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Zusammenfassung

Die Zentralregionen naher Scheibengalaxien weisen eine große Vielfalt an Strukturen in
ihren Stern- und Gasscheibe auf, die das Ergebnis einer komplexen und dynamischen En-
twicklung darstellen. Die sichtbarste zentrale Struktur innerhalb der Balkenregion ist
die innere molekulare Scheibe (die so genannte zentrale molekulare Zone (CMZ) in der
Milchstraße). Jüngste Beobachtungskampagnen haben gezeigt, dass diese inneren moleku-
laren Scheiben eine typische Größe von einigen hundert Parsec bis zu einem Kiloparsec
haben und dazu neigen, im Zentrum von Balkenscheiben zu erscheinen. Die physikalis-
chen Phänomene, die an der Entstehung, dem Verbrauch (z. B. Sternentstehung) und der
langfristigen Entwicklung dieser inneren Gasstrukturen beteiligt sind, werden noch immer
diskutiert. Es wird allgemein angenommen, dass der Balken eine Rolle bei der Zufuhr von
Gas aus dem großen Bereich von einigen Kiloparsec in die innere Molekularscheibenre-
gion spielt. Die genauen physikalischen Prozesse, die am Verlust des Gasdrehimpulses (z.
B. Gravitationsmomente, Scherung, Rückkopplung) und dessen Transport zum Zentrum
beteiligt sind, sind jedoch nicht vollständig geklärt. Darüber hinaus sind innere Gass-
cheiben intermediäre Strukturen, die die große Kiloparsec-Skala mit der Subparsec-Skala
verbinden (z.B. stellar-getriebene Rückkopplung, magnetische Drehmomente), die an der
Entstehung des zentralen supermassiven Schwarzen Lochs (SMBH) beteiligt sind. Daher
können diese inneren Scheiben als „Gasreservoirs“ betrachtet werden und sind möglicher-
weise effiziente Materiallieferanten für das Flackern des zentralen Schwarzen Lochs, dem
sogenannten Aktiven Galaktischen Kern (AGN).

Um die Physik und die dynamischen Prozesse, die an der Bildung dieser Gasreser-
voirs beteiligt sind, zu untersuchen und zu charakterisieren, haben wir eine Reihe hochau-
flösender hydrodynamischer Simulationen isolierter Galaxien mit dem Adaptive Mesh Re-
finement (AMR) Code RAMSES durchgeführt. Diese Simulationsreihe verwendet ein Git-
ter von Modellen, die auf einem Satz galaktischer Parameter basieren, die aus der PHANGS
(Physics at High Angular Resolution in Nearby GalaxieS)-ALMA-Durchmusterung stam-
men. Wir haben vier Kontrollparameter ausgewählt, die typische Eigenschaften der PHANGS-
Galaxienprobe abdecken: die stellare Masse (M⋆: 109.5, 1010, 1010.5 und 1011 M⊙), der
Gasanteil (α: 10, 20 und 40%), die typische stellare Skalenlänge (l∗: 2-5 kpc) und der
Bulge-Massenanteil (β: 0, 10 und 30%), um deren Einfluss auf die Bildung und Entwick-
lung zentraler Gasreservoirs zu untersuchen und zu analysieren. Alle Simulationen begin-
nen mit achsensymmetrischen Anfangsbedingungen, die mit der Multi Gaussian Expansion
(MGE) Methode erzeugt wurden.
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Wir haben zunächst eine erste Stichprobe von 16 Simulationen erstellt, die sich auf die
vier stellaren Massenbereiche mit Gasanteilen von 10 und 20% und Bulge-Massenanteilen
von 0 und 10% konzentrieren. Wir haben diese Untergruppe verwendet, um die Auswirkun-
gen der Kontrollparameter auf die Bildung und Entwicklung großräumiger dynamischer
Strukturen (d.h. des stellaren Balkens und der Spiralarme) und ihre Rolle bei der Ver-
sorgung der zentralen 1 Kiloparsec-Region zu untersuchen. Wir haben die Sternentste-
hungsrate (SFR) unserer Modelle berechnet und festgestellt, dass sie mit der sternbilden-
den Hauptreihe oberhalb von M⋆≥ 1010 M⊙ übereinstimmen. Wir haben festgestellt,
dass das Vorhandensein einer zentralen Ausbuchtung die typische Entstehungszeit des
Balkens (tbar) verzögert, was die Ergebnisse früherer Studien bestätigt. Wir haben diese
Balkenbildungszeit benutzt, um einen dimensionslosen Parameter τ = t/tbar einzuführen,
der ein ähnliches Evolutionsschema für alle unsere Balkenmodelle mit M⋆≥ 1010 M⊙
aufzeigt. Dieses Schema beschreibt die Entwicklung der Gasmasse innerhalb der zentralen
1 Kiloparsec-Region mit vier Phasen. Wir haben beobachtet, dass sich Gasreservoirs in
allen gesperrten Modellen gebildet haben, aber nur in den Modellen, die zum Bereich mit
der geringsten stellaren Masse (109.5 M⊙) gehören. Dies gibt Aufschluss über auf einen
Regimewechsel für die Bildung von Gasreservoirs oberhalb einer stellaren Massenschwelle
um 1010 M⊙.

Wir haben dann eine erweiterte Untergruppe von 35 Modellen verwendet, um diesen
Regimewechsel zu untersuchen, einschließlich Modellen mit einem höheren Gasanteil (40%)
und Bulge-Massenanteil (30%). Wir haben beobachtet, dass Modelle mit höherer stellarer
Masse (M⋆≥ 1010 M⊙) eine charakteristische Senke im zentralen Bereich ihres Gasober-
flächendichteprofils nach der Bildung des Balkens aufweisen, was auf das Vorhandensein
eines Gasreservoirs hinweist. Wir haben die Entwicklung zwischen physikalischen Indika-
toren wie der inneren Lindblad-Resonanz (ILR), der Wahrscheinlichkeitsverteilungsfunk-
tion (PDF) und der Verteilung des Virialparameters und der Machzahl für Regime mit
niedriger und hoher Sternmasse verglichen und unterschiedliche Verhaltensweisen vor und
nach der Bildung des Balkens festgestellt. Wir haben gezeigt, dass das Gleichgewicht
zwischen der Rückkopplung durch Supernovae und der Schwerkraft der Schlüssel zum Ver-
ständnis dieses Unterschieds bei der Bildung der zentralen Massenkonzentration und der
Entstehung oder Nichtentstehung des zentralen Gasreservoirs ist, was zu zwei verschiede-
nen stellaren Massenregimen führt.

Wir haben schließlich ein analytisches Spielzeugmodell entworfen, das die Physik des
Regimewechsels beschreiben soll und dessen theoretische stellare Massenschwelle um 109,75

M⊙vorhersagt. Wir beschreiben kurz die zeitliche Entwicklung der Größe des Gasreser-
voirs und zeigen, dass seine Wachstumsrate nach einem kurzen, abrupten Anstieg in der
Anfangsphase weitgehend konstant ist, was das von der Gemeinschaft bereits vorgeschla-
gene Szenario der Inside-out-Bildung bestätigt. Wir zeigen, dass unsere Reservoirs eine
elliptische Form mit einer konstanten Elliptizität haben. Deren vertikale Struktur besteht
aus einer darunter liegenden Kernscheibe, die die dünnere Struktur der zentralen Stern-
scheibe offenbart, umgeben von einer „boxy peanut“ Ausbuchtung, die aus neu gebildeten
Sternen besteht. Wir zeigen, dass die Ausrichtung der Reservois in Bezug auf den Balken
einen erwarteten Winkel von etwa 90 Grad bilden, wenn man die zugrunde liegende x2-
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Bahnstruktur berücksichtigt. Wir vervollständigen unsere Analyse, indem wir die Po-
sition des zentralen Schwarzen Lochs im Laufe der Zeit berechnen. Wir zeigen einige
Oszillationen seiner Position über die Zeit entlang des Balkens mit großen Amplituden
in Modellen mit geringerer Sternmasse (M⋆≤ 1010 M⊙), die mit dem Gasanteil bis zum
Ende des Laufs zunehmen. In Modellen mit höherer Sternmasse (M⋆≥ 1010 M⊙) ist die
Amplitude der Oszillationen kleiner und hört auf, sobald sich das Gasreservoir bildet. Das
Schwarze Loch befindet sich dann im Zentrum der zentralen stellaren Scheibe und des Gas-
reservoirs, was auf eine günstige Konfiguration für das Anheizen des Schwarzen Lochs im
Subparsec-Bereich hindeutet. Dieses letzte Ergebnis hängt von der anfänglichen Position
des Schwarzen Lochs ab und könnte größtenteils auf numerische Effekte zurückzuführen
sein, weshalb es mit äußerster Vorsicht betrachtet werden sollte.

Insgesamt hat diese Arbeit bestätigt, dass der Balken eine wichtige Rolle bei der Zufuhr
von Gas zum Zentrum spielt, und hat seine ursprüngliche Rolle bei der Gestaltung der
zentralen Regionen in nahen Scheibengalaxien gezeigt. Diese Arbeit hat das Inside-Out-
Szenario bestätigt und vier verschiedene Phasen bei der Bildung des Gasreservoirs sowie
einige Merkmale seines Wachstums aufgezeigt. Diese Arbeit lieferte eine physikalische
Erklärung für die Unterschiede in der Gas- und Sternentstehungsverteilung in Scheiben-
galaxien mit geringer und hoher Sternmasse, die bereits in früheren Studien aufgezeigt
und in neueren Beobachtungen (HST, JWST) bestätigt wurden. Diese Arbeit hat gezeigt,
dass der physikalische Ursprung dieses Regimewechsels mit dem Gleichgewicht zwischen
der stellaren Rückkopplung aufgrund von Supernovae und der Stärke des Gravitationspo-
tentials zusammenhängt. Sie hat gezeigt, dass die Rückkopplung durch Supernovae die
Bildung zentraler Gasreservoirs in Scheiben mit geringer stellarer Masse (< 1010 M⊙) ver-
hindern kann. Dieses letzte Ergebnis könnte es uns ermöglichen, die Interaktionen und
Diskussionen zwischen den Beobachtungs- und Berechnungsgemeinschaften zu verbessern.
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Abstract

Central regions of nearby disc galaxies display a large variety of structures in their stellar
and gas disc that illustrates the outcome of a complex and dynamic evolution. The most
visible central structure inside the bar region is the inner molecular disc (the so-called
Central Molecular Zone (CMZ) in the Milky Way). Recent observational campaigns have
shown that those inner molecular discs have a typical size ranging from a few hundred
parsecs to one kiloparsec and tend to appear at the centre of barred discs. The physical
phenomena involved in the building, consumption (e.g., star formation) and long-term
evolution of those inner gas structures are still strongly debated. It is commonly accepted
that the bar plays a role in the fuelling of gas from the large few kiloparsec scale to the inner
molecular disc region. However, the exact physical processes involved in the loss of gas
angular momentum (e.g., gravitational torques, shear, feedback) and its transport to the
centre are not fully understood. Moreover, inner gas discs are intermediate-scale structures
which connect the large kiloparsec scale and the subparsec scale physics (e.g., stellar-driven
feedback, magnetic torques) involved in the fuelling of the central supermassive black hole
(SMBH). Therefore, those inner discs can be considered as ‘gas reservoirs’ and may be
efficient suppliers of material for the flickering of the central black hole, the so-called
Active Galactic Nuclei (AGN).

To investigate the physics and characterise the dynamical processes involved in the
formation of those gas reservoirs, we have performed a suite of high-resolution hydro-
dynamical simulations of isolated galaxies with the Adaptive Mesh Refinement (AMR)
code RAMSES. This suite of simulations uses a grid of models based on a set of galactic
parameters stemming from the Physics at High Angular resolution in Nearby GalaxieS
(PHANGS)-ALMA survey. We have selected four control parameters spanning typical
properties from the PHANGS galaxy sample: the stellar mass (M⋆: 109.5, 1010, 1010.5,
and 1011 M⊙), the gas fraction (α: 10, 20, and 40%), the typical stellar scale length (l∗:
2-5 kpc), and the bulge mass fraction (β: 0, 10, and 30%) to study and analyse their
impact on the formation and evolution of central gas reservoirs. All the simulations start
with axisymmetric initial conditions generated with the Multi Gaussian Expansion (MGE)
method.

We have initially built a first sample of 16 simulations, focusing on the four stellar mass
bins with gas fractions of 10 and 20% and bulge mass fractions of 0 and 10%. We have
used this subset to investigate the impact of the control parameters on the formation and
evolution of large-scale dynamical structures (i.e., the stellar bar and spiral arms), and
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their role in fuelling the central 1 kiloparsec region. We have computed the star formation
rate (SFR) of our models and found that they match the star-forming main sequence
above M⋆≥ 1010 M⊙. We have found that the presence of a central bulge delays the typical
formation time of the bar (tbar), thus confirming results from previous studies. We have
used this bar formation time to introduce a dimensionless parameter τ = t/tbar, revealing
a similar evolutionary scheme for all our barred models with M⋆≥ 1010 M⊙. This scheme
describes the evolution of the gas mass inside the central 1 kpc region with four phases.
We have observed that gas reservoirs were formed inside all barred models but in models
belonging to the lowest-stellar mass bin (109.5 M⊙), shedding light on a change of regime
for the building of gas reservoirs above a stellar mass threshold around 1010 M⊙.

We have then used an extended subset composed of 35 models to investigate this change
of regime, including models with a higher gas fraction (40%) and bulge mass fraction (30%).
We have observed that higher-stellar mass models (M⋆≥ 1010 M⊙) show a characteristic
dip in the central region of their gas surface density profile after the formation of the bar,
indicating the presence of a gas reservoir. We have compared the evolution between phys-
ical tracers such as the inner Lindblad resonance (ILR), probability distribution function
(PDF), and distribution of the virial parameter and the Mach number for low- and high-
stellar mass regimes and revealed different behaviours before and after the formation of the
bar. We have shown that the balance between the feedback due to supernovae and gravity
is the key to understanding this difference in the building of the central mass concentration
and the emergence or not of the central gas reservoir, leading to two separate stellar mass
regimes.

We have finally designed an analytical toy model which aims at describing the physics
of the change of regime and predicts its theoretical stellar mass threshold around 109.75 M⊙.
We briefly describe the time evolution of the size of the gas reservoir, and we show that
its growth rate is mostly constant in time after a brief abrupt early increase, confirming
the inside-out formation scenario already proposed by the community. We show that our
reservoirs have an elliptical shape with a constant ellipticity. Their vertical structure is
made of an underlying nuclear disc, revealing the thinner structure of the central stellar
disc, surrounded by a ‘boxy peanut’ bulge made of newly-formed stars. We show that
the gas reservoirs’ orientation with respect to the bar forms an expected angle of around
90 degrees, considering the underlying x2 orbital structure. We complete our analysis by
computing the location of the central black hole (BH) over time. We show some oscillations
of its position over time along the bar with large amplitudes in lower stellar-mass models
(M⋆≤ 1010 M⊙), increasing with the gas fraction, until the end of the run. In higher-stellar
mass models (M⋆≥ 1010 M⊙), the amplitude of the oscillations is smaller and stops once
the gas reservoir forms. The BH is then at the centre of the central stellar disc and the
gas reservoir, suggesting a favourable configuration for the subparsec scale fuelling of the
black hole. This last result depends on the initial location of the BH and could be mostly
due to numerical effects, therefore it should be taken with extreme caution.

Overall, this work has confirmed that the bar plays an important role in the fuelling
of gas to the centre, and has shown its primordial role in shaping the central regions in
nearby disc galaxies. This thesis has confirmed the inside-out scenario, revealed four dis-
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tinct phases involved in the building of the gas reservoir, and some characteristics of its
growth. This work has provided a physical explanation for the differences in the gas and
star-formation distribution in low- and high-stellar mass discs, already highlighted in past
studies and confirmed in new recent observations (HST, JWST). This work has shown
that the physical origin of this change of regime is connected with the balance between the
stellar feedback due to supernovae and the strength of the gravitational potential. It has
demonstrated that the supernovae feedback may prevent the formation of central gas reser-
voirs in low-stellar mass discs (< 1010 M⊙). This last result could allow us to enhance the
interactions and discussions between the observational and computational communities.
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Chapter 1

Introduction



2 1. Introduction

1.1 Evolution of galaxies from the early Universe un-
til now

1.1.1 The cosmological context
Humanity has believed for a long time that our Universe has always been as we observe
it and will always stay the same. Even now, galaxies we observe today in the nearby
Universe at very low redshift (z ≈ 0) seem quite static. One of the first observations
showing a contradiction with this static view of the Universe goes back to the last century.
In 1929, the American astronomer Edwin Hubble published his observations on the spectra
of Cepheids located in distant galaxies. In these observations, he noticed a shift of their
spectra toward redder wavelengths and deduced that this redshift was due to a relative
motion of the galaxies hosting those stars with respect to us. He also noticed that the
further the galaxy is from us, the more the spectrum is shifted toward the red wavelengths.
From this observation, he deduced that the further the galaxies are, the faster they are
moving away from us, resulting in the Hubble-Lemaitre law (Hubble, 1929) given by:

V = H0D, (1.1)

where V is the so-called recession velocity of a galaxy, H0 is the Hubble constant at the
time of observation, and D is the distance of a galaxy from us. We see that the above equa-
tion confirms the recession motion of galaxies as predicted by Hubble’s observations. The
Hubble’s law was the first piece of evidence to prove the expansion of the Universe. With-
out going into the mathematical details, the Hubble relation can be derived from the Ein-
stein field equations (Einstein, 1915) by using the Friedmann–Lemaître–Robertson–Walker
(FLRW) metric (Friedmann, 1922). From these equations, they defined a scale factor a(t)
depending on time, for which the Hubble constant is given by:

H(t) = ȧ

a
(t). (1.2)

where H(t) is the time depending Hubble’s constant and ȧ(t) is the time derivative of
the scale factor. The deep meaning of this relation is that the space itself is expanding,
dragging the galaxies inside its fabric and taking them away from us (and not that galaxies
are moving away from us inside a static space). This shows that our Universe is not
static and follows an evolutionary path, as also demonstrated theoretically by the works
of Lemaître (1931). From this statement, two main questions have arisen during the last
century, which are: What is the history of our Universe? And the second complementary
and obvious question is: How will it evolve in the future?

The first question is answered by stating that since we see the galaxies moving away from
us now, we can ‘rewind the movie’ and then observe the galaxies moving toward us as we
go back to the past. This is possible thanks to the time reversibility of Einstein’s equations.
When we reverse the time in those equations, we see that galaxies are getting closer and
closer to each other until all the matter is concentrated in a point, a dimensionless region of
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space, corresponding to the event that we commonly call the Big Bang or the ‘origin’ of our
Universe about 13.8 billion years ago. It is important to keep in mind that the question of
the origins remains completely open, and the Big Bang1 is a hypothesis, for which we have
found a large number of pieces of evidence. However, our most recent physical theories
remain unable to provide a detailed explanation of what happened before 10−42 seconds
after the Big Bang, corresponding to the so-called ‘Planck wall’. To understand what
happened beyond this limit, we would need a more advanced theory connecting General
Relativity and quantum mechanics (i.e., a theory of everything). This would require a
theory bridging the corpuscular and wave nature of particles, as we are already trying with
speculative theories such as the string theory (see e.g., Schwarz, 1982) or the loop quantum
gravity (see e.g., Ashtekar et al., 1991).

The most convincing piece of evidence for this scenario is the relic radiation which
happened ∼ 380000 years after the Big Bang, whose echo was first accidentally detected
in 1965 by the radio astronomers Arno Penzias and Robert Wilson (Penzias & Wilson,
1965). The signal they detected is the so-called cosmic microwave background (CMB) and
is illustrated in Fig.1.1. This figure shows the fossil radiation of our Universe, relating
to an event corresponding to the time at which the matter density was low enough to let
the photons escape and diffuse their first light everywhere in the young Universe. In this
figure, we observe that the amplitude of the temperature inhomogeneities is very low (<
200 µK) leading to the fact that we can consider our Universe homogeneous and isotropic
at large scales (> 100 Mpc). It is worth already mentioning that we use the observed
fluctuations inferred from the CMB as the starting point for initial conditions in state-of-
the-art cosmological simulations such as HORIZON, ILLUSTRIS-TNG, and EAGLE (see
Ocvirk et al., 2008; Vogelsberger et al., 2014b; Schaye et al., 2015, respectively).

The second question is much more difficult to answer because it strongly depends on
the composition of the Universe. In the lambda cold dark matter (ΛCDM) paradigm,
we assume a Universe composed of baryonic matter, cold dark matter (DM), and dark
energy. The DM is the non-baryonic matter, which does not directly interact with light
and constitutes ∼ 25% of the Universe in terms of mass (energy) density. The dark
energy (or vacuum energy) given by Λ is the unknown energy opposing gravity, which is
responsible for the expansion and constituting ∼ 70% of the Universe. The rest is the
baryonic matter and radiation composing everything we can observe around us through
interactions with light and constituting only ∼ 5% of our Universe. In other words, we
still ignore the physical nature of 95% of our Universe. Usually, when we want to model
the future evolution of our Universe, we use Einstein’s equations with the FLRW metric
to derive the time evolution of the scale factor as a function of the values of the different
density parameters ΩM , ΩR, and ΩΛ stating for the matter (baryonic and DM), radiation,
and vacuum energy. Figure 1.2 illustrates the evolution of the scale factor as a function
of time (or redshift) for the different values of the density parameters. In this figure, we
see that the curvature of the Universe is determined by its content. Our Universe can be

1This ironic name was used for the first time by the British Physicist Fred Hoyle in the BBC show
Nature of Things.
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flat (curvature=0) and dominated by Matter and Vacuum (purple curve) or just matter
(cyan curve). It can be open (curvature > 0, blue curve) or closed (curvature < 0, orange
curve). We observe that a flat or open Universe will expand indefinitely, tearing it apart
or making it cooler and cooler (Big Rip or Big Freeze), but a closed Universe will reach a
maximum of its expansion before collapsing with a decreasing scale factor (Big Crunch).
This last scenario has given rise to the theory of a bouncing Universe, oscillating between a
Big Bang phase followed by an expansion and collapsing phase before restarting a new Big
Bang and keeping this cycle indefinitely. We have currently no evidence for this bouncing
Universe theory, and the most recent observations suggest that we live in a flat Universe,
with Ωtotal ≡ ΩM + ΩΛ = 1 ± 0.02.

Figure 1.1: Wilkinson Microwave Anisotropy Probe heat map of the CMB
with temperature fluctuations ranging from -300 to 300 micro-Kelvin. Credits:
https://wmap.gsfc.nasa.gov

1.1.2 Galaxy assembly and evolution from high z
Astronomy aims to study, understand, and model the physical mechanisms involved in
the formation and evolution of structures in our Universe. Those mechanisms include the
gravitational structuring of large-scale structures (e.g., DM halos and filaments) and the
following gas redistribution, star formation (SF) and its associated stellar feedback, galaxy
interaction and mergers, formation and growth of supermassive black hole (SMBH)s and
their impact on their host (e.g., active galactic nuclei (AGN)). The farther we observe, the
more we see the structure of the primordial Universe, which is important to understand
and model the evolution of galaxies until today. The furthest echo of the primordial
Universe we have ever detected is the CMB. From this epoch, the matter has cooled down
and condensed into cosmic webs, thus forming the very first DM halos while gas started
to fall into them and form the very first stars, building the very first galaxies. The most
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Figure 1.2: Evolution over time of the scale factor in the FLRW metric for differ-
ent values of the density parameters ΩM (matter) and ΩΛ (dark energy). Credits:
https://jila.colorado.edu

distant galaxy (JADES-GS-z14-0) we have detected with the James Webb Space Telescope
(JWST) so far, is located 13.5 billion years away at redshift z ≈ 14, corresponding to 300
million years after the Big Bang (Carniani et al., 2024). The epoch following the CMB is
a time during which there were no stars to illuminate the Universe. This period is thus
sometimes called the ‘Dark Age‘ and our most recent models predict the formation of the
very first stars (Population III) about a few hundred million years after the Big Bang (Weiss
et al., 2000; Abel et al., 2002; O’Shea & Norman, 2007; Klessen, 2019). Since the Universe
was completely dark, we cannot observe events or structures occurring between the CMB
epoch (z ≈ 1100) and the formation of the first galaxies. We can still use cosmological
simulations to provide constraints on the structure of the Universe during this epoch (i.e.,
from the CMB to the formation of the first galaxies) and study the evolution of those
structures and galaxies until z = 0.

We have already probed and constrained fundamental properties of the structures shap-
ing our Universe by connecting the evolution of objects at high and low redshift. Observa-
tions and simulations of the population of nearby and distant galaxy clusters have allowed
us to derive the evolution over redshift of the halo mass function (HMF) and galactic
stellar mass function (SMF) (Fontana et al., 2006; Mortlock et al., 2015; Somerville et al.,
2015; Lovell et al., 2021; Santini et al., 2022), as shown in Fig 1.3 and 1.4 from Weaver
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et al. (2023). The SMF illustrates the stellar mass distribution of galaxies for a given
redshift. Fig. 1.3 illustrates the evolution of the SMF across redshift for the COSMOS2020
sample (see Weaver et al., 2023). Those are well approximated by a Schechter function
(Schechter, 1976) for the full sample (left panel) with the two slopes and the ‘knee’ around
1011 M⊙. We see that star-forming galaxies (middle panel) dominate the total distribution,
especially at higher redshift, where the number of quiescent galaxies (right panel) tends to
decrease. We note that the total distribution goes away from a pure Schechter profile when
redshift increases. The evolution with redshift of the HMF is shown in Fig. 1.4. In this
figure, we see the comparison between the SMF (coloured curves) and HMF (lower bound
of the grey-shaded region, derived from Tinker et al. (2008)) across redshift, witnessing the
potential connection between those two distributions. The evolution of the star formation
rate (SFR) with redshift (i.e., star formation history (SFH)) is also a key factor in mod-
elling the evolution of the SMF (Gruppioni et al., 2013; Lapi et al., 2017), as illustrated by
the black curve in Fig. 1.5. In that figure, we observe a SFR density having a bell shape
and peaking around z = 2.

Probing the behaviour and the connection between those three distributions and the
ratio of HMF and SMF as a function of redshift is of paramount importance to better
understand, constrain, and model the gas accretion and merging events that have built the
galaxies of the nearby Universe we observe today.
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Figure 1.3: Evolution of the stellar mass function (SMF) as a function of redshift for the
total (left panel), star-forming (middle panel), and quiescent (right panel) galaxies of the
COSMOS2020 sample (from Weaver et al., 2023).

1.1.3 The role of the central supermassive black hole
One of the key factors that we believe influences the high mass end distribution of the
SMF is the presence and role of SMBHs at the centre of galaxies. SMBHs are celestial
objects that can play an important role in the formation and evolution of galaxies. Black
Holes were first theoretically discovered as an implication of Einstein’s theory of General
Relativity and SMBHs were further used in the modelling of active galaxies. black hole
(BH)s do not directly emit light, but we can still detect them through their interaction
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Figure 1.4: Evolution of the SMF (grey dots and coloured curves) and HMF (lower bound
of the grey shaded area) as a function of redshift from z = 1.5 to z = 7.5. The coloured
curves are the inferred SMF fitted to the data (grey dots). The different colours refer to the
redshift of Fig.1.3. The grey curves are the HMF scaled by a factor 0.018, corresponding to
the stellar-to-halo mass function at z = 0. The data are stemming from the COSMOS2020
sample (from Weaver et al., 2023).

with the baryonic matter. When material (e.g., cloud of gas, star) approaches close enough
to the BH, it can get gravitationally captured and tidally disrupted, which may lead to the
formation of an accretion disc of gas surrounding the BH. The physics of accretion discs is
a complex topic, but dynamical friction and shear may help transport the gas very close to
the event horizon and eventually, the material may fall inside the BH. As the material gets
closer to the event horizon, it accelerates until it reaches a velocity close to the speed of
light, leading to the emission of high-energy photons (e.g., X-rays, gamma rays) detectable
by our telescopes. In the case of SMBHs observed at the centre of galaxies, the accretion
of material can lead to central activity (i.e., AGN) (see Krolik, 1999). This picture was
recently confirmed by the very first image of the SMBH at the centre of M87 taken with
the Event Horizon Telescope (EHT) (see Event Horizon Telescope Collaboration et al.,
2019). The complex structure of those objects (i.e., the orientation of the BH spin with
respect to the accretion disc and torus of dust), coupled with their orientation to us, was
considered as a key to explain the spectral classification of active galaxies we know today:
quasars, radio-quiet and loud, liners, Seyfert 1 and 2 (see Lawrence, 1987; Krolik, 1999;
Kewley et al., 2006).

The formation and evolution of SMBHs is not an easy problem to solve. There are
several orders of magnitude between the mass of stellar BHs (a few to a few hundred
M⊙) and the mass of galactic SMBHs detected in the central region of galaxies (∼ 105
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- 1010 M⊙, see Reines & Volonteri, 2015). We understand the basics of the mechanism
leading to the formation of stellar-mass BHs during the core collapse and the explosion
of a giant star into supernovae, and we have detected the presence of such BHs in X-ray
binaries (Tauris & van den Heuvel, 2006; Dunn et al., 2010). Concerning the SMBHs,
we still lack a global picture of the exact mechanisms responsible for their formation and
growth. Once the mass of the SMBH reaches a few 105 M⊙, theory and simulations have
shown that super Eddington accretion events coupled with BH coalescence during galaxy
mergers can allow a sufficient mass growth to explain the emergence of the most massive
BHs we observe today. Theoretical works suggest the formation of an intermediate-mass
seed (∼ 102 − 104 M⊙) to sustain accretion events over several billion years, but we do
not have a solid detection of such intermediate-mass BH so far (see the review of Greene
et al., 2020). Those intermediate-mass BHs could, for example, have been formed from
the runaway collisions of stars in nuclear star clusters (Portegies Zwart et al., 2006; Giersz
et al., 2015; Fujii et al., 2024).

The evolution of the accretion rate of SMBHs (red curve) and SFH (black line) across
redshift (Madau & Dickinson, 2014) is illustrated in Fig. 1.5. In this figure, we see a
similarity between those two profiles, suggesting that the accretion events experienced by
SMBHs could be closely connected to SF of the host galaxy. We observe that the maximum
of the SF (i.e., Cosmic Noon) occurs about redshift 2 and corresponds to the maximum of
the SMBH mass growth. This highlights the importance of investigating the potential link
between SF and the fuelling of central SMBHs. Another important aspect of SMBHs in
galaxy evolution is the impact of the AGN on the galaxy gas content and thus, their role
in recovering the shape of the high-mass end of the SMF as shown in Bower et al. (2012);
Puchwein & Springel (2013).

1.2 Structure of disc galaxies at redshift zero
The story we have sketched until now, starting with the early stages of the Universe, the
formation and the distribution of galaxies across redshift, and the potential role played by
SMBHs, has designed the galaxies of our nearby Universe. When we observe the Universe
around us, we see that most of those objects have a discy nature and a spiral structure
(late-type galaxies) and show a higher SFR compared with elliptical galaxies (early-type,
see Bamford et al., 2009; Calvi et al., 2018). Our own Galaxy, the Milky Way (MW), is
itself classified as a barred spiral one (SBb or SBc type in the Hubble sequence), located
on the main sequence of star-forming galaxy (see Fig. 1.7), and is the only galaxy where
we know that ‘life’ has emerged so far2. Another feature of the MW is the presence of its
central SMBH (Sagittarius A∗), whose first image of the close environment was released in
2022. Sagittarius A∗ is a quiescent SMBH but some active periods might have occurred in
the past or could happen in the future. Some characteristics of active disc galaxies indicate
that all of them host a SMBH at their centre (see Kormendy & Ho, 2013). Understanding

2The concept of ‘life’ is tedious to define and is one of the hot topics in sciences. Here, I refer to
intelligent life (like us) as we know it on Earth.
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Figure 1.5: Evolution of the SFR density (black line) and massive BH accretion rate density
(red line (Shankar et al., 2009), green shaded area (Aird et al., 2010), and blue shaded
area (Delvecchio et al., 2014)) as a function of redshift (from Madau & Dickinson, 2014)

and characterising the connection between the large-scale structures (i.e., bar, spiral arms)
of those galaxies and the AGN activity cycle is a hot topic in this field. In this section, I
will describe the basic ingredients to design a disc galaxy and their properties, the different
secular processes, and what we know about their central SMBH.

1.2.1 Main ingredients of disc galaxies
Observations of nearby galaxies revealed that some of them display features in their disc of
stars (e.g., stellar bar, spiral arms) and their disc of gas (e.g., bar lanes, central gas structure
inside the bar region). Nowadays, the current generation of ground-based instruments such
as the radio telescope Atacama Large Millimeter/submillimeter Array (ALMA) and the
optical Very Large Telescope (VLT) and its Multi Unit Spectroscopic Explorer (MUSE)
spectrograph have recently allowed us to probe and trace specific components of the gas
disc at high angular resolution. Space telescopes such as the Hubble Space Telescope (HST)
and JWST are also of paramount importance since they allow us to probe star-forming
regions of the disc by tracing the ionised gas and dust (e.g., via emission formpolycyclic
aromatic hydrocarbonate (PAH)s). The JWST has further revolutionised our view on the
gas discs, showing their fine structure at the giant molecular cloud (GMC) scale (∼ 10−100
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pc) and exhibiting the impact of complex phenomena (i.e., shear, stellar feedback, bubbles)
occurring inside them.

Quantitative studies of the stellar and gas distributions suggest a picture where disc
galaxies are basically composed of an exponential disc of stars inside which we find another
thinner exponential disc of gas embedded in a large spherical DM halo. The disc of gas
usually extends further than the stellar one with a radius going up to 50 kpc for the most
massive galactic systems. It is commonly suggested that the halo is responsible for the
flat, non-Keplerian behaviour of the rotation curve, even extending beyond the stellar disc
with a radius going up to ten times the typical radius of the stellar component. Since
the DM halo cannot be directly measured, we usually constrain the halo mass in such a
way that the combination of its profile and the rest of the baryonic matter matches the
observed total rotation curve. To this end, we can use various profiles such as the Einasto
(Einasto, 1965), Burkert (Burkert, 1995), Navarro-Frenk-White (NFW) (Navarro et al.,
1997), generalised Di Cintio profile (Di Cintio et al., 2014), coreNFW (Read et al., 2016),
or Dekel-Zhao (Freundlich et al., 2020). The choice of these profiles has been motivated by
results from cosmological pure DM simulations and sometimes from tensions with observed
galaxies and galaxy clusters.

Those three components (i.e., the stellar, gas disc, and DM halo) participate in struc-
turing the global gravitational potential, ruling the dynamical evolution of the stars and
gas. In the case of an undisturbed and idealised two-dimensional stellar disc, the stars can
all be simply assumed to be on circular orbits with an angular frequency Ω that depends
on the galactic radius. In real galaxies, stars on three-dimensional orbits. Those orbits
are often described via a linear approximation introducing a radial (κ), azimuthal (νϕ),
and vertical (νz) oscillation frequency describing the deviation from the idealised circular
orbits (i.e., the epicycle approximation).

1.2.2 A few words about three current observation surveys
The understanding of the complex structure and formation of those disc galaxies is a cur-
rent challenge that many observational campaigns are still trying to tackle. Among all
the current surveys, the Mapping Nearby Galaxies at APO (MaNGA) with its impressive
sample of about 10,000 galaxies, offers an exceptional opportunity to probe their SF and
merger history (see Bundy et al., 2015; Stark et al., 2018; Fraser-McKelvie et al., 2020).
The recent Generalising Edge-on galaxies and their Chemical bimodalities and Kinematics
and Outflows out to Solar environments (GECKOS) survey, with its 35 edge-on disc galax-
ies, reveals their complex vertical structure and tries to better constrain the phenomena
involved in the building of their central bulge (see van de Sande et al., 2024). Among all
those surveys, the multi-wavelength Physics at High Angular resolution in Nearby Galax-
ieS (PHANGS) survey that involves the use of various facilities (HST, ALMA, MUSE,
JWST) is particularly relevant to studying and understanding the connection between the
large-scale structures of the stellar disc such as the bar and spiral arms and the smaller
gas structures we observe inside the bar region (i.e., bar lanes and inner molecular disc).
The PHANGS sample aims at observing low-inclination star-forming disc galaxies with a
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high angular resolution to highlight and understand their complex baryon cycle (see e.g.,
Turner et al., 2021; Leroy et al., 2021; Emsellem et al., 2022; Sandstrom et al., 2023). In
the rest of this chapter, we will use the PHANGS sample to illustrate the properties of
nearby galaxies.

Figure 1.6: Image of the barred spiral galaxy NGC1300 taken with the HST. We see the
prominent stellar bar structure and the two ‘grand design’ spiral arms.

1.2.3 Characteristics of the bar and spiral arms
Bars and spiral arms are the two main large-scale structures we can observe in the stellar
disc of galaxies (see Eskridge et al., 2000; Nair & Abraham, 2010; Kruk et al., 2017), as
illustrated with NGC1300 in Fig. 1.6. In this figure, we see a central stellar bar and two
spiral arms attached to the bar ends. One arm is going upward while the other one is going
downward. This type of object with a prominent stellar bar and spiral arms is called a
‘grand design’ galaxy.

Galaxy bars

Bars are non-axisymmetric structures built around a specific set of elongated orbits (i.e.,
the family of x1 orbits, see Athanassoula, 1992a). This family of x1 orbits can be math-
ematically described by solving the motion equations in an analytical rotating potential
(see e.g., Binney et al., 2009). Stellar bars have three properties that we commonly use to
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characterise them. Those properties are their rotation pattern Ωp, strength, and scaling
radius (or extend).

The rotation pattern, also called ‘pattern speed’ is a bar property that can be interesting
to measure because it provides a reference time scale for the secular evolution time of a
galactic system. Measuring the pattern speed of a stellar bar is not straightforward because
those objects are dynamic structures evolving on long timescales (∼ 100 Myr) that cannot
be captured by observations. The community has developed many methods over the past
decades to try to measure the bar pattern speed. One of them was proposed by Tremaine
& Weinberg (1984), who theoretically derived a pattern speed based on the continuity
equation of the stellar component. They tested their method on simulated barred disc
galaxies and found coherent results. In the nearby Universe, we have measured bar pattern
speeds ranging from 10 to 40 with a median value around 25 km/s/kpc (Guo et al., 2019;
Garma-Oehmichen et al., 2022, from MaNGA data). Barred galactic systems thus involve
an angular frequency Ωp associated with the bar. It adds on the natural frequencies of
the system, which include Ω the circular frequency (associated with circular orbits in a
disc) and the epicycle frequencies κ and ν (radial and vertical frequencies, resp.) that
describe linear deviations from the circular orbits. Disc galaxies can therefore exhibit
frequencies that can interact with each other, opening the possibility of orbital resonances.
One of those resonances occurs when Ωp = Ω and defines the co-rotation radius of the
bar. Another resonance may also happen when the bar angular frequency interacts with
the epicycle frequencies and leads to the emergence of e.g., the so-called inner Lindblad
resonance (ILR) and outer Lindblad resonance (OLR) (i.e., Ωp = Ω ± κ/2). The pattern
speed is therefore a key factor in defining orbital resonances in the stellar disc such as the
Lindblad Resonances and the co-rotation radius. Those resonances have been suggested
to be closely connected with the formation of dynamical gas structures such as the central
molecular gas and stellar disc (Athanassoula, 1992b).

The amplitude of the perturbation associated with the presence of a bar is often named
the ‘strength’ of the bar. This has been estimated in various ways, including the method
computing the maximum of the second-order A2 Fourier coefficient (Efstathiou et al.,
1982a; Athanassoula, 2002, 2003). This coefficient indicates the amplitude of the second
moment m = 2 of the Fourier decomposition of the stellar disc. The value of its amplitude
shows the degree of asymmetry of the disc as a function of the galactic radius. In the
nearby Universe, the typical values of A2 are between 0.3 and 0.8 as reported by Stuber
et al. (2023) for the PHANGS sample.

The last parameter used to characterise a stellar bar is its typical semi-major axis length
(or bar radius). It is not simple to determine the radius of a bar as bars do not have a clear
edge. Bars contain stellar populations with various edges, SF sights and dust making the
size measurements very dependent on wavelength and on the method used. Among the
techniques to measure one consists of using the A2 profile and taking the radius at which
A2 reaches a fraction (e.g., 100 to 70 %) of its maximum value (see Ghosh & Di Matteo,
2024). A second method uses ellipses to fit the iso-density contours of the stellar surface
brightness (Michel-Dansac & Wozniak, 2006) and use the variation of position angle to
detect the edge of the bar. The value of the bar radius in nearby disc galaxies is typically
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between 2 and 5 kpc, with larger bars observed in massive disc galaxies (i.e., ≥ 10 kpc, see
Marinova & Jogee, 2007; Aguerri et al., 2009).

Spiral structures

As already mentioned above, large-scale spiral arms are another main non-axisymmetric
dynamic structure in disc galaxies and they usually extend much farther than the stellar
bar. Spiral arms are dense regions with sometimes a high rate of SF and are thus believed
to be connected to the large 10 kpc scale molecular gas redistribution in the disc (Colombo
et al., 2022). Spiral arms are characterised in various ways, including their type (e.g.,
grand design, flocculent), pitch angle, rotation pattern, and spatial extent (see the review
of Dobbs & Baba, 2014, and references therein).

The physical origin and nature of spiral arms is still a debated topic. Those structures
are generally considered as density waves emerging from disc instabilities and built around
a special arrangement of stellar orbits as demonstrated by the pioneering work of Toomre
(1964); Lin & Shu (1964). Nowadays this picture has changed and all spiral structures in
the stellar disc cannot be always associated with density waves (e.g., flocculent-type arms
like in M51 as shown by Meidt et al., 2013).

Simulations have shown that spiral arms evolve on shorter time scales than the stellar
bar and can experience multiple phases in their growth via, for instance, swing amplification
and damping phenomena (Toomre, 1981; Sellwood, 2000; Baba, 2015). Due to their shorter
lifetime, it is not a straightforward task to measure their pattern speed, but some methods
exist (see e.g., Pfenniger et al., 2023).

1.2.4 Secular processes and their impact on the disc
Stellar bars and spiral arms are the main drivers of the secular processes happening inside
the disc. An intriguing characteristic about SF in our Universe is that most stars form in
discs, at nearly all redshift. Nearby disc galaxies actively form stars and constitute the
so-called star-forming main sequence (see Leroy et al., 2019), as shown in Fig. 1.7. Among
those disc galaxies, the ones displaying a stellar bar have a higher SF rate at a fixed stellar
mass (Carles et al., 2016). It is commonly accepted that bars enhance the formation of
new stars in the central regions because they fuel gas efficiently to the centre where gas
accumulates and is efficiently converted into stars. This central gas concentration due to
the bar tends to increase the SFR.

Spiral arms also have an important role to play in forming new stars because of their
high-density gas regions. The SF regions inside the disc affect the structure of the interstel-
lar medium (ISM) because they form massive stars (> 8 M⊙) that will explode into type II
Supernovae (SNe), releasing a large amount of energy and momentum into the ISM. Other
sources of stellar feedback can release energy such as stellar winds and SNe of types Ia
and Ib which increase turbulence in the ISM. Depending on the physical conditions of the
medium in which new stars form (ie., density, temperature, and pressure), their feedback
can induce the propagation of shock waves and the formation of bubbles (Dale et al., 2012;
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Figure 1.7: specific star formation rate as a function of the stellar mass for the
GALEX+WISE sample. The dark red curve is a fit of the data and represents the galaxy’s
main sequence at z=0 (from Leroy et al., 2019)

Raskutti et al., 2016; Barnes et al., 2022). In some cases, stellar feedback can even trigger
the gravitational collapse of GMCs, leading to the emergence of new star-forming regions,
thus restarting a new cycle.

1.3 The central structures of disc galaxies and their
connection with the central black hole

In this section, we describe in more detail the disc-like structure of gas we observe in the
central inner bar region of disc galaxies and the peculiar case of the inner gas ring of the
Milky Way (central molecular zone (CMZ)). We present their physical characteristics and
their associated physical process of gas consumption. We also connect this gas ring with
the inner stellar disc and its underlying orbital structure and mention some results from
the most recent studies leading to various formation scenarios. We also highlight the non-
trivial link between those two structures and the sub-parsec fuelling of the central SMBH.
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We finish this section by showing the challenges we have to tackle to understand the role
of the inner gas ring as a ‘gas reservoir’ in fuelling the central BH and triggering the AGN
activity.

1.3.1 A non-trivial connection
One challenge we need to tackle if we want to understand the physics involved in the
fuelling of central SMBHs and triggering the AGN, is to connect the transport of gas from
the large 10 kpc scale of the galactic disc down to the event horizon (i.e., Schwarzschild
radius) of the central BH itself with a typical size of about 10−6 − 10−7 pc. This huge
range of spatial scales (10 orders of magnitude) implies that the physics and the typical
time scales of the different processes responsible for the loss of the gas angular momentum
can vary widely (Hopkins & Quataert, 2010; Cheung et al., 2015). At the large 10 kpc scale,
gas experiences dynamical processes such as gravitational torques due to the bar and spiral
arms, shear, stellar feedback, transporting gas inside the bar region (Fukuda et al., 1998;
Shlosman et al., 1989; Ho et al., 1997). Once gas crosses the bar region, it may accumulate
in a central ring (or disc) at a typical distance of a few 100 pc from the centre. This gas
ring located at an intermediate scale seems to be a crucial step before the sub-parsec-scale
transport of gas to the vicinity of the central BH. The exact physical phenomena involved
in the gas transport from the ∼ 100 pc scale gas ring to the sub-parsec scales are still
not fully understood. Recent studies have shown the role of stellar feedback and magnetic
field in removing angular momentum from the gas at those scales (Shlosman et al., 1990;
Emsellem et al., 2015; Anglés-Alcázar et al., 2021), but we still lack a comprehensive view
of the interconnection between inner rings and the central SMBH activity.

1.3.2 The inner molecular gas ring (central molecular zone)
The inner molecular ring is a high-density gas structure we observe in the central region of
a large number of barred disc galaxies. Those gas structures have a typical radius of a few
hundred parsecs to one kiloparsec (Comerón et al., 2010), as shown in Fig. 1.8, illustrating
a JWST picture of the ring in NGC1300. In the Milky Way, the inner molecular ring is
called the CMZ and has a radius of about 200 pc with a gas mass of ∼ 1 − 7 × 107 M⊙
(Ferrière et al., 2007; Longmore et al., 2013; Henshaw et al., 2023). Both observations
and simulations have shown that a connection exists between the gas fuelling at large-
kiloparsec-scale by the stellar bar and those central hundred-parsec-scale gas structures
(Combes et al., 2004; García-Burillo et al., 2005; Boone et al., 2007; Comerón et al., 2010;
Sormani & Barnes, 2019).

Those gas rings exhibit active SF associated with intense stellar feedback. Past and
recent hydro-dynamical simulations have suggested that the building of those central rings
is triggered by the emergence of an ILR (Athanassoula, 1992b; Sormani et al., 2023a) with a
growth following an inside-out scenario. This seems to be confirmed by observations of the
stellar age gradient inside those rings. In this scenario, the bar forms and starts to funnel
gas towards the central region, increasing the gas density at the centre and triggering a



16 1. Introduction

central starburst, with a high SF rate. Once the stellar density has increased enough in
the centre, the galaxy forms an ILR able to capture gas efficiently. The ring is then able to
grow thanks to the fuelling by the bar and reach the typical size of a few hundred parsecs
corresponding to the typical size we observe for those objects.

Figure 1.8: JWST image of NGC1300. We see the same spiral structure as in Fig. 1.6 but
here, the central region is highlighted and shows the central gas disc/ring.

1.3.3 The inner stellar disc
The inner stellar disc is a central stellar structure with a typical radius of a few hundred
parsecs and coincides with the inner gas ring. As mentioned above, this structure is
thought to be formed while the gas ring grows and is often considered as its underlying
stellar counterpart (Bittner et al., 2020). In the Milky Way, the inner stellar disc is called
the ‘nuclear stellar disc’ and has the same radius as the molecular ring. Studies of its stellar
kinematics have shown that it is dynamically cool with a vertical thickness of about 50
pc. The backbone structure of those stellar discs is explained by the stellar dynamics in a
barred potential thanks to the family of x2 orbits which are less elongated than the orbits
of the bar (x1) and oriented almost perpendicular to them (Athanassoula, 1992a). The
peculiar configuration of the x2 orbits shapes the structure of the gas ring and explains
their disc-like structure. Inner stellar discs are important because they can inform us about
the history of the gas ring growth and give us some indications on the typical age of the
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stellar bar as shown, for example, by the Time Inference with MUSE in Extragalactic
Rings (TIMER) survey (Gadotti et al., 2019; de Sá-Freitas et al., 2023).

1.3.4 The molecular ring as a ‘gas reservoir’ for the central su-
permassive black hole

Observations of the centre of nearby disc galaxies have revealed the presence of central
SMBHs through their activity. The typical masses of SMBHs we observe at the centre of
nearby disc galaxies have a mass range between a few 105 and a few 108 M⊙. Their mass
is correlated with the total mass of the galaxy, but also with the mass of the central bulge
as shown in Fig. 1.9 from Reines & Volonteri (2015). The mass of the SMBH at the centre
of the Milky Way is about 4.3 × 106 M⊙ and is not presently active. To fuel and trigger
the activity of the central SMBH, only a small fraction of gas contained inside the inner
ring needs to be transported even further to the sub-parsec scale, down to the vicinity of
the central BH. To better understand it, one challenge is the typical time and spatial scale
we need to take into account to transport the gas from the gas ring (∼ 100 pc) down to
the AGN (i.e., dust torus and accretion disc). In this picture, gas rings can be seen as ‘gas
reservoirs’ for the central SMBH and we will use this term to refer to the gas ring in the
rest of this work.

1.4 Open questions
The different stellar structures such as the bar and spiral arms we introduce above should
play an important role in funnelling gas from the large 10 kpc scale to the central 100 pc
region. Many studies have already investigated the effect of a barred potential on the flow
characteristics and the transport of gas to the inner bar region. We know that gas loses
a large part of its angular momentum by interacting with the stellar bar via gravitational
torques, inducing hydrodynamic shocks. However, we still lack a clear understanding
and a quantitative description of the exact physical processes experienced by gas while it
interacts with the bar. The first question that motivated this work is then: What are
the characteristics of the fuelling of gas by the bar?

In the previous section, we have described the stellar and gas structures we observe
inside the bar region, at an intermediate scale of ∼ 100 pc. We have shown the presence
of an inner gas ring and stellar disc in barred galactic systems, but we still ignore the
physical processes involved in their formation (i.e., the fuelling and connection with the
bar) and evolution (i.e., building, growing rate, and consumption via SF). Moreover, we
do not know whether a gas reservoir forms in every barred galactic system and we still
need to investigate the conditions for the formation of such inner gas structures with more
depth. The second question coming with the formation and evolution of the gas reservoir
is thus: What are the characteristics of the building of the gas reservoir by the
bar and its consumption by star formation?
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Figure 1.9: The black-hole to total-stellar mass relation for local AGNs (see Reines &
Volonteri, 2015, for more details)

Once we have those two first questions in mind with the gas ring seen as a gas reservoir
for the central BH, we naturally think about the potential connection that exists between
the formation and evolution of those gas reservoirs and the duty cycle of the central AGN.
The third and last question, which is one of the hot topics in this field, is then: What is
the connection between the gas reservoir and the activity of the central black
hole? We have seen in the previous section that this connection is not trivial because of
the orders of magnitude in spatial and time scales between the gas reservoir (∼ 100 pc)
and the AGN (< sub-pc).

1.4.1 Motivations and plan of this work

The goal of this work is to try to answer the first two questions and take a step forward
toward a better understanding of the fuelling and duty cycle of the central SMBH in nearby
disc galaxies. As mentioned, we have accumulated a large body of observational evidence il-
lustrating the richness of structures in barred galaxies. While those addressed well-resolved
samples of 10’s (PHANGS) or 1000’s (MaNGA) of galaxies, they provide a rather static
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picture of the evolution of discs. To further investigate this problem. To further inves-
tigate and try to answer these two first questions, we have performed hydro-dynamical
N-body simulations of isolated galaxies based on a grid of galactic models inspired by the
PHANGS-ALMA sample. We give a detailed description of the RAMSES code, as well
as various numerical techniques in Chap. 2. In Chap. 3 we describe the grid of models,
the PHANGS-ALMA sample, and the numerical recipes we used in this work. In Chap. 4,
5, and Chap. 6 we show the work carried out during this thesis to answer the two first
questions. We conclude and give some perspective offered by this work in Chap. 7.
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This chapter aims to introduce the concept of astrophysical codes we use to model the
mechanisms involved in the formation (e.g., assembling of the first DM halos and galaxies)
and evolution (e.g., expansion, interaction between galaxies) of our observable Universe.
Those codes are of paramount importance to improve our understanding of the evolution of
our Universe and the formation of nearby galaxies we observe today. The work of this thesis
specifically focuses on the physical processes responsible for the fuelling and formation of
central gas structures in isolated disc galaxies. Therefore, we particularly focus this chapter
on the description of the equations we use to model isolated galactic systems, evolving away
from any cosmological context, in a non-expanding (static) Universe. We first present the
set of fundamental equations the most simple hydro-N-body code has to account for, and
we review the main astrophysical codes using different numerical techniques to solve (or
approximate the solution of) those equations. Then, we look in more detail at the modelling
of isolated nearby disc galaxies and justify the decision to use RAMSES to simulate them.
Then, we further describe the RAMSES code itself with a brief explanation of the different
numerical methods used to solve the set of fundamental equations. We conclude this
chapter by demonstrating the relevance of RAMSES to modelling such galactic systems
with a brief review of the works already carried out using this code in the frame of isolated
galactic systems.

2.1 Fundamental equations, methods, and overview
of the different astrophysical codes

Having a comprehensive model of the Universe has always been one of the biggest challenges
in numerical Astrophysics because we need to include a large variety of physical phenomena
occurring and acting on different time and spatial scales. Indeed, we need to properly
include the expansion, the interaction of the matter (i.e., DM, stars, and gas) through
gravity, and the physics we know about baryons (e.g., radiation and its interaction with
dust, magnetic field, plasmas). The complexity of our Universe is reflected by the variety
and interconnected nature of the processes (e.g., gravity, star formation, stellar feedback)
and the large range of involved spatial and time scales. Moreover, since we can not reach a
spatial and time resolution arbitrarily small, we need to complement our set of fundamental
equations with some sub-grid recipes or post-processing techniques to take into account all
the physics which is not directly included in the equations.

Whether it is to perform cosmological or isolated galaxy simulations, the first aspect we
want a code to include is a set of equations modelling the motion of astrophysical systems
and objects. Real galaxies are made of DM and stars interacting with each other through
gravity. An accurate modelling of the evolution of such systems often requires describing
them with a large number of particles. For each of those particles, the first set of equations
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a code has to solve is the motion and the Poisson equations given by:

dr⃗

dt
= v⃗, (2.1a)

dv⃗

dt
= F⃗g = −∇⃗Φ, (2.1b)

∇⃗2Φ = 4πGρ, (2.1c)

where r⃗, v⃗ are the position and velocity vectors of each particle. Equations 2.1a and
2.1b are the so-called equations of motion and need to be solved for each particle. The
gravitational potential Φ is given by Eq. 2.1c, the so-called Poisson’s equation where G is
the gravitational constant and ρ is the density distribution of the particles. This potential
needs to be computed to be injected in Eq. 2.1b and give rise to the gravitational force F⃗g.
The above set of Eq. 2.1 describes the motion of each particle such as the DM and stars,
for example.

For the gas component, we need to use statistical tools given by macroscopic variables
to jointly address the thermodynamics and motion, which are generally treated via a full
set of hydrodynamic equations whose conservative forms are given by:

∂tρ + ∇⃗.(ρv⃗) = 0, (2.2a)
∂t(ρv⃗) + ∇⃗.(ρv⃗ ⊗ v⃗) = −∇⃗P − ρ∇⃗Φ, (2.2b)

∂t(ρE) + ∇⃗.(ρEv⃗) = −∇⃗.(P v⃗) − ρv⃗.∇⃗Φ, (2.2c)
P = P (ρ, T ), (2.2d)

where ρ, v⃗, P and E are the gas density, velocity field, pressure, and energy density,
respectively. Equation. 2.2a is the so-called continuity equation, Eq. 2.1b is the impulsion
conservation equation (i.e., the Euler equation for non-viscous fluids), and Eq. 2.2c is the
energy conservation equation. The set of equations 2.2 is called Euler’s equations and must
be complemented by an equation of state (EOS) (Eq. 2.2d) linking the pressure to the gas
temperature T and density. We note here that the above set of equations is in general
incomplete to describe accurately the behaviour of gas since astrophysical environments
are more complex and other processes may be important to include (such as magnetic
fields). In that case, the set of Eq. 2.2 needs to be modified by adding the magnetic field B⃗
resulting in a set of magneto-hydro-dynamics (MHD) equations. In the rest of the thesis,
we will assume that magnetic fields do not significantly affect the gas fuelling and will
therefore ignore them.

In the following, we will briefly cover various methods and numerical implementations
used to solve the gravitational interaction between the particles given by the set of Eq. 2.1
and the above set of hydro-dynamical equations (Eqs 2.2). We distinguish two main classes
of methods to solve Eq. 2.1: 1) computing directly the force (gravitational potential)
between the particles, 2) defining a grid and distributing the mass of the particles over this
grid to generate the mass density distribution and then, solving the Poisson’s equation
on that grid. Methods of the first class are for example the direct N-body, Tree code,
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or the fast multipole method (FMM) and the methods belonging to the second class are
the particle mesh (PM) and adaptive mesh refinement (AMR) methods. We also classify
the methods to solve Eq. 2.2 into two categories: 1) solving the hydro-dynamical equation
using a spatial and time discretisation (grid), 2) mimicking the properties of gas using
kernel functions. We classify the methods of the first class as grid-based (e.g., AMR) or
moving mesh and the method of the second class as smooth particle hydrodynamics (SPH).

2.1.1 Direct N-body solver, Tree code and FMM
In the case of a direct N-body solver, we need to directly compute the gravitational potential
between each particle. The total gravitational force, as defined in the Newton theory, acting
on a particle i having a mass mi and a position vector r⃗i for a system of N particles is
given by:

F⃗g,i =
N∑

j=1
G

mimj

|r⃗i − r⃗j|3
(r⃗i − r⃗j), (2.3a)

⇒ Φi =
N∑

j=1
−G

mimj

|r⃗i − r⃗j|
(2.3b)

We see that computing the gravitational potential for each particle increases the number of
operations to something proportional to N2, which has thus a high computational cost for
a large number of particles. Such a type of algorithm for a large number of particles (i.e., >
1 million) is not really tractable on one single central processing unit (CPU) and requires
efficient parallel programming, usually achieved using the message passing interface (MPI)
or OpenMP library. The other method is to use graphical processing unit (GPU) instead.
The reference code in the field is the well-known NBODY6 code (see Aarseth, 1999) which
was first designed to run on CPUs, and has been optimized over the past decades to be
now able to run on GPUs.

People elaborated various ways to address this computing cost problem but one of the
early ideas of solving Eq. 2.1 by directly computing the gravitational potential in Eq. 2.3b
with a different method than the direct N-body solver was first proposed by Barnes & Hut
(1986a); Bouchet & Hernquist (1988) with a Tree code method. There are other methods
than the Tree code to bypass the direct N-body solver, such as the particle mesh method
that we develop further in the next subsection. The idea of Tree codes is to divide the
domain into chunks with different sizes forming a hierarchical octree structure in which
the particles are distributed. To compute the force on each individual particle, we need
to compute the centre of mass of each group of cells and, according to a distance criterion
(depending on an opening angle), calculate the corresponding gravitational force as if it
were generated by the centre of mass of the cell. This transforms the number of iterations
from something proportional to N2 to something proportional to N log(N), which is more
convenient and tractable on CPUs.

A different algorithm based on an improvement of the Tree code by using a multipole
expansion of the gravitational potential and called FMM (see Dehnen, 2000) is able to
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scale the number of iterations to something proportional to N, which is the best we can
obtain for such N-body problem.

2.1.2 Particle mesh method
The PM method was first introduced and developed by Hockney & Eastwood (1988). The
idea is to generate a uniform grid covering the entire domain and distribute the mass of
each particle on the mesh of the grid following some criteria. With this method, the particle
is no longer considered as a physical object having a well-defined position, but rather as
a diffuse massive cloud spread over a part of the cell. The most popular technique for
mass deposition is the so-called cloud-in-cell (CIC) method, consisting of distributing the
mass of the particle to the neighbouring cells to ensure a smooth and continuous mass
distribution. The 1D shape function S in the case of a mesh spacing ∆x for the CIC
method is given by:

S(x) = 1
∆x

∏(
x

∆x

)
, (2.4)

where the function ∏ is the selection function of the CIC method corresponding to a gate
function. The resulting mass distribution of particle i is written as follows:

ρi = 1
∆x3

∑
p

mp

∫
Vi

S(x⃗p − x⃗i)d3x⃗. (2.5)

Equation. 2.5 is valid for any function 2.4: we can easily use other selection functions such
as the delta function or some with more complex shapes (e.g., triangular). The complexity
of the shape may increase the smoothness of the mass distribution, but also the numerical
cost. The CIC method is a good compromise between those two aspects, assuring a fast
computation for a smooth mass distribution.

The potential is computed thanks to Poisson equation 2.1c by solving the linear problem
AΦ = B, where A is the matrix representing the Laplacian operator ∇⃗2, Φ the potential
we want to compute on the grid, and B, the matrix representing the density distribution.
It is easy to show that in a 2D grid with a mesh size ∆x = ∆y = 1, the component ϕi,j of
the potential generated by a density ρ (assuming the constant 4πG = 1) is given by:

ϕi,j = 1
4 (ϕi+1,j + ϕi−1,j + ϕi,j+1 + ϕi,j−1) − 1

4ρi,j, (2.6)

and with appropriate boundary conditions, it is then trivial to compute all the components
of the potential on the grid. The main issue with this technique is that we need a large
number of cells to have a good estimation of the gravitational potential and the force-
softening effect becomes important when the cell size becomes smaller and smaller. This
results in a propagating error, making the above scheme unstable. Therefore, the PM
method is not well suited to high resolutions and the number of iterations is scaled as N
log(N).
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2.1.3 Adaptive mesh refinement method

The AMR method uses the same principle as the PM technique but with a set of multi-grids
having different mesh sizes. The AMR method allows to reach high resolutions without
softening the force too much and propagating a too-big numerical error. One hurdle is
that the computation of the gravitational potential is not as straightforward as in Eq. 2.6
since the multi-grid levels must be taken into account. There are many different solvers
of Poisson’s equation for the AMR method and they come in two different flavours: the
relaxation and convolutions solvers. Relaxation solvers guess a solution at the coarse level,
relax the initial guess until they find the correct potential, and interpolate the solution
to the fine grid where appropriate Dirichlet boundary conditions have been imposed (i.e.,
Jacobi and Gauss-Siedel (GS) method, conjugate gradient, multigrid). Convolution solvers
convolve directly the mass distribution with a Green function (i.e., Hierarchical fast Fourier
transform (FFT), and FMM).

To give the reader an idea of the complexity of an AMR grid compared with just a
uniform grid as in the PM method, we mention here below the GS method for computing
the gravitational potential. The idea is to first compute the gravitational potential at level
n by inverting the matrix of the linear problem. Then, by using the appropriate Dirichlet
boundary conditions, we use the expression of the potential at level n (coarse level) to find
the potential at level n+1 (fine level). This results in the following form for the component
i, j of the potential on a multi-grid at level n + 1:

ϕn+1
i,j = 1

4
(
ϕn

i+1,j + ϕn
i−1,j + ϕn

i,j+1 + ϕn
i,j−1

)
− 1

4ρi,j, (2.7)

The advantage of the AMR method is that it is fast and the number of iterations scales as
N.

2.1.4 Methods to solve the Euler equations

The set of Eq. 2.2 dealing with the hydrodynamic part of the simulation can be solved in
many ways. The easiest way is to consider a spatial and time discretization of the equations
by adopting the so-called finite difference (leapfrog) approach and discretizing the time and
spatial derivatives using an upwind scheme. We will see in the next section 2.3 why the
upwind scheme is stable but still diffuses a bit the solution. In RAMSES, the approach
used is the Godunov technique, also called the finite volume scheme, allowing writing the
set of Euler equations as a conservation law and solving it via a Riemann solver. We will
also develop this method and the attached concepts in sect. 2.3.

The second method is the so-called SPH one and consists of replacing the gas component
with fluid particles ruled by an EOS. Then, we attribute a smoothing kernel to all of them,
allowing interactions with each other and mimicking the physical properties of the gas
component.
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Code Finite Volume SPH N-body Eulerian Lagrangian AMR
ART ✓ ✓

FLASH ✓ ✓ ✓
RAMSES ✓ ✓ ✓ ✓
PLUTO ✓ ✓ ✓
ENZO ✓ ✓ ✓

ATHENA++ ✓ ✓ ✓
GADGET-4 ✓ ✓ ✓
PHANTOM ✓ ✓ ✓

SWIFT ✓ ✓ ✓
AREPO ✓ ✓ ✓

Table 2.1: Table illustrating the different codes and their specifications (see text for more
details).

2.1.5 Codes in Astrophysics
Many astrophysical codes have been developed and optimised over the past decades to
study and learn about our Universe through numerical simulations. Table 2.1 illustrates
the different astrophysical codes with their properties and the methods they use to solve
motion, Poisson, and Euler equations. The main codes using the AMR methods are ART
(Kravtsov et al., 1997), FLASH (Fryxell et al., 2000), RAMSES (Teyssier, 2002a), PLUTO
(Mignone et al., 2007), ENZO (Bryan et al., 2014), and ATHENA++ (Stone et al., 2020).
Those codes use different Poisson solvers: ART and ENZO use an FFT method, RAMSES
a GS algorithm, but FLASH, PLUTO, and ATHENA only include a hydro solver. All
those codes belong to the category of Eulerian codes since we can only access the gas
physical quantities of each cell for every time step without following the gas flow over
time. The other category of codes is called Lagrangian code and allows the tracking of
gas particles over time via an SPH method. The main codes using the latter method are
OpenGadget-3 (Groth et al., 2023), GADGET-4 (Springel et al., 2022), PHANTOM (Price
et al., 2018), and SWIFT (Schaller et al., 2024). Some grid-based codes do not use the
AMR method with the most famous one being the AREPO code (see Springel et al., 2019)
using a moving-mesh (unstructured Voronoi tessellation of the simulation volume) method.
This code is considered as a semi-Lagrangian code since it is designed to track the particle
flow over time.

2.2 Cosmological and Astrophysical simulations
All the codes introduced and cited above are the key ingredients at the basis of a large
number of state-of-the-art cosmological simulations. The large-scale aspect of those sim-
ulations, in terms of computational resources, suits perfectly the design of astrophysical
codes. Those codes were designed to be parallelised and allow us to simulate the evolution
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of our observable Universe. The main motivation for such big cosmological simulations is
to understand better and constrain the formation and evolution of large-scale DM struc-
tures, and the distribution and properties of galaxies, starting from the epoch of the CMB.
The formation and evolution of galaxies is a complex topic because it involves many dif-
ferent physical phenomena occurring over a large range of spatial and time scales, such
as the formation of DM halos, gas accretion from filaments, star formation, stellar feed-
back, AGN, etc. Due to their characteristics, we can also use those astrophysical codes to
model isolated galactic systems or perform zoom-in simulations. This allows us to focus on
high-resolution simulations to study and characterise the physical phenomena occurring at
small scales (i.e., parsec or sub-parsec) and study their impact on the secular evolution of
galaxies without any external interactions. In this work, we have performed such a type
of isolated galaxy simulation using the RAMSES code that we will develop in more detail
in Sect. 2.3. To illustrate the more ambitious simulations performed in a cosmological
context, I will only briefly review three simulations performed with state-of-the-art hydro-
dynamical codes: IllustrisTNG, Horizon, and Vintergatan. The IllustrisTNG project is a
set of recent cosmological simulations including a comprehensive set of physical phenom-
ena, as developed below. The Horizon and Vintergatan simulations used the RAMSES
code.

2.2.1 Something about the IllustrisTNG simulations
The IllustrisTNG project (see Springel et al., 2018; Pillepich et al., 2018; Nelson et al.,
2018; Naiman et al., 2018; Marinacci et al., 2018) is composed of a series of 18 cosmologi-
cal magneto-hydro-dynamical simulations performed inside three different boxes: TNG50,
TNG100, and TNG300, having a box side-length of 50, 100, and 300 cMpc, respectively.
Those simulations are the new generation simulations of the initial Illustris project (see
e.g., Vogelsberger et al., 2014b,a; Genel et al., 2014), which was carried out using the
moving-mesh code AREPO. The IllustrisTNG project is an upgraded version of the orig-
inal Illustris project, focusing on the implementation of key physical processes involved
in the formation and evolution of galaxies. The main processes implemented in the TNG
galaxy formation model are1: 1 - Microphysical gas radiative mechanisms, including pri-
mordial and metal-line cooling and heating with an evolving background radiation field.
2 - Star formation in the dense interstellar medium. 3 - Stellar population evolution and
chemical enrichment following supernovae Ia, II, and AGB stars, individually tracking el-
ements: H, He, C, N, O, Ne, Mg, Si, and Fe. 4 - Stellar feedback-driven galactic-scale
outflows. 5 - The formation, merging, and accretion of nearby gas by SMBHs. 6 - Multi-
mode BH feedback operating in a thermal ’quasar’ mode at high accretion states, and a
kinetic ’wind’ mode at low accretion states. 7 - The amplification of cosmic magnetic fields
from a minute primordial seed field at early times. This suite of simulations has shed light
on the different processes involved in the formation and evolution of galaxies and galaxy
clusters, and has helped constrain the nature of DM and dark energy.

1This list is taken from https://www.tng-project.org/about/
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2.2.2 Something about the Horizon simulations
The Horizon simulations are a suite of cosmological simulations based on the initial Horizon
project. The goal of this project is to deal with the multi-scale problem involved in galaxy
formation by simulating a cosmological volume corresponding to our ‘Horizon’. The first
simulation of this suite is the Horizon-MareNostrum simulation (Ocvirk et al., 2008) and
comes from the consortium between the Horizon Project in France and the MareNostrum
cosmological project in Spain. This first Horizon simulation has opened the door to several
other projects. One of those projects is the Horizon-AGN simulation (Dubois et al., 2014)
using a 100 Mpc/h comoving volume with 10243 dark matter particles with the Planck
cosmology. This simulation has a maximum resolution of 1 kpc and includes a large panel
of numerical recipes for the stellar feedback, evolution of metals, and AGN feedback. The
NewHorizon (Dubois et al., 2021) project is a high-resolution version of the Horizon-AGN
simulation inside a zoom-in region of (16 Mpc)3 around a single DM halo, and reaching a
maximum resolution of 34 pc.

2.2.3 Something about the Vintergatan simulations
The VINTERGATAN project (see Agertz et al., 2021a; Renaud et al., 2021a,b; Segovia
Otero et al., 2022) consists in a zoom-in simulation of a Milky Way-like galaxy identified
at redshift zero in a DM-only cosmological simulation performed with RAMSES. This
galaxy experienced its last major merger ∼ 9 Gyr ago, which is the same as what was
suggested for the Miky-Way. This Milky Way-like galaxy was traced back until redshift
100 to restart a zoom-in run of this galaxy by increasing the number of DM particles and
including hydrodynamics. This zoom-in simulation has also been used to study the merger
history of the Milky Way as discussed in Renaud et al. (2022). A more recent offspring
made of a complementary suite of simulations of Milky Way-like galaxies was carried out
by Rey et al. (2023); Joshi et al. (2024).

2.3 The RAMSES code
RAMSES (Teyssier, 2002a) is a hydro-dynamical N-body code including an AMR grid that
is parallelised on CPUs by using the MPI library. The domain decomposition is made via a
Peano-Hilbert space decomposition algorithm to ensure optimised communications between
the CPUs. In this section, we will focus on the main modules the authors implemented
when they wrote RAMSES. Many other modules and patches have been implemented with
time, such as the cooling function of gas, SF, and stellar feedback (developed in more detail
in Chap. 3), but we will not be mentioning them in the following description. The code
includes four main modules which are the AMR, GRAV, HYDRO, and PART modules
dealing with the AMR grid, Poisson solver, Euler equations, and the mass, position, and
velocity of each particle, respectively. We also mention a fifth MHD module that we will
not consider further since it is an extension of the hydro module including the magnetic
field and it requires a higher computational cost. This choice is also motivated by the fact
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that we have only used the hydro module for all the research that we have carried out in
this work. In the previous sections, we have already described the method implemented
in the code to solve Poisson’s equation 2.1c on the AMR grid by using a GS algorithm.
In this section, we will focus on the description of the methods used to solve the Euler
equations 2.2 including the Godunov discretization scheme implemented in RAMSES, the
Riemann problem, and the various Riemann solvers.

Note to the reader

The following section is quite heavy in terms of mathematical developments and has been
inspired by one of the lectures given by Romain Teyssier that I found on the internet2.
The main motivation for such an effort is the intense and profound desire to understand
the numerical techniques of the code and unveil the secrets of the black box hiding the
heart of RAMSES. I have used the code for the last three years and this is my personal
contribution to this thesis manuscript to try to explain the numerical methods used for the
HYDRO solver. I do not pretend that it is a comprehensive description of the solver since
there are many aspects that I did not develop (e.g., the higher-order schemes and slope
limiters) but it is enough to consider that this part of RAMSES is no longer a total black
box, with the detailed description of the Godunov scheme and the Riemann problem. This
part of this thesis manuscript is not essential for the work carried out during my PhD.
Therefore, I invite the non-interested reader to skip the rest of this section and resume the
reading of this manuscript in Sect. 2.4

2.3.1 Solving the Euler equations
The set of Euler equations 2.2 is a system of partial differential equations (PDE) with a
set of conservative variables given by:

U⃗ = (ρ, ρv⃗, ρE), (2.8)

depending on the three spatial variables (x, y, z) and the time variable t. We can show
that Eq. 2.2, without the source term coming from the gravitational potential, can always
be written as:

∂tU⃗ + ∇⃗F = 0, (2.9)

where F are the corresponding fluxes given by:

F = (ρv⃗, ρ(v⃗ ⊗ v⃗) + P, v⃗(ρE + P )). (2.10)

We note that the flux given by Eq. 2.10 is not a vector and the nabla operator in Eq. 2.9
must apply as a divergent or gradient on the different components of F depending on their
nature (i.e., scalar (ρ, p), vector (v⃗), or tensor (v⃗ ⊗ v⃗)).

2The lecture can be found here: https://www.youtube.com/watch?v=530nHbpa6NQ
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It is straightforward to show that using only the primitive variables

W⃗ = (ρ, v⃗, P ), (2.11)

Eq. 2.2, without the source term, can be rewritten as:

∂tρ + ρ∇⃗.v⃗ + v⃗.∇⃗ρ = 0, (2.12a)
∂tv⃗ + (v⃗.∇⃗)v⃗ = −1

ρ
∇⃗P, (2.12b)

∂tP + v⃗.∇⃗P + γP ∇⃗.v⃗ = 0, (2.12c)
P = (γ − 1)ρϵ, (2.12d)

where we consider Eq. 2.12d as the EOS of an ideal gas where E = ϵ + v2/2, with ϵ
the internal energy per unit mass of the gas. In the following, we only consider the first
equation from the above set of PDE with only one dimension in the x direction, where we
assume a constant velocity a and a density ρ noted u(x, t). We discretise the equations
with a uniform time step ∆t and a spatial step ∆x.

We first need to choose the appropriate scheme for the resolution of the simplest case
which is the advection equation (i.e., Eq. 2.12a with a constant speed a) given by:

∂tu + a∂xu = 0, (2.13)

and using appropriate boundary and initial conditions with:

u(x, 0) = u0(x), u(0, t) = U(t) (2.14)

Unstable centered scheme

To discretise Eq. 2.13, we can visualise the scheme in Fig. 2.1, where we show the spatial
discretisation around the point xi for the time steps tn and tn+1. The most natural scheme
we can choose to discretise the partial derivatives of Eq. 2.13 is given by the following
expressions:

∂t ≈ u(x, t + ∆t) − u(x, t)
∆t

= un+1
i − un

i

∆t
, (2.15a)

∂x ≈ u(x + ∆x, t) − u(x − ∆x, t)
2∆x

= un
i+1 − un

i−1
2∆x

, (2.15b)

and replacing them in Eq. 2.13, we obtain:

un+1
i − un

i

∆t
+ a

un
i+1 − un

i−1
2∆x

≈ 0, (2.16)

where n and i stand for the time and spatial steps, respectively. When we try to solve
Eq. 2.16 with the above scheme, we see that the solution does not converge and is unstable
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because we are trying to numerically solve an unstable diffusion equation. Indeed, using
the Taylor expansion of the velocity

u(x, t + ∆t) = u(x, t) + ∆t

(
∂u

∂t

)
+ ∆t2

2

(
∂2u

∂t2

)
+ O(∆t3), (2.17a)

u(x + ∆x, t) = u(x, t) + ∆x

(
∂u

∂x

)
+ ∆x2

2

(
∂2u

∂x2

)
+ O(∆x3), (2.17b)

u(x − ∆x, t) = u(x, t) − ∆x

(
∂u

∂x

)
+ ∆x2

2

(
∂2u

∂x2

)
+ O(∆x3), (2.17c)

and replacing Eq. 2.17 in Eq. 2.16 and only keeping the first order terms, we can show
that it is equivalent to solving the following equation:(

∂u

∂t

)
+ a

(
∂u

∂x

)
≈ −a2 ∆t

2

(
∂2u

∂x2

)
, (2.18)

which is completely unstable due to the negative factor in front of the second partial
derivative with respect to x in the right-hand side of Eq. 2.18. Therefore, the centred
scheme is not appropriate and we need to define a more stable scheme.

t (tn)

t + ∆t (tn+1)

• • • • •
xi−2 xi−1 xi xi+1 xi+2

• • • • •

∆x

Figure 2.1: Time and spatial discretisation for the centred and upwind schemes.

Upwind scheme

The idea remains the same for this scheme (see again Fig. 2.1), but this time we will use
the following expressions for the partial derivatives given by:

∂t ≈ u(x, t + ∆t) − u(x, t)
∆t

= un+1
i − un

i

∆t
, (2.19a)

∂x ≈ u(x, t) − u(x − ∆x, t)
∆x

= un
i − un

i−1
∆x

, (2.19b)

leading to the following expression for Eq. 2.13:

un+1
i − un

i

∆t
+ a

un
i − un

i−1
∆x

≈ 0. (2.20)
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This time, we can show by using the Taylor expansion (Eq. 2.17) in Eq. 2.20 that the
numerical equation we are trying to solve is given by:(

∂u

∂t

)
+ a

(
∂u

∂x

)
≈ a

∆x

2 (1 − C)
(

∂2u

∂x2

)
, (2.21)

where C = a∆t/∆x is the courant factor. We see that as long as C remains smaller than
1, Eq. 2.21 is stable, but the solution is diffused over time. To conclude, when we try
to solve the most simple PDE equation, such as the advection equation, we see that we
cannot avoid numerical diffusion at the first order in ∆x.

2.3.2 The Godunov method
The Godunov strategy (Godunov, 1959) consists of considering the volumes rather than
the positions. Fig. 2.2 illustrates the Godunov scheme with the volumes inside which the
positions (points) are located. The Godunov scheme is also called the finite volume method
and this is the exact solution for the discretisation of Eq. 2.12. The main constraint with
this method is that it is very expensive in terms of numerical cost as we will see in the
next sections. The Godunov scheme of the advection equation is obtained by integrating

t (tn)

(tn+1/2)

t + ∆t (tn+1)

• • • • •
xi−2 xi−1 xi xi+1 xi+2

• • • • •

xi−3/2 xi−1/2 xi+1/2 xi+3/2
∆x

Figure 2.2: Time and spatial discretisation scheme for the Godunov method.

Eq. 2.13 over the full space-time domain which is given by:∫ tn+1

tn

∫ xn+1/2

xn−1/2

(∂tu + a∂xu)dxdt = 0

⇔
∫ xn+1/2

xn−1/2

[u(x, t)]tn+1

tn dx + a
∫ tn+1

tn
[u(x, t)]xi+1/2

xi−1/2dt = 0

⇔
∫ xn+1/2

xn−1/2

[u(x, tn+1) − u(x, tn)]dx + a
∫ tn+1

tn
[u(xi+1/2, t) − u(xi−1/2, t)]dt = 0

⇔ un+1
i − un

i

∆t
+ a

u
n+1/2
i+1/2 − u

n+1/2
i−1/2

∆x
= 0,

(2.22)

where we have defined

un
i = 1

∆x

∫ xn+1/2

xn−1/2

u(x, tn)dx, u
n+1/2
i+1/2 = 1

∆t

∫ tn+1

tn
u(xi+1/2, t)dt. (2.23)
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The challenge here is to determine the expression of u
n+1/2
i+1/2 and u

n+1/2
i−1/2 . To this end, we

consider the piecewise constant profiles as shown in Fig. 2.3. We see that the solution is
given by:

u(xi+1/2, t) = un
i if a > 0,

u(xi+1/2, t) = un
i+1 if a < 0,

u(xi−1/2, t) = un
i−1 if a > 0,

u(xi−1/2, t) = un
i if a < 0,

(2.24)

and Eq. 2.22 can be rewritten as:

un+1
i − un

i

∆t
+ a

un
i − un

i−1
∆x

= 0, (2.25)

which is completely equivalent to the result we obtained with the upwind scheme in
Eq. 2.20. We see that the Godunov method is a much better justification since we only
consider the problem through volumes.

• •

xi−1/2
xi

xi+1/2
xi+1

xi+3/2

ui

ui+1

a

x

Figure 2.3: Piecewise solution of the Godunov scheme

Non-uniform mesh (toward the AMR method)

The Godunov and upwind schemes only consider a uniform spatial mesh size. However,
RAMSES is designed with an AMR grid which complicates the simple scheme of Eq. 2.25.
To see how the implementation of a non-uniform mesh impacts the scheme and the modified
equation we need to develop the term of the spatial discretisation in Eq. 2.22 following the
mesh configuration shown in Fig. 2.4. We introduce a mesh centred on a point labelled
xi−α located at a distance α∆x of the point with the label xi. The two flux terms are
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t (tn)

(tn+1/2)

t + ∆t (tn+1)

• • • •
xi−α xi xi+1 xi+2

• • • •

xi−1/2 xi+1/2 xi+3/2

α∆x ∆x

Figure 2.4: Discretisation scheme for the Godunov method.

written as follows:

u
n+1/2
i+1/2 = u(xi + ∆x/2, tn + ∆t/2)

= u(xi, tn) + ∆x

2

(
∂u

∂x

)
i

+ ∆t

2

(
∂u

∂t

)
i

+ O(∆x2, ∆t2)

= un
i + (1 − C)∆x

2

(
∂u

∂x

)
i

+ O(∆x2, ∆t2)

(2.26a)

u
n+1/2
i−1/2 = u(xi − ∆x/2, tn + ∆t/2)

= u(xi−α + (α − 1/2)∆x, tn + ∆t/2)

= un
i−α + (2α − 1 − C)∆x

2

(
∂u

∂x

)
i−α

+ O(∆x2, ∆t2)

= un
i−α + (2α − 1 − C)∆x

2

(
∂u

∂x

)
i−1

+ O(∆x2, ∆t2)

(2.26b)

where we have used the following Taylor expansion up to the second order of the partial
derivative of u with respect to x to find the final expression of Eq. 2.26b given by:

(
∂u

∂x

)
i−α

=
(

∂u

∂x

)
(xi−1 + (1 − α)∆x, tn) =

(
∂u

∂x

)
i−1

+ O(∆x) (2.27)

The following developments aim to show the issue arising when we use the Godunov scheme
in Eq. 2.22 by only keeping the zeroth order terms. Using the following Taylor expansion:

un
i−α = u(xi−α, tn) = u(xi − α∆x, tn)

= un
i − α∆x

(
∂u

∂x

)
i

+ α2∆x2

2

(
∂2u

∂x2

)
i

+ O(∆x3)
(2.28)
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We successively write:

un+1
i − un

i

∆t
+ a

u
n+1/2
i+1/2 − u

n+1/2
i−1/2

∆x
= 0

⇔ un+1
i − un

i

∆t
+ a

un
i − un

i−α

∆x
= 0

⇔
(

∂u

∂t

)
i

+ a∆x

2 C

(
∂2u

∂x2

)
i

+ a

∆x

(
α∆x

(
∂u

∂x

)
i

− α2∆x2

2

(
∂2u

∂x2

)
i

)
= O(∆x2, ∆t2)

⇔
(

∂u

∂t

)
+ αa

(
∂u

∂x

)
= a∆x

2 (α2 − C)
(

∂2u

∂x2

)
+ O(∆x2, ∆t2)

(2.29)
We see in Eq. 2.29 that our leading order error is now in the first derivative of u with
respect to x, which is a big issue if α >> 1 because that means we are not solving the
advection-diffusion equation with a velocity a but with a velocity αa, which will lead to a
completely different result. To get rid of this term proportional to α, we need to consider
the first-order terms of Eq. 2.26 in Eq. 2.22. With those additional terms, we can show
that Eq. 2.22 is now given by:

(
∂u

∂t

)
+ a

(
∂u

∂x

)
= a∆x

2 (α − C)(1 − α)
(

∂2u

∂x2

)
+ O(∆x2, ∆t2), (2.30)

and we see that the α factor does not appear anymore in front of the partial derivative
mentioned above. Eq. 2.30 represents the modified advection equation with a non-uniform
mesh size. We note that we have lost one order of accuracy at the level boundary, which
can induce non-linear effects and make the Godunov scheme unstable for some values of
α. In particular, for α = 1.5, AMR is unstable at the level boundary and some artificial
diffusion is required to counterbalance this effect.

2.3.3 The Riemann problem
The Riemann problem is the determination of the solution of a conservation law system
(i.e., Eq. 2.12) with piecewise initial conditions made of a constant left state and a constant
right state with an interface between the two. The Godunov scheme introduced above with
a piecewise constant left and right states and the interface between each volume (cell) is
a Riemann problem. From these initial conditions, we want to determine the result of the
new left and right states for the next time step. Solving the Riemann problem requires
an accurate description of the phenomena occurring at the interface between two cells.
We understand that the discontinuity between the left and right states generated by the
interface is responsible for the propagation of waves from one edge to another inside the
two cells. In other words, the information contained in the left cell must be communicated
through the interface to the right cell and inversely. Using the notation introduced in
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Eq. 2.11 we can consider that our primitive variables can be written like the sum of a
constant state and a small perturbation given by:

W⃗ = W⃗0 + ∆W⃗ . (2.31)

It is straightforward to show that we can always write the 1D Euler equation as follows:

∂t∆W⃗ + A0∂x∆W⃗ = 0, (2.32)

where A0 is a matrix with constant coefficients. The key idea here is to diagonalise this
matrix and rewrite the above equations as follows:

∂t∆α⃗ + D∂x∆α⃗ = 0, (2.33)

where D is a diagonal matrix containing the eigenvalues of A0 on its diagonal. Eq. 2.33 is a
system of decoupled equations for which each equation is just a simple advection equation.
The components of the ∆α⃗ vector are Riemann invariant along the characteristic curves
moving at velocities corresponding to the eigenvalues of A0. Then, we use the general
expression of the conservation law 2.9 in 1D given by:

∂tU⃗ + ∂xF⃗ = 0, (2.34)

where the fluxes F⃗ are expressed as a function of the ∆α⃗ vector. Once we determine the
fluxes, we can use the Godunov scheme given by:

Un+1
i − Un

i

∆t
+

F
n+1/2
i+1/2 − F

n+1/2
i−1/2

∆x
= 0, (2.35)

and solve the problem by computing the value of Un+1
i for every time step. In the following,

we illustrate the decomposition of the set of Eq. 2.32 into the decoupled set of Eq. 2.33
in the case of the 1D isothermal and adiabatic Euler equations. The first case illustrates
the Riemann problem and the solution provided via the Godunov scheme. The second
case shows a simpler representation of the challenge arising when we implement a HYDRO
module using the Godunov method to solve the Riemann problem.

The isothermal wave equations

The simplest model to illustrate the Riemann problem is obtained when we apply the
Godunov scheme to the so-called linearised 1D isothermal wave equations. To this end, we
first need to use the set of variables of Eq. 2.31 given by:

W⃗ ≡
(

ρ
u

)
=
(

ρ0
u0

)
+
(

∆ρ
∆u

)
, (2.36)

and replace them into the set of Eq. 2.12 for a fixed temperature (P = a2ρ), with a the
sound speed, given by:

∂t∆ρ + u0∂x∆ρ + ρ0∂x∆u = 0 (2.37a)

∂t∆u + u0∂x∆u + a2

ρ0
∂x∆ρ = 0 (2.37b)
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The above system can be written as Eq. 2.32 with the matrix A0 given by:

A0 =
(

u0 ρ0
a2

ρ0
u0

)
. (2.38)

As mentioned above, the key idea here is to diagonalise the matrix A0 and rewrite Eq. 2.37
under a decoupled form given by Eq. 2.33. Without going into the mathematical develop-
ments, we find that the eigenvalues of A0 are given by:

λ+ = u0 + a

λ− = u0 − a,
(2.39)

and their corresponding eigenvectors by:

X⃗+ ∝
(

ρ0
a

)
, X⃗− ∝

(
ρ0
−a

)
, (2.40)

and the system of equations 2.37 can be rewritten as follows:

∂t∆α+ + (u0 + a)∂x∆α+ = 0 (2.41a)
∂t∆α− + (u0 − a)∂x∆α− = 0, (2.41b)

where:
∆α⃗ ≡

(
∆α+

∆α−

)
= 1

2

(
∆ρ + ρ0

a
∆u

∆ρ − ρ0
a

∆u

)
. (2.42)

We highlight again that the system of Eq.2.41 is simply two decoupled advection equations
2.13. To interpret those two equations, Fig. 2.5 shows the characteristic curves and the
propagation of waves coming from the left and going to the right (∆α+) and the waves
coming from the right and going to the left (∆α−). We also show the interface separating
the left and right states (ρL, uL and ρR, uR), as well as the resulting mixed states, given
by:

∆ρ∗ = ∆α+
L + ∆α−

R (2.43a)
∆u∗ = a

ρ0
(∆α+

L − ∆α−
R) (2.43b)

To give the reader the keys for the rest of the method to solve the Riemann problem, we
will only develop here the mathematical expression of one flux for the continuity equation
with the notation (L, R ≡ i, i + 1). When we apply the Godunov scheme 2.35 to that
equation, we see that the flux F

n+1/2
1+1/2 writes:

F
n+1/2
1+1/2 = u0∆ρ

n+1/2
i+1/2 + ρ0∆u

n+1/2
i+1/2 , (2.44)

with the following expressions for the perturbations:

∆ρ
n+1/2
i+1/2 = ∆α+

i + ∆α−
i+1 = ∆ρi + ∆ρi+1

2 − ρ0

2a
(∆ui+1 − ∆ui)

∆u
n+1/2
i+1/2 = a

ρ0

(
∆α+

i − ∆α−
i+1

)
= ∆ui + ∆ui+1

2 − a

2ρ0
(∆ρi+1 − ∆ρi) ,

(2.45)
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and using Eq. 2.45 in 2.44, the flux is then given by:

F
n+1/2
1+1/2 = u0

∆ρi + ∆ρi+1

2 + ρ0
∆ui + ∆ui+1

2 − u0
ρ0

2a
(∆ui+1 − ∆ui) − ρ0

a

2ρ0
(∆ρi+1 − ∆ρi)

≈ u0
∆ρi + ∆ρi+1

2 + ρ0
∆ui + ∆ui+1

2 − a

2∆x

(
∂ρ

∂x

)
− u0ρ0

2a
∆x

(
∂u

∂x

)
.

(2.46)

We note that Eq. 2.46 is composed of a ’true’ flux given by the averaged in the two first
terms and a diffusive flux given by the two last terms. We can thus write the flux as
follows:

F⃗ = F⃗true − ν∇⃗q, (2.47)
which leads to the final modified equation given by:

∂ρ

∂t
+ ∇⃗.F⃗true = ν∇⃗2q. (2.48)

We highlight here that Eq. 2.48 has exactly the same expression as Eq. 2.21 with the
positive term ν∇⃗2q, which diffuses the solution and makes the Godunov scheme stable.

x

t
Interface (xi+1/2)

Left state Right state

Mixed statexi xi+1

Figure 2.5: Illustration of the characteristic curves of Eq. 2.41. The red curves represent
the Left state (everything on the left of the interface), and the blue curves represent the
right state (everything on the right of the interface). The propagation of waves shows a
right-going left state and a left-going right state crossing the interface and creating a mixed
state (violet curves).
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The adiabatic wave equations

The adiabatic Euler equations are given by Eq. 2.12. We see that we already have a third
equation and the vector of primitive variables is this time given by:

W⃗ ≡

ρ
u
P

 =

ρ0
u0
P0

+

∆ρ
∆u
∆P

 , (2.49)

where the pressure p also depends on the temperature through Eq. 2.12d. The perturbed
adiabatic Euler equations are thus written as:

∂t∆ρ + u0∂x∆ρ + ρ0∂x∆u = 0, (2.50a)

∂t∆u + u0∂x∆u + 1
ρ0

∂x∆P = 0, (2.50b)

∂t∆P + u0∂x∆P + γP0∂x∆u = 0, (2.50c)

Once again, the above system can be written under the shape of Eq. 2.32 with a matrix
A0 given by:

A0 =

u0 ρ0 0
0 u0

1
ρ0

0 γP0 u0

 . (2.51)

The eigenvalues of the matrix A0 are given by:

λ+ = u0 + a,

λ0 = u0,

λ− = u0 − a,

(2.52)

with their corresponding eigenvectors expressed as follows:

X⃗+ ∝

 1
a/ρ0
a2

 , X⃗0 ∝

1
0
0

 , X⃗− ∝

 1
−a/ρ0

a2

 , (2.53)

Hence, the above system of equations 2.50 can be rewritten as follows:

∂t∆α+ + (u0 + a)∂x∆α+ = 0, (2.54a)
∂t∆α0 + u0∂x∆α0 = 0, (2.54b)

∂t∆α− + (u0 − a)∂x∆α− = 0, (2.54c)

where the eigenstate vector ∆α⃗ has the following shape:

∆α⃗ ≡

∆α+

∆α0

∆α−

 = 1
2


∆P
a2 + ρ0

a
∆u

2
(
∆ρ − ∆P

a2

)
∆P
a2 − ρ0

a
∆u

 . (2.55)
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We immediately see that the above system of decoupled equations is much more compli-
cated than the equivalent isothermal one given by Eq. 2.41. This is due to the additional
pressure variable and we note that the above system represents the propagation of three
waves at velocity u0 + a, u0, and u0 − a. The Riemann problem we need to solve in this
case is composed of three waves propagating in both directions through the interface and
interacting with each other as shown in Fig. 2.6. There are two mixed states labelled ‘Left’
and ‘Right’ (L, R), and the mixed-state perturbations write:

∆u∗
L,R = a

ρ0
(∆α+

L − ∆α−
R), (2.56a)

∆P ∗
L,R = a2(∆α+

L + ∆α−
R), (2.56b)

∆ρ∗
L = (∆α+

L + ∆α0
L + ∆α−

R), (2.56c)
∆ρ∗

R = (∆α+
L + ∆α0

R + ∆α−
R). (2.56d)

From this step, if we use the Godunov scheme and compute the fluxes, we can show
that even in the adiabatic wave case, the modified equation has the same mathematical
expression as the advection-diffusion equation 2.48, which is once again a stable scheme.

x

t

u0 + a

u0u0 − a

Interface (xi+1/2)

Left state Right state

Mixed state Mixed state

xi xi+1

Figure 2.6: Illustration of the characteristic curves of Eq. 2.54. The red curve represents
the Left state, and the blue curves represent the right states. From left to right the waves
propagate with velocity u0 − a, u0, and u0 + a, respectively. The two mixed states appear
between each wave.

2.3.4 The various Riemann solvers
The Godunov scheme of the Euler conservative equations is always written as in Eq. 2.35.
At the edge of each cell, we need to solve a Riemann problem (noted RP ) for which we
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need to determine the mixed states U⃗∗ and where the fluxes are given by:

F⃗
n+1/2
i+1/2 = F⃗ (U⃗∗

i+1/2(0)),
U⃗∗

i+1/2 = RP (U⃗n
i , U⃗n

i+1),
(2.57)

with the corresponding Godunov flux:

F⃗
n+1/2
i+1/2 = F⃗ ∗(U⃗n

i , U⃗n
i+1). (2.58)

The two examples we have introduced above (i.e., isothermal and adiabatic Euler equa-
tions) are straightforward cases. In reality, the equations are not linear, especially in the
presence of shocks, leading to a shock wave, contact discontinuity, and rarefaction wave
(i.e., a decompression wave which often follows the shock wave). In this case, the exact
solution to the Riemann problem using the Godunov scheme of Eq. 2.35 requires exact
Riemann solvers. Those solvers need to determine the roots of non-linear functions coming
from Eq. 2.58 by using the Newton-Raphson method, which is costly in terms of comput-
ing resources, especially with the full MHD equations and a large grid. To speed up the
process, approximate Riemann solvers were introduced to simplify Eq. 2.35 and 2.58 and
make it more tractable for a large number of cells.

The two main families of approximate Riemann solvers are the Linear and the so-called
HLL (Harten, Lax, and van Leer) Riemann solvers. The linear solvers are designed to
simplify the expression of the Godunov flux by averaging the right and left states and
introducing a linear diffusive term. HLL Riemann solvers are designed to reduce the
number of waves to only two (even in the MHD case, which contains seven waves). Among
the HLL Riemann solvers, we mention here the Lax-Friedrich (LLF) and the HLLC solver.
LLF solvers have a robust scheme leading to a closed form for the flux. HLLC solvers add
a third contact (entropy) wave which reduces the complexity of the problem. The LLF
solver is the most diffusive one and the HLLC is the closest to the exact Riemann solver
(see Toro, 2009).

To illustrate the behaviours of those various solvers, we show the well-known 1D shock
sod tube test with the initial problem represented in Fig. 2.7. In this figure, we see a
discontinuity of the density and pressure at 0.5 cm, which is responsible for the formation
of shock waves propagating in the tube. We see that this problem is particularly relevant
to illustrate what we developed in the previous section since we observe two constant
states for the initial conditions. The Riemann problem of the initial condition occurs at
the interface between the two cells located on the left and right to the interface at 0.5 cm.
From what we have developed above, we know that we will observe the propagation of three
waves. The first shock wave will propagate to the right, followed by the second contact
discontinuity wave. A third rarefaction wave will propagate to the left, connecting the two
initial states. Figure 2.8, 2.9, and 2.10 illustrate the result of the EXACT, LLF, and HLLC
Riemann solver, respectively. The main difference between these solvers is visible in the
density profile (top panel) for which we see the diffusive term acting close to the contact
discontinuity shock (∼ 0.75 cm). We observe the EXACT and HLLC Riemann solvers give
quite the same result, but the LLF solver is more diffusive than the others.
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To illustrate the power of the AMR method, we show in Fig. 2.11 the same experience
with the shock sod tube but this time, we use an AMR-HLLC Riemann solver to compute
the solution. We see that the mesh is refined close to the flow discontinuity (see the
blue dashed line), which strongly reduces the diffusion of the HLLC solver. Moreover,
the solution is almost identical to the analytical one with a full capture of the shock
discontinuities.

2.3.5 Overview of the 3D Riemann problem
All the mathematical developments we did above are considered only in one dimension.
The flux is just given by the vector F⃗ and the decoupling by diagonalisation of Eq. 2.32 is
straightforward. In 3D, Eq. 2.9 writes:

∂tU⃗ + ∂xF⃗ + ∂yG⃗ + ∂zH⃗ = 0, (2.59)

where the conservative variable vector U⃗ and the fluxes F⃗ , G⃗, and H⃗ are given by:

U⃗ = (ρ, ρu, ρv, ρw, ρE) (2.60)

F⃗ =


ρu

ρuu + P
ρuv
ρuw

u (ρE + P )

 , G⃗ =


ρv
ρuv

ρvv + P
ρvw

v (ρE + P )

 , H⃗ =


ρw
ρuw
ρvw

ρww + P
w (ρE + P )

 . (2.61)

The primitive form of Eq. 2.59 is again obtained by using the primitive vector variable
given by:

W⃗ = (ρ, u, v, w, P ), (2.62)

and the following Jacobian matrices for the change of variables between the fluxes F⃗ , G⃗, H⃗
with the conservative (primitive) variable vector U⃗ (W⃗ ) given by:

J = ∂F⃗

∂U⃗
, K = ∂G⃗

∂U⃗
, L = ∂H⃗

∂U⃗
,

M−1 = ∂U⃗

∂W⃗
.

(2.63)

Using Eq. 2.63 in 2.59, we obtain the following equation depending only on the primitive
variable vector W⃗ :

∂tW⃗ + MJM−1∂xW⃗ + MKM−1∂yW⃗ + MLM−1∂zW⃗ = 0, (2.64)

which is simply written as:

∂tW⃗ + A∂xW⃗ + B∂yW⃗ + C∂zW⃗ = 0. (2.65)
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where A, B, and C are matrices. We see that Eq. 2.65 is much more complex than its
equivalent in 1D because we have now a partial derivative in each direction of space. We
also note that the decoupling of this system in the case of small perturbations is no longer
possible because of the three matrices we need to diagonalise at the same time.

The 3D Godunov scheme is then given by:

Un+1
i = Un

i + ∆t

∆x

(
F

n+1/2
i+1/2,j,k − F

n+1/2
i−1/2,j,k

)
+ ∆t

∆y

(
G

n+1/2
i,j+1/2,k − G

n+1/2
i,j−1/2,k

)
+ ∆t

∆z

(
H

n+1/2
i,j,k+1/2 − H

n+1/2
i,j,k−1/2

)
= 0.

(2.66)

In this case, the Riemann problem becomes tedious, but we can approximate its solution
by splitting Eq. 2.66 into three different 1D Riemann problems in each direction of space.
This method is called dimensional splitting and the three 1D Godunov schemes are just
given by:

Un+1
i = Un

i + ∆t
∆x

(
F

n+1/2
i+1/2,j,k − F

n+1/2
i−1/2,j,k

)
, (2.67a)

Un+2
i = Un+1

i + ∆t
∆y

(
G

n+3/2
i,j+1/2,k − G

n+3/2
i,j−1/2,k

)
, (2.67b)

Un+3
i = Un+2

i + ∆t
∆z

(
H

n+5/2
i,j,k+1/2 − H

n+5/2
i,j,k−1/2

)
, (2.67c)

which is much more convenient for the computation of the fluxes because the diagonalisa-
tion of Eq. 2.65 is again possible since Eq. 2.59 can be split following the three directions
of space. The advantage of the directional splitting method is that the problem is again
reduced to the well-known 1D Riemann problem. The disadvantage is that we need to
solve three Riemann problems instead of a single one.

2.4 RAMSES to model the evolution of nearby disc
galaxies

Before we justify the choice of RAMSES to model nearby disc galaxies, it is important
to keep in mind that the N-body and HYDRO solvers of RAMSES are coupled through
gravity. In this section, we have developed with more depth the hydro solver by only
considering the Euler equations given by the system of PDE 2.9. This system is quite simple
as the fluid (gas) it describes is completely decoupled from the gravitational potential
generated by the gas itself and the particles. The full Euler equations we need to solve to
have comprehensive modelling of isolated galactic systems is the set of Eq. 2.2 with the
source term stemming from the total gravitational potential. In this case, the Godunov
scheme still works, but we need to add a source term with the gradient of the gravitational
potential. We note that the addition of this source term in Eq. 2.9 does not change its
conservative nature, and we just need to modify the flux by adding the potential into
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it. In RAMSES, the gas is composed of different components: atomic hydrogen, helium,
and metals such as iron and oxygen. Those elements can be seen as different fluids (gas
components) and we need to solve the Euler equations for each of those chemical species.

We motivate the modelling and study of nearby disc galaxies with RAMSES because
the code offers a comprehensive approach with its N-body and HYDRO solvers. With
RAMSES, we are able to describe the evolution of the star and DM system, as well as
the formation of spiral arms, stellar bars, and other features. We can also describe the
full evolution of the gas dynamics and the formation and evolution of intermediate- and
small-scale structures of the gas such as dust lane and central molecular discs. Moreover,
the AMR method allows us to focus our study on the very central dense regions of nearby
disc galaxies, with a high resolution going up to 12 pc while adopting a low resolution in
the outer part of the galaxy. The power of the AMR method has already been shown in
Fig. 2.11 for the 1D case. A more complex structure of the 3D AMR grid is shown in
Fig. 2.12, 2.13 and 2.14 where we illustrate the AMR grid on one of the snapshots of one
of our models. This clearly illustrates the resolution we can reach (12 pc) in the central
regions of simulations, which is a crucial factor if we want to study the evolution of central
gas structures.

In addition to the first version of RAMSES, many patches have been written over the
past two decades to implement a gas cooling function, formation of new stars, and stellar
feedback. Those patches, especially the one written and used in Agertz et al. (2013) and
Renaud et al. (2013a) are the key to increasing the realism of galaxy simulations and
starting to compare our results with observations of nearby disc galaxies.
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Figure 2.7: Initial condition of the Sod tube test. The initial density, velocity, and pressure
profiles are illustrated by the circles with a discontinuity at a distance of 5 cm. We have
used a uniform mesh size with a total number of cells of 128, corresponding to a constant
level of refinement fixed to 7.
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Figure 2.8: Solution of the EXACT Riemann solver for the Sod tube test. The final state
of the density, velocity, and pressure profiles are shown by the circles. The analytical
solution is shown by the purple curve. From left to right, we see the rarefaction wave
(∼0.2-0.5 cm), then the contact discontinuity wave (∼ 0.75 cm), and finally the shock
wave (∼ 0.95 cm). The mesh size (dashed blue curve) is uniform with a total number of
128 cells, corresponding to a constant level of refinement fixed to 7.
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Figure 2.9: Same as in Fig. 2.8, but for the LLF Riemann solver.
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Figure 2.10: Same as in Fig. 2.8, but with the HLLC Riemann solver.
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Figure 2.11: Same as in Fig. 2.8, but with the AMR-HLLC Riemann solver. The level
of refinement (dashed blue curve) varies depending on the constraint from 3 to 10 and
converges with a total number of 142 cells.
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Figure 2.12: Gas surface density map of one of our simulation snapshots (model G105, see
Chap. 4) performed in this work. The more yellow, the denser the gas region is.
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Figure 2.13: AMR grid of the simulation snapshot shown in Fig. 2.12. There are 7 levels
of refinement shown by the coloured dots corresponding approximately to 780 (black), 390
(purple), 195 (orange), 98 (red), 49 (green), 25 (blue), and 12 (yellow) pc.
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Figure 2.14: Superimposition of the AMR grid shown in Fig. 2.13 on the gas surface density
map illustrated in Fig. 2.12.
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Chapter 3

Methods and simulations
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This chapter aims to describe and explain in detail the analysis of the PHANGS-ALMA
sample (see Leroy et al., 2021) we performed to design the grid of models based on five
galactic parameters (i.e., the stellar mass, the gas fraction, the scale length of the star
and gas distribution, and the bulge mass fraction). This grid is the basis of the initial
condition (IC) files containing the positions and velocities of the star and DM particles
and the total rotation curve for the gas component. We will also describe the technique
we used to generate the particle file by solving the Jeans equation. We will conclude with
an insight into the various numerical recipes implemented in the code.

3.1 The PHANGS-ALMA sample as a basis for a grid
of galactic models

The PHANGS-ALMA survey (Leroy et al., 2021) is a robust set of data that we can use to
explore the morphology and dynamics of a hundred nearby main sequence low-inclined disc
galaxies. This specific configuration ‘almost face on’ of those galaxies allows us to probe
their central region and study the gas properties of their inner molecular disc (Sormani
& Barnes, 2019). It also allows us to extract more robust values of their stellar and gas
mass contents and their azimuthally-averaged radial surface density profiles. The grid
of galactic models we present in this chapter is based on control parameters derived from
those quantities. It aims to cover the full sample without modelling each galaxy composing
it.

3.1.1 Five galactic parameters
The galactic properties we want to extract from the PHANGS-ALMA sample must contain
a comprehensive description of the galaxies we want to model. We need at least two
parameters for the global properties of the star and gas components: the total stellar mass
M⋆ and gas mass Mg (atomic, molecular, and ionised hydrogen). We also need to know the
distribution of those components and in the following, we will assume a simple exponential
distribution that leads us to use two additional parameters: the stellar scale length l∗ and
the gas scale length lg. The last parameter is related to the morphological properties of
the central few kiloparsec region of disc galaxies that can display the presence of a stellar
bulge for which we can use its mass Mb as the main indicator. We can summarise those
five galactic properties with the following set of parameters:

1. the stellar mass M⋆ = Md+ Mb,

2. the gas fraction α = Mg/(M⋆+ Mg),

3. the typical stellar scale length l∗,

4. the ratio between the stellar and gas scale length l∗/lg,

5. the bulge mass fraction β = Mb/M⋆,
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where Md stands for the mass of the stellar disc. We can directly obtain the first two
parameters (i.e., M⋆ and Mg) from the sample, but we need further analysis to obtain the
values of the last three parameters.

3.1.2 Surface density fitting to model the stellar and gas distri-
bution

The analysis of the stellar and gas surface density profiles reveals that the stellar and gas
components show an exponential behaviour for their disc but necessitate an additional
non-exponential component in the central region in the stellar profile. The exponential
surface density profile for the star and gas disc is written as follows:

Σd,∗/g(r) = Σ0,d,∗/g exp
(

− r

l∗,g

)
, (3.1)

where Σ∗,g,0 is the surface density profile at r = 0. The non-exponential component in the
central region of the stellar profile can be interpreted as a 3D bulge or central disc1 and
can be modelled thanks to a Sersic profile (Sérsic, 1963) written as follows:

Σb(r) = Σ0,b exp
−bn

( r

Re,b

)1/nb

− 1
 , (3.2)

where Σ0,b is the surface density profile at Re,b corresponding to the typical bulge scale
length, nb the bulge index, and bn is a coefficient depending on the value of nb. Assuming
that the stellar density profile is the sum of both, the disc and bulge components, we can
apply a fitting method to the PHANGS stellar and gas surface density profiles and obtain
a range of values for l∗, lg, and β through Re,b and nb.

Depending on their quality, we classify the results of the fit by ranking them with three
different values: 1 when the fit is good, 0 when the fit is good enough, and -1 when the
fit is bad and the results cannot be trusted. Figure 3.1 shows an example of a good fit
of the stellar (top panel) and gas (bottom panel) surface density profile. The blue curves
represent the exponential fit of the disc and the red curve in the top panels shows the
total fit with the bulge taken into account. Figure 3.2 shows the result of a good enough
fit (left panel) and a bad fit (right panel). The fit becomes worse when the profile shows
some peculiar features and cannot be modelled with a simple exponential disc and a bulge
component.

3.1.3 The grid of models
The results of the fits of the entire set of PHANGS surface density profiles and the chosen
values of the IC are shown in Fig. 3.3. In this figure, the attributed rank 1, 0, and -1

1The degeneracy between a real 3D bulge and a central disc can be only raised thanks to a more
advanced analysis of the kinematics and has not been performed in this work.
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Figure 3.1: Stellar and gas surface density profile of the galaxy NGC5134 (black dots) with
their corresponding fit=1 for their discs (blue curves) and bulge (red curve).

of the fits are represented by the green, yellow, and brown circles, respectively. The stars
represent the values we chose for the IC and the purple stars indicate the first-priority set
of models we decided to simulate. This first-priority set represents most of the parameter
values covered by the PHANGS sample and is the basis for our first publication (Verwilghen
et al., 2024) presented and detailed further in Chap. 4. The ICs are based on five different
values of the stellar mass (i.e., 109.5, 1010, 1010.5, and 1011 M⊙) as illustrated by our grid
of models as shown in Tab. 3.1.
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Figure 3.2: Gas surface density profiles of the galaxies NGC7496 and 3239 (black dots)
with their corresponding fit=0,-1 on the left and right panels, respectively for their discs
(blue curves) and bulge (red curve).

log10(M⋆ [M⊙]) α [%] l⋆ [kpc] lg/l⋆ β [%]
9.5 10, 20, 40 2, 3 2 0, 10, 30
10 10, 20, 40 2, 3 2 0, 10, 30

10.5 10, 20 3, 4 2 0, 10, 30
11 10, 20 5 2 0, 10, 30

Table 3.1: Grid of models with the different values for the control parameters based on the
PHANGS sample. The grid is built on 4 galaxy stellar mass values, then covering a broad
range of characteristic properties which cover the observed sample.

3.1.4 The choice of the Dark Matter halo profile and black hole
- stellar mass relation

In addition to the stellar and gas components, we also need to include a proper DM
halo in our models. The choice of the DM halo can be done in different ways, but in
this work, we used an approach reproducing as much as possible the global trend of the
PHANGS rotation curves, knowing already the rotation curves obtained with the gas and
stellar components. Since the determination of the DM halo can be only done via indirect
measurements, it is fairly difficult to determine which DM halo profile, such as Einasto,
NFW, or Burkert (Einasto, 1965; Burkert, 1995; Navarro et al., 1997) reproduces as best as
possible the DM halo of PHANGS galaxies. A brief representation of those three profiles
is shown in Fig. 3.4. In our galactic models, we use the Einasto profile because it is quite
similar to the Sersic one and does not go to infinity at the centre. Moreover, we see that
the choice of the halo index leads to behaviours similar to the NFW and Burkert profiles.
The Einasto profile is given by:

ρh(r) = ρ0,h exp
(

−2m

[(
r

lh

)1/m

− 1
])

, (3.3)
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Figure 3.3: Results of the fits for the different galactic parameters (see text). The ICs are
illustrated by the stars. The purple stars represent the ICs we use in priority.
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where ρ0,h, lh, and, m are the halo density at r = lh, scale length, and index, respectively.
The values of those parameters and the central BH mass (see Reines & Volonteri, 2015, in
Fig. 1.9) are computed as a function of the stellar mass of our models and are shown in
Tab. 3.2.

Figure 3.5 shows a comparison between the rotation curves obtained from our galactic
models (coloured solid curves) and the PHANGS rotation curves (coloured shaded areas)
for the four different stellar masses. We observe that our models reproduce quite well the
global trend of the PHANGS ones. It is important to note here that those curves are our
initial conditions and will evolve over time, leading to various features (e.g., peak in the
central kpc region) in the rotation curves.

Figure 3.4: Three dark matter halo profiles represented by the Einasto, NFW, and Burkert
profiles in the top, middle, and bottom panel, respectively.
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M⋆ ρ0,h lh m MBH

log10([M⊙]) [M⊙/pc3] [kpc] log10([M⊙])
9.5 3 × 10−4 20 3 5.5
10 6 × 10−4 25 3.5 6

10.5 7 × 10−4 30 1.5 6.5
11 8.5 × 10−4 35 2 7

Table 3.2: Grid of values for the parameters describing the dark matter profiles (i.e. ρ0,h,
the halo density; lh, the typical halo scale length; and m, the halo index) as a function of
the stellar mass M⋆. Those values have been inspired by the work of Kun et al. (2017), but
their final values have been chosen to match the PHANGS rotation curves. The central
BH masses MBH we use in the initial conditions are also shown in the last column.

Figure 3.5: Initial circular velocity curves of our 54 models. The colour of the curve illus-
trates the stellar mass range of the model. The shaded coloured areas show the envelopes
of the PHANGS velocity curves for the different stellar mass bins.

3.2 Generating the initial conditions
This section aims to describe the tools we used to generate the IC of our galactic models.
We briefly show the basics of the MGE method in a very simple case where we assume the
galaxies are face-on with a simple axis ratio in the z direction for the different dynamical
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components. Then, we explain how to use the Jeans equations to build our dynamical
models at equilibrium and create a file containing all the positions and velocities of each
particle.

3.2.1 The Multi Gaussian Expansion method
Our models have three or four dynamical components: the disc and bulge of stars (stellar
component), the gas disc, and the DM halo. As mentioned in the previous section, we have
fitted the azimuthally-averaged surface density profiles of the stellar and gas components of
the full sample of PHANGS galaxies and extracted the general properties of those profiles
with the values of the galactic parameters in Tab. 3.1. The goal of the Multi Gaussian
expansion (MGE, see Monnet et al., 1992; Emsellem et al., 1994a) method here is to fit
those individual profiles with different sets of 1D Gaussian functions and deproject them
in the 3D space to obtain a 3D density profile.

The general 2D form of the observed surface density profile Σ∗,g,h (stars, gas, and DM
halo) is then approximated as follows:

Σ∗,g,h(x′, y′) =
N∑

n=1
In exp

−
x′

n
2 + y′

n
2

q′
n

2

2σn
2

 , (3.4)

with x′
n = (x′ − x′

0n) cos(αn) + (y′ − y′
0n) sin(αn),

y′
n = −(x′ − x′

0n) sin(αn) + (y′ − y′
0n) cos(αn),

(3.5)

where (x′
0n, y′

0n) is the position of the maximum of the intensity in the sky plane coordinates
(x′, y′), and αn the position angle of the major axis. In, q′

n, and σn are the amplitude, the
axis ratio, and the standard deviation of the nth Gaussian. In the following, we consider
that our galactic models are already centred (i.e., (x′

0n, y′
0n) = (0,0)) and face-on with all

q′
n = 1 and αn = 0. Hence, the sky plane parameter sn

2 = x′
n

2 + y′
n

2/q′
n

2 corresponds with
the squared galactic radius r2 = x2 + y2 written as a function of the galactic coordinates
(x, y) and the observed surface density profile given by Eq. 3.4 can be rewritten as:

Σ∗,g,h(r) =
N∑

n=1
In exp

(
− r2

2σn
2

)
. (3.6)

Now, we just need to find a set of N Gaussian functions with the appropriate intensities
In and standard deviations σn to fit the PHANGS surface density profiles of stars and gas.
Figure. 3.6 illustrates the decomposition of a stellar density profile with a set of 23 Gaussian
functions (bulge and disc). The deprojection requires an axis ratio qn in the z direction,
thus leading to the general expression for a three-dimensional density profile given by:

ρ∗,g,h(x, y, z) =
N∑

n=1
Pn exp

−
x2 + y2 + z2

qn
2

2σn
2

 , (3.7)



64 3. Methods and simulations

Figure 3.6: Illustration of a stellar density profile reconstruction (red curve) via the MGE
method with a set of 23 Gaussian functions

where Pn = In/(
√

2πσn). We have now all the ingredients to model the different dynamical
components of our models, but we still need one last thing to generate the initial conditions
that we will develop in the next section.

3.2.2 The Jeans equations
The galaxies we want to simulate are initially in equilibrium and we need a set of equa-
tions to model such systems. Since our galactic systems are composed of a large number
of particles, we can consider them as a fluid of stars and DM and we introduce the distri-
bution function f(r⃗, v⃗, t), which is defined in a phase space of 6-N parameters (3 position
components and 3 velocity components), with N being the number of particles. If we knew
the form of this function at any time, then we would be able to fully describe the system.
However, this function cannot be analytically written with millions of parameters and has
to be treated from a statistical point of view.

If we assume that the collision term vanishes, we can write that:

df

dt
= 0 (3.8)

because the phase-space density f of the fluid around a given star remains the same if we



3.2 Generating the initial conditions 65

do not take the collisions between stars into account (i.e., the flow through phase space
of the probability fluid is incompressible). Developing the total derivative with respect to
time, we get:

∂f

∂t
+ v⃗.(∇⃗r⃗f) − ∇⃗r⃗Φ.(∇⃗v⃗f) = 0, (3.9)

where the operator ∇⃗r⃗,v⃗ stands for the partial derivative with respect to the positions
(r⃗ = (x, y, z)) and velocities (v⃗ = (vx, vy, vz)). The gravitational potential Φ is the total
gravitational potential and only depends on the positions. Equation. 3.9 is known as
the collisionless Boltzmann (or Vlasov) equation and is used to derive the so-called Jeans
equations.

The first Jeans equation corresponds to the integral over the velocity space of Eq. 3.9
and is given by: ∫ ∂f

∂t
d3v⃗ +

∫
v⃗.(∇⃗rf)d3v⃗ −

∫
∇⃗rΦ.(∇⃗vf)d3v⃗ = 0

⇔∂ν

∂t
+ ∇⃗.(ν ¯⃗v) = 0

(3.10)

which corresponds to the continuity equation with

ν =
∫

fd3v⃗

¯⃗v = 1
ν

∫
v⃗fd3v⃗,

(3.11)

where ν and ¯⃗v are the normalised density distribution and mean velocity field, respectively.
The second Jeans equation is obtained with a second moment integration over the

velocities. Using the component notation and the Einstein convention for the sum over
repeated index, the jth component is written as:∫

vj
∂f

∂t
d3v⃗ +

∫
vjvi

∂f

∂xi

d3v⃗ −
∫

vj
∂Φ
∂xi

∂f

∂vi

d3v⃗ = 0

⇔ ∂

∂t
(νv̄j) + ∂

∂xi

(νvivj) = −ν
∂Φ
∂xj

(3.12)

with
vivj = 1

ν

∫
vivjfd3v⃗ (3.13)

using Eq. 3.10 and assuming the following form for the stress tensor

σ2
ij = vivj − v̄iv̄j (3.14)

we can show that Eq. 3.12 can be rewritten:
∂v̄j

∂t
+ v̄i

∂v̄j

∂xi

= −1
ν

∂

∂xi

(νσ2
ij) − ∂Φ

∂xj

(3.15)

which corresponds to the equivalent of the equations of hydrodynamics or the so-called
Navier-Stokes equations.
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3.2.3 Building dynamical models with the MGE method to gen-
erate the IC

The unknowns we need to extract to generate our IC are the positions and velocities of
each particle, including the mean and dispersion velocities. The calculation of the positions
is straightforward and is determined thanks to a Gaussian random draw after generating
our dynamical model. The velocities are computed in two steps.

The first ingredient we need to build our dynamical model is to find a form for the mean
velocities, to this end, we need to solve Eq. 3.12 for the three components of the mean
velocity field ¯⃗v = (v̄x, v̄y, v̄z) in the stationary case (∂(ρv̄j)/∂t = 0) for each dynamical
component of the system. We also replace ν by the actual physical density ρ⋆,g,h ≡ ρ that
we have obtained in the previous section. We then get:

∂

∂x
(ρv2

x) + ∂

∂y
(ρvyvx) + ∂

∂z
(ρvzvx) = −ρ

∂Φ
∂x

(3.16a)

∂

∂y
(ρv2

y) + ∂

∂x
(ρvxvy) + ∂

∂z
(ρvzvy) = −ρ

∂Φ
∂y

(3.16b)

∂

∂z
(ρv2

z) + ∂

∂x
(ρvxvz) + ∂

∂y
(ρvyvz) = −ρ

∂Φ
∂z

(3.16c)

It is important to note that Φ in Eq. 3.16 represents the total gravitational potential of
the galactic system (i.e., stars, gas and DM halo), but the density ρ can just be the density
of any component. To solve this equation for the three squared mean velocity components
(v2

x, v2
y, v2

z), we need to integrate this equation with respect to the corresponding spatial
variable (x, y, z). Taking into account the fact that (v2

x, v2
y, v2

z) → 0 when (x, y, z) → ∞,
we have:

ρv2
x =

∫ ∞

x

(
ρ

∂Φ
∂x

+ ∂

∂y
(ρvyvx) + ∂

∂z
(ρvzvx)

)
dx, (3.17a)

ρv2
y =

∫ ∞

y

(
ρ

∂Φ
∂y

+ ∂

∂x
(ρvxvy) + ∂

∂z
(ρvzvy)

)
dy, (3.17b)

ρv2
z =

∫ ∞

z

(
ρ

∂Φ
∂z

+ ∂

∂x
(ρvxvz) + ∂

∂y
(ρvyvz)

)
dz. (3.17c)

In the general case, we can always write a relation between the first and second moment
of the mean velocity given by:

vxvy = (1 + µ)v̄xv̄y, (3.18a)
vxvz = µ′v̄xv̄y, (3.18b)
vyvz = µ′′v̄xv̄y, (3.18c)

where the function µ, µ′, and µ′′ are called the anisotropy functions. To solve the system
of Eq. 3.17, we need to compute the gravitational potential Φ and find a relation for the
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second-order terms of the velocity components vivj. In the following, we will consider an
oblate ellipsoid described in a cylindrical coordinate system. Given the form of Eq. 3.7,
the gravitational potential is written as (see Binney et al., 2009; Emsellem et al., 1994a):

Φ(R, z) = −4πG
N∑

i=1
qnσ2

nPn

∫ 1

0

exp
(
− T 2

2σ2
n

(
R2 + z2

1−(1−q2
n)T 2

))
√

1 − (1 − q2
n)T 2

dT (3.19)

The second ingredient is the determination of the form of the dispersion velocity tensor
given in Eq. 3.14 assuming cylindrical symmetry about the z-axis for an oblate ellipsoid.
We will then need to use the cylindrical coordinates (R, ϕ, z) to compute the respective
velocities (vr, vϕ), and vz. In such a case, the different components of the stress tensor are
given by:

σ2
R = v2

R, (3.20a)
σ2

ϕ = v2
ϕ − Θ2

, (3.20b)
σ2

z = v2
z , (3.20c)

and the corresponding Jeans equations are written:

∂(ρσ2
R)

∂R
+ ρ

σ2
R − (σ2

ϕ + Θ2)
R

+ ∂Φ
∂R

 = 0, (3.21a)

∂(ρσ2
z)

∂z
+ ρ

∂Φ
∂z

= 0. (3.21b)

We know that in the oblate case:

µ =
σ2

R − σ2
ϕ

Θ2 , (3.22a)

µ′ = µ′′ = 0, (3.22b)

kϕ(R, z) =
σ2

ϕ

σ2
z

, (3.22c)

and if we assume that σ2
R = σ2

z we can write:

ρσ2
z =

∫ ∞

z
ρ

∂Φ
∂z

dz, (3.23a)

ρ(σ2
ϕ + Θ2) = R

∂(ρσ2
z)

∂R
+ ρσ2

z + ρR
∂Φ
∂R

, (3.23b)

and we have now all the ingredients for our dynamical models. We just need to compute the
velocity dispersions and then inject the result in Eq. 3.17 to compute the mean velocities.
Once the dynamical model is built, we can use a Gaussian random draw to create the
particles with their respective position (x, y, z) and velocities (vx, vy, vz) in an ASCII file.
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The content of one of our IC files is shown in Fig. 3.7 with a face-on (edge-on) view
of the galaxy in the left (right) panel. This figure illustrates the position of the DM, gas,
and stellar components with the black, blue, and yellow particles, respectively. A bulge
component (red) is also present in the central region of the model. It is important to
note that the gas particles are shown in both panels for comprehension purposes, but they
are not given to RAMSES in the IC file since the code generates the gas component on
the AMR grid with an initial tangential velocity given by the rotation curve (i.e., circular
velocity) presented in Fig. 3.8. In this figure, the total rotation curve is shown by the
black dashed curve and is split into its individual dynamical components given by the DM,
stars, and gas illustrated by the black, yellow, red, and blue curves. The 54 rotation curves
are shown in Fig. 3.5. More details on the numerical recipes of the gas component are
developed in the following section.

Figure 3.7: Content of one of our IC files. The left panel shows a face-on view of the model
and the right panel shows an edge-on view. The colours represent the different dynamical
components of the galaxy with the DM, gas, and stars in black, blue, yellow and red,
respectively. The gas component is shown for a comprehensive overview of our models,
but it is not given to the code as ICs. The galactic model corresponds to a galaxy having
a stellar mass of 1010.5 M⊙ and a gas fraction of 10 %.

3.3 Numerical recipes used in RAMSES
In this section, we describe the three main aspects of the code we used to model the
sub-grid physical phenomena in our simulations. We first present and detail the Jeans re-
finement strategy we applied to set the constraints on the AMR grid and reach a maximum
resolution of 12 pc for our grid of models. Then, we briefly show the main characteristics
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Figure 3.8: Rotation curve of the model shown in Fig. 3.7. The total rotation curve is
given by the black dashed curve. The black, yellow, red, and blue curves represent the
different dynamical components of the model: the DM, stars (disc and bulge), and gas,
respectively.

of the EOS and the cooling function we used to model the thermodynamics of the gas
component. Finally, we will illustrate the star formation method and detail the numerical
recipes implemented in RAMSES for the stellar feedback.

3.3.1 The Jeans refinement strategy
The Jeans mass

The code deals with the hydrodynamics of the simulation by distributing the gas component
on the AMR grid. The refinement of the grid (i.e., the creation of new cells smaller than
the ones on the lower refinement levels) is determined by a constraint on the mass of the
cell based on the Jeans criterion. The Jeans mass of a molecular cloud is the critical mass
above which the cloud will start to collapse by fragmenting and creating new stars. The
Jeans mass of a molecular cloud of radius RJ is simply given by:

MJ = 4π

3 R3
Jρ, (3.24)

where ρ is the density of the sphere. Here, RJ = λJ/2 with λJ is the Jeans scale length
given by:

λJ = cs

1/tff

, (3.25)

where cs is the sound speed and tff the so-called free-fall time. This characteristic time
is obtained by computing the time it would take for a sphere of radius R to collapse and
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reach its centre by only considering the gravity and without any pressure force acting on
it and pushing the material outward. This free-fall time is written as:

tff = 1
(Gρ)1/2 , (3.26)

where G is the gravitational constant. Using Eq. 3.25 and 3.26 in 3.24, we obtain:

MJ = π

6
c3

s

G3/2ρ1/2 . (3.27)

We see that the Jeans mass is inversely proportional to the square root of the gas density,
which means that MJ decreases with increasing density. The main problem with the above
reasoning is that it does not take into account the thermodynamics of the molecular cloud.
Indeed, it is important to keep in mind that the sound speed cs also depends on the
temperature.

To determine the relation between the Jeans mass and the temperature, we present
a very simple model of a self-gravitating sphere of radius R made of an ideal gas which
experiences a contraction of its radius from R to R − dR. The work done by gas is given
by:

dW = pdV = ρkBT

mµ

4πR2dR (3.28)

where kB is the Boltzmann constant and mµ is the mean molecular weight of the gas. The
gravitational energy released during this contraction is written as:

dU = 3G

5
M2

R2 dR. (3.29)

The critical mass is reached when the work is equal to the gravitational energy. Replacing
R by (M/(4

3πρ))1/3 and after a bit of algebra one can write:

MJ =
(

375k3
B

4πG3m3
µ

)1/2 (
T 3

ρ

)1/2

. (3.30)

By comparing Eq. 3.30 with 3.27, we see that the sound speed is then proportional to the
square root of the temperature. We need to express the gas temperature as a function
of the gas density to obtain an expression for the Jeans mass which only depends on the
thermodynamic variable ρ. We assume that the collapse is, as a first approximation, an
adiabatic process and we can thus write:

PV γ = constant,

⇒ V ∝ P (1/γ) ⇒ P ∝ T
γ

γ−1 ,
(3.31)

where γ is the adiabatic exponent. If we consider a polytrope having an EOS given by
P ∝ ργ, with the same adiabatic exponent, we find the following relation:

T ∝ ργ−1, (3.32)
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and using Eq. 3.30, we can write that the final relation between the Jeans mass and the
density is given by:

MJ ∝ ρ
3
2(γ− 4

3) (3.33)

where we can see different regimes for the Jeans mass depending on the value of γ. When
γ < 4/3, the Jeans mass decreases with increasing density. In particular, γ = 1 corresponds
to Eq. 3.27 and 3.30 in the case of an isothermal sphere. When γ > 4/3 then we have a
regime for which the Jeans mass increases with increasing density. In the case of an ideal
monoatomic gas (γ = 5/3) the Jeans mass is proportional to the square root of the density.

The refinement strategy

To derive a law for the refinement scheme, we need to express the Jeans mass as a function
of the cell size. The Jeans mass can be written without loss of any generality as follows:

MJ,l = Kρα = K
(

MJ,l

Vl

)α

⇔ MJ,l = K

 MJ,l(
Lbox

2l

)3


α

⇔ MJ,l = K
(

Lbox

2l

) 3α
α−1

(3.34)

where K is just a coefficient related to the geometry of the cloud, Lbox the size of the box
we use in the simulations, and l the level of refinement. We will see in the next section that
the gas can be approximated by a polytrope of index γ = 1/2 (see, Fig. 3.10 from Renaud
et al., 2013a, only for the part where γ = 1/2), which corresponds to an index α = −5/4
and a Jeans mass given by:

MJ,l = K
(

Lbox

2l

)5/3
. (3.35)

In practice, to determine the Jeans mass of the cell at level l, we introduce the following
notation: l = lmin + levi, assuming a minimum level lmin for which every cell has reached
this minimum level of refinement. In the following, levi is simply the ith level from which
we start to apply the Jeans refinement strategy. We can then write:

MJ,i = K
(

Lbox

2lmin

)5/3 1
(2levi)5/3 = K

(
clmin

2levi

)5/3

, (3.36)

where clmin is the length of the cell corresponding to lmin. Introducing some arbitrary level
lev0, we can write:

MJ,0 = K

(
clmin

2lev0

)5/3

= K(cl0)5/3, (3.37)
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and dividing Eq. 3.36 by 3.37, we find:

MJ,i

MJ,0
=
(

clmin

cl0

)5/3 1
(2levi)5/3 . (3.38)

Now, we consider that we can write MJ,i ≡ msphn,i = msph,i mref,i, where msph,i is the mass
scale length for cells at level i, and mref,i is a number we set corresponding also to the
number of particles (stars and DM) inside a cell we use as a threshold for the refinement
to the next level. In the end, the expression for the jeans mass of the cell at level i is given
by:

msphn,i = msph,0 mref,0

(
clmin

cl0

)5/3 1
(2levi)5/3 . (3.39)

We have used a box scale length Lbox of 100 kpc with lmin = 7 for the majority of our set
of simulations (we have used a box length of 200 kpc for the most massive model and just
needed to shift the refinement levels). This corresponds to a minimum cell size clmin of
781.25 pc. The arbitrary level lev0 = 9 corresponds to a cell size cl0 of 195.3125 pc and a
Jeans mass msph,0 of 1.77 × 105 M⊙, with mref,0 = 8 particles. Fig. 3.9 shows the law of
Eq. 3.39 for an AMR grid going from the 7th to the 14th level of refinement for a box of
100 kpc. In this figure, the red dots correspond to the jeans mass threshold required to
refine the cell from the previous to the indicated level. In our simulations, we refine the
grid up to the 13th level, corresponding to a cell size of ∼ 12 pc.

3.3.2 Gas cooling, star formation, and stellar feedback
Energy equation and cooling function

The hydro-dynamical equations RAMSES needs to solve are coupled to an energy equa-
tion with a cooling term. This cooling term is a function of the gas temperature as shown
in Fig. 3.11 (from Agertz et al., 2013) for different values of the metallicity Z. In our
simulations, we have used the same value as for the Sun (Z = 1Z⊙ shown by the solid
black curve). The physical processes implemented in the cooling function include (see Rey
et al., 2020, for more details) photoionisation, collisional ionisation and excitation, recom-
bination, bremsstrahlung, Compton cooling and heating, and dielectronic recombination.
The contribution of metal lines to the total cooling is extracted from tabulated models
generated with CLOUDY (see Ferland et al., 1998). The heating is modelled from reion-
ization through a spatially uniform, time-dependent UV background. This implementation
is based on an updated version of Haardt & Madau (1996).

Star formation and stellar feedback

When one of the smallest cells of the AMR grid reaches a certain threshold of atom density
n⋆, the cell starts to create new stars following the law:

dρ⋆

dt
= ρg

tSF

for ρg ≥ mhn⋆, (3.40)
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Figure 3.9: Jeans mass (msphn) of the ℓth level of refinement going from the 7th to the 14th

for a box length of 100 kpc. We also show on the top x-axis the corresponding cell size.
The red dots are the Jeans mass threshold required to refine the grid from the previous to
the corresponding level.

with
tSF = tff

ϵff

, (3.41)

where ρ⋆ and ρg, tSF , tff , ϵff , and mh are the density of newly-formed stars, the gas density,
the typical gas depletion time, the free-fall time, the star-forming efficiency per free-fall
time, and the mass of the hydrogen atom. The value of the parameter n⋆ is determined
thanks to Eq. 3.39 by computing the density we would need to refine the last level of
refinement from the 13th (12 pc) to the 14th (6 pc) and use that Jeans mass as a threshold
for star formation. We find as a result a density corresponding to ∼ 100 cm−3, which
corresponds to a stellar mass density of ∼ 2.42 M⊙/pc3 and a free-fall time tff of ∼ 9.59
Myr. We chose a star-forming efficiency per free-fall time ϵff of 2%, corresponding to a
typical gas depletion time of ∼ 479 Myr. In our simulation, we set the stellar mass of the
newly-formed stars to 2000 M⊙.

The following numerical recipe for stellar feedback is described with more detail in
Agertz et al. (2021a). Once a new star forms, it is treated as a single-age stellar population
with an initial mass function (Chabrier, 2003). The code accounts for the injection of
energy, momentum, mass, and heavy elements over time from core-collapse SN and SNIa,



74 3. Methods and simulations

Figure 3.10: Equation of state (EOS) presented in Renaud et al. (2013a) and used in older
versions of RAMSES.

stellar winds, and radiation pressure on the surrounding gas. Each mechanism depends on
stellar age, mass, and gas/stellar metallicity (through the metallicity-dependent age–mass
relation (Raiteri et al., 1996), calibrated on the stellar evolution code STARBURST99 (see
Leitherer et al., 1999). More details on the specifics of how it is implemented are described
in (Agertz et al., 2013). To account for the effect of SN feedback, we adopt the model
suggested by Kim & Ostriker (2015). They demonstrated that to capture the momentum
injection from individual SNe, the cooling radius must be captured by at least three grid
cells to avoid numerical overcooling. In this thesis, we adopt six grid cells per cooling
radius as a minimum requirement for SNe to be considered as resolved. If this criterion is
fulfilled, we initialize the explosion in the ‘energy conserving’ phase by injecting 1051 erg
per SN into the nearest grid cell. When insufficient resolution is available, the explosion
is instead initialized in its ‘momentum conserving’ phase, with the momentum built up
during the Sedov–Taylor phase injected into cells surrounding the star particle.
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Figure 3.11: Cooling function used in Agertz et al. (2013) and implemented in RAMSES.
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This chapter and the following one are a slight rearrangement of the first
(Verwilghen et al., 2024) and the second (Verwilghen et al., submitted) pub-
lication. Those two papers are to be published in the A&A Journal and we
had to make minor modifications to make them fit and keep coherence with
the present thesis manuscript. Note that we provided an extended part of
the method section (from the present chapter) to build a more detailed and
coherent flow in the previous chapter of the thesis manuscript, leading to some
limited repetitions (text, figure).
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Abstract
Past studies have long emphasised the key role played by galactic stellar bars in the con-
text of disc secular evolution, via the redistribution of gas and stars, the triggering of star
formation, and the formation of prominent structures such as rings and central mass con-
centrations. However, the exact physical processes acting on those structures, as well as
the timescales associated with the building and consumption of central gas reservoirs are
still not well understood. We are building a suite of hydro-dynamical RAMSES simulations
of isolated, low-redshift galaxies that mimic the properties of the PHANGS sample. The
initial conditions of the models reproduce the observed stellar mass, disc scale length, or
gas fraction, and this paper presents a first subset of these models. Most of our simulated
galaxies develop a prominent bar structure, which itself triggers central gas fuelling and
the building of an over-density with a typical scale of 100-1000 pc. We confirm that if the
host galaxy features an ellipsoidal component, the formation of the bar and gas fuelling
are delayed. We show that most of our simulations follow a common time evolution, when
accounting for mass scaling and the bar formation time. In our simulations, the stellar
mass of 1010 M⊙ seems to mark a change in the phases describing the time evolution of
the bar and its impact on the interstellar medium. In massive discs (M⋆ ≥ 1010 M⊙),
we observe the formation of a central gas reservoir with star formation mostly occurring
within a restricted starburst region, leading to a gas depletion phase. Lower-mass systems
(M⋆ < 1010 M⊙) do not exhibit such a depletion phase, and show a more homogeneous
spread of star-forming regions along the bar structure, and do not appear to host inner
bar-driven discs or rings. Our results seem to be supported by observations, and we briefly
discuss how this new suite of simulations can help our understanding of the secular evolu-
tion of main sequence disc galaxies.
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4.1 Introduction
Bars and spiral arms both form naturally in galaxy disc-like systems (see Eskridge et al.,
2000; Buta et al., 2015; Sellwood & Masters, 2022, and references therein). They have
a significant impact on the internal disc structures, induce specific torques and resonant
regions, and impose, via the tumbling and varying gravitational potential, constraints
on the galactic orbital skeleton. Bars have been specifically and extensively studied and
modelled (Combes & Sanders, 1981; Kaufmann & Contopoulos, 1996; Athanassoula, 1992a;
Kormendy & Kennicutt, 2004; Barazza et al., 2008; Gadotti, 2008; Kraljic et al., 2012; Goz
et al., 2015; Fragkoudi et al., 2017) and have a direct influence on the short- and long-term
evolution of the system. We know that bars funnel the gas to the central regions (∼ 100 pc)
of galaxies, and have been suggested to play a role in the large-scale fuelling of the central
SMBH (SMBH; Fukuda et al., 1998; Shlosman et al., 1989; Ho et al., 1997).

Similarly to our own Milky Way, most nearby disc galaxies are also believed to host
central SMBHs, with masses between 106 - 109 M⊙, at their centres (Magorrian et al.,
1998; Reines & Volonteri, 2016). When gas builds into a surrounding accretion disc, those
SMBHs can drive nuclear activity (Krolik, 1999; Padovani et al., 2017), releasing a large
amount of energy in its environment in the form of mainly radiative (quasar mode) or
mechanical (radio mode) feedback (Sanders et al., 1988; Fabian, 2012). Such active galactic
nuclei (AGNs) may impact the dynamical evolution of their host galaxy, their chemical
composition, and even modulate the central gas accretion itself (see e.g. Combes, 2017,
and references therein).

The exact physical mechanisms and timelines associated with the fuelling of central
SMBHs are still heavily debated (see e.g. Hopkins & Quataert, 2010; Cheung et al.,
2015), both due to the range of spatial and timescales involved and to the complexity and
non-linear nature of the physical processes involved. The duty cycle of an accretion disc
more directly depends on small-scale physics and the close environment of the BH (10−6

to 10−2 pc), while the larger-scale kiloparsec dynamics and structures may influence its
long-term evolution. Two main avenues are generally called upon for the global transport
of gas in disc galaxies. An external channel or origin is when low angular momentum gas
is falling from, for example, the circum-galactic medium (CGM) towards the galaxy centre
(Lacey & Fall, 1985; Bilitewski & Schönrich, 2012). An internal channel is connected to the
secular evolution and processes, such as gravitational torques and stellar-driven feedback,
acting as a way to extract angular momentum from the gas (Porciani et al., 2002; Stewart
et al., 2013; Übler et al., 2014; Genel et al., 2015; Pezzulli & Fraternali, 2016; Schmidt
et al., 2016; Valentini et al., 2017). The required amount of gas to trigger the AGN is
relatively small compared with the total mass of gas available in the galaxy (Hickox et al.,
2012; Padovani, 2017). This means that only a very small fraction of the gas funnelled
within the central few hundreds of parsecs is needed to account for the nuclear black-hole-
related activity. Further considering the several orders of magnitude in spatial scale that
are spanned from the galactic bar (kiloparsecs) to an accreting BH (∼ 10−4 − 0.1 pc, see
e.g. Guo et al., 2023; Izumi et al., 2023, and references therein), it is not yet clear how the
bar relates to the processes that are most relevant to drive the duty cycle of AGNs.
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Progress may come from the realisation that many disc galaxies host a central over-
density of gas at a scale of a few hundreds of parsec from the centre (Comerón et al., 2010).
While such structures may not directly relate with the ongoing nuclear activity itself, they
can play the role of a ‘gas reservoir’ and represent an intermediate milestone that we
need to understand if we wish to draw a full picture of central gas accretion and its time
evolution. Those gas reservoirs are often interpreted in the context of bars as coinciding
with a change in the sign of the torques (Sanders, 1977; Wada, 1994), that is, the location
of the so-called inner Lindblad resonance (ILR). However, these models fail to reproduce
the results of hydro-dynamical simulations (Sormani et al., 2015), thus calling for a new
framework that can explain the full picture (see Sormani et al., 2023a)). In the Milky Way,
a ∼ 200 pc central molecular zone (CMZ) with a gas mass of ∼ 1 − 7 × 107 M⊙ has been
identified and extensively studied (Ferrière et al., 2007; Longmore et al., 2013; Henshaw
et al., 2023). In other galaxies, such gas reservoirs (or CMZs) have also been observed
and again, often interpreted in the context of the gas fuelling by bars, while details of its
building and life cycle (consumption via e.g. star formation) are not well constrained.

Some pioneering work was carried out by Athanassoula (1992b), who studied the re-
sponse of gas to an idealised two-dimensional barred potential and observed the building
of a central gas concentration within the central 1 kpc region. This study raised questions
about the building, consumption, and overall evolution of central gas reservoirs, as well as
their related physical phenomena, such as gravitational torques, shear, feedback, and the
exact role of bars and spiral arms in fuelling the central regions. Those questions further
triggered observational surveys and numerical works to study the fuelling rate and the
size of those gas reservoirs (Combes et al., 2004; García-Burillo et al., 2005; Boone et al.,
2007; Comerón et al., 2010; Sormani & Barnes, 2019; Sormani et al., 2023b). We still need
a systematic approach to investigate numerically and characterise the different scenarios
of the building and evolution of such gas reservoirs in a three-dimensional live potential
(including stars, gas, and dark matter) for a set of models tailored to nearby disc galaxies.

In this paper, we focus on the design, running, and exploitation of a suite of numerical
hydro-dynamical simulations of isolated disc galaxies to study the formation and evolution
of bars, and the associated building of the central gas reservoirs. We motivated such a grid
of simulations using the PHANGS1-ALMA galaxy sample as a guiding baseline, which
provides high-resolution, high-sensitivity, and short-spacing CO spectral cubes of nearby
disc galaxies and they are ideal for comparison with the models.

In Sect. 4.2 we introduce the grid of models. In Sect. 4.3 we provide details regarding
the code and numerical recipes we used to perform the simulations, and in Sect. 4.4 we
present the first results extracted from that grid of simulations. We conclude in Sect. 4.5
with a brief summary.

1Physics at High Angular resolution in Nearby GalaxieS: https://sites.google.com/view/phangs/home
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4.2 Methods

4.2.1 The PHANGS-ALMA sample
As a basis to build our simulation sample, we used the PHANGS-ALMA survey (Leroy
et al., 2021) which consists of 118 low inclination nearby main sequence star-forming disc
galaxies (in a distance range of ∼3-30 Mpc) with varying properties, including stellar mass,
gas fraction, surface density and rotation curve (Lang et al., 2020). Those input parameters
can be used to extract relevant control parameters to design a grid of initial conditions
for our simulations. The most directly relevant galactic properties to build such a grid of
simulations relate to the gravitational potential and associated baryonic mass distribution,
hence including the stellar mass, the gas fraction and the presence of a stellar bar or not
(Querejeta et al., 2021). The top panel of Fig. 4.1 shows the distribution of the stellar
masses in the PHANGS sample, emphasising the distribution of barred and non-barred
galaxies. The stellar masses range from ∼109.25 up to ∼1011 M⊙ and the vast majority
(∼75 %) of that sample shows the presence of a central bar (Stuber et al., 2023).

4.2.2 The control parameters
The main objective of our grid of hydro-dynamical models is to study the impact of galaxy
properties on the building and evolution of the central (few 100 pc) gas reservoirs. We thus
focus primarily on the properties of galaxies that we expect would more directly impact
the structure of bars and spiral arms (i.e. size, strength and pattern speed). Based on the
observed properties of the PHANGS sample, we focus on five galactic parameters for our
models, namely:

1. the stellar mass M∗;

2. the gas fraction α = Mg/(Mg + M⋆) where Mg = MHI + MH2 ;

3. the typical scale length of the stellar distribution l∗;

4. the typical scale length of the gas (HI and H2) distribution lg;

5. and the central bulge mass fraction β = Mb/M⋆.

In this work, only four of these parameters are used as control parameters since we set the
value of the gas scale length to 2 l∗. We decompose the stellar mass into a given disc and
central ellipsoid as M∗ = Md + Mb, with Md and Mb the mass of the stellar disc and the
stellar ellipsoid, respectively. In the following, we will label ‘bulge’ this central ellipsoid,
emphasising the fact that such a label is often misused to describe a central excess of
light above a given larger-scale disc (Gadotti et al., 2020), leading to confusion. In our
semantic usage, bulge refers to a structure that bulges out of the disc and must then be
both extended (with scales significantly larger than e.g. a nucleus, or the scale height of
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the disc) and puffed (e.g. axis ratio significantly above 0.2). Simple relations connect the
gas and stellar disc masses with the α and β parameters, namely:

Mg = α

1 − α
· M∗, Md = (1 − β) · M∗. (4.1)

We select four values for the stellar mass, namely log10M∗(M⊙) = 9.5, 10, 10.5, 11, to cover
the PHANGS range (see Fig. 4.1).

We further examine the trends of all the other four input parameters as a function
of the stellar mass. The right and bottom panels of Fig. 4.1 show the distribution of
the gas fraction among the PHANGS galaxies and its values as a function of the stellar
mass, respectively. The gas fraction tends to increase with decreasing stellar masses below
1010 M⊙. We assume exponential radial profiles both for the initial stellar and gas surface
density (Σd, Σg accordingly) profiles and fitted all azimuthally averaged observed PHANGS
profiles accordingly.

Σd,∗/g(r) = Σ0,∗/g exp
(

− r

l∗/g

)
, (4.2)

where l∗ and lg are respectively the stellar and gas scale length, and Σ0,b is the initial bulge
surface density. During the fitting of the stellar density profile, we allow the simultaneous
presence of a central component with a surface brightness profile described as an additional
Sersic profile (Sérsic, 1963):

Σb(r) = Σ0,b exp
−bn

( r

Re,b

)1/nb

− 1
 , (4.3)

where r is the bulge coordinate radius, Σ0,i is the initial surface density, Re,b is the scale
length, nb is the Sersic index, and bn is a coefficient depending on nb calibrated to reach the
half of the total luminosity at Re,b. Since we wish that the three-dimensional ellipsoidal
representation based on the one-dimensional Sersic function follows averaged properties of
galactic bulges (Sérsic, 1963), we forced an intrinsic ellipticity of 0.4 (axis ratio of 0.6, see
Moriondo et al. (1998); Sotnikova et al. (2012)), as opposed to the standard assumptions
of a spheroid (i.e. a spherical bulge). As mentioned, in the following, that component will
be referred to as the ‘central bulge’.

Fig. 4.2 shows an example of the stellar (top panel) and gas (bottom panel) surface
density fits for one specific PHANGS galaxy (NGC 5134). Fits to the observed surface
brightness profiles were not always satisfactory when the data could not be well represented
by a single exponential or a combined exponential plus Sersic components. We thus visually
classified our fits into three categories: [1] good fits, [0] reasonable fits (exhibiting radial
ranges with significant residuals), and [−1] failed fits when no good representation of the
data could be found using the above-mentioned functions (see Chap. 3, Fig. 3.2 for more
details). This classification is subjective and only meant as a guide for the values of
reference parameters when building up the grid of initial conditions: it does not have a
significant impact on the chosen grid of models we have selected. This analysis led us to
fix a set of values for l∗, lg, Re,b and nb for each galaxy in the PHANGS-ALMA sample:
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Figure 4.1: Gas fraction (α) as a function of the stellar mass of the galaxies in the PHANGS
sample and the corresponding histograms for the stellar mass (top panel) and gas fraction
(right panel) distribution (see Sect. 4.2.2).

those are shown in Fig. 4.3 where they are plotted as a function of the stellar mass. We
also show the values of the gas fraction α and those of the bulge mass fraction as derived
from the obtained scale lengths.

4.2.3 The grid of models
Our grid of models relies on a selected set of values for each of the four control parameters
(see previous Section). As a first approximation, this set provides a fair representation of
the global trends (e.g. with respect to the stellar mass) observed in the PHANGS sample.
We sometimes constrained the value of a given parameter to stay constant at all masses,
at the expense of missing the more relevant range of observed parameters2. This is true,
for instance, for the gas fractions (α) at the lowest stellar mass bin, where we chose to
only probe 0 and 10%, thus departing from the significantly larger observed values. It is
also the case for bulge mass fraction (β) for which we also kept low values (0 and 10%)
while many targets exhibit values up to 40% or higher. This latter choice was motivated
by the fact that we expect the central region to grow in mass during the secular evolution
of the system and that most of the measured bulge indices are on the low side, hence most

2Note that an extended grid of models, better covering those missed ranges, is planned (see Sect. 4.5).
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Figure 4.2: Illustrations of the fitted radial gas and stellar density profiles. The plots
show the original data points (in black, see Sun et al. (2022), mega-tables version 3), i.e.
the azimuthal-averaged surface density profiles for the stellar (top panel) and gas (bottom
panel) components of the galaxy NGC 5134. The corresponding fits are superimposed and
colour-coded accordingly (blue for the disc component, red for the total disc and ellipsoid
(or bulge) component).

possibly reflecting the presence of a central (flattened) disc (not a puffed-up spheroid). In
practice, those values have been used to build initial conditions for the hydro-dynamical
simulations: they are illustrated by purple stars in Fig. 4.3 as mentioned before and are
all tabulated in Table 4.1.

In the following, all models share a common labelling scheme, namely: each model
adopts a format as GxxxMxxxFxxLxBxx, where "G (stands for Galaxy)" is followed by an
integer (used as an internal reference), M by the log of the stellar mass multiplied by 10, F
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Figure 4.3: Results of the fit for different parameters of the models as a function of the
stellar mass. Top panels: gas fraction (left) and stellar scale length (right). Middle panels:
scale length ratio between the gas and stars (left) and scale length of the stellar bulge
(right). Bottom panels: bulge index (left) and bulge mass fraction (right). Colour circles
show the actual fits (see the text in Sec. 4.2.2 for details) to the PHANGS-ALMA sample,
while the selected values for our used initial conditions (IC(models)) are shown with purple
stars.
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Model log10(M⋆) α l⋆ lg/l⋆ β
[M⊙] [%] [kpc] [%]

G001M095F10L2B00 9.5 10 2 2 0
G002M095F10L2B10 9.5 10 2 2 10
G013M095F20L2B00 9.5 20 2 2 0
G014M095F20L2B10 9.5 20 2 2 10
G037M100F10L2B00 10 10 2 2 0
G038M100F10L2B10 10 10 2 2 10
G053M100F20L2B00 10 20 2 2 0
G054M100F20L2B10 10 20 2 2 10
G105M105F10L3B00 10.5 10 3 2 0
G106M105F10L3B10 10.5 10 3 2 10
G137M105F20L3B00 10.5 20 3 2 0
G138M105F20L3B10 10.5 20 3 2 10
G161M110F10L5B00 11 10 5 2 0
G162M110F10L5B10 11 10 5 2 10
G177M110F20L5B00 11 20 5 2 0
G178M110F20L5B10 11 20 5 2 10

Table 4.1: Grid containing the parameters for the initial conditions of the models of this
paper. From left to right columns: label, total stellar mass, mass gas fraction, stellar scale
length, scale length ratio (gas over stars) and bulge mass fraction.

by the gas fraction, L by the typical scale length of stars, and B by the bulge mass fraction.
This represents a set of 16 high-priority models, spanning typical PHANGS parameters,
and tractable in terms of computing time. This paper focuses on this preliminary first
subset of 16 initial conditions, with suitable values of control parameters for the comparison
between all the stellar mass bins (see Table 4.1) that already covers a good range of
properties for this sample. An extended grid of 54 models is planned but requires a
significantly larger investment in computational time, and its analysis will be presented in
a future paper.

4.3 Numerical simulations

4.3.1 Initial conditions
Initial conditions for the RAMSES adaptive mesh refinement (AMR) code (Teyssier, 2002b)
require information both for the particles (stars, dark matter, a central SMBH), and gas
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content. The grid of values gathered in Table 4.1 is used for the description of the dis-
tribution of each individual component. We use the Python library ‘pymge’ based on
the Multi-Gaussian Expansion (Emsellem et al., 1994a,b, MGE) method to fit the as-
sociated two-dimensional distributions (e.g. exponential discs) and deproject them into
three-dimensional density distributions. The vertical axis ratios of the ellipsoid resulting
from that 3D deprojection are set to q = 0.6, 0.1, 0.05, respectively for the bulge, stellar disc
and gas disc. The dark matter is constrained by the averaged rotation curves observed via
the PHANGS sample and generated using an Einasto spherical mass distribution (Einasto,
1965; Ludlow & Angulo, 2017) as given by:

ρh(r) = ρh,0 exp
(

−2m

[(
r

lh

)1/m

− 1
])

, (4.4)

where ρh is the 3D density profile of the dark matter halo, r is the spherical radius, lh
is the scale length and m is the halo index. The values we chose for the parameters of
Eq. 4.4 are summarised in Table 4.2. Once those three-dimensional profiles are fixed for
all the components, we fix the number of particles and derive their initial positions and
velocities by solving the Jeans equations. We assume a local anisotropy constrained by the
flattening of the individual components, with δ = 1 − σ2

z/σ2
R = 0.6 × (1 − q) where σR, z is

the radial and vertical stellar velocity dispersion in cylindrical coordinates (Binney et al.,
2009). The more flattened the component is, the larger its (initial) velocity anisotropy. We
use a constant mass resolution of 104 M⊙ for all stars present in the initial conditions (‘old’
stellar particles). This leads to an increasing number of stellar particles, that is, about
3×105, 106, 3×106 and 107, for the corresponding four stellar masses 9.5, 10, 10.5 and 11
(in log10[M⊙]), respectively. The number of particles for the dark matter component was
fixed to 106 for all models.

Fig. 4.4 shows a comparison between the PHANGS rotation curves (shaded areas,
encompassing individual velocity profiles for a given stellar mass bin, Lang et al. 2020) and
our 16 models (solid curves) for the different mass ranges. Our models are, by design, in
good agreement with the PHANGS galaxies, reproducing the global trend of real galaxies.
We note that the limited extent in the observed rotation curves for the lower mass bins is
expected considering the smaller size and shorter radial extent of the (mostly CO and HI)
tracers (Leroy et al., 2019). We also emphasise that those circular velocity curves represent
the initial state of our hydro-dynamical simulations, and are thus meant to evolve with
time (i.e. see the black curves). It is worth mentioning that the PHANGS rotation curves
are the observed gas velocity profiles. Converting such velocity profiles to actual circular
velocities, as measured in our simulations, would require detailed modelling, including,
for example, the effect of asymmetric drift and non-circular motions. Considering the
relatively low velocity dispersion of the molecular gas, we do not expect the impact of
asymmetric drift to be significant. Non-circular motions may, however, dominate in the
central region. This motivated us to use those PHANGS observed rotation curves only as
guidelines to build our mass models.
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M⋆ ρh,0 lh,0 m MBH

log10([M⊙]) [M⊙/pc3] [kpc] log10([M⊙])
9.5 3 × 10−4 20 3 5.5
10 6 × 10−4 25 3.5 6

10.5 7 × 10−4 30 1.5 6.5
11 8.5 × 10−4 35 2 7

Table 4.2: Grid of values for the parameters describing the dark matter profiles (i.e. ρh,0,
the halo density; lh,0, the typical halo scale length; and m, the halo index) as a function of
the stellar mass M⋆. Those values have been inspired by the work of Kun et al. (2017), but
their final values have been chosen to match the PHANGS rotation curves. The central
BH masses MBH we use in the initial conditions are also shown in the last column.

4.3.2 Refinement strategy
All simulations in the three lower stellar mass bins (resp. higher mass bin) are run within a
100 kpc (resp. 200 kpc) cubic box. A refinement level l thus corresponds to a 100/2l (resp.
100/2l) kpc cubic cell. We imposed a minimal refinement level of 7 (resp 8; ∼ 780 pc) and
a maximal one of 13 (resp. 14; ∼ 12 pc). The refinement strategy we adopt for the gas is
based on a Jeans polytropic approximation (see Renaud et al., 2013b) allowing us to set
a realistic threshold for the amount of gas contained inside a cell. The maximum mass of
gas contained inside a cell at the second last level (l=12 or 13, 24 pc) before the triggering
of the refinement to the last level (l=13 or 14, 12 pc) is around 14000 M⊙. An additional
refinement criterion is constrained by the minimum number of particles per cell (stars and
dark matter) that is set to 8.

4.3.3 Numerical recipes
A number of standard physical processes were implemented including gas cooling, star
formation, stellar feedback and the evolution of metals such as iron and oxygen (see Agertz
et al. 2013 for more detailed information). The physics of the heating follows a uniform UV
background model proposed by Haardt & Madau (1996) and calibrated for redshift z = 0.
The physics of the cooling is implemented and divided into two different regimes. The first
regime goes down two 104 K and uses collisional de-excitation and atomic recombinations.
The second regime, below 104 K, follows the table of Sutherland & Dopita (1993). The
formation of new stars is triggered above a gas density threshold via a constant efficiency,
as given by the following equation:

ρ̇∗ = ρg

tSF

for ρg ≥ mhn∗, (4.5)

where ρ̇∗ is the star-formation rate (SFR), ρg is the gas density, mh is the mass of the
hydrogen atom and tSF is the typical gas depletion time (∼ 2 Gyr). The latter is given by:

tSF = tff/ϵff , (4.6)
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Figure 4.4: Comparison between the observed gas velocity curves of the PHANGS sample
(shaded areas) and the circular velocity profiles from our models (solid curves). The vertical
lines near R=0 illustrate the contribution of the central SMBH. The dotted curves represent
the circular velocities extracted from the first snapshot (INI_SIM) of each simulation and
are consistent with the analytic derivation associated with the initial conditions. The
dashed curves represent the circular velocities at τ = 2 (see Sect. 4.4.3, which corresponds
to twice the bar formation time of our simulated galaxies). As mentioned in the text, the
PHANGS rotation curves are meant as guidelines to build the initial mass models.

with tff the local free fall time and ϵff the star formation efficiency per free-fall time.
We set the efficiency to 2%, and n∗ to 100 cm−3, a posteriori checking that our systems
follow the trend observed in the PHANGS galaxies (see Fig. 4.5). Stellar feedback, which
releases energy, momentum and metals in the surrounding ISM, is implemented by taking
into account the contribution from supernovae (SN) SNIa, SNII and stellar winds. The
energy released by the supernova depends on the local cooling radius (see Kim & Ostriker,
2015) Finally, we also adopt solar metallicity as initial condition (Z = 1 Z⊙), which does
not have a significant impact on the gas processes (star formation, feedback).
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4.4 Results
In this section, we first describe some general properties of the evolved systems and then
illustrate the global time evolution and bar formation. We briefly discuss the bar formation
times in the light of past results, and consider the time evolution in terms of specific
successive phases. We finally hint at a significant difference in the phases of the building of
a central gas concentration impacting the way star formation proceeds in the lowest mass
bin of our sample.

4.4.1 General properties and time evolution
The star-forming main sequence

We want our simulated galaxies to be representative of the star-forming main sequence
of nearby disc galaxies, hence located on the Kennicutt-Schmidt relation (Schmidt, 1959;
Kennicutt, 2007). Our choices for the initial properties (e.g. distribution of baryons,
gas fractions, etc.) and sub-grid recipes (e.g. star formation efficiency, see Sect. 4.3.2)
do not guarantee such a result, because star formation may partly regulate itself in such
numerical experiments (Ostriker & Kim, 2022). We thus computed the global SFR for all
16 simulations and compared its characteristics and trends with the instantaneous SFR of
the PHANGS-ALMA sample as shown in Fig. 4.5. We computed the SFR by taking the
time average of the SFR, only including times between τ = 1 and τ = 2 (see Sect. 4.4.3,
which corresponds to the starburst phase of our simulated galaxies), thus focusing on the
active star formation regime.

In Fig. 4.5, we confirm that our simulations are almost all following the PHANGS
main sequence, except for galaxies with the lowest stellar mass bin (i.e. 9.5 in log10(M⊙)):
those have SFR lower than the observed values in this sample. This is expected since we
intentionally chose to run this first subset of simulations with only two values of the gas
mass fraction, those being significant underestimating the observed gas fractions (∼30-
40%) for that stellar mass bin, as shown in Fig. 4.3. Higher gas fractions (thicker squares)
naturally lead to a higher SFR, and models with a bulge (hatched squares) tend to have
lower resulting SFR as expected if the self-gravity of the disc is lowered. The impact of the
bulge reaches its maximum for the bulged model with the highest stellar mass, and a gas
fraction of 10%. We describe in more detail the characteristics of this model in the next
sections.

Building of the bar

Figure. 4.6 illustrates the global evolution of one galaxy over time by showing the maps of
gas, new and old stars. We start with an axisymmetric distribution of gas and stars, which
rapidly develops low-contrast spiral arm structures. Gas follows up by cooling and forming
new stars (top left panel). After a few hundred Myr we start to observe the formation of a
bar and spiral arms in the old and new stars (top right panel). Once the bar has formed,
the gas concentration in the central region starts to increase, leading to the build-up of an
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Figure 4.5: Comparison of the SFR stemming from the PHANGS data sample (grey
crosses) and the SFR computed from the simulated galaxies (coloured squared). The
colour of the squares corresponds to the different stellar masses. The red dashed line
represents the star formation main sequence at z = 0 from Leroy et al. (2019).

early gas reservoir (bottom left panel). This could be induced by the emergence of an inner
Lindblad resonance (ILR: Lin et al., 2008; Sormani et al., 2023a). Finally, we observe the
building and growth of a central gas reservoir (bottom right panel).

This scenario is similar for most of the 16 simulated galaxies and the evolution over
time of the 16 simulations is shown in the Appendix A.1 where the different times are
chosen to emphasise the evolution of the building of the gas reservoir within the central
1 kpc region (see Sect. 4.4.1).

One of the main features developed by almost all our simulations is a stellar bar
(except for models G162M110F10L5B10 and G178M110F20L5B10). We present model
G053M100F20L2B00 in Fig. 4.6 to illustrate the growth of the bar witnessed in our simu-
lations (see third row). To more quantitatively characterise the evolution of the bar over
time, we estimated the amplitude of the bar via a polar (R, θ) Fourier decomposition of
the face-on surface stellar mass density, and specifically used the traditional A2 Fourier
coefficient (Efstathiou et al., 1982b; Athanassoula & Misiriotis, 2002; Athanassoula et al.,
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Figure 4.6: Evolution over time (in millions of years) of the gas and stars of the model
labelled G053M100F20L2B00 (one of the sixteen simulations presented in this paper). The
two big panels illustrate four main stages, chronologically ordered from top left (0-400 Myr),
to top right (500-900 Myr), bottom left (1000-1800 Myr) and bottom right (2000-2800
Myr). Top left: first spiral structures, cooling of the gas, onset of star formation, initial
bar structure emerging. Top right: bar strengthening and active local star formation.
Bottom left: building of a central concentration of gas (and new stars). Bottom right:
growth of the gas reservoir. In each big panel, from top to bottom, we present maps for
the gas mass density (GAS), the mass of young stars (⩽ 50 Myr, NS), of old stars (OS)
and finally the cumulative mass of new stars (formed since the beginning of the simulation,
CNS). Each panel shows a 10 × 10 kpc2 region and the colour scaling is adapted for each
panel.
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2013) given by

A2 =

√
a2

2 + b2
2

a0
, an =

N∑
i=1

mi cos(nθi), bn =
N∑

i=1
mi sin(nθi), (4.7)

where mi is the mass of the i-th star and θi its corresponding position angle. The full
radial A2(R) profile is then used, for example, to track its maximum over time, giving us
a quantitative assessment of the evolution of the bar strength, as shown in Fig. 4.7 for the
model labelled G053M100F20L2B00. In that Figure, we see that the bar grows rapidly
during the first 500-600 Myr, roughly following an exponential behaviour (Binney, 2020;
Bland-Hawthorn et al., 2023). Then, it reaches a first maximum after ∼ 750 Myr and
a second after ∼ 1000 Myr. This characteristic shape of A2 was already reproduced by
Athanassoula (2002). At later times, A2 exhibits some oscillations until the end of the
simulation. These modulations coincide with the relative cycling (and alignment) between
the bar and the outer spiral arms which have different pattern speeds (Hilmi et al., 2020).

Figure 4.7: Evolution of the bar strength (measured through the A2 Fourier coefficient)
for the model G053.

We emphasise that the resulting A2 values should depend on the tracer to compute it,
for instance, using particle masses, accounting only for old or newly formed stars, or using
luminosity-weighted quantities as is naturally the case for observations. It may also be
influenced by the presence of dust and by additional processing stages (e.g. deprojection
of observed photometry). Still, the A2 values found in our simulations are in the range
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[0.2 − 0.5], consistent with the ones observed by Díaz-García et al. (2016) for star-forming
late-type galaxies, and also consistent with the majority of barred galaxies in the PHANGS
sample. Stuber et al. (2023) reports significantly larger values (A2 > 0.4), but those are
representative of the high tail of the bar strength distribution. The fact that we do not
reproduce this tail of high A2 values may naturally arise from the early bar phase that
we are probing with our simulations (i.e. up to about 3 Gyr). Some of the strong bars
observed in the PHANGS sample could be at a later evolutionary stage for which the bar
has experienced a second (secular) growth (see Athanassoula, 2013).

The central 1 kpc

In the PHANGS-ALMA galaxy sample, we observe inner molecular rings with typical sizes
ranging from ∼ 100 pc to ∼ 1 kpc (Leroy et al., 2021). Our simulations suggest their
size and mass evolve with time. We thus monitored the evolution of the central gas mass
concentration and star formation within the central 1 kpc, and their relation with the bar
using our 16 simulations. In the rest of this section, we refer to the (central 1 kpc) ‘gas
reservoir’ to describe the mass of gas inside the central 1 kpc region.

In Fig. 4.8, the left (resp. right) column presents time evolution profiles for models with
the lower (9.5 and 10 in log10(M⊙)) (resp. higher, 10.5 and 11 in log10(M⊙)) stellar masses.
The middle panels show the evolution of the total gas mass contained inside a cylindrical
radius of 1 kpc and a thickness of 1 kpc. The initial gas mass within 1 kpc correlates
with the initial stellar mass and gas fraction as expected. After a generic plateau lasting
about 300 Myr, the gas concentration increases steadily. This increase of the gas mass
inside the central 1 kpc region is coincident with an increase of the SFR: those roughly
correspond to tbar, the time at which the A2 coefficient reaches the value of ∼ 0.2, whatever
the stellar mass, gas fraction or the presence of a bulge. Since bulges tend to increase tbar

(see Sections 4.4.1 and 4.4.2), models with bulges also show a corresponding delay in the
start of the increase of the gas mass.

G162M110F10L5B10 seems to be a peculiar case among the two models that do not
form a bar: A2 never reaches a value of 0.2. Gas is consequently not funnelled towards
the centre as for other models, and there are no star formation bursts with SFR staying
around 10−3 M⊙/yr. In that simulation, the bulge has a stabilising effect, enough in this
specific case to prevent any bar to form for the duration of our simulation. This is a
well-known result, and has been already studied and recently emphasised in various papers
(see e.g. Sellwood & Evans, 2001; Saha & Naab, 2013; Kataria & Das, 2018; Fujii et al.,
2019). In that context, the bar in G162M110F10L5B10 possibly has a formation time tbar

significantly larger than a Hubble time (see also Bland-Hawthorn et al., 2023).

4.4.2 Typical bar formation time
Using simulation G053M100F20L2B00 as an example, we witness the onset of bar formation
as early as t = 300 Myr (Fig. 4.6). However, the bar seems to more robustly emerge
between t=400 and t=500 Myr and this corresponds with the time when A2 reaches a
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Figure 4.8: Evolution of the maximum of the A2 coefficient (top panels), the mass of gas
within 1 kpc (middle panels), and the SFR (bottom panels) over time for the 16 simulations
(evolved until max 3 Gyr). The colour gradient represents the four stellar masses (9.5, 10,
10.5 and 11 [log(M⊙)]) from the lightest to the most massive. The left column represents
the less massive galaxies (9.5 and 10, in green and cyan, respectively) and the right column
shows the most massive ones (10.5 and 11, in blue and dark blue, respectively). The solid
and dashed curves illustrate the models without and with a bulge, respectively and the
thickness of the lines accounts for the gas fraction (10 and 20% for the thinnest and thickest,
respectively). The typical bar formation time tbar is also shown (red diamonds) within a
time interval of 200 Myr (red part of the curves).
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Figure 4.9: Typical bar formation time tbar as a function of the stellar mass for all 16
simulations. The colour of the squares corresponds to the different stellar masses. The size
of each square represents 200 Myr (i.e. ±100 Myr), hence illustrating the uncertainty in
tbar (see Sect. 4.4.2).

value of ∼ 0.2. This is also true for the other simulations in our sample. In the following,
we therefore use tbar, the time corresponding to A2= 0.2, as the reference time for the
bar formation (see Sect. 4.4.1). Such a reference measurement is commonly used in the
literature (Athanassoula & Misiriotis, 2002; Fujii et al., 2018).

All simulations, except two (models G162M110F10L5B10 and G178M110F20L5B10)
form bars. The values for tbar are shown for the 14 simulations forming a bar in Fig. 4.9.
To further probe the stability of our models against bar formation, we have applied the
criterion established by Efstathiou et al. (1982a) for all 16 models. We indeed find that
only the two above-mentioned models do overshoot the threshold for stability. While this
is an interesting result, suggesting that we should indeed not expect the formation of a bar
in models G162M110F10L5B10 and G178M110F20L5B10, we caution the reader regarding
the use of that stability criterion as a robust quantitative diagnostic. As pointed out by
Athanassoula (2008), this criterion does not take into account the interaction between the
disc and the halo, nor the velocity dispersion, which plays a major role in disc stability.
They also suggested that this parameter is not designed for the stability analysis of multi-
component discs. This has also been shown in a recent work carried out by Romeo et al.
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Figure 4.10: Typical bar formation time tbar as a function of fdisc as defined in Bland-
Hawthorn et al. (2023). The dashed lines show the relation given by (Fujii et al., 2019).
fdisc is derived using the sole stellar disc (right panel) or the total baryonic content (i.e.
stars and gas; left panel). In the right panel, fdisc (stars only) decreases when the gas
fraction increases as expected (the relative contribution of the stellar disc gets smaller),
while in the left panel, fdisc (total) increases with the gas fraction (as the total baryonic
contribution increases). As in Figure 4.9, the size of each square represents 200 Myr (i.e.
±100 Myr), hence illustrating the uncertainty in tbar (see Sect. 4.4.2).

(2023), whose conclusion is that this parameter fails at separating barred and non-barred
galaxies in 55 per cent of the cases.

We further emphasise the fact that tbar should be considered a relative indicator that
exhibits significant systematics. We have conducted a series of tests using the simulation
G037M100F10L2B00 as a reference, varying the initial number of particles and the maxi-
mum level of refinement, and even shutting off the gas cooling and star formation recipes.
As long as we keep the gas disc live within the simulation, we do not witness a signifi-
cant change in the evolution of the A2 profile and thus in tbar. When the number of disc
particles is changed (from 0.5 to 1, 2, 5 or 10 million), the time increase (i.e. increasing
rate) of A2 looks similar. However, the starting time of that initial increase, tracing the
growth of m = 2 modes typically varies from one simulation to the next by ±75 Myr. That
timing offset does not seem to depend monotonically on the number of particles, as it is,
for instance, slightly lower for 2 and 10 million disc particles, and thus higher for 1 and 5
million disc particles. We interpret it as partly due to the contribution of the spiral modes
that may interfere with the bar mode, as well as variations in the initial relaxation phase.
While it is beyond the scope of this study to further probe such a dependence, it does show
that a significant systematic uncertainty should be included when discussing tbar measured
in such a way. In the rest of the paper, we added a (conservative) systematic uncertainty
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of ±100 Myr on our tbar measurements and checked that it did not impact our results.
The most obvious trend associated with tbar is connected with the impact of the initial

ellipsoid (or bulge). When an ellipsoid or bulge (hatched squares in the figure) is added to
the model, a delay of a few 100’s of Myr in the bar formation is induced, leading to a delay
in the building and fuelling of the central 1 kpc (see also Sect. 4.4.1). Note that the induced
time delay is significant, and much larger than the above-mentioned systematic uncertainty
in tbar. For models without bulges (empty squares), a larger gas fraction (thick squares)
tends to decrease tbar confirming early results by Athanassoula et al. (2013) who found a
similar outcome for systems with up to 50% of gas. For more gas-rich systems (e.g. gas
fractions equal or larger than 75%) Athanassoula et al. (2013) witnessed an inverse trend
considering the initial growth of the bar. They also find that such trends significantly
depend on the halo triaxiality (see their Fig. 7), something we do not test with our present
simulations. We note that the delay in the early bar growth due to higher gas fractions in
our simulations does not simply hold for our bulged models, suggesting, together with the
above-mentioned results from Athanassoula et al. (2013) that a more relevant parameter
may drive the initial bar growth.

Fujii et al. (2018) recently suggested to use of fdisc, the ratio between the disc mass and
the total galaxy mass within 2.2 Rdisc as a relevant driving parameter for the bar growth
timescale. This parameter fdisc is admittedly one way to quantify the importance of the
stellar disc within the global potential (baryonic + dark matter) that may be connected
with the onset of bar instabilities. Fujii et al. (2018) used a series of pure N-body simu-
lations of systems with stellar masses of a few 1010 M⊙, with varying bulge to disc ratios,
using 500 million particles (8 million for the baryonic disc) and 10 pc softening length to
study timescales associated with bar and spiral growth (see also Valencia-Enríquez et al.,
2017). They suggested a relation between fdisc and tbar. Bland-Hawthorn et al. (2023)
reviewed the Fujii et al. (2018) results by running simulations both using dry runs (stars
and dark matter particles only) and a few wet runs (including gas but excluding cooling
and star formation) using the AMR code RAMSES, with spatial sampling of 6 and 12 pc:
they mostly confirmed the existence of a relation between fdisc and tbar, the ’Fujii relation’,
albeit with a large scatter for fdisc larger than 0.5 (their Fig. 4). Bland-Hawthorn et al.
(2023) further suggested that the addition of gas tends to decrease the value of tbar, as also
witnessed in our bulgeless simulations (but not in our bulged models; and see Athanassoula
et al., 2013).

We take the opportunity of our sample of simulations to test further the validity range
of the ’Fujii relation’. Our simulations have similar resolution and particle numbers, and
use a very similar code than Bland-Hawthorn et al. (2023) but include cooling and star
formation. As compared to the original Fujii et al. (2018) simulations that are pure N-body
via a tree-code (Barnes & Hut, 1986b), our simulations have 8 times fewer particles in the
disc (and a mass resolution for the dark matter halo about 100 times larger) and again
include gas and star formation. Figure. 4.10 specifically illustrates the trend of tbar as a
function of fdisc for our set of simulations, emphasising the fact that we are so far only
probing values of fdisc larger than 0.5 by design.

The left (resp., right) panel shows the Fujii et al. (2018) relation for fdisc (dashed lines)
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computed with the star and gas (resp. only star) component. The inclusion of the gas as
part of the disc potential (left panel) increases fdisc only slightly, as expected: for galaxies
without a bulge, increasing the gas fraction also systematically decreases tbar: that can
be understood in terms of the destabilising effect of the additional disc of gas. For the
more massive simulations with bulges, the trend seems the opposite, illustrating that the
addition of an ellipsoid dominates the budget for tbar. Finally, the simulation at the lowest
stellar mass bin and with a bulge shows a smaller tbar when the gas fraction is increased.

At fixed fdisc, our sample of simulations seems to overall lie a factor of two below the Fujii
et al. (2019) relation, with differences of about 500 Myr or more, well beyond the expected
uncertainty associated with the measured tbar values. As emphasised, one difference with
the results from Fujii et al. (2019) is that our simulations contain gas. While, as mentioned
above, the bar formation time may depend on the gas fraction, this discrepancy does not
change significantly if we include the gas component in the value of fdisc. Another significant
difference between our simulations and those by Fujii et al. (2019) is that the latter used
pure N-body simulations with a large number of particles (with a softening length of about
10 pc). Still, we are in a regime where we should have enough mass resolution, at least
for the 3 larger mass bins (leading to a minimum of 2 million particles), and we do not
detect a trend in stellar mass in the context of the tbar discrepancy with Fujii et al. (2019).
Even considering the added systematic error of ±100 Myr (see the beginning of the present
Section), we do not retrieve the Fujii et al. (2018) relation. We also need to emphasise the
fact that simulations performed by Bland-Hawthorn et al. (2023) use a similar setup as
ours (and the same AMR code, RAMSES), and do not see such a discrepancy with Fujii
et al. (2019, their Fig. 4).

More fundamentally, other differences could be at the root of this discrepancy, including
more concentrated discs and dark matter distributions in Bland-Hawthorn et al. (2023),
different initial velocity distributions (anisotropies), or the lack of cooling, star formation
and feedback in the latter experiments. As emphasised by Athanassoula et al. (2013),
other parameters, including the shape of the halo and the initial dynamical set up for the
disc, can strongly influence the growth of unstable modes, including the bar and spirals.

Our results confirm and extend previous studies showing that tbar seems to depend on
many details in the initial conditions, including the steepness of the inner potential (e.g,
via the index of the Sersic bulge), the overall contribution of the disc components (w.r.t.
other baryonic and non-baryonic components; see also Athanassoula, 2013). This may
naively suggest that tbar is not fully described by a single parameter such as fdisc. However,
we cannot yet conclude, as we would need to probe a more extended set of simulations,
including, for example, models with varying properties (e.g. anisotropies) at fixed fdisc, and
models with value of fdisc below 0.5 to detect the exponential increase of tbar (and where
values of tbar are significantly larger than about 2 Gyr).

4.4.3 Evolutionary phases of isolated barred discs
Since the characteristic bar formation time seems to play a major role in the formation
of the central gas reservoir, we have normalised the time by tbar and have introduced the
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dimensionless parameter τ = t/tbar. We have also normalised the gas mass by the initial
amount of gas contained within 1 kpc as shown in Fig. 4.11. In this figure, we can see
that the bars and SFRs share a similar time evolution with a slight trend of increasing
amplitude as a function of the stellar mass, for all simulations with initial stellar masses
equal or above 1010 M⊙ (see Sect. 4.4.5 for a discussion on simulations in the lower stellar
mass bin). These similarities between barred systems confirm the relevance of the choice
of τ allowing us to naturally account for the delay caused by the presence of a bulge.

Except for the models G162M110F10L5B10 and G178M110F20L5B10, the normalised
gas mass always peaks with τ between 1 and 1.5. This peak also roughly coincides with
the maximum of the bar strengths and the SFRs. Those are associated with a central
starburst leading to an increase in the number of new stars and a decrease in the gas mass
inside the central 1 kpc. For simulations with M⋆ ≥ 1010 M⊙, we can roughly decompose
the time evolution of the gas mass inside 1 kpc in three main phases referenced by the bar
formation timescale tbar:

1. From τ = 0 to ∼ 1, the bar forms and the gas mass inside the central 1 kpc region
is nearly constant or increase weakly. The star formation rate slowly increases with
time (by about 1 order of magnitude in 500 Myr).

2. From τ = 1 to ∼ 1.5, the bar is strong (by definition, A2 > 0.2) and significantly
influences the redistribution of gas. Gas is being funneled towards the centre, leading
to a more rapid increase of the gas mass, that triggers a starburst inside that region.
The star formation evolution then reaches a plateau.

3. From τ = 1.5 to ∼2, the bar keeps its high amplitude, and a steeper decrease in the
amount of gas in the central 1 kpc region is associated with a slow decline in star
formation rate. This gas depletion phase marks the emergence of a small gaseous
and stellar central mass overdensity, a discy structure that is fuelled by the bar.
Follow-up star formation tends to predominantly occur within this inner disc region
building up further beyond τ = 2.

The fact that those phases are similar for all barred models having an initial stellar mass
bigger or equal to 1010 M⊙suggests that the fuelling and the consumption of gas inside the
central 1 kpc region is driven by the same physical phenomena and evolution, and only
depends weakly on the initial gas fraction and the presence or absence of a central ellipsoid
(within the range of parameters probed by our simulations). While there are clear local
differences between simulations, it is still an interesting and relevant result as it sets the
stage of the evolution of barred systems which could serve as an "isolated case" reference
for further studies. Note that we are not here discussing the evolution beyond 3 Gyr, which
could, for instance, lead to a secondary growth of the stellar bar, and to the emergence of
large bars (see e.g. Schinnerer et al., 2023; Bland-Hawthorn et al., 2023).
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4.4.4 Gas structure in the central 1 kpc
In Sect. 4.4.1, we briefly discussed the property and global evolution in the central kpc.
In Fig. 4.12, we now present the gas distributions and reservoir by providing a gas density
map for all 16 simulations at τ = 2, in order to illustrate the emergence of distinct inner
gas structures. In that figure, the four lines correspond to the four different stellar mass
bins (colour-coded labels), the models having a lower (resp. higher) gas fraction (α) being
in the two left (resp. right) columns. The models without bulges (β = 0) are given by the
first and third columns, whereas the models with bulges (here β = 10) are given by the
second and the fourth columns.

We observe a distinct central concentration of gas for almost all barred models having a
stellar mass larger than 109.5 M⊙. For these stellar mass ranges, only model G162M110F10L5B10
does not show any bar structure and central gas concentration. We see that models with a
bulge have a more extended gas reservoir. While the bulge delays the bar formation, once
the bar is formed, the bulge does not prevent the formation of a gas reservoir and actually
allows the emergence of a prominent inner structure. We discuss the detailed properties
and growth of those structures in a subsequent paper, but we can already suggest here
that the extent of such an inner disc (or rings, see Fig. 4.12) closely follows the change of
the inner mass concentration.

4.4.5 The conditional onset of inner stellar discs
As illustrated in Fig. 4.8, we do not witness strong differences between simulations above
and below the 1010 M⊙ values in terms of the amplitude of the bar (A2) or the global SFR.
The main difference between those two sub-samples shows up in the evolution of the gas in
the central 1 kpc. The decrease of the central gas mass leading to a long-term gas depletion
mentioned as Phase 3 in the previous Section is observed for all galaxies with an initial mass
of 1010 M⊙ and above. For the less massive galaxies (i.e. models G001M095F10L2B00,
G002M095F10L2B10, G013M095F20L2B00 and G014M095F20L2B10, having an initial
stellar mass of 109.5 M⊙), the gas mass stays roughly constant or even increases during that
phase. This means that the channelling of gas towards the central region (and subsequent
star formation) is still occurring but seems to proceed in a different manner.

To understand this better, we turn to the spatial distribution of star formation (and
new stars). Fig. A.1 in the Appendix shows (second row in each panel) that for the lowest
stellar mass models, star formation occurs mainly along and inside the bar until the end
of the simulation without showing the emergence of a central gas reservoir. For the higher
stellar mass models (Fig. A.2, A.3 and A.4), star formation occurs also along and inside
the bar until τ = 1.5 − 2, when we start to see the emergence of a central gas overdensity.
Subsequent star formation is mainly distributed inside this central gas reservoir. This
result also connects with the fact that distinct inner streaming lanes, as well as disc or
ring structures form and grow for the more massive end systems, while the lower mass
systems exhibit more heterogeneous gas distribution within the bar region. This is quite
an intriguing result as it means that star formation is either prevented or triggered in
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significantly different regions for the lowest mass simulation bin.
This trend has been reported by Fraser-McKelvie et al. (2020) using emission-line map-

ping via integral-field spectroscopic observations for a large sample of nearby galaxies (but
see also Díaz-García et al., 2020). The stellar mass value of 1010 M⊙ at which this occurs
also coincides with the one in our simulation set. It is worth mentioning that most of the
galaxies presented in the above survey have a much higher gas fraction compared with the
PHANGS sample. Their typical gas fraction 3 in the 109.5−10 M⊙ stellar mass bin is above
∼ 30 % and goes up to ∼ 60-70 %. Since we tuned our initial conditions to an observed
sample of star-formation main sequence galaxies, this may mean either that the change is
built in our set of morphological parameters (e.g. scale lengths) or that it is related to
the varying relative contributions of physical processes at play, for example, the influence
of feedback versus the strength of the gravitational potential, associated with a change of
stellar mass.

The physical origin of this change in the regime between the lowest and highest stellar
masses is not yet fully understood. Fraser-McKelvie et al. (2020) extrapolated from earlier
simulations (Emsellem et al., 2015) that shear may be an important ingredient in setting
up such differences. While this may play a role, we note that two of our simulations, one
at 109.5 M⊙ and one at 1010 M⊙, share almost exactly the same radial mass gradient (only
the mass scaling is different), and those two do present the above-mentioned change in the
evolved morphology. We thus suggest that the main driver for such a difference lies with
the relative contribution of the stellar-driven feedback within those scaled gravitational
potential (see e.g. Collins & Read, 2022, and references therein). This will be specifically
discussed in a subsequent paper.

4.5 Summary and conclusion
In this work, we have performed a set of 16 three-dimensional high-resolution hydro-
dynamical simulations (see Table 4.1) using the RAMSES AMR code to study and char-
acterise the building and evolution of central gas reservoir in nearby main sequence disc
galaxies. We have designed this grid based on the PHANGS-ALMA sample. We made
use of four control parameters (i.e. stellar mass, gas fraction, scale length for the star dis-
tribution, and bulge mass fraction), and for each model started from axisymmetric initial
conditions including gas, stars and dark matter.

We have further quantified the characteristic formation time for the bar tbar in our
simulations using a reference value of 0.2 for A2, and compared them with the relation
suggested by Fujii et al. (2019). We have found that our simulations are located significantly
below the relation (have smaller tbar at fixed fdisc). We could not conclude robustly on the
origin of such a discrepancy as it may both reflect the intrinsic scatter of such a relation
and the imposed variety in the initial conditions (i.e. halo concentration, anisotropy). A
larger set of simulations including gas and star formation covering lower values of fdisc

(hence larger values of tbar) are needed to confirm this trend.
3Value added Catalogs (SDSS): https://data.sdss.org/sas/dr17/-env/MANGA_HI
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Figure 4.11: Evolution of the maximum of the A2 coefficient (top panels), the mass of gas
within the central 1 kpc normalised by the initial mass of gas within the same radius (middle
panels), and the SFR (bottom panels). The evolution is shown through the dimensionless
parameter τ , which is the ratio between the time of the simulations and the corresponding
time when A2 reaches the value of 0.2. The dashed vertical lines and shaded coloured areas
show peculiar values of τ we use to describe the phases of the fuelling (i.e, τ ∈ 0-1 (blue
area); τ ∈ 1-1.5 (purple area); τ ∈ 1.5-2 (orange area)). The colour code and the meaning
of the different lines are the same as in Fig. 4.8.
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Figure 4.12: Density map of gas for the 16 simulations at the corresponding time for which
τ = 2. The first three rows show a box of 10 kpc side while the last row shows a box of 20
kpc side. The model numbers are colour-encoded according to the corresponding stellar
mass (from the lightest to the most massive from the top to the bottom, i.e. 9.5, 10, 10.5,
and 11 in log10(M⊙)). The two left columns illustrate the model with a gas fraction of 10%
while the two right columns illustrate the models with a gas fraction of 20%. The odd
(even) reference number accounts for models without (with) a bulge.
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We have found that models G162M110F10L5B10 and G178M110F20L5B10 are ex-
pected to be significantly more stable against bar formation (according to the criterion
established by Efstathiou et al. (1982a); but see Sect. 4.4.2). Note that the criterion we
use to decide if a bar is formed or not (i.e. A2 = 0.2) is met for model G178M110F20L5B10
despite the lack of an apparent proper bar structure: we interpret that case as A2 capturing
the evolution of the strong spiral arms.

We have studied the impact of three control parameters on the evolution of the central
1 kpc region. The mass inside the central gas reservoir naturally increases with the initial
stellar and gas mass. The presence of a bulge delays the formation of the bar (i.e. values
of tbar are larger) and thus the formation of the gas reservoir, but does not prevent its
formation.

The global evolution of the 12 models having a stellar mass ⩾ 1010 M⊙ can be roughly
described using a dimensionless bar formation time parameter τ = t/tbar, including three
subsequent phases:

1. A formation phase: from τ = 0 to ∼ 1, the bar forms and the gas mass inside the
central 1 kpc region is nearly constant or increases weakly. The star formation rate
slowly increases with time.

2. A fueling and growth phase: from τ = 1 to ∼ 1.5, the bar is strong enough (i.e.
A2 > 0.2) and starts to transport gas towards the centre, leading to a steeper increase
of the gas mass and a starburst inside that region. The star formation reaches a
plateau.

3. A depletion phase: from τ = 1.5 to ∼2, the bar stays strong, and a steep decrease
in the amount of gas in the central 1 kpc region is associated with a slow decline
in star formation rate. This phase witnesses the emergence of a central stellar mass
seed growing into a more extended inner stellar and gas structure (discs and rings).
The sizes of the inner discy structure seem to vary with e.g. the initial stellar mass
and the presence or absence of an ellipsoid.

Simulated galaxies with initial stellar masses below 1010 M⊙ falling in the lowest mass
bin, exhibit differences with respect to the more massive galaxies in the sample as for their
inner gas structures, the spatial distribution of star forming regions for τ ≥ 2 and the gas
depletion timescales in the central kpc. More specifically, the two first above-mentioned
phases are also witnessed for the lower stellar mass models (M⋆=109.5 M⊙), but we do not
observe Phase 3, that is, a steep decrease of the gas mass inside the 1 kpc central region
at τ > 1.5. The gas mass in the central kpc thus stays roughly constant and is associated
with a relatively constant SFR over time (until at least τ=4). We have also shown evidence
for two distinct star formation distributions for τ ≥ 2 below and above the 1010 M⊙ initial
stellar mass of our models. For models with M⋆ < 1010 M⊙ (hence only for the lower
mass bin), we observe that the star formation mainly occurs along the bar, whereas star
formation is mostly triggered inside the inner gas concentration for models with M⋆ ≥ 1010

M⊙. This trend echoes the reporting made by Fraser-McKelvie et al. (2020) using Hα two-
dimensional mapping of a sample of nearby galaxies. We suggest that this relates to the
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relative contribution of stellar-driven feedback within a given gravitational potential: this
will be probed and discussed in detail in a subsequent paper (Verwilghen in preparation).
The subset of simulations presented here only covers a restricted range of observational
properties and are constrained by a fixed and limited set of initial structural parameters.
We can thus already presume that stellar mass may not be the only or even the prime
driver of the differences we observe in our simulations (see e.g. Díaz-García et al., 2020).

In this paper, we provide a first pilot study at the structures and time evolution of a
set of simulations probing the star formation main sequence of nearby disc galaxies. Sub-
sequent papers in this series will focus on examining in detail the advent and growth of
the above-mentioned inner gas structures (and their associated stellar content), as well as
study in more detail the origin of the change of regime around 1010 M⊙ observed in Fraser-
McKelvie et al. (2020) and reproduced with this first subset of models. We have already
planned for an extended sample of 54 models better covering the range of observed proper-
ties of the PHANGS-ALMA sample in this stellar mass range: a more full-fledged account
of this "complete" set of hydro-dynamical simulations will be presented when available.
Such studies can then serve as a benchmark for simulations embedded in a more compre-
hensive environment, including, for example, gas accretion, interactions or evolution in a
cosmological context.
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Abstract
Recent hydro-dynamical simulations of isolated barred disc galaxies have suggested a struc-
tural change in the distribution of the interstellar medium around a stellar mass of 1010 M⊙.
In the higher-mass regime, we observe the formation of a central gas and stellar disc con-
nected through lanes to the ends of the stellar bar, with a typical size of a few hundred
parsecs. In the lower-mass regime, such an inner disc is absent and the gas component
is more turbulent and exhibits a more chaotic distribution. Observations of nearby star-
forming galaxies support the existence of such a change. Those inner gas discs may repre-
sent an important intermediate scale connecting the large-scale (few kpc) structures with
the nuclear (sub-parsec) region, transporting gas inwards to fuel the central supermassive
black hole. In this work, we use an extended set of high-resolution hydro-dynamical simu-
lations of isolated disc galaxies with initial basic properties (i.e., stellar mass, gas fraction,
scale length of the disc of stars, and the bulge mass fraction) with properties covering the
range of galaxies in the PHANGS sample to specifically investigate this change of regime
and probe the stellar mass threshold for which the gas structure transition is observed.
We study the physical properties of the star-forming interstellar medium in both stellar
mass regimes and extract a few physical tracers (i.e., Inner Lindblad Resonance (ILR),
probability distribution function (PDF), virial parameter, and Mach number) that shed
some light on the observed PHANGS systems. The structure transition in the simulations
occurs between a stellar mass of 109.5 and 1010 M⊙, in line with observations. We show
that the physical origin of this change of regime is driven by stellar feedback and its con-
tribution relative to the underlying gravitational potential. With their shallower potential
and typically higher gas mass fraction, lower-mass disc PHANGS galaxies combine two
ingredients that significantly delay or even prevent the formation of a central gas (and
stellar) disc. This result has strong implications for the star formation regimes, growth of
central structures and overall secular evolution of disc galaxies.
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5.1 Introduction
Recent observational campaigns (see e.g., PHANGS1; Leroy et al., 2021; Lee et al., 2022;
Emsellem et al., 2022; Lee et al., 2023) have shown that nearby disc galaxies exhibit a
wide variety of structures in the distribution of the interstellar medium (ISM) such as
spiral arms, dust lanes, and inner gas discs (Querejeta et al., 2021; Stuber et al., 2023).
One of the most common characteristics is the presence of a well-defined gas concentration
(rings or discs) within the central few hundreds of parsecs of galactic bars, often referred
to as central molecular zone (CMZ) to echo the observed flattened structure in the Milky
Way (see Morris & Serabyn, 1996; Henshaw et al., 2023). Those disc-like structures are
sometimes believed to represent an intermediate stalling region towards a potential SMBH,
and can thus be considered as "gas reservoirs" a small fraction of which could help feed the
central SMBH (Emsellem et al., 2015; Yu et al., 2022).

The characteristic arrangement of the stellar bar, dust and gas lanes, and central disc
reservoir seems to be preferentially observed in relatively high stellar mass barred disc
galaxies. A stellar bar is an essential ingredient that drives the inward gas fuelling from
kiloparsec scales to the inner region often via higher-density gas lanes that connect with
the inner gas reservoirs. Those reservoirs are naturally associated with an increase in the
local surface density of the ISM and may thus catalyse the formation of new stars (Sormani
et al., 2020; Schinnerer et al., 2023). Star formation (SF) further leads to stellar-driven
feedback, which is one of the mechanisms that may influence the gas transport further
down to sub-parsec scales (e.g. Emsellem et al., 2015).

Observations suggest that these gas reservoirs only emerge in barred galaxies with a
stellar mass above a given threshold (e.g. Verley et al., 2007; Fraser-McKelvie et al., 2020).
Most nearby disc galaxies on the star-formation main sequence (SFMS) above a stellar
mass of ∼ 1010 M⊙ have gas mass fractions below 25% (Catinella et al., 2012; Butcher
et al., 2016) and the neutral, ionised and molecular ISM is well structured around a well-
defined galactic centre (see bottom panel of Fig. 5.1). In systems with stellar mass below
1010 M⊙, the gas inside the bar region often appears less structured and its surface density
distribution is more complex and less regular (see top panel of Fig. 5.1). The gas mass
fraction is also significantly higher than in more massive discs, reaching values above 40%,
and the structure of their ISM appears more clumpy and disorganised with star-forming
regions located all along the stellar bar. Observations suggest that the galaxy’s stellar
mass is a key parameter determining whether a disc galaxy forms a central gas reservoir.
While the properties of gas reservoirs in higher-mass systems have been investigated via
observations (Sormani & Barnes, 2019; Neumann et al., 2019; Schinnerer et al., 2023;
Choi et al., 2023; Sormani et al., 2023b) and simulations (Athanassoula, 1992b; Seo et al.,
2019; Sormani et al., 2024), the large-scale galactic or small-scale local physical conditions
required for the emergence of a central gas disc are still not understood.

In this work, we investigate the time evolution of main sequence star-forming discs in

1PHANGS: Physics at High Angular resolution in Nearby GalaxieS
(https://sites.google.com/view/phangs/home)
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Figure 5.1: JWST MIRI 7.7 µm images of two nearby barred main-sequence star-forming
galaxies (GO 3707; PI Leroy) NGC 1087 and NGC 3507 (stellar masses of ∼ 109.95 and
∼ 1010.4 M⊙, respectively) emphasising the difference in morphology. Both images have
been deprojected, and the bar is set horizontally. The field of view is 7 kpc × 7 kpc, thus
showing the central ±3.5 kpc. Those data have previously appeared in Chown et al. (2024)
with data reduction following Williams et al. (2024).

order to better understand the underlying principles that drive the formation and growth
of central structures. We address the questions of whether or not this evolution depends on
e.g., stellar mass, and question the origin of this dependence, using controlled experiments,
i.e., simulations mocking star-forming main sequence galaxies. We thus build an extended
grid of generic disc galaxies (Verwilghen et al., 2024) based on properties of nearby disc
galaxies on the star-formation main sequence (Leroy et al., 2019). We use various physical
tracers (i.e., inner Lindblad resonance (ILR) PDF, virial parameter, and Mach number)
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to probe a potential change of regime in the star formation distribution, focusing on the
advent of bar-driven central mass concentrations.

After briefly presenting the extended set of hydro-dynamical simulations, we illustrate
in Section 5.2 the overall variation in the evolutionary tracks and properties of galaxies in
the low- and high-mass regimes. We focus on the properties of the gas before and after
the formation of the bar in Section 5.3, using tracers such as the velocity dispersion, the
Mach number or the virial parameter. In Section 5.4 we further demonstrate the role of
stellar feedback in establishing such a change of regime, and its relative weight against the
local gravitational potential. Section 5.5 follows with a brief discussion and a summary of
the results.

5.2 First evidence in simulations for a change of regime
In this section, we emphasise the differences in evolution of the gas morphology and distri-
bution of star-forming regions (Sect. 5.2.2) between the low- (< 1010 M⊙) and high- (≥ 1010

M⊙) stellar mass models within our set of simulations (briefly presented in Sect. 5.2.1).
We also illustrate the variation of the surface density profiles below and above this stellar
mass threshold.

5.2.1 The set of simulations
In this paper, we use an extended set of high-resolution simulations of isolated nearby disc
galaxies based on the properties of the PHANGS galaxy sample (Verwilghen et al., 2024,
Chapters 3 and 4). This simulation set is currently composed of a grid of 35 models having
different control parameters encoded as GxxxMxxxFxxLxBxx, where the number after G
stands for an internal reference, M for the stellar mass (i.e., 095, 100, 105, and 110 for
the stellar mass bins 109.5, 1010, 1010.5, and 1011 M⊙, respectively), F for the total gas
fraction (i.e., 10, 20, and 40 %), L for the scale length of the stellar disc (2-5 kpc), and B
for the bulge mass fraction (i.e., 0, 10 and 30 % of the total stellar mass). A first subset of
16 simulations with a more restricted set of parameters has been presented in Verwilghen
et al. (2024) and in Chapters 3 and 4 of the present manuscript, with an emphasis on
the phases and timescales associated with bar formation. We list the values of the control
parameters of the initial conditions for all models in the extended set in Table 5.1.

Briefly, all simulations have been performed with RAMSES (Teyssier, 2002b), an adap-
tive mesh refinement (AMR) hydro-dynamical code. The code treats the stars and dark
matter (DM) as particles and gas via cells via the AMR grid. The code also includes
numerical recipes implementing the cooling of gas, star formation and stellar feedback
(supernovae and stellar winds), and the evolution of the metallicity via two tracers (see
Agertz et al., 2013, 2021b, for more details). Those simulations reach a minimum spatial
sampling of 12 pc, and a typical mass resolution of 104 and 2×103 M⊙ for the old and new
stellar particles, respectively. More details regarding the sub-grid recipes, detailed setup
of the simulations and initial conditions can be found in Verwilghen et al. (2024).
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Model log10(M⋆) F l∗ lg/l∗ B BAR
[M⊙] [%] [kpc] [%]

G001M095F10L2B00 9.5 10 2 2 0 Y
G002M095F10L2B10 9.5 10 2 2 10 Y
G007M095F10L3B00 9.5 10 3 2 0 N
G008M095F10L3B10 9.5 10 3 2 10 N
G009M095F10L3B30 9.5 10 3 2 30 N
G013M095F20L2B00 9.5 20 2 2 0 Y
G014M095F20L2B10 9.5 20 2 2 10 Y
G015M095F20L2B30 9.5 20 2 2 30 N
G019M095F20L3B00 9.5 20 3 2 0 N
G020M095F20L3B10 9.5 20 3 2 10 N
G021M095F20L3B30 9.5 20 3 2 30 N
G025M095F40L2B00 9.5 40 2 2 0 Y
G026M095F40L2B10 9.5 40 2 2 10 Y
G027M095F40L2B30 9.5 40 2 2 30 Y
G031M095F40L3B00 9.5 40 3 2 0 Y
G032M095F40L3B10 9.5 40 3 2 10 N
G033M095F40L3B30 9.5 40 3 2 30 N
G037M100F10L2B00 10 10 2 2 0 Y
G038M100F10L2B10 10 10 2 2 10 Y
G039M100F10L2B30 10 10 2 2 30 Y
G045M100F10L3B00 10 10 3 2 0 N
G046M100F10L3B10 10 10 3 2 10 N
G053M100F20L2B00 10 20 2 2 0 Y
G054M100F20L2B10 10 20 2 2 10 Y
G055M100F20L3B30 10 20 2 2 30 Y
G069M100F40L2B00 10 40 2 2 0 N
G070M100F40L2B10 10 40 2 2 10 Y
G105M105F10L3B00 10.5 10 3 2 0 Y
G106M105F10L3B10 10.5 10 3 2 10 Y
G137M105F20L3B00 10.5 20 3 2 0 Y
G138M105F20L3B10 10.5 20 3 2 10 Y
G161M110F10L5B00 11 10 5 2 0 Y
G162M110F10L5B10 11 10 5 2 10 N
G177M110F20L5B00 11 20 5 2 0 Y
G178M110F20L5B10 11 20 5 2 10 Y

Table 5.1: List of all models in the extended simulation set and the parameters used to
set up their initial conditions. Columns from left to right are: name or label encapsulating
those parameters, total stellar mass (M⋆, here in log10), gas mass fraction F (in %), stellar
scale length l∗ (in kpc), scale length ratio lg/l∗ (gas over stellar scale lengths) and bulge
mass fraction B (in %). The last column shows models developing a bar (Y) and never
developing a bar (N) by the end of the run.
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5.2.2 Gas surface density distribution

A systematic visual inspection of all simulations listed in Table 5.1 provides the first direct
evidence for a change of regime: it is illustrated in Fig. 5.2 in the central gas structures
observed before and after the bar forms. In this figure, we show the evolution of the face-
on gas surface density as a function of the dimensionless parameter τ (i.e., absolute time
normalised by the bar formation time tbar) for four models, in two stellar-mass bins (i.e.,
109.5 and 1010 M⊙- top and bottom rows, respectively, with two different gas fractions -
left and right panels). τ = 1 corresponds to the bar formation time set when A2 reaches a
threshold value of 0.2, with A2 being the amplitude of the second Fourier term derived from
the stellar density map (see Efstathiou et al., 1982b; Athanassoula, 2002; Athanassoula
et al., 2013). The typical bar formation time is of the order of ∼ 400 Myr and 800 Myr
for models without and with an additional central ellipsoid (i.e. the bulge), respectively
(see Verwilghen et al., 2024, for more details). Before the bar forms (i.e., τ = 0.5), the
gas distribution appears very clumpy and relatively unstructured, without any coherent
large-scale gas structure. Once the stellar bar has formed, the gas distribution changes
significantly, with the higher-density regions mostly clustered within the bar close to its
major axis and along spiral-like structures outside the bar.

Around τ = 2, the evolution starts to differ between the low and high stellar mass
models. The higher-stellar mass models G037 and G053 (1010 M⊙, with a gas fraction α
of 10 and 20%, respectively) exhibit well-organised gas surface density distributions. We
observe the emergence of a central gas concentration in both G037 and G053, leading to the
formation of a well-defined central flattened overdensity at τ = 2. At τ = 5, that structure
has grown into an inner gas disc connected with both ends of the bar via distinct lanes.
This significantly contrasts with the structures observed in the lowest-stellar mass (109.5

M⊙) models G013 and G025 (α of 20 and 40%, respectively): the central gas structure
remains very clumpy even after the bar forms (see also Bland-Hawthorn et al., 2024), and
there is no apparent significant change in the gas distribution with time until τ = 5 and
beyond.

At first glance, such a difference could be attributed to the higher gas fraction of
models G013 and G025, which reflects the overall relative increased importance of gas
in lower mass galaxies (see, e.g. Verwilghen et al., 2024). However, G013 and G053 are
directly comparable: they are based on the same initial mass models for the stars, gas and
dark matter, share the same gas fraction (20%), G013’s total mass only being scaled down
by a factor of about 3 (or 100.5). At τ = 5, the lower mass model G013 still exhibits a
complex gas distribution made of rapidly evolving clumps and voids within the bar region
with no well-defined centre, while the higher mass model G053 has a well-organised, nearly
symmetric set of gas lanes fueling a central inner disc (the gas reservoir).

To provide a comparison of the evolution track between barred and unbarred models,
we complementary provide in Fig B.1 the gas and new star density maps for four unbarred
models (G015, G032, G045, and G069) at four different time steps: 500, 1000, 1500, and
2000 Myr. We see that simulated galaxies that do not form a bar form very few stars
overall. We naturally do not observe the formation of a central gas reservoir in those
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unbarred models. The case of model G069 is special because a bar forms around 315 Myr,
but is later destroyed by a massive stellar cluster as shown in Fig. B.2 and is therefore
considered as an unbarred model. In the rest of this work, the time corresponding to τ = 1
is artificially assigned to unbarred models from the tbar value of the barred model with
similar initial conditions (e.g., model G007 has the same value of tbar as G001, while G008
and G009 have the same value of tbar as model G002).

Figure 5.2: Surface density map of gas and newly-formed stars (≤ 100 Myr) of four models
in two stellar mass bins (G013, G025, with an initial stellar mass of 109.5 M⊙; G037, and
G053 with an initial stellar mass of 1010 M⊙) from our set of simulations. Each panel
shows one model at different values of the parameter τ , with τ = 1 corresponding to the
bar formation timescale. G013 and G053 have the same 20% gas mass fraction, while
G025 and G037 have 40 and 10% gas mass fraction, respectively (the latter two following
the averaged properties of star-forming main sequence galaxies at their respective stellar
masses).

5.2.3 The radial gas density re-distribution
The presence or absence of an inner gas disc can be quantitatively illustrated by computing
the radial gas density profiles from our simulations. Figure 5.3 shows the time evolution of
the (azimuthally averaged) radial gas surface density profiles of the full set of models at τ
= 0.5, 1, and 2. To emphasise any potential time changes, we have normalised all density
profiles by the initial radial gas (exponential) profile (at the start of the simulations, t = 0).
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Figure 5.3: Normalised surface density profile of gas for our set of simulations at τ = 0.5,
1, and 2 (see text). The faint blue curves represent low-stellar mass models (< 1010 M⊙)
and the faint red curves show higher-stellar mass models (≥ 1010 M⊙). The strong blue
and red lines are the median of the faint blue and red curves, respectively. The top panels
show models that have formed a bar, sustained until the end of the simulation. The bottom
panels illustrate the unbarred models.

The profiles are plotted as a function of the galactic radius (R/l∗, where l∗ is the initial
stellar disc scale length). To ease the inter-model comparison, all profiles are finally rescaled
by their respective values at 2.2 l∗ found in the literature and taken as a characteristic
reference scaling for the underlying discs (in our models, the typical scale length of the gas
disc (lg) is twice the typical scale length of the stellar disc (l∗)). Figure. 5.3 is split between
barred galaxies (top panels) and unbarred ones (lower panels) using the classification at
the end of the simulation (t > 3 Gyr).

The profiles of most unbarred galaxies consistently keep a rather flat profile (within
±0.2 dex) at all times: the radial gas distribution does not seem to vary significantly over
many 100s of Myr in the absence of a bar. Only one model departs significantly from this
trend: G069. The bar in G069 forms around 315 Myr, but is subsequently (t ∼ 1500 Myr)
dissolved after interacting with an in-spiralling massive star cluster that has formed in the
disk. Hence, this system is classified as unbarred by the end of the simulation, and its
gas density profile becomes flat again after the bar has vanished, similar to other unbarred
simulations.

This picture is radically different for barred galaxies as illustrated in the top panels
of Fig. 5.3. For barred galaxies, we first witness a central increase of the density profiles
for all models by the time the bar has formed (τ = 1). At τ=2, the lower and higher
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mass models exhibit a significantly different radial profile within the central ∼ 2 l∗. The
higher-mass galaxies show a strong relative drop with a minimum at ∼ 0.4 l∗ by a factor
between 3 and 15, followed by a steep (factor of three of the initial (t = 0) density) increase
towards the centre. This contrasts with the lower-mass systems that show a steady rise
from ∼ 2 l∗ inward. We note that the maximum (relative) central values for the density
are similar for all models (both blue and red curves). The striking difference of evolution
between the barred and unbarred systems emphasises the bar-driven re-organisation of
the gas distribution. The observed peak within the central ∼ 0.4 l∗ for the more massive
models is a witness of the presence of an inner gas disc or "reservoir".

5.2.4 The redistribution of star formation across the disc
The change observed in the evolution of the gas distribution mentioned above can be
associated with a redistribution of star-forming regions across the disc. In Fig. 5.2 we
illustrate this via a few snapshots of the new stars (with ages less than 100 Myr) formed
in four simulations distributed in two stellar mass bins (i.e., low-stellar mass models G013
and G025, and high-stellar mass models G037 and G053) for four different values of the
parameter τ from 0.5 to 5. Low-stellar mass models (top panels) have their star-forming
regions mainly located along the stellar bar for model G013 and spread over the disc for
model G025, with no emergence of a well-defined central nuclear disc structure at any time
in the simulation. The evolution of the high-stellar mass models (bottom panels) exhibits
a clear transition in the distribution of star-forming regions, which is also observed in the
highest-stellar mass bin models (i.e., 1010.5 and 1011 M⊙) developing a bar. At τ = 2, the
star-forming regions are located along the bar as in the low-stellar mass models. From
τ = 2 to τ = 5, star-forming regions are mostly restricted to a central region with a
typical size of a few hundred parsecs, associated with the formed central gas reservoirs (see
Fig. 5.2).

5.3 Physical tracers
In the previous section, we emphasised the formation of a central gas reservoir and the
associated central distribution of star-forming regions in high-stellar mass models (≥ 1010

M⊙), and its absence in the lower-mass systems, by visually inspecting the gas and stellar
surface densities. In this section, we turn to the physical properties of the gas to quantita-
tively follow the emergence of the central mass concentration, then examine the gas density
probability distribution function (PDF), the virial parameter and the Mach number inside
the central 1 kpc region as tracers of the physical state of the gas.

5.3.1 Emergence of the ILR
In Sect. 5.2.3, we showed that a change of regime is associated with the build-up of a central
gas mass reservoir, that is accompanied by a corresponding central stellar overdensity made
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Figure 5.4: Evolution over time (from left to right, τ = 0.5, 1 and 2) of the normalised
angular frequency Ω and Ω−κ/2 radial profiles of the barred low-stellar mass (blue curves,
top row) and high-stellar mass (red curves, bottom row) models. The quantity we use in
the normalisation is the bar pattern speed Ωb. The black dashed curve represents Ω = Ωb.

of newly formed stars. Such a change in the radial mass profile should be reflected in a
steepening of the circular velocity and angular frequency (Ω) profiles. A bar rotating with
a given pattern speed (Ωb) implies the potential emergence of inner resonances, namely
an inner Lindblad Resonance (ILR, REFS) when Ωb = Ω − κ/2, where κ is the radial
epicyclic frequency. In Fig. 5.4, we thus probe for all the barred models the time evolution
of the angular frequency Ω (top dashed-dotted curves) and the quantity (Ω−κ/2) (bottom
curves) normalised by the pattern speed of the bar Ωb.

At τ = 0.5, before the bar has formed, nearly all Ω − κ/2 profiles are flat and all stay
below the Ωb value (Ω/Ωb= 1; dashed lines). A few models exhibit a slight increase towards
the centre and those are the systems with an initially added ellipsoid (flattened bulge): this
is consistent with the bulge representing an extra mass concentration. At τ = 1, a few
high-mass systems exhibit central increases that cross the Ω/Ωb= 1 line: an ILR is present.
The models to first cross this threshold again have a bulge in their initial conditions, hence
starting with a steeper central potential. At late times (τ = 5) most of the higher-mass
systems, including those that did not have an initial bulge, have a well-defined ILR. This
result is consistent with the presence of a well-defined inner gas disc in the central region of
those models. This dramatically contrasts with all of the lower-mass models being far from
having the inner mass concentration that would lead to an ILR: the lower-mass systems
were not able to form a central disc-like reservoir of gas.
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5.3.2 The central PDF
To quantify further the state of the gas and the potential variation in clumpiness that
appears in Fig. 5.2, we can rely on the gas density probability distribution function (PDF)
that describes the relative importance of low and high-density regions. In Fig. 5.5, we show
the evolution of the PDF inside a central cylindrical region of radius 1 l∗ and height 2 kpc
as a function of time for four values of τ (as in Fig. 5.2).

Overall, all models have gas densities from about 10−5 up to 103 cm−3, initially with
a rather flat distribution in the range [ 10−2 - 102] cm−3. At τ = 1 (once the bar has
formed) all four models exhibit a similar PDF, following small adjustments relative to the
PDF. At τ = 0.5, i.e., a slight increase (resp. decrease) of the high (resp. low) density tail,
that corresponds to the steep increase in the star formation rate (see Verwilghen et al.,
2024): this is qualitatively true for all four models. For lower-stellar mass models G013
and G025, the overall shape of the PDF does not change significantly with time beyond
the formation of the bar (top panels of Fig. 5.5). This is consistent with the observed
structure in the two-dimensional gas surface density map (Fig. 5.2): for those two models,
the gas distribution tends to be more centrally concentrated within the bar region, but its
morphology still appears very clumpy and disorganised. In other words, it is challenging
to discern whether a bar has formed in such models just by examining the central PDF,
even if we are limited by the maximum resolution (12 pc) of the simulations.

In contrast with such a steady state, the central PDF of the higher-stellar mass models
G037 and G053 evolves at all scales after τ = 2. After bar formation at τ=2, the PDF
develops a tail at high-density values reaching about 103.5 cm−3. This corresponds to the
time when the bar-driven fuelling sets the seed of the central gas reservoir, a compact,
dense and discy feature. Beyond τ = 2, the shape of the PDF drastically changes. At
τ=5, the PDF is significantly skewed towards lower-density gas, with a bump in the gas
density distribution at ∼ 10−4 cm−3 and a negative slope up to ∼ 102 cm−3 followed by
an abrupt drop at ∼ 103 cm−3. The low-density bump is a direct consequence of the
re-organisation of the gas structuring within the bar. The gas fuelling towards the inner
disc is associated with the denser bar lanes and those are surrounded by a depleted region
between the bar ends and the inner gas disc. The abrupt cut at high densities certainly
depends on resolution, but could also be associated with the emergence and radial growth
of the inner gas disc (and the associated onset of the formation of the stellar disc) between
τ=2 and τ=5. Most importantly, there is a relative decrease (factors of typically 3 to 5,
and up to 10) of the PDF values in the full range between 10−3 and 102 cm−3 for both
higher mass systems (Fig. 5.5).

5.3.3 Dynamical tracers
We next turn to dynamical tracers of the state of the gas in the bar region. Figure 5.6
illustrates the evolution over time of the distribution of the virial parameter (αvir) and
the Mach number M. αvir addresses the ratio between the local kinetic and gravitational
energies and is proportional to the square of the velocity dispersion and the inverse of the
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Figure 5.5: Evolution of the Gas density Probability Distribution Functions (PDF) of four
of our simulated galaxies (i.e., models G013, G025, G037, and G053, see Fig. 5.2) as a
function of τ (main panels). The normalised PDF by the PDF at τ = 0.5 (NPDF) is
shown at the bottom of each main panel.

compactness of the clouds. The Mach number is a quantity measuring the ratio between
the velocity dispersion and the sound speed, that depends on the gas temperature. Those
two quantities provide a quantitative description of the physical state of the star-forming
gas and are often used as a relevant way to connect with observations (e.g. Sun et al.,
2022). To compute those distributions, we have used a centred box with a side length of
2 l∗ (4 kpc) and a height of 2 kpc (±1 kpc) and averaged the 1D velocity dispersion (σ1D),
sound speed (vs), potential energy (Egrav), virial parameter (αvir), and the Mach number
(M) of the smallest star-forming gas cells (12 pc) contained inside volumes of 100 pc3.
The typical number of events inside this volume varies between 5000 and 150000.

For this comparison, we focus on two models that best follow the observed properties
of SFMS galaxies, namely G025 (low mass bin, with 109.5 M⊙, and an initial gas fraction
of 40%) and G053 (higher mass bin, with 1010 M⊙, and an initial gas fraction of 20%).
The distribution of the virial parameter and Mach number for G025 exhibit no signifi-
cant changes before and after the formation of the bar (τ = 1, black dashed curve). A
similar result was found in Bland-Hawthorn et al. (2024) for gaseous bars in LMC-mass
(< 1010 M⊙) objects (see their figure 15). This means that the dynamical and physical
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Figure 5.6: Normalised distribution of the virial parameter (top left) and Mach number
(bottom left) and their components (i.e., kinetic energy Ekin and potential energy Egrav for
the viral parameter and the one-dimensional velocity dispersion σ1D and the sound speed
vs for the Mach number) as a function of time for the low-stellar mass model G025. The
distributions are computed inside a box of 2 l∗ in side length and a height of 1 l∗ around
the centre.

status of the central star-forming regions does not seem to be affected by the formation of
the bar. This is quite a surprising result but already expected from the constancy of the
global PDF illustrated in Fig. 5.3.

The high-stellar mass model G053 (Fig. 5.7) shows a radically different behaviour.
Both αvir and M distributions develop a secondary peak after the formation of the bar at
higher and lower values, respectively. In Fig. 5.6 and 5.7 we also provide the respective
numerators and denominators for αvir (resp. kinetic and gravitational energies) and M
(resp. velocity dispersion and sound speed). For G037, the sound speed distribution
exhibits a secondary peak at higher values that is directly related to an increase in the
gas temperature. That temperature increase is caused by more intense stellar feedback
associated with the emergence of a central disc, which is then reflected in the subsonic
peak at M ∼ 0.25.

As mentioned before, the drastic change in the evolution of such dynamical tracers
could be related to the increase of the gas fraction in the low-mass systems. However, this
does not seem to be the case, as a comparison between models G013 and G053 that share
similar initial conditions (only with a mass scaling) and the same gas fraction of 20% shows
consistent trends.
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Figure 5.7: Same distributions as in Fig. 5.6 for the high-stellar mass model G037.

5.4 The balance between stellar feedback and gravity
In this section, we probe the physical origin of the observed change of regime traced via
a variation of local values of M and αvir (Sect. 5.3) by studying the balance between
stellar feedback and the gravitational potential, and the ratio between the ejected gas
mass and the SFR (mass loading factor). Those two tracers allow us to understand the
chaotic structures in our lower-mass models and the emergence of an inner gas disc in
higher-stellar mass models.

5.4.1 Feedback versus gravity
Our simulations include stellar feedback in the form of supernovae and stellar winds. These
processes inject energy and momentum into the surrounding ISM, leading to an increase
of the local gas velocity dispersion σ (e.g. Mac Low & Klessen, 2004; Padoan et al., 2017;
Agertz et al., 2009). When vigorous enough, feedback can drive galactic scale outflows
and expel gas far beyond the stellar disc (for reviews, see e.g. Veilleux et al., 2005; Rupke,
2018), a process that is well studied in numerical simulations (e.g. Muratov et al., 2015;
Nelson et al., 2019; Andersson et al., 2023). One direct tracer of the impact of feedback
is the variation in the velocity dispersion, and more specifically its vertical component
σz. Such outflowing gas is pulled back by the gravitational potential of the disc that may
dominate (or not) the local energy budget, preventing the gas (or not) from escaping at
large vertical distances.
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Figure 5.8: Evolution (from left to right) of the vertical velocity dispersion normalised
by the local escape velocity (top row), the vertical velocity dispersion (solid curves), and
the escape velocity (dot-dashed curves, bottom row) profiles as a function of τ . The blue
curves represent low-stellar mass models and the red curve the higher-stellar mass models.
The grey curves are models that do not display a bar at the end of the simulation.

To quantify the relative effect of feedback in our simulation, we measured the vertical
velocity dispersion σrel normalised by the local escape velocity vesc, the latter being directly
connected with the depth of the local total gravitational potential for all simulations in our
extended set. The evolution over time of this normalised dispersion is shown in Fig. 5.8.

We first note (bottom row of Fig. 5.8) that the escape velocity profiles do not signifi-
cantly change with time, for any of these models. Hence most of the evolution observed in
the normalised dispersion values can be linked back to an evolution in the dispersion itself.
Remarkably, all unbarred systems show consistent and flat vertical velocity dispersion pro-
files with values around 3 km.s−1, with an increase only in the central region (R < 0.5 l∗).
The bar thus seems to have a prominent role in establishing a sustained higher value for
the vertical velocity dispersion.

For all barred galaxies, we further see a clear trend that higher gas fraction systems
have higher values of σz: this is expected considering that a higher gas fraction relates to a
higher star formation rate, hence a relatively stronger role for stellar feedback, as predicted
by Ostriker et al. (2010). The only exception seems to be model G069. As already noted
(see Sect. 5.2) that model develops a bar which then gets dissolved and that is consistent
with the fact that its velocity dispersion is first relatively high (as for other systems with
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40% gas fractions) and settles back to a flat and lower value profile after the bar dissolution
(see lowest red curve in the lower right panel at τ = 2 in Fig. 5.8). By τ = 5, all barred
systems with at least 20% of gas exhibit σz values between 6 and 20 km.s−1 with peaks up
to 30 km.s−1.

The normalised velocity dispersion profiles are presented in the top row of Fig. 5.8 with
different colours depicting different stellar masses. What we mentioned in the previous
paragraphs is now clearly emphasised:

• Higher gas fraction systems still tend to have higher normalised dispersion profiles
at fixed stellar mass (i.e., fixed escape velocity).

• Lower stellar mass systems tend to have higher dispersion profiles with respect to
their escape velocities (at fixed gas fractions).

5.4.2 The crucial role of supernovae in preventing the formation
of an inner gas disc

As shown in the previous section and Fig. 5.8 both the formation of a bar and the depth
of the gravitational potential have a clear impact on the physical status of the ISM in our
simulations. It suggests that bars in lower-mass systems have a stronger impact due to both
the shallower depth of the gravitational potential (as compared with higher stellar mass
discs) and the observed higher gas fraction of main sequence star formation. We now show
that stellar feedback, as implemented via subgrid recipes in our simulations, is the driver
of such a trend with the bar in the lowest mass systems. We thus run a test case using
model G001 (a low stellar mass model with a gas fraction of 10%) as a reference, where
we turn off the feedback from supernovae (model named G001-NOSN). In that simulation,
only the stellar feedback due to stellar winds is kept active.

Figure 5.9 illustrates the evolution of model G001 with (left panel) and without (right
panel) supernovae feedback. We observe that the onset of a central disc is already visible
in the model without feedback (G001-NOSN) at τ = 1, and further develops into an
extended central gas reservoir at τ = 5. The impact of supernova feedback on the gas
velocity dispersion is directly illustrated in Fig. 5.10 where we present the σz radial profile
for both G0001 models (with and without supernova feedback). As expected, model G001-
NOSN has a low and rather constant vertical velocity dispersion (σz ∼ 3 km.s−1). Even
though G001-NOSN develops a strong bar, its σz profile does not vary much with time and
is consistent with those observed for all our unbarred models in Fig. 5.8.

The emergence of a central gas reservoir associated with a young stellar disc is further
confirmed by the observed evolution of the frequency profiles, as shown in Fig. 5.11: in
contrast with the G001 models, G001-NOSN exhibits a broad central increase of the Ω−κ/2
at τ = 1 and develops a clear ILR as observed in the profile at τ = 5. Interestingly, by the
end of the simulation (τ = 5), model G001 that includes supernova feedback still exhibits
a mild increase of its Ω − κ/2 profile, suggesting that it may manage to build a bona fide
central gas reservoir at a later time. Running test simulations such as G001-NOSN for
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Figure 5.9: Surface density map of gas of model G001 (left panel) and G001-NOSN (right
panel) at four characteristic times. The ‘NOSN’ stands for the run without feedback from
supernovae and only includes feedback from stellar winds. Each subpanel shows one model
at different values of the parameter τ .

Figure 5.10: Same as bottom panels of Fig.5.8 but for model G001 (blue curve) and G001-
NOSN (orange curve).

all our simulations is beyond the scope of the present paper. Still, G001-NOSN provides
strong evidence that stellar feedback, and more specifically supernovae feedback, is the
main driver in our simulations for the change of regime between low and higher mass
systems, and does prevent the emergence of a central gas reservoir in galaxies with shallow
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Figure 5.11: Same as in Fig. 5.4 but for model G001 (blue curve) and G001-NOSN (orange
curve).

gravitational potentials.

5.5 Discussion and Conclusion

5.5.1 A gas reservoir chronicle
In the previous Sections, we have provided evidence that lower mass simulations of disc
galaxies exhibit a different evolution in their gas redistribution driven by a stellar bar,
and we have identified that stellar-driven feedback is a key factor in preventing a coherent
structure from emerging. In higher mass systems, the gas reservoir is built while new stars
have already started to accumulate within the central region of the bar (see e.g., Fig. 5.3).

The emergence of those structures is emphasised in Fig. 5.12 where we present a time
sequence encapsulating the early formation of the gas reservoir for two reference simulated
systems that lie on the SFMS, namely G025 (109.5 M⊙) and G053 (1010 M⊙). Only the G053
higher mass run forms a well-structured gas flow and central gas disk structure in the first
three Gyr (at a running time of about t = 1400 Myr). Over 600 Myr, the lower mass G025
run shows very little evolution in the total gas, molecular gas and stellar distribution. For
G025, high gas density clumps are observed mostly travelling along the bar, significantly
disturbed by continuous injection of feedback energy, and its associated one-dimensional
gas density profile is flat. The case of G053 is radically different, with a very strong time
evolution: while the averaged gas density profile along the bar axis resembles the G025 one
in the first two panels, a clear peak forms after 1400 Myr (last two panels) surrounded by
a region of depressed gas density. This is reminiscent of the observed signature from the
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bar-driven organised gas flow seen in the profiles presented in Fig. 5.3. This is particularly
visible in the molecular gas distribution and profile for G053 where the bar region is almost
entirely devoid of gas except for the emerging central ∼ 200 pc gas reservoir. It is also
remarkable to follow how new stars preferentially accumulate in a growing and well-defined
central exponential disk (with a scale length of about 100 pc when projected edge-on).

5.5.2 The importance of timescales
The emergence of a central gas reservoir appears to occur at early times for models with
larger stellar masses only. This is illustrated in the formation of an ILR that is associated
with a central (stellar and gas) mass concentration (Fig. 5.11). However, in Fig. 5.9, we
observe a late onset of a more organised fueling flow for a lower-mass system (G001), which
is also reflected in the slight central increase in the Ω − κ/2 radial profile of Fig. 5.11. This
suggests that the absence of a central gas reservoir at τ = 5 in lower mass galaxies can be
the consequence of a longer timescale needed by these smaller systems to acquire gas via
a coherent, inward flow rather than of a stellar mass criterion alone.

To test this hypothesis, we have run an additional low stellar mass case using the
same conditions as for the G001 model, but this time running up to 7 Gyr corresponding
roughly to τ = 10. Up to a time t ∼ 5.5 Gyr, the gas distribution resembles other low
mass simulations, with a rather disorganised, clumpy appearance. Around t ∼ 5.7 Gyr
the gas flow tends to a more ordered organisation, and by t = 5.85 Gyr (i.e., τ > 8), the
seed of a central gas disk appears. If we compare such a timescale with other larger-mass
models at the same gas fraction, it is more than 4 times faster for model G037 (with an
initial 1010 M⊙ stellar mass) to reach a similar state (both in absolute terms - Myr - and in
terms of the corresponding τ). It is therefore likely that the observed transition between
a stellar mass of 109.5 and 1010 M⊙ also stems from a continuous varying timescale for the
formation of a reservoir that depends in turn on the relative importance of feedback and
gravity (see Sect. 5.4.1).

To probe such a transition further, we performed a simulation using an intermediate-
stellar mass, namely 109.75 M⊙ labelled G000M975F10L2B00. The resulting gas evolution
is shown in Fig. 5.13 where we show the comparative evolution of our two reference models
G001 (top panel; 109.5 M⊙) and G037 (bottom panel; 1010 M⊙). We observe the formation
of the gas reservoir and then the gas reservoir after τ = 4 for the intermediate-mass models,
while it forms at τ ∼ 3 and τ ∼ 8 for the higher-mass and lower-mass ones, respectively.
The radial extent of the gas reservoir at τ = 6 for this intermediate model is significantly
larger than for the high-stellar mass model. This trend stands when using absolute times
(formation time of the seed at about 5.9, 2.3 and 1.7 Gyr, respectively) or the time it
takes after the formation of the bar (5.1, 1.8, and 1.2 Gyr, or 12, 5, and 5 bar rotations,
respectively).

This suggests that the formation timescale of the gas reservoir depends on the galaxy’s
stellar mass. Following results of Section 5.4, this is expected since a change in stellar mass
translates to a continuous change in the balance between stellar feedback and the depth of
the gravitational potential. As stellar mass increases (at fixed gas mass fraction), the gas
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Figure 5.12: Time evolution of simulations G025 and G053, respectively a low and inter-
mediate stellar mass system (109.5 and 1010 M⊙). Four running times are presented (from
left to right, first six panels from top), with steps of 200 Myr, with a seed gas reservoir
forming in G053 around t = 1400 Myr (in between the two middle panels). Maps with a
field of view of 2 kpc × 1 kpc of the total gas surface density, the mass of new stars (and
old stars, as orange contours) and molecular gas density are shown as maps in the first
to third rows for G025, and fourth to sixth row for G053. In all maps, the bar is aligned
with the x-axis. The two bottom rows show the radial profiles, averaged over the y-axis
(±1 kpc), first with the gas profiles (total and molecular), and then the stellar density
profiles (bottom row; old and new stars).
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being re-organised by the bar and fueled to the central region is less impacted by supernovae
feedback and thus tends to be more prone to forming a central mass concentration.

Figure 5.13: Illustration of the phase transition using models G001 (top panel),
G000M975F10L2B00 (middle panel), and G037 (bottom panel), corresponding to a low-
intermediate, and high-stellar mass model, respectively. In each panel, we show the evolu-
tion of the surface density map of gas at 6 different values of τ (0.5,1,2,4,5, and 5.5).



5.5 Discussion and Conclusion 131

5.5.3 Summary
In this work, we have used our extended grid of simulations (35 models) based on 4 galactic
parameters (i.e., stellar mass, gas fraction, scale length of the disc of stars, and the bulge
mass fraction) coming from the PHANGS sample to investigate the main factors involved in
the emergence of central gas reservoirs (central molecular discs or rings). We have noticed
the presence of central gas reservoirs in our simulations and observed galaxies above a
certain stellar-mass threshold corresponding approximately to 1010 M⊙, setting the low-
and high-stellar mass regimes. Those gas reservoirs are observed in the surface density
maps and in the specific distribution of SF across the disc. When a stellar bar has formed,
we observe that the star-forming regions remain inside the bar in the low-stellar mass
regime. In the high-stellar mass regime, we observe a redistribution of the star-forming
regions into a central gas reservoir and near the bar ends.

The presence of a gas reservoir in high-stellar mass models creates a depletion of gas
between the interior of the stellar bar and the gas reservoir. This gas depletion in the high-
stellar mass models leads to a dip in the gas surface density profiles that we do not observe
in the low-stellar mass models. In addition to this gas depletion, we have also studied
the physical properties of the star-forming gas via the PDF, the distribution of the virial
parameter, and the Mach number. We have shown that those physical properties remain
unchanged over time in the low-stellar mass regime, but vary significantly as a function
of time in the high-stellar mass regime. We highlight here that this gas depletion causes
a dip in the gas surface density profiles, and the distribution of the mentioned physical
parameters could be compared with real galaxy data in future work (Emsellem, in prep.,
Neumann, in prep.).

We computed the circular velocity coming from the gravitational potential, derived the
angular frequency, and the bar pattern speed to check whether an inner Lindblad resonance
(ILR) has formed in our barred models. We found that in the high-stellar mass regime,
an ILR has emerged, which explains the formation of central gas reservoirs. However, we
have not identified any ILR in the low-stellar mass regime.

We have investigated the role played by the stellar feedback and compared it with the
gravitational potential of our different models. We have found that the variation of the
kinetic energy we measure in the gas vertical velocity dispersion due to SN feedback has
the same order of magnitude (15-30 km.s−1) for all our barred models. The ratio between
the vertical velocity dispersion and the escape velocity is higher (10-15%) in the low-stellar
mass regime compared with the high-stellar mass one (∼ 5%). This explains the fact
that our low-stellar models do not form a central gas reservoir, which can be extended to
observed galaxies.

The change of regime is not dictated by an abrupt stellar mass threshold around 1010

M⊙, but rather by a transition going with a continuous change of stellar mass between
109.5 and 1010 M⊙. This transition occurs because of the varying balance between the
SN feedback and the local gravitational potential, that allows, at higher stellar masses,
the emergence of a seed, leading to the formation of an ILR, and the building of the gas
reservoirs. This is further emphasised with a low stellar mass test model where a gas
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reservoir forms when SN feedback is turned off. We have further probed this structure
transition thanks to an intermediate-mass model with a stellar mass of 109.75 M⊙ that
exhibits the emergence of a late gaseous seed reservoir.

5.6 Mass loading factor and toy model
Note - This Section is not part of the submitted paper Verwilghen et al. (2025). We
provide it as an extension for the discussion.

5.6.1 The mass loading factor
The balance between supernovae feedback and gravity was probed in the previous sections
via a normalised velocity dispersion profile. It can be further quantified using the mass
loading factor (MLF) as illustrated in Fig. 5.14. The mass loading factor is the ratio
between the ejected mass (outflow) at a given radius (or altitude above the disc plane) and
the SFR. This parameter plays an important role in galaxy formation models (Somerville
et al., 2015). In this figure, we show the evolution over time of the ratio between the
ejected mass and the SFR at a height of 1 l∗ above the galactic plane as a function of the
stellar mass for all barred models. The MLF decreases with the stellar mass at τ=1 and
2. When the bar forms (τ = 1) the MLF is also generally higher for larger gas fractions
(thicker squares). While the trend looks much stronger at τ = 1, close to the peak of the
star formation rate, it is still present at τ = 5. This result is consistent with the findings of
observational (e.g. Chisholm et al., 2017) and theoretical work (e.g. Mitchell et al., 2020)
that the mass loading factor in star-forming disc galaxies critically depends on stellar/halo
mass and gas mass fractions (see also Hayward & Hopkins, 2017)

5.6.2 Toy model for the seed formation
To understand the conditions of the formation of a central seed and connect it with the
stellar mass threshold, we propose a simple analytical model based on the balance between
the energy of the SN feedback transmitted to the ISM and the fuelling of the gas due to the
combination of the bar and the gravitational potential. The first ingredient we need is the
kinetic energy transmitted by SN feedback to the ISM in a region of radius R surrounding
the galaxy’s centre. We can write this as an energy density (normalised by the available
gas mass), as:

∆ESN = η SFR(R)
mSN

· ϵSN

Mgas(R) · ∆t, (5.1)

where (η SFR(R)/mSN) corresponds to the rate of SNe production estimated from the star
formation rate SFR(R) within the considered region, a typical stellar mass for a supernova
progenitor (mSN) and a mass fraction η of the stellar population ending as SNe (fixed to
20% in our simulations), ϵSN is the total energy released by one supernova (assumed here
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Figure 5.14: Evolution of the mass loading factor as a function of time for three values
of the parameter τ (1, 2, 5) for all models. Each square has a pattern corresponding to
its gas fraction, and a thickness that follows the stellar mass bin as indicated in the top
corner of the first panel.

to be 1051 erg), Mgas(R) is the mass of gas to which the SN energy is transferred inside
the region of radius R and ∆t is a typical timescale over which to integrate.

We can now compare such a transfer of energy ∆ESN to an estimate of the energy of
the gas (Egas) meant to be fuelled to the centre, hence within the bar region (R ≥ Rbar).
Assuming gas is travelling from the end of the bar towards the centre with a maximum
velocity proportional to the circular velocity (Vc) at Rbar, it is equivalent to the kinetic
energy density:

Ek
gas = 1

2V 2
c (Rbar). (5.2)

In the following, we will assume that supernovae feedback can prevent the formation
of a central mass concentration if it releases sufficient energy to perturb the coherence of
the flow, i.e. when ∆ESN integrated over a typical fuelling timescale is larger than Ek

gas. A
relevant timescale is the orbital period for elongated orbits (x1; REF) along the bar, hence
the period 2π/Ωb where Ωb is the pattern speed of the bar. For gas to move from the bar
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ends to the central region takes a fourth of that time, or about a crossing time given by:

∆tc = Rbar

Vc(Rbar)
≈ R

3/2
bar√

GM(Rbar)
(5.3)

where M = M∗ + Mgas = M∗/(1 − fgas) (assuming dark matter is negligible within the bar
region, and with fgas the gas mass fraction).

The condition to prevent a seed formation is then given by ∆ESN(R) ≥ δEk
gas for radius

R = Rbar and a fraction of the time interval prescribed in Eq. 5.3: δ thus encompasses
both the fraction of the SN energy that couples with the ISM (a few per cent) and the
fraction of the crossing time needed to imprint such a perturbation. Using Eqs. 5.1 and
5.2, we can express that condition via the specific star formation rate (SSFR = SFR/M∗)
within the bar as:

SSFR(Rbar) ≥ G3/2

2 · δ mSN

η ϵSN
·

 fgas

(1 − fgas)5/2 · M
3/2
∗

R5/2


Rbar

= B(Rbar) (5.4)

where fgas is the gas mass fraction within the bar region.
For all of our simulations, both sides of Eq. 5.4 are evolving with time once the bar

has formed. Assuming Rbar does vary slowly once the bar has formed, most of the time
variation is encompassed within the star formation rate (on the left-hand side), and the
gas mass fraction (on the right-hand side). For fgas varying from 0 to 40%, the associated
term varies from 0 to ∼ 1.5. The value of the parameter δ is estimated via the ratio
SSFR/B from our simulations as shown in Fig. 5.15. This figure shows the evolution of
this ratio for models G013 (solid blue curve), G025 (blue dashed curve), G037 (solid red
curve), and G053 (red dashed curve). We observe the formation of a gas reservoir in model
G053 in the time interval corresponding to the green-shaded area, while we only start to
see the structuring and building of a central gas concentration (seed) in model G037. This
suggests that the value of δ should be between 10 and 20 when the seed forms and we thus
fix its value to 15. Using observed radial profiles, we can then estimate those values for
the PHANGS main sequence star-forming galaxies. Finally, we could try to estimate the
local relation provided by Eq. 5.4 for samples like the MaNGA set of galaxies, using simple
prescriptions to work from global SFR, gas and stellar mass values.

To understand where disc galaxies of the SFMS would lie in Fig. 5.16, we call the
relation provided by (Leroy et al., 2019):

log10(SFR) = a log10(M∗) + b, (5.5)

where a = 0.68 and b = −6.97.
The SFMS relation intersects the B function for a stellar mass of 109.7 M⊙. Including

uncertainties associated with the above-mentioned parameters, we see that the transition
for the main sequence would occur at stellar masses between 109.5 and 1010 M⊙, consistent
with the observed change of regime in our simulations.
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Figure 5.15: Evolution over time of the ratio SSFR/B evaluated at R=l∗ for four of our
models: G013 (solid blue curve), G025 (blue dashed curve), G037 (solid red curve), and
G053 (red dashed curve). The green diamonds illustrate four reference times: 1150.0,
1350.0, 1550.0, and 1750.0 Myr. The green shaded area is the time interval for which we
observe the formation of a gas reservoir in model G053.
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Figure 5.16: Comparison between our toy model and MaNGA data. The top panel shows
the specific star formation rate (orange line) and the B function (black line) with their
errors illustrated by the shaded areas. The bottom panel shows the same curves and
the MaNGA data split into different morphological types as a function of the SF (Hα)
distribution: along the bar (blue diamonds), centre (red dots), ring (red circles), and
centre-bar ends (purple lemniscate (∞) symbols).
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6.1 The characteristics of the gas reservoir
- The analysis presented in this chapter is not part of the published papers as reported in
the previous chapters.

This part of the thesis is a first step to characterise in more detail the building of
the gas reservoir by probing its growth over time, its three-dimensional structure, and its
orientation with respect to the bar. We also show the evolution of the position of the
central SMBHs and the characteristics of their motion once the gas reservoir forms.

6.1.1 From the seed to the disc
The common scenario proposed to explain the formation and evolution of central gas
reservoirs is the so-called ‘inside-out’ scenario. In this scenario, after the bar forms, it
starts to fuel gas toward the central region, where it accumulates and reaches higher and
higher densities, increasing the SFR. A central seed appears and gas fuelled by the bar
arrives at the seed and makes it grow over time. In Chap. 5, we have shown that this seed
appears because the gravitational potential is strong enough to counterbalance the impact
of the SNe feedback, and keep a regulated and efficient fuelling pattern.

Results in Chap. 4 are in good agreement with the above scenario. In this chapter,
we have seen that the gas density peaks around τ = 1.5, followed by a starburst phase
(from τ = 1.5 to 2) with the formation of many stars inside the central 1 kpc region (i.e.,
SFR between 1 and 10 M⊙/yr for ∼1 tbar). The last phase (from τ = 2) is the long-
term depletion phase during which the gas is fuelled to the centre and directly converted
into stars. In our simulations forming a gas reservoir, we observe that it emerges during
this depletion phase (i.e., after τ = 2) as shown in Fig. 6.1. In this figure, we show the
evolution of the size of the semi-major (blue curve) and semi-minor (orange curve) axes
of the gas reservoir for three of our models. We also show the ellipticity ϵ illustrated by
the grey curve. The two models in the top panels have a stellar mass of 1010 M⊙, while
the two models in the bottom panels have a stellar mass of 1010.5 M⊙. We observe that
the beginning of the growth (the seed) occurs earlier for the higher-mass models at around
τ = 2 and later for the lower-mass models around τ = 3 − 4. We also see that the gas
fraction plays a role since the 20% gas fraction models (G053 and G137) seem to form a
seed earlier compared with the 10% gas fraction ones (G037 and G105). Once the seed is
established, we observe a relatively linear growth of both the semi-minor and major axes in
such a way that the ellipticity does not vary significantly over time. We also observe that
the size of the reservoir depends on the stellar mass of the model, with the size increasing
with the stellar mass. We note that the larger size of the gas reservoir of more massive
models may be due to an earlier formation time.

The impact of a central bulge with a mass of 10% of the total stellar mass on the
formation of the reservoir is shown in Fig. 6.2. This figure illustrates the growth of the
central gas reservoir for the same models as above but with a central bulge added from the
beginning of the simulation. We observe that the bulge helps to form a seed earlier than
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in non-bulged models. This is explained by the fact that bulged models develop an ILR
earlier. We see the same trend with stellar mass and the gas fraction. In the lower mass
models (G038 and G054), we observe the formation of the seed around τ = 3 for the 10%
gas fraction model (G038) and around τ = 2 for the 20% gas fraction model. In the case
of the higher-stellar mass models, the seed appears even earlier around τ = 1.5.

6.1.2 The 3D structure of the underlying stellar disc
We have briefly investigated the disc of newly-formed stars emerging with the formation of
the gas reservoir. Figure 6.3 illustrates the time evolution of the central region of models
G025 (top), G037 (middle), and G105 (bottom). In this figure, we see for each model the
evolution of the face-on (x-y, five top panels) and edge-on (x-z, five bottom panels) view
of their cumulated newly-formed stars for five different snapshots corresponding to 500,
1000, 1500, 2000, and 2500 Myr.

As we expected, model G025 does not show the formation of a central nuclear stellar
disc because of its low-stellar mass (i.e., 109.5 M⊙). We observe the emergence of a bar-like
structure around 2000 Myr, but there is no central concentration of stars forming a disc-
like structure. We see that the thickness of the disc grows over time, but the new stars
continue to spread over most of the bar region. The evolution of model G037 shows the
formation of a central nuclear stellar disc, which results from the formation of a central
gas concentration. The face-on view illustrates its growth and we observe a clear disc-like
structure emerging between 1500 and 2000 Myr. The edge-on view shows the emergence
of a thinner stellar disc embedded in a larger ‘boxy-peanut’ bulge extending vertically to
∼ 500 pc. This trend is even more visible in model G105, where we observe the emergence
of a disc between 500 and 1000 Myr. The edge-on view reveals a more extended thinner
disc surrounded by the ‘boxy-peanut’ bulge extending from 500 to ∼ 500 pc. We have
visually checked this trend for all our models forming a gas reservoir and we conclude that
this ‘boxy-peanut’ bulge only forms when a central disc is established.

6.1.3 Orientation of the gas reservoir with the bar angle
We have computed the bar and gas reservoir angle to study their orientation with respect
to each other in four of our models forming a gas reservoir. Figure. 6.4 shows the evolution
of the bar (red curve) and gas reservoir (blue curve) angle as a function of τ for four of
our models G037, G053, G105, and G137. We see that the rotation of the bar becomes
structured and periodical once the bar forms at τ = 1. We observe the same trend for the
gas reservoir angle with a clear oscillation pattern emerging once the gas reservoir forms.
We have also computed the absolute difference (grey curve) between those two angles to
probe the evolution of the orientation of the gas reservoir with respect to the bar semi-
major axes. We note some oscillations of the curve which are artefacts uniquely due to
abrupt periodical cuts in the bar and gas reservoir angle. In the case of models G037 and
G137, we see that the algorithm we used does not show a good result for the angle of the
gas reservoir, but is enough to observe a signal. We have computed the median and mean
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Figure 6.1: Evolution of the semi-major (blue curves) and semi-minor (orange curves) axes
lengths of the gas reservoir for 4 of our non-bulged models. The two first top panels show
models with a stellar mass of 1010 M⊙, and a gas fraction of 10 and 20% for G037 and G053,
respectively. The two bottom panels show models with a stellar mass of 1010.5 M⊙, and a
gas fraction of 10 and 20% for G105 and G137, respectively. The ellipticity is illustrated
by the grey curve.
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Figure 6.2: Same as in Fig. 6.1 but with the equivalent (in mass and gas fraction) bulged
models.

values of the difference between those two angles and found a median value of 89, 89, 90,
and 90 degrees for models G037, G053, G105, and G137, respectively. On average, we
find the gas reservoir of all our models is almost perpendicular (±1 degree from 90) to the
bar. This result is coherent with previous works because the backbone family of orbits of
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the bar (x1) and the gas reservoir (stellar disc, x2) are supposed to be perpendicular to
each other. It is finally worth mentioning that we have not detected an oscillation of the
gas reservoir with respect to the bar because the time resolution of our snapshots is not
high enough to probe fast angle variations: a re-run of those models with a higher output
frequency may be required to further examine this issue.

6.2 Motion of the central black hole
There is one aspect of the simulation we have not exploited yet. This aspect is the evolution
of the position of the central BH we have initially placed at the centre of the box. We have
only considered this central BH as a massive point particle and studying the evolution
of its position over time could help constrain future experiments that probe the sub-pc
fuelling processes. The main hurdle here is that the central gas and stellar disc structures
move and do not stay at the centre of the box over time. It is then crucial to track the
position of the centre of those structures and probe the BH position with respect to that
centre. We chose to calculate this centre by using the newly formed stars and we show the
evolution of the relative position of the BH with respect to that centre in Fig. 6.5, 6.6, and
6.7.

Figure 6.5 illustrates the evolution of the relative position of the BH for 4 low-mass
models with a stellar mass of 109.5 M⊙. We see that the trajectory of the BH is relatively
chaotic and the amplitude of its motion increases with the gas fraction with 10, 20 and
40% for models G001, G013, and G025, respectively. In the four models, the normalised
radius oscillates and we observe a decrease in its amplitude for models G001 and G013.
The last model G026 is the same as G025 but with a stellar bulge since the beginning of
the simulation. We observe that the motion of the BH is still chaotic. This emphasises
that in such low-mass simulations, there is no well-defined ‘centre’ of mass within the bar
region.

Figure 6.6 illustrates the evolution of the relative position of the BH for 4 high-mass
models with a stellar mass of 1010 M⊙ for the two top panels and 1010.5 M⊙ for the two
bottom panels. We observe a chaotic motion with amplitudes ranging from about 0.25 to
0.4 r/l∗for G037 and G053, and 0.15 to 0.25 for G105 and G137. This amplitude tends
to decrease with increasing stellar mass and increase with the gas fraction. We witness
a rapid and neat drop with an almost constant zero value of the normalised radius. It is
worth mentioning that the drop we observe is correlated with the value of τ at which the
seed emerges, as we can see in Fig. 6.1

The BH motion of the two test models G001-NOSN and G000M975 is shown in Fig. 6.7.
We observe the same trend for the evolution of the normalised radius as in the higher-mass
models. The model without supernovae does not show high amplitude oscillations of the
position and the BH stays in the central ∼ 0.1 − 0.2 kpc region inside the gas reservoir.
This result is artificial for such a low-stellar mass model and suggests an impact of SNe
feedback on the relative motion of the central BH. We measure that the SNe feedback
tends to increase the amplitude of the oscillations of a factor from about 0.2 to 0.6 l∗
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in model G001, while without feedback the maximum amplitude of the oscillations is
limited to ∼ 0.02 l∗. Concerning the intermediate-mass model G000M975, we observe
some oscillations of the normalised radius before it drops and stays constant as in model
G037. This is expected because this model also forms a gas reservoir and we think that
its intermediate-stellar mass of 109.75 places it at the border of the transition between the
two regimes.

The evolution of the BH position we observe in the low- and high-stellar mass models
may be a numerical artefact. We have chosen the same mass (i.e., 10,000 M⊙) for the old
star particles in all of our models but the mass of the BH increases with the stellar mass of
our models: 105.5, 106, 106.5, and 107 M⊙ for models with a stellar mass of 109.5, 1010, 1010.5,
and 1011 M⊙, respectively. The ratio between the individual mass of the star particles and
the BH is, therefore, higher in the lower-stellar mass models and the BH will be easier
to move from its initial position and will show higher amplitudes in the oscillations of its
position.. We have not tested the impact of the initial position of the BH on the evolution
of its position over time but this could also have an impact on the stellar and gas dynamics,
perturbing the formation of the gas reservoir in our higher-stellar mass models.
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Figure 6.3: Formation and evolution of the disc of newly-formed stars for model G025,
G037, and G105. For each model, the five top and bottom panels show the face-on (x-y)
and edge-on (x-z) view of the disc, respectively.
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Figure 6.4: Evolution of the bar (red curve) and gas reservoir (green curve) angle as a
function of the parameter τ for models G037, G053, G105, and G137. The grey curve
illustrates the absolute difference between those two angles.
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Figure 6.5: Evolution of the BH position over time for 4 low-mass models (109.5 M⊙). For
each model, the top panel illustrates the relative position (X-Y in kpc) of the BH with
respect to the centre of mass of the newly-formed stars. The bottom panel shows the
evolution of the normalised radius (r/l∗) of the relative position observed in the top panel.
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Figure 6.6: Same as in Fig. 6.5 but with two higher stellar-mass bins. The top panels show
two models with a mass of 1010 M⊙, and the bottom panels show two models with a stellar
mass of 1010.5 M⊙.



148 6. Characterising the gas reservoir and its connection with the black hole

Figure 6.7: Same as in Fig. 6.5 but with the two test cases G001-NOSN and G000M975,
having a stellar mass of 109.5 and 109.75, respectively.



Chapter 7

Conclusion and perspectives
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7.1 Summary

7.1.1 The grid of models
In this project, we used hydro-dynamical N-body high-resolution simulations to study
the building and evolution of central gas reservoirs in nearby barred star-forming disc
galaxies. The main goal was to connect the formation and evolution of those gas reservoirs
with the large kpc scale fuelling of the stellar bar, and their consumption with the star
formation occurring inside the bar region. This work is a first step toward a comprehensive
understanding of the central black hole fuelling, bridging the large kpc scale of the bar,
the few hundred pc scale of the reservoir, and the sub-pc scale down to the vicinity of
the SMBH. To this end, we have designed a grid of 54 galactic models based on the
PHANGS-ALMA sample. Our models are composed of 4 control parameters out of 5
galactic parameters (i.e., the stellar mass, the gas fraction, the stellar scale length, the gas-
to-stellar scale length ratio, and the bulge mass fraction). We have fixed the gas-to-stellar
scale length ratio to 2 for the entire grid. The stellar mass is split into 4 bins (9.5, 10,
10.5, and 11 log10(M⊙)), the gas fraction, stellar scale length, and the bulge mass fraction
depend on the stellar mass and their values have been selected by using the PHANGS
galaxies.

We performed the simulations of the 54 models with the RAMSES code at a maximal
spatial resolution of 12 pc. We have generated our initial conditions by using the Multi
Gaussian Expansion (MGE) method, and the position and velocity of each particle (i.e.,
stars and DM) by solving the Jeans equations. Our initial conditions are axisymmetric
about the z-axis and at dynamical equilibrium. The number of star particles increases with
the stellar mass of the model, but we have fixed the mass resolution to ∼ 104 M⊙. The
stellar component is composed of an exponential stellar disc and an ellipsoidal Sersic bulge
is added for specific models. The DM halo follows an Einasto profile and the number of
particles is always fixed to 106 for every model. The code treats the gas component on an
AMR grid and generates an exponential gas disc twice as large as the stellar one. The gas
component is self-gravitating, includes a cooling function, and can collapse and form new
stars. The strategy we use for the adaptive refinement of the grid cells to the last level is
based on the Jeans law and the density threshold we used for SF (i.e., 100 H/cc) is derived
from the same law applied to the last level of refinement, corresponding to 12 pc.

7.1.2 The phases of the bar-driven fuelling
We have run a priority set of 16 simulations, focusing on the four stellar mass bins with a
gas fraction of 10 and 20%, and a bulge mass fraction of 0 and 10% for each model. We have
checked that our simulations are located on the star-forming main sequence and observed
that the simulations of the lowest-stellar mass bins (109.5 M⊙) are below the main sequence.
We explained the latter by their initial low gas mass fraction (10%) compared with observed
galaxies with the same stellar mass (∼ 40%). We have computed the evolution of the gas
mass inside the central 1 kpc region and compared it with the evolution of the bar strength
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(measured via the A2 Fourier coefficient) and the SFR inside the same 1 kpc region. We
have found a correlation between the evolution of the central 1 kpc gas mass and the growth
of the bar and defined a dimensionless parameter τ , the normalisation of the time by the
typical bar formation time tbar. This typical bar formation time corresponds to the time
at which the bar strength A2 reaches the value of 0.2, commonly used in the literature.
We compared our bar formation times with the Fuji relation and found some discrepancies
between previous works and our models, that were not recovered even after performing a
resolution study. The analysis of the evolution of the central 1 kpc gas mass as a function
of τ has revealed four clear and distinct phases of the fuelling by the bar for all our models
developing a bar:

1. τ ∈ [0, 1]: formation of the bar,

2. τ ∈ [1, 1.5]: increase of the gas mass in the central region,

3. τ ∈ [1.5, 2]: peak in the gas mass triggering a starburst,

4. τ ∈ [2, end]: long-term gas depletion.

We have analysed the gas and SF maps allowing us to highlight that the 4 low-stellar
mass models did not form a gas reservoir. We also pointed out that those low-stellar mass
models display uniform star-forming distribution along the bar compared with the higher-
stellar mass models showing star-forming regions located inside the gas reservoir and at
the bar ends. This last result was already reported in previous works and after a deeper
analysis of the PHANGS-JWST galaxy imaging, we came to the same conclusion: low-
and high-stellar mass galaxies have different regimes in the evolution of their gas structure.

7.1.3 The low- and high-mass regime
We have used an extended set of 35 models, including the discs with a gas fraction of
40% for the two lowest-stellar mass bins (i.e., 9.5 and 10) to probe and understand the
physical origin behind this change of regime. We have found that once the bar forms, the
gas structure in the low-stellar mass models remains turbulent and chaotic. This trend for
the gas structure in the low-mass discs is more visible when we increase the gas fraction
up to 40%, replacing those low-mass simulated galaxies on the SF main sequence that
we missed with our first subset of 16 models. In the high-stellar mass models (≤ 1010

M⊙), after the bar forms, we observe the formation of a central gas concentration (i.e.,
the seed) and have found the inside-out building of the gas reservoir. We have probed the
SF distribution and confirmed our above-mentioned claim that low-stellar mass models
have a spread distribution along the bar and high-stellar mass models have a concentrated
central distribution. We have compared the evolution of the azimuthally-averaged gas mass
profile with its initial exponential shape and found a clear difference for barred models.
In both cases, the bar is responsible for steepening the profile within the 2 l∗ region. In
the low-mass models, the profile rises monotonically to the centre, while in the high-stellar
mass discs, we observe a drop of the profile with a minimum value, followed by a steep
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increase to the centre. The dip in the high-stellar mass models is associated with the
emergence of a gas reservoir. We have computed the evolution of the distribution of the
viral parameter and Mach number for the star-forming cells of two reference simulations.
We have not found any significant change in those distributions for the low-stellar mass
case but observed drastic changes with the formation of a subsonic peak in the high-mass
model, tracing the gas reservoir. We have probed the presence of an ILR in the high-mass
barred models, which supports the picture of a gas reservoir forming inside the resonance.
We have measured the ratio between the vertical gas velocity dispersion and the escape
velocity profile and used them as tracers of the supernova feedback and the gravitational
potential, respectively. We found higher values of this ratio for the low-mass models,
suggesting the role of supernovae in preventing the formation of gas reservoirs in low-mass
discs. We have performed a low-mass test case model without supernovae feedback and
exhibiting the formation of a gas reservoir, confirming our hypothesis about supernovae
preventing the formation of gas reservoirs. To illustrate the balance between the energy
released by supernovae in the ISM and the gravitational potential, we elaborated a simple
toy model, allowing us to express the specific SFR as a function of the control parameters
of our models. This potentially illustrates that the transition between the two regimes
occurs at a stellar mass of around 109.5 M⊙.

7.1.4 The growth and shape of the gas reservoir

In the last part of this work, we have briefly probed the physical properties of the gas
reservoir and its configuration with respect to the central black hole. We have computed
the evolution of its semi-major and minor axes over time and found that their growth
rates start with an abrupt growth and then seem relatively linear with time. We have
also noticed that their ellipticities seem constant over time, ranging from ∼ 0.4 to 0.5.
We have observed the edge-on properties of the inner stellar disc and found a thinner disc
embedded inside a larger ‘boxy-peanut’ bulge of new stars. We have briefly checked the
orientation of the semi-major axes of the gas reservoir with respect to the bar angle and
found a value of around 90 degrees. We have finally computed the location of the black
hole with respect to the centre of mass of the inner stellar disc. We have found that the
black hole wanders along the bar for the lower-stellar mass models, resulting in oscillations
of its position with high amplitudes (∼ 0.6 − 1.2 l∗), increasing with the gas fraction, until
the end of the simulation. In the higher-stellar mass models, we also observe oscillations
with amplitudes increasing with the gas fraction and decreasing with the stellar mass. We
notice an abrupt stop of those oscillations, corresponding to the formation and settlement
of the gas reservoir, forcing the black hole to stay at the centre of the stellar disc. We
mention that this last result could be mainly due to numerical effects and should be tested
in different conditions (e.g., the mass resolution of the star and DM particles, the mass
of the black hole, initial position of the black hole, black hole accretion). Therefore, this
result must be taken with extreme caution.
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7.2 Limitations of this work
We have carried out this work with a grid of models using galactic parameters based on
a sample of observed galaxies. This sample does not offer a comprehensive view of all the
characteristics of nearby disc galaxies but is meant to represent a first reference frame to
answer the two questions that have motivated this work. There are still some limitations
to this work that come from the grid of models, and the setup we have used for the
simulations.

• The discrepancy with the Fujii’s relation: We have compared the typical bar
formation time of our first subset of 16 models to the Fujii’s relation (see Fujii et al.,
2018) and found they fall below the exponential curve derived by the work carried
out by Fujii. We have not tested different dynamical initial conditions, by changing
the model of the stellar and gas disc or DM halo that could impact the initial velocity
curve. This may change the value of fdisc and help to recover the Fujii’s relation.
In any case, this shows that Fujii’s relation is not an absolute reference and the bar
formation time is a complex physical quantity which depends on more than one single
parameter.

• The numerical convergence: The referee of our first publication has been required
to perform a numerical study on the convergence of our typical bar formation times
(tbar). We have performed this resolution study on one case (i.e., model G037) by
varying the number of particles and the maximum level of refinement. We have
not concluded on a neat convergence of tbar for this model, which leaves unknown
uncertainties on the real bar formation time.
Moreover, a second grid of models run at a higher resolution (1 pc) was initially
planned to check the convergence (i.e., bar formation time, formation of gas reservoirs,
stellar feedback) of our first grid. Unfortunately, I did not manage to run those high-
resolution models to include them in this work and could therefore not test them
further.

• The gas disc rejuvenation: The four phases we have described in our first publi-
cation describe the bar-driven fuelling until about 2 to 4 times longer than the bar
formation time. Then, we reach the long-term SF and depletion occurring inside
the central kpc region until the emergence of the gas reservoir. We ignore how this
scenario evolves once we consider a refuelling of the large 10 kpc scale gas disc. An
interesting avenue would consist of generating an initial gas disc extending much far-
ther than ours. It could then continuously supply gas to the galaxy, as we can see in
NGC6946. The second method would initially generate additional massless particles
in the gas disc, which would inject gas into the system during the run by turn-
ing on and off a simple button (an idea proposed by Florent Renaud and currently
implemented by one of his students).
Throughout this work, we have used a simple view of our simulations, by mostly
focusing on their central regions. Apart from the mass loading factor, we did not
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consider the impact of potential outflows and fountains on the rejuvenation of the
gas disc.

• The connection with the observations: This work aimed at building a grid of
simulations with parameters spanning typical values of PHANGS. During this PhD,
we did not manage to fully connect this suite of simulations with the PHANGS
observations. It is worth mentioning that the property of the change of regime has
emerged naturally from our models and we took this opportunity to compare it with
the full set of PHANGS-JWST galaxies such as NGC1087 and NGC3507 illustrated
in Chap. 5.

7.3 Outlook
I The exact value and conditions of the stellar mass threshold: The attempt

of the toy model to describe the physics of the change of regime is not enough. We
would need to perform another set of simulations focusing on stellar masses from 109.5

to 1010 M⊙ by step of 0.1 dex in stellar mass. This would allow us to better capture
the mass threshold and the different physical conditions of the change of regime. The
numerical recipes (e.g., stellar feedback, refinement strategy) we use can also impact
the stellar-mass threshold and we would need to investigate their impact to be able
to fully describe the physics of the change of regime.

II Improve the realism of our simulations: We have already mentioned the subset of
high-resolution (1 pc) simulations we plan to perform. At this resolution, in the central
region, we could start to study the impact of the stellar feedback on the transport of
gas inside the reservoir itself. In addition, we could also turn on the accretion of the
central SMBH and the AGN feedback. This would allow us to study the impact of
an AGN on our galactic systems, more particularly the connection of the AGN duty
cycle with the gas reservoir and the impact on its secular evolution.

III The cosmological environment: We have started this thesis by introducing the
cosmological context, but we have never made the connection with our results in this
work. An interesting perspective would be to perform the same grid of simulations
by introducing an ‘external environment’ that may include, e.g., gas accretion, galaxy
interactions, at different phases of the disc secular evolution.

IV Re-connection with PHANGS: The PHANGS collaboration is an extremely active
community and the launch of the JWST telescope has opened up new opportunities
to explore the inner structures of the galaxy sample. A number of studies conducted
in the course of the PHANGS project closely relate to my own research. In particular,
the work of Stuber et al. (2023) on the morphological classification of CO maps and
shapes of inner dust lanes is directly relevant to my line of work. A more direct
comparison between our grid of simulations on one hand and the dust and molecular
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gas distributions as witnessed by JWST and ALMA on the other hand could allow us
to better constrain the conditions for and properties of the ongoing fuelling.

Final word

Throughout this manuscript, I mentioned a grid of simulations made of 54 models. We
have run the full set of 54 models and, after a visual check, decided to use only some of
them that are the most relevant for this work. All the models displaying a clear stellar bar
after the end of the run (i.e., ∼ 3 Gry) are already mentioned in Tab. 5.1.
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Appendix A

Paper 1

A.1 Evolution of the models as a function of the pa-
rameter τ

As mentioned in Sect. 4.4.3, we have identified three distinct phases in the building and
evolution of the gas reservoir by using the dimensionless parameter τ = t/tbar, where tbar

is the typical bar formation time. The following figures illustrate the time evolution of the
system for the 16 simulations providing snapshots at four different values of τ (i.e. 1, 1.5,
2, and End, for the end of the simulation). For each simulation, we gather the four models
belonging to the same initial stellar mass into one figure. Each panel corresponds to one
labelled simulation: each include a zoom (box of 10 kpc on a side) and 4 row with the
surface densities of (from top to bottom) the gas, of the (new) stars formed within 50 Myr
of the corresponding snapshot time, of all old (initial) stars and of all (new) stars (formed
since the beginning of the simulation). Fig. A.1, A.2, A.3, A.4 refer to the models with a
stellar mass of 9.5, 10, 10.5 and 11 log10(M⊙), respectively.

In the top rows of the most massive initial stellar mass bins (Fig.A.2, A.3, A.4) we wit-
ness the formation of a clearly marked inner gas structure (except for model G162M110F10L5B10,
and for model G178M110F20L5B10), while simulations presented in Fig. A.1 do not exhibit
such gas structures. We also observe a change in the distribution of new stars that tend to
emerge along the bar structure for the lowest stellar mass models, and are more localised
(inner region) for the higher stellar mass models from τ ≥ 2. There is an associated differ-
ence in the structure of the bar with the more massive galaxies presenting a more distinct
and rounder stellar concentration (within the bars). This central concentration could be
caused by the emergence of an ILR as discussed in Sect. 4.4.1, and 4.4.5.
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Figure A.1: Time evolution as a function of τ of the gas surface density (top row, GAS),
formed stars’ surface density (second row, NS), old stars’ surface density (third row, OS),
and cumulative formed stars’ surface density (bottom row, CNS) of the four lowest stellar
mass models (109.5 M⊙). Each panel shows a box with a side length of 10 kpc.
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Figure A.2: Same as Fig. A.1 for the four 1010 M⊙ stellar mass models.
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Figure A.3: Same as Fig. A.1 for the four 1010.5 M⊙ stellar mass models.
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Figure A.4: Same as Fig. A.1 for the four 1011 M⊙ stellar mass models. The box size has
been extended to 20 kpc for this most massive stellar bin.
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Appendix B

Paper 2

B.1 The gas and star formation distribution in non-
barred systems

The models we mainly use as illustrations in this work are the ones forming bars (Y,
Tab. 5.1) because they highlight the two stellar-mass regimes. In this section, we show
four models which never form a stellar bar (i.e., A2 ≤ 0.2) or do not keep it until the end
of the run (∼ 3000 Myr) to compare them with the four barred models in Fig. 5.2.

Figure B.1 illustrates the gas and newly-formed star density maps at four different
time steps (i.e., 500, 1000, 2000, and 3000 Myr) of four of our models. In these figures,
we show the two lower-stellar mass models G015 and G032 (109.5 M⊙, top panels) and
two higher-stellar mass models G045 and G069 (1010 M⊙, bottom panels). In the two
top panels, the lower gas fraction model G015 (F=20%) displays a spiral structure that
does not significantly evolve with time. The higher gas fraction model G032 (F=40%) also
shows some spiral structures but the ISM is more turbulent because of the higher SFR due
to a higher gas fraction. The two bottom panels show models with gas fractions of F=10
(G045) and 40% (G069). Model G045 also shows a spiral pattern but starts to develop a
bar-like structure between 2 and 3 Gyr. We do not consider this structure as a bar because
its A2 Fourier coefficient stays below the value of 0.2. We observe in Fig. B.1 that the SFR
of this model remains low until t=2000 Myr.

B.2 Interaction with a massive stellar cluster
The case of model G069 is more relevant for this work because of its high gas fraction
and the fact that it forms a bar after ∼ 315 Myr. The interesting part is that the bar is
destroyed after ∼ 1500 Myr by a massive stellar cluster (∼ 107 M⊙) formed in situ during
the run. In the bottom right panels of Fig. B.1, we observe that the bar has already formed
after 500 Myr, with a higher gas density in the inner bar region, resulting in a high SFR.
At t=1000 Myr, we see the formation of a central gas concentration, which marks the
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beginning of the building of the gas reservoir. Between t=1000 and 2000 Myr, a massive
stellar cluster is formed in the outer part of the disc and is transported by dynamical
friction to the centre, where it interacts with the bar and destroys it completely, as shown
in Fig. B.2. After the destruction of the bar, the SFR steadily decreases until the end
of the simulation. Even though we did not classify model G069 as a barred model, its
properties are very similar to the properties of higher-stellar mass barred models until the
moment of the interaction with the massive stellar cluster.
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Figure B.1: Same as in Fig. 5.2 but for four non-barred models: G015, G032, G045, and
G069.
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Figure B.2: Density map of the newly-formed stars of model G069 showing the interaction
of the in situ formed stellar cluster and the bar region.
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