
Fast and Effective Methods for
Pattern Mining in Complex Data

Sebastian Göbl

Munich 2022

Fast and Effective Methods for
Pattern Mining in Complex Data

Sebastian Göbl

Dissertation
im Fach Informatik

an der Fakultät für Mathematik,
Informatik und Statistik

der Ludwig–Maximilians–Universität
München

vorgelegt von
Sebastian Göbl
aus München

München, den 26.10.2022

Erstgutachter: Prof. Dr. Christian Böhm

Zweitgutachter: Prof. Dr. Karsten Borgwardt

Tag der mündlichen Prüfung: 15.04.2024

Abstract
Among today’s challenges in big data science, called the "Big V’s", variety induces
an enormous complexity of data. A vast number of portable or stationary devices
collect sensor or user information of various types. In medicine, diagnostic tools
observe many biological parameters and produce high-dimensional data for each
patient. The patterns we are looking for are obscured by correlated attributes
and noise. User information collected from the web (e.g., Facebook data) consists
of very heterogeneous data domains: for example, age is provided as a natural
number and height as a real number – both continuous ranges easily analyzed
by distance functions. Heterogeneity is increased by adding dichotomous or
general categorical domains (e.g., sex or citizenship) or relational information
(e.g., Facebook likes). Very large, complex networks, such as email or authorship
connections, are approached using the abstraction of graph representation.
Graph mining methods search for patterns and rules that allow us to understand
how these networks were created. In realistic settings, such as communication or
power networks, graphs exhibit heterogeneous patterns beyond simple clusters
or communities. The goal of this thesis is to contribute to tackling the challenges
that arise from the complexity of data.

Challenges: We take on five key challenges (C 1 to 5) derived from mining
complex data and pointed out by the data mining community: graph and network
mining (C 1) requires new efficient and effective algorithms for pattern mining
due to the complexity of graphs over classic dimensional data, considering edge
types, edge weights, or edge numbers following power laws. Explainable data
mining (C 2) is required for transparent output and transparent algorithmic
decisions since increasing model complexity makes it harder for the user to
understand and learn the structure and patterns in the data. High-dimensional data
mining (C 3) asks for efficient algorithms to tackle the large data size, increasing
noise, and the large number of dimensions. Mining heterogeneous data types (C 4)

i

Abstract

requires integrated solutions for pattern mining of data with not only numerical
but heterogeneous data domains. Parameter-free data mining (C 5) automatically
finds suitable parameters for algorithms since complex data and models make it
tedious for the user to define good input parameters.

Contributions: We present four fast and effective algorithms to address these
challenges. Our first two proposals, MeGS and Spectral Lens, focus on graph
mining, while our third and fourth methods, FOSSCLU and INTEGRATE, focus
on clustering. Our graph mining algorithm MeGS (Partitioning Meaningful Sub-
graph Structures using Minimum Description Length) looks for homogeneous
patterns (subgraph structures) in graphs. It allows a complete understanding
of these structures and, thus, the whole graph (C 1). It matches meaningful
primitives (clique, hub, tree, bipartite and sparse subgraphs) to all partitions of
a graph. Every node of the graph is part of precisely one structure and has an
interpretable context (C 2). MeGS is a fast and parameter-free split-and-merge
algorithm that automatically finds the optimal structures that achieve the best
compression by minimum description length (MDL) (C 5). With weighted and
unweighted, directed and undirected networks, the graph challenge (C 1) can
take on more complex shapes: With Spectral Lens, we introduce an efficient
and effective method to address even very large (C 3) graphs, despite having
additional edge weights or directed edges (C 4). Our algorithm identifies con-
nectivity patterns given by a dictionary of rules to gain insights (C 2) into a
graph’s communities, e.g., their power-law distribution, and discovers anoma-
lies. Spectral Lens can automatically find the optimal number of communities
(C 5) that describe the network best. Our algorithm FOSSCLU (Finding the
Optimal Subspace for Clustering) takes up the challenge of data dimensionality
(C 3) in clustering. For human understanding, it is important to simplify and
categorize things. Therefore, it is highly valuable to find clusters in one com-
mon low-dimensional subspace where we can study not only the intra-cluster
but also the inter-cluster relationships (C 2). We propose FOSSCLU to find
this subspace in a joint, alternating process of clustering and dimensionality
reduction. FOSSCLU is rendered parameter-free with the aid of MDL (C 5). We
approach the difficulties in clustering heterogeneous data (C 4) by proposing
INTEGRATE: Our parameter-free algorithm integrates the information supplied
by heterogeneous numerical and categorical dimensions and exploits both for

ii

Abstract

clustering. INTEGRATE is efficient and scalable and automatically decides on
parameter values (C 5) using MDL.

Our four algorithms address key challenges arising from complex data. Our
methods are evaluated by extensive experiments on real-world data and provide
efficient and effective solutions to contribute to the key tasks of data mining.

iii

Zusammenfassung
Eine der aktuellen Herausforderungen des Big-Data-Science, die auch als "Big
V’s" bezeichnet werden, ist die Vielfalt der Daten (engl.: variety), die zu einer
enormen Komplexität führt. Sehr viele tragbare oder stationäre Geräte er-
fassen unterschiedlichste Sensor- oder Benutzerinformationen. In der Medizin
überwachen Diagnosegeräte viele biologische Parameter und erzeugen für jeden
einzelnen Patienten hochdimensionale Datensätze. Korrelierte Attribute und
Rauschen erschweren das Auffinden relevanter Muster. Im Internet gesammelte
Nutzerinformationen, beispielsweise Daten bei Facebook, umfassen sehr he-
terogene Datendomänen: so wird etwa das Alter als natürliche Zahl und die
Körpergröße als reelle Zahl angegeben — beides sind kontinuierliche Werte-
bereiche, die sich leicht mit Distanzfunktionen analysieren lassen. Die Hetero-
genität nimmt zu, wenn dichotome oder allgemein kategorische Daten (wie
Geschlecht oder Staatsangehörigkeit) oder auch relationale Informationen wie
Likes bei Facebook hinzukommen. Sehr große und komplexe Netzwerke – wie
E-Mail-Verbindungen oder Publikationsnetzwerke – lassen sich gut mit Hilfe
von Graphabstraktion untersuchen. Die Methoden des Graph-Minings suchen
nach Mustern und Regeln um zu verstehen, wie Netzwerke entstanden sind. In
der Realität zeigen Graphen (z.B. Kommunikationsnetzwerke oder Stromver-
sorgungsnetze) heterogene Strukturen, die komplexer sind als einfache Cluster
oder Communities. Die vorliegende Arbeit soll einen Beitrag zur Bewältigung der
Herausforderungen leisten, die sich aus der Komplexität der Daten ergeben.

Herausforderungen: Wir befassen uns mit fünf zentralen Herausforderungen
(C 1 to 5) des Minings komplexer Daten, die in der Data-Mining-Community
besonders hervorgehoben werden: Das Graph- und Netzwerk-Mining (C 1) er-
fordert effiziente und effektive Algorithmen zur Mustersuche, da Graphen
deutlich komplexer als klassische, dimensionsbasierte Daten sind. Das liegt an
Kantentypen, Kantengewichten und auch daran, dass die Anzahl der Kanten

v

Zusammenfassung

eines Graphen Potenzgesetzen folgen kann. Das erklärbare Data-Mining (C 2)
ist nötig für transparente Ergebnisse und transparente Entscheidungsprozesse
der Algorithmen, da der Anwender wegen der komplexen Modelle Strukturen
und Muster in den Daten nur schwer nachvollziehen kann. Das hochdimensionale
Data-Mining (C 3) erfordert effiziente Algorithmen für die großen Datenmengen
mit starkem Rauschen und hoher Dimensionalität. Das Mining heterogener Da-
tentypen (C 4) verlangt nach integrierten Lösungen zur Mustererkennung von
Daten aus nicht nur numerischen, sondern auch heterogenen Domänen. Das
parameterfreie Data-Mining (C 5) findet selbstständig geeignete Eingabeparameter
für Algorithmen, da es die Komplexität der Daten und Modelle dem Anwender
oft erschwert, selbst gute Parameter festzulegen.

Beiträge: Wir stellen vier schnelle und effektive Algorithmen vor, die einen
Beitrag zur Bewältigung dieser Herausforderungen leisten. Unsere ersten beiden
Methoden, MeGS und Spectral Lens, konzentrieren sich auf das Graph-Mining,
die anderen beiden, FOSSCLU und INTEGRATE, auf das Clustering. Unser
Graph-Mining-Algorithmus MeGS (Partitionierung aussagekräftiger Subgraph-
strukturen unter Verwendung der Minimum-Description-Length, engl.: Parti-
tioning Meaningful Subgraph Structures using Minimum Description Length) sucht
nach homogenen Mustern (Subgraphstrukturen) in Graphen und ermöglicht
ein umfassendes Verständnis dieser Strukturen und damit des ganzen Graphen
(C 1). Allen Partitionen eines Graphen werden aussagekräftige Primitive zuge-
ordnet (Clique, Hub, Baum, bipartite und dünn besetzte Subgraphen). Jeder
Knoten eines Graphen gehört zu genau einer Struktur und erhält dadurch
einen interpretierbaren Kontext (C 2). MeGS ist ein schneller, parameterfreier
Split-and-Merge-Algorithmus; mit Hilfe des Prinzips der Minimum-Description-
Length (MDL) findet er automatisch diejenige Partitionierung, die zur besten
Komprimierung des Graphen führt (C 5). Durch Graphen mit und ohne Kan-
tengewichten und durch gerichtete und ungerichtete Kanten erhöht sich die
Komplexität im Graph-Mining weiter (C 1): Mit Spectral Lens schaffen wir eine
effiziente und effektive Möglichkeit, um auch sehr große Graphen (C 3) trotz
zusätzlicher Kantengewichte und gerichteter Kanten (C 4) zu verarbeiten. Unser
Algorithmus identifiziert Konnektivitätsmuster über ein Verzeichnis von Regeln;
dadurch erhält er Einblick (C 2) in die Communities der Graphen, beispielsweise
in ihre Potenzgesetzverteilung, und er bringt Anomalien zum Vorschein. Spec-

vi

Zusammenfassung

tral Lens kann automatisch errechnen, durch wie viele Communities (C 5) ein
Netzwerk am besten erfasst wird. Unser Algorithmus FOSSCLU (Finden des
optimalen Unterraums für das Clustering, engl.: Finding the Optimal Subspace
for Clustering) befasst sich mit der Herausforderung der Datendimensionalität
(C 3) im Clustering. Für die menschliche Auffassung ist es wichtig, Dinge zu
vereinfachen und zu kategorisieren. Daher ist es sehr hilfreich, Cluster in einem
gemeinsamen, niedrig-dimensionalen Unterraum zu finden, wo wir Beziehungen
innerhalb eines Clusters und auch zwischen den Clustern untersuchen können
(C 2). Um diesen Unterraum in einem gemeinsamen, alternierenden Prozess aus
Clustering und Dimensionalitätsreduktion zu finden, stellen wir FOSSCLU vor.
Durch die Verwendung von MDL muss der Anwender keine Eingabeparameter
festlegen (C 5). Den Schwierigkeiten im Clustering heterogener Daten (C 4)
begegnen wir mit unserem Algorithmus INTEGRATE: unser parameterfreier
Algorithmus integriert Daten mit numerischen und kategorischen Dimensionen,
um beide gleichermaßen in das Clustering einzubeziehen. INTEGRATE ist
effizient und skalierbar. Eingabeparameter werden mit Hilfe von MDL automa-
tisch bestimmt (C 5).

Unsere vier Algorithmen nehmen zentrale Herausforderungen in Angriff, die
durch die Komplexität der Daten verursacht werden. Unsere Methoden werden
durch umfangreiche Experimente an Echtweltdaten evaluiert und leisten mit
effizienten und effektiven Lösungen einen Beitrag zu den Kernaufgaben des
Data-Minings.

vii

To my family

Acknowledgments

This thesis could not have been written without the support of others to whom I
would like to express my deepest and sincere gratitude.

First and foremost, I would like to express my warmest thanks to my supervi-
sor, Professor Dr. Christian Böhm. He financed my research assistant position,
my trips to conferences, and my research stay at Carnegie Mellon University. His
enthusiasm for elegant algorithms and our fruitful discussions greatly inspired
my work. His guidance and support were invaluable.

Likewise, I would like to express my gratitude to Professor Dr. Claudia Plant.
She supported me with guidance, discussions, and reviews throughout my work.
Her energy to conquer new scientific questions was a great motivation.

My sincere thanks also go to Professor Christos Faloutsos, Ph.D., who wel-
comed me to his group for a research stay and supported me with many valuable
and fruitful discussions.

I am very thankful to Professor Dr. Karsten Borgwardt, who readily agreed to
act as the second reviewer for this thesis.

For their collaboration and inspiration, I am grateful to my colleagues (in
alphabetical order): Alexandra Derntl, Dr. Jing Feng, Dr. Xiao He, Dr. Nina
Hubig, Professor Srijan Kumar, Ph.D., Dr. Son T. Mai, Dr. Sam Maurus, Dr.
Dominik Mautz, Annika Tonch, Dr. Bianca Wackersreuther, Dr. Wei Ye, and Dr.
Linfei Zhou.

I thank the following students who supported my work (in alphabetical order):
Anna Beer, David Englmeier, and Martin Winter.

I am also very grateful to Susanne Grienberger and Franz Krojer for their
administrative and technical help during my time as a research assistant.

Last but not least, I would like to express my deepest gratitude to my family
for their love and support.

xi

List of Publications

The following papers were published in peer-reviewed conferences. An asterisk
(*) indicates that the authors contributed equally.

1. Christian Böhm*, Sebastian Goebl*, Annahita Oswald*, Claudia Plant*,
Michael Plavinski*, and Bianca Wackersreuther*. Integrative Parameter-
Free Clustering of Data with Mixed Type Attributes. In: Advances in
Knowledge Discovery and Data Mining. PAKDD 2010, pp. 38-47.

2. Nora Broy*, Sebastian Goebl*, Matheus Hauder*, Thomas Kothmayr*,
Michael Kugler*, Florian Reinhart*, Martin Salfer*, Kevin Schlieper*, Elisa-
beth André. "A Cooperative In-Car Game for Heterogeneous Players." In:
AutomotiveUI ’11: Proceedings of the 3rd International Conference on Automotive
User Interfaces and Interactive Vehicular Applications. 2011, pp. 167–176.

3. Sebastian Goebl, Claudia Plant, Marc Lobbes, and Anke Meyer-Baese.
Quantitative Analysis of Breast DCE-MR Images Based on ICA and an
Empirical Model. In: Proc. SPIE 8401, Independent Component Analyses,
Compressive Sampling, Wavelets, Neural Net, Biosystems, and Nanoengineering
X. 2012, 84010Z.

4. Son T. Mai, Sebastian Goebl, Claudia Plant. "A Similarity Model and
Segmentation Algorithm for White Matter Fiber Tracts." In: ICDM ’12:
Proceedings of the 12th IEEE International Conference on Data Mining. 2012,
pp. 1014–1019.

5. Sebastian Goebl, Claudia Plant, Marc Lobbes, and Anke Meyer-Baese.
CAD-System Based on Kinetic Analysis for Non-Mass-Enhancing Lesions

xiii

List of Publications

in DCE-MRI. In: Proc. SPIE 8750, Independent Component Analyses, Compres-
sive Sampling, Wavelets, Neural Net, Biosystems, and Nanoengineering XI. 2013,
87500R.

6. Sebastian Goebl, Anke Meyer-Baese, Marc Lobbes, and Claudia Plant.
Segmentation and Kinetic Analysis of Breast Lesions in DCE-MR Imaging
Using ICA. In: ITBAM ’14: Information Technology in Bio- and Medical
Informatics. 2014, pp. 45–59.

7. Sebastian Goebl, Xiao He, Claudia Plant, and Christian Böhm. Finding the
Optimal Subspace for Clustering. In: ICDM 14: Proceedings of the IEEE 14th
International Conference on Data Mining. 2014, pp. 130-139.

8. David Englmeier, Nina Hubig, Sebastian Goebl, Christian Böhm. "Mu-
sical Similarity Analysis based on Chroma Features and Text Retrieval
Methods." In: BTW ’15: Datenbanksysteme für Business, Technologie und Web
Workshopband. 2015, pp. 183–192.

9. Martin Winter, Sebastian Goebl, Nina Hubig, Christopher Pleines, Christian
Böhm. "Development and Evaluation of a Facebook-based Product Advi-
sor for Online Dating Sites." In: BTW ’15: Datenbanksysteme für Business,
Technologie und Web Workshopband. 2015, pp. 213-222.

10. Wei Ye, Sebastian Goebl, Claudia Plant, Christian Böhm. "FUSE: Full
Spectral Clustering." In: KDD 16: Proceedings of the 16th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining. 2016, pp.
19851994.

11. Sebastian Goebl, Annika Tonch, Christian Böhm, and Claudia Plant. MeGS:
Partitioning Meaningful Subgraph Structures using Minimum Description
Length. In: ICDM 16: Proceedings of the 16th IEEE International Conference on
Data Mining. 2016, pp. 889-894.

12. Sebastian Goebl, Srijan Kumar, and Christos Faloutsos. Spectral Lens:
Explainable Diagnostics, Tools and Discoveries in Directed, Weighted
Graphs. In: ICDM 17: Proceedings of the 17th IEEE International Conference
on Data Mining. 2017, pp. 877-882.

xiv

List of Publications

The papers printed with bold numbers in the author’s list of publications
contribute to this thesis. The papers 11 and 12 contribute to Part II (Fast and
Effective Methods for Explainable Graph Structuring and Summarization), and
the papers 1 and 7 to Part III (Fast and Effective Methods for Parameter-free
Clustering).

xv

Contents

Abstract i

Zusammenfassung v

Acknowledgments xi

List of Publications xiii

I Preliminaries 1

1 Introduction 3
1.1 Data Mining and Knowledge Discovery in Databases 3

1.1.1 Patterns in Data Mining . 6
1.1.2 Steps of the KDD Process 7

1.2 Challenges in Mining Complex Data 8
1.3 Facing the Challenges with Our Contributions 9
1.4 Outline of this Thesis . 10

2 Methodical and Mathematical Preliminaries 13
2.1 Graphs . 13
2.2 Information-Theoretic Clustering 18

2.2.1 Minimum Description Length (MDL) 21
2.2.2 External Cluster-Validity Measures 23

2.3 Notations . 25
2.3.1 Scalars, Vectors, and Matrices 27
2.3.2 Clustering and Entropy . 27

xvii

Contents

2.3.3 Graphs . 27
2.4 Reproducibility . 28

II Fast and Effective Methods for Explainable Graph Struc-
turing and Summarization 29

3 Related Work 33
3.1 Graph Summarization, Structuring, and Compression 33

3.1.1 Graph Summarization and Structuring 34
3.1.2 Graph Compression . 35

3.2 Graph Clustering and Partitioning 36
3.3 Regularities and Suspicious Behavior in Graphs 37

3.3.1 Finding Regularities in Graphs 37
3.3.2 Detecting Suspicious Behavior in Graphs 38

4 MEGS: Partitioning Meaningful Subgraph Structures using Minimum
Description Length 41
4.1 Introduction . 42
4.2 Meaningful Graph Structures . 45

4.2.1 Graph Structure Encoding 48
4.2.2 Graph Compression Schema 51

4.3 Algorithm MEGS . 52
4.3.1 Split Step . 54
4.3.2 Merge Step . 54
4.3.3 Assignment Step . 55
4.3.4 Graph Structuring Algorithms 55
4.3.5 Overall Time Complexity of MeGS 56

4.4 Experiments . 57
4.4.1 Partitioning . 57
4.4.2 Structuring and Visualization 61
4.4.3 Compression . 67
4.4.4 Asymptotic Runtime . 67

4.5 Conclusion . 70

xviii

Contents

5 Spectral Lens: Explainable Diagnostics, Tools and Discoveries in Di-
rected, Weighted Graphs 73
5.1 Introduction . 74
5.2 Diagnostics: SL-Dictionary . 80

5.2.1 Mathematical Background: Singular Value Decomposition 80
5.2.2 GenComs, SL-Plots and BW-Plots 82
5.2.3 SL-Dictionary: Patterns and Rules 83

5.3 Tools: SL-Algorithm . 87
5.3.1 Intuition . 90
5.3.2 SLA Step 1: Find optimal ku,opt and kv,opt 90
5.3.3 Proposed Measure: Thorniness 93
5.3.4 SLA Step 2: Assign GenComs and Bridges 93
5.3.5 SLA Step 3: Suspicion Score of GenComs 96
5.3.6 Scalability of SLA . 96

5.4 SLA-Discoveries . 97
5.4.1 GenComs and Bridges . 97
5.4.2 Suspicious GenComs . 100

5.5 Conclusions . 101

III Fast and Effective Methods for Parameter-free Cluster-
ing 103

6 Related Work 107
6.1 Dimensionality Reduction Techniques 107
6.2 Subspace, Projected and Correlation Clustering 108

6.2.1 Projected and Subspace Clustering 108
6.2.2 Correlation Clustering . 110

6.3 Visualization of Subspace Clustering Results 112
6.4 Integrated Clustering . 112

7 FOSSCLU: Finding the Optimal Subspace for Clustering 115
7.1 Introduction . 115
7.2 FOSSCLU . 119

xix

Contents

7.2.1 The FOSSCLU Optimization Goal 120
7.2.2 ORT: The Optimal Rigid Transform 124
7.2.3 The Algorithm FOSSCLU 131
7.2.4 Minimum Description Length (MDL) 131
7.2.5 Correctness and Convergence 135
7.2.6 Complexity of FOSSCLU 137

7.3 Fuzzy FOSSCLU . 138
7.4 Experiments . 139

7.4.1 Interpretable Visualization 143
7.4.2 Accurate Clustering . 143
7.4.3 Fully Automatic Parametrization 147

7.5 Conclusion . 147

8 INTEGRATE: Integrative Parameter-free Clustering of Data with
Mixed-Type Attributes 149
8.1 Introduction . 149
8.2 Minimum Description Length for Integrative Clustering 151

8.2.1 Notations . 151
8.2.2 Likelihood and Data Compression 151
8.2.3 Coding Categorical Data 152
8.2.4 Coding Numerical Data . 152
8.2.5 A Coding Scheme for Integrative Clustering 155

8.3 The Algorithm INTEGRATE . 156
8.3.1 Initialization . 157
8.3.2 Automatically Selecting the Number of Clusters k 157

8.4 Experimental Evaluation . 158
8.4.1 Synthetic Datasets . 158
8.4.2 Real-world Datasets . 163
8.4.3 Finding the Optimal Number of Clusters 164

8.5 Conclusion . 164

xx

Contents

IV Conclusion 167

9 Summary and Outlook 169
9.1 Tackling the Challenges of Mining Complex Data 169

9.1.1 Summary and Discussion: Fast and Effective Methods for
Explainable Graph Structuring and Summarization 170

9.1.2 Summary and Discussion: Fast and Efficient Methods for
Parameter-free Clustering 175

9.1.3 Discussion of our Contributions to Tackling the Challenges 177
9.2 Outlook . 180

Bibliography 185

List of Figures 199

List of Tables 201

xxi

Part I.

Preliminaries

1

1. Introduction

In the past decade, analyzing data has become a part of mainstream society.
Buzzwords like data science, data analytics, big data, machine learning, or data-driven
have become familiar to many (Figure 1.1). Entire industries have sprung up
around the analysis of data. Many fields of science and large parts of the
economy analyze a wide variety of data in order to create surplus value and
new knowledge. Due to the increasing number of use cases, the variety of data
increases, too. The data come from a deep variety of sources, exhibit diverse
structures, and come in high dimensions. Networks and relationships between
data entities have gained particular attention. Since the establishment of the field
of data mining over two decades ago, many of the classic data mining algorithms
are either overchallenged or simply overwhelmed by the sheer volume of data.
The increasing complexity of data has raised numerous new scientific questions
in the field of data mining.

In this chapter, we outline the field of data mining with its core process of
discovering knowledge in data. We shed light on different challenges caused
by complexity in the data and hint at how we face those challenges with our
contributions.

1.1. Data Mining and Knowledge Discovery in
Databases

Facing large amounts of data but little information, the term data mining was
coined over thirty years ago as a metaphor for digging up (useful) information
from large amounts of data as gold is dug up in gold mining [HKP13]. Originally,
data mining was considered a step in a larger process of processing data and

3

1. Introduction

Figure 1.1.: Worldwide relative increase of buzzwords related to Data Science
(2004–2020) in the Google web search. Percentage relative to the
highest value (Figure courtesy of Google Trends [Goo21]).

extracting information from the data, named knowledge discovery from databases
(KDD). Fayyad, Piatetsky-Shapiro, and Smyth define [FPS96b]:

“Knowledge discovery in databases is the non-trivial process of identify-
ing valid, novel, potentially useful, and ultimately understandable patterns
in data.“

In five steps, the KDD process produces knowledge from data (Figure 1.2)
[FPS96a]. We will go into the details of the KDD process below. Being one of
these steps the term data mining is popularly used as a pars pro toto for the KDD
process, and a modern definition is given by Han, Kamber, and Pei [HKP13]:

“Data mining is the process of discovering interesting patterns and knowl-
edge from large amounts of data. The data sources can include databases,
data warehouses, the Web, other information repositories, or data that are
streamed into the system dynamically.”

This definition is also more advanced by including, e.g., streamed data and
takes into account that data does not have to be stored in a structured format in
a database.

4

1.1. Data Mining and Knowledge Discovery in Databases

Figure 1.2.: The classic KDD process (sketched according to Figure 1 from
[FPS96a]).

A downside of the term data mining is that it is a misleading metaphor. While
gold mining implies digging through stone or mountains to discover gold, in
contradistinction, data mining does not try to discover data but information
or knowledge. Among the less ambiguous although less popular terms are
knowledge mining or pattern mining — both a better analogy to the gold mining
metaphor. This is the reason why the title of this thesis contains the term pattern
mining instead. Here, we use pattern according to Fayyad, Piatetsky-Shapiro,
and Smyth [FPS96a] as a pattern found in the data, a component of a model,
e.g., a cluster in a clustering.

Distinction from Statistics, Machine Learning, and other Methods. Among
the buzzwords of Figure 1.1 are machine learning and big data. How are they or the
classic field of statistics related to data mining and KDD? — The KDD process is
a multidisciplinary activity involving other fields, methods, and algorithms like
statistics, machine learning, big data processing, information retrieval, pattern
recognition, and many more [FPS96a; HKP13]. The data mining step of the KDD
process applies a suitable method to extract patterns from the data.

The methods in the data mining step can be structured into supervised and
unsupervised methods. Supervised methods or supervised learning learn from an
attribute in the data to predict its outcome. This requires a training step and,
thus, supervision. Instead, unsupervised methods like clustering do not need to
be trained [Agg15].

5

1. Introduction

1.1.1. Patterns in Data Mining
On a high level, we can separate the problems that data mining addresses into
several categories. A common denominator in research is found in the following
four divisions [FPS96a; Agg15; HKP13]: association pattern mining, clustering,
outlier detection, and classification.

Association Pattern and Frequent Pattern Mining

A classic application is the shopping basket analysis, answering questions like
what is bought together? or who buys what? More generally, frequent patterns or
frequent itemsets are patterns observed frequently in data. An association rule
defines that one or more attributes imply or are associated with another attribute.
E.g., young adults that buy a notebook might buy software in the same order
with a 50% chance (or confidence). Frequent pattern mining also relates to finding
patterns or frequent substructures in graphs.

Clustering

Clustering or cluster analysis is the general approach to partition objects into
groups or clusters (= sets of records) based on their similarity. The similarity is
calculated by a similarity function (also called objective function or clustering
function). Clustering can also be defined as an optimization problem, and the ob-
jective function maximizes the similarity between the records of the same cluster
while minimizing the similarity of the records of different clusters. Often, only
global optimizations are reached due to computational intensity. An example of
a clustering problem is the partition of customers by age, income, gender, and
location with the goal of determining the target audience for advertising.

Clustering is an unsupervised data mining technique that does not need labels
to extract information from the data.

Outlier Detection

Outlier or anomaly detection searches the data for observations that deviate
significantly from the other observations so that it is has to be explained by a

6

1.1. Data Mining and Knowledge Discovery in Databases

different model. In cluster analysis, outliers show little similarity and cannot
easily assigned to a cluster. Outlier analysis is also an unsupervised technique.
A classic application is the detection of credit card fraud: outliers in the at-
tributes location, type of purchase, purchase amount and frequency point to fraudulent
activities and should be investigated.

Classification

For classification, a particular feature in the data, the class label, is used to train
a model to predict this feature. In the training set, this feature is known. The
trained model predicts this feature in data without a class label. Due to the
requirement of a class label and a training set, this is a supervised technique.
Classification is predicting a discrete attribute. For a continuous attribute,
regression creates a model that predicts this feature.

1.1.2. Steps of the KDD Process
The KDD Process [FPS96a] consist of the following steps (Figure 1.2). The process
is run iteratively, and the user can jump back to each step for refinement or a
different choice of execution. E.g., different data can be selected, or another data
mining algorithm can be chosen.

1. Selection: With domain expert knowledge and a goal in mind, a subset of
attributes and records is chosen from available data sources. Unstructured
and structured data is transferred in a joinable format as a prerequisite
for further processing by ETL (extract, transform, and load) methods. The
selection serves as target data for the next steps of the KDD process.

2. Preprocessing: The target data is cleaned by removing inconsistent data
and evident noise. Strategies for handling missing attributes are chosen.
E.g., a rolling average can fill missing values of a time series.

3. Transformation: The preprocessed data can be further reduced to select
useful features and to reduce the dimensionality of the data. The user
usually returns iteratively to this step to perform data mining on different

7

1. Introduction

subsets of features. Transformation can also include projections of the data
dimensions to a subspace.

4. Data Mining: A data mining method like one of the four major areas
mentioned above is chosen and applied to the selected, preprocessed, and
transformed data in order to extract patterns. This is the algorithmic core
step and is used synonymously for the KDD process. Choosing and setting
up an algorithm is not trivial and will often give results that do not allow
the user to gain knowledge from the data.

5. Interpretation and Evaluation: The extracted patterns are interpreted,
and the previous step will be repeated until information and knowledge
is gained from the data. E.g., this can mean predicting new data or
understanding the data by approximating a model that is able to generate
the data. Visualizations of the extracted patterns are a valuable tool for
human understanding. Finally, the newly gained knowledge is imported
into another system for future use like presentation and decision making.

1.2. Challenges in Mining Complex Data

Several challenges have been named for research in data mining [HKP13; HG08;
YW06]. Among these, the complexity of data causes difficulties that data mining
algorithms have to manage. In the following, we derive five challenges that
arise from handling complex data and are faced by the methods and algorithms
proposed in this thesis.

• Challenge 1: Graph and Network Mining Graphs are a useful tool to
model the relationships between entities and build network representations.
In comparison to classic dimensional data, graphs are more complex: e.g.,
they can contain different edge types (directed or undirected links), the
edge types can have weights, and edge numbers can follow power laws
and grow rapidly. New algorithms need to be established to deal with
graph data and their characteristics.

8

1.3. Facing the Challenges with Our Contributions

• Challenge 2: Explainable Data Mining. With increasing data complexity,
the result of data mining algorithms tends to be less understandable.
Often, a simple classification result is not enough as an output of the
data mining process. Users need to gain insights into the underlying
models that produce these results. Black box algorithms do not increase the
knowledge about what causes algorithms to create clusters or classify data.
Explainable data mining allows understanding algorithmic decisions and
gives information about the decision-making process.

• Challenge 3: High-Dimensional Data Mining. With increasing dimen-
sionality, the amount of noise spread over these dimensions usually in-
creases and causes more complexity in the data. For techniques like
clustering, the noise needs to be reduced while not losing information.
This approach is an improvement over the classic KDD process that applies
noise reduction before the data mining steps. Next to developing efficient
algorithms to tackle the size of the data, the challenge is to interweave
noise reduction and data mining algorithms.

• Challenge 4: Mining Heterogeneous Data Types. In real-world data,
numerical and categorical data occurs in the same records. While numerical
data allows using a distance function that is underlying to many clustering
algorithms, records with mixed-type data require new algorithms. These
methods should integrate data mining of both numerical and categorical
data equally.

• Challenge 5: Parameter-free Data Mining. Especially with increasing
complexity in the data, parameter settings are more challenging to decide.
Internal measures that guide an algorithm to find a locally or globally
optimal parameter setting take much work off the user’s hands and might
lead to results that would otherwise remain hidden.

1.3. Facing the Challenges with Our Contributions
In this thesis, we propose four data mining methods and algorithms to face
the challenges that arise from complex data and that have been outlined in the

9

1. Introduction

previous section. The following overview explains how each of our contributions
faces those challenges. With each contribution, we aim to provide both fast and
effective solutions in order to be able to cope with high-dimensional data as well
as results of superior quality. Our first two proposals of Part II cover the task of
graph mining:

• MeGS. Our algorithm to find meaningful subgraph structures discovers
patterns in graphs. It returns meaningful results that explain the graph
so that the user gains insights not only about the similarity of nodes
but also about all the underlying structures in a graph. MeGS uses the
information-theoretic principle of minimum description length (MDL) that
allows automatic parametrization.

• Spectral Lens. Our method Spectral Lens explains large-scale graphs by
identifying nodes with similar connectivity patterns. It finds suspicious
behavior in networks and is able to automatically parametrize by detecting
the optimal number of groups.

In Part III, our proposed methods contribute to solving clustering problems:

• FOSSCLU. Our method FOSSCLU combines clustering and dimensionality
reduction of high-dimensional data into one algorithm. Allowing to project
the data to an arbitrary two-dimensional plane by a rigid orthonormal
rotation of the data, it gives visualizations to understand the cluster structures.
FOSSCLU uses MDL for automatic parametrization.

• INTEGRATE. Our algorithm INTEGRATE allows to cluster heterogeneous
data with numerical and categorical attributes. Its objective function uses
MDL for an integrated clustering function and for automatic parametrization.

1.4. Outline of this Thesis
This thesis is structured as follows: Part I contains this introduction followed by
Chapter 2 with a primer about the for this thesis most important and frequently

10

1.4. Outline of this Thesis

used mathematical definitions together with an overview over our notation and
a remark to the reproducibility of our results.

Part II presents our first two contributions to graph mining. In Chapter 3 past
work related to these methods is summarized. Chapter 4 contains our proposed
algorithm MeGS (Partitioning Meaningful Subgraph Structures using Minimum
Description Length), and Chapter 5 explains our second contribution to graph
mining, our method Spectral Lens.

Part III contains our proposed clustering techniques, opening with a survey
of past research related to our work in Chapter 6. Our algorithm FOSSCLU
(Finding the Optimal Subspace for Clustering) to simultaneously performing clus-
tering and dimensionality reduction on high-dimensional datasets is presented
in Chapter 7. Chapter 8 explains our algorithm INTEGRATE for integrated
clustering of numerical and categorical attributes.

Part IV concludes this thesis with a summary and an outlook in Chapter 9.

11

2. Methodical and Mathematical
Preliminaries

This chapter summarizes essential mathematical principles applied in this thesis
for easier understanding. The focus here is on fundamental notations used across
chapters. Section 2.1 summarizes graph-theoretical principles and notations
important for following Part II of this thesis. In Section 2.2, we refresh the
foundations of information-theoretic clustering with the minimum description
length principle based on it and the external cluster-validity measures Dom

and NMI. The minimum description length principle underlies methods from
Part II and Part III of this thesis and the external cluster-validity measures
(recapitulated in Section 2.2.2) for assessing our algorithmic results. Section 2.3
concludes the methodical preliminaries with notes on the notations used in this
thesis.

2.1. Graphs

The following definitions give an overview of different types of graphs, charac-
teristics of graphs, different subgraph structures, and graph representation in a
matrix [Die17]. In this thesis, we use the term network synonymously for graphs,
as a network can be represented by a graph.

Definition 2.1: (Undirected) Graph

An (undirected) graph is a pair G = (V, E) of sets such that E ⊆ {{vi, vj}|vi ∈
V ∧ vj ∈ V}. The elements of V are the nodes (or vertices) and the elements
of E the edges of graph G. We assume V ∩ E = ∅.

13

2. Methodical and Mathematical Preliminaries

A

B

C

(a) (Undirected)
graph

A

B

C

(b) Directed graph

A

B

C

1

-2

3

-1

(c) Directed,
weighted graph

Figure 2.1.: Directed, undirected and weighted graphs

An edge {vi, vi} ∈ E with vi ∈ V is called a self-loop. Definition 2.1 allows only
one edge between each pair of nodes. So-called multiple edges, i.e., more than
one edge between a pair of nodes, are not allowed. Edges have no direction;
therefore, we call the graph in Definition 2.1 an undirected graph. Figure 2.1a
gives a graph G = (V, E) with node set V = {A, B, C} and edge set E =

{{A, B}, {A, C}, {B, C}}. The number of nodes of a graph is the cardinality of
V and the number of edges the cardinality of E. If unambiguous, we denote
n = |V| and m = |E|.

Definition 2.2: Directed Graph

A directed graph is a pair G = (V, E) of sets such that E ⊆ V × V. The
elements of V are the nodes (or vertices) and the elements of E the edges
of graph G. We assume V ∩ E = ∅.

In a directed graph, an edge is represented by a tuple of nodes so that a
maximum of two edges can exist between each pair of nodes. An edge (vi, vj)

with vi, vj ∈ V is directed from vi to vj. We define n and m as above. The
undirected and directed graphs in Definitions 2.1 and 2.2 are called unweighted,
as there is no additional attribute to describe the quality of an edge. In this sense,
all edges have equal weight. Figure 2.1b depicts a directed graph G = (V, E) with
node set V = {A, B, C} and edge set E = {(A, B), (A, C), (B, C), (C, B)}.

14

2.1. Graphs

Definition 2.3: Weighted Graph

A weighted graph is a triplet G = (V, E, w). V and E are defined as in
Definition 2.1 (for an undirected, weighted graph) or as in Definition 2.2
(for a directed, weighted graph). The weight function w : E 7→ R \ {0}
defines a weight for every edge. We assume V ∩ E = ∅.

An undirected or directed graph is extended to a weighted graph simply
by adding the weight function w to the pair G = (V, E). We allow negative
weights for edges1, but we disallow a zero edge weight; in this case, not drawing
an edge is the preferred option. We define n and m as above. Note that
unweighted graphs are simulated by weighted graphs with weight function
w : E 7→ 1. A directed, weighted graph G = (V, E, w) with node set V =

{A, B, C}, edge set E = {(A, B), (A, C), (B, C), (C, B)} and weight function w =

{((A, B), 1), ((A, C),−2), ((B, C), 3), ((C, B),−1)} is given in Figure 2.1c.

Definition 2.4: Degree of a Node

The degree dG(v) of a node v of graph G is defined by |{{v, vj} ∈ E}| for
undirected graphs and |{(vj, vj) ∈ E|v = vi ∨ v = vj}| for directed graphs.

Definition 2.5: Path, Cycle, Connected

A path is a graph P = (V, E) with V 6= ∅ such that V = {v1, v2, . . . , vk} and
E = {{v1, v2}, {v2, v3}, . . . , {vk−1, vk}} with vi, vj ∈ V ∧ i 6= j ⇒ vi 6= vj.
The length of the path is |E|, and v1, vk are linked by the path.
A cycle is a graph C = (V, E) such that P = (V, E′) is a path of length
|E′| ≥ 2 and E = E′ ∪ {vk, v1}.
An undirected graph G = (V, E) (resp. G = (V, E, w)) is acyclic if there
exists no cycle C = (V′, E′) such that V′ ⊆ V and E′ ⊆ E.
A non-empty undirected graph G is connected if every pair of nodes in G
is linked.

1Negative weights are a practical way to represent, e.g., negative ratings or opinions.

15

2. Methodical and Mathematical Preliminaries

Definition 2.6: Subgraph

A subgraph G′ of a graph G = (V, E) (resp. G = (V, E, w)) is a graph
G′ = (V′, E′) (resp. G′ = (V′, E′, w)) such that V′ ⊆ V and E′ ⊆ E.
An induced subgraph is a subgraph that contains all edges (vi, vj) ∈ E (resp.
{vi, vj} ∈ E) if vi ∈ V′ ∧ vj ∈ V′.

The concept of induced subgraphs is essential for our studies on graph mining.
If the nodes of a graph are divided into k disjoint non-empty subsets of V so
that V =

⋃k
i=1 Vi, we say that V1, . . . , Vk form a partition of V. The nodes of each

subset induce a subgraph of G so that all induced subgraphs together with the
edges between each pair of induced subgraphs assemble the complete original
graph. In our studies on graphs, we are interested in analyzing all nodes and
edges in a graph. Hence, when using the term subgraphs, we refer to induced
subgraphs from now on. Synonymously, we use the term subgraph structures.

To differentiate subgraph structures, we define several graph types which
are known from graph theory. We give their definition in the following and an
illustration in Figure 2.2.

Definition 2.7: Clique

A clique or a complete graph is a graph G = (V, E) (resp. G = (V, E, w)) such
that for all vi, vj ∈ V (i 6= j) there is an edge (vi, vj) ∈ E (resp. {vi, vj} ∈ E).

Definition 2.8: Bipartite

A bipartite graph is a graph G = (V, E) (resp. G = (V, E, w)) such that
there is a partition into two sets of nodes V1, V2 so that for all edges
(vi, vj) ∈ E (resp. {vi, vj} ∈ E) with i 6= j it holds that vi ∈ V1 ⇒ vj ∈ V2

and vi ∈ V2 ⇒ vj ∈ V1.

Definition 2.9: Hub

A hub is a graph G = (V, E) (resp. G = (V, E, w)) with a distinguished node
vi ∈ V, the hub node, such that for all vj ∈ V it holds that dG(vi)� dG(vj).

16

2.1. Graphs

Definition 2.10: Dense, Sparse

A dense graph is a graph G = (V, E) such that roughly |E| ∝ |V|2. A sparse
graph is a graph G = (V, E) such that roughly |E| ∝ |V|. For small graphs,
the definitions for spare and dense are only approximate.

For simplicity and because it is sufficient for our work, we restrict to undirected
graphs in the following definition.

Definition 2.11: Forest, Tree, Root

A forest is an acyclic, undirected graph. A tree is a forest that is connected.
A tree can have a distinguished node as the root of the tree.

A practical way to describe either type of graph in matrix notation, which
allows applying rules of linear algebra, is given in the following.

Definition 2.12: Adjacency Matrix

The adjacency matrix A = (aij)n×n for graph G is defined

• if G is an unweighted graph (Definitions 2.1 and 2.2) as

aij :=


1 i f {vi, vj} ∈ E

1 i f (vi, vj) ∈ E

0 otherwise

(2.1)

• if G is an weighted graph (Definition 2.3) as

aij :=


w({vi, vj}) i f {vi, vj} ∈ E

w((vi, vj)) i f (vi, vj) ∈ E

0 otherwise

(2.2)

For an undirected, bipartite graph, the adjacency matrix can also be defined
as A = (aij)|V1|×|V2| with V1 and V2 being the disjoint sets of nodes of the
graph such that there are only edges allowed from a node of one set to a
node of the other set.

17

2. Methodical and Mathematical Preliminaries

2.2. Information-Theoretic Clustering
For our graph partitioning method MeGS in Part II and for our clustering meth-
ods FOSSCLU and INTEGRATE in Part III, we use measures based on Claude E.
Shannon’s Mathematical Theory of Communication [Sha48], the fundamental paper
establishing Information Theory. Clustering algorithms aim to arrange objects in
clusters based on a similarity metric like a distance function. More similar objects
are grouped in the same cluster, and less similar objects lie in different clusters.
This is equivalent to increasing the order in each cluster. A cluster of similar
objects contains less information than a cluster of very different objects.

Imagine a cluster of blue objects and a cluster of red objects. The first cluster gives
and is described only by the information ’blue’ and the other by ’red’. A cluster with red
and blue objects is described by the information ’blue’ and ’red’.

Shannon has introduced the principle of entropy, known from physics as a
measure of information. In the example, the cluster with only red objects has a
lower entropy than the cluster with red and blue objects.

To understand information-theoretic clustering the following concepts are
essential. All following random variables are discrete.

Entropy The entropy of a random variable X measures its level of information,
thus, describing its uncertainty. It is defined as

H(X) = −
n

∑
i=1

p(xi) log p(xi) (2.3)

with the probability p(xi) for the outcomes of X.
A flip with a fair coin has two outcomes with equal probability p(xhead) =

1
2

and p(xtail) = 1
2 and has the entropy −(1

2 · log2
1
2 + 1

2 · log2
1
2) = 1. Using the

logarithm with base 2, the unit for entropy is called bit (binary digit). 1 bit
is the maximal possible entropy of a random variable and expresses maximal
uncertainty. An unfair coin has a lower entropy and contains less uncertainty.
The definition of entropy is fundamental for the principle of minimum description
length [Grü05] and other information-theoretic concepts like minimum message
length [WB68]. It is closely related to the philosophical concept of Occam’s

18

2.2. Information-Theoretic Clustering

A

B C

D

(a) Clique, Dense graph

B

C

D

E

F

G

A

(b) Hub

A

B C

D E

(c) Tree

A

B C

D

(d) Sparse graph

x xB

C

A

x D

E

V1

V2

D E
A 1 1
B 0 1
C 1 0

V1

V2
0

(e) Bipartite graph with corresponding adjacency ma-
trix

Figure 2.2.: Toy examples of various graph types (cf. Definitions 2.7 to 2.11).

19

2. Methodical and Mathematical Preliminaries

H(X|Y) H(Y|X)

H(X) H(Y)

I(X; Y)

H(X, Y)

Figure 2.3.: Visualization of conditional entropy H(X|Y), H(Y|X) and Mutual
Information I(X; Y).

razor. This concept can be formulated as: the simplest explanation has the highest
probability to be correct.

Conditional Entropy The conditional entropy measures the amount of uncer-
tainty of a random variable X knowing the outcome of another random variable
Y. If both random variables are independent, the conditional entropy equals the
entropy as defined above. Conditional entropy is defined as

H(X|Y) = − ∑
x∈X,y∈Y

p(x, y) log
p(x, y)
p(y)

(2.4)

with the joint probability p(x, y) of two outcomes occurring together. If X and
Y are independent, knowing the outcome of one random variable does not tell
anything about the outcome of the other random variable; hence H(X|Y) =

H(X) and H(Y|X) = H(Y). The relation between entropy and conditional
entropy is visualized in Figure 2.3 by a Venn diagram. The figure also motivates
the following concept.

Mutual Information Mutual information measures how much information the
random variables X and Y share and how much the outcome of one random

20

2.2. Information-Theoretic Clustering

variable reduces the uncertainty of the other random variable. It is defined as

I(X; Y) = ∑
x∈X,y∈Y

p(x, y) log
p(x, y)

p(x) · p(y) . (2.5)

If H(X|Y) = H(Y|X) = 0, each random variable is completely determined by
the other, and the mutual information equals the entropy of each of both random
variables: I(X; Y) = H(X) = H(Y) . Figure 2.3 depicts mutual information as
the intersection of the entropy of both random variables. If the random variables
are independent (p(x, y) = p(x) · p(y)), the mutual information is 0: they share
no information. In information-theoretic clustering, an application for mutual
information is to measure how much information cluster labels share with class
labels, which is introduced below.

2.2.1. Minimum Description Length (MDL)

The clustering and partitioning algorithms proposed in this thesis (in Chapters
4, 7, and 8) base their objective function or clustering function, i.e., the internal
measure to find the optimal assignment of objects to clusters, on the information-
theoretic principle of the minimum description length (MDL) proposed by Rissanen
[Ris78; Ris05; Grü05]. This concept aims to transform the clustering problem
into a compression problem. The best clustering of a set of objects is the one
that best compresses the objects and their attributes. Learning is understood as
data compression. Regularities in a subset of objects help to reduce the length of
a (hypothetical) code as the result of compressing the objects in a cluster. The
more homogeneous the objects in a cluster are, the shorter is this code sequence.

The code length is also the subject of a more abstract (but not computable)
concept: The Kolmogorov complexity of an object is defined as the length of the
shortest program (in any general-purpose programming language) that produces
this object. From a bird’s eye perspective, MDL follows the principle of Occam’s
razor mentioned above.

21

2. Methodical and Mathematical Preliminaries

Figure 2.4.: Motivating the concept of minimum description length: Model com-
plexity vs. goodness of fit (from [Grü05])

Crude MDL

The practical approach of crude MDL takes regularities in the data into account
by creating a model or hypothesis that represents those regularities. The data
D is then compressed by this model. The best model M compresses the data
most without being overly complex. This results in a trade-off between model-
complexity and data compression, thus, minimizing L(M) + L(D|M), where
L(M) is the length (in bits) of the model, and L(D|M) is the length (in bits) of
the data compressed by the model. Minimizing both code length of model and
compressed data avoids using an overly complex model and prevents overfitting.

This approach is motivated in Figure 2.4: twelve data points are fit by a most
simple, linear function (left), a very complex 11-degree polynomial (middle),
and a three-degree polynomial (right). Intuitively, the three-degree polynomial
is a good trade-off between model complexity and the goodness of fit of the data
to the model.

Refined MDL

While crude MDL is helpful for practice and is applied to the clustering algo-
rithms in this thesis, it has its drawback: Each model has to be explicitly coded
ad hoc, as, e.g., the functions are in Figure 2.4. Two different encodings for the
same model may result in different code lengths. Thus, the model selection
process is not entirely objective and can be biased. Refined MDL is an approach
to avoid this by not encoding model and data separately in a two-part code as in

22

2.2. Information-Theoretic Clustering

crude MDL. Instead, a one-part code is chosen to encode the data in a way that
relates to the stochastic complexity of the data, and implicitly the least complex
model is preferred. Refined MDL gives a shorter code length the better the data
fit the best-fitting model, eliminating the arbitrariness of models in crude MDL.

For the example in Figure 2.4, refined MDL uses the best-fitting third-degree
polynomial to fit the data. In crude MDL, the parameters of the third-degree
polynomial have to be explicitly selected and encoded separately. In practice,
refined MDL is challenging to define, while the two-part codes of crude MDL are
much easier to apply. Carefully choosing the models minimizes this drawback.
Therefore, the complex models applied by the clustering algorithms in this thesis
use the two-part code of crude MDL.

2.2.2. External Cluster-Validity Measures

External cluster-validity measures evaluate a clustering algorithm to an external,
e.g., manually assigned gold standard or ground truth. They intend to reward
correct groupings of objects while penalizing incorrect sets and missed splits of
grouped objects. This thesis uses information-theoretic cluster-validity measures:
the measure by Byron E. Dom (in the following referenced as Dom and applied
in Chapter 8) and the widely-used measure normalized mutual information (NMI)
(applied in Chapters 4 and 7). We will outline both methods and their differences.

Cluster-Validity Measure by Dom

In order to measure the quality of clustering algorithms, Byron E. Dom intro-
duced an information-theoretic cluster-validity measure to quantify the similarity
between two sets of labels [Dom01; Dom02]. The first set, K, contains a cluster
label ki for each object i. This mapping is the result of a clustering algorithm.
The second set, C, resembles the ground truth and consists of a class label ci
for each object i. Set K contains the unique cluster labels of set K (one for each
cluster), and set C contains the unique class labels of set C (one for each class).
Dom’s measure (we refer to it as DomC,K or Dom) evaluates how well the cluster
labels predict the class labels, i.e., it calculates the code length after encoding the
class labels if the cluster labels are known.

23

2. Methodical and Mathematical Preliminaries

If |C| = |K|, i.e., the number of classes and clusters match, DomC,K is equiva-
lent to the (estimated, i.e., observed) empirical conditional entropy

H̃(C|K) = −
|C|

∑
c=1

|K|

∑
k=1

h(c, k)
n

log
h(c, k)
h(k)

(2.6)

which measures the information of the class labels given the cluster labels. The
frequencies h(c, k) and h(k) are taken from the elements or columns, respectively,
of the matrix or contingency table H. An element hck represents the number of
objects with class label c and cluster label k. If all objects of the same class are
clustered together perfectly, the cluster labels fully describe the class labels; the
conditional entropy equals 0. The conditional entropy is maximal if the cluster
labels cannot describe the class labels (their mutual information equals 0).

If |C| 6= |K|, i.e, both partitions are of different sizes, the above definition
prefers a larger to a smaller number of clusters. Following the principle of
Occam’s Razor, a more complex solution that adds little or no additional knowl-
edge must be penalized. Using conditional entropy alone would always give one
cluster per object as the best solution with zero entropy. With the information-
theoretic idea that the information about the clusterings is encoded into bit
sequences measured by the entropy defined above, sent over a channel, and
decoded again, additional parameters are required beyond the encoded class
labels. To be able to decode all the information, the decoder must know the
frequencies h(c, k). Thus, the contingency table H needs to be encoded without
the distributions h(k) of the objects in the clusters. Those we assume to be
known to the encoder and decoder. This gives Dom’s measure as the entire
coding costs for data and model,

DomC,K = H̃(C|K) + 1
n

|K|

∑
k=1

log
(

h(k) + |C| − 1
|C| − 1

)
(2.7)

Dom scores 0 for the optimal clustering: the cluster labels match the class labels
(apart from renaming). The higher Dom scores, the worse the clustering is.

24

2.3. Notations

Normalized Mutual Information

Among the most widely used cluster-validity measures is the measure of normal-
ized mutual information (NMI) [Yao03]. The mutual information of class labels C
and cluster labels K is normalized to the lower bound 0 (worst possible cluster-
ing) and upper bound 1 (optimal clustering). Unlike the cluster-validity measure
Dom (defined in Section 2.2.2) based on conditional entropy, NMI uses the
uncertainty coefficient

U(C|K) = I(C; K)
H(K)

(2.8)

measuring the fraction of uncertainty in the class labels C given the cluster
labels K. The Venn diagram in Figure 2.3 helps understand the relation between
the uncertainty coefficient and Dom. The (symmetric) measure of normalized
mutual information uses the harmonic mean2 (for the average of rates) of the
uncertainty coefficients U(C|K) and U(K|C), so that

NMIC,K =
2

1
U(C|K) +

1
U(K|C)

= 2
I(C; K)

H(C) + H(K)
. (2.9)

It scales from 0 if cluster labels give no information about class labels (and vice
versa) to 1 if cluster labels and class labels are identical (apart from renaming).

Another popular cluster-validity measure (which is not used in this thesis but
shall be mentioned) is the adjusted mutual information which aims to adjust the
mutual information for randomness: a random distribution for cluster labels and
class labels should result in the lowest value of 0.

2.3. Notations
The previous sections of this chapter have introduced our notations for graphs
(Section 2.1) and information-theoretic clustering (Section 2.2). We summarize
notations and definitions relevant to understanding a specific chapter at the
beginning of each chapter. This section defines notations used throughout this
thesis (cf. Table 2.1).

2There exist other approaches to normalize the mutual information. These use, e.g., the
geometric mean of the uncertainty coefficients (cf. [VEB09]).

25

2. Methodical and Mathematical Preliminaries

Table 2.1.: Important Symbols and Definitions.

Symbols Definitions
k, n, µ, . . . scalars
u, µ, . . . column vectors
uT, vT, . . . row vectors
S, Σ, . . . matrices

Clustering and Entropy
n ∈N number of objects
k ∈N number of clusters
d ∈N dimensionality or the original space
m ∈N dimensionality of the clustered subspace
X, Y random variables
H(X) entropy of random variable X
H(X|Y) conditional entropy of random variables X and Y
I(X; Y) mutual information of random variables X and Y

Graphs
V (Vi) node-set of G (of subgraph structure Gi)
E (Ei) edge-set of G (of subgraph structure Gi)
G = (V, E) (directed or undirected) unweighted graph
G = (V, E, w) (directed or undirected) (edge-)weighted graph
w : E 7→ R (edge-)weight function
Gi i-th subgraph structure
A adjacency matrix of G
n (ni) number of nodes of G (of subgraph structure Gi)
m (mi) number of edges of G (of subgraph structure Gi)

26

2.3. Notations

2.3.1. Scalars, Vectors, and Matrices

To denote scalars, we use lower-case Roman and Greek letters; e.g., the number
of clusters k ∈ N, the number of objects n ∈ N, or the mean µ ∈ R of a
probability distribution. Column vectors are denoted by boldface lower-case
Roman (u) and Greek letters (e.g., µ as the center of a multidimensional cluster).
Row vectors are denoted as transposed column vectors (vT). Matrices are
indicated by boldface upper-case Roman (S) or Greek letters (e.g., the covariance
matrix Σ). Boldness can be omitted if the context allows no ambiguity.

2.3.2. Clustering and Entropy

We denote the number of objects to cluster with n and the number of clusters
with k. In subspace clustering, d represents the dimensionality of the original
space, and m the dimensionality of the clustered subspace. Our proposed
clustering algorithms use the minimum description length (MDL) to avoid
input parameters. MDL is based on the concepts of entropy H(X) of a random
variable X (cf. Section 2.2). For the random variables X and Y, the conditional
entropy is denoted by H(X|Y), and the mutual information that both random
variables share by I(X; Y).

2.3.3. Graphs

Summarizing our notations introduced in Section 2.1, we denote a (directed or
undirected) unweighted graph with G = (V, E). V represents the set of vertices
or nodes, and E the set of edges. A weighted graph is denoted by G = (V, E, w)

with an (edge-)weight function w : E 7→ R. The number of nodes in a graph G
is expressed by n, and the number of edges in a graph G by m. Analogously,
Gi = (Vi, Ei) represents a subgraph or subgraph structure i with its set of nodes
and its set of edges. With ni and mi, we denote the number of nodes and edges
in a subgraph structure i. The number of identified subgraph structures in a
graph is defined as k (analogously to the notation for the number of clusters
commonly used in clustering). The adjacency matrix of a graph G is marked as
A and the degree of a node v of graph G as dG(v).

27

2. Methodical and Mathematical Preliminaries

2.4. Reproducibility
We strongly believe that all our experiments proving the value of our proposed
methods must be reproducible by other researchers as good scientific practice
demands. Furthermore, practitioners can directly apply all our solutions and
algorithms to benefit from the results of this thesis. Therefore, we make all our
implementations publicly accessible. For the experiments in our evaluations, we
either use synthetic or real-world data that are already publicly accessible and
disclose our sources when data is used, or we provide the data as well. The
implementations and data are available at https://s.goebl.net/research.

28

https://s.goebl.net/research

Part II.

Fast and Effective Methods for
Explainable Graph Structuring and

Summarization

29

Graphs are a valuable instrument to abstract complex problems involving any
form of connectivity or interaction. Questions like "how to detect fraudulent
activity in online trust networks?" or "how to find regions of interacting activity
in the human brain caused by a stimulus?" are much easier to grasp when
mapped to mathematically well-defined graphs. It opens up a rich toolbox of
analytical methods to expand knowledge about the data. Graph theory has
been subject to research at least since Leonard Euler and the Seven Bridges of
Königsberg nearly 200 years ago. In this part, we contribute to this toolbox
by introducing two methods that explain the inner structure of graphs. We
break them down into meaningful partitions and reveal unknown patterns or
suspicious behavior.

Our first method MeGS (Partitioning Meaningful Subgraph Structures using
Minimum Description Length) structures graphs into meaningful components
by analyzing the edges of the graphs. It places each node into an interpretable
context that helps the user to extract knowledge from the data. No unknown
areas remain in the graph. Thanks to MDL, MeGS is parameter-free and auto-
matically finds the best number of components in a graph. Finding patterns in a
graph is also the goal of algorithms for compressing graphs. Hence, we touch
on this problem with MeGS as well.

With our second method Spectral Lens, we propose an efficient tool that
analyzes even larger graphs with millions of edges in minutes and explains
the connectivity patterns of subsets of nodes in the graph. By highlighting
the connectivity of outlier nodes, Spectral Lens identifies fraudulent activity in
contrast to areas of similar connectivity. It covers the full range of unweighted
and weighted graphs as well as undirected and directed graphs.

The author’s previously published work incorporated in Part II This part of
the thesis with our proposed algorithms MeGS and Spectral Lens is based on
and has been partly published in the following two publications that have been
accepted and published in peer-reviewed proceedings of the IEEE International
Conference on Data Mining [Goe+16; GKF17]:

1. S. Goebl, A. Tonch, C. Böhm, and C. Plant. MeGS: Partitioning Meaningful
Subgraph Structures using Minimum Description Length. In: ICDM 16:

31

Proceedings of the 2016 IEEE 16th International Conference on Data Mining.
2016, pp. 889-894.

2. S. Goebl, S. Kumar, and C. Faloutsos. Spectral Lens: Explainable Diagnos-
tics, Tools and Discoveries in Directed, Weighted Graphs. In: ICDM 17:
Proceedings of the 2017 IEEE 17th International Conference on Data Mining.
2017, pp. 877-882.

In the following chapters, we present our algorithms MeGS and Spectral Lens
in extended versions with about 60% more content than published in papers 1
and 2. This extra content has been peer-reviewed and approved in the original
submissions but was cut out due to space limitations (short papers).

Both papers were mainly composed, presented, and managed by the first
author. Claudia Plant (University of Vienna, Austria), Christian Böhm (University
of Munich, Germany), and Christos Faloutsos (Carnegie Mellon University, PA,
USA) helped with supervision and mentoring and accompanied the process
of the creation of the papers. Annika Tonch (University of Munich, Germany)
provided the BRAIN dataset (Section 4.4.2) and supported the project with
regular discussions. Srijan Kumar (Georgia Institute of Technology, GA, USA)
helped with discussions, comments, and suggestions throughout the project and
provided the BITCOIN-OTC dataset (Section 5.4.2).

Structure of Part II Chapter 3 gives an overview of research related to our
proposed methods. Chapter 4 presents our first graph mining algorithm MeGS
for partitioning graphs into meaningful subgraph structures. Chapter 5 intro-
duces our proposed method Spectral Lens for explainable diagnostics of large
directed and undirected, and weighted and unweighted graphs.

32

3. Related Work

Past research related to our proposed methods MeGS and Spectral Lens forms
four groups: graph structuring and summarization, graph clustering and partitioning,
graph compression, and the search for regularities and suspicious behavior in graphs.
We give a short survey on the related work with a section covering each group.

3.1. Graph Summarization, Structuring, and
Compression

A key challenge to data mining lies in simplifying complex data for human
understanding. Massive graphs with millions of nodes and edges are hard to
grasp, impossible to visualize with all details, and difficult to further process
efficiently in domain-specific applications. Methods for graph summarization,
structuring, and compression meet this challenge and break large networks down
into smaller summary graphs, and structure nodes into meaningful (overlapping
or non-overlapping) synoptic groupings of nodes and edges.

The recent comprehensive survey by Liu et al. [Liu+18] divides the approaches
for graph summarization (include structuring and compression) by its core
techniques into four areas:

• Grouping and aggregation-based approaches. Node- or edge-groupings ag-
gregate nodes or edges into meaningful groupings that describe the sub-
structures of a graph. This approach is also taken by our proposed method
MeGS which groups nodes into meaningful non-overlapping structures.

• Bit compression-based approaches. Lossless and lossy graph compression
optimizes graphs for efficient further processing. The information-theoretic

33

3. Related Work

approach that postulates that the optimal compression is gained by graph
primitives describing the graph best is shared by our proposed method
MeGS.

• Simplification or sparsification-based approaches. The simplified graph contains
a subset of nodes, leaving out what is assumed to be the least important.

• Influence-based approaches. A graph is described by its patterns of influence-
propagation on a high level.

Our proposed method MeGS combines approaches of the first two areas and
facilitates graph summarization, structuring, and compression. Related work in
these areas is discussed in the following under the aspects of graph summariza-
tion and structuring (Section 3.1.1), and graph compression (Section 3.1.2).

3.1.1. Graph Summarization and Structuring

Several MDL-based algorithms exploit the inner structure of graphs (mostly)
without requiring any input parameters.

CXPrime [Fen+13] discovers patterns in sparse graphs. CXPrime exploits
structure primitives using the MDL principle so that the number of clusters is
selected automatically. However, CXPrime only detects cliques and hubs due
to its restriction to three-node primitives. Another limitation of the method is
that it searches for the optimal number of clusters in an interval that requires an
upper limit as input.

VoG [Kou+14] finds a set of possibly overlapping subgraphs using the MDL
principle. Due to the overlap, it does not fully partition a graph as our pro-
posed method MeGS does. Furthermore, VoG relies on other algorithms for
decomposing the graph.

Subdue [KHC05] discovers subgraph structures that are frequent and that
best compress the graph dataset according to the MDL principle. However,
Subdue often discovers only very tiny subgraph structures, sometimes only
one-edge primitives. The frequent structures also tend to be heterogeneous.
Both characteristics barely give the user interpretable subgraph structures, and

34

3.1. Graph Summarization, Structuring, and Compression

it is not suitable to help understand a graph. On top of that, long-running time
makes it hard to process large datasets.

Among other algorithms for the discovery of frequent subgraph structure are
gSpan [YH02], FSG [KK04], and GBI [Mat+00], to mention a few.

Navlakha et al. [NRS08] propose a two-part graph representation that adds a
set of corrections to a graph summary. The graph summary consists of nodes
representing sets of nodes and edges representing edges between all pairs of
nodes in the connected sets of nodes. Their proposed algorithm creates lossless
summaries as well as lossly summaries with a bounded error. Using the MDL
principle, the authors aim to find the best summary along with a set of edge
corrections.

In [Fen+12], the summaries restrict to identifying bipartite sets using MDL.
Like Navlakha et al., it constructs much smaller graph representations to sup-
port the interpretation of the original graph. However, unlike node- or edge-
groupings, a summary graph gives no explicit qualitative information about the
graph or groups of its nodes.

Matrix Decomposition [Mie15; MV14] takes a different MDL-based approach to
extract structural information: Overlapping structures are identified by factoriz-
ing the adjacency matrix into sub-matrices.

Graph summarization and structuring methods facilitate the visualization of
the adjacency matrix of a graph by reordering nodes and labeling grouping
with structural information like our proposed method MeGS as well as, e.g.,
Cross-Associations or SlashBurn. Other approaches to visualize graphs and
their structures include plotting the distribution of connected components even
for massive, petabyte-scale graphs (PeGaSus [KTF11])), or visualizing outliers in
graphs (Oddball [AMF10]; cf. Section 3.3.2).

3.1.2. Graph Compression
Due to the increasing size of graphs, many algorithms deal with the efficient
compression of data, like [BV04] and [Chi+09]. Graph compression is relevant
for storing and transferring large networks and also allows to keep large graphs
in memory for efficient further calculations. Many information-theoretic graph
summarization methods that use the minimum description length principle

35

3. Related Work

produce the optimal grouping or structuring of nodes by optimizing the graph
compression. So does, e.g., Cross-Associations compress the graph in the process
of finding a clustering.

SlashBurn [KF11] also uses the information-theoretic approach to compress
the data using specific primitives. It compresses graphs by looking for hubs and
spokes and recursively envisions graphs as a collection of hubs connecting hubs,
with super hubs connecting the hubs, and so on. However, the compression rate
of Slashburn depends on the input parameter block width.

VoG and CXPrime also compress graphs using MDL. With our proposed
method MeGS, graph compression comes as a side-effect but is not our primary
goal.

Navlakha et al. [NRS08] not only create graph summaries using lossless
compression but also reduce the size of the summary graph further with lossly
compression. To preserve the quality of the summary graph, a bounded error is
given.

For further related work, see the survey by Liu et al. [Liu+18].

3.2. Graph Clustering and Partitioning
Graph clustering and graph partitioning are well-established topics in research.
Traditionally, a cluster is a grouping of nodes maximizing their similarity to each
other while minimizing the similarity between clusters. Many approaches deal
with several topics of graph clustering, like Markov-Clustering [Don08]. For a
survey, see [AR13].

Graph partitioning follows the same goal of grouping nodes but focuses on
separating subsets of nodes.

Metis [KK99] is a multilevel k-way hypergraph partitioning algorithm that has
attracted much attention. However, it requires the number of partitions as an
input parameter.

The minimum description length principle helps algorithms become parameter-
free: besides [Fen+12], Cross-Associations [Cha+04] cluster large sparse binary
matrices. Due to MDL, it is fully automatic and simultaneously discovers row
and column groups.

36

3.3. Regularities and Suspicious Behavior in Graphs

With graph clustering among its applications, kernel functions on graphs [Fou+12]
have been proposed as similarity measures between nodes of graphs. Comparing
the nodes allows us to categorize them into structures as well. The related topic
of graph kernels [Bor+20] applies a kernel function on the entire graph, e.g., for
transforming it into input to a machine learning algorithm without needing a
separate feature-extraction step. For given subgraphs, this can also be used as a
method to categorize by similarity.

The work in graph clustering and partitioning is related to our proposed
method MeGS. However, MeGS goes beyond simple clustering and finds various
groups with different characteristics. To enhance this difference, we call our
groups structures, not clusters.

3.3. Regularities and Suspicious Behavior in Graphs
Detecting regular and irregular behavior in graphs is a different approach to
investigating graphs and networks. It overlaps with the strategy of finding
structures and clusters, which one can see as regular patterns. This topic is
related to our proposed method Spectral Lens that can process directed and
undirected and weighted and unweighted graphs. Therefore, we look at related
work from this point of view.

3.3.1. Finding Regularities in Graphs

Finding regularities in graphs and partitioning these regularities into subgraphs
is a prevalent task. Some approaches define regularities as cliques or bipartite
subgraphs (cf. Cross-Associations [Cha+04]) or as other primitives like hubs
(cf. CXPrime [Fen+13]). Cross-Associations and CXPrime can only process
unweighted graphs.

Co-clustering [DMM03] clusters nodes of a graph by maximizing mutual
information and requires the number of clusters as an input parameter.

Other methods use cut-based multilevel approaches to detect communities
like Metis [KK99] and GraClus [DGK07] or use singular value decomposition like
[Dri+; SD11].

37

3. Related Work

Also, kernel functions are applied to graphs to obtain similarities between nodes
[Fou+12].

Spectral clustering (survey: [DGK07]) also is cut-based and finds clusters in a
graph.

Graph summarization techniques (cf. Section 3.1.1) use regularities to summa-
rize or compress the graph: VoG [Kou+14] finds primitives like hubs and cliques
for compression by minimum description length. Subdue [KHC05] discovers
substructures in a graph and also uses them for compression.

Eigenspokes [Pra+10] finds communities in a graph by decomposing the adja-
cency matrix into singular vectors. However, Eigenspokes can not process edge
weights.

The concept of bridges that we introduce with Spectral Lens has not yet been
discussed in the related work. The closest but not identical concept is overlapping
communities: an overlap of three communities (A, B, C) does imply there is a
connection between all of these communities; a partial similarity, i.e., between
A and B as well as between A and C but not between B and C can not be
expressed. Overlapping communities have been approached, e.g., by matrix
factorization (BigClam[YL13]), probabilistic model-fitting (AGM[YL12]) or label
propagation (COPRA[Gre10]); unlike Spectral Lens, none of these methods can
process negative edge-weights.

3.3.2. Detecting Suspicious Behavior in Graphs
Several methods have been proposed for highlighting suspicious behavior in
graphs.

Oddball [AMF10] looks for anomalous nodes in weighted graphs. It defines
rules for a "neighborhood sub-graph" and detects deviations from these rules as
anomalies.

FBOX [Sha+14] finds small-scale attacks in networks that spectral methods do
not detect.

Decluttering [KSS14] identifies suspicious nodes by their local edge connectivity
with respect to the entire network.

Suspicious behavior in graphs also occurs when nodes behave in unusual
synchronous patterns, a so-called lockstep behavior. FRAUDAR[Hoo+16], LOCK-

38

3.3. Regularities and Suspicious Behavior in Graphs

STEP[Jia+14b], EdgeCentric[Sha+16], CopyCatch [Beu+13] and CatchSync [Jia+14a]
detect nodes that are part of these patterns which may be due to hijacked or
scripted accounts.

Unlike our proposed method Spectral Lens, none of the current work identifies
and explains both the groups of regular and irregular behavior as well as groups
with similar edge-connectivity patterns in directed and (positive or negative-)
weighted graphs. Also, no comparison method automatically finds interpretable
partitions that include highlighting bridges and overlaps.

39

4. MEGS: Partitioning Meaningful
Subgraph Structures using
Minimum Description Length

How can we fully structure a graph into pieces of meaningful information? Into
structures that provide us with insights and carry a meaning beyond simple clustering?
How can we also exploit these patterns to compress the graph for fast transmission and
easier storage? —

In many applications of graph analysis like network analysis or medical
information extraction we are searching for special patterns. Here, it is not
sufficient to extract only parts of the relevant information in a graph, but to
understand the complete underlying structure. Therefore, we propose our
algorithm MeGS (Partitioning Meaningful Subgraph Structures using Minimum
Description Length) to fully understand how a graph is constructed. The most
common primitives (clique, hub, tree, bipartite, and sparse) serve as models
to split a graph into meaningful structures. Using the principle of minimum
description length (MDL) structure types and counts are determined by the best
fitting model. These structures achieve the best compression of the adjacency
matrix. As result, every node is part of exactly one structure and has an
interpretable context. No unknown areas remain in the graph. The higher
a model compresses its section of the graph, the stronger its match with the
corresponding structural assumption. MeGS, a fast and parameter-free split-and-
merge algorithm, automatically finds the optimal structures achieving the best
compression. We compare to state-of-the-art algorithms to prove MeGS’ ability
for interpretation and compression.

41

4. MEGS: Partitioning Meaningful Subgraph Structures using . . .

4.1. Introduction

How can a graph and its subgraph structures be fully understood? We propose
that a complex graph can be represented with a succinct set of patterns which
are readily understood by practitioners from the problem domain. Many ap-
plications in network analysis or medical information extraction require a full
understanding of how and by what parts a graph is constructed. If a graph
corresponds in all its parts to patterns well known to the user, he or she finds his
or her ideas well represented. Hence we say these patterns carry meaning for
the user and are meaningful structures. We aim to find a structural representation
containing all nodes of a graph, not only some subsets. For clear understand-
ing and easy interpretation we assign each node to exactly one structure. We
provide an expandable dictionary of the most common primitives (clique, hub,
tree, bipartite, and sparse). We identify the structures and visualize the graph by
permuting its adjacency matrix. The minimum description length (MDL) principle
(cf. Section 2.2.1) guides the partitioning in number and types of the subgraph
structures.

Various algorithms have been proposed to partition graphs, as has been
summarized in the literature review in Chapter 3. We recapitulate the closest
competitor algorithms to MeGS (c.f. Table 4.1). Metis [KK99] finds a given
number of communities (or cliques). This simple paradigm clusters nodes
together if they show many edges in-between, and separates them if they are
loosely connected. Other methods use the information-theoretic MDL to fit node
and edge sets to models so that the number of partitions is automatically defined:
Cross-associations (CA) [Cha+04] permutes the adjacency matrix in order to find
dense partitions (cliques and bipartite structures). However, the complexity of
different graph structures has not yet been fully covered.

Another approach is given by SlashBurn [KF11] which is based on a hub-like
paradigm and helps to visualize a graph. Being MDL-based as well, it decom-
poses a given graph by removing the highest-degree nodes step-by-step. VoG
[Kou+14] and CXPrime [Fen+13] have made approaches towards the identifica-
tion of graph patterns using MDL. VoG does not include the complete graph
in its structure detection. Thus, it only allows interpretation of parts of it, but
not of the full graph. VoG also detects overlapping structures. While in some

42

4.1. Introduction

Table 4.1.: Comparison of MeGS and related algorithms in various goals of graph
analysis which MeGS contributes to.

Structur-
ing

> 2
Primitives

Partition-
ing

Visualiza-
tion

MDL-
based

MeGS 4 4 4 4 4

CXPrime [Fen+13] 4 4 4 4

VoG [Kou+14] 4 4 4

CA [Cha+04] 4 4 4

Metis [KK99] 4

SlashBurn [KF11] 4 4

applications overlapping structures may be asked for, we will show the value of
an explicit node assignment in our experiments: this allows a clear visualization
and interpretation of all structures. Therefore, we do not include overlapping
structures. Like our method, CXPrime gives a clear structure assignment based
on MDL. However, CXPrime has a very limited and non-expandable dictionary
(clique and hub) and is not parameter-free.

Our proposed algorithm MeGS (Partitioning Meaningful Subgraph Structures
using Minimum Description Length) gives a full understanding of the underlying
structures of a graph. Figure 4.1 gives a toy example: the graph contains five
prevalent structures: a clique-like, a hub-like, a bipartite-like, a tree-like structure,
and a cyclic, planar structure.1 None of the structures manifests an ideal pattern,
but all contain errors in terms of missing or additional edges. E.g., the tree-like
structure shows cyclic edges; the spoke nodes of the hub are partly connected;
the bipartite sets show edges not only between but also in each set. In addition
to identifying the best-fitting structures, the algorithmic task is to separate the
structures which are all connected to each other (partitioning task).

1The planar structure is characterized by too many cyclic edges to be regarded as tree-like, but
is too sparse to appear clique-like.

43

4. MEGS: Partitioning Meaningful Subgraph Structures using . . .

b1

a5

b2

a9

b4

b3

a6

a7

a8 b0 4 3 5 9 6 7 0 2 1 8

12 11 10 14 13

37

38 39 40

41 42 43 44 45

46 47 49 5048

51 52 53

c1 c2

c3

c4

2920
33

18

24

22

21

35

17

30
27 19

36

26

25

32

31

28

23

34
16

15

54
59

62

60

61

58

63
64

66

55

57

65

56

67

Figure 4.1.: Synthetic graph illustrating the idea of MeGS. The nodes are color
coded by the corresponding structures (Clique , Bipartite ,
Tree , Hub and Sparse).

44

4.2. Meaningful Graph Structures

We summarize our contributions:

1. We present MeGS, an algorithm that simultaneously partitions a graph into
a range of meaningful structures and enhances visualization by permuting its
adjacency matrix (features not offered by existing algorithms, c.f. Table 4.1).
Every node is part of exactly one structure and has an interpretable context.

2. By using MDL, MeGS is parameter-free in theory and practice, and losslessly
compresses the graph.

3. Extensive experiments demonstrate that MeGS can be used to reveal struc-
tural information in real-world graphs.

To the best of our knowledge there is no other proposed method with these
contributions that is able to extract all our given structures (clique, hub, bipartite
structure, tree and sparse structure) and, thus, to provide a distinct node assign-
ment and interpretable visualization which helps understand a graph and its
inner structure. The above mentioned state-of-the-art methods will be compared
in detail in our experiments.

The rest of this chapter is structured as follows: In Section 4.2 we present the
theory behind MeGS and build the underlying MDL compression schema. The
algorithm MeGS is given in Section 4.3. Section 4.4 contains experiments on
synthetic and real-world data. Section 4.5 concludes the chapter.

4.2. Meaningful Graph Structures
To identify meaningful structures we define a detailed MDL compression schema.
The overall compression length defined by MDL is our objective function that
guides our algorithm. It is minimized if the optimal number of structures and the
best fitting types of structures are selected. Thus, a sound objective function is
vital for success. To ease comprehension Table 4.2 gathers important definitions.

We follow the information-theoretic principle of Shannon’s entropy (cf. Sec-
tion 2.2): if we have no a-priori knowledge about an arbitrary graph, the amount
of information and, thus, the bit length for compressing the graph is defined as
follows: we regard the elements 1 (edge) or 0 (no edge) of the n× n adjacency

45

4. MEGS: Partitioning Meaningful Subgraph Structures using . . .

Table 4.2.: Important Symbols and Definitions.

Symbol Definition
G (Gi) graph (i-th subgraph structure)
A adjacency matrix of G
V (Vi) node-set of G (of subgraph structure Gi)
n (ni) number of nodes of G (of subgraph structure Gi)
E (Ei) edge-set of G (of subgraph structure Gi)
E0

i edge-set of subgraph structure Gi as fully-connected subgraph
E× (E0

×) edge-set between all structures (analogously as fully-connected)
EH

i ; ES
i edge-set between hub node and spoke nodes; between spoke nodes

EA–B
i (EA

i , EB
i) edge-set between (within) bipartite sets A and B

EC
i cyclic edge-set (i.e. edges closing cycles)

k number of subgraph structures
T code book for structure compression
ti ∈ T type of structure i (e.g. tree)
Ci (PCi, CCi) compression cost for structure i [bit] (model cost, edge cost resp.)
mdlG total encoding length of G [bit] (=objective function of MeGS)

matrix A of an unweighted graph G as a sequence of observations from an
i.i.d. random variable with the distribution PA (we follow [Cha+04]). In the
adjacency matrix A the random variable produces either an edge or no edge,
hence PA(0) = 1− PA(1). Now we can use the binary Shannon entropy function
to measure the information contained in our random variable and, thus, its
compression in bits as H(PA). The complete adjacency matrix is compressed
by n2 · H(PA(1)) bits, since H(PA(1)) = H(PA(0)). With V representing a set
of nodes and E a set of edges of G, we can equally express the MDL of the
adjacency matrix A as |V|2 · H(PA(1)). Since PA(1) = |E|/|V|2, the compression
length is equivalently expressed as |V|2 · H(|E|/|V|2) (as in [Cha+04]). This is
the total bit length of a graph G = (V, E) after compression. Since we restrict to
undirected graphs without self-loops, the actual cost is lower. However, until
now, we still use no structural information and, therefore, have bad average
compression rates.

46

4.2. Meaningful Graph Structures

5459
62

60

61

58
63 64 66

55

57

65

56
67

14 13 15 19 16 17 10 12 11 18

12 11 10 14 13

37

38 39 40

41 42 43 44 45

46 47 49 5048

51 52 53

c1 c2

c3

c4

2920
33

18

24

22

21

35

17
30

27 19
36

26

25

32

31

28

23

34
16

15

b1

a5

b2

a9

b4

b3

a6

a7

a8 b0

Figure 4.2.: Illustration for MDL structure encoding schema for structures Bi-
partite , Tree , Clique , Hub and Sparse from Figure 4.1.
Deviations from the ideal structure by missing edges () or addi-
tional edges () are marked by an in the adjacency matrix and
require additional encoding by MDL.

As in information-theoretic data mining, we do not immediately compress
the edges, but try to better describe the graph information by a-priori models.
Then, only the model parameters and the deviation from the models by missing
or additional edges have to be compressed. We gain structural information and
better compression rates. After transmitting the data, lossless decompression
only requires knowledge about the a-priori models.

We use meaningful graph structures as models for the following reasons: (1)
They are common among real data graphs and allow high compression rates.
(2) Already the information about type and number of structures in a graph
delivers important knowledge about it. (3) Finally, the compression quality
allows comparing to other algorithms that also use MDL and gives insights
about how well models fit.

47

4. MEGS: Partitioning Meaningful Subgraph Structures using . . .

4.2.1. Graph Structure Encoding

Our motivation for using graph structures is their pervasiveness, simplicity and
meaningfulness, i.e. they contribute to the interpretation of a graph. A pattern
is not suitable if it only improves compression but not understanding of a
graph. We propose a code book (or dictionary) consisting of following structures:
cliques, hubs, bipartite structures, trees and sparse structures. However new
structures accompanied by a (de-)compression algorithm can easily be added.
The example in Figure 4.1 shows all five structures. With reference to it we now
elaborate the encoding schema for the graph structures of our code book. Edges
between structures will be discussed later.

To enhance understanding Figure 4.2 presents each structure of Figure 4.1
separately in node-edge as well as in adjacency matrix representation. The latter
is relevant for compression. Since we restrict to undirected graphs without
self-loops, the lower triangle of the adjacency matrix can be ignored: light gray
don’t-care edges (). Matched to a structural model, the graph can contain
missing and/or additional edges. These edges resemble false negatives and
false positives, whereas dark gray edges () represent true negatives. Applied
to a structure, the compression cost Ci for each structure i is composed of
model parameter information PCi and coding cost of edge information CCi
(Ci = PCi + CCi). All models include as parameter cost PCi the type of the
substructure as listed in the code book T of dlog2 |T|e bits (= 3 bits for our code
book), the size of each structure by dlog2 |V|e bits and for all member nodes Vi
its structure ID using |Vi| · log2(|V|/|Vi|) bits. For defining CCi each structure
follows a different encoding schema:

Clique ()

In an ideal clique i each node is connected to all other nodes. The matrix elements
above the diagonal contain all edges or missing edges and are encoded using
entropy. Thus, there are |E0

i | = (|Vi|2− |Vi|)/2 possible edges (= fully-connected,
symmetric and without self-loops). With |Ei| being the number of existing edges
above the upper diagonal CCi = |E0

i | · H(|Ei|/|E0
i |) bits. Following fundamental

insights of information theory [Ris07] adding the edge probability demands

48

4.2. Meaningful Graph Structures

1
2 · log2 |Vi| bits as further parameter costs. Since a clique is characterized by a
high number of edges, we define the condition |Ei| >= |E0

i |/2.

Hub ()

A hub shows a distinguished node that is connected to all other nodes of this
structure, so that the hub node is of highest degree in the structure. Therefore,
every missing edge from this node to all other nodes of a hub needs to be encoded
as well as all additional connections between the remaining nodes. The edges
EH

i to the hub node require (|Vi| − 1) · H(EH
i /(|Vi| − 1)) bits. All other edges ES

i
between spokes are encoded by (|E0

i | − |EH
i |) ·H(ES

i /(|E0
i | − |EH

i |)) bits. To differ
from tree and clique, a hub requires at least half of the possible connections from
the hub node to all spoke nodes (|EH

i | ≥ (|Vi| − 1)/2) and not more than half
of the possible connections between the spoke nodes (|ES

i | ≤ (|E0
i | − |EH

i |)/2)
As specific parameter cost the edge probabilities of hub and spokes have to be
compressed in altogether 2 · 1

2 log2 |Vi| bits.

Bipartite ()

A perfect bipartite graph is divided into two disjoint set of nodes VA
i , VB

i so that
all nodes of each set show edges EA–B

i to all nodes of the other set. No inner edges
EA

i , EB
i between nodes of a single set exist. Therefore, all edges EA–B

i are arranged
in a rectangle in the adjacency matrix. Missing edges between the bipartite sets and
additional edges in the bipartite sets are deviations from the perfect bipartite model
and are separately entropy encoded. Encoding edges between the bipartite sets
is done by encoding the respective subset of the adjacency matrix: in the blue
bipartite subgraph of Figure 4.2 all edges between VA

i = 1st to 10th node and
VB

i = 11th to 15th node. Analogously to the full encoding of an adjacency
matrix using |V|2 · H(|E|/|V|2) bits (derived above) existing edges and missing
edges between the sets are encoded using |VA

i | · |VB
i | · H(EA–B

i /(|VA
i | · |VB

i |))
bits. Furthermore, there is a maximum of E0A+B

i = E0
i − (|VA

i | · |VB
i |) additional

edges possible in both single sets. Thus, entropy encoding of existing edges and
missing edges requires E0A+B

i · H((EA
i + EB

i)/E0A+B

i) bits here. Both encodings
compose CCi. To be meaningful, bipartiteness requires, analogously to clique

49

4. MEGS: Partitioning Meaningful Subgraph Structures using . . .

and hub, EA–B
i ≥ 1

2 · |VA
i | · |VB

i | and EA
i + EB

i ≤
1
2 · (E0

i − (|VA
i | · |VB

i |)). Edge
probabilities between and in bipartite sets are added to PCi as 2 · 1

2 log2 |Vi|.

Tree ()

A tree is defined as an acyclic bipartite connected graph. We arrange the nodes
in breadth-first search order (BFS): nodes with the same parent node keep
their original order in the adjacency matrix to reduce encoding cost. Then,
the nodes on the next level follow in the order of their parent nodes on the
higher level. Again, nodes with the same parent keep their original order. Thus,
for every node except the root node we only need to store its parent node
to encode the permutation, demanding altogether (|V| − 1) · log2(ni − 1) bits.
Since no information is given which node is the root node, and assumptions are
difficult (balanced or unbalanced tree, max-degree root etc.), the first node of
the adjacency matrix of the subgraph is chosen as root node.

The adjacency matrix of a perfect tree corresponds to the shape of descending
stairs with only one edge per column if we consider only the upper triangular
matrix (cf. Figure 4.2). Please note an important effect of BFS-ordering on the
adjacency matrix: by definition no edges lie above the BFS-ordered tree edges.
Hence, the these edges are marked as don’t-care () and require no encoding.
Edges which close cycles (cyclic edges) EC

i represent deviations from the tree
model and occur between the diagonal and below the tree edges in Figure 4.2.
With childrenvm

i being the set of non-cyclic edges of the m-th node of tree i, we
sum up the number of all possible cyclic edges of tree i as

|EC0
i | = ∑

vj∈Vi

(
∑

m<j
|childrenvm

i | − (j− 1)

)
. (4.1)

These edges are both the dark gray () and crossed out () edges. Now, we can
state the entropy cost for cyclic edges as |EC0

i | · H(EC
i /|EC0

i |) bits. Note that a
hub is a special case of a tree. To differ from a hub structure, we require a
minimum tree height of three to achieve a meaningful differentiation between
the models, i.e. |childrenvm

i | > 0 for at least three nodes. However, we do not
encode the hub as a special case of a tree, since the hub encoding is more robust
to noise edges. Analogously, we require EC

i ≤ |E
C0
i |/2 for the tree structure.

50

4.2. Meaningful Graph Structures

Sparse ()

A sparse graph is the opposing model to a clique. Every existing edge increases
encoding cost. In Figure 4.1 the sparse structure is a planar graph that would
be poorly encoded by a clique or a tree structure. In an ideal sparse structure i
there are |E0

i | = (|V|2 − |V|)/2 possible edges. With |Ei| being the number of
existing edges above the upper diagonal

CCi = |E0
i | · H(|Ei|/|E0

i |). (4.2)

Adding the edge probability demands 1
2 · log2 |Vi| bits as further parameter costs.

Analogously to the clique model, we add the constraint |E| < |E0|/2.

4.2.2. Graph Compression Schema
Having defined the compression of the graph structures we now define the
complete MDL schema for losslessly encoding the full graph. With knowledge
about the code book of structures and the encoding schema the full decoding is
possible, e.g. after transmitting the data over a channel. The total size mdlG of
the graph after compression is the sum of the cost of the compressed structures
Ci = CCi + PCi as defined above, together with:

1. Full graph dimensionality: the number of nodes of the complete graph
G = (V, E) is represented by a natural number of unknown length. It is
best compressed using log∗2 |V| bits (c.f. [Ris07; LC78] for log∗2). Nodes
without any edges belong to no structure since no connectivity information
is given. They are included implicitly by sending the graph size.

2. Number of compressed structures: Since n represents the upper border
for the number of structures, k could be encoded using dlog2 ne bits.
However, since k � n, using log∗2 k bits for transmission is obviously
cheaper.

3. Edges connecting structures: Until now, we only discussed edges in struc-
tures. We store information about additional edges between structures E×
by entropy encoding the area of the adjacency matrix lying outside the

51

4. MEGS: Partitioning Meaningful Subgraph Structures using . . .

subgraph structures. Again, due to symmetry we only consider the upper
triangular matrix except the diagonal. The compression requires

|E0
×| · H(

|E×|
|E0
×|

) bits, with |E0
×| = ∑

Vi⊆V
|Vi| · (|V| − |Vi|). (4.3)

Our graph compression schema mdlG serves as objective function that has to
be minimized by our partitioning and structuring algorithm MeGS.

4.3. Algorithm MEGS
Our proposed algorithm MeGS (Partitioning Meaningful Subgraph Structures
using Minimum Description Length) follows a top-down split-and-merge pat-
tern: The overall objective function that is minimized is the size mdlG of the
compressed graph. Starting with the complete graph, MeGS performs a split of
a structure into two substructures if reducing MDL. Analogously, structures are
merged if reducing MDL. Then, the nodes are assigned to a different structure
if reducing MDL. Split, merge and assignment step are iterated until MeGS
converges, i.e. neither split nor merge nor assignment reduce MDL any further.
We now present the algorithm MeGS2 (Algorithm 4.1) as well as fast heuristics
to build each structure. When referring to time complexity here, we consider the
worst time complexity.

Input is a graph G = (V, E). Output are (1) the optimal number k of structures,
(2) the optimal type ti of each structure i, (3) the structures G1, . . . , Gk, (4) the
set of edges E× between the structures and (5) the length mdlG of the losslessly
compressed graph in bits.

From the compression schema it follows that the objective function is mini-
mized if the structures have fewer edges connecting each other than edges in
each structure. We exploit this for initialization such that nodes connected to
each other by edges are arranged closer in the permuted adjacency matrix. A
BFS-ordering permutes the initial adjacency matrix in O(|E|): the child nodes of
the first node in A are arranged directly after their parent node in A. If the parent

2We provide an implementation of MeGS at https://s.goebl.net/research.

52

https://s.goebl.net/research

4.3. Algorithm MEGS

Algorithm 4.1: Algorithm MeGS
Input: G(V, E)
Output: (k; t1, . . . , tk; G1, . . . , Gk; E×; mdlG)

1 mdlG ←− ∞
2 initialize using BFS-sort
3 while mdlG not converged do

4 numParts←− 2
5 repeat
6 foreach structure Gi do
7 G′i ←− BFS-sorted Gi
8 split G′i into numParts equal partitions pj
9 foreach pj do

10 G
′′
i ←− (p1, . . . , pj−1)

11 G′′i+1 ←− (pj, . . . , pnumParts)

12 end foreach
13 lowest mdlG (if any)→ new Gi and Gi+1

14 end foreach
15 numParts++
16 until last for loop resulted in split or |pj| < 4

17 repeat
18 foreach (Gi, Gj) do
19 merge into new G′i
20 if mdlG decreases then
21 replace (Gi, Gj) by G′i

Split Step
. Section 4.3.1

Merge Step
. Section 4.3.2

Assignment
Step

. Section 4.3.3

22 end if
23 end foreach
24 until no more merges possible

25 foreach node n ∈ V do
26 assign n to optimal structure Gi (lowest mdlG)
27 end foreach

28 end while

53

4. MEGS: Partitioning Meaningful Subgraph Structures using . . .

node is connected to more than one child node, they preserve their original
ordering. Again, the child nodes of the former first child node are arranged
accordingly after the last former child node. This produces a stepped pattern
in A. If nodes have already been processed (cyclic edges), they remain in place.
Until the objective function mdlG has not converged, split, merge and assignment
step are executed iteratively. By definition these steps can only decrease mdlG
but none can increase it. Convergence is assured.

4.3.1. Split Step

For each structure we start (after BFS sorting each first) with two (numParts := 2)
equal partitions. If the objective function decreases by the newly created struc-
tures, splitting is done. In every loop one partition more is created (numParts++),
and two structures are build in a one-versus-rest pattern. The lowest mdlG
chooses the best split or that no splitting is done. Due to the complexity of this
step, let us consider the toy graph (Figure 4.1) with 82 nodes: At the beginning
we have one structure G1. It is split into 2 equal structures G

′′
1 and G

′′
2 containing

each 41 nodes. If this new structuring does not decrease mdlG, three partitions
are build: p1 contains the first 27 nodes, p2 the second 27 nodes and p3 the
remaining 28 nodes. Now first G

′′
1 is constructed with the first 27 nodes (p1) and

G
′′
2 with the remaining 55 nodes (p2 and p3), then a different G

′′
1 with the first 54

nodes (p1 and p2) and G
′′
2 with the last 28 nodes (p3). The lowest mdlG defines

the split. If no split is achieved, the number of partitions increases in the next
repetition. If one or more splits have occurred in a single repeat-iteration or the
partition size is too small, the split algorithm terminates and outputs the (new)
set of structures.

4.3.2. Merge Step

Each structure is tested to be merged with each of the remaining k− 1 structures.
If the objective function decreases merging is done. Due to symmetry there is
a maximum of (k · (k− 1))/2 possibilities. We repeat until no more merging is
possible.

54

4.3. Algorithm MEGS

4.3.3. Assignment Step

After each split and merge step all nodes are processed in the assignment step:
if an assignment to one of the k− 1 other structures reduces mdlG, the node is
assigned to the optimal Gi such that the objective function is minimized. After
all the nodes have been processed in random order, all structures are refined in
the next iteration of MeGS until convergence. Note that every node is assigned
to exactly one Gi.

4.3.4. Graph Structuring Algorithms

When combining two structures Gi and Gj a new structure G′i is built in the merge
step so that Vi ∪Vj ⊆ V (Vi ∩Vj = ∅). To find the optimal structure all |T| = 5
structures of the code book are built. Equally, in the split step (numParts− 1) · 2 · 5
structures are built. In the worst case (no splits found at all) Gi/4 partitions
are build for each structure i. The assignment step integrates a new node into
an existing structure (Memoizing saves from rebuilding structures). We now
present fast heuristics for each structure type: for scalability merging, splitting
and assignment should be close to linear time complexity.

Clique and Sparse

No specific node permutation is necessary for building this structure. The time
complexity only depends on the calculation of mdlG being O(|E| + |V|). By
memoizing mdlG, assigning a new node to a clique or sparse structure requires
only looking at the direct neighbors |Vi| � |V|. Thus, the assignment step is
nearly O(|V|).

Hub

Building a hub requires finding the highest-degree node and calculating mdlG,
resulting in O(|E|+ |V|). By memoizing the degree of the hub node, the assign-
ment operation is analogous to the clique.

55

4. MEGS: Partitioning Meaningful Subgraph Structures using . . .

Bipartite Graph

We use the popular MAX-CUT approximation algorithm by [SG76] for con-
struction. It constructs two bipartite sets with an approximation ratio of 0.5
in O(|V| + |E|). When assigning a new node to the bipartite set to which it
has fewer edges, we only need to count the direct neighbors of the node. Time
complexity is nearly O(|V|+ |E|) as well.

Tree

Constructing a tree using BFS-ordering (described above) is O(|E|). Calculating
mdlG determines the time complexity of O(|V|+ |E|). Insertion of a node is done
by local restructuring of the BFS traversal with only a worst case of O(|V| · |E|)
in case the whole BFS-sort needs to be repeated. Mean time complexity is close
to O(|V|).

4.3.5. Overall Time Complexity of MeGS

The time complexity of each part of MeGS, of the merge step (Tmerge), the split
step (Tsplit) and the assignment step (Tassign) has been discussed and is now
put together: let iter be the number of iterations until convergence and k the
number of structures. For simplicity, we do not consider that k can change
in every iteration. Instead, we define and use kmax as the maximum value for
k during the complete algorithm. The outer loop of MeGS is executed iter
times. Then, the split step is executed for every structure, requiring kmax · Tsplit
time. The merge step is processed for every pair of structures, which takes
1
2 · kmax · (kmax − 1) · Tmerge. In the worst case a merged structure merges in the
next inner repeat-loop again and again . . . , adding the factor kmax. Finally,
each node is assigned to each structure for calculation of mdlG, except the one
it has been assigned to in the previous iteration, requiring (kmax − 1) · Tassign
time. Adding the BFS-sorting initialization of O(|E|), the total time complexity

56

4.4. Experiments

of MeGS is

TMeGS = O(|E|) + O(iter · (kmax · Tsplit

+
k2

max · (kmax − 1)
2

· Tmerge

+ (kmax − 1) · Tassign))

(4.4)

4.4. Experiments

For each contribution provided by MeGS we present several experiments on
both synthetic and real-world datasets. We demonstrate MeGS’ effectiveness in
experiments on the partitioning task (Section 4.4.1), on structuring and visualization
(Section 4.4.2) and on compressing graphs (Section 4.4.3). MeGS’ efficiency is
shown in Section 4.4.4. The experiments cover all structure types contained
in our code book (e.g., bipartite structure in BRAIN, tree in POWER). For
repeatability we provide all datasets under the same link as our implementation.
We compare to the state-of-the-art algorithms CXPrime [Fen+13], VoG [Kou+14],
Cross-Associations (CA) [Cha+04], Metis [KK99] and SlashBurn [KF11] (all
introduced earlier). Not every algorithm covers all of MeGS’ contributions.
Therefore, we choose suitable comparison partners for each experiment. E.g.,
SlashBurn does not partition a graph and is excluded from the partitioning
experiments. An overview of which contribution is compared to which algorithm
is given in Table 4.1 (marked by 4). Methods not marked do not provide this
feature.

4.4.1. Partitioning

With known ground truth the task is to find a node assignment so that the final
partitions match the ground truth. We compare to MDL-based CXPrime and
Cross-Associations which are both able to automatically detect the number k of
partitions (like MeGS does). We also compare to Metis and provide the correct k
as input parameter here. Partitioning quality is defined by the state-of-the-art
measurement Normalized Mutual Information (NMI) (cf. Section 2.2.2).

57

4. MEGS: Partitioning Meaningful Subgraph Structures using . . .

Synthetic Dataset (SYN)

As synthetic dataset (SYN) we consider the graph in Figure 4.1. Every structure
varies from a perfect structure in faulty edges: e.g., the green clique shows 52
edges whereas an ideal fully-connected clique with the same number of nodes
would display 78 edges. We define this deviation as edge fault rate, here it is
78−52

78 = 33%. Analogously, this applies for all structures as well as the edges
between structures. This way, we increase noise in each structure and between
the structures. The mean edge fault rate of the synthetic graph in Figure 4.1
is 0.4. In this experiment we scale the overall mean edge fault rate from 0.1
to 0.7 by scaling each individual edge fault rate of a structure and between
structures by the same factor, thus, making it increasingly more challenging to
separate the partitions.3 The number of nodes remains fixed. CXPrime needs
a parameter limiting the interval for searching k. It is set to 10. For Metis
the number k of partitions is set to the correct 5. Figure 4.3a (Robustness to
noise) presents the mean result of 10 executions for each algorithm. MeGS
clearly outperforms all comparison algorithms in partitioning quality and shows
robustness to faulty edges. With increasing noise the plot shows a strongly
decreasing partitioning quality for CXPrime and Metis. Only Cross-Associations
is slightly less influenced by a high noise portion which is probably due to its
simple structure model (highly connected vs. unconnected areas in the adjacency
matrix).

FOOTBALL Dataset

As first real-world dataset we partition the FOOTBALL dataset from [DuB08].
The nodes represent the 115 Division IA (former top level of college football)
colleges in the U.S. during regular season Fall 2000. An undirected edge stands
for a game between two colleges. The label of a node marks to which of the
12 football conferences a college belongs. We do not use edge weights as also
the competitive algorithms are not built for weighted graphs. For CXPrime the

3Since an edge fault rate of 0.0 produces separate connected components which the comparison
algorithms can not handle, the experiment in Figure 4.3a starts with the mean edge fault rate
of 0.1.

58

4.4. Experiments

0.1 0.2 0.3 0.4 0.5 0.6 0.7
0.2

0.4

0.6

0.8

1
MeGS

Cross-As sociations

CXPrime

Metis

edge fault rate

N
M

I

(a) Robustness of MeGS and its comparison algorithms

104 105 106100

101

102

103

104

MeGS

Cross-Ass ociations

CXPrim
e

VoG

SlashBurn

Number of edges |E|

Ti
m

e
[s

]

(b) Runtime of MeGS and its comparison algorithms

Figure 4.3.: (a) Robustness when modifying the edge fault rate (=rate of edge
deviation from ideal structures) on SYN dataset (Figure 4.1). NMI of
1.0 is best. (b) Asymptotic Runtime when scaling SYN in size. Note
that MeGS is met by SlashBurn which grows faster than MeGS on
the log scale. CXPrime grows too fast to be further plotted. Metis is
below 100s.

59

4. MEGS: Partitioning Meaningful Subgraph Structures using . . .

upper limit for searching k is set to 15. For Metis k is set to the correct 12. The
mean NMI of 10 iterations is given in Table 4.3. With an NMI of over 0.9 MeGS
clearly outperforms and partitions the colleges very well into their true football
conferences. CXPrime, CA and Metis show increasingly worse results.

Table 4.3.: NMI for FOOTBALL dataset.

MeGS 0.909± 0.019 Cross-Associations 0.721± 0.000
CXPrime 0.8233± 0.0366 Metis 0.376± 0.000

ADJNOUN Dataset

The ADJNOUN dataset (ADJacent NOUNs) from [DuB08] is another real-world
dataset. It contains word adjacencies of common adjectives and nouns from
the novel “David Copperfield” by Charles Dickens. The 112 nodes of the dataset
represent the adjectives and nouns of the novel. The 425 edges each connect
two words if they are adjacent in the novel. As before, we compare MeGS’
partitioning of the ADJNOUN dataset to CXPrime, Cross-Associations and
Metis. Since CXPrime is able to identify structure patterns as well (star-like and
triangle-like, which corresponds to MeGS’ hub and clique) we also compare
its findings to MeGS. Since this dataset does not provide a ground truth for
evaluating partitioning quality, naturally, the comparison is not as easy as before,
and we have to look into the data for assessment. All results are shown in
Figures 4.4 and 4.5. For visualization the nodes are arranged in a force-directed
layout [Dwy09] where, generally speaking, connected nodes are closer to each
other than unconnected nodes. For MeGS the nodes of the graph are labeled
with their nouns and adjectives (Figure 4.4). MeGS finds two partitions (blue
and red/orange). The orange/red partition is identified by MeGS as a hub: the
noun “man” (red) serves as hub node and the orange nodes as spokes. This is
definitely reasonable and being a common word not surprisingly it is paired
with many descriptive adjectives to “old man”, “poor man”, “young man” and
others. Figure 4.5a also shows the adjacency matrix permuted by MeGS: the
hub node “man” is connected to nearly all its spoke nodes. The blue partition is

60

4.4. Experiments

identified by MeGS as sparse structure. The force-directed graph layout stresses
that the blue nodes are sparsely connected. They are spread out far around the
inner core of the graph. These words are less frequently adjacent in the novel.
In fact, the combination “beautiful woman” never appears in the text. Thus, we
can clearly state that the ADJNOUN dataset proves very well how the structures
discovered by MeGS enhance interpretation.

In comparison, CXPrime (search interval limited by 10) displays a very unbal-
anced partitioning with 29% vs. 71% of the nodes (Figure 4.5b). Both partitions
are identified as triangle-like which resembles a clique-like structure. In con-
sequence this means that 70% of the words in the novel are rather adjacent
to each other. This is a very general conclusion and provides less insights as
MeGS’ result. Metis (initialized with k = 2) and Cross-Associations only pro-
vide partitioning. Metis (Figure 4.5d) shows inhomogeneous, highly entangled
partitions in the force-directed layout, and does not clearly separate the data.
Cross-Associations (Figure 4.5c) produces three unbalanced partitions, the small-
est containing only 5 nodes (or 4%). displays a very unbalanced partitioning
with 29% vs. 71% of the nodes (Figure 4.5b). Both partitions are identified as
triangle-like which resembles a clique-like structure. In consequence this means
that 70% of the words in the novel are rather adjacent to each other. This is a very
general conclusion and provides less insights as MeGS’ result. Metis (initialized
with k = 2) and Cross-Associations only provide partitioning. Metis (Figure 4.5d)
shows inhomogeneous, highly entangled partitions in the force-directed layout,
and does not clearly separate the data. Cross-Associations (Figure 4.5c) produces
three unbalanced partitions, the smallest containing only 5 nodes (or 4%).

4.4.2. Structuring and Visualization
The following synthetic and real-world experiments evaluate MeGS’s contribu-
tions to the identification of structures and the enhancement of visualization of a
graph by permuting its adjacency matrix. We compare to the state-of-the-art al-
gorithms CXPrime [Fen+13] and VoG [Kou+14] for structuring, and to CXPrime,
Cross-Associations [Cha+04] and SlashBurn [KF11] for visualization. The other
algorithms do not provide these features (cf. Table 4.1). For VoG we use the
“greedy and forget” heuristic since it produces good results in [Kou+14].

61

4. MEGS: Partitioning Meaningful Subgraph Structures using . . .

agreeable

man
old

person

anything

short

arm

round

aunt

first

bad
air

boy

beautiful

black

face

letter

little

young

best

course

friend

love

part

room

thing

time

way

better

heart

mind

place

right

state

woman word

door

eye

bright

evening

morning

certain

day

other

child

happy

common

dark

kind

night

dear

good

home

mother

pretty

open

early

fire

full

great

master

moment

work

general

fancy

voice

head

hope

long

greater

hand

hard

red
life

glad

large
new

white

late

whole

light

manner

bed

house

low

money

ready

small

strange

thought

lost

alone

nothing

miserable

natural

half

wrong

name

pleasant

possible

side

perfect

poor
quiet

same

strong

something

true

usual

family

world

year

Figure 4.4.: ADJNOUN dataset: Force-directed [Dwy09] visualization of MeGS’
results. The nodes are labeled with the nouns and adjectives of the
dataset. The red node labeled “man” is hub node to the orange
spokes. The blue nodes form a sparse structure.

62

4.4. Experiments

(a) MeGS (b) CXPrime

(c) Cross-associations (d) Metis

Figure 4.5.: ADJNOUN dataset: (a) Adjacency matrix rearranged by MeGS (cf.
Figure 4.4) and force-directed [Dwy09] visualization of the results
for (b) CXPrime, (c) Cross-Associations and (d) Metis. Colors in
(b)-(d) represent cluster assignments.

63

4. MEGS: Partitioning Meaningful Subgraph Structures using . . .

Thalamus Auditive System

Visual Center

PraecentralisPostcentralis

Frontal Lobe

(a) Bipartite structure (b) Hub structure

Figure 4.6.: MeGS detects two structures in the BRAIN dataset.

Synthetic Dataset (SYN)

As synthetic dataset we use the example from Figure 4.1 again. For CXPrime
the upper limit for search interval is set to 5. Figure 4.7 shows the visualiza-
tion results. A good visualization and a meaningful structuring is intuitively
recognized by the amount of noise and the density of the point clouds in the
permuted adjacency matrix. MeGS can identify each structure correctly. Its
visualization is most compact with little noise. CXPrime identifies only the hub
correctly as star-like structure. The rest is identified as triangle-like structures
(i.e. cliques). The visualization is less clear but still gives some interpretable
information. Cross-Associations finds three clusters, only two show a compact
shape. SlashBurn’s ability to visualize power-law degree distributions achieves
no compact visualization here. VoG (not featuring visualization) can not extract
any structured subgraphs at all: the edges are encoded as error edges altogether.

BRAIN Dataset

The BRAIN dataset [Gün+08] is obtained from a study on somatoform pain
disorder (pain without any clinical cause) where patients and control groups
got experimentally induced painful and non-painful stimulation on the skin.
The dataset is constructed as follows: from a stimulated proband’s brain 90

64

4.4. Experiments

(a) MeGS (b) CXPrime

(c) Cross-Associations (d) SlashBurn

Figure 4.7.: SYN dataset: Visualization of the adjacency matrix rearranged by
the algorithms (a) MeGS, (b) CXPrime, (c) Cross-Associations and
(d) SlashBurn. To recognize the different partitions found by the
algorithms each partition is colored differently.

65

4. MEGS: Partitioning Meaningful Subgraph Structures using . . .

time series with 325 time points are recorded by 3d volume functional Magnetic
Resonance (fMRI) imaging. According to [Tzo+02], the brain is divided into
90 anatomical regions so that every time series refers to a specific brain region.
Here, the values of the time series indicate how active the brain region at a
specific time point is. In order to extract a graph structure, an edge is drawn
between the brain regions that are showing activity above a certain threshold at
the same time point. Thus, the resulting BRAIN graph shows the most active
brain regions that share some information with each other.

The processing of the BRAIN dataset by MeGS results in a bipartite structure
and a hub. To evaluate this result Figure 4.6 presents the involved brain regions
marked with colors. The perspective of the brain image is chosen according to
the biggest number of regions that can be displayed in this view. The functions
of the brain regions discussed are defined in [Orr08]: Figure 4.6a visualizes the
bipartite structure in a top view. The red and yellow areas are its two disjoint
subsets. The brain area that is assigned to the bipartite sets (red and yellow)
are regions that are connected to memory, emotions and associative procedures.
Bipartiteness is an intuitive result. These regions have complexer tasks compared
to the brain regions inside the hub and therefore show a higher connected
structure: they have to share more information. Figure 4.6b visualizes the hub
structure in a perspective on the left side of the brain. The blue area is the hub
node (=left postcentral gyrus) and is responsible for somatosensory functions,
like the perception of the skin or muscles. Therefore, the selection of the hub
node is intuitive: the test persons got experimentally induced painful and non-
painful stimulation on the skin which is processed by the somatosensory area
by transferring information to the other regions. The green marked areas in the
first cluster are mainly brain regions that have sensory functions, like the left
and right visual center, the left and right auditive system, and the left and right
olfactory system (not marked in the graphic). Additionally, several regions of
the left and right frontal lobe (responsible for speech and movement control)
and the left and right Praecentralis (also responsible for movement control) are
assigned to the hub. The interpretation clearly shows that the structures found
my MeGS are meaningful.

Figure 4.8 compares the results. The structures visualized by MeGS are easy
to see. CXPrime (initialized to search up to k = 10) is correctly able to extract the

66

4.4. Experiments

hub, but not the bipartite structure. Cross-Associations extracts four different
structures. However, the visualization shows that this is obviously no reasonable
structuring. SlashBurn creates a more compact visualization. The white spaces
in the adjacency matrix point out that SlashBurn’s technique (extracting highest
degree nodes) does not fit to the character of the dataset. VoG is not able to
extract structures at all but encodes all edges as noise without model-fitting.

POWER dataset

The POWER dataset (from [DuB08]) contains a graph with 4941 nodes and 6594
undirected unweighted edges. The graph represents the topology of the U.S.
Western States Power Grid. The visualization results in Figure 4.9 show: MeGS
gives the most compact representation with little noise. The very prominent tree
structure (blue) intuitively makes perfect sense for a state-crossing power grid.
The sparse structure (red) has too many cyclic edges for a tree. Thus, the red
partition is still thinly, yet more densely connected than the rest of the power grid.
CXPrime (initialized to search up to k = 15) identifies 7 noisy unclear triangle-
and star-like that do hardly contribute to interpretation. Cross-Associations
provides a very noisy visualization with unclear interpretation. SlashBurn is
able to sort out some highly-connected nodes, giving a visualization second
compact after MeGS. VoG is not able to identify structures.

4.4.3. Compression

MeGS and its MDL-based comparison methods allow lossless compression of a
graph. The experimental datasets have been compressed and the minimal MDL
(in bit) out of ten runs of each method is listed in Figure 4.4. MeGS outperforms
all comparison methods.

4.4.4. Asymptotic Runtime

To demonstrate the efficiency of MeGS, we scale the synthetic (SYN) dataset up
to 1m edges. In Figure 4.3b the first data point represents 103.5 edges and scales
the example graph by factor 4.5 and so on. The edge fault rate (defined above)

67

4. MEGS: Partitioning Meaningful Subgraph Structures using . . .

(a) MeGS (b) CXPrime

(c) Cross-Associations (d) SlashBurn

Figure 4.8.: BRAIN dataset: Visualization of the adjacency matrix rearranged by
the algorithms (a) MeGS, (b) CXPrime, (c) Cross-Associations and
(d) SlashBurn. To recognize the different partitions found by the
algorithms each partition is colored differently.

68

4.4. Experiments

(a) MeGS (b) CXPrime

(c) Cross-Associations (d) SlashBurn

Figure 4.9.: POWER dataset: Visualization of the adjacency matrix rearranged
by the algorithms (a) MeGS, (b) CXPrime, (c) Cross-Associations and
(d) SlashBurn. To recognize the different partitions found by the
algorithms each partition is colored differently.

69

4. MEGS: Partitioning Meaningful Subgraph Structures using . . .

Table 4.4.: Graph Compression: Minimum description length in bits for the
datasets ADJNOUN, SYN, POWER and BRAIN. SlashBurn requires
block width (b) as parameter for compression: we set b = 2i with
i ∈ N chosen to optimize compression. For all datasets the best
compression (bold) is achieved by MeGS.

in [bits] SYN ADJNOUN BRAIN POWER
MeGS 842 2100 995 76113
CXPrime 1018 2124 1086 76545
Cross-Associations 2263 4682 1935 208191
VoG 1123 2251 1331 81107
SlashBurn 1959 (16) 3957 (16) 1719 (8) 117857 (64)

in and between structures is fixed to 0.4 as in Figure 4.1. Experiments were
performed on a 2.4GHz Intel Core i5 with 8GB RAM. Where applicable we use
the parameter settings as in Figure 4.3a, VoG is configured as above. CXPrime
and VoG scale worse than MeGS. SlashBurn’s curve grows faster than MeGS’
and is outperformed for larger graphs where efficiency is indispensable. Cross-
Associations is faster than MeGS, however, it can only detect clusters of edges
but not structures. Metis is very fast (below 100s and thus not plotted: however,
Metis is solely a partitioning algorithm and is also missing self-parametrization
(k is given as input parameter).

4.5. Conclusion
We define an MDL model based on a codebook of meaningful graph structures.
Our goal is to identify these structures in a given graph. Discovering structures
allows interpretation. We provide our split-and-merge algorithm MeGS to
partition a graph into the structures defined in the codebook (which can easily
be extended). We also show extensive experiments on both synthetic and real-
world datasets. As a result, our proposed parameter-free algorithm MeGS is
clearly demonstrated to be effective and efficient in comparison to state-of-
the-art algorithms. This applies to all our contributions: graphs are separated

70

4.5. Conclusion

into an optimal number of partitions and matched to optimal structures, both
minimizing the minimum description length, and thus, the compression length
in bits.

71

5. Spectral Lens: Explainable
Diagnostics, Tools and
Discoveries in Directed, Weighted
Graphs

How can we quickly explain large-scale directed and weighted graphs? We present
Spectral Lens (SL) to analyze a variety of real-world networks with both negative
and positive edge weights, like DBLP relationships, email communications and
Bitcoin trust votings. SL offers value on three levels:

(a) Diagnostics: Spectral Lens combines spectral properties from singular value
decomposition to create an SL-Dictionary (SLD) to enhance understanding
of any directed, weighted graph.

(b) Tools: the SL-Algorithm (SLA) automatically extracts the top groups of
nodes with similar connectivity, finds groups of shared connectivity and
detects suspicious behavior in a graph.

(c) Discoveries: Experiments on several real-world networks illustrate the
effectiveness of SLA.

Observations from synthetic and real-world networks reveal relations between
spectral and graph properties. We show that SLA is highly scalable and linear
on the size of a graph. Analyzing a graph with over 2 million edges takes less
than 5 minutes.

Overall, SL provides an easy-to-use tool for practitioners to explain a weighted
and directed graph quickly, to understand its connectivity and identify regular
and anomalous behaviors.

73

5. Spectral Lens: Explainable Diagnostics, Tools and Discoveries in . . .

5.1. Introduction
Given a multi-million edge directed, negative- and positive-weighted, uni- or
bipartite graph — how do we simultaneously

a) find groups of nodes with similar connectivity patterns (e.g., spokes of a
hub, a bipartite set, a clique, etc.),

b) identify nodes that share connectivity patterns of two or more groups and
connect them like a bridge, and

c) detect nodes with suspicious behavior?

Large scale directed and weighted graphs occur very commonly in the real
world. A directed edge can represent an author publishing in a venue, a flight
from one airport to another, an indication of trust from one person to another
and so on. Weights on these edges can quantify their strength — in a publication
graph between authors and conferences, the weight may represent the total
number of publications; in the flight network, it can represent the frequency of
routes; and in the trust network, it can represent the degree of trust. Moreover,
the weight may be negative, e.g., to represent a degree of distrust.

Groups of nodes that have regular connectivity constitute the most commonly
occurring patterns in the graph, while those with irregular connectivity occur
in case of anomalies and outliers. Identifying both of these groups is useful.
For instance, a regular pattern of flights can help to spot densely connected
airports, which can be used to optimize air-traffic and scheduling. Notable
are nodes belonging to one group but tending to others, such as computer
science conferences open for interdisciplinary work: these conferences are bridges
between different fields. Detecting them can help with one’s next decision on
where to publish a paper. The irregular patterns in transactions or trust networks
can help to spot and prevent fraud.

However, finding these groups of nodes is challenging for several reasons.
First, regular or irregular patterns in these networks are not labeled. Second,
these patterns can differ from one network to another. Third, there can be
multiple regular and irregular patterns that co-exist in the same network.

74

5.1. Introduction

(a) SLA finds experts and interdisciplinary researchers in DBLP

(b) SLA finds fields of research and interdisciplinarity in DBLP

Figure 5.1.: Our proposed algorithm, SLA, explains groups of nodes with similar
connectivity (GenComs) and of shared connectivity (bridges): For
the DBLP dataset, SLA separates fields and similar researchers and
highlights interdisciplinary conferences and researchers.

75

5. Spectral Lens: Explainable Diagnostics, Tools and Discoveries in . . .

(a) SLA finds airport patterns in OPENFLIGHTS

−20 −10 0 10 20 30 40 50
sv,6

−10

0

10

20

s v
,1

Shills detected correctly (GenCom 1)
Shills not detected (GenCom 1)
Users of GenCom 6

(b) SLA reveals shill accounts in BITCOIN-OTC

Figure 5.2.: Our proposed algorithm, SLA, explains groups of nodes with similar
connectivity (GenComs) and efficiently identifies anomalous shill
accounts from regular accounts: (a) SLA finds airports of similar con-
nectivity (depicted with same color) in the OPENFLIGHTS dataset,
(b) SLA isolates accounts that are known to be shills (shown as red
dots) in the BITCOIN-OTC dataset.

76

5.1. Introduction

Moreover, as the graph size increases, the number of possible patterns of the
groups increases exponentially. Finally, groups that share the connectivity of
different groups are especially hard to assign: they result from the overlap of two
or more groups. Even if nodes are part of one group, their extent of closeness to
other groups has to be explained for full understanding. None of the existing
work identifies and explains both the groups of regular and irregular behavior
as well as groups of shared connectivity in directed and weighted graphs.

Therefore, we state the problem definition informally as:

• Given a directed and weighted graph,

• Find explainable groups of regular connectivity, groups that share connec-
tivity with other groups, and suspicious behavior in the graph spectrum
automatically and efficiently.

To address this, we present an unsupervised spectral analysis based technique,
called Spectral Lens (SL), that identifies and explains groups of nodes that have
regular or irregular connectivity patterns as well as groups that share connec-
tivity patterns with other groups. SL uses singular value decomposition as a fast
method to decompose large-scale graphs. It finds the connectivity patterns of
the left and right singular vectors. SL consists of two parts: (1) the SL-Dictionary
(SLD) provides a look-up table to understand these patterns and draws con-
clusions about the graph properties, (2) the SL-Algorithm (SLA) automatically
spots the top groups of nodes with similar connectivity patterns, groups of
shared connectivity and groups with suspicious behavior. We introduce two
novel concepts:

1. Generalized Community (GenCom): a GenCom is a group of nodes with
a similar connectivity pattern. This can be, e.g., a hyperbolic community
(i.e., a community with a power law degree distribution; cf. [Ara+14]), a
clique or a bipartite set: in a fully-connected clique all nodes share the
same neighbors and, thus, have similar connectivity; in a bipartite graph
both bipartite sets show similar connectivity since they only have edges to
the other set.

77

5. Spectral Lens: Explainable Diagnostics, Tools and Discoveries in . . .

Table 5.1.: Real-world networks used in this chapter (all are directed, weighted
and publicly available).

Nodes Edges Name Description Comment
1.8m 3.6m DBLP author to conference bipartite
87k 1.1m ENRON email communication unipartite
63k 243k LKML mailing list replies unipartite
6k 36k BITCOIN-OTC trust or mistrust rated
3k 37k OPENFLIGHTS flight connections unipartite

2. Bridge: a bridge is a group of nodes that share the connectivity pattern of
two GenComs but do not form a group of their own; nodes are part of
one of the two groups, i.e., bridges result from the overlap of two or more
groups and connect them.

To look at SL in practice, let us consider a few examples on real-world networks:
we gathered all authors and conferences they have published in from DBLP 1

as of February 2017. In the resultant DBLP dataset (cf. Table 5.1) SLA separates
computer science fields and researchers with different publishing behavior as
well as interdisciplinary conferences and researchers (Figure 5.1). In DBLP, an
edge represents an author publishing in a conference, weighted by the number
of publications.

In the OPENFLIGHTS2 dataset, our algorithm finds regions in the world
where airports show similar connectivity to other airports (Figure 5.2a). A
directed, weighted edge represents the number of routes from one airport to
another.

In the BITCOIN-OTC3 dataset, SLA identifies shill accounts by separating them
from the remaining users in the network (Figure 5.2b). The dataset represents
users that can vote from -10 to 10 (edge-weights) for other users to show trust or
mistrust. Here a group of 44 users is known to be shill accounts of a single user
(ground-truth).

1http://dblp.uni-trier.de
2http://www.openflights.org
3https://bitcoin-otc.com/trust.php from [Kum+16]

78

http://dblp.uni-trier.de
http://www.openflights.org
https://bitcoin-otc.com/trust.php

5.1. Introduction

Table 5.2.: The contributions of SL compared to methods of related work. For
Graph Detection / Graph Partitioning cf. [Cha+04; DGK07; DMM03;
Gre10; KHC05; YL12; YL13], for Anomaly Detection cf. [AMF10;
Hoo+16; Jia+14b; KSS14; Sha+16] and for Graph Summarization
cf. [KHC05; Kou+14].

Sc
al

ab
ili

ty

W
ei

gh
te

d
G

ra
ph

s

D
ir

ec
te

d
G

ra
ph

s

C
om

m
un

ity
/

G
ro

up
D

is
co

ve
ry

Br
id

ge
D

is
co

ve
ry

A
no

m
al

y
D

is
co

ve
ry

Spectral Lens 4 4 4 4 4 4

Community Detection /
Graph Partitioning

4 / – 4 / – 4 / – 4

Anomaly Detection 4 / – 4 / – 4 / – 4

Graph Summarization 4 / – 4

EigenSpokes [Pra+10] 4 4 4

Spectral Lens differentiates itself from the related work presented in Chapter 3
by simultaneously explaining both the groups of regular and irregular behavior,
as well as groups of shared connectivity. It does so for the more powerful,
general case of directed, weighted graphs. Table 5.2 compares the contributions
of SL to the contributions of the most related work.

Our proposed method makes the following contributions:

• Diagnostics: Spectral Lens combines spectral properties from singular
value decomposition to create an SL-Dictionary (SLD) to enhance under-
standing of any directed, weighted graph. (Section 5.2).

• Tools: the algorithm SLA automatically extracts the top groups of nodes
with similar connectivity (GenComs), finds groups of shared connectivity
(bridges) and detects suspicious behavior in a graph. (Section 5.3).

79

5. Spectral Lens: Explainable Diagnostics, Tools and Discoveries in . . .

• Discoveries: Experiments on several real-world networks illustrate the
effectiveness of SLA (Section 5.4).

For repeatability, we additionally provide all datasets and the code of SLA
online (cf. Section 2.4).

5.2. Diagnostics: SL-Dictionary
To quickly gain insights into large-scale networks our proposed method Spectral
Lens (SL) consists of two parts: SL-Dictionary (SLD) and SL-Algorithm (SLA).
For diagnostics of the spectral properties of a graph we present SLD: it guides the
practitioner on how to find generalized communities (GenComs) which are nodes
with similar (in- and out-edge-)connectivity, such as hyperbolic communities,
cliques, bipartite sets or spoke nodes of a hub. At a glance he or she learns the
weight-degree distribution of a GenCom and detects bridges which are nodes
that share the connectivity of two GenComs and, thus, connect them like a
bridge. In this section, we present SLD and the spectral properties which it
analyzes, preceded by the mathematical background of SL and a definition of
our notations. SLA, the second part of SL, is presented in Section 5.3.

Table 5.3 summarizes symbols and definitions that are important for this
chapter. The background on graphs has been summarized in Section 2.1. Note
that our method is able to process directed and undirected, weighted and
unweighted graphs that also include self-loops or negative edge weights. For
easier notation, unweighted graphs can be expressed by weighted graphs with
the weight function w : E 7→ {0, 1}, and undirected graphs can be represented
by directed graphs (for every (vi, vj) ∈ E add (vj, vi) to E).

5.2.1. Mathematical Background: Singular Value
Decomposition

For the look-up patterns in SLD, Spectral Lens analyzes the spectral properties
of a graph G. We use singular value decomposition (SVD) to compute the spectrum
of the adjacency matrix A of G. Note that A is not required to be a square matrix

80

5.2. Diagnostics: SL-Dictionary

Table 5.3.: Important Symbols and Definitions.

Symbols Definitions
G = (V, E, w) directed, (edge-)weighted graph
w : E 7→ R (edge-)weight function
n, m number of nodes, of edges of G
ui, vi i-th left, right (weighted) singular vectors
ūi, v̄i i-th left, right unweighted singular vectors
CI , CO Set of (in-/out-)-GenComs
Bp,q Bridges between GenComs p and q
BI , BO Set of all (in-/out)-bridges

(e.g., for bipartite graphs). General SVD decomposes an m× n matrix M into
the factorization M = UΣVT. Here, U and V are m× m and n× n matrices,
respectively. U’s (V’s) columns (resp. rows) contain the left (resp. right) singular
vectors u1, . . . , um (resp. v1, . . . , vn). The diagonal matrix Σ contains the singular
values ordered in descending rank. For the spectral analysis of a directed,
weighted graph G = (V, E, w), analogously, SVD decomposes the adjacency
matrix A into the m×m matrix U and the n× n matrix V. Since the left and right
singular vectors which are related to the top-rank singular values contain the
most information about A, SL restricts to the top singular vectors u1, . . . , uku and
v1, . . . , vkv (ku, kv ∈N∧ ku, kv � m, n).4 The singular vectors constructed in this
way represent the weighted graph, thus we also refer to them as weighted singular
vectors. In addition, Spectral Lens also observes the unweighted singular vectors
ū1, . . . , ūku and v̄1, . . . , v̄kv obtained through decomposing the original graph G
but using edge-degree instead of edge-weight or, formally, through decomposing
the graph Ḡ with the new weight function w̄(vi, vj) = 1 iff w(vi, vj) 6= 0. Note
that left singular vectors comprise information about connectivity of incoming
edges, and right singular vectors information about outgoing edges. This allows
to consider both connectivity patterns separately.

4Consider, e.g., image compression by SVD to recall this fact.

81

5. Spectral Lens: Explainable Diagnostics, Tools and Discoveries in . . .

(a) Adjacency Matrix

-0.5 0 0.5

u1

−0.5

0.0

0.5

u
2

(b) SL-Plot(u,u)

-0.5 0 0.5

ū1

−0.5

0.0

0.5

u
1

y ∝ x3.85

(c) BW-Plot(u,u)

Figure 5.3.: SL-Plot and BW-Plot of synthetic hyperbolic graph.

5.2.2. GenComs, SL-Plots and BW-Plots
We further consider the already introduced generalized communities (Gen-
Coms): it follows from SVD that the i-th value of a singular vector represents
the connectivity of the i-th node in the graph. Thus, nodes with a similar value
on the same singular vector show a similar connectivity. Those nodes can be
part of the same hyperbolic community, clique, bipartite set, spoke set of a hub
and so on. To distinguish this concept from the well-known community concept,
we name this node set type generalized community or short GenCom. In directed
graphs nodes can have a different connectivity for incoming and outgoing edges,
thus we further distinguish between in-GenComs and out-GenComs.

We define two types of plots using the singular vectors: Spectral Lens-Plots
(SL-Plots) and Binary Weighted-Plots (BW-Plots). These plots serve as vocab-
ulary which is explained in SLD. Figure 5.3 depicts the plots for a synthetic
graph.

1. SL-Plot(u,u) / SL-Plot(v,v): plots of the top left, resp. right, (weighted)
singular vectors u1, . . . , uku , resp. v1, . . . , vku , carry information about the
connectivity of nodes: if close on the plot, nodes have edges to or from a
common subset of nodes and are likely to share the same GenCom.

2. BW-Plot(u,u) / BW-Plot(v,v): plots of top left, resp. right, (weighted) sin-
gular vectors u1, . . . , uku , resp. v1, . . . , vkv , versus their binary, unweighted

82

5.2. Diagnostics: SL-Dictionary

counterpart ū1, . . . , ūku resp. v̄1, . . . , v̄kv (binary vs. weighted) explain the
weight-degree distribution of a GenCom.

Before we further inspect the spectral properties for SLD, let us look at the
amount of spectral information we have to deal with in an example. Figure 5.4
shows only the top-5 left singular vectors (ku = 5) for the ENRON dataset5

which contains email communication in the ENRON company (messages sent
from one user to the other, weights are number of emails). Studying all SL-Plots
and BW-Plots requires reading and 4(5

2) = 40 plots (for the 19 singular vectors
considered for DBLP (Figure 5.1) this would be 684 plots!). Therefore, our
algorithm SLA provides an automatic analysis (Section 5.3).

Observation 1 (Number of SL-Plots and BW-Plots). The top-ku left and top-kv right
weighted and unweighted singular vectors yield (ku

2) + (kv
2) SL-Plots and (ku

2) + (kv
2)

BW-Plots.

5.2.3. SL-Dictionary: Patterns and Rules
We introduce SL-Dictionary (SLD) to understand the spectral patterns that refer
to GenComs and their weight-degree distribution. SLD provides three rules for
these pattern in a look-up-table (Figure 5.5). For each rule we show a synthetic
example graph and a real-world dataset to which the rule applies. All graphs
are directed and weighted (Hyperbolic graphs are generated by the RTG graph
generator [AF09]).

Rule 1a: Hyperbolic GenCom: Nodes belonging to the same hyperbolic
GenCom follow a power-law pattern in an BW-Plot.

The synthetic graph is created as a single hyperbolic group so that all nodes
belong to the same GenCom. The pattern follows rule 1a: in the BW-Plot(u,u)
all nodes are lined along a power-law with slope 3.85. The nodes in the LKML6

dataset belong to the same GenCom and follow a power-law with slope 2.43:

5https://www.cs.cmu.edu/~./enron/
6http://konect.cc/networks/lkml-reply

83

https://www.cs.cmu.edu/~./enron/
http://konect.cc/networks/lkml-reply

5. Spectral Lens: Explainable Diagnostics, Tools and Discoveries in . . .

1 0 1

u2

u1

1 0 1

u3

u1
1 0 1

u4
u1

1 0 1

u5
1

0

1

u1

u3

u2

u4

u2

u5
1

0

1

u2

u4

u3

u5
1

0

1

u3

u5
1

0

1

u4

Figure 5.4.: Top-5 SL-Plots(u,u) for the ENRON dataset

84

5.2. Diagnostics: SL-Dictionary

Adjacency Matrix BW-Plot(u,u)
y ∝ x3.85

(a) Synthetic dataset
Adjacency Matrix BW-Plot(u,u)

y ∝ x2.43

(b) Real-world dataset LKML

Rule 1a: Hyperbolic GenCom

Adjacency Matrix BW-Plot(v,v)

(c) Synthetic dataset
Adjacency Matrix BW-Plot(v,v)

(d) Real-world dataset BITCOIN-OTC

Rule 1b: Non-Hyperbolic GenCom

Adjacency Matrix SL-Plot(v,v)

(e) Synthetic dataset
Adjacency Matrix SL-Plot(v,v)

(f) Real-world dataset OPENFLIGHTS

Rule 2: Multiple GenComs

Adjacency Matrix SL-Plot(v,v)

(g) Synthetic dataset
Adjacency Matrix SL-Plot(v,v)

(h) Real-world dataset ENRON

Rule 3: Bridges

Figure 5.5.: SL-Dictionary provides rules for spectral patterns in graphs to
quickly explain GenComs and their structure.

85

5. Spectral Lens: Explainable Diagnostics, Tools and Discoveries in . . .

many users create a few entries, while few users create many entries. This
dataset represents the communication network of the Linux kernel mailing list.
A reply from one user to another is expressed by a directed edge, weighted by
the number of mails.

Rule 1b: Non-Hyperbolic GenCom: Nodes belonging to the same non-
hyperbolic GenCom follow a (non-hyperbolic) pattern characteristic to their
connectivity in an BW-Plot.

Now we add a group of 10 nodes with different connectivity to a synthetic
hyperbolic GenCom. The group has incoming edges by 2000 followers at an
80% chance (red edges, all edge weights equal 20). In the BW-Plot(v,v) of the
second right singular vectors these nodes lie closely together, thus, representing
a GenCom with the connectivity pattern of incoming edges of the same weight
and from the same group of nodes. Note that the hyperbolic group (blue) is now
aligned with the axis. Its power-law curve could be found on the BW-Plot(v,v)
of the first singular vector. Similarly, in the BITCOIN-OTC dataset a group of 44
nodes is followed by many other users that give the group high negative trust
ratings. These nodes build a very compact GenCom in the BW-Plot(v,v). This
small compact GenCom hints to suspicious connectivity.

Rule 2: Multiple GenComs: Nodes belonging to the same GenComs align
with the same axis in an SL-Plot. Overlap results in tilt from one of the two
axes.

The synthetic graph is constructed by three hyperbolic graphs with some
overlap. The sections marked blue and red each contain nodes that share their
connectivity (GenComs) and are aligned to the axes in the SL-Plot(v,v). The third
GenCom is aligned to another orthogonal axis and, thus, lies here at the origin.
Note, that the overlap of an area with lower weights of one subgraph with the
higher weight nodes of the other subgraph does not result in a tilt. However,
the overlap in the OPENFLIGHTS dataset is strong enough to cause a tilt in the
SL-Plot(v,v). Also, other GenComs are not orthogonal to the plotted singular
vectors and projected onto them. A problem that is solved by SLA.

86

5.3. Tools: SL-Algorithm

Rule 3: Bridges: Nodes that connect two GenComs lie between the axes in the
SL-Plots representing the two GenComs.

Two synthetic hyperbolic GenComs are now connected by high-degree nodes
that show several larger-weighted connections to each other (red edges). In the
SL-Plots(v,v), the nodes connecting the GenComs lie between both GenComs.
We call these nodes bridges. The ENRON email dataset shows bridges as well:
these nodes represent mostly vice presidents of ENRON which receive emails
from different parts of the company, which leads to their special connectivity
pattern.

The insights gained from SLD allow to make an observation in the singular
value decomposition of power law distributed graphs:

Observation 2 (Correlation of Power-Law Distributions). If a graph follows a pow-
er-law (in/out)-weight vs. (in/out)-degree distribution, then we also observe a power law
in the distribution of the nodes in the BW-Plot(u,u) resp. BW-Plot(v,v). The first (right
or left) weighted singular vectors form a power law with its unweighted counterpart.
(An example is given in Figure 5.6).

5.3. Tools: SL-Algorithm
With the SL-Dictionary (SLD), the first part of Spectral Lens, we enabled the
practitioner to read the spectral properties of a graph from Spectral Lens-Plots
(SL-Plots) and Binary Weighted-Plots (BW-Plots). These plots explain generalized
communities (GenComs), their weight-degree distribution and bridges. However,
we already mentioned the limitations of using SLD alone: the number of plots
that need to be taken into account (cf. Observation 1) is far too large for manual
analysis, especially for large-scale networks with many GenComs like in the
DBLP dataset (Figure 5.1). Another limitation occurs for strongly connected
GenComs that tilt in the SL-Plots (cf. Rule 2 in Figure 5.5): since all GenComs
are projected onto the 2-dimensional SL-Plot, non-orthogonally tilted GenComs
confuse the picture. Finally, for detecting suspicious connectivity patterns in the
GenComs the user has to compare all BW-Plots for suspicious weight-degree
distribution.

87

5. Spectral Lens: Explainable Diagnostics, Tools and Discoveries in . . .

100 101 102 103 104 105

in-degree

100

101

102

103

104

105

in
-w

ei
gh

t

y = 1.11 · x− 0.02

10−15 10−10 10−5 100

v̄1
10−16

10−12

10−8

10−4

100

v1

y = 1.87 · x + 0.65

(a) Observation 2 on synthetic graph

100 101 102 103 104 105

in-degree

100

101

102

103

104

105

in
-w

ei
gh

t

y = 1.15 · x− 0.17

10−15 10−10 10−5 100

v̄1
10−16

10−12

10−8

10−4

100

v1

y ∝ x1.64

(b) Observation 2 on LKML dataset

Figure 5.6.: If a graph follows a power-law weight-degree distribution (left col-
umn) then the first BW-Plot(u,u) resp. BW-Plot(v,v) follows a power-
law (right column). A synthetic graph and the LKML dataset together
with the corresponding BW-Plot(v,v) illustrate Observation 2.

88

5.3. Tools: SL-Algorithm

To overcome these limitations, we propose our algorithm SLA to extract
GenComs, bridges and to sort the GenComs according to suspicious connectivity
for a given graph (Figure 5.9). To overcome the tilt, SLA uses independent
component analysis (ICA).

Formally, we state the problems that SLA solves as :

Problem 5.1: Find GenComs

Given

• Directed, weighted graph G = (V, E, w)

• Weight function w : E 7→ R

Return

• Set of in-GenComs CI

• Set of out-GenComs CO

• Suspicion score eI for in-GenComs

• Suspicion score eO for out-GenComs

Problem 5.2: Find bridges

Given

• Directed, weighted graph G = (V, E, w)

• Weight function w : E 7→ R

• Set of in-GenComs CI

• Set of out-GenComs CO

Return

89

5. Spectral Lens: Explainable Diagnostics, Tools and Discoveries in . . .

• Set of in-bridges BI so that bridges BIp,q ∈ BI
iff (Cp, Cq) ∈ (CI ,CI) ∧ (p 6= q).

• Set of out-bridges BO so that bridges BOp,q ∈ BI
iff (Cp, Cq) ∈ (CO,CO) ∧ (p 6= q).

5.3.1. Intuition
To understand the high-level idea of our algorithm, we give an overview of our
approach (Figure 5.7): SLA takes nodes and edges of a graph as input. Since
the spikes corresponding to the GenComs can be tilted, we apply independent
component analysis on the left and right singular vectors (Figure 5.7b). Now
each GenCom is aligned to an independent component. We find the optimal
number of GenComs as follows: the closer nodes are aligned to independent
components the better is their allocation to GenComs. We introduce thorniness
as measurement for the level of alignment (Figure 5.7d). Note that connectivity
patterns can differ for incoming and outgoing edges. It can lead to different
GenComs of in- and out-edges, so we do the detection of GenComs for left
and right singular vectors separately, i.e., in- and out-GenComs. With optimal
(=maximal) thorniness, we assign GenComs and bridges (Figure 5.7c).

In Section 5.3.6 we show that SLA runs in linear time.

5.3.2. SLA Step 1: Find optimal ku,opt and kv,opt

Our algorithm SLA takes a directed, weighted graph G(V, E) with weight
function w : E 7→ R as input. The first part of SLA (lines 1–17) determines
the number of top singular vectors we use from SVD. In detail, SLA finds the
optimal dimensionality ku,opt and kv,opt for the left and right singular vectors
that maximize the mean thorniness (see next section). The number of in- and
out-GenComs is defined by ku,opt and kv,opt. The outer for-loop ends its search
interval for best thorniness at a maximum dimensionality kmax, that we set to 20.
For each k the left and right first k singular vectors u1, . . . , uk and v1, . . . , vk are
calculated. Then independent component analysis (ICA) is applied to the vectors

90

5.3. Tools: SL-Algorithm

(a) Input graph (b) ICA on top singular vectors

(c) Assign GenComs and bridges. (d) Thorniness

Figure 5.7.: Illustration of our SLA algorithm: (a) Input: synthetic graph com-
posed of three hyperbolic subgraphs with added bridges (n =

17k, m = 12k), (b) Independent components of top singular vec-
tors, (c) GenCom 1 (blue) and 2 (red) with bridges (dark green) and
nodes of third GenCom (black), (d) thorniness: horizontal lines mark
θ0, vertical line marks ρ0.

91

5. Spectral Lens: Explainable Diagnostics, Tools and Discoveries in . . .

Algorithm 5.1: Algorithm SLA
Input: Graph G(V, E) with vertices V and edges E
Output: Sets of in- and out-GenComs CI , CO, sets of in- and out-bridges BI , BO and suspicion eI , eO.

// find optimal dimensionalities ku,opt and kv,opt:
1 for k←− 2 to kmax . Section 5.3.2
2 do
3 tmaxu,k ←− 0, tmaxv,k ←− 0
4 ([u1, . . . , uk], [v1, . . . , vk])←− svd(G, k)
5 Su,k ←− [su,1, . . . , su,k]←− ica([u1, . . . , uk])

6 Sv,k ←− [sv,1, . . . , sv,k]←− ica([v1, . . . , vk])

7 for p←− 1 to k do
8 for q←− p + 1 to k do
9 tmaxu,k ←− tmaxu,k + thorn(Su,k , p, q) . Section 5.3.3

10 tmaxv,k ←− tmaxv,k + thorn(Sv,k , p, q)
11 end for
12 end for
13 tmaxu,k ←− mean(tmaxu,k)

14 tmaxv,k ←− mean(tmaxv,k)

15 end for
16 ku,opt ←− maxk [tmaxu,1, . . . , tmaxu,kmax]

17 kv,opt ←− maxk [tmaxv,1, . . . , tmaxv,kmax]

// Assign GenComs and bridges:
18 CI , CO, BI , BO ←− ∅
19 for p←− 1 to ku,opt do
20 C ←− induce(G, Su,ku,opt) . Section 5.3.4

21 CO ←− CO ∪ C
22 for q←− p + 1 to ku,opt do
23 Bp,q ←− bridge-ize(Su,ku,opt , p, q) . Section 5.3.4

24 BO ←− BO ∪ Bp,q

25 end for
26 end for
27 for p←− 1 to kv,opt do
28 C ←− induce(G, Sv,kv,opt)

29 CI ←− CI ∪ C,
30 for q←− p + 1 to kv,opt do
31 Bp,q ←− bridge-ize(Sv,kv,opt , p, q)

32 BI ←− BI ∪ Bp,q

33 end for
34 end for

// Score suspicion for GenComs:
35 foreach C in CO do
36 eO ←− suspect(CO) . Section 5.3.5
37 end foreach
38 foreach C in CI do
39 eI ←− suspect(CI)

40 end foreach

41 return CI , CO, BI ,BO, eI , eO

92

5.3. Tools: SL-Algorithm

in order to rotate them to independent (thus: axis-aligned) components. We
obtain the matrices Su,k and Sv,k with the independent components from the left
and right singular vectors. The values of k that maximize the mean thorniness
of each pair of left resp. right independent components are chosen as ku,opt and
kv,opt (Figure 5.8).

5.3.3. Proposed Measure: Thorniness
In Figure 5.7b we see the independent components su,1, . . . , su,k and sv,1, . . . , sv,k
(i.e., rotated the singular vectors after applying ICA). Nodes in a GenCom share
their connectivity pattern whilst showing a connectivity pattern different than
nodes of other GenComs. The lesser two different GenComs are connected, the
better the nodes of each GenCom are aligned on a spike. If both GenComs
show the same connectivity pattern, we do not see spikes. In this case, both
groups resemble one joint GenCom and must not be split. We exploit this
fact to determine the optimal number of GenComs. We define thorniness as
measurement how well nodes of two GenComs are matching the spike-pattern.
A thorniness of 1.0 corresponds to perfect spikes, a lower value of thorniness to
less or no spikes at all (= 0). Formally, we define thorniness as

thorn(S, p, q) =
|{v ∈ V|∆θv(S, p, q) < θ0 ∧ ρv(S, p, q) > ρ0}|

|{v ∈ V|ρv(S, p, q) > ρ0}|
(5.1)

where θv(S, p, q) (in degrees) and ρv(S, p, q) are the θ and ρ values of the polar-
transformed orthogonal projection of S to the vector space with the basis vectors
{sp, sq} (Figure 5.7d). We define the distance ∆v(S, p, q) = min{θv(S, p, q); 90◦−
θv(S, p, q)} which is zero if the spikes are aligned orthogonally. If ∆v(S, p, q)
exceeds the threshold θ0 the nodes are not part of a GenCom, but are bridges.
Since θ0 has to be relatively small, we set it to 5◦. For ρ0 we choose unity distance

(
√

1
n). In the same way, bridges are collected (bridge-ize in lines 23 and 31).

5.3.4. SLA Step 2: Assign GenComs and Bridges
After step 1, SLA defines the optimal number of in-GenComs and out-GenComs.
The second step induces a subgraph for each GenCom. Using the memoized

93

5. Spectral Lens: Explainable Diagnostics, Tools and Discoveries in . . .

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0.18

0.2

0.22

0.24

0.26

0.28

Number of in-GenComs

th
or

ni
ne

ss

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0.16

0.18

0.2

0.22

0.24

0.26

0.28

Number of out-GenComs

th
or

ni
ne

ss

Figure 5.8.: Our thorniness heuristic gives intuitive results: the values of
thorniness for the OPENFLIGHTS dataset reach their maximum for
both 6 in-GenComs and out-GenComs with each GenCom roughly
corresponding to a continent.

94

5.3. Tools: SL-Algorithm

(a) SLA finds GenComs and bridges. (b) SLA finds suspicious in-GenComs.

(c) SLA finds suspicious out-GenComs.

104 105 106

Number of edges

100

101

102

103

R
un

ti
m

e
[s

]

y ∝ x2

y ∝ x

(d) SLA scales linearly.

Figure 5.9.: Our algorithm SLA detects GenComs, bridges and suspicious behav-
ior: (a) SLA finds GenComs and bridges in the ENRON dataset, (b)
SLA identifies the ground-truth shill accounts in the most suspicious
in-GenCom and (c) out-GenCom, (d) SLA scales linear: Runtime (in
seconds) of SLA (blue) vs. number of edges in graph. Linear (black)
and quadratic (green) slopes shown for reference.

95

5. Spectral Lens: Explainable Diagnostics, Tools and Discoveries in . . .

results of ICA, every spike (≤ θ0) becomes a GenCom. SLA assigns nodes
to the GenCom as they are defined by thorniness (cf. Figure 5.7d). Each in-
GenCom is added to CO (line 21) and each out-GenCom to CI (line 29). Finally,
SLA collects the bridge-nodes (> θ0) in BI and BO. While for undirected
graphs out- and in-GenComs are equal, we have to further split up out- and in-
GenComs for graphs with negative and positive weights: negative and positive
dimensions of an independent component create separate GenComs: we name
them GenCom- and GenCom+. Further, in a positive and negative weighted
graph GenCom = GenCom+ ∪GenCom-. For easier understanding, this case
differentiation is left out of Algorithm 5.1.

5.3.5. SLA Step 3: Suspicion Score of GenComs

To score the suspiciousness of in-GenComs and out-GenComs, we compare the
relation of the number of edges inside the GenCom to the number of all edges
in the graph and normalize it by the size of the GenCom. Hyperbolic GenComs
with regular behavior show equal relations, whereas typically a suspicious
GenCom with fraudsters or shill accounts shows a higher number of edges
inside the GenCom (cf. [Hoo+16]). Thus, they have a higher suspicion score.
SLA scores suspiciousness (lines 36 and 39) as follows:

suspectα(C) =

|{(vi,vj)|(vi,vj)∈EC,α}|
|{(vi,vj)|(vi,vj)∈Eα}|

|{v|v ∈ C}| (5.2)

where α ∈ {I, O} is to choose for in- or out-GenComs, EC,α is the set of in or
out-edges of the GenCom and Eα is the set of all in- or out-edges in G. After this
step SLA terminates.

5.3.6. Scalability of SLA

SLA is efficient for extensive data. In our experiment, we measure the overall
running time of SLA for the DBLP dataset. Gradually we remove nodes and their
adjacent edges and rerun the reduced dataset. All running times are reported in
Figure 5.9d. For reference, we plot the ideal linear growth curve and the ideal

96

5.4. SLA-Discoveries

quadratic growth curve in log-log-space. The blue dots depict the running time
of the executions of the experiment and assemble — especially for larger number
of edges — well along the linear growth curve.

5.4. SLA-Discoveries

In this section we evaluate the effectiveness of our algorithm SLA on real-world
datasets. We reveal discoveries made by SLA in these datasets and show that
the algorithm overcomes the limitations to a manual interpretation of the SL-
Dictionary. As output SLA gives us GenComs, bridges between them and detects
suspicious GenComs. Each GenCom is aligned to an independent component
and, thus, the visualization on 2-dimensional plots each containing only a pair
of GenComs with their bridges is well explainable and quickly gives insight into
large networks. The real-world datasets for demonstrating the effectiveness and
efficiency of SLA have been introduced above and are summarized in Table 5.1.
We compare the contributions of SLA to the state-of-the-art algorithms in (1)
finding overlapping communities BigClam [YL13], AGM [YL12] and COPRA
[Gre10] and (2) detecting suspicious behavior FRAUDAR [Hoo+16], LOCKSTEP
[Jia+14b], EdgeCentric [Sha+16].

5.4.1. GenComs and Bridges

We present SLA’s explainable results by visualizing GenComs with their corre-
sponding independent components and their bridges for the OPENFLIGHTS,
DBLP and ENRON datasets. Since only OPENFLIGHTS has a ground-truth in
the number of communities we restrict to this dataset for comparison to related
methods.

OPENFLIGHTS dataset

This dataset contains flight routes from and to airports all over the world (weights
are the number of different routes, i.e. with other layovers). SLA decomposes
this dataset into 6 in- and 6 out-GenComs. The airports of the in-GenComs

97

5. Spectral Lens: Explainable Diagnostics, Tools and Discoveries in . . .

(a) SLA automatically detects 6 GenComs.

(b) Results by BigClam set to k=6.

Figure 5.10.: OPENFLIGHTS dataset: (a) SLA automatically finds 6 groups of
airports with similar connectivity (depicted with the same color,
bridges not marked for better visualization), (b) BigClam with
input parameter k = 6 can only assign half of the nodes (non
black nodes) and does not further differentiate airports in Asia
and Oceania (nodes with overlap of more than 2 communities are
depicted in brown color.)

98

5.4. SLA-Discoveries

are shown in Figure 5.10a. SLA’s choice of 6 GenComs makes sense, they
roughly equal the continents: the airports in parts of the world like Europe,
Eastern U.S., China or South-Eastern Asia show similar connectivity patterns.
The remaining yellow nodes represent regions with much lesser flight routes
compared to the other denser regions of the world and, thus, are not separated
into different GenComs. BigClam automatically detects 100 communities which
does not support visual interpretation of the data. By setting the number of
communities as input parameter to 6 (= number of continents) BigClam clusters
only 1.7k of the points into communities (Figure 5.10b). BigClam is able to
differ airports in Europe and America but can not separate airports in Asia
and Oceania. Additionally half of the airports remain unidentified (black dots).
AGM automatically detects only one community in the dataset. Even setting
the input parameter k = 6 does not result in more than one community. The
community consists of 95 airports located in Europe and North Africa. Whereas
SLA and the other comparison algorithms need a few seconds for this small
dataset, AGM requires over 23 hours runtime. COPRA automatically detects 220
communities but does not allow the number of communities to be set as input
parameters. Thus, COPRA does not support visual understanding.

This experiment shows that there is no comparison method that automatically
finds an interpretable node grouping including bridges/overlaps suitable for
interpretation of this dataset.

DBLP dataset

We extracted all conferences with their publishing authors from the DBLP
database. We retrieved 1.8m authors and 4.2k conferences. SLA decomposes
the dataset into 19 GenComs representing the different fields of computer
science and 18 GenComs representing the major research communities. For
evaluation, we choose two fields and communities that are of special interest
to the reader: Data Mining/Database and HCI (Figure 5.1). The out-GenComs
16 (su,16) contains the DM/DB-community: the researchers Jiawei Han and
Philip S. Yu show high values in their GenCom due to the high amount of
publications. In the HCI-community on independent component su,17 we find
the HCI-community with its top-researchers. The bridges (yellow) contains

99

5. Spectral Lens: Explainable Diagnostics, Tools and Discoveries in . . .

interdisciplinary researchers that work both in DM and HCI: Ryen W. White
(founding chair of CHIIR and publications in DM) and Susan Dumais. The
evaluations of the in-GenComs well separates conferences in DM/DB and HCI.
Note, that DM/DB conferences themselves are not separated which makes
sense: the DM community also publishes, e.g. in SIGMOD. With the CHI far
outstanding (due to the high number of publications) we find HCI conferences in
in-GenCom 7. Interdisciplinary conferences are found as bridges: the closeness
of a bridge to a community tells which community it is closer to. E.g., IUI is
an HCI conference that is “very interested in contributions from related fields"
and explicitly welcomes “solutions from data mining, knowledge representation,
novel interaction paradigms, and emerging technologies"7. Other in-GenComs
represent,e.g., the robotics field (with ICRA on top) or medical cs (with MICCAI
on top)

ENRON dataset

The ENRON datasets contains emails from and to employees of ENRON, a
company that grew big on energy trading. SLA decomposes the network into 3
in- and 2 out-GenComs: we visualize the in-GenComs 1 and 3 with their bridges
(Figure 5.9a): this explains the connectivity pattern of employees who received
emails from similar senders. We learn that these GenComs are well separable
and comprise employees of different parts of enron. Top recipients in GenCom 1
are employees of Government Affairs, while the other GenCom represents the
big Energy Trading part. The bridges that SLA finds make perfectly sense: Tim
Belden as Head of Trading, naturally, receives many emails from both GenComs.
Also Marketing communicates with different parts of ENRON.

5.4.2. Suspicious GenComs
Scoring the suspiciousness of different GenComs SLA detects fraudulent be-
haviour in networks, evaluated in the following on the BITCOIN-OTC dataset.
This dataset represents users that give a trust or mistrust rating (edge-weight
-10 to 10) to each other, a prerequisite for exchanging Bitcoins to money online.

7http://iui.acm.org/2017

100

http://iui.acm.org/2017

5.5. Conclusions

However, this approach attracts dishonest users who create many shill user
accounts. These accounts appear as users in BITCOIN-OTC, but are controlled
by one user to influence his or her own or other users’ ratings. In the additional
user comments in BITCOIN-OTC a user who manually controls as many as 48
shill accounts could be extracted as fraudulent ground truth.

SLA decomposes the dataset into 9 in- and 5 out-GenComs and automatically
recognizes out-GenCom 1 as most suspicious: in fact, this group contains
29 of the shill accounts. We compare the quality of SLA’s fraud-detection
in terms of F1 Score, precision and recall (Table 5.4) to the recent methods
FRAUDAR [Hoo+16], LOCKSTEP [Jia+14b], EdgeCentric [Sha+16]. SLA clearly
outperforms all methods in detecting the ground-truth shill accounts in the
BITCOIN-OTC dataset since the competitors cannot make use of the negative
edge-weight.

Apart from the detection of suspicious behaviour, SLA gives an explanation
of its results:8 for further inspection we visualize in-GenCom1 (equal to +1,
since -1 is empty) versus in-GenComs- and + 6 which contains over a third
of users and represents normal behaviour (Figure 5.9b). The tight cluster of
nodes with very similar connectivity catches one’s eye: the users in in-GenCom
1 all show a very similar connectivity pattern, typical for shill users. Also, the
second-most suspicious out-GenCom+ 3 shows this tight pattern of nodes of
similar connectivity (Figure 5.9c) and explains that the trust votings of this group
of accounts do not follow the usual power law (like GenCom 6 in Figure 5.9b or
GenCom- 3) which enhances understanding of their suspicious behavior.

The BITCOIN-OTC dataset shows that SLA successfully detects fraudulent
behaviour and is able to give an explainable result that allows the practitioner
further investigation for insights into the dataset.

5.5. Conclusions
In this chapter, we proposed Spectral Lens which extracts patterns of connectiv-
ity and suspicious behavior in the spectral representation of graphs. It consists

8Note: since this dataset has positive and negative weights, each GenCom is further distin-
guished into a GenCom+ and a GenCom-.

101

5. Spectral Lens: Explainable Diagnostics, Tools and Discoveries in . . .

Table 5.4.: SLA performs best in detecting ground-truth shill accounts in the
BITCOIN-OTC dataset compared to recent fraud-detection methods
LOCKSTEP, FRAUDAR and EdgeCentric.

Method F1 Score Precision Recall
SLA 0.734 0.936 0.604

LOCKSTEP [Jia+14b] 0.046 0.917 0.024
FRAUDAR [Hoo+16] 0.065 0.040 0.167

EdgeCentric [Sha+16] 0.046 0.025 0.271

of two parts: the SL-Dictionary (SLD) and SL-Algorithm (SLA). SLD intro-
duces three rules that translate these patterns for practitioners. The scalable
SL-Algorithm overcomes limitations to the manual analysis of these patterns; it
automatically extracts groups of similar connectivity and scores them for suspi-
ciousness. Spectral Lens works on uni- and bipartite, weighted and unweighted,
and directed and undirected graphs.

In summary, our contributions are:

• Diagnostics: Spectral Lens combines spectral properties from singular
value decomposition to create an SL-Dictionary (SLD) to enhance under-
standing of any directed, weighted graph.

• Tools: our algorithm SLA automatically extracts the top groups of nodes
with similar connectivity, finds groups of shared connectivity and detects
suspicious behavior in a graph.

• Discoveries: Experiments on several real-world networks illustrate the
effectiveness of SLA.

SLA is highly scalable and linear on the number of edges in a graph. For
future work, it would be interesting to include the analysis of left versus right
singular vectors in Spectral Lens: this can give insights into the reciprocity
between groups of nodes.

102

Part III.

Fast and Effective Methods for
Parameter-free Clustering

103

In the previous part, our focus was on the relationships between data entities.
Graphs are a valuable tool to model these relationships on an abstract level,
and Graph Mining algorithms extract knowledge from these graphs. We have
presented our contribution to this field with algorithms that discover patterns
in networks, help to understand their structure, identify suspicious behavior —
among other features.

We shift our focus from relationships between data entities to finding simi-
larities between the data entities. Clustering is the general approach to partition
objects into groups or clusters based on their similarity. Clustering algorithms
assign similar objects to the same cluster and less similar objects to different
clusters. This high-level definition applies to a wide area of algorithms and is a
central field in Data Mining. Similar to Graph Mining, clustering is a powerful
tool to find patterns in massive and complex data. Feature vectors are build to
represent complex data like high-dimensional data or data from heterogeneous
domains. Among the goals of clustering algorithms is to assign feature vectors to
clusters and give insights into the clusters and compare the clusters to each other.
Visualizing the data with their clusters is an important step towards explainable
data mining and avoiding black-box algorithms.

With our first proposed method FOSSCLU (Finding the Optimal Subspace for
Clustering), we find clusters in the lower-dimensional subspace with the highest
amount of information. We apply the MDL principle (cf. Section 2.2.1) to guide
FOSSCLU to the result without the need of input parameters like the number of
clusters or the subspace dimensionality to output. FOSSCLU is able to process
complex, high-dimensional data and filters out noisy dimensions with little
information. Besides, with FOSSCLU, the user can enforce a low-dimensional
output for visual clustering results and create an explainable visualization for a
deeper understanding or a starting point for further analytics.

Our second proposed method INTEGRATE solves the problem of clustering
data with heterogeneous attributes: our technique processes data with numerical
and categorical attributes using a unified objective function to assign data
points to clusters. Based on the MDL principle, INTEGRATE finds a natural
balance between the different domains. Information theory guides the clustering
algorithm and requires no input parameters that are usually hard to guess.

105

The author’s previously published work incorporated in Part III This part
about contributions to clustering methods with our proposed algorithms FOS-
SCLU and INTEGRATE is based on and has been published in the following
two publications that have been accepted and published in peer-reviewed pro-
ceedings of the IEEE International Conference on Data Mining and of the Pacific
Asia Conference on Knowledge Discovery and Data Mining [Goe+14; Böh+10].
Additionally, preliminary work for INTEGRATE was conducted in the author’s
bachelor thesis.

1. S. Goebl, X. He, C. Plant, and C. Böhm. Finding the Optimal Subspace
for Clustering. In: ICDM 14: Proceedings of the 2014 IEEE 14th International
Conference on Data Mining. 2014, pp. 130-139.

2. C. Böhm, S. Goebl, A. Oswald, C. Plant, M. Plavinski, and B. Wack-
ersreuther. Integrative Parameter-Free Clustering of Data with Mixed
Type Attributes. In: Advances in Knowledge Discovery and Data Mining.
PAKDD 2010, pp. 38-47.

In the following chapters, we present our algorithms FOSSCLU and INTEGRATE.
Paper 1 is a joint cooperation of the author of this thesis with Claudia Plant

(University of Vienna, Austria) and Christian Böhm (University of Munich,
Germany). The author contributed to the various parts of the papers as well
as to the development of the mathematical foundations. He also implemented
the algorithm FOSSCLU, conducted the experiments, evaluated the proposed
method, and presented the paper. Paper 2 is a cooperation of multiple authors.
The author of this thesis designed, and implemented the algorithm INTEGRATE,
proofed its effectiveness with multiple experiments and provided content for the
presentation.

Structure of Part III In Chapter 6 we present past research related to our
proposed methods. Chapter 7 introduces our algorithm FOSSCLU for finding
the optimal subspace for clustering. Chapter 8 presents our proposed algorithm
INTEGRATE for an integrated clustering of numerical and categorical attributes.

106

6. Related Work

Our proposed methods FOSSCLU and INTEGRATE for clustering complex data
contribute to the following established fields of research: dimensionality reduction,
subspace, projected and correlation clustering, visualization of subspace clustering
results, and integrated clustering. Each area is covered in one of the following
sections.

6.1. Dimensionality Reduction Techniques
Dimensionality reduction techniques aim at representing data by a small number
of features without much loss of information. Probably the most widely used
technique in practice is principal component analysis (PCA) [Jol02]. Due to its
availability in any statistical package or programming library and its intuitive
optimization goal, PCA is often the first choice to plot an unknown data set.
PCA projects the data to a low-dimensional subspace, preserving the original
variance of the data as much as possible.

Despite the long and ongoing success story of PCA, during the last decades,
other feature transformation methods with different optimization goals have
been introduced, for example, independent component analysis (ICA) [HO00],
aiming at identifying statistically independent basis vectors in data; non-negative
matrix factorization (NMF) [LS00] aiming to decompose data into non-negative,
i.e., additive parts; Isomap [TSL00] aiming at preserving the geodetic distances.
To the best of our knowledge, no feature transformation technique with the
objective of preserving the cluster structure in data has so far been proposed.

The approach LDA-K-means [DL07] of Ding et al. touches on this challenge.
By integrating the supervised dimensionality reduction technique of linear dis-
criminant analysis (LDA) into k-means, this technique is a cluster-reinforcing

107

6. Related Work

feature transformation technique. However, since LDA is no orthonormal trans-
formation, the resulting space is not a subspace of the original data. Moreover,
for K clusters, the dimensionality of the corresponding space is fixed to K− 1
dimensions. The optimal rigid transform in FOSSCLU is a cluster-enhancing
transformation that guarantees orthonormal rotation and projection: what we
see is truly in the original data set.

6.2. Subspace, Projected and Correlation Clustering
A variety of specialized techniques exist for detecting high-quality clusters in
subspaces. For a comprehensive overview, cf. [KKZ09] and [Sim+13]. Being close
competitors to FOSSCLU, we will go into more detail for selected algorithms.

6.2.1. Projected and Subspace Clustering

Projected and subspace clustering algorithms search for clusters in axis-parallel
subspaces. A benefit of these approaches is their inherent interpretability since
the subspaces are represented by subsets of the original attributes.

Aggarwal et al. propose PROCLUS [Agg+99] which aims at clustering parti-
tions of the data in cluster-specific axis-parallel subspaces. For initialization, the
algorithm greedily selects k medoids as cluster centers from a sample of the data
so that the initial medoids are as distant from each other as possible. PROCLUS
requires the user to choose the number of clusters with the input parameter
k. In a hill-climbing approach, PROCLUS iteratively improves the quality of
the medoids. With the average subspace dimensionality per cluster as another
input parameter l, the algorithm minimizes the variance of the objects in each
cluster in its corresponding subspace. The medoids are iteratively redefined
for minimizing the cost function, which could lead to a local cost minimum.
Noise is excluded from clusters and returned separately. PROCLUS returns the
k clusters with their corresponding axis-parallel subspaces. Disadvantages lie in
finding only convex clusters and the difficulty defining the input parameter l.

The grid-based algorithm CLIQUE [Agr+98] identifies clusters consisting of
dense units in each dimension and builds clusters in axis-parallel subspaces from

108

6.2. Subspace, Projected and Correlation Clustering

these regions in an efficient bottom-up style. Clusters are defined as adjacent
dense units in each dimension. CLIQUE starts with choosing dense units in
a one-dimensional subspace and iteratively adds another dimension to the
subspace if the dense units overlap. Due to monotonicity, all clusters identified
by CLIQUE in a k-dimensional subspace are also clusters in (k− 1)-dimensions.
Using the MDL principle, subspaces with fewer dense units are pruned away.
CLIQUE is deterministic and assumes or requires no underlying assumption of
the data distribution, and The user needs to provide two input parameters: ξ

defines the grid size, and τ describes the fraction of objects required for a unit
to be dense. Both parameters are difficult to guess, and a poor choice of ξ and τ

causes CLIQUE to miss clusters that are not caught by in grid.
To overcome the problem of missing clusters, SUBCLU [KKK04] proposes

density-connected subspace clustering. Using the DBSCAN [Est+96] model,
SUBCLU defines clusters as sets of density-connected objects which are maximal
w.r.t. density-reachability. The model allows SUBCLU to find arbitrarily shaped
and positioned clusters. Like CLIQUE, SUBCLU is able to construct subspace
clusters efficiently in a bottom-up style using the monotonicity of density-
connected sets: a density-connected set in S is also density-connected in any
subspace T ∈ S. The negative case holds as well: if two points are not density-
connected in a subspace S, they are not density-connected in any subspace T with
S ∈ T. This limits the number of subspaces to consider for the subspace clusters.
SUBCLU returns all clusters in all subspaces. In each subspace, SUBCLU finds
the same clusters as DBSCAN; clusters of different subspaces can overlap. Also,
similarly to DBSCAN, parameters decide on the algorithm’s success: ε specifies
the size of the neighborhood of each point where the density threshold MinPts
defines the core points for building density-connected sets. However, setting
the density threshold gives a bias towards subspace clusters with a certain
dimensionality, and can miss high-dimensional clusters.

This bias led to the proposal of the dimensionality unbiased cluster model
(DUSC) [Ass+07a]. The density threshold influences how well noise is separated
and is difficult to set. As a remedy, DUSC introduces an intuitive density threshold
which defines the density threshold F as a factor relative to the expected density
instead of defining an absolute threshold as in SUBCLU. However, this still
leaves an input parameter to guess.

109

6. Related Work

6.2.2. Correlation Clustering

Approaches to generalized subspace clustering or correlation clustering search
for clusters in arbitrarily oriented subspaces of the data space. Since clusters
are not limited to reside in axis-parallel subspaces, these methods provide the
potential to find more and different clusters. However, for each cluster, these
approaches identify an individual subspace in which it is best represented. Our
proposed method FOSSCLU determines one joint subspace optimally exhibiting
all clusters, where we can study intra- and inter-cluster-relationships between
objects in the subspace.

Similar to PROCLUS for finding axis-parallel clusters, ORCLUS [AY00] searches
for clusters in arbitrarily oriented subspaces. ORCLUS uses an k-means approach
but iteratively calculates the distance for the cluster assignment based on each
cluster’s weak eigenvectors of its local eigensystem. A newly assigned object
causes the eigensystem to be recomputed. This approach reduces the variance in
each cluster’s projection to the weak eigenvectors. Like PROCLUS, the average
subspace dimensionality per cluster l and the number of clusters k are input
parameters. The algorithm begins with a number of seed clusters higher than
k and reaches k by merging clusters pair-wise. Starting with a high number of
seed clusters increases the cluster quality but also running time. For finding the
best candidates for merging, the eigensystem for the objects of each pair of clus-
ters combined is calculated. In the subspace of the smallest l eigenvectors, the
mean squared error from the new centroid decides the optimal pair of clusters
to merge. As result, ORCLUS returns the k clusters with their corresponding
eigensystems.

Böhm et. al. propose Computing Correlation Connected Clusters (4C) [Böh+04b] by
extending the axis-parallel projected clustering algorithm PreDeCon [Böh+04a] to
arbitrarily oriented subspace clusters. Like PreDeCon, it introduces a parameter
δ to modify the distance function and the shape of the ε-neighborhood of the
underlying DBSCAN-model. In 4C, the parameter δ defines a threshold for
weak eigenvectors so that the corresponding distance function receives a higher
weight on these eigenvectors. Thus, the ε-neighborhood is rotated to match the
subspace correlations. For each object, the eigenvalue matrix is modified, and,
like PreDeCon, the resulting distance function has to be adapted to be symmetric.

110

6.2. Subspace, Projected and Correlation Clustering

4C returns an arbitrary number of clusters but requires several input parameters.
Next to the DBSCAN parameters for the ε-neighborhood and its density, the
user must provide the threshold δ and the maximal dimensionality λ (without
it, 4C would return the full dimensionality as subspace).

As an approach for non-linear clusters, CURLER [TXO05] combines the
expectation-maximization (EM) clustering model and the ε-neighborhood idea to
find clusters in arbitrarily oriented subspaces. Co-sharing combines microclusters
into non-linear clusters.

As a different approach to correlation clustering CASH [Ach+] (Clustering
in Arbitrary Subspaces based on the Hough transform) applies the idea of
transforming objects from the data space into parametrization functions in the
parameter space that has been introduced by Hough transform for line detec-
tion on pixel images. In clustering, intersection or near-intersection points of
hyperplanes (or, more exact: parametrized function) in the parameter space
correspond to candidates for correlation clusters. CASH does not consider the
distance in the data space and does, thus, not apply the locality assumption.
The user needs to specify the parameters m for the number of minimal points
for each cluster and s for the number of minimal splits in the iterative refine-
ment of the correlation clusters. CASH is grid-based and uses bisecting search.
CASH starts at a (d− 1)-dimensional parameter space and loops through all
dimensions in a fixed order, iteratively splitting each. This approach results in
hypercuboids in the parameter space and discards them if they contain less than
m objects (the requirement for dense cells of cluster candidates). The hyper-
cuboids containing the most objects are split first. The remaining are returned as
(d− 1)-dimensional subspace clusters, and their objects are removed from the pa-
rameter space of other cluster candidates, allowing no overlapping clusters and
improving performance. After all cluster candidates have turned into clusters or
have been pruned, the next iteration searches for (d− 2)-dimensional subspace
clusters in the (d− 1)-dimensional data space. Iteratively, the algorithm removes
dimensions from the subspace clusters and converges if no further splits are
possible. By considering correlations and not using the locality assumption,
CASH is robust against noise. However, CASH’s worst-case is exponential in the
dimensionality d.

111

6. Related Work

6.3. Visualization of Subspace Clustering Results

Only few techniques implicitly or explicitly address the problem that the complex
result of subspace clustering techniques is often difficult to interpret. There are
two types of techniques:

(1) Hierarchical methods inherently providing the benefit of determining and
visualizing relationships among subspace clusters, e.g. HiCO [Ach+06] and
ERiC [Ach+07]. HiCO detects a hierarchy of arbitrarily-oriented clusters of
different dimensionality, e.g., two 1D line-like clusters are merged to a 2D
cluster if they reside in a common plane. The required agreement in correlation
strength and dimensionality of the clusters to be merged are controlled by
parameters. The approach ERiC extends HiCO by allowing more complex
hierarchical relationships. Both methods require that the subspaces of clusters
are hierarchically nested, which is a very special type of relationship.

(2) Two specialized visualization techniques have been proposed for interpret-
ing the result of axis-parallel subspace clustering [Ass+07b]. Both techniques allow
comparing the clusters w.r.t. space overlap, object overlap, and quality. These
techniques intend to assist the user in adjusting the parameter settings of their
subspace clustering algorithm DUSC [Ass+07a].

By finding one optimal arbitrarily-oriented subspace during clustering, FOS-
SCLU naturally facilitates the interpretation of the result. FOSSCLU is not
restricted to hierarchical subspace inclusion nor to axis-parallel subspace clus-
ters, and the parametrization is optional.

6.4. Integrated Clustering

Several approaches have been proposed for integrated clustering of datasets
with numerical and categorical attributes.

The algorithm k-modes [Hua98] transfers the concept of the famous and ef-
ficient algorithm k-means [Mac67] for numerical clustering data to categorical
domains. Instead of using k-means’ Euclidean distance as dissimilarity measure,
k-modes defines the distance between two objects as the number of mismatching
categorical attributes. While k-means assigns objects to the cluster with the

112

6.4. Integrated Clustering

closest mean, k-modes assigns them to the cluster with the most similar mode
based on the relative frequency for each categorical dimension. Analogously to
k-means, k-modes updates the modes and assignments in alternating steps until
convergence. Naturally, k-modes shares the restriction for the number of clusters
to be determined a priori.

The algorithm k-prototype [Hua98] combines k-means for clustering numerical
data with k-modes for clustering categorical data in order to cluster mixed-type
data. Both dissimilarity measures are combined by summing up the dissimilarity
for the individual numerical and categorical dimensions. However, the user has
to provide a factor γ to define the weight of the categorical versus the numerical
dissimilarity measure.

Yin and Tan [YT05] propose CFIKP for clustering large datasets with mixed-
type attributes. CFIKP first clusters the dataset using a CF*-tree to store dense
regions in lead nodes. Each dense region is represented by a single object in
the subsequent clustering step using k-prototype. The problem for selecting the
number of clusters remains.

The algorithm CAVE [HC07] is an incremental entropy-based method which
first selects k clusters, parametrized by the user, and then assigns objects to these
clusters based on variance and entropy. Knowledge of the similarity among
categorical attributes is required in order to construct the distance hierarchy for
the categorical attributes.

The cluster ensemble approach CEBMDC [HXD05] overcomes the problem
of selecting k but requires a threshold parameter that defines the intra-cluster
similarity between objects.

The algorithm CBC algorithm [RS06] is an extension of BIRCH [ZRL96] for
clustering mixed-type data. It uses a weight-balanced tree that needs two
parameters, defining the number of entries for (non)-leaf nodes. Furthermore,
all entries in a leaf node must satisfy a particular threshold requirement.

Ahmad and Dey [AD07] propose a k-means-based method for mixed-type
attributes. However, the process of solving the optimization of the cost function
is very complex and, thus, not scalable to large datasets.

[Bro08] uses standard fuzzy c-means on a set of features which is mapped
to a set of feature vectors with only real valued components. This mapping is
computationally intensive and is designed rather for low dimensional data.

113

6. Related Work

An extension of the cost function of entropy weighting k-means [JNH07] to more
efficiently specify the inter- and intra-cluster similarities is proposed by the
IWEKM approac [LC08].

Some papers have focused on avoiding the choice of k in partitioning clustering,
e.g., X-Means [PM00], RIC [Böh+06] and OCI [BFP08]. However, these clustering
methods are designed for numerical vector data only.

114

7. FOSSCLU: Finding the Optimal
Subspace for Clustering

The ability to simplify and categorize things is one of the most important
elements of human thought, understanding, and learning. The corresponding
explorative data analysis techniques — dimensionality reduction and clustering
— have initially been studied by our community as two separate research topics.
Later algorithms like CLIQUE, ORCLUS, 4C, etc., performed clustering and
dimensionality reduction in a joint, alternating process to find clusters residing in
low-dimensional subspaces. Such a low-dimensional representation is extremely
useful, because it allows us to visualize the relationships between the various
objects of a cluster. However, previous methods of subspace, correlation or
projected clustering determine an individual subspace for each cluster. In this
chapter, we demonstrate that it is even much more valuable to find clusters in one
common low-dimensional subspace because then we can study not only the intra-
cluster but also the inter-cluster relationships of objects and the relationships of
the whole clusters to each other. We develop the mathematical foundation ORT
(Optimal Rigid Transform) to determine an arbitrarily-oriented subspace, suitable
for a given cluster structure. Based on ORT, we propose FOSSCLU (Finding the
Optimal SubSpace for CLUstering), a new iterative clustering algorithm. Our
extensive experiments demonstrate that FOSSCLU outperforms the previous
methods even in both aspects: clustering and dimensionality reduction.

7.1. Introduction
Can we obtain both, a meaningful clustering and a projection of the data to 2D or 3D
space showing all relevant patterns at first glance? — Despite the vast number of

115

7. FOSSCLU: Finding the Optimal Subspace for Clustering

advanced dimensionality reduction and clustering techniques, this is a non-trivial
task.

Consider the example dataset in Figure 7.1. The 4D dataset contains three
clusters in an arbitrarily-oriented 2D subspace, hidden in two noise dimensions.
Figure 7.1(a) displays a 3D scatter plot of the data where one of the uni-modal
dimensions has been left out to enable visualization. Figure 7.1(b) shows the
result of principal component analysis (PCA) [Jol02] by displaying the scatter
plots of the two leading eigenvectors on top and the two minor eigenvectors on
the bottom. Clearly, PCA does not preserve much of the information relevant
for clustering because the optimization goal of PCA is to preserve the overall
variance in data which is here dominated by the noise dimensions. In our
example and many real-world datasets, the cluster-separating information is
only a small fraction of the overall data variance. Thus there are no separated
clusters visible in both projections. Clustering techniques like k-means or EM-
clustering will never obtain a good result in these subspaces.

During the last decades, the research community has mostly studied the
following related problem: Given the clusters, the corresponding subspaces
can be easily determined by performing a local PCA on each cluster, and
given the subspaces, the clusters can be easily identified. However, if both
the clusters and the subspace are unknown, we face a chicken or the egg
dilemma. To overcome this, we need to integrate local cluster-wise PCA (or
some other dimensionality reduction technique) into the clustering process to
detect clusters and subspaces simultaneously as, e.g., in ORCLUS [AY00], 4C
[Böh+04b] and CURLER [TXO05]. These methods successfully detect arbitrarily
oriented clusters in moderate- to high-dimensional data, but they detect for each
cluster one individual subspace in which it is best represented. Allowing an
individual subspace for every single cluster might be beneficial for optimizing
the clustering quality. However, the result of these algorithms tends to be
difficult to interpret since the interesting relationships among clusters remain
unclear. In particular, it is not possible to plot the complete cluster structure
in one joint low-dimensional space. Figure 7.1(c) displays our example dataset
projected to the subspaces determined by the PCA of the blue cluster. One can
see that this cluster is axis-parallel due to the decorrelation performed by PCA.
The top subfigure corresponding to the leading eigenvectors preserves most of

116

7.1. Introduction

Figure 7.1.: Determining the Optimal Subspace for Clustering. (a) Synthetic
example dataset. (b) Result of standard PCA: most cluster-separating
information is lost. (c) Result of local cluster-wise PCA: De-
correlation of the corresponding cluster, here the blue cluster, but
also no preservation of cluster-separating information. (d) Result
of FOSSCLU: The optimal rigid transform condenses all interesting
information for clustering to the clustered subspace where we have
three well separated clusters. The noise subspace is unimodal and
can thus be ignored.

the variance of this cluster and is in this sense optimal for its representation.
However, this projection does not preserve the information separating the blue
cluster from the others. Therefore, it is not suitable for further data mining or
interpretation.

Our new algorithm FOSSCLU determines one subspace only. This subspace is
optimal for clustering and therefore suitable to plot and analyze the complete
cluster structure. The major contribution of our approach is a novel dimen-
sionality reduction technique called the optimal rigid transform (ORT), see
Figure 7.1(d). The key idea of ORT is to find an orthogonal pair of subspaces,
a clustered subspace, ideally containing all relevant information for clustering,
and a noise subspace for all the remaining variance in the data not relevant for
clustering. Among all possible rotations of the data space, ORT determines
the rotation that maximizes the cluster quality in the clustered subspace while

117

7. FOSSCLU: Finding the Optimal Subspace for Clustering

requiring the noise subspace to be as uni-modal as possible. What exactly do we
mean by maximizing the cluster quality? FOSSCLU finds the optimal subspace
for expectation maximization (EM) clustering. The EM algorithm is among the
most widely used clustering techniques and has been voted among the top ten
algorithms in data mining [Wu+08]. Figure 7.1(d) (top) displays the clustered
subspace found by ORT exhibiting three distinct clusters. See below the noise
subspace which is orthogonal to the clustered subspace. It is essential to require
the noise subspace to be uni-modal. This ensures that it contains no interesting
information for clustering and thus can safely be ignored. See at the bottom
line of Figure 7.1 the color-coded data matrix of the original data (a). In original
space, some cluster-separating information is contained in every dimension, e.g.,
the first row of the data matrix representing the x-coordinate roughly separates
one cluster from the remaining two. However, there is no single dimension
effectively separating all clusters which is found by orthonormal rotation by
global PCA (b) and cluster-wise PCA (c). ORT (d) is the only method success-
fully condensing all the interesting cluster-separating information into a joint
low-dimensional space. Note that all clusters are very well separated, even
considering only the first dimension of the clustered subspace found by ORT.

While PCA is probably the most widely used feature transformation technique,
many others have been proposed, e.g., independent component analysis [HO00],
Non-negative matrix factorization [LS00], ISOMAP [TSL00] and many other
variants of manifold learning. All these techniques have different optimization
goals. However, to the best of our knowledge, none of them aims at finding the
optimal subspace for clustering.

We integrate ORT into an EM-style alternating least squares algorithm. Thereby,
our algorithm FOSSCLU discovers the clustered subspace and the clusters si-
multaneously by iteratively optimizing the cluster assignment and the subspace
until convergence.

We summarize the following contributions:

1. The optimal rigid transform (ORT) is a novel cluster-enhancing dimen-
sionality reduction technique. ORT detects the optimal subspace for cluster-
ing by maximizing the cluster quality while requiring the orthogonal noise
subspace to be as uni-modal as possible. In contrast to existing techniques,

118

7.2. FOSSCLU

ORT determines one joint subspace for all clusters which greatly facilitates
the interpretation of the clustering result.

2. Accurate Clustering. Our algorithm FOSSCLU integrates ORT into an
efficient EM-style clustering routine. FOSSCLU shows comparable per-
formance to state-of-the-art generalized subspace clustering approaches
and even outperforms them. Note that these comparison methods are
focusing on clustering only and none of them provide a joint subspace for
visualization and interpretation.

3. Optional Parametrization. Supported by the minimum description length
(MDL) principle, FOSSCLU can automatically discover the number of clus-
ters and the dimensionality of the clustered subspace. However, since users
often have good reasons to choose certain parameters, e.g. for application-
specific reasons, or to request a specific subspace dimensionality, FOSSCLU
can be parameterized.

The remainder of this chapter is organized as follows: The following section
elaborates the details of our method FOSSCLU. Section 7.4 provides an extensive
experimental evaluation of the visualization and the clustering quality. Sec-
tion 7.5 concludes this chapter. The related work has already been discussed in
Chapter 6.

7.2. FOSSCLU
In contrast to the vast majority of previous methods for dimensionality reduc-
tion, clustering, as well as subspace, projected, and correlation clustering, our
algorithm FOSSCLU (Finding the Optimal Subspace for Clustering) aims at finding
a single, unique, m-dimensional, arbitrarily oriented subspace which is optimal
for the complete partitioning of the dataset into k clusters by EM-clustering. In
our algorithm FOSSCLU, clustering and dimensionality reduction are performed
simultaneously in two alternating steps:

(1) each object becomes associated with the best of the k clusters (while fixing
a specified dimensionality reduction), and

119

7. FOSSCLU: Finding the Optimal Subspace for Clustering

Table 7.1.: Important Symbols and Definitions.

Symbol Definition
n ∈N Number of objects
d, m ∈N Dimensionality of original (of clustered) space
k ∈N Number of clusters
X ∈ Rd×n Matrix containing all data objects in columns
Ci ∈ Rd×ni Matrix of all objects in Cluster Ci(1 ≤ i ≤ k)
µi ∈ Rm Center of cluster Ci in clustered space
Λi ∈ Rm×m Covariance matrix of Ci in clustered space
µ, Λ Center/covar. matrix of all data in noise space
Σ, Σi ∈ Rd×d Covariance matrix of X (of Ci) in original space
V ∈ Rd×d Matrix defining the optimal rigid transform
Pc, Pn Projection to the first m (last d−m) attributes
Gp,q(θ) Givens rotation in plane (p, q) by angle θ

(2) the data space is transformed into the m-dimensional subspace that is
optimal for the given clustering.

Our method, therefore, corresponds to the alternating least squares (ALS) paradigm.
Table 7.1 summarizes the most important symbols and their definitions used in
this chapter.

7.2.1. The FOSSCLU Optimization Goal

Our optimization goal is dedicated to the idea of separating the data space Rd

into an orthogonal pair of arbitrarily oriented subspaces: the clustered subspace
Rm and the noise subspace Rd−m. The clustered subspace is selected such that it
exactly contains the partitioning of the data objects into k clusters according to
an EM-clustering model, while the noise subspace contains no cluster structure.
An orthonormal matrix V called optimal rigid transform (ORT) defines our pair
of subspaces. ORT rotates an object x ∈ X such that the first m attributes of
the resulting object VT · x form the clustered subspace. After the rotation, the
projection into the first m dimensions is done by the following projection matrix:

120

7.2. FOSSCLU

Pc =



1 0 · · · 0
0 1 · · · 0
...
0 0 · · · 1

0 0 · · · 0
...
0 0 · · · 0



1...
...
0

m

0...
0

 d−m

∈ Rd×m (7.1)

Analogously the matrix for the projection onto the last (d−m) attributes is
defined as:

Pn =



0 0 · · · 0
...
0 0 · · · 0

1 0 · · · 0
0 1 · · · 0
...
0 0 · · · 1



1...
0

m

0...
...
0

 d−m

∈ Rd×(d−m) (7.2)

An object x can be projected to the clustered subspace by PT
c ·VT · x.

Our optimization goal is to find the ORT V and a grouping of the objects into
clusters C1, ..., Ck such that

• the objects PT
c ·VT · x in the clustered subspace follow a multi-modal distri-

bution with k peaks corresponding to the clusters C1, · · · , Ck and

• the objects PT
n ·VT · x in the noise subspace follow a uni-modal distribution.

The optimization goal of FOSSCLU is given in the following:

121

7. FOSSCLU: Finding the Optimal Subspace for Clustering

Definition 7.1: Optimization Goal of Fossclu

Given k, m ∈N, find an orthonormal matrix V ∈ Rd×d and a grouping of
the objects in X into k clusters C1, · · · , Ck such that the following objective
function f (called Fossclu function) is minimized:

f = − ∑
1≤i≤k

∑
x∈Ci

log2

(
ni/n√

(2π)m|Λi|
e−

1
2 (xTVPc−µT

i)Λ
−1
i (PT

c VTx−µi)

)
(7.3a)

− ∑
x∈X

log2

(
1√

(2π)d−m|Λ|
e−

1
2 (xTVPn−µT)Λ−1(PT

n VTx−µ)

)
(7.3b)

where for 1 ≤ i ≤ k, µi is the centroid of cluster Ci in the clustered space
and µ is the center of all data objects in the noise space:

µi =
1
ni ∑

x∈Ci

PT
c VTx ∈ Rm µ = 1

n ∑
x∈X

PT
n VTx ∈ Rd−m (7.4)

Λ1, · · · , Λk are the (m× m) covariance matrices of the clusters in the m
attributes of the clustered subspace and Λ is the overall covariance matrix
in the attributes of the noise space:

Λi =
1
ni ∑

x∈Ci

(PT
c VTx− µi) · (xTVPc − µT

i) ∈ Rm×m (7.5)

Λ = 1
n ∑

x∈X
(PT

n VTx− µ) · (xTVPn − µT) ∈ R(d−m)×(d−m) (7.6)

In this definition, the first line of f (Equation 7.3) corresponds to the maximiza-
tion of the cluster structure. The second line corresponds to the minimization
of the cluster projection in the remaining (d−m) noise dimensions. Note that
only one rigid transformation V exists for all k clusters in the clustered subspace
and for the noise subspace. The first line corresponds to a number k of Gaussian
distributions in the clustered subspace, each defined by the center µi and an
m×m covariance matrix Λi and weight ni

n . This means that our cluster notion
exactly corresponds to that of EM-clustering (with crisp cluster assignment) in
the clustered subspace. The noise in the second line is modeled by a single

122

7.2. FOSSCLU

Figure 7.2.: Transformation of the data matrix X (containing data objects as
column vectors, grouped by cluster membership) using optimal rigid
transform V.

Gaussian distribution function with center µ and covariance matrix Λ in the
noise subspace. The FOSSCLU function f is defined as the negative log-likelihood
(NLLH) of these Gaussian distributions. The NLLH measures the number of bits
that are needed to encode the data matrix X by a lossless data compression using
our specific cluster model. We will come back to the topic of data compression
and fully automatic parameter selection in Section 7.2.4.

The result of FOSSCLU, the transformed data matrix VTX, can also be visu-
alized in Figure 7.2 where we see, that clusters are separated in dimensions 1
through m after applying the transform V to the whole data matrix X. Note that
none of the previous methods of subspace, projected and correlation clustering
enables such a well-ordered structure, because each cluster has its individual
subspace. So the red, green, blue, etc. part is distributed over different dimen-
sion patterns. Figure 7.1d demonstrates the great advantage of our method: the
resulting matrix can be visualized with scatter plots (7.1d, upper part), with color-
coded matrix images (7.1d, lower part), and more sophisticated visualization
techniques.

The task of our method FOSSCLU is to optimize simultaneously both the
cluster assignment as well as the optimal rigid transform V to optimize the
function f given in Definition 7.1.

123

7. FOSSCLU: Finding the Optimal Subspace for Clustering

We can easily see that µi, µ, Λi, Λ can also be determined from the correspond-
ing center and covariance matrix of the original space:

µi = PT
c VT · 1

ni ∑
x∈Ci

x µ = PT
n VT · 1

n ∑
x∈X

x (7.7)

Λi = PT
c VTΣiVPc Λ = PT

n VTΣVPn (7.8)

where Σi are the d× d covariance matrices (in original space) of cluster Ci and Σ
that of the whole dataset.

7.2.2. ORT: The Optimal Rigid Transform

With usual eigenvalue decomposition (EVD), we can either perform a rigid
transformation (rotation) of the data space that maximizes the variance of all
data (like principal component analysis (PCA) or singular value decomposition
do), or one that minimizes the cluster-specific variance (like ORCLUS, 4C, and
other subspace clustering techniques do). As we have already seen in the simple
4D example of Figure 7.1, neither a global eigenvalue decomposition nor a cluster-
wise eigenvalue decomposition is sufficient to separate the 2D cluster space from
the 2D noise space. Therefore, we need a new, special eigenvalue decomposition,
which we call optimal rigid transform (ORT). We show in Section 7.2.5 that our
proposed method ORT indeed is optimal for our cluster model of crisp EM
clustering in the clustered subspace, as defined in our FOSSCLU function f
(cf. Definition 7.1).

Before we can see the elegance of our approach, we have to work ourselves
through a fairly lengthy and complex mathematical derivation: the normal eigen-
value decomposition of a (symmetric, positive definite) matrix Σ (the covariance
matrix of our data matrix X) diagonalizes the matrix by a rotation VEVD of the
data space. If we multiply each object VT

EVD · x, the resulting covariance matrix
becomes a diagonal matrix ΛEVD, and we call its elements the eigenvalues. The
orthonormal (=rotation) matrix VEVD contains the eigenvectors. The relationship
between eigenvalues and eigenvectors is:

ΛEVD = VT
EVD · Σ ·VEVD (7.9)

124

7.2. FOSSCLU

The specific advantage of the eigenvalue decomposition is, that the data matrix
is de-correlated by it (when applying VT

EVD · X). The data distribution can then
be modeled by a product of univariate distributions rather than by a single
multivariate distribution with covariance matrix, at no loss of precision. In
addition, among all rigid transforms, eigenvalue decomposition rotates our data
matrix such that the product of all univariate variances is minimized.

In contrast to eigenvalue decomposition, ORT does not simply decompose a
single matrix. ORT rather decomposes all the covariance matrices (corresponding
to the single clusters) and the overall covariance matrix (corresponding to the
noise part) simultaneously using the same matrix V:

Λi = PT
c ·VT · Σi ·V · Pc for all i with 1 ≤ i ≤ k (7.10)

Λ = PT
n ·VT · Σ ·V · Pn (7.11)

Usually the resulting matrix V does not produce a diagonal matrix for each of the
matrices Σ1, . . . , Σk and Σ. However, we require that, like in usual eigenvalue
decomposition, the product of all variances in Λ1, . . . , Λk and Λ is minimized.
Since in the clustered subspace each cluster is modeled again by its multivariate
Gaussian distribution (using a covariance matrix), the overall variance of a cluster
is defined by the determinant of this covariance matrix. Thus, the overall
optimization goal for ORT is given in the following definition:

Definition 7.2: Optimal Rigid Transform ORT

Given a set of k cluster-specific covariance matrices Σ1, . . . , Σk and the over-
all covariance matrix Σ of X in original data space. Find an orthonormal
d × d matrix V which minimizes the following objective g (called ORT
function):

g = |PT
n VTΣVPn| · ∏

1≤i≤k
|PT

c VTΣiVPc|
ni
n (7.12)

where | · · · | denotes the determinant.

In Section 7.2.5 we prove that ORT truly optimizes f from Definition 7.1, and
the determinants are essential for this proof. Intuitively, the determinants rep-
resent the overall variances of the clusters in the clustered space (|PT

c VTΣiVPc|,
weighted by ni

n), and of the noise in the noise space (|PT
n VTΣVPn|). Thus the

125

7. FOSSCLU: Finding the Optimal Subspace for Clustering

minimization of the product of these determinants rewards cluster quality in the
clustered space and punishes cluster structure in the noise space. A commonly
used algorithm for the normal eigenvalue decomposition is the Jacobi transform.
The Jacobi transform is an iterative algorithm which diagonalizes a matrix by
applying orthonormal operations called Givens rotations to it. Each Givens
rotation optimizes a 2D plane (p, q), where p and q iterate over all dimension
pairs (1 ≤ p < q ≤ d). The Givens rotations are repeated until convergence. The
product of all applied Givens rotations corresponds to the eigenvectors, and the
diagonal matrix contains the eigenvalues.

We adopt the general scheme of this algorithm modifying two aspects: Firstly,
since we are only interested in separating the clustered subspace from the noise
subspace, we can safely restrict ourselves to the cases where 1 ≤ p ≤ m and
m < q ≤ d. So from now on, we always assume that p is in the clustered
subspace and q is in the noise subspace. Secondly, we derive an optimization
goal for the rotation in (p, q) from the overall goal in Definition 7.2.

The Givens rotation Gp,q(θ) in plane (p, q) with angle θ is an orthonormal
d × d matrix that deviates from identity matrix by the following exceptions:
element [p, p] = element [q, q] = cos θ, element [p, q] = − sin θ, and element
[q, p] = sin θ:

Gp,q(θ) =



1
. . .

cos θ − sin θ
. . .

sin θ cos θ
. . .

1


(7.13)

The Givens rotation modifies the ORT matrix V as well as the covariance matrices
in the following way:

Vnew = Gp,q(θ) ·Vold (7.14)

Σnew = Gp,q(θ) · Σold · Gp,q(θ)
T (7.15)

Σnew
i = Gp,q(θ) · Σold

i · Gp,q(θ)
T (7.16)

126

7.2. FOSSCLU

p

Σ
1

Σ
2

Σ
q

θ

Var = |Λ1| Var = |Λ2|

Var = |Λ|

Figure 7.3.: Example of plane rotation for two clusters. The Givens rotation
Gp,q(θ) is applied to plane (p, q) by angle θ. Rotating the plane
corresponds to rotating the covariance matrices. It represents a
trade-off for minimizing the variance of each cluster in the clustered
space and the total variance in the noise space. Hence, the product
|Λ1|n1/n · |Λ2|n2/n · |Λ| is minimized.

So the sequence of Givens rotations is multiplied with the matrix V from the
left (initialized by the identity matrix) and from both sides to Σ and Σi (both
initialized by the true covariance matrices). So at convergence in step ` we will
have:

Vfinal = G(`)
m,d · ... · G

(`)
1,m+1 · ... · G

(1)
m,d · ... · G

(1)
1,m+1 · I (7.17)

and analogously for Σ and Σi. The final covariance matrices in clustered and
noise space are determined by Λfinal

i = PT
c Σfinal

i Pc.

To be able to select the rotation angle θ in an optimal way, we have to find out
how a Givens rotation affects our objective function g from Definition 7.2 (the
product of determinants, cf. Figure 7.3). We define the function gp,q(θ) which is
our ORT function g with a focus on the current optimization step for a given

127

7. FOSSCLU: Finding the Optimal Subspace for Clustering

plane (p, q) and the rotation angle θ to be optimized:

gp,q(θ) = |PT
n Gp,q(θ)ΣoldGT

p,q(θ)Pn| · ∏
1≤i≤k

|PT
c Gp,q(θ)Σold

i GT
p,q(θ)Pc| (7.18)

The product PT
c · Gp,q(θ) has the following form:

PT
c Gp,q(θ) =



1 · · · 0 0 · · · 0
. . .

1
... cos θ

...
... − sin θ

...
1

. . .
0 · · · 1 0 · · · 0


(7.19)

It deviates from PT
c by just two entries: element [p, p] is cos θ (instead of 1)

and element [p, q] is − sin θ (instead of 0). This means multiplying it from left
and right modifies our covariance matrix Σi by multiplying row and column p
with cos θ and subtracting row/column q from it (with weight sin θ). Likewise,
our overall covariance matrix Σ is modified by multiplying row and column q
with cos θ and adding sin θ times the row and column p to it. We exploit the
multi-linearity of the determinant in rows and columns and in this way extract
sin θ and cos θ from the determinant:

gp,q(θ) = |PT
n Gp,q(θ)ΣoldGT

p,q(θ)Pn| · ∏
1≤i≤k

|PT
c Gp,q(θ)Σold

i GT
p,q(θ)Pc|

=
(

sin2 θ · |PT
n Sp,qΣoldSp,qPn|+ 2 sin θ cos θ · |PT

n ΣoldSp,qPn|

+ cos2 θ · |PT
n ΣoldPn|

)
· ∏

1≤i≤k

(
sin2 θ · |PT

c Sp,qΣold
i Sp,qPc| − 2 sin θ cos θ · |PT

c Σold
i Sp,qPc|

+ cos2 θ · |PT
c Σold

i Pc|
)ni/n

(7.20)

where Sp,q is the swapping matrix which exchanges the rows p and q of an
arbitrary matrix M when multiplied from the left side to M, and the correspond-
ing columns when multiplied on the right side of M. Sp,q looks like the d× d

128

7.2. FOSSCLU

identity matrix with the exceptions that element [p, p] = element [q, q] = 0 and
element [p, q] = element [q, p] = 1:

Sp,q =



1
. . .

0 · · · 1
...
1 · · · 0

. . .
1


(7.21)

We define the following substitutions: n0 := n, and for all clusters Ci with
1 ≤ i ≤ k:

a0 := |PT
n Sp,qΣoldSp,qPn| ai := |PT

c Sp,qΣold
i Sp,qPc| (7.22)

b0 := |PT
n ΣoldSp,qPn| bi := −|PT

c Σold
i Sp,qPc| (7.23)

c0 := |PT
n ΣoldPn| ci := |PT

c Σold
i Pc| (7.24)

This enables us to write gp,q(θ) in an elegant way in which we treat the noise
space like a cluster Ci=0:

gp,q(θ) = ∏
0≤i≤k

(ai sin2 θ + 2bi sin θ cos θ + ci cos2 θ)ni/n (7.25)

Now we minimize gp,q(θ) by setting its derivative to zero. Applying product
and chain rule gives us:

dgp,q(θ)

dθ
= ∑

0≤i≤k

(
ni
n

(
ai sin2 θ + 2bi sin θ cos θ + ci cos2 θ

) ni
n −1

·2
(
− bi sin2 θ + (ai − ci) sin θ cos θ + bi cos2 θ

)
· ∏

0≤j≤k
j 6=i

(
aj sin2 θ + 2bj sin θ cos θ + cj cos2 θ

) nj
n
) (7.26)

The roots of the derivative can be found by factorizing out the terms (ai sin2 θ +

2bi sin θ cos θ + ci cos2 θ), to the power of (ni
n − 1). After this step one of these

129

7. FOSSCLU: Finding the Optimal Subspace for Clustering

terms is completely drawn out of the sum, and the rest remains inside but only
to the power of 1. Additionally, for each of the k + 1 factors, we factor out cos2 θ

to change sin2 θ into tan2 θ, sin θ cos θ into tan θ, and cos2 θ into 1:

=

(
∏

0≤i≤k

(
ai sin2 θ + 2bi sin θ cos θ + ci cos2 θ

) ni
n −1

)
· 2

n cos2k+2 θ (7.27a)

· ∑
0≤i≤k

((
− bini tan2 θ + (ai − ci)ni tan θ + bini

)
(7.27b)

· ∏
0≤j<i

(aj tan2 θ + 2bj tan θ + cj) (7.27c)

· ∏
i<j≤k

(aj tan2 θ + 2bj tan θ + cj)

)
(7.27d)

By substituting ξ := tan θ we can easily see the equivalence with a polynomial of
degree 2k + 2 which is the sum of k + 1 polynomials (of the same degree). These
k + 1 polynomials differ only in one factor (Equation 7.27b), resulting from the
chain rule, which replaces the i-th factor in Equation 7.27c or 7.27d. An efficient
way to determine the coefficients of the final polynomial is first to pre-compute
the coefficients of Equation 7.27c for all 1 ≤ i < k by multiplying the single
factor-polynomials one by one, and memoizing the intermediate results in k− 1
arrays. Then, the polynomials of Equation 7.27d are determined in the same way
but in reverse order k ≥ i > 1, multiplied with the corresponding memoized
intermediate result of Equation 7.27c and the remaining term (Equation 7.27b),
and added to the coefficients of the resultant polynomial. This requires a linear
number of 4k polynomial multiplications. Finally, we determine the 2k + 2 roots
ξ1, . . . , ξ2k+2 of the resultant polynomial (e.g., by an eigenvalue decomposition of
the companion matrix). We back-substitute θi = arctan ξi of each non-complex
root of the polynomial to find the global minimum

θmin = arg min
1≤i≤2k+2

gp,q(θi). (7.28)

Once we have found θmin, we can apply the Givens rotation by setting

Vnew := Gp,q(θmin) ·Vold (7.29)

130

7.2. FOSSCLU

and applying it likewise to Σ and Σi. The determination of θmin and its appli-
cation in a Givens rotation is repeated for all planes (p, q) ∈ ({1, ..., m} × {m +

1, ..., d}), and this is repeated until convergence. Finally, we have the ORT V,
and the covariance matrices in clustered and noise space can be determined by
applying the corresponding projection matrices to the final versions of Σ and
Σ1, ..., Σk.

7.2.3. The Algorithm FOSSCLU
In our alternating least squares scheme, we are performing the two steps cluster
assignment and subspace determination. Both steps are optimizing the objective
function f given in Definition 7.1, as we show in Section 7.2.5. For the cluster
assignment step, we assume that the orthonormal matrix VT is fixed. We perform
a crisp EM-clustering in the clustered subspace, i.e. each point is assigned to
that cluster which maximizes the point’s likelihood, according to the weighted
Gaussian probability density function (defined by the weight ni

n , center µi, and
covariance matrix Σi of the cluster):

i = arg max
1≤i≤k

ni
n√

(2π)m|Λi|
e−

1
2 (xTVPc−µT

i)Λ
−1
i (PT

c VTx−µi) (7.30)

Algorithm 7.1 summarizes FOSSCLU in pseudo-code1. We initialize the FOSS-
CLU cluster centers by randomly sampling points from the data set. The iterative
algorithmic scheme then starts with determining the optimal rigid transform.
Subsequently, the points are re-assigned as described above. Both steps are
iterated until convergence. The cluster weight ni

n is not considered in the first
five iterations of the algorithm to prevent the initial clusters from running empty.

7.2.4. Minimum Description Length (MDL)
The idea of MDL (cf. Section 2.2.1) is to use the result of an arbitrary data
mining algorithm as a statistical model which can be exploited for the efficient
compression of the dataset. The better the model fits to the data, the higher

1Our implementation for FOSSCLU is available at https://s.goebl.net/research.

131

https://s.goebl.net/research

7. FOSSCLU: Finding the Optimal Subspace for Clustering

Algorithm 7.1: Algorithm FOSSCLU
Input: matrix X, int k, int m
Output: {C1, . . . , Ck}, VT

// Initialization
1 µ̂←− 1

n ∑
x∈X

x

2 Σ←− 1
n ∑

x∈X
(x− µ̂) · (x− µ̂)T

3 for i←− 1 to k do
4 µi ←− random point from X
5 end for
6 forall x ∈ X do
7 x.clusterID←− arg min

1≤i≤k
(x− µ̂i)

2

8 end forall
9 repeat

// Update cluster models
10 for i←− 1 to k do
11 µ̂i ←− 1

n ∑
x∈Ci

x

12 Σi ←− 1
n ∑

x∈Ci

(x− µ̂i) · (x− µ̂i)
T

13 Ci ←− ∅
14 end for
15 VT ←− ORT(Σ, {Σ1, . . . , Σk}, m) . Algorithm 7.2
16 for i←− 1 to k do
17 µi ←− VTµ̂i

18 Λi ←− VTΣiV
19 end for

// Re-cluster the objects
20 forall x ∈ X do

21 j←− arg max
1≤i≤k

ni
n√
|Λi |

e−
1
2 (xTVPc−µT

i)Λ
−1
i (PT

c VTx−µi)

22 Cj ←− Cj ∪ {x}
23 end forall
24 until convergence

132

7.2. FOSSCLU

Algorithm 7.2: Algorithm ORT
Input: matrix Σ, matrix {Σ1, ...Σk}, int m
Output: matrix V

// This version extends Jacobi-diagonalization [Pre+07]
1 VT ←− (d× d) identity matrix
2 repeat
3 for i←− 1 to m do
4 for j←− m + 1 to d do
5 θ ←− optimal rotation angle (c.f. solution of Section 7.2.2)
6 G ←− (d× d) identity matrix
7 gi,i ←− cos θ

8 gj,j ←− cos θ

9 gi,j ←− sin θ

10 gj,i ←− − sin θ

11 Σ←− G · Σ · GT

12 Σ1,...,k ←− G · Σ1,...,k · GT

13 V ←− G ·V

possible in
O(d) time!

14 end for
15 end for
16 until convergence

133

7. FOSSCLU: Finding the Optimal Subspace for Clustering

the compression factor. Therefore, MDL can be used as a selection criterion
among different models or it can be directly applied in the optimization step
of the data mining algorithm, like we do in FOSSCLU. To avoid overfitting
and overly complex models, MDL techniques add the amount of information
which is needed to code the parameters of the model (called code-book) to the
code-length of the compressed data. We define in the following how parameters
of our method, the results, and the actual data can be efficiently coded.

Definition 7.3: MDL coding of FOSSCLU

Let X ∈ Rd×n be the data matrix, k ∈N the number of clusters (1 ≤ k ≤ n),
m ∈ N the dimensionality of the clustered subspace (1 ≤ m ≤ d), V an
orthonormal d× d matrix (optimal rigid transform), µ1, ..., µk ∈ Rm, µ ∈
Rd−m the centroids in the clustered and noise subspace, respectively, and
Λ1, . . . , Λd and Λ the corresponding covariance matrices. The MDL coding
of the dataset consists of the binary codes:

(1) k and m using log2 n and log2 d bits, respectively,
and V using d·(d−1)

4 · log2 n bits,

(2) µ1, ..., µk, Λ1, ...Λk, µ, and Λ using((
3
4 +

1
4 ·m

)
mk + 3

4(d−m) + 1
4(d−m)2

)
log2 n bits,

(3) the data objects using f bits, where f is the FOSSCLU function (i.e.
the negative log-likelihood of all data under our cluster model).

The data objects are coded with a number of bits equal to the negative log-
likelihood of the probability density function which is associated to the cluster
representative. The negative log-likelihood of all data objects is exactly the
FOSSCLU function f . Note that the cluster assignment information (requiring
− log2

ni
n bits per object) is already contained in f . We call element (1) the

constant code book (since the number of bits is constant during the whole
optimization process), element (2) the variable code book, and element (3) the
log-likelihood cost.

134

7.2. FOSSCLU

Our MDL representation intentionally does not specify any numerical preci-
sion to which the data matrix is coded (after clustering and application of the
optimal subspace transformation). It can be shown that the choice of the grid res-
olution has no influence on the assessment of the goodness of the model [BFP08].
The parameters of the code book like, e.g., our optimal rigid transform V are
taken into account with 1

2 log2 n bits each. The length of the MDL coding given
in Definition 7.3 can in particular be used to find optimal parameter settings
for k and m. FOSSCLU can automatically select that parameter setting which
is optimal for data compression to avoid over- and under-fitting. However, the
user is also free to set m and k according to their requirements (e.g., to set m = 2
or m = 3 for visualization in scatter plots).

7.2.5. Correctness and Convergence
We prove the convergence of FOSSCLU by showing that both the cluster assign-
ment as well as the optimal rigid transform optimize the same objective function
given in Definition 7.1.

Lemma 7.1. The assignment step provided in Section 7.2.3 optimizes the objective
function f from Definition 7.1.

Proof. In the cluster assignment step, V, µ, µi, Λ, and Λi with (1 ≤ i ≤ k) are
fixed. The second line of f (Equation 7.3b: noise space) is constant for all clusters
Ci and is not changed by the cluster assignment. Leaving out all those values in
the FOSSCLU function f which are constant in the assignment step yields:

f = − ∑
1≤i≤k

∑
x∈Ci

log2

(
ni
n√

(2π)m|Λi|
e−

1
2 (xTVPc−µT

i)Λ
−1
i (PT

c VTx−µi)

)
+ O(const.)

(7.31)
This is exactly the logarithm of the cluster assignment function provided in
Section 7.2.2, the cluster assignment function of crisp EM clustering in the
clustered subspace. Thus, the minimization of the cluster assignment function
results in the minimization of the FOSSCLU function.

Lemma 7.2. The optimal rigid transform V optimizes the objective function f from
Definition 7.1.

135

7. FOSSCLU: Finding the Optimal Subspace for Clustering

Proof. First, we show that the term h which is part of the second line of f
(Equation 7.3b) corresponding to the noise space is constant:

h := − ∑
x∈X

log2 e−
1
2 (xTVPn−µT)Λ−1(PT

n VTx−µ) (7.32)

Let Λ = WDWT be the eigenvalue decomposition of Λ. Then the entries of D
contain the variances of WTPT

n VTx, and the center of all data x ∈ X in this space
is WT · µ. Then we can re-write h using the j-th unit vector ej as follows:

h =
log2(e)

2 ∑
x∈X

∑
1≤j≤d−m

(ejWTPT
n VPTx− ejWTµ)2

Dj,j

= ∑
1≤j≤d−m

log2(e) · n
2 · Dj,j

· 1
n ∑

x∈X
(ejWTPT

n VTx− ejWTµ)2

︸ ︷︷ ︸
=Dj,j

(7.33)

where the sum corresponds to the formula of the variance Dj,j of attribute j. We
obtain:

h = ∑
1≤j≤d−m

n log2(e)
2

= 1
2 n(d−m) log2(e) ∈ O(const.) (7.34)

We obtain an analogous result for each cluster:

hi = − ∑
x∈Ci

log2 e−
1
2 (xTVPn−µT

i)Λ
−1
i (PT

n VTx−µi) ∈ O(const.) (7.35)

Now we can separate in the FOSSCLU function all the terms which are constant

136

7.2. FOSSCLU

in the ORT step:

f = ∑
1≤i≤k

(
hi − ∑

x∈Ci

log2

(ni
n√

(2π)m|Λi|

))
+ h− ∑

x∈X
log2

(1√
(2π)m|Λ|

)
= −

(
∑

1≤i≤k
∑

x∈Ci

log2
1√
|Λi|

)
−
(

∑
x∈X

log2
1√
|Λ|

)
+ O(const.)

=
1
2

log2

(
|Λ| · ∏

1≤i≤k
|Λi|

)
+ O(const.)

=
1
2

log2

(
|PT

n VTΣVPn| · ∏
1≤i≤k

|PT
c VTΣiVPc|

)
+ O(const.)

(7.36)
which is the logarithm of the ORT objective function g (Equation 7.12). Mini-
mization of g in the ORT step leads to minimization of the FOSSCLU function
f .

Together, Lemma 7.1 and 7.2 demonstrate that the two steps, cluster assign-
ment and ORT really fit together, and that ORT is really that transformation
of the data space that fits to EM clustering in a common (arbitrarily oriented)
subspace. These lemmata are also essential to prove that our alternating least
squares algorithm defined in Section 7.2.3 converges:

Lemma 7.3. The algorithm FOSSCLU (Algorithm 7.1) converges.

Proof. The function f is monotonically decreasing in each step of the algorithm:
the assignment step minimizes f with a fixed ORT and varying cluster assign-
ments. The update step minimizes f with a fixed cluster assignment and varying
ORT. Since f is lower bounded the convergence is guaranteed.

We note without giving a formal proof that MDL defined in Section 7.2.4 is
also monotonic with f .

7.2.6. Complexity of FOSSCLU
The complexity of ORT is identical to that of most other well-known eigenvalue
decompositions like Jacobi, Housholder, Givens, QR etc. Let `ORT be the num-
ber of iterations needed until convergence. The complexity is determined by

137

7. FOSSCLU: Finding the Optimal Subspace for Clustering

the innermost loop which performs the Givens rotation. This is done by one
multiplication and one addition for O(d) matrix entries. The Givens rotation
is performed `ORT · d2 times, resulting in an overall complexity of `ORT · d3. We
observed a Jacobi-like iteration count. The root-finding method as described in
Section 7.2.2 is performed in the worst case `ORT · d2 times and does not affect the
asymptotic complexity.

The complexity of FOSSCLU with fixed k and m equals that of EM clustering
since in the update step the eigenvalue decomposition of EM is replaced by ORT
with the same complexity. The assignment step also involves the multiplication
of each object with an eigenvector matrix. The distance computation of FOSSCLU
needs only m operations (compared to d of EM), but this also has no effect on
the overall complexity. The number of iterations is also comparable to that of
EM clustering. Like k-means and EM-clustering, FOSSCLU may converge to a
local minimum. This is handled by multiple random initializations.

7.3. Fuzzy FOSSCLU
Often the EM clustering algorithm is applied with a fuzzy association of objects
to clusters, where each point x belongs to every cluster Ci to the degree wi(x),
with

∑
1≤i≤k

wi(x) = 1. (7.37)

The degree is proportional to the likelihood of the point in the cluster, and can be
determined by Bayes’ theorem. This can also be done in our clustered subspace:

wi(x) =

ñi
n√

(2π)m|Λ̃i|
e−

1
2 (xTVPc−µ̃T

i)Λ̃
−1
i (PT

c VTx−µ̃i)

∑1≤j≤k

ñj
n√

(2π)m|Λ̃j|
e−

1
2 (xTVPc−µ̃T

j)Λ̃
−1
j (PT

c VTx−µ̃j)
(7.38)

Then, the weight of the cluster is the sum of the weights of the assignments,

ñi = ∑
x∈X

wi(x). (7.39)

138

7.4. Experiments

The center µ̃i and covariance matrix Λ̃i can be determined likewise, and this is
also possible in our clustered subspace:

µ̃i =
1
ñi ∑

x∈X
wi(x) · PT

c VTx (7.40)

Λ̃i =
1
ñi ∑

x∈X
wi(x)(PT

c VTx− µ̃i)(xTVPc − µ̃T
i) (7.41)

We can determine ORT from the fuzzily determined covariance matrices as
well, and the complete FOSSCLU algorithm is adapted in a straightforward way.

7.4. Experiments

In this section, we evaluate (a) the quality of the visualization and (b) the
clustering quality of the results gained by FOSSCLU.

For evaluating visualization, we compare FOSSCLU to PCA. It is the most
widely used technique for dimensionality reduction and conceptually most re-
lated to FOSSCLU. We additionally compare to independent component analysis
(ICA; using symmetric approach and nonlinearity tanh) since this technique has
recently proven to be useful for cluster identification, see, e.g., [BFP08]. We also
compare to the sequential workflows of first performing PCA respective ICA
and, then, clustering in the low-dimensional space using EM, call EM after PCA
and EM after ICA, respectively. We further compare to LDA-kMeans [DL07].
This algorithm integrates with linear discriminant analysis a supervised feature
transformation technique into clustering, cf. Section 6.1.

In evaluating cluster quality, we compare to two state-of-the-art approaches
to generalized subspace clustering: ORCLUS [AY00] performing iterative parti-
tioning based on k-means and the local density-based approach 4C [Böh+04b].
As evaluation measure we report the normalized mutual information (NMI)
(cf. Section 2.2.2) between the class labels and the cluster ids generated by the
algorithm. The NMI ranges from zero to one with one indicating a perfect
clustering.

139

7. FOSSCLU: Finding the Optimal Subspace for Clustering

(a) EM after PCA (b) PCA after EM

(c) FOSSCLU

Figure 7.4.: Visualization of a synthetic 12D dataset with 5 clusters in 2 clustered
and 10 noise dimensions. Only FOSSCLU (c) can identify clusters
and subspace.

140

7.4. Experiments

5
5

5

8

8

5
5

5 5

5

8

5

5

5

5

5
5

55
55

5

5

5

5

58

5

5

8
8

8

5

8

8

5

8

5
8

5

8

5

8

5
8 8

5

5

5

5

5

5

8

5
5

5
5

5

8

8

8

5

5

8

8

5

8

5

8

5

5

8

5

8

5

8
8

55

5

8

5
5

8

5

8

5

8

5

5 5

5

5

5

8

8

5

8

5

8
5

5

5

5 55

8

5

0

5
5

8

5
5

8

5

55

8

8
5

5
5

5

5

5

8

5

8

8

8

7
5

8

8

8

5

8

5

8

5

8

5 5

8

5

5

58 5 5

5

5

8

5

5
5

5
5

7

5

5

5

5

5

5

55
8

5

5

5

5
5

8

8

5

5

5

5

5
5

8

8

8

5

8

5

5

5

5

8

5

5

5

5

8

8

5
5

5
5

5

5
8

5

8

5

8

5

5

5

5

5

5

5

8

8 5

8

5

8

5

5

8

5

5

5

5
5

5

8

5

5

5

8

5

5

8

5

5

5

5

5

8

5

5

5

5

5

5

8

5

5

8

8

5

5

5 5

5

5

5

5
8

5
5

7
5

5

5

5

5

8

5

5

5

5

5
5

5

8
5

8

5

5

5

8
8

7 5

5
5

5

5

8

5

5

5
5

5

5

5

5

5

5

5

58

5

5

5

5

8

5

5

5

5

8 8

8

5

5

5

8

5

5

5

58

8

5

8

55

8

5

5

5

8

8

5

5

5

5

5

5

8

5

5

5

5

55

8

8
8

8

5

5

8

5

8

5

8

8

8

5

5

8
8

5
5

5

5

8

8
8

5

5

5

8 8

8

5

7

5

5
8

8

8

8

5

8

5

5

55

8

8

5

5
5

8

5

8
58

8

5

5

5

8

5

55

8

5

5
5 5

5
5

5

5

5

5

5

8

5

55

5

8

8
8

5

5

5

5

55

5

55

5

8
5

8

5
5

5

5

5

5

5
8

8

8

5
5

8

5

8
8

5

5
55

5

5

6
5

5

8

8

5

5

8

5

8

5

8

5

5

5

8

8

5
8

5

8

5

55

8

8

55

8

8
88

5

8

5

8

5

5

8

5

5

5

5

8

5

5

8

5

8

5

5
8

7

5

8
5

5

5

8

8

8

8 5

5

5

5
55

8

5
5

5

5

5

5
5

8 5

5
5

5
5

5
55

8

8

5
5

5

8

5

5

5

8

8

5

5

55

8

8

5

5

8 88

8

5
5

57

8

8

5

5

8
5

8

5

5

8
5

8

5
8

8

5

5

8

5

55

5

8

5 5

8

5

8

5

5

5

5

5

5
5

5

8

5

8

55

5

55

5

5

5

8
8

5

5

8

5

5
8

8

5

5

8

5

5

5

5

5

5

5

5

5 5

5

5

5

8

5

5

5

5

5

8

5

8

8

5

7

5

5

8
8

5
5

5

5

5

3

4

3

3
1

5
1

1

5

33
13

5
33

9

39

1

9

11 1
9

93

9
1

3
93
5

3

3

9

9
9

3 19

1
5

8

3

9
9

1

3

1

5
1

3 1

5
3

3
9

3

5

5

9
1

97 1
53

3
9

33

1
5

3
3

9
3

3

3 5
9

3

9

3
3

3
3

3
9
5

9

7

39
3

5
1

9

9 1

3

5

3
9

9
9
9

9
3

9 9 5
95

31
3

31
3

2

2

2

7

2

7

2
2

7

8

7

2

1
2

2

2
2

2
1

7

7

1

7

72

2

7

2 2
7

7

7

7

8

2

2

2

2

7

2

7

2

2
72

7

1

1

7

2

2

2

2
2

7

2

2
2

7

2

2

2

2
77

2

2

7

2
2

7
7

87

2
7

7

2
2

8

7

2
2

7

7

212

7

7

2
7

2

1
7

2

8

1

7

27
7

7

7

2

2
2

2

2

2

2

2
2

1 22

7

7
7

2

7

2

2
2

1
2

212

7

2

2

7

22

7

22

1

1

2

72

22

7

2

2
7

722

1

2

2

1

2
2

1

7

1 2

7

7

1

2

2

2

2

7

2

1
2

2

7

2

7
2

2

2

2 7

7

7

2

2

22

2

7
2

2

2
2

2

7
7

7

7

7
22

1

2 7
2

72

2

2

2

7

7

72
2

2

1

7

2

1

72
7

7

2
2

2
2

7

2 7

2

7

2

2

7

2

2

2

8

7

7 7

7

27

7

1
2

7

2

1
2

2

2
2

8
7

2

2

7
2

2
2
22

2

2

2
2

7

8

7

1

7

8

2

7
2

2 21 771

2
1

1

7

2

7

2

2

3

7

71

2

2
2

7

7

1

7

1

7

8

2

7

22
2

7

7 2

2

1

1

7

2

1

7
7

7

7
2

7

7

2

2

7
2

1

2

7

7

7

7

22
2

22
1

2

1
7

2

7
2

2
2

2
2

7

2
2

2

2

2
2

2
2

7

8

8

2

7

2

7
2

2

1

2

1 1

7

22

7
7

1
1

2

7

2

7

7

2
7

2

1

2

7

1
11

2
7

7

2

7

7
2

7
7

2

7

7

22

1

1

7

2

7

8

77
2

2

2

7

2

2

2

2
7

1

2

7

1

7

7

2

2

7
2

1

2

2

2

2

2

1 7

2

2 7
2

7

1

7
22

7
2

7

2

2

7

2

7 7
2

7
2

7
7

7
1

7

7

1

2

2

1

7

2

2

7

7

2

22

1

7

2

7

2

2

2

7

27

2 1

7

7

2

2

2

1
2

7

7

7
7

7

7

7

2
2

7

7

1
1

2

2

2

7

7

7

8

71

2

7

2

2
2

2

7
77

7

2

7

2

2

7

22

2

7
2

7

2

2

7
22

2

7

7

2

2
72

7

2

2

2

2
7

7

2

7
7

7

7

2

7

7

2

2

2

2

71

7

1
2

7

2

2

2

2

7
1

7

2
2

2

2
8

2

7
1

71

7

1

1 2

7

2

8

7

7

7

7

2
7

7

7

2

7

2
2

2
2

7

7

7

8

2

2

2

2

72

7

7

2

7
2

7

1

7 7

1 8

2

2

7

7
2

2

1

2

1

1
7

7
1

2
1

7

2

77

7

2

7

2
2

2
2

2

2
7

1
2

2 7

2

8

2

2

2
2

7
2

2

2

7
2

7

27

7
2

2

7

7

7

2 2

2
2

1

2

7
2

7

2

8

2

7 7

2

7

7

7

7

7

2

7

2

2

2

2

2

7

2

7
7

7

1

7

7

22

7

7

1

2

2

7

7

7

2

2

7

7

21

8

7

72 7

2

7

2

2
7

1

2

7
2

2

2

7
78

2 7

21

7

2 2

22

2

1

2

2

2

2

7

2 2

7

7

7

7

2

7

77

7
7

2

2
2

1 7 7

1

7

2

2

7
2

2 7

7

7

2

2

2

7

7

7

2

7

2

7

2

7

2
2

2

7

2 2
2

7

1

2
8

2
7 2

2

7

7

7
7

7

2
2

7

7

7

2 2 7

2

2

7
2

2
1

7

2
7 7

2

1

7

2

7
7

2

2

7

8
2

1

2

2

7
2

1

7

2

1

2

1 2

2

2

22
2

7

2

2

2

2
7

1

2
2

7

1

7

1

1

1

2

7

2

7

1
7

2

7

2

2

2

2

7

7

7

2

2

7

2

22

7

2
2

7

2

1

7

7

27
2

2

7

1

2

1

77

2

2

2

7

7

2

7

7

7

1

7

2

2
2

2

2 72

7

2
2

2
2

1
2

7

7

7

2

1

22

7

22
7

2

2

2

77

2

7

2

7

2

7

7

2

1

7
2

2

7

2
2

7
2

7

7

22

2
7

2 7

2 72

1 7

22 2
2

2

2

2

7

2

7

7

7

27

2

7

2

7

1

2

7

12

2

7

7

2 2

7

2

77

2
7

8

7

7 7
2

1

2
7

2
2

2
2

2 7

7
27

7

2

7

2

7
7

2

2

7

2

7

7

2
2

1

22

7

1

21

7

2
2

2

1

2

2

2

2

2

1 2

7

7

22

2

2

1

2

1

2

7

2
2

2

2 7

2

2
7

7

2

8

7

2

7

1

1
2

7

2
22

2
2

7

7

7

7
2

2

7

2
2

2

2

1

7

1

7

7

2

7

2

7
2

2

7
1

1

2 7
2

1

2
2

2

2

2

7

2 7

2

7

2

2

2

22

17
8

7

1
2

2
7

2
2

7

2

7
7

1

8

7

7
2

7

2

77

2
2

2

7

7

1

2

2

7

7 7

7

2

7

1

7

2

7

2

71

2

2

7

2

1

2

7

2

7

2

7
1

7

7

7
7

2
2

2

2
2

7

7
1

7

2
7

2 2 1

2

2

8
8

7

1

2

21

72 2
2

7

7

7

7

12
2

2
7

7
21

8

7
2

2

2

2

2

1

7

8

2

7

2
22

2 7

2

2

2

7

7

2

7

8

2

8

2

7

7

2

2

7

8

2

7

7

2

7

7

2

7

7

2

7

7

2

7

1

7

2
2

2

2
2

2

2

7

2
72

7
2

7

2

2
2

7

7

7

77

7

77

2

2

2 2
2

7

1

22

7

2

2
1

77

2

2
2

2

7

1

7

7

2

2 7

7

2
2

7

2

7

7

2

2

1

22

2
7

7
7

7

2

2 1

8

7

7

7

2
2

7

2

7

2

2

2
2

7 2

2

7

2

7

2

2

8

2

2
1

2

21
7 7

7

7

2

2 7

2

8

7
7

2

22
1

2

2

7

2

2

2

7

2

72

7

7

2
2

7

72
2

2

7

2

2
2

2

2

1 2

7

7

1
2

2
7

2

1
2

7
1

7

7

7

2

7
2

7
7

2
7

7

72

72

2

7

1

2 7

8

2

7

7

2

7

1

2

7

2

7

2

7

7

1

7 22

7

2
71

7

7

7

2

7

2

1

2 1

1
2

7

1 7

1

6

7

1

8

8

7

1

9
6

6

9

1

7

1

6

7

9

8

6

9
1

8

2
8

8

7
1

7

6

1

7

1

8

7

6

69
8

1

8

4

1

6

8
1

6
7

1

9 8

8

8
4

7

1

7 8

8

8

6 69
8

1

1

5

1

1

1

7

8

7

6

6

6

27
1

1

6

7

1

2

6

6

7

8

8

6

8

3

2

9

7
6

7

9

6

7

6

8
6

81

6

9

8

1

8

9

1 8

99
8

8

87

7

8

1

9

8

8

8

9

1

1
7

1

7

7

8

7

2

4
6

8 6

4

4

1

8

1
1

2 8

1

1
8

8

9

6

2

9

8

2

8

7

8

6

8

7

7

8
1

7

77

9

1

2

4
9

4

69

3

6 8

8

9

6

6
4

7

1

4

8

6

1

8
8

6

9

7

9

7

7

7

6

2

8
1

9
7

8

9
1

9

2

9

81 6
1 8

9

1

9

9

4

6

88 8 9
8

91

2

1

1

6

3

1

8 8
9

1
8

2

6
9

1

9

6

8

6

7

4

72

1

6

8

7

1

7

8

7

9

1

1
9

89

7

6

1

9

88

7

66

8

6

1

8

6

9

7

8

7

6

1

1

8
6

9

7

1

4

8

8

1
8

8

6

1

8

1 6

9

6

2

1

8

87

1

1

1

8

9

8 8

1

8

1

18

4

6

6
1

6
9

7

8

1

8

7

6

1

1

7

1

7

1
1

1

4

1

9

8

8

1

7

9

8

9

8

6

6

7

7

6
6

8

8

1

1

6

6

4

8

4

1

7

8

8

6

7

9

7

9

7

1

7

1

1

9

7

7

9
9

6

1

9

6
7

8

1

8

41

8
8

9

3

7

8

1
4

9

8

7

1

12

1

1

7

1

8

2

4
8

2

6

9

9

7

9

9

2

6

9
8

7

6

7
1

6

1

2

1

1

4

1

1

7

4

4
7 6

6

9

6

1

8

1

6

1
1

1
8

9 6

8

8

8

2

6
461

7 7
6

8

7

6

2

6

5

9
6

8
8

2

6

8

1

8

6
6

7

1 6

6

8

7

8

8

7

7

6

7

6

8

1

8

7

8
7

6

71

7

1

8

88

6
4

6

9

8

1

7

8

2

9

9

9

9 9

9

9

99
9

5

9

9

9

9

9

3

9
9

9

9

9

9

9

9

9
9

3
9 9

9

3
9

9

9

9

5

9

9

9
9 9

9
9

9
99

99
9

9

9

9

9
9 9
9

9
9

9

9

9

9 9

5

9

9
9

9

9

9 9
9

999

9
9

3
5

9 9
9

9

9

9

9

9

3

9

99

9
5

9

9

9

9

9

9
9

9

99
9

9

9 99

3

9

9

9

9

9

5

9

9

3
9

99

9

9

5

9

9

9

5
3

9

99
9

9

9

9
9

9

9

9

9

9

9

9

9

9

5

9

9

3

9

9

9
99

9
5

9
9

5

9
99

3

9

9

9

9

99
9

9

9

9

3
5

9

9
9

99

9

9
9

9

9

9

9
9 999 9

9

9

9

9

9

9

9
9

9 5

9
9

99

9

99
9

9

9

9

9

9

9

9
9

9

9

9

9

9

9

9

9

9

9

9

9

9

9
9

9

9
9

9

9

9 9
9

3

9 9

9 9

9

9

9 9

9

9

9

39

9
99

99 9

9

99

99

9

9

5

9

9

9

9
5

9

9

9

99

9

9
99

9

9

9

9 9 9

9

9

9

9

9

9

99
9

9
99

1

9

99

9 9
9

9
9

3
9

9
9

3

9

9
5

3

9

9

9

9

9
9
3

9
9

9

9
9

9

9
9

9

9

99

9

9

9

9

9

9

9

9

9
9

99

9

5

9

9

9

9 99

9

5

9

9
5

9
9

9

9

9

9

3

9
9

9

9

9
9

9

9
9

9

99

9
9

3

9

9

3

9

9

9

3

9

3

9

9

9

9

4

9

9

95

4

9

5

5

5
5

9

9

5

99

5

1

9

5

9

49

4

4

59

9

5
5

5

9

9

9

1

4

5

5

9

9 9

9 9

9

1

9
5

9

9

999

5

5

5

5

9

95

9

9

9

9

3 9 9

999

9

9

5

9

5

5
5

55 9

5

4
99

4
3

5

9 9

5

9

9
9

9

9

9

4

9

5

5

5
9

5

9

9

9

9

9

9
5

9

5
9

59

9

5

9

5
4

4

5

9

519

9
9

1

9

9

9

5 5

9

5
9

4

5

9 5

5

9

9

5

9

9

5

9

9

1

9

4
9

9

3

9
9

9
9

5
4

9

9
9

9

1

5 4

9
9

5

9

9

3

4

9

9

5

9

5
5

9

9

5

5

9

99

9

5

5

9

9

9
4

99

9

9

5

9
9

59

9

9

9
9

4

9 9

9

5

5

1

5

9

9
5

5

5

5

3

5

9

9

9

5

9

9

9

9

9

5

5
9

49

5

5
1

3
9 9

9

9

9

5

9

4
9

9
4

4
9

1

9

5

9

9

5
5

9

9

5

9

9

9

9

9

9
9

9

9
9

9

9

9 9

1

9

5

5

9

4
5

5

9

93

5

333
3 13 33 9

3

3
3
3 1

3

3
935

3

3

3 3
3

3

3
3

333 3
39

3
3

353
3

3
3

335
5 3

3

3

3
3
3

1
3

33
3
5 33 53

9 91
9

3
3

3

3

5

33
3

3

1
135

3

3
33
3

5
3

3
3

3 35
3 33 3

3

1
33

3
3

3

33 333
53

3 33
5 333
3

3

3

33
3

333 13
3
3

3

9
3 3

5
3

3
3 3

3

3
3

3
3

33
13

3
3

9

1
3

1
3 8

3
3

3
3

3 3 3
3

3

3
3

3
3 8

3

1

9

3

3
5
35

33 33
3

33
3

5 5
3

33
1

3333 3
33 35 3
93

3
5
733

33 3

3 3
135

3
3
3

37 1
3

3

33
3

3

3

3
19 3 5

9

33 5
3 8

1

9

135
3

3
3

3
333
3

3
5

33

83 3
3
3

3
1

15 5

5 3
33 39

53

9
5

3
15 35

33
3 3

353 3 113

5
3 5
59

3

3
93

3 3

33
753

33 1

5

3 3
3

335 1
3

3
3

133 3
3

3
3
3

3
3

3333
3

5
3

3 3

9

3
3

3 3733 3 9

13
3 3

3
3

3

333

3
3

3
53

3 35 3

3
3

333

9
3

3
3

3
9

8

0

0

8

0

0

0
00

8

0

0

0

0

0

0

0

8

0 0

0

0

8

8

0

0

0

0

0

0

8

0

8

0

0

0

0

8
8

8

0

0

0

0

8

0
0

8

0

8

0

0

0

0

0

8

0 0

0

0

8
0

8

0
0

0

0

0

0
0

0

0

8

0

8

0

8

0

0

0

8

0

8

8

8

0

8

0

0

0

8
0

8

0

8

0

0

8

0

0

0

8

8

8

0

0

8 0

8

0

8

0

0

8

0

8

0

0

0

0

00

0

0

0

8

0

8

8

0

8

0

8

8

8

0
0

0

0

0 0

8

0
0

0

8

0

0

8

8

8

00

8

0

8

0

0

8 0

8

8

8

8

00

0

8

0

0

8

0

8

8

0

8

0

0

0

0

000
0

0
0

0

0

8

0
0

0

8

00

0

0

8

00

8

0

0

8

0

8

0

0

8

0

8

0

0

8

0

8

8

0

0

9
8

8

0

8

0

8

0

8

0

8

0

0

0
0

0

0

0

8

0

0

0
0

0

8

0

0

0

0

0

8

8

8

00

0

0
0

0

8

0

8

0

0

8

8

0

8

8

0

0

8

0

0

8

8

00

0

0

00

8

8

8

0

0

8

8

0
0

8

0
0

0

8

0

8

0

0

0

8
0

0

0
0

8

0

0

0

0

8

0
0

0

0

0

0

0

0

8

0
00

0 0

8

0

0

0

0

0

0

0

0

8

00

8

8

0
8

0

0

8

8

0

0

0

0
0

0

0
0

8

8

0

0

0

8

0 0

8

8

0

0

0

8

0

8

8

8

8

8

0

0

0
0

0

0

8

0
0

8

8

0
0

8
0

0

8

8

0

8

8
0

0

0

00

0

0

0

0 0 0

0

0

0

0

8

0

0

80

8

0
0

0

00

0

8

0

0

8

0

0

8

0

8

0

0

0

0

0

8
8

0 0

0

0

0

8

8

8

8

8

0

0

0

8

0
0
0

8

8

0

0
0

0 0

0

8

0 8

0

0

0

8

0

8

8
0

0

0

8

00

0

8

0

8

0
0

0
0 0

0

0

0
0

0

8

0

0

8

8

0

8

8

8

0

8

0

0

0

0
0

0

0

80

8

0
00

8
8

0

0

0

00

8

8

0

0

0

8

0

0

8

0

0
0

8

0

0

0 0

8

8

0

0 0

8

0

8

0

0

8

0

0

0

0

0

8

0

0

0

8

8 0

0

8

8

0
0

0

0

0

0

0
0

0

0

0

8

0

8

0

0

0

0

0

8

0
0

0

8

0

8

0

0

8

0

8

8

8

0
0

8

0

0

0
0

0

0

0
0

8

0

8

8

0

0

0

8 0

0

0

8

0

0

0

0
0

0

8

0

0

0

0

8

8

0
0

8

00

0

8

0

0

8

0

8

00
0

8

8

0

0

0

8

00 00

0

0

0

0

8

0

8

0

8

0

8

8

0

0

8

8

0

0

8

8

0

8

0

8
8 0

0 0

0

80

0

0

0

0

0
00

0

8

0

0

0
0

0

0

0
0

08

0

0

0 0

8

8

8 0

0

8

0
0

0

0

8

0

0
0

8

0

0

8

0
0

0

00

0

0

0

8

0
0

0

0

8

0

8

8

8

8

0

0

0
0

0

8

0

0

0

8
0

00 0

0

0

0

8

8

0
0

0
0

0

8

8

8

0

0

0
0

0

88

0
0

0
0

0

0

8

00 00

0

8

8

8

0

8

0
0

8

0

8

0

0

8

0

0

0
0

0

0

8

0

8

8

0

8

8

0

00

0

8

0

0

8

0

0

0

8

0

8

0

0

0

0

0

0

0

8

8

0
0

8

8

8

0

6

0 0

8

0

0

8

0

8

0

8

0

8

0

8

0

0 0

8

0

0

8

0

8

8

0

0

0

0

0

0

8

0

8

8

0 0

8

0

0

0

00

0

8

0

0

0

8

0
0

8

0

0
0

0

0

0

0

0

0

0
8

0

8

0

80

8

0

8

0

8

0

8

0

8

0

0

0

0

0

8

0

8

0
0

8

0 0 0

8

8

0

0 0

0

8

0

0

0

8

0

0

0

0

0

8

8

8

8
0

0

0

8

0

0

0 0

8

0

8

0

0

0

8

8

8

8

0

0

0

8

0
0

0

0

0

8

0

8

0
0

0

0

8

0

0

0

8

0

0

0

8

0

0 0

8

0

0
0 0

0

8

0

0

0

8

0

0

1
3

1

3

3

3

11

35 3

5

1

1

3

7

31

1

1

1

9

5

1

1

7

3

1
1

1

1

1

1
3

7

3
3

5

3

1

8
3

1

1

3

1

3 3

1

7

3

1

5

3

7

9

3

2

5

55
1

5
3

5

5

1

3

8

1

1

1

3

7

1

3

1

1
1

3

8

1
7

3
5

5

3 1
7

1

1
3

1

3

5

7

1

3

3
1

3

1

1

3

1

1

1

8

1

1
1

8

1
3

1

1

3

1
1

3

3

1

9

1

3

3 3

5

1

1

3

3

1
1

3

1

3

5

3

1

1

3

3

1

3

3

1
1

1

7

3
5

3

7
9

1

1

8

1 1

37

1

3

7
3

3

3
1

1

3

8

7

1
3

7

3
3

7

1
7

1

3

1

1

5

1

1 3

1

3

1
1

3
3

9

1

1
11

1

1

1

3

1

1
1

9

1

1

1

5

1 5

5

5

8

3
33

3

33 3

7

1

3

1

1

1

5

1

1

1

1

3

1
3

1

1

1

3

1

7

1

5

1

3

1

9

3

3

1

3

9

8

1

3

3

1
1 7

31
7

5

8

3

3

1

3

3

3

1

1 1

3

3

3
1

1

1

3

1

3

1
5

3

3

3

1

3

3

1

3

11

1

7

3

1

1

3
3

5

3
1

3

3
1

3

1
1
1

1

3

3

13

1

1

3 3
1

3

1

11

1

3
1

1
3

1

8

7

1

7

1

3

1

3

5
1

1

3

1 3
3

1

35
3

1

5
1

1

1
7

7

1

3

1

3
1

1

1

1 1

3

3

5

5
3

3 91

1

1

1

1
3

333

1

1

7

3

7

3

3
3

3

1

1 4

1

1

1

5
33

7

1
5

5
3 1 1

8
73 1

1

1
3

1

3
3

3

1

11
1

3

5
3

3

1

1
3

3

333
18

1

3

3 1

1

7

3

3

1

1

1

7

3

3

1

5

1

1

7

3

3

1

1

3
1

7

1

3

1

1

3
31

1

3

5

1

1

77

1

1

53
3

3

1

3

1

1

3
3

1

3

1

11

7

1

1

3

7

11
3

1 1

3
9

3 1

1

3 5

1

1

1

3

1

3

1

1

1

3

1

1

3

5

5

3

5

1

5
8 9

3
1

3
33

3 9

1

5

7
1

1

3

1
1

7

1

11

1

1 3

3

1

3
1

5

3

1
1

3

7

7

1
3

1

7

7

3

1

11

7

3
1

5

3

1

1

3
53 3

1

1

3

1

1

7
1 1

3

3

1
3

1

3

1

3

7

5
3

7

8

1

3

5
8

1

5

1

1

1

1

1

1

3
1

5

1

3

1 3

1

1

3
3

1

3

1

1
5

1
3

3

7

1
3 3

7

1

1

1

5

3

9

5

9

1

1

3

3

7

3 3
1

7

1
1

3

5

5

5

1

3

3
9

1

13

1

7

1

1

1

1

1

7
3

5
1
1

7

3

8

1

3
3 93
3 3

7 5

5
5

3
5

1
3

5

33
13

3 13
8

5

1

3

7

1

3

3

1
1 13

3

7

1
3

1

1
7

8

7

3

1

3

3

3

3
3

1

9

105 3

3
5

1

3

1

9

3

5

5

5

1

1

1

5

31

1

1

1

5

1
1

5

1
1

5

3

3

5

3

3

1
1

1

1 3

11

5

7

1

9

1

3

9
5

1

53

5

3

1

3

37

1
1

1

3
3

3

1

3

1

3

7
1

1

1

9

3

3

1

9

7
1 3

1

5

3

1

3

7

7

3
5

3

3

3

5

9

1

3

1

1
9

3

1

1

3
3

11

1

3
3 53

3

1

31

3 3

1
1

7

1 3
3

1 1
1

33

3

1

1

1

3 1

1

1

1

1

3

33

5

8

3
1

1

7

1

1
1

5

5
3

1

1

1 1
3

3

7
13

3 1
1
3

3
3

3

1

5

3

3

1

13

8

7

1

5
1

1

3

3

1

3 8

3

5

1

3

1

11

7

51

1

4

1

1
9

9
3

73

3

3

1

1

1 1
1

7

9
31

3

1

5

33

3

33
3

1

1

9

5 3

1

33
3

11

3

7

3

1

1

3

1

3

1

5
5

1 9

1

13

1

35

3

1

5

7

1

1
7

1

7

3

3

1

3

3

7

3

1

7

3

3

3

1 1

1

1

5

1
1

3

3
7

3

1
1

3

4
4

6
4

9

4
6

6

4

6

6

4
6

4

6

64

7

6

4

6

6

4

4

0

6

6

4

6

4

4

6

47

4

6

4

6

6

4

4

4 4

6

4

4
6

6

0

9

4

6

6

6

4

4

6

6

4

4

6

6

6

6

4

4

4

0

4

6

6

6

6

4

6

0

6

6

9

4
4

6

4

6

6

6
6

4

4

0

4

6

4

4

4
6

4

0

6

6

6

4

4

4

4

4

6

4

6

4

4

4

4

6

6

6

4

4

6

4

6

4 4

0

0

6 0

6

6

4

6
6

0

6

9

9

6

0

9
6

6

4

6

66

6

4

6

6

4

66
6

44

6

4

6

6 6

6

4

4
4

4

4

6
4

4

4

4

6

4

4

9

4

4

4

4

4

6

4

0

4

4
6

4

6

6

44

6

4

4

4

6

4

4

6

4

6

4

6

0

6

4

4 6

4

6

4

6

4

4
4

4
6 6

6

6
6

0

6

4

6

4

4

66

6

6

6

6

6

4

0

4

6

6

4

7

6

6

7

4
4

4

4

4

4

6
6

4

6

4

6

6

6

6

4
4

4

4

6

6

4

4

4 6
0

4

6

9

6

6 6

6

4

4

4

4

4

8

4

4
6

4

9

4

4

9

4
6

4

6

4

0

6

6

4

6

6

9

4

4
6

6

4
4

4

4

4

4

6

6

6

6

9

4

6

4

0

4 4

4

6

6

0

4

6

0

9

4

6
6

04

6

6

6

66
4

4

4

8

4
7

6

4

4

4

6

4

6

4

4

4

4

4

6

4

4

4

6

6

64

9

4

6

4
4

6

4

6

4

04

4

6

4

6

6

4
4

4

4
64 6

4

6

4

6

4
4

4 6

64

4

0

6
4

6

4

4

6
6

6

6

6

4

6

6

4

8

4

6

4

6

4
6

4 6

4

4

4

4
6

6

6

4

4
44

6

4

0

6

4

6

6

6

4

6

4

6

4

6

6

4
6

4

4

6

6

4

6
6

6

4

6

6
4

4
4

4 04

6

7

44

9

6

4

6

4

4

6

4

44

4
6

4

6

6

4

4

4

6

4

1

4

4

0

9

4

4
9

6

4

9

6

6

44

6

0

4
6

44

6 0

6

0

8

6

4

4 4
6

4

6

4

4

6

4

4

6

4

0

44
4

4

6

4

6

4

4

4

6

6

6

4
6

6

4

4

4

4

4

4 64

4

4

4

6

4

6

6

44
6

6

6

4

6

0

6

0

4

4
4

6

4

40

4

4

4

4

4

44

8

4

6

6

6

6

4

44 6

6

4

6

6

6

4

9
6

4

6

4

6 69

4

6

6

6 6

4

4

6

6

9
6

4

4

4
4 4

4

6

66

4

4

7

0

6

6

0
4

4

6

4 6
4

4

6

4

6

64 0

4

4
4

4

4
6

6

4

0

4

4

6

6 6

4

6

6
6

6

6

4
4

4
6

7

4

6

6
4

6

6

6

4

4

4
4

6

6

6

4

4

6

4

4

9
6

4

4

6 6

4

4

6

4

6

6

4

4

4

6

4

6

4

6 6

4

4

4

4

04

9

6

7

64

4

7

4

4

6

6

4

6

4
4

6

4

6

4

4

6

6

6

6

6

4
4

66

6

6

4
6

4

6

4

6

4

4

0

4
6

4

4

6

6

4

6

6
6

6
6 4

4
4 4

6

4 64

4

0

6

6

4

4
6

6

4
4

6

4

4 6

9

64

4

6

6

4

4

9

6

9

4

9

4

6

6
6

4

6

4

4
6

4

6

4

4
4

6

9
4

9

6

6

6

6
4

69
4

6

6

4

4

6

4

4

4

4

0

6

6

6

0

4

44

4

6

4

6

6

6

4

6 6

6

6
4

4

9

9

4 0

4

6
4

6

4

4 4
6

6

4

6

4

0

6

4

64

6

6

4

46

4

6

4

4

4

6

4
4

4

4

66 4

4

6

6

6

6

6 0

6
4

4

4

6

4

6

6

4

6

6

6

4

6 6
4

4 4

6

7

6

6
6

6

9

6

6

6

6

4

6

4

4
4

4
4

4

44

6 6

6

4

49

6

4

6

4
9 6

4

4

4

4
0

6
6

6

4

6

6

4

4

4

6

4

4

6

6

6

4

4
4

8

4

4

4
6 4

4

6
6

6

4 0

4

64
6

6
6 6

46

4

6
6
64

4

6

4

6
6

0

6

4

4

6

4

4

6

6

4

6

7

9
6

4

4

6

4

6
4

04

4

6

6

6

4

4

4

64

6

6

4

0

4

4

6

4

6

6

6

4

4

4

4

6

4
0

4

6
4

4

9

0

4

4

6

6

6

4

6

4

6

4

4

6

44

6

4

44

4

46

6

66

9

6

4

6
6

6

6

6 4

0

4

4

6

4

4

6

4

6

6

4

4

6 0

4

6

4

9

6

6

4 0

6

6

6

4

0

6
6

6

6
4

6
6

6

4

6

4

0

6
4

4

6

4

4

6

4

4

4

7

6

6

4

7

4

6

4

4

9

6

6

6
0

6

0

4

06

6

6

4
6

4

4

6

6

4

4

6

6
4

4

4

4

4

4

65

4

6

4

4

4

6 6

4

4

6
64

6

6

6

0

64

4

4

6

6

6

4

4

44

6

4

4

4 4
6

4

4

6

4
6

4

6

4

0

4
6 0

6

7

4
4

4
0

6

4

4

6

6

4 6

4

4

4

4

4

0

4

4

6

4

4

0
6

4

6

4

6

4

4

8

4

0

6

4

0

4

4

6

4

4

4

4

4

6

4

4

4

44

4

4

6

4

4
4 4

4 4

6

4

4

646

6

9

4

6

6
4

6

7

6

4

6

6

44

6
4

6

4

4

6

4

66

6

6

6

6

7

4

4

6

4

4
6

4

6

4

4

6

4

4

4

6

4
4

7

4

6
6

4
6

4

7

4

9

6
6

4

6
6

4

6

4

4

0

6

4 4

4

6

6

6

6

4

6

4

6

4

6

4

4

7

6

4
6

4

4

4 4

4

6

4

4

6

4

6
4

4
6

6

4

4
6

4
6

4 4

6

4

4

4

0

6

6

0

6

6

6

6

4

6

4

4

6

6

6

6

6

7

46

4

4

4

6

6

6
64

4

4

7

64

6

6
44

9

4

4

9

4

6

4

6

4

6

6

6

4
6

6

4
4

6

4

9

6 4
0

9

4

6

46

6

4

4

4

4

4

6

6

0

44

46

6

4

6

4

4

0

6

4

6

4

6

0
4

(a) EM after PCA

0

9

8

2

7

4
2

03

8

8

4

1

2

3
8

4

9
5

4

9

2

2

0

4
3

8

8

0

35 2

414

3 4

2

9

5

3
3

5

3

4 6
2

3 97

7

3

73

5
9

6

3

9
87

3

2

987

0

5

2

9

8

5
9
9

9

4

2 4

8

2

4
3

8

8
4

5

8

9

8

9

9

9

3
5

7

3

4

1

4

4

3
3

5

9

9

9

5

3

3

0

8

2

4

4

3

2

5

53

5

3

3

3

3

5

8

9

2

4

5
59

9

75

9
4

9

4

4282
7

4

1

4
6 4

2
8

5

2

3

2

7

5
7

23
5

1

9

9

3

9

0
2

4

3

9

4

2
8

2

2

9

8

2

9

3

8
2

3
5

7

8

1
2

2

5 9

3

2

8

7

5

936 9
4

1

4

3

5

8

0

4

3

8

4

9

1

33

2

8

2

1

8

2

7

9
22

4
7

9
9 9

5

5

5

9

4

8

8
4

4

3

8
0

5

5

4

0

4
4

4

8
4

6

7

39

3

5

3

8

3

3

4

5

4

9
44

4

4

9

4

5

3

2 974

4

9

7
2

2

5

5

5
5 2

4

7

8

55

8
9 9

3
4

9 2
2

7

7

87

2
2
9

2

4
4

75
4

9

5

7

3

5

8

9

9

3

2

8 96

389
6

2

6

5

9

0

6

6

1

7

9

56
6

06 0
8

6

8

6
2

8

8

2

5
7

6

0 0
9

8
2

6

3

8
11

8

0

0

2

8 2
6

6

8
4

5
2

22

8
2

6

6

8

6

9 6

2
0

52
85

5

2

3

8

0
2

0

8

9
0

6
6 66
2

8

2

3
6

9

2

5

76
6

2
99

7

6

2

6

8

2
66

9

6

9

0
8

96
6 0

0

2 8

9

2

6
6

9

66

1 2

20

5

6
6

6

55

8

2

8

6
9

8
620

8
2

0

1

093
9

6
6

9

9
5

5

08

8

7
7

0
0

6

6
96

0

5

3

2

5

66

1

8

8

5

80
0

0 53

9

6

6

8

3
9

7

7

6
042 5

9

3

02

9

6

9

238768 2

6

6

5

0
0

0
6

6

1

2

6

1

8

6

1
2
62

9

6

8 02
6

532

3

8

93

06

2
0

6

5

22

9

79

9

6

8

3

5

98
2

6

2
86 22

2
8 66

2

8

1

2

9

9

3

6
6

8
8

9

9

2
6

7

5

0

8
0

6
0

2
7

5

28

9
5

2

8

9
2

3

6

0

0

8 4

0

8 3

2

6
0

1

3

6

7

6
2

6
1

6

6
79

6

8

6

6

6

8

2
8

0

6

2

6
2 26

8

0
6

6

50
0

5

6
2

2

6 6

2

6
6

3

02
9

6

96
9

5

3
9
8

2
0

2

1
2

6

0
509

8 3
5

6

8

9

61

2

4

6
0

5

8

8

56

8

2

2

2
8 23

2
0

5

9

6 6

3

8
9006

0

6

38

5

2

6 66
0

066
9

3

8
0

2

6
9

6

6

0

8

9

2
0
1 7

2 02 6

6

1

2 8

8

0

6

7

6

3
6

2

8

1 5

7

6

2

6

8

2
9

2

8 8

0

0
5

2

3

7

2

2

0 4

8

0

6
12

6
9

9
06

8

2
9

0

3

6
6

9

8
8 3

6
6

2

6

5
4

2
2

0

3

0

1

5

6

7

6 2

6

8

6

0

8

8

3
0

6

6
6

7
0
2

70
2

2

2 6

8

8
0

2

2

6

1

2

7

62
98

6

0

66
15

5 9 5

6

6

9 38 83

06 5
5

29
6

6

6

3

08

6

3

9

86

8

0 8
6

2

0
26

6

6

00

3

7
6 9

0
55

0
0

0
0

1 4
5

5
3 9
4

23
2 5

9
20 2 5

60035
5 4 5

5

0
3

55
0

063
4

6
5

02
0
9
3

42
50

5

52
9

01 8073
6 58 1

0
5

0209
9
6
5

0
7

650
6 50 52

8 9

67
20

0

35

00 4

8
8

3
52 90

0 3
35020

3
5 95 005 1 528 0

4
5

0000
7

0

0
5

320 2
5

0 0
0

2
3 50 52 3

0
0

5

20
0

0
5
25
0

90
0

0 366

4
6
80

08 0
8 42

71
2 07
75

9
2

07
690

040 4
03
3

8 90 90
065

543
4

05
2 5

8
0

00 0
55 0504

7

0
0

45
50

0

0

0 00 0

4
0 56 8 9

3
00

9
4
09 1 4

3 07
09

53650 4 39
8 0

5

0
5 075 0

3 4
90

0
0

6 4
2 023 90

35
0 5

86
1

9
0

5

4
5

1 52
361

00

5
7 0
90 0

54
0

0
50 5534805 20

6
6

836075730 071327 000605
069 32 730001980

05520
606641

6
0092 06

7752020672 0
6 01507 52195 17 742 800500 262 76 1552 050027799 67 06 0661037 6

2

45

7
3

3

1

8
1

9

7

6
3 53 6

50

7

4

7 63 4
6

5

4

3

4

6

4
4

3 13
4

1

73

9 6

1

4

7
45

3
71

4
64

8

7

9 38
9

9

4

9 3

4

4

6

4
1

7
5

5

4
7

4 2

8

8
4

5

9

3 0

4

7

6
6

2

7

40

1

9

4
3 7
3 6

14 9

0

8

4

7

3
3 7 4

5

5
3

0

6

9
9

7

0
6

5

71

2
58 7

8

4
8

2 5
1

1

8

6

7

8

4

7
674

1

3 44

6

6
2

8

3

8

4

4

53

9

4
32

8

0
50 3

7
0

5

3 7

4

1
3

6

1

5
3

0 6

1

9

3

9

5

0
5
7 9

4

5

7
3

7

5

34

7

8

5 8
8

4
3 6

7
3

61 6 6

3
4

5

1

6

4

4

7

4
6

19

3

2

5 67 4
3

7

73
42 7

94
4

081
3

4
6

7

9
6

7

0

4

3

4
53

4 4
3

2

5
8

4

5

7 0

9
4
4

8
3

5
4

1

4

44

4

0

5

6

15

74
4

1 9

8

7
6

6

48

9
7

71
1

9

5

84

0

8

7

1
67

4

4

4

8

73 49

4

7

9

7

7

7
4

3

6

6

8

7 4

7

84
4

0

4

4

4

3
3

6

9

9
7

5

1
3

4

53

4

2 5

3

0

1

7

3

4

43 97

4

4

6

4

6

8
4

7

9
5

4
5

9
5

9

7

7

8
7

9

4
7 8

4

3

7

4

4
7

6
5

9

6

4

5
4

4
3 5

1
5

5
7

0
0

7
9

5
33 6

3

9

7

95

37

6

0

9

51
3

8

6

1

4

3

4

7
5

3

4

5
94

64

0

5
3

3
4

4

43
47

4

1
7

4

9

7

1

3

5

0

7

6
2

0
2

6

4

9

4

7
8

8

4
7

8

8
79

1

31
9

4

3

18
7

10
4

5

43 1

4

931

7
4

9

7 4
7

9

3

7

0

65

8

5

7
3

7
0

5
6

4
8 4

9

7

4

5

7

5

44
4

5

5

5
3

3

8
45

7

33
5

7

6

9

5

5
9

6
98

7

3

7

0

3

9

4

5

7

3 7
5

5

1
3

1
4

1
2

3
00

6

9
6

25
3

0 4
4

3

4

3 41
4

355

4

9

5

7

4
3

7 05
3

1

7

2

3

7

3 9

7
5

7

2

4

7
3

0

4
49

579

4
8

8

6

6
2

1
4

3
4

4

1

7
5

5
5

4

7

7
7 5

7
72

0

4

76

5

7
7

4

1

7
4

4

1

7

77
3

4

47

8

4

1

5

4

7

74 9

5
7

1

8

44

4

4
15

4
3

2

4

3

4

9
9

4
9

79

5
5

3
4

44

4 9

0 3

7 5

5
4

1 5

4

7

1

4

6

9

3 7
7

2
4

0

5 4

7

4
7

1

6

7 7
5

4

4

4 7
9 2

3 4

7

6

4

9

4

47

4

9

5

4
4

951

7

8

8

1
7

2

5

9

3
63

3

7
5

7

3

0

0

4

1

1

9

57 5
2

4

7
4

7
7

5

9

4

2
7

4

9

3

9

4

26

5

6

4 4
4

5
0

75

8

3

9

3
3

9

6
4

6

6
73

9

8
54

7

7

8

64

4

4

1

5
7

44

4
8

4

4

3
4

1

1

4
7

7 0

9

6

1

0

44

5

7
7

1

4

5 6

4
49

4 74

1
3

0

3

9

7

5
7

3

4

5
3

1 2

0

3

1

4
5

4

3 1

7
1

6
7

6

2

4 4
9

47
9

3
2

3
7

7

7
1

3 4

7

4

5
7

8

2

4

8 3

4

5

47
5

9
5

6

9

6 4

3

4

8
7

6

3

4

7

7 5

7
5

7 7
6

4
9

1
2

1

4

9

4

7

6
5

4

4

4

4 0 5

54

7

8

5

2

3

47

74
3 4

1

4

77

7

7

7

4

7

6

9
6

8

7

4 7

5

3

3
7

3

56

3 3

9

9

4
4

5

27

6

6

6

3

85
6

2
3

4

8

4 0

9
4

0

3 9

4

0
4

5

4 4
7

713

9

6

8 44

53

0

5
7

4

7

7

3

4
7

1
8
7

4
7

5

7

6

1
6

3

3
4

1
4 7

7 1

6

4

5

4
9

7

8

7

6
7 6

4

4

995

1

9

8

9

7

6

6

3
3

4
8

6

7

1
7

4

3
7

3

4

7
77

7
94

7
1

3

6

4

9

9

9
5

7
0

4

9
1

3

8

7
2

7 5

7
1

5 4
0

7

3

4

3
7

4

3

1

9

6
0

4 8

8
3

9

5
3

9

8

5 4
1

3

1
4

6

5
4

3

4

9

9

8

4
5 2

7

1

2
7

14

5

1

7
4

3 1

5

4

4 73
8

0

7

5

7 9

45
5

93
7

0
7

6

34

4

9
3

6
4

4

4

7

0

3

3

3
6

2

7

3 1 7
4

5
2 5

7
9

4

5
8
1

8

4
3

7

0

7

6

1
8

8

0
6

4

3

0
7

5

3

4

3

9
1

35

4

67

7

9

7

4

9 8

1
2

6

1

61

15

4
3

6

7

6

3

6

7

5

9

7
15

2
9

7

5 9

5

9

9

8

4
4

4

48 43

9
6

7

7

4

9 9

3

19

7

6

2

1

5 5

3

1

6

3

53

4

5
9

4

7
79 5

6
7

3
4

6

4

4 4

9
3

9

4

5
7

3
2

6

4
7 37 5

8 55
4

5

4

1

4

8

9
6

7
7

6

2

4

1

0
4

57

3

4

8

1

4

5

6

4
7

9

9
6

1 5

5

4
4

8
4

0
6

5

70

1

3
9

4

6

4

8
6

9

7 4

3

4

1
4 6

4

4
4

7
6

719

4

5

1
4

3

3
7

0

4
68 6

3

546

04

9 90

4

91

0

9

3
7

4

7
3 4 5

4 3
84

3

8

4

3

9

4

7

3

3

9

1
9

3

2
6

9
4

5
8

5

6
33

1

5

6

4

51

4

7
9

9

4

4

3 4

3
6

4 6

0

7
7

8

4

4 7

1

9

7
4

5

01

5

51

5

5

9
7

4

2

7
5

30333
9

5

3

3
6

63 7
44
3

4

7

2
3

0

6

49

1 2

4
7

4
75

1

4

5

7
7

7
5

1

9

3

7

6

9

9

0

5
4

1
4

6

9

4
6

3

6

7
7

8
4

5

3 1
4

7

4
7

8
4

7
97

5

3 7 7

46

3 1

4

8

7

4

1

4
98

76
91

9

13

4
4

5

2
1

5

7

6

5

1

6
7

7
5

4

4

4

6
9 5

3
025

7

4
6

43
9

4
57

5

4

523

0
6

94

3 4

4
0

3
4

3
5

9 1

6

3
9

7
4

1
1

4
4

3
9 4

7
5 2

4

4 0

9

4

4

3

7

5
3

4
7

03

78
6

4

453

4
0

7
65

14

1

9

8

3 8

8

2

1

1
4

4

9

7

4
3

11 9
7

2 7 7
1

42

4

4

8

1
4

4

45 5

4

75

7 9
4
6

8
6

1

7

3

1

5

7

5
4
1
43

8 6

4
4 4

4

17 63
0

67
5

6

2
4

5 1
1

33

4
9

1

4

1 46

8 3

7

4

7

9
57

9
7

9

74

25

6

6
74

2
3
5 4

9

6

4

5 6
5

4

5

7

6

1

9

4

4
705 4

1
6

5

7

6

9

6

3 1

4

7

6
77

4
9

1
9

1 6

4

7

7

4

2

4

5 4

2
3

6

6

4

4
3

3
0

4

5

8

4

3
4 33

6

7

5

7

4
2

4

1

4

5

9

4

1
1

0

87

67

8

8
7
7

6

9 9
4

6

7

2

4

4

5

6

7
7

3
3

7

9

9

0

3
7

3
9

3
7

7

7

4
1

1
0

9

5

9

7

7

3
39

72
1

1
4

7

9

4

3 9

7

7
4 6

3

4

383
8

6

5
7

4
07

3

3 7
5

43

0

9

7

5

3

7

4

74

5

1

1

6

9
7

4

3

9

4
1

1

3

74

96

1

7

1

4

6
3

7

9

3
3

5

40
3

44

1

2
6

0

5

7

5 3
43 3

3

8

5

9

9

3
6 1

3
0 405

14
243

59

9

551
5
5231

0
9 0

5

5
7

2
3

32

5

3 02 7
327

1
4

3

9

3
3

2

37

5

9
4

50
2

7 4

1
7

5
7 5

1

2

4

3
3 95

3
43

8

5
69

3

11 0

9

1

3
4

5
1 2

101
5 8 5

339

5
1

2

47

4

7
7

4
2

90

1
4

7

2
0 7

4

25 0
1

7 2
5

1
3

1 0
9

44 72
5

61

9

01
8

37
23

4
3271

2
2

8
3

1
58

4
9
2
7 42

6
00

4

2
62
4

3
1

9
1
1

2113 34
5

4

1

1
67

0
2

7

1
5

1 5612
4

12

5

1
08
6

74
461

9

7 1
0

1

1
5

1
1

2
153

2
35

0

1
5

42
3

0
2

9
7

62 7307

9
5

5

2
6

7 2
3

0

7

9

7

14
4

3
51

4
21

3

3
9

3 2 19
2
6614

49
6

4

1
64 4
11
66

9

356
3

5
6 1

7
7

12

9
7 9

332

9

9 2
17

517 2

0
2

11

9467
1 13

2

1

6

3
11

6
00

1
72

3 7
5

5
1

7

1

5

8

2
9

9

3 1 64
1

5

12
33 3

1
1

8 7
6

78
6

3
9

21
8

1
44

836 400
4

8 0
2

011
1

5
5

74

95
73

66
46 1

3
1

9

6
1

2
6

5
3

2
5

1

4
1 01 3

6 34
0 69
218

9
3 2

9
9

257
35

110 31
0

5
26

3

1
4132

92

3
4 1

5

4

7 3 540
230

711
7

3

6
4 1

106
95

3 3 2

4

2 1
2

1
2
8
0

9
63

55
2

7
3 9

4
6 0

7

7 3
2

5 1
94

45
23

8
0 2

3
6
43011

4

1
1

1

8
9

7
46

21
0

4 1
7

2
1 2

91
27 4 1

6
6

9

91
5 3 5
7 10

9
1 751

1 761
9

6
3
1

7
2

3
2

474

9

40 0

5

4
1

6
2

3

5

5
2

2

5
6 1

4
5

5
5

6
9 3 7

3

2
61

2

0

6
7 4 3

1 27
1

1 0
3

4

5 5

2
444 01

57

1
1 1

07 4
3

3

1

3
2

7
67

7

0

1
9566

5
62

9

3
3 1

4

2

6
2

6
80 8

5
91

0
1 41

4
6

1
34

301
54

6
3

4
1
4
2

4

1
2 3

76 9

3
351

6505 4
7

5
5

2

2

9

1
3

719 61 5 05
5

5

9

6

6

3
50

38

4

61

4
1 55

9
1 0

1
6239

5 34
3

2
2

1
33

03 3
14

1
61

4
3

1

5
3 41 01

3
3

0
52

2
4
1

4

2
3

5
1

3
3

3 63
7

5

37
16

4
00

8

4
1 15 0

49

1 1
4

0
32

33

4 61

9
3

6
6

9 8
5

1
6

8 3 1
76
9
3

3

8 71

4

1

2
6

5
45 04

31

2
295

2
7

1
1

9

101
4

2 5

9

4
2

0

17
02

563
2

3

2
6

7
83

9122
42

1

33

2
4 4

5
8

5

27 3
2

3

4

9

2

7
612

5 2
9

7
2

1

67
5

6 5
547

176
764

4

4
9 3

70 7
4

018
7

8
467

3

0
7 36

8

9

9

9

98

1

9

9

4
9

9

8

9

9

9

1
1

1

9
9

9

8

1

4
4

9

9

8
9

9

1

1

9
9

9

9

1

0

9

8

1

9
9

4

9

9

1

9

1
9

9

9
9 9

8

9

9
1

9

9

9

9

91

9

9

9

9

9

8

9

9

9

9

99
9

9

9

9

9

8

9

1

9

9
8

9

9

9

9

9

1

99

1

99

9

1

7

1

8

9

9

9

9

9

8

9

9

9

6

9

9

8

1

8

1

4
9

1

9
9

8

9

9

9

9
8

9
9

1

9

9

9

9

1

9
9

9

6

1

8

9

9

8

3

9

9

9
9

8

8

9

9
9

4

9

9

8

9

9

8

9

1

9

1

8

8

9

4

9 9

9

1

9

9

8

9
9

8

8

9
99

11

450
92

2
5

4
4
5

7

0
5

2

6
24 1 01 42

0

68 0
1

15
5

0

0

9

0
1

0

0

0

05
0

6
5

2
0

7
9 2

6
6 91 169

31
1

1 7
0

0
7

1
0

4
2 21

457 3

6 5

5 6

7

7 1

1
0

76
326

0

62
0

78
0

4

9
6

2 6

5
2
6

3

35

312
7

1 1
0

2

5

3
2

6

0
8

1

1

60
82

6
6

2 2
5
0

0

6
2

0
7

6

0

8
3

9
5

1
6

6

7
2

5

9
4

7
7

7
50 3 6

2

04
50126

1
2

5
98

2
0

9
1

0 5

72

1
2

54
2 3

0

2

25
6

0
8 1

2

1112

7

9

1

75 39

5
6

76 4
2

73

6 1
9

18
2

21

9
0

0
2

6 3
3 3

052
312

662

22

5
5 1

3

8

0

1
2

62 2
9

0

6
7

1

1

58
0

2

3

1

2

02

1

59
3

1

5
6

6
0

6

0
10

2

2 2
3289

5 1

1
3
2

3
0

7

2
1

4

2
5 21
2

9

2 202

4

1

25

25

7 3

9

1
7

4

9

4

506

5
2 4
3

5

491
0

9

0

0
1

6

95

325

6
61

6
1

6
7
2 2 51

9

96

9

0 3

79

5
6

0

6
6

5

5
4

5
2

72 2
6

61

5 61

2
6

1

0
6

0

1

3

7
1

2

6

0
9

3

7 0

1
2

59
3

6

7 206

2

6
93

7

5
2

22

2
0
2
2

6

2

6
012 07

0

2
1

2

5

1

202
01

6

6

7
6 4

4
9

1

30
4

0

7
2

0

3

5

7
5

0

0

9
10

1

1

2
12

19

1
3

0

0
1

3

040

165
82

2 2 71

9

4
1

9 2

1
9

42

00

0
4

7

52 03

0

4
25 3

3
7
32 6

30

7
3

1

602

9

1
65

5

09
7

7

0

15 0

01 15
2

2

0
2

5
3

5

0
4

4

6
9

99
5

3

4

0
1

0

6
01

9
3

2

0

0 2

1
1 4

4

2

225
12

2
5

2

9

2
6

2 3
7

23 12

8 3
93

63
4

3

25

6
5

73
1 1
1

1

5

7

29 1
21

1

451

00

0
4

2
7

0

95
2

0

9

5

8

6 5
9

2

9

4

0

6

3

71
2

5
8

1
5

2

4
3

0

7

6

20

1
6

2

0

0
6

5
2

6
0

20

0

32
306

1 110

22

5
5

3

2
3

0

65 2
0

6

3

41

4
03

3
1

2

3

6

9
04

1 0

1

3
2

2
7

7
2 0

9
1
62

92
2

36
2 3

6
0 5

2

7

0

2

0
9

4
0

6
7 00 6

2
5
0

1
2

65
2
0

8
02 06

5

9
8

2

21
2
52

0
1

3
25
2

7
1

39

3
1

9

65

33

4
6

0
2

9 9

2
7 1 0

5

1
1 0

2 8

2
33 9
0
3 0

93
77 1

0
24

7

2

5

2
2

0

7

53

7
7

5
7

2

5

0

2

3

3

7 4

1

6
2 60

2

5

3
5

6

1
2

761

8

6

6

2

32
3 56

54
0

5

4
6

4
0

4
6 772

2
4

51
0

3

5

4
0

22 8

6

04
7

9

1

9
6

5
1

2
9

3

1

6
1

41
2

40 3

5
5

43
9

0
3

0
2

0

10
0

0
1 6

2
1
4

2

5

2

6
00

0

5
18

0

1
9

0
6

6
6

5

1
257

4
9

1

1

11

7
0

037
70

3
7

9

1

9

514
41

0

4
7

4
5

0
5

2

2
49

6
7

5
1

3
3

6

9 6
7 6

4

0

2
0

0

2 2

7

5

0

1
81

5

9 03 53

5

6
6

4
7 91 4

2
6

9
3

6

10

6
3

8
2

03

632

1
6

1 0
6 12

9

1

1 8
35 41

9
0

6

3
22

90

2 6

36

2

6

2

8

2

1
0

0

6

1

36

0
3

5
6

77
2

0

3

3
6 8

1
6

3

9

4

18 1
7
0

5

6

3

63

2
0

2

00
42 0

1
9

6
7

7
4

3
5

4

3

1
8

21
7

91

3
9

0
0

0

03

1 12
2

0

52

5
4
3

9
56

0

6

39

6 1
9

1

2

9

7

7

07 91 0

9

6
7

17
6

2
8

3

3

90
3

2
5

42
6

1

6

6

4
1

40

3

72
2

2
6

9
0

0 3

1

92
5

16
0

2

1

0
1

0

7
90

1

7 9

9

0
2 030

61 1
3

6
36

9 1

1
0

5
2

1

9

1 5
6

3
16

2

5

4

2
3

1

6

1
9

0
4

6
0 6

0

3
77

0

12 5
1

1
3
2

5
0

2
2

7

0
9

9

980 2

0

2
7

0
0

0
20

1 3

9 9

2
7

9

3

7

0
22

6
3

9
9

0
16 5

22
9

9

2
2

9

1

2
1

9
1

4

12

7 7

2 9
0

833
1

66

52
6

0

0

9
2

5
3

3

6 9

14

7

5

0
0

7

3

0

2
0

7
41

2

70
0

6
7

4
9

2
82 1 7

5

2

0 7
0

2012

1

29

2 1 2

9
8

2 6 36

0

2
8

5

4
23

7
0

16
1

6
73

1
5
52

7
8

0
5

4
2

2 002

0

7
22 0

0

9

9
2

8 2008
9
2

7

2 31
0 123

3

1

7

0
5

5

4 0
3

4

94
2

1

1 6
2

217

3
9

3
8
0

4

756 1
6

7

11

11
3

0

2
2

6
97 1

92
3

41

0

2

3
2

20 1

2 6
1

0

6 15
8

0 3
42 997

12 0

5
9

0
3

2

0

5
2

2

6 7

7

5
27

1

5

48
1

5
7

0

2
02

8
29

5

5 5

4

13

7

7
7 1

5

2
0

3 8
6

629 0

52
1

2
0

0

4

5

5

1 9
9

02
2

07 6
1

1

3

5

2

6

7

6

0
2

5 1
2

6
9

0

0
0

1
6

1

5

1

5
1 6

0
1

2
4

8

2
0

0
9

52

759
0

57
1

4
61

7 3 0

7
6

9
0

8

97

3

1
3
0

9
6

221

6

2

0

9

6
7 9

1

0
6

3
7
60

3

0
7 0

7
2

0
4

5 6

5
6 4

6 9

3

0

5

0

5

2
1

8

0
0

2
6

5

1

3
2

9
6

7

4
19

32

04
2

6

6 4
2

1

1 3
0

2

0
27 7 20 4

0

2 2
7

1
19
0

2

6
6

92

5
78

2 6
4

0 2

3

3

4

2

5

2

3

8
2 6

0

1
71

5

6 0

0 5
7

2
6

40
6

6
7

0
0

4

1

0

1
2

2

0
5

2

5
6

2
9

7

572

8

8 0

7

5
6

1 0
2

9

1
1

1
5

0

3
72

92
1

6
6

7
1

7

9

0
1

9
26

6
98 2

0
11

02
2

5
0

8
2 6

6

8

8 2

2
4

46

5

41

2

26 11
43
9

12 9
92

2

7 9 57

1

2

7

5
6

6

09

6

07
9

00

2
7

2

57
0

5

7

8 0

6

2

9

5
59

06

0
3

3

719
7

3 17

11

9

1
1 7

93
050

5

1 0
0

3

8 2

2

8

3
5

5
4

72

0

6

5

5
0

2
66

6 2
6

1
7

07
9

1 0
5

5
1 7

0
0

3

7

10

6 7

5

0
2

2
05

0
3

5
00

7 9
1

7
1

4

6

5
2

0

6
1

51

6

19 2
3

0

4

6

1

1

0

5

9
8 0

9
82

2
9

3

05

22

1
1 0

5 4

0

416
7

1

9
22

1

9

0
2

5

5
1

1
97

73

2

3

0
2

2
2

0
0

4

7

1
4

6
10

81
4
23

1 1
4

2 3
3
3

2

52
54 0

5

7

94 2
7

7

3

6

7

9

6 5
1

0 272 532 0
2

17

0

1

3

6 0

9
3

7

2
1

06
6

9
0

6
2 0

52
6 022

0

9
2

47 0

9

72

4

3

5
9

1
0

3
0

2

70
5

64
7

5
0

7
5

12
0 0

2
9

8
6

5
9 3

77

7
6

9

03
0

3

2
8

36

2
31

7

5

1

5 7
2

1

6

4 1

3
47

9

29

2

92

377

1

3
1

3

0
9

2
7

0
2

4
5

6 020

8

07 551 0 0
06

9
2

6 0

2 6
0

3

0
2 1

0

3
5

2
2

2

4 966
76 9

7

6
6

3027
2

35

20

2

2 1
3

1

5

14

0

1

3

6
7

5

6

2
2

3

6

60

7
4

2

2
67 2

222
1

5
5

92

5

1
010

05

12
5

9

00

6

5
29

5

7 2

0

1

0

1

4
3

2

1
05

0
5

2

6 7
1

2
2

9

78

1

0

1
79

27

0

1

2 6

7 5

7

7

2

3

6

1

28
6

1
0

3

4

2 075

3
17

6 0
6

8
93

4
3

3

3 43
5

2
08

7

1
4

1

0
2

5

1
2

0

2 4

9

9

3

3

11
12

7351

6
7

1

7
1 7 1

7

1
87

1 7

1

1

7

7
1

8 1

6

8
8

7

1

5

71 6

7
11

1 7
1

1
7

1

7
1 8

7

1

7
6 76

8
8

7
7

7
1
17

7

8

7
1

1
1 6

1
7
781

7

11

1
1

7

7
8

8
6

7

76
7

87
77

8
7
8

7

7

8

1

1

7
8 1

1

5

6 177

1

1

1

88
97

8
7

7

4
7

9

7
1

1
1

4

1

8

8
9

7
8

8

8

8

8

7

8

8

8

8

8

8
8

8

8

8

7
7

8

8

8

8

8

8

8

8

7

8

8

8

8
8

8

8

8

7

8

8
8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

0

8

8

6

8

8

8

3

8

8

8

8

8

8

8

8

8

7

8

7

8

8

8

8
0

8

8

8

8

8

0

8

88

8

8

8

8

8

8
8

8

8

8

8

8

8

8

8

8 8

8

8

8

8

8

7

8

8

8

8
8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

7

8

8

8

8

8

8

8

8
7

7

7
8

7

8

8

0 8

8

8 8

8

8

8
6

8

8

8

8

8

8 8

8

8

0

8

8

8

8

3

8

8

8

8

8

8

6

9

8
8

7

8

8

8

8

8

8

9

8

8

3

8

9

8

8
8

8

8

8

8 8

8

8

8
8

8

3

8

9

88

0 8

8

8

8

8

7

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8
8

8

8

8

8

8

7

4

8

8

8

7
7

8

8

8

8

8

8

8

8 8
8

8

8

8

8

8

8

8

7
8

8

70

3

8

8

8

0
8

8

8

8

8

8

8

8

7
8

888

8

8

8

8

8

3

8

8

8
8

9

8

8

8

8

8

88

8

0

8

8

8

8

8

8

8

8

8

7

8

8

8

8

88

8

8

7

8

8

8

8

8

7

8

8

78

8

8

8

8

8

8

8

8

8

8

0

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

0

8

8

(b) EM after ICA

9
9

9

9

9

999

9

9
9 9

9

9

9

9
9

9

9
9

9

9

9

9

9

9
9

5

9
9

5

9

9
9

9

9

9

9

9
9

9
9

9
9
9

9

9

9
9

9

9

9

9

9

5

9

9
9

9
9

9

9
9

9
9

9
5

9
9

9

9

5

9
9

99

9

9

9

9

9

9 9

5

9 99

9

9

99

9

9

99

9

9

9

9

95

9

9

9

9

5

9

9

9

9

5

9

9
5

9

9

9

9

9
9

9

9

9

9

9 99

9

999
9

9

9

9

9

9

9

5

9
9

9

9

5
9

9

9

9

9

9

9
9
9 9

5 9

9

9

9

9
9

9

9

9

9
9

99 9

9

9
9

5

9

9

9
9

9

9
9

5
5

99

5
9

9

9

5

9

9

9

9

9 9

9

9
9

9

9

9

9

9

9

9
9

9

9

9
9

9
9

9

9

9

9

9 9

9

9

9

9

9

9
9

9

9

9

9

9

9

9

9

9
9
9

99

9

9

9
95
99

9

9

9
9

5

9

9

9

9

9

9

9
9

99

9

9
9

9 9

9

9
9

9

9

9
9

9
9

9

5

9

9

9

9

9

9

5
9

9

9

9

9

9

9
9

5

9

9

9
9

9
5

9

9

9

9

9

9
9

99

9

9
9

9

99

9

9

5

9

9

9

9

9

9

9

9

9

9

9
9

9
99

9

9

99

9

5
9

9

9
9

9
9

9

9

9

9

9

99

9

9
9

9
9

9
9

9

9

9

9

88

5
8

8

8
2

8
8

8

8

8
5

8

8
8

88

8

88 8

8

8

8
8

8
88 8

8

8

8

8

8

8
8

78

8

8

8

8

8

5

8

7

8

8
8

8

8

8

8
8

8

8
8

8
8

8

8

9

8

8

8

88

5

8

8

8
7

8

5

8 8

8

8

8

8

8

8

8

88 8

8 8

88

8

8

88
8

8

8

8

8

8
8

8 8
8

8

7

5

8

8

8

8

5 8

5

5

5

8
8

8

8
88

8

8

85
5

8
8

85

8

5

8

8
8

8
88

8

8

8

8
8

8

87

8

8

8 8

8

85 8

8

8
8

8

8 8

8
8

8

8
7 8

88

8
8

8

8
5

5

8 8

2

8

85
5

5

8

88

8
5

8
8

7

8

8

6
1

8

7

7

9

6

6

6 77

6

6

1

6

8

6

6

8
8

7

6

7

6

7
8

7

6
6 1

4

46

6

6

1

9

8

8

4

8
4

6

7

0

6

8

8

6

6

6
6

1

6

1

6

6

7

6

6

6

6

6

7

6

6

7

8

8

4

6

64

8

8

6

7

4

6
6

6

8
6

8 6

8

7

8

6

8 8

8

6

8

6

6

8

8

4

1 77
8

7

4

4

6

6

6

4

4
6

6

6 8

1
1

8

8

6

4

87

6
6

7

87
4

4

6
6

4
8

8

9

6

6
8

6

64

7

4

8

6

8

8

6

6
7

6

7

7

6

6
6

6

8

7

8

8

8

6

6

1

4

94

6

7

8

8

6

8

9

8

4

6

7

1

4

8

4

9
8

6

9

1

6

7

7

6
7

7
4 66

6

0
6

6

78

8

6

9

8

7

6

6

6
6

1

6

6

6

6

7

8

6

4

8

6

4

6

8

1

8

6

8

6

6

8

6 76
6

6

8
8

8

8

8

1

8

4

6
6
1

6

6

6

7

8

8

8

6

7

7

6
4

7

8
8

6
6

6

6
6

6

8

8
1

1
6

6

4
6

8
4

8

86

7
7

1

7

6

6

1

776
7

8

6

8

4
8

88

4

9

7

6

1

4

8
6

7 6
6

6

8

6

1

4

4
4
4

7

6
7

6

9

6

1

6
1

6

8

767

8

6
46

7

6

76

8

6 6

7

4

68

4

6

8
1

6

8

66

6
4

6

6

6

6

7

7

8

8
7

6 6

7

8
8

6

8

6

1
8 8

8

6

4

6

8

2
7

2

2

8

7

2

7

2
2

8

7

8

7 2

1

2

2 2 2

2

1

7

7

1

7

7

12
27

2

8

2

7

7

7

7

8

2

2
2 2

7
27

2

2

7 2

7

1

1

7

2

2

2

2

8

7

2

2
2

7

2

2 2
2

7

7

2
2

7

2

2
7

7
8

7
2

7

7

2

2

8

7

2
2

7

7
2

12

7

7

2

7

2
1

7

1

2

8

1

7

2

7

8

7 7 7

122
2 2

2

8

2
2

2

21
2

2

7

7

7

2

7

2

2

2

1

2
2

1
2

7

2

2

7

22

7

2

2

7

1

1

2

7

8

2
2

2

7

2

2
7

7
2

2

1

2

2

1

2

2

1

7

1

2
7

7 1

2

2

22

7

2

1

2

2

7

2
7

2

2

2

2

7

7
7

2
2

2

2

2

7

2

2
2

22

7
7

7

7

8

7
2

2

1

2

7
2

7

2

2

2

8

27

7 7

2

2

2

1

7

2

1

7

2
1

7

7

2
2

2 2

7

2

7
2 2

7 72

2
7

1

7

2
2

7
2

8

7

8

7 2
7

7

2

7

7

1

2

7

2

1

2

2

2

2

8

7

2

2

7

8

222
2

2
2

2

2
2

7

8

7

1

7

2

7

2

2

2

1

7

7
1

2

1

1

72

7

2

2

3

7

7

1

2

2

2

7

7
1

7

1 7

7 8

2

7

2
2

2

7

7 2

2

1

1
7

2

1

7
7

7

7

2
7

7
2 2

7

2

1
2

7
7

7

7

2

8

2

2

2

12

1

2

1

7

2

7

2

22

2

2

7

22
2

2

2

2 7

8

2

2

7

8

8

2
7 2

7

2
2

1

2
1

1

1
7

2
2

7

7 1

1 1

2

7

2

7

7

2

7

2 12

7

1
1

1

2

7
7

2

7
7

2

7

7
2

7

7

2

2

1

1

7

1

2

7

8
7

7

2

2

2
7

2

2
227

1

2

7

1

7

72
2

7

2
1

2
2

2

2
8

2

1

7
2

2

7

27 1

7

2

2
7 2

7

2

2

7

2

7

7

2

7 2

7

7

7

1

7

7
1

2

2

8

1

7

2 22

77

2
2

21

7

2

7

2

2

2

7 2

72

717 7

2

2

2

1

2

7

7 7

7

7

7
7
7 7

2
2

7 7

8

1

1
2

2

2

2

7

7

7

87

1

2

7

2
22

2

7

77

7
2

7

2 2

7

222

7

2

7

2

27

2

2
2

7
7

2

2

7

2

7 2

2

2
2

7

7
2

7

7

7

7

2

7

7

2 2

2

2
7

1

7
1 2

7

2

2

2

2

7

1

7

72

2

2 2

8

2

7

7

1

7

1

7

11

2

7

2

87

7 7
7

2

7

2

7

7

2

7
2

2

2
2

7
7

7

8

2

2
2

2

7

2
7

8
7

2
7 2

7
1

7

7

1

8

2

2

7

7
2

2
1

2
11

7
7 1 2

1

7
2

7

7
7

2
72

2

2

2

2

2

2
7

1

2

2

7

2

8

2

2

2
2

7

2

2

2

7

27

2

7

7

2 2

7

7

7

2

2 2

2

1

2

7 2

7 28

2

7

7

2

7
7 7

77 27

2

2

2

2
2

7

2

7

7

7

8

1

7
7

2

2

7

7

1

2
2

7

772
2

7 7
7

21

8

7

7

2

7

2

7

2

2

7

1
2

7

2

2

2

7

7

8
27

2

7

1

7

2

2

8

2
2

2
1

2

8

2 2
2

7

22 7

77

7
7

2

7

7

7
7

7

2
2

2

1
7

7

1

7
2

2

7

2

2

7

7

7

2

2

2

7

7

7

7
2

7

2 72

7

2

2
2

7

2

2
2

71

2

8

2

7

2

2
7

77 7 7

22

7

7

7

2
2

7

2
2

7

2

2

1

8

7

2

7

7

2

1

72 7

7 2

2

7

8

2

1
2

2

7

8

2

1

7

2

1

2

1

2

2

2

2

88

2
2

72

8
2

2

2

7

1

7

2

27

1

7

1

1

11

2

7

2

7

1

7

2

8

7
2

2

2

2

7

7

7

2 2

7
7

22

2

7

2 2

7

2
1

7
7

2

7

8

2

2

7

1

21

7
7

2

2

2
7

7

2
8

8

7
7

7

1

7

2

2

2

2

2

7

2

7
2
2 2

2 1

2

7

77 2
1

22

7

2

8

2

7

2

2

2

7

7

2

7

2

7

2

7

7
2

1

7

22

7 2 2

7
7

27

7
1

8

2

2

2

7

27

2

7

2

1

7

2 22
2

2

2 2
7 2

7

7

8

7272

7

2

7

1
2

7

1

2 2

7

7 2
2

7

2
7

7

2

7

8

7

7

7

87

2

1

2

7

2

2

2
2

2

7
7

27

7

2

7

2

7

7

2
2

7

1

2

7

7

2

8

2

1

22

7
7

1
2

1

8

7

2

2

2

1 22

2
2

2

1

2

7 7

7 2

2
2

8

2

1

2
1

2

7
2 2

2

2

7

2

2

7

7

2

8

7

27

1

1

2

7

2
2

7

2

2

2

77
7

7
2

2

7

2

2

2
2

7

1

7

177

2 8

7

2
7

2 7

2

7

1

1

7

2

7

2
1

2

2

2

2

2

7

2

7

2

7

2

2

2

2

2
1

7

8

7

1

2 2

7
2

2

7

2

7

7

1

87

1

7

2

7

2

7
7

2

2
2

7

7

8

7
12

2

7

7

7

7

2 7
1

7

2

7
2

7

1

2

2

72

1
27

27

2

7

17

7

7

7

7

2

2

2

2

2

7

7

1

7

2

7

2

2
1

2

2

8

8

7

7

1
2 2

1

7

2
2

27

2
7

7

7
1 2

22

7

7

7
2

1

7

2

2

2

2

2

8

1
7

8

8

1

2

7

2

2

2

2

7

22

2
7

7

27

82

82

7

7

2 2

7

8

2

7 7

2

7

7

27

7

2
7

7
2

7

1
7

2
2

2

2

2

2

27
27

2

7

2

7

2

2
2

7

7

7

7

7
7

7

72

2

2

2

2

7

1

2

8

2

7

2

2

1

7
87

2
2

2

7
2

1

7

7
2

2

7

7
2

2

7

2

7

7

2

2
1

2

2
7

2
77 7

7

2

2

2

18

7

7

7

2

2

8

7

2

7

2

2

2
2

7

8

2

2

7

27

2

2

8

2 2
1

2

2

1

7

7

7

7

2

7

2
7

2

88

77
2

2

2

1

2

2

7

2

2
2

7

2

7

27

7 2
2

7

7

2
2

2

7

2

7

2

2

2

2

7

1

2

7
7

1 2

2

7
2

1

2

8

7

1

7

7

7

2

7

2

7

7

2

7

7 7
7

2

7

2

2

7

1
2

7

8

2

7

7

2

7

8

1

2

7

2
7

7
2

7
7

7

1

7

2

2

7

8

2
7

1

7

7

1

7

27
2

12

7

1 1
2

7

2

1

7

4

4
6

4

4

9 4

9

6

6

4 6
6

4
6

46

6
4

4

6

6

4

4

0

6

6
4

6

4

4

6

4 4

6

4
6

4 4

4

4

4

6
4 4

66

0

9

4

6

6

4

4

6

6 4

4

6

6
6

4
4

4

4

6

6
6

4

6
6

64

4

6 4
6

6

6

6
4
4

4

6

4

4

4

6

4
06

6

0
6

4

4

4
4

4

6

6
4

4

4
46

6

6
4

4

6

4 4

6

4 4

0

6 4

6

4

6
6

9

6

6

6
66

66

4

6

4

6

66

4

46

8

4

6

6

6

4
4

4

4
4

6 4

4

4
4

6

4

4
9

4

4

4

4

4 4

4

4

6

4

6

4

4
4

6 4

4

6

4

4
6

46

4

66

4

46

46

4
6

4

4
4

4

66

6

6

6

6
4

4

4
6

6

6

6

4

0

4
6

6

4

66

44

44

4
6

6

4

6

46

6

6

6

44

4

4

6

4

4

6

0

4
6

9

6

6

6

6
4

4

4

4
4

4

4

6

4

4

4
9

4

6 4

6

66
4

6

6

9
4
4

6

6

4
4

4
4

4

4

6

6
66

9

4
64

0

44
4

6

4

60

4

660

4

6

6

6

6
6

4

4

4

8
4

6

4

4

44

6
4

4

4

4
4

6

4

4

4

66
4

4

6

4

4
4 4

0

4

6

4

66

4

4

4

4
6 4

6

4

6

46

4
4

8

6 4

4
6

4

4

4

6

6

6 6

46

4

4

4

6

4

6

4

6 4
6 4

4

4

4
66

6

4

4

4 4

6

4

4

6

4

6

6

6

4

6

4
6

4

6

6 4
6

4
6

9

6

4

6
6

6

4

6

4

4

4

4

4

6 4

4
6

46

4

46

44

4

4

64

66
4

4

4

6

4

1

4

4

4

9
6

4

9 6

6

4

4

6

46

4

4

6

0

4

4

4

6

4
6

4

4

6
4

4

6

4

4

444

6
46

4

4

4

6
6

6
4

6

6
4

4

4

4

4 40 6

4

4

4

4

4

4

4
6

6

6

4
4

4 4

9
6

44
0

4

4

4

4

444

4

6
6

6
6

4

446
6

4

6
6 46

4

6

4

6

6
4

6

6

66
4

4

4

6

6

6

4
4

4

4

4
46

6 6

4

4

6

6

4

4
6

4
6
4

4

46

6
4

0

4

444

6

6
4

4

6

6

6

4

6
6
66

6

4

4

4

6 4
6

6

6

6

6

4

4
4

4 6

6

6

46

4
4

6

4

4

6

6

4

4

6

4
6

6

4 44
6

4

6

4

6

6

4

4

4

4

4

9
6 6

4
4
4

4

6

4
6

4

6

4

4

6

4

6
44

6

6
6

6

4

4
66

6

6

46
4

6

46

4

4

4

6

4

4
6

46

6

6

6

4

4

4
4

4

6

4

4

0

6

6

4

4
6

6 4

4

6

4

4
6

9

6
4

4

66

4 4

9

4

6

9
49

4

6

6

6

4

6
4

4
6

46

4

44

6 4

6

6

6

6

4

6

4
6

4 46
4

4

0

4
4

4

0

6

6

4

4

4

4

6

4

66

6

4

6

6
4

4

9

4

4

4

6 4
6

4

4

6

6

4

6

4

6
4

6 4

6

6

4
4

6

4
6

9

4

4

4

4

4

4
4

6
64 4

6

66

6
6

4

4

4
6

4
6

0

4

6

6

6
4

6
6

4
44

6

6
6

6

6
9

6
6

4

6

4
4

4
4

4

4

4
4

6

6

6

4

4 6

4

6

4
6

4

4

4

4

6

66

4
6

6

4

4

4

6

4

4

4
64 4

4

4

4
4

64
4

6
6

6

4

4

6
4
6

6

6

4

6

4

6

6

6

4

4

6

4

6

6

0

6

4 4

6

4

4

6

6

4

6

6

4 46

4

6
4

0
4

4

6

6

6

4

4

4

6

4
6

64 4

9

4
6 4

6

6

6

4

4 4

46
4

4

6

44
9

4

4

6

4

6

4

6

4
4

6
4

4

6

4

4

4

4

4
4

6
6

9

6

6
9 6

4

6

6

6

6

4

0

4
46

4

4

6 4

6
6

4

46

46

4

0

66 4

6

6

64

6

6

6

6

6

6

6
4

4

0

6

4

4

6

4

4
6

4

4

4

6

6

4

4
6

4

4

9

6

6

6

0

6 4

6

6 4

6

4

4
6

6

4

4

6 6

4

3

4
4

4

4

4
6

5

4

4
4

4

6

6

4

4
6

6 4
6

6

6
6

4
4

46

6

6 4

4

4

4

6

4

44
4

4
6

44

6

4

6

4

6

4
4

6
6

4

4

4

4

4
6
6

4

6

9

4
4

4

4

4

4 4
6

4

4

6

4

6

4

6

4

4
4

6

4

9

4
46

4

4

4
4

6

4

4

4

4

4

4

446

4

4

4
4

44

6 4

4

6

4
4

4

6 6

9
4

6

6

4

6

6

4

6 6
4

4

6
4

6

4
4

6

4

6

6

6

6

6

6

7 4

4

6
4

4
6

46

4

4

6 4

44

4

4

9

4

6
6

4

6

4

4

66
4

6

6

4

6 4

4

6

4

4

4

6

6
6

4

6 4

64
6

4
46

4

9

6

4
4

4

6

4

4

6

4

64

4

6

4

4

6

4

6

4

4
6

9

4 4

4

6

6

0

6

66

4
6

4

6

6

6

4

6

4

4
46

6

6

6
4

4

6

4

6

6

4

4

4 4
9 4

6 4

4

6

6

6
4

6

6 44

6

4

9

6

4

4

0

4

6

4
6

6
4

4
4

4

4

66

0

44
4

6

6
4

6

446
4

6

4

6

4

0
0

80

0

0

0 0

8

0

0 0

0

0

0

0

0
0

0
0 00

0

0

0

0
0

0 0

0

0

0

0

8

0

0

8

0

8

0

0
0

0
0

0

00

0
8

0

8

0

0

0
0

0

0

0

0

8

0 8

0

0
0

0 8

8

0

0

0

0

8

0
0

0
00

0

8

0

0
8

0

0

0

8

0 0

0

0

0

0

00

00
0
0 8

0

0
0

00

0

0 0

0 0

0
8

0

0

0

8

0

08

8

0 00 0
0

0

0

0
0

0
00

0
0

0
0

0

0

00

0
08

0 000

08

0
0

8

0

0

0

0

0
0

8

0

0

8

8

08
0

8

0

0

0

0

0
0

0

0

0

0

00

0

0
0

0
0

8

0

0
0

0

00
0

08 0
0

0

0

8

0

0

0

0
0

80

0

0

0
0

0

0

0

0

0

0

8

0

0

0

0
80

0

00

0

0
0

0

0

0

0

0

000

0

0

8

0

0

00

0

0

0

0

0

0

0
8
0

0

00

0

0

0
0

0

00

0

0

0

8

00
8

0

0

8
8

8

8

0 0
0

0
0

0

8

00
0
0

8

8
0

8
0

0
0

0

0

0
00

00
0

0

0
8

0

0
0

0

0
0

0
0

0

0

0

0
0

00

0

0

0

0

0

8

00
0

0 00

00

0
0
0

0

0

8

0

0
8

0

8

8

0

00

0
0 0

8
00 0
0

0

0

0

0 0

0

0

8
8

0

8

0
0

0 0

0

0

8

0
0

0

0

0
0

0
0

0

0 0
0

0

8

0
0

0

8

0

00

0

8

0

0

0

00

80

0

8

8

0
8

0
00

0

0
0 0

0
0

0

0

8

0
0

0

8

00
00

8

0

0

0

0
0

0

0

0

0

00 0
0

0

0

0

8
0

0
0

0

0

000

8
00
00 88

0

0

0

8

0

0

0

8

0
0
0

8

8

0

0
0 0

00

0

0

0

8

00

08

0

0

0

0
0

8

8

0

0
0

0

00
0

00

0

0
8

0
0 0

0

0
00

0 8

0

0

0

8

0
0
0

0

0

00

0
8

0
0

00

0
0

0
0

0

0
0

0

8

0

8

8

0
0

0
0

0

0 8

0
000
0

0
0

8
0

0

0

0

8

80

0

0

0

0

8

8
0

0
0

0

0

0

00
0

0
0

8
00

8

0
8

0

0

0

0

0

0

0

0

0

80

0

000
0

0

00

0
00

0

0
0

0

0 0

0
0

0 0

0

8

08

00

0

0

00

0

0

0
80

8

0

0

0
0

0

0

0
0
0

0

0

0

00
0

8
0

0
0

0

0

8 00
0

0 00

0
0 0

0 8
0

0

8

0 0

0

0

0

0
0

0

0
0

0

0

0

8

80
0

0

0
0

0

0

0

0

0

0

8

0

0

00

0
00

0

8

0 0

0

8

8

0

0

0
8

00

0

0

00

0

00

08

0

00

8
00

0
000

0

0

00

0 0

0

0

0

0

0

5

5

5

55
55
55

5

5

5

5
5555

5

5 5

5

5

5

5

5

5

55

5

5

5

5

5

5
55

5

5

5

5

5

5
5

5
5

5

5

5

5

5

5

5
5

5

5

5

5

5 5

5

55

5

5

5

5

5
5

5

5

5

55

5

5

5

5
5

5

5

5

5

5

5

5

5

5 5

5

5
5

5

5
5

5

5

5

5
5

5 5

5

5

5

5

55

5
5

5

5

5

5
5

5

5

5

5

5

5

5 5
5

5

5

5

5

5

5

5
5

5

55

5

5

5

5

5

5

5

5

5 5

5

5

5

5

5

55

5

5

5

5

5

5

5
5

5

55

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

55

5

5

5

5
5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5
5

5

5

5

5

5

5

5

5

5
5

5

5

5

5

5
5

55

5

5

5

5

5

5
5

5

5

5

5

5

5

5

5

5

5

5
5

5

5

5

5

5 5

5

5

5

5

5

5
5

5

5

5

5

5

5

5

5

5

5
5

5
55

55

55

5

55

5

5
55

5

5

5

5

5

5 5

5

5

5

5

5

5

5

5 5

5

5

5
55 5

5

5

5

5

5

5

5

5

5

5

5

5

5

65

5

5

5

5
5

5

5

5

5

5

5

5

5

55

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5
5

5 5

55

5
5

5

5

5

5

5

5

5

5 5

5
5
5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5
5

5

5

5

5

5

5

5

5

5

5
5

5

5

5
5

5

5

5

5
5

5
5

5
5

5 5

55

5

5

5
5

5

5

5

5

5

5
5

5

55

5

5

5

5

5

5

5

5

5

5

5
5

5

5

8

8

8

8

0

0

8

8

8

8
8

8

8

0

8

0

8

0

8

0

8

8

8

8

8
8

0
0

6

08

8
0

0

8

8 88

8

8

0
8

8

8

0

8

8

0

8
0

8

8

088

8

0
8

8

8

8

8 8

8

8

8

8

0

0

8

8

8
8

0

8

8

0
98

8

0

8

0
88

8

8

0

8

8

8

8

0
8

8

55

8
08

8

8

8
8

0
8

8

8
8

8

8

0

88

8

8
8

8 8

8

5

0

8

0

8
0

0
0

8

0

8 8

0

88

0

0

0
0

8

08

8

8

0

8

8
0 0

8

8

0

8

0

8 8

8

8 8

8

8

0

8
0

0

8

8

8

0
8

0

8

8
8

0

0

8

8

0

8

8

0

0
8

8
8

8 0

8

0

88

0

8
0

00

8 08

0

0
8

8
8

88

8

0

8
8

0

8
0

8

0

8

0
8

0

8

0

0

8

0
8

88
8

8

0

88

8

8
0

0

00

0

8

8

8

0

8

0

8

008

0

0
8

8

8
0

0
8

8

0

8

0
0

4

8

0

8

0

0

88

8

8

0
8

8

8

8

0

8

8

8

8
8

8

8

08

0
8

0

68
0

8

8

8

8

0

8

8

0

0

8

8

8

8
8

8

8

8
8

8

8

0
8

8

8

8

8

0

0

0

8

8

8

0

8
0

85

8

8

8

8

8

8 8

4
8
8

8

8

8

8
0

1

4

7

9

9

9

9

1

5

55999

1

5

9

9

5

5

9

8

1

4

71

9

9

95

5

1

9

9

1

4

9

7

5

9

9

9

7
8

1

1

9

1

2

9

3

9

9
9

7

5

9

9

9

5
9

9
999

7

9

1

9

1

1

9

7

9
9

9

3

9

9

9

1

9

7

9

5

2

5

5

9

5

1

3

2

9

1

5

9
9

2

9

8

1

1
7

9

9

1

4

7

9

9

3

3

5

9

5

1

1

3

9

9

5

2

1

9

5
9

9

4

5

9
5

99

5

9

1

9

9

51

4

1

9

1
1

3

1

9

3

1

3

2

5

9

9

9

5

3

2
1

1

3

9

1

5

1

9

9

9

9

1

1

9

9

7
7

8

9

9

9

9
9

1

7

1

9

3

9

5

39 59
3

9

3

3

4
1

1

5

5
9

1

5

3

9

2
1

1

9

7

9

9

1

9

8

35

1

9

9

9

1

1

1

9

9

9

9

7
7

9

03

3

9

9

1

9

9

99

5

9

5

9

5

9

9
5

99

9

9

1
5

2

3

5

2

5

2

3

13

9

9

9

9

9

9

95

7

1

2

1

3

1

9

7

9

1
1

3

1

1

1

5

7

8

9

9

1

54

9

9

9
1

9

2

9

1

7

8

9

9

9

1

9

5

5

1

7

9

5
3

7

5

11

9

5

1

5

3

3

1

3

3

3

3
3

11

3
5

3

5

9

1
3

3
1

1

3

3

3

1 9

3

1

1

1
1

3
19 3

5

3

1
1

1
7

3

9

1

5
5

1

1
3

7

31

1

3
3

13 3

7

3
9

3

3

3
5

3

5

1

2

5

85

3

1

1

3
3

3

3

1

1

1

3

3

31
7

3
3

3

1

3

1

5

3

7

3

9

3

2

3
33

5

5

5

9

1

5

3

1

5

9

9

5

3

1

3

5 8

1

1

1

3
7

1

3

3

3
3

9

3

9

1

3

1
1

9

3
3

9

8

3

17

3

3
5

5
3

9

3

53

1

1
3

7

5

3 3

1

9

3

1

3

7
1

3

3
3

5

3

3
1

3

1

1
5

3

3

1

5
3

1

1

5

1

8

1

3

1
1

3

3
3

9

8

1

3

3

1

1 3

3
1

3

3

1

1

1

9

33

3
3

3

5

1

3

1

3

3

1

1

3

9

31 3
5

3

5

1

3

9

33

1

5
13

3

3

1

9

5

3

3

9

1

1

1
3

5

1

9

3 1

5

7

9

9

1

1

1

1
9

8

9

3

1

3

1

1
3

3

7

1

3

9
9

3

1

7

3
33

1
1

5

3

9

3

9

8

7 1
37 33

7 1
7 1

3

5

3

1

3

1

5
1

13
31

1

9

1

3

1

1 3
3 5

3
3

3

1

1

3
3

1

1 1

9

11

3
1

5

1

9

1

9 9

13

1
1

5

5

1

5

5

5

8

3

5

33

3

3 3

3
3

3

3

3
3

11

3

1

3

1

15
3 5
9

1
1

3

13

1
9

3

1

9

3

3

1

1

3

3

1

7

1

3

5

13

3

9

1

13

3

3
31

3

3
3 8

3

1

3
9

3

3

9

1

3

1

7

3 3

3
1

7

3 9
5

983

9
9

9

3

33

1

95 5

3

3

3

1

3

1

3

1

3

5

3

5

33

3

1

1

3

3

1

3

3
53

9

1

5

3 3

3

9

3

3

1

9

3

3

33

31

3

1

9

3

1

1

3

7

9

1

3

3

31

9

1

33
3
3

53

1

1

3

33
3

5 3
1

9

3

1

9

33

3

11

9

1

9

3

9

3

9

1

3

9

3

1

1

3

3
3

1

3

31

9

1

3

1

5

1

9

1

3
39

1

3
3

31 8

1

5
3

7
1

3 3

1

3

3

3
35

3

1

1

5

5

3
3

1

1

3
3

5

1

9

33

5

3
1

5

1

1

1

1

8

7

7
3

1

1

3

3

1

3

31
9

1

1

1

9

3 3
1

9

3

5
5

3

9

9

9

1

3

9

311

1

8

1

9

1
3

33
31

3

3
3

1
9

3

9

3
1

1

5

7 3

3

7

3
3

3

1

33
9

11

1

1

1

9

3

5
3

1

3
33

3
3

71

3

5 5

3

3

1
1

8

3

8

7
3

9

1

1

13

3

1

1

3

9

3
3

3

5

1

1

1
9

1

9

1
3

5
3

3

1

1 3

3

3

3

3

5

9

3

1

3

5

3
3
3

1

8

1
3

3

9
1

3

3

7

3
9

3

3

1

1

33

9

1

5

5

1

7
3

3

3 3

1

5
1

1

9

7

5

3

3

1

3

1

17

9

1

333

1

1

9

3
3
1

3

1

9

1

3

59

1

9

1
7

1

1

5

3

3

333
3 3

1

3
1

1

9

3

3

5

3
33

3
1

9

3 1
3

1

9 5

1

3
7

1
3

7

5

1

1
3

173
3

9

3

9

1
13

3

5

3

1

1
3

1

3

3

1

3
3

5

3

1
1

5

1

9

1
3

3

1

5

1

1
3
5

1

1 5

3

3
3

5

1
3

9

9

5 8

9

3

1
3

3

3

7

3

1

9

9

3

1

5

3

3

3
9

9

1

3

1

3
3

3 3

1 1
1

1

1

1
3

13
3
1

3
3

1

9

1

5 3
9

1

3

1

3
7

5

7

5

3

9

17

3

3
1

31

1

7

9

3

5

3
8

1

5

3

9

1
1

9

9

1

3

5

3
1

1

37

1

1

1

5

1

3

7

3

1

5
1

1

3
3

1 3

9

3

1

9

1

3

1
3

7

5

3

3

3

3

7

9

3

3

8

1

3

5 5
8

1

3

9

35

1

1

3

1

11

31 35

1

3

3

1

3

3
3

9

1

1
3

5

3

1

1

3

5

1

1
5

1
3

7

1

33
9

3

3

7 11

1

9

9

5
3

9

5
9

1

8

1

3

3

7 1 3

39

3

1
9

9

1

1
3

5

3

5

1

5

1

3

33

3

9

1

1

3

9

1

5

7

3

1

1

9

1

9

5

1
1

3

7

3
1

5

3

5

5

9
5

1

5

1
7

3
1

8

9

9

9

3

3

1
3

1

3
3

5

3

1

3

1

5

1

3

3

7

5

9

5
53

5

5

3

3

9

5

3 3

3

1

3

3

9

1

1

3

8

5

9

1
3

9

5

7
3

3

1

1
9

3

3
1

5

1

1

33

13

1

3

1

3
9

5

7

33
8

7
3

3

1

3
3

3

3

3

3
3

3

1

9

1

3
5 3

5
3

9

5

3513

5

1

1

1

3

5

5

5
51

3 5

1

1

1

5

31 3

1

1 11

1

7

5

5

5
59

9

1

1 5

9

3

3 9

3

3

1

1

5

3

3
3

3

5

3

3

3

3

3

1

1

1

1

3

1
3

1

9

1

7
9

57

1

5

9

1
3

1

9

9
9

5

9

1

53

1

9

3
3

5
3

1

3
3

3

3

11
7

1
1

9

1

5

33
31

3
3 3

3
1

3

3

3

1

7

1

9

1

1

9

3

3

9

1

1

9

7

9

1
3

1

5

5

3

1

3
5

3

7

1

1

7

1

3

9

5

3
3

3

9

3

5

3

9

9

1

31

1

5
9

3

1

1

3

3

3
31

9

9

9

3

1
1

33
3

13
3

539

3

1

3

1

3

33

9

1
1

7

3
9

1

3

3

3

11

1

3

9

3

3

3
1

3

1
1

1

3

1 3

1

3

1

3

1

1

9

3
3
35
3

8
3

7

1

3

1

9

11

9

1

3

5

5

3
1

1

1

1

3

3
7

3

3

3

1

3

9

1
3

3

3

1

5

9

1

3
3

9
9

331 3

8
3

3

1

5

5

9

5

1

5

3

1

9

9

3

3
71

3

3 8

3
51

3

1
1

1

7

5

1

9
9

11
1

3

9

5

3
9

9

37

1

3

3

3

1

3

1

1

1

9

7

5

9

3

9

3 1

3

3 1

5

5

3 3 33

9

3

3

3
3

9

1

1
35

3

1

9

3

3 3
3

9

9

31

1

3 3

3

9
5

3

3
3

1

31

3

9

1

3

9

3

9

1

1

5

5

9

5

3

3

1

1

1

1
33

1
3

5
3

5

3

7

1
17

3

1

5

7

3

3

3

3
1

3

3

3

3

7

3

1

1

9

3

3 3

1

3

3

1

3

3

9
1

9

1

5

3

1

3
3

3

3

3

7 3

3

3

1

3

1

9

3

(c) FOSSCLU

Figure 7.5.: Visualization of PENDIGITS [DG19]. Cluster labels are coded by
color, class labels by digits (0, . . . , 9). FOSSCLU (c) yields the highest
purity.

141

7. FOSSCLU: Finding the Optimal Subspace for Clustering

(a) Fuzzy FOSSCLU (b) Fuzzy EM after PCA

Figure 7.6.: Fuzzy association of 3 clusters in 7D with 5D noise. The cluster asso-
ciation is color-coded in RGB (e.g. pure blue means 100% association
to the blue cluster). Only FOSSCLU (a) correctly identifies clusters
and subspace.

142

7.4. Experiments

7.4.1. Interpretable Visualization

We created a dataset with five Gaussian clusters of varying covariance in 2D
space consisting of 70 to 200 points and with ten uni-modal Gaussian noise di-
mensions. The whole dataset is transformed by an arbitrary 12D rotation matrix.
Only FOSSCLU reconstructs the 2D cluster structure perfectly (Figure 7.4). EM
after PCA fails to detect the clusters: due to PCA the information relevant for
clustering is lost. Performing EM in high-dimensional space yields poor results
due to the curse of dimensionality. The results of ICA and EM after ICA are very
similar and not depicted here due to space limitations.

The visualization results for the PENDIGITS dataset from the UCI machine
learning repository [DG19] for FOSSCLU are displayed in Figure 7.5c. Fig-
ures 7.5a and 7.5b draw the results of EM after PCA and EM after ICA. Only
FOSSCLU yields a meaningful visualization with multiple pronounced clusters:
The leftmost dark gray cluster is well separated from all the others containing
to 99.7% the digit 5. The rightmost dark green cluster is also very pure, being
92.2% composed of the digit 9. The uppermost yellow cluster contains 82% of
the 0 digits. The neighboring red cluster is composed of to 99.6% of the two
similar digits 0 and 8. Hardly any cluster structure can be seen in the EM after
PCA result. Considering the cluster content, only the digit 9 is fairly identified
since it constitutes 88.2% of the left uppermost light green cluster. For EM after
ICA only one digit (in this case the digit 9) is well identified: for 92% it consists
of the dark red cluster.

As introduced in Section 7.3, FOSSCLU allows fuzzy association as visualized
in Figure 7.6a. In comparison, EM after PCA (Figure 7.6b) is not able to identify
the subspace containing the three clusters.

7.4.2. Accurate Clustering

Based on the synthetic dataset displayed in Figure 7.1, we systematically vary
two properties: the number of uni-modal dimensions without any cluster infor-
mation (from 2 to 20), and the variance of the clusters (multiplying the standard
deviations of the clusters from Figure 7.4 with factors varying from 0.6 to 2.0.
ORCLUS also needs the average subspace dimensionality to be set (in our case

143

7. FOSSCLU: Finding the Optimal Subspace for Clustering

Table 7.2.: Quality (NMI) of results of real-world datasets. FOSSCLU outper-
forms all other methods significantly (α < 0.007 for PENDIGITS/OR-
CLUS; α < 0.0002 for METABOLIC/EM after PCA; all others even
better)

WINE METABOLIC PENDIGITS
FOSSCLU 0.87± 0.04 0.88± 0.01 0.77± 0.03
LDA-kMeans 0.45± 0.00 0.40± 0.00 0.71± 0.03
EM after PCA 0.45± 0.04 0.84± 0.00 0.69± 0.03
EM after ICA 0.07± 0.05 0.04± 0.03 0.63± 0.04
ORCLUS 0.07± 0.02 0.03± 0.02 0.67± 0.10
4C 0.35± 0.00 0.78± 0.07 0.48± 0.00

2). The algorithm 4C requires the parameters ε and MinPts for its density based
clustering and λ for subspace correlation. We run 4C for ε = 4 . . . 20, λ = 3 . . . d
and MinPt = 1 . . . 15, and choose the overall best NMI value (cf. Section 2.2.2).
Figure 7.8 displays the mean NMI value of ten iterations of the clustering results.
Here FOSSCLU demonstrates its robustness against noise and its high effec-
tiveness. All comparison methods already deteriorate after adding few noise
dimensions. FOSSCLU is also reliable when increasing variance.

In addition to the synthetic data we performed experiments to evaluate the
cluster quality on three real datasets, WINE (n = 178, d = 13) and PENDIG-
ITS (n = 10992, d = 16) from the UCI Machine Learning Repository [DG19],
and METABOLIC (n = 600, d = 11) from a PKU newborn screening [Lie+02].
Figure 7.2 shows the mean NMI of ten runs (and the corresponding standard
deviation). FOSSCLU clearly outperforms all comparison methods on the WINE
dataset by a large margin with an NMI of 0.87 (compared to 0.45 for LDA-K-
means and EM after PCA, all others even worse. ORCLUS achieved its best
results parameterized with k = 3 and l = 2 and 4C using ε = 5.6, MinPts = 2
and λ = 13). All methods are outperformed with statistical significance.

The metabolic data originates from a screening program for metabolic disor-
ders in newborns. Each instance is represented by 11 attributes representing
metabolite concentrations. Out of 600 subjects 296 are from the group of healthy

144

7.4. Experiments

1 2 3 4 5 6 7 8 9 10

38,000

38,500

39,000

12D SYNTHETIC

Number k of clusters

M
D

L
[b

it
]

4,000

4,100

4,200

4,300

4,400

4,500
WINE

(a) Selecting the number of clusters for FOSSCLU by MDL

1 2 3 4 5 6 7 8 9 10 11 12 13

38,000

38,500

39,000

12D SYNTHETIC

Dimensionality m of subspace

M
D

L
[b

it
]

4,000

4,200

4,400

4,600

W
IN

E

(b) Selecting the subspace dimensionality for FOSSCLU by MDL

Figure 7.7.: Selecting number of clusters and subspace dimensionality by MDL.

145

7. FOSSCLU: Finding the Optimal Subspace for Clustering

2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1
FOSSCLU

Orclus4c

LDA-k-means

EM af-ter PCA

EM
after ICA

Number of noise dimensionse

N
M

I

(a) Varying the number of noise dimensions of SYNTHETIC dataset

0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1
FOSSCLU

Orclus

4c

LDA-k-means

EM after PCA

EM after ICA

Variance of clusters

N
M

I

(b) Varying the variance of SYNTHETIC dataset

Figure 7.8.: Varying the number of noise dimensions and the variance of the
clusters. We use the same SYNTHETIC dataset as in Figure 7.4 but
with (a) a number of noise dimensions varied from 2 to 20 and (b) a
cluster variance multiplied with a factor varying from 0.6 to 2.0

146

7.5. Conclusion

control, while the other 306 suffer from the disorder Phenylketonuria (PKU). FOS-
SCLU outputs two clusters of high purity (NMI = 0.88). The best parametrization
for ORCLUS is k = 2, l = 1 and for 4C ε = 60, MinPts = 10 and λ = 11. Our
best competitor in this experiment, EM after PCA, achieved an NMI value of
0.84 but was also outperformed with statistical significance (α < 0.0002).

In the UCI PENDIGITS dataset, FOSSCLU achieves a NMI of 0.77, followed
by LDA-kMeans with a NMI of only 0.71 (FOSSCLU was significantly better:
α < 0.007).

7.4.3. Fully Automatic Parametrization

We introduced an MDL criterion in Section 7.2.4 to find the optimal parameters k
and m for FOSSCLU. We first consider a synthetic dataset consisting of 5 clusters,
2 clustered dimensions and 10 noise dimensions before random rotation has been
applied. The dataset is evaluated for accurate clustering. Figure 7.7 presents
the cost for MDL encoding. As k increases from 1 to 10 clusters (with fixed m)
and m runs through all 12 dimensions (with fixed k), MDL encoding reaches
its clear minimum at k = 5 and m = 2, the correct value of the dataset. MDL
performs optimal parametrization, resulting in an NMI of 1. The WINE data as
introduced above also is processed by MDL analogously for k and m (Figure 7.7).
The minimum of MDL coding cost is clearly found for k = 3 clusters. It equals
the real underlying three wine cultivars. As additional benefit, MDL illustrates
that 5 clusters represent the data still better than 4 clusters. Varying m with
fixed k = 3 MDL shows optimal clustering results for m = 7. This choice of
parameters allows the competitive NMI gained by FOSSCLU as presented in
comparison to other methods.

7.5. Conclusion
We introduce FOSSCLU, a novel approach to explorative data analysis. With
dimensionality reduction and clustering FOSSCLU addresses the two most
important tasks in explorative data mining as two goals of equal importance.
At the core of FOSSCLU is the optimal rigid transform (ORT), a new feature

147

7. FOSSCLU: Finding the Optimal Subspace for Clustering

transformation technique particularly designed to determine the optimal sub-
space revealing the overall cluster structure of the data. We integrate ORT
into an efficient alternating least squares algorithm to find the clusters and
the subspace simultaneously. Ideas from minimum description length make
parametrization in FOSSCLU optional. Our experiments demonstrate that in
the resultant subspace the cluster structure is much more visible than when
using standard dimensionality reduction techniques. In addition, FOSSCLU
outperforms state-of-the-art approaches to generalized subspace clustering in
terms of cluster quality. We can conclude that FOSSCLU combines the best
of both worlds, dimensionality reduction and clustering and is an interesting
complement to existing explorative data analysis approaches.

148

8. INTEGRATE: Integrative
Parameter-free Clustering of
Data with Mixed-Type Attributes

Integrative mining of heterogeneous data is one of the major challenges for
data mining. We address the problem of integrative clustering of data with
mixed-type attributes. Most existing solutions suffer from one or both of the
following drawbacks: Either they require input parameters that are difficult to
estimate, or/and they do not adequately support mixed-type attributes. Our
technique INTEGRATE is a novel clustering approach that truly integrates the
information provided by heterogeneous numerical and categorical attributes.
Originating from information theory, the minimum description length (MDL)
principle allows a unified view on numerical and categorical information and
thus naturally balances the influence of both sources of information in clustering.

Moreover, supported by the MDL principle, parameter-free clustering can be
performed, enhancing the usability of INTEGRATE on real-world data. Exten-
sive experiments demonstrate the effectiveness of INTEGRATE in exploiting
numerical and categorical information for clustering. As an efficient iterative
algorithm, INTEGRATE is scalable to large data sets.

8.1. Introduction
Integrative data mining is among the top 10 challenging problems in data
mining identified in [YW06]. Moreover, it is essential for solving many of the
other top 10 challenges, including data mining in social networks and data
mining for biological and environmental problems. In this chapter, we focus

149

8. INTEGRATE: Integrative Parameter-free Clustering of Data with . . .

on integrative clustering. Clustering aims at finding a natural partitioning of
the dataset into meaningful groups or clusters. Thus, clustering provides an
overview of significant patterns in the data without requiring much previous
knowledge. During the last decades, clustering has attracted much attention as
reflected in a massive volume of research papers, e.g., [Böh+06; BFP08; Hua98;
Mac67; PM00; YT05; ZRL96], to mention a few. We address the question of how
to find a natural clustering of data with mixed-type attributes. In everyday life,
vast amounts of such data are collected, for example, from credit assessments.
The collected data include numerical attributes (e.g., credit amount or age) as
well as categorical attributes (e.g., personal status). A cluster analysis of credit
assessment data is interesting for sectors like target marketing. However, finding
a natural clustering of such data is a non-trivial task. We identified two vital
problems: Either much previous knowledge is required, or there is no adequate
support of mixed-type attributes.

To cope with these two problems, we propose INTEGRATE, a parameter-free
technique for integrative clustering of data with mixed-type attributes. The
notable benefits of our approach, which, to the best of our knowledge, no other
clustering method meets all of, can be summarized as follows:

1. A natural balance of numerical and categorical information in clustering
supported by information theory;

2. Parameter-free clustering;

3. Making the most effective usage of numerical as well as categorical infor-
mation;

4. Scalability to large datasets.

A summary of the related work has already been given in Chapter 6. The rest
of this chapter is organized as follows: Section 8.2 presents a detailed derivation
of iMDL, an information-theoretic clustering quality criterion suitable for inte-
grative clustering. Section 8.3 presents our fast and effective iterative algorithm
INTEGRATE optimizing iMDL. Section 8.4 documents that INTEGRATE makes

150

8.2. Minimum Description Length for Integrative Clustering

the most effective usage of numerical as well as categorical information by com-
paring it to well-known state-of-the-art clustering algorithms on synthetic and
real datasets. Section 8.5 summarizes the chapter.

8.2. Minimum Description Length for Integrative
Clustering

8.2.1. Notations

In the following we consider a dataset D with n objects. Each object x is
represented by d attributes. Attributes are denoted by capital letters and can
be either numerical features or categorical variables with two or more values.
For a categorical attribute A, we denote a possible value of A by a. The result
of our algorithm is a disjoint partitioning of D into k clusters C1, ..., Ck, so that
D = C1∪̇ · · · ∪̇Ck.

8.2.2. Likelihood and Data Compression

One of the most challenging problems in clustering data with mixed-type at-
tributes is selecting a suitable distance function or unifying clustering results
obtained on the different representations of the data. Often, the weighting
between the different attribute types needs to be specified by parameter settings
(cf. Chapter 6). The minimum description length (MDL) principle provides a
theoretical foundation for parameter-free integrative clustering avoiding this
problem. Regarding clustering as a data compression problem allows us a
unifying view, naturally balancing the influence of categorical and numerical
attributes in clustering. Probably the most important idea of MDL, which allows
integrative clustering, is relating the concepts of likelihood and data compression.
Data compression can be maximized by assigning short descriptions to regular
data objects which exhibit the characteristic patterns and longer descriptions to
the few irregular objects or outliers.

151

8. INTEGRATE: Integrative Parameter-free Clustering of Data with . . .

8.2.3. Coding Categorical Data
Assume a dataset, where each object is represented by one categorical attribute
A with two possible values. It can be shown that the code length to encode this
data is lower bounded by the entropy of A. Thus, the coding costs CC of A are
provided by:

CC(A) = − ∑
a∈A

p(a) · log2 p(a). (8.1)

By the application of the binary logarithm, we obtain the code length in bits.
If we have no additional knowledge of the data, we have to assume that the
probabilities for each value are equal. Hence, we need one bit per data object.
Clustering, however, provides high-level knowledge on the data which allows
for a much more effective way to reduce the costs. Even if the probabilities for
the different outcomes of the attributes are approximately equal for the whole
dataset, often different clusters with non-uniform probabilities can be found.

For a toy example, refer to Figure 8.1. The data is represented by two numerical
attributes (which we ignore for the moment) and one categorical attribute which
has two possible values, red and blue. Considering all objects, the probabilities
for red and blue are equal. However, it is evident that the outcomes are not
uniformly distributed. Instead, we have two clusters. One preliminarily hosts
the red objects, and the other the blue ones. In fact, the data has been generated
such that in the left cluster, we have 88% of blue objects and 12% of red objects.
For the right cluster, the ratio has been selected reciprocally. This clustering
drastically reduces the entropy and hence

CC(A) = −(0.88 · log2 0.88 + 0.12 · log2 0.12) = 0.53 bits (8.2)

per data object, which corresponds to the entropy of A in both clusters.

8.2.4. Coding Numerical Data
To specify the probability of each data object considering an additional numerical
attribute B, we assign a probability density function (PDF) to B. For our method,
we apply a Gaussian PDF for each numerical attribute. However, let us note that

152

8.2. Minimum Description Length for Integrative Clustering

Coding cost CC for numerical dimension only

INTEGRATE: Coding cost CC for blue objects

INTEGRATE: Coding cost CC for red objects

C2C1

C2C1 C2C1

Figure 8.1.: Toy example. Dataset with two numerical and one categorical di-
mension. Numerical attributes are generated by random variables
with Gaussian distributions (σ = 1.0 resp. 1.5). Categorical attribute
(Color = {red, blue}) is generated by uniformly distributed random
variables with p(red) = 0.12 resp. p(blue) = 0.88 (left cluster) and
p(red) = 0.88 resp. p(blue) = 0.12 (right cluster). Cost curves assum-
ing two clusters: Considering numerical information only (green),
integrating numerical and categorical information (red, blue). Dotted
lines mark resulting cluster borders.

153

8. INTEGRATE: Integrative Parameter-free Clustering of Data with . . .

our ideas can be straightforwardly extended to other types PDF, e.g. Laplacian
or Generalized Gaussian. The PDF of a numerical attribute B is defined as

p(b; µB, σB) =
1

σ
√

2π
· exp

(
− (b− µB)

2

2 · σ2
B

)
(8.3)

with mean µB and standard deviation σB.
If the data distribution of B is Gaussian, we minimize the costs of the data

compression by a coding scheme which assigns short bit strings to objects with
coordinate values that are in the area of high probability and longer bit strings
to objects with lower probability. This principle is also commonly referred to as
Huffman coding. The coding costs CC of B are provided by:

CC(B) = −
∫

p(b) · log2 p(b) db. (8.4)

Again, if we have no prior knowledge on the data, we would have to assume
that each attribute is represented by a single Gaussian with mean and standard
deviation determined from all data objects. As discussed for categorical data,
clustering can often drastically reduce the costs. Most importantly, relating
clustering to data compression allows us a unified view on data with mixed-type
attributes. Consider again the data displayed in Figure 8.1. In addition to the
categorical attribute we now consider the numerical x-coordinate, denoted by
X. To facilitate presentation, we ignore the y-coordinate which is processed
analogously. The two green curves represent the coding costs of the two clusters
considering X. For both curves, the cost minimum coincides with the mean
of the Gaussian which generated the data. The cluster on the right has been
generated with slightly larger variance, resulting in slightly higher coding costs.
The intersection of both cost curves represents the border between the two
clusters provided by X, indicated by the dotted green vertical line. In addition,
for each cluster and each outcome of the categorical attribute, we have included
a cost curve (displayed in the corresponding colors). Again, the intersection
points mark the cluster borders provided by the categorical attribute. Consider,
e.g., the dotted red vertical line. Red objects with a value in X beyond that point
are assigned to the cluster on the right. Thus, in the area between the dotted red
and the dotted blue vertical lines, the categorical value is the key information

154

8.2. Minimum Description Length for Integrative Clustering

for clustering. Note that all borders are not fixed but optimized during the run
of our algorithm.

8.2.5. A Coding Scheme for Integrative Clustering

We also need to elaborate a coding scheme describing the clustering result itself.
The additional costs for encoding the clustering result can be classified into
two categories: the parameter costs PC required to specify the cluster model
and the ID costs IDC required to specify the cluster ID for each object, i.e., the
information to which cluster the object belongs.

For the parameter costs, let us focus on the set of objects belonging to a single
cluster C. To specify the cluster model, for each categorical attribute A we
need to encode the probability of each value or outcome a. For a categorical
attribute with |A| possible values, we need to encode |A| − 1 probabilities since
the remaining probability is implicitly specified. For each numerical attribute
B, we need to encode the parameters µB and σB of the PDF. Following a central
result from the theory of MDL [Ris05], the parameter costs to model the |C|
objects of the cluster can be approximated by p/2 · log2 |C|, where p denotes
the number of parameters. The parameter costs logarithmically depend on the
number of objects in the cluster. The considerations behind this are that the
parameters do not need to be coded with very high precision for clusters with
few objects. To summarize, the parameter costs for a cluster C are defined as

PC(C) = 1
2
· ((∑

Acat

|A| − 1) + |Bnum| · 2)) · log2 |C|. (8.5)

Here Acat stands for all categorical attributes and Bnum for all numerical
attributes in the data. Besides the parameter costs, for each object we need to
encode the information to which of the k clusters it belongs. Also for the ID
costs, we apply the principle of Huffman coding which implies that we assign
shorter bit-strings to the larger clusters. Thus, the ID costs of a cluster C are
defined as

IDC(C) = log2
n
|C| . (8.6)

155

8. INTEGRATE: Integrative Parameter-free Clustering of Data with . . .

Putting the parts together, we now define iMDL, our information-theoretic
optimization goal for integrative clustering, as

iMDL = ∑
C
(∑

A
|C| · CC(A)) + PC(C) + IDC(C). (8.7)

For all clusters C, we sum up the coding costs for all numerical and categorical
attributes A. To these costs we need to add the parameter costs and the ID cost
of the cluster, denoted by PC(C) and IDC(C), respectively. Finally, we sum up
these three terms for all clusters.

8.3. The Algorithm INTEGRATE

In this section, we present our highly effective algorithm INTEGRATE for clus-
tering mixed-type attributes which is based on our new MDL criterion iMDL,
defined in Section 8.2. INTEGRATE is designed to find the optimal clustering
of a dataset D where each object x comprises both numerical and categorical
attributes by optimizing the overall compression rate. First, INTEGRATE builds
an initial partitioning of k clusters C1, ..., Ck. Each cluster is represented by a
Gaussian PDF with mean µB and standard deviation σB in each numerical di-
mension B and a probability p(a) for each value of each categorical attribute A.
All objects are then assigned to the k clusters by minimizing the overall coding
costs iMDL. In the next step, the parameters of each cluster are recalculated
according to the assigned objects. That includes µB and σB in each numerical
dimension and the probabilities p(a) for each value of the categorical attributes,
respectively. After this initialization the following steps are performed repeat-
edly until convergence: First, the costs for coding the actual cluster partition
are determined. Second, the assignment of objects to clusters is performed in
order to decrease the iMDL value. Third, the new parameters of each cluster are
recalculated. INTEGRATE converges if no further changes of cluster assignments
occur. Finally, we receive the optimal clustering C1, ..., Ck for D represented by k
clusters according to minimum coding costs iMDL.

156

8.3. The Algorithm INTEGRATE

8.3.1. Initialization

The effectiveness of an algorithm often heavily depends on the quality of the
initialization, as it is often the case that the algorithm can get stuck in a local
optimum. Hence, we propose an initialization scheme to avoid this effect. We
need to find initial cluster representatives that correspond well to the final
representatives. An established method for partitioning methods is to initialize
with randomly chosen objects of D. We adopt this idea and take the numerical
attributes of k randomly chosen objects as cluster representatives. During
initialization, we set σ = 1.0 in each numerical dimension. The probabilities of
the values for the categorical attributes are set to 1

|A| , with |A| being the number

of possible values for A. Then, a random set of 1
z n objects is selected, where

n is the number of all objects in D and z = 10 turned out to give satisfying
results. We assign each object to a cluster by minimizing iMDL. Finally, we
chose the clustering result that minimizes iMDL best, within m initialization
runs. Typically m = 100 runs suffice for an effective result. As only a fraction of
D is used for the initialization procedure, our method is not only effective but
also very efficient: the time complexity of the initialization step is O(n

z · k ·m).

8.3.2. Automatically Selecting the Number of Clusters k

Now we propose a further improvement of the effectiveness of INTEGRATE.
Using iMDL for mixed-type data we can avoid the parameter k. As an optimal
clustering that represents the underlying data structure best has minimum
coding costs, iMDL can also be used to detect the number of clusters. For this
purpose, INTEGRATE uses iMDL no longer exclusively as selection criterion
for finding the correct object to cluster assignment. Rather we now estimate the
coding costs for each k where k is selected in a range of 1 ≤ k ≤ n. For efficiency
reasons INTEGRATE performs this iteration step on a z% sample of D. The
global minimum of this cost function gives the optimal k and thus the optimal
number of clusters.

157

8. INTEGRATE: Integrative Parameter-free Clustering of Data with . . .

8.4. Experimental Evaluation
Since INTEGRATE is a hybrid approach which is combining the benefits of
those clustering methods using only numeric attributes and those for categorical
attributes we compare to algorithms of both categories and to algorithms that
can also handle mixed-type attributes. In particular, we select

(1) the popular k-means algorithm,

(2) the widely used method k-modes,

(3) the k-means-based method by Ahmad and Dey denoted by k-MM, and

(4) k-prototype [Hua98] (cf. Chapter 6).

For k-means resp. k-modes only the numerical resp. categorical attributes
were regarded. We evaluate the results using the information-theoretic external
cluster-validity measure introduced by B. E. Dom [Dom02] (referred to as Dom)
which has the advantage that it allows for clusterings with different numbers of
clusters and integrates the class labels as “ground truth”. The measure Dom has
be introduced more detailed in Section 2.2.2. For each experiment we report the
average performance of all clustering algorithms over 10 runs.

8.4.1. Synthetic Datasets
If not otherwise specified the artificial datasets include three Gaussian clusters
with each object having two numerical attributes and one categorical attribute.
To validate the results we added a class label to each object which was not used
for clustering.

Varying the Ratio of Categorical Attribute Values (Figure 8.2a)

We create three three-dimensional clusters c1, c2 and c3, each of 500 objects. Each
object consists of two numerical attributes generated by a random variable with
a Gaussian distribution with standard deviation σ1,c1 = 1.8, σ1,c2 = 1.3 and

158

8.4. Experimental Evaluation

INTEGRATE k-modes k-means k-prototype k-MM

0/1 0.25/0.75 0.5/0.5 0.75/0.25 1/0
0

0.5

1

p(a1) for clusters c1, c3/c2

D
o

m

(a) Varying ratio of categorical attributes

0.5 1 1.5 2
0

0.5

1

Standard deviation σ

D
o

m

(b) Varying variance of numerical attributes

|c1|= |c2|= |c3|=5.5

1:10:1 4:7:4 6:5:6 9:2:9

0.2

0.4

0.6

Ratio |c1| : |c2| : |c3|

D
o

m

(c) Varying size of clusters

0 2 4 6 8
0

0.5

1

Number of noise dimensions

D
o

m

(d) Robustness to noise dimensions

5 10 15
0

0.5

1

Number of numerical dimensions

D
o

m

(e) Increasing numerical attributes

0 5 10 15
0

0.5

1

Number of categorical dimensions

D
o

m

(f) Increasing categorical attributes

Figure 8.2.: Experiments on synthetic datasets. Measured by Dom [Dom02]: a
lower score is better.

159

8. INTEGRATE: Integrative Parameter-free Clustering of Data with . . .

σ1,c3 = 0.8 for the first attribute and σ2,c1 = 0.75, σ2,c2 = 1.7 and σ2,c3 = 1.0 for
the second attribute. Additionally, each object has one two-valued categorical
attribute A = {a1, a2} generated by a uniformly distributed random variable. In
this experiment we vary the probability for each event of the random variable
and, thus, the ratio of the categorical attribute values in each cluster. We start
with p(a1) = 0 for clusters c1 and c2, and with p(a1) = 1 for cluster c3, labeled
as "0/1" in Figure 8.2a. Note that p(a2) = 1− p(a1). We increase resp. decrease
p(a1) in steps of 0.05 until p(a1) = 1 for clusters c1 and c2, and p(a1) = 0 for
cluster c3.

Without the need for difficult parameter setting INTEGRATE performs best
in all cases. Even in the case of equally (0.5/0.5) distributed values, where the
categorical attribute gives no information for separating the objects, none of the
comparison methods gives better results than INTEGRATE. As k-means does not
take the categorical attributes into account the performance is relatively constant.

Varying the Variance of Clusters (Figure 8.2b)

This experiment aims at comparing the performance of INTEGRATE and its
comparison methods on datasets with increasing values for variance in the
numerical dimensions. We create three clusters of the same size as in the
previous experiment with again two numerical and one two-valued categorical
attribute. This time we fix p(a1) = 0.12 for clusters c1 and c3, and p(a1) = 0.88
for cluster c2. The standard deviation of the underlying Gaussian distributions σ1

and σ2 are equally varied in every step of the experiment (σ1 = σ2 = 0.5 . . . 2.0).

INTEGRATE clearly outperforms all competitors. Only with very small values
for the standard deviation and, thus, a small degree of overlap of the three
clusters, k-means and k-modes are partly able to give results of similar quality.
However, at a variance of 2.0 where the numerical attributes carry nearly no
cluster information our proposed method INTEGRATE shows the best cluster
quality as in this case the categorical attributes are used to separate the clusters.
On the contrary, k-modes performs worst as it can only use the categorical
attribute as single source for clustering.

160

8.4. Experimental Evaluation

Varying the Size of the Clusters (Figure 8.2c)

We test the performance of INTEGRATE and its comparison methods on datasets
with an unbalanced number of points in each cluster. As before we create three
clusters of objects with two numerical and one categorical attribute. For the
Gaussian distributions we set (σ1,c1 , σ2,c1) = (1.8, 0.75), (σ1,c2 , σ2,c2) = (1.3, 1.7)
and (σ1,c3 , σ2,c3) = (0.8, 1). For the two-valued categorical attribute we set
p(a1) = 0.12 for cluster c1, p(a1) = 0.88 for cluster c2 and p(a1) = 0.1 for
cluster c3. We start the experiment with cluster sizes |c1| = 100, |c2| = 1000 and
|c3| = 100, which corresponds to a ratio 10 : 1 : 10. We vary the objects per
cluster by increasing resp. decreasing the number of objects in steps of 100.

INTEGRATE separates the three clusters best in almost all cases, even with
highly unbalanced cluster sizes. Only in the setting with two very small clusters
and one big cluster (1:10:1) k-modes gives a slightly better cluster validity.
Interestingly, k-MM performs worse for balanced clusters than for unbalanced
cluster.

Robustness to Noise Dimensions (Figure 8.2d)

To investigate the robustness to noise, we create three clusters of 500 objects each.
The objects feature five numerical and three two-valued categorical attributes.
For the underlying Gaussian distributions we set σi,c1 = 1.8, σi,c2 = 1.3 and
σi,c3 = 0.8 for i = {1, . . . , 5}. For each two-valued categorical attribute and each
cluster we set p(a1) = 0.6. Our experiment starts with zero noise dimensions.
In each step we add an attribute to each object with values generated from a
random variable with the same Gaussian distribution with σ = 5. We add up to
nine noise dimensions.

INTEGRATE very clearly outperforms all comparison methods when adding
the non-clustered noise dimensions to the data. The clustering quality of INTE-
GRATE remains stable when adding five up to nine noise dimensions. k-means
shows a high increase in the Dom values which refers to decreasing cluster
validity.

161

8. INTEGRATE: Integrative Parameter-free Clustering of Data with . . .

Increasing the Number of Numerical Dimensions (Figure 8.2e)

In this experimental setting, we increase the number of numerical attributes
for each object while keeping the number of categorical attributes fixed. As
before, we create three clusters of 500 objects each. Each object features only one
two-valued categorical attribute with p(a1) = 0.3 for clusters c1 and c2, and with
p(a1) = 0.7 for cluster c3. The experiment starts with one numerical attribute for
each object and adds one numerical dimension in each step up to 19 dimensions.
For the generation of the numerical attributes for each cluster we set σi,c1 = 1.8,
σi,c2 = 1.3 and σi,c3 = 0.8 for i = {1, . . . , 19}.

INTEGRATE clearly performs best in all cases. As expected, all methods
demonstrate an increase in cluster quality when adding numerical dimensions
except for k-modes. Since k-modes does not consider numerical attributes, its
performance is constant.

Increasing the Number of Categorical Dimensions (Figure 8.2f)

Instead of the number of numerical attributes, we now increase the number of
categorical attributes for each object. Each clusters consists of 500 objects with a
fixed number of two numerical attributes. They are generated with the settings
(σ1,c1 , σ2,c1) = (1.8, 0.75), (σ1,c2 , σ2,c2) = (1.3, 1.7) and (σ1,c3 , σ2,c3) = (0.8, 1.0). Our
experiment starts with zero categorical dimensions and adds one categorical
dimension in each step, up to 19 in the final step. Each categorical attribute is
two-valued with p(a1) = 0.6 for cluster c1 and p(a1) = 0.2 both for clusters c2

and c3.

INTEGRATE clearly outperforms all other methods, even k-modes, a state-
of-the-art method for clustering categorical data. While k-MM shows a heavy
decrease in clustering quality when adding one and two categorical attributes,
our method performs relatively constant with even slightly increasing quality.
Since k-means only takes the numerical attributes into account, its performance
remains constant.

162

8.4. Experimental Evaluation

Table 8.1.: Comparison of clustering quality measured by Dom on real-world
datasets. The table lists the mean and standard deviation of Dom for
ten runs. Best performance printed in bold.

INTEGRATE k-means k-modes k-MM k-prototype

HEART DISEASE
µ 1.23 1.33 1.26 1.24 1.33
σ 0.02 0.01 0.03 0.02 0.00

CREDIT APPROVAL
µ 0.61 0.66 0.70 0.63 0.66
σ 0.03 0.00 0.00 0.09 0.00

8.4.2. Real-world Datasets
This section shows the practical application of INTEGRATE on real-world data,
publicly available at the UCI repository [DG19]. We chose two different datasets
with mixed numerical and categorical attributes. An additional class attribute
allows for an evaluation of the results. Table 8.1 reports the mean and standard
deviation of the clustering quality measured with Dom for all methods for 10
runs. For all compared methods, we set k to the number of classes.

HEART DISEASE

The HEART DISEASE dataset comprises 303 instances with six numerical and
eight categorical attributes each labeled by an integer value between 0 and 4
that refers to the presence of heart disease. Without any prior knowledge on the
dataset, we obtained the best clustering quality of 1.23 with INTEGRATE. k-MM
performed slightly worse. However, the runtime of INTEGRATE is 0.1 seconds
compared to k-MM which took 2.8 seconds to return the result.

CREDIT APPROVAL

The CREDIT APPROVAL dataset contains results of credit card applications. It
has 690 instances, each being described by six numerical and nine categorical
attributes and classified to the two classes ‘yes’ or ‘no’. With a mean Dom value
of 0.61 INTEGRATE separated the objects best into two clusters in only 0.1
seconds without any need for setting input parameters.

163

8. INTEGRATE: Integrative Parameter-free Clustering of Data with . . .

8.4.3. Finding the Optimal Number of Clusters
On the basis of the dataset illustrated in Figure 8.3a we highlight the benefit of
INTEGRATE for finding the correct number k of clusters that are present in the
dataset. The dataset comprises six Gaussian clusters with each object having two
numerical attributes and one categorical attribute with two different values that
are marked in “red” and “blue”, respectively. Figure 8.3b shows the iMDL of the
data model for different values of k. The cost function has its global minimum,
which refers to the optimal number of clusters, at k = 6. In the range of 1 ≤ k ≤ 4
the plotted function shows an intense decrease in the coding costs and for k > 6
a slight increase of the coding costs as in these cases the data does not optimally
fit into the data model and, thus, leads to high coding costs. Note, that there is a
local minimum at k = 4 which would also refer to a visually meaningful number
of clusters.

8.5. Conclusion
We have introduced our information-theoretic clustering method INTEGRATE.
We have given a solution to avoid complicated parameter settings guided by the
information-theoretic idea of data compression. With our experiments, we have
also shown that INTEGRATE uses numerical and categorical information most
effectively. Finally, INTEGRATE shows high efficiency and is therefore scalable
to large datasets.

164

8.5. Conclusion

(a) Synthetic dataset with 2 numerical and 1 categorical ({red, blue}) dimension

1 5 10 15 20 25 30

20,000

22,000

24,000

26,000

Number k of clusters

iM
D

L

(b) iMDL for 1 ≤ k ≤ 30

Figure 8.3.: Coding costs (iMDL) for different settings of k for a synthetic dataset
that consists of 6 clusters.

165

Part IV.

Conclusion

167

9. Summary and Outlook

In the two main parts of this thesis, Parts II and III, we have presented our
contributions to face the challenges that arise from the complexity of data and
require new solutions. In this last part, we summarize our methods and conclude
how they tackle which challenge. We give an outlook on future improvements
to our proposed methods.

9.1. Tackling the Challenges of Mining Complex
Data

The complexity of data leads to new challenges for data mining. The goal of this
thesis is to contribute to tackling these challenges. Section 1.2 has formulated
five key challenges derived from data complexity [HKP13; HG08; YW06]. Our
four proposed algorithms contribute to facing those challenges. We summarize
those challenges:

• Challenge 1: Graphs and Network Mining. The benefit of graphs over
classic numerical or categorical vector data allows to model more complex
data with various relations between data entities. Again, those relations
can have attributes like weights. This increase in complexity requires
new effective and efficient algorithms for pattern mining tasks with goals
similar to those of clustering classic vector data.

• Challenge 2: Explainable Data Mining. Increasing data complexity leads
to increasing complexity of the models given as output of data mining
algorithms. However, a black-box model as output does not allow the
user to learn the structure and patterns in the underlying data. Instead,

169

9. Summary and Outlook

explainable data mining focuses on transparent output and algorithmic
decisions to increase the knowledge gained from the KDD process.

• Challenge 3: High-Dimensional Data Mining. The sheer size of data
alone increases complexity: clustering algorithms have to tackle the in-
creasing amount of noise data points that come with an increasing number
of dimensions. Additionally, large datasets usually impose computational
costs and require efficient solutions.

• Challenge 4: Mining Heterogeneous Data Types. Data is not always only
numerical or cannot always be mapped to numerical dimensions that allow
the benefit of using a distance function to determine similar and dissimilar
data points. Datasets with numerical and categorical data types require
more complex, integrated solutions for pattern mining.

• Challenge 5: Parameter-free Data Mining. The increasing complexity of
data and the resulting data mining models make it difficult and tedious to
define good input parameters that many algorithms require. Parameter-
free data mining tackles this challenge by automatically finding suitable
parameters without requiring user input.

Our four methods for Fast and Effective Methods for Explainable Graph Structuring
and Summarization in Part II and for Fast and Effective Methods for Parameter-free
Clustering in Part III all contribute to subsets of challenges 1 to 5. In Table 9.1, we
give a concise overview of which of our contributions tackles which challenge.

In the remainder of this section, we give a summary for each of our proposed
methods and discuss how each algorithm contributes to the goal of this thesis,
to solve the challenges 1 to 5.

9.1.1. Summary and Discussion: Fast and Effective Methods
for Explainable Graph Structuring and Summarization

In Part II, we presented our contributions to graph mining. While graphs are
helpful for modeling relationships between entities, they are more complex
to analyze than data represented by multi-dimensional feature vectors. As

170

9.1. Tackling the Challenges of Mining Complex Data

Table 9.1.: Data mining challenges (C 1 to 5) are met by our proposed algorithms
of Part II (MeGS and Spectral Lens) and Part III (FOSSCLU and
INTEGRATE).

MeGS Spectral Lens FOSSCLU INTEGRATE

C 1: Graph and Network Mining 4 4

C 2: Explainable Data Mining 4 4 4

C 3: High-Dimensional Data Mining 4 4

C 4: Mining Heterogeneous Data Types (4) 4

C 5: Parameter-free Data Mining 4 4 4 4

a contribution to all of our five challenges, in Part II, we have presented the
following methods:

• MeGS for partitioning meaningful subgraph structures using Minimum
Description Length (tackling challenges C1, C2, and C5), and

• Spectral Lens for explainable diagnostics, tools and discoveries in directed,
weighted graphs (tackling challenges C1 to C5).

MEGS: Partitioning Meaningful Subgraph Structures using Minimum
Description Length

Our first contribution is facing challenge 1 (graph and network mining): Many
graph partitioning methods aim to disassemble a graph into small patterns
and measure good partitioning only by achieving good compression. With our
proposed method MeGS for partitioning meaningful subgraph structures using
minimum description length, we emphasize that patterns need to be explainable
to represent valuable results. A complex graph should be fully represented by
a set of patterns that practitioners can easily understand. Hence, we call these
patterns meaningful. It is equally essential for us to analyze the graph thoroughly
and assign all nodes to a pattern. No unknown or unexplained nodes should
remain in the graph without a partitioning to which they are assigned. Only then

171

9. Summary and Outlook

can a graph be fully understood. The complete coverage of a graph with patterns
and the lack of overlap between substructures allow a well-understandable and
expressive visualization, being vital for explainable data mining (challenge 2)

To achieve our goal, we introduce a set of primary and simple graph struc-
tures we use as patterns. Our dictionary includes the patterns clique, bipartite
structure, tree, hub, and sparse structure. If required, we could easily extend the
dictionary.

Our method proposes the algorithm MeGS for partitioning a graph into
subgraphs. Each subgraph corresponds to a structure of our dictionary. MeGS
follows a split-and-merge principle by assigning nodes to structures, splitting and
merging them successively until convergence. Partitioning a graph corresponds
to permuting its adjacency matrix.

Our objective function for partitioning the graph follows the minimum de-
scription principle. The better a graph can be compressed using the structures
in our dictionary, the better the partitioning result. We define an MDL schema
to compress all nodes and our model parameters, rendering MeGS parameter-
free. As demanded to conquer challenge 5 (parameter-free data mining), the user
does not need to define the number of partitions to be created. Instead, MeGS
automatically finds the optimal number of partitions using our MDL schema.

We evaluate our proposed method for both efficiency and effectiveness. MeGS
is a fast and efficient algorithm that outperforms its competitors both in speed
and effectiveness. Since graphs often represent extensive networks in real-world
applications, fast methods are essential to be of actual practical use. On several
real-world datasets, we demonstrate that MeGS can explain graphs by structuring
the nodes into meaningful subgraphs. We show that the visualization of the
permuted adjacency matrix already gives valuable insights into how graphs are
structured. Besides interpretation and as a side effect, our method is also able to
compress graphs better than our competitor algorithms using our dictionary of
meaningful patterns.

Limits MeGS is able to find meaningful patterns only if they are present in
the dictionary. Therefore, MeGS is currently unable to identify, e.g., hyperbolic
graphs as Spectral Lens does. This would require an extension of the dictionary.

172

9.1. Tackling the Challenges of Mining Complex Data

Moreover, the automatic parametrization of MeGS does not always find the
optimal number of clusters that gives the globally minimal minimum description
length but can get stuck in a local optimum.

Spectral Lens: Explainable Diagnostics, Tools and Discoveries in Directed,
Weighted Graphs

Our second contribution to challenge 1 (graph and network mining) introduces
our method Spectral Lens (SL) for explaining graphs, especially for understand-
ing the connectivity patterns within and between groups of nodes, including
identifying normal and anomalous behavior. Supporting explainable data mining
(challenge 2), Spectral Lens visualizes all groups, their connectivity patterns,
and their irregular behavior. For a given direct or undirected, weighted or
unweighted graph, our proposed method SL finds groups of regular connectiv-
ity, groups that share connectivity with other groups, and suspicious behavior
in the graph spectrum automatically and efficiently. Being able to process all
types of graphs, including weighted and directed graphs, even allowing nega-
tive edge-weights, Spectral Lens can be seen as (although not strictly speaking)
contributing to challenge 4 (mining heterogeneous data types).

Our unsupervised method is based on spectral analysis. It uses singular value
decomposition (SVD) to decompose large-scale graphs and extracts connectivity
patterns of the left and right singular vectors. SL consists of two parts:

1. With SL-Dictionary (SLD), we provide a look-up table to understand the
patterns decomposed by SVD to draw conclusions about the properties of
a graph.

2. Our proposed algorithm SL-Algorithm (SLA) automatically spots:

• the top groups of nodes with similar connectivity patterns,

• groups of shared connectivity, and

• groups with suspicious behavior.

For analyzing the patterns that are decomposed by SVD, we introduce two
novel concepts:

173

9. Summary and Outlook

• A generalized community (GenCom) is a group of nodes with a similar
connectivity pattern. E.g., a hyperbolic community (i.e., a community with
a power law distribution), a clique, or a bipartite set.

• A bridge is a group of nodes that shares the connectivity patterns of two
GenComs but does not form a GenCom itself. Bridges result from the
overlap of two or more groups and connect these groups.

In a fully connected clique, all nodes share the same neighbors and thus show
the same connectivity; in a bipartite graph, both bipartite sets show similar
connectivity since they only possess edges to the other set. A real-world example
of a bridge is interdisciplinary conferences in computer science where researchers
publish who otherwise publish to separate sets of conferences.

While SLD helps to read the plots from SVD, our algorithm SLA uses indepen-
dent component analysis (ICA) to remove the tilt in the plots and automatically
finds the optimal number of GenComs using our proposed measure thorniness.
Our internal objective function frees the user from giving an input parameter
for the number of groups, allowing parameter-free data mining (challenge 5). SLA
also detects groups with suspicious behavior by comparing the connectivity
patterns of a GenCom.

In our evaluation, we show that Spectral Lens is a valuable tool to gain insights
into large-scale graphs and works on various graph types. Analyzing negative
and positive edge weights, it detects fraudulent shill accounts in a real-world
dataset and outperforms its competitor algorithms.

SLA is highly scalable and linear on the size of the graph. Analyzing a graph
with over 2 million edges takes less than 5 minutes on a personal computer,
contributing to challenge 3 (high-dimensional data mining) in the dimensions of
nodes and edges.

Limits The limitations of Spectral Lens are similar to those of MeGS. The thorni-
ness heuristic to find the optimal number of in-GenComs and out-GenComs
might not find the global maximum, but the parametrization might be stuck in
a local maximum. Also, Spectral Lens can only explain connectivity patterns
present in the SL-Dictionary.

174

9.1. Tackling the Challenges of Mining Complex Data

9.1.2. Summary and Discussion: Fast and Efficient Methods for
Parameter-free Clustering

In Part III, we presented our contributions to clustering. In the following, we
will demonstrate how they relate to the challenges of explainable data mining
(challenge 2), high-dimensional data mining (challenge 3), mining heterogeneous data
types (challenge 4), and parameter-free data mining (challenge 5). Our proposed
methods are

• FOSSCLU for finding the optimal subspace for clustering (tackling C2, C3,
and C5), and

• INTEGRATE for integrative parameter-free clustering of data with mixed-
type attributes (tackling C4 and C5).

FOSSCLU: Finding the Optimal Subspace for Clustering

We propose our algorithm FOSSCLU (Finding the Optimal Subspace for Clus-
tering) to simultaneously perform clustering and dimensionality reduction in a
joint, alternating process to find clusters residing in low-dimensional subspaces.
This process allows to filter out a high amount of noise caused by the increas-
ing dimensionality and meets challenge 3 (high-dimensional data mining). The
low-dimensional reduction allows the user to visualize not only the intra-cluster
relations between objects of the same clusters. Moreover, the joint subspace
also preserves the inter-cluster relations of objects of separate clusters, unlike
clustering algorithms that determine an individual subspace for each cluster.
With FOSSCLU, it is possible to visualize the complete cluster structure in a
joint low-dimensional subspace, e.g., in a two-dimensional plot to interpret the
results. Here, explainable data mining (challenge 2) allows the user to understand
the algorithm’s decisions and provides further knowledge about the underlying
data.

As a foundation for our method, we define the optimal rigid transform (ORT) to
find an arbitrarily-oriented subspace for a given cluster structure. The key idea
of ORT is to find an orthogonal pair of subspaces:

175

9. Summary and Outlook

• The clustered subspace contains all relevant information for clustering the
objects.

• The noise subspace contains all other information that is not relevant for
clustering.

ORT applies a rigid transform, a rotation that maximizes the cluster quality
in the clustered subspace. Simultaneously, the noise subspace becomes as uni-
modal as possible. FOSSCLU uses the expectation-maximization (EM) clustering
algorithm to cluster the objects in the clustered subspace. Maximizing the cluster
quality refers to an optimal EM clustering.

Our evaluation shows that FOSSCLU is comparable to state-of-the-art sub-
space clustering methods and can outperform them. Unlike its competitor
algorithms, FOSSCLU is able to provide a joint subspace that allows interpreting
the clustering results.

The user of FOSSCLU can give the number of clusters and the number of
subspaces as input if a specific result is required. FOSSCLU also runs parameter-
free due to our minimum description length (MDL)-based encoding schema. It
allows FOSSCLU to find the optimal number of clusters and subspaces during the
simultaneous steps of clustering and subspace reduction. Therefore, FOSSCLU
requires no input parameters, tackling the challenge of parameter-free data mining
(challenge 5).

FOSSCLU combines the best of both worlds: dimensionality reduction and
clustering complement each other to achieve superior results in explorative data
analysis.

Limits The clustering model of FOSSCLU assumes Gaussian cluster distribu-
tion and non-Gaussian noise, which might restrict its use for some applications.
Furthermore, being a heuristic, FOSSCLU’s automatic parametrization does not
always find the globally best number of clusters and dimensions in a reasonable
running time.

176

9.1. Tackling the Challenges of Mining Complex Data

INTEGRATE: Integrative Parameter-free Clustering of Data with
Mixed-Type Attributes

Our proposed algorithm INTEGRATE introduces a method for clustering data
with heterogeneous data types (challenge 4). While many algorithms exist that
allow for clustering datasets with only numerical dimensions or datasets with
only categorical dimensions, INTEGRATE is an integrated clustering algorithm
that equally considers numerical and categorical dimensions.

We introduce our minimum description length (MDL)-based coding schema
iMDL to balance encoding costs for numerical and categorical probability distri-
butions. Our coding schema combines the compression of model and data and
guides our algorithm INTEGRATE to an optimal clustering for mixed-type data.

Our MDL-based objective function gives another benefit: apart from finding
the best assignments of objects to clusters for a given number of clusters, it also
serves to determine the optimal number of clusters. Thus, the user does not need
to give this number as an input parameter, but it is calculated by INTEGRATE,
tackling challenge 5 (parameter-free data mining).

Our synthetic experiments show that INTEGRATE is robust to noise and
to unbalanced clusters and works well for clusters with a different standard
deviation in the numerical dimensions. We show that INTEGRATE clearly
outperforms its competitor algorithms. With our experiments on real-world
datasets, we illustrate that INTEGRATE is able to show its advantage here as
well by using both numerical and categorical dimensions for clustering.

Limits Like all of our methods, the automatic parametrization for INTEGRATE
does not always find the globally best number of clusters to give the minimal
minimum description length. Besides, INTEGRATE is not robust to noise and is
restricted to Gaussian cluster models.

9.1.3. Discussion of our Contributions to Tackling the
Challenges

While the previous section has discussed how each of our proposed methods
helps tackle the five challenges as this thesis’s contribution to fast and efficient

177

9. Summary and Outlook

pattern mining in complex data, we revisit each challenge in the following to
decide whether the goal of this thesis has been reached.

Challenge 1: Graph and Network Mining

Our methods MeGS and Spectral Lens in Part II represent our contributions
to this challenge, and they give the practitioner tools for understanding and
visualizing even large and complex graphs and their patterns. MeGS focuses
on partitioning all nodes in a graph into structures so that no unknown areas
remain. It reveals structural information that preceding methods could not
extract.

Spectral Lens improves the structural pattern detection and extends it by
deriving connectivity patterns in graphs and by defining groups based on these.
Spectral Lens enables the user to process not only graphs with millions of edges
but also all variants of graphs: undirected and directed as well as unweighted
and weighted graphs.

With both algorithmic methods, we clearly meet the goal of contributing to
challenge 1.

Challenge 2: Explainable Data Mining

Creating transparent models that not only give hard black-box results but also
increase the practitioner’s knowledge of the inner structure of the data is essential
when mining complex data and a crucial part of this thesis. We strongly believe
that models must be explainable to convince the users and possibly alter their
sight of the data. We contribute to this with three methods: MeGS, Spectral Lens,
and FOSSCLU. All these methods visualize their results to let the user quickly
grasp the findings. This holds for a sorted and structured adjacency matrix
(MeGS), for the visualization of the edge-connectivity between node groups
(Spectral Lens), as well as for a 2-dimensional cluster space by dropping noise
dimensions (FOSSCLU). Thus, our contributions meet challenge 2.

178

9.1. Tackling the Challenges of Mining Complex Data

Challenge 3: High-Dimensional Data Mining

Many well-designed algorithms in data mining might give excellent results.
However, it is crucial that these methods not only work on small to medium
datasets but that they can deal with data that are complex because of sheer size.
This can be either due to a high number of noise dimensions in clustering for
which we provide a solution with FOSSCLU or to the vast amount of edges in a
network for which we propose Spectral Lens. With these contributions, we also
tackle challenge 3.

Challenge 4: Mining Heterogeneous Data Types

Complexity in data also comes in the variety of data, leading to heterogeneous
data types. Traditionally, many clustering algorithms offer a sophisticated
model but only deal with numerical dimensions. To answer challenge 4, we
propose an integrated solution for clustering data with both numerical and
categorical dimensions with INTEGRATE. Additionally, for the various types
of networks, we offer structural insights on undirected and directed, as well as
unweighted and weighted graphs, supporting even negative edge-weights. Thus,
our response to complexity in data types tackles challenge 4.

Challenge 5: Parameter-free Data Mining

Parameter-free data mining is a guiding thread throughout this thesis. We regard
it as vital to achieving a very good solution without requiring the user to set
parameters at the first run of any of our methods. Setting parameters requires a
deeper understanding of methods and can lead to non-optimal results otherwise.
However, automatic parametrization does not always find the globally optimal
solution but might be stuck in a local optimum. Therefore, all our solutions
allow the user to define the parameters if needed. Our automatically detected
parameters are the number of groups or subgraph structures for MeGS and
Spectral Lens, the number of clusters for FOSSCLU and INTEGRATE, and the
number of dimensions for the clustered space in FOSSCLU. Setting the latter
gives the ability to obtain an explainable 2-dimensional visualization. With these
contributions, we also meet our challenge 5.

179

9. Summary and Outlook

9.2. Outlook
Our contributions to the challenges in data mining that we focus on in this thesis
provide the practitioner with valuable and ready-for-use methods to deal with
those challenges. For all our solutions, we provide concise algorithms, sample
implementations, and the data used for our evaluations (cf. Section 2.4), allowing
users to benefit from this thesis immediately and mitigate the impact of the
challenges to the various data mining tasks. Furthermore, this thesis contributes
to ongoing challenges in data mining and can only represent a small step for
science. Nevertheless, our results provide many connections for future research
or have already inspired new work (cf. [Mau+17]).

Future development will include new challenges that arise from those tackled
in this thesis, and with increasing complexity, existing challenges will become
more difficult. While our methods are able to handle large and complex graphs
as our challenge graphs and network mining demands even more extensive or
more complicated graphs, e.g., with high-dimensional edge- or node labels as
attributes, might require advanced solutions. Subsequently, further challenges
in graph mining arise from, e.g., noisy data or petabyte-scale data sizes.

Our algorithm MeGS could be extended to structure more complex graphs
by adding additional primitives to its dictionary together with a new MDL-
encoding schema and, if necessary, an algorithmic node sorting. Beyond that,
MeGS could even be improved to suggest meaningful primitives to the user.
This would enhance the usefulness of MeGS for a broader range of patterns and
applications.

Similarly, our second graph-mining algorithm, Spectral Lens, works on a
dictionary of patterns to interpret the connectivity between nodes in a graph.
Currently, our algorithm SLA can detect groups of similar connectivity, find
bridges that connect groups of similar connectivity, and find suspicious connec-
tivity patterns. However, with a further comprehensive dictionary, our algorithm
could be improved to extract additional connectivity patterns for even better
explainable diagnostics.

Our challenge explainable data mining is already becoming more critical with
the increasing attention to artificial neural networks or other black-box-classifiers.
With the right amount of training data, these methods are able to produce im-

180

9.2. Outlook

pressive results, but unlike our proposed methods, the user is often unable to
reproduce the steps that the algorithm has gone through to produce a result or
to understand the underlying model. Allowing model complexity and trans-
parency at the same time will continue to be challenging for future data mining
applications.

There has been much research to tackle the challenge of high-dimensional data
mining in the past, and with FOSSCLU, we contribute another notion for a more
intelligent clustering. Naturally, FOSSCLU is not the "holy grail" either and has
limitations like the assumption of Gaussian clusters. Most high-dimensional
clustering algorithms handle specific cases or answer specific questions. Like
in many areas of data mining, a unified approach and fewer ad-hoc solutions
could be a goal of future research (cf. [YW06]). For FOSSCLU, a step toward this
could be the waiver of the assumption of Gaussianity.

Of the proposed clustering algorithms in this thesis, INTEGRATE tackles the
challenge of mining heterogeneous data types but cannot exclude noise dimensions
as FOSSCLU does. A logical continuation would be the combination of high-
dimensional data mining with mining heterogeneous data types.

Finally, the challenge of parameter-free data mining is an ongoing task when
developing new algorithmic solutions. While all of our methods have the ability
to find a suitable parametrization without user input, they do not always find
the globally optimal solution, but the optimization might be stuck at a local
optimum. A future challenge is to avoid returning only a locally optimized
parametrization but to give the best result possible, or at least quality guarantees
on the result. However, this would still have to be computed in a reasonable
time.

Obviously, all our challenges are open-end-questions and continue to be
ongoing research tasks. However, we firmly believe that this thesis brings us a
step closer to an answer.

181

Eidesstattliche Versicherung
(Siehe Promotionsordnung vom 12.07.11, § 8, Abs. 2 Pkt. 5)

Hiermit erkläre ich an Eidesstatt, dass die Dissertation von mir selbstständig,
ohne unerlaubte Beihilfe angefertigt ist.

München, den 20. Oktober 2022

Sebastian Göbl

183

Bibliography

[Ach+] E. Achtert, C. Böhm, J. David, P. Kröger, and A. Zimek. “Robust
Clustering in Arbitrarily Oriented Subspaces”. In: Proceedings of the
2008 SIAM International Conference on Data Mining. SDM ’08, pp. 763–
774. doi: 10.1137/1.9781611972788.69.

[Ach+06] E. Achtert, C. Böhm, P. Kröger, and A. Zimek. “Mining Hierarchies
of Correlation Clusters”. In: 18th International Conference on Scientific
and Statistical Database Management. SSDBM’06. 2006, pp. 119–128.
doi: 10.1109/SSDBM.2006.35.

[Ach+07] E. Achtert, C. Böhm, H.-P. Kriegel, P. Kröger, and A. Zimek. “On
Exploring Complex Relationships of Correlation Clusters”. In: 19th
International Conference on Scientific and Statistical Database Manage-
ment. SSDBM ’07. 2007. doi: 10.1109/SSDBM.2007.21.

[AD07] A. Ahmad and L. Dey. “A k-mean Clustering Algorithm for Mixed
Numeric and Categorical Data”. In: Data & Knowledge Engineering
63.2 (2007), pp. 503–527. doi: 10.1016/j.datak.2007.03.016.

[AF09] L. Akoglu and C. Faloutsos. “RTG: A Recursive Realistic Graph
Generator Using Random Typing.” In: PKDD ’14. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2009, pp. 13–28. doi: 10.1007/978-3-
642-04180-8_13.

[Agg+99] C. C. Aggarwal, C. M. Procopiuc, J. L. Wolf, P. S. Yu, and J. S. Park.
“Fast Algorithms for Projected Clustering”. In: Proceedings of the
1999 ACM SIGMOD International Conference on Management of Data.
SIGMOD ’99. 1999, pp. 61–72. doi: 10.1145/304182.304188.

[Agg15] C. Aggarwal. Data Mining. Springer, 2015. doi: 10.1007/978-3-319-
14142-8.

185

https://doi.org/10.1137/1.9781611972788.69
https://doi.org/10.1109/SSDBM.2006.35
https://doi.org/10.1109/SSDBM.2007.21
https://doi.org/10.1016/j.datak.2007.03.016
https://doi.org/10.1007/978-3-642-04180-8_13
https://doi.org/10.1007/978-3-642-04180-8_13
https://doi.org/10.1145/304182.304188
https://doi.org/10.1007/978-3-319-14142-8
https://doi.org/10.1007/978-3-319-14142-8

Bibliography

[Agr+98] R. Agrawal, J. Gehrke, D. Gunopulos, and P. Raghavan. “Automatic
Subspace Clustering of High Dimensional Data for Data Mining
Applications”. In: Proceedings of the 1998 ACM SIGMOD International
Conference on Management of Data. SIGMOD ’98. Seattle, Washington,
USA: ACM, 1998, pp. 94–105. doi: 10.1145/276304.276314.

[AMF10] L. Akoglu, M. McGlohon, and C. Faloutsos. “Oddball: Spotting
Anomalies in Weighted Graphs.” In: PAKDD. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2010, pp. 410–421. doi: 10.1007/978-3-
642-13672-6_40.

[AR13] C. C. Aggarwal and C. K. Reddy, eds. Data Clustering: Algorithms
and Applications. CRC Press, 2013.

[Ara+14] M. Araujo, S. Günnemann, G. Mateos, and C. Faloutsos. “Beyond
Blocks: Hyperbolic Community Detection.” In: ECML PKDD ’14:
Machine Learning and Knowledge Discovery in Databases. 2014, pp. 50–
65. doi: 10.1007/978-3-662-44848-9_4.

[Ass+07a] I. Assent, R. Krieger, E. Müller, and T. Seidl. “DUSC: Dimensional-
ity Unbiased Subspace Clustering”. In: Seventh IEEE International
Conference on Data Mining. ICDM’07. IEEE, 2007, pp. 409–414. doi:
10.1109/ICDM.2007.49.

[Ass+07b] I. Assent, R. Krieger, E. Müller, and T. Seidl. “VISA: Visual Subspace
Clustering Analysis”. In: ACM SIGKDD Explorations Newsletter 9.2
(2007), pp. 5–12. doi: 10.1145/1345448.1345451.

[AY00] C. C. Aggarwal and P. S. Yu. “Finding Generalized Projected Clus-
ters in High Dimensional Spaces”. In: Proceedings of the 2000 ACM
SIGMOD International Conference on Management of Data. SIGMOD
’00. Dallas, Texas, USA: ACM, 2000, pp. 70–81. doi: 10.1145/342009.
335383.

[Beu+13] A. Beutel, W. Xu, V. Guruswami, C. Palow, and C. Faloutsos. “Copy-
Catch: Stopping Group Attacks by Spotting Lockstep Behavior in
Social Networks”. In: WWW ’13: Proceedings of the 22nd International
Conference on World Wide Web. Carnegie Mellon University. New
York, New York, USA: International World Wide Web Conferences

186

https://doi.org/10.1145/276304.276314
https://doi.org/10.1007/978-3-642-13672-6_40
https://doi.org/10.1007/978-3-642-13672-6_40
https://doi.org/10.1007/978-3-662-44848-9_4
https://doi.org/10.1109/ICDM.2007.49
https://doi.org/10.1145/1345448.1345451
https://doi.org/10.1145/342009.335383
https://doi.org/10.1145/342009.335383

Steering Committee, 2013, pp. 119–130. doi: 10 . 1145 / 2488388 .
2488400.

[BFP08] C. Böhm, C. Faloutsos, and C. Plant. “Outlier-robust Clustering
Using Independent Components”. In: Proceedings of the 2008 ACM
SIGMOD International Conference on Management of Data. SIGMOD
’08. Vancouver, Canada: ACM, 2008, pp. 185–198. doi: 10.1145/
1376616.1376638.

[Böh+04a] C. Böhm, K. Railing, H.-P. Kriegel, and P. Kroger. “Density con-
nected clustering with local subspace preferences”. In: Fourth IEEE
International Conference on Data Mining (ICDM’04). 2004, pp. 27–34.
doi: 10.1109/ICDM.2004.10087.

[Böh+04b] C. Böhm, K. Kailing, P. Kröger, and A. Zimek. “Computing Clusters
of Correlation Connected Objects”. In: Proceedings of the 2004 ACM
SIGMOD International Conference on Management of Data. SIGMOD
’04. Paris, France: ACM, 2004, pp. 455–466. doi: 10.1145/1007568.
1007620.

[Böh+06] C. Böhm, C. Faloutsos, J.-Y. Pan, and C. Plant. “Robust Information-
theoretic Clustering”. In: Proceedings of the Twelfth ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining. KDD
’06. Philadelphia, PA, USA: ACM, 2006, pp. 65–75. doi: 10.1145/
1150402.1150414.

[Böh+10] C. Böhm, A. Oswald, C. Plant, M. Plavinski, and B. Wackersreuther.
“Integrative Parameter-Free Clustering of Data with Mixed Type
Attributes”. In: PAKDD ’10: Advances in Knowledge Discovery and
Data Mining. 2010, pp. 38–47. doi: 10.1007/978-3-642-13657-3_7.

[Bor+20] K. Borgwardt, E. Ghisu, F. Llinares-López, L. OBray, and B. Rieck.
“Graph Kernels: State-of-the-Art and Future Challenges”. In: Foun-
dations and Trends in Machine Learning 13.5-6 (2020), pp. 531–712. doi:
10.1561/2200000076.

187

https://doi.org/10.1145/2488388.2488400
https://doi.org/10.1145/2488388.2488400
https://doi.org/10.1145/1376616.1376638
https://doi.org/10.1145/1376616.1376638
https://doi.org/10.1109/ICDM.2004.10087
https://doi.org/10.1145/1007568.1007620
https://doi.org/10.1145/1007568.1007620
https://doi.org/10.1145/1150402.1150414
https://doi.org/10.1145/1150402.1150414
https://doi.org/10.1007/978-3-642-13657-3_7
https://doi.org/10.1561/2200000076

Bibliography

[Bro08] R. K. Brouwer. “Clustering Feature Vectors with Mixed Numerical
and Categorical Attributes”. In: International Journal of Computational
Intelligence Systems 1.4 (2008), pp. 285–298. doi: 10.1080/18756891.
2008.9727625.

[BV04] P. Boldi and S. Vigna. “The Webgraph Framework I: Compression
Techniques”. In: Proceedings of the 13th International Conference on
World Wide Web. New York, NY: ACM, 2004, pp. 595–602. doi:
10.1145/988672.988752.

[Cha+04] D. Chakrabarti, S. Papadimitriou, D. S. Modha, and C. Faloutsos.
“Fully Automatic Cross-associations”. In: KDD ’04: Proceedings of the
tenth ACM SIGKDD international conference on Knowledge discovery
and data mining. 2004, pp. 79–88. doi: 10.1145/1014052.1014064.

[Chi+09] F. Chierichetti, R. Kumar, S. Lattanzi, M. Mitzenmacher, A. Pan-
conesi, and P. Raghavan. “On Compressing Social Networks”. In:
Proceedings of the 15th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining. New York, NY: ACM, 2009,
pp. 219–228. doi: 10.1145/1557019.1557049.

[DG19] D. Dua and C. Graff. UCI Machine Learning Repository. 2019. url:
http://archive.ics.uci.edu/ml (visited on 07/31/2019).

[DGK07] I. S. Dhillon, Y. Guan, and B. Kulis. “Weighted Graph Cuts with-
out Eigenvectors A Multilevel Approach”. In: IEEE Transactions on
Pattern Analysis and Machine Intelligence 29.11 (2007), pp. 1944–1957.
doi: 10.1109/TPAMI.2007.1115.

[Die17] R. Diestel. Graph Theory. 5th ed. Berlin, Heidelberg: Springer, 2017.
doi: 10.1007/978-3-662-53622-3.

[DL07] C. Ding and T. Li. “Adaptive Dimension Reduction Using Discrimi-
nant Analysis and K-means Clustering”. In: Proceedings of the 24th
International Conference on Machine Learning. ICML ’07. Corvalis, Ore-
gon, USA: ACM, 2007, pp. 521–528. doi: 10.1145/1273496.1273562.

188

https://doi.org/10.1080/18756891.2008.9727625
https://doi.org/10.1080/18756891.2008.9727625
https://doi.org/10.1145/988672.988752
https://doi.org/10.1145/1014052.1014064
https://doi.org/10.1145/1557019.1557049
http://archive.ics.uci.edu/ml
https://doi.org/10.1109/TPAMI.2007.1115
https://doi.org/10.1007/978-3-662-53622-3
https://doi.org/10.1145/1273496.1273562

[DMM03] I. S. Dhillon, S. Mallela, and D. S. Modha. “Information-theoretic
co-clustering”. In: KDD ’03: Proceedings of the ninth ACM SIGKDD
international conference on Knowledge discovery and data mining. IBM
Almaden Research Center. New York, New York, USA: ACM, Aug.
2003, pp. 89–98. doi: 10.1145/956750.956764.

[Dom01] B. E. Dom. An Information-Theoretic External Cluster-Validity Measure.
Tech. rep. Research Report RJ 10219, IBM, 2001, pp. 1–31.

[Dom02] B. E. Dom. “An Information-Theoretic External Cluster-Validity
Measure”. In: Proceedings of the Eighteenth Conference on Uncertainty
in Artificial Intelligence. UAI’02. Alberta, Canada: Morgan Kaufmann
Publishers Inc., 2002, pp. 137–145.

[Don08] S. van Dongen. “Graph Clustering Via a Discrete Uncoupling Pro-
cess”. In: SIAM Journal on Matrix Analysis and Applications 30.1 (Jan.
2008), pp. 121–141. doi: 10.1137/040608635.

[Dri+] P. Drineas, A. Frieze, R. Kannan, S. Vempala, and V. Vinay. “Clus-
tering Large Graphs via the Singular Value Decomposition”. In:
Machine learning 56.1-3 (), pp. 9–33. doi: 10 . 1023 / B % 3AMACH .
0000033113.59016.96.

[DuB08] C. L. DuBois. UCI Network Data Repository. Tech. rep. 2008.

[Dwy09] T. Dwyer. “Scalable, Versatile and Simple Constrained Graph Lay-
out”. In: Computer Graphics Forum 28.3 (2009), pp. 991–998. doi:
10.1111/j.1467-8659.2009.01449.x.

[Est+96] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu. “A Density-Based Al-
gorithm for Discovering Clusters in Large Spatial Databases with
Noise”. In: Proceedings of the Second International Conference on Knowl-
edge Discovery and Data Mining. KDD’96. Portland, Oregon, 1996,
pp. 226–231.

[Fen+12] J. Feng, X. He, B. Konte, C. Böhm, and C. Plant. “Summarization-
based Mining Bipartite Graphs”. In: KDD ’12: Proceedings of the 18th
ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining. 2012, pp. 1249–1257. doi: 10.1145/2339530.2339725.

189

https://doi.org/10.1145/956750.956764
https://doi.org/10.1137/040608635
https://doi.org/10.1023/B%3AMACH.0000033113.59016.96
https://doi.org/10.1023/B%3AMACH.0000033113.59016.96
https://doi.org/10.1111/j.1467-8659.2009.01449.x
https://doi.org/10.1145/2339530.2339725

Bibliography

[Fen+13] J. Feng, X. He, N. Hubig, C. Bohm, and C. Plant. “Compression-
Based Graph Mining Exploiting Structure Primitives”. In: IEEE 13th
International Conference on Data Mining. June 2013, pp. 181–190. doi:
10.1109/ICDM.2013.56.

[Fou+12] F. Fouss, K. Francoisse, L. Yen, A. Pirotte, and M. Saerens. “An
experimental investigation of kernels on graphs for collaborative
recommendation and semisupervised classification”. In: Neural Net-
works 31 (2012), pp. 53–72. doi: 10.1016/j.neunet.2012.03.001.

[FPS96a] U. Fayyad, G. Piatetsky-Shapiro, and P. Smyth. “From Data Mining
to Knowledge Discovery in Databases”. In: AI Magazine 17.3 (1996),
pp. 37–54. doi: 10.1609/aimag.v17i3.1230.

[FPS96b] U. Fayyad, G. Piatetsky-Shapiro, and P. Smyth. “Knowledge Discov-
ery and Data Mining: Towards a Unifying Framework”. In: KDD
’96: Proceedings of the Second ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining. 1996, pp. 82–88.

[GKF17] S. Goebl, S. Kumar, and C. Faloutsos. “Spectral Lens: Explainable
Diagnostics, Tools and Discoveries in Directed, Weighted Graphs”.
In: ICDM ’17: Proceedings of the 2017 IEEE 17th International Conference
on Data Mining. 2017, pp. 877–882. doi: 10.1109/icdm.2017.108.

[Goe+14] S. Goebl, X. He, C. Plant, and C. Böhm. “Finding the Optimal
Subspace for Clustering”. In: ICDM ’14: Proceedings of the 2014 IEEE
14th International Conference on Data Mining. 2014, pp. 130–139. doi:
10.1109/icdm.2014.34.

[Goe+16] S. Goebl, A. Tonch, C. Böhm, and C. Plant. “MeGS: Partition-
ing Meaningful Subgraph Structures using Minimum Description
Length”. In: ICDM ’16: Proceedings of the 2016 IEEE 16th International
Conference on Data Mining. 2016, pp. 889–894. doi: 10.1109/icdm.
2016.0108.

[Goo21] Google LLC. Google Trends. 2021. url: https://trends.google.
de/trends/explore?date=all&q=Data%5C%20Science,Big%5C%
20Data,Data%5C%20Analytics,Machine%5C%20Learning (visited on
04/24/2021).

190

https://doi.org/10.1109/ICDM.2013.56
https://doi.org/10.1016/j.neunet.2012.03.001
https://doi.org/10.1609/aimag.v17i3.1230
https://doi.org/10.1109/icdm.2017.108
https://doi.org/10.1109/icdm.2014.34
https://doi.org/10.1109/icdm.2016.0108
https://doi.org/10.1109/icdm.2016.0108
https://trends.google.de/trends/explore?date=all&q=Data%5C%20Science,Big%5C%20Data,Data%5C%20Analytics,Machine%5C%20Learning
https://trends.google.de/trends/explore?date=all&q=Data%5C%20Science,Big%5C%20Data,Data%5C%20Analytics,Machine%5C%20Learning
https://trends.google.de/trends/explore?date=all&q=Data%5C%20Science,Big%5C%20Data,Data%5C%20Analytics,Machine%5C%20Learning

[Gre10] S. Gregory. “Finding Overlapping Communities in Networks by La-
bel Propagation”. In: New Journal of Physics 12.1 (Oct. 2010), p. 103018.
doi: 10.1088/1367-2630/12/10/103018.

[Grü05] P. Grünwald. “A Tutorial Introduction to the Minimum Descrip-
tion Length Principle”. In: Advances in Minimum Description Length:
Theory and Applications. Ed. by P. D. Grünwald, J. I. Myung, and
M. A. Pitt. 2005. isbn: 9780262072625.

[Gün+08] H. Gündel, M. Valet, C. Sorg, D. Huber, C. Zimmer, T. Sprenger, and
T. R. Tölle. “Altered Cerebral Response to Noxious Heat Stimulation
in Patients with Somatoform Pain Disorder.” In: Pain 137.2 (2008),
pp. 413–421. doi: 10.1016/j.pain.2007.10.003.

[HC07] C.-C. Hsu and Y.-C. Chen. “Mining of Mixed Data with Application
to Catalog Marketing”. In: Expert Systems with Applications 32.1
(2007), pp. 12–23. doi: 10.1016/j.eswa.2005.11.017.

[HG08] J. Han and J. Gao. “Research Challenges for Data Mining in Science
and Engineering”. In: Next Generation of Data Mining. Ed. by H.
Kargupta, J. Han, P. S. Yu, R. Motwani, and V. Kumar. 2008. doi:
10.1201/9781420085877.

[HKP13] J. Han, M. Kamber, and J. Pei. Data Mining: Concepts and Techniques.
3rd. San Francisco: Morgan Kaufmann Publishers Inc., 2013. isbn:
9780123814791. doi: 10.1016/C2009-0-61819-5.

[HO00] A. Hyvärinen and E. Oja. “Independent Component Analysis: Algo-
rithms and Applications”. In: Neural Networks 13 (2000), pp. 411–430.
doi: 10.1016/S0893-6080(00)00026-5.

[Hoo+16] B. Hooi, H. A. Song, A. Beutel, N. Shah, K. Shin, and C. Faloutsos.
“FRAUDAR: Bounding Graph Fraud in the Face of Camouflage”.
In: 22nd ACM SIGKDD International Conference. New York, New
York, USA: ACM Press, 2016, pp. 895–904. doi: 10.1145/2939672.
2939747.

191

https://doi.org/10.1088/1367-2630/12/10/103018
https://doi.org/10.1016/j.pain.2007.10.003
https://doi.org/10.1016/j.eswa.2005.11.017
https://doi.org/10.1201/9781420085877
https://doi.org/10.1016/C2009-0-61819-5
https://doi.org/10.1016/S0893-6080(00)00026-5
https://doi.org/10.1145/2939672.2939747
https://doi.org/10.1145/2939672.2939747

Bibliography

[Hua98] Z. Huang. “Extensions to the k-Means Algorithm for Clustering
Large Data Sets with Categorical Values”. In: Data Mining and Knowl-
edge Discovery 2.3 (1998), pp. 283–304. doi: 10.1023/A:1009769707641.

[HXD05] Z. He, X. Xu, and S. Deng. “Clustering Mixed Numeric and Cat-
egorical Data: A Cluster Ensemble Approach”. In: Computing Re-
search Repository abs/cs/0509011 (2005). doi: 10.48550/arXiv.cs/
0509011.

[Jia+14a] M. Jiang, P. Cui, A. Beutel, C. Faloutsos, and S. Yang. “CatchSync:
catching synchronized behavior in large directed graphs”. In: KDD
’14: Proceedings of the 20th ACM SIGKDD international conference on
Knowledge discovery and data mining. Carnegie Mellon University.
ACM, Aug. 2014, pp. 941–950. doi: 10.1145/2623330.2623632.

[Jia+14b] M. Jiang, P. Cui, A. Beutel, C. Faloutsos, and S. Yang. “Inferring
Strange Behavior from Connectivity Pattern in Social Networks”. In:
Advances in Knowledge Discovery and Data Mining. Ed. by V. S. Tseng,
T. B. Ho, Z. H. Zhou, and H. Y. Kao. Cham: Springer International
Publishing, May 2014, pp. 126–138. doi: 10.1007/978-3-319-06608-
0_11.

[JNH07] L. Jing, M. K. Ng, and J. Z. Huang. “An Entropy Weighting k-Means
Algorithm for Subspace Clustering of High-Dimensional Sparse
Data”. In: IEEE Transactions on Knowledge and Data Engineering 19.8
(2007), pp. 1026–1041. doi: 10.1109/TKDE.2007.1048.

[Jol02] I. T. Jolliffe. Principal Component Analysis. 2nd ed. Springer Series in
Statistics. New York: Springer, 2002. doi: 10.1007/b98835.

[KF11] U. Kang and C. Faloutsos. “Beyond ’Caveman Communities’: Hubs
and Spokes for Graph Compression and Mining”. In: ICDM ’14:
Proceedings of the 2014 IEEE 14th International Conference on Data
Mining. IEEE Computer Society, 2011, pp. 300–309. doi: 10.1109/
ICDM.2011.26.

192

https://doi.org/10.1023/A:1009769707641
https://doi.org/10.48550/arXiv.cs/0509011
https://doi.org/10.48550/arXiv.cs/0509011
https://doi.org/10.1145/2623330.2623632
https://doi.org/10.1007/978-3-319-06608-0_11
https://doi.org/10.1007/978-3-319-06608-0_11
https://doi.org/10.1109/TKDE.2007.1048
https://doi.org/10.1007/b98835
https://doi.org/10.1109/ICDM.2011.26
https://doi.org/10.1109/ICDM.2011.26

[KHC05] N. S. Ketkar, L. B. Holder, and D. J. Cook. “Subdue: Compression-
Based Frequent Pattern Discovery in Graph Data”. In: Proceedings of
the 1st International Workshop on Open Source Data Mining: Frequent
Pattern Mining Implementations (OSDM’05). 2005, pp. 71–76. doi:
10.1145/1133905.1133915.

[KK04] M. Kuramochi and G. Karypis. “An Efficient Algorithm for Discover-
ing Frequent subgraphs”. In: IEEE Transactions on Knowledge and Data
Engineering 16.9 (2004), pp. 1038–1051. doi: 10.1109/TKDE.2004.33.

[KK99] G. Karypis and V. Kumar. “Multilevel k-way Hypergraph Partition-
ing”. In: DAC (1999), pp. 343–348. doi: 10.1145/309847.309954.

[KKK04] K. Kailing, H.-P. Kriegel, and P. Kröger. “Density-Connected Sub-
space Clustering for High-Dimensional Data.” In: Proceedings of the
2004 SIAM International Conference on Data Mining. SDM’04. 2004,
pp. 246–256. doi: 10.1137/1.9781611972740.23.

[KKZ09] H.-P. Kriegel, P. Kröger, and A. Zimek. “Clustering High-dimensional
Data: A Survey on Subspace Clustering, Pattern-based Clustering,
and Correlation Clustering”. In: ACM Transactions on Knowledge Dis-
covery from Data 3.1 (2009), 1:1–1:58. doi: 10.1145/1497577.1497578.

[Kou+14] D. Koutra, U. Kang, J. Vreeken, and C. Faloutsos. “VOG: Summa-
rizing and Understanding Large Graphs”. In: SIAM International
Conference on Data Mining. Society for Industrial and Applied Math-
ematics, Apr. 2014, pp. 91–99. doi: 10.1137/1.9781611973440.11.

[KSS14] S. Kumar, F. Spezzano, and V. S. Subrahmanian. “Accurately detect-
ing trolls in Slashdot Zoo via decluttering”. In: (2014), pp. 188–195.
doi: 10.1109/ASONAM.2014.6921581.

[KTF11] U. Kang, C. E. Tsourakakis, and C. Faloutsos. “PEGASUS: Mining
Peta-Scale Graphs”. In: Knowledge and Information Systems 27.2 (2011),
pp. 303–325.

193

https://doi.org/10.1145/1133905.1133915
https://doi.org/10.1109/TKDE.2004.33
https://doi.org/10.1145/309847.309954
https://doi.org/10.1137/1.9781611972740.23
https://doi.org/10.1145/1497577.1497578
https://doi.org/10.1137/1.9781611973440.11
https://doi.org/10.1109/ASONAM.2014.6921581

Bibliography

[Kum+16] S. Kumar, F. Spezzano, V. S. Subrahmanian, and C. Faloutsos. “Edge
Weight Prediction in Weighted Signed Networks”. In: Data Mining
(ICDM), 2016 IEEE International Conference on. 2016, pp. 221–230. doi:
10.1109/ICDM.2016.0033.

[LC08] T. Li and Y. Chen. “A Weight Entropy k-Means Algorithm for
Clustering Dataset with Mixed Numeric and Categorical Data”.
In: Fifth International Conference on Fuzzy Systems and Knowledge
Discovery. Vol. 1. FSKD’08. 2008, pp. 36–41. doi: 10.1109/FSKD.
2008.32.

[LC78] S. Leung-Yan-Cheong and T. M. Cover. “Some Equivalences Be-
tween Shannon Entropy and Kolmogorov Complexity”. In: IEEE
Transactions on Information Theory 24.3 (1978), pp. 331–338. doi: 10.
1109/TIT.1978.1055891.

[Lie+02] B. Liebl, U. Nennstiel-Ratzel, R. von Kries, R. Fingerhut, B. Ol-
gemöller, A. Zapf, and A. A. Roscher. “Very High Compliance in an
Expanded MS-MS-Based Newborn Screening Program despite Writ-
ten Parental Consent”. In: Preventive Medicine 34.2 (2002), pp. 127–
131. doi: 10.1006/pmed.2001.0952.

[Liu+18] Y. Liu, T. Safavi, A. Dighe, and D. Koutra. “Graph Summarization
Methods and Applications: A Survey”. In: ACM Computing Surveys
(CSUR) 51.3 (2018). doi: 10.1145/3186727.

[LS00] D. D. Lee and H. S. Seung. “Algorithms for Non-negative Matrix
Factorization”. In: Proceedings of the 13th International Conference on
Neural Information Processing Systems. NIPS’00. Denver, CO: MIT
Press, 2000, pp. 535–541.

[Mac67] J. MacQueen. “Some Methods for Classification and Analysis of
Multivariate Observations”. In: Proceedings of the Fifth Berkeley Sym-
posium on Mathematical Statistics and Probability. University of Cali-
fornia Press, 1967, pp. 281–297.

194

https://doi.org/10.1109/ICDM.2016.0033
https://doi.org/10.1109/FSKD.2008.32
https://doi.org/10.1109/FSKD.2008.32
https://doi.org/10.1109/TIT.1978.1055891
https://doi.org/10.1109/TIT.1978.1055891
https://doi.org/10.1006/pmed.2001.0952
https://doi.org/10.1145/3186727

[Mat+00] T. Matsuda, T. Horiuchi, H. Motoda, and T. Washio. “Extension
of Graph-Based Induction for General Graph Structured Data”. In:
Lecture Notes in Computer Science. Ed. by T. Terano, H. Liu, and
A. P. Chen. Springer Berlin Heidelberg, 2000, pp. 420–431. doi:
10.1007/3-540-45571-X_49.

[Mau+17] D. Mautz, W. Ye, C. Plant, and C. Böhm. “Towards an Optimal
Subspace for K-Means”. In: Proceedings of the 23rd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining,
Halifax, NS, Canada, August 13-17, 2017. ACM, 2017, pp. 365–373.
doi: 10.1145/3097983.3097989.

[Mie15] P. Miettinen. “Generalized Matrix Factorizations as a Unifying
Framework for Pattern Set Mining: Complexity Beyond Blocks”.
In: Machine Learning and Knowledge Discovery in Databases - European
Conference, ECML PKDD 2015, Porto, Portugal, September 7-11, 2015,
Proceedings, Part II. Cham: Springer International Publishing, 2015,
pp. 36–52. doi: 10.1007/978-3-319-23525-7_3.

[MV14] P. Miettinen and J. Vreeken. “MDL4BMF: Minimum Description
Length for Boolean Matrix Factorization”. In: ACM Transactions
on Knowledge Discovery from Data 8.4 (Oct. 2014), 18:1–18:31. doi:
10.1145/2601437.

[NRS08] S. Navlakha, R. Rastogi, and N. Shrivastava. “Graph summarization
with bounded error”. In: SIGMOD International Conference on Man-
agement of Data (SIGMOD’04). New York, New York, USA: ACM
Request Permissions, June 2008, pp. 419–432. doi: 10.1145/1376616.
1376661.

[Orr08] W. W. Orrison. Atlas of Brain Function. Thieme, 2008.

[PM00] D. Pelleg and A. W. Moore. “X-means: Extending K-means with
Efficient Estimation of the Number of Clusters”. In: Proceedings of
the Seventeenth International Conference on Machine Learning. ICML
’00. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc.,
2000, pp. 727–734.

195

https://doi.org/10.1007/3-540-45571-X_49
https://doi.org/10.1145/3097983.3097989
https://doi.org/10.1007/978-3-319-23525-7_3
https://doi.org/10.1145/2601437
https://doi.org/10.1145/1376616.1376661
https://doi.org/10.1145/1376616.1376661

Bibliography

[Pra+10] B. A. Prakash, A. Sridharan, M. Seshadri, S. Machiraju, and C.
Faloutsos. “EigenSpokes: Surprising Patterns and Scalable Commu-
nity Chipping in Large Graphs. ” In: PAKDD. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2010, pp. 435–448. doi: 10.1007/978-3-
642-13672-6_42.

[Pre+07] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery.
Numerical Recipes. The Art of Scientific Computing. 3rd ed. New York,
NY, USA: Cambridge University Press, 2007.

[Ris05] J. Rissanen. An Introduction to the MDL Principle. Tech. rep. Helsinkin
Institute for Information Technology, 2005.

[Ris07] J. Rissanen. Information and Complexity in Statistical Modeling. Infor-
mation Science and Statistics. New York, NY: Springer Science &
Business Media, 2007. doi: 10.1007/978-0-387-68812-1.

[Ris78] J. Rissanen. “Modeling by shortest data description”. In: Automatica
14.5 (1978), pp. 465–471. doi: 10.1016/0005-1098(78)90005-5.

[RS06] E. Rendón and J. S. Sánchez. “Clustering Based on Compressed
Data for Categorical and Mixed Attributes”. In: Proceedings of the
2006 Joint IAPR International Conference on Structural, Syntactic, and
Statistical Pattern Recognition. SSPR’06/SPR’06. Hong Kong, China:
Springer-Verlag, 2006, pp. 817–825. doi: 10.1007/11815921_90.

[SD11] S. Sarkar and A. Dong. “Community Detection in Graphs using
Singular Value Decomposition”. In: Physical Review E 83.4 (Apr.
2011), pp. 1082–16. doi: 10.1103/PhysRevE.83.046114.

[SG76] S. Sahni and T. Gonzalez. “P-complete approximation problems”.
In: Journal of the ACM 23.3 (1976), pp. 555–565. doi: 10.1145/321958.
321975.

[Sha+14] N. Shah, A. Beutel, B. Gallagher, and C. Faloutsos. “Spotting Sus-
picious Link Behavior with fBox: An Adversarial Perspective”. In:
ICDM ’14: Proceedings of the 2014 IEEE 14th International Conference on
Data Mining. IEEE, 2014, pp. 959–964. doi: 10.1109/ICDM.2014.36.

196

https://doi.org/10.1007/978-3-642-13672-6_42
https://doi.org/10.1007/978-3-642-13672-6_42
https://doi.org/10.1007/978-0-387-68812-1
https://doi.org/10.1016/0005-1098(78)90005-5
https://doi.org/10.1007/11815921_90
https://doi.org/10.1103/PhysRevE.83.046114
https://doi.org/10.1145/321958.321975
https://doi.org/10.1145/321958.321975
https://doi.org/10.1109/ICDM.2014.36

[Sha+16] N. Shah, A. Beutel, B. Hooi, L. Akoglu, S. Günnemann, D. Makhija,
M. Kumar, and C. Faloutsos. “EdgeCentric - Anomaly Detection in
Edge-Attributed Networks.” In: ICDM Workshops (2016), pp. 327–
334. doi: 10.1109/ICDMW.2016.0053.

[Sha48] C. E. Shannon. “A Mathematical Theory of Communication”. In:
The Bell System Technical Journal 27.3 (1948), pp. 379–423. doi: 10.
1002/j.1538-7305.1948.tb01338.x.

[Sim+13] K. Sim, V. Gopalkrishnan, A. Zimek, and G. Cong. “A survey on
enhanced subspace clustering”. In: Data Mining and Knowledge Dis-
covery 26.2 (2013), pp. 332–397. doi: 10.1007/s10618-012-0258-x.

[TSL00] J. B. Tenenbaum, V. d. Silva, and J. C. Langford. “A Global Geometric
Framework for Nonlinear Dimensionality Reduction”. In: Science
290.5500 (2000), pp. 2319–2323. doi: 10.1126/science.290.5500.
2319.

[TXO05] A. K. H. Tung, X. Xu, and B. C. Ooi. “CURLER: Finding and Vi-
sualizing Nonlinear Correlation Clusters”. In: Proceedings of the
2005 ACM SIGMOD International Conference on Management of Data.
SIGMOD ’05. Baltimore, Maryland: ACM, 2005, pp. 467–478. doi:
10.1145/1066157.1066211.

[Tzo+02] N. Tzourio-Mazoyer, B. Landeau, D. Papathanassiou, F. Crivello, O.
Etard, N. Delcroix, B. Mazoyer, and M. Joliot. “Automated anatomi-
cal labeling of activations in SPM using a macroscopic anatomical
parcellation of the MNI MRI single-subject brain”. In: Neuroimage
15.1 (Jan. 2002), pp. 273–289. doi: 10.1006/nimg.2001.0978.

[VEB09] N. X. Vinh, J. Epps, and J. Bailey. “Information Theoretic Measures
for Clusterings Comparison: Is a Correction for Chance Necessary?”
In: Proceedings of the 26th Annual International Conference on Ma-
chine Learning. ICML ’09. Montreal, Quebec, Canada: ACM, 2009,
pp. 1073–1080. doi: 10.1145/1553374.1553511.

[WB68] C. S. Wallace and D. M. Boulton. “An Information Measure for
Classification”. In: The Computer Journal 11.2 (1968), pp. 185–194.
doi: 10.1093/comjnl/11.2.185.

197

https://doi.org/10.1109/ICDMW.2016.0053
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
https://doi.org/10.1007/s10618-012-0258-x
https://doi.org/10.1126/science.290.5500.2319
https://doi.org/10.1126/science.290.5500.2319
https://doi.org/10.1145/1066157.1066211
https://doi.org/10.1006/nimg.2001.0978
https://doi.org/10.1145/1553374.1553511
https://doi.org/10.1093/comjnl/11.2.185

Bibliography

[Wu+08] X. Wu, V. Kumar, J. Ross Quinlan, J. Ghosh, Q. Yang, H. Motoda,
G. J. McLachlan, A. Ng, B. Liu, P. S. Yu, Z.-H. Zhou, M. Steinbach,
D. J. Hand, and D. Steinberg. “Top 10 algorithms in data mining”.
In: Knowledge and Information Systems 14.1 (2008), pp. 1–37. doi:
10.1007/s10115-007-0114-2.

[Yao03] Y. Y. Yao. “Information-Theoretic Measures for Knowledge Discov-
ery and Data Mining”. In: Entropy Measures, Maximum Entropy Prin-
ciple and Emerging Applications. 2003, pp. 115–136. doi: 10.1007/978-
3-540-36212-8_6.

[YH02] X. Yan and J. Han. “gSpan: graph-based substructure pattern min-
ing”. In: Data Mining, 2002. ICDM 2003. Proceedings. 2002 IEEE
International Conference on IS - SN - VO -. 2002, pp. 721–724. doi:
10.1109/ICDM.2002.1184038.

[YL12] J. Yang and J. Leskovec. “Community-Affiliation Graph Model for
Overlapping Network Community Detection”. In: ICDM’12. IEEE,
Nov. 2012, pp. 1170–1175. doi: 10.1109/ICDM.2012.139.

[YL13] J. Yang and J. Leskovec. “Overlapping Community Detection at
Scale: a Nonnegative Matrix Factorization Approach.” In: WSDM
(2013), pp. 587–596. doi: 10.1145/2433396.2433471.

[YT05] J. Yin and Z. Tan. “Clustering Mixed Type Attributes in Large
Dataset”. In: Parallel and Distributed Processing and Applications. Ed.
by Y. Pan, D. Chen, M. Guo, J. Cao, and J. Dongarra. ISPA ’05. Berlin,
Heidelberg: Springer, 2005, pp. 655–661. doi: 10.1007/11576235_66.

[YW06] Q. Yang and X. Wu. “10 Challenging Problems in Data Mining Re-
search”. In: International Journal of Information Technology & Decision
Making 5.4 (2006), pp. 597–604. doi: 10.1142/S0219622006002258.

[ZRL96] T. Zhang, R. Ramakrishnan, and M. Livny. “BIRCH: An Efficient
Data Clustering Method for Very Large Databases.” In: SIGMOD
’96. Montreal, Quebec, Canada: ACM, 1996, pp. 103–114. doi: 10.
1145/233269.233324.

198

https://doi.org/10.1007/s10115-007-0114-2
https://doi.org/10.1007/978-3-540-36212-8_6
https://doi.org/10.1007/978-3-540-36212-8_6
https://doi.org/10.1109/ICDM.2002.1184038
https://doi.org/10.1109/ICDM.2012.139
https://doi.org/10.1145/2433396.2433471
https://doi.org/10.1007/11576235_66
https://doi.org/10.1142/S0219622006002258
https://doi.org/10.1145/233269.233324
https://doi.org/10.1145/233269.233324

List of Figures

1.1 Worldwide relative increase of buzzwords related to Data Science
(2004–2020) in the Google web search. 4

1.2 The KDD (Knowledge Discovery in Databases) process. 5

2.1 Directed, undirected and weighted graphs 14
2.2 Toy examples of various graph types. 19
2.3 Visualization of conditional entropy H(X|Y), H(Y|X) and Mutual

Information I(X; Y). 20
2.4 Motivating the concept of minimum description length: Model

complexity vs. goodness of fit. 22

4.1 Synthetic graph illustrating the idea of MeGS. 44
4.2 Illustration for MDL structure encoding schema. 47
4.3 Robustness and asymptotic runtime. 59
4.4 ADJNOUN dataset: visualization of MeGS’s results. 62
4.5 ADJNOUN dataset: Adjacency matric and force-directed visual-

izations. 63
4.6 MeGS detects two structures in the BRAIN dataset. 64
4.7 SYN dataset: Visualizations of the adjacency matrix. 65
4.8 BRAIN dataset: Visualizations of the adjacency matrix. 68
4.9 POWER dataset: Visualizations of the adjacency matrix. 69

5.1 SLA explains the DBLP dataset. 75
5.2 SLA explains the OPENFLIGHTS and BITCOIN-OTC datasets. . 76
5.3 SL-Plot and BW-Plot of synthetic hyperbolic graph. 82
5.4 Top-5 SL-Plots(u,u) for the ENRON dataset 84

199

List of Figures

5.5 SL-Dictionary provides rules for spectral patterns in graphs to
quickly explain GenComs and their structure. 85

5.6 Illustration of Observation 2. 88
5.7 Illustration of our SLA algorithm. 91
5.8 Our thorniness heuristic gives intuitive results. 94
5.9 SLA detects GenComs, bridges and suspicious behavior. 95
5.10 OPENFLIGHTS dataset . 98

7.1 Determining the Optimal Subspace for Clustering. 117
7.2 Transformation of the data matrix X. 123
7.3 Example of plane rotation for two clusters. 127
7.4 Visualization of a synthetic 12D dataset. 140
7.5 Visualization of PENDIGITS. 141
7.6 Fuzzy association of 3 clusters. 142
7.7 Selecting number of clusters and subspace dimensionality by MDL.145
7.8 Varying the number of noise dimensions and the variance of the

clusters. 146

8.1 Toy example. 153
8.2 Experiments on synthetic datasets. 159
8.3 Coding costs (iMDL) for different settings of k for a synthetic

dataset that consists of 6 clusters. 165

200

List of Tables

2.1 Important Symbols and Definitions. 26

4.1 Comparison of MeGS and related algorithms. 43
4.2 Important Symbols and Definitions. 46
4.3 NMI for FOOTBALL dataset. 60
4.4 Graph Compression . 70

5.1 Real-world networks. 78
5.2 The contributions of SL compared to methods of related work . . 79
5.3 Important Symbols and Definitions. 81
5.4 SLA performs best in detecting shill accounts. 102

7.1 Important Symbols and Definitions. 120
7.2 Quality (NMI) of results of real-world datasets. 144

8.1 Comparison of clustering quality measured by Dom on real-world
datasets. 163

9.1 Data mining challenges met by our proposed algorithms 171

201

	Abstract
	Zusammenfassung
	Acknowledgments
	List of Publications
	Preliminaries
	Introduction
	Data Mining and Knowledge Discovery in Databases
	Patterns in Data Mining
	Steps of the KDD Process

	Challenges in Mining Complex Data
	Facing the Challenges with Our Contributions
	Outline of this Thesis

	Methodical and Mathematical Preliminaries
	Graphs
	Information-Theoretic Clustering
	Minimum Description Length (MDL)
	External Cluster-Validity Measures

	Notations
	Scalars, Vectors, and Matrices
	Clustering and Entropy
	Graphs

	Reproducibility

	Fast and Effective Methods for Explainable Graph Structuring and Summarization
	Related Work
	Graph Summarization, Structuring, and Compression
	Graph Summarization and Structuring
	Graph Compression

	Graph Clustering and Partitioning
	Regularities and Suspicious Behavior in Graphs
	Finding Regularities in Graphs
	Detecting Suspicious Behavior in Graphs

	MEGS: Partitioning Meaningful Subgraph Structures using Minimum Description Length
	Introduction
	Meaningful Graph Structures
	Graph Structure Encoding
	Graph Compression Schema

	Algorithm MEGS
	Split Step
	Merge Step
	Assignment Step
	Graph Structuring Algorithms
	Overall Time Complexity of MeGS

	Experiments
	Partitioning
	Structuring and Visualization
	Compression
	Asymptotic Runtime

	Conclusion

	Spectral Lens: Explainable Diagnostics, Tools and Discoveries in Directed, Weighted Graphs
	Introduction
	Diagnostics: SL-Dictionary
	Mathematical Background: Singular Value Decomposition
	GenComs, SL-Plots and BW-Plots
	SL-Dictionary: Patterns and Rules

	Tools: SL-Algorithm
	Intuition
	SLA Step 1: Find optimal ku,opt and kv,opt
	Proposed Measure: Thorniness
	SLA Step 2: Assign GenComs and Bridges
	SLA Step 3: Suspicion Score of GenComs
	Scalability of SLA

	SLA-Discoveries
	GenComs and Bridges
	Suspicious GenComs

	Conclusions

	Fast and Effective Methods for Parameter-free Clustering
	Related Work
	Dimensionality Reduction Techniques
	Subspace, Projected and Correlation Clustering
	Projected and Subspace Clustering
	Correlation Clustering

	Visualization of Subspace Clustering Results
	Integrated Clustering

	FOSSCLU: Finding the Optimal Subspace for Clustering
	Introduction
	FOSSCLU
	The FOSSCLU Optimization Goal
	ORT: The Optimal Rigid Transform
	The Algorithm FOSSCLU
	Minimum Description Length (MDL)
	Correctness and Convergence
	Complexity of FOSSCLU

	Fuzzy FOSSCLU
	Experiments
	Interpretable Visualization
	Accurate Clustering
	Fully Automatic Parametrization

	Conclusion

	INTEGRATE: Integrative Parameter-free Clustering of Data with Mixed-Type Attributes
	Introduction
	Minimum Description Length for Integrative Clustering
	Notations
	Likelihood and Data Compression
	Coding Categorical Data
	Coding Numerical Data
	A Coding Scheme for Integrative Clustering

	The Algorithm INTEGRATE
	Initialization
	Automatically Selecting the Number of Clusters k

	Experimental Evaluation
	Synthetic Datasets
	Real-world Datasets
	Finding the Optimal Number of Clusters

	Conclusion

	Conclusion
	Summary and Outlook
	Tackling the Challenges of Mining Complex Data
	Summary and Discussion: Fast and Effective Methods for Explainable Graph Structuring and Summarization
	Summary and Discussion: Fast and Efficient Methods for Parameter-free Clustering
	Discussion of our Contributions to Tackling the Challenges

	Outlook

	Bibliography
	List of Figures
	List of Tables

