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Abstract
Discovering a universal cure for all cancers, known as the one-drug-fits-them-all approach, is challenging due
to the diverse and complex nature of the disease. Precision oncology is a paradigm in modern medicine which
ought to overcome this approach by tailoring cancer treatments to tumour and patient characteristics for increased
safety and efficacy. Carcinogenesis is driven by genetic alterations, which established themselves as suitable
drug targets and predictive biomarkers in clinical practice. While these discoveries were previously limited to
studying a few key cancer pathways or cancer genes, the contemporary accumulation of biomedical data, including
molecularly profiled drug high-throughput screens and clinical trials, facilitates the discovery of biomarkers for
predicting treatment success. Several computational models using data-driven methods were able to successfully
predict responses to drugs in both preclinical and clinical settings based on molecular characteristics; however, the
translation of the predicted biomarkers towards clinical utility has remained limited. In order to address this, this
thesis presents a range of methods and analysis strategies that make sparse, interpretable and robust predictions of
potential biomarkers for treatment efficacy.

The chapters of this thesis include (1) an integrative method for identifying DNA methylation biomarkers
associated with drug susceptibility using drug high-throughput screens and multi-omics characterisations in cancer
cell lines, (2) an assessment of the epithelial-mesenchymal transition in cancer cell lines and its causal impact
on drug susceptibility and (3) a framework for the exploration and identification of the molecular and biomarker
landscapes of randomised controlled clinical trials in oncology.

In summary, the presented work facilitates the discovery of predictive biomarkers by incorporating molecular
data modalities into tailored modelling strategies to reflect cancer mechanisms in high-throughput screens and
clinical trials. In future, these methods may become an indispensable part of a more integrated and data-driven
drug discovery and development process to design more targeted and effective cancer treatment strategies.
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Summary

Cancer is a leading burden for public health and thus urges the development of effective treatments. While scien-
tific progress has been made in cancer biology and the development of targeted therapies in the past, many patients
still do not respond to their treatments, suffer relapses or experience serious side effects. Tailoring treatments to
predictive biomarkers in the form of tumour or patient characteristics has revolutionised cancer therapies, a concept
known as precision oncology. For this, drug high-throughput screens and clinical trials provide pharmacological
information to assess treatment benefits and therefore are key tools to advance the discovery of predictive biomark-
ers in cancer. Applying data-driven methods to these datasets complemented with molecular profiling allows the
scalable discovery and evaluation of large numbers of therapies and potential molecular biomarkers, which can
yield promising drug candidates and appropriate target populations for further development and validation.

This thesis proposes methods that use data from drug high-throughput screens and clinical trials for the discov-
ery of predictive biomarkers in precision oncology.

First, the epigenetic component of drug sensitivity in cancer was elucidated by employing a sequential anal-
ysis design that identifies differentially methylated regions for drug responses in drug high-throughput screens
(dDMRs) [1]. Subsequently, it integrates genomic and transcriptomic data modalities of cancer cell lines, matches
the findings with human primary tumours, and proposes potential mechanisms on protein-protein interaction net-
works. The identified dDMRs were predominantly found in regulatory elements, particularly in promoters. For
instance, a dDMR was found within the promoter region of SLFN11, a gene frequently associated with drug re-
sponse to DNA-damaging agents. The consideration of the expression of genes proximal to all dDMRs in both
cancer cell lines and primary human tumours prioritised tumour-generalisable dDMRs (tgdDMRs). For example,
the expression of SLFN11 was correlated to the methylation of its tgdDMR. Finally, the validation of tgdDMRs in
another drug screen and DNA methylation profiling technology revealed high consistencies. Interestingly, DNA
methylation was often accompanied by transcriptomic changes, but only modestly correlated with somatic genetic
events. This suggests that it may function supplementary to gene expression, but rather complementarily to so-
matic genetic alterations for determining drug susceptibilities. In summary, this analysis offers a view of DNA
methylation in the context of drug response by integrating and interpreting multiple data sources.

Secondly, the epithelial-to-mesenchymal (EMT) transition was systematically investigated as an intrinsic mech-
anism to determine drug responses in cancer [2]. For this, EMT was derived by molecular signatures quantified
from gene expression and its effect on drug responses in drug high-throughput screens was estimated with pre-
dictive modelling by ablation and causal inference in the context of the tumour genetic background. Response to
HSP90 inhibitors was robustly predicted by EMT signatures in melanoma, which was associated with the activ-
ity of the oncogenic transcription factor MITF. Finally, it was demonstrated that in vitro stimulation of EMT by
TGF-β pretreatment can sensitise melanoma cell lines to the HSP90 inhibitor luminespib, which hints at a causal
component of EMT.

Lastly, the Oncology Biomarker Discovery framework (OncoBird) for outlining the molecular and biomarker
landscape of clinical trials for precision oncology is presented [3]. It enables explorative subgroup analysis in
clinical trials by studying somatic alterations in tumour subtypes, mutually exclusive somatic alterations and their
predictive components in tumour subtypes. It is showcased in the FIRE-3 phase III randomised controlled clinical
trial in metastatic colorectal cancer. Among KRAS mutations, also chromosome arm 20q (chr20q) amplifica-
tions showed predictive benefits for cetuximab in the context of consensus molecular subtypes (CMS). It was
also applied to the ADJUVANT clinical trial for non-small cell lung cancer, which yielded consistent predictive
biomarkers for gefitinib benefits. Benchmarks with the current standard clinical practice and commonly employed
methods for data-driven subgroup analysis showed consistencies between subgroups represented by sets of related
biomarkers, and demonstrated that OncoBird can robustly identify biomarkers for smaller subgroups that predict
higher treatment effects. For fostering further research and development, an OncoBird R package is available
within an accessible dockerised Shiny application, which includes a reproducible demonstration of its presented
analysis.

In summary, by allowing the systematic examination of different cancer hallmarks with the proposed analysis
methods, this work contributes to the ongoing efforts to advance the data-driven discovery of predictive biomark-
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ers for cancer treatments. Moreover, it provides a roadmap for this effort by highlighting key considerations and
challenges for the accommodation of biomedical data and data-driven biomarker discovery methods for drug de-
velopment in oncology.
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Zusammenfassung

Krebs ist eine der enormsten Belastungen für das Gesundheitswesen und fordert daher dringlichst die Entwick-
lung wirksamer Behandlungen. Obwohl Fortschritte in der Forschung von Krebsbiologie und bei der Entwick-
lung zielgerichteter Therapien in der Vergangenheit erzielt wurden, sprechen dennoch viele Patienten entweder
nicht auf ihre Behandlungen an, erleiden Rückfälle oder erfahren schwere Nebenwirkungen. Das Zuschneiden von
Behandlungen gemäß prädiktiven Biomarkern in der Form von Tumor- oder Patientenmerkmalen hat Krebsthe-
rapien revolutioniert, ein Konzept das auch als Präzisionsonkologie bekannt ist. Dabei liefern Hochdurchsatz-
Wirkstoffscreenings und klinische Studien pharmakologische Informationen für die Bewertung von Behand-
lungserfolgen und sind daher zentrale Unternehmungen für die weitere Entdeckung von prädiktiven Biomarkern
für Krebs. Die Anwendung datengesteuerter Methoden auf diese mit molekularen Profilen ergänzte Datensätze
ermöglicht die skalierbare Entdeckung und Bewertung einer großen Anzahl von Medikamenten und potenziellen
molekularen Biomarkern, aus denen sich vielversprechende Arzneimittel und entsprechende Zielgruppen für die
weitere Entwicklung und Validierung ergeben können.

In dieser Arbeit werden Methoden vorgeschlagen, die Daten aus Hochdurchsatz-Wirkstoffscreenings und kli-
nischen Studien für die Entdeckung von prädiktiven Biomarkern in der Präzisionsonkologie nutzen.

Zunächst wurde die epigenetische Komponente der Krebswirkstoffsensitivität durch die Anwendung eines
schichtweisen Analysedesigns aufgedeckt, welches differentiell methylierte Regionen (dDMRs) für das Wirkstoff-
ansprechen in Hochdurchsatz-Wirkstoffscreening identifiziert [1]. Anschließend integriert diese Analyse genomi-
sche und transkriptomische Daten von Krebszelllinien, gleicht jene Erkenntnisse mit menschlichen Primärtumoren
ab und schlägt mögliche Mechanismen in Protein-Protein-Interaktionsnetzwerken vor. Die identifizierten dDMRs
befanden sich überwiegend in regulatorischen Elementen, insbesondere in Promotoren. So wurde beispielsweise
eine dDMR in der Promotorregion von SLFN11 gefunden, einem Gen, das häufig mit der Reaktion auf DNA-
schädigende Wirkstoffe in Verbindung gebracht wird. Die nähere Betrachtung der Expression von Genen die pro-
ximal zu allen dDMRs sowohl in Krebszelllinien als auch in primären menschlichen Tumoren liegen führte zu der
Priorisierung von tumorgeneralisierbaren dDMRs (tgdDMRs). So war beispielsweise die Expression von SLFN11
mit der Methylierung seiner tgdDMR korreliert. Die Validierung der tgdDMRs in einem anderen Wirkstoffscree-
ning und anderer DNA-Methylierung Profilierungstechnologie ergab eine hohe Übereinstimmung. Interessanter-
weise ging die DNA-Methylierung häufig mit transkriptomischen Veränderungen einher, korrelierte aber nur in
geringem Maße mit somatischen genetischen Ereignissen. Dies deutet darauf hin, dass die DNA-Methylierung bei
der Bestimmung der Wirkstoffsensitivität möglicherweise ergänzend zur Genexpression und eher komplementär zu
somatischen genetischen Veränderungen fungiert. Zusammenfassend ermöglicht diese Analyse einen Blick auf die
DNA-Methylierung im Zusammenhang mit Wirkstoffsensitivität durch die Integration und Interpretation mehrerer
Datenquellen.

Zweitens wurde die Epithelial-mesenchymale Transition (EMT) als wesentlicher Mechanismus zur Bestim-
mung von Krebswirkstoffsensitivität systematisch untersucht [2]. Dafür wurde zunächst EMT aus molekularen
Signaturen abgeleitet und durch Genexpression quantifiziert. Anschließend wurde seine Auswirkung auf Wirk-
stoffsensitivität in Hochdurchsatz-Wirkstoffscreens durch Ablation in prädiktiver Modellierung und kausale Infe-
renz im Kontext des genetischen Hintergrunds des Tumors abgeschätzt. Das Ansprechen auf HSP90-Inhibitoren
wurde durch EMT-Signaturen in Melanomen, die mit der Aktivität des onkogenen Transkriptionsfaktors MITF
verbunden waren, zuverlässig vorhergesagt. Schließlich wurde gezeigt, dass eine in vitro Stimulation von EMT
durch eine TGF-β Vorbehandlung Melanom-Zelllinien für den HSP90-Inhibitor Luminespib sensibilisieren kann,
was auf eine kausale Komponente von EMT hindeutet.

Schließlich wird das Onkologie Biomarker Entdeckungskonzept (OncoBird) für die Darlegung von moleku-
laren Veränderungen und Biomarkern in klinischen Studien für die Präzisionsonkologie vorgestellt [3]. Diese
ermöglicht explorative Subgruppenanalysen in klinischen Studien, indem sie somatische Veränderungen in Tu-
morsubtypen, sich gegenseitig ausschließende somatische Veränderungen und ihre prädiktiven Komponenten in
Tumorsubtypen untersucht. Dieses Analysekonzept wird in der randomisierten, kontrollierten klinischen Phase-
III-Studie FIRE-3 für die Begutachtung von metastasiertem Darmkrebs vorgestellt. Durch seine Anwendung in
dieser Studie zeigten sich neben KRAS Mutationen auch Amplifikationen des Chromosom Arms 20q (chr20q)

vi



einen prädiktiven Nutzen von Cetuximab im Kontext der Konsensus-Molekular-Subtypen (CMS). Dieses Kon-
zept wurde auch auf die ADJUVANT klinische Studie zur Begutachtung von nicht-kleinzelligen Lungenkrebs
angewendet, die konsistente prädiktive Biomarker für den Nutzen von Gefitinib ergab. Der Vergleich mit dem ak-
tuellen klinischen Behandlungsstandard und gängigen Methoden zur datengesteuerten Subgruppenanalyse ergab
Übereinstimmungen zwischen den von den einzelnen Methoden vorgeschlagenen Subgruppen, die durch Gruppen
verwandter Biomarker repräsentiert wurden. Zudem zeigte dieser Vergleich, dass OncoBird robuste Biomarker für
kleinere Subgruppen identifizieren kann die höhere Behandlungseffekte vorhersagen. Um weitere Forschung und
Entwicklung zu fördern, ist das entwickelte OncoBird R Programm in einer Docker Shiny Anwendung verfügbar,
die eine reproduzierbare Demonstration der vorgestellten Analyse enthält.

Zusammenfassend leistet diese Arbeit durch die systematische Untersuchung verschiedener Krebsmerkmale
mit den hier vorgeschlagenen Analysemethoden einen Beitrag zu den laufenden Bemühungen der datengesteuer-
ten Entdeckung von prädiktiven Biomarkern für Krebsbehandlungen. Darüber hinaus liefert sie einen Leitfaden für
jene Bemühungen, indem sie die wichtigsten Überlegungen und Herausforderungen für die Nutzung biomedizini-
scher Daten und datengesteuerter Methoden für die Entdeckung von Biomarkern für die Arzneimittelentwicklung
in der Onkologie aufzeigt.
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Chapter 1

Introduction

Despite the improved outcomes of cancer patients over the last decades, cancer remains a substantial burden for
humankind. Cancer is a disease in which cells proliferate uncontrollably in local and distant tissues, and is often
fatal when cancerous cells impair the function of vital organs [10]. Due to the complexity and heterogeneity of the
disease, possible avenues to tackle cancer include the development of precision therapies [11]. They rely on the
fact that each cancer develops unique ways to control genes that determine its therapy response, and displays these
characteristics representing vulnerabilities to be targeted by cancer treatments. In other words, precision oncology
studies how patients and their tumours respond to therapies according to their response patterns. Identifying
these patterns and their so-called biomarkers not only provides better treatment opportunities by tailoring the
target group, but also may enhance our understanding of the disease and guide the discovery and development
of compounds that exploit new cancer vulnerabilities. This chapter gives an introduction to this field. First,
biomarkers are defined. Secondly, cancer is introduced in terms of systems biology, encompassing its development,
hallmarks and possible targets. Third, general principles of data-driven biomarker discovery in preclinical studies
for translational cancer research are presented and expanded to clinical cancer research. Fourth, appropriate data
sources and methods for biomarker discovery are presented that take advantage of these concepts. Afterwards,
regulatory aspects and the transformative potential of data-driven biomarker discovery for drug discovery efforts
are discussed. Finally, within this scope, the general aims of this thesis are outlined.
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1 Introduction

1.1 Biomarkers in precision oncology

The high heterogeneity of tumours implies that clinical decision-making ought to be tailored to the characteris-
tics of a patient and tumour. This is the dogma of precision oncology and relies on the discovery of biomarkers.
In general, a biomarker is an objective, quantifiable characteristic of biological processes that can be utilised for
diagnosis, prognosis and treatment decisions [12]. Accordingly, a biomarker can be diagnostic, prognostic or pre-
dictive [12]. Diagnostic biomarkers help determine relevant characteristics, prognostic biomarkers are surrogates
for disease progression, and predictive biomarkers yield a measure for the treatment success probability of a par-
ticular treatment regimen accompanied by companion diagnostics for their diagnosis. Furthermore, a predictive
biomarker can be called causal if an intervention to modulate the marker causes a change in the treatment suc-
cess probability. In the clinical standard today, biomarkers in oncology do not usually go beyond genetic events.
Specifically, from the 86 targeted therapies that require diagnostic biomarker testing approved between 1998 and
2022, 69 therapies (80%) had an associated genetic biomarker [13]. Their applications are attributed to their causal
component and stability in the cancer disease aetiology.

1.2 Cancer systems biology for precision oncology

In 1914, Theodor Boveri first suggested that aberrant chromosomal changes may be the primary cause of cancer
[14]. Accordingly, genetic changes in human cells confer the formation of a cancer as an evolutionary process that
alters cellular function [15], a process which is termed oncogenesis. Genes that are causally linked to oncogenesis
are called cancer genes. These are usually classified into oncogenes and tumour suppressor genes. When altered,
the former promote oncogenesis, whereas the latter lose their ability to inhibit oncogenesis [16]. After having its
roots in retroviral research, RAS, the first oncogene in the human genome, was discovered in 1982 [17]. Succes-
sively, the MAPK signalling pathway was depicted [18], which couples extracellular growth signals to intracellular
signalling cascades to promote proliferation and survival pathways (Fig. 1.1a). Single biological mechanisms that
are often found in cancer cells have been described as cancer hallmarks [19]. During the following centuries, new
hallmarks were added that demonstrated the complexity of the disease [20, 21] and suggested that the only avenue
was to treat cancer with a systems approach. The centrality of RAS and kinases of other mutated oncogenes, such
as BRAF and PIK3CA, in many human cancers triggered a century-long search for treatments targeting them [22].
However, after the initial excitement of precision oncology in the clinical practice targeting these oncogenes [22],
even after achieving the targeting of KRASG12C and regulatory approvals [23], cancer remains a major obstacle.
Modern technological innovations in sequencing and bioinformatics made the characterisations of tumours become
progressively rich and refined [24]. Today, more than 3% of genes in the human genome are presumably involved
in cancer [25]. About 80% of cancer patients have potentially targetable alterations with existing compounds
[13, 26], and predictive biomarkers for standard treatments are now available for roughly 32% of cancer patients
[13, 27]. This highlights the success of precision oncology and advocates expanding the efforts to identify action-
able mutations or shifting the focus from the cause and exploring non-mutational cancer mechanisms to discover
new cancer vulnerabilities and targeting opportunities, which can eventually result in suitable patient stratifications
for clinical application [28].

1.2.1 Cancer genomics

Somatic mutations in the DNA are events that occur during the lifespan of an individual. They can be the result of
internal or external mutagenic exposures that cause DNA defects, which are converted to mutations by erroneous
DNA replication or DNA repair [29, 30]. Mutations which confer a fitness advantage of cancerous cells towards
oncogenesis are called driver mutations. In contrast, cancer genomes can also include passenger mutations, which
do not serve an evolutionary advantage and are not involved in oncogenesis [30]. Common types of alterations in-
clude base substitutions leading to missense or nonsense mutations in the encoded protein, structural variants such
as insertions or deletions causing protein frameshifts, chromosomal translocations leading to gene deregulation or
chimeric transcripts, and copy number alterations [31] (Fig. 1.1b). As an example, the KRASG12D mutation is a
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common missense mutation that produces the oncogenic protein KRASG12D by depriving it of its GTPase func-
tionality and therefore locking it in its active GTP-bound state [16] (Fig. 1.1c,d). First efforts have assembled the
Cancer Gene Census, which has constituted 291 cancer genes encompassing oncogenes, tumour suppressor genes
and fusion partners [31], which is continuously expanding to 719 reported today [25]. These have been mostly
neglecting mutations in non-coding regions, but efforts are taken to reveal their function [32, 33, 34].

1.2.1.1 DNA sequencing in cancer

The first wave of genomic discovery was based on previously laborious and expensive polymerase chain reaction
(PCR) and exon-by-exon direct sequencing methods, which therefore focused on promising genes that encoded
protein kinases for therapeutic targeting [16]. For example, BRAFV600E mutations were discovered in cancer
cell lines [35]. The resulting oncogenic BRAF plays a central role in the MAPK signalling pathway due to its
upstream phosphorylation by RAS and downstream phosphorylation of MEK (Fig. 1.1e). Other examples include
the discovery of activating mutations in ERBB2 [36] or PIK3CA [37].

After the introduction of the first massively parallel high-throughput sequencing platform in 2005 [38], next-
generation sequencing (NGS) has been the enabling technology towards the discovery of the cancer genome using
whole exome sequencing (WES) [39] and whole genome sequencing (WGS) [40]. WES spans about 1% of the
human genome, whereas WGS can capture about 99%. However, the amount of times a given genomic region
is sequenced on average in one experiment, i.e. the sequencing depth, differs. Specifically, since WES usually
operates on a sequencing depth of 100×, it is more accurate for mutation calling than WGS, which usually has a
lower depth of 30×.

The massively parallel sequencing has since expanded to most protein-coding genes and, for instance, has
led to the discovery of IDH1 mutations in glioblastoma [41] as a crucial epigenetic regulator. Caveats for the
computational analysis of cancer genomes include the detection of rare somatic events, the analysis of highly
disarranged genomes and tumour heterogeneity [28]. Furthermore, the lack of driver mutations in non-coding
regions of the genome may merely reflect the limited understanding of gene regulatory landscapes. Over the
last decade, efforts have expanded towards the discovery of complex structural variations and rearrangements,
mutational patterns in tumour evolution and heterogeneity or RNA alterations along with others [42, 43].

Targeted sequencing (TS) is less efficient for discovering these types of alterations. However, its great sequence
depth makes it useful for analysing clinical samples, for which DNA quality or tumour contents can be low [44].
For example, the analytically and clinically validated companion diagnostic platform built by Foundation Medicine
sequences more than 300 genes with a sequencing depth of 500×, which has been applied to clinical trial settings
[45].

1.2.1.2 Cancer drivers and mutational patterns

The further elucidation of the cancer genome requires expanding the analysis of mutational patterns across the
genome for detecting functional cancer mutations. In the current understanding of tumour progression, a single
driver mutation is not sufficient to confer oncogenesis and multiple events are required, which are acquired suc-
cessively and cooperate to drive oncogenesis [10]. In colorectal cancer for example, the first step of oncogenesis
is often an inactivation of the tumour suppressor gene APC in about 60% of patient tumours, which is a critical
negative regulator of cell growth [46].

Oncogenesis can arise through different evolutionary routes with the hijacking of different cancer genes in a
stochastic manner [16]. However, the resulting tumour mutational patterns are not entirely random. For example,
driver mutations are often mutually exclusive, such as BRAF and KRAS in colorectal cancer (COREAD), which
are both key signalling proteins within the MAPK/ERK pathway [47] (Fig. 1.1f). The straightforward explanation
for this pattern is the functional similarity of BRAF and KRAS, i.e. either mutation suffices to drive oncogenic
signals through the activation of the MAPK signalling and no selective advantage exists for mutations in the
counterpart [48]. Another part of the explanation could be the context-specificity of both mutations dependent
on APC mutations. While KRAS and APC co-occur, BRAF mutations are found more frequently in APC wild
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type mutations [49]. Accordingly, there may be more of a selective advantage to KRAS mutations in APC mutant
tumours than to BRAF mutations. The conclusion is that driver mutations can be context-specific not only in terms
of the tissue type but also in terms of their genetic background.
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Figure 1.1: Cancer genomics as the foundation of precision oncology. a Simplified
depiction of human cancers, the cellular composition of the dissected tissue and extra- and
intra-cellular regulation of selected cancer mechanisms. In general, cancer cells exploit
rewired cellular signalling pathways to enable cancer hallmarks. b Oncogenesis is initiated
by somatic mutations and copy number alterations in DNA sequences. c Lollipop plot of the
protein position of somatic missense mutations on KRAS, visualised with MutationMapper
on cBioPortal [50] using whole genomes from the ICGC/TCGA [43], demonstrating the
high-frequency mutations on the amino acid positions G12D/V/R. d Crystal structure of
oncogenic KRASG12D visualised on the Protein Data Bank (PDB) with ID code 6GJ5 [51].
e Simplified depiction of the MAPK signalling with its central proteins and key downstream
signalling events. f Oncoprint of mutually exclusive somatic mutations on proteins in the
MAPK signalling pathway, visualised with OncoPrinter on cBioPortal using whole genomes
from the ICGC/TCGA [43].

1.2.2 Cancer hallmarks

Cancer mutations in protein-coding sequences are responsible for altering protein function to dysregulate cell
signalling to become cancerous. During the study of the human cancer genome, genetic alterations were found
that can alter functions in epigenetics, chromatin modifications, cell signalling, metabolism and gene expression
[52]. The characteristic cancer processes that enable cancer formation and progression have been continuously
classified into so-called cancer hallmarks [19, 20, 21]. Today, cancer hallmarks encompass 14 processes that may
alter cell function in terms of cell growth, growth control, immune evasion, inflammation, invasion, angiogenesis,
genome instability, evading apoptosis, metabolic regulation, epigenetic reprogramming, polymorphic microbes,
cell senescence, phenotypic plasticity and other emerging processes [21].

For example, a primary hallmark of cancer is its sustained proliferation [19]. In healthy cells, growth signals
are required before a cell can proceed with its division. Mutated oncogenes can substitute this signal and promote
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cancerous cell proliferation by modifying the extracellular, transcellular or intracellular processes [20]. Driver
mutations in extracellular growth factors are rare, and even if the dependence of oncogenesis on those is often al-
leviated, they play a role in the stages of tumour progression and therapy resistance [53]. For example, the ERBB2
receptor overexpression leads to increased sensitivity to regular abundance of growth factors or to signal transduc-
tion independent of ligand binding due to its increased heterodimerisation with other members of the ERBB family
of tyrosine receptor kinases [54]. Sustained proliferation signals can also stem from activating mutations in the
cytoplasmic signalling circuits, such as the MAPK/ERK pathway. Its members KRAS and BRAF are only found
mutated in about 30% and 8% of cancer types, respectively [26]. Thus, these pathways and molecular mechanisms
are not the only way cancer can persist and progress. For example, the cytokine TFG-β usually stimulates apop-
tosis or differentiation through SMAD proteins [55], whereas in cancer it can induce the epithelial-mesenchymal
transition for invasion and metastasis [56].

Research usually focuses on a handful of canonical cancer processes for inferring actionable cancer mecha-
nisms that can enable cancer hallmarks [26, 57]. Thereby, the relevant processes within the scope of this work will
be highlighted in the following sections.

1.2.2.1 Cancer transcriptomics

Cell transcripts in the form of messenger RNA (mRNA) contain transcribed DNA templates that are successively
translated into proteins to engage in their appropriate cell functionality. This propagation of information from
the genetic code to interacting proteins is known as the ‘central dogma’ of molecular biology (Fig. 1.2a). While
mRNA is the most studied type of RNA, other RNA types are non-coding and can be responsible for regulating
various cellular processes [16]. Compared to DNA sequences, transcriptomic profiles are highly dynamic and
provide snapshots for the functional state, cell types and tissue-specific regulatory mechanisms of cells.

To monitor RNA production, hybridisation-based DNA microarrays have been a prominent profiling approach
[16], while RNA sequencing (RNA-seq) is commonly used today due to less background noise, non-reliance on
existing genome knowledge and ability to distinguish different isoforms and allelic expression [58]. This also
allows researchers to study alternative splicing, post-transcriptional mechanisms and RNA editing [59].

Cancer is characterised by aberrant transcriptomic profiles that can reflect cancer hallmarks and tend to be
highly conserved across tissues [60]. This is plausible when considering that many cancers converge to activate
canonical cancer pathways through common oncogenes and tumour suppressors. However, transcriptional foot-
prints of cancer signalling networks are highly context-specific. Therefore, it is common to define gene sets based
on variations in gene expression to yield transcriptional signatures of cancer or differentiate cancer from each other.
For example, different cancer types can be easily classified by their tissue gene expression levels (Fig. 1.2b). This
started with an effort to distinguish acute lymphoblastic leukaemia (ALL) from acute myeloid leukaemia (AML),
which was achieved with the expression levels of 50 genes that most correlated with these two conditions [61]. As
an example shown in the uniform manifold approximation and projection (UMAP) of a harmonised transcriptomics
dataset (Fig. 1.2b), the IDH1 mutational status is a clear separator represented by the gene expression footprints
of glioblastoma and low-grade glioma. Quantifying these types of variation can result in clinically impactful sub-
type classifications, such as the intrinsic breast cancer subtypes, which are defined by overexpression of ERBB2,
estrogen or progesterone receptors [62].

Nowadays, subtypes are often based on transcriptional signatures encoded in machine learning models that are
interpreted post hoc to reveal relevant tumour biology. For example, melanoma subtypes have been defined by
transcriptomic signatures that revealed a dedifferentiation trajectory that reflects melanoma progression [63]. Sim-
ilarly, the consensus molecular subtypes (CMS) in colorectal cancer revealed tumour subtypes that are enriched
in distinct cancer hallmarks and somatic alterations [64]. Specifically, CMS2 was enriched in copy number al-
terations and left-sided tumours, whereas CMS1 was enriched in BRAF mutations and right-sided tumours. Their
prognostic relevance in clinical trials was confirmed [65], however, it remained an open question if they can impact
treatment decision-making.
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1.2.2.2 Epithelial-mesenchymal transition

The epithelial-mesenchymal transition (EMT) is a program which is characterised by epithelial cells transitioning
dynamically and reversibly to a mesenchymal phenotype in which they are deprived of their polarity and adhesive
properties, restructure their cytoskeleton and extracellular matrix, and reprogram transcription to increase cell
motility and their invasive capabilities [66].

It plays a critical role in the early stages of embryonic development, wound healing, fibrosis and cancer [10, 67].
In carcinomas, malignant cancer cells are confined by the baseline membrane and different types of cell-to-cell
junctions and thus require a phenotypic switch to gain fibroblast-like morphology and mesenchymal characteristics
for becoming motile and enable the invasion of surrounding tissue and metastasis [68], which is specified as a
cancer hallmark [20] (Fig. 1.2c).

Its coordination does not require any DNA alterations. Instead, EMT is induced by factors such as TGF-β
emitted from a reactive stroma that activate key transcription factors (TF) [69, 70] (Fig. 1.2c). During EMT,
they pleiotropically downregulate common epithelial markers, which can be measured in gene expression or post-
transcriptional changes. For example, E-cadherin is found on the cell membrane and mediates forming and main-
taining cell-to-cell adherens junctions through its homotypic interactions between adjacent cells [71]. Its encoded
gene CDH1 is downregulated and replaced by upregulating N-cadherin, which only forms weak bonds and thus
increases cell motility [10]. In addition, while cytokeratins make up the cytoskeleton of epithelial cells, mesenchy-
mal cells contain vimentin to mediate spindle cell shape, which is reflected by molecular markers such as VIM
expression.

Tumours have been shown to display a diverse spectrum of EMT programs [67] and high cellular plasticity
is demonstrated through the fact that tumour subpopulations can show different and hybrid stages of EMT in the
microenvironment [72]. This may contribute to the tumour’s ability to adapt and anticipate external stresses. For
example, tumours with mesenchymal features often show resistance to chemotherapeutic and immunotherapeutic
treatment regimens [70]. The general resistance to common anticancer drugs has been attributed to the increased
activity of anti-apoptotic pathways and slower proliferation rates [73].

Systematically targeting EMT by its prevention is infeasible since it encompasses a process necessary for
homeostasis, and tumours may disseminate circulating tumour cells (CTC) before diagnosis. Furthermore, pro-
moting mesenchymal-epithelial transitions (MET) is precarious since it may promote the formation of metastatic
lesions from already present CTCs [74]. Therefore, selectively targeting transitioned cells may pose a viable op-
tion [73]. The essentiality of EMT for invasion and metastasis, as well as therapeutic response and resistance,
advocates to expand efforts towards revealing its role as a predictive biomarker for therapeutic regimens and its
associated mechanisms.

1.2.2.3 Epigenomics and DNA methylation in cancer

Epigenetics is particularly relevant for understanding differentiation in development because the whole develop-
mental program must be written in the genome. Its concept was first introduced by Waddington in 1942 as the
‘epigenotype’ [75]. It led to the discovery of modifications that can overwrite genetic blueprints, regulate gene
activity and continuously mediate interactions between the genome and cytoplasmic proteins that recognise these
epigenetic marks [76]. These types of covalent modifications are reversible and dynamic and play major roles in
gene regulation. In particular, the DNA is packaged and organised by histone complexes forming nucleosomes
[16]. These proteins show modifications in the form of methylation or acetylation, for which particular combina-
tions enable the binding of other regulatory proteins [16]. For example, transcription start sites are often free of
nucleosomes that are not methylated if the nucleosomes they are flanked by are marked by di- or tri-methylation
of histones H3 lysine 4 (H3K4) [77, 78] (Fig. 1.2d).

Apart from histone modifications, direct modifications of the DNA are another mechanism by which DNA
sequences are marked for the recognition of DNA-binding proteins. In particular DNA methylation in the form
of 5-methylcytosine (5mC) CpG dinucleotides, cytosine followed by guanine in 5′ → 3′ direction, is frequently
studied in the human genome [79, 80, 81].

6



1.2 Cancer systems biology for precision oncology

Many methylation profiling techniques use sodium bisulfite treatment that measurably converts unmethylated
cytosine to uracil [82]. These technologies fall into two categories, i.e. probe-based and sequencing-based. The
former includes Infinium BeadChip arrays, which use probes that hybridise at the target CpG. Depending on
the generation, it includes approximately 450,000 or 850,000 CpG sites [83]. An example of the latter is whole-
genome bisulfite sequencing (WGBS), which in principle can screen all 28 million CpG sites in the human genome;
however, it typically only has sufficient coverage for 15 million sites [84]. Alternatively, reduced representation
bisulfite sequencing (RRBS) can only cover around 4 million CpG sites in the genome, but reduces the sequencing
burden, allows higher throughput and increases confidence by allowing higher sequencing depth [85].

DNA methylation primarily shows in CpG islands that are usually around 1kb long, are enriched in CpG
sequences and colocalise to approximately 70% of human proximal promoters [86] (Fig. 1.2d). Since 5mC can
be converted to thymine via spontaneous deamination, it is thought that these regions only exist because they are
usually hypomethylated in the germline [87]. However, about 70% of CpG sites in regions with low CpG density
are actually methylated. For example, repetitive elements and transcribed regions of the gene body are usually
methylated [88] and distal regulatory elements, such as enhancers, contain tissue-specific, highly variable and
dynamic DNA methylation [89].

Inverse correlations between CpG island methylation in promoters and gene expression levels are observed
frequently [79]. This led to the belief that methylation contributes to gene silencing by inhibiting the accessibility
of the promoters for TFs (Fig. 1.2d). Accordingly, it was later found that about 22% of TFs showed decreased
binding in their methylated motifs [90]. Indeed, DNA is also shown to ‘lock’ the repression of CpG island pro-
moters after DNA has been encased by nucleosomes [80]. However, there are still discussions about silencing
transcriptional initiation by methylation as the preferred regulatory mechanism to control expression levels, and
studies rather propose that silenced genes precede methylation [80]. Rather than a lock, it is proposed that DNA
methylation functions as a molecular mark for memorising and maintaining gene silencing [91]. Furthermore, for
gene bodies and distal regions in particular, also positive correlations between methylation and expression levels
can be observed [79], which suggest a context-specific function of DNA methylation.

Unlike somatic mutations, epigenetic mechanisms are dynamic and do not alter DNA base pair sequences.
Thus, it has long been discussed if epigenomics in the form of DNA methylation plays a causal role in oncogenesis.
As first evidence, gene body methylation was found to be a mutagen for classical tumour suppressor genes such
as TP53 [92], and in general, promoter hypermethylation of other tumour suppressors was linked to the silencing
of key pathways for cancer progression [93]. For example, the promoter of the tumour suppressor P16, encoded
by CDKN2A, was found to be hypermethylated and silenced in approximately 20% of cancers [94]. After the
discovery of somatic alterations in genes that encode epigenomic regulators necessary for active methylation of
the DNA, the discussion on its causal role was settled [95]. For example, the recurrent gain-of-function mutations
of IDH1 in gliomas and AML produce an onco-metabolite, 2-hydroxyglutarate, which interferes with the TET2
demethylating activity and causes hypermethylated DNA and subsequently altered regulatory interactions [96,
97]. Accordingly, the restoration of TET2 functionality can block leukaemia progression [98]. This type of
non-mutational epigenetic reprogramming of cancer cells by epigenetic regulators has been recently added to
cancer hallmarks [21]. Conversely, heterozygous R882H mutations in the DNA methyltransferase DNMT3A in
AML reduce the methyltransferase activity by about 80% through disrupting tetramerisation that causes focal
hypomethylation across the genome [99].

Cancer cells can be distinguished from healthy cells with their global methylation patterns created by these
epigenetic regulators. For example, frequent hypermethylation of promoters has been defined as the CpG island
methylator phenotype (CIMP) [100], which is discussed for a handful of cancer types [100]. To reiterate the
previous example, the CIMP status reveals footprints in the glioma transcriptomes and mutations in IDH1 seem
to be sufficient to explain this phenotype [101] (Fig. 1.2b). This highlights the inherent dependencies between
somatic mutations, DNA methylation and gene expression to determine cellular phenotypes.

Apart from global methylation patterns, local methylation patterns can reveal more actionable vulnerabilities.
For example, the silencing of DNA repair gene MGMT is found with a hypermethylated promoter and precedes
high rates of TP53 and KRAS mutations at later tumour progression stages due to the predisposition of deficient
cells to alkylation damage at guanosines [102]. Thus, these epigenetic events can precede tumour initialising

7



1 Introduction

mutations that are necessary for oncogenesis in the classical sense. That leads to the conclusion that genomics
and epigenomics cooperate to unlock oncogenic potential, i.e. epigenetic changes can cause further mutations
that can alter epigenetic regulators. Further basic research is required to reveal mechanistic interplays between
chromatin remodelling, the hierarchy of gene silencing, the DNA methylation machinery, histone post-translational
modifications and the DNA methylome in both healthy cells and cancer [103].

1.2.3 Cancer vulnerabilities, drug targets and discovered drugs

In the search for new cancer treatments, drug discovery traditionally starts with target identification and validation.
The current cancer targets are diverse, which is attributed to the large space of opportunities to rewire pathways in
cancer hallmarks during oncogenesis to arrive at a viable state to strive. The main principle of cancer therapies is
to identify and selectively interfere with its essential processes, i.e. vulnerabilities, and sparing essential processes
of healthy cells and tissues. Targetable entities are usually in the form of genes, proteins or other molecules that
tumours depend on.

The first cancer therapy with chemical compounds was nitrogen mustard, which was originally developed for
chemical warfare [105]. It is a cytotoxic alkylating agent that binds to DNA and forms cross-links that trigger
apoptosis [105]. Its effectiveness in some cancer types resulted in the approval of mustard gas (mechlorethamine)
by the Food and Drug Administration (FDA) in 1949 [106], the first chemotherapy. The earliest anti-cancer drugs
are cytotoxic agents that target processes involving DNA and/or RNA, such as the inhibition of mitosis or induction
of DNA damage. This class includes alkylating agents, antimetabolites, anthracyclines, topoisomerase inhibitors
and anti-microtubule agents [107].

Their high toxicity in human patients has promoted the development of more selective agents with targeted
therapies. The causal role of altered oncogenes and tumour suppressors in oncogenesis suggests targeting their
activity. Indeed, it was shown that shutting down the signals stemming from oncogenes or restoring tumour
suppressor activity in cancer cells unexpectedly inhibits their growth and induces apoptosis, termed oncogene
addiction or tumour suppressor hypersensitivity [108]. Since cancer is thought of as a multifaceted disease, it
is somehow surprising that the restoration of just a single altered protein function could have such tremendous
effects. The first approved targeted treatment was tamoxifen, which inhibits the estrogen receptor and modulates
its activity for the treatment of breast cancer [109].

The two main molecular targeting techniques are monoclonal antibodies and small-molecule inhibitors [110].
Within a cell, most key cancer signalling proteins are kinases, which are commonly used as targets by small
molecules to inhibit their activity [110]. Conversely, proteins on the cell surface can be targeted through antibodies
[110]. Some kinases, such as the ERBB receptor family, can be targeted by both techniques. Nevertheless, targeting
EGFR with either the monoclonal antibody cetuximab or the small molecule gefitinib can still show different
response patterns in cancer patients due to their differences in basic properties and mechanisms of action (MOA)
[110]. Great successes were achieved by tyrosine kinase inhibitors (TKI). For example, imatinib was developed
for chronic myelogenous leukaemia by targeting the BCR-ABL1 fusion [111] and gefitinib or erlotinib targeting
EGFR in lung cancer [112].

Over the years, it became more apparent that therapeutic targets are not only confined to the list of classical
mutated oncogenes or tumour suppressors, but ought to be expanded to non-oncogene dependencies [113]. As an
example, the melanocyte master regulator MITF is often labelled an oncogene in melanomas and is proposed to act
as a rheostat to regulate melanoma dedifferentiation and progression [63, 114]. Melanoma cancer cells in CRISPR
screening experiments have been revealed to be self-addicted to MITF [115], which means that only melanoma
cells with high MITF expression are addicted to it.

Another example is IRF4, an oncogene that is often overexpressed because of its chromosomal translocations in
myeloma. Strikingly, cancer cells are addicted to aberrant IRF4 regulatory networks also if IRF4 is unaltered [116].
This demonstrates the concept of synthetic lethality, which states that non-oncogenic proteins can be essential for
a tumour with a particular oncogenic alteration [117] (Fig. 1.2e). In general, since the loss-of-function of tumour
suppressors is usually not directly targetable, the concept of synthetic lethality becomes relevant for drug target
discovery. Among the not directly targetable oncogenic mutations are BRCA1/2 alterations in breast cancer, which
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Figure 1.2: Tumour molecular profiling as the cornerstone for targeting cancer.
a Selected processes of gene regulation that map cancer genotypes to phenotypes, for which
processes with bold text are addressed within this work. b UMAP representation of gene
expression data of tissue samples obtained from harmonised GTEx, TCGA and the Thera-
peutically Applicable Research to Generate Effective Treatments initiative (TARGET) data
[104], with subtypes of brain tumours as an example. c Simplified depiction of cancer
cells undergoing EMT by down- and up-regulation of epithelial and mesenchymal markers,
respectively. Extracellular stimuli promote the EMT program by activating its associated
transcription factors. d Schematic visualisation of DNA methylation in histones, enhancers,
CpG islands and promoters. As an example mechanism, promoters become hypermethy-
lated and lead to the repression of target gene transcription during oncogenesis. e If the
drug target (turquoise) is synthetically lethal with a tumour molecular alteration (red), the
response to target inhibition depends on the presence of the alteration.
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provide a successful proof of concept [118]: The inhibition of PARP leads to defective DNA repair of single-strand
breaks and results in increased amounts of DNA double-strand breaks, from which only tumours with wild-type
DNA repair protein BRCA1/2 can recover [10]. Since mutations in tumour suppressors BRCA1/2 impair the DNA
damage repair of double-strand breaks, the synthetically lethal inhibition of PARP results in an accumulation of
double-strand breaks and result in cell death [119]. Heat shock proteins (HSP) are another class of drug targets that
are actively studied, but not categorised as cancer genes in a traditional sense. HSPs are responsible for the folding
of their many client proteins to ensure their appropriate activity in both healthy and cancer cells. For example,
while wild-type BRAF activity does not depend on HSPs, the oncogenic BRAFV600E stability depends on HSP90
in melanoma cells [120].

The interplay between somatic cancer mutations and the cancer epigenome suggests targeting epigenetic can-
cer mechanisms. Epigenetic regulators such as DNMT proteins can be targeted by azacytidine or its derivative
decitabine, a broad nucleoside DNMT inhibitor. Albeit its regulatory approval, their clinical utility is still in ques-
tion due to elusive mechanisms because of the broad impact of DNMT on many genomic regions, limited activity
in solid tumours, toxicity, poor pharmacokinetic properties and the lack of biomarkers to predict treatment efficacy
[121]. Among the first-generation broad epigenetic modulators were also HDAC inhibitors blocking the activity
of histone deacetylases to interfere with cancer-specific gene expression [122]. A more promising avenue may
be targeted approaches, which include inhibitors of mutated IDH1, that have been shown to inhibit the growth of
glioma cells, even though the inhibition of DNMT can be at least as effective [123]. Epigenetic synthetically lethal
interactions are in discussion [124]; however, challenges associated with the targeted therapies exploiting epige-
netic mechanisms are the recapitulation of epigenetic profiles in cultured cancer cells and the scarcity of available
epigenetic data in the public domain [125].

In total, 332 compounds across 57 cancer targets gained regulatory approval between 2009 and 2020 [126].
New technologies enabling large-scale chemical or genetic screens facilitate the discovery of synthetically lethal
targets. Emerging targets that gain attention are nodes and hubs in cancer-related protein-protein interaction net-
works, metabolic processes, master regulators, tumour plasticity, the tumour microenvironment and immune com-
ponents [117]. In conclusion, the increasing universe of cancer targets and the larger amount of compounds
currently in development paired with the discovery of synthetically lethal interactions for selective targeting will
further contribute to optimising the efficacy of cancer treatments.

1.2.4 Pharmacogenomics for precision oncology

Pharmacogenomics aims to study the role of the genome in determining drug responses. Historically, it evolved
from pharmacogenetics, which typically involved the study of a particular genetic polymorphism to alter drug
effects [11], which was first introduced in 1959 [127]. Until the 1990s, most pharmacogenomic studies focused
on inherited traits that alter enzymes involved in drug metabolism, disposition and transporters [128, 129]. For
example, the 2 − 10% of individuals with homozygous non-functional CYP2D6, a drug-metabolising enzyme
responsible for both detoxification and prodrug activation, are resistant to many opioid analgesics [130].

Upon the study of genetic polymorphisms in drug targets that alter drug efficacy, efforts in pharmacogenomics
have been increasing [131]. In particular, the introduction and wide adoption of genome-wide sequencing tech-
nologies has accelerated the discovery of new variants in the human genome that could be subsequently associated
with drug effects [11]. In the special case of cancer, strong pharmacogenomic interactions have been observed
for somatic alterations [132]. An example is the fact that KRAS mutant COREAD does not respond to anti-EGFR
therapies because the oncogenic signalling of KRAS is independent of upstream activation by EGFR (Fig. 1.1e).
Other examples, such as mutations in EGFR determining response to gefitinib in non-small-cell lung carcinomas
(NSCLC) or ERBB2 overexpression as predictive biomarker for efficacy of treatment with trastuzumab in breast
cancer [133, 134], has outlined the path for the future of pharmacogenomics to investigate drug response patterns
in terms of molecular cancer data.

Drug development since then has led to a handful of success stories. For example, the EML4-ALK fusion
oncogene was discovered in NSCLC patients, and the observation that cancer cell lines with this alteration showed
higher sensitivity to ALK inhibitors promoted the use of crizotinib for this patient subgroups [135]. Recent ad-
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vances in cancer immunotherapies also make use of response biomarkers, e.g. PD-1 inhibitors tend to show higher
responses in tumours with high PD-L1 expression, high tumour mutational burden (TMB) or mismatch repair
deficiency (MMRd) across many cancer types [136]. Furthermore, the discovery of causal pharmacogenomic in-
teractions between PARP and BRCA1/2 mutated tumours led to the approval of the PARP inhibitor olaparib [119].
Today, there are 517 pharmacogenomic biomarkers involved in drug labelling, from which 221 are attributed to
oncology [137]. From all 164 targeted therapies approved between 1998 and 2022, about half require diagnostic
testing of their associated biomarkers [13].

Epigenetic alterations currently do not play a major role in precision oncology, but evidence for epigenetic
biomarkers of drug response is expanding. Among the earliest and most established examples is the promoter
methylation of MGMT [138, 139]. Its hypermethylation is associated with the downregulation of MGMT, which is
a DNA damage repair protein for alkylation lesions by removing methyl groups from the O-6 position of guanine
residues [16]. In glioblastoma, a hypermethylated MGMT promoter increases susceptibility to alkylating agents
such as temozolomide [140]. It alkylates or methylates DNA at this guanine residue position, from which tumours
with DNA repair impairment cannot recover. In accordance with the idea of pharmacogenomics, pharmacoepige-
nomics studies the impact of the epigenome in determining drug responses. Other than this example, there are only
a handful of biomarkers used in oncology [141], leaving the predictive component of DNA methylation and the
rest of the epigenome elusive.

A major obstacle in cancer is drug resistance; thus, identifying its biomarkers from drug response assays is cru-
cial. Key differences between intrinsic and acquired resistance need to be considered. The former is characterised
by an initial lack of response (short time scale), while the latter occurs after an initial response in a relapse (long
time scale). Thereby, resistances can occur both through genetic mutations or non-mutational tumour plasticity
[142]. For example, EMT was reported to be both an intrinsic and acquired resistance mechanism for KRASG12C

inhibition in NSCLC [143]. In drug high-throughput screens (HTS), intrinsically resistant cell lines can be found
among non-responding cell lines, which can share molecular characteristics with tumours from patients with ac-
quired resistances [144].

These endeavours show that pharmacogenomics can accelerate cancer drug discovery and development two-
fold through distinguishing drug responses. Firstly, molecular alterations that drive this stratification between
responding and non-responding tumours may yield novel synthetic interactions and promising drug targets for
designing new therapies. Secondly, it enables the retrospective analysis of toxicity or response patterns in clinical
trials that could reveal patient subgroups tailored specifically to the compound of interest. An example for both
cases are KRAS mutations, which are both an attractive drug target and a resistance marker for anti-EGFR therapies.
Thus, pharmacogenomics is possible across different drug discovery and development stages and should cross-
inform each other. It is evolving into a general term for leveraging sequencing technologies to enable the discovery
and development of new treatments [145] by revealing drug response patterns, which can be facilitated by data-
driven modelling using statistics, machine learning and artificial intelligence [9].

1.3 Principles of data-driven discovery of predictive biomarkers

With the previous sections, it became apparent that the discovery of predictive biomarkers is central to the de-
ployment of precision oncology. Predictive biomarker discovery can be understood as a classification task to
stratify cancers into subgroups based on their characteristics to predict drug responses. They can depend on simple
biomarkers such as anatomical, histopathological or molecular features. As the simplest example and arguing in a
data-driven and disease-agnostic manner, cancers from different tissues of origin require different therapies, which
would render the cancer type a predictive biomarker for the success of these administered drugs.

Single genetic markers may suffice to predict some treatment responses and encompass most clinically ap-
proved examples [13]; however, many patients still do not respond well to their administered therapies. Already
in the earlier days of pharmacogenomics, it was proposed that the variability of drug responses should be viewed
through pathways of cooperating genes characterised by multi-omic data modalities [146]. This urges research
to employ a more holistic approach to biomarker discovery, which relies on the precise measuring of high-
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dimensional characterisations of tumour cells or patients that can yield biomarker signatures based on multiple
genes and other data modalities.

Predictive biomarkers are subsets of these measurable disease characteristics that are able to predict treatment
outcomes. For their discovery, statistical and machine learning approaches are commonly used modelling tech-
niques fuelled by abundant biomedical data for characterising patients and their tumours. The following sections
outline principles from statistical learning and hypothesis testing to arrive at a framework for the discovery of
predictive biomarkers in cancer.

1.3.1 Statistical learning

Statistical learning aims to find models describing observed data. Within the scope of this work, suppose the data
D = {(x(1),y(1)), . . . ,(x(N),y(N))} is observed for either N tumours or patients. Thereby, each x(i) consists of p
observed characteristics x(i)1 , . . . ,x(i)p and each y(i) consists of a single continuous outcome measurement for the
i-th observation. Models derived from data are inherently probabilistic because of uncertainties underlying the
observed data stemming from missing information and noise. Thus, we assume that the observations in D can be
modelled by a joint probability distribution P(X,Y ) of p random variables X = X1, . . . ,Xp and a random variable Y .
We are interested in the function f : Rp → R that describes the relationship between the measurable observations
of X and Y , given by

Y = f (X)+ ε, (1.1)

where ε is the noise term. The minimisation of the expected squared error Êrr = E[Y − f (X)]2 in a point-wise
manner for the measurable outcome (‘features’) of variables X = x [147] yields the solution

f (x) = E[Y |X = x]. (1.2)

In other words, the expectation value of Y (output) conditioned on X = x (inputs) gives their relationship. This
representation is the discriminative setting, which allows us to reduce the probabilistic nature of the problem to a
prediction task by approximating the function f [147, 148].

The function f is usually parameterised by a set of parameters θ . We are interested in parameters θ̂ such that
the estimated f fits the data well, i.e.

f (x(i), θ̂)≈ y(i) ∀i = 1, . . . ,N. (1.3)

Imposing the input-output relationship in equation 1.1 formulates a supervised learning task in which parameters θ

are learned from the data D. For estimating parameters θ̂ , maximum likelihood estimation is a commonly employed
concept [147]. If we recall the probabilistic representation of our data, P(D|θ) is the likelihood of observing data D
for fixed parameters θ . We intend to maximise the log-likelihood L (θ) = logP(D|θ) [147]. For the additive and
Gaussian error with zero mean, ε = N (0,σ2) in equation 1.1, the likelihood for each observed sample (x(i),y(i))
is given by [147]

P(y(i)|x(i),θ) = N ( f (x(i),θ),σ2) ∀i = 1, . . . ,N. (1.4)

For independent and identically distributed samples in data D (i.i.d.), the likelihood factorises, and the negative
log-likelihood is given by [147]

L (θ) =−N
2

log(2π)−N logσ − 1
2σ2

N

∑
i=1

(y(i)− f (x(i),θ))2. (1.5)

If the predicted values are given by ŷ(i) = f (x(i),θ), this is equivalent to minimising the loss function l(y(i), ŷ(i)),
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which is commonly chosen to be the residual sum of squares [147]

l(y(i), ŷ(i)) =
N

∑
i=1

(y(i)− ŷ(i))2

=
N

∑
i=1

(y(i)− f (x(i),θ))2,

(1.6)

with respect to parameters θ for finding the optimal parameters θ̂ . This minimisation has infinitely many possible
solutions [147]. Hence, the choice of parameterising and constraining f (x(i),θ) will be crucial. Choosing f (x) as
a linear combination of its inputs x = x1, . . . ,xp is a popular imposed model, which is often adequate and specified
by

f (x) = β0 +
p

∑
j=1

β jx j, (1.7)

where ββ = β0, . . . ,βp are the parameters that are estimated using minimisation of the residual sum of squares

minββ

N

∑
i=1

(y(i)−ββx(i))2, (1.8)

which yields the parameters β̂β for the fitted function f (x, β̂β ) = f̂ (x). For this simple case, there exists a closed-
form solution [147]. The components of the parameter β̂β are the coefficients for each input x and thus give an
estimate of their effect for predicting the outcome.

1.3.2 Hypothesis testing

Statistical hypothesis tests are fundamental methods for statistical inference on parameters θ of an observed dataset
D consisting of N samples. Some of the basic principles are comprehensively laid out by Fay and Brittain (2022)
[149]. Accordingly, when testing a single hypothesis regarding the unknown parameter θ , we test a null hypothesis
H0 with an alternative hypothesis H1 while stating that H0 is false.

After defining the hypotheses, a test statistic is defined, which is a function of the sample values. The test
statistic quantifies the discrepancy between the sample observations and what to expect under H0, with functional
values indicating the evidence against the null hypothesis. Subsequently, a decision rule is defined, which depends
on the test statistic and the significance level α , which is designed such that the rate of type I errors is ≤α . Thereby,
falsely rejecting a true null hypothesis is a type I error, while falsely not rejecting a false null hypothesis is a type
II error (Table 1.1).

H0 H1
Accept Correct decision Type II error
Reject Type I error Correct decision

Table 1.1: Scenarios of statistical hypothesis testing. Depending on the true hypothesis
H0 or H1, either type I errors (false positive) or type II errors (false negative) can occur.

The significance level α is the probability of rejecting the null hypothesis if the null hypothesis is true. Often
α = 0.05 is chosen, but since this decision is rather arbitrary, we resort to defining the p-value, which is the smallest
α for which H0 is still rejected for all larger α .

Showcasing a simple example, suppose that the sample data D consists of measurements of a single variable,
i.e., D= {x(1), . . . ,x(N)}. We are interested in the true mean µ = θ of the distribution Pµ(X) and intend to test if this
mean is greater than µ∗. Then, let H0 state that µ = µ∗, whereas H1 states µ > µ∗. Furthermore, let x = 1

N ∑
N
i=1 x(i)

be the sample mean of the sample data and s2 = 1
N−1 ∑

N
i=1(x

(i)− x)2 the unbiased sample variance. Testing this
hypothesis required a one sample one-sided t-test. For that, the normality of the true distribution is assumed and a
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test statistic T is employed with the form [149]

T =
µ∗− x

s√
N

∼ tN−1, (1.9)

which is distributed according to the Student’s t-distribution tN−1 with N − 1 degrees of freedom (d.o.f.). The
p-value is then given by [149]

p = 1−Ft,N−1(T ), (1.10)

for which Ft,N−1 is the cumulative t-distribution with N − 1 d.o.f.’s. The null hypothesis H0 is then rejected if
p < α . A two-sided test for the hypothesis with the alternative hypothesis µ ̸= µ∗ is achieved if two one-sided
tests are employed with the p-value given by the minimal one-sided p-value multiplied by 2 [149].

In an alternative formulation by inverting a series of hypothesis tests [149], the 100(1−α)% confidence interval
(CI) is the set of parameters for which we fail to reject the null hypothesis with a significance level α . Accordingly,
the 100(1−α)% CI is given by [149]

CI = x±F∗
t,N−1(1−α/2)

s√
N
, (1.11)

for which F∗
t,N−1(q) is the q-th quantile of the t-distribution with N −1 d.o.f.’s. Accordingly, the null hypothesis is

rejected if µ∗ /∈ CI.
After this introduction, we follow with a relevant example for this work, i.e. testing model parameters. From

the linearity and normality of the error term of the specified model in 1.7 follows that [147]

β̂β ∼ N (ββ ,Var(ββ )), (1.12)

a multivariate normal distribution N with the coefficients ββ as mean and covariance matrix Var(ββ ). For that, the
null hypothesis is formulated that for a particular coefficient β j = 0 with the alternative hypothesis β j ̸= 0. To test
this hypothesis, the test statistic (Z-score) is employed with [147]

z j =
β̂ j√

V̂ar(β̂ j)
∼ tN−p−1, (1.13)

which is distributed according to tN−p−1. The statistical significance can then be evaluated analogously to equations
1.10 and 1.11. For all the statistical tests employed within Chapter 2, the outlined process of testing statistical
significance will be analogous.

1.3.3 Multiple testing

When carrying out multiple statistical tests, the probability of making at least one type I error can increase dra-
matically. Consider testing a family of m independent hypotheses with significance level α . Then, the family-wise
error rate (FWER), the probability of falsely rejecting at least one true null hypothesis, is 1− (1−m)α , which is
monotonically increasing with m [149]. Thus, multiplicity adjustment methods are required to control the overall
type I error rates [149].

Taking into account the amount of statistical tests by adjusting the derived p-values is a convenient way to
address multiplicity. The associated adjusted p-value padj describes the smallest α that still rejects its associated
hypotheses in the family. Thus, rejecting all hypotheses with padj < α controls the FWER at significance level α .
In the following sections, a selection of procedures that adjust raw unadjusted p-values are presented.

The simplest procedure that controls the FWER is the Bonferroni procedure [150], for which

padj
j = p jm, (1.14)
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simply multiplying individual p-values p j by the amount of tested hypotheses m. There are no assumptions on the
dependence between individual tests, but at the cost of being conservative when m becomes large, which decreases
power and increases false negatives. Another single-step procedure that adjusts p-values independently from each
other is the Šidák procedure [151]. It is slightly less conservative but assumes statistical independence of the m
hypothesis tests. Adjusted p-values are given by

padj
j = 1− (1− p j)

m, (1.15)

following the rationale of the probability for at least one false positive among m independent hypotheses.
A step-wise procedure that is universally more powerful than the Bonferroni procedure without further as-

sumptions is the (step-down) Holm procedure [152] given by

padj
i = max j≤i p j(m+1− j) ∀i = 1, . . . ,m, (1.16)

with all p j sorted in ascending order and j as the rank of each value. Other procedures are the Hochberg (step-up)
[153] and Hommel [154] (step-down) procedure, which both assume a certain positive dependence of test statistics
[155].

Other procedures are based on resampling methods using permutations or bootstrapping [156], which come
with a higher computational cost, but mostly require no assumptions and adjust for dependencies in between
hypotheses m for controlling the FWER. For example, let the dataset D have labels y(1), . . . ,y(N) randomly permuted
B times and for m hypotheses and let P∗ be a matrix with components p∗i j across permuted sets i = 1, . . . ,B and
hypotheses j = 1, . . . ,m. The first iterative step in the free step-down procedure by Westfall and Young [156] is
then given by

padj
1 =

1
B

B

∑
i=1

1(max j∈{1,...,m}p∗i, j ≥ p1), (1.17)

where 1(·) is the indicator function. The k-th step is then given by

padj
k =

1
B

B

∑
i=1

1(max j∈{k,...,m}p∗i, j ≥ pk) ∀k = 2, . . . ,m. (1.18)

Experiments for biomarker discovery, such as the datasets in Section 1.5, often require testing many hypotheses.
In these cases, controlling the FWER at a significance level α = 0.05 can be too stringent. Thus, it is proposed
to control the false discovery rate (FDR), which describes the expected rate of false positive rejections among the
total set of rejected hypotheses [149]. Since generally the FDR is less conservative than FWER, it can lead to
higher power, i.e. lower chances of false negatives. The utilisation of the appropriate multiplicity correction highly
depends on the context and prior knowledge about the hypotheses in question. A popular method for controlling
the FDR is the (step-up) Benjamini-Hochberg procedure [157] with adjusted p-values

padj
i = min j≥i p j

m
j

∀i = 1, . . . ,m, (1.19)

with all p j sorted in descending order and j as the rank of each value. While this procedure is conservative for
certain positive dependence structures, for arbitrary correlation structures an extension was given by Benjamini
and Yekutieli [158].

In modern genomics and epigenomics, studies are often performed in a genome-wide fashion that require
unbiased evaluations and interpretations across many statistical tests, which increases the burden of multiple testing
[159], which can be termed the ‘curse of multiplicity’ [160]. A range of procedures based on the presented
groundwork are introduced and used in Chapter 2.
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1.3.4 Central methods for machine learning

Machine learning aims to develop methods for learning patterns in data to arrive at models that make reliable
predictions [148]. While the prior sections predominantly focused on linear regression as an important example,
a variety of machine learning methods with different characteristics have been developed in the past solving dif-
ferent types of problems [148], which will be introduced in Sections 1.6.2 and 1.6.3. Thereby, the process of
building models generally involves four steps, i.e. (1) learning model parameters (‘training’), (2) selecting appro-
priate models and hyperparameters (‘model selection’), (3) predicting and evaluating the model (‘validation’) and
(4) interpreting the model and its parameters (‘interpretation’), which will be the subject of the four subsequent
sections.

1.3.4.1 Model training

The training step typically is carried out by minimising the loss function, which commonly takes the form of the
squared error loss in equation 1.6 for regression models and in equation 1.8 for linear models. Other loss functions
can be used or combined to guide the model fitting [147, 148]. Simply minimising loss functions to fit a model with
many parameters on the data can lead to overfitting, which is the case if a trained model is fit on the input-specific
data characteristics and therefore cannot perform generalisable predictions on unseen data [148]. For example, the
variance explained by highly correlated variables in standard regression models is shared among them. This can
lead to multicollinearity issues, such as instability of coefficients, that result in unreliable predictions.

To alleviate this issue, regularisation can be used to control the model fitting and enforce sparsity by modi-
fying the optimisation problem given in equation 1.6 [147]. A widely used regularisation strategy for regression
is shrinkage, i.e. ‘shrinking model coefficients’ to trade bias (reduced model space) for decreased variance, for
achieving a better fit and to receive more interpretable predictions. For example, the elastic net promotes the
interpretability and stability of regression coefficients by promoting sparsity with the lasso component and redis-
tribution of the magnitude of regression coefficients among correlated variables with the ridge component. With
the elastic penalty term, the optimisation problem reads

min
ββ

N

∑
i=1

(y(i)−
p

∑
j=1

β jx
(i)
j )2 +λ

p

∑
j=1

(αβ
2
j +(1−α)|β j|), (1.20)

including both a lasso and ridge penalty with hyperparameter λ and tuning each component with α , and yielding
parameters of the elastic net β̂β [161]. This and other types of regularisation techniques are employed for virtually
all learning algorithms and depend on the chosen algorithm [147].

1.3.4.2 Model selection

Model selection involves choosing the best model from a set of candidate models [148]. For example, models
can depend on hyperparameters, which have to be set prior to training in contrast to model parameters that are
fitted during the training process [147]. Machine learning methods can have intrinsic hyperparameters and forms
of regularisation can add further hyperparameters. Their selection is called tuning, which can be carried out by
various algorithms. However, in the simplest case, a grid search is employed, i.e. different sets of hyperparameter
combinations are tested and the hyperparameters with the best performance are selected.

Additionally, if performances upon employing regularisation and tuning are still unsatisfactory, especially in
the case N ≪ p, feature selection is a popular way to filter non-informative variables to avoid overfitting in order
to decrease variance [147, 160]. This is particularly well-suited for biomarker discovery, since its final step is
the selection of a biomarker set from relevant features of the model that should be understood in terms of model
selection. However, this can result in model selection bias, which occurs if the model is selected based on the
best-performing features and thus overestimates their true contribution [160]. This can be viewed as an alternative
formulation of the ‘curse of multiplicity’ in Section 1.3.3. Namely, inflated type I error rates when testing multiple
features hamper inferences with overfitting or model selection bias as its analogous concept [160]. For each of the
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1.3 Principles of data-driven discovery of predictive biomarkers

presented applications, the respective techniques are introduced and used in Chapter 2.

1.3.4.3 Model validation

Once the model is fitted, it can be used to predict unseen independent data from which a generalisation performance
can be estimated. Importantly, if a dataset of sufficient size is available, the dataset can be split into a training set,
validation set and test set before the training and model selection steps. Then, the training set can be used for
training and model selection including feature selection and tuning; the validation set can be used for estimating
prediction errors for selecting the final model; and the predictions in the test set can be used to estimate the
performance of the selected final model, e.g. by quantifying the prediction error Êrr.

Sometimes, a simple train-test split to assess performances suffices for model selection, but the estimated
performance may depend on the exact train and validation split. Thus, the repeated use of one exact split for model
selection of the model with the minimum validation prediction error may lead to model overfitting. To alleviate
this, more commonly K-fold cross-validation (CV) is used. For this, the data D with the set of indices d is randomly
partitioned into K roughly equally sized subsets Dk with their associated set of indices dk. The error of the CV
estimate is given by [147]

ÊrrCV =
1
K

K

∑
k=1

1
|dk| ∑

i∈dk

l(y(i), f̂ d\dk(x(i))), (1.21)

where f̂ d\dk is fitted with the subsets of data D with indices in d\dk. In other words, K − 1 folds are used for
training, model selection and tuning, whereas the leftover fold is used for estimating the prediction error. Often,
K = 5 or K = 10 is chosen as a good trade-off between bias and variance of the CV estimator.

Another popular method applicable to a wide range of estimation problems is bootstrapping [162]. Boot-
strapped datasets are produced by randomly drawing samples with replacements from dataset D, which can be
used to generate bootstrapped predictions [147]. The percentiles of the distribution of bootstrapped predictions
account for the variability in the entire modelling strategy [147]. Thus, it can provide confidence intervals for esti-
mation problems for which it is difficult to account for model selection using maximum likelihood [147]. Hence,
it is used to correct biases of estimators and construct confidence intervals of estimated quantities in Section 2.3.

1.3.4.4 Model interpretation

Statistical learning for biomarker discovery can be assessed in terms of a prediction problem or testing of multiple
hypotheses, but ultimately relies on the assessment of individual features. For predictive biomarkers to effectively
be transferred from preclinical experiments to clinical practice, it is essential that they are robust and, ideally,
reflect biologically plausible mechanisms.

If multivariate and nonlinear models are employed, the model parameters are difficult to interpret [147] and
thus biological mechanisms are becoming increasingly elusive. Their interpretation would require either a post
hoc assessments, i.e. identifying subsets of predictive features extracted from all features X and an evaluation of
their biological context [163], or a careful engineering of models to incorporate known contexts [164]. Conversely,
linear models with fewer effective parameters suffice or can even outperform nonlinear alternatives in difficult
scenarios such as small training data, low signal-to-noise ratio or sparsity [147]. Moreover, they provide high
interpretability by specifying one model coefficient βi for each Xi in equation 1.7. Additionally, if each feature Xi

is used for building a set of univariate models, the problem can be formulated as testing multiple hypotheses for
each associated single feature. Then, selecting the best models and their associated subsets of significant single
features from all features X allows for a straightforward interpretation of the predictive biomarkers by directly
extracting model parameters βi for the evaluation of their biological contexts.

Thus, the task of discovering predictive biomarkers can be approached in various ways depending on the data
and use case. Further examples from the literature and the motivation of the modelling strategies in this thesis will
be introduced in Section 1.6.
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1.3.5 A framework for data-driven biomarker discovery

The general ideas in Sections 1.3.1-1.3.4 are the groundwork for building models for predictive biomarker dis-
covery. To formulate this task, let all variables X consist of three types of features X = (Xd ,Xt , t), which are
characterised by disease features Xd (observed disease features xd,1, . . . ,xd,q) in response to a certain treatment t, a
vector of binary treatment indicators for a combination of the n possible treatments t = t1, . . . , tn ∈ {0,1}n, and by
treatment features Xt consisting of variables associated with the treatment (Fig. 1.3a).

The outcome function f predicts the measurable outcome Y of an entity of interest, such as tumours or patients.
Then, a functional form for f is assumed in the form of [165, 166]

f (Xd ,Xt , t) = g
(

h(Xd)+ z(Xd ,Xt , t)
)
. (1.22)

Thereby, h is a function that predicts the outcome independent of an applied treatment and refers to the prognostic
component. Thus, it only depends on the disease features Xd . In contrast, z is a contrast function, which refers to
the predictive component. It depends on the treatment t, its features Xt and can also depend on disease features
Xd . g is a monotone function that takes the form of a link function [167].

For n possible single treatments and their pairwise combinations, z can be expressed in terms of the individual
treatment contrast function z′ = (z′1, . . . ,z

′
n) expressing the predictive contribution of individual treatments t1, . . . , tn

and the synergy contrast matrix Z′′ with components z′′i j expressing pairwise treatment interactions between ti and
t j. With this, z can be written in terms of z′ and Z′′ as follows

z(t) = z′T t+ tT Z′′t

=
n

∑
k=1

z′ktk +
n

∑
i=1

n

∑
j=1

z′′i jtit j,
(1.23)

where the dependencies on Xd and Xt are omitted for convenience. This work incorporates three different special
cases of the problem formulation in 1.22 and 1.231. The considered features and treatments for each use case are
introduced in the respective sections in Chapter 2. Thereby, Sections 2.1 and 2.2 focus on in vitro experiments
in cancer cell lines, which offer both many treatment and disease features, which are decently sampled to allow
models to potentially generalise for new tumours with features Xd or new treatments when considering features
Xt

2. In contrast, Section 2.3 contains clinical datasets that study only a handful of compounds. Thus, they only
cover a small amount of treatment features but can contain and sample as many disease features, which allows
models to generalise for new patients with features Xd .

In Sections 2.1 and 2.2, the analysed experiments are designed such that the prognostic term h can be elimi-
nated when quantifying drug responses3. Thus, modelling drug responses using the treatment contrast z suffices.
Furthermore, only monotherapy treatments are measured, i.e. Z′′ = 0 and |t| = 1, and each individual treatment
contrast z′k is estimated separately for each treatment tk, so parameters are not shared across drugs and thus zk are
independent of the drug features Xt . Assuming that zk is linear in its disease features Xd , the model for each drug
k reads

z(Xd , t) = z′k(Xd)

= β0 +
q

∑
j=1

β jxd, j,
(1.24)

with coefficients ββ = β0, . . . ,βq individually fitted for each index k. The coefficients ββ with high absolute values
and significance assessed by hypothesis tests from Section 1.3.2 indicate predictive drug response biomarkers for

1The matrix Z′′(Xd ,Xt) contains pairwise synergistic and antagonistic treatment components, which will be omitted within the scope of
this work, i.e. Z′′ = 0 will be universally assumed.

2Within the scope of this work, the built models will focus on disease features Xd rather than treatment features Xt , which allows drawing
conclusions only in the context of all the administered treatments.

3The analysed drug HTS introduced in Section 1.5.2 derive relative cell viabilities by quantifying differences to replicate untreated cells,
and thus, the viability can be attributed to the predictive drug effect.
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1.4 Data-driven discovery of predictive biomarkers for clinical data in oncology

the treatment tk. Thus, this approach models putative biomarkers explicitly, which allows for simple evaluations
and interpretations. It may be insufficient because of its assumptions of linearity and constant variances, its sensi-
tivity to outliers, multicollinearity of features and potential overfitting for p ≫ N. However, many of these issues
can be mitigated by the methods proposed in Chapter 2, rendering linear models such as equation 1.24 valuable
for biomarker evaluations.

Sometimes, clinical data is analysed for only a single treatment with a clinical endpoint for quantifying an
outcome, for which one can estimate the outcome function f . Therefore, since only a single treatment is observed,
f is independent of Xt and only one component of the individual treatment contrast z′ is non-zero, i.e.

f (Xd ,Xt , t) = f (Xd)

= g
(

h(Xd)+ z′(Xd)

)
.

(1.25)

Since the prognostic and predictive components h and z cannot be distinguished, they are often modelled jointly
using linear models with the form

f (Xd) = g
(

β0 +
q

∑
j=1

β jxd, j

)
, (1.26)

with coefficients ββ = β0, . . . ,βq that contain both prognostic and predictive components.
Section 2.3 includes a framework for analysing clinical trials, i.e. there are two studied treatment regimes, and

thus allows us to distinguish the prognostic and predictive components h and z. Since usually only two treatment
regimens are observed in clinical trials, a single endogenous treatment indicator t ∈ ({0,1}) is included, and f is
independent of treatment features Xt . Furthermore, linear models including treatment-covariate interaction terms
are used for estimating both h and z, arriving at

f (Xd , t) = g
(

h(Xd)+ z(Xd , t)
)

= g
(

h(Xd)+ z′(Xd)t
)

= g
(

β0 +
q

∑
j=1

β
prog
j xd, j +

q

∑
j=1

β
pred
j xd, jt

)
,

(1.27)

containing two types of coefficients, i.e. prognostic ββ
prog and predictive ββ

pred components. Predictive components
are interaction terms between disease features xd, j and the treatment indicator t, which can be directly estimated
with the hypothesis tests from Section 1.3.2.

1.4 Data-driven discovery of predictive biomarkers for clinical data in
oncology

The general term of subgroup analysis describes the effort of identifying patient subgroups distinguished by pre-
dictive biomarkers with superior (or inferior) responses to therapies. In the literature, this topic is most often
discussed in the context of clinical trials and used in a retrospective and data-driven fashion, highlighting its in-
herent exploratory nature. Historically, scientists have been sceptical towards subgroup analysis [168], because an
undisciplined analysis, so-called ‘data dredging’, can result in spurious false positive associations leading to both
selecting the wrong subgroups and overestimating their effect size [169]. The statistical issues and often occurring
malpractice [170] of conducted subgroup analysis have fuelled debates concerning their appropriateness in the past
[171, 172], which has led to reporting standards in both the community and regulatory agencies [173, 174].

Some commonly discussed pitfalls for subgroup analysis are extreme effect estimates for small sample sizes,
selection bias in its pre-planning, regression to the mean and occurrence of the Simpson’s paradox [169]. While
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these issues can also occur in pre-specified subgroup analysis, issues for post hoc analyses include multiple testing
[175] and the ‘cherry-picking’ of strong associations, i.e. selective inference [176]. Given the outlined issues and
challenges, results from exploratory subgroup analysis must be interpreted with caution and cannot be utilised for
confirmatory processes such as regulatory approval or drug label change [177].

However, in the era of precision medicine, in which the central idea is tailoring treatments to subgroup-specific
characteristics, the analysis of subgroups becomes ever more relevant. As Alvin R. Feinstein stated, “statisticians
are right in denouncing subgroups that are formed post hoc from exercises in pure data dredging. The clinicians
are also right, however, in insisting that a subgroup is respectable and worthwhile when established a priori from
pathophysiologic principles” (Alvin R. Feinstein, 1998, p. 299) [178]. Especially with the increasing relevance
and abundance of biomedical and molecular data, subgroup discovery is becoming an essential aspect of modern
drug development. Today, the main goal is to identify the right patient for the right treatment.

For the further development of subgroup analysis around these concerns, it is essential to clearly define its
purpose in a given clinical trial. Thus, subgroup analysis is proposed to be divided into four categories [166].
First, confirmatory subgroup analysis in late-stage clinical trials is advised to only take place for a small number
of subgroups defined prospectively [179]. For this, traditional multiplicity adjustment methods are essential for
their evaluation to preserve the type I error rate [175]. In contrast, exploratory subgroup evaluation focuses on a
smaller number (about 10) of pre-specified (or unexpected) subgroups and assesses the consistency of the overall
treatment effects, typically via testing statistical interactions in equation 1.27 [177]. Similarly, post hoc subgroup
evaluation is often employed for unexpected heterogeneity in treatment effects for regulatory or safety issues [177].
Lastly, subgroup and biomarker discovery is purely used for proposing candidate subgroups among an arbitrary
number of subgroups in the available data. Typically, the algorithms designed for this purpose rely on principles
from machine learning discussed in Sections 1.3, especially Section 1.3.4. By design, they require strategies for
validation, preferably in an independent study cohort.

Subgroup analysis can be viewed as a special case of model selection [160, 169], i.e., finding the best subgroups
from a candidate subgroup selection dependent on the parameters of the proposed procedure. The outcome function
f in equation 1.22 can be directly estimated with the training data, and predictions of individual instances can be
output by the final model. Then, these predictions can be directly tested with the test data using classic performance
metrics since outcomes Y are observed. However, it is at the heart of precision medicine to estimate the predictive
component z, which requires estimating the predictive terms in equation 1.27, which are often dominated by strong
prognostic effects.

Having introduced some subgroup analysis terminology, the following sections will introduce heterogeneous
treatment effects, censored variables, subgroup discovery, multiplicity adjustments and causal inference for guiding
the assessment of predictive biomarkers in clinical trials.

1.4.1 Estimating treatment effects in randomised controlled clinical trials

The objective of exploratory subgroup discovery is often to identify subsets of patients with differential treatment
effects by estimating parameters of the predictive components in equation 1.27. Many ideas in the literature extend
into ideas from causal inference, which are commonly used for subgroup analysis today [180].

In a two-arm study, E[Y |X, t] is the expected outcome of a patient given the baseline disease features in X
treated with regimen t. A useful notion is the potential outcomes framework, for which the i-th patient can have
multiple potential outcomes depending on the received treatment, i.e. Ỹi(t), of which all but the observed one are
hypothetical [180]. This work focuses on randomised controlled clinical trials (RCT), for which the treatment
assignment t is independent of the covariates X used for subgroup analysis, i.e. {Ỹi(t = 1),Ỹi(t = 0)} ⊥⊥ ti [166,
180]. This is not necessarily the case in observational data, for which the distribution of patients in each treatment
regimen may differ and therefore bias the inference. However, other types of confounding are possible if covariates
in X are correlated, e.g. highly positively correlated predictive biomarkers can be labelled predictive but are
not causally linked. This is especially relevant for analysing genetic alterations, for which mutational patterns
highlighted in Section 1.2.1.2 frequently occur.

Under the assumption of random treatment assignment of RCTs, the average treatment effect (ATE) is given
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by [181]
τ = E[Ỹi(t = 1)− Ỹi(t = 0)]. (1.28)

In RCTs, a simple difference of observed outcomes is unbiased and consistent as an estimator [180]. For the
assessment of heterogeneous treatment effects, the average treatment effect conditioned on disease features in X is
the conditional average treatment effect (CATE), given by [181, 182]

τ(X) = E[Ỹi(t = 1)− Ỹi(t = 0)|X]. (1.29)

The unconfoundedness assumption states that when conditioning on covariates X, there are no further confounders
that simultaneously have a direct effect on the outcomes Ỹ (t) and t that are present in X, i.e. {Ỹi(t = 1),Ỹi(t =
0)} ⊥⊥ ti | X [166, 180]. Under this assumption the ATE can be derived from the CATE with τ = E[τ(X)], where
the expectation value is taken over X.

For estimating these quantities, the expected outcome can be formulated as [166]

Yi = Ỹi(t = 1)ti + Ỹi(t = 0)(1− ti), (1.30)

for which the expected values of both Ỹi(t = 0) and Ỹi(t = 1) can be estimated separately. Using a more heuristic
approach, the expected outcome E[Y |X, t] can also be modelled with the outcome function f using its formulation
in equation 1.27. The predictive components can then be used to form subgroups with differential treatment effects,
after which one can estimate the average treatment effects in the subgroups [183]. In the estimated subgroups Â(X)

with outcome Y (Â(X)), the expected value can be modelled by

E[Y (Â(X))|X, t] = γ0 + γ1t, (1.31)

where γ1 is the CATE estimate. Since the CATE estimate in equation 1.31 was derived from the same dataset as
subgroup Â, it suffers from bias due to selective inference. Thus, this estimate must be corrected with methods that
are introduced and utilised in Section 2.3.

1.4.2 Survival analysis

While many datasets measure binary or continuous outcomes Y , censored outcomes consist of a time T ∗ and a
binary event indicator C. The time T ∗ describes the actual survival time T or the time until censoring has occurred
depending on the event indicator C. For example, since clinical studies are finite, a patient withdrawn from the
study or otherwise lacking follow-ups will have an associated time T ∗ until censoring if the event has not occurred.
Estimating mean survival times E[T ] is challenging since the actual survival times T are only known for uncensored
events. Thus, censored outcomes are commonly modelled by estimating a survival function given by

S(η) = P(T > η), (1.32)

which describes the probability of the observed survival time T being greater than η , from which E[T ] =
∫

∞

0 S(η)dη

[184]. If survival times v1 < v2 < · · · from individuals are observed, the Kaplan-Meier estimator is used to estimate
the survival function [184], which is given by

Ŝ(η) = Π j: v j<η

(
1−

c j

n j

)
for η < max(vi), (1.33)

where n j and c j are the number of subjects at risk and for which the event has occurred at time v j, respectively.
Thus, in the context of a clinical trial, this estimate can be used to evaluate treatment benefits using a log-rank
test for testing the null hypothesis that there is no difference in the survival for the tested groups [185]. Since
including additional features X to adjust for is not possible for this estimator in a straightforward manner, other
(semi-)parametric models, such as the Cox proportional hazards model, are often used. The hazard H(η) describes
the potential for an event occurrence at a given time unit given that the event did not yet happen, and can be
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explicitly expressed by [167]

H(η) =−
dS(η)

dη

S(η)
. (1.34)

In the presence of explanatory variables X = X1, . . . ,Xp, the Cox proportional hazards model is specified by

H(η ,X) = H0(η)exp(
p

∑
j=1

β jx j). (1.35)

Note that the baseline hazard H0 is independent of the characteristics of the subjects, which yields that the hazard
ratio between two individuals is constant in time. Estimating hazard ratios and regression coefficients does not
require estimating H0, which can be an advantage over parametric survival models, such as the Weibull model or
exponential model, if the form of the hazard function is unknown [167]. This model can be fit through a partial
maximum likelihood approach while only considering uncensored subjects. Minimising the negative partial log-
likelihood similar to equation 1.5 is given by [186]

min
ββ

N

∑
k=1

Ck log
(

∑
i∈Rk

exp
(
(

p

∑
j=1

β jx
(i)
j )− (

p

∑
k=1

β jx
(k)
j )

))
, (1.36)

where Ck is the indicator for uncensored events and Rk the set of indices for subjects at risk from all subjects N.
Analogously to the linear models in equation 1.24, the Cox model utilises a linear predictor to estimate regression
coefficients and thus can be viewed as a generalised linear model tailored to the distributions of censored outcomes
[167]. Thus, the presented ideas for standard outcomes can be analogously applied to censored outcomes while
considering the necessary caveats.

1.4.3 Subgroup and biomarker discovery in clinical trials

The previously discussed scepticism regarding subgroup analysis has triggered the generation of checklists for best
practices. Guidelines have been proposed before [187, 188, 189], and a list of recurring items has been collected
[166]. Accordingly, subgroups should be pre-specified and biologically plausible, all tests must be adjusted for
multiplicity, and all testing in subgroups should be only conducted if the tested coefficients for the predictive
interaction terms in equation 1.27 is significant. However, some of these suggested guidelines contradict the nature
of data-driven biomarker discovery for precision medicine. For example, the requirement of testing interactions
for each pre-specified predictor variable ignores the possibility of exploratory and multivariate considerations.
Having in mind that data-driven subgroup analysis can be viewed as a special case of model selection, i.e. forming
subgroups from important features and estimate their treatment effects, it can be described as a search strategy for
a final subgroup A. Formally, a predictive subgroup may be defined by [160]

z(X)> δ =⇒ X ∈ A, (1.37)

where A is the subgroups to be discovered and δ is a clinically relevant treatment effect, which can be selected
as δ > 0 indicating non-zero benefit or δ > τ indicating benefit higher than the ATE [166]. Thus, the subgroup
A is defined by subjects with features X for which treatment contrasts > δ are found. Principles for data-driven
subgroup analysis methods are derived from general principles of statistical learning (Section 1.3.4), multiple
testing (Section 1.3.3) and causal inference (Section 1.4.5) [166, 177]: First, an assessment of the type I error
rate should be given for the entire search strategy, which yields an estimate of how likely it is to find a treatment
effect in the subgroup A by chance. Next, the strategy should incorporate controls for complexity and selection
bias to prevent overfitting and provide an assessment for its reproducibility. Finally, it should provide an ‘honest’
estimate of treatment effects in the found subgroups [166, 190]. Based on these ideas, many data-driven subgroup
analysis methods have been proposed that go beyond the classical approach to detect statistical treatment-covariate
interactions in equation 1.27, which are introduced in Section 1.6.3. In Section 2.3, a method is presented that
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builds on the classical ideas, uses resampling methods from Section 1.3.4 to fulfil the stated requirements, and
includes benchmarks with modern methods to analyse clinical trials in oncology.

1.4.4 Multiplicity adjustment for subgroup discovery in clinical trials

Traditionally, multiplicity adjustments in confirmatory clinical trials control the FWER with the presented pro-
cedures in Section 1.3.3. Multiplicity arises from multiple endpoints, several drug dosages or several patient
subpopulations [191]. Procedures for their adjustment in clinical trials with a single set of hypotheses and fixed
design have been reviewed before [175]. For multiple sources of multiplicity, hypotheses can be either divided into
separate families, or more complex procedures can be employed [192, 193].

In general, methods controlling the FDR are inappropriate for the confirmatory setting because of its non-
stringent requirements, usually low number of hypotheses and its inability to support complex decision rules [192].
However, applications of the less conservative FDR are more common practice in genomics, because a low num-
ber of false discoveries is acceptable [159]. Thus, pharmacogenomic subgroup discovery for clinical trials with
molecular tumour profiling can benefit from its adoption. For multiple types of families of hypotheses, controlling
the FDR in each family can still conserve the overall error. This is rationalised by the correct scaling behaviour
of rate with the number of tests m [194]. If a selection takes place for the tested families, adjustments due to the
selective inference are required [195].

1.4.5 Estimating causal effects

The discovery of predictive biomarkers using hypothesis tests and predictive modelling relies on clever ways to
design models, fitting procedures, multiple testing strategies and resampling procedures to yield valid inferences.
Complementary, utilising methods from causal inference to learn predictive biomarkers seems to be a promising
extension. In general, causal inference works with observational data, for which potential outcomes Ỹi(t) and
treatment assignments t are not independent of the covariates X. Thus, strategies are needed to account for different
distributions of patients in treatment groups when estimating causal effects. For example, matching can be used to
identify individuals with similar characteristics X between treatment groups [196]. Alternatively, propensity score
modelling, i.e. prediction of the treatment assignment t based on characteristics X, can be used for matching by
using inverse probability weighting [196].

Since estimating the CATE from equation 1.27 can suffer from model misspecification or low power for de-
tecting interactions, several machine learning frameworks have been proposed for this purpose, from which we
consider two categories, i.e. metalearners (S-/T-/X-learner) and double machine learning methods [182, 197, 198,
199, 200]. Both methodologies make use of baselearners, which can be arbitrary machine learning methods that
function as backbones for inferring causal effects. As an example for the former, the simplest S-learner MS uses a
single baselearner and is given by [182]

MS(X, t) = E[Y |X, t] = f (X, t), (1.38)

essentially globally fitting the outcome function f with an arbitrary machine learning model. From this, the
estimated CATE is then given by

τ̂S(X) = MS(X, t = 1)−MS(X, t = 0). (1.39)

Complementary, the T-learner MT fits one model per treatment in reference to equation 1.30, i.e. M
{0,1}
T =

E[Y |X, t = {0,1}] [182]. From this, the estimated CATE is given by

τ̂T (X) = M 1
T (X, t = 1)−M 0

T (X, t = 0). (1.40)

Metalearners combine predictions from baselearners to estimate the CATE, which enables them to be used in a
flexible way. In contrast, the frameworks developed for double machine learning provide a more general theoretical
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framework with new concepts for the estimation of heterogeneous treatment effects by partially linear regression
models [198]. As an informal outline, it combines two baselearners for the propensity model and the outcome
model with another final stage model to arrive at valid inferences of the treatment effects [198]. The estimates of
the propensity model are used to orthogonalise the predicted treatment residuals, and the outcome model is used
to remove the variance stemming solely from the features X [199]. Finally, regressing the outcome residuals on
the treatment residuals provides an estimate for the ATE, while the CATE is estimated by the third final stage
machine learning model fitted on the features X. If the structure of the CATE is generally unknown and many
features are present in X, a good choice for the final model are causal forests [200], since they provide honest
treatment effect estimates and valid confidence intervals if their assumptions are met. All of these frameworks
have shown promising results in simulations and real-world applications, even in the presence of complex data and
confounding [182, 199, 200]. Thus, the double machine learning framework will be used to quantitatively estimate
causal effects in Section 2.2.
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Figure 1.3: Data sources for cancer research enabling the development of statisti-
cal methods and machine learning for predictive biomarker discovery. a A standard
workflow consisting of data inputs from disease features, treatment features and biological
knowledge databases for building a model predicting the measured outcome from a func-
tional screen using hypothesis testing (Section 2.1,2.3), drug response prediction (Section
2.1,2.2,2.3), subgroup analysis (Section 2.3) and causal inference (Section 2.2,2.3). b Data
sources for disease features contain cell annotations and multi-omics characterisations. c
Data sources for the treatment features contain compound annotations in the form of their
chemistry or targets. d Measured functional outcomes are usually cell viability, molecular
readouts or clinical endpoints. e Biological priors from knowledge databases can help to
build or interpret models for predictive biomarker discovery.

1.5 Data sources for cancer research

Data-driven assessments of drug response biomarkers depend on the appropriate datasets from which they can
be derived, hypothesised and validated. The growing wealth of biomedical data in oncology increasingly allows
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cancer research to leverage ‘big data’ techniques, which enables the scalable modelling across numerous genes
or pathways [201]. Thereby, it is essential for the resulting models to be able to narrow down or project back
to biomarkers encompassing individual genes or pathways to achieve high interpretability and yield biologically
plausible insights.

For this task, four types of biomedical data laid the foundation of this work and will be described in the
following sections (Fig. 1.3a). For each data type, the selected datasets relevant to the scope of this work are
outlined in Table 1.2. Firstly, omics data can describe tumours based on their genetic, transcriptomic or epigenetic
profiles covering disease features Xd (Section 1.5.1, Fig. 1.3b). Secondly, compound databases contain treatment
annotations such as compound chemistry and drug targets covering treatment features Xt (Section 1.5.3, Fig. 1.3c).
Thirdly, functional data contains screens of observed outcomes Y complemented with molecular profiling in cancer
samples or patients, which allows to discover patterns between outcomes Y , disease features Xd and treatment
features Xt . These include data from perturbation screens using chemical compounds, genetic engineering or
other cancer therapies with functional readouts (Section 1.5.2, Fig. 1.3d). Lastly, knowledge databases include
annotations accumulated from our current understanding of cancer biology. While these databases are not primarily
tailored to oncology, they contain a large proportion of biological priors for cancer applications to guide or interpret
models in terms of disease features Xd and treatment features Xt for predictive biomarker discovery (Section 1.5.3,
Fig. 1.3e).

1.5.1 Omics data repositories

The first big consortium to attempt forming a comprehensive catalogue of cancer genomic alterations in human
cancers was The Cancer Genome Atlas (TCGA), founded in 2006 as a pilot study in three prevalent cancer types.
Shortly after, in 2008, the International Cancer Genome Consortium (ICGC) was launched to coordinate collabo-
rative efforts toward this goal and jointly expanded efforts towards over 30 cancer types. These efforts elucidated
the mutational landscape of 12 cancer types [202] by exome sequencing in human tumour samples with matched
normal tissue. Today, the ICGC database contains over 20,000 samples with molecular profiles, including over
10,000 samples from TCGA [201]. Their resource and findings have advanced the current understanding of the
cancer genome [203], which promoted further efforts into the investigations in whole genomes by the joint con-
sortium Pan-Cancer Analysis of Whole Genomes (PCAWG) [43], which now encompasses over 2,600 tumour
samples. Data from the TCGA is embedded within the Genomic Data Commons (GDC) data portal, including
data from more than 20 other consortia and over 85,000 cancer samples [203]. Most cancer types only include
under 1,000 samples each; however, this data is highly curated and standardised. As a result, more than 10,000
scientific articles have cited TCGA [201]. Further, molecular data repositories in public archives, such as the NCBI
Genbank [204], the European Nucleotide Archive [205] and the Gene Expression Omnibus [206]), host large data
collections of more than 1 million cancer samples [201], which are, however, hard to analyse jointly because of
the lack of standardisation and integration.

While the primary focus of the ICGC and TCGA has been cancer genomics, the TCGA has expanded to
profiling complementary molecular data such as epigenetics and transcriptomics in order to facilitate the integrative
analysis of cancer beyond its genetic component. Namely, today more than 8,800 primary tumours have complete
molecular data, i.e. whole exome sequencing, RNA-seq, and Illumina human 450k methylation array profiling.
This data can be used to yield additional evidence for cancer mechanisms when matching it with molecular data of
cancer cell lines that provide an expanded pharmacological view, which was carried out in Section 2.1.
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Resource Type Data description Number Usage Source

TCGA*/
PCAWG/
TARGET

omics,
(functional)

whole genomes, exomes,
gene expression, DNA
methylation

10,000
tumours

discovery of can-
cer mutations and
multi-omic cancer
mechanisms

[43,
202]

NCI-60 functional whole exomes, gene expres-
sion, DNA methylation, pro-
teomics, metabolomics

60 cancer
cell lines
with 50,000
screened
compounds

discovery of pre-
dictive drug effi-
cacy biomarkers

[207]

GDSC*/
CCLE*/
CTRP*

functional whole genomes, exomes,
gene expression, DNA
methylation, proteomics,
metabolomics

1,000 can-
cer cell lines
with 500
screened
compounds

discovery of pre-
dictive drug effi-
cacy biomarkers

[132,
208,
209]

Score* functional whole genomes, exomes,
gene expression, DNA
methylation, proteomics,
metabolomics

900 can-
cer cell
lines with
CRISPR ge-
netic screens

discovery of gene
dependencies and
synthetically lethal
targets

[115]

LINCS* functional gene expression 70 cancer
cell lines
with 25,000
compounds

discovery of drug
targets and mecha-
nisms of action

[210]

FIRE-3*/
ADJU-
VANT*

functional targeted somatic mutations,
gene expression

randomised
controlled
clinical
trials with
300 tumours

explorative sub-
group analysis for
discovery of pre-
dictive biomarkers

[211,
212]

ChEMBL/
PubChem/
DrugBank*

knowledge biochemical assays,
SMILES structures, drug
targets

1,000,000
compounds

annotation for
compounds and
their targets

[213,
214,
215,
216]

KEGG/
GO/
OmniPath*

knowledge pathways, gene ontologies,
protein-protein interaction
networks

- annotation for
molecular mecha-
nisms

[217,
218,
219]

COSMIC* knowledge curated somatic mutations,
non-coding mutations, gene
fusions, genome rearrange-
ments, copy number alter-
ations, aberrant expression,
DNA methylation

- annotation for
discovered cancer
driver mutations
and mechanisms

[220]

GTEx/
ENCODE*/
Roadmap

knowledge,
(omics)

curated (expression) trait
loci, tissue gene expression,
DNA regulatory elements,
DNA configurations, DNA
and histone methylation

- annotation for
molecular mecha-
nisms

[104,
221,
222,
223]

Table 1.2: Selected data sources for cancer research. The resource names, types clas-
sified by Fig. 1.3b-e, descriptions of provided data, approximate number of contained tu-
mours or compounds, their usage in the scope of this work and their citations are shown.
The indicated resources with the asterisks are used within this work for the purpose of pre-
dictive biomarker discovery. The other highlighted data sources can be used analogously or
complementary. The dashes on the number of tumours or compounds indicate the focus on
their provided metadata on biological processes.
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1.5 Data sources for cancer research

1.5.2 Functional data

While molecular profiling in cancer can yield insights into its disease aetiology, functional screens can reveal
biological mechanisms for a phenotype of interest to help identify potential therapeutic opportunities [207, 224].
Typically, this is achieved through a systematic perturbation inflicted on a cancer model system, such as compound
HTS in cancer cell lines [207, 225].

In 1990, the NCI-60 human tumour cell lines HTS was the pioneering functional screen conducted in 59 im-
mortalised human cancer cell lines [207, 226]. Immortalising and establishing a cancer cell line requires tumour
material of a human cancer and the repeated culturing of a stable population of cells [227]. Initially, concerns were
raised regarding their resemblance to the original tumour because of culturing artefacts such as the accumulation
of passenger mutations or the missing microenvironment and immune component. However, they are shown to re-
capitulate meaningful tumour biology [228] and, therefore, serve as a suitable model system for pharmacogenomic
studies with high-throughput experiments. For example, by evaluating the NCI-60 monotherapy drug screens, it
was found that BRAFV600E mutations in melanoma cell lines confer response to the MEK inhibitors hypothemycin
and CI-1040 [229].

Other HTS efforts have since expanded on this concept. While many included cancer types in the NCI-60
only screened about 60 samples, the Genomics of Drug Sensitivity (GDSC) and Cancer Cell Line Encyclopedia
(CCLE) / Cancer Therapeutic Response Portal (CTRP) project both expanded beyond 1,000 cancer cell lines from
over 30 cancer types screened across approximately 500 compounds [132, 208, 230]. In contrast to the NCI-60,
for which advanced sequencing technologies were only performed later, these screening efforts are complemented
with multi-modal molecular characterisations, including genomics, epigenomics, transcriptomics, proteomics and
metabolomics [132, 209, 231, 232, 233]. While these two screens are the main focus of this work, other monother-
apy HTS with lower numbers of cell lines are available and have been integrated into public databases [234].

These datasets enabled pharmacogenomic assessments and a wide range of drug response prediction models,
which are discussed in Section 1.6.2. They are phenotypic cell-based screens designed to assess drug responses
by measuring biological activity upon drug perturbation, such as cell viability, gene expression or pathway modu-
lation, without requiring prior knowledge about MOA compared to other assays [235]. Commonly used methods
are assays quantifying the metabolic activity of ATP through luminescence as a proxy for cell viability [236],
such as the CellTiter-Glo assay for the HTS performed by the GDSC [234]. Roughly, relative cell viability can
be calculated from these assays by dividing intensities from drug-treated cell cultures by untreated controls for
different drug doses to arrive at a dose-response curve [237]. Finally, summary metrics for these curves can be
derived through curve-fitting sigmoid functions [237, 238], Gaussian processes [239] or hierarchical Bayesian
models [240]. These metrics include the drug concentration at which cells experience a 50% decrease in viability,
i.e. the half maximal inhibitory concentration (IC50), and the area under the dose-response curve (AUC), which are
popular outcomes Y for training in silico drug response prediction models. As opposed to the IC50, the AUC metric
depends on the used concentrations for the conducted experiments. However, many machine learning methods use
the AUC metric because of its robustness [241].

Aside from drug treatments, other types of perturbations are possible. For example, CRISPR-Cas9 knockout
screens measure the viability upon loss-of-function of the range of protein-coding genes, which can reveal gene de-
pendencies and synthetically lethal targets [115, 242, 243]. Similarly, drug MOA can be revealed when comparing
viabilities upon knockout of putative drug targets and drug treatments [244]. Other types of CRISPR (activation or
inhibition) and RNA interference (RNAi) have been collected in numerous integrated databases [245, 246, 247].
Furthermore, other molecular readouts beyond cell viability are feasible. The NIH LINCS consortium is interested
in human disease perturbations using various assays [248], for example, assessing transcriptional responses with
gene expression profiling as readout in perturbed cancer cell lines [210]. Upon perturbation, up- or down-regulated
genes are summarised into drug or gene signatures containing implicit information about the MOA or gene loss-
of-function effects. Since transcriptional signatures upon chemical perturbations can contain information about
potential drug MOAs and cancer response mechanisms, they were hypothesised to be able to ‘reverse’ transcrip-
tional disease signatures, a concept called connectivity map (CMAP) [249]. Since then, many strategies have
been proposed to exploit this concept for pharmacogenomics [250]. For example, a CMAP identified entinostat to
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inhibit the maintenance of AML, which was subsequently validated in vivo [251].
All of the above screening efforts aim to identify treatment opportunities in human patients, which ultimately

can only be validated with clinical observational data. Thus, clinical data are valuable resources for mining func-
tional relationships between tumours and their response to therapy. Unfortunately, TCGA data contains only sparse
or no information about administered treatments and outcomes for many of the profiled patient primary tumours
[252], thus, drug response patterns can only be assessed in a limited number of tumours and compounds. There-
fore, its ability to yield predictive drug response biomarkers is also limited. Additionally, observational data such
as available in the TCGA can show selection biases and confounding that hamper drawing reliable conclusions
[253]. Thus, randomised controlled clinical trials are preferred for outlining predictive and prognostic biomarkers
by using different types of clinical endpoints that quantify favourable therapy outcomes Y . For instance, the ‘re-
sponse evaluation criteria in solid tumours’ (RECIST) criteria [254] can be summarised into an objective response
rate, which is a binary variable in order to quantify the response to therapy. Other types of clinical endpoints
are censored outcomes, for which statistical details are given in Section 1.4.2 and include the time from diagno-
sis or treatment initiation until death (overall survival), disease progression (progression-free survival) or relapse
(disease-free survival). This work uses data from the two clinical trials FIRE-3 [211] and ADJUVANT [212].
FIRE-3 included metastatic COREAD patients treated with either cetuximab or bevacizumab in combination with
5-fluorouracil, leucovorin and irinotecan (FOLFIRI) [211], whereas ADJUVANT included NSCLC patients treated
with either vinorelbine plus cisplatin or gefitinib [212].

1.5.3 Databases for chemical compounds, drug targets, biological processes and cancer
genomics

Compound and knowledge databases introduced in this section are often used for systems pharmacology ap-
proaches, however, they only have limited information on drug variabilities between tumours [255]. Nonetheless,
these databases can help to contextualise the variability among individual samples or patients. To achieve this,
they can be used either as priors to guide and constrain the data-driven modelling for reducing bias or in a post hoc
analysis to accumulate evidence in terms of the biological interpretation of predictive biomarkers. To exemplify
this, consider a study that investigates many different compounds in parallel. Mining annotations in the chemical
compound databases to cover drug features Xt can improve drug response prediction models by integrating them
as features [256]. Conversely, drug response biomarkers can also be derived for each compound without consider-
ing drug features Xt . Then, a subsequent assessment can reveal biomarkers that are consistently observed for all
compounds with the same drug target, which is demonstrated in Section 2.2.

Compound annotations can be obtained from chemical databases such as ChEMBL [213], PubChem [214]
or DrugBank [215], which include diverse pharmacological information on millions of compounds. For example,
DrugBank is used to manually queue drug targets for compounds with putative drug response biomarkers in Section
2.1. Furthermore, refined drug annotations may be derived from biochemical assays for drug action or activity that
encode information on drug MOAs. Additional compound annotations can be obtained through the simplified
molecular-input line-entry system (SMILES) compound structures, which can be used to extract pharmacological
information with tools such as RDkit [257] or molecular representation learning [258].

Another type of knowledge database contains biological processes associated with drug targets, which are of-
ten understood in terms of molecular cancer pathways. An example for such a database is the Kyoto Encyclopedia
of Genes and Genomes (KEGG) database [217], which also includes drug-target interactions additionally to anno-
tated networks of molecular interactions. A similar concept is followed by the Gene Ontology (GO) [218], which
provides hierarchically structured relationships between genes to gain functional insights into gene sets. For ex-
ample, in Section 2.2, annotated GO terms are used to interpret drug MOAs from dysregulated gene sets obtained
from the LINCS database. In some efforts, such as the OmniPath database curated from over 100 sources [219],
signalling pathways are characterised by molecular interaction graphs that outline protein-protein interactions or
gene regulatory networks. By mapping putative molecular drug targets and predictive biomarkers to OmniPath
nodes and employing integer linear programming [259] or shortest paths [260] in Section 2.1, dysregulated molec-
ular pathways can be contextualised. Furthermore, in Section 2.3, curated pathway networks are used to prioritise
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mutually exclusive somatic alterations that are functionally related [261].
Complementary efforts such as the Human Genome Project [262] majorly powered knowledge databases for

cancer genomics by providing a reference genome. For example, the Catalogue of Somatic Mutations in Can-
cer (COSMIC) [220] assembled curated somatic cancer mutations derived from cancer genomes contained in the
omics data repositories outlined in Section 1.5.1, which constitute the current Cancer Gene Census [25]. More-
over, resources such as the Genotype Tissue Expression project (GTEx) [221], the Encylopedia of DNA Elements
(ENCODE) [222] or the NIH Roadmap Epigenomics Consortium [223] have provided functional annotations for
the regulatory landscape in normal human epigenomes and transcriptomes that can be used to study aberrant gene
regulations in cancer. Somatic alterations with functional relevance are often included in TS platforms analysed in
Section 2.3. Furthermore, many somatic alterations that were used as mutational background of cancer cell lines
for the models in Section 2.2 are annotated somatic driver mutations in the COSMIC database [132].

1.6 Methods for identifying predictive biomarkers

After the introduction of statistical and machine learning concepts along with the required cancer biology and its
data sources, here, related works which proposed statistical and machine learning methods that can be utilised
to discover predictive biomarkers in oncology are introduced, which served as the foundation for the modelling
strategies chosen in this work. The first subsection discusses methods from genome-wide association studies
(GWAS) and differential gene expression (DGE), which are both traditional examples of feature-wise linear mod-
elling. Next, methods for drug efficacy prediction will be shown, for which a wide range of predictive modelling
strategies using machine learning have been proposed before. Finally, previously proposed methods for subgroup
analysis in clinical data are discussed, for which a comparably wide range of statistical and machine learning
methods have been previously proposed.

1.6.1 Methods for (epi)genome-wide association studies and differential gene expression

For the systematic discovery of predictive biomarkers in cancer cell lines, associative pharmacogenomic studies
using the linear models in equation 1.24 have primarily focused on somatic mutations [225, 263]. A common
approach is to call likely somatic variants and copy number alterations from NGS data [132, 209] as a filtering step
before the downstream analysis because of their causal component in the cancer disease aetiology. These variant
calls are also used for the mutational background of cancer cell lines in Section 2.2. It is reported that consensus
single-nucleotide variant (SNV) calls among different variant-calling software tools can achieve a sensitivity and
precision of approximately 95%, respectively [43]. While the technical aspects of calling these variants are out-of-
scope for this work4, it is noteworthy that typically tumours contain a few hundred coding SNVs [265].

In contrast, GWAS is a widely used methodology for identifying genetic variants associated with complex
traits across the whole genome in an unbiased manner. It assesses many genetic variants across the genome that
are tested for their association with the trait typically by using t-tests, analysis of variance (ANOVA) or linear
models for each single nucleotide polymorphism (SNP) such as equation 1.24. The resulting summary statistics
per SNP are then corrected for multiple hypothesis testing with methods introduced in Section 1.3.3. Typically the
significant associated SNPs with high effect sizes5 are the selected biomarkers as candidate quantitative trait loci
(QTL) for further validation and replication of the found effects. Thereby, statistical fine-mapping of the set of
correlated SNPs due to linkage disequilibrium can help detect the causal variant [266]. Popular software tools for
these tasks include PLINK [267] and GEMMA [268] , and best practices and recommendations have been laid out
[269].

For example, a GWAS to investigate the role of germline genetic variants in cancer drug responses has re-
vealed that inherited variants can undeniably contribute to drug susceptibility in cancer cell lines [270]. For this,

4Calling somatic variants is a task for which different tools and best practices emerged over the last decade [264].
5The effect size represents the magnitude of the investigated effect and can be measured in different ways depending on the use case. Mean

differences, fold changes, Cohen’s d, correlation coefficients, odds ratios, hazard ratios and other model coefficients are valid choices depending
on the type of trait and study.
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the employed linear mixed model adjusted for fixed effects in the form of tissue type, and the inherited population
structure was accounted for as a random effect. Alternatively, adjusting for principal components can also correct
for stratification in GWAS [271]. An accumulation of evidence across multi-modal data can further reveal biolog-
ical mechanisms. For example, expression quantitative trait loci (eQTL) are SNPs associated with the expression
of proximal or distal genes [272]. Accordingly, the aforementioned study suggested that NQO1 expression deter-
mines responses to the HSP90 inhibitor tanespimycin, which is modulated by the germline QTL and affects its
activity in cancer cell lines [270].

For associative assessments of phenotypic traits regarding gene expression across all protein-coding genes,
DGE analysis is used to identify gene transcripts that are differentially expressed in multiple sets of samples with
different conditions, e.g. case and control samples or different drug treatments. In DGE analysis, after prepro-
cessing the gene expression data (removing technical variation and normalisation depending on the sequencing
technology and methodology) and quality assessment, similar (generalised) linear models are used, which are
optimised and incorporated in R packages, such as limma [273] or DESeq2 [274]. Similar methods are also imple-
mented in limma for DNA methylation to detect differentially methylated probes (DMP) and differentially methy-
lated regions (DMR)6. Software packages such as minfi [276] for DNA methylation array data and methylKit [277]
for RRBS data facilitate the processing steps and calling of DMPs. Since DNA methylation is a highly dynamic
process, instead of focusing on single sites, calling an extended region of CpG sites with differential methylation
is favourable. Calling these DMRs can be performed with software such as Bumphunter [278], DMRcate [279],
Probe Lasso [280] and comb-p [281], which have been previously benchmarked against each other [282]. As
discussed before, DNA methylation in regulatory elements can regulate the expression levels of transcriptional
targets. These types of regulation can be subsequently identified by workflows such as the ELMER (Enhancer
Linking by Methylation/Expression Relationships) R package [283, 284]. Rather few efforts have been directed
towards revealing epigenetic mechanisms for determining drug responses, even though it is reported to contribute
to drug susceptibility in HTSs in a tissue-specific setting [132]. Therefore, a differential methylation analysis of
drug responses coupled with an integrative study of genomic and transcriptomic data across GDSC, CCLE and
TCGA datasets presented in Section 2.1 could reveal epigenetic drug response mechanisms to advance the field of
pharmacoepigenomics.

1.6.2 Methods for drug efficacy prediction

Models for drug response prediction are usually trained with data obtained from HTS experiments in cell culture
to model the contrast function z(Xd ,Xt , t)7 and test its predictions in independent screening experiments. The first
systematic benchmarking study for this task was conducted by the NCI DREAM challenge. It included 35 breast
cancer cell lines treated across 28 drugs to train the models, which could be evaluated on 18 cell lines [285]. This
challenge delivered several takeaways. As part of the challenge, the identity of the compounds was not known,
which discouraged the utilisation of drug features Xt , such as drug targets and chemical features. At the same
time, the state of a cancer cell line was given by disease features Xd from diverse molecular profiling technologies.
Since the number of features significantly outweighed the sample size, the top-performing methods reduced the
number of model parameters by employing kernel regression methods to measure the similarity between cell lines
for each data modality [285]. In addition, the top-performing methods preferably used nonlinear modelling and
exploited biological priors from knowledge databases such as biological pathways [285]. This effort spawned a
multitude of drug response prediction models trained with the datasets introduced in Section 1.5.2 and utilising
diverse methodologies, which have been comprehensively reviewed and categorised in recent years [241, 286].
These diverse models included regression with and without kernels, Bayesian inference, matrix factorisation or
deep learning [286].

Data modalities sometimes contain redundant information, which makes it challenging to efficiently integrate

6Sometimes this type of study is also called epigenome-wide association study (EWAS), the GWAS analogue for epigenetic datasets [275].
7Drug response prediction is often conducted by predicting summary metrics such as IC50 or AUC, which eliminates the prognostic com-

ponent h in equation 1.22. However, in theory, HTS experiments could also be used to predict absolute viabilities that take h as prognostic term
into account.
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them. For example, a regression model in COREAD can predict the RAS mutational status from expression profiles
[287]. Thus, efficiently integrating different data modalities is a central effort to increase model performances. A
common approach is to aggregate all available features from a dataset (early integration); however, it was shown
to be a better approach to build one model per modality and aggregate each predictor (late integration) [288].
However, it remains in question if early integration has not yet been possible because of its inability to regularise
to the model space appropriately.

Generally, gene expression is often reported to be the most informative modality [132, 285, 286, 288]. How-
ever, this depends on the tissue and compound. For example, Iorio et al. (2016) found that genetic alterations are
generally more predictive than gene expression in the tissue-specific context [132]. Moreover, Aben et al. (2016)
found that this also depends on the compound. Namely, somatic mutations predicted sensitivity to MEK inhibitors,
but the response to DNA damaging agents was mainly driven by gene expression [289].

Since the functional relationships of drug response in cell lines are likely nonlinear and complicated, today, the
focus of development lies on deep learning algorithms [290], which have shown the ability to outperform traditional
methods [291]. However, these advances have been hampered by the need for interpretability, causal reasoning and
limited capability to propose predictive biomarkers with clinical utility [290]. As a result, the most actionable drug
response prediction models focus increasingly on the translatability of their predictions to clinical applications or
the interpretability of drug response mechanisms [292]. For the former, the first efforts have used linear models
for imputing drug response for clinical samples and applied univariate statistical tests for assessing the individual
biomarkers [293, 294]. Similarly, few-shot learning is applied to pretrained models in a few samples of the testing
cohort to improve generalisation for the remaining samples [295]. For the latter, model-agnostic approaches have
used feature importance scores, including regression coefficients [289] or other feature attribution techniques [163].
However, while these methods allow arbitrary baselearners, they do not directly propose plausible mechanisms and
rely on downstream analyses of the extracted gene sets. Another effort has been directed at engineering ‘visible
neural networks’ that reflect molecular mechanisms propagating from somatic mutations [164], but this method
does not yet consider non-mutational mechanisms. Altogether, there is no all-purpose solution for drug response
prediction for biomarker discovery yet, and in many cases, linear regression models in conjunction with rigorous
validation suffice to yield promising predictive biomarkers. Thus, this work includes regression models with
appropriate regularisation that are used in conjunction with feature ablation to benchmark the contribution of the
EMT score to drug responses beyond the mutational background in HTS experiments as presented in Section 2.2.

1.6.3 Methods for subgroup analysis

Exploratory subgroup analysis for predictive biomarker discovery is typically conducted in clinical datasets. A
range of methods have been proposed and discussed previously [166, 183, 296]. Since subgroup analysis attempts
to estimate the predictive components of the outcome function f (X, t) in equation 1.27, its goal shares substantial
similarity to drug response prediction and thus shares some of the same methodologies.

First, the methodology for Section 2.3 is presented. A binary treatment indicator t = t ∈ {0,1} will be con-
sidered, referring to two treatment arms and a set of disease candidate biomarkers in X. Then, following equation
1.27, the classical approach for subgroup analysis is chosen. It refers to the fitting of individual univariate re-
gression models to predict clinical outcomes with treatment interactions for each x1, . . . ,xp representing somatic
mutations, which have been the primary focus of clinical applications because of their causal role in cancer. Since
the baseline features X are binary, the final predictive subgroup A(X) is then directly defined over the contrasts.
This approach does not account for complex interactions between features in X, and thus is prone to model mis-
specification. However, if predefined subtypes provide a first level of stratification which is of central interest or
part of clinical standard practice, this approach can help to evaluate the predictive potential of a second layer of
stratification.

Furthermore, many somatic variants are rare with relatively low mutational frequency, whereas only a few
recurring SNVs have high mutational frequencies [43]. Since mutual exclusivity often occurs in cancer driver
mutations due to selection pressure, it can help to group mutually exclusive somatic mutations to ‘gene modules’.
This introduces interactions between features X and can (i) increase the statistical power to detect low-frequency
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pharmacogenomic variants and (ii) improve the interpretability when defining gene modules based on biological
priors. For calling mutually exclusive features in X, first efforts have used pairwise hypergeometric tests [297]
or other analytic significance tests [298]. These purely statistical approaches can be complemented by data from
protein-protein interaction networks introduced in Section 1.5.3, which impose a prior that reduces the search
space to mutated genes in the same biological process, as implemented in the Mutual Exclusivity Modules in
cancer (MEMo) [298] or Mutex algorithm [261]. The latter uses an iterative greedy one-sided hypergeometric test
to gradually evaluate putative gene modules. It is reported to trade recall for precision found by a benchmarking
study of the competing CoMEt method [299], which is a desirable property for the purpose of grouping putative
biomarker candidates prior to downstream statistical modelling and therefore was used in Section 2.3.

This chosen methodology is compared with alternative methods in Section 2.3. For example, the regression
framework in equation 1.27 can be extended to regularised regression models that globally estimate the outcome
function f (X, t) across treatment arms. When using this linear model, predictive and prognostic terms are not dis-
tinguished in the penalty term. Since predictive contributions are usually weaker, the FindIt method [300] employs
separate lasso penalties in their support vector machine classifier for predictive and prognostic components, from
which predictive components are extracted from the regression coefficients. As an alternative to examining regres-
sion coefficients, the Virtual Twin method [190] fits a global outcome model using random forests and computes
the counterfactual outcomes for each subject as a first step. In the second step, it fits a separate regression tree on
the hypothetical counterfactual treatment effect difference to extract predictive biomarkers.

Instead of estimating the outcome function f (X, t), one can resort to directly estimating treatment contrasts
z(X, t). For this task, tree-based methods have been popular because of their inherent interpretability. Instead of
using the observed outcome in the splitting criterion for the growing regression trees, the criterium includes treat-
ment interactions for each possible split, so-called interaction trees [301, 302]. This methodology stratifies subjects
recursively into their leaf nodes with similar treatment effects, thus providing a piecewise constant treatment effect
estimation. This methodology has been incorporated into a range of methods. For example, the GUIDE method
[303] and model-based partitioning (MOB) [304] reduce selection bias of selecting features with many possi-
ble splits. The SIDES method [305] includes a splitting criterion that selects the split according to the maximal
differential effect between candidate subgroups.

An alternative formulation of the problem is the search for optimal treatment regimens to arrive at an optimal
treatment policy d(X), which maps each subject to an available treatment regimen. Maximising expected values of
potential outcomes under this policy Ỹ (d(X)) yields an optimal policy [166, 306], i.e. an individualised treatment
rule for optimal treatment selection. This problem reduces to a weighted classification problem with the treatment
assignment as predicted variable weighted by the outcome (‘outcome weighting’) [307].

More recently, machine learning methods for estimating causal effects introduced in Section 1.4.5 started to
be used for subgroup analysis. Naturally, these methods provide a subject-level estimate of the treatment effects
z(X) using causal forests [200], double machine learning [198] or metalearners [182]. In contrast to the traditional
methods described above, these methods are not specifically designed to identify interpretable subgroups and
biomarkers and often do not support censored outcomes. For example, a T-learner using treatment-balanced deep
neural networks as baselearner with qualitative post hoc assessments was used to identify potential biomarkers
[308]. Indeed, metalearners and recent advances from double machine learning for causal effect estimation are
becoming as accessible as traditional machine learning methods due to the range of software projects that actively
support their implementations, such as DoWhy [309] or econML [310]. These methods are primarily used for
clinical trials or observational data. Specifically, causal forests were used in Section 2.3. Additionally, this work
assesses the utility of double machine learning for in vitro HTS experiments in Section 2.2. For this, the EMT state
of cancer cell lines is considered as a continuous ‘treatment feature’ t. Then, the presented methods are used to
give causal estimates of the EMT effect on drug responses (outcome Y ) in the presence of confounders in the form
of a mutational background X.

Beyond the introduced ideas, hybrid methods are possible. For example, the PRISM method [311] first reduces
the subgroup search space through regularised regression that filters important features for predicting the outcome
Y . Then, it estimates subject-level treatment effects using a T-learner with random forests as baselearner, and uses
the individualised effects to grow trees in which the tree leaves correspond to the proposed subgroups with their
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estimated treatment effects in RCTs.
The performance of each method is highly dependent on the studied dataset, the functional forms of the treat-

ment contrasts and the intended use case [166, 183, 296]. By interpreting produced trees or regression coefficients,
these methods can be used to extract putative predictive biomarkers. Most of the presented methods have software
implementation that can be used for censored outcomes, which are applied in Section 2.3 to benchmark their ability
to discover predictive biomarkers.

1.7 Regulatory considerations

From all compounds in oncology that enter phase 1 clinical trials, only about 2.1% will receive the final approval
for clinical use by regulatory agencies [312]. Strikingly, compounds that enter clinical development with an asso-
ciated biomarker for patient stratification show improved approval rates at around 10.7% [312]. However, these
rates assume that a biomarker is known, and unfortunately, compounds for which novel biomarkers are investi-
gated show similarly low approval rates as compounds without biomarkers [312]. Thus, the European Medicines
Agency (EMA) specifically highlighted their interest in developing biomarkers for precision medicine using omics
technologies with early engagement with biomarker developers [313].

The discovery of predictive biomarkers in the preclinical setting using drug response prediction benefits from
rich datasets, but its utility is ultimately limited by their ability to transfer conclusions to the clinical setting [7]. For
example, in the literature, studies assessing the clinical evaluation of a candidate biomarker found from the drug
response prediction models in Section 1.6.2 can often only compare biomarker-positive and biomarker-negative
subpopulations in clinical observational datasets [293]. While this can yield additional evidence of their clinical
utility, due to the lack of their randomised controlled designs, this effect could be attributed to prognostic effects,
confounders or other biases.

The discovery of predictive biomarkers and treatment effects directly in clinical studies can be computationally
ascertained with multiplicity adjustments and resampling methods presented in Section 2.3. Nonetheless, the
approval of a proposed biomarker for treatment efficacy requires additional prospective studies for the assessment
of the sensitivity, specificity, reproducibility, and clinical utility of the associated companion diagnostic tests [11].
Furthermore, the exploratory and retrospective nature of biomarker discovery methods and their post hoc evaluation
in clinical studies raise statistical questions regarding their regulatory assessment, even if RCTs and validated
molecular diagnostic tests are available.

Thereby, the distinction between confirmatory and exploratory testing strategies during the assessment of sub-
groups is crucial. Accordingly, subgroup analysis in confirmatory clinical studies should be conducted with the
proposed stratification strategies according to the EMA guidelines for subgroup analysis [174], which promote
assessments of treatment effects in well-defined subgroups for trial planning, analyses and inferences. Confirm-
ing proposed decision-making for the former scenario requires pre-planned subgroups and rigorous multiplicity
adjustments to preserve the overall false positive rate [314]. In the exploratory scenario and an overall successful
clinical trial, subgroup analysis can be conducted to test the consistency or heterogeneity of the treatment effects
[174, 177]. In the special case of a formally failed clinical trial, additional validation for any post hoc subgroup
analysis is required since after the primary null hypothesis cannot be rejected, in principle, no further confirmatory
conclusions are reliable [315]. After all, “the best test of the validity of subgroup analyses is not significance but
replication” (Peter M. Rothwell, 2005, p. 182) [188].

For example, cetuximab was initially approved in metastatic COREAD across all patients that express EGFR
[316]. However, after evidence from several retrospective analyses [317], a prospective study found interactions
with KRAS mutations [317], which resulted in a label change by the FDA upon this accumulating evidence and
the biological plausibility that KRAS mutant tumours lack cetuximab benefits [318]. Moreover, a meta-analysis of
tumour sidedness later revealed that right-sided metastatic COREAD patients do not respond well to cetuximab
either [319]. Subsequently, this was adopted in the European Society for Medical Oncology (ESMO) treatment
guidelines, which currently state the effectiveness of cetuximab for left-sided tumours, whereas suggesting beva-
cizumab for right-sided tumours due to the lack of cetuximab benefit [320].
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1.8 Rethinking conventional drug discovery

The conventional drug development pipeline starts with the identification of a cancer target and hit compounds (hit
series) with suitable characteristics to modulate target activity in vitro [321]. During the following steps, the hits
are further optimised to arrive at a narrower set of compounds, for which in vivo assays will be carried out in order
to select a candidate compound to be deployed in the clinical development phase [321]. Drug development may
benefit from the assessment of predictive biomarkers across development stages. Pharmacogenomic approaches
can be employed in both preclinical and clinical development stages, and this knowledge can be transferred and
fed back across stages to drive the simultaneous development of a drug targeting specific responder patient sub-
populations predicted to fall into this responder subgroup in order to maximise treatment efficacy. For example,
the development of BRAF inhibitors for BRAFV600E mutations benefited from the knowledge about the MAPK
signalling pathway. Accordingly, the measurement of downstream protein abundance of MEK and ERK can be
used for optimisation [28]. However, this knowledge is still incomplete. For example, observed toxicity in clinical
studies promoted investigations that revealed interactions between BRAF and oncogenic RAS in melanoma, which
demonstrated that BRAF inhibition can reactivate the MAPK pathway in RAS mutant melanomas [322, 323]. Fur-
thermore, targeting BRAFV600E mutations via vemurafenib in metastatic COREAD does not show any success,
potentially due to the quick restoration of MAPK signalling via EGFR activation [324]. Thus, increased efforts in
finding and understanding pharmacogenomic biomarkers are essential for further drug development efforts.

In vitro studies in cancer have pioneered precision medicine with the discovery of pharmacogenomic interac-
tions, cancer vulnerabilities and appropriate target populations for clinical translation. Complementary, precision
medicine in the clinical setting has been driven by subgroup analysis in order to prompt follow-up studies with
in vitro assays and clinical trials for refined patient stratification. Coupled with the recent methodological devel-
opments, the growing amount of functional preclinical and clinical biomedical data accompanied by molecular
profiling has allowed the advanced exploration of predictive biomarkers [7]. Thus, this work focuses on both the
analysis of in vitro drug HTS experiments and clinical trials in oncology. Specifically, emerging cancer hallmarks
derived from tumour transcriptomics or epigenomics profiling in the context of somatic alterations are employed
to yield reproducible and transferable predictive biomarkers in order to facilitate the feedback between preclinical
and clinical studies in oncology.

1.9 Aims of the thesis

Given the introduced scope of this work, the aims and objectives of the three sections in Chapter 2 are formulated
here. They build upon the outlined methodologies for the discovery of predictive biomarkers in the data sources
from Section 1.5. The introduction section of each of the three included articles or preprints in the sections of
Chapter 2 assesses different datasets and aspects and thus contains a more encapsulated introduction and discussion
to each objective, whereas here these aspects are summarised in more encompassing aims.

First, Section 2.1 focuses on DNA methylation as drug response biomarkers. Thereby, the designed analy-
sis provides full resolution of CpG sites and integration of complementary molecular mechanisms and clinical
datasets, which extends on previous efforts that did not pursue this holistic angle. The formulated hypothesis states
that extended differentially methylated regions may be associated with proximal transcriptional target expression
and somatic mutations in cancer cell lines and human tumours that may jointly determine drug responses. Since
DNA methylation is difficult to interpret, a layer-wise data integration design with low model complexities main-
tains high interpretability and transferability, and in addition allows to retain intermediate results within the filtered
hypotheses. This design yields sets of drugs with their target and associated putative biomarker, which can be
contextualised by shortest paths on protein-protein interaction networks.

Secondly, in Section 2.2, the focus narrows on EMT since it is an attractive cancer target due to its dynamic
and reversible nature. Since this study focuses on this isolated process, the focus of this study is the discovery and
estimation of the quantitative effect of EMT on drug responses. Additionally, its strong signal in transcriptomic data
in many cancer types suggests its association with genetic alteration and upstream TFs. Therefore, the employed
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1.9 Aims of the thesis

hypothesis for this study states that EMT may be causally involved in determining drug responses in cancer cell
lines. To test this hypothesis, machine learning and causal inference methods are employed for the estimation of
the predictive power and causal effects of EMT, while subsequent enrichment tests for TFs and biological processes
attempt its mechanistic interpretation.

These two studies aimed at discovering and evaluating predictive biomarkers in preclinical drug HTS datasets.
Instead of discovering drug response biomarkers in cancer cell lines, Section 2.3 employs the biomarker discovery
efforts directly in clinical trials. Thus, for our analysed clinical trial in metastatic COREAD, it is hypothesised that
the contribution of CMS as transcriptional tumour subtypes and low-frequency somatic mutations may enrich the
current treatment guidelines, which currently propose decisions based on RAS mutations and tumour sidedness.
Thereby, exploiting mutually exclusive somatic mutations and subtype-specific modelling may refine the target
populations of cetuximab or bevacizumab. Finally, applying such a general framework to other independent clinical
trials and benchmarking other methods for subgroup analysis evaluates the generalisability of this framework.

In summary, this thesis aims at advancing the discovery, evaluation and contextualisation of predictive biomark-
ers from emerging cancer hallmarks and associated non-mutational cancer mechanisms in the context of their ge-
netic component to determine drug responses in preclinical and clinical studies, as well as the development of
data-driven frameworks to achieve this.
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Chapter 2

Results

This chapter contains the three research articles that constitute the main contribution of this work. Each article
contains its specialised introduction, results and discussion. The articles in Sections 2.1 and 2.3 were peer-reviewed
and published open-access in scientific journals. The article in Section 2.2 is a publicly available preprint prior to
peer review.
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2 Results

2.1 The pharmacoepigenomic landscape of cancer cell lines reveals the
epigenetic component of drug sensitivity in cancer, Communications
Biology (2023)

This article was peer-reviewed and published open-access in Communications Biology [1] and is reproduced with
permission from Springer Nature. It is publicly available at https://doi.org/10.1038/s42003-023-05198-y.
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Aberrant DNA methylation accompanies genetic alterations during oncogenesis and tumour

homeostasis and contributes to the transcriptional deregulation of key signalling pathways in

cancer. Despite increasing efforts in DNA methylation profiling of cancer patients, there is

still a lack of epigenetic biomarkers to predict treatment efficacy. To address this, we analyse

721 cancer cell lines across 22 cancer types treated with 453 anti-cancer compounds. We

systematically detect the predictive component of DNA methylation in the context of tran-

scriptional and mutational patterns, i.e., in total 19 DNA methylation biomarkers across 17

drugs and five cancer types. DNA methylation constitutes drug sensitivity biomarkers by

mediating the expression of proximal genes, thereby enhancing biological signals across

multi-omics data modalities. Our method reproduces anticipated associations, and in addi-

tion, we find that the NEK9 promoter hypermethylation may confer sensitivity to the NEDD8-

activating enzyme (NAE) inhibitor pevonedistat in melanoma through downregulation of

NEK9. In summary, we envision that epigenomics will refine existing patient stratification,

thus empowering the next generation of precision oncology.
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Precision oncology adverts to stratifying patients based on
tumour entities and their molecular profiles to enhance
drug efficacy and reduce toxicity1. The success rate of

clinical trials without a molecular biomarker is estimated to be
1.6% and is increased to 10.7% when using an appropriate patient
stratification2. Accordingly, methods that identify biomarkers and
thereby facilitate clinical translation are crucial for the rapid
development of novel cancer treatments.

In human tumours, aberrant DNA methylation has been
shown to deregulate oncogenic pathways3 and to contribute to
the acquisition of drug resistance4,5. For example, DNA
methylation in promoter, enhancer and CpG island regions has
revealed epigenetic mechanisms involved in the transcriptional
activity of several key cancer genes3,6. In particular, the
downregulation of tumour suppressor genes by hypermethyla-
tion of CpG sites in gene promoters is a hallmark of many
cancer types7. In contrast, the hypermethylation of CpG sites in
gene bodies is often reported to be positively correlated with
gene expression8.

Molecularly characterised cancer cell lines are a useful and
scalable model system for drug discovery9. They have
empowered large high-throughput drug screens (HTS)10–15,
which include cell line panels of >1000 cell lines and are aimed
to characterise the biomarker landscape of cancer16. For
example, skin cutaneous melanoma cell lines (SKCM) har-
bouring BRAF V600E mutations are vulnerable to BRAF kinase
inhibitors, and furthermore, this in vitro observation gen-
eralises to in vivo models and melanoma patients17. Genetic
alterations are the causally related disease aetiology of cancer.
Thus, most molecular biomarker studies have focused on
somatic mutations and copy number variations. However,
despite the growing utility of epigenetic biomarkers in clinics
and an increasing number of commercially available diagnostic
tests involving DNA methylation18, prognostic and predictive
epigenetic biomarkers are still sparse19.

Few efforts have been dedicated to identifying DNA
methylation biomarkers of drug response. For example, DNA
methylation has been used to identify the CpG island methy-
lator phenotype (CIMP)20. It has previously been suggested as a
predictive biomarker21, however, its definition is still
inconsistent22, challenging to mechanistically interpret and
limited to a handful of cancer types20,23,24. Furthermore, pre-
dictive DNA methylation biomarkers in HTS are commonly
assessed by summarising CpG sites in promoters and CpG
islands11,21. For these summarised regions, machine learning
models have been used to predict drug response25,26 of
preselected genes involved in DNA methylation or
demethylation26. In summary, these methods either do not
leverage the full epigenome on the CpG site resolution, build
evidence in multi-omics data modalities across different data-
sets, or lack mechanistic interpretations.

In order to empower epigenetic response biomarkers, our
objectives were: (1) Identify DNA methylation regions associated
with drug response in HTS; (2) Integrate genetic, epigenetic and
transcriptomic data modalities of cancer cell lines for increasing
evidence and interpretability; (3) Verify these epigenetic regula-
tions of gene expression in human primary tumours and thus
enhancing clinical translatability; (4) Finally, map the epigeneti-
cally regulated genes onto protein-protein signalling networks,
and link them to their respective drug targets, thereby obtaining
interpretable, actionable and translatable mechanisms. Our sys-
tematic analysis of the pharmacoepigenomic landscape in HTS,
accompanied by thorough filtering for layer-wise evidence,
interpretability and translatability, may pave the way for epige-
netic response biomarkers in cancer.

Results
For the discovery of DNA methylation biomarkers of drug
response, we analysed methylation patterns of 721 cancer cell
lines from 22 cancer types treated with 453 anti-cancer com-
pounds. The data was derived from the Genomics of Drug Sen-
sitivity in Cancer (GDSC; Fig. 1a) project11, which has since
expanded its set of screened compounds compared to the original
publication27,28. Drug responses of cancer cell lines were char-
acterised by their area under the drug response curve (AUC;
Fig. 1b), for which low AUC values convey high sensitivity to the
respective compound.

We first systematically searched for methylation regions with
differential drug response in cancer cell lines, i.e., drug differentially
methylated regions (dDMRs) by adaptively grouping spatially cor-
related CpG sites contained in the Infinium HumanMethylation450
BeadChip array (Fig. 1c; Methods). Secondly, we filtered for
dDMRs which may mediate proximal gene expression (Fig. 1d;
Methods), which thereby increases evidence of functional epigenetic
events impacting drug response (Fig. 1e). Subsequently, we filtered
for concordantly observed epigenetic mechanisms in human pri-
mary tumour samples from The Cancer Genome Atlas (TCGA;
Fig. 1f; Methods), which yielded a prioritisation list of tumour-
generalisable dDMRs, (tgdDMRs). Lastly, we correlated tgdDMRs
with somatic mutations in cancer genes (Fig. 1g) and used shortest
path algorithms applied to protein-protein interaction networks
(Fig. 1g, h; Methods) to derive relationships between drug targets
and proximal tgdDMR genes encoding respective proteins to sup-
port tgdDMRs further. In total, we found 19 tgdDMRs, i.e., pre-
dictive epigenetic biomarkers of drug response.

Identification of epigenetic drug response biomarkers from
high-throughput drug screens. Analysing the DNA methylation
and gene expression profiles of cancer cell lines stemming from
22 cancer types highlighted that the variance within cancer types
is lower compared to the variance between cancer types (Fig. 2a
and Supplementary Fig. 1a). Hence, we stratified cell lines into
cancer types for subsequent modelling. For each cancer type and
screened compound, we employed linear models and called drug
differentially methylated regions (dDMRs; Methods), i.e., regions
for which the methylation in CpG sites associates with drug
response quantified by AUC. In total, we identified 802 dDMRs
for 186 drugs in 22 cancer types (dDMR calling, adj. p < 10−6;
Fig. 2b and Supplementary Fig. 1b). We observed a linear rela-
tionship between the amount of found dDMRs and the sample
size of the investigated cancer type (Pearson’s r= 0.81,
p= 5.1 × 10−6, correlation test; Supplementary Fig. 1c).

The distribution of significant drugs across cancer types was
heterogeneous, but we identified enrichments of drug classes
between cancer types (one-sided hypergeometric test, FDR < 0.05;
Supplementary Data 1): Drugs that target the ERK-MAPK
signalling pathway (trametinib, PD0325901, ulixertinib, selume-
tinib, VX-11e and CI-1040) were enriched in colorectal cancer
(COREAD, odds ratio= 6.3), drugs that target EGFR signalling
(afatinib, sapitinib, AZD3759, erlotinib, gefitinib and pelitinib)
were enriched in lung adenocarcinoma (LUAD, odds ratio=
15.0) and drugs that are involved in targeting mitosis (alisertib,
vinblastine, vinorelbine, GSK1070916, epothilone B, docetaxel,
ARRY-520, S-trityl-L-cysteine) were enriched in small-cell lung
cancer (SCLC, odds ratio= 4.9).

The distribution of CpG site counts per dDMR had a median
of seven sites per dDMR. Furthermore, 132/802 dDMRs
comprised >10 CpG sites, whilst 147 dDMRs contained <5 sites
(Supplementary Fig. 1d). dDMRs were enriched for DNAase I
hypersensitive sites (DHS, p < 10−16, odds ratio= 3.32, one-sided

ARTICLE COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-023-05198-y

2 COMMUNICATIONS BIOLOGY |           (2023) 6:825 | https://doi.org/10.1038/s42003-023-05198-y | www.nature.com/commsbio

2 Results

40



Fisher’s test; Fig. 2c, d) and sites in CpG islands (p < 10−16, odds
ratio= 3.13, one-sided Fisher’s test; Fig. 2c, d). Furthermore, we
investigated dDMRs in proximity of cancer genes based on
annotations of the Network of Cancer Genes (NCG) project29.
DNA Methylation sites on the 450k microarrays have higher
seeding density in the vicinity of cancer genes, i.e., 645/674 (96%)
of cancer genes contained >10 profiled CpG sites compared to
16,213/20,557 (79%) of non-cancer genes. To alleviate this bias,
we only tested genes with at least ten proximal CpG sites, which
resulted in 16,858 background genes and 645/16,858 (3.8%)
cancer genes. We observed 503 genes in proximity to identified
dDMRs, of which 27 were cancer genes (5.4%; Supplementary
Fig. 1e), thus cancer genes were significantly enriched (p= 0.049,

odds ratio= 1.44, one-sided Fisher’s test). The most prevalent
cancer genes were APC and SKI found across two cancer types.
For reference, the most prevalent non-cancer genes were PTPRN2
and DKK1, which were found in five and four cancer types,
respectively (Supplementary Data 2).

Among the cancer genes associated with dDMRs, we found
that MGMT dDMR methylation in low-grade glioma was
associated with response to JQ1 (BET inhibitor, dDMR calling,
adj. p < 10−6; Supplementary Fig. 1f). The epigenetic silencing of
MGMT is frequently debated as a clinical biomarker30 and
previous work revealed that JQ1 disturbs DNA damage responses
by attenuating MGMT expression in glioblastoma cells31. While
the different treatment responses are often attributed to somatic
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Fig. 1 Analysis workflow for the identification of epigenetic biomarkers of drug response. a The Genomics of Drug Sensitivity in Cancer (GDSC) project
contains 721 cancer cell lines from 22 cancer types, which were epigenetically characterised and screened across 453 compounds. b The dose-response
curves of a responder and non-responder melanoma cell line treated with pevonedistat. c We identified 802 drug differentially methylated regions
(dDMRs). d The set of dDMRs is filtered for regulatory mechanisms, i.e., correlated gene expression of proximal genes, resulting in 377 functionally
interpretable dDMRs. e For example, the dDMR in the NEK9 promoter is associated with the expression of NEK9 and is additionally correlated with drug
response to pevonedistat. The error bars corresponding to 95% confidence intervals, the raw p-value (p) for the respective CpG site and the Pearson
correlation coefficient (r) are displayed. f In total, the methylation of 58 epigenetic biomarkers of drug response were observed to be consistently
correlated with the expression of their proximal gene in TCGA primary tumours. g The set of tgdDMRs was investigated for correlated somatic mutations
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mutations in cancer genes, this suggests that DNA methylation
can function as a complementary mechanism.

A negative effect size of a dDMR indicates that drug-sensitive
cell lines are hypermethylated. Here, this is exemplified by the
methylation status of SHC1, which was found to be associated
with the EGFR, ERBB2 and ERBB4 inhibitor CI-1003 in LUAD
(Fig. 2e). We observed that LUAD cell lines with a hypermethy-
lated promoter of SHC1 showed lower expression levels and were
more sensitive to CI-1003 (Fig. 2e). Indeed, the adaptor protein
SHC1 is involved in promoting the downstream signalling of ERK
through EGFR32. No correlations between SHC1 methylation and
alterations in the ERK signalling pathway such as EGFR, BRAF,
NRAS or KRAS mutations or amplifications were found. Clinical
trials have reported benefits for non-small cell lung cancer
patients with EGFR mutant tumours treated with the pan-ERBB
inhibitor dacomitinib33,34. Thus, SHC1 silencing through DNA
hypermethylation may be a sufficient but not necessary condition
for sensitivity to ERBB inhibitors.

Overall, CpG sites in gene promoters were particularly
enriched in dDMRs with a negative effect size (p < 10−15, one-
sided Fisher’s test; Fig. 2c). For dDMRs with a negative effect size,
methylation sites were usually hypomethylated across cancer
cell lines, with a few treatment-sensitive cell lines that were
hypermethylated (Supplementary Fig. 2).

In contrast to above, dDMRs with positive effect size contained
methylated CpG sites that were mostly distributed across diverse
genomic locations (Fig. 2d) and their hypomethylation was
associated with drug sensitivity (Supplementary Fig. 2). Further-
more, we found enrichments of dDMRs with positive effect size
within 200 bases upstream of the transcriptional start site
(TSS200) for 11/22 cancer types (p < 0.001, one-sided Fisher’s
test; Fig. 2d). Exemplifying a dDMR with positive effect size, the
hypomethylation of the SLFN11 promoter was significantly
associated with sensitivity to SN-38 in LUAD (Fig. 2f). The
topoisomerase I inhibitor SN-38, the active metabolite of
irinotecan, inhibits DNA replication through binding to the
topoisomerase I-DNA complex and thus promotes DNA double-
strand breaks. SLFN11 is a putative DNA/RNA helicase that
sensitises cancer cells to DNA damaging agents by killing cells
with defective DNA repair35. Its expression has been discussed
extensively as a predictive biomarker for compounds targeting
the DNA damage response36,37. Here, we show that cells with
hypomethylated SLFN11 show high SLFN11 expression and
sensitivity to SN-38.

For validating dDMRs, we retrieved independent drug
response data from the Cancer Therapeutics Response Portal
(CTRP; Methods). We found that 236/802 dDMRs (29.4%) had
overlapping data on cancer cell lines and drugs between GDSC

Fig. 2 Heterogeneity of epigenetic patterns across cancer types results in a rich resource of dDMRs. a Cancer type specific pattern of DNA methylation
profiles of cancer cell lines in the GDSC. b Significant dDMRs across 22 cancer types and 186 drugs. The size of the data points indicates the amount of
CpG sites in the identified dDMR. Genomic regions are labelled by the gene name in the closest vicinity. The enrichment of functional genomic regions in
dDMRs is visualised in heatmaps for the scenario in which c hypermethylation confers drug sensitivity or d hypomethylation confers sensitivity. We tested
enrichments for: genomic regions in the form of DNAaseI hypersensitive sites (DHS), CpG sites within CpG islands, enhancer regions, regions within 200
and 1500 bases upstream of the transcriptional start site (TSS200 and TSS1500), the 5’ untranslated region (UTR5), the 1st exon, gene body and 3’
untranslated region (UTR3). e The association between SHC1 promoter hypermethylation and CI-1033 response in LUAD; and f the association between
SLFN11 gene hypomethylation and response to SN-38. The error bars corresponding to 95% confidence intervals, the raw p-value (p) for the respective CpG
site and the Pearson correlation coefficient (r) are displayed.
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and CTRP. Among these, 193/236 (81.8%) had consistent effect
size (Supplementary Fig. 3a), with an overall correlation of
Pearson’s r= 0.46 (p= 9.7 × 10−14, correlation test; Supplemen-
tary Fig. 3b). Furthermore, we validated our dDMRs with
independent methylation data, i.e., reduced representation
bisulfite sequencing for DNA methylation profiling (RRBS;
Methods) extracted from the Cancer Cell Line Encyclopaedia
(CCLE). This only reduced the overlapping data of dDMRs
slightly to 227/802 (28.3%), and 164/227 (72.2%) of these dDMRs
displayed consistent effect size (Supplementary Fig. 3a), with a
correlation of Pearson’s r= 0.43 (p= 1.2 × 10−11, correlation test;
Supplementary Fig. 3c), highlighting the ability of our method to
yield reproducible results for independent drug screenings and
DNA methylation experiments.

Epigenetic biomarkers interpreted through gene regulatory
mechanisms. Hypermethylation of promoter regions is an
established mechanism to reduce sufficient transcription factor
binding and regulate gene expression accordingly38. Thus, most
methylation biomarker discovery efforts focus on gene promoter
regions and neglect other regulatory mechanisms11,21,25,26. For
example, the deregulation of methylation patterns in gene bodies
was also reported to alter gene expression profiles8. In order to
address this, we generalised our working hypothesis and explored
the DNA methylation of any dDMR that may mediate gene
expression of proximal genes (Methods).

Upon systematic analysis with the Enhancer Linking by
Methylation/Expression Relationships (ELMER) method39, we
observed that 377/802 dDMRs (47.0%) showed at least one
significantly associated gene in the proximity of its genomic
region (emp. adj. p < 0.001; Methods). In total, 576 genes were
associated with these 377 dDMRs. For each gene associated with a
dDMR, we independently correlated its expression and drug
response with a linear model fit (Fig. 3a–d). In summary, we
observed four distinct mechanisms which may drive drug
sensitivity, i.e., hypermethylation with either downregulated gene
expression (Case 1, n= 216; Fig. 3a) or upregulated gene
expression (Case 2, n= 110; Fig. 3b), and hypomethylation with
either upregulated gene expression (Case 3, n= 162; Fig. 3c) or
downregulated gene expression (Case 4, n= 88; Fig. 3d). We
exemplified each case in cancer cell lines and their mechanistic
consistency in primary tumours (Fig. 3e–l).

For both Cases 1 and 2, hypermethylated dDMRs were
associated with drug sensitivity (negative effect size in Fig. 2b).
The majority of dDMRs belonged to Case 1, which was
distinguished by promoter regions (Fig. 3a). It resembles the
canonical mechanism in which hypermethylation of promoter
regions downregulates the expression of their associated proximal
gene and thereby confers drug sensitivity. This behaviour is
exemplified by the methylation of the SHC1 promoter and its
gene expression in LUAD cell lines (Fig. 3e). Additionally, we
verified the association of the epigenetic status and gene
expression in LUAD human tumour samples (Fig. 3f).

For Case 2, hypermethylation of dDMRs correlated with higher
expression of proximal genes (Fig. 3g, h). This is a less frequent
epigenetic regulation mechanism, however, it is consistent with
previous studies reporting both behaviours8,40–42. As an example,
the hypermethylation of the OPLAH dDMR was associated with
the upregulation of OPLAH expression in SKCM cancer cell lines
and HG-6-64-1 drug sensitivity (Fig. 3g). In addition, this
epigenetic regulation of OPLAH expression was also demon-
strated in primary tumour samples (Fig. 3h).

Cases 3 and 4 were characterised by hypomethylated dDMRs
that were associated with drug sensitivity (positive effect size in
Fig. 2b), which could also be distinct by negative or positive

correlations of dDMRs with gene expression for Case 3 and Case
4, respectively. For example, we found that the hypomethylation
of the SLFN11 dDMR in LUAD was associated with higher
SLFN11 expression (Fig. 3i), which was further verified in human
tumour samples (Fig. 3j). In contrast, the hypomethylation of
PITX2 dDMR was linked to teniposide drug sensitivity, however,
the hypermethylation of PITX2 dDMR was positively associated
with PITX2 expression in cancer cell lines and human tumour
samples (Fig. 3k, l).

In summary, drug sensitivity in cancer cell lines may be driven
by either hypermethylation (Cases 1 and 2) or hypomethylation
(Cases 3 and 4) of dDMRs and can either present negatively
correlated gene expression (Cases 1 and 3) or positively correlated
gene expression (Cases 2 and 4). Case 1 has been the focus of
most epigenetic biomarker studies, whilst we systematically
investigated all 4 cases (Supplementary Data 2) and therefore
can provide broader mechanistic insights.

Epigenetic and transcriptional mechanisms in primary
tumours increase evidence of drug response biomarkers. In the
section above, we highlighted four distinct epigenetic mechanisms
that may drive drug response, i.e., Case 1-4. Each of them was
exemplified in cancer cell lines (Fig. 3e, g, i, k), and consecutively,
further supported by concordant methylation and proximal gene
expression patterns in tumours (Fig. 3f, h, j, l). Here, we sys-
tematically assessed all 377 short-listed dDMRs from above, to
investigate concordant epigenetic regulation patterns in primary
tumours leveraging ELMER39 also in TCGA tumour samples43

(Methods). In total, we investigated a subset of 241/377 dDMRs
for which the associated cancer type data was available in TCGA.
We observed that 58/241 (24.1%) of dDMRs showed a significant
association with their proximal genes in tumours (ELMER, emp.
adj. p < 0.001; Methods). We called this selection of epigenetic
biomarkers tumour-generalisable dDMRs (tgdDMRs). For the
final selection, we found 19/58 tgdDMRs for which the protein
encoded by the associated gene was connected to the corre-
sponding drug targets in the protein-protein signalling network
OmniPath44 (Methods). These 19 tgdDMRs (Supplementary
Data 2) contained proposed biomarkers for 17 anti-cancer drugs
across five cancer types (Fig. 4a), i.e., LUAD n= 7 (Supplemen-
tary Fig. 4), SKCM n= 6 (Supplementary Fig. 5), breast cancer
(BRCA) n= 2 (Supplementary Fig. 6), head and neck cancer
(HNSC) n= 2 (Supplementary Fig. 6), and stomach adeno-
carcinoma (STAD) n= 2 (Supplementary Fig. 6).

We found that the majority of tgdDMRs (15/19) were in
promoter regions, which is concordant with previous computa-
tional strategies that focused solely on promoters to identify
epigenetic response biomarkers. However, the remaining 4
tgdDMRs, which constitute >20% of our identified lead
biomarkers, had distinctly different epigenetic regulation
mechanisms, i.e., were located in either the gene body or distal
regions (Fig. 4b). In addition, we found that all tgdDMRs had
negative correlations with a proximal gene, which correspond to
mechanism Case 1 or Case 3 (Fig. 3a, c). Furthermore, for 10/19
tgdDMRs the expression of proximal genes in cell lines itself was
independently associated with drug response in cancer cell lines
(p < 0.05, linear model fit; Methods), thus having a functional
interpretation across two molecular layers.

For additional evidence of tgdDMRs, we again leveraged the
CTRP and CCLE datasets as validation cohorts. For the tgdDMRs
that had overlapping drug response data, we found that 7/9
tgdDMRs showed consistent effect sizes in the CTRP screen, with
an increased correlation of Pearson’s r= 0.75 (p= 0.02, correla-
tion test; Fig. 4c) compared to unfiltered dDMRs in the previous
section. Additionally, 5/7 of the tgdDMRs overlapping with the
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CCLE RRBS methylation data showed consistent effect sizes with
an increased correlation of Pearson’s r= 0.85 (p= 0.01, correla-
tion test; Fig. 4c) compared to unfiltered dDMRs in the previous
section. This highlights that reproducibility across independent
drug screens and methylation datasets increased when focusing
on tgdDMRs.

Currently, the majority of biomarkers for patient stratification
are genetic alterations, thus, we investigated if genetic mutations
and copy number alterations may reflect the methylation of
tgdDMRs. We tested for associations between somatic mutations
and tgdDMRs using linear models (Methods). We only observed
weak correlations between somatic mutations and tgdDMRs
(FDR < 0.1; Supplementary Fig. 7a; Methods).

While most tgdDMRs are found in gene promoters or bodies,
we observed a distal region in a CpG island in the vicinity of the
HOXB2 gene that marked favourable drug responses for
treatment with dinaciclib (CDK inhibitor), if the HOXB2
tgdDMR was hypermethylated (dDMR calling, adj. p < 10−6;
Fig. 4d). Furthermore, the methylation status was correlated with
HOXB2 expression in cell lines (ELMER, emp. adj. p < 0.001;
Fig. 4e) and primary tumours (ELMER, emp. adj. p < 0.001;
Fig. 4f). Additionally, DNA repair enzyme encoding gene APEX1
essentiality obtained from CRISPR knockout screens was
significantly higher, if the tgdDMR was hypermethylated (FDR <
0.2; Supplementary Fig. 7d; Methods). HOX genes are a family of
transcription factors that are frequently associated with cancer45.
Their expression is reported to be regulated by DNA

methylation46, however, the mechanisms by which they affect
responses to dinaciclib remain elusive. Notably, we were able to
validate this association in the independent CTRP drug screen
(Pearson’s r=−0.59, p= 0.02, correlation test; Supplementary
Fig. 7b) and additionally observed consistent trends with an
alternative methylation profiling based on RRBS in the CCLE
(Pearson’s r=−0.48, p= 0.10, correlation test; Supplementary
Fig. 7c).

Next, we highlight further associations included in the
identified tgdDMRs. For instance, hypermethylation of the
tgdDMR in the NEK9 promoter conferred sensitivity to NAE
inhibition with pevonedistat in cell lines (dDMR calling, adj.
p < 10−6; Fig. 4g). In particular, we observed that tumours with
hypermethylated tgdDMR in the NEK9 promoter showed low
NEK9 expression in both cell lines (ELMER, emp. adj. p < 0.001;
Fig. 4h) and patient tumours (ELMER, emp. adj. p < 0.001;
Fig. 4i). NEK9 has been previously reported to participate in G1/S
phase transition and progression and to regulate the kinase
activity of CHK1 upon replication stress47. Examining the
neighbourhood of signalling networks, the inhibition of NAE
by pevonedistat leads to the inactivation of cullin-RING ligases48,
which target key proteins during the cell cycle progression such as
CDK2 and CDC25A (Fig. 1h)49. This is supported by the Library
of Integrated Network-Based Cellular Signatures (LINCS)
database, which revealed the transcriptional dysregulation of
CUL3, CDC25A, CCNB1 and PLK1 in SKCM cell lines upon
treatment with pevonedistat (FDR < 0.1; Supplementary Fig. 7e;
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sensitivity and either a negative or b positive correlation with gene expression. For Cases 3 and 4 hypomethylated dDMRs were associated with drug
sensitivity and either c negative or d positive correlation with gene expression. The x-axis shows the signed -log10(p-value) derived from a t-test of the
coefficient of a linear model fit explaining drug response by proximal gene expression (Methods). Case 1 is exemplified by e the hypermethylation of the
dDMR in the SHC1 promoter regulating the expression in LUAD cancer cell lines, f which was validated in human tumour samples. In contrast, for Case 2
g hypermethylation in the OPLAH promoter promoted its expression in SKCM cell lines, and h tumour samples. For Case 3, i the hypermethylation of the
SLFN11 gene promoter downregulated the expression of SFN11 in cancer cell lines, and j tumour samples. In Case 4, k positive correlations could be
observed in the PITX2 promoter and its expression in cell lines, and l tumour samples. The empirical adjusted p-value (p) for the respective CpG site and
the Pearson correlation coefficient (r) are displayed. The used human icons are from the AIGA symbol signs collection and are in the public domain.

ARTICLE COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-023-05198-y

6 COMMUNICATIONS BIOLOGY |           (2023) 6:825 | https://doi.org/10.1038/s42003-023-05198-y | www.nature.com/commsbio

2 Results

44



Methods). Concordantly, pevonedistat has been shown to induce
DNA damage and cell cycle arrest50,51, from which the cells with
downregulated NEK9 may not be able to recover.

A second tgdDMR in SKCM was identified, which involved a
pro-apoptotic agent. Specifically, hypermethylation of the CRYAB
promoter was associated with drug sensitivity to the BIRC5
inhibitor sepantronium bromide (dDMR calling, adj. p < 10−6;

Fig. 4j) and aberrant CRYAB expression (ELMER, emp. adj.
p < 0.001; Fig. 4k, l). Sepantronium bromide functions as a pro-
apoptotic agent by inhibiting BIRC5, a member of the inhibitor of
apoptosis (IAP) family52. The signalling network neighbourhood
of the CRYAB tgdDMR shows interactions with CASP3 and P53
(Supplementary Fig. 5), which have been previously reported
to show anti-apoptotic activity through CRYAB53,54. This
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observation suggests that activated CRYAB may protect from
apoptosis induced by sepantronium bromide, however, the exact
nature of this relationship remains elusive. Nevertheless, the
signalling network neighbourhoods of tgdDMRs offer interpre-
table indications about putative drug response mechanisms
associated with tgdDMRs.

Discussion
For advancing predictive epigenetic biomarkers in cancer, we
presented an epigenome-wide multi-omic analysis for identifying
interpretable and actionable epigenetic drug sensitivity bio-
markers in HTS. In total, we identified 802 dDMRs demon-
strating the epigenetic component of drug sensitivity in human
cancer cell lines. Furthermore, we guided our method by the
functional relationship that DNA methylation can mediate
proximal gene expression, which resulted in a filtered set of 377
dDMRs that showed explainable regulation of transcriptional
activity in human cancer cell lines. Furthermore, identifying
consistency between cancer cell lines and primary tumours yiel-
ded evidence across epigenomic and transcriptomic data mod-
alities and overcame limitations imposed by cell line artefacts55.
This step prioritised 58 tgdDMRs of which 19 were further
supported by protein-protein interaction networks. This thor-
ough filtering was necessary because direct evidence of epigenetic
biomarkers is lacking and validation was only possible for a
limited number of dDMRs.

We observed an enrichment of cancer genes in the proximity of
dDMRs, however, many established cancer genes lacked dDMRs,
which suggests that only a minority of cancer genes may be
epigenetically regulated. Furthermore, the modest correlations
with somatic mutations suggest that DNA methylation may
function complementary to genetic alterations for determining
cancer drug susceptibilities. In contrast, DNA methylation was
often accompanied by transcriptomic changes; however, it was
not able to substitute DNA methylation pattern of dDMRs, i.e.,
more than half of dDMRs did not reveal regulations of a proximal
gene. This suggests that tgdDMR methylation may either assist
cancer cells in rewiring key signalling pathways through altering
transcriptional signals or accompany other more elusive epige-
netic mechanisms. This notion advocates our study design that
first focuses on differentially methylated regions and consecutive
integration of genetic and transcriptomic data. The layer-wise
filtering starting with DNA methylation allowed us to evaluate
intermediate results on all separate analysis steps and provide a
comprehensive resource of epigenetic biomarkers (Supplemen-
tary Data 2).

Within this study, we focused on cancer type specific dDMRs
and observed strong epigenetically diverse patterns across cancer
types. Since the amount of found dDMRs was directly related to
the studied sample size, we anticipate that forthcoming large-scale
screening efforts can increase the power to detect dDMRs
focusing on tumour subtypes, e.g., in BRCA56 or COREAD57.
Since DNA methylation can correlate with tumour subtypes, our
analysis of dDMRs corrects for global methylation patterns
through its principal components, which increases the ability to
capture local mechanisms.

We showed consistency of tgdDMRs with an independent HTS
and a different methylation profiling technology. Furthermore,
we highlighted concordant epigenetic regulation of gene expres-
sion in human tumour samples, however, matched drug response
readouts in human tumours are lacking. Nonetheless, our
mechanisms may be validated in retrospective analyses of pre-
viously conducted molecularly characterised clinical trials for
exploratory biomarker discovery. Although the signalling net-
work neighbourhoods give insights into the potential mechanisms

for causal relationships or synthetically lethal interactions
between drug targets and tgdDMRs-associated genes, tgdDMRs
as predictive biomarkers remain to be further evaluated. In par-
ticular, melanoma patient subpopulations with promoter hyper-
methylation of tgdDMRs in the NEK9 or CRYAB promoters
could reveal benefits if treated with pevonedistat or pro-apoptotic
agents such as sepantronium bromide, respectively.

We confirmed that DNA methylation in promoters is the
major regulatory mechanism, and only sparse evidence supports
mechanisms in gene bodies or distal regions. Thus, the role of
methylation in cancer beyond its relevance in tumorigenesis and
potential epigenetic vulnerabilities remains elusive. Upcoming
technologies may enable the investigation of alternative epigenetic
mechanisms in mediating drug responses beyond DNA methy-
lation. For example, another class of epigenetic modifications,
histone acetylation and histone methylation, are commonly
associated with tumorigenesis and transcriptional regulations in
cancer58. Furthermore, sequencing technologies beyond the tra-
ditional epigenome, e.g., ATAC-seq chromatin accessibility and
Hi-C chromosome conformation, can yield further regulatory
insights.

In essence, epigenetic data has the potential to yield the next
generation of predictive biomarkers for precision medicine. The
results of our analysis show that DNA methylation com-
plemented with multi-omic data integration can reveal inter-
pretable biomarkers for expanding the limited number of
epigenetic biomarkers in clinical use. Our analysis for pharma-
coepigenomics can be applied to any drug screening effort with
complementary multi-omics characterisation. Therefore, it may
refine existing patient stratification and enhance the development
of personalised cancer therapies in future.

Methods
Cancer cell lines and primary tumours. We leveraged cancer cell lines from the
Genomics of Drug Sensitivity in Cancer (GDSC) project10 and the Cancer Cell Line
Encyclopaedia (CCLE) project12 as discovery and validation cohort, respectively.
Both databases have been extensively characterised and curated59. The primary
tumour samples are included in The Cancer Genome Atlas (TCGA), which aims to
adhere to established guidelines and regulations regarding the use of human data60.
Ethics and policies regarding the TCGA study are available at https://www.cancer.
gov/about-nci/organization/ccg/research/structural-genomics/tcga/history/policies.
Additional demographic characteristics of TCGA are available under https://portal.
gdc.cancer.gov/ and have been reported previously61.

DNA methylation. The raw methylation profiling data from GDSC, generated with
the Infinium HumanMethylation450 BeadChip array, were downloaded from the
Gene Expression Omnibus (GEO: accession number GSE68379 https://www.ncbi.
nlm.nih.gov/geo/query/acc.cgi?acc=GSE68379). The data was processed with the R
Bioconductor package Minfi62, performing the noob background subtraction with
dye-bias normalisation. After that, we filtered cross-reactive probes63 and probes
falling on sex chromosomes. The methylation beta-values were extracted and
normalised by using the BMIQ method implemented in the R Bioconductor
package ChAMP64. The probe annotations were obtained from the package
IlluminaHumanMethylation450kanno.ilmn12.hg1965.

The raw methylation profiling data from CCLE, generated with the reduced
representation bisulfite sequencing (RRBS) methylation profiling technology, were
downloaded in the form of fastq files from the Sequence Read Archive (SRA:
accession number PRJNA523380 https://www.ncbi.nlm.nih.gov/bioproject/
PRJNA523380/) using the SRA toolkit. We found 651 cell lines in our selected
cancer types and performed quality control analysis and adaptor trimming using
FastQC and TrimGalore66, respectively. Subsequently, methylation percentage calls
were retrieved from Bismark67 using methylKit68.

For the human primary tumours in TCGA, the preprocessed beta-values from
the Infinium HumanMethylation450 BeadChip were downloaded from the GDC
data portal (https://portal.gdc.cancer.gov/), accessed on the 18th October 2019.
They were downloaded and processed with the R package TCGAbiolinks69, using
the ChAMP preprocessing pipeline consisting of filtering, imputation and
normalisation methods with default parameters. Cancer types that either lacked
DNA methylation or gene expression data, or had low sample size (n < 8), were
excluded from further analysis, i.e., LAML, ALL, SCLC, NB, MM and OV.
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Gene expression. For the cell lines in the GDSC project, we downloaded the
RMA-processed Affymetrix array data from their website http://www.
cancerrxgene.org /gdsc1000/, accessed on the 8th August 2019. For the human
tumours, we downloaded the Hi-Seq count data from the RNAseq experiments in
the TCGA database https://portal.gdc.cancer.gov/, accessed on the 18th October
2019. For the subsequent analysis, we performed variance stabilising transforma-
tion (VST) on the transcript count matrix.

High-throughput drug response screens. For the discovery cohort, we leveraged
the HTS from the GDSC project http://www.cancerrxgene.org/downloads/bulk_
download release 8.0. We limited the analysis to the 22 cancer types that had >15
fully treated and molecularly characterised cancer cell lines. Drug response was
quantified by using the area-under-the-curve (AUC). A drug was required to
display partial drug response across at least three cell lines, i.e., AUC ≤ 0.7. For the
independent validation cohort, we used the Cancer Therapeutics Response Portal
(CTRP) project https://portals.broadinstitute.org/ctrp.v2.1.

Linear models and spatially correlated methylation sites for the identification
of differentially methylated regions (dDMR calling). We employed a two-step
analysis method to identify the differentially methylated regions of drug response
(dDMRs). First, we identified differentially methylated sites in cancer cell lines. For
that, we built linear models which fit the drug response denoted as y by the
methylation beta-value denoted asm for each CpG site and drug in all cancer types,
while correcting for the screening medium (c1), growth properties (c2), micro-
satellite instabilities (c3) and the first two principal components (pc1; pc2) to correct
for global methylation patterns. Thus, the linear model was defined by

y ¼ β0 þ β1mþ β2c1 þ β3c2 þ β4c3 þ β5pc1 þ β6pc2; ð1Þ

where β0; ¼ ; β6 are the regression coefficients. The analysis was performed for
each cancer type separately. The p-values were derived from the significance of the
regression coefficient β1 using a t-test for the respective CpG site. For the extraction
of differentially methylated regions of drug response (dDMRs), we employed the
software Comb-p70,71 with default parameters. We first calculated the auto-
correlation (ACF) between sites and the Stouffer-Liptak-Kechris correction of
ACFs, followed by subsequent extraction of regions based on the Šidák-adjusted p-
values (adj. p) while merging peaks within 1000 bases. dDMRs were called with a
cutoff of adj. p < 10−6. For the post-processing, the extracted regions were filtered
such that there existed more than three cell lines that were aberrantly methylated
for each dDMR. For this, we counted the number of cell lines which showed a
methylation beta-value < 0.3 and beta-value > 0.7. Furthermore, we filtered regions
for which the contained CpG sites did not meet the threshold for the raw p < 0.01.
The identified region is labelled a dDMR, if both criteria were fulfilled. This sub-
sequently yielded 802 drug differentially methylated regions (dDMRs) for 186
drugs. The effect size for each dDMR was defined as the mean of the regression
coefficients β1 across all CpG sites contained in the called region. The raw p-value
(p) for each CpG site and the Pearson correlation coefficient (r) are reported for
statistical tests analysing DNA methylation and drug response in the manuscript
scatter plots.

Inference of gene regulatory mechanisms as potential drug response bio-
markers in cancer cell lines and human tumour samples. To identify the
proximal genes that were associated with aberrant methylation, we used the R
package ELMER39. We focused on either promoter or distal regions within each
cancer type43. For each dDMR, we tested the association between the methylation
status and the gene expression with a Mann–Whitney U test according to the
default parameters of ELMER39. We corrected for multiple hypothesis testing using
a permutative approach with permutation size= 50000, raw p-value threshold=
0.05 and empirical adjusted p-value (emp. adj. p) threshold= 0.001. The empirical
adjusted p-value (p) and the Pearson correlation coefficient (r) are reported for
statistical tests analysing DNA methylation and gene expression in the manuscript
scatter plots. In addition, for cancer cell lines, we tested if the proximal gene
expression was associated with drug response independently of its dDMR. For this,
we used linear models which fit the drug response to the respective proximal gene
expression accordingly with the analogous linear models built using the
methylation data.

Protein-protein interaction networks between dDMR proximal genes and
drug targets. We identified protein-protein interaction networks in the neigh-
bourhood of tgdDMR-associated genes and drug targets based on the OmniPath
database44. For each of the 58 tgdDMRs, we extracted the correlated proximal gene
and identified the ten shortest paths to each putative drug target using Yen’s
algorithm72. If no path from a gene to a drug target was found in the directed
network, we identified paths traversing from the drug target to the tgdDMR gene.
In summary, we were able to display protein-protein interaction networks with
their shortest paths for 19/58 tgdDMRs, thus enhancing the mechanistic under-
standing of tgdDMRs.

Somatic variants and their association with tgdDMRs. The GDSC project has
compiled a selection of somatic variants and copy number alterations11, which are
available at Cell Model Passports (https://cellmodelpassports.sanger.ac.uk/
downloads). Only somatic mutations in coding regions were considered, which
were binarised to represent the mutant and wild type status. Similarly, we binarised
amplifications and deletions of gene-level copy number alterations. For both we
only considered alterations which showed >3 altered cell lines. For assessing the
correlation between genetic alterations and tgdDMRs, we used univariate linear
models explaining tgdDMR methylation by the mutational status of each alteration.
The p-values were derived from the significance of the regression coefficients and
were multiplicity-adjusted by using the Benjamini–Hochberg method.

CRISPR screens and their association with tgdDMRs. CRISPR knockout data
and associated gene effects on viability were downloaded from the DepMap Public
22Q4 primary files (https://depmap.org/portal/download/all/)28,73. Univariate lin-
ear models assessed associations between CRISPR knockouts for each gene in
signalling network neighbourhoods of all tgdDMRs. The p-values were derived
from the significance of the regression coefficients and were multiple hypothesis-
adjusted by the Benjamini–Hochberg correction.

LINCS drug transcriptomic signatures and their association with tgdDMRs.
We used the CLUE knowledge base (https://clue.io/lincs)74 and its provided API to
retrieve transcriptomic gene signatures from the overlapping compounds with
matching tissue. Next, we tested for enrichments of each tgdDMR-associated gene
and the corresponding genes in the signalling network neighbourhood in the set of
gene signatures using a binomial test. The resulting p-values were adjusted using
the Benjamini–Hochberg method.

Statistics and reproducibility. The sample sizes of the GDSC, CCLE/CTRP and
TCGA data were predetermined by their data availability. We selected cancer types
with >15 distinct molecularly characterised cell lines in the GDSC dataset. Cancer
cell lines in the GDSC were parallelly treated according to the previously published
study protocol11. For the matching cancer types, all distinct primary tumour
samples with both available DNA methylation and gene expression data in the
CCLE and TCGA data were selected. For all datasets, this resulted in 22 cancer
types: small-cell lung cancer (SCLC; nGDSC= 63; nCCLE= 36; nTCGA= 0), lung
adenocarcinoma (LUAD; nGDSC= 63; nCCLE= 87; nTCGA= 484), skin cutaneous
melanoma (SKCM; nGDSC= 52; nCCLE= 50; nTCGA= 104), breast invasive carci-
noma (BRCA; nGDSC= 49; nCCLE= 39; nTCGA= 861), colorectal adenocarcinoma
(COREAD; nGDSC= 46; nCCLE= 47; nTCGA= 325), head and neck squamous cell
carcinoma (HNSC; nGDSC= 40; nCCLE= 29; nTCGA= 520), glioblastoma (GBM;
nGDSC= 35; nCCLE= 37; nTCGA= 51), esophageal carcinoma (ESCA; nGDSC= 35;
nCCLE= 24; nTCGA= 170), ovarian serous cystadenocarcinoma (OV; nGDSC= 34;
nCCLE= 30; nTCGA= 7), lymphoid neoplasm diffuse large B-cell lymphoma
(DLBC; nGDSC= 33; nCCLE= 28; nTCGA= 48), neuroblastoma (NB; nGDSC= 32;
nCCLE= 14; nTCGA= 0), kidney renal clear cell carcinoma (KIRC; nGDSC= 30;
nCCLE= 21; nTCGA= 344), pancreatic adenocarcinoma (PAAD; nGDSC= 29;
nCCLE= 38; nTCGA= 181), acute myeloid leukemia (LAML; nGDSC= 25; nCCLE=
29; nTCGA= 0), acute lymphocytic leukemia (ALL; nGDSC= 25; nCCLE= 24;
nTCGA= 0), stomach adenocarcinoma (STAD; nGDSC= 23; nCCLE= 29; nTCGA=
338), mesothelioma (MESO; nGDSC= 21; nCCLE= 8; nTCGA= 86), bladder uro-
thelial carcinoma (BLCA; nGDSC= 19; nCCLE= 24; nTCGA= 428), multiple mye-
loma (MM; nGDSC= 17; nCCLE= 24; nTCGA= 0), liver hepatocellular carcinoma
(LIHC; nGDSC= 17; nCCLE= 20; nTCGA= 412), brain low-grade glioma (LGG;
nGDSC= 17; nCCLE= 15; nTCGA= 511) and thyroid carcinoma (THCA; nGDSC=
16; nCCLE= 10; nTCGA= 551). The reproducibility of biomarkers was assessed by
the overlapping CCLE/CTRP DNA methylation and drug response data as inde-
pendent validation cohort. Discrepancies between drug response biomarkers in
CCLE/CTRP may arise due to technical noise or differences in drug screening
assays, but showed high consistency as reported.

Reporting summary. Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All datasets that were analysed in this study are publicly available within the outlined
repositories. Specifically, the GDSC and CCLE DNA methylation data are available on
Gene Expression Omnibus (GEO: accession number GSE68379) and Sequence Read
Archive (SRA: accession number PRJNA523380), respectively. The TCGA DNA
methylation data is available on the GDC data portal https://portal.gdc.cancer.gov/. The
GDSC and CCLE drug response data are available on http://www.cancerrxgene.org/
downloads/bulk_download release 8.0 and the Cancer Therapeutics Response Portal
https://portals.broadinstitute.org/ctrp.v2.1, respectively. The GDSC and TCGA gene
expression data are available on http://www.cancerrxgene.org /gdsc1000/ and the GDC
data portal https://portal.gdc.cancer.gov/, respectively. The GDSC somatic variants and
copy number alterations are available at Cell Model Passports https://cellmodelpassports.
sanger.ac.uk/downloads. The CRISPR screens are available on DepMap https://depmap.
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org/portal/download/all/ and the LINCS data is available on CLUE https://clue.io/lincs.
The processed datasets are publicly available on Zenodo75. Source data for the figure
panels are provided in Supplementary Data 3.

Code availability
The source code for the presented analysis is available at https://github.com/MendenLab/
pheb v0.1.0. It refers to a runnable docker image that contains all used software for data
analysis. The statistical analysis can be reproduced with the source code and datasets
provided on Zenodo75.
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Abstract 
The epithelial-mesenchymal transition (EMT) is characterised by the loss of cell-cell adhesion and cell 

polarity, which is often exploited by cancer cells to adopt a motile, invasive and metastatic phenotype. 

Whilst EMT is often linked with cancer progression and therapy resistance, strategies for its selective 
targeting remain limited. In order to address this, we infer EMT states of cancer cell lines from their 

molecular signatures and use predictive and causal modelling to estimate the effect of EMT on drug 

susceptibility in high-throughput drug screens. For example, we show that EMT signatures in melanoma 

cells can predict favourable responses to the HSP90 inhibitor luminespib and demonstrate that 

epithelial-like melanoma cells can be sensitised to luminespib upon stimulation of EMT by TGF-β. Thus, 

we provide an analysis that systematically yields a set of potent drugs by exploiting vulnerabilities of 

cancer cells undergoing EMT, which may pave the way for therapies to target these cells. 

 

Introduction 
The epithelial-mesenchymal transition (EMT) is a cellular process that allows cells to transition between 

different phenotypic states 1. Rather than a switch between two distinct phenotypes, the EMT program 

describes a dynamic spectrum of phenotypes between epithelial and mesenchymal cells ranging from 

apical-basal polarity and strong cell-cell contacts to motile and spindle-like characteristics 2. EMT is an 

essential mechanism for embryonic development, wound healing and tumour plasticity, and has been 

regarded as a hallmark of cancer 1,3–5. The invasion of the extracellular matrix by cancer cells 

undergoing EMT prior to metastasis is accompanied by the loss of the adherens junction protein E-

cadherin and upregulation of N-cadherin, vimentin and fibronectin1,6. Scores derived from gene 
expression signatures of these molecular markers are typically used for assessing EMT and its 

associated cellular processes in cancers 2,7–10. Some of these processes can be used to externally 

stimulate cells to undergo EMT. For example, TGF-β signalling is an established mechanism for 

inducing EMT 11 and thus TGF-β treatment is widely used for external EMT induction in vitro 12–17. 

 

Sparse findings in cancer cell lines and human tumours have reported EMT as a putative drug response 

biomarker 7–10. For example, acquired resistance through EMT has been reported for commonly 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 18, 2024. ; https://doi.org/10.1101/2024.01.16.575190doi: bioRxiv preprint 

2.2 The pharmacogenomic assessment of molecular epithelial-mesenchymal transition signatures reveals drug
susceptibilities in cancer cell lines, bioRxiv (2024)

51



 

employed chemotherapeutic agents, e.g. cisplatin and doxorubicin 18, and targeted therapies, e.g. 

EGFR or PI3K inhibitors 19. Furthermore, EMT was found to cause intrinsic resistance to KRAS 

inhibitors in lung cancer 20. Although the genetic background has been shown to play an important role 

in enabling EMT in cancer progression 10, it is still unclear to what extent initial cancer drug responses 
can be attributed to EMT. Thus, we hypothesised that predictive and causal modelling of EMT scores 

in drug high-throughput screens can assess the role of EMT in cancer drug sensitivity, which may lead 

to strategies that systematically exploit EMT as a cancer vulnerability.  

 

Here, we first estimated continuous EMT scores based on gene expression profiles of 790 cancer cell 

lines from 31 cancer types using four different methods 7,8,10,21. Consecutively, we benchmarked the 

contribution of EMT in drug response prediction models and quantitatively estimated the EMT effect 

with causal inference. For example, we revealed that EMT and its related processes in melanoma 
robustly predict sensitivity to HSP90 inhibition with luminespib and other HSP90 inhibitors. Indeed, we 

experimentally demonstrated that stimulating EMT with TGF-β pretreatment can sensitise epithelial 

melanoma cell lines to luminespib. 

 

Results 
We leveraged a high-throughput drug screen (HTS; Fig. 1a) of 790 cancer cell lines across 31 cancer 

types, which were treated with 544 unique compounds to obtain dose-response curves (Fig. 1b) 22–24. 

This was complemented with molecular profiling of cancer cell lines, i.e. somatic mutations, copy 

number alterations and gene expression (Fig. 1c) 22–24. For estimating EMT, we derived EMT scores 
from four established methods that leverage molecular signatures to infer EMT on a continuous 

spectrum using gene expression data (Fig. 1c); these were: Mak et al. 8, gene set variation analysis 21, 

Tan et al. 7 and Tagliazucchi and Wiecek et al. 10 (Methods), abbreviated as MAK, GSVA, TAN and 

TW, respectively (Supplementary Data 1). Then, we systematically benchmarked the EMT scores for 

predicting drug responses across all compounds and cancer types using (1) ablation of the EMT score 

and (2) causal inference of the EMT effect (Fig. 1c; Methods). Thereby, the cancer somatic alterations 

served as background predictors for assessing the EMT-specific component. 

 
Exemplifying our method, we leveraged the MAK EMT scores and drug responses quantified by IC50 

values in skin cutaneous melanoma (SKCM) and identified four inhibitory compounds, for which the full 

model including EMT significantly outperformed the baseline model (Fig. 1d; Methods). For example, 

response to luminespib in SKCM was predicted well by the full model, i.e. leveraging EMT scores and 

the mutational background with Pearson’s r = 0.50 between actual and predicted IC50 values. However, 

the performance of actual versus predicted IC50 dropped to Pearson’s r = 0.02 upon exclusion of the 

EMT score (Δr = 0.47, p = 5.0	× 10-4, t-test for resampled performance metrics; Supplementary Fig. 
1a). For the identified compounds, we applied double machine learning in conjunction with causal 

random forests to estimate the EMT-specific effect on drug responses with a 95% confidence interval 

(Fig. 1e; Methods) 25–28. Compounds with significantly increased performance and high inferred effect 
size for multiple EMT scores and both IC50 and area under the drug response curve (AUC) suggested 
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a causal component of EMT for determining drug responses (Supplementary Fig. 1b-f). This 

hypothesis was systematically dissected across the remaining cancer types, EMT scores and drug 

response readouts in the next section. 

 
Figure 1: Modelling drug susceptibility in cancer cell lines in the context of EMT. (a) The drug high-throughput 
screen contained 790 cancer cell lines treated with 544 compounds and (b) their dose-response curves. (c) 

Molecular profiling of cancer cell lines quantifies their mutational background and the transcriptional state. Shown 

in the schematic workflow for predictive and causal modelling, the mutational background are baseline features 
and EMT scores are derived from gene expression data. First, a regression-based ablation study assessed the 

predictive performances of the drug response prediction model upon excluding EMT from the model. Secondly, the 

EMT-specific effect on drug susceptibility was estimated by causal inference methods (Methods). (d) The 

systematic ablation study in SKCM yielded a set of compounds for which EMT improved the response predictions, 
showing the adjusted p-values of a t-test for performance metrics and the difference in Pearson’s correlation Δr. 

(e) The inferred EMT effects on responses to the identified set of compounds with the 95% confidence interval in 

SKCM is shown. 
 

Systematic analysis of EMT and its regulators as biomarkers of cancer drug sensitivity 
The distributions of MAK, GSVA, TAN and TW scores were predominantly cancer type specific (Fig. 
2a-d). For example, SKCM cell lines showed a more mesenchymal MAK EMT score, whilst breast 

cancer (BRCA) and colorectal cancer (COREAD) cell lines displayed rather epithelial MAK EMT scores 

(Fig. 2a), which highlighted the high tissue-specificity of EMT molecular signatures. MAK, TAN and TW 
scores showed high overall correlations (Pearson’s r > 0.87; Supplementary Fig. 2a), which were 

consistently high within cancer types. GSVA showed lower overall correlations with these scores 

(Pearson’s r < 0.39; Supplementary Fig. 2a) due to normalised scores (Supplementary Fig. 2b), but 

displayed consistently high correlations within cancer types as well (Supplementary Fig. 2a).  

 

We conducted the benchmark with the outlined modelling strategies (Fig. 1c; Methods), and recorded 

its results across all included cancer types, EMT scores, compounds and IC50 or AUC (Supplementary 
Data 2; Methods). Six cancer types showed at least one significant compound with FDR < 0.2 (Fig. 
2e; Methods). We estimated the EMT effects and confidence intervals for all compounds 

(Supplementary Fig. 3a,b; Methods), and further focused on five compounds in three cancer types 
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that consistently showed significant performance gains in at least three models (labelled in Fig. 2e,f; 
Table 1; Methods). For all of these compounds, mesenchymal cells showed higher drug responses 

than epithelial cells (Fig. 2f). 

 
Table 1: The five top-ranked EMT-dependent compounds. Each of the five compounds is characterised by its 
name, target and cancer type for which the association was found. The statistics for the ablation study (Δr and 

(adjusted) p-value) and causal inference (effect size plus interval in terms of Δlog(IC50) or ΔAUC) are given for 

each response readout and EMT score. Furthermore, the enriched TFs and GO terms for the responding cell lines 
and the enriched GO terms in transcriptional signatures for the compounds in SKCM are shown. Selected GO 

terms are annotated in the footnotes. 
 

Drug Target Cancer
type

Readout EMT
Score

�A Raw
?-value

Adj.
?-value

Effect
and
interval

TF Responder
GO

Downregulated
GO

Upregulated
GO

Luminespib HSP90 SKCM ic50 MAK 0.47 0.0005 0.049 �0.881±
0.380

MITF GO:0016241
GO:1902600

Epi:
GO:0042127 1

GO:0045595 2

Mes:
GO:0007178
GO:0006355
GO:0045893
GO:1903844 4

GO:0017015 5

GO:0045596 6

Epi:
GO:0036503
GO:0006986 3

Mes:
GO:0034976
GO:0006986 3

auc MAK 0.51 0.0002 0.050 �0.084±
0.035

MITF GO:0007035
GO:1902600
GO:0035751

auc GSVA 0.39 0.0008 0.156 �0.076±
0.020

CHIR-99021 GSK3A/B SKCM ic50 MAK 0.61 2.8⇥10�5 0.008 �0.628±
0.218

MITF GO:0032438
GO:0045333

Mes:
GO:1901203
GO:0007178
GO:0007179 7

auc MAK 0.60 0.0005 0.066 �0.037±
0.012

MITF GO:0019646
GO:0042775
GO:0045333

auc GSVA 0.54 0.0012 0.169 �0.031±
0.015

ic50 GSVA 0.54 0.0001 0.042 �0.538±
0.259

auc TW 0.59 7.4⇥10�7 0.0003 �0.038±
0.014

Staurosporine broad
multi-
kinase

SKCM ic50 MAK 0.47 0.0013 0.100 �0.553±
0.336

MITF GO:0051452
GO:0032438

auc MAK 0.43 0.0010 0.091 �0.065±
0.036

MITF GO:0007032
GO:0051452
GO:1902600

auc GSVA 0.61 0.0003 0.146 �0.068±
0.039

ic50 GSVA 0.63 0.0005 0.074 �0.618±
0.379

GSK269962A ROCK1/2 LUAD ic50 MAK 0.51 0.0001 0.032 �0.666±
0.236

SOX2 GO:0018212
GO:0010632 8

ic50 TAN 0.46 0.0006 0.157 �0.604±
0.288

ic50 TW 0.58 5.4⇥10�5 0.014 �0.517±
0.310

AZD7762 CHEK1/2 BRCA auc MAK 0.59 2.3⇥10�5 0.013 �0.046±
0.069

ESR1 GO:0010256
GO:0072659
GO:0006892
GO:1990778

auc GSVA 0.63 1.5⇥10�7 8.0⇥10�5 �0.069±
0.042

auc GSVA 0.56 0.0014 0.183 �0.118±
0.054

1 Regulation of cell population proliferation
2 Regulation of cell differentiation
3 Response to unfolded protein
4 Regulation of cellular response to transforming growth factor beta stimulus
5 Regulation of transforming growth factor beta receptor signaling pathway
6 Negative regulation of cell differentiation
7 Transforming growth factor beta receptor signaling pathway
8 Regulation of epithelial cell migration

1
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To interpret the five top-ranked EMT-dependent compounds, we employed gene set enrichment 

analysis of the set of differentially expressed genes between higher and lower responding cell lines 

leveraging the entire transcriptome (Supplementary Data 3; Methods). The enrichment analysis found 

upstream transcription factors (TF) acting as master regulators that can affect both molecular EMT 
markers and the set of differentially expressed genes. For example, we found that responses to the 

CHK1 inhibitor AZD7762 in BRCA were successfully predicted by the MAK and GSVA EMT scores 

(Fig. 2e; Supplementary Fig. 3c; Table 1), and identified that the TF target genes of ESR1 were 

enriched (adj. p = 4.3 × 10-28, odds ratio = 2.44, Fisher’s exact test; Supplementary Data 3; Table 1). 

Furthermore, lower response to AZD7762 was associated with higher ESR1 expression 

(Supplementary Fig. 4a). 

 

ESR1 expression is associated with clinical BRCA subtypes (PAM50), especially the invasive basal 

BRCA subtype is characterised by low ESR1 expression 29. Accordingly, we confirmed that cell lines 

derived from the more invasive basal-like BRCA displayed higher MAK EMT scores resembling the 

mesenchymal phenotype (p = 0.002, ANOVA F-test; Fig. 2g). Therefore, we added the PAM50 subtype 
to the EMT score and ESR1 expression as fixed effects in a regression model predicting AZD7762 

response and found that it did not further improve our model (p = 0.64, ANOVA F-test for multiple 

regression coefficient; Fig. 2g). Similar to ESR1 expression, it is established that BRCA1/2 regulates 

the cell cycle by activating CHK1 in response to DNA damage and its mutations are associated with 

oncogenesis 30. Thus, we repeated the same analysis by excluding cell lines that carry BRCA1/2 

mutations (p = 0.73, ANOVA F-test for multiple regression coefficient; Fig. 2g), which also did not further 

improve our model. Concordantly, EMT regulators were previously shown to underlie DNA damage 

responses through their interaction with CHK1/2 (target of AZD7762) in BRCA cells 31. In summary, 
EMT as a predictive biomarker for AZD7762 response in BRCA reflected but was not further enhanced 

by BRCA subtypes and somatic mutations in BRCA1/2. 

 

Furthermore, we observed performance gains for the ROCK1 (Rho kinase 1) inhibitor GSK269962A, to 

which lung adenocarcinoma mesenchymal-like cell lines with a higher MAK, TAN and TW EMT score 

were more responsive (Supplementary Fig. 4b; Table 1). We identified an associated TF SOX2 (adj. 

p = 1.5 × 10-13, odds ratio = 8.95, Fisher’s exact test; Supplementary Data 3; Table 1), which was 

previously found to be associated with EMT and metastasis in multiple cancer types, including lung 

cancer 32. We expanded the enrichment analysis of the set of differentially expressed genes for 

responder cell lines to Gene Ontology (GO) biological processes and found that upregulated genes in 
LUAD cell lines responding to GSK269962A were enriched in genes involved in the regulation of 

epithelial cell migration (adj. p = 0.0004, odds ratio = 35.07, Fisher’s exact test; Supplementary Data 
4; Table 1; Methods), which is orchestrated by ROCK1 33. 

 

In summary, our proposed method was able to robustly identify compounds in HTS that demonstrated 

distinct drug responses depending on EMT, its upstream regulators and related processes in several 
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cancer types. In the next section, we focused on elucidating further mechanisms on the compounds 

identified in SKCM. 

 
Figure 2: EMT as a predictive component of drug sensitivity. Distributions of (a) MAK, (b) GSVA, (c) TAN and 

(d) TW EMT scores depending on the cancer type are displayed. (e) The systematic ablation study demonstrates 
EMT as a predictor of drug sensitivity in cancer cell lines for four different EMT scores and two response readouts, 

i.e. IC50 and AUC, with six cancer types that showed at least one significant compound (FDR < 0.2). The 

compounds and cancer types that showed at least 3 significant performance changes are labelled. The horizontal 
axis represents the difference in mean Pearson’s correlation Δr between predicted and actual IC50 or AUC values 

of the models, including and excluding EMT, whereas the vertical axis measures the significant improvement in the 

performance over the baseline model using a t-test for resampled performance metrics. (f) For the IC50 prediction 
models, the estimated EMT effects plus 95% confidence intervals are displayed. (g) The boxplot shows the 

response to CHK1/2 inhibitor AZD7762 depending on BRCA PAM50 subtypes, the MAK EMT score and mutations 

in BRCA1/2. The centre on the boxplot represents the median, while the box illustrates the interquartile range 
(IQR). The whiskers show a range that is 1.5 times the size of the IQR. 
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Potential regulators and drug response mechanisms of EMT in melanoma cell lines 

We focused on the three remaining compounds in SKCM, i.e. CHIR-99021, luminespib and 

staurosporine, for which mesenchymal-like SKCM cell lines showed higher sensitivity consistently 
across at least three models (Fig 2e,f; Table 1). In the TF enrichment analysis (Methods), we found 

that MITF was enriched in the set of differentially expressed genes for these compounds, i.e. CHIR-

99021 (adj. p = 3.7 × 10-36, odds ratio = 3.44), luminespib (adj. p = 6.8 × 10-7, odds ratio = 7.54) and 

staurosporine (adj. p = 5.3 × 10-89, odds ratio = 4.47; Fisher’s exact test; Supplementary Data 3; Table 
1) and showed responses associated with MITF expression (Fig. 3a). For luminespib, 39 genes were 

significantly downregulated in responding mesenchymal-like cells, from which 23 were putative MITF 
target genes (Fig. 3b). MITF is a melanocyte master regulator and is often described as an oncogene 

in melanoma 34. It was proposed to act as a phenotype-switching regulator in melanoma, for which cells 

with trace MITF levels show senescent properties characterised by cell cycle arrest and cell motility, 

low-to-intermediate MITF levels display proliferative properties, and higher MITF levels can drive cell 

differentiation 35–38.  

 

The MAK EMT score in SKCM was associated with previously proposed SKCM subtypes 39 (p = 5.6 × 

10-8, ANOVA F-test; Fig. S4c-e), i.e. melanocytic cell lines characterised by high MITF expression 

showed low EMT scores (Fig. S4c-e). To quantify their impact on responses to the three compounds, 

we added these SKCM subtypes to the MAK EMT score and MITF expression as fixed effects in a 

regression model predicting IC50 values. Modelling subtypes improved predictions for staurosporine (p 

= 0.0008, ANOVA F-test for multiple regression coefficient; Fig. S4c), whilst we did not observe 

improvements for luminespib (p = 0.31, ANOVA F-test for multiple regression coefficient; Fig. S4d) or 

CHIR-99021 (p = 0.24, ANOVA F-test for multiple regression coefficient; Fig. S4e), thus highlighting 

the predictive capability of EMT in SKCM. 

 

To gain further insights into the mechanisms of luminespib, CHIR-99021 and staurosporine, we 

extracted transcriptional signatures from the Library of Integrated Network-Based Cellular Signatures 

(LINCS) 40. We retrieved luminespib signatures of mesenchymal-like A375 and epithelial-like SK-MEL-
28 SKCM cell lines and tested the 100 up- and down-regulated genes for enrichment in Gene Ontology 

(GO) biological processes (Supplementary Data 5; Table 1; Methods). The top process for both cells 

was the upregulation of genes involved in the response to unfolded proteins (A375: adj. p = 4.9 × 10-

19, odds ratio = 130.34; SK-MEL-28: adj. p = 6.0 × 10-11, odds ratio = 68.09, Fisher’s exact test; 

Supplementary Data 5; Table 1). Notably, genes involved in the regulation of TGF-β receptor 

signalling, such as SMAD3, were significantly downregulated among the top two enriched processes 
(A375: adj. p = 0.0004, odds ratio = 17.55, Fisher’s exact test; SK-MEL-28: adj. p = 0.02, odds ratio = 

8.81, Fisher’s exact test; Supplementary Data 5; Table 1), suggesting that luminespib response may 

depend on TGF-β signalling components. Commonly downregulated genes of the CHIR-99021 

signature included SMAD3 and PXN, which were also enriched in TGF-β receptor signalling (A375: adj. 

p = 0.0006, odds ratio = 123.73, Fisher’s exact test; Supplementary Data 5; Table 1), whereas for the 
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staurosporine signature, TGF-β receptor signalling showed trends of enrichment (A375: adj. p = 0.06, 

odds ratio = 23.7, Fisher’s exact test; Supplementary Data 5). 

 

In summary, these results demonstrated that response to the HSP90 inhibitor luminespib in the GDSC 
HTS may depend on EMT components, their regulators MITF and TGF-β, and their associated 

subtypes. Therefore, the next section assessed the generalisation of EMT-dependent drug responses 

to other HSP90 inhibitors and their validation in independent HTS experiments. 

 

EMT is associated with drug sensitivity to HSP90 inhibition in melanoma cell lines 
For evaluating the robustness of EMT as a drug sensitivity biomarker to HSP90 inhibitors in SKCM, we 

tested for correlations between EMT scores and sensitivity to five HSP90 inhibitors across two high-

throughput drug screens (Methods; Supplementary Fig 5). First, we assessed the IC50 values of 
HSP90 inhibitors in the GDSC, here exemplified with tanespimycin (r = -0.40, p = 0.036, correlation 

test; cell lines with higher than mean NQO1 expression 41; Fig. 3c), elesclomol (r = -0.34, p = 0.015, 

correlation test; Fig. 3d), a luminespib replicate screened in both GDSC1 and GDSC2 (r = -0.33, p = 

0.021, correlation test; Supplementary Fig. 5a) and SNX 2112 (r = -0.21, p = 0.14, correlation test; 

Supplementary Fig. 5c). Furthermore, consistent correlations were observed for AUC values across 

these HSP90 inhibitors in the GDSC (Supplementary Fig. 5a-h), thus highlighting the robustness of 

the association between EMT and responses to HSP90 inhibition regardless of the drug response 

readout. 
 

To gain further evidence across independent datasets, we calculated the MAK EMT score based on 

gene expression data obtained from the Cancer Cell Line Encyclopaedia (CCLE) 42 and analysed the 

HTS of the Cancer Therapeutics Response Portal (CTRP) 43 (Supplementary Data 6; Supplementary 
Fig 5i-m). The AUC values of the screened HSP90 inhibitors SNX 2112 (r = -0.44, p = 0.002, correlation 

test; Supplementary Fig. 5j) and tanespimycin (r = -0.47, p = 0.001, correlation test; Supplementary 
Fig. 5l) were significantly associated with the EMT score in this independent HTS, and AT13387 
(onalespib) displayed consistent trends (r = -0.24, p = 0.221, correlation test; Supplementary Fig. 5m).  

 

In essence, EMT scores were consistently associated with drug sensitivity to HSP90 inhibition in SKCM 

cell lines across independent drug HTS and transcriptomic profiles (Fig. 3e; Supplementary Fig. 5i-
m). For the next section, luminespib was selected as the lead compound for further experimental 

validation of our method, since it showed significant performance gains with the highest estimated EMT 

effects (Table 1). 
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Figure 3: EMT is associated with transcription factors and susceptibility to HSP90 inhibitors. (a) Boxplots 

of binarised drug response (i.e. discretisation by median IC50 values) of CHIR-99021, luminespib and staurosporine 

show associations with MITF expression levels quantified by a two-sided t-test and its derived p-value. The centre 
on the boxplot represents the median, while the box illustrates the interquartile range (IQR). The whiskers show a 

range that is 1.5 times the size of the IQR. (b) A heatmap shows differentially expressed genes of luminespib drug 

response quantified by log(IC50) values in SKCM cell lines (FDR < 0.1) for the subset of MITF targets. Scatter plots 
show drug susceptibility of SKCM cell lines to other HSP90 inhibitors such as (c) tanespimycin, (d) elesclomol and 

(e) AT13387 (onalespib) in an independent dataset. The solid line depicts a fitted ordinary least squares regression 

model with its 95% confidence interval. The Pearson’s correlation coefficient (r) and the associated p-value of the 
correlation test (p) are displayed. 

 

TGF-β modulates the response to HSP90 inhibition with luminespib in epithelial-like melanoma 
cell lines  
We conducted experiments on whether drug response to luminespib could be modulated by EMT 

induction. TGF-β is a known inducer of EMT 17, which was also suggested by the upregulation of TGFB1 

expression in many mesenchymal-like SKCM cell lines (Supplementary Fig. 6a-d). Thus, we chose 

two epithelial-like cell lines (IGR-37, SK-MEL-5; Fig. 4a) and two mesenchymal-like cell lines (RPMI-

7951, A375; Fig. 4a), which showed different levels of sensitivity to our lead compound luminespib in 

the GDSC, respectively. Following a 7-day pretreatment with TGF-β1, we treated the cells with different 

concentrations of luminespib (Supplementary Fig. 6e; Methods) and fitted dose-response curves for 

each experiment to obtain IC50 and AUC values (Supplementary Data 7; Methods). 
 

While the mesenchymal RPMI-7951 and A375 showed no distinguishable change in luminespib 

response upon TGF-β1 treatment (Fig. 4b,c), the epithelial cell lines IGR-37 and SK-MEL-5 displayed 

increased luminespib sensitivity (Fig. 4d,e). To quantify this effect, we calculated the difference in 

log(IC50) values, i.e. Δlog(IC50), for the screened cell lines and compared it to the 95% CI of the predicted 

causal effect upon change in the EMT score (Methods). Accordingly, the epithelial cell lines IGR-37 

and SK-MEL-5 showed decreased IC50 within this CI (Fig. 4f). Analogously, we compared differences 

in AUC values (ΔAUC), which showed consistency within the CI of the predicted causal effect 
(Supplementary Fig. 6f). In summary, this highlights that EMT can modulate HSP90 inhibitor response 

in epithelial-like SKCM cell lines. 
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Figure 4: TGF-β sensitises melanoma cell lines to luminespib. (a) The scatter plot shows luminespib drug 
response stratified by EMT scores in SKCM cell lines and highlighted selected cell lines. The mesenchymal cell 

lines (b) RPMI-7951 and (c) A375 showed indistinguishable luminespib response upon TGF-β pretreatment. In 

contrast, the two epithelial cell lines (d) IGR-37 and (e) SK-MEL-5 responded stronger after pretreatment with TGF-
β. Shown are the derived cell viabilities averaged across replicates and the fitted dose-response curves (Methods). 

(f) TGF-β treated epithelial cell lines demonstrate higher responses (decreased IC50) to luminespib within the 

predicted causal effect 95% CI. 
 

Discussion 
We presented a drug response analysis encompassing the causal exploration of EMT in the context of 

mutational backgrounds and their upstream regulators and processes. We quantified EMT based on 

molecular biomarkers from gene expression profiles, thus offering a continuous score that accounts for 

the spectrum of intermediate and hybrid EMT states. By combining predictive and causal modelling, we 

identified five compounds across three cancer types with robust associations across different EMT 
scoring methods and drug response readouts (Table 1). Exemplifying our approach, we found that 

mesenchymal-like cell lines showed increased sensitivity to HSP90 inhibitors, particularly luminespib, 

which we experimentally validated. 

 

Our pharmacogenomic modelling approaches corrected for confounders from the mutational 

background. Therefore, the estimated EMT effects from the causal modelling approach assumed no 

hidden confounders in the gene expression data. In order to address this, we performed post hoc 

differential gene expression analyses considering all genes to identify transcription factors as upstream 
regulators and GO biological processes. Furthermore, we mined drug transcriptional signatures to 

identify transcriptional confounders. Our analysis pursued the contribution of EMT on drug responses, 

however our systematic and causal modelling framework is generalisable to any putative drug response 

biomarker and its mechanisms. 

 
We showed that epithelial-like cell lines can become more responsive to luminespib upon TGF-β 

treatment, whereas mesenchymal-like cell lines displayed no distinguishable change in their response. 
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In addition, drug responses to luminespib quantified by IC50 values in non-TGF-β treated cells were 

comparable to values observed in the GDSC. Therefore, the sensitivity of some melanoma cell lines to 

luminespib may indeed be induced by a phenotypic conversion of cell lines. Although molecular markers 

do not fully capture all intricacies of the EMT program, the sensitisation of epithelial-like cell lines upon 
TGF-β treatment to luminespib suggests that EMT markers with their regulator MITF in melanoma may 

constitute a promising biomarker for selectively targeting epithelial-mesenchymal transitioning cells. 

 

HSP90 is an ATP-dependent molecular chaperone necessary for protein folding and stabilisation of 

oncogenic proteins including BRAF and TGF-β receptors 44,45. In melanoma, HSP90 levels have been 

found to correlate with melanoma progression metrics such as Breslow’s depth and Clark level 46. The 

effect of HSP90 inhibition on cell viability seems to depend on MITF, which is a master regulator in 

melanoma cells that allow phenotype switching between distinct states ranging from arrested to highly 
invasive or highly proliferative phenotypes 34,37,38. TGF-β induces EMT across many cancer entities 47, 

and has inhibitory downstream effects on MITF expression 48,49. The sensitisation of epithelial cells via 

pretreatment with TGF-β suggests that TGF-β might regulate MITF in epithelial cells to allow switching 

to an invasive state, thereby rendering them more vulnerable to luminespib. 

 
The exact mechanisms through which mesenchymal-like melanoma cell lines respond better to HSP90 

inhibition remain elusive. They may be revealed by considering common mechanisms between the two 

compounds that were identified by our framework in conjunction with luminespib, namely the GSK3β 
inhibitor CHIR-99021 and secondly, the non-selective multi-kinase inhibitor staurosporine. Potentially, 

the downregulation of TGF-β signalling might be the common link between these inhibitors.  
 
In conclusion, we demonstrated that the pharmacogenomic assessment of EMT markers with predictive 

and causal modelling can predict drug susceptibilities and reveal relevant tumour biology in cancer cell 

lines. We anticipate that considering additional parameters of EMT-like phenotype transitions, such as 

cell morphology and proteomics, will increase mechanistic insights to EMT and its impact on drug 
responses. These and other types of follow-up studies may ultimately enable the selective targeting of 

transitioned cancer cells from the primary tumour or circulating tumour cells to prevent dissemination 

and metastasis. 

 

Methods 
Drug response data  
The drug response data from the Genomics of Drug Sensitivity in Cancer (GDSC) was obtained from 

its release 8.4 under https://ftp.sanger.ac.uk/project/cancerrxgene/releases/. Both GDSC1 and GDSC2 

datasets were used in this analysis, using the half maximal inhibitory concentration log(IC50) and area 
under the curve (AUC) as metrics for quantifying drug responses. This resulted in 700 drug response 

profiles from 544 unique compounds. The Cancer Therapeutic Response Portal (CTRP) drug response 

data was downloaded from DepMap (https://depmap.org/portal/) contained in the file 
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‘CTRPv2.0_2015_ctd2_ExpandedDataset.zip’, which included 545 drug response profiles from 496 

unique screened compounds. 

 

Somatic mutations and copy number alterations 
The GDSC project has previously compiled a selection of high-confidence cancer driver genes, 

including somatic mutations and copy number alterations, available under 

http://www.cancerrxgene.org/downloads/bulk_download. These binary matrices comprised the somatic 

mutational status for each identified genetic event for all cancer cell lines, thus characterising their 

genetic landscape. They contained the status of somatic mutations from 218 cancer genes and 802 

copy number segments of 775 cancer cell lines across 31 cancer types. 

 

Gene expression profiling and cancer subtypes 
The GDSC RMA-processed Affymetrix array gene expression data was downloaded from 

https://www.cancerrxgene.org/gdsc1000/GDSC1000_WebResources//Data/preprocessed/Cell_line_R

MA_proc_basalExp.txt.zip, containing 781 cell lines for our investigated cancer types. The CCLE log2 

transformed RNA-seq gene expression data was downloaded from DepMap 

(https://depmap.org/portal/) contained in the file ‘OmicsExpressionProteinCodingGenesTPMLogp1.csv’ 

(22Q4). The BRCA (PAM50) 29 and SKCM 39 subtype annotations were obtained from the 

supplementary material of Jaaks et al. (Table S2) 50 and Warren et al. 51, respectively. 

 
EMT scores 
We quantified EMT in 27 cancer types that had > 5 cancer lines available using four established 

methods, i.e. Mak et al. 8 (MAK), gene set variation analysis 21 (GSVA), Tan et al. 7 (TAN) and 

Tagliazucchi and Wiecek et al. 10 (TW). For the MAK EMT score, we ranked genes based on their 

Pearson’s correlation to four EMT marker genes, i.e. CDH1, CDH2, VIM and FN1. The genes were then 

ordered by their respective correlation coefficients and the top 25 genes highly correlated to CDH1 

expression were selected as ‘epithelial’ marker genes, whereas the top 25 genes that were highly 
correlated to each respective mesenchymal gene were grouped as ‘mesenchymal’ markers, resulting 

in EMT gene signatures comprised of all unique genes from the 25 epithelial and 75 mesenchymal 

markers for each cancer type. For each cell line, the EMT score was then calculated by the difference 

in mean expression levels of mesenchymal and epithelial markers. 

 

For the GSVA EMT score, the ‘msigdbr’ R package was used to queue gene sets for the subsequent 

gene set variation analysis using the ‘GSVA’ R package, which yielded gene set enrichment scores 

from the EMT gene set for each cell line 9. For the TAN EMT score, we downloaded the provided tables 
in their supplementary material (Table S4C 7) and extracted the scores from their set of cancer cell 

lines. Similarly, for the TW EMT scores, we used the provided supplementary tables in their 

supplementary material to extract scores (Source data 10). All EMT scores are supplied in 

Supplementary Data 1 and Supplementary Data 6. 
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Predictive modelling and ablation study 
Drug responses denoted by 𝑦 and quantified by log(IC50) and AUC values were modelled by the EMT 

score 𝑠 and somatic alterations 𝒙 = {𝑥!, . . . , 𝑥"}, consisting of 𝑚 binary encoded genetic alterations. The 

model was specified by 

𝑦 = 𝛼 + 𝜷𝒙 + 𝛾𝑠 + 𝑒, (1) 

with intercept 𝛼, confounder coefficients 𝜷, EMT coefficient 𝛾 and the error term 𝑒. The python package 

‘sklearn’ was used to fit the regression model with lasso penalty and cross-validation for choosing the 

optimal penalty hyperparameter for each compound, cancer type and EMT score separately. For 

benchmarking the model performance, we performed 5-fold cross-validation with 5 repetitions. The 
Pearson’s correlation (r) between predicted and ground truth response was calculated on the test set 

to quantify model performance for each of the five folds and five initialisations.  

 

An ablation study was conducted to prioritise drugs and cancer types for which EMT is suggested to 

contribute to the drug response phenotype. It was performed by refitting the models with removed EMT 

score 𝑠 and recording its performance with the same splits. To compare the model performances of the 

full versus the model with ablation of	 𝑠, a t-test for resampled performance metrics was used for 

assessing significant decreases of Pearson’s r across all the performances from the 25 models 52. The 

resulting p-values were corrected for multiplicity using the Benjamini-Hochberg false discovery rate 

(FDR) method 53 for each cancer type and EMT score separately. We found 32 compounds with FDR 

< 0.2 across six cancer types. In the main manuscript, we focused on five compounds that showed 

robustly significant performance differences in at least three out of eight possible models (4 EMT scores 

× 2 response readouts). 

 

We only performed modelling if at least 25 cell lines for a given cancer type and drug were observed in 

the screening experiment. Furthermore, for modelling IC50 values, we did not consider models for which 

> 70% of IC50 values for a given drug and cancer type were extrapolated considerably beyond the 
maximum tested concentration cmax, i.e. IC50 > 2cmax. The full results are supplied in Supplementary 
Data 2. 

 

Causal modelling 
Double machine learning (DML) is often used for estimating treatment effects on observed outcomes. 

It consists of two stages, (1) learning the propensity and outcome models as nuisance functions to 

extract their residuals, and (2) regressing outcome residuals on treatment residuals to obtain valid 

treatment effects and confidence intervals (CI) 25,26. Accordingly, we estimated the causal component 
of EMT by fitting a causal forest 27 in conjunction with DML for each drug, cancer type and EMT score, 

implemented in the CausalForestDML method within the python package ‘econml’ 28. The two nuisance 

functions were fitted using the same lasso regression model as used above. Thereby, we modelled the 

drug responses as outcome 𝑦 to estimate the effect of the EMT score 𝑠 as a continuous variable in the 

presence of the mutational background as confounders	 𝒙. The estimated effect (EMT effect) then 

assesses the impact of undergoing EMT via non-mutational tumour plasticity on drug response. Since 
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the EMT scores are continuous, the effect was given per unit of EMT change, i.e. for the interval of one 

standard deviation from the distribution of EMT scores for each cancer type. This effect and its 95% CI 

was compared with the validation experiments. The full results are supplied in Supplementary Data 2. 

 
Transcription factor and gene ontology enrichments 
We sought to identify enrichments of genes correlated to drug responses in transcription factor (TF) 

targets and Gene Ontology (GO) biological processes from the transcriptional background of cancer 

cell lines. For a given drug response and transcriptomic profile within a given cancer type, we performed 

differential gene expression between continuous drug responses using linear models implemented in 

the ‘limma’ R package. The differentially expressed genes (FDR < 0.1) were then used as query genes 

for a gene set enrichment analysis with the ‘enrichR’ R package, for which we tested gene sets 

consisting of curated TF target genes 54 as potential upstream regulators of EMT and biological 
processes in the GO knowledge base 55. We only considered the gene set positively correlated with 

drug response and its top enriched TF and the top two enriched GO terms by their adjusted p-values 

including ties in Table 1, while the full results are supplied in Supplementary Data 3 for TFs and 

Supplementary Data 4 for GO terms. 

 

LINCS transcriptional signatures 
The transcriptional signatures of the Library of Integrated Network-Based Cellular Signatures (LINCS) 

program contain sets of genes with up- and down-regulated gene expression levels upon chemical or 
genetic perturbations 40. Using the CLUE knowledge base (https://clue.io/lincs) and its provided API, 

we retrieved the signatures of luminespib for two SKCM cell lines, i.e. mesenchymal-like A375 and 

epithelial-like SK-MEL-28. We aggregated the 100 up- and down-regulated genes from all available 

signatures for cell lines. Then, we used these genes as a query for a gene set enrichment analysis with 

the ‘enrichR’ R package for each cell line to test for enrichments of GO biological processes. For 

staurosporine and CHIR-99021, only mesenchymal-like A375 cells were available. We used the 

overlapping signature genes of the transcriptional signatures of luminespib in A375 cells as a query for 
the same enrichment analysis in order to check for common mechanisms between the three 

compounds. We only considered the top two enriched GO terms by their adjusted p-values including 

ties in Table 1, while the full results are supplied in Supplementary Data 5. 

 

Cell culture 
SK-MEL-5 (source: ATCC), A375 (source: ATCC), RPMI-7951 (source: DSMZ) were cultured in Gibco 

Dulbecco's Modified Eagle Medium (DMEM) supplemented with 10% Fetal Bovine Serum (FBS) and 

1% Penicillin-Streptomycin (Pen-strep) (10000 U/mL). IGR-37 (source: DSMZ) was cultured in Gibco 
DMEM supplemented with 15% FBS 1% Pen-strep. To induce EMT based on previous literature 17, the 

media were supplemented with 5 ng/mL TGF-β1 (R&D Systems 7754-BH/CF) for 7 days. 
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Luminespib treatment 
10,000 cells in 100 µL medium per well were seeded in 96-well opaque, white, flat-bottom plates. After 

the cells were allowed to attach at 37 ℃, luminespib (Selleck-Chem: S1069) dissolved in DMSO was 

added into the wells at the indicated concentrations and 0.5% DMSO. The negative control wells were 

treated with 0.5% DMSO alone, whereas the blank wells contained only the media. The plates were 

incubated for 72h before the CellTiter-Glo® 2.0 Cell Viability Assay (Promega: G924A) was performed 

following the manufacturer’s protocol. Luminescence was measured using the Perkin Elmer EnVision 
2104 Multilabel Plate Reader.  

 

Dose-response analysis 
Cell viability (𝑣) (capped between 0 and 1) was calculated with intensities from blank (𝐼#), negative 

control (𝐼$%) and luminespib treatment (𝐼&) wells with 

𝑣 =
𝐼& −	𝐼#
𝐼$% −	𝐼#

. (2) 

Dose-response curves were fitted and IC50 values were calculated using the four-parameter log-

logistic (LL.4) model in the R package ‘drc’ 56 and AUC values were calculated using the R package 

‘PharmacoGx’ 57. The results are supplied in Supplementary Data 7.  

 
Code accessibility 
The source code for the presented analysis is available at https://github.com/mendenlab/emtpb. 
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The Oncology Biomarker Discovery
framework reveals cetuximab and
bevacizumab response patterns in
metastatic colorectal cancer

Alexander J. Ohnmacht1,2,10, Arndt Stahler3,10, Sebastian Stintzing 3,4,10,
Dominik P. Modest 3, Julian W. Holch4,5, C. Benedikt Westphalen 5,
Linus Hölzel1, Marisa K. Schübel1,2, Ana Galhoz1,2, Ali Farnoud1, Minhaz Ud-Dean1,
Ursula Vehling-Kaiser6, Thomas Decker7, Markus Moehler8, Matthias Heinig1,
Volker Heinemann5 & Michael P. Menden 1,2,9

Precisionmedicine has revolutionised cancer treatments; however, actionable
biomarkers remain scarce. To address this, we develop the Oncology Bio-
marker Discovery (OncoBird) framework for analysing the molecular and
biomarker landscape of randomised controlled clinical trials. OncoBird iden-
tifies biomarkers based on single genes or mutually exclusive genetic altera-
tions in isolation or in the context of tumour subtypes, and finally, assesses
predictive components by their treatment interactions. Here, we utilise the
open-label, randomised phase III trial (FIRE-3, AIO KRK-0306) in metastatic
colorectal carcinoma patients, who received either cetuximab or bevacizumab
in combination with 5-fluorouracil, folinic acid and irinotecan (FOLFIRI). We
systematically identify five biomarkers with predictive components, e.g.,
patients with tumours that carry chr20q amplifications or lack mutually
exclusive ERK signalling mutations benefited from cetuximab compared to
bevacizumab. In summary, OncoBird characterises the molecular landscape
and outlines actionable biomarkers, which generalises to any molecularly
characterised randomised controlled trial.

Precision medicine aims to tailor therapeutic interventions to specific
patient subgroups defined by predictive biomarkers detected in
tumours. Accordingly, strategies are required to identify such patient
subgroups systematically1. For performing subgroup analysis and

exploratory biomarker discovery, the European Medicines Agency
(EMA) has provided specific guidelines2. According to these, biological
knowledge should underpin subgroup definitions, and subgroup-
specific effects in late-stage clinical trials should still be interpreted
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with caution owing to the exploratory and retrospective nature of the
analyses. For this purpose, a large number of computational methods
have been proposed and discussed3–5, e.g., tree-based methods using
recursive partitioning6–8, virtual twins9, outcome weighted
methods10,11, causal forests12 and metalearners for estimating hetero-
geneous treatment effects13. However, most of these computational
methods neglect cancer biology, i.e., exploiting the molecular land-
scape of a clinical trial and customisingmodels to cancer subtypes and
mutational patterns.

Clinical outcomes of patients with metastatic colorectal cancer
(mCRC) significantly improved upon the introduction of targeted
treatments, including anti-EGFR and anti-VEGF directed monoclonal
antibodies such as cetuximab and bevacizumab, respectively14.
Tumours of colorectal cancer patients were shown to exhibit, for
instance, either KRAS or NRAS mutations (referred to as RAS muta-
tions) with a rate of about 50%, which tend to occur mutually
exclusive15,16. These RAS mutations are clinically approved predictive
biomarkers of resistance against anti-EGFR directed monoclonal anti-
bodies such as cetuximab17. Bevacizumab has been reported to
improve progression-free survival in first-line mCRC trials18; however,
no comparable biomarker has been depicted yet.

In this study, we focused on the open-label randomised phase III
clinical trial FIRE-3. Here, patients with KRAS exon 2 wild-type mCRC
were randomised to receive either cetuximab or bevacizumab in
combination with 5-fluorouracil, leucovorin and irinotecan (FOLFIRI)
as a first-line regimen. Several retrospective subgroup analyses
revealed potential prognostic and predictive biomarkers based on
tumour DNA and clinical characteristics, such as the relevance of the
molecular status, i.e., alterations other than KRAS exon 2, such asKRAS
exon 3-4, NRAS exon 2-4 and BRAF V600E, or primary tumour
sidedness19–23. For example, targeting EGFR in RAS wild-type mCRC
tumours located in the left hemicolon (left-sided) was shown to be
beneficial, whilst RAS wild-type tumours located in the right colon
(right-sided) were less likely to respond24. Additionally, in the more
recent FIRE-4.5 study, it was demonstrated that patients with BRAF
V600E mutant tumours may benefit from the treatment with 5-fluor-
ouracil, oxaliplatin, leucovorin and irinotecan (FOLFOXIRI) backbone
plus bevacizumab25, whereas in contrast, thesepatients lacked benefits
from cetuximab26,27. This hints towards tumour subtype-specific
interactions and alternative mechanisms to acquire EGFR inhibitor
resistance28.

Previously proposed tumour subtypes in colorectal adenocarci-
noma are based on the gene expression-derived consensus molecular
subtypes (CMS) and could identify subtypes that reflected distinct
tumour biology29. Recently, the prognostic value of CMS has been
confirmed in the FIRE-3, CALGB/SWOG 80405 and AGITGMAX clinical
trials for FOLFIRI combined with either cetuximab or
bevacizumab21,30,31. In particular, CMS4 patients with RAS wild-type
have shown a significantly longer overall survival when treated with
cetuximab compared to bevacizumab in metastatic disease21. How-
ever, the clinical translation of the CMS classification of colorectal
cancer is still in its infancy and is further investigated in multiple
clinical trials32. These sparse results have illustrated that modelling
interactions between somatic alterations and tumour subtypes can
yield insights into complex biomarkers and highlight the urgent need
for computational frameworks to systematically decipher the mole-
cular landscape, tumour subtypes and biomarkers. Thus, we hypo-
thesised that predictive response biomarkers may be revealed by
systematically deconvoluting cancer genetic events and tumour sub-
types within a clinical trial.

Here, we present the Oncology Biomarker Discovery (OncoBird)
framework, which empowers the systematic identification of action-
able biomarkers for clinical trials in oncology. OncoBird is publicly
available as a software package at https://github.com/MendenLab/
OncoBird and a demo run is available at https://codeocean.com/

capsule/9911222/tree/v1. Furthermore, users can run a graphical user
interface within a docker container (Supplementary Fig. 1).

The OncoBird workflow is divided into five distinct steps: it sys-
tematically (1) investigates the molecular landscape of a clinical trial,
i.e., copy number alterations, somatic mutations, mutually exclusive
patterns and predefined tumour subtypes; (2) identifies biomarkers
within a treatment arm based on genetic alterations, and (3) in relation
to the predefined tumour subtypes; consecutively, (4) evaluates their
predictive component across treatment arms; and finally, (5) it com-
prehensively corrects for multiple hypothesis testing and adjusts
treatment effects of biomarkers based on resampling methods. To
enhance the biological signal, this analysis integrates the molecular
and biomarker landscape of cancer clinical trials by customising
models to established cancer subtypes and mutational patterns. In
essence, OncoBird yields subtype-specific biomarkers with treatment
benefits in an interpretable and transparent manner and therefore
operates complementary to existing methods. The utility of OncoBird
is exemplified by the application to the FIRE-3 clinical trial, generalises
to the ADJUVANT clinical trial33–35, and in fact, would generalise to any
molecularly characterised randomised controlled trial (RCT) in
oncology.

Results
OncoBird is applicable to RCTs accompanied with molecular char-
acteristics, including genetic sequencing panels which yield copy
number alterations and somatic driver mutations (Fig. 1a, b). In addi-
tion, a second layer of stratification can be supplied in the form of
predefined tumour subtypes (Fig. 1a). Then, OncoBird systematically
assesses the genetic landscape in the context of tumour subtypes
(Fig. 1c) and outlines the biomarker landscape across multiple clinical
responses (Fig. 1d), i.e., time-to-event data (overall or progression-free
survival; “Methods”), and binary variables capturing treatment success
(objective response rate; “Methods”).

Here, we leveraged the FIRE-3 RCT, including 752 mCRC patients
who have been treated with FOLFIRI and either cetuximab or bev-
acizumab. We defined tumour subtypes based on CMS21, and tumour
sidedness, i.e., left- or right-sidedmCRC. In addition, 373 tumourswere
genetically characterised, i.e., the mutational status of 277 frequently
altered cancer genes. To reveal the biomarker landscape,weemployed
the following stratification and modelling strategies (Supplementary
Data 1; “Methods”): We first investigated each alteration for stratifying
patients by their prognosis within each treatment arm (Fig. 1e). Con-
secutively, we inspected alterations in tumour subtypes (Fig. 1f),
revealing subtype-specific biomarkers. Finally, we tested for treatment
interactions to reveal biomarkers with predictive effects (Fig. 1g).
Importantly, subtypes and genetic alterations ought to be indepen-
dent of the treatment assignment. The molecular landscape and indi-
vidual treatment arm analysis could be applied to any trial design
without limitations.

Exemplified with a well-established biomarker of cetuximab
response17, RAS wild-type mCRC patients showed longer overall sur-
vival (Fig. 1h; p =0.0002, HR =0.53 [0.38–0.73]). Consistent with a
previous study36 and more recently defined treatment guidelines for
mCRC37, the cetuximab overall survival (OS) benefit for patients with
RAS wild-type tumours was conserved in left-sided tumours (Fig. 1i;
p = 7.6 × 10−5, HR =0.44 [0.29–0.66]). Furthermore, we observed
interactions between RAS mutations and the treatment arm in left-
sided tumours (pint = 0.07): Cetuximab remained superior to bev-
acizumab in RAS wild type and left-sided tumours (Fig. 1j; p =0.05,
HR =0.73 [0.52–1.00]) in terms of OS, whilst bevacizumab and cetux-
imab achieved comparable OS for patients with RAS mutant and left-
sided tumours (Supplementary Fig. 2; p =0.32, HR= 1.22 [0.85–1.75]).

Whilst we particularly focused on the FIRE-3 trial in colorectal
cancer, we also demonstrate the generalisability of OncoBird by
applying it with the same default biomarker thresholds to the
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ADJUVANT clinical trial (“Methods”), which explored gefitinib in non-
small cell lung cancer (NSCLC)33–35. The ADJUVANT study reported
predictive components of five alterations, i.e., TP53 mutations, RB1
alterations and copy number amplifications of NKX2-1, CDK4 and
MYC35. Four out of five biomarkers were concordantly identified for
disease-free survival with OncoBird (FDRint < 0.2; Supplementary
Data 2; Supplementary Fig. 3–6). In addition, OncoBird suggests that
the mutual exclusivity patterns play a role in the biomarker landscape
of NSCLC (Supplementary Fig. 3c, d). In more detail, we observed
gefitinib benefits in tumours that were characterised by mutations in
either TP53, SMAD4 or CDK4 amplifications (p = 0.0002, HR =0.37
[0.21–0.63]; SupplementaryData 2; Supplementary Figs. 5c and6a), for
which the resampling-based adjustment of the conditional average
treatment effect yielded padj = 0.001 with HR =0.32 [0.14–0.86] (Sup-
plementary Data 2; “Methods”). These findings highlight the accessi-
bility, reproducibility and interoperability of OncoBird.

The molecular landscape of the FIRE-3 clinical trial
Leveraging OncoBird, we assessed the genetic landscape of patient
tumours in the FIRE-3 clinical trial. In total, 373 tumours were
genetically characterised, including 31 frequently altered cancer
genes observed in at least 12 patients (Fig. 2a). We observed
amplifications in chromosome arm 20q (chr20q) in 74/373 tumours
(19.8%), which includes SRC, TOP1, BCL2L1, ZNF217, AURKA, GNAS
and ARFRP1 (Fig. 2a). Indeed, chr20q amplifications have been
reported to define a distinct subtype of left-sided colon cancers38. In
addition, we identified 39 mutually exclusive somatic alterations
(gene modules) using the Mutex algorithm (Fig. 2b; “Methods”)39,
thus grouping low frequent but functionally similar somatic events
within a signalling pathway. We could confirm that chr20q amplifi-
cations were mutually exclusive to somatic mutations in the ERK
signalling pathway (KRAS, NRAS or BRAF; p = 0.0002, Fisher’s
exact test).
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In addition, we analysed 451 gene expression profiles and showed
consistency with their derived CMS subtypes (Fig. 2c), whilst the pri-
mary tumour side displayed a heterogeneous gene expression pattern
(Fig. 2d). Right-sided tumours were particularly enriched in CMS1
tumours (p = 0.009, hypergeometric test; Supplementary Fig. 7) and
depleted in CMS2 tumours (p = 0.007, hypergeometric test; Supple-
mentary Fig. 7).

The concordance between right-sided tumours andCMS1 (Fig. 2e)
was reflected by genetic alterations thatwere enriched in both tumour
subtypes. Microsatellite instabilities (MSI) and somatic mutations in
BRAF and RNF43were enriched in both CMS1 and right-sided tumours
(FDRmol < 0.05, hypergeometric test). Additionally, mutations in
PIK3CA, FAM123B and KRAS were only associated with right-sided
tumours (Fig. 2e; FDRmol < 0.05, hypergeometric test). In contrast, the
similarity of left-sided tumours andCMS2 (Fig. 2f)was characterisedby
mutations in APC, TP53 and chr20q amplifications (SRC, TOP1, BCL2L1,
ZNF217), which were all significantly enriched in both left-sided and
CMS2 tumours (Fig. 2g, h; FDRmol < 0.05, hypergeometric test).
Somatic mutations in PTEN, ARID1A, ATM, LRP1B, BRCA2 and NF1 did
not show a preference for a particular primary tumour side, but were
enriched in CMS1 tumours (Fig. 2h), and were associated with an
increased tumour mutational burden (p =0.008, p =0.002, p =0.017,
p =0.0001, p =0.010 and p = 0.051, respectively, Fisher’s exact test).

In summary, leveraging OncoBird and investigating patterns of
genetic events in tumour subtypes revealed meaningful tumour biol-
ogy. For example, mutations of either BRAF or KRAS promote ERK
signalling and therefore occur mutually exclusive. BRAF mutations
were predominantly found in CMS1, but nevertheless, 27 out of 53
BRAFmutant tumours were distributed amongCMS2-4. Therefore, it is
of utmost importance to gain an enhanced understanding of the
molecular landscape of mCRC prior to the interpretation of bio-
markers, which is further empowered by OncoBird.

Genetic biomarkers of cetuximab
First, independent of tumour subtypes, we assessed single genes and
mutually exclusive gene modules (Fig. 2a, b) as biomarkers for cetux-
imab. For this, we leveraged Cox proportional hazards regression and
logistic regression models (“Methods”), considering overall survival
(OS; Fig. 3a–h), progression-free survival (PFS; Supplementary Fig. 8)
and the objective response rate (ORR; Supplementary Fig. 9). We
quantified effect sizes by hazard ratios (HR) for survival data and odds
ratios (OR) for binary data including 95% confidence intervals (Sup-
plementary Data 3).

The clinically established resistance biomarkers of cetuximab
were recovered, i.e., mutations in RAS (either KRAS or NRAS) referred
to a poorer OS in the cetuximab treatment arm (Fig. 1h; p =0.0002,

Fig. 2 |Molecular landscape of the FIRE-3 clinical trial. aOncoprint of 373mCRC
tumours, including mutations and copy number alterations detected in more than
12 tumours. b The mutually exclusive alteration patterns were derived with the
Mutex algorithm. Gene expression profiles of 451 mCRC tumours are annotated by
c the consensus molecular subtypes (CMS) and d the primary tumour side. e Venn

diagram showing all enriched somatic alterations for CMS1 and right-sided
tumours, and f enriched somatic alterations for CMS2 and left-sided tumours.
g Frequently altered cancer genes tested for enrichment in left- or right-sided
tumours, andh tested against CMS subtypes using one-sided hypergeometric tests.
Source data for the figure panels are provided as Source Data file.
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HR= 1.90 [1.36–2.65], FDRcet < 0.1). In addition, we confirmed that
BRAF mutations are mutually exclusive to RAS mutations (Fig. 2b;
p =0.0008, Fisher’s exact test), and both contributed to a poor OS
when treated with cetuximab (Fig. 3b; p = 5.7 × 10−7, HR = 2.29
[1.65–3.16], FDRcet < 0.1), which has been consistently observed in an
independent cohort40.

Most resistance biomarker modules grouped mutations in KRAS
and BRAF (FDRcet < 0.1). In addition, we found a genemodule including
mutations in SOX9 andMYC amplifications, for whichmutant tumours
displayed aworse prognosis based onOS (Fig. 3d, e;p =0.02, HR = 1.50
[1.07–2.37], FDRcet < 0.1). By inspecting their oncoprint (Fig. 3f), 27/59
tumours harboured mutations in either SOX9 or MYC and were wild-
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type in either BRAF, KRAS or NRAS, hinting towards an alternative
cetuximab resistance mechanism.

In addition, we foundTOP1 amplifications to be a strong predictor
of a prolonged OS for treatment with cetuximab (Fig. 3c; p = 0.005,
HR =0.50 [0.30–0.81], FDRcet < 0.1). In fact, we could identify multiple
co-amplifications that showed prognostic value for the cetuximab
treatment arm, which are located on chromosome 20q. Among the
most predictive amplifications for a longer OS were SRC, TOP1, AURKA
and ARFRP1 (Fig. 3g–i; Supplementary Data 3). Consistent trends were
observed with SRC amplifications in PFS (p =0.10, HR =0.69
[0.44–1.07], median PFS wild-type tumours 9.6 months vs mutants
11.1 months) and ORR (p =0.18, OR =0.45 [0.14–1.45], ratio ORR wild-
type 0.66 vs mutant tumours 0.83).

Genetic biomarkers of bevacizumab
Analogously to the cetuximabbiomarker analysis, for thebevacizumab
treatment arm, we also built Cox proportional hazards regression
models (“Methods”) applied to OS (Fig. 3j–l; Supplementary Fig. 10)
and PFS (Supplementary Fig. 11), and logistic regression models for
ORR (Supplementary Fig. 12). For exploring bevacizumab biomarker
trends, we employed a lenient threshold of FDRbev < 0.3, which devi-
ates from the default setting (“Methods”). The mutually exclusive
module of KRAS and BRAF mutations showed lower OS (Fig. 3j, k;
p =0.01, HR = 1.50 [1.10–2.04], FDRbev < 0.3), which is consistent with
literature reports41,42. A better predictor for poor OS was the APC wild-

type status for tumours treatedwith FOLFIRI plus bevacizumab (Fig. 3j,
l; p =0.01, HR = 1.69 [1.14–2.50], FDRbev < 0.3).

Subtype-specific biomarkers of cetuximab and bevacizumab
The previous analyses focused on genetic biomarkers in isolation,
whilst here, we investigated them within the context of tumour sub-
types (“Methods”). In FIRE-3, tumour subtypes are defined as either
left- or right-sided tumours, or alternatively, classified according to the
consensus molecular subtypes, i.e., CMS1-4 (“Methods”)29. Here, we
tested stratifications based on each single gene or genemodule within
tumour subtypes for OS (Fig. 4a, b), PFS (Supplementary Fig. 13) and
ORR (Supplementary Fig. 14).

In total, we found 38 subtype-specific biomarkers of cetuximab
forOS (FDRcet < 0.1; “Methods”). In particular, we recovered favourable
OS of CMS2 patients treated with cetuximab (Fig. 4a), if their tumours
additionally carried chr20q amplifications, i.e., ARFRP1 (Fig. 4c;
p =0.01, HR = 0.32 [0.13–0.77], FDRcet < 0.1), TOP1 (Supplementary
Fig. 15a; p = 0.01, HR =0.34 [0.15–0.74], FDRcet < 0.1) and SRC (Sup-
plementary Fig. 15b; p = 0.01, HR =0.37 [0.17–0.78], FDRcet < 0.1).
Additionally, CMS4 KRAS mutant tumours treated with cetuximab
showed worse OS (Fig. 4d; p =0.002, HR = 2.60 [1.44–4.70],
FDRcet < 0.1) and PFS (Supplementary Fig. 13a, c).

For reporting bevacizumab biomarker trends, we employed a
lenient false discovery rate (FDRbev < 0.3), which deviates from the
conservative OncoBird default setting (“Methods”). Tumours with
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contains the source data for the figure panels and the sample sizes of the con-
ducted statistical tests.
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KRAS mutations classified as CMS2 tended to show worse OS when
treated with bevacizumab (Fig. 4e; p =0.004, HR = 2.33 [1.31–4.15],
FDRbev < 0.3). In contrast, KRAS mutated tumours classified as CMS1
tended to show a longer OS compared to wild-type tumours when
treated with bevacizumab (Fig. 4f; p = 0.03, HR =0.33 [0.12–0.93],
FDRbev < 0.3).

Predictive components of biomarkers
For assessing the predictive component of response biomarkers, here,
we compared the cetuximab and bevacizumab treatment arms against
each other by focusing on interactions between genetic alterations in
the context of tumour subtypes (“Methods”). Subsequently, we com-
pared the prognosis of both inhibitors for each subgroup according to
the interaction biomarkers, thus assessing potential treatment bene-
fits. In addition, we corrected the conditional average treatment
effects in the identified subgroups using resamplingmethods toobtain
multiplicity-adjusted p-values and bias-corrected confidence intervals
(“Methods”). The results were summarised for OS (Fig. 5a, b) and PFS
(Supplementary Fig. 16), whereas no significant interactions were
detected for ORR. In total, we found five putative interactions (Sup-
plementary Data 4; FDRint < 0.2; “Methods”). For reporting other bio-
marker trends, we also included summary statistics of 57 subgroups
with a lenient threshold of FDRint < 0.6, which deviates from the
default setting (Supplementary Data 3).

For example, we found predictive value of chr20q amplifications
in CMS2 tumours treated with FOLFIRI plus cetuximab (Fig. 5a, b),
which is evident by the significant interactions of TOP1 (pint = 0.07,
FDRint < 0.2) and ARFRP1 (pint = 0.01, FDRint < 0.2). ARFRP1 amplifica-
tions showed the largest predictive component among the chr20q

amplifications. Accordingly, we observed longer OS in the cetuximab
treatment arm compared to bevacizumab in CMS2 (Fig. 5a, c; ARFRP1:
p =0.003, HR =0.21 [0.07–0.59], FDRint < 0.2; Supplementary Data 3).
The resampling-based adjusted treatment effect confirmed this
observation and yielded a hazard ratio in this subgroup of HR =0.21
[0.09–0.54] with padj = 0.04 (Fig. 5a, c). Previous reports have indi-
cated a prognostic value of chr20q amplifications in colorectal cancer
patients38,43, whilst OncoBird yielded additional evidence that they
harbour a predictive component.

Another interaction example was tumours with KRAS mutations
that showed CMS-specific responses. In CMS4, patients with KRAS
wild-type tumours responded better to cetuximab compared to
patients treated with bevacizumab (Fig. 5b, d; KRAS wild types:
p =0.02, HR =0.57 [0.35–0.93]; pint = 0.02, FDRint < 0.2), for which the
resampling-based adjusted treatment effect yielded HR=0.70
[0.25–2.35] with padj = 0.14 (Fig. 5b, d). Our results suggest a predictive
role of KRAS mutations in CMS4 for cetuximab, which we also identi-
fied for PFS (Supplementary Fig. 16c, d). Notably, modules containing
alterations in NRAS, BRAF and SRC showed similar statistics since only
four, eight and twelve mutant tumours were present in CMS4. Insig-
nificant but numerically longerOSwasobserved for patientswithKRAS
mutated tumours classified as CMS4 treated with bevacizumab
(Fig. 5e, KRAS mutants: p =0.24, HR =0.66 [0.33–1.31]), with a median
OS 28.3 months compared to 18.4 months when treated with
cetuximab.

In order to assess the ability of OncoBird to discover the same
biomarkers for different datasets, we applied 5-fold cross-validation
repeated five times and extracted the ten most significant biomarkers
for OS across each of the 25 models (Fig. 6a). Consistent with our
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Fig. 5 | Predictive biomarkers in the context of tumour subtypes. Overview of
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including 95% confidence intervals (CI) derived from single Cox regression models
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c ARFRP1 amplifications in CMS2 and d, e KRASmutations in CMS4. Source data for
the figure panels are provided as Source Data file.
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previous findings, genemodules containing KRASmutations for CMS4
were found in 21/25 training sets and chr20q amplifications in CMS2
were reproduced in 22/25 training sets (Fig. 6a).

Benchmarking of methods for subgroup analysis
For benchmarking OncoBird, we compared it to alternative methods
that can be used to investigate predictive biomarkers based on overall
survival. Together with OncoBird, eight algorithms and implementa-
tions were used in order to identify subgroups with differential treat-
ment effects, i.e., virtual twins (VT)9, model-based partitioning (MOB)8,
an outcome-weightingmethod (OWE)11, causal random forests (CRF)12,
policy learning (POL)44, GUIDE45 and PRISM46 (Supplementary Table 1;
“Methods”; Fig. 6b).

For the evaluation, we first derived hazard ratios for cetuximab
benefit based on OS in the subgroups according to the predicted
biomarkers for all methods across five times 5-fold cross-validation
(“Methods”). We also focused on the current treatment guidelines for
mCRC, according to which patients should receive cetuximab if their
tumours are RAS wild-type and left-sided (std; Fig. 6b)37. While the
treatment benefit was not significant for the std-positive subgroup

(Fig. 6b, median HR =0.78, pcv = 0.129), the methods that found the
highest significant benefits were OncoBird (median HR =0.74,
pcv = 0.046), POL (median HR =0.81, pcv = 0.048), MOB (median HR =
0.83, pcv = 0.048) and OWE (median HR =0.84, pcv = 0.049) ordered
by the magnitude of the hazard ratio (Fig. 6b).

Next, we leveraged the whole dataset to identify cetuximab sen-
sitivity biomarkers with each method and compared them to the
treatment guidelines. On average, 73% of methods identified cetux-
imab benefit for a patient in the std-positive subgroup, whereas only
33%ofmethods detected further benefits in the std-negative subgroup
(Fig. 6c). 7/8 (88%) methods found mutually exclusive alterations in
KRAS, NRAS or BRAF as a predictive biomarker, from which one, two
and four methods proposed this marker in conjunction with tumour
sidedness, CMS and across all patients, respectively (Supplementary
Table 1). Only 2/8 (25%) methods highlighted TOP1 amplifications as a
potential biomarker (Supplementary Table 1). This highlights that
current subgroup analysis methods mostly recover standard clinical
practice, whilst sparsely identifying complementary predictive sub-
groups, thus highlighting the unmet need for cancer biology-driven
frameworks such as OncoBird.
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Fig. 6 | Stability analysis and benchmark with other methods. a The ten most
significant biomarkers across 25 models of five times repeated 5-fold cross-vali-
dation. b Boxplots of treatment effects in terms of hazard ratios for the predicted
subgroups in the 25 test sets for the benchmarked methods, including standard
treatment guidelines (std) and overall across all patients (null). The centre line
depicts the median; the box represents the inter-quartile range (IQR) and the
whiskers the interval 1.5 times the IQR. c Oncoprint showing identified subgroups

for thebenchmarkedmethods, including std,CMSsubtypes, tumour sidedness and
mutations in KRAS and NRAS. d Forest plot showing hazard ratios including 95%
confidence intervals (CI) and amount of patients in the subgroup for which stan-
dard treatment is not recommended and which was found by subgroup analysis
methods (new-std-negative). A Source Data file is provided, which contains the
source data for the figure panels and the sample sizes of the conducted
statistical tests.
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Ideally, subgroup analysis should reveal subgroups with high
treatment effects for refining treatment strategies and recover sub-
groups in the standard treatment strategy. Therefore, we evaluated the
newly proposed subgroup for which standard treatment is not
recommended (new-std-negative) for each method. We derived the
hazard ratios for cetuximab benefit based on OS for all methods in the
new-std-negative subgroups (Fig. 6d). Lower hazard ratios in new-std-
negative patients indicate the discovery of off-label subgroups for
which cetuximab is currently not recommended (Fig. 6d). Accordingly,
OncoBird showed the numerically lowest hazard ratio HR =0.57
(p = 0.16, N = 29) for the new-std-negative subgroup compared to all
other methods (Supplementary Table 1; Fig. 6d).

In summary,many of the computationalmethods reproduced the
clinically established biomarkers, whilst OncoBird empowers
advanced biomarker identification by thoroughly integrating biologi-
cal priors in the form of tumour subtypes. The simplicity of statistical
models leveraged in OncoBird further increases interpretability and
transparency.

Discussion
We demonstrated that OncoBird has the capabilities to characterise
themolecular and biomarker landscape of RCTs. Here exemplified, we
captured the established clinical biomarkers of FIRE-3, and proposed
five predictive biomarker hypotheses (FDRint < 0.2). The biomarkers
were based on either individual cancer genes or mutually exclusive
patterns and exploited these genetic events in the context of well-
characterised cancer subtypes. In addition, OncoBird thoroughly cor-
rects for multiple hypothesis testing and includes resampling-based
adjustments of treatment effects. In essence, OncoBird systematically
investigated the molecular landscape of the FIRE-3 clinical trial, sug-
gested biomarkers based on genetic alterations, performed a data-
driven subgroup analysis, and finally, presented the results in an
interpretable and intuitive way.

The statistical power of detecting biomarkers depends on the
amount of screened genes and subtypes, sample sizes and magnitude
of treatment effects. For example, subtype-specific analyses reduce
patient subgroup sizes, thus limiting the power for detecting interac-
tions. In order to gain statistical power to detect genetic biomarkers
with low mutational frequency, Oncobird exploits mutually exclusive
modules (“Methods”). Despite the use of resampling-based treatment
effect estimation in the found subgroups, hypotheses generated by
exploratory tools such as OncoBird ought to be replicated in inde-
pendent clinical trials. Nonetheless, OncoBird identified promising
patient subpopulations within the FIRE-3 and ADJUVANT clinical trials
with supported biological interpretation, which indicated refined
predictive benefits in cancer subtypes.

A limitation of data-driven subgroup analysis is that these may
produce spurious results if not biologically interpretable47. To mitigate
this risk, we used established tumour subtypes with distinct tumour
biology in mCRC, i.e., here, the consensus molecular subtypes (CMS)29

and primary tumour sidedness21. Furthermore, the grouping of func-
tionally similarmutually exclusive somaticmutations in the cancer gene
sequencing panel reinforced the identification of biological signals.

Somatic mutations may drive tumour subtypes, therefore, we
systematically investigated mutational patterns within CMS1-4 and
tumour sidedness. We found the majority of BRAF mutations in CMS1
and observed a co-occurrence between CMS2, left-sided tumours and
amplifications in chr20q. In particular, CMS2 is characterised by aMYC
signalling activation29, which may be co-regulated by activation of the
co-amplifiedAURKA48.Whilewepredominantly identifiedCMS-specific
biomarkers, our results suggest that both primary tumour side and
CMS subtypes play a major role in the landscape of predictive bio-
markers. This highlights the need for OncoBird, an integrated bio-
marker discovery framework, which integrates the molecular
landscape of RCTs with its biomarkers.

Several genes were co-amplified in chr20q, i.e., ARFRP1, TOP1, and
SRC, thus determining the drivers among these biomarker candidates
is challenging. Among the prominent chr20q amplifications, TOP1was
previously proposed as a biomarker for irinotecan efficacy in meta-
static colorectal cancer49,50, which is part of the chemotherapeutic
backbone of the FIRE-3 trial. Literature suggests that TOP1 abundance
is essential for irinotecan-induced DNA double-strand breaks during
DNA replication51. Additionally, TOP1 was identified to regulate EGFR
through an endogenous interaction with the transcription factor
c-Jun52, which supports the hypothesis thatTOP1 amplificationsmaybe
the actionable biomarker. SRC has been reported to play a role in
cancer progression53,54, whereas for ARFRP1, no functional evidence
has been presented yet.

The resulting co-amplifications between these cancer genes com-
plicate the determination of the genetic driver in chr20q. To under-
stand the causality of cancer aetiologies, further efforts require
additional treatment regimes. Alternative clinical trials for metastatic
colorectal cancer often involve different chemotherapy backbones, i.e.,
fluorouracil, leucovorin, and oxaliplatin (FOLFOX) or fluorouracil, leu-
covorin, and irinotecan (FOLFIRI)30. Theuseof other therapybackbones
may unravel the role of ARFRP1, TOP1 and SRC amplifications regarding
better efficacy for patients treated with cetuximab. However, dis-
crepancies may arise due to the synergism and antagonism of the dif-
ferent chemotherapy backbones and targeted treatments55.

The prognostic potential of APC wild-type tumours for bev-
acizumab has been previously reported56, whereas OncoBird did not
yield enough evidence to support this. Indeed, a confounding factor is
the enrichment of BRAF mutations in the APC wild-type tumours
(p = 1.4 × 10−10, Fisher’s exact test). This is, 48% of APC wild-type
tumours were BRAF mutated in the bevacizumab treatment arm,
whereas in the cetuximab treatment arm, only 29%were BRAFmutated
(p = 0.13, Fisher’s exact test). Nevertheless, independently a correlation
between VEGFA expression and the mutational status of APC has been
previously observed in primary colorectal tumour samples57, sug-
gesting that within APC mutated tumours, anti-VEGF treatment may
indeed be beneficial.

Furthermore, RAS/BRAF mutations are known to harbour prog-
nostic value in terms of overall survival38,43. Furthermore, we observed
that KRAS mutations showed highly CMS-specific responses. In parti-
cular, treatment response differed for tumours classified as CMS4 by
KRAS status, showing better response for cetuximab in KRASwild-type
and for bevacizumab in KRAS mutated tumours, respectively. CMS4
has been reported to be associated with VEGF pathway activation and
is thus associated with angiogenesis29. Thus, patients with tumours
resistant towards anti-EGFR treatment may benefit from VEGF inhibi-
tion. Further exclusion of BRAF mutations did not elevate the pre-
dictive potential of KRAS mutations in CMS4. However, the statistical
power is limited by the fact that only six tumours harboured the
prognostically unfavourable BRAF V600E mutation in CMS420.

In summary, OncoBird reproduced clinically established bio-
markers and derived five hypotheses of biomarkers with predictive
roles for FOLFIRI plus either cetuximab or bevacizumab. Highlighted
examples include chr20q amplifications in CMS2 and KRASmutations
in CMS4, which may optimise patient stratification for metastatic
colorectal cancer. Leveraging OncoBird for molecular profiling in the
FIRE-3 clinical trial offered an expanded perspective on the molecular
and biomarker landscape of these patients.

In the future, we anticipate that the analysis of clinical trials will
progressively demand molecular patient tumour data, including pre-
defined subtypes, highlighting the urgent need for integrative analysis
tools such as OncoBird. Notably, OncoBird was developed for RCT
designs and is generalisable to any trial designs forwhich the intention-
to-treat population was defined before the treatment randomisation,
i.e., the treatment assignment is independent of patient character-
istics. According to this, OncoBird is applicable tomodern clinical trial
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designs based on master protocols58, i.e., basket, umbrella, and plat-
form trials if control arms are included. In an emerging landscape of
predictive molecular biomarkers in cancer, OncoBird may untangle
complex dependencies between somatic alterations and tumour sub-
types in RCTs. Furthermore, OncoBird is generalisable to any cancer
entity, thus ultimately paving the way for the next generation of pre-
cision oncology therapies.

Methods
Clinical data of the FIRE-3 clinical trial
FIRE-3 is an open-label, randomised phase III trial to compare first-line
treatment in KRAS exon 2 wild-type metastatic colorectal cancer
patients (mCRC) with either cetuximab or bevacizumab in combina-
tion with 5-fluorouracil, leucovorin and irinotecan (FOLFIRI). The
protocol and rules of conduct were previously published23,59

(NCT00433927). The trial was conducted in accordance with the
declaration of Helsinki (1996). All translational analyseswere approved
by the local ethics committee (University of Munich, registry no. 186-
15). All patients included in this analysis provided written informed
consent. 24% and 34% of the patients had female sex in the FOLFIRI
plus cetuximab and bevacizumab arm, respectively. The sex is repor-
ted according to the study protocol23,59, and gender cannot be dis-
tinguished retrospectively. The biological sex of patients (i.e., male or
female) was assigned by the study doctor of the respective trial centre
and reported to the clinical research organisation (CRO). The original
intention-to-treat populationconsisted of 752patients in total. Primary
and secondary endpoints of the FIRE-3 trial, including the median
overall survival (OS) and progression-free survival (PFS), were
expressed as months and defined as stated in the respective
articles23,59. The objective response rate (ORR) was evaluated by the
RECIST 1.0 criteria23,59.

Next-generation sequencing and genetic alterations in FIRE-3
Primary tumour tissues from 373 patients have been molecularly
characterised by next-generation sequencing (NGS) with the Founda-
tionOne® panel (Foundation Medicine, Inc., MA, USA; catalogue
number not available), which identified somatic mutations and copy
number alterations, i.e., deletions and amplifications, of 277 key cancer
genes, microsatellite instability (MSI) and tumour mutational
burden20. Somatic alterations were delivered in the form of binary
matrices, that reflect the mutant or wild-type status of a given gene
based on single nucleotide variants (SV), copy number amplifications
(AMP) and deletions (DEL). MSI is an important prognostic predictor
and enriched in CMS160, which is observed in our study, with 8 of 10
MSI-H tumours being classified as CMS1. However, MSI-H tumours are
less prevalent in metastatic disease (~5%)60. Furthermore, only six and
four MSI-H tumours were treated with bevacizumab and cetuximab,
respectively.

Gene expression profiling in FIRE-3
The genetic characterisation is complemented with gene expression
profiles from Xcel® microarrays (Almac Ltd, Belfast, UK; catalogue
number: 902016) in a subset of 451 patients. The clinical data and the
layers of molecular characterisation led to 163 and 186 patients, which
are fully characterised in the cetuximab and bevacizumab treatment
arms, respectively.

Tumour subtypes in FIRE-3
A clinically established subtype for mCRC is its primary tumour
sidedness. Left-sided tumours were located in the left hemicolon, e.g.,
splenic flexure to the rectum. In contrast, right-sided tumours were
located in the right colon, e.g., coecum to the transverse colon. In
addition, annotations for molecular subtypes of mCRC were obtained
from transcriptome data that has been previously used to classify

patients into their closest consensus molecular subtype (CMS)21,29

using the cmsclassifier package with the SSP predictor. Thereby, 24 of
out 373 patient tumours were not allocated to any CMS because of
missing transcriptomics data and were left out of the CMS-specific
analysis. The CMS classification was used as a complementary alter-
native to the primary tumour side and is currently discussed in mul-
tiple clinical settings61.

Oncology Biomarker Discovery workflow
The Oncology Biomarker Discovery (OncoBird) framework applies to
RCTs for which patients received either treatment tϵf0,1g according to
the treatment indicator T , had an associated outcome Y and can be
classified into q subtypes fs1, . . . ,sqg according to the subtype variable
S (clinical data). Additionally, patient tumours are characterised by m
candidate genetic biomarkers X =X 1, . . . ,Xm with the observed bio-
markers for patients x= x1, . . . ,xm (genetic data). The genetic data can
be used to group functionally similar genes that can be added to the
set of candidate biomarkers. Furthermore, it is possible to add addi-
tional binary features to X such as binarised copy number alterations
with appropriate cutoffs or the MSI status of a tumour. Both genetic
data (MUT) and clinical data (CLIN) are required inputs to theOncoBird
workflow (Supplementary Data 1), which is described in the following
sections. All implemented thresholds of OncoBird can be adjusted by
the user, thus empowering more lenient or stringent analyses.

Characterising the molecular landscape in clinical trials
OncoBird first examines genetic features X in tumour subtypes
fs1, . . . ,sqg independent of the treatment and patient response (func-
tion GET-MUTATIONS-IN-SUBTYPES in Supplementary Data 1). For
examining enrichment or depletion of each genetic feature in tumour
subtypes, one-sided hypergeometric tests are performed using the
‘phyper’R function. Consecutively, the resultingp-values are corrected
for multiple hypothesis testing with the Benjamini–Hochberg (BH)
method62. The FDR cutoff for this analysis step is denoted by FDRmol

and controlled at FDRmol = 0.05 as our default setting. Our method
generalises to any binary tumour characterisation, e.g., the MSI status
in FIRE-3. As a default setting, we test genetic features that were
mutated in at least ten tumours (n = 10).

Identifying mutual exclusivity
For the identification of mutually exclusive modules, we used the
Mutex algorithm39 (function GET-MUTATIONS-MODULES in Supple-
mentary Data 1). It leverages a signalling network63 collecting interac-
tions from Pathway Common64, SPIKE65 and SignaLink66 in order to
scan for common downstream effects of combinations of somatic
alterations X. The default setting only uses somatic variants that were
altered in at least ten tumours (n = 10).

Genetic and subtype-specific biomarkers
OncoBird tests single somatic alterations and previously derived
mutually exclusive somatic alterations for differential prognosis in
each treatment arm separately (function GET-TREATMENT-
SPECIFIC-BIOMARKERS in Supplementary Data 1). The patient out-
come Y T = t,S= sk

� �
for the treatment arm T = t in subtype S= sk with

k = 1, . . . ,q may be defined by survival data (OS or PFS) or a binary
variable measuring the objective response rate (ORR). Depending on
the type of outcome, this is modelled with either Cox proportional
hazards regression models or logistic regression models expressed by
their linear predictor function f x,tð Þ. Using this classical approach for
subgroup analysis, the treatment-specific regression models in sub-
types take the form

f x,tð Þ=α0j +α1jxj +
X
l

Cl ð1Þ
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Cox proportional hazards regression models for survival end-
points were implementedwith the ‘coxph’ function from the survivalR
package or logistic regression models for binary response variables
were implemented using the ‘glm’ function. We test each x= x1, . . . ,xm
first across all tumours, and subsequently in tumour subtypes
fs1, . . . ,sqg, i.e., CMS or primary sidedness. α1j is the coefficient esti-
mating the contribution of candidate biomarker j = 1, . . . ,m for patient
outcomes in the context of each treatment arm T = t in the subtype
S= sk . The predictors C1, . . . ,Cl include additional prognostic covari-
ates and their coefficients.

The p-value pα1j
derived by a Wald test from the coefficient α1j is

multiplicity-adjusted for each treatment arm t and across all bio-
markers xj with j = 1, . . . ,m for either all patients or across subtypes sk
with k = 1, . . . ,q and yields adjusted p-values epα1j

using the
Benjamini–Hochberg (BH) method62. The default false discovery rates
(FDR) are controlled at FDRα =0:1 for either treatment-specific com-
ponent α1j .

The adjustable default setting of OncoBird is to only perform
statistical tests if, for a given candidate biomarker xj and tumour
subtype sk , at least n = 10 samples were present in each mutant and
wild-type population. Additionally, OncoBird only tested alterations
for which its corresponding gene module had at least n tumours
redistributed compared to the single gene alteration.

Predictive components of biomarkers
For the subsequent comparison of treatment arms, OncoBird tests for
significant statistical interactions between treatment arms and genetic
alterations in tumour subtypes (function GET-PREDICTIVE-
BIOMARKERS in Supplementary Data 1). For that, we modelled the
outcome Y S= sk

� �
in subtype S= sk with k = 1, . . . ,q using regression

models with interactions between T and Xj which take the form

f x, tð Þ=β0j +β1jxj + β2jxjt +
X
l

Cl , ð2Þ

where the coefficients β1j and β2j estimate the prognostic and pre-
dictive component of biomarker xj in subtype sk , respectively. The p-
value pβ2j

derived with a Wald test from the coefficient β2j is
multiplicity-adjusted across allm biomarkers for either all patients or
across subtypes sk with k = 1, . . . ,q and yields BH adjusted p-values epβ2j

.
The default FDR is controlled at FDRβ =0:2 for predictive components.
The biomarker Xj in subtype sk is a putatively predictive biomarker ifepα1j

<FDRα for either t and epβ2j
<FDRβ.

Furthermore, OncoBird only performs statistical tests if for a
given genetic alteration Xj and tumour subtype sk , at least n = 10
samples were present in each mutant and wild-type population for
each treatment arm as default setting.

Resampling for correction of conditional average treatment
effects
Lastly, we estimate the conditional average treatment effect (CATE) for
the found biomarkers (function GET-PREDICTIVE-BIOMARKERS in
Supplementary Data 1). For each significant Xj in sk , there is one CATE
estimate in each found subpopulation with a positive (mutant) bio-
marker xj = 1 and negative (wild type) biomarker xj =0. In each popu-
lation, we estimate the CATE by modelling the outcome Y by

f x,tð Þ= γ0 + γ1t +
X
l

Cl , ð3Þ

where γ1 estimates the (biased)CATE in termsof either hazard ratiosor
odds ratios dependent on outcome type in the subgroup defined by
biomarker xj and subtype sk . The population with the larger absolute
estimate γ1 is used to estimate the subgroups Axj ,sk

.

For each found subgroup A, we assess the significance to the
associated CATE estimate γ1 and derive the p-value pγ1

using a Wald
test. Furthermore, we perform a multiplicity-adjustment of pγ1

and
derive honest estimates of the CATE.

The p-values are adjusted for multiplicity using a permutation-
based approach that takes into account the entire subgroup search
strategy3. For that, we permuted the treatment labels U = 1000 times
to obtain null datasets without any differential treatment effects. Next,
for each null dataset, we select significant subgroups A uð Þ for the same
thresholds and record the treatment effect p-value of the best sub-
group p uð Þ with u= 1, . . . ,U. The adjusted p-values are then given by

epγ1
=

1
U

XU
u= 1

Ifp uð Þ ≤pγ1
g p uð Þ� �

, ð4Þ

the fraction of p-values p uð Þ that are smaller or equal than pγ1
with the

indicator function I. Furthermore, we derive an honest estimate of the
treatment effect γ1. Since subgroups A are derived from the same data
as the treatment effect estimates, the estimates from the resubstitu-

tion γ1 Axj ,sk

� �
will be biased. In order to derive a bias-corrected

estimate eγ1, we use a previously proposed non-parametric bootstrap
approach9. For that, we generated B = 500 bootstrapped datasets. For

each resampled dataset b= 1, . . . ,B we estimate subgroups Â
bð Þ
xj ,sk

. The

treatment effects can then be either estimated on the b-th resampled

dataset γ bð Þ
1 A bð Þ
� �

or on the original dataset γ1 A bð Þ
� �

. The bias-

corrected CATE estimate is then given by

γ̂1 =
1
B

XB
b= 1

γ1 Að Þ+ γ1 A bð Þ
� �

� γ bð Þ
1 A bð Þ
� �� �

: ð5Þ

The 95% confidence intervals are constructed by the 0.025 and
0.975 quantiles of the bootstrapped distribution.

OncoBird parameterisation for FIRE-3
We used the function GET-MUTATIONS-IN-SUBTYPES to evaluate the
primary tumour side and CMS as tumour subtypes with the default
setting FDRmol < 0.05. In total, we performed 156 and 312 statistical
tests for the primary tumour sidedness and CMS, respectively. Using
the GET-MUTATIONS-MODULES function with default settings, we
analysed 42 genes which yielded 29 mutually exclusive modules.
Mutations in KRAS or NRAS are the established clinical biomarkers for
anti-EGFR treatment, thus we jointly modelled KRAS and NRAS as RAS
mutations resulting in 10 additional modules.

The GET-TREATMENT-SPECIFIC-BIOMARKERS function was
used with the number of metastatic sites and the information about a
prior tumour resection as added covariates C1,C2. With the OncoBird
default setting, we performed 816 statistical tests across all readouts
Y (OS, PFS and ORR), the cetuximab and bevacizumab treatment arm
and tumour subtypes, i.e., CMS1-4, left- and right-sided and across all
tumours. FDR cutoffs are employed for each treatment arm separately
and are denoted FDRcet and FDRbev for the analysis in the cetuximab
and bevacizumab treatment arms, respectively. In total, we found
92 significant associations with the default setting FDRcet/bev < 0.1. The
criteria HR < 1 and OR< 1 corresponded to a better prognosis for the
mutant tumours compared to thewild-type tumours and vice versa. To
consistently report HR < 1 and OR< 1 as beneficial risk reduction,
reciprocal values of HRs and ORs were used if wild-type tumours dis-
played a better prognosis. We represent p-values, hazard/odds ratios
with the 95% confidence intervals (CI) in square brackets and the
associated FDRs.
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In FIRE-3, the GET-PREDICTIVE-BIOMARKERS function with
default settings resulted in a total amount of 396 statistical tests across
the readouts Y (OS, PFS and ORR) and the tumour subtypes sk . FDR
cutoffs for the interaction tests across both treatment arms are
denoted by FDRint. We explored 57 associations with FDRint < 0.6 and
FDRcet/bev < 0.1 (Supplementary Data 3) and further focused on a sub-
set of five biomarkers with default setting FDRint < 0.2 for OS, i.e., two
gene modules and three single genes (Supplementary Data 4). For the
cross-validation analysis, a more lenient FDRint < 0.3 was employed,
which deviated from default setting to account for reduced sample
sizes in the training and testing splits. HRs and ORs >1 and <1 corre-
sponded to benefit with cetuximab and bevacizumab, respectively. To
report the benefits of cetuximab treatment, the reciprocal values of
HRs andORswereused in themanuscript in order to display treatment
benefits consistently with HR < 1 and OR< 1. We reported p-values and
hazard/odds ratios with the 95%CIs for the treatment comparison and
the p-values and associated FDRs for the interaction tests.

OncoBird parameterisation for ADJUVANT
The ADJUVANT clinical trial in EGFRmutant non-small cell lung cancer
(NSCLC) aimed to assess the efficacy of gefitinib versus chemotherapy
with vinorelbine and cisplatin (NCT01405079)34. The trial was pre-
viously approved by the research ethics boards of Guangdong Pro-
vincial People’sHospital and all other participating hospitals35. Of note,
58% and 59% of patients had female sex in the gefitinib and che-
motherapy arm, respectively. The sex was reported according to the
study protocol34, and gender cannot be distinguished retrospectively.
Weused the EGFR subtype, i.e., exon 19deletion or exon 21 Leu858Arg,
and the smoking history as putative tumour subtypes and clinical
endpoints were disease-free survival (DFS) and overall survival (OS).
We analysed 22 somatic alterations in 171 patients, from which 76
patients were treated with chemotherapy alone, and 95 were treated
with gefitinib. For the subsequent analysis, we used the OncoBird
default settings. The obtained results (Supplementary Data 2; Sup-
plementary Figs. 3–6) and an associated extensive report can be
reproduced in a runnable demo on Code Ocean (https://codeocean.
com/capsule/9911222/tree/v1).

Benchmarking of alternative methods with FIRE-3
For benchmarking the biomarker identification, we compared Onco-
Bird to seven competing subgroup analysis algorithms leveraging the
overall survival of FIRE-3 (SupplementaryTable 1)8,9,11,12,44–46.We formed
predictors by concatenating clinical annotations, including informa-
tion about tumour resection, number of metastatic sites, age, gender,
MSI and lung metastatic status. We added single genetic alterations
and mutually exclusive modules observed across at least ten patients
and in both investigated tumour subtypes, thus mirroring the Onco-
Bird default settings. Furthermore, we investigated interactions
between genetic alterations and tumour primary sidedness or CMS as
predictors. Subgroups for the method evaluation were formed as the
union of the subgroups showing cetuximab benefit according to the
identified biomarkers (Supplementary Table 1).

All benchmarked models were 5-fold cross-validated with five
repetitions. A univariate Cox proportional hazards model assessed
performances leveraging the treatment effect based on OS in the
subgroupswith predicted benefits according to the found biomarkers.
This included the treatment effect across the whole test set and in the
subgroup defined by the current treatment guidelines, i.e., left-sided
and RAS wild-type tumours37. The significance of the treatment effect
in the subgroups of the test set was assessed using amodified t-test for
resampled performance metrics67, denoted by pcv.

For comparing computational methods and their predicted bio-
markers, the models were fitted on the whole dataset. The para-
meterisation of these methods was followed according to the
suggested default settings unless in conflict with the above outlined

use case. For example, for tree-basedmethods, the features contained
in the resulting tree were used as biomarkers with tree depths = 2, with
a minimum subgroup size of n = 10. For the implementation of the
virtual twins method (VT)9, we used the R package randomForestSRC
with default parameters and averaged predictions over 10 times
repeated 10-fold cross-validation. Subsequently, a regression tree was
fitted to the original data. In order to perform model-based recursive
partitioning8, we used the R packagemodel4you68 using an exponential
model with default conditional inference tree control parameters. The
PRISMmethod46 was implemented in the R package StratifiedMedicine,
for which we used Cox proportional hazards regression. We used the
implementation of causal survival forests69 (CRF) in the R package grf70

for estimating conditional treatment effects. The propensity scores
were set as constant and the target estimandwas set to restrictedmean
survival time (RMST) with horizon = 100. After model fitting, variable
importance scores were extracted, and biomarkers were selected
according to predictors with significant linear projections of the con-
ditional average treatment effects (p < 0.05).Next,weemployedpolicy
learning (POL)44 to find optimal treatment regimens using the R
package policytree71. We used the 50 most important predictors
according to the CRF causal survival forest model variable importance
scores and their treatment effect estimates to produce a decision tree.

The remainingmethodswere not based on trees. For the outcome
weighted method (OWE)11, implemented in the R package
personalized72, we used a constant propensity score, lasso loss and 10-
fold cross-validation. The GUIDE method45 was available as a binary
executable under https://pages.cs.wisc.edu/~loh/guide.html. We used
Cox proportional hazards regressionwith interactions tests andmean-
based treeswith pruning. For the SIDESmethod (Rpackage SIDES)7, we
used level_control=0 and alpha=0.05.

Statistics and reproducibility
The investigators were not blinded to the randomised treatment
allocation during the data collection and outcome assessment. Since
the conducted subgroup analysis is retrospective, the sample sizes
were not predetermined. No data were excluded from the analysis.
Details of the conducted statistical tests are provided in the figure
captions, Supplementary Data 2–4 and Source Data. The results of the
statistical analysis of the ADJUVANT clinical trial are reproducible from
a demo run on Code Ocean (https://codeocean.com/capsule/9911222/
tree/v1).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The clinical data summary from the FIRE-3 clinical trial analysed in this
study has been deposited in the Pharmnet.bund online platform of the
German Federal Ministry of Health (https://portal.dimdi.de/data/ctr/O-
0329_01-2-1-B80630-20190731152224.pdf) and was published before19.
The clinical andmolecular data is available under restricted access due
to data privacy laws. The raw and processed data can be obtained
through the corresponding author at volker.heinemann@med.uni-
muenchen.de. The data from the results of OncoBird v0.1.0 executed
on the FIRE-3 trial are available in Supplementary Data 3 and Source
Data. The processed data from the ADJUVANT clinical trial is available
on Zenodo33,35. The data from the results of OncoBird v0.1.0 executed
on the ADJUVANT trial are available in Supplementary Data 2, Source
Data and on Code Ocean (https://codeocean.com/capsule/9911222/
tree/v1). Source data are provided with this paper.

Code availability
Oncology Biomarker Discovery (OncoBird) is publicly available at
https://github.com/MendenLab/OncoBird. The repository contains an
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R package as well as a Shiny application with a graphical user interface
in a local docker container (Supplementary Fig. 1). Additionally, a
demo run of OncoBird v0.1.0 used for analysis is available on Code
Ocean (https://codeocean.com/capsule/9911222/tree/v1).
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Chapter 3

Discussion

This chapter delves into a more holistic discussion of the presented results in Chapter 2 compared to the discussion
sections from each of the included articles or preprints. Thereby, Section 3.1 starts with the reiteration of the aims
and findings in Chapter 2, and subsequently provides an integrated contextualisation of the conclusions, properties
and limitations of this work that are essential for interpreting it. Drawing from the gained insights from this work,
Section 3.2 describes the shifting landscape of predictive biomarker discovery, outlines its current discourse in
the scientific literature and lays the foundation for the evolution of this field. Finally, this thesis ends with a brief
closing statement.
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3 Discussion

3.1 Conclusions

In this work, analysis frameworks using statistical and machine learning methods were designed and applied to
discover predictive biomarkers for cancer treatments leveraging molecular profiling in various preclinical and
clinical datasets.

First, it became apparent that DNA methylation may serve as viable predictive drug response biomarkers.
To demonstrate this, Section 2.1 characterised the epigenetic component of drug response and mapped out the
pharmacoepigenomic landscape of cancer. More specifically, it delivered a multi-omics integration framework
that leveraged HTS in cancer cell lines, the profiling of DNA methylation, gene expression and somatic driver
mutations in both cell lines and primary tumours for systematically building evidence of epigenetic drug response
biomarkers. Thereby, it arrived at a resource of putative DNA methylation biomarkers, reproduced anticipated
clinical associations and generated new hypotheses.

Secondly, the presented results suggested that EMT may be exploited as a putative cancer vulnerability be-
cause of its role in determining drug responses. For assessing this, Section 2.2 delivered a methodology for the
causal assessment of EMT as a predictive biomarker in cancer cell lines. It yielded a set of compounds and the
HSP90 inhibitor luminespib as the lead compound, which showed robust predictive power and high causal es-
timates across different EMT scoring methods and response readouts. Enrichments of TF target genes and GO
biological processes in both responder cell lines and transcriptional responses provided mechanistic evidence for
this association. In addition, this prediction was validated by demonstrating that EMT induction can sensitise cell
lines to luminespib, thereby providing evidence for a causal component.

Lastly, the systemic discovery of predictive biomarkers from molecular profiling in RCTs can lead to refined
patient stratifications for achieving higher drug efficacies. For this, Section 2.3 presented the OncoBird frame-
work for outlining the molecular and biomarker landscape in oncology RCTs. It prioritises actionable predictive
biomarkers through revealing molecular patterns and systematically screening for statistical interactions between
mutually exclusive somatic mutations and treatment regimes, while considering exploratory tumour CMS sub-
types or tumour sidedness as clinical standard. Its utility was assessed by benchmarking it with other commonly
employed subgroup analysis methods and current treatment guidelines in metastatic colorectal cancer, for which
it prioritised smaller subgroups with consistently higher treatment effects. Its generalisability was demonstrated
in a second clinical trial, in which it reproduced known associations and proposed new stratification strategies.
Thereby, the OncoBird R package, its dockerised Shiny application and its reproducible demo application promote
its reusability and interoperability for subgroup analyses in other clinical trials.

Despite the demonstrated effectiveness of the three proposed analysis frameworks, the presented datasets,
methodologies and results are subject to their associated assumptions and caveats that constitute their properties
and limitations. While these considerations have been laid out in each section of Chapter 2, more encompassing
properties and limitations are discussed in this section. In particular, this section focuses on discussions regarding
biases, complexity, causality, translatability and feasibility of the used datasets, the presented methodologies and
ultimately their proposed predictive biomarkers.

3.1.1 Biases in drug high-throughput screens and clinical trials and their analysis

Data-driven biomarker discovery relies on efforts to design unbiased experiments. However, inherent biases in
HTSs and RCTs can inadvertently lead to inaccurate representations of the studied phenomena and therefore false
conclusions.

For example, the set of included cancer cell lines and compounds in the HTSs used in Sections 2.1 and 2.2
can introduce a selection bias, e.g., commercially available and well-established cell lines or drug libraries can fail
to catch the full diversity of cancers and drug targets. Additionally, possible biases in producing HTSs are vary-
ing experimental protocols or culturing. For instance, the GDSC1 data release used Syto60 cell viability assays,
whereas the GDSC2 release used CellTiter-Glo [234]. Furthermore, cell lines can have different growth properties
and require different screening mediums, which were included in the built models as potential confounding vari-
ables. These caveats become more apparent when increasing throughput, since experimental parameters cannot
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be optimised specifically for each cell line or compound anymore. Finally, during the downstream analysis, batch
effects and inconsistent data processing procedures can introduce biases. For example, curve fitting methods for
IC50 and AUC as summary metrics can vary depending on the used curve fitting method [237, 238, 239, 240].
Inconsistencies that can arise in large HTS efforts have been debated before [325, 326]. Therefore, testing the
derived biomarkers in experiments with independent cell lines, alternative molecular profiling and HTSs with dif-
ferent protocols can help assess biases and ensure the robustness of the given conclusions. An example of a study
that focused on robust and translatable drug response biomarkers is a meta-analysis of seven large HTS datasets
[327].

For the RCTs in Section 2.3, assessing potential biases is necessary for ensuring valid conclusions from retro-
spective biomarker discovery efforts. Especially the selection bias when estimating treatment effect in subgroups
was approached by resampling strategies. However, selection bias can still occur if trial participants are not rep-
resentative of the subgroup populations, to which the yielded results may then not generalise well. While no
validation of these results in independent clinical trials was performed, resampling strategies in the designed sub-
group analysis methodology in Section 2.3 were used to assess the confidence and stability of the yielded results
and cross-validation was used to evaluate the found subgroups.

Complementary to HTSs and RCTs, tumour molecular profiling was primarily used for assessing predictive
biomarkers. Both the analysis of HTSs and RCTs focused on somatic mutations and gene expression, while Sec-
tion 2.1 expanded this to DNA methylation 1. Somatic mutations in RCTs are often given by clinically validated
targeted sequencing, which limits the discovery of biomarkers on the selected cancer genes. In contrast, WES or
WGS efforts in cancer cell lines allow a more unbiased assessment of somatic cancer mutations. Especially in
Section 2.1, DNA methylation and its association with drug responses was systematically assessed at the resolu-
tion of single CpG sites. However, while the Infinium BeadChip arrays contained about 450,000 CpG sites, the
whole human genome contains roughly 29 million CpGs [328]. A few biological signals could be highlighted by
integrating transcriptomic data, however, the effect sizes were rather small for the remaining methylation sites. To
alleviate this, molecular profiling is commonly summarised into stronger biological signals, i.e. EMT signatures
and CMS in Sections 2.2 and 2.3, respectively. This choice can bias the analysis by loss of information, but the
introduced bias can reduce model variance by increasing model stability, reducing dimensionality and handling
variable multicollinearity.

In all sections of Chapter 2, cancer-specific modelling was performed, motivated by the context-specificity of
many cancer mechanisms and the fact that they showed distinct data distributions. This stratification may lead to
biased estimates either if cancer (sub-)types are not indicative of the underlying population differences or if their
strata show imbalances. As an example for the latter, the resulting reduced sample sizes for each studied cancer
(sub-)type required higher effect sizes to yield significant biomarkers due to reduced power, which leads to the
inability to find significant biomarkers for small cancer (sub-)types. In general, small sample sizes often observed
in subgroup analysis are a major bottleneck in estimating heterogeneous effects in clinical trials and observational
studies [329]. To achieve the same power for detecting an overall treatment effect as interactions with the same
magnitude, the sample size should be increased 4-fold [330]. For example, in Section 2.3, the proposed OncoBird
model tended to choose small subgroups with higher treatment effects compared to other models, which can
increase the risk of overfitting. Thus, it was necessary to implement a rigorous model complexity control with its
limitations discussed in the following section.

Understanding and mitigating the highlighted biases is crucial for ensuring the accuracy, reproducibility, ro-
bustness, generalisability and overall reliability of the reported findings and their interpretation before their im-
plementation for therapeutic applications. Since these biases are highly dependent on the study, the choices in
designing the presented methods remain highly dependent on the available data.

1When characterising cancer samples with molecular profiling, various technology-dependent technical limitations and biases in sequencing,
sample preparation and computational processing steps emerge that are out of scope to this work.
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3.1.2 Multifaceted biomarkers

Complex diseases exhibit complex biomarker landscapes [331], which renders the prediction of drug responses a
challenging task [332]. Predictive modelling for drug response in preclinical and clinical datasets often benefits
from employing large global and nonlinear models. However, with a large amount of often correlated features in
a small-sample regime p ≫ N, allowing for interactions between features is usually infeasible. For example, if
penalised regression including all CpG sites were used in Section 2.1, issues regarding multicollinearity, dimen-
sionality and stability would have occurred. Similarly, employing nonlinear baseline models for Section 2.2 was
unlikely to yield increased performances. In Section 2.3, the models were guided by prior derivation of mutually
exclusive features, which introduced regularised nonlinearities to the statistical models. Thus, multiple statistical
models, each including a single biomarker as predictor, were considered to reduce the complexity. This choice
also facilitated the interpretation of the models in terms of their candidate biomarkers, since the interpretation is
facilitated by this design. For example, the interpretation of the coefficients for a model built in the context of a
particular drug or cancer type is directly interpretable without requiring feature importance methods.

As mentioned in Section 3.1.1, the choice of lower model complexity was beneficial for the small sample size
regimen. While this approach can be also prone to model misspecification and bias the model coefficients, it did
not increase variance and outperformed models with higher complexities. This approach resulted in employing
individual linear regression model fits, e.g. single linear models for each CpG and drug in Section 2.1, single
models for each drug and EMT signature in Section 2.2, and single models for each somatic mutation in Section
2.3.

In summary, the chosen designs facilitated the discovery of single predictive features in the studied datasets.
Due to disease complexity, it is highly likely that the proposed univariate biomarkers underestimate the true com-
plexity of molecular response mechanisms in the investigated contexts. While it would be possible to attempt
building larger and more complex models that may further optimise the performance of the associated predic-
tion tasks, these models are not optimal for the applications of this work due to their inefficiency in extracting
context-dependent biomarkers and de novo mechanisms that are biologically meaningful.

3.1.3 Evaluation of causality

If the discovery of causal biological mechanisms for drug response is put as the central interest, it seems natural
to formulate predictive biomarker discovery as a causal discovery problem instead of a prediction task. While
recent methodological advances have already started expanding on this, e.g. causal feature selection [333], many
study designs and datasets can only reliably yield correlative conclusions. Thus, this work has focused on either
qualitative discussions regarding the causal component of the found relationships or quantitative estimations and
validations of their causal contributions in Chapter 2. When assessing these causal relationships, it is crucial to
carefully evaluate potential confounders and biases in the data and assumptions of the used methods to avoid
concluding spurious relationships and false positive findings.

For example, since CpG sites showed correlated DNA methylation among neighbouring sites in Section 2.1,
the spatial correlations of CpG methylation for calling differentially methylated regions were taken into account by
the employed calling algorithm. Additionally, the confounding bias by global methylation patterns likely stemming
from DNA active (de-)methylation processes was considered by adjusting linear models for principal components.
For the called regions, consistency in an independent drug screen and also with another DNA methylation profiling
technology was achieved. However, the statistical power for validating the effects in independent cell lines was
lacking due to drastically reduced sample sizes. Moreover, since the resulting DNA methylation regions were
challenging to interpret mechanistically, correlations between DNA methylation, gene expression and genetic al-
terations were assessed. Concordances between DNA methylation and gene expression of proximal genes were
found robust in independent primary tumour samples. Additionally, plausible causal biomarkers were assessed by
interpreting protein-protein interaction networks between the putative drug targets and the methylation-associated
genes, with additional evidence given by CRISPR knockouts and drug transcriptomic signatures of genes in these
networks. Even if the theory on the causality between DNA methylation and gene expression is still unclear, as
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stated in Section 1.2.2.3, the results suggest that both data modalities should be jointly evaluated, which suggests
considering DNA methylation jointly with SLFN11 expression as predictive biomarker [334] and supports debates
for popular DNA methylation biomarkers such as MGMT [335]. In contrast, only weak correlations between DNA
methylation and somatic alteration were observed. A lack of an underlying causal genetic component to determine
drug response cannot be claimed; however, since only protein-coding regions were considered, somatic mutations
in non-coding regions, which can have higher mutation rates, or the germline component may impact DNA methy-
lation in the found regions. While the levels of correlative evidence for the found biomarkers suggest their causal
components, it does not provide a quantitative methodology for inferring them. Despite the presented efforts to
maximise interpretability, many biological mechanisms remain elusive. For example, in Section 2.1, NEK9 was
consistently hypermethylated and downregulated in melanoma cells responding to the NEDD8 inhibitor pevonedi-
stat. The signalling network neighbourhoods produced from shortest paths between the potential biomarker NEK9
and drug target NAE revealed their common involvement with proteins regulating the cell cycle, which does not
provide insights into the exact mechanisms but a short-listed gene set which can be subject to future studies with
narrowed scopes.

For clinical trials in Section 2.3, the randomised controlled designs allowed to draw average treatment effects
in the investigated treatment contexts. However, inferring conditional average treatment effects relies on further
assumptions such as unconfoundedness, i.e. subgroups stratified by covariates fulfil RCT properties. Addition-
ally, the investigated somatic alterations are usually not independent. While the grouping of functionally similar
mutually exclusive alterations in the context of tumour subtypes improved the interpretability of the proposed
biomarkers, the co-occurring alterations were harder to interpret because the causal component could not be re-
solved without any functional validation. Even if higher confidence in the derived biomarkers can be generated
through multiplicity adjustments, resampling methods and the application and benchmarking of different statistical
methods, the validation of the results suffers from the fundamental problem of causal inference, i.e. the inability
to observe counterfactual ground truth outcomes. Therefore, any data-driven biomarker discovery effort in clinical
studies ideally requires follow-up confirmatory RCTs for their approval.

In Section 2.2, the used methods for estimating the contribution of EMT to drug response phenotypes only yield
valid causal relationships if all confounders are known and prognostic and propensity models are not misspecified
and sufficiently well-estimated. For example, other confounders beyond the investigated genetic alterations could
be present since EMT is a highly dynamic effect that can be triggered by other components, for example, by
upstream regulators such as MITF or signals from unknown variables such as the tumour microenvironment. The
significant associations of multiple HSP90 inhibitors, consistency with independent drug screens and validation
experiments showing that TGF-β sensitises melanoma cells demonstrate substantial evidence towards a causal
component of EMT and its regulators such as MITF 2. HSP90 has hundreds of protein clients which renders the
pinpointing of the exact causal protein difficult, however, transcriptional responses in SKCM cancer cell lines
revealed the downregulation of TGF-β signalling components upon treatment with luminespib. However, the
mechanisms behind the found sensitisation that connects these components to MITF remain subject to speculation.

Altogether, for the presented work, the identification and rigorous validation of supporting biologically plausi-
ble mechanisms of the proposed predictive biomarkers was of pivotal interest. For this, the results in Section 2.2
demonstrated that causal modelling for predictive biomarker discovery is still rather impractical because of disease
complexity, often high dimensions p compared to limited sample sizes N and unknown confounders. Thus, the
majority of this work resorted to associative methods that have been more suitable for an exploratory hypothesis
generation.

3.1.4 Challenges for the translation of biomarkers from preclinical to clinical studies

Translating proposed biomarkers derived from preclinical cancer models, such as cancer cell lines, to clinical stud-
ies is challenging. This domain shift is the main bottleneck for predictive biomarker discovery and can introduce

2Note that the classic EMT is not present in melanoma, since melanoma cells stem from melanocytes that are not epithelial cells
[63]. Nonetheless, melanomas utilise EMT TFs to regulate their phenotype plasticity [336], and thus were labelled either epithelial-like or
mesenchymal-like.
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substantial bias, which, as stated in Section 3.1.1, needs to be addressed prior to clinical studies. For example,
in Section 2.1, the domain shifts due to artefacts inherent in cancer cell lines were mitigated by matching them
to primary tumour samples, whereby consistent correlations between DNA methylation and gene expression were
subsequently filtered. As stated in Sections 3.1.3 and 3.1.2, it would be desirable to employ causal nonlinear
methods integrating multiple data types and sources in order to yield better response predictions and make claims
about nonlinear biomarker relationships across studies to increase the likelihood of finding translatable mecha-
nisms. However, since modelling drug response mechanisms in preclinical models itself already suffers from
challenges in revealing complex and causal drug response biomarkers, this complicates matching data distribu-
tions between preclinical and clinical domains, which may require even better domain adaptation strategies and
validation. Moreover, since cancer data is more readily accessible without functional readouts, leveraging chemical
or genetic perturbations from in vitro cancer models can provide an enriched understanding of cancer mechanisms
and vulnerabilities. In turn, this approach generates biological priors that can enhance the predictability of clinical
drug responses.

Furthermore, the aims of predictive biomarker discovery of preclinical and clinical studies conceptually differ,
as has been previously argued [166]. Accordingly, preclinical studies for biomarker discovery aim at proposing
patients for a given treatment determined by the biomarker. This approach is interested in finding subgroups with
high treatment effects for an otherwise poorly responding population. For instance, in the analysed HTS in Sec-
tions 2.1 and 2.2, for which the large bulk of cancer cell lines were non-responders with only a few responders. In
contrast, clinical studies for biomarker discovery rather aim at the opposite, i.e. selecting a treatment for a given
patient. While both of these aims seem consistent, biomarkers can differ depending on what question is asked.
In order to make this clear, consider the biomarkers reported for RCTs in Section 2.3. While small subgroups
with high treatment effects have been discovered by some methods, other benchmarked methods for subgroup
analysis yielded larger subgroups with lower but still significant treatment effects characterised by other biomark-
ers. While the former proposes a biomarker-positive subgroup with high treatment effects and does not employ
further considerations about the biomarker-negative subgroup, the latter proposes a treatment policy for a given
biomarker-positive or biomarker-negative patient considering the available treatment options.

3.1.5 Establishing molecular profiling as predictive biomarkers in clinical studies

The current ESMO treatment guidelines suggest cetuximab for left-sided RAS wild-type tumours [320] and did
not produce subgroups with significantly enhanced treatment effects in the cross-validation benchmarks, whereas
significant treatment effects were found with OncoBird, MOB, policy learning (POL) and outcome-weighting
(OWE). Thereby, OncoBird recovered the smallest subgroups with the highest treatment effects, whereas POL and
OWE still recovered a smaller effect but larger subgroups.

Therefore, also the discovered biomarkers substantially differ and the contextualisation is still challenging even
with maximised interpretability. For example, MOB selected the simplest model, i.e. selecting cetuximab treat-
ment for wild-type tumours in either RAS, BRAF, IRS2 or NF1. Thereby, mutations in NF1 can mimic oncogenic
RAS mutations and therefore are a biologically plausible predictive biomarker in metastatic COREAD [10]. MOB
supported this hypothesis and the stability assessment of OncoBird showed that this mutually exclusive gene mod-
ule was frequently identified. However, the stability assessment showed that other modules including KRAS and not
including NF1 were also frequently identified. Furthermore, comparing the employed subgroup discovery methods
also only showed limited consistency beyond mutations in RAS or BRAF. For example, chr20q amplifications such
as TOP1 were only consistently identified by OncoBird since they are enriched in CMS2 and left-sided tumours,
which favours the subtype-specific modelling strategy. However, since chr20q amplifications were observed to
be mutually exclusive to RAS or BRAF mutations, these subgroups had considerable overlap. Thus, the different
subgroup discovery methods tended to produce consistent subgroups. Therefore, treatment decision-making likely
benefits from molecular profiling in the form of somatic alterations and CMS for this studied clinical trial, however,
the exact selection of biomarkers requires further considerations.

Furthermore, these derived predictive biomarkers are only useful in the context of the two treatment options
that were studied, e.g. cetuximab and bevacizumab and the chemotherapy backbones in Section 2.3. Since no
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control arm without a targeted therapy was included, the predictive effects of cetuximab and bevacizumab cannot
be distinguished, and their biomarkers may differ from single-drug RCTs. Furthermore, since both treatment arms
contain the same chemotherapy backbone, its predictive component is independent of the administered treatment
arm t and cannot be distinguished from other prognostic effects, rendering the predictive effects of the backbone
prognostic in the context of the outcome function f (X, t) 3. Similarly, if f (X, t) is estimated for each treatment
arm separately, the prognostic and predictive effects cannot be distinguished.

3.2 Outlook

It has become apparent that biomarker discovery is not primarily interested in predicting observable patterns but
rather in understanding the relevant latent structures of the data, i.e. explanatory instead of predictive. Building
on the insights and conclusions from this work, promising current and future developments are proposed and dis-
cussed here. These include the continued discovery of cancer vulnerabilities, synthetically lethal interactions, drug
combinations, drug resistances and new targets from cancer hallmarks, facilitated by advancements in molecular
profiling technologies and machine learning for predicting and explaining tasks in drug discovery and development.

3.2.1 Molecular profiling of tumour plasticity

While it is well-established that genetic components are the leading cause of cancer, this work supports the in-
creasing appreciation of non-mutational cancer mechanisms and tumour plasticity that affects tumour responses,
i.e. epigenetic drug response biomarkers in Section 2.1, EMT as a causal component for drug responses in the
genetic background in Section 2.2, and somatic mutations in the context of transcriptional tumour subtypes in Sec-
tion 2.3. Thus, the future study of tumour responses should encompass the integration of the molecular profiling
technologies that capture dynamic cancer mechanisms and tumour plasticity.

For example, cells undergoing EMT can adopt hybrid states between the mesenchymal and epithelial state
through diverse molecular programs in a bidirectional manner [337]. Instead of resorting to a one-dimensional
molecular EMT score, it remains in question if sensitivity profiles are dependent on other dimensions, e.g. specific
epithelial-mesenchymal plasticity mechanisms, EMT TF activities or metastable hybrid EMT states. Additionally,
mechanisms for epigenetic plasticity, such as DNA methylation, assist tumours in acquiring hallmark capabilities
[338]. Spatial and temporal modelling strategies based on specific molecular mechanisms will be increasingly
required to interpret these dynamic regulations. For example, modelling EMT trajectories dependent on genetic
and microenvironmental backgrounds can help discover interpretable cancer mechanisms [339].

While this work focused only on somatic mutations, gene expression and DNA methylation in bulk tumour
cells, other data types are currently emerging that require further considerations. In particular, proteomic and
metabolomic profiling of cancer cell lines can reveal meaningful cancer biology [231, 232]. Furthermore, molecu-
lar resolutions of cancer samples on the single-cell level and their spatial or temporal component can reveal refined
contexts for molecular cancer mechanisms [201]. These data types were not used within the scope of this work but
are exciting data sources for refined discoveries of potential cancer vulnerabilities within these dimensions.

3.2.2 Acquired drug resistance and drug combinations

The efforts towards modelling the response mechanisms of single compounds presented in this work extend into
the study of drug resistance and drug combinations. Acquired drug resistance is thought to be caused by rare
events in tumour evolution, for example, secondary mutations [340] or non-genetic tumour plasticity, the ability of
a tumour to give rise to transient cell-to-cell heterogeneity in gene expression. Plasticity gives rise to a ‘primed’
cellular state that is resistant to the administered therapy [341]. For example, therapy resistance to the BRAF
inhibitor vemurafenib is driven by rare pre-existing and pre-resistant cells [342].

3This is only the case if the predictive component of the chemotherapy backbone does not have synergistic or antagonistic interactions with
the targeted treatments in the respective treatment arms.
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A typical resistance mechanism is oncogenic bypassing, in which the initial target remains inhibited, but an al-
ternative kinase adaptively activates to sustain oncogenic signals [343]. Accordingly, patients with KRAS wild-type
metastatic COREAD treated with the EGFR inhibitor cetuximab often acquire secondary KRASG13D or KRASG12R

mutations [344]. Another prominent example is the success of the BRAF inhibitor vemurafenib with high initial
responses in BRAFV600E mutant melanoma, for which common resistance mechanisms are acquiring mutations
in KRAS, NRAS or MAP2K1 [340]. Many resistance mechanisms were already elucidated for EGFR inhibition
with gefitinib or erlotinib in lung cancers [345]. For example, the ERBB3-mediated PI3K activation via am-
plifications of MET occurs in about 20% of EGFR-mutant lung cancer patients [346]. While these discussed
resistance mechanisms underlie a genetic cause, efforts are increasing in studying non-genetic tumour plasticity
as resistance mechanisms that enable lineage switching or immune surveillance. Staying with this example, the
phenotypic changes with EMT are also frequently observed concordant with resistance to EGFR inhibition [347].
As another example, sensitivity to treatment immune checkpoint inhibitors in NSCLC can be robustly predicted by
high tumour mutational burden and high PD-L1 expression as a simple and the best-performing model in a recent
community DREAM challenge [348]; however, lung cancers treated with immune checkpoint inhibitors can show
adaptive resistance by upregulating alternative immune checkpoints [349].

Modelling acquired resistances requires longitudinal molecular profiling to characterise tumour plasticity and
acquired mutations. For the former, epigenetics may provide refined insights into epigenetic reprogramming for
studying altered tumour plasticity upon single compound treatments [350]. For example, the LINCS consortium
has pioneered the study of transcriptional responses [210]; however, it does not sufficiently sample the heterogene-
ity of disease features Xd due to its low number of studied cell lines and only covers short time scales to study
intrinsic response mechanisms.

Tumours can acquire resistance through various ways, and hence most chemotherapies and targeted treatments
are not curative when administered alone [351, 352]. This prompted the use of drug combinations guided by
a handful of proposed principles, e.g. individual sufficient efficacy, differential MOAs to anticipate resistance
or mutual exclusive toxicities [353, 354]. For instance, to anticipate acquired resistance of BRAFV600E mutant
melanoma, combination therapies of BRAF inhibitors with MEK inhibitors such as cobimetinib showed promising
results in increasing progression-free survival [355]. For BRAFV600E mutant in metastatic COREAD, combination
therapies of vemurafenib and EGFR inhibitors such as cetuximab were proposed, which showed success in a
recent phase II trial [356]. Many drug combinations in use today are effective because of independent drug action,
i.e., they target different tumour subpopulations and, therefore, expand the responding cohort to the union of
those populations [357]. In contrast, drug synergy, which is the case if a drug pair shows higher efficacy than
their additive or independent effects, may provide deeper and more robust responses. However, drug synergies
or antagonisms in drug combination HTS are rare, highly context-dependent and only provide insights about
intrinsic responses or resistances on shorter time scales [358]. Thus, the quest of overcoming resistance with drug
combinations is still holding back immense successes of targeted treatments, which is dependent on longitudinal
molecular profiling and the exploitation of drug combinations.

3.2.3 Advances in modelling of response mechanisms in cancer

Models for understanding drug responses are increasingly using strategies that can process and integrate multiple
data sources and modalities. Instead of posing the problem as a single drug response prediction task, it can
be advantageous first to consider more fundamental tasks, i.e. learning latent representations of cells, patients,
compounds and treatments as an initial step and make use of various techniques to interpret and understand these
representations when leveraging these representations for downstream tasks such as drug response prediction.

For example, generative modelling with variational autoencoders (VAE) enables domain adaptations between
molecular data on human tumours (TCGA) and cancer cell lines (GDSC/CCLE), either through pretraining [5,
359, 360] and few-show learning [295], disentanglement between both representations using an adversarial loss
[361], domain adaptation with an alignment and consistency loss [362] or data augmentation [5]. Furthermore,
considering transcriptional responses in cancer cell lines can improve drug response prediction [363, 364], as it
encodes clues for drug MOAs and causal response mechanisms. Additionally, integrating molecular fingerprints
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or SMILES chemical structures can improve performances for predicting cell viability [256, 365] and transcrip-
tional responses [366] of unseen compounds, or can be used to propose new chemical structures with suitable
pharmacological properties using reinforcement learning [367].

In order to extract context-dependent mechanisms from these models, local feature importance scores need to
be derived sample-wise, which can be computationally expensive when using Shapley values [163], but can yield
interpretable insight into the biomarker landscape. Complementary, structured and interpretable latent representa-
tions can advance the discovery of biomarkers. This can be achieved through visible neural networks [368], which
hierarchically include network layers that represent biological processes such as downstream effects of somatic
mutations [164], cancer pathways from other molecular features [369], or through other ways such as attention
modules [370]. Furthermore, an interpretable conditional VAE enables constraining the network architecture by
known gene programs, which can be used for single-cell reference mapping while allowing the learning of de novo
programs [371].

Modelling biological systems requires prior domain knowledge to overcome limitations in small, sparse and
noisy biological data when using data-driven modelling approaches, preferably through ‘differentiable programs’
that are general-purpose trainable models tailored to a particular domain using appropriate priors [372]. Biologi-
cal priors often can be formulated through graphs that represent different types of interactions between biological
entities derived from knowledge databases mentioned in Section 1.5.3. The manual curation of these knowledge
graphs takes enormous effort, and thus, recently, work has been directed towards facilitating the generation and in-
tegration of knowledge graphs [373]. For example, adopting heterogeneous graphs with graph entities representing
drug and disease annotations enabled the discovery of drug-disease mechanisms [374]. Moreover, graph neural
networks have been used for the discovery of new drug indications (drug repurposing) [375] or drug response
prediction [376, 377].

Complementary to monotherapy screens, drug combination screens typically involve cell viability screening of
drug pairs. There are many combination screens within only a handful of cell lines [378], with a few recent larger
datasets [358], which enabled the discovery of synergistic drug combinations and their biomarkers using machine
learning [379]. Other types of functional screens, such as CRISPR technologies, can provide refined insights
into biological mechanisms by providing richer readouts [224], especially when combined with single-cell assays
such as Drug-seq [380] or Perturb-seq [381]. The modelling of these chemical or genetic perturbations using a
compositional perturbation autoencoder [382], graph neural networks [383] and transfer learning from single-cell
data to bulk HTSs [384] can yield viable cancer targets and biomarkers.

Finally, fully data-driven methods can be combined with traditional mechanistic models. In contrast to machine
learning methods, they are often used in systems pharmacology and provide a natural way to model and interpret
causal disease and drug response mechanisms representing biochemical mechanisms and their kinetic parameters
by ordinary differential equations [255]. They have been used before to make predictions using a mechanistic
model of selected canonical cancer pathways and a handful of compounds for predicting cell viability [385] or
transcriptional responses [386]. Especially for understanding resistance mechanisms of single drugs, mechanistic
models can yield interpretable insights, e.g. for cetuximab in gastric cancer [387] or vemurafenib in BRAFV600E

mutant melanoma [388]. Similarly, a quantitative systems pharmacology model informed by transcriptomic data
yielded refined insights into predictive biomarkers for immunotherapies [389]. In future, mixing and matching
different model components with other theoretical foundations to the existing statistical and machine learning
methods has the potential to advance the limited interpretability of current methods for predictive biomarker dis-
covery.

3.2.4 Advances in estimating treatment effects in cancer clinical studies

Subgroup analysis methods, such as those benchmarked in Section 2.3, have been increasingly incorporating ma-
chine learning and causal inference methods to estimate heterogeneous treatment effects in clinical trials or obser-
vational studies. Thereby, the literature has started to propose modelling strategies for specialised problems and
usually focuses on estimating individual treatment effects.

For example, the Bayesian additive tree (BART) methodology can consider heterogeneity and uncertainty
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across all provided covariates [390] as well as implicitly account for multiplicity by correcting for variable selec-
tion with an appropriate choice of model prior probabilities [391]. Furthermore, treatment-balanced generative
adversarial neural networks were proposed for estimating individual treatment effects [392]. However, only re-
cently, related methods were proposed for censored outcomes. For example, treatment-balanced Cox regression
models that replace the linear predictor function in equation 1.36 by an arbitrary neural network (BITES) [308] or
a neural network that estimates time-discrete and treatment-specific conditional hazard functions (SurvITE) [393].
As an example of another specialised problem, instead of modelling drug response by a summary statistic as in
Section 2.2, adding drug dosage as a parameter enables the estimation of individual dose-response curves [394].

While these methods focus on patient outcomes Y in the presence of baseline disease features Xd , other datasets
could expand on predicting longitudinal components. Electronic health records (EHR) that record longitudinal
hospital visits, diagnoses and prescriptions have especially received increasing attention. In conjunction with
long short-term memory (LSTM) models with inverse probability treatment weighting, EHRs were used for drug
repurposing [395]. For longitudinal data, the bias from time-varying confounders can be alleviated by balancing
time-dependent representation of patient histories [396]. SyncTwin is a recurrent neural network (RNN) which
learns time-invariant representation from the observed pretreatment outcomes in order to make counterfactual
predictions for a single-time binary treatment [397]. A causal transformer combines these methods using three
transformer subnetworks for each time-varying covariates, previous treatments, and previous outcomes [398].

Despite these advances, the discovery of predictive biomarkers in clinical studies requires moving from estima-
tions of heterogeneous treatment effects to interpretable and actionable insights. The highlighted methods are not
specifically designed for this purpose, and thus, additional considerations for the derivation of putative predictive
biomarkers are required. In principle, this can be achieved through using post hoc feature importance methods
[399] or tree-based policy learning for estimating optimal treatment regimens [400, 401]. Since the presented
framework in Section 2.3 is inherently interpretable, it could be combined with some of the mentioned methods,
either as a preselection of likely predictive variables, or as a feature interpreter when applied to the predictions of
a backbone treatment effect estimation model.

3.2.5 Enabling virtual drug discovery and treatment recommendations

A natural extension to this work is combining molecular response modelling in vitro and treatment effect estimation
in clinical data for a more integrated drug discovery and development compared to the traditional drug discovery
pipelines [7]. Comprehensive sets of response biomarkers have been included in precision oncology applications
for oncogenomic reporting and interpretation [402]. While platforms such as this can successfully give treatment
recommendations, usually no predictive modelling is performed. Coupled with generative chemistry and library
design principles, these models can enable virtual biomarker screening and de novo generation of interesting small
molecules [403]. On the other hand, treatment recommendation systems essentially predict the treatment effects
of a given set of treatments for a given query tumour instance. Combining these two approaches, generated com-
pounds could be automatically queued into a treatment recommendation system to receive clues for their efficacy
and associated biomarkers in clinical practice. In order to enable these advanced treatment recommendation sys-
tems using predictive modelling, they need to be trained with substantial coverage of the disease features Xd , drug
(treatment) features Xt and other priors of known relationships such as knowledge databases containing clinically
used pharmacogenomic variants [404]. Furthermore, since counterfactual outcomes are unknown, any treatment
recommendation system will require a confirmatory clinical trial that is able to confirm the efficacy of its proposed
treatments.

3.3 Closing statement

Predictive biomarkers define tailored subgroups in which they predict treatment successes for a given treatment.
Their discovery is fuelled by datasets that provide information on tumours and treatments that allow drawing
conclusions about their relationships. This thesis demonstrated that biomarker discovery integrates into both pre-
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clinical and clinical stages of drug development and promotes the understanding of drug response patterns and
their associated mechanisms. The growing ability of models for biological, biochemical and biomedical entities
and processes to make accurate and interpretable predictions enables biomarkers to become more informative and
nuanced and therefore more suitable for developing curative therapies.
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Appendix A

Abbreviations

The used abbreviations for subjects of this work are listed and described here. These include the introduced acronyms
and naming conventions for genes and proteins in the main text.

121



A Abbreviations

A.1 List of acronyms

Acronym Description
(e)QTL (Expression) quantitative trait loci
(m)RNA (Messenger) ribonucleic acid
5mC 5-methylcytosine DNA methylation
ACF Auto-correlation function
ALL Acute lymphoblastic leukaemia
AML Acute myeloid leukaemia
AMP Copy number amplification
ANOVA Analysis of variance
ATE Average treatment effect
ATP Adenosine triphosphate
AUC Area under the curve
BART Bayesian additive regression tree
BH Benjamini-Hochberg
BRCA Breast cancer
CATE Conditional average treatment effect
CCLE Cancer Cell Line Encyclopedia
ChEMBL Chemical database by the European Molecular Biology Laboratory (EMBL)
chr20q Chromosome arm 20q
CI Confidence interval
CIMP CpG island methylator phenotype
CMAP Connectivity map
CMS Consensus molecular subtypes
COREAD Colorectal adenocarcinoma
COSMIC Catalogue of Somatic Mutations in Cancer
CpG Region of DNA with cytosine followed by guanine along the 5’ to 3’ direction
CRF Causal random forest
CRISPR Clustered Regularly Interspaced Short Palindromic Repeats
CTC Circulating tumour cells
CTRP Cancer Therapeutic Response Portal
CV Cross-validation
d.o.f. Degree of freedom
dDMR Drug differentially methylated regions
DEL Copy number deletion
DFS Disease-free survival
DGE Differential gene expression
DHS DNAase I hypersensitive site
DML Double machine learning
DMP Differentially methylated probe
DMR Differentially methylated region
DREAM Dialogue for Reverse Engineering Assessment and Methods
EHR Electronic health records
ELMER Enhancer linking by methylation/expression relationships
EMA European Medicines Agency
EMT Epithelial-mesenchymal transition
ENCODE Encyclopedia of DNA Elements
ESMO European Society for Medical Oncology
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A.1 List of acronyms

EWAS Epigenome-wide association study
FDA U.S. Food and Drug Administration
FDR False discovery rate
FOLFIRI 5-fluorouracil, folinic acid and irinotecan treatment backbone
FOLFOX 5-fluorouracil, folinic acid and oxaliplatin treatment backbone
FOLFOXIRI 5-fluorouracil, oxaliplatin, folinic acid and irinotecan treatment backbone
FWER Family-wise error rate
GDC Genomic Data Commons
GDSC Genomics of Drug Sensitivity in Cancer
GO Gene Ontology
GSVA Gene set variation analysis
GTEx Genotype-Tissue Expression project
GWAS Genome-wide association study
HNSC Head- and neck cancer
HR Hazard ratio
HTS (Drug) high-throughput screen
IC50 Half maximal inhibitory concentration
ICGC International Cancer Genome Consortium
KEGG Kyoto Encyclopedia of Genes and Genomes
LINCS Library of Integrated Network-Based Cellular Signatures
LSTM Long-short term memory
LUAD Lung adenocarcinoma
MAK Mak et al. EMT score
mCRC Metastatic colorectal cancer
MET Mesenchymal-epithelial transition
MMRd Mismatch repair deficiency
MOA Mechanism of action
MOB Model-based partitioning
MSI Miscrosatellite instability
NCBI National Center for Biotechnology Information
NCG Network of Cancer Genes
NCI National Cancer Institute
NGS Next-generation sequencing
NIH National Institutes of Health
NSCLC Non-small cell lung carcinoma
OncoBird Oncology Biomarker Discovery
OR Odds ratio
ORR Objective response rate
OS Overall survival
OWE Outcome-weighted estimation
PAM50 Prediction Analysis of Microarray with 50 genes
PCAWG Pan-Cancer Analysis of Whole Genomes
PCR Polymerase chain reaction
PDB Protein Data Bank
PFS Progression-free survival
POL Policy learning
PubChem Chemical database by the National Center for Biotechnology Information (NCBI)
RCT Randomised controlled clinical trial
RECIST Response Evaluation Criteria in Solid Tumours
RNAi RNA interference
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A Abbreviations

RNN Recurrent neural network
RRBS Reduced representation bisulfite sequencing
SCLC Small cell lung carcinoma
SKCM Skin cutaneous melanoma
SMILES Simplified Molecular Input Line Entry System
SNP Single-nucleotide polymorphism
SNV/SV Single-nucleotide variant/variation
STAD Stomach adenocarcinoma
STITCH Search Tool for Interactions of CHemicals
TAN Tan et al. EMT score
TARGET Therapeutically Applicable Research to Generate Effective Treatments program
TCGA The Cancer Genome Atlas
TF Transcription factor
tgdDMR Tumour-generalisable drug differentially methylated regions
TKI Tyrosine kinase inhibitor
TMB Tumour mutational burden
TS Targeted sequencing
TSS200 200 bases upstream of the transcription start site
TW Tagliazucchi and Wiecek et al. EMT score
UMAP Uniform manifold approximation and projection
VAE Variational autoencoder
VT Virtual twins
WES Whole-exome sequencing
WGBS Whole-genome bisulfite sequencing
WGS Whole-genome sequencing

A.2 List of proteins

Symbol Description
ABL1 ABL1 tyrosine kinase, name from ABL proto-oncogene 1 extracted from the Abelson

murine leukaemia virus
AKT Protein kinase B (PKB)
ALK Anaplastic lymphoma kinase
BCR Breakpoint cluster region protein
BCR-ABL1 Fusion protein from gene fusion of BCR and ABL1 due to Philadelphia translocation
BIRC5 Baculoviral IAP repeat containing 5
BRAF Serine/threonine-protein kinase B-Raf
CASP3 Caspase 3
CDC25A Cell division cycle 25A
CDK2/4 Cyclin dependent kinase 2/4
CHK1/2 Checkpoint kinase 1/2
CRYAB Crystallin alpha B; alias HSPB5
DNMT DNA-methyltransferase protein family
DNMT3A DNA (cytosine-5)-methyltransferase 3A
EGFR Epidermal growth factor receptor
ERBB2 Receptor tyrosine-protein kinase erb-B2, name from erythroblastic leukaemia viral

oncogene, alias human epidermal growth factor receptor 2 (HER2)
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A.3 List of genes

ERBB3 Receptor tyrosine-protein kinase erb-B3
ERK Extracellular signal-regulated kinase
ESR1 Estrogen receptor 1
GSK3β Glycogen synthase kinase 3 beta
HDAC Histone deacetylase protein family
HOX Homebox protein family
HSP Heat shock protein family
HSP90 Heat shock protein 90
IAP Inhibitor of apoptosis protein family
IDH1 Isocitrate dehydrogenase 1
IRF4 Interferon regulatory Factor 4
KRAS Ras GTPase isoform K-Ras
MAPK Mitogen-activated protein family of kinases
MEK Mitogen-activated protein kinase kinase
MGMT O-6-methylguanine-DNA methyltransferase
MITF Melanocyte inducing transcription factor
MYC MYC proto-oncogene protein
NAE NEDD8 activating enzyme
NEDD8 Neural precursor cell expressed developmentally down-regulated 8
NEK9 NIMA (never in mitosis gene A)- related kinase 9
P16 Cyclin-dependent kinase inhibitor 2A
P53 Tumour protein p53
PARP Poly (ADP-ribose) polymerase
PD-1 Programmed cell death protein 1
PD-L1 Programmed cell death 1 ligand 1
PI3K Phosphoinositide 3-kinase
RAS Small GTPase Ras
ROCK1 Rho associated coiled-coil containing protein kinase 1
SMAD Contraction of C. elegans Sma and Drosophila Mad gene family
SOX2/9 SRY (sex determining region Y)-box transcription factor 2/9
TET2 Tet methylcytosine dioxygenase 2
TGF-β Transforming growth factor beta
TOP1 DNA topoisomerase 1
VEGF Vascular endothelial growth factor

A.3 List of genes

Symbol Description
APC Adenomatous polyposis coli protein tumour suppressor
ARFRP1 ADP (adenosine diphosphate) ribosylation factor related protein 1
ARID1A AT-rich interaction domain 1A
ATM ATM (ataxia telangiectasia mutated) serine/threonine kinase
AURKA Aurora kinase A
BCL2L1 BCL2 (B-cell lymphoma 2) like 1
BRAF v-Raf murine sarcoma viral oncogene homolog B
BRCA1/2 Breast cancer 1/2, DNA repair associated
CCNB1 Cyclin B1
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A Abbreviations

CDC25A Cell division cycle 25A
CDH1/2 Cadherin 1/2
CDKN2A Cyclin-dependent kinase inhibitor 2A
CRYAB Crystallin alpha B
CUL3 Cullin 3
CYP2D6 Cytochrome P450 family 2 subfamily D member 6
DKK1 Dickkopf WNT signalling pathway inhibitor 1
EGFR Epidermal growth factor receptor
EML4-ALK Fusion gene of echinoderm microtubule-associated protein-like 4 and anaplastic

lymphoma kinase
ERBB2 v-erb-b2 avian erythroblastic leukaemia viral oncogene homolog 2
ESR1 Estrogen receptor 1
FAM123B APC membrane recruitment protein 1
FN1 Fibronectin 1
GNAS GNAS (G-protein subunit alpha S) complex locus
HOXB2 Homeobox B2
IDH1 Isocitrate dehydrogenase 1
IRF4 Interferon Regulatory Factor 4
IRS2 Insulin receptor substrate 2
KRAS Kirsten rat sarcoma viral oncogene homolog
LRP1B LDL (low density lipoprotein) receptor-related protein 1B
MAP2K1 Mitogen-activated protein kinase kinase 1 (ERK)
MAPK1 Mitogen-activated protein kinase 1 (MEK)
MET MET proto-oncogene
MGMT O-6-methylguanine-DNA methyltransferase
MITF Melanocyte inducing transcription factor
MYC MYC (myelocytomatosis) proto-oncogene
NEK9 NIMA (Never in mitosis gene A)- related kinase 9
NF1 Neurofibromin 1
NKX2-1 NK2 homebox 1
NQO1 NAD(P)H quinone dehydrogenase 1
NRAS Neuroblastoma RAS viral (v-Ras) oncogene
OPLAH 5-oxoprolinase, ATP-hydrolysing
PIK3CA Phosphatidylinositol-4,5-bisphosphate 3-kinase, catalytic subunit alpha
PITX2 Paired like homeodomain 2
PLK1 Polo like kinase 1
PTPRN2 Protein tyrosine phosphatase receptor type N2
PXN Paxillin
RAS Rat sarcoma viral oncogene
RB1 RB (retinoblastoma) transcriptional corepressor 1
RNF43 Ring finger protein 43
SHC1 Src homology 2 domain-containing adaptor protein 1
SKI Sloan-Kettering Institute proto-oncogene
SLFN11 Schlafen family member 11
SMAD3/4 SMAD family member 3/4
SRC Src (Rous sarcoma virus) proto-oncogene
TGFB1 Transforming growth factor beta 1
TOP1 DNA topoisomerase 1
TP53 Tumour protein P53
VIM Vimentin

126



A.3 List of genes

ZNF217 Zinc finger protein 217
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Appendix B

Supplementary material

This chapter contains supplementary information to the three research articles presented in Chapter 2. The sup-
plementary information for the articles in Sections 2.1 and 2.3 were peer-reviewed and published open-access
jointly with their respective article. The supplementary information to the presented preprint in Section 2.2 is
publicly available with its preprint prior to peer review.

129



B Supplementary material

B.1 The pharmacoepigenomic landscape of cancer cell lines reveals the
epigenetic component of drug sensitivity in cancer, Communications
Biology (2023), supplementary information

This material is supplementary to the peer-reviewed and published open-access article in Communications Biol-
ogy presented in Section 2.1 [1] and is reproduced with permission from Springer Nature. It is publicly available
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Supplementary Figure 1: Additional characterisations of dDMRs. (a) The UMAP dimensionality reduction for
gene expression patterns of cell lines in GDSC. (b) A heatmap of drugs that showed at least one dDMR across the screened
compounds and cancer types. (c) Scatter plot showing sample size of each cancer type against found dDMRs across all screened
drugs. (d) A histogram of the number of sites in each dDMR. (e) Set of 27 dDMRs proximal to cancer genes. (f) dDMR in
MGMT for response to JQ1 in low-grade glioma (LGG). The error bars corresponding to 95% confidence intervals, the raw
p-value (p) for the respective CpG site and the Pearson correlation coefficient (r) are displayed.
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Supplementary Figure 4: tgdDMRs in LUAD. (a)-(ab) Correlation between drug response quantified by area-under-the-
curve, DNA methylation and gene expression plus the corresponding protein-protein interaction network between putative
drug target (pink) and tgdDMR-associated gene encoding protein (light blue). In the graph, nodes that are traversed with a
shortest path are highlighted by the blue-grey colour among the alternative paths. For analysing DNA methylation and drug
response, the error bars corresponding to 95% confidence intervals, the raw p-value (p) for each CpG site and the Pearson
correlation coefficient (r) are reported. For analysing DNA methylation and gene expression, the empirical adjusted p-value (p)
and the Pearson correlation coefficient (r) are reported.

B.1 The pharmacoepigenomic landscape of cancer cell lines reveals the epigenetic component of drug sensitivity
in cancer, Communications Biology (2023), supplementary information
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shortest path are highlighted by the blue-grey colour among the alternative paths. For analysing DNA methylation and drug
response, the error bars corresponding to 95% confidence intervals, the raw p-value (p) for each CpG site and the Pearson
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Supplementary Figure 6: tgdDMRs in BRCA, HNSC and STAD. (a)-(x) Correlation between drug response quantified
by area-under-the-curve, DNA methylation and gene expression plus the corresponding protein-protein interaction network
between putative drug target (pink) and tgdDMR-associated gene encoding protein (light blue). In the graph, nodes that
are traversed with a shortest path are highlighted by the blue-grey colour among the alternative paths. For analysing DNA
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This material is supplementary to the open-access preprint article in bioRxiv presented in Section 2.2 [2]. It is
publicly available at https://doi.org/10.1101/2024.01.16.575190.
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Supplementary Figure 1: Predictive and causal modelling in SKCM. The Scatter plot shows observed versus predicted
(a) IC50 and (b) AUC values of luminespib for the full model (black: leveraging EMT scores and mutational background)
and with ablation of the MAK EMT score (grey). (c) The volcano plot illustrates the ablation study in SKCM with AUC
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Supplementary Figure 3: Causal modelling across cancer types. The estimated EMT effects with 95% confidence
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Supplementary Figure 4: Characterisation of EMT in the context of drug response. (a) The boxplots show ESR1
expression of BRCA cell lines stratified by higher versus lower AZD7762 responding cell lines, i.e. discretisation by median
IC50 quantified by a two-sided t-test and its derived p-value. (b) The scatter plot highlights IC50 values of LUAD cell lines
treated with the ROCK inhibitor GSK269962A dependent on their MAK EMT score. The Pearson’s correlation coefficient (r)
and the associated p-value of the correlation test (p) are displayed. The boxplots show the response to (c) staurosporine, (d)
luminespib and (e) CHIR-99021 depending on BRCA PAM50 subtypes, the MAK EMT score and mutations in BRCA1/2.
The centre on the boxplot represents the median, while the box illustrates the interquartile range (IQR). The whiskers show a
range that is 1.5 times the size of the IQR.
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Supplementary Figure 5: Consistency of HSP90 and GSK3 inhibitors in GDSC and CCLE. (a-h) The scatter
plots show drug responses to HSP90 inhibitors in the GDSC quantified by either IC50 or AUC and their MAK EMT scores for
the second luminespib replicate, SNX 2212, both elesclomol replicates and tanespimycin. The Pearson’s correlation coefficient
(r) and the associated p-value of the correlation test (p) are displayed. (i-m) The analogous scatter plots show HSP90 inhibitors
SNX 2112, tanespimycin and AT13387 (onalespib) in the CCLE/CTRP. Cell lines in grey were also screened in the GDSC
datasets, whereas cell lines in black were exclusively screened in the CCLE/CTRP dataset. (n-s) The scatter plots show
drug responses to GSK3 inhibitors in the GDSC quantified by either IC50 or AUC and their MAK EMT scores for the two
CHIR-99021 replicates and AZD7969. (t-w) The analogous scatter plots show GSK3 inhibitors CHIR-99021 and ML320 in the
CCLE/CTRP. Cell lines in grey were also screened in the GDSC datasets, while cell lines in black were exclusively screened
in the CCLE/CTRP dataset. Dashes in the shown figure indicate missing drugs in the GDSC and CCLE/CTRP datasets,
respectively.
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Supplementary Figure 6: Validation experiments for luminespib with TGF-β pretreatment. TGFB1 expression
is demonstrated in SKCM cell lines depending on their EMT scores: (a) MAK, (b) GSVA, (c) TAN, and (d) TW. (e) The
cartoon for luminespib screens illustrates TGF-β1 pretreatment. (f) TGF-β treated epithelial cell lines demonstrate higher
responses (decreased AUC) to luminespib within the inferred causal effect 95% confidence interval.
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Method
abbre-
viation

Name Imple- menta-
tion

Modelling
type

Control of
false positive
rate

Output type Found subgroups (OS) Hazard ratio
on OS for
subgroup not
in standard
treatment and
discovered
by method
[p-value; n
= amount of
patients]

Execution
time
[mins]

OncoBird Oncology
Biomarker
Discovery

R package
’OncoBird’

stratified
linear regres-
sion with
interactions

Benjamini-
Hochberg
correction; per-
mutations and
bootstrapping
for treatment ef-
fect correction

subgroups
with interac-
tion effects
in predefined
subgroups

KRAS mutations in CMS4;
KRAS/NRAS/SRC/BRAF
alterations in CMS4;
KRAS/NRAS/SRC alter-
ations in CMS4; TOP1
amplification in CMS2;
ARFRP1 amplifications in
CMS2

HR = 0.57 (p =
0.16, n = 29)

2.2

VT Virtual
twins

R package
’randomforestSRC’

random
forests and
regression
tree

cross-
validation

decision tree
on biomarkers
from global
outcomes

KRAS/NRAS/BRAF alter-
ations not in CMS2; CMS3

HR = 0.65 (p =
0.17, n = 48)

1.2

MOB Model-
based
recursive
partition-
ing

R package
’model4you’

recursive
chi-squared
indepen-
dence tests

Bonferroni-
correction

decision tree
on recursive
treatment ef-
fects

KRAS/NRAS/BRAF/IRS2/NF1
alterations

HR = 0.82 (p =
0.62, n = 28)

0.1

OWE Outcome
weighting
estimation

R package
’personalized’

outcome
weighting or
A-learning

cross-
validation;
bootstrapping

subgroups
with interaction
effects

NRAS mutations in left-sided;
SOX9 mutations in left-sided

HR = 0.87 (p =
0.44, n = 150)

14.7

CRF Causal
random
forests

R package ’grf’ generalised
random
forests

honest trees variable impor-
tance scores
for treatment
effects

KRAS/NRAS/BRAF/IRS2/NF1
alterations;
KRAS/NRAS/BRAF alter-
ations; ATM/TOP1 alterations

HR = 0.63 (p =
0.12, n = 50)

0.1

POL Policy
learning

R package
’policytree’

semi-
parametrically
efficient esti-
mation

honest trees decision tree
on found sub-
groups

KRAS/NRAS/BRAF
alterations;
PIK3CA/PTEN/GNAS/ERBB2
alterations in left-sided;
ARID1A/SMAD2/CUL4A
alterations

HR = 0.76 (p =
0.18, n = 117)

0.1

GUIDE Generalized,
unbiased,
Interaction
detection
and esti-
mation

Binary ex-
ecutable
https://pages.cs.
wisc.edu/
∼loh/guide.html

interaction
tests

cross-
validation
and boot-
strapping for
treatment effect
correction

subgroups
with interaction
effects

KRAS/NRAS/BRAF alter-
ations; CMS3

HR = 0.76 (p =
0.30, n = 60)

0.4

PRISM Patient
response
identi-
fiers for
Stratified
Medicine

R package
’StratifiedMedicine’

virtual twins
or model-
based
partitioning
with post
parameter
estimation

bootstrapping tree from
bayesian poste-
rior distribution
in found sub-
groups

KRAS/NRAS/BRAF alter-
ations in left-sided

no new sub-
group

0.2

SIDES Subgroup
identifica-
tion based
on differen-
tial effect
search

R package
’SIDES’

differential
effects
search

Šidák multiplic-
ity adjustment
and indepen-
dent validation

subgroups
with interaction
effects

none - 1.9

Supplementary Table 1: Benchmark of OncoBird with other methods. Qualitative and quantitative comparison
between OncoBird and previously published data-driven subgroup analysis methods, i.e. virtual twins (VT), model-based
partitioning (MOB), an outcome-weighted method (OWE), causal random forests (CRF), policy learning (POL), GUIDE,
PRISM and SIDES.
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metastatic colorectal cancer, Nature Communications (2023), supplementary information
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Supplementary Figure 1: OncoBird dockerised Shiny application. (a) Each tab corresponds to one analysis step, for
example (b) the user interface for data input. Then, results are generated for (c) enrichment of genetic alterations in tumour
subtypes, (d) mutual exclusivity, treatment-specific biomarkers in (e) all tumours and (f) in tumour subtypes. Also, results for
predictive biomarkers using (g) interaction tests and (h) the table summary.
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or bevacizumab.
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Supplementary Figure 3: The molecular landscape of non-small cell lung cancer. (a) Interactions between EGFR
subtype and smoking status as tumour subtypes showing raw p-values derived from one-sided hypergeometric tests. (b) Altered
cancer genes tested for enrichment in these tumour subtypes using one-sided hypergeometric tests showing raw p-values. (c)
Oncoprint of 171 tumours, including mutations and copy number alterations detected in more than ten tumours. (d) The
mutually exclusive alteration patterns were derived with the Mutex algorithm. Source data for the figure panels are provided
as Source Data file.
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by a Wald test. We focus on (c) resistance biomarkers of gefitinib with FDRgef /che < 0.1, showing their hazard ratios and 95%
confidence intervals (CI), (d) the composition of mutually exclusive gene modules indicated by dark grey colour, and (e) an
oncoprint highlighting mutational frequencies and patterns. In like manner, (f) chemotherapy resistance biomarkers with their
hazard ratios and 95% CIs and their (g) composition are shown with (h) their oncoprint. A Source Data file is provided,
which contains the source data for the figure panels and the sample sizes of the conducted statistical tests.

B.3 The Oncology Biomarker Discovery framework reveals cetuximab and bevacizumab response patterns in
metastatic colorectal cancer, Nature Communications (2023), supplementary information

153



DFS−gefitinib

DFS−chemo

R
B1m

ut

PTPN
13

m
ut

/T
P53

m
ut

/P
IK

3C
Am

ut

PIK
3C

Am
ut

/T
P53

m
ut

/M
D
M

2a
m

p

KM
T2A

m
ut

/S
M

AD
4m

ut
/T

P53
m

ut
/C

D
K4a

m
p

TP53
m

ut
/M

D
M

2a
m

p

TP53
m

ut

SM
AD

4m
ut

/T
P53

m
ut

/T
ERTa

m
p

N
KX2a

m
p

TP53
m

ut
/S

M
AD

4m
ut

/C
D
K4a

m
p

0.3

1.0

3.0

10.0

0.3

1.0

3.0

10.0h
a

z
a

rd
 r

a
ti
o

Subgroup

available

EGFR1

EGFR2

not significant

smoker1

a

N
KX2a

m
p

TP53
m

ut

PTPN
13

m
ut

/T
P53

m
ut

/P
IK

3C
Am

ut

PIK
3C

Am
ut

/T
P53

m
ut

/M
D
M

2a
m

p

TP53
m

ut
/S

M
AD

4m
ut

/C
D
K4a

m
p

R
B1m

ut

0.1 0.3 1.0 3.0

hazard ratio

mutant

0.3 1.0 3.0

hazard ratio

Subgroup

available

EGFR2

smoker1

wild typec

b

d
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(CI) of genetic biomarkers for (a) mutually exclusive module consisting of mutations in TP53, SMAD4 or CDK4 amplifications,
(b) RB1 mutations, (c) amplifications in MCL1 or MYC, and (d) NKX2-1 amplifications across all patients in either the
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Supplementary Figure 8: Genetic biomarkers of PFS for cetuximab. (a) Prognostic value of mutually exclusive gene
modules or single gene mutations for cetuximab. Each point shows the effect of a particular group of alterations summarised by
its hazard ratio derived by the Cox regression models and its raw p-value derived by a Wald test. We focus on (b) resistance
biomarkers of FOLFIRI plus cetuximab with FDRcet < 0.1, showing their hazard ratios and 95% confidence intervals (CI), (c)
the composition of mutually exclusive gene modules indicated by dark grey colour, and (d) an oncoprint highlighting mutational
frequencies and patterns. Kaplan-Meier plot including 95% CIs and summary statistics of the Cox regression models for (e)
RAS or BRAF mutations and (f) TOP1 amplifications. No sensitivity biomarkers were found with FDRcet < 0.1. A Source
Data file is provided, which contains the source data for the figure panels and the sample sizes of the conducted statistical
tests.
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Supplementary Figure 9: Genetic biomarkers of ORR for cetuximab. (a) Prognostic value of mutually exclusive gene
modules or single gene mutations for cetuximab. Each point shows the effect of a particular group of alterations summarised by
its odds ratio derived by the logistic regression models and its raw p-value derived by a Wald test. We focus on (b) resistance
biomarkers of FOLFIRI plus cetuximab with FDRcet < 0.1 showing their odds ratios and 95% confidence intervals (CI), (c) the
composition of mutually exclusive gene modules indicated by dark grey colour, and (d) an oncoprint highlighting mutational
frequencies and patterns. No sensitivity biomarkers were found with FDRcet < 0.1. A Source Data file is provided, which
contains the source data for the figure panels and the sample sizes of the conducted statistical tests.
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Supplementary Figure 11: Genetic biomarkers of PFS for bevacizumab. No prognostic value of mutually exclusive
gene modules or single gene mutations for bevacizumab. Each point shows the effect of a particular group of alterations
summarised by its hazard ratio derived by the Cox regression models and its raw p-value derived by a Wald test. A Source
Data file is provided, which contains the source data for the figure panels and the sample sizes of the conducted statistical
tests.
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Supplementary Figure 12: Genetic biomarkers of ORR for bevacizumab. (a) Prognostic value of mutually exclusive
gene modules or single gene mutations for bevacizumab. Each point shows the effect of a particular group of alterations
summarised by its odds ratio derived by the logistic regression models and its raw p-value derived by a Wald test. We focus on
(b) resistance biomarkers of FOLFIRI plus bevacizumab with FDRbev < 0.1, showing their hazard ratios and 95% confidence
intervals (CI), (c) the composition of mutually exclusive gene modules indicated by dark grey colour, and (d) an oncoprint
highlighting mutational frequencies and patterns. No sensitivity biomarkers were found with FDRbev < 0.1. A Source Data
file is provided, which contains the source data for the figure panels and the sample sizes of the conducted statistical tests.
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Supplementary Figure 13: Identification of subtype-specific biomarkers for FOLFIRI plus cetuximab or
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are defined by either the primary tumour side, CMS or unstratified (reference model). (c) Kaplan-Meier plot including 95%
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Supplementary Figure 14: Identification of subtype-specific biomarkers for FOLFIRI plus cetuximab or
bevacizumab in terms of ORR. Subtype-specific prognostic value of biomarkers for ORR of (a) cetuximab and (b)
bevacizumab using odds ratios including 95% confidence intervals (CI) derived from single logistic regression models. Subtypes
are defined by either the primary tumour side, CMS or unstratified (reference model). A Source Data file is provided, which
contains the source data for the figure panels and the sample sizes of the conducted statistical tests.
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Supplementary Figure 15: Amplifications in chr20q in tumours treated with cetuximab. Kaplan-Meier plots
including 95% CIs, hazard ratios and raw p-values derived by Wald tests from the Cox regression models of subtype-specific
prognostic biomarkers for OS and cetuximab showing (a) TOP1 amplifications or SRC amplifications in CMS2, respectively.
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Supplementary Figure 16: Predictive interaction biomarkers in the context of tumour subtypes in terms of
PFS. Overview of interaction biomarkers focusing on (a) mutant and (b) wild type populations when comparing cetuximab
and bevacizumab with an interaction FDRint < 0.2 using hazard ratios including 95% confidence intervals (CI) derived from
single Cox regression models fitted on PFS. For the conducted statistical tests, the sample sizes are given in Supplementary
Data 3. Here exemplified, Kaplan-Meier plots including 95% CIs, hazard ratios and raw p-values derived by Wald tests from
the Cox regression models comparing mutant and wild type cohorts of (c,d) KRAS mutations in CMS4. Source data for the
figure panels are provided as Source Data file.
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