leading to the translocation of gut 

bacteria. This phenomenon is commonly observed in individuals with obesity and those 

experiencing depression. 

 

Figure 1. Obesity and neurobiological underpinnings (adapted from (Baothman et al., 

2016)) 
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1.3 Brain-based ageing in psychiatric disorders 

1.3.1 Biological aspects of ageing 

The process of ageing is described as a gradual decline in function over time that is marked by 

the progressive deterioration of physiological integrity which diminishes an individual's overall 

functionality and increases susceptibility to mortality (López-Otín et al., 2013). In simple terms as 

we age, we undergo changes in our body with respect to cells, tissues and our organs. The 

biological aspect of ageing is a highly complex process, which is yet to be fully unveiled. Multiple 

factors and biological processes are involved in the ageing process. Of which López-Otín et al. 

(2013) narrowed down the nine hallmarks of ageing (López-Otín et al., 2013). Epigenetic 

alterations, genomic instability, loss of proteostasis, telomere attrition contribute to cellular 

damage which is commonly observed in ageing. In response to this damage, nutrient sensing 

becomes dysregulated, stem cell exhaustion, mitochondria dysfunction, altered intercellular 

communication and cellular senescence often occur ultimately contributing to the observed 

process of ageing (López-Otín et al., 2013; Moskalev et al., 2013). Interestingly, humans do not 

undergo biological ageing uniformly, as observable differences in different ageing markers such 

as hair loss, skin wrinkles, and presbyopia, are apparent (Cole et al., 2019a). 

Age-related deterioration serves as the primary risk factor for multiple health ailments such as 

diabetes, cardiovascular disorders, psychiatric conditions, and neurodegenerative diseases. 

Interestingly, these ailments have varying degrees of age of disease onsets. Consequently, 

biogerontological researchers are focusing on assessing the biological facets of ageing, with the 

goal of identifying age-related biomarkers that offer superior predictive capabilities for disease 

risks compared to chronological age alone (Cole et al., 2019a). 

Biological age 

The concept of biological age, distinctive from chronological age, first emerged from epigenetics 

research (Jackson et al., 2003; Oswald, 2000). Initially, biological age was loosely defined as the 

gap between a person's perceived life expectancy and the average life expectancy of a population 

cohort (Oswald, 2000). However, recent advancements have yielded a more nuanced 

comprehension of biological age. It is now evaluated by examining the interaction of multiple 

variables such as genetic factors, environmental factors influencing the epigenetics, lifestyle 

choices, overall health status, and lifetime experiences. This evaluation aims to pinpoint particular 

health characteristics and risk profiles associated to age-related conditions (Bocklandt et al., 

2011).  

1.3.2 Brain changes during ageing 

The pioneering work by Pfefferbaum et al. (1994) established a milestone where they provided 

first evidence of brain changes with age. By using simple segmentation methods on MRI brain 
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scans, their study quantified brain morphometric changes in the brain from infancy to late 

adulthood (Pfefferbaum et al., 1994). They observed that GMV increases steadily until the age of 

four, after which it gradually decreases until around 70 years of age. In contrast, white matter 

volume exhibits a different trajectory. White matter volume continues to increase until the age of 

twenty, at which point it reaches a plateau. Subsequently, cerebral spinal fluid remains relatively 

stable until an individual reaches their twenties, after which it steadily increases. This seminal 

study laid the foundation for understanding the dynamic changes in brain morphometry across 

different stages of life, providing relevant perspectives into the process of ageing and the 

development of the human brain (Pfefferbaum et al., 1994). However, the underlying mechanisms 

linking brain morphology, function and causative factors remain to be fully elucidated. 

Cognitive decline with ageing 

The initial observation regarding the nexus between ageing and brain-functioning began to 

manifest nearly a century ago, particularly in the 1930s, when scholars initially observed 

decrement in cognitive functioning with progressing age (Miles, 1933). By 1976, Horn and 

Donaldson's work indicated that changes in cognitive functioning associated with ageing are 

domain-specific. Their work also proposed that certain facets of intelligence improve over 

adulthood, or at least resist decline in specific intelligence domains (Horn & Donaldson, 1976). 

Later, Salthouse et al. associated advancing age with a decline in the speed of processing 

information leading to impairments in cognitive functioning (Salthouse, 1996). By the 2000s it was 

established that chronological ageing leads to less efficiency in our mental processes and that 

the deficits in memory, attention and cognitive control are the core aspects of cognitive ageing 

(Hasher & Zacks, 1988). Furthermore, the concept of cerebral ageing emerged with evidence 

indicating that with an increase in age, the brain volume decreases, particularly in the frontal 

cortex. Moreover, older adults recruit additional brain regions while performing cognitive tasks 

which depend on frontal function when compared to young individuals (Park et al., 2001). Later, 

gradual advancements in neuroimaging techniques yielded key insights, such as the association 

between prefrontal volume loss and decreased memory and executive performance (Hedden & 

Gabrieli, 2004). 

Brain atrophy 

As mentioned before, significant changes occur in the structure and function in the brain of 

individuals, leading to cognitive decline and an elevated susceptibility to neurodegenerative 

conditions including dementia. Advancements in MRI, specifically VBM, a neuro-imaging 

technique used for quantifying volumetric variations in brain areas by using sMRI images, have 

enhanced our insights on typical and atypical neurodevelopment with respect to ageing. 

Specifically, the brain undergoes localized and non-linear patterns of highly synchronized 

phenomenon during its structural development and ageing processes. Brain changes can be 

progressive due to processes such as cell growth and myelination but can also be regressive due 

to processes such synaptic pruning processes during brain development (Spear, 2013). 
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Additionally, brain changes can lead to widespread atrophy during ageing (Franke et al., 2020; 

Franke & Gaser, 2019). In this context, atrophy refers to a decrease in the size or volume of 

specific brain tissue, a condition often associated with neurological conditions or ageing. Region-

specific atrophy indicates consistent patterns of structural brain alterations in the throughout 

development and ageing, with certain regions of brain exhibiting more pronounced changes than 

other regions (Franke et al., 2020). Importantly, there may exist discrepancies between one HC 

individual’s brain alterations as compared to the average brain alterations of a population with 

respect to GMV, white matter volume and cortical thickness. Such patterns of deviations from 

typical healthy brain-ageing profiles could imply potential underlying risk of developing cognitive 

ageing or age-associated brain diseases, prompting further investigation to study these brain 

changes. 

1.3.3 Brain age gap estimation (BrainAGE) framework 

A growing body of research has successfully established the framework for estimating 

individualized brain-based age by using different modalities of high-dimensional neuroimaging 

data such as structural and functional images (Franke et al., 2010, p. 200; Franke & Gaser, 2019; 

Koutsouleris et al., 2014). This method usually includes multiple parameters for each individual's 

brain images. Subsequently, by employing pattern recognition techniques, it is feasible to quantify 

the structural development and ageing of the brain across various stages of life. Unlike univariate 

methods, multivariate methods, as discussed later in section 1.4 Machine learning as a tool to 

capture comorbid patterns, can identify and quantify both subtle and extensive deviations in the 

region-specific or voxel-wise brain structure throughout the brain, tailored to the individual's age 

(Franke & Gaser, 2019). 

The overarching goal of a brain-age framework is to accurately estimate an individual's brain-

based age, which serves as a biological indicator and has captured the specific structural brain 

patterns associated with age. To achieve this, the brain age model is developed using voxelized 

MRI scans from a large sample of cognitively HC individuals and identify the brain-ageing 

signatures. Subsequently, the age predictor is employed on new individuals to estimate 

individualized brain ages based on their MRI scans. Finally, the difference between individual’s 

estimated brain age and chronological age reveals the brain age gap estimation (BrainAGE) score 

(Franke & Gaser, 2019). A positive BrainAGE score indicates advanced structural brain-ageing 

or accelerated ageing, while a negative BrainAGE score indicates delayed structural brain-ageing 

or decelerated ageing. For example, if an individual who is chronologically 55-year-old, scores 

BrainAGE of +5 years, it indicates that the structural brain properties of the given individual’s brain 

resemble to the structural brain properties of a 60-year-old reference person. This finding may 

indicate accelerated ageing in the individual. Conversely, if a 55-year-old individual scores 

BrainAGE of -5 years, the person’s brain properties resemble to a person who is chronologically 

50-year-old. 
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BrainAGE and its association with general health factors 

Several neuroimaging studies have examined aspects of brain-ageing with respect to general 

health factors. Conventionally, a lower BrainAGE score is considered as a healthy indicator during 

adolescence while at later stage (adulthood and later), a lower BrainAGE score is considered as 

healthy. Based on this, several studies have focused to examine and link BrainAGE with general 

health factors. During early developmental stages or adolescence, higher BrainAGE has been 

linked to better cognitive functioning, whereas a lower BrainAGE has been associated with heart 

defects and premature birth (Everwijn et al., 2019). During adulthood, various stress-inducing and 

lifestyle factors have been associated with brain-ageing alterations. Specifically, greater 

BrainAGE scores has been associated to factors such as early life stress inducers, high alcohol 

intake, smoking, and health issues like cardiometabolic risks and physical disorders (Angebrandt 

et al., 2022; Beck et al., 2022; Treur, 2022). Conversely, engaging in meditation, physical 

exercises and engaging in music have been linked to lower BrainAGE in adults (Adluru et al., 

2020; Bittner et al., 2021; Luders et al., 2016; Rogenmoser et al., 2018). Additionally, particularly 

within the female population, physiological occurrences such as the monthly cycle and 

pregnancies have been linked to alterations in BrainAGE (de Lange et al., 2020). 

1.3.4 Application of BrainAGE framework to psychiatric disorders  

After the initial successful implementation of the BrainAGE framework to study the brain atrophy 

in patients with neurodegenerative disorders such as Alzheimer’s Disease and furthermore to 

predict the individuals transitioning from mild cognitive impairments to Alzheimer's disease, many 

studies have used the BrainAGE framework to study brain atrophy in other neurodegenerative 

conditions such as dementia as well as in psychiatric disorders such as depression, SCZ, bipolar 

disorder (Franke et al., 2010; Gaser et al., 2013; Koutsouleris et al., 2014). The surge in interest 

in brain-age research has been driven by compelling evidence revealing biological connections 

between psychiatric disorders and premature ageing (Pearson et al., 2022). 

The utilization of the brain age prediction model in individuals diagnosed with psychiatric disorders 

such as SCZ, CHR, and depression consistently reveals positive BrainAGE scores, indicative of 

accelerated brain-ageing. Neuroimaging studies consistently report elevated BrainAGE scores in 

SCZ patients compared to HC individuals, with scores ranging between +2.6 and +7.8 years 

across various studies (Constantinides et al., 2023). However, findings regarding depression are 

inconsistent, with BrainAGE scores varying between +4.0 years to showing no significant 

differences relative to HC individuals (L. K. M. Han et al., 2021). Furthermore, longitudinal data 

analysis unveils a progressive increase in BrainAGE scores during the initial years following the 

onset of illness. This temporal trajectory underscores the dynamic nature of brain-ageing in 

psychiatric disorders and emphasizes the importance of early intervention and monitoring 

(Schnack et al., 2016). Structural brain variations in common psychiatric disorders have been 

elaborately discussed in Chapter 3 



26 

 

 

 

Neurobiology of ageing 

The most accepted theory for observing accelerated brain-ageing trajectories in such patients is 

due to earlier loss of GMV with the onset of psychosis or depression. Immunological findings have 

revealed that elevated proinflammatory cytokines, arising due to genetic predisposition or as 

response to environmental determinants, may cause dysfunctioning astrocytes and microglia 

activation, causing dendritic pruning and synaptic changes. Immune dysfunction plays a critical 

role in the development of psychiatric disorders such as both SCZ and depression, where 

heightened levels of cytokines such as interleukin 6 and C-reactive protein have been found. The 

heightened levels of cytokines are often associated with the loss of GMV, a phenomenon 

commonly observed during the process of ageing as well (Michaud et al., 2013).. 

1.3.5 Need to address BrainAGE in psychiatric disorders 

BrainAGE analysis can provide insights into structural brain alterations that occur early in the 

course of psychiatric disorders, potentially enabling early detection and diagnosis. Identifying 

these changes at an early stage may facilitate timely intervention treatment initiation, which is 

crucial for improving patient outcomes. The ageing process significantly impacts the brain, and 

individuals with chronic psychiatric or neurological disorders inevitably experience its effects over 

the course of their illness. Assessing the biological-age of the brain in individuals with psychiatric 

disorders holds promise for enhancing our understanding of disease susceptibility and resilience. 

This framework allows us to assess how the different psychiatric conditions influence the brain-

ageing processes and further refine outcome predictions by capturing individual variations 

between ageing and specific disease condition (Cole et al., 2019a). This approach has the 

potential to offer valuable insights into disease progression, inform personalized treatment 

strategies and ultimately improve patient care and outcomes (Cole et al., 2019b). 

1.4 Machine learning as tool to capture the comorbid patterns 

1.4.1 History of machine learning 

ML can be defined as a computational strategy enabling computer systems/algorithms/statistical 

models to automatically learn from data patterns with the hope of making meaningful and optimal 

decisions. The idea of artificial intelligence and machine learning was introduced during the 1950s 

and 1960s once electronic computers became prevalent and facilitated the creation of statistical 

models and the analysis of extensive datasets. From the beginning, the development of ML 

branched into three major categories such as the classical work in symbolic learning, as well as 

neural networks (Kononenko, 2001). The past two decades saw a vast methodological 

advancement of these ML branches (Kononenko, 2001). The use of statistical methods to identify 

patterns, including techniques such as Bayesian classifiers, k-nearest neighbors, discriminant 

analysis has shown promise. Additionally, the inductive learning methods such as the decision 
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trees has been noteworthy such as the chabox ELIZA regarded as the “computer therapist” 

(Weizenbaum, 1966). The past one decade has seen noteworthy advancements in artificial neural 

networks, such as the multilayered feedforward neural network which have been developed and 

applied across diverse fields. Interestingly, the idea of ML was based on a model of cell-cell 

interaction in the brain, which was created in 1949 by Donald Hebb as described in the book “The 

Organization of Behavior” where Heb’s perceptions on inter neuron communications has been 

described (Hebb, 1949). 

Advancements of ML in health care sector 

The application of ML methods in the field of medical sciences and health sector commenced 

shortly after the foundational concepts of ML were established. The focus in the field of artificial 

intelligence during the 1950s and 1970s was to develop ML algorithms to make inferences on 

specific tasks which were previously exclusive to human decision-making abilities. By the 1960s, 

ELIZA, a natural language processing algorithm, was developed. ELIZA used pattern matching 

techniques to mimic human conversation (Weizenbaum, 1966). After a slow phase in artificial 

intelligence development in medicine for three decades, often termed as “artificial intelligence 

winter”, the past two decades artificial intelligence and specifically ML witnessed seminal 

development in multiple sectors of health care. Accessibility of patient records to natural language 

processing algorithms allowed these tools to identify patient-specific information and facilitate 

precision medicine responses. By 2017, Bakkar et al identified RNA-binding proteins which were 

altered in amyotrophic lateral sclerosis, by the help of the supercomputer, Watson (Kaul et al., 

2020). The ML have performed comparable or, at times, superior to clinicians, specifically in 

pattern recognition tasks, including the detection of skin cancer, lung cancer and eye disease 

(Kaul et al., 2020). Furthermore, companies have also already included ML algorithms in their 

ultrasound devices facilitating robust detection of breast cancer (e.g., Samsung, RS80A) (Cazacu 

et al., 2019). Importantly, the past decade witnessed widespread application of ML methods for 

detection of psychiatric disorders. 

1.4.2 Use of machine learning in psychiatry 

Etiologically, psychiatric disorders are heterogenous showing comorbid symptoms as compared 

to other neurological disorders making their diagnosis a challenging task. ML algorithms are 

beneficial in solving this challenge due to their robustness in detecting specific patterns. 

Diagnostic models assist clinicians in identifying the disease more accurately, and prognostic 

models are useful to predict the development course of the disease. The combined integration of 

ML and other branches, specifically neuroimaging in the past decade unlocked the potential of 

recognizing disorder-specific patterns, which otherwise may go unnoticed by clinicians. The 

efficacy ML methods in psychiatry have greatly influenced research towards the fields of early 

recognition, a subfield of psychiatry emphasizing on early diagnosis as well as in the emerging 

field of precision psychiatry, a branch in mental health care aiming to provide individualized 
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diagnosis, treatment, and prevention strategies by accounting multiple factors such as genetics, 

neuroimaging data as well as environmental factors. Furthermore, as discussed earlier, one of 

the key factors contributing to high mortality rate among patients with psychiatric disorders is the 

co-occurrences of other conditions such as obesity, cardiovascular risk factors, Type II diabetes 

as well as neurodegenerative disorders such as dementia (Arulanandam et al., 2023). Especially, 

given the challenge of disentangling the cause-effect relationship, particularly when it is unclear 

which conditions/symptoms are the cause and which are the effect, a task greatly improved after 

the emergence of ML. More advanced ML methods have facilitated in combining the disease-

specific information from different data domains such as neuroimaging, genetics, clinical data or 

even social media records to provide a more refined and robust diagnosis (Franke & Gaser, 2019; 

Koutsouleris et al., 2014, 2021; Phelps et al., 2024). Another major challenge is the identification 

of biological factors in CHR individuals or those in the prodromal phase where an individual is 

susceptible to transitioning into psychotic disorder. ML has proved helpful as it can learn these 

specific patterns and identify the subgroups who show more disease vulnerability and similar 

pattern to those individuals who have already transitioned, thus facilitating early diagnosis and 

implementation of preventive methods. ML models can also cluster individuals exhibiting similar 

patterns, such as brain patterns, thereby assisting clinicians in making decisions based on the 

similarity in the profiles of these clustered individuals for further prognosis and treatment planning. 

Furthermore, ML has served as a favorable tool for comprehending differences at individual levels 

(e.g. in clinical sample), while simultaneously mapping these differences in relation to HC sample 

(Rutherford et al., 2022). The framework has been widely beneficial in brain-age and other 

predictive research queries, particularly in cases where it is necessary to compare the deviations 

of a clinical sample with respect to a reference group. Taken together, the power of ML has been 

useful to identify biomarkers specific to each condition and facilitate early recognition, prevention 

and personalized treatment strategies. 

Classification analysis 

In psychiatry, classification analysis refers to the utilization of models to categorize or predict 

individuals into distinct diagnostic groups using diverse features like neuroimaging data, genetic 

markers or clinical symptoms. Typically, the objective is to construct models capable of effectively 

discriminating between various psychiatric disorders or distinguishing individuals with psychiatric 

conditions from those without. Using GMV data, ML algorithms can classify subjects as SCZ 

patients or HC individuals, based on features extracted from the brain imaging data. A more 

advanced application involves distinguishing individuals who are in the process of transitioning to 

psychosis from those in high-risk states, determining whether an individual will convert to 

psychosis or not (Dwyer et al., 2018; Koutsouleris et al., 2018, 2021; Loch et al., 2023). 

Regression analysis 

A regression model is a type of ML model designed to predict a numerical, continuous output, 

such as a rating. Linear or polynomial regression models are common examples, which create a 
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line or curve to best fit the data in a dataset. Regression problems can also be transformed into 

classification problems by setting thresholds to categorize the continuous output variables into 

discrete categories. An example of regression-based problems is predicting brain age (Chekroud 

et al., 2021; Franke et al., 2010; Koutsouleris et al., 2014). 

Common machine learning methods used in psychiatry 

ML has been applied in various areas improving interventions, showing promising predictive 

diagnosis accuracies and prognosis of mental health disorders and comorbid conditions. 

Generally, these algorithms rely on large datasets to robustly learn the discriminative patterns to 

perform classification and predictive tasks. Supervised machine learning methods such as 

Support Vector Machine (SVM) is one of the most prevalent methods applied prediction of 

appropriate labels for a given data such as neuroimaging, genetics data. 

Supervised learning 

Supervised learning entails acquiring an understanding of the connection between a group of 

input variables and an outcome variable, which is then employed to anticipate the results of 

unseen data points (Iyortsuun et al., 2023). SVM are versatile tools used for both classification 

and regression tasks. In classification, SVM determines the optimal decision boundary, called the 

hyperplane, to effectively segregate data points into different classes in n-dimensional space. It 

then assigns new data points to the appropriate categories based on this learned boundary. SVM 

offers several advantages, including its capability to handle both semi-structured and structured 

data and its tendency to avoid overfitting. However, when dealing with large datasets, SVM's 

learning time may increase, which can impact its effectiveness. Consequently, when applying 

supervised methods to high-dimensional datasets such as neuroimaging data, it's common to 

include a feature selection step to derive low-dimensional representations. Despite its limitations 

with noisy datasets, SVMs have gained widespread acceptance in fields like psychiatry due to 

their reliable performance, user-friendly nature, and quicker computational times compared to 

alternatives like neural networks. In dissertations, SVMs are frequently utilized, with detailed 

explanations provided in subsequent sections. Another prominent supervised learning method is 

decision trees, which segment data into constant approximations and construct models based on 

basic decision rules derived from data attributes. Logistic regression, on the other hand, is often 

used for forecasting categorical outcomes. The Least Absolute Shrinkage and Selection Operator 

(LASSO) algorithm efficiently learns feature patterns while predicting specific disorders or clinical 

outcomes by simultaneously selecting relevant features. Likewise, the Relevance Vector Machine 

(RVM) uses a probabilistic framework, by employing automatic relevance determination to obtain 

sparse solutions while penalizing unnecessary model complexities. The effectiveness of RVM 

has been successfully demonstrated in quantifying neuroimaging biomarkers for PTSD and 

predicting treatment outcomes in depression. Additionally, RVM was incorporated into the 

inaugural BrainAGE framework as the prediction algorithm (Franke et al., 2010). Additionally, 

multi-task learning approaches are gaining traction for jointly leveraging complementary features 
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from various perspectives of neuroimaging data. Recent advancements utilized ML frameworks 

for more challenging tasks. The challenging task characterizes specific signatures of comorbid 

disease patterns among psychiatric disorders, dimensional approaches have been utilized to 

capture the complex linear relationship between high-dimensional datasets.  

Multivariate methods such as canonical correlation analysis and partial least squares methods 

have been useful tools to capture associations across different data modalities (Mihalik et al., 

2022). For example, canonical correlation analysis has been employed with resting-state fMRI 

(rs-fMRI) connectivity data. This approach successfully identified two low-dimensional 

components, each representing distinct disease dimensions, such as an anhedonia-related 

component and an anxiety-related component. These methods have successfully captured the 

associative components across specific brain regions associated with the respective clinical 

dimensions, thereby opening avenues to study the neural correlates of specific disease 

symptoms. Specifically, the method of using sparse partial least squares (SPLS) has been 

introduced explicitly later. 

ML accuracy to detect psychiatric disorders 

Initially, the application of ML in psychiatry was primarily centered around disease diagnosis. 

While ML has proven to be a powerful tool extensively used for classification and regression tasks, 

particularly in distinguishing patients with psychiatric disorders from HC individuals, the 

performance of these models exhibits significant variability. Each study utilizes diverse datasets, 

data domains, data processing pipelines, ML algorithms, model parameters, and validation 

approaches, which can potentially account for the observed differences in classification 

accuracies. A review article summarizing the findings of classification analyses conducted to 

differentiate SCZ patients from HC individuals using various supervised ML methods applied to 

different brain features revealed that model performances generally ranged between 55% and 

70%. The highest classification accuracy of 73.5% was achieved using cortical thickness data 

and an SVM classifier (Cortes-Briones et al., 2022). Similarly, literature findings on classification 

accuracies for distinguishing patients with MDD from HC controls have also demonstrated varying 

results, ranging from 53% to 91% (Belov et al., 2024; Gao et al., 2018; Kambeitz et al., 2017). 

Furthermore, there are varying observed in regression methods when conducting predictive 

analyses. For instance, the mean absolute error (MAE), a common measure used to assess 

predictiveness in brain-ageing models, has been shown to vary between 2 and 10 years for both 

HC and patient samples. Additionally, ML research has demonstrated relatively lower accuracy 

in identifying comorbid conditions, highlighting the need for further attention and improvement in 

this area. 

1.5 Aims of this study 

As discussed earlier, addressing the somatic comorbidities of psychiatric disorders poses a 

significant challenge. Among the somatic diseases, metabolic comorbidities contribute 
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significantly to the high mortality and morbidity associated with psychiatric disorders such as SCZ 

and depression while their exact reasons remain poorly understood. Since obesity is a prominent 

risk factor for various metabolic diseases, it is crucial to explore the shared characteristics 

between obesity and psychiatric disorders. Furthermore, longitudinal studies have highlighted the 

high prevalence of obesity during the course of psychiatric diseases and particularly during 

relapses. Given that obesity and psychiatric disorders, both psychotic and affective, share 

common neurobiological pathways leading to similar brain alterations, understanding the 

underlying causes is of paramount importance.  

Furthermore, aberrant brain-ageing processing is common occurrences in multiple psychiatric 

disorders and specifically more pronounced in psychotic disorders. Moreover, the process of 

brain-ageing can significantly impact the trajectory of psychiatric disorders, especially in the 

presence of metabolic risk factors, highlighting the importance of distinguishing between the 

individual processes. Additionally, it is crucial to establish associations between the clinical 

dimensions within each of the conditions. The aim of this dissertation is to overcome these 

limitations by leveraging ML methods.  

The study's main aim is to understand the link between obesity, ageing, the associated brain 

alterations, clinically relevant variables and psychiatric disorders. Since BMI serves as a widely 

accepted and used tool for assessing obesity, we developed a multivariate BMI-predictor based 

on whole-brain GMV of HC individuals without psychiatric diagnoses. We propose an 

individualized brain-based BMI gap score (BMIgap) calculated as the difference between brain-

estimated and observed BMI. Furthermore, we applied the BMI-predictive model to clinical 

populations comprising individuals suffering from SCZ and ROD as well as individuals at CHR 

states for psychosis. Moreover, we explored shared brain regions between obesity and SCZ and 

investigated the phenotypic associations between obesity, SCZ, and clinically relevant variables 

using SPLS. 
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2. Quantification of obesity related brain changes by 

using ML as a tool 

The content of this chapter has been submitted as: Adyasha Khuntia, David Popovic, Elif Sarisik, 

Madalina O. Buciuman, Mads L. Pedersen, et al. BMIgap: a new tool to quantify 

transdiagnostic brain signatures of current and future weight, which is currently under review 

at Nature Mental Health. The content of this chapter has been paraphrased, and the tables and 

figures presented herein have been adapted from the aforementioned paper. 

2.1 Association between psychiatric disorders and obesity 

2.1.1 Why address obesity as a comorbidity in psychiatric disorders? 

As introduced in Chapter 1, clinical studies have consistently revealed a higher prevalence of 

obesity among individuals with psychiatric disorders, including SCZ, MDD, bipolar disorder, 

personality disorders as well as anxiety disorders. Notably, these patients exhibit a two-to-three-

fold higher incidence of obesity and metabolic syndromes compared to the general population 

(Bellass et al. 2019). However, the bidirectional relationship between obesity and psychiatric 

disorders remains poorly understood, including whether they share overlapping or distinct 

neurobiological pathways (Blasco et al., 2020; Luppino et al., 2010; Mangurian et al., 2016). 

Moreover, commonly prescribed anti-psychotics and anti-depressant medications are known to 

impact body fatness. Furthermore, there is an ongoing debate regarding the causes of weight 

changes, that is, whether medications implicate the neurobiological pathways leading to weight 

change or whether the onset of weight change is attributed to the progression of the psychiatric 

disease state. Given that obesity is a common feature of somatic diseases and strong association 

between somatic diseases and psychiatric disorders, it is paramount to address the complex and 

bidirectional relationship between obesity and psychiatric disorders, as it may have adverse 

prognostic implications. This underscores the importance of developing personalized tools 

bcapable of capturing the comorbid interactions associated with both obesity and psychiatric 

disorders. 

In this chapter, our primary focus is to disentangle the intricate commonalities between obesity 

and psychotic disorders such as SCZ and CHR and affective disorders including ROD by using 

BMI to measure obesity. Consistent with the previous definitions, individuals with a BMI exceeding 

30 units are considered obese. A higher BMI indicates a higher degree of obesity in a person. 
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Figure 2. Interface between obesity and mental health 

2.1.2 Obesity and SCZ 

An estimated 40-60% of individuals suffering from psychotic disorders including SCZ, 

schizoaffective, brief psychotic, delusional disorders are overweight or obese, which is 

significantly higher than the general population. Individuals with such conditions have 2.5 times 

higher risk of early mortality as well as their life expectancy is ten to thirty years lower than the 

general population (DE HERT et al., 2009). One of the major causes of early mortality is 

cardiovascular disease, arising from higher rates of metabolic risk indicators such as 

hyperglycaemia, dyslipidaemia, obesity and hypertension (Mitchell, 2013). Specifically, patients 

with SCZ have a three-times higher likelihood of developing obesity (Annamalai et al., 2017; 

Vancampfort et al., 2015). Multiple factors, such as genetics, pathophysiology, lifestyle choices 

and medications significantly contribute towards prevalence of obesity in psychiatric patients 

Since obesity is the common cause of multiple metabolic syndromes, its impact extends to 

physical health, thereby contributing to elevated mortality rates (Figure 2). Moreover, obesity also 

affects mental health and brain structure notably. Evidence suggests that obesity may worsen the 

symptoms of SCZ by disrupting the white matter integrity and reducing connectivity between brain 

networks. Nevertheless, being underweight also poses health risks, and a low BMI can indicate 

self-neglect or physical fragileness. 

Bidirectional Relationship between SCZ and obesity 

Increasing studies have shown evidence that there is a bidirectional relationship between etiology 

of obesity and psychiatric disorders manifested through the comorbidity of obesity or metabolic 

syndromes with psychiatric disorders as well as the occurrence of psychotic and depressive 

symptoms in overweight or obese individuals. However, it remains elusive whether the pathology 

follows a "disorder-to-obesity" or "obesity-to-disorder" direction, or if the pathology is intertwined.  

Multiple factors are contributing towards obesity including disruption of shared neurobiological 

pathways. The causes for obesity are elaborated in section 1.2 Somatic comorbidities associated 

with psychiatric disorders, including sustained inflammation, disruption of endocrine system and 
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metabolic dyshomeostasis resulting in excess of energy accumulated in the fat cells. In fact, 

neuroinflammation has garnered special interest in this field characterized by a disparity between 

astrocytes and microglial cells where the microglial cells assume roles in multiple processes 

including the production of growth factors as well as metabolism of neurotransmitters. As time 

progresses, mechanisms of plasticity including synaptic production, remodeling, and 

neurogenesis gradually become impaired, especially in critical areas such as the PFC, 

hippocampus and hypothalamus. Ultimately, neurodegenerative processes may occur, 

characterized by permanent lesions such as gliotic scars and notably, a significant loss of neural 

cells in cortical regions. Such alterations of the brain-structure may partly contribute to the 

disruptions in cognitive, control and executive as well as reward activities in obese individuals and 

further development of psychiatric disorders development (Weiss et al., 2020). The manifestation 

of GMV loss in psychotic disorders, particularly in frontal-temporal regions and areas associated 

with reward and control, may inhibit the control for eating, leading to overconsumption of high-

calorie food that provide a sense of reward, ultimately resulting in weight gain and obesity, a 

phenomenon also observed in patients with eating disorders. Conversely, the onset of negative 

psychotic symptoms or depressive symptoms may reduce appetite, resulting in weight loss, a 

common occurrence in psychiatric disorders including depression and anorexia nervosa. The 

hypothesis of overlapping symptoms across different subtypes of psychiatric disorders and the 

possibility of identifying and distinguishing brain-specific markers for these subtypes pose 

significant challenges. However, if achieved, it could have important therapeutic implications by 

facilitating, for example, the understanding of the cause-effect relationship between obesity and 

medication initiation, thereby enabling early interventions to prevent metabolic syndromes. 

Obesity and SCZ 

Obesity has a marked impact on brain structure and related psychiatric outcomes (Afzal et al., 

2021; Bora et al., 2017; Luppino et al., 2010; Martins et al., 2019). Infact, neuroimaging findings 

have revealed that brain alterations occurring due to obesity shows similar alterations as observed 

in patients with SCZ such as a total GMV reduction. Infact, the widespread use of BMI as the 

obesity-variable has facilitated the neuroimaging research groups to use BMI to examine the brain 

changes in relation to both obesity and SCZ. For example, a study examining the relationship 

between BMI in patients with SCZ revealed that higher BMI is associated with lower total GMV, 

indicating a negative correlation between obesity and GMV. Specifically, this correlation was 

observed in brain regions such as the bilateral OFC and PFC, as well as the right hippocampal 

and frontal cortices. Another study compared the comorbidity of metabolic syndrome in patients 

with SCZ. Those individuals with metabolic syndrome showed smaller total brain volume and 

GMV, as well as smaller volumes of the OFC and insula, and larger ventricles, compared to those 

without metabolic syndrome. Also, the reward regions of the brain were reduced in the patient 

group with metabolic syndrome. Furthermore, individuals with metabolic syndrome exhibited 

reduced sizes in OFC and insula cortical surface areas relative to the patients without any 

metabolic syndrome (de Nijs et al., 2018). Although GMV loss and cortical thinning is a common 
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finding in both SCZ and obesity research, the cortical changes progress gradually with time for 

patients with SCZ. GMV reductions are also commonly attributed with the ageing process. Yet, it 

remains unclear whether such volumetric reductions are primarily associated with obesity, ageing 

or an interplay of both factors (S. R. McWhinney et al., 2022).  

Obesity in high-risk individuals 

Although not many studies investigated brain changes in high-risk individuals introspecting BMI 

changes, one study showed that such individuals showed low levels of physical activity while no 

significant BMI differences were observed compared to controls (Carney et al., 2016). Patients 

undergoing through first psychotic episode have shown high hyperglycemia, dyslipidemia and 

gain in weight during the initial weeks following the commencement of antipsychotic medications 

(Correll et al., 2014, De Hert et al., 2006, Foley and Morley, 2011). Such metabolic syndromes 

increase proportionally with illness-duration (De Hert et al., 2006, De Hert et al., 2011b). 

Individuals experiencing episodes of psychosis who have not previously been treated with 

antipsychotic medication have demonstrated abnormal glucose tolerance (Fernandez-Egea et al., 

2009). Furthermore, among the individuals experiencing first episode of psychosis, BMI was 

associated with lower GMV in the left cerebellum (Kolenic et al., 2018). 

Obesity and psychotic symptoms 

Individuals showing negative symptoms such as emotional response deficits are more prone to 

being overweight and to developing metabolic syndrome. Less healthy lifestyle habits such having 

a more sedentary lifestyle is a common occurrence in such individuals, which might increase the 

risk factors for cardiovascular diseases (Arango et al., 2011). Furthermore, study showed that 

patients with SCZ patients showing metabolic syndrome as comorbidity exhibited poor cognitive 

functioning than those patients who did not exhibit any metabolic syndrome (Saxena et al., 2023). 

Furthermore, the HDL showed high positive correlation with BMI and the severity of psychiatric 

symptoms (Sahpolat et al., 2021). Another study, observed that both overweight and obese 

patients with SCZ with higher appreciation for body image specifically body functionality as 

assessed showed fewer positive psychotic symptoms (Mahfoud et al., 2023). The heightened 

intensity of residual symptoms, as indicated by elevated PANSS scores, was found to be 

associated with reduced volumes of the frontal lobe, PFC, insula, hippocampus, left hemisphere 

amygdala, and total white matter (Tsai et al., 2020). Furthermore, the negative psychotic 

symptoms were have been negatively associated with higher BMI in severe patients with SCZ 

which are primarily attributable to reduced levels of anhedonia and levels of asociality (Mezquida 

et al., 2018). Furthermore, longitudinal studies have indicated that around six years into the follow-

up period, the increase in BMI is specifically associated with positive symptoms rather than 

negative symptoms, particularly notable before the commencement of antipsychotic treatment in 

antipsychotic-naïve patients diagnosed with SCZ. This suggests that the theory linking weight 

gain to antipsychotic initiation lacks substantial support (S.-H. Lin et al., 2021). 
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2.1.3 Obesity and depression 

While the co-occurrence of obesity and depression had been frequently observed, until the 

beginning of the millennium, this association was predominantly perceived as coincidence 

(Stunkard et al., 2003). The meta-analytic review conducted by de Wit et al. identified a significant 

association between depression and obesity, reporting an 18% increased risk of obesity among 

individuals with depression. Additionally, studies focusing on adolescents revealed that MDD 

during adolescence predicted higher BMI in adulthood compared to individuals without a history 

of depression. Further analyses investigated potential mediating variables and identified factors 

such as sex, socioeconomic status and childhood experiences as contributors to the development 

of both depression and obesity. Additionally, it was suggested that genetic susceptibility to both 

depression and obesity may be influenced by environmental factors (Stunkard et al., 2003). Later, 

common molecular mechanisms linking obesity and depression became apparent, indicating the 

pivotal role of the HPA axis in both conditions. Cytokines such as IL-6, IL-18 and TNF-, 

neuropeptides such as melanocortin, NPY, orexin and neurotransmitters including epinephrine, 

serotonin were identified as key players in both depression and obesity, while interacting within 

the HPA axis. Additionally, other factors such as persistent stress and variations in gene-

expression are contributing factors towards the emergence of either condition or comorbid 

manifestations of both depression and obesity (Bornstein et al., 2006).  

Neuroimaging studies using VBM examined the relationship between BMI and depression, 

specifically MDD and illness-duration. Higher BMI was associated with lower GMV, particularly in 

regions such as the thalamus, medial PFC, OFC and caudate nucleus. Moreover, within the 

patients diagnosed with MDD, patients showing higher BMI have shown severe disease 

chronicity. Additionally, both BMI and disease chronicity exhibited correlations with morphometric 

irregularities in the medial prefrontal regions. Moreover, these neurostructural alterations between 

the disease severity and obesity overlapped specifically in prefrontal areas engaged in impulse 

control and regulation of emotions (Opel et al., 2015). These findings imply that obesity maybe 

directly associated with higher disease chronicity.  

Moreover, adult individuals with MDD exhibited thinner GMV in cortical regions as compared to 

HC individuals in several brain regions, including the brain regions of temporal lobe, OFC, insula, 

anterior and posterior cingulate. These structural brain changes were particularly pronounced in 

patients with early disease onset, appx before the age of twenty-one. The adolescents with MDD 

did not exhibit disparities in cortical thickness when compared to their HC counterparts. However, 

these patients displayed a decrease in overall surface area as well as exhibited localized 

reductions in regions specific to frontal areas, notably in the medial OFC, superior frontal gyrus, 

as well as brain regions associated with motor, somatosensory, primary and visual functioning. 

The most pronounced effects have been observed in recurrent adolescent patients. These 

findings indicate that MDD may exert a dynamic influence on brain structure, resulting in diverse 

patterns of alterations observed across different life stages (Luppino et al., 2010; Schmaal et al., 

2017). 
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Obesity and depressive symptoms 

Some studies including the work by ENIGMA working group did not establish significant 

associations between the brain derivatives and the depressive symptom scales (HDRS-17) 

(Schmaal et al., 2017). Community based studies have indicated that elderly individuals who are 

obese, regardless of gender, are less inclined to experience depressive symptoms than their 

counterparts with normal weight. The results offer support for the "jolly fat" hypothesis, initially 

proposed within Chinese traditional culture, indicating that favorable perceptions of obesity might 

act as a safeguard against depressive symptoms (Mulugeta et al., 2018). 

2.1.4 Common neurobiological pathways  

The neurobiological pathways common to both obesity and psychiatric disorders have been 

detailed in 1.2 Common neurobiological pathway between obesity and psychiatric disorders. 

Briefly, among the biological pathways linking obesity to psychiatric disorders, increased 

neuroinflammation stemming from cytokine production in adipocytes is a well-established 

phenomenon. Additionally, high-sugar or LDL cholesterol-rich diets are known to elevate 

inflammation rates, impacting neurotrophic factors and the gut microbiome, which is a common 

observation in both obesity and psychiatric disorders (Marx et al., 2021). Psychosocial 

connections between physical and mental health are also significant, as psychiatric conditions 

can impede one's ability to derive enjoyment and pursue personal interests, thereby 

fundamentally affecting daily functioning and quality of life (Connell et al., 2014). Compromises 

to a healthy lifestyle habit, often resulting in decreased physical exercise, can contribute to gain 

in weight and subsequent obesity (McElroy, 2009). Furthermore, the common biological factors 

such as inflammation may mediate the progression from obesity to psychiatric disorders, 

alongside the disease burden of chronic metabolic syndromes. 

ML to predict obesity 

Given the recurrent challenges to disentangles the intertwined conditions of both obesity and 

different psychiatric disorders, whether ML can be a helpful tool, is yet to be fully understood. Until 

the time of study, not many studies had implemented the ML methods to reliably dissociate the 

brain signatures specifically occurring in obesity. To our knowledge Opel et. al (2017) had 

conducted the first study to associate BMI and neuroanatomical brain features (Opel et al., 2017). 

They found that higher BMI was significantly associated with medial prefrontal GMV decrease. 

The study, although promising did not assess the associations on psychiatric groups. The study, 

while promising, did not evaluate the associations within psychiatric groups, which forms an 

important basis of this study. 

2.1.5 Influence of medication 

Antipsychotics 
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The use of antipsychotic medication has emerged as an iatrogenic factor contributing to obesity 

in psychiatric disorders (Leutner et al., 2023). Numerous studies conducted within community 

settings have underscored the connection between medication usage and weight gain. For 

instance, research involving 5,756 individuals diagnosed with SCZ in France revealed a higher 

prevalence of obesity among patients consuming antipsychotic drugs such as clozapine, 

olanzapine, risperidone, or amisulpride compared to those not receiving any antipsychotic 

treatment (Limosin et al., 2008). Similarly, investigations within the Chinese community suggested 

that atypical antipsychotics might contribute to increased abdominal obesity (Kucukgoncu et al., 

2019). Conversely, clinical observations among medication-naïve individuals at CHR and patients 

with affective disorders have indicated disturbances in glucose metabolism even before the 

occurrence of their initial psychotic episode (Kucukgoncu et al., 2019). Additionally, a recent study 

found that rapid weight gain associated with antipsychotic use is linked to diminished impulse 

control and alterations in brain regions implicated in impulsivity. Notably, this phenomenon varies 

across psychiatric populations and is strongly linked to chronic neuroinflammation (Grosu et al., 

2024).  

Antidepressants 

Antidepressants such as paroxetine, amitriptyline and mirtazapine have been associated with a 

higher risk to weight-gain while some antidepressants, such as bupropion and fluoxetine, have 

been associated with weight-loss, including in already obese individuals. Notably, the combination 

of bupropion and naltrexone has shown to induce more significant weight loss compared to either 

drug alone (Ranjbar et al., 2013). The association between depression and obesity may involve 

dysregulation of the stress system, specifically the HPA axis, inflammation, oxidative stress and 

endocrine dysfunction, highlighting potential neurobiological mechanisms underlying both 

conditions (Bornstein et al., 2006). These findings underscore the complex interplay between 

medication usage, metabolic changes and neurobiological pathways in psychiatric populations. 

2.1.6 Aims of the study 

The study's main aim is to understand the association between obesity, the associated brain 

alterations clinically relevant variables and psychiatric disorders. Since BMI serves as a widely 

accepted and used tool for assessing obesity, we developed a multivariate BMI-predictor based 

on whole-brain GMV of HC individuals without psychiatric diagnoses. We propose an 

individualized brain-based BMI gap score (BMIgap) calculated as the difference between brain-

estimated and observed BMI. Furthermore, we applied the BMI-predictive model to clinical 

populations comprising individuals suffering from SCZ and ROD as well as individuals at CHR 

states for psychosis. Furthermore, we examined the overlapping brain regions between both SCZ 

and obesity and investigated the phenotypic associations between obesity, SCZ as well as the 

clinically relevant variables using SPLS. 
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2.2 Methods 

2.2.1 Sample characteristics 

Neuroimaging datasets 

The participants included in the current study are T1-weighted sMRI scans from four independent 

datasets including IXI dataset (https://brain-development.org/ixi-dataset/), Personalized 

Prognostic Tools for Early Psychosis Management (PRONIA; www.pronia.eu) study, Norwegian 

Centre for Mental Disorders Research (NORMENT) dataset (Wolfers et al., 2018) and the Munich 

Brain Imaging Database (MUC) (Koutsouleris et al., 2015). 

PRONIA study 

PRONIA is a multisite study where participants were recruited across nine sites in Finland, 

Germany, Italy, Switzerland, and the United Kingdom in accordance with the study's standardized 

recruitment protocol. The observational part of the protocol included follow-up examinations at 

three months interval further implemented by the nine PRONIA sites. The participants were 

pseudonymized twice after recruitment which was done locally at each site and centrally within 

the PRONIA-portal. This portal has a multi-user data-repository which hosting the defaced MRIs 

as well as information about each clinical and neurocognitive items of the participants. The 

organization of these database was first converted into digital questionnaires categorized as visits 

and cases. The portal also offered users a web interface to control the entry and upload of various 

acquired data into the corresponding questionnaires. Moreover, an implemented PRONIA@home 

mobile device interface allowed study participants to securely log in to the portal and complete 

the self-rating questionnaires for a given visit. The data underwent an automated process 

including quality control after completion of data-entry across all questionnaires for a given visit. 

This procedure involves executing approximately 1600 data integrity and dependency rules. 

These rules encompass various checks, including basic assessments of missing data and data 

ranges, evaluations of dependencies within individual questionnaires, and examinations of 

dependencies between two questionnaires within a single visit. Additionally, the procedure 

includes assessments of dependencies between two consecutive visits, ensuring uniformity, 

including checking the dates. The errors found are reported back to the defined user, thus 

facilitating for a manual correction of the encountered errors. This process is repeated until the 

quality of clinical questionnaires for the given visit is deemed sufficient, at which point the visit is 

locked (for details refer to Supplementary Methods, Koutsouleris et al., 2018)). 

IXI dataset 

The IXI dataset, comprising MRI images from healthy individuals, includes data collected at three 

hospitals in London: Guy’s Hospital, Hammersmith Hospital and the Institute of Psychiatry 

(https://brain-development.org/ixi-dataset/). 
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MUC dataset 

The MUC database encompasses a diverse cohort, including both HC individuals and patients 

diagnosed with SCZ. Participants were recruited from the Department of Psychiatry and 

Psychotherapy at Ludwig-Maximilian University, Munich. Diagnostic assessments for patients 

were carried out using the Structured Clinical Interview for Diagnostic and Statistical Manual of 

Mental Disorders, Fourth Edition, Axis I Disorders. Symptom severity was evaluated utilizing the 

Positive and Negative Symptom Scale total score (PANSS). Age of onset for SCZ was 

retrospectively determined through semi-standardized interviews, providing insight into the 

temporal trajectory of the disorder. Additionally, illness duration, standing for the time interval 

between MRI acquisition and age of onset, was meticulously recorded. Hospitalization history, a 

critical aspect of disease progression, was quantified by tallying the number of in-patient or day-

clinic admissions preceding MRI scans. Ethical considerations were paramount, with the study 

receiving approval from the local ethics committee and meticulously adhering to ethical guidelines 

outlined in the Declaration of Helsinki. Antipsychotic medication dosages administered at the time 

of MRI were converted to chlorpromazine equivalents for standardized assessment and analysis 

(Koutsouleris et al., 2015). 

NORMENT dataset 

Participants were recruited between October 27, 2004, and October 17, 2012, as part of the 

Thematically Organized Psychosis study, with subsequent reanalysis of data conducted in 2017 

and 2018. The recruitment process targeted patients accessing inpatient and outpatient clinics 

within the Oslo region of Norway. Eligible patients who aged between 18 and 65 years, were 

required to be proficient in a Scandinavian language, possess an IQ above 70, and have no 

history of severe head trauma. Clinical assessments were conducted by trained physicians or 

clinical psychologists, employing the Structured Clinical Interview for DSM-IV Axis I Disorders to 

establish psychiatric diagnoses. HC individuals were randomly selected from national registries, 

provided neither they nor their relatives had a history of psychiatric disorders, alcohol or 

substance use disorders or cannabis usage within the preceding 3 months. Participating 

individuals underwent a comprehensive neuropsychological assessment encompassing domains 

such as processing speed, verbal learning and memory, executive functioning and working 

memory. Prior to participation, written informed consent was collected from all participating 

individuals. The study protocol, inclusive of magnetic resonance imaging procedures and 

cognitive and clinical data collection, adhered to strict deidentification protocols. Ethical approval 

was secured from the Regional Committee for Medical Research Ethics and the Norwegian Data 

Inspectorate (Wolfers et al., 2018). 

Participant inclusion 

Within the scope of the current investigation, the criteria for participant inclusion included a 

number of essential features. To begin with, the general inclusion/exclusion for the PRONIA 

participants are indicated in Table of Koutsouleris et al. (2018). Secondly, subjects from the IXI, 
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PRONIA, NORMENT, and MUC datasets were included in the study if they had been subjected 

to structural MRI scans and their processing through the VBM8 pipeline had been completed 

successfully. Furthermore, individuals were considered if they provided information on their sex, 

age, weight and height as well as if their BMI fell between the range of 18.5 (classified as 

underweight) to 35 kg/m2 (classified as obesity class II and III) and their age spanned the range 

of 15 to 75 years. Finally, patients diagnosed with SCZ belonging to MUC database were 

considered for inclusion if they contained at least seventy percent of the clinical items as well as 

satisfied the criteria presented above. 

The selection of HC participants adhered to specific additional criteria, ensuring the exclusion of 

individuals with existing or prior psychological illnesses. Our study comprised a total of 1504 HC 

subjects, categorized into two distinct groups: the discovery sample and the replication sample. 

The discovery sample encompassed 770 individuals, while the replication sample comprised the 

remaining 734 HC participants. Within the discovery sample, participants were meticulously 

chosen to represent a uniformly distributed spectrum of BMI. This involved dividing the entire HC 

sample into 33 BMI bins, each spanning a 0.5 increment, and sampling an equal number of 

subjects from each bin to approximate a uniform distribution. Additionally, ages of subjects within 

each BMI bin were carefully matched to minimize the potential influence of age on BMI, thereby 

mitigating any confounding age effects (Figure 3). The replication sample, comprising of the 

remaining 734 participants, was subsequently utilized for model validation purposes (Figure 4). 

The schematic representation of the workflow has been demonstrated in Figure 5. 
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Figure 3. Sample for discovery data. Histogram for the BMI distribution for discovery sample 

showing the uniform-like BMI distribution with the different colors representing the four cohorts. 

Age distribution per BMI bin of 0.5 BMI units. 

 

Figure 4. Sample for replication data. Histogram for the BMI distribution for replication sample 

showing the uniform-like BMI distribution with the different colors representing the four cohorts. 

Age distribution per BMI bin of 0.5 BMI units. 
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Figure 5. Schematic representation of analysis flow conducted in the study. Abbreviations: 

HC= healthy controls, MUC= Munich database, BMI= Body mass index, ROD= Recent onset 

depression, CHR= Clinical high-risk, SCZ= Schizophrenia, SPLS= Sparse partial least squares, 

CV= Cross validation, PCA= Principal component analysis, SVM= Support vector machine, Vis= 

Model visualization, OOCV= Out-of-sample cross-validation  
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MRI data acquisition and pre-processing 

The specific MRI parameters for each dataset are provided in Table 2. The structural images 

underwent several preprocessing procedures using the VBM8 toolbox available at 

http://dbm.neuro.uni-jena.de/vbm . Firstly, we performed bias correction, tissue classification, and 

normalization to MNI space. This normalization technique employed a combination of linear 

transformation using 12 affine parameter and non-linear transformations within a unified model, 

which included high-dimensional DARTEL normalization. Subsequently, the gray matter 

segments were modulated solely by the non-linear components to preserve local gray matter 

values. Additionally, absolute threshold masking with a threshold value of 0.1 was applied. To 

enhance calculation speed and minimize noise, the GMV images were resampled to a uniform 

voxel resolution of 3x3x3 mm³.  

http://dbm.neuro.uni-jena.de/vbm
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Table 2. MRI scanner systems and structural MRI sequence parameters used in BMIgap 
analysis  

(table adapted from Koutsouleris et al. (2018) 

Note. TR = repetition time, TE = echo time, FOV = field of view. 

Site Model 
Field 

Strengt
h 

Coil 
Channels 

Flip 
Angl

e 

TR 
(ms) 

TE (ms) 
Voxel Size 

(mm) 
FOV 

Slice 
Number 

IXI database         

Hammersmith 
Hospital 

Philips 
Intera 

3.0T - 8 9.6 4.6 - 208 x 208 - 

Institute of 
Psychiatry 

Philips 
Gyroscan 

Intera 
1.5T - - - - - - - 

Guy’s 
Hospital 

General 
Electric 

1.5T - 8 9.8 4.6 - 208 x 208 - 

 

NORMENT          

Oslo 
SIEMENS 
Magnetom 

3T 32 7 2730 3.93 
1.33 × 0.94 × 

1.0 
240 x 240 160  

Munich database          

LMU Hospital 
SIEMENS 
Magnetom 

1.5T 8 12 11.6 4.9 
0.45 x 0.45 x 

1.5 
230 x 230 126  

PRONIA           

Munich Philips Ingenia 3T 32 8 9.5 5.5 
0.97 x 0.97 x 

1.0 
250 x 250 190  

Milan 
Niguarda 

Philips Achieva 
Intera 

1.5T 8 12 
Shortes
t (8.1) 

Shortest 
(3.7) 

0.93 x 0.93 x 
1.0 

240 x 240 170  

Basel 
SIEMENS 

Verio 
3T 12 8 2000 3.4 1.0 x 1.0 x 1.0 256 x 256 176  

Cologne Philips Achieva 3T 8 8 9.5 5.5 
0.97 x 0.97 x 

1.0 
250 x 250 190  

Birmingham Philips Achieva 3T 32 8 8.4 3.8 1.0 x 1.0 x 1.0 288 x 288 175  

Turku 
Philips 

Ingenuity 
3T 32 7 8.1 3.7 1.0 x 1.0 x 1.0 256 x 256 176  

Udine Philips Achieva 3T 8 12 
Shortes
t (8.1) 

Shortest 
(3.7) 

0.93 x 0.93 x 
1.0 

240 x 240 170  

Muenster 

Siemens 
Magnetom 

3T 20 8 2130 2,28 1x1x1 256 192 

 

PRISMA-FIT  

Duesseldorf 
Siemens 
Prisma 

3T 32 8 2000 3.37 1.0x1.0x1.0 256x256 176  

Bari Philips Ingenia 3T 32 8 8.1 3.7 1.0 x 1.0 x 1.0 256 x 256 180  
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2.2.2 ML analysis 

BMI-prediction model 

We have included the whole brain GMV maps as features to train the BMI-prediction model. All 

the ML analysis have been conducted using the MATLAB-based open-source ML toolbox 

NeuroMiner (v1.1;  https://github.com/neurominer-git/NeuroMiner_1.1).  

Nested cross-validation 

In the model, we implemented a repeated nested cross validation (CV) set-up which is a robust 

method for model generalization and prevention of information leakage while mitigating overfitting 

of model.  In the CV structure, the outer CV cycle is designated as CV2 and the inner CV cycle is 

designated as CV1. Models are trained in the CV1 cycle and to select the best tuning parameters. 

The best-performing models are applied to the data in the CV2 cycle and evaluate the model 

performance. The CV settings included five folds and five permutations at the inner and outer CV 

cycles each, producing 625 CV1 training and test partitions. Model overfitting was prevented by 

restricting the hyperparameter optimization to the inner folds only while guaranteeing the selection 

of optimized model. Moreover, in NeuroMiner, models were retrained on the CV1 training and test 

data using the optimal hyperparameter combination before being applied to the CV2 validation 

data. To ensure robustness, the final prediction for a given individual in CV2 is computed by 

averaging the predictions of multiple models. These models are trained on different subsets of 

the data, excluding the individual in question from both the training and hyperparameter 

optimization stages. By averaging the predictions of these models, we obtain a more stable and 

reliable estimate of the individual's BMI. 

Pre-processing 

The pre-processing of the data involved several pre-processing steps. Firstly, the model 

optimized the Gaussian smoothing between 0, 3, 6 or 9 mm full-width-at-half maximum (FWHM) 

kernel widths. Second, the age effects using partial correlation analysis as a regression method. 

Third global-mean offset correction was employed to remove site-specific effects, as explained 

below. Next, principal component analysis (PCA) was used to reduce the feature dimensions 

where the model optimized the PCA levels between 0.25, 0.50 and 0.75.  

Subsequently, a linear kernel type nu-support vector machine regression algorithm was employed 

for modeling, with a regularization parameter set to 1. This algorithm was chosen based on its 

suitability for regression tasks and its ability to handle nonlinear relationships between predictors 

and the target variable. 

Model performance was evaluated using several metrics which we calculated on both the CV1 

test and CV2 validation datasets. These metrics included the MAE, Pearson’s correlation 

coefficient (r), and the coefficient of determination (R2)). The MAE was specifically chosen as the 

optimization criterion, aiming to minimize the average absolute difference between observed and 

https://github.com/neurominer-git/NeuroMiner_1.1
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predicted BMI values. Optimization of the model involved finding the combination of 

hyperparameters that yielded the lowest MAE across different iterations of the cross-validation 

process. This optimization was conducted by exploring various combinations of hyperparameters, 

including smoothing, PCA and nu, resulting in a total of 12 combinations. Additionally, the 

statistical significance of the BMI prediction model was assessed using permutation testing. This 

involved randomly permuting the BMI labels 1000 times and recalculating the model's 

performance metrics. The significance level was established at α=0.05, providing a rigorous 

evaluation of the model's effectiveness. 

Site-correction  

Previous research has indicated that sMRI data may be influenced by site or scanner variations. 

To address this concern, we utilized data from four cohorts, two of which were multi-site studies. 

To mitigate the potential impact of site-effects, we implemented a global mean correction 

procedure within the nested cross-validation framework. This correction procedure involves 

several steps. Initially, it involves calculating the mean feature-score of each site. Subsequently, 

the overall mean across all sites is determined. Next, the mean difference between each site's 

mean and the overall mean is computed. Ultimately, this mean difference is subtracted from every 

feature of the respective sites. Through the application of this correction, our objective is to 

standardize the data and mitigate the impact of site-specific variations, thereby augmenting the 

robustness and generalizability of our analyses. 

Post-hoc BMIgap correction for true BMI 

To mitigate the influence of BMI on BMIgap in the discovery, replication, and clinical groups, we 

utilized a stepwise calibration method that makes use of k-fold cross-validation. At first, we 

partitioned the discovery sample into five smaller subsets. During each iteration of the process, 

one subset was designated as a hold-out set, which functioned as the test set. The remaining 

samples, equivalent to the training group, were used to calculate the beta values using partial 

correlation. Afterwards, the beta coefficient that was generated was used on the hold-out 

subgroup of the discovery sample, as well as on the complete replication sample and the clinical 

groups, in order to obtain the corrected BMIgap values. This iterative approach proceeded until 

all subsets had been used as the hold-out test set once. Ultimately, we calculated the average 

BMIgap for all subsets in order to provide a revised BMIgap score for each person. By employing 

this iterative calibration technique, our objective was to minimize the influence of BMI on BMIgap 

in various groups, thereby ensuring more precise and dependable evaluations. 

Classification model for MUC HC/SCZ 

Within NeuroMiner, we created a classification model using sMRI data to differentiate persons 

with SCZ from HC individuals. Our objective was to identify brain patterns that are unique to 

individuals with SCZ. To guarantee consistency across models and concentrate exclusively on 

disparities between BMI-predictive and HC-SCZ separating brain voxels, we developed the 
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classification models by employing the same pre-processing procedures as those utilized in the 

BMI prediction model. The steps involved in the analysis were as follows: applying Gaussian 

smoothing with kernel widths of 0, 3, 6, and 9 mm FWHM, removing age effects through partial 

correlation analysis, conducting PCA with different energy levels including 0.25, 0.50, 0.75 to 

reduce the dimensionality of the image space, and scaling each voxel value from 0 to 1, in line 

with the parameters used in the BMI prediction model. The method was carried out using a 

repeating nested CV cycle consisting of 5 folds for both the inner and outer cycles. Each cycle 

had 5 permutations, also, with the same setting as used for the BMI regression model. In addition, 

a brain mask specifically targeting the GMV to preserve just the voxels that are relevant to GMV 

regions was used. The classification algorithm used was a linear class-weighted SVM, with 

model-optimization performed for the regularization parameter CSVM over the range of 2[-4 to +4], 

resulting in 11 parameters. In order to evaluate the performance, we employed sensitivity, 

specificity, accuracy, and balanced accuracy (BAC) measures on the CV1 test and CV2 validation 

datasets. The optimization criterion was based on the BAC metric. The optimization process 

consisted of selecting the combination of hyperparameters among 4 (smoothing), 3 (PCA), and 

11 (CSVM) that resulted in the highest BAC value across the CV1 test data partition. This entailed 

a total of 132 possible combinations. Ultimately, we generated visual representations of the 

predictive voxels of the diagnostic separability by employing the sign-based consistency metric 

as detailed below. 

Model visualization 

We evaluated the statistical significance of classification/regression model performances by 

comparing the observed respective optimization criterion BAC/r with an empirical null-distribution 

of the respective out-of-training BAC/r obtained by permuting the group labels 1000 times and 

retraining the models within the cross-validation scheme. Afterwards, we computed the probability 

of the observed BAC/r as the number of cases in which the permuted BAC/r was equal or higher 

than the observed BAC/r divided by 1000 and evaluated statistical significance at α=0.05, using 

FDR correction to control for multiple comparisons. For the visualization of the predictive features, 

we primarily employed a measure of feature stability termed grand mean cross-validation ratio 

(CVR) (described in detail in Koutsouleris et al., 2021 and adapted from Krishnan et al., 2011) 

(Koutsouleris et al., 2018; Krishnan et al., 2011). This is calculated by summing up the selected 

CV1 median weights across all the CV2 folds and dividing them by the standard error of the 

selected CV1 weights for each feature, similar to the bootstrap ratio (BSR) approach in partial 

least squares studies (8,9). The BSRs show how reliably each source is contributing to the 

observed pattern. Similar to BSR, CVR thresholded at ±2 is considered as stable. Additionally, 

we computed a metric of feature importance called sign-based consistency, which evaluates 

feature relevance by counting the instances where a particular feature maintains the same sign 

(positive or negative) throughout the ensemble, conceptually adapted from the method of Gómez-

Verdejo et al., 2019 and detailed in Koutsouleris et al., 2021 (Gómez-Verdejo et al., 2019; 

Koutsouleris et al., 2021). To create a more intuitive visualization of the predictive brain voxels in 
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the BMI-predicting model, we initially binarized the sign-based consistency maps to preserve the 

significant voxels thresholded at α=0.05. Subsequently, we multiplied the CVR with the binarized 

sign-based consistency maps. The resulting map showed the significant stable CVR with the 

warm and cool colored regions differentiating regions with positive and negative correlation of 

GMV and estimated BMI, respectively. The open-source 3-dimensional rendering software 

MRIcroGL (McCausland Center for Brain Imaging, University of South Carolina; 

https://www.nitrc.org /projects/mricrogl/) was used to overlay the thresholded map on the MNI 

template to produce 3-dimensional renderings and axial mosaic slices. Additionally, the 

automated anatomical labelling (AAL3) atlas was overlaid to visualize predictive ROIs in a spider-

plot. Then, we applied the discovery model to the independent validation sample to assess the 

model’s generalizability. Further, the discovery model was applied to the SCZ, ROD and CHR 

individuals to obtain brain-based BMI predictions. The HC individuals’ and patients’ BMIgap was 

calculated by subtracting the original from the predicted BMI scores. 

Overlapping brain regions 

For identifying brain regions associated with both obesity and SCZ, we initially binarized the FDR-

corrected sign-based consistency maps. This was done by retaining the significant voxels 

(P<0.05) from the visualization of the regression and classification models only. Next, we 

overlapped the two binarized maps to produce a brain mask consisting of the overlapping regions 

shared between SCZ and obesity. The associations between GMV, BMIgap, SCZ-expression 

score, and clinical variables including age of disease onset, PANSS total score, number of 

hospitalizations and illness duration were examined by using this specific mask as a 

neuroanatomical search-space. 

SPLS analysis 

SPLS has been used to investigate the relationships between obesity, SCZ, and clinically 

significant variables including age of disease onset, PANSS total score, number of 

hospitalizations and illness duration. SPLS is a statistical method frequently used in multivariate 

analysis, particularly in situations where there are numerous predictor variables relative to the 

number of observations. SPLS was introduced as an improvement over the partial least squares 

method to address its difficulty in interpreting models with high-dimensional datasets (Lê Cao et 

al., 2008). It tackles this challenge by initially selecting a subset of relevant features to be included 

in the model, enhancing interpretability. SPLS is especially beneficial when dealing with high-

dimensional data, such as whole brain data, as it automatically identifies the most relevant voxels 

for the model (Monteiro et al., 2016). This analysis used the SPLS Toolbox developed by Popovic 

et al. 2020 conceptualized on the SPLS framework by Monteiro et al., 2016 (Monteiro et al., 2016; 

Popovic et al., 2020). The analysis included only the SCZ participants who had less than 30% 

missing data in clinical variables, resulting in a sample size of 139. The primary objective was to 

identify correlations between the neuroimaging and clinical data domains for the SCZ participants. 

The neuroimaging data matrix, consisting of overlapping GMV regions identified from significant 
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voxels generated by the BMI prediction and classification models and a feature matrix that 

includes clinical dimensions such as BMI gap values, SCZ expression score, and clinical items 

such as PANSS total score, age of disease onset, illness duration, and number of hospitalizations. 

SPLS method 

The SPLS algorithm utilizes singular value decomposition to produce latent variables (LV) that 

represent unique multivariate associative effects between the two data matrices. Each LV 

consists of a pair of weight vectors, with u representing the brain pattern and v representing the 

clinical-dimension pattern of the LV. The feature weights range from -1 to 1, reflecting both the 

direction and magnitude of the covariance between the corresponding features. A consistent 

signum between two feature weights (u, v) implies positive covariation, while an opposing signum 

suggests negative covariation. A zero weighting indicates that the feature does not make a 

meaningful contribution to the respective covariance signature.  

In addition, the two weight vectors combine to form a new hidden space, where individuals are 

represented by their latent scores. These scores are computed by combining the customized 

clinical and brain data with the corresponding clinical and brain vectors of the LV. The scores 

produce two numerical values that indicate the participants' individual loadings on the weight 

vectors. The correlation between latent scores for all individuals indicates the degree to which the 

weight vector pair is successful in maximizing covariance.  

The significance of associative effects from the SPLS analysis was assessed by performing 5000 

random permutations of the brain-clinical design matrix. This was followed by bootstrap 

resampling to uncover stable brain-clinical features in the important LVs. The significant patterns 

were subsequently assigned to the 17-network parcellation solution of the Yeo-Buckner atlas in 

order to visualize them. The BSRs were graphed individually for clinical and brain-based 

observations. 

2.3 Results 

2.3.1 Sociodemographic and clinical group-level comparisons 

The statistical analysis comparing demographic variables revealed notable group-level 

distinctions among the discovery, replication, and patient populations, particularly concerning 

age, sex and BMI. Specifically, in the discovery cohort, the mean BMI was 25.10 (SD=4.03), 

whereas in the replication cohort, it was 23.03 (SD=2.07). A t-test examining BMI values 

demonstrated a significant disparity (t = 12.49, P < 0.001). Additionally, a one-way ANOVA 

conducted on the BMI values of HC individuals across the discovery sample, as well as SCZ, 

CHR, and ROD individuals, revealed significant differences (F=12.43, P < 0.001). For detailed 

demographic comparisons, please refer to Table 3 and Table 4. Table 5 shows sample 

characteristics of clinical items for patients with SCZ. 
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Table 3. Sociodemographic differences between discovery, replication individuals 

 
HC 

 
t/χ2 

 
Discovery Replication 

 

Sample,  
number of participants (N) 

      

Total 770 734   

PRONIA 146 234   

IXI 308 172 χ2
3 = 66.06*** 

MUC 133 174   

NORMENT 183 154   

Age, Mean (SD) 
  

  

Total 41.26 (15.51) 32.24 (12.75) t1502 = 12.29*** 

PRONIA 25.44 (6.70) 24.98 (5.55) t378 = 0.72 

IXI 52.02 (14.50) 41.50 (17.80) t478 = 7.01*** 

MUC 37.76 (12.37) 31.66 (10.07) t305 = 4.76*** 

NORMENT 38.31 (10.03) 33.56 (9.19) t335 = 4.50*** 

Sex - Female, N (%) 
  

  

Total 435 (56.49) 373 (50.82)   

PRONIA 96 (65.75) 121 (51.71)   

IXI 170 (55.19) 92 (53.49) χ2
3 = 27.41*** 

MUC 75 (56.39) 92 (52.87)   

NORMENT 94 (51.37) 68 (44.16)   

BMI, Mean (SD) 
  

  

Total 25.10 (4.03) 23.03 (2.07) t1502 = 12.49*** 

PRONIA 23.81 (3.99) 22.40 (1.99) t378 = 4.59*** 

IXI 25.42 (3.74) 23.62 (1.95) t478 = 5.90*** 

MUC 24.18 (3.91) 22.89 (2.02) t305 = 3.74*** 

NORMENT 26.27 (4.20) 23.48 (2.09) t335 = 7.50*** 

Note. N= number of participants, SD= standard deviation, χ2= Chi-square test statistic, t= t-

statistic, HC= healthy controls, BMI= Body mass index. Significant P values are stated as: 

*P≤0.05, **P≤0.01, ***P≤0.001 

  



52 

 

 

 

Table 4. Sociodemographic differences between discovery HC individuals and psychiatric 
groups 

 
HC Patients F 

 
Discovery SCZ CHR ROD 

 

Sample,  
number of 
participants (N) 

     

Total 770 
    

PRONIA 146 
 

213 200 
 

IXI 308 
    

MUC 133 146 
   

NORMENT 183 
    

Age, Mean (SD) 
     

Total 41.26 (15.51) 
   F4,1567 = 

164.42*** 

PRONIA 25.44 (6.70) 
 23.92 

(5.24) 

26.02 

(6.37) 

 

IXI 52.02 (14.50) 
    

MUC 37.76 (12.37) 30.83 (9.97) 
   

NORMENT 38.31 (10.03) 
    

Sex - Female, N (%) 
     

Total 435 (56.49) 
    

PRONIA 96 (65.75) 
 

103 (48.36) 96 (48.00) 
 

IXI 170 (55.19) 
    

MUC 75 (56.39) 
34.00 

(23.29) 

   

NORMENT 94 (51.37) 
    

BMI, Mean (SD) 
     

Total 25.10 (4.03) 
   

F4,1567 = 12.43*** 

PRONIA 23.81 (3.99) 
 23.46 

(3.42) 
24.01 
(3.57) 

 

IXI 25.42 (3.74) 
    

MUC 24.18 (3.91) 24.02 (3.40) 
   

NORMENT 26.27 (4.20) 
    

Note. N= number of participants, SD= standard deviation, F= F-statistic, HC= healthy controls, 

SCZ= Schizophrenia, CHR= Clinical high-risk, ROD= Recent-onset depression, BMI= Body mass 

index. Significant P values are stated as: *P≤0.05, **P≤0.01, ***P≤0.001 
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Table 5. Clinical characteristics of the SCZ sample. 

 SCZ 

Number of   participants (N) 139 

 

Clinical Items, 

Mean (SD) 

 

PANSS total 51.45 (28.76) 

Illness-duration 4.40 (6.70) 

Age of onset 25.49 (7.92) 

Number of hospitalizations 1.98 (2.12) 

CPZ-equivalent dose (mg) 358.9 (382.4) 

Note. MUC HC= Munich healthy control individuals belonging to discovery sample, SCZ= 

Schizophrenia, N= number of participants, SD= standard deviation, χ2= Chi-square test statistic, 

t= t-statistic, PANSS= Positive and Negative Syndrome Scale total score, CPZ= chlorpromazine. 

Significant P values are stated as:  *P≤0.05, **P≤0.01, ***P≤0.001. 

2.3.2 Individualized BMI prediction  

The BMI-predictor predicted BMI in the discovery sample with an MAE of 2.75 kg/m2. The R2 

between the true and predicted BMI was 0.28, P<0.001. This model application to the replication 

sample, generalized with a MAE of 2.29 and the R2 between true and predicted BMI was 0.26, 

P<0.001. Figure 6A depicts the correlation between true and predicted BMI for the discovery and 

replication groups. The BMI-prediction model applied to the clinical groups predicted BMI with an 

MAE of 2.85, R2 = 0.25 for the SCZ patients, 3.07, R2 = 0.16 for CHR individuals and 2.73, R2 = 

0.10 in the ROD populations significantly (P<0.001). The Figure 6B depicts the correlation 

between true and predicted BMI scores in the psychiatric groups. Table 6 outlines the result of 

the regression analysis in details. 
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Figure 6.  Regression model to estimate brain-based BMI. A) Original BMI score v/s predicted 

BMI score with a linear curve fit; the regression line with 95% confidence interval (CI) for the 

discovery group in blue and the replication group in black. B) Original BMI score v/s predicted 

BMI score with a linear curve fit; the regression line with 95% CI for the discovery group in blue, 

the SCZ patients in dark orange, CHR individuals in light orange and ROD individuals in yellow.  

Table 6. Model performances of the regression analysis for the discovery model and its 
application to the replication and patient groups. 

 N 
BMIgap 

uncorrected 

BMIgap MAE R2 r 

Discovery 770 -0.01 (3.4) 0 (1.78) 2.75 0.28 0.53*** 

Replication 734 1.73 (2.2) 0.23 (1.68) 2.29 0.26 0.51*** 

SCZ 146 1.83 (3.0) 1.05 (1.53) 2.85 0.25 0.50*** 

CHR 213 1.70 (3.26) 0.51 (1.68) 3.07 0.16 0.40*** 

ROD 200 -0.03 (3.48) -0.82 (1.64) 2.73 0.1 0.32*** 

Note. The mean BMIgap has been reported with the standard deviation in brackets for the 

uncorrected BMIgap and the corrected BMIgap after regressing out the effects of body mass 

index. N= total number of participants, r= correlation coefficient measured by Pearson correlation, 

MAE= mean absolute error, R2= coefficient of determination, SCZ= Schizophrenia, CHR= Clinical 

high-risk, ROD= Recent-onset depression. Significant P values are stated as: *P≤0.05, **P≤0.01, 

***P≤0.001 
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Model visualization 

The BMI-predictive brain signatures showed negative GMV associations in the cerebellar, 

prefrontal, occipital, and insular cortices, the postcentral gyrus, hippocampus, and thalamus 

while, positive GMV associations were observed in the left hemisphere involving the cingulate, 

cerebellar, inferior occipital and temporal cortices, as well as in the right hemisphere covering 

parts of the precuneus, putamen and Rolandic operculum. The significant BMI-predictive regions 

are depicted in Figure 7.  

 

 

Figure 7. Visualization of the brain voxels predictive of BMI. The reliability of the predictive 

voxels was assessed by visualizing a grand mean cross-validation ratio map, thresholded based 

on the FDR-corrected sign-based consistency map with α =0.05. Cool colors indicate voxels with 

a negative association of GMV and estimated BMI, whereas warm colors represent a positive 

correlation. Abbreviations: GMV= Gray matter volume, CVR= Cross validation ratio.  
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BMIgap estimation across clinical groups 

The BMIgap exhibited variations between HC individuals in both the discovery and replication 

cohorts, as well as clinical groups. Statistical analysis revealed significant differences between 

HC individuals and patient groups in both the discovery (F [HC discovery vs. patient groups] = 

33.90, P<0.001) and replication (F [HC replication vs. patient groups] = 32.36, P<0.001) cohorts, 

as depicted in Figure 8.  

 

Figure 8. Group comparison between BMIgap scores. Boxplots for BMIgap for different 

discovery, replication, and patient groups. Abbreviations: BMI= body mass index, SCZ= 

Schizophrenia, CHR= clinical high-risk, ROD= recent-onset depression. **P≤0.001. 

Further analysis through post-hoc pairwise comparisons unveiled that individuals in the SCZ 

group demonstrated the highest BMIgap scores (mean (SD) = 1.05 (1.53); t = 8.24, P<0.001; 

Cohen’s d = 0.82), followed by individuals in the risk of developing psychosis (ROD) group (mean 

(SD) = -0.82 (1.64); t = -7.03, P<0.001; d = -0.82) and individuals in the CHR group (mean (SD) 

= 0.51 (1.68); t = 4.41, P<0.001; d = 0.51). Post-hoc comparisons were conducted to assess the 

mean BMIgap values in the replication group, revealing significant differences in comparison to 

all patient groups. Specifically, the SCZ group exhibited a t-value of 6.41 (P<0.001) with d = 0.82, 

the CHR group displayed a t-value of 2.37 (P=0.019) with d = 0.27 and the ROD group showed a 

t-value of -9.05 (P<0.001) with d = -1.05. 

Notably, a significant difference in BMIgap was observed between HC individuals from the 

discovery and replication cohorts (t=3.75, P<0.001, d=0.23). These discrepancies may be 

attributed to marked variations in BMI distributions between the two samples (Figure 3A, C), 

evidenced by a significant difference in the variances of the BMI distributions (F= 3.8018, P< 

0.001). This suggests differences in sample characteristics rather than limitations in model 

generalizability.  
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Moreover, effect sizes in the replication group were comparatively smaller than those observed 

in the patient groups. Additionally, the overlapping regression lines (Figure 6A) underscored the 

generalizability of the BMIgap model across different cohorts.  

We did not find significant differences were observed in the BMIgap values among fully naïve 

(N=80, 37.56%), antipsychotics-naïve (N=153, 71.83%), antidepressant-naïve (N=108, 50.70%), 

and concurrently antidepressant-antipsychotics-treated (N=133, 62.44%) individuals classified as 

CHR (F=0.6, P=0.6244). Similarly, there were no statistically significant differences in the BMIgap 

values among fully naïve (N=59, 29.50%), antipsychotics-naïve (N=173, 86.50%), 

antidepressant-naïve (N=63, 31.50%), and concurrently antidepressant-antipsychotics-treated 

(N=141, 70.50%) individuals classified as at ROD (F=0.002, P=0.9964). Additionally, we did not 

observe significant correlation was between BMIgap and chlorpromazine equivalents (r=-0.01; 

P=0.86) for patients diagnosed with SCZ. 

2.3.3 HC-SCZ Classifier 

In the MUC sample, the classification model achieved a balanced accuracy (BAC) of 72.4%, with 

a sensitivity of 72.2% and a specificity of 72.6%, demonstrating statistically significant 

performance (P<0.001) in distinguishing individuals with SCZ from HC individuals (Figure 8A). 

This classification model was specifically designed to identify brain regions uniquely associated 

with SCZ. Notably, significantly predictive voxels were localized in various brain regions, including 

the inferior, middle, and superior frontal gyrus, hippocampal, thalamic, insular, Rolandic 

operculum, postcentral, cerebellar, and basal ganglia structures (P<0.05). Moreover, on the right 

hemisphere, the lingual, fusiform gyrus, and mid-temporal lobe were also identified as significantly 

predictive of the diagnostic pattern (P<0.05), as illustrated in Figure 8B. 
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Figure 9. Model performance and visualization of classification model to classify patients 

with SCZ from HC individuals. A) Classification performance. B) The reliability of the predictive 

voxels visualized using FDR-corrected sign-based consistency map thresholded at α=0.05. 

Abbreviations: FDR= False discovery rate, HC= Healthy controls, SCZ= Schizophrenia 

2.3.4 BMIgap, SCZ-expression and clinical dimension 

The neuroanatomical features corresponding to both BMI-predictor and SCZ-classifier exhibited 

overlapping patterns in various brain areas, such as the inferior, middle, and superior frontal 

gyrus, caudate, putamen, Rolandic operculum, right precuneus, and middle temporal lobe regions 

as depicted in Figure 10. 
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Figure 10. Overlapping brain regions between BMI-predictivity and SCZ-likelihood. 

Overlapping regions across schizophrenia and obesity obtained by binarizing and multiplying the 

sign-based consistency maps from the regression and classification models (α=0.05).  

Within this defined neuroanatomical search space, SPLS analysis revealed five significant LVs, 

each representing distinct levels of association with clinical features of the disease, as illustrated 

in Figure 11 and Figure 12. Our analysis was primarily focused on investigating the correlations 

between clinical dimensions, BMIgap, and psychiatric disease expression within the SCZ-group. 

Given that the SCZ-group exhibited notably higher BMIgap values compared to other clinical 

groups, we considered it a reliable basis for our study.  

In LV1 (r=0.87, P<0.001), lower BMIgap scores and higher SCZ expression-scores were related 

to decreased GMV in the ventral attention network and increased GMV in the default mode 

network (DMN) (auditory), somatomotor B, control (C and B), and central visual networks (Figure 

12A). 

In LV2 (r=0.84, P<0.001), higher BMIgap, SCZ expression-scores, age of onset, number of 

hospitalization and illness duration were related to decreased GMV more pronounced in the DMN 

specifically in the A, B and C subcomponents, visual, somatomotor A, attention, salience, limbic, 

and control networks and increased GMV in DMN (auditory) and somatomotor B networks, as 

illustrated in Figure 11A. 

In LV3 (r=0.85, P<0.001), higher BMIgap and higher SCZ expression-scores were related to 

decreased GMV in the DMN B and increased GMV in the DMN D (auditory) (Figure 11B). 

In LV4 (r=0.44, P=0.025), higher SCZ expression-scores, illness duration, age of onset, and 

number of hospitalizations and lower BMIgap and PANSS total scores were related to decreased 



60 

 

 

 

GMV in the limbic as well as control A and B , DMN A and B, somatomotor A and B, salience, 

dorsal and ventral attention, and peripheral visual networks and increased GMV in non-

overlapping subcomponents DMN C and control C networks (Figure 12B). 

In LV5 (r=0.58, P<0.001), we observed a signature independent of BMIgap. Lower PANSS total 

score, illness duration, and age of onset and higher SCZ expression-score were related to 

decreased GMV in DMN (C) and control (C) networks, and increased GMV in the DMN (A, B), 

somatomotor (B), dorsal attention (B), and salience networks (Figure 11C). 
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Figure 11. Signatures exhibiting a positive association between SCZ-expression score and 

BMIgap effects. A) LV2 and B) LV3 represent signatures showing positive association between 

SCZ-expression score and BMIgap. C) LV5 represents a BMIgap-independent signature of LV5. 

Bar plots visualize the correlation of each variable with the LV, blue identifies variables 

significantly contributing to the LV. The x-axis denotes BSR in the x-axis (interpretable as z-

scores) and the y-axis denotes BMIgap, SCZ expression score and other clinical items. The red 

dotted line in the graph represents a BSR of 1.96 (equivalent to a 95% confidence interval). The 

contribution of individual voxels is shown using BSR in MNI space. Cool colors indicate voxels 

with a negative correlation of GMV and clinical items, whereas warm colors represent a positive 

correlation. The spider-plot illustrates the voxel contribution within the 17-network parcellation 

solution extracted using the Yeo-Buckner atlas (Thomas Yeo et al., 2011). The network names 

and the cerebral cortical regions that compose the 17 networks are from the supplementary video 

in Baker et al. (2014) (Baker et al., 2014). Abbreviations: BSR= bootstrap ratios, LV= Latent 

variable, SCZ= Schizophrenia, BMIgap= body mass index gap score, PANSS= Positive and 

Negative Symptom Scale total score  
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Figure 12. Signature exhibiting negative association between SCZ-expression score and 

BMIgap effects. SPLS analysis results for A) LV1 and B) LV4. Bar plots visualize the correlation 

of each variable with the LV, blue identifies variables significantly contributing to the LV. The x-

axis denotes bootstrap ratios (BSR) (interpretable as z-scores) and the y-axis denotes BMIgap, 

SCZ expression-score and other clinical items. The red dotted line in the graph represents a BSR 

of 1.96 (equivalent to a 95% confidence interval). The contribution of individual voxels is shown 

using BSR in MNI space. Cool colors indicate voxels with a negative correlation of GMV and 

clinical items, whereas warm colors represent a positive correlation. The spider-plot illustrates the 

voxel contribution within the 17-network parcellation solu-tion extracted using the Yeo-Buckner 

atlas (Thomas Yeo et al., 2011). The network names and the cerebral cortical regions that 

compose the 17 networks are from the supplementary video in Baker et al. (2014) (Baker et al., 

2014). Abbreviations: LV= Latent variable, SCZ= Schizophrenia, BMIgap= body mass index gap 

score, PANSS= Positive and Negative Symptom Scale total score 
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2.4 Discussion 

In this study, we introduce 'BMIgap' as an innovative tool for assessing obesity-related brain 

changes in both psychiatric and non-psychiatric populations. We identified patterns of BMI-

associated brain alterations and brain changes observed in psychiatric disorders. We observed 

an association between lower GMV in frontal and temporal regions and higher BMI, explaining a 

significant portion of BMI variation in individuals without psychiatric disorders. Next, individuals 

with SCZ and those at CHR exhibited positive BMIgap scores, whereas individuals with ROD 

demonstrated negative BMIgap scores compared to those without psychiatric disorders. 

Furthermore, we identified overlaps between the separability of SCZ individuals from HC 

individuals and structural brain variations associated with BMI, particularly in regions implicated 

in inhibitory control and reward processing. BMIgap scores accounted for 6.25% of the variance 

in SCZ expression scores. SPLS analysis revealed that the predominant patterns linking brain-

based SCZ diagnostic separability and BMI predictiveness were associated with longer illness 

duration, later disease onset and a higher number of hospitalizations. 

2.4.1 BMI predictive brain regions 

Our findings provide further evidence supporting previous research findings showing associations 

between structural variations in the brain and obesity (S. R. McWhinney et al., 2022; Opel et al., 

2017). The negative relationship observed between BMI and GMV within the reward and salience 

systems suggests a potential role in regulating eating behavior (Li et al., 2022). This negative 

association underscores the possibility that alterations in these brain regions may influence the 

way individuals respond to food cues and rewards, potentially contributing to overeating and 

weight gain. In our study, we noted reductions in GMV associated with BMI predictive regions of 

the brain implicated in taste perception, reward processing and inhibitory control among 

individuals without psychiatric disorders (HC individuals). These changes may contribute to the 

development of maladaptive eating patterns, thereby fostering obesity. Specifically, reductions in 

GMV in prefrontal regions have been associated with diminished inhibitory control, which might 

increase vulnerability towards consuming excessive calories. Additionally, our findings revealed 

negative associations between GMV and BMI in the occipital gyrus, a brain region crucial for 

processing visual and gustatory information related to food, consistent with previous 

investigations into obesity (Herrmann et al., 2019). These observed alterations in brain structure 

may arise from the physiological effects of obesity on the central nervous system thereby 

establishing a feedback loop between impaired cognitive control and obesity-related changes in 

the brain. 

2.4.2 Obesity and SCZ 

Our findings revealed notable reductions in prefrontal volume among individuals diagnosed with 

SCZ compared to HC individuals. This aligns with the previous findings that impaired inhibitory 
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control constitutes a fundamental aspect of SCZ. This impairment is evident in the challenges 

individuals face in suppressing automatic or dominant reactions to stimuli, as well as in deficits in 

cognitive control (Ursu et al., 2011; Yan et al., 2022). Furthermore, our analysis unveiled that 

significant brain patterns distinguishing SCZ mapped onto regions of the brain predictive of BMI 

such as areas associated with inhibitory control, reward processing and cognitive regulation (Tsai 

et al., 2020). This observation suggests potential interconnected pathways between obesity and 

SCZ, consistent with prior research. Prefrontal deficits, characterized by reduced cognitive drive 

and impaired inhibitory control, may exacerbate the susceptibility of individuals with SCZ to 

engage in addictive behaviors. This heightened risk could manifest in overeating behaviors, 

thereby contributing to elevated BMI levels within this population.  

2.4.3 Conceptualizing BMIgap 

The concept of BMIgap offers a means to quantify structural brain variations that are predictive 

of obesity. A positive BMIgap observed in patients with SCZ and those at CHR state suggests 

that their brain-estimated BMI exceeds their actual BMI, implying brain alterations akin to those 

typically associated with higher BMI levels. This intriguing finding hints the possibility that 

underlying pathophysiological mechanisms in psychiatric disorders may influence brain structure 

in a manner resembling the alterations observed in obese individuals. Furthermore, these 

interaction effects seem to be more pronounced in patients with SCZ as compared to those in 

CHR individuals, likely due to the more advanced disease stage in the former group, leading to a 

higher observed BMIgap. These results suggest that the co-occurrence of obesity and SCZ may 

lead to more substantial brain changes compared to individuals with only one of these conditions. 

Notably and conversely, ROD individuals exhibited a negative BMIgap score. This suggests that 

their brain alterations align more closely with those typically seen in individuals with lower BMI 

levels. This observation is supported by previous research demonstrating overlapping brain 

patterns between depressed individuals and those who are underweight, as well as elevated 

depression scores in patients with anorexia nervosa (Bohon & Welch, 2021). Future application 

of the BMI prediction model to patients with MDD and bipolar disorder holds promise for shedding 

further light on the potential pathophysiological processes underpinning BMI-related brain 

phenotypes.  

2.4.4 Association between medications and BMIgap 

Antipsychotics and antidepressants have been associated with the promotion of obesity, as 

documented in previous studies (Fava, 2000; Gill et al., 2020; Panariello et al., 2011). The 

mesolimbic dopaminergic system and the ventromedial nucleus play pivotal roles in modulating 

behavioral responses to environmental stimuli and regulating both intake of food and the body-

weight homeostasis. These mechanisms contribute to weight-gain following the administration of 

antipsychotic medications (Panariello et al., 2011). While most antidepressants are known to 

induce weight gain, certain agents, such as fluoxetine and bupropion, may lead to weight loss as 
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well (Gill et al., 2020). Interestingly, our study did not uncover a correlation between BMIgap and 

antipsychotic dosage in patients with SCZ, as measured by chlorpromazine equivalents. It's worth 

noting that the chlorpromazine equivalency method offers only a rough estimate and does not 

capture the individual patient's pharmacodynamic and pharmacokinetic profiles across different 

antipsychotic compounds. Despite this, our analysis did not reveal significant differences when 

comparing BMIgap scores among fully naive, partly naive, and concurrently treated individuals 

with both antidepressants and antipsychotics, within the CHR and ROD samples implicating that 

medication effects may not fully account for the variability in BMIgap. Moving forward, it is 

imperative for future research to meticulously investigate the distinct, neurotransmitter-specific 

effects of antidepressants and antipsychotics on BMIgap, employing longitudinal study designs. 

This approach will allow for a deeper understanding of how these medications influence brain 

structure alterations related to obesity over time. Such insights could inform more tailored 

treatment strategies and interventions for individuals with psychiatric disorders, with a focus on 

mitigating the risk of obesity-related complications. 

2.4.5 Association between BMIgap, SCZ expression-score and clinical 

variables 

Our analysis identified four out of the five significant LVs that govern structural brain variations 

associated with both control and reward systems. These variations were found to be associated 

with the SCZ-expression score, BMIgap and clinical parameters in distinct ways: LV2 and LV3 

exhibited positive associations between SCZ expression-scores and BMIgap, while LV1 and LV4 

displayed only negative associations. Moreover, the positive clinical loadings were observed 

exclusively in LV2 and LV4, indicating specific connections between BMIgap, SCZ, and clinical 

features. The observed patterns characterized by high BMIgap-SCZ expression scores were 

associated with a decrease in GMV within networks such as the limbic network, coupled with 

increased GMV within networks like the DMN (specifically, the auditory network). These networks 

are known for their involvement in reward circuit, food motivation, executive and affective control, 

as evidenced by research on obesity (Avery et al., 2017; Dugré et al., 2019). Additionally, these 

networks have been implicated in SCZ research, particularly in impaired processing of negative 

emotions and have shown heightened network-specific functioning in these individuals (Jamea et 

al., 2021; Tamminga et al., 1992). Furthermore, positive loadings in clinical variables, indicating 

late disease onset, high hospitalization frequency and longer illness duration, were associated 

with both high BMIgap and SCZ-expression scores. This suggests a potential association 

between the severity of SCZ and the presence of obesity-related traits. Overall, these findings 

underscore a complex interplay between common neurobiological pathways and environmental 

factors contributing to both SCZ and obesity. 

However, the two LVs exhibiting negative associations between BMIgap and SCZ expression 

scores may suggest the presence of distinct neurobiological pathways underlying SCZ and 

obesity. This divergence could arise from the considerable neurobiological heterogeneity often 
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observed in SCZ (Luckhoff et al., 2022). Certain subgroups, possibly characterized by depressive 

symptoms, might reduce the appetite, leading to lower BMI and diminished obesity-related brain 

changes, while still maintaining high diagnostic separability (Bohon & Welch, 2021). Furthermore, 

positive loadings in three out of four clinical variables may reflect a pronounced effect of SCZ on 

disease severity. Conversely the negative loadings in both BMIgap and PANSS total score may 

arise from specific symptom profiles strongly associated with higher BMI or metabolic 

dysregulation (S.-H. Lin et al., 2021). Lastly, we observed a pattern primarily reflecting the impact 

of SCZ on brain systems, which appeared distinct from BMI-related macroscopic brain variation. 

However, counterintuitively, this pattern exhibited negative loadings for clinical items associated 

with high SCZ diagnostic separability. This finding could suggest a divergent clinical course, 

where individuals with an earlier onset, shorter duration of illness, and milder symptoms may be 

less prone to showing elevated SCZ diagnostic scores. This nuanced correlation highlights the 

intricate nature of SCZ subtypes and indicates possible variations in how the disorder manifests 

and progresses. In summary, these findings indicate the presence of both common and differing 

pathways contributing to the shared alterations in brain structure related to both SCZ and BMI. 

This opens up opportunities for investigating the characterization of potential psychiatric subtypes 

and uncovering the precise neurobiological pathways underlying each condition. 

2.4.6 Limitations 

The study has many limitations that warrant consideration. First, our study lacked adequate 

representation of individuals with extreme BMI values (BMI >35 or <18.5) due to sample size 

limitations. This gap in representation highlights the need for future research utilizing our BMIgap 

model to investigate neural mechanisms in both underweight and highly obese individuals. 

However, conducting such research may be challenging, particularly in the case of underweight 

individuals, given the increasing prevalence of conditions like anorexia nervosa. Secondly, our 

study lacked data on essential metabolic markers such as lipid profile, fasting glucose levels, and 

HOMA-IR (Homeostatic Model Assessment of Insulin Resistance). These markers are crucial for 

understanding potential shared pathophysiological mechanisms that influence both brain 

structure and clinical correlations between obesity and psychiatric disorders. Despite this 

limitation, the use of BMI, a widely employed metric in similar studies, allowed us to make initial 

and direct comparisons with previous research findings. In essence, while our study provides 

valuable insights, there are areas for improvement and further exploration (Herrmann et al., 2019; 

S. R. McWhinney et al., 2022). Future research endeavors should aim to address these limitations 

by including a more diverse range of BMI values by incorporating additional metabolic markers to 

deepen our understanding of the complex interplay between obesity and psychiatric disorders at 

both neurobiological and clinical levels.  
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2.4.7 Conclusion 

This study provides further evidence supporting the widespread associations between BMI and 

GMV. Consistent with previous research, we identified overlapping brain regions that are 

predictive of both BMI and SCZ, suggesting that individuals affected by both obesity and SCZ 

may exhibit more pronounced brain alterations compared to those with either condition alone. Our 

BMIgap model emerges as a promising tool for disentangling the personalized risk of 

neurostructural changes associated with obesity and psychiatric disorders. Moreover, it is 

imperative for future investigations to explore whether these observed brain alterations serve as 

modifiable risk factors in psychiatric disorders and whether the obesitogenic effects of 

antipsychotic medications contribute to their associations with alterations in brain structure. 

Longitudinal neuroimaging studies, incorporating datasets with metabolic markers and spanning 

from at-risk to relapsing disease stages, are essential. Such studies will enable us to evaluate the 

prognostic and monitoring potential of BMIgap for obesity-related comorbidities in mental 

disorders. This holistic approach will offer valuable insights into the complex interplay between 

obesity, psychiatric disorders and brain structure, ultimately informing more effective interventions 

and treatments for individuals with these conditions. 
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3. Brain-age estimation in multisite studies 

Parts of the content of this chapter has been published as: Adyasha Khuntia, Madalina-Octavia 

Buciuman, John Fanning, et al. Towards collaborative data science in mental health 

research: The ECNP NeuroImaging Network Accessible Data Repository. Neuroscience 

Applied, 2025, 4, 105407; https://doi.org/10.1016/j.nsa.2024.105407. The content of this 

chapter has been paraphrased, and the tables and figures presented herein have been adapted 

from the aforementioned paper. 

3.1 Brain-ageing in common psychiatric disorders 

Psychotic and affective disorders commonly exhibit clinical and brain changes that correlate with 

age (Ballester et al., 2022). As patients with SCZ age, they typically experience improvements in 

positive functioning but may also encounter a decline in cognitive functionality (Folsom et al., 

2006). Additionally, the frequency of depressive episodes tends to rise significantly, increasing by 

90% after the onset of the third episode as these patients age (Burcusa & Iacono, 2007). These 

observations have motivated the scholars of this millennium to focus on brain-ageing research 

targeting disease-specific brain signatures and their underlying biological processes. It has been 

fourteen years since Franke et al. (2010) first conceptualized BrainAGE as a metric to capture 

ageing associated brain deviations at individual level (Franke et al., 2010). The BrainAGE 

concept, also known by alternative terms such as brain age score (Beheshti et al., 2018), brain-

predicted age difference (brainPAD) (Cole & Franke, 2017) or brain age delta (Smith et al., 2019), 

has been extensively researched and utilized in the field of psychiatry. The initial framework 

outlined by Franke et al. (2010) included measuring the brain-based age estimates, by first 

building a feature matrix constituting of brain derived measures of psychiatrically healthy 

individuals. The brain derived features are given as input to a multivariate ML algorithm such as 

a regression to predict chronological age for each individual. The difference between the predicted 

age by the ML model and the chronological age is then calculated. This model is further applied 

to different psychiatric groups to estimate the respective brain-age and assess their deviation 

from the norm. Over the years, this framework, although still efficient and widely used, has also 

evolved by incorporating different methodological strategies such as neuronal networks (Hahn et 

al., 2022) by using the brain-derived features to build a deep-learning model that predicting the 

chronological age. Although VBM8 extracted whole brain GMV images were initially used as input 

features, the concept has been extended to use other brain measures derived from other imaging 

modalities such as the diffusion-weighted magnetic resonance imaging, rs-fMRI data, as well as 

inclusion of data-fusion methods to combine different modalities. Moreover, it is no longer limited 

to assess only the GMV alterations rather other brain derivatives such as WMV, cortical thickness 

has also been studies extensively. Importantly, extension of the BrainAGE analysis to include 

longitudinal datasets as well, has been extensively done. Moreover, it is crucial to validate brain-

age models to separate, unseen healthy sample. This step is essential for mitigating 
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generalizability bias. A systematic framework to derive BrainAGE is depicted in Figure 13. 

Regardless of the specific methodology used, BrainAGE has been widely applied to assess age-

related abnormalities across psychiatric disorders. 

 

 

Figure 13. Schematic depiction of a standard framework to estimate BrainAGE (adapted 

from (Seitz-Holland et al., 2024)) 

3.1.1 BrainAGE in SCZ 

A prevailing hypothesis posits SCZ as a syndrome of accelerated ageing (Kirkpatrick et al., 2008). 

If substantiated, accelerated and potentially pathological brain atrophy should be identifiable 

early, preceding the onset of clinical symptoms. In this context, comparing brain atrophy to that 

of normal brains becomes pertinent, with the straightforward and efficient approach being the 

application of a BrainAGE model trained on HC individuals to estimate deviations in these patient 

groups. BrainAGE analysis has emerged as a valuable tool for investigating structural brain 

alterations in SCZ. Studies employing BrainAGE in SCZ have unveiled accelerated brain-ageing 

trajectories in affected individuals, characterized by significant deviations from expected brain-

ageing patterns. These deviations often present as widespread reductions in GMV and alterations 

in white matter integrity, indicating a complex interplay between disease pathology and age-

related changes in brain structure. 

Patients having psychotic disorders have repeatedly displayed a significantly higher BrainAGE 

score as compared to HC individuals. The first ever study to apply the brain age prediction method 

to estimate BrainAGE scores in patients with SCZ was conducted by Koutsouleris et al. (2014) 

by using SCZ participants ranging between 18 and 60 years and they showed that patients 

displayed a positive BrainAGE score with respect to HC individuals (Koutsouleris et al., 2014). 

More recent application of this concept to patients belonging to SCZ spectrum such as 

schizophreniform, schizoaffective or psychotic disorder have shown that BrainAGE can reach 
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upto 7.8 years (Shahab et al., 2019) (Shahab et al. (2019)). Kaufmann et al. (2019) conducted a 

comprehensive investigation on brain-ageing in patients with SCZ (Kaufmann et al., 2019). They 

trained an XGBoost model by using brain thickness, area, and volume features derived from 

structural MRI data as input features from a training cohort of 35,474 individuals, while building 

separate models trained for each gender. This analysis revealed a significant BrainAGE with a 

Cohen's d effect size of 0.51. Additionally, age prediction models trained using features from 

specific brain regions such as cerebellar or subcortical regions showed no increased in BrainAGE, 

but a substantial effect in the frontal lobe. These findings imply that neuroanatomical 

characteristics related to brain-ageing vary throughout the brain, suggesting that each region may 

have its own distinct ageing pattern and rate. BrainAGE discrepancies have also been observed 

in longitudinal studies. Schnack et al. (2016) conducted a longitudinal analysis with repeated 

measures, demonstrating a strong association between the onset of SCZ and the acceleration of 

brain-ageing (Schnack et al., 2016). The rate of brain-ageing reached its peak immediately 

following the onset of SCZ, after which the acceleration rate diminished, becoming non-significant 

after approximately five years and eventually normalizing to one year per year. More recent 

studies utilizing advanced machine-learning and deep-learning methods have also shown similar 

BrainAGE trends in SCZ group. Utilizing more advanced ML techniques such as transfer learning, 

Chen et al. (2020) illustrated that employing pre-trained models from diverse databases or data 

types alongside brain-age prediction models using diffusion MRI data revealed comparable 

differences in BrainAGE between patients with SCZ and HC individuals. Furthermore, analysis 

using structural covariance networks also demonstrated similar BrainAGE scores of +5.52 years 

for SCZ patients (Kuo et al., 2020). Lastly, by employing deep neural networks, Bashyam et al. 

(2020) build a deep brain network using MRI scans from 11,729 individuals yielding distinct 

BrainAGE differences between SCZ and HC, contingent upon the degree of model fit to the data 

(Bashyam et al., 2020). Although the deep learning models exhibited greater robustness with 

lower MAE, they also yielded lower BrainAGE scores (~3 years) for the SCZ group.  

Only a limited studies have focused on exploring the phenomenon of accelerated brain-ageing in 

patients experiencing their first psychotic episode and CHR individuals. Notably, Hajek et al. 

(2019) conducted a study that demonstrated significant differences in BrainAGE between 

medication-naïve individuals with their first-episode schizophrenia-spectrum disorders and HC 

individuals (Hajek et al., 2019). The findings from this study revealed that the group experiencing 

their first psychotic episode displayed a BrainAGE deviation of 2.65 years compared to the HC 

group. Furthermore, studies have investigated the BrainAGE deviations for CHR individuals as 

well. The CHR individuals in the NAPLS 2 study, exhibited a higher BrainAGE score for the CHR 

group as compared to the HC individuals. However, this outcome was associated with the age of 

onset of psychosis. Although, the CHR individuals who developed psychosis between the age of 

12 and 17 showed an overestimation of brain-age, the CHR individuals whose age of disease 

onset was between 18 and 21 did not show similar overestimation (Chung et al., 2018). 
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BrainAGE and clinical characteristics in SCZ 

Recently studies have aimed to elucidate the relationship between brain age and 

psychopathology (Demro et al., 2022). Their findings indicated that advanced brain-ageing was 

associated with lowering of cognitive performance as well as reduced general functioning. 

Notably, the cognitive performance and schizotypal symptoms of the patient relatives correlated 

with BrainAGE, suggesting that advanced brain-ageing process may be associated with subtle 

manifestations related to psychosis (Demro et al., 2022). Interestingly, the large cohort ENIGMA 

study did not observe any statistically significant connections between BrainAGE and various 

clinical parameters such as age-of-onset, illness duration, severity of symptoms as measured by 

PANSS total and SAPS global scores, severity of negative symptoms as measured by SANS 

global score, antipsychotic medication usage as well as CPZ-equivalent dosage. Furthermore, 

they did not observe significant effects when comparing typical versus atypical medication groups, 

or when comparing both typical and atypical medication groups versus atypical medication groups 

alone, Kaufman et al. (2019) investigated the association between BrainAGE and various 

clinically relevant variables in patients with SCZ, revealing a link between higher BrainAGE and 

poorer functioning (Kaufmann et al., 2019). Specifically, elevated BrainAGE levels were 

correlated with lower levels of functioning, as indicated by a negative correlation between 

BrainAGE and Global assessment of functioning (GAF) symptom and function scores. 

Furthermore, BrainAGE demonstrated positive correlations with more severe negative symptoms 

of SCZ, as assessed by PANSS negative scores. Among the studies investigating brain-ageing 

in first-episode psychosis individuals, there is consistent evidence indicating that accelerated 

brain-ageing occurs very early in the illness-course. Furthermore, in CHR individuals, greater 

brain-age deviation has been associated to an increased risk of transitioning to psychosis and 

exhibiting a pattern of persistently poor functioning over time. However, this association seems 

to be particularly pronounced among younger CHR adolescents (Chung et al., 2018). 

3.1.2 BrainAGE in depression 

Research findings regarding brain-ageing in individuals with depression remain inconclusive. 

Some studies have identified a positive BrainAGE deviation score compared to HC individuals, 

albeit to a lesser extent than observed in individuals with SCZ (Christman et al., 2020; L. K. M. 

Han et al., 2021). Conversely, other studies report no significant differences between individuals 

with depression and HCs in terms of BrainAGE deviation (Bashyam et al., 2020; Kuo et al., 2020). 

One of the first studies showing accelerated brain-ageing in patients with MDD was by 

Koutsouleris et al. (2014) (Koutsouleris et al., 2014). The ENIGMA study comprising the largest 

sample size with 2675 participants to study BrainAGE showed significant BrainAGE differences 

between the MDD and the HC individuals and BrainAGE of 0.86 years (L. K. M. Han et al., 2021). 

Subsequently, another study by Besteher et al. (2019) reported no significant differences between 

the BrainAGE scores between the MDD and HC groups, yet the MDD group exhibited a BrainAGE 

of +0.41 years, albeit with a limited sample size (Besteher et al., 2019). Kaufman et al. (2019) 



72 

 

 

 

investigated the BrainAGE patterns in a larger sample size and showed no significant BrainAGE 

differences compared to the HC individual group, albeit exhibiting 0.86 years of BrainAGE for the 

patient group (Kaufmann et al., 2019). Similarly, other researchers have reported no significant 

differences as well (Bashyam et al., 2020; Christman et al., 2020). Structural covariance networks 

approach by incorporating the relationship among specific brain regions to predict brain age 

exhibited a considerable BrainAGE of +1.99 years between MDD and HC groups, although it did 

not reach statistical significance (Kuo et al., 2020). Similarly, Dunlop et al. (2021) utilized resting-

state functional MRI data to predict brain-age. Despite reporting a high MAE in their final model, 

they observed a substantial BrainAGE standard deviation of 12.65 in the MDD group (Dunlop et 

al., 2021). 

BrainAGE and clinical characteristics of depression 

The range of negative events and consequences, including environmental adversities, early onset 

of depression during adolescence and impairment in functioning, have been associated to an 

increase in BrainAGE. Moreover, investigating the distinct impacts of each indicator, while 

considering the presence of others, requires examination in larger study populations. Deviation 

from chronological age may reflect general health status rather than being specific to any 

particular exposure or outcome (Drobinin et al., 2022). 

In the extensive ENIGMA study, notable BrainAGE differences were observed between 

individuals with remitted depression, those currently experiencing depression, individuals using 

antidepressant medication during scanning, medication-free depressed patients, patients with 

late adult-onset depression, mid-adulthood onset depression, early-onset depression, first-

episode depression, and recurrent depression compared to controls. However, there were no 

significant associations found between depression severity or current depressive symptoms, as 

measured by self-reported Beck depression inventory-II (BDI-II) or clinical-based Hamilton 

depression rating scale (HDRS-17) questionnaires, at the time of scanning within the MDD 

sample. 

3.1.3 GMV association with age 

Studies investigating age-related changes in the brain have revealed that GMV tends to increase 

during late childhood followed by a gradual decline (Franke & Gaser, 2019; Koutsouleris et al., 

2014). Initial research by Good et al., 2001 indicated a global GMV atrophy which was directly 

correlated with increase in age (Good et al., 2001; Terribilli et al., 2011). Furthermore, they 

observed that the accelerated GMV loss was localized in regions such as the insula, central sulci, 

superior parietal gyri and cingulate sulci, while brain regions including the amygdala, hippocampi 

and entorhinal cortex did not show significant brain changes with ageing, indicating relative 

preservation (Good et al., 2001). Subsequent studies by other researchers further corroborated 

that age specific GMV loss primarily localized in brain areas such as frontal and parietal regions 

as compared to other regions such as temporal and occipital lobes (Resnick et al., 2003). 



73 

 

 

 

Moreover, longitudinal investigations provided valuable insights into the rate and distribution of 

age-related brain alterations. These studies have revealed that healthy individuals who remained 

free from pathological conditions and sustained both physical and cognitive well-being exhibited 

slower rates of brain atrophy compared to those with pathological conditions (Resnick et al., 

2003). Furthermore, the findings of ageing-related reductions in frontal volume associated during 

adulthood may be implicated by late-stage brain maturation processes (Resnick et al., 2003). 

These alterations involve increase in synaptic pruning and myelination, both of which are 

associated with a noticeable decrease in GMV (Sowell et al., 2004). The divergent patterns of 

age- and region-specific gray matter alterations observed in non-elderly adults may be attributed 

to differential timing in the maturational processes of myelination and synaptic pruning within the 

brain (Terribilli et al., 2011). Furthermore, in Kaufman et al. (2019) BrainAGE analysis using large 

datasets with 35,474 individuals, a substantial effect was observed specifically in the frontal lobe. 

This indicates that the neuroanatomical changes associated with brain-ageing are not uniformly 

distributed throughout the brain (Kaufmann et al., 2019). Instead, it suggests that each brain 

region may exhibit its own unique pattern and rate of ageing. 

3.1.4 BrainAGE in regions-of-interst (ROI) studies 

Using voxelized whole brain images as feature inputs is a common practice in BrainAGE studies, 

often referred to as data-driven strategies. However, this approach has several drawbacks, 

particularly regarding its application in clinical settings. Firstly, the processing of MRI images is 

pipeline dependent which might take a lot of processing time and computational infrastructure. 

Secondly, the method of extracting a single predictive-value from the whole brain or total GMV 

images can be considered as black-box. Thirdly, there has been evidences that the brain-ageing 

process is restricted to specific regions of the brain and doesn’t occur in the entire brain. These 

challenges motivated the researchers to develop methods to calculate individualized BrainAGE 

in a simpler, faster and computationally effective way while not losing any crucial neurobiological 

information. Measurement of the regional brain volume has been established and accepted 

specifically to understand cognitive functioning in brain. While the reduction in image-processing 

time may not be guaranteed with the implementation of ROI maps, there is a definitive decrease 

in the computational power and time while developing the models. Particularly, it has been 

demonstrated that newer ML and DL approaches necessitate extensive datasets and significant 

computational resources to construct models such as neural networks, resources that are often 

constrained to clinicians.  

Previously, Baecker et al. (2021) conducted a comparative study to evaluate the predictive 

abilities of ML  models utilizing region-based and VBM data (Baecker et al., 2021). They used 

brain data from 10,824 HC individuals from the UK Biobank and demonstrated that model 

performance was affected by the choice of data modality. They found that VBM  data, coupled 

with dimensionality reduction methods, proved to be more robust compared to the low-

dimensional ROI data, despite using the same model algorithm. The lowest MAE using ROI data 
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was 4.06 years (Baecker et al., 2021). Another previous study showed no differences in the MAE 

values while using different brain derivatives such as volume, cortical-thickness and ROI, rather 

the MAE improved after combining all the features improved the MAE value (Gutierrez Becker et 

al., 2018). Another study while utilizing cortical thickness measures only showed a MAE of 4.05 

years (Aycheh et al., 2018). 

Furthermore, the multi-site study consortium ENIGMA has successfully conducted BrainAGE 

analysis by using ROI data in various psychiatric groups. The findings revealed a significant 

elevation in BrainAGE by +3.55 years in SCZ patients compared to HC individuals after adjusting 

for age, age2, sex and scanning site. Moreover, in separate study but using same image 

processing pipeline brain regions, the consortium found that MDD group exhibited a BrainAGE 

score +1.08 years higher than HC individuals after adjusted for age, age2, sex and scanning site 

(Constantinides et al., 2023).  

3.1.5 BrainAGE and obesity 

There are consistent associations between BrainAGE and obesity, and overweight and obesity 

have been identified as risk factors for accelerated brain-ageing, as observed in 

neurodegenerative disorders (Xu et al., 2015). Studies have found that among psychiatrically 

healthy individuals, the obese individuals exhibit a higher BrainAGE as compared to individuals 

with normal weight (Ronan et al., 2016; Zeighami et al., 2022). Similar findings have been 

observed amongst psychiatric groups as well (S. McWhinney et al., 2021). Notably, Kolenic et al. 

(2018) showed that participants experiencing first-episode psychosis who are obese or 

overweight displayed the highest BrainAGE scores, while those individuals who had normal 

weight exhibited the comparatively lower BrainAGE scores (Kolenic et al., 2018). Furthermore, in 

the same study, they did not find association between BrainAGE and LDL, HDL or triglyceride 

levels as well as usage of psychotropic medication or other clinical items such as hypertension 

(Kolenic et al., 2018). Another longitudinal analysis assessing the brain changes with respect to 

both obesity and ageing in first-episode psychosis individuals revealed that although, first-episode 

psychosis individuals showed higher brain-ageing as compared to HC individuals, however the 

annual rate of brain-ageing was similar for both groups. In both cohorts, a higher baseline BMI 

was associated with accelerated brain-ageing. Specifically, for every additional BMI point, the 

brain-aged by an extra month per year (S. R. McWhinney et al., 2022). Moreover, it was revealed 

that individuals who underwent weight loss due to bariatric surgery experienced a reduction in 

age-related brain abnormalities measured by the BrainAGE score, amounting to approximately a 

2.5 year decrease (Zeighami et al., 2022).  This improvement in brain-age related changes was 

accompanied by widespread enhancements in cardiometabolic factors as well. This suggests that 

obesity plays a significant role to understand the relationship between brain-ageing in individuals 

having psychotic episodes. Moreover, it suggests a potential linkage between brain alterations 

associated with both ageing and obesity in psychiatric patients, highlighting the need for further 

exploration.  
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3.1.6 Normative modelling framework 

Normative modeling is a relatively new approach emerged during the mid 2010s specifically 

aimed to capture individual level differences in a clinical population with respect to a reference 

population model derived from a larger population. In psychiatry the traditional categorizing 

individuals into the so called ‘healthy control’ and ‘clinical’ groups assumes no heterogeneity 

within these groups. The normative modelling framework addresses this inherent heterogeneity 

commonly occurring within these groups by focusing on individual variations rather than simple 

group comparisons, thus providing a more nuanced understanding of psychiatric conditions. 

Various statistical approaches have been suggested for normative modeling, such as regression, 

support vector machines, and Gaussian process modeling (Marquand et al., 2019). 

We will use the framework to build the BrainAGE model using ROI data. We will utilize data from 

large cohort studies to understand the normative distribution within the healthy population. Next, 

we will generate probabilistic assessments regarding participants who deviate from this normative 

pattern in a separate HC group and patient population. Henceforth, we will statistically identify the 

brain regions associated with these deviations. 

3.1.7 Aims of this study 

The primary aim of this study is to understand brain-ageing as a comorbidity in HC individuals as 

well as in psychiatric cohorts. While brain-ageing has been extensively researched during the 

past decade and an accelerated brain-ageing has been a consistent finding specifically in SCZ 

patients, there still exists limitation relating to model replicability as well as less studies using ROI 

specifically in large cohort studies albeit the choice of using ROI maps being computationally 

more efficient as well as more realistic in clinical set-up. We assessed BrainAGE predictions in 

two analysis setups: 1) using GMV ROIs extracted from 1170 HC individuals within the recently 

established large and multi-site European College of Neuropsychopharmacology Neuroimaging 

Network Accessible Data Repository (ECNP-NNADR) consortium, 2) using the whole brain GMV 

voxels of the 770 HC individuals utilized in the discovery sample for constructing the BMI-

predicting model. Subsequently, we plan to evaluate the predictive capabilities of the models 

using independent samples of HC individuals and various psychiatric groups, including SCZ, 

CHR, ROD and MDD. Our aim is to derive the utility of the BMIgap tool developed in the previous 

chapter to address the association between brain-age and obesity, as well as to understand the 

influence of obesity on brain-ageing, particularly in patients with SCZ. We intend to correlate 

individualized BrainAGE and BMIgap scores across both HC and clinical groups, as well as 

BrainAGE score and SCZ-expression scores. Finally, we aim to investigate the associations 

between BMIgap, BrainAGE scores, SCZ expression scores and various clinical variables using 

SPLS analysis, particularly for patients with SCZ.  

Our first hypothesis is that the BrainAGE model developed using ROI data should perform better 

than the model using whole-brain voxelized data. Additionally, we expect that all patient groups 
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will show accelerated ageing effects. Furthermore, we hypothesize that the frontal regions 

associated with cognitive control will be commonly implicated in the contexts of obesity, brain-

age and SCZ expression. Lastly, we anticipate obtaining differential brain-clinical signatures 

showing distinct levels of association, specifically showing patterns of comorbidity. 

3.2 Methods 

3.2.1 BrainAGE model using GMV-ROI data 

Sample characteristics 

To date, seven European sites representing six different countries participate in the ECNP-

NNADR project: The Ludwig-Maximilian University Hospital in Munich, Bavaria, Germany; 

NORMENT Centre, Division of Mental Health and Addiction, Oslo University, Oslo, Norway; 

Bellvitge Biomedical Research Institute-IDIBELL, Universitat de Barcelona, Barcelona, Spain; 

University of Edinburgh, Edinburgh, Scotland; Università degli Studi di Milano, Milan, Italy; 

University of Turku, Turku, Finland; Università degli Studi di Verona, Verona, Italy. Across the 

participating sites, patients were included if they had complete demographic information including 

age, sex, diagnosis, and at least one complete score set in one of the clinical scales or MRI data. 

All included studies were approved by their respective local ethics committees. In total the 

repository consists of clinical and MRI data from 21 cohorts across the seven sites, resulting in a 

total sample size of 4,829 participants, including HC individuals and eleven distinct psychiatric 

conditions showcasing. Details about the MRI parameters for each site is detailed in Table 7.  
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Table 7. Magnetic resonance imagining acquisition parameters 

Site Subcohort Scanner 
Field 
strength 

TR (ms) TE (ms) 
Flip 
angle 

Voxel size 
(mm) 

FOV Slice num. 

Munich LMU Munich cohort 
Siemens 

Magnetom 
1.5T 11.6 4.9 NA 

0.45 x 0.45 x 
1.5 

512 x 512 126 

Barcelona BARCENONA_PIE Philips 
Ingenia 

3T 10.46 4.79 8 0.75 x 0.75 x 
0.75 

320 x 320 233 

Barcelona BARCENONA_TEC Philips 
Achieva 

3T 8.2 3.7 8 0.94 x 0.94 x 
1.0 

256 x 256 160 

Barcelona BARCENONA_ANTI
CS 

GE Signa 
Excite 

1.5T 11.8 4.2 15 1.17 x 1.17 x 
1.2 

256 x 256 130 

Barcelona BARCENONA_PRO
V_SIMPT 

GE Signa 
Excite 

1.5T 11.8 4.2 15 1.17 x 1.17 x 
1.2 

256 x 256 130 

Barcelona BARCENONA_FAM
_OCD 

GE Signa 
Excite 

1.5T 11.8 4.2 15 1.17 x 1.17 x 
1.2 

256 x 256 130 

Barcelona BARCENONA_HOA
RDING 

GE Signa 
Excite 

1.5T 11.8 4.2 15 1.17 x 1.17 x 
1.2 

256 x 256 130 

Barcelona BARCENONA_EXT
_POR 

Siemens 
Verio 

3T 2100 2.67 9 1.0 x 1.0 x 1.0 256 x 256 176 

Barcelona BARCENONA_FISA
X 

Philips 
Ingenia 

3T 10.68 4.96 8 0.75 x 0.75 x 
0.75 

320 x 320 220 

Barcelona BARCENONA_COM
PULSE 

Philips 
Ingenia 

3T 10.68 4.96 8 0.75 x 0.75 x 
0.75 

320 x 320 220 

Barcelona BARCENONA_RES
P_CBT 

Philips 
Ingenia 

3T 10.68 4.96 8 0.75 x 0.75 x 
0.75 

320 x 320 220 

Edinburgh GS-Imaging 
Aberdeen Subset 

Philips 
Achieva 

3T 1968 3.8 8 1.0 x 1.0 x 1.0 240 x 240 160 

Edinburgh GS-Imaging Dundee 
Subset 

Siemens 
Prisma-FIT 

3T 1740 2.62 8 1.0 x 1.0 x 1.0 256 x 256 208 

Turku TEPS1 Philips 
Ingenia 

3T 8.1 3.7 7 1.0 x 1.0 x 1.0 256 x 256 176 

Turku TEPS2 
Philips 
Ingenia 

3T 8.1 3.7 7 1.0 x 1.0 x 1.0 256 x 256 176 

Milan 15 Philips 
Achieva 

1.5T 7.2 3.3 8 1.00 x 0.93 x 
0.93 

240 x 240 162 

Milan 30_1 Philips 
Achieva 

3T 9.8 4.6 8 1.00 x 0.94 x 
0.94 

NA 185 

Milan 30_2 Philips 
Achieva 

 

3T 7.06 3.4 8 1.09 x 1.04 x 
1.04 

NA 165 

Milan 30_3 Philips 
Achieva 

3T NA NA 8 1.0 x 1.0 x 1.0 NA 160 

Verona FIRST&PICOS Siemens 
Allegra 

1.5T 2060 3.93 15 0.46 x 0.46 x 
1.25 

NA 144 

Verona PREVENT & 
CARIVR & 

MANDRAKE 

Siemens 
Magnetom 

3T 2300 3.93 12 1.0 x 1.0 x 1.0 NA 160 

Oslo top15 Siemens 
Magnetom 

1.5T 2730 3.93 7 1.33 x 0.94 x 
1.0 

240 x 240 160 

Note. TR – repetition time, TE – echo time, FOV – field of view. 
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MRI data processing 

The MRI image processing was harmonized across sites, such that the T1-weighted structural 

images were processed using the morphometric analysis pipeline implemented in CAT12 (version 

12.8, optimized for multi-site deployment; https://neuro-jena.github.io/enigma-cat12/ ). MATLAB-

based scripts and instruction files were developed at LMU and were designed to cater to the 

needs of all participating sites, offering both standalone versions that do not require a MATLAB 

license or standard versions. By distributing these resources to all sites, we aimed to streamline 

and facilitate the harmonization process of MRI image processing, thereby contributing to the 

reliability and comparability of our neuroimaging analyses. The pipeline produced GMV and WMV 

measures for a set of ROIs parcellated according to the Schaefer-200 (GMV and WMV), AAL3 

(GMV) and Hammers (GMV and WMV) atlases (Hammers et al., 2003; Rolls et al., 2020; 

Schaefer et al., 2018). ROIs were utilized instead of voxel-level data due to size constraints within 

the data sharing platform of ViPAR, which currently limits the entry of large matrices. 

ROI based brain-age prediction model 

For the BrainAGE analysis, we developed a multivariate age-predicting model, based on GMV 

ROIs extracted using three atlases from HC individuals. This age-prediction model was then 

applied separately to an independent HC sample and to patients with SCZ, and the study 

participants’ BrainAGE scores were computed as the difference between the person’s predicted 

age and observed chronological age. 

Sample selection 

In accordance with the normative framework, our initial aim was to select a large sample 

representative of all age ranges. We selected 1170 HC individuals from the total pool of 2357 HC 

individuals. This selection process involved dividing the total sample into 12 age bins and 

sampling individuals from each bin. By meticulously conducting this selection process, we aimed 

to ensure a balanced representation of individuals across various age groups. This approach 

facilitated the creation of a normative age model capable of capturing variability across different 

age ranges. As a result, we mitigated the risk of underrepresentation of age extremes, which 

could have otherwise skewed the normative sample. Figure 14 illustrates the age distributions of 

HC individuals both before and after the selection process for the normative sample. We will refer 

to this selected HC individuals as the ‘HC normative’ sample. The remaining 1161 HC individuals 

were retained as an independent dataset for model validation, which we refer to as the ‘HC left-

out’ sample. The final HC normative model was then applied to both the HC left-out individuals 

503 patients with SCZ and 591 patients with MDD to evaluate clinical effects on brain-ageing. 

https://neuro-jena.github.io/enigma-cat12/
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Figure 14. Sample of HC individuals included in the regression analysis. Histogram of the 

age distribution for the sample showing the full-range and uniform-like distribution of HC 

individuals. 

ML analysis 

At first, all GMV ROIs underwent an initial correction for total intracranial volume by dividing the 

value of each ROI by the total intracranial volume. The input features in the brain-age analysis 

were GMV ROI values from AAL3, Hammers, and Schaefer atlases. Additionally, each analysis 

was repeated with the data from individual atlases separately. All analyses were conducted using 

MATLAB (R2022a) and R software (v4.1) within the ViPAR environment. The classification and 

regression ML analyses were conducted using the open-source ML in R toolbox (mlr, v4.1) (15).   

The R scripts used for all the proof-of-concept analyses are freely available in our GitHub 

repository (https://github.com/adyasha95/ECNP-NNADRrepo/ ). 

ML pipeline 

Following a methodology similar to previous ML analyses, all ML models were developed within 

a nested repeated CV framework. This framework consisted of 5 folds in both the inner CV1 and 

outer CV2 cycles, with 5 permutations applied to each cycle. In this approach, CV1 is employed 

https://github.com/adyasha95/ECNP-NNADRrepo/
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for hyperparameter tuning, where a set of hyperparameters is selected for each CV2 cycle. 

Subsequently, the model is trained on each outer training set using the optimal hyperparameters, 

and its effectiveness is assessed on the outer test sets. This comprehensive approach was 

adopted to prevent information leakage between train and test data and enhance the 

generalizability of the models (Parvandeh et al., 2020).   

The data preprocessing included feature scaling between –1 and 1 and a global mean offset 

correction to mitigate site-effects present in the MRI ROI data (14). The site-correction method 

for global-mean offset correction follows the same conceptual framework as the method used in 

the BMIgap model. The code has been translated into R and integrated as a wrapper within the 

MLR package. Concretely, we used the HC individuals to estimate site-specific means, to avoid 

the removal of clinically relevant effects. Then, we computed differences between the site means 

and the overall mean for each feature and finally subtracted these mean differences from the 

entire data of each respective site (HC individuals and SCZ patients), in order to mean-center the 

data to the overall mean of the training data. All preprocessing steps were embedded within the 

nested cross-validation framework. A L2-Regularized L1-Loss Support Vector Regression 

algorithm (LiblineaRL2L1SVR) available in the mlr R package was used as the prediction 

algorithm. We evaluated the accuracy of the model's predictions using several metrics, including 

MAE, r and R2, calculated between individual chronological age and predicted age. MAE was 

selected as the optimization criterion, consistent with previous regression analyses. 

Post-hoc analysis 

Initially, the predicted age values were corrected for their chronological age, addressing the 

overestimation at lower age ranges and underestimation at higher age ranges using linear 

regression analysis, as a common practice in BrainAGE research (Zhang et al., 2023). Similar to 

the approach used in the BMIgap model, beta-coefficients were computed through partial 

correlation analysis utilizing the HC normative sample. Subsequently, these coefficients were 

applied to the HC left-out and SCZ samples to derive corrected predicted-age values. 

Furthermore, the individualized BrainAGE scores were calculated by subtracting the 

chronological age from the corrected predicted age for both HC and SCZ individuals.  

Post-hoc two-sample t-tests assessed group differences between the BrainAGE scores of HC 

normative and left-out individuals as well as normative HC and SCZ individuals at =.05. 

3.2.2 BrainAGE model using voxelized GMV data 

To essentially show whether brain-obesity derivates and brain-ageing derivates are associated 

or not, we built a brain-age predictor by using similar model parameters as used in the BMIgap 

model as described in Chapter 2: Quantification of obesity related brain changes by using ML as 

a tool specifically elaborated in the section 2.2.2 ML analysis. Furthermore, we used the same 

HC individuals as the discovery sample in the brain-age model as used in the BMIgap model for 

reliable comparison between BrainAGE and BMIgap scores. 
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ML analysis 

Whole brain GMV maps belonging to the HC individuals in the discovery sample of the BMIgap 

model were used as features to predict brain-estimated age. To summarize the pre-processing 

procedure, Gaussian smoothing with kernel widths of 0, 3, 6 and 9 mm FWHM was initially 

applied. Following this, the removal of BMI effects was carried out using partial correlation 

analysis. The step ensured that prediction model is free from BMI effects. Next, global-mean offset 

correction was employed to remove site-specific effects. Subsequently, PCA was conducted to 

decrease the dimensionality of the image space at energy levels of 0.25, 0.50 and 0.75. Finally, 

voxel-wise scaling between 0 and 1 was implemented. Similar to the BMIgap-predictor, a used a 

linear kernel type nu-SVM regression algorithm was employed for modeling, with a regularization 

parameter set to 1. These pre-processing steps were executed using a repeating nested CV cycle 

with 5 folds for both inner and outer cycles with 5 permutations each. Additionally, a GMV specific 

brain mask was employed, ensuring that only relevant voxels within GMV regions were retained. 

Ultimately, we generated visual representations of the predictive voxels by employing the sign-

based consistency metric. 

Post-hoc analysis 

The predicted age was adjusted to account for the common occurrence of both overestimation 

and underestimation of age at the extremes, a standard practice in BrainAGE studies, as 

implemented in the BMIgap model and BrainAGE model using GMV ROIs as described in 3.2.1 

BrainAGE in the ECNP-NNADR sample. The BrainAGE score for the discovery group was 

calculated by taking the difference between the predicted age from the chronological age. Next, 

the brain-age predictor was applied to the replication HC individuals, patients with SCZ and CHR 

individuals and their BrainAGE scores were calculated respectively. Group-level comparisons of 

the calculated BrainAGE scores between the discovery HC individuals and the patient groups 

were conducted using a two-sample t-test. 

Correlation analysis 

We conducted partial correlation analyses to investigate whether there was a correlation between 

the BrainAGE scores and the BMIgap scores of both the HC individuals and the clinical groups 

as well as correlation between BrainAGE scores and SCZ-expression scores. 

Overlapping brain regions 

We created a brain-mask to identify brain regions that are associated with ageing, obesity and 

SCZ-separability. For this purpose, following the previous approach, we initially binarized the 

FDR-corrected consistency maps based on sign from the brain-age predictor. This involved 

retaining only the statistically significant voxels (P<0.05) identified during the visualization of the 

brain-age prediction model. Subsequently, we overlapped this binarized map with the brain mask 

previously established to contain the overlapping predictive voxels from the BMIgap model and 

SCZ-classification models. This combined mask comprises the predictive voxels relevant to brain-
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age, obesity, and SCZ diagnostic separability. The associations between GMV, BrainAGE, 

BMIgap, SCZ-expression score and clinical variables including age of disease onset, PANSS total 

score, number of hospitalizations and illness duration were examined by using this specific mask 

as a neuroanatomical search-space. 

3.3 Results 

3.3.1 BrainAGE model using GMV-ROI data 

Below, we present the performance metrics for models utilizing GMV ROIs pooled across all 

atlases as features. Tables 8-11 provide detailed performances of models using GMV ROIs from 

individual atlases and when combined from all atlases.  

The brain-age model predicted age with a MAE of 7.16 years (R2 = 0.77, P<0.001) and a mean 

(SD) BrainAGE of ~0 (8.90) in the HC-normative group (Figure 15). Upon application of this model 

to the left-out HC individuals, the MAE was 6.97 years (R2 = 0.74, P<0.001) with a negligible 

deviation in the BrainAGE [mean (SD) = 0.12(8.89)]. Subsequently, application of this model to 

patients diagnosed with SCZ yielded a MAE of 7.79 (R2 = 0.79, P<0.001) and a BrainAGE score 

of 4.49 (8.90) and application to the MDD group produced the least MAE while using the data 

extracted using Hammers atlas with a MAE of 8.44 years (R2 = 0.79, P<0.001) and a BrainAGE 

score of 1.26 years (10.43).  Notably, we did not observe significant differences between the 

BrainAGE scores of normative and left-out HC samples [t(df) = -0.35(2329), P=0.73]. BrainAGE 

scores differed between HC and SCZ individuals, with the SCZ group exhibiting higher BrainAGE 

compared to HC normative (t(df) = -9.46(1671), P<0.001) and the left-out HC samples (t(df) = -

9.19(1662), P<0.001). Furthermore, we observed varying results for the MDD group, with the 

BrainAGE score differing significantly between the HC-normative and MDD groups in the model 

using data extracted with Schaefer’s atlas (t(df) = -2.66 (1759), P<0.01). Compared to the left-out 

HC sample, the MDD group exhibited significant BrainAGE differences for both Schaefer’s (t(df) 

= -2.46 (1759), P=0.01) and Hammers' atlases (t(df) = -2.89 (1750), P<0.01). For detailed 

overview of the model performance based on individual atlas data, please refer to Table 8 and 

Figure 15. Additionally, for post-hoc comparisons between BrainAGE scores of HC normative, 

HC left-out and patient groups samples, please refer to Table 9-13. 
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Table 8. Model performances of the brain-age model using GMV ROIs in HC and SCZ 
samples. 

 R2 MAE r BrainAGE (mean ± SD) 

HC normative      

All Atlases 0.77 7.16 0.88*** 1.0907e-14 (8.90) 

Schaefers 0.78 7.10 0.90*** 6.6803e-15 (8.78) 

AAL3 0.78 6.98 0.88*** 6.0487e-15 (8.65) 

Hammers 0.79 6.95 0.89*** 7.6277e-15 (8.62) 
 

HC left-out     

All Atlases 0.74 6.97 0.86*** 0.12 (8.89) 

Schaefers 0.74 7.02 0.86*** 0.09 (8.81) 

AAL3 0.78 6.35 0.89*** -0.11 (8.09) 

Hammers 0.78 6.45 0.88*** -0.28 (8.27) 
 

SCZ      

All Atlases 0.79 7.79 0.78*** 4.49 (8.90) 

Schaefers 0.62 8.10 0.79*** 3.85 (9.13) 

AAL3 0.67 7.10 0.82*** 3.72 (8.39) 

Hammers 0.64 7.85 0.80*** 4.11 (9.05) 

MDD     

All Atlases 0.55 10.11 0.74*** 0.67 (12.54) 

Schaefers 0.63 8.44 0.79*** 1.26 (10.43) 

AAL3 0.59 9.27 0.77*** 0.87 (11.27) 

Hammers 0.65 8.63 0.80*** 1.05 (10.55) 

Note. r = Correlation coefficient measured by Pearson correlation, MAE = Mean absolute Error, 

R2 = Coefficient of determination, BrainAGE = Brain age estimation, SD = Standard deviation, HC 

= Healthy controls, SCZ = Schizophrenia, ***P≤0.001 

  



84 

 

 

 

Table 9. Post-hoc comparison of BrainAGE scores in HC individuals 

 
BrainAGE  

HC normative 
(mean, SD) 

BrainAGE  
HC left-out  
(mean, SD) 

T P 

All Atlases 1.0907e-14 (8.90) 0.12 (8.89) -0.3512 0.73 

Schaefers 6.6803e-15 (8.78) 0.09 (8.81) -0.2472 0.80 

AAL3 6.0487e-15 (8.65) -0.11 (8.09) 0.32 0.75 

Hammers 7.6277e-15 (8.62) -0.28 (8.27) 0.79 0.43 

Note. BrainAGE = Brain Age Estimation, SD = Standard deviation, HC = Healthy control, T = t-

statistics assessed by two-sample t-test. 

Table 10. Post-hoc comparison of brain-age deviation scores between HC-normative 
individuals and SCZ patients. 

 
BrainAGE  

HC normative 
(mean, SD) 

BrainAGE  
SCZ  

(mean, SD) 
T P 

All Atlases 1.0907e-14 (8.90) 4.49 (8.90) -8.82 9.8890e-21 

Schaefers 6.6803e-15 (8.78) 3.85 (9.13) -8.12 8.8699e-16 

AAL3 6.0487e-15 (8.65) 3.72 (8.39) -8.14 7.4632e-16 

Hammers 7.6277e-15 (8.62) 4.11 (9.05) -8.82 2.9091e-18 

Note.  BrainAGE = Brain Age Estimation, SD = Standard Deviation, HC = Healthy Controls, SCZ 

= Schizophrenia patients, T = t-statistics assessed by two-sample t-test, P = P value. 
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Table 11. Post-hoc comparison of brain-age deviation scores between left-out HC 
individuals and patients with SCZ. 

 

BrainAGE  

HC left-out 

(mean, SD) 

BrainAGE SCZ 

(mean, SD) 
T P-value 

All Atlases 0.12 (8.89) 4.49 (8.90) -9.19 1.1310e-19 

Schaefers 0.09 (8.81) 3.85 (9.13) -7.90 5.0313e-15 

AAL3 -0.11 (8.09) 3.72 (8.39) -8.78 4.0264e-18 

Hammers -0.28 (8.27) 4.11 (9.05) -9.66 1.6296e-21 

Note. BrainAGE = Brain age estimation, SD = Standard deviation, HC = Healthy controls, SCZ = 

Schizophrenia, T = t-statistics assessed by two-sample t-test. 

Table 12. Post-hoc comparison of brain-age deviation scores between HC normative 
individuals and patients with MDD. 

 

BrainAGE  

HC normative 

(mean, SD) 

BrainAGE MDD 

(mean, SD) 
T P-value 

All Atlases 1.0907e-14 (8.90) 0.67 (12.54) -1.29 0.20 

Schaefers 6.6803e-15 (8.78) 1.26 (10.43) -2.66 0.007 

AAL3 6.0487e-15 (8.65) 0.87 (11.27) -1.80 0.07 

Hammers 7.6277e-15 (8.62) 1.05 (10.55) -2.25 0.02 

Note. BrainAGE = Brain age estimation, SD = Standard Deviation, HC = Healthy controls, MDD 

= Major depressive disorder, T = t-statistics assessed by two-sample t-test. 
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Table 13. Post-hoc comparison of brain-age deviation scores between left-out HC 
individuals and patients with MDD. 

 

BrainAGE  

HC left-out 

(mean, SD) 

BrainAGE MDD 

(mean, SD) 
T P-value 

All Atlases 0.12 (8.89) 0.67 (12.54) -1.03 0.30 

Schaefers 0.09 (8.81) 1.26 (10.43) -2.46 0.01 

AAL3 -0.11 (8.09) 0.87 (11.27) -2.09 0.03 

Hammers -0.28 (8.27) 1.05 (10.55) -2.89     0.0039 

Note. BrainAGE = Brain age estimation, SD = Standard deviation, HC = Healthy controls, MDD = 

Major depressive disorder, T = t-statistics assessed by two-sample t-test. 

 

Figure 15. Results of the brain-age prediction model based on ROI GMV maps. 

Chronological age v/s predicted age with a linear curve fit; the regression line with 95% confidence 

interval for the HC individuals in blue and the SZ group in red for the model using GMV ROI values 

from A) all atlases pooled B) Schaefers, C) AAL3 and D) Hammers atlases. 

B)A)

C) D)
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3.3.2 BrainAGE model using voxelised GMV images 

Brain-age predictions within BMIgap model datasets 

The brain-age model using the discovery sample and similar model parameters as used for the 

BMIgap model predicted age with a MAE of 4.73 years and a mean (SD) BrainAGE of ~0 years 

in the discovery HC sample. The R2 between the true and predicted age was 0.86, P<0.001. This 

model during application to the replication HC sample, generalized with a MAE of 4.79 years and 

the R2 between true and predicted age was 0.82, P<0.001. Figure 16A depicts the correlation 

between true and predicted age for the discovery and replication groups. The brain-age prediction 

model applied to the clinical groups predicted BMI with an MAE of 9.67 years, R2 = 0.80 for the 

SCZ patients, MAE of 4.67 and R2 = 0.57 for CHR individuals and MAE of 4.01 years, R2 = 0.57 

in the ROD populations significantly (P<0.001). The Figure 16B depicts the correlation between 

true and predicted BMI scores in the psychiatric groups.  

The mean BrainAGE scores for the HC replication group were 0.49 (6.05) years, showing no 

statistically significant difference from the BrainAGE score of the discovery group, indicating 

robust model generalizability. Moreover, the BrainAGE deviation for patients with SCZ was +9.49 

(5.06) years, +1.31 (5.72) for CHR individuals and +0.27 (5.10) for ROD individuals. A significant 

difference in BrainAGE scores was observed between the SCZ group and the discovery HC 

sample (t = 2.80, P<0.01), as well as between the CHR group and the discovery HC sample (t = 

2.80, P<0.01). However, there was no significant difference in BrainAGE between the discovery 

HC and ROD individuals. Further details of the brain-age analysis are presented in Table 12 and 

Table 13. 
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Figure 16. Regression model to estimate brain-based BMI. A) Chronological age v/s predicted 

age with a linear curve fit; the regression line with 95% confidence interval (CI) for the discovery 

group in blue and the replication group in black. B) Chronological age v/s predicted age with a 

linear curve fit; the regression line with 95% CI for the discovery group in blue, the SCZ patients 

in dark orange, CHR individuals in light orange and ROD individuals in yellow. 

Table 14. Model performances of the brain-age model using whole brain images in HC and 
clinical samples. 

 N BrainAGE MAE R2 r 

PRONIA+IXI+ 

NORMENT+ MUC  

(discovery) 

770 
-2.9852e-15 

(6.14) 
4.73 0.86 0.93 

PRONIA+IXI+ 

NORMENT+ MUC 

(replication) 

734 0.49 (6.05) 4.79 0.82 0.91 

SCZ 146 9.4984 (5.06) 9.6666 0.80 0.89*** 

CHR 213 1.31 (5.72) 4.67 0.57 0.64*** 

ROD 200 0.27 (5.10) 4.01 0.57 0.75*** 

Note. The mean BMIgap has been reported with the standard deviation in brackets for the 

uncorrected BMIgap and the corrected BMIgap after regressing out the effects of body mass 

index. N= total number of participants, r= correlation coefficient measured by Pearson correlation, 

MAE= mean absolute error, R2= coefficient of determination, SCZ= Schizophrenia, CHR= Clinical 

high-risk, ROD= Recent-onset depression. Significant P values are stated as: *P≤0.05, **P≤0.01, 

***P≤0.001 

B)A)



89 

 

 

 

Table 15. Post-hoc comparison of brain-age deviation scores between replication HC 
individuals, clinical groups from discovery HC sample. 

 N BrainAGE t-test 

PRONIA+IXI+ 

NORMENT+ MUC 

(replication) 

734 0.49 (6.05) 1.57 

SCZ 146 9.4984 (5.06) 2.80 ** 

CHR 213 1.31 (5.72) 2.80** 

ROD 200 0.27 (5.10) 0.58 

 

Note. The mean BMIgap has been reported with the standard deviation in brackets for the 

uncorrected BMIgap and the corrected BMIgap after regressing out the effects of body mass 

index. N= total number of participants, r= correlation coefficient measured by Pearson correlation, 

MAE= mean absolute error, R2= coefficient of determination, SCZ= Schizophrenia, CHR= Clinical 

high-risk, ROD= Recent-onset depression. Significant P values are stated as: *P≤0.05, **P≤0.01, 

***P≤0.001 

Model visualization of the most predictive brain-regions 

The visualization of the most predictive voxels for brain-ageing revealed that the brain-voxels are 

significant (P<0.05) across the frontal, temporal and parietal regions specifically, in brain regions 

such as the caudate, right hemispheric mid frontal lobe, parahippocampal gyrus, inferior parietal 

lobe and medial temporal lobe. Additionally, significant voxels were identified in the left 

hemispheric cerebellum, inferior temporal lobe and superior parietal lobe. The visualization of the 

brain-age predictive voxels can be seen in Figure 16. 
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Figure 17. Brain-age predictive voxels. The reliability of the predictive voxels visualized using 

FDR-corrected sign-based consistency map thresholded at α=0.05. Abbreviations: FDR= False 

discovery rate 

Correlation between BMIgap and BrainAGE scores 

The correlation analysis revealed significant relationships between groups. In the discovery 

group, there was a moderate positive correlation (r = 0.29, P<0.001). The replication group 

showed a stronger positive correlation (r = 0.38, P<0.001). Moreover, within the clinical groups, 

the patients with SCZ showed the highest correlation was the highest (r = 0.49, P<0.001). The 

CHR individuals also demonstrated a high positive correlation (r = 0.48, P<0.001). Lastly, the 

ROD group exhibited a substantial positive correlation as well (r = 0.45, P<0.001). Moreover, the 

SCZ-expression correlated with r = 0.55, P<0.001 for the patients of MUC SCZ. Detail results of 

the correlation analysis has been outlined in Table 14. Furthermore, the correlation between the 

BrainAGE and BMIgap together for HC and patient group showed a (r = 0.39, P<0.001). 

Furthermore, the visualization of the most predictive voxels overlapping across the brainage and 

BMI-predictor revealed significant regions (P<0.05) in multiple areas of the brain specifically in 

frontal and parietal brain regions such as the precentral gyri, cerebellum, parahippocampal gyri, 

left hemispheric hippocampus, anterior cingulate, right hemispheric temporal and inferior frontal 

gyri regions (Figure 18). 

  

-log10(P
FDR
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Table 16. Correlation between BMIgap and BrainAGE scores 

 N BMIgap BrainAGE r 

PRONIA+IXI+ 

NORMENT+ MUC  

(discovery) 

770 0 (1.78) 
-2.9852e-15 

(6.14) 
0.29 *** 

PRONIA+IXI+ 

NORMENT+ MUC 

(replication) 

734 0.23 (1.68) 0.49 (6.05) 0.38*** 

SCZ 146 1.05 (1.53) 
9.4984 

(5.06) 
0.49*** 

CHR 213 0.51 (1.68) 1.31 (5.72) 0.48*** 

ROD 200 -0.82 (1.64) 0.27 (5.10) 0.45*** 

Note. The mean BMIgap and BrainAGE have been reported with the standard deviation in 

brackets. N= total number of participants, r= correlation coefficient measured by Pearson 

correlation, R2= coefficient of determination, SCZ= Schizophrenia, CHR= Clinical high-risk, ROD= 

Recent-onset depression. Significant P values are stated as: *P≤0.05, **P≤0.01, ***P≤0.001 

 

Figure 18. Overlapping brain regions between voxels predictive of brain-age and obesity 

are depicted in pink and non-overlapping voxels are in blue. Overlapping regions across 

brain-age and obesity obtained by binarizing and multiplying the sign-based consistency maps 

from the regression models (α=0.05). 
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Overlapping patterns between brain-age-predictor, BMI-predictor and SCZ-classifier 

The visualization of the most predictive voxels for brain-ageing revealed significant regions 

(P<0.05) in multiple areas of the brain. Specifically, significant voxels were localized in the 

temporal regions, including the left hemispheric superior temporal lobe, middle temporal lobe and 

right hemispheric middle temporal lobe. In the frontal regions, significant voxels were found in the 

OFC, frontal superior medial region and left hemispheric medial OFC. Additionally, significant 

voxels were identified in the precentral region, cerebellum, and cingulum, specifically the left 

hemispheric posterior cingulum and right hemispheric anterior cingulum as well as other regions 

such as the Rolandic Operculum, parahippocampal regions, precuneus and left hemispheric 

inferior parietal lobe. 

 

Figure 19. Overlapping brain regions between brain-age, obesity and SCZ-expression. 

Overlapping regions across schizophrenia, brain-age and obesity obtained by binarizing and 

multiplying the sign-based consistency maps from the regression and classification models 

(α=0.05). 
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3.3.3 Association between BrainAGE, BMIgap, SCZ-expression score and 

clinical variables  

Within the defined neuroanatomical search space defined by the overlapping brain regions 

predictive of obesity, brain-ageing, SCZ expression and clinical variables, the findings from the 

SPLS analysis revealed five relevant LVs, showing distinct levels of association between the 

items, as illustrated in Figure 20-22. 

Comorbid signature of brain-ageing and obesity: LV1 (r=0.88, P<0.001). Lower SCZ 

expression-score and higher BMIgap, BrainAGE and PANSS total scores and lower BMIgap 

scores were related to predominant decreased GMV particularly in the somatomotor, salience, 

DMN attention and control networks (Figure 20A). 

SCZ defining signature: In LV2 (r=0.63, P<0.001), higher BrainAGE, SCZ expression-scores, 

age of onset, illness duration, PANSS total score and hospitalization frequency were related to 

decreased GMV predominantly in the control, salience, limbic and DMN networks as well as 

increased GMV prominently in visual, attention networks (Figure 21B). 

Obesity-SCZ expression signature: LV4 (r=0.62, P=0.007). Higher SCZ expression-scores and 

BMIgap were related to predominant decreased of GMV in the control, DMN, limbic, salience 

networks and increased GMV in the visual, somatomotor and attention networks (Figure 23). 

Comorbid signature of brain-ageing and obesity: LV3 (r=0.70, P<0.001): Higher SCZ 

expression-scores, BMIgap, BrainAGE, age of onset, number of hospitalization and lower PANSS 

total scores were related to decreased GMV in the DMN, limbic networks as well as increased 

GMV predominantly in regions such as visual and attention networks (Figure 20B). 

SCZ defining signature: In LV5 (r=0.80, P<0.001), higher SCZ expression-score, BMIgap, 

number of hospitalizations, PANSS total score were and lower BrainAGE were related to 

decreased GMV localized across limbic, control, visual networks and increased GMV across DMN 

and salience networks (Figure 21B). 
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Figure 20. Comorbid signature of brain-ageing and obesity. SPLS analysis results for A) LV1 and B) LV3. Bar plots 

visualize the correlation of each variable with the LV, blue identifies variables significantly contributing to the LV. The x-

axis denotes bootstrap ratios (BSR) (interpretable as z-scores) and the y-axis denotes BMIgap, SCZ expression-score 

and other clinical items. The red dotted line in the graph represents a BSR of 1.96 (equivalent to a 95% confidence 

interval). The contribution of individual voxels is shown using BSR in MNI space. Cool colors indicate voxels with a 

negative correlation of GMV and clinical items, whereas warm colors represent a positive correlation. The spider-plot 

illustrates the voxel contribution within the 7-network parcellation solution extracted using the Yeo-Buckner atlas (Thomas 

Yeo et al., 2011). The network names and the cerebral cortical regions that compose the 7 networks are from the 

supplementary video in Baker et al. (2014) (Baker et al., 2014). Abbreviations: LV= Latent variable, SCZ= Schizophrenia, 

BMIgap= body mass index gap score, BrainAGE = brain age gap estimation, PANSS= Positive and Negative Symptom 

Scale total score 
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Figure 21. SCZ defining signature. SPLS analysis results for A) LV2 and B) LV5. Bar plots visualize the correlation of 

each variable with the LV, blue identifies variables significantly contributing to the LV. The x-axis denotes bootstrap ratios 

(BSR) (interpretable as z-scores) and the y-axis denotes BMIgap, SCZ expression-score and other clinical items. The red 

dotted line in the graph represents a BSR of 1.96 (equivalent to a 95% confidence interval). The contribution of individual 

voxels is shown using BSR in MNI space. Cool colors indicate voxels with a negative correlation of GMV and clinical 

items, whereas warm colors represent a positive correlation. The spider-plot illustrates the voxel contribution within the 7-

network parcellation solution extracted using the Yeo-Buckner atlas (Thomas Yeo et al., 2011). The network names and 

the cerebral cortical regions that compose the 7 networks are from the supplementary video in Baker et al. (2014) (Baker 

et al., 2014). Abbreviations: LV= Latent variable, SCZ= Schizophrenia 

A)

B)

BSR

GMV positive associationGMV negative association

SCZ expression-score

BMIgap

PANSS

BrainAGE

Number of hospitalization

SCZ expression-score

Number of hospitalization

Age of onset

Illness duration

PANSS

BrainAGE

BMIgap

BSR

GMV positive associationGMV negative association



96 

 

 

 

 

Figure 22. Obesity-SCZ expression signature. SPLS analysis results for LV4. Bar plots 

visualize the correlation of each variable with the LV, blue identifies variables significantly 

contributing to the LV. The x-axis denotes bootstrap ratios (BSR) (interpretable as z-scores) and 

the y-axis denotes BMIgap, SCZ expression-score and other clinical items. The red dotted line in 

the graph represents a BSR of 1.96 (equivalent to a 95% confidence interval). The contribution 

of individual voxels is shown using BSR in MNI space. Cool colors indicate voxels with a negative 

correlation of GMV and clinical items, whereas warm colors represent a positive correlation. The 

spider-plot illustrates the voxel contribution within the 17-network parcellation solution extracted 

using the Yeo-Buckner atlas (Thomas Yeo et al., 2011). The network names and the cerebral 

cortical regions that compose the 17 networks are from the supplementary video in Baker et al. 

(2014) (Baker et al., 2014). Abbreviations: LV= Latent variable, SCZ= Schizophrenia, BSR= 

Bootstrap ratios  
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3.4 Discussion 

In this study, we conducted a comprehensive examination of BrainAGE across multiple 

dimensions. At first, we utilized extensive ROI data from the large, multi-site database of the newly 

established ECNP-NNADR and successfully developed a brain-age prediction model within a 

normative modelling framework from HC individuals with an MAE of 6.35 years. This brain-age 

predictor successfully generalized to an independent HC sample showing no significant 

differences. Next, we developed a separate BrainAGE model by using voxelized whole brain GMV 

images as features of the previously sampled HC individuals used in the BMIgap model to 

leverage the utility of the BMIgap tool to assess the brain alterations due to both obesity and 

ageing processes. The model demonstrated robust performance, achieving a MAE of 4.73 years, 

which surpasses the performance of the model using ROI data, even though a similar 

methodology was applied. In both cases, application of the brain-age models to psychiatric 

patients, particularly those with SCZ, revealed a positive BrainAGE deviation compared to HC 

samples. When the ROI-based model was applied to the MDD group, positive BrainAGE 

deviations were observed, but only with certain atlases. The second BrainAGE model was also 

applied to CHR and ROD individuals. The CHR group exhibited a positive deviation, though to a 

lesser extent than the SCZ group, while the ROD individuals did not show significant differences 

compared to HC individuals. We found that the BMI- and BrainAGE-predictive brain-regions 

overlap potentially suggesting that the somatic conditions may share underlying pathways 

specifically in the frontal regions. In fact, BrainAGE scores showed a substantial correlation with 

previously computed BMIgap scores across both HC individuals and patient groups, accounting 

for 15.22% of the variance computed for the entire sample. In addition, the predictive regions 

associated with obesity and brain-ageing overlapped with the SCZ-distinguishing patterns, further 

substantiating our initial hypothesis of a potential shared pathway. Moreover, the correlation 

between these ML-derived brain measures and clinical variables in SCZ patients enabled us to 

discern neuroanatomical-clinical signatures and elucidate these signatures at various levels. 

Certain signatures associated with obesity, ageing and SCZ expression whereas one signature 

was independent of BrainAGE effects. Over-all, these findings enhance the disentangle the 

neuroanatomical alterations associated with obesity and brain-ageing and their collective 

influence on psychiatric disorders. 

3.4.1 ROI findings 

The findings from ROI analysis showed that the models performed with MAE between 6.35-10 

years which is comparable to previously reported age prediction models with MAE ranging 

between ~2.5-10 years (Dörfel et al., 2023; J. Han et al., 2022). The application of the model to 

the left-out HC sample unveiled BrainAGE scores that did not exhibit statistically significant 

differences from those of the HC normative individuals, thereby confirming the model's robustness 

and its ability to generalize across heterogeneous HC populations. Notably, we found accelerated 

brain-ageing in SZ patients relative to the norm, which is a consistent finding in the literature 
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(Constantinides et al., 2023; Koutsouleris et al., 2021; Nenadić et al., 2017). Additionally, the 

BrainAGE scores for the MDD patients aligned with the conflicting literature findings, where 

researchers remain inconclusive regarding evidence of accelerated ageing in this patient group. 

It's worth noting that this specific analysis served as a proof-of-concept to demonstrate the 

analytical potential and strengths of the data repository. We didn't employ complex ML 

approaches or site-correction methods. Despite this, the model estimates were comparable to 

existing literature findings, specifically those from ROI-based studies, potentially offering further 

insights into the occurrence of brain-ageing (Baecker et al., 2021; Constantinides et al., 2023; 

Gutierrez Becker et al., 2018). To summarize, our findings align with previous research, 

emphasizing the practicality of utilizing ROI as features, particularly in clinical settings with limited 

computational power and time constraints for computation. 

3.4.2 Voxelized GMV approach 

Given the curse of dimensionality and the high degree of redundancy inherent in voxelized data, 

including the substantial spatial between voxels correlations, we found that the model's 

performance proved more robust while using voxelized data. While we did not directly compare 

the same studies, the data included in the ROI data model encompassed a larger number of sites. 

This dataset had a larger sample size, enabling us to select a normative group representative of 

participants distributed equally across all age groups. Therefore, we anticipated that this group 

would produce better model performance compared to model developed using voxelized data. 

This finding underscores the effectiveness of implementing robust dimensionality reduction 

methods such as PCA in mitigating these challenges and enhancing prediction accuracy. In our 

whole brain GMV approach, we observed significant positive BrainAGE scores, particularly 

among the SCZ group, which represents the most severe patients. Interestingly, CHR individuals 

also exhibited positive BrainAGE scores, although to a lesser extent compared to the SCZ group. 

This discrepancy in scores could potentially be attributed to the lower disease severity observed 

in CHR patients. Our findings are supported by existing literature, which suggests that longitudinal 

analyses reveal a progressive worsening of accelerated brain-ageing with increasing disease 

severity (Haas et al., 2022). The ROD group exhibited no significant differences in BrainAGE 

scores compared to the HC discovery sample. This aligns with the variable findings regarding 

brain-ageing in patients with depression, as reported in many studies (Bashyam et al., 2020; 

Besteher et al., 2019; Kuo et al., 2020). Additionally, upon comparing the BrainAGE findings of 

the ROD cohort with those of individuals diagnosed with MDD, the observed predictive scores 

are coherent. MDD patients commonly exhibit a more advanced trajectory of depressive illness. 

Therefore, the lack of statistically significant deviations in BrainAGE scores between the ROD 

cohort and healthy control individuals is consistent with the milder clinical manifestation observed 

in ROD relative to MDD. Further longitudinal assessment of BrainAGE in ROD patients is 

essential for establishing conclusive insights into whether BrainAGE increases over time with 

disease progression. It is noteworthy that the BrainAGE score functions across the entire brain 

system by integrating data from voxels throughout the brain to produce an individualized score. 
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This specific score encapsulates multivariate information from the entire brain. Consequently, 

accelerated ageing might still occur in specific regions rather than across multiple areas, as 

observed in disorders like SCZ, which has been demonstrated in multiple studies (Besteher et al., 

2019; Hajek et al., 2019; Kolenic et al., 2018). Furthermore, from a neurobiological perspective, 

molecular studies have shown that telomere length, a hallmark of cellular ageing, changes 

specifically in the hippocampus of MDD patients, but not in other regions such as the amygdala 

or PFC, indicating region-specific brain changes (Mamdani et al., 2015). Therefore, while the 

voxel-based method might not capture significant alterations, the ROI approach using various 

atlases could detect these changes, explaining the variability. 

3.4.3 Brain-age predictive brain regions 

Our findings of the predictive brain-regions attributed to brain-ageing are in line with the previous 

findings showing region specific brain alterations specifically across temporal, frontal lobes, 

parietal areas as well as parahippocampus and cerebellum. Brain atrophy in the temporal lobe is 

crucial to memory function and has been associated to loss of memory during old age. 

Additionally, age has been identified as a significant risk factor for medial temporal lobe atrophy 

(Ejw et al., 2019). The finding of frontal atrophy is also a common occurrence as constantly 

associated in neurodegenerative diseases such as dementia, specifically fronto-temporal 

dementia as well as in Alzheimer’s diseases. The common neuropathology of these occurrences 

is the synaptic pruning and accelerated myelination leading to GMV loss as also seen in other 

psychiatric disorders specifically in psychotic disorders. The observation of cerebellum has been 

also associated with mobility frailty and further related in cognitive impairment. Cognitive 

impairment has been a consistent observation both with ageing and psychiatric disorders (Arleo 

et al., 2024). Furthermore, the PFC has been associated with executive functions such as 

decision-making, problem-solving and regulation of social-behavior. As this region undergoes 

age-related atrophy, individuals often face declines in working memory and attention. The 

cerebellum plays a crucial role in coordinating voluntary movements, balance and motor learning. 

Atrophy in this area can lead to decreased coordination and balance, raising the risk of falls, and 

causing difficulties with fine motor tasks. 

3.4.4 Association between BrainAGE and BMIgap 

Multiple studies have implicated obesity as a contributing factor to brain-ageing, but definitive 

conclusions are still lacking. Interestingly, we found overlapping brain patterns between obesity 

and ageing-associated brain regions specifically in frontal lobe that are associated with cognitive 

control. Studies, including ours, have shown that obese individuals exhibit reduced cognitive 

control when anticipating food, along with increased activity in reward-related areas (Brooks et 

al., 2013). It is well established that cognitive control and GMV in these regions gradually decline 

with age (Brooks et al., 2013). Consequently, the reduced cognitive control observed in obese 

individuals regarding food intake may also generalize to other functioning domains (Bischof & 
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Park, 2015). Evidence supporting this hypothesis indicate that obese children have reduced 

executive function, including cognitive control, compared to normal-weight children, resembling 

the brain-alterations seen in older adults (Liang et al., 2014). Taken together obesity might be 

additive towards the accelerated GMV decline in brain regions associated with cognitive control, 

a common phenomenon in brain-ageing. Obese adults may show added functional deterioration 

earlier in the lifespan than normal weight adults which should be addressed in lifespan studies. 

We also identified other regions that do not overlap, indicating distinct neuroanatomical changes 

uniquely associated with either obesity or ageing, instance, areas in the occipital lobe, which are 

typically responsible for visual and gustatory encoding of food. 

Neurobiologically one possible underlying mechanism is that obesity may heighten the risk of 

neurodegeneration, leading to GMV loss similar to findings in the brain-ageing (Ronan et al., 

2016). This is evidenced by findings that chronic inflammation related to obesity is associated 

with disruptions in integrity of gray matter, a condition also common for brain-ageing associated 

processes (Moreno-Navarrete et al., 2017). While certain research indicates that weight loss and 

calorie-restricted diets may reverse ageing-related biological processes, there remains 

uncertainty regarding whether changes in the brain can also be reversed (Colman et al., 2014). 

In this context, our established BMIgap tool can serve to evaluate and quantify brain changes 

linked to obesity, akin to BrainAGE's role in assessing brain health. Unlike the BMI score, the 

BMI-gap tool directly quantifies obesity-associated brain changes. 

3.4.5 Association between BrainAGE, BMIgap and SCZ-expression 

The finding of a high correlation between BMIgap and BrainAGE scores in both HC and patient 

groups suggests that this interplay persists in psychiatric conditions as well. Notably, the 

correlation is more pronounced in psychiatric groups, suggesting that obesity may contribute to 

brain-ageing even in high-risk states (CHR), at the onset of the disease (ROD) or as the condition 

progresses (SCZ). This is supported by the observation that obese patients with psychiatric 

disorders tend to show higher BrainAGE compared to non-obese patients. Additionally, we found 

a strong correlation between BrainAGE score and SCZ-expression score as well as between 

BMIgap and SCZ-expression score in patients with SCZ, reinforcing the idea that obesity 

accelerates brain-ageing process is indeed more pronounced in psychiatric patients. The findings 

align with previous literature indicating that psychiatric groups, such as first-episode psychosis 

and SCZ patients, who are obese exhibit higher BrainAGE compared to their normal-weight 

counterparts suggesting obesity has additive effects on brain structure was additive to disease 

effect (Colman et al., 2014). From a neurobiological perspective, the adverse effects of obesity 

on the brain might be connected to elevated cortisol levels or reduced brain-derived neurotrophic 

factor levels, similar to the pathophysiological mechanisms observed in psychiatric conditions, 

especially psychosis (Gubert et al., 2013; Kolenic et al., 2018; Minichino et al., 2017).Therefore, 

recognizing overweight and obesity as potential risk factors for neurostructural alterations in 

psychosis could be the initial step in managing these changes.  
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3.4.6 Association between BrainAGE, BMIgap, SCZ-expression and 

clinical variables 

Our analysis revealed LV exhibiting varying degrees of association between structural brain 

derivatives quantifying obesity, ageing, SCZ diagnostic patterns, and other clinically relevant 

variables, all of which demonstrated patterns of comorbidity. Specifically, LV1 and LV3 reflected 

comorbid patterns linking brain-ageing and brain obesity, while LV2 and LV5 were associated 

with variables commonly linked to SCZ diagnosis. Additionally, LV4 displayed a unique comorbid 

pattern associated solely with brain-ageing and SCZ diagnostic separability. Overall, our analysis 

revealed that most LVs demonstrated comorbid patterns linking BMIgap, SCZ expression-score 

and brain-ageing. These patterns were primarily governed by predominant associations with 

control networks and especially, with reward regions in the LV exclusively showing an association 

between BMI gap and SCZ expression asserting our previously established hypothesis regarding 

the association between brain-obesity and psychiatric disorders, particularly across frontal 

regions. Furthermore, our analysis revealed both positive associations and negative associations 

of the variables across different brain regions. Specifically, we observed positive associations 

between BMI gap and BrainAGE in (LV1 and LV3), between BMI gap and SCZ expression score 

in (LV3 and LV4), and between BrainAGE and SCZ expression score in (LV2 and LV3). 

Conversely, negative associations were found between BMI gap and BrainAGE in (LV2 and LV5), 

between BMI gap and SCZ expression score in (LV2) and between BrainAGE and SCZ 

expression score in (LV5). These findings suggest that these associations may be region-specific 

or potentially indicative of the presence of subtypes governing these relationships. 

Comorbid signature of brain-ageing and obesity 

We found two LVs reflecting the comorbid signature of brain-ageing and obesity. Herein, positive 

associations between high BMIgap, BrainAGE, SCZ expression-score were associated with high 

clinical loading for variables indicating higher hospitalization frequency and later disease onset 

implicating a strong somatic comorbidity. This indicates the prevalence of disease severity due to 

the presence of obesity and brain-ageing effects. Since it has been shown that SCZ obese 

individuals experiencing psychotic episodes demonstrate higher brain-ageing than their normal-

weight counterparts, the predominant negative association of GMV within this signature, including 

control and attention networks, suggests the potential for GMV loss due to brain-ageing, 

exacerbated by obesity (S. R. McWhinney et al., 2022). This additive effect may contribute to the 

onset or exacerbation of psychiatric disorders, as well as a decline in cognitive control functioning, 

thereby complicating the disease condition further.  

 SCZ defining signature 

Across LV2 and LV8 we saw patterns where mostly the clinical variables were associated 

positively with SCZ-expression scores implying that strong severity of disease. BrainAGE and 

BMIgap were each shown positively associated with SCZ-expression in alternate LVs while they 
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did show negative loading as well. The negative BMIgap could mean that albeit having SCZ, 

individuals did not show obesity associated brain changes. We observe certain discrepancies, 

such as a negative loading for SCZ expression-score associated with a high PANSS total score. 

This may indicate specific brain regions in a subtype of individuals who, despite exhibiting high 

BrainAGE and obesity, show resilience towards developing psychotic symptoms. Alternatively, it 

could reflect brain pattern observed in patients experiencing reversible effects of brain changes, 

potentially due to effective treatment, resulting in less discriminative brain patterns compared to 

those who did not receive effective treatment. The negative loading in the PANSS item may 

predominantly reflect specific symptom profiles strongly associated with higher BMI or metabolic 

dysregulation but independent from brain-ageing. 

Obesity-SCZ expression signature  

This signature may imply neurobiological processes distinct from those associated with brain-

ageing. It stands to reason that individuals exhibiting elevated brain obesity measures would 

manifest similarities with SCZ diagnostic profiles, potentially exacerbating the condition. This 

suggests that obesity may precipitate neurophysiological alterations exacerbating the SCZ 

phenotype.  

In summary, these findings substantiate our claim regarding the existence of both shared and 

distinct pathways contributing to the alterations in brain structure associated with psychiatric 

disorders and obesity, further influenced by the effects of brain-ageing. This underscores the 

potential for investigating the characterization of psychiatric sub-types and elucidating the precise 

neurobiological mechanisms underlying each condition. Further analysis, including longitudinal 

studies and the incorporation of blood markers such as inflammatory markers, is necessary to 

comprehensively understand the neurobiological underpinnings of these comorbid conditions. 

Additionally, examining the same subjects at later time points may provide insight into the 

potential reversibility of these brain changes, particularly through therapeutic interventions. 

3.4.7  Limitations 

Nonetheless, several limitations and avenues are prevailed which can be addressed in the future. 

First, although the ROI data used is from a large sample size, the use of other imaging modalities 

is currently restrictive due to the limitations of the virtual data-sharing platform, which restricts the 

entry of higher metric datasets including use of voxelized datasets. Currently we do not support 

the findings with longitudinal assessments which is essential to conclusively tell that whether the 

obesity-brain changes sustain with the disease trajectory. Furthermore, blood-based markers 

such as neuroinflammatory markers should be assessed which implicated in ageing, obesity as 

well as disease conditions should be addressed as well. Furthermore, the BrainAGE model 

although uses large cohort multi-site data but the sample selection is not uniformly distributed. 

However, we retained the usage of same sample as used previously for the BMIgap model for 
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better comparability of the ML model estimates and interpretation to ensure that the results are 

due to the implicated conditions and not due to the change in sample characteristics. 

3.4.8 Conclusion 

In conclusion, our study highlights the intricate relationships between brain-ageing, obesity and 

psychiatric disorders. We observed that obesity is potentially a contributing factor to abnormalities 

associated with brain-ageing, with overlapping patterns in the frontal brain regions specifically 

across the control areas aligning with our hypothesis. We used our previously established BMIgap 

tool as a utility to deepen our understanding of obesity, brain-ageing processing across different 

psychiatric stages and implicated that obesity might indeed worsen the brain-ageing alterations 

observed in psychiatric patients, thereby requiring urgency of timely and early intervention 

specifically targeted to decrease the brain-obesity measures which can be quantified by the newly 

established BMIgap tool. Thereby, these insights deepen our understanding of the complex 

interactions between neuroanatomical changes, obesity and psychiatric disorders, highlighting 

the need for integrated approaches in diagnosis and treatment. 
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4. Discussion  

The goal of this dissertation was to identify the neural underpinning of somatic comorbidities in 

psychiatric disorders specifically occurring due to obesity and ageing. In pursuit of this objective, 

we employed a comprehensive approach, combining multiscale, multi-site to understand the 

intricate interplay somatic comorbidities including obesity measured by BMI, ageing commonly 

found in common psychiatric disorders. Two separate studies were performed. First, we 

introduced the novel 'BMIgap' tool to assess obesity-related brain changes in both psychiatric and 

non-psychiatric populations. This tool enabled us to identify patterns of BMI-associated brain 

alterations specifically in reward and control regions, providing insights into the complex 

relationship between obesity and brain structure. The second study focused on understanding 

the process of brain-ageing related complexities using different neuroimaging modalities. Overall, 

some of our proposed hypotheses proved to be correct. We found that brain-obesity estimated 

using BMIgap score differed between HC individuals and psychiatric patients. We observed 

pronounced BMI-predictive regions showing negative GMV associations, mainly in lower fronto-

temporal regions associated with negative GMV associations especially. The reward and control 

networks are particularly altered.  In the second study, as expected, we observed higher 

BrainAGE values for patients with SCZ and MDD, with SCZ showing the highest positive values 

compared to CHR and ROD groups. However, we observed positive deviations for SCZ and CHR, 

with SCZ showing more positive values, whereas the ROD group did not show statistically 

different BrainAGE scores compared to norms, and although the MDD group did show changes, 

the findings were limited to specific atlases only. Additionally, while comparing the overlapping 

brain regions showing comorbidity for obesity, ageing, and SCZ expression, we indeed found 

predictive regions localized across frontal regions, specifically in the control network. 

Furthermore, while our initial hypothesis was that ROI data should have better model performance 

than the model using voxelized data, the findings were opposite. 

By developing brain-age prediction models within a normative framework, we aimed to 

understand accelerated brain-ageing in patients with psychotic disorders. Furthermore, to 

leverage the utility of the BMIgap tool to understand BrainAGE and BMIgap association, we 

developed a BrainAGE model using the same voxelized dataset as previously used for the 

BMIgap model. Despite this data having a smaller sample size, being very high dimensional, and 

not following a normative modeling framework, it outperformed the performance of the ROI-based 

BrainAGE predictor, demonstrating robust performance in predicting brain age and emphasizing 

that the use of dimensionality reduction methods proves to eliminate the challenge of the 'curse 

of dimensionality'. Nevertheless, one should not forget the practicality of using ROI data, which is 

simpler, quicker and computationally less expensive targeting the clinical settings. Nevertheless, 

our model performed comparably with the existing literature despite using simpler ML method, 

due to restrictive computational resources, by focusing more on data selection and mitigating the 

site-effects. Hence further asserting the usage of normative modelling framework within the 
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clinical settings. Furthermore, applicability of DL methods such as neural networks can has been 

used to improve the model performances using the ROI datasets (Bashyam et al., 2020). 

The negative relationship observed between BMI and GMV within the reward and salience 

regions has been implicated in regulating eating behavior (Li et al., 2022). This negative 

association suggests that alterations in these brain regions may influence how individuals 

respond to food cues and rewards, potentially contributing to overeating and weight gain. 

Additionally, negative GMV associations were found in taste perception, reward processing and 

inhibitory control areas. These changes collectively may contribute to the development of 

maladaptive eating patterns, thereby fostering obesity. Specifically, reductions in GMV in 

prefrontal regions have been associated with reduction inhibitory control and hence increasing 

vulnerability to consuming excessive calories. The presence of psychiatric disorders may 

exacerbate the condition. Psychiatric disorders specifically within the SCZ spectrum have shown 

prefrontal deficits, characterized by reduced cognitive drive. The reduced control coupled with 

impairments in inhibitory control, may worsen the susceptibility of the patients to engage in 

addictive behaviors, thereby fostering obesity. Interestingly, BrainAGE findings also revealed that 

age-associated alterations mostly overlapped in the frontal regions, specifically implicated in 

control regions as has been shown in our study as well. In summary, the ageing process and 

obesity both have negative implications for GMV, with the conditions showing additive effects (S. 

McWhinney et al., 2021). Furthermore, in combination with psychiatric disorders, they exacerbate 

the brain changes. Obesity-related alterations cause deficits across reward and inhibitory control-

related regions. Loss of GMV in inhibitory control leads to a loss of control leading to overeating 

and causing maladaptive eating habits. Additionally, deficits in reward regions may increase 

vulnerability to consuming high-caloric foods, thereby contributing to obesity. Psychotic disorders, 

known for GMV loss in control regions, create a feed-forward loop for patients, as the already 

impaired control regions facilitate the cycle leading to overeating and obesity. Moreover, ageing 

is associated with GMV decline across control regions such as cognitive control. Therefore, 

ageing, when comorbid with obesity and psychotic symptoms, leads to more GMV loss, 

specifically due to cellular damage, demyelination, synaptic pruning, and telomere length 

shortening, all causing additive influence on loss of control and thereby worsening the conditions 

of obesity and psychotic symptoms such cognitive decline, as well as the disease status. 

Although, in our study we did not observe significant association between the medication usage 

and the brain-measure, we need to address them. Specific anti-depressants targeting weight loss 

have been implicated to improve brain health by showing improvements in cognitive functioning. 

Therefore, therapeutics targeting, and potentially reversing obesity specific alterations is needed. 

Additionally incorporating physical activities for patients may be helpful in reducing obesity 

associated brain-changes. 
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5. Future directions and conclusions 

5.1 Future directions 

The broader perspective of our research will be realized through longitudinal analysis, 

encompassing multiple data domains including clinical, genetics, blood markers and metabolic 

markers data. This comprehensive approach will allow us to accurately assess the clinical utility 

of the brain-obesity estimator ‘BMIgap tool’. By including different subtypes of patients across a 

wider spectrum, we can facilitate the application and validation of transdiagnostic approaches. 

Moreover, it is crucial to investigate whether these observed brain changes are modifiable, 

thereby enhancing therapeutic efficacy. For instance, estimating BMIgap both before and after 

the initiation of treatment can elucidate whether the brain alterations persist over time. As 

research increasingly focuses on developing medications targeting weight loss, it will be intriguing 

to explore whether these interventions influence BMIgap values. Similarly, examining therapeutic 

interventions such as physical activity can provide valuable insights into their impact on brain-

obesity relationships. 

5.2 Conclusions 

This holistic approach, combining multiscale, multi-modal datasets by incorporating stratification 

methods using ML methods, allowed us to address somatic comorbidities, particularly obesity and 

brain-ageing, in HC individuals as well as multiple psychiatric groups. We aimed to disentangle 

the brain structural alterations implicated due to their comorbidity with psychiatric disorders and 

to demonstrate associations with clinically relevant variables. We introduced 'BMIgap' as an 

innovative tool for assessing obesity-related brain changes in both psychiatric and non-psychiatric 

populations and further showed its associations with brain-ageing signatures. Although we 

demonstrate the existence of commonalities across the three conditions, the broader 

neurobiological underpinnings are yet to be fully understood. 
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