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1 Beitrage zu den Veroffentlichungen

1. Beitrage zu den Veroffentlichungen

1.1 Beitrag zu Paper I: Brugger und Strauch, 2014

Ich habe die in diesem Paper beschriebene algorithmische Optimierung einer kopp-
lungsanalytischen Methode nach einer Idee von Prof. Strauch eigenstandig entwickelt
und in das Softwareprogramm GENEHUNTER-MODSCORE implementiert. Die zur
Evaluierung der neuen Methode nétige Simulationsstudie habe ich selbst entworfen
und durchgefuhrt. Des Weiteren war ich verantwortlich fir die Konzeption und die Er-
stellung des Manuskripts.

1.2 Beitrag zu Paper ll: Brugger et al., 2024

Ich habe die in diesem Paper beschriebene neue Version von GENEHUNTER-
MODSCORE, die eine gemeinsame Kopplungs- und Assoziationsanalyse mit Familien
und unverwandten Individuen erlaubt, eigenstandig entwickelt und implementiert. Die
zur Evaluierung der neuen Methode ndtige Simulationsstudie habe ich selbst entwor-
fen und durchgefiihrt. Die MOD-Score-Analyse der Daten aus der Nationalen Fall-
sammlung fur familiares Pankreaskarzinom (German National Case Collection for Fa-
milial Pancreatic Cancer (FaPaCa)) als Anwendungsbeispiel, fur deren Bereitstellung
und erste Qualitatskontrollen weitere Koautoren des Papers (Manuel Lutz, Martina
Muller-Nurasyid, Elvira Matthai, Emily P. Slater und Detlef K. Bartsch) verantwortlich
waren, habe ich ebenfalls selbsténdig durchgefuihrt. Des Weiteren war ich verantwort-
lich fir die Konzeption und die Erstellung des Manuskripts. Die Idee fir eine gemein-
same Kopplungs- und Assoziationsanalyse mit Familien und unverwandten Individuen
im Rahmen einer MOD-Score-Analyse geht auf Prof. Strauch zurtck.

1.3 Beitrag zu Paper lll (Anhang A): Brugger et al., 2016

Die in diesem Paper veroffentlichte Simulationsstudie zur Schéatzbarkeit von Krank-
heitsmodellparametern im Rahmen einer MOD-Score-Analyse basiert auf einer Idee
Prof. Strauchs. Dabei habe ich, basierend auf Vorarbeiten beztglich Design der Studie
und Datenanalyse durch die Koautorin Susanne Rospleszcz, die Studie eigenstandig
durchgefuhrt. Ich habe die Zusammenstellung der bisherigen Erkenntnisse aus der
Literatur zur Schatzbarkeit von Krankheitsmodellparametern im Rahmen von Kopp-
lungsanalysen eigenstandig unternommen und war verantwortlich fir die Konzeption
und die Erstellung des Manuskripts.



1 Beitrage zu den Veroffentlichungen

1.4 Beitrag zu Paper IV (Anhang B): Brugger et al., 2019

Die in diesem Paper vertffentlichte Untersuchung des Confoundings zwischen ge-
schlechtsspezifischen Rekombinationsfrequenzen und genomischem Imprinting bei
der Kopplungsanalyse inklusive Simulationsstudie habe ich, basierend auf einer Idee
Prof. Strauchs, eigenstandig konzipiert und durchgefiihrt. Bei der formalen Vorstellung
der Teststatistik MOBIT als Test auf genomisches Imprinting in Anwesenheit von
Kopplung im Rahmen einer MOD-Score-Analyse war ich maf3geblich gemeinsam mit
dem Koautor Michael Knapp und Prof. Strauch beteiligt. Ich war verantwortlich fir die
Konzeption und die Erstellung des Manuskripts und habe die im Manuskript erwéhnte,
neue Simulationsprozedur fir den MOBIT in GENEHUNTER-MODSCORE selbstéan-
dig implementiert.



2 Einleitung zu den Publikationen

2. Einleitung zu den Publikationen

2.1 Ubersicht iiber die in dieser Arbeit verwendeten Publikationen

Die in dieser Arbeit als Paper | bezeichnete Publikation (Brugger und Strauch, 2014)
befasst sich mit einer algorithmischen Optimierung im Zusammenhang mit einer kopp-
lungsanalytischen Methode und deren Implementation in das Softwarepaket GE-
NEHUNTER-MODSCORE (Strauch, 2003, Dietter et al., 2007, Mattheisen et al., 2008,
Brugger und Strauch, 2014, Brugger et al., 2024). Basierend auf den algorithmischen
Optimierungen in Paper | entstanden in der Folge zwei weitere Publikationen (Paper
[l (Brugger et al., 2016) und Paper IV (Brugger et al., 2019), siehe Anhange A und B),
die sich mit der Schatzbarkeit von Krankheitsmodellparametern (Paper Ill) und der Te-
stung auf genomisches Imprinting (Paper IV) im Rahmen der kopplungsanalytischen
Methode, wie sie in GENEHUNTER-MODSCORE implementiert ist, befassen. In Pa-
per Il (Brugger et al., 2024) geht es schlieRlich um die gemeinsame Kopplungs- und
Assoziationsanalyse in Familien unter Hinzunahme unverwandter Individuen und de-
ren Implementation in GENEHUNTER-MODSCORE. Im Folgenden wird es eine kurze
Einleitung zum Thema Krankheitsgenkartierung geben. Anschliel3end werden die Pa-
per | und Il sowie erganzend auch die Paper Il und IV kurz zusammenhangend dar-
gestellt.

2.2 Allgemeiner Teil: Die Krankheitsgenkartierung

Trager der Erbinformation ist die DNA (engl. desoxyribonucleic acid, Desoxyribonuk-
leinsdure), die beim Menschen als 22 Kdrperchromosomen (Autosomen) und 1 Paar
Geschlechtschromosomen (Gonosomen) im Zellkern vorliegen. In einem somatischen
Zellkern liegt jedes Chromosom in zweifacher Kopienzahl vor, der Mensch ist also dip-
loid (2n = 46). Dabei stammt je ein Chromosom eines homologen Chromosomenpaa-
res von der Mutter (maternale Herkunft) und eines vom Vater (paternale Herkunft). Die
Definition des Begriffes ,Gen® ist nach wie vor einem stetigen Wandel unterworfen
(siehe Portin und Wilkins, 2017), die fur die vorliegende Arbeit hinreichende Definition
eines Gens kann folgendermalf3en formuliert werden: Ein Gen ist eine spezifische Re-
gion auf der DNA, welche fur ein Enzym oder Protein codiert, wobei die Position eines
Gens auf einem Chromosom als Locus und Variationen der DNA-Sequenz an diesem
Locus als Allele bezeichnet werden (Weiss, 1993). Das Paar von Allelen an einem
Locus eines Individuums bezeichnet man als Genotyp, Allele an verschiedenen Loci,
die vom selben Elternteil stammen, als Haplotyp (Ott, 1999). Die Kartierung eines po-
tenziell krankheitsurséchlichen Gens flr eine Erbkrankheit, deren molekulargeneti-
sche Grundlage unbekannt ist, erfolgt in der Humangenetik unter Verwendung des
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2 Einleitung zu den Publikationen

Ansatzes der Positionsklonierung (Botstein und Risch, 2003). Hierbei wird der Krank-
heitslocus zuerst kartiert, bevor die Genfunktion untersucht wird, was der Methode den
Beinamen ,reverse Genetik“ einbrachte (Ruddle, 1984). Bei der Positionsklonierung
wird in einem ersten Schritt eine Kopplungsanalyse durchgefuhrt, um die chromoso-
male Position des mutmalilichen Krankheitsgenortes einzugrenzen (Grobkartierung),
gefolgt von einer Feinkartierung mittels einer Assoziationsanalyse (Botstein und Risch,
2003). Eine Kopplungsanalyse untersucht die gemeinsame Vererbung eines Merk-
mals, wie z. B. dem Krankheitsstatus gesund/krank, mit einem genetischen Marker in
Familien. Innerhalb eines Familienstammbaumes werden sogenannte Founder von
Nonfoundern unterschieden. Die Eltern der Founder sind im Stammbaum nicht verfiig-
bar und begrinden diesen daher, sie gelten als zuféallig aus der Gesamtbevdlkerung
gezogen, sodass man verschiedene Stammbaume als unabhéngig voneinander be-
trachtet. Nonfounder hingegen sind Nachkommen, deren Eltern im Stammbaum ver-
fugbar sind. Als genetischer Marker kommt im Prinzip jeder genetische Polymorphis-
mus infrage, also z. B. Einzelnukleotidvarianten (engl. single nucleotide variants,
SNVs) oder auch hochpolymorphe Mikrosatelliten, die aus mehrfachen, kurzen Tan-
demwiederholungen derselben DNA-Sequenz bestehen. Liegen Marker- und Krank-
heitsgenort nahe genug auf einem Chromosom beieinander, so werden die beiden
dazugehdrigen, sich auf einem elterlichen Chromosom befindlichen Allele 6fter ge-
meinsam an die Nachkommen vererbt, als dies unter Zufallsbedingungen der Fall
ware, und es liegt Kopplung zwischen Marker- und Krankheitsgenort vor. Bei zuneh-
mender Distanz zwischen Marker- und Krankheitsgenort werden die beiden entspre-
chenden Merkmale zunehmend 6fter voneinander wahrend der Meiose | (Reduktions-
teilung) durch Crossover-Ereignisse der homologen, elterlichen Chromosomen ge-
trennt und neu rekombiniert. Das entsprechende Mal fiir die Kopplung zweier Genorte
ist die Rekombinationsfrequenz 6, die zwischen 0 (vollstandiger Kopplung) und 0,5
(keiner Kopplung) rangiert. Die genetische Kopplung zwischen zwei Genorten stellt
demzufolge eine Abweichung vom 3. Mendelschen Gesetz, der Unabhéngigkeitsregel,
dar. Die raumliche Auflosung einer Kopplungsanalyse liegt typischerweise zwischen
2,5 und 10 centiMorgan (cM) (Fan und Jung, 2003), sodass in der Folge haufig eine
Assoziationsanalyse zwecks Feinkartierung nachgeschaltet wird. An dieser Stelle sei
darauf hingewiesen, dass im Rahmen der Krankheitsgenkartierung heutzutage oft di-
rekt eine genomweite Assoziationsstudie (engl. genome-wide association study,
GWAS) ohne vorgeschaltete Kopplungsanalyse gemacht wird. Eine solche GWAS ist
im Falle von komplexen Krankheiten, die zu einem erheblichen Anteil von h&aufigen
genetischen Varianten mit moderatem Effekt mitverursacht werden, in der Regel trenn-
scharfer als die Kopplungsanalyse und kommt auch ganzlich ohne Familiendaten aus
(Ott et al., 2015). Hingegen ist im Falle von Krankheiten, die eine familiare Haufung
aufweisen und meist durch seltene Varianten mit grof3em Effekt verursacht werden,
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die Kopplungsanalyse der GWAS Uberlegen (Ott et al., 2015). Dabei ist die Nutzbarkeit
einer Kopplungsanalyse zur Kartierung von seltenen krankheitsursachlichen Varianten
in den letzten Jahren durch die Verfigbarkeit von Daten aus vollstdndiger Genomse-
qguenzierung (engl. whole-genome sequencing, WGS) stark angestiegen. Die Kopp-
lungsanalyse kann dabei auch mit bioinformatischen Methoden zur Auswahl und Pré&-
diktion potenziell schadlicher Varianten anhand von WGS-Daten in Familien kombi-
niert werden (Ott et al., 2015).

Eine Assoziationsanalyse untersucht die Korrelation von Markerallelen mit dem Krank-
heitszustand von unverwandten Betroffenen und Gesunden aus der Bevoélkerung oder
auch in Familien (Terwilliger, 1995). Im Falle keiner Korrelation befinden sich die Allele
am Markergenort mit denen des Krankheitsgenorts im Kopplungsgleichgewicht (engl.
linkage equilibrium, LE), wodurch die Verteilung der Allele am Markergenort bei den
Betroffenen und Gesunden gleich ist. Eine Korrelation von Markerallelen mit dem
Krankheitsgenort liegt vor, wenn sich deren Verteilung zwischen den Betroffenen und
Gesunden unterscheidet, was dann Kopplungsungleichgewicht (engl. linkage dise-
quilibrium, LD) genannt wird.

Des Weiteren kann es auch vorteilhaft sein, beide Kartierungsstrategien, also Kopp-
lung und Assoziation, direkt miteinander in einer gemeinsamen Kopplungs- und Asso-
ziationsanalyse zu verbinden, was insbesondere dann zu einer erhdhten Trennschéarfe
der statistischen Analyse fithren kann, wenn sowohl groRere Familien als auch Unver-
wandte fur die Analyse zur Verfigung stehen (Goéring und Terwilliger, 2000).

Meine beiden im Folgenden dargestellten Hauptarbeiten befassen sich mit algorithmi-
schen Optimierungen im Rahmen einer speziellen kopplungsanalytischen Methode
(Paper I) und der Entwicklung eines gemeinsamen Kopplungs- und Assoziationsver-
fahrens fur Datenséatze aus Familien und Unverwandten (Paper II).

2.3 Paper I: Algorithmische Optimierung einer
kopplungsanalytischen Methode

Die Kopplungsanalyse ist eine bewéahrte Methode, Krankheiten, die einer familiaren
Haufung unterliegen, im Genom zu kartieren (Ott et al., 2015). Kopplungsanalysen
werden traditionell in ,parametrische“ (modellbasierte) oder ,nicht-parametrische® (mo-
dellfreie) Analysen unterteilt. In der parametrischen Kopplungsanalyse, die auch unter
dem Namen LOD-Score-Analyse bekannt ist (Morton, 1955), werden bestimmte
Krankheitsmodellparameter fir die Vererbung der Krankheit angenommen, wohinge-
gen nicht-parametrische Methoden ohne eine solche Annahme auskommen. Es
konnte jedoch gezeigt werden, dass bestimmte parametrische und nicht-parametri-
sche Verfahren statistisch aquivalent zueinander sind (Knapp et al., 1994, Strauch,
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2007). Die im Folgenden gemachten Annahmen bezuglich des Krankheitsmodells und
der daftir ndtigen Krankheitsmodellparameter gelten fur alle in dieser Arbeit vorgestell-
ten Paper. Im Falle eines diallelischen autosomalen Locus, der eine dichotome Krank-
heit verursacht, sind die Krankheitsmodellparameter folgende: die Krankheitsallelfre-
quenz p,, (,m"“ steht fir Mutation, mit Wildtypallelfrequenz p, = 1 — p,;,), die drei Pe-
netranzen f,, f1, f., wobei f; die Wahrscheinlichkeit beschreibt, mit der ein Individuum
mit i Kopien des Krankheitsallels von der Krankheit betroffen ist, und die Rekombina-
tionsfrequenz 8 zwischen Marker- und Krankheitslocus bzw. die genetische Position x
des Krankheitslocus im Falle einer Analyse mit mehr als einem genetischen Marker
(Multimarkeranalyse, Multipointanalyse). Hangt die Expression eines krankheitsur-
sachlichen Gens von dessen elterlicher Herkunft ab, so liegt genomisches Imprinting
vor (Hall, 1990), welches durch die Aufspaltung der Heterozygotenpenetranz f; in zwei
Penetranzen f; . (Maternale Herkunft) und f; ... (paternale Herkunft des Krankheits-
allels) im Rahmen einer LOD-Score-Analyse beriicksichtigt werden kann (Strauch et
al., 2000). Die zur Berechnung des LOD-Scores als Kopplungstest notwendigen
Krankheitsmodellparameter kdnnen im Vorfeld im Rahmen einer Segregationsanalyse
geschatzt werden, bei der mittels statistischer Verfahren verschiedene genetische Mo-
delle und Vererbungsmodi mit dem Vererbungsmuster des Krankheitsphanotyps in Fa-
milien verglichen werden. Dabei kbnnen sowohl Ein-Genort-Modelle, wie sie bei Men-
delschen Erkrankungen auftreten, als auch komplexere Modelle, die weitere geneti-
sche Faktoren und Umwelteinflisse bertcksichtigen, in die Analyse einbezogen wer-
den (Weiss, 1993). Alternativ kdnnen die Krankheitsmodellparameter auch in einer ge-
meinsamen Kopplungs- und Segregationsanalyse geschatzt werden. Ein Beispiel fur
ein solches Verfahren ist die MOD-Score-Analyse (Risch, 1984). Durch die Schatzung
der Krankheitsmodellparameter im Rahmen der MOD-Score-Analyse kann ein Verlust
an statistischer Trennscharfe fur den Kopplungstest, wie er bei gewohnlichen LOD-
Score-Analysen durch fehlerhafte Spezifikation der Krankheitsmodellparameter vor-
kommen kann, reduziert werden (Clerget-Darpoux et al., 1986). Da die Verteilung der
Teststatistik der MOD-Score-Analyse im Allgemeinen nicht bekannt ist, missen Simu-
lationen unter der Nullhypothese keiner Kopplung gemacht werden, um p-Werte fir
den Kopplungstest zu erhalten. Die Teststatistik der MOD-Score-Analyse ist der Zeh-
nerlogarithmus des Likelihood-Quotienten der Likelihood unter der Alternativhypo-
these Kopplung und der entsprechenden Likelihood unter der Nullhypothese keiner
Kopplung. Die Likelihood L des genetischen Modells, gegeben die beobachteten Da-
ten, ist dabei proportional zur Wahrscheinlichkeit, die Daten zu beobachten, gegeben
das Modell. Anders formuliert bezeichnet die Likelihood die Wahrscheinlichkeit, die
Daten zu beobachten, unter der Annahme, dass das zugrundeliegende Modell wahr
bzw. korrekt spezifiziert ist (Weiss, 1993). Der Likelihood-Quotient wird im Hinblick auf
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die Rekombinationsfrequenz (bzw. die genetische Position des Krankheitslocus) und
die Krankheitsmodellparameter maximiert:
L(pm. fo, 1, 12, 0)

Mob = pm}{)l;?l);(fzﬂ 10810 L(pm for f1, f2,0 = 0.5) 1)
Es ist zu beachten, dass im Zahler und Nenner dieselben Werte fir die Krankheitsmo-
dellparameter angenommen werden. Dadurch ist der MOD-Score proportional zur Li-
kelihood, bedingt auf die Krankheitsphanotypen, und liefert unverzerrte Schéatzer fir
die Krankheitsmodellparameter, welche nicht von den Details der Datenerhebung
(engl. ascertainment) abhéngen (Elston, 1989). Dies gilt unter anderem jedoch nur
dann, wenn sich die genetischen Marker nicht im LD mit den Allelen am Krankheits-
locus befinden (Ginsburg et al., 2004, Malkin und Elston, 2005). Alle Bedingungen, die
fur die unverzerrte Schatzbarkeit der Krankheitsmodellparameter im Rahmen der
MOD-Score-Analyse notwendig sind, wurden in Brugger et al. (2016, Anhang A dieser
Arbeit) zusammengetragen. Brugger et al. (2016, Anhang A dieser Arbeit) konnten
daruber hinaus anhand von simulierten Familiendaten zeigen, dass mittels der MOD-
Score-Analyse eine Schatzung der Krankheitsmodellparameter auch praktisch még-
lich ist, wobei die Genauigkeit der Schatzung stark sowohl vom zugrundeliegenden
Krankheitsmodell als auch von der Komplexitat der untersuchten Familien abhangt.
Die Berechnung der genetischen Likelihood ist also entscheidend fur die Kopplungs-
analyse und deren aufwandigster Schritt, vor allem dann, wenn grof3e Familien, viele
Marker und fehlende Markergenotypen im Datensatz auftreten. Es sind im Wesentli-
chen zwei Algorithmen zur Berechnung der Likelihood gebrauchlich: der Elston-Ste-
wart-Algorithmus (Elston und Stewart, 1971) und der Lander-Green-Algorithmus (Lan-
der und Green, 1987). Die Rechenzeit des Elston-Stewart-Algorithmus wachst linear
mit der Zahl der Familienmitglieder in einem Stammbaum und exponentiell mit der Zahl
der untersuchten Marker. Die Rechenzeit des Lander-Green-Algorithmus hingegen
wachst linear mit der Zahl der Marker und exponentiell mit der Zahl der Familienmit-
glieder in einem Stammbaum, weshalb er gut fir die Analyse von Datensatzen mit
vielen Markern und kleineren bis mittelgroRen Familien geeignet ist. Der Lander-
Green-Algorithmus basiert auf dem Konzept der Vererbungsvektoren, bei dem jeder
einzelne Vektor ein mogliches Muster fur die Segregation der Allele der Founder in
einer Familie an einem Locus beschreibt. Mit n Nonfoundern und f Foundern in einem

Stammbaum sind 22" Vektoren maglich, die sich wiederum in 22"~/ Aquivalente Ver-
erbungsvektorklassen zu je 2/ Vektoren zusammenfassen lassen (Kruglyak et al.,
1996). Ohne Hinzunahme von Markerinformation entspricht die Wahrscheinlichkeits-
verteilung der Vererbungsvektoren (Vererbungsverteilung) an einer gegebenen gene-
tischen Position einer Gleichverteilung. Im Falle von hinreichend vielen informativen
Markern ist die Vererbungsverteilung auf wenige Vektoren konzentriert. Mit Hilfe des
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Lander-Green-Algorithmus ist nach Ermittlung der Vererbungsverteilung unter Hinzu-
nahme samtlicher Marker sowohl eine parametrische als auch nicht-parametrische
Kopplungsanalyse mdglich. Hierzu ist eine entsprechende Scoring-Funktion zur Be-
wertung der Krankheitsphanotypen zu verwenden.

Das Softwareprogramm GENEHUNTER-MODSCORE (GHM) (Strauch, 2003, Dietter
et al., 2007, Mattheisen et al., 2008, Brugger und Strauch, 2014, Brugger et al., 2024)
basiert wie das urspriingliche Softwareprogramm GENEHUNTER (Kruglyak et al.,
1996) auf dem Lander-Green-Algorithmus, der zur Berechnung der Vererbungsvertei-
lung eingesetzt wird. Die fir eine MOD-Score-Analyse eingesetzte, parametrische
Scoring-Funktion beinhaltet die Likelihood fur den Krankheitsgenort, gegeben einen
bestimmten Vererbungsvektor, welche die Krankheitsmodellparameter, d. h. die Pe-
netranzen und die Krankheitsallelfrequenz, enthalt. Diese Krankheitslocus-Likelihood
wird fur jeden Vererbungsvektor berechnet und mit der aus der Vererbungsverteilung
bestimmten Wahrscheinlichkeit fur den jeweiligen Vererbungsvektor unter Bertcksich-
tigung samtlicher Marker gewichtet. Die Beitrage aller Vererbungsvektoren werden
aufsummiert und zusatzlich mit der Summe der Krankheitslocus-Likelihoods, die sich
bei einer Gewichtung mit einer Gleichverteilung der Vererbungsvektoren (d. h. ohne
Markerinformation) ergibt, normiert. Der so berechnete Gesamt-Score ist letztlich ein
Likelihood-Quotient, wobei der Zahler der Alternativhypothese Kopplung zwischen
Marker- und Krankheitsgenort und der Nenner der Nullhypothese keiner Kopplung ent-
spricht. Der dekadische Logarithmus dieses Likelihood-Quotienten wird tber alle
Stammbaume im Datensatz summiert, die entsprechend Uber die Krankheitsmodell-
parameter maximierte Summe aus logarithmierten Likelihood-Quotienten ergibt dann
den MOD-Score. Fur eine genetische Position ist die Berechnung der Vererbungsver-
teilung ein einmaliger Vorgang, die Krankheitslocus-Likelihood muss jedoch fir jedes
neu eingesetzte Set an Krankheitsmodellparametern im Rahmen des Optimierungs-
verfahrens, wie es in GHM implementiert ist, neu berechnet werden. Die Berechnung
der Krankheitslocus-Likelihood ist somit der geschwindigkeitsbestimmende Schritt ei-
ner MOD-Score-Analyse. Brugger und Strauch (2014, Paper I) konnten zeigen, dass
es im Rahmen des Lander-Green-Algorithmus moglich ist, Vererbungsvektoren zu-
sammenzufassen, die identische Krankheitslocus-Likelihoods aufweisen, um so die
Zahl der nétigen Berechnungen pro eingesetztem Set an Krankheitsmodellparametern
zu reduzieren. Dies ist mit Hilfe algebraischer (symbolischer) Berechnungen der
Krankheitslocus-Likelihood fiur jeden Vererbungsvektor und anschlielender Zuord-
nung zu einer Vererbungsvektorklasse mit potenziell mehreren Vererbungsvektoren
maoglich. Erst nachdem die algebraische Struktur aller Vererbungsvektoren berechnet
und Vektoren mit identischer, algebraischer Krankheitslocus-Likelihood zu Verer-
bungsvektorklassen zusammengefihrt worden sind, wird die Krankheitslocus-Like-
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lihood durch Einsetzen entsprechender Werte fir die Penetranzen und die Krankheits-
allelfrequenz ausgerechnet. Dieser Algorithmus kann insbesondere dann zur Verrin-
gerung von Rechenzeit einer MOD-Score-Analyse fuhren, wenn sich mehrere Fami-
lien identischer Stammbaumstruktur im Datensatz wiederfinden, da der Algorithmus
Uber Familien hinweg Vererbungsvektorklassen zusammenfassen kann. Ein solches
Szenario ist insbesondere fur Simulationsstudien gegeben, Anwendungen des in Pa-
per | dargestellten und in GHM implementierten algebraischen Algorithmus sind in Pa-
per Il (Anhang A) zur Schatzbarkeit von Krankheitsmodellparametern und IV (Anhang
B) zur Untersuchung des genomischen Imprintings zu finden.

2.4 Paper ll: Gemeinsame Kopplungs- und Assoziationsanalyse in
Familien und Unverwandten

Eine gemeinsame Kopplungs- und Assoziationsanalyse kombiniert Kopplungs- und
Assoziationsinformation aus Familien, wobei Assoziationsinformation aus der Allge-
meinbevolkerung durch Einbeziehung unverwandter Individuen hinzugefugt werden
kann. Dadurch kann die statistische Trennscharfe zur Kartierung eines krankheitsur-
sachlichen Gens speziell dann erhéht werden, wenn der Datensatz aus Familien und
Unverwandten besteht (Goring und Terwilliger, 2000). Dies hat zwei Grinde. Zum ei-
nen machen Kopplungsanalysen im Allgemeinen die Annahme, dass sich die Allele an
Krankheits- und Markerlocus im LE befinden. Es ist jedoch bekannt, dass sich Krank-
heits- und Markerlocus bei geringer Entfernung auf demselben Chromosom im LD be-
finden kdonnen (Jorde, 1995), wodurch es bei Kopplungsanalysen zu einem Verlust an
Trennscharfe kommen kann, wenn das LD nicht bertcksichtigt wird (Clerget-Darpoux,
1982). Zum anderen nutzen Assoziationsanalysen diese LD-Information zwar aus, um
krankheitsursachliche Gene zu kartieren, sie fallt jedoch schnell mit einer zunehmen-
den genetischen Distanz zwischen Krankheits- und Markerlocus ab (Terwilliger, 1995).
Daher ist die Idee, die im Vergleich zur Assoziationsinformation tiber grol3ere geneti-
sche Distanzen hinweg stabilere Kopplungsinformation in Familien mit der Assozia-
tionsinformation in Familien und Unverwandten in einem gemeinsamen Test zu verei-
nen, sehr vielversprechend. Erste Ansatze fiir gemeinsame Kopplungs- und Assozia-
tionsanalysen finden sich in den Arbeiten von MacLean et al. (1984), Clerget-Darpoux
et al. (1988) und Tienari et al. (1992). Eine gemeinsame Kopplungs- und Assoziations-
analyse basierend auf dem MOD-Score-Ansatz (siehe Abschnitt 2.3) wird verwirklicht,
indem der entsprechende Likelihood-Quotient mit einem Parameter fiir das LD zwi-
schen Krankheits- und Markerlocus erweitert wird:

MOD= max log L(pm'fO'fl'fZ'e'LD)
Pmfofif2010 ™ LDy, fo fi, f2,6 = 0.5,LD = 0)

)
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Die Umsetzung einer solchen Analyse und deren Implementation in GHM ist Gegen-
stand von Paper Il. Die Modellierung des LDs geschieht dabei anhand von bis zu drei
SNVs (sogenannten Test-SNVs), deren Allele mit jenen des Krankheitslocus gemein-
same Haplotypen bilden. Dabei tragen lediglich die Founder Beitrdge zu den Haplo-
typfrequenzen bei, Nonfounder dienen jedoch dem Ausschluss von inkompatiblen
Haplotypkonfigurationen im Zuge der Haplotypfrequenzschatzung (siehe auch Rohde
und Furst, 2001). Letztere wird in GHM mittels eines Expectation-Maximization-Algo-
rithmus (EM-Algorithmus, Dempster et al., 1977) bewerkstelligt, der im Kontext des
Lander-Green-Algorithmus zur Berechnung der auf LD-Parameter erweiterten Krank-
heitslocus-Likelihood arbeitet (siehe Abecasis und Wigginton, 2005). Kopplungsinfor-
mation wird durch flankierende Marker mit beliebiger Zahl von Allelen beigetragen. Die
Komplexitat des Maximierungsproblems zur Berechnung des MOD-Scores steigt
durch die zusatzliche Zahl an Krankheitsmodellparametern gewaltig. So missen zum
Beispiel im Falle von drei SNVs 16 Haplotypfrequenzen im Zahler von Gleichung (2)
berticksichtigt werden. Eine solche komplexe Aufgabe ist nicht mehr mit dem bisheri-
gen, numerischen Optimierungsverfahren von GHM in einer Uberschaubaren Rechen-
zeit |6sbar. Deshalb wurde zur Berechnung des MOD-Scores der Optimierungsalgo-
rithmus COBYLA (Powell, 1994, Powell, 1998) in der Version, wie er in der Funktions-
bibliothek NLopt (v2.6.2) (Johnson, 2020) enthalten ist, in GHM implementiert. Der
Beitrag allelischer Markerinformation der Founder in Form von Haplotypfrequenzen
zum MOD-Score fuhrt dazu, dass die bisherige Simulationsroutine von GHM (Matthei-
sen et al., 2008) zur Berechnung von empirischen p-Werten fir den Kopplungstest
nicht fir den Test auf gemeinsame Kopplung und Assoziation angewendet werden
kann. Daher wurde eine neue Simulationsroutine entwickelt und in GHM implementiert,
die bei der Erzeugung von Replikaten unter der Nullhypothese keiner Kopplung und
keiner Assoziation die Haplotypfrequenzen der Founder fur die Simulation der Marker-
daten bericksichtigt. In Paper Il wurde diese neue Simulationsroutine umfangreich
evaluiert und letztlich validiert. Es ist dartiber hinaus direkt mit GHM mdglich, die Si-
mulationen auf mehreren Computerkernen parallel laufen zu lassen. Da die Berech-
nungen fur einen empirischen p-Wert fur den gemeinsamen Test auf Kopplung und
Assoziation sehr aufwandig sind, wird der p-Wert nur fir ein bestimmtes, aus maximal
drei Test-SNVs bestehendes Markerset berechnet, wohingegen ein explorativer Scan
eines ganzen Chromosoms auf gemeinsame Kopplung und Assoziation ohne p-Wert-
Berechnung vollautomatisch in GHM unter Angabe einiger, weniger Randbedingungen
(z. B. Anzahl der Test-SNVs, maximale Distanz zwischen den Test-SNVs) vollzogen
werden kann. Die in Paper Il durchgefiihrte Simulationsstudie hat gezeigt, dass der
gemeinsame Test auf Kopplung und Assoziation im Rahmen des MOD-Score-Ansat-
zes mehr statistische Trennschérfe liefern kann als ein vergleichbarer Test aus dem
PSEUDOMARKER-Softwarepaket (Goring und Terwilliger, 2000, Hiekkalinna et al.,
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2011, Gertz et al., 2014). Dies ist vor allem bei einem komplexeren Assoziationsmuster
der Fall, was bedeutet, dass sich das LD uber den Krankheitslocus und zwei bis drei
Markerloci erstreckt. Um die neue Methode auch in der praktischen Anwendung zu
prufen, wurden Daten der Nationalen Fallsammlung fur familidres Pankreaskarzinom
(FaPaCa) analysiert. Die genetische und molekulare Grundlage des familidren Pan-
kreaskrebses ist weitestgehend unklar, wird aber als sehr komplex angenommen
(Bartsch et al., 2021). Die aus den FaPaCa-Familien gewonnenen Markerdaten wur-
den einem initialen genomweiten Kopplungsscan mittels GHM unterzogen, um vielver-
sprechende Kandidatenregionen fur den aufwéndigeren gemeinsamen Test auf Kopp-
lung und Assoziation zu selektieren. Die Daten stellen eine grol3e Herausforderung an
die Rechenleistung flr den gemeinsamen Test auf Kopplung und Assoziation dar, well
die meisten Founder der FaPaCa-Familien untypisiert geblieben sind, wodurch die Be-
rechnung der Krankheitslocus-Likelihood sehr viele mégliche Haplotypkonfigurationen
berucksichtigen muss. Als Ergebnis der Analyse konnte eine vielversprechende Re-
gion zwischen den Genorten fur IL17REL und PIM3 auf Chromosom 22g13.33 identi-
fiziert werden. Der lange Arm von Chromosom 22 steht schon langer im Verdacht, mit
der Entstehung von Pankreaskrebs in Verbindung zu stehen (Handel-Fernandez et al.,
2000), vielleicht konnen zukunftige Mutationsanalysen der 22g13.33-Region in
FaPaCa-Familien ein weiteres Puzzleteil zum besseren Verstandnis der Krankheitsa-
tiologie des familidren Pankreaskrebses beitragen.
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3. Zusammenfassung

Die in der vorliegenden Arbeit zusammengefassten Publikationen (Paper I-IV) haben
allesamt das Softwareprogramm GENEHUNTER-MODSCORE (GHM) (Strauch,
2003, Dietter et al., 2007, Mattheisen et al., 2008, Brugger und Strauch, 2014, Brugger
et al., 2024) und den darin implementierten Ansatz der MOD-Score-Analyse als spe-
zielle Variante der Kopplungsanalyse (Risch, 1984) zum Thema. Alle vier Publikatio-
nen hangen thematisch miteinander Gber GHM und dem darin verwendeten kopp-
lungsanalytischen Ansatz zusammen, weshalb ich sie gerne als meine persoénliche
,GENEHUNTER-MODSCORE-Tetralogie” bezeichnen mochte.

Die erste Arbeit der Tetralogie (Paper I, Brugger und Strauch, 2014) beschéftigt sich
mit der Frage, wie es gelingen kann, den geschwindigkeitsbestimmenden Schritt einer
MOD-Score-Analyse in GHM so zu verandern, dass die Rechenzeit reduziert werden
kann. Der im Sinne der Rechenzeit teuerste Schritt in der GHM-MOD-Score-Analyse
ist die Berechnung der Krankheitslocus-Likelihood unter Hinzunahme aller Phanoty-
pen der Stammbaume. Diese Likelihood muss flr jedes neue zu prifende Set an
Krankheitsmodellparametern, welches im Falle einer dichotomen Erkrankung, die von
einem diallelischen Krankheitslocus verursacht wird, aus der Krankheitsallelfrequenz
und den Penetranzen besteht, neu ausgerechnet werden. Unter Anwendung des in
GHM implementierten Lander-Green-Algorithmus (Lander und Green, 1987) zur Be-
rechnung der Vererbungsverteilung an einer genetischen Position auf Grundlage aller
verfugbarer Markerinformation ist es gelungen, eine substantielle Reduzierung der Re-
chenzeit zu erreichen. Ein gegebener Vererbungsvektor beschreibt ein mdgliches
Muster flr die Segregation der Markerallele der ersten Elterngeneration, der soge-
nannten Founder, an deren Nachkommen eines Familienstammbaumes. Die Berech-
nung der Krankheitslocus-Likelihood bezieht ihre Beitrdge aus Termen der Krankheits-
modellparameter, die Uber die verschiedenen, moglichen Vererbungsvektoren sum-
miert werden. Wenn also zwei Vererbungsvektoren denselben Beitrag zur Krankheits-
locus-Likelihood liefern, lassen sie sich zu einer Vererbungsvektorklasse zusammen-
fassen und die Beitrage mussen nicht mehr pro Vektor, sondern nur noch einmal pro
Klasse ausgerechnet werden. So kann eine grol3e Menge an Vererbungsvektoren po-
tenziell in einige, wenige Klassen eingeteilt werden, die auch Uber die Familien hinweg
zur Rechenzeiteinsparung genutzt werden kénnen. Dies ist vor allem fir Simulations-
studien interessant, bei denen zwar oft eine grof3e Zahl an Familien erzeugt werden,
die jedoch auf nur ein paar wenige unterschiedliche Stammbaumtypen zurtickgehen.
Identische Stammbaumstrukturen liefern hernach dieselben Vererbungsvektorklas-
sen, wodurch eine weitere Optimierung der Rechenzeit erfolgen kann.
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Diese algorithmische Optimierung der Rechenzeit fir GHM ermdglichte es dann, die
in Brugger et al. (2016, Paper Ill, Anhang A) beschriebene Simulationsstudie zur Un-
tersuchung der Schatzbarkeit von Krankheitsmodellparametern im Rahmen einer
MOD-Score-Analyse durchzufiihren. Hierzu wurde als Vorarbeit ein sorgfaltiger Re-
view daruiber gefuhrt, inwieweit und unter welchen Bedingungen die Krankheitsmodell-
parameter im Rahmen einer MOD-Score-Analyse theoretisch tberhaupt schatzbar
sind, wobei vor allem auf die Arbeiten von Elston (1989), Ginsburg et al. (2004) sowie
Malkin und Elston (2005) verwiesen werden muss. Als Ergebnis der Simulationsstudie
konnte festgestellt werden, dass Krankheitsmodellparameter im Rahmen einer MOD-
Score-Analyse in der Tat praktisch schatzbar sind, deren Schatzgenauigkeit und Iden-
tifizierbarkeit aber stark von den wahren Krankheitsmodellparametern und den unter-
suchten Stammbaumstrukturen abhangen.

Eine weitere Simulationsstudie, die in Brugger et al. (2019, Paper IV, Anhang B) be-
schrieben ist, hat das Confounding zwischen geschlechtsspezifischen Rekombinati-
onsfrequenzen und genomischem Imprinting im Rahmen von Kopplungsanalysen mit
GHM zum Thema. Hierzu wurde auch ein neuer Test auf Imprinting auf Basis des
MOD-Scores (,MOBIT®) vorgeschlagen und dessen statistische Eigenschaften unter-
sucht. Wenn die Expression eines krankheitsursachlichen Gens von dessen elterlicher
Herkunft abhangt, so spricht man von genomischem Imprinting (Hall, 1990), welches
durch die Aufspaltung der Heterozygotenpenetranz in zwei nach der elterlichen Her-
kunft des Krankheitsallels getrennten Penetranzen im Rahmen einer LOD- bzw. MOD-
Score-Analyse bertcksichtigt werden kann (Strauch et al., 2000). Der MOBIT als Test
auf Imprinting ergibt sich dann als Differenz des MOD-Scores unter Berucksichtigung
des Imprintings und des MOD-Scores ohne Berlcksichtigung des Imprintings. Alter-
nativ lasst sich genomisches Imprinting im Rahmen einer Kopplungsanalyse auch tber
geschlechtsspezifische Rekombinationsfrequenzen modellieren (Smalley, 1993), was
zu einer Confoundingsituation fihren kann, wenn auf Imprinting in Gegenwart von tat-
sachlich vorliegenden geschlechtsspezifischen Rekombinationsfrequenzen getestet
wird, diese aber nicht in der Analyse bertcksichtigt werden. Durch umfangreiche Si-
mulationen konnte in Paper IV gezeigt werden, dass sich Confounding vermeiden
l&sst, wenn man einen Multimarkeransatz wahlt, dessen Markerabstdnde unter 1 cM
liegen. In Paper IV wurden die asymptotische Verteilung unter der Nullhypothese kei-
nen Imprintings, aber Kopplung angegeben und zwei Simulationsroutinen vorgeschla-
gen, mit denen man empirische p-Werte fir den MOBIT erhalten kann.

Das letzte Paper der GHM-Tetralogie (Brugger et al., 2024, Paper Il) beschattigt sich
abschlieRend mit einer Erweiterung des MOD-Score-Ansatzes, der es ermdglicht, ei-
nen gemeinsamen Test auf Kopplung und Assoziation in Familien und Unverwandten
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durchzufiihren. Der MOD-Score wurde hierfir um einen Parameter fur das LD erwei-
tert, welcher in Form von Haplotypfrequenzen der Founder und der Unverwandten un-
ter Hinzunahme von bis zu drei SNVs zusatzlich zum Krankheitsgenort parametrisiert
wurde. Die stark vergroRRerte Zahl zu optimierender Parameter im entsprechenden Li-
kelihood-Quotienten des MOD-Scores machte die Implementation eines Optimie-
rungsalgorithmus in GHM notwendig (COBYLA (Powell, 1994, Powell, 1998)), ohne
den die Rechenzeit fir MOD-Score-Analysen nicht mehr handhabbar gewesen ware.
Um einen empirischen p-Wert fir den MOD-Score unter der Nullhypothese keiner
Kopplung und keiner Assoziation zu erhalten, wurde eine neue Simulationsroutine im-
plementiert und erfolgreich anhand ausfuhrlicher Simulationen validiert. Die statisti-
schen Eigenschaften (Fehler 1. Art, statistische Trennscharfe) des neuen MOD-Scores
wurden ebenfalls ausfihrlich mittels Simulationen untersucht und mit einem vergleich-
baren Test aus dem Softwareprogramm PSEUDOMARKER (Goéring und Terwilliger,
2000, Hiekkalinna et al., 2011, Gertz et al., 2014) verglichen. Dabei konnte festgestellt
werden, dass der gemeinsame Test auf Kopplung und Assoziation auf Basis des
MOD-Scores vor allem dann eine hohere Trennschéarfe aufweist, wenn sich das LD
uber den Krankheitslocus und zwei bis drei SNVs erstreckt. Die Analyse der Daten der
FaPaCa-Familien erbrachte einen vielversprechenden, signifikant gekoppelten und
assoziierten Locus auf Chromosom 22g13.33, welcher in zukinftigen Mutationsanaly-
sen zum besseren Verstandnis der Krankheitsétiologie des familiaren Pankreaskreb-
ses beitragen kann.
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4. Abstract

All publications comprised in this work deal with the GENEHUNTER-MODSCORE
(GHM) software package (Strauch, 2003, Dietter et al., 2007, Mattheisen et al., 2008,
Brugger und Strauch, 2014, Brugger et al., 2024) and the MOD score approach in
linkage analysis (Risch, 1984) implemented therein. The publications hence represent
what | would like to call my personal "GENEHUNTER-MODSCORE tetralogy”.

The first publication (Brugger and Strauch, 2014, Paper I) concerns the question as
how to speed up the most time-consuming step in a MOD score analysis, which is the
calculation of the disease-locus likelihood. The disease-locus likelihood makes use of
the disease phenotypes of all family members in a pedigree and has to be recalculated
for every new tested set of trait-model parameters, i.e., the disease allele frequency
and the penetrances for a dichotomous trait governed by a diallelic disease locus. In
the context of the Lander-Green algorithm (Lander and Green, 1987), which is em-
ployed to calculate the inheritance distribution at a given genetic position using all
available marker information, we were able to speed up the calculations substantially.
Specifically, an inheritance vector denotes a possible segregation pattern of founder
alleles to their offspring in a given pedigree. The disease-locus likelihood calculation
entails the summation over contributions of all possible inheritance vectors, whereby
each inheritance vector contributes terms according to the specified trait-model param-
eters. If two distinct inheritance vectors yield the same contribution to the disease-
locus likelihood, they can be grouped together into an inheritance vector class. This
way, potentially many inheritance vectors can be grouped into fewer inheritance vector
classes. Hence, the contributions to the disease-locus likelihood only need to be cal-
culated once for each class instead of each vector. It can furthermore be shown that
inheritance vector classes can even be used across pedigrees to save computation
time, which is especially relevant for linkage simulation studies. Typically, a large num-
ber of families are generated in simulation studies, however, they usually correspond
to a few distinct pedigree types. Because identical pedigrees (including each member’s
phenotype, but not genotype) lead to the same set of inheritance vector classes, cal-
culation time can be saved even across pedigrees.

The implementation of the above-described algorithmic optimization in GHM facilitated
the investigation of the capacity of a MOD score analysis to estimate trait-model pa-
rameters by performing a simulation study (Brugger et al., 2016, Paper Ill, Anhang A).
To this end, theoretical arguments concerning the ability of the MOD score approach
to estimate trait-model parameters were carefully reviewed (see e.g. Elston (1989),
Ginsburg et al. (2004) as well as Malkin and Elston (2005)). As a result, the simulation
study showed that trait-model parameters can in fact be estimated in practice using
the MOD score approach, however, the accuracy of the estimates and the identifiability
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of the parameters strongly depend on the truly underlying trait-model parameters and
the pedigree types used in the analysis.

In a further simulation study (Brugger et al., 2019, Paper IV, Anhang B), the confound-
ing between sex-specific recombination fractions and genomic imprinting was system-
atically investigated. To this end, a new test statistic to test for the presence of imprint-
ing in the context of linkage analysis using MOD scores (“MOBIT”) was proposed and
its statistical properties were thoroughly evaluated. Genomic imprinting means the de-
pendence of an individual's liability to develop a disease according to the parental
origin of the mutated allele(s) (Hall, 1990). In the context of parametric linkage analysis,
imprinting can be modelled by splitting up the heterozygote penetrances into two pen-
etrances according to the parental origin of the mutated allele (Strauch et al., 2000).
The MOBIT is defined as the difference between the MOD score accounting for im-
printing and the MOD score not accounting for imprinting. Alternatively, in the context
of linkage analysis, imprinting can be modelled using sex-specific recombination frac-
tions (Smalley, 1993). Hence, if sex-specific recombination fractions are truly present,
but not accounted for in the analysis, this can lead to false-positive results of linkage-
based imprinting tests, i.e., confounding. The results of the extensive simulation study
in Paper IV showed that confounding for the MOBIT can be avoided using a multi-
marker approach, with markers spaced less than 1 cM from each other. Furthermore,
the asymptotic distribution of the MOBIT under the null hypothesis of linkage, but no
imprinting was presented, together with two proposed simulation strategies to obtain
empiric p values for the MOBIT.

The final paper of the GHM tetralogy (Brugger et al., 2024, Paper Il) describes an ex-
tension to the MOD score approach that enables a joint linkage and association anal-
ysis using families and unrelated individuals. To this end, the MOD score was extended
to include a parameter for LD, which was parametrized in terms of founder haplotype
frequencies between alleles at the disease locus and up to three SNVs. Due to the
increased number of parameters that have to be optimized in the likelihood ratio of the
extended MOD score, the derivative-free optimization algorithm COBYLA (Powell,
1994, Powell, 1998) was implemented in GHM to speed up calculation time. In addi-
tion, a novel simulation routine to obtain empiric p values for the joint linkage and as-
sociation test was implemented in GHM and validated using simulated data. The sta-
tistical properties of the extended MOD score, i.e., type | error and power, were also
evaluated using an extensive simulation study and compared to a commonly used joint
linkage and association test implemented in the PSEUDOMARKER software package
(Goring and Terwilliger, 2000, Hiekkalinna et al., 2011, Gertz et al., 2014). As a result,
it could be shown that the joint linkage and association test using the MOD score ap-
proach outperforms the PSEUDOMARKER test in terms of power for scenarios, in
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which LD ranges over the trait locus and more than one, i.e., two to three, SNVs. To
evaluate the extended joint linkage and association MOD score in practice, pedigree
data from the FaPaCa registry were analyzed as a use case. Consequently, the anal-
ysis revealed a promising locus on chromosome 220.13.33, which could serve as a
candidate for mutation analysis to further elucidate the disease etiology of familial pan-
creatic cancer.
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Abstract

Objective: As the mode of inheritance is often unknown for
complex diseases, a MOD-score analysis, in which the para-
metric LOD score is maximized with respect to the trait-mod-
el parameters, can be a powerful approach in genetic linkage
analysis. Because the calculation of the disease-locus like-
lihood is the most time-consuming step in a MOD-score
analysis, we aimed to optimize this part of the calculation
to speed up linkage analysis using the GENEHUNTER-
MODSCORE software package. Methods: Our new algorithm
is based on minimizing the effective number of inheritance
vectors by collapsing them into classes. To this end, the dis-
ease-locus-likelihood contribution of each inheritance vec-
tor is represented and stored in its algebraic form as a sym-
bolic sum of products of penetrances and disease-allele fre-
quencies. Simulations were used to assess the speedup of
our new algorithm. Results: We were able to achieve speed-
ups ranging from 1.94 to 11.52 compared to the original
GENEHUNTER-MODSCORE version, with higher speedups
for larger pedigrees. When calculating p values, the speedup
ranged from 1.69 to 10.36. Conclusion: Computation times
for MOD-score analysis, involving the evaluation of many

tested sets of trait-model parameters and p value calcula-
tion, have been prohibitively high so far. With our new alge-
braic algorithm, such an analysis is now feasible within a rea-
sonable amount of time. ©2015S. Karger AG, Basel

Introduction

Since its first successful application by the physician
and geneticist Jan Mohr in 1954 [1], linkage analysis has
been a powerful tool in human disease gene mapping for
many decades. With this method, many Mendelian dis-
ease genes have been mapped to their genetic loci by the
use of family data [2]. Due to the development of geno-
typing techniques with dense SNP marker panels and the
progressing availability of large case-control or popula-
tion-based cohorts, association analysis has recently be-
come the preferred method for statistical analysis in the
field of genetic epidemiology. Unlike linkage analysis, an
association analysis can make use of samples with unre-
lated individuals; it does not require families which are
obviously much harder to recruit. However, with the ad-
vent of next-generation sequencing data and increasing
interest in the analysis of rare variants, the analysis of
family data using linkage analysis is undergoing a renais-
sance. The basis for this interest is that numerous rare
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variants with moderate effects may explain an apprecia-
ble amount of the missing heritability [3]. Although rare
variants are individually rare, a single person can have
thousands of such rare variants across the genome. It can
thus be difficult to determine whether the observation of
arare variant is a sequencing artifact or in fact a true vari-
antif it is carried by only a single individual of the sample.
However, one expects that rare variants segregate and ac-
cumulate within families. Results from the Genetic Anal-
ysis Workshop 17 showed that analyses using whole-
exome sequencing data require much smaller sample siz-
es when working with families than with unrelated
individuals, because the ability to detect rare causal vari-
ants is enhanced in family studies as the variants are car-
ried by several family members jointly [4].

In parametric linkage analysis, which is also known as
LOD-score or model-based analysis, a certain set of trait-
model parameters is explicitly assumed for the segrega-
tion of the disease. In the simplest case of a diallelic auto-
somal trait locus, which is assumed throughout this pa-
per, these parameters are the disease-allele frequency p
and the three penetrances fp, f;, and f;, with f; denoting the
probability that an individual with i copies of the disease
allele is affected by the disease. The central part of para-
metric linkage analysis is the computation of the genetic
likelihood, which is based on the following parameters:
disease-allele frequency, penetrances, marker-allele fre-
quencies, and the recombination fractions - and, if ap-
plicable, linkage disequilibria between the loci. In addi-
tion, the relation between family members is required to
beknown. Eventually, alikelihood-ratio testis performed,
in which the likelihood under the alternative hypothesis
of linkage with some specific value of the recombination
fraction (6 < 0.5; the numerator of the likelihood ratio) is
compared to the null hypothesis of no linkage (6 = 0.5; the
denominator of the likelihood ratio). The logarithm to
the base 10 of this likelihood ratio is the LOD score [5]. It
is maximized by varying 0 between marker and trait locus
in the numerator (maximum LOD score). Trait-model
parameters can either be prespecified according to results
from previous segregation analyses or maximized along
with the recombination fraction in a joint segregation and
linkage analysis. The latter approach is also known as
MOD-score analysis and has been first proposed by Risch
[6]. As the power of a LOD-score analysis crucially de-
pends on the true mode of inheritance, which is gener-
ally unknown, a MOD-score analysis can have greater
power to detect linkage than a simple LOD-score analysis.
Furthermore, in case of a trait-model-parameter mis-
specification, the recombination fraction will be overesti-
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mated [7]. In a multipoint analysis, the misspecification
may even lead to an exclusion of linkage [8]. Simulations
have shown that, especially when analyzing a mixture of
different types of pedigrees, the MOD-score approach
outperforms other linkage methods in terms of power to
identify genes with modest effect [9]. Due to the maximi-
zation over trait-model parameters, MOD scores are in-
flated when compared to LOD scores. Since the asymp-
totic distribution of MOD scores is unknown in the gen-
eral case, p values for the linkage test must be obtained
by simulating the distribution of the MOD score under
the null hypothesis of no linkage. Our group has imple-
mented the MOD-score approach, including a routine
to perform simulations under the null hypothesis, in the
GENEHUNTER-MODSCORE (GHM) software [10-
13]. Its application has led to the identification of a variety
of genetic disease loci [14-18].

Nonparametric linkage methods have been proposed
in order to avoid trait-model misspecification that occurs
when using simple LOD-score analyses. These methods
test if affected pedigree members have more alleles in
common than would be expected by chance under the
null hypothesis of no linkage. Nonparametric methods
are often considered to be ‘model-free’ because they do
not rely on explicit assumptions as to the trait-model pa-
rameters. However, Knapp etal. [19] have shown that, for
samples of affected sib pairs (ASPs) with the parents’ phe-
notypes unknown or set to unknown, the nonparametric
mean test is equivalent to a LOD-score analysis under a
recessive mode of inheritance, and the possible triangle
test proposed by Holmans [20] is equivalent to a MOD-
score analysis. In the possible triangle test, the genetic
likelihood is expressed in terms of the probabilities zy, z;,
and z, that an ASP shares 0, 1, or 2 alleles identical-by-
descent (IBD) with restrictions to genetically possible
models [20]. These allele-sharing probabilities can be ex-
pressed as functions of the trait-model parameters fp, f,
f» p, and 6 [21], and hence, the parametric and nonpara-
metric likelihood are identical. More generally, the allele-
sharing probabilities of any pedigree with affected rela-
tives could be used to construct a nonparametric allele-
sharing-based test statistic [22]. However, for such a
nonparametric test to be constructed for a certain pedi-
gree type other than ASPs or affected half-sib pairs
(AHSPs) would yet demand knowledge as to how many
allele-sharing classes exist for that pedigree type and how
the corresponding restrictions to genetically possible
models can be formulated. Knapp [23] derived allele-
sharing probabilities for affected sib triplets (ASTs) with
parental phenotypes set to unknown. However, the re-
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strictions to genetically possible models cannot be ex-
pressed in closed form. But again, the allele-sharing prob-
abilities, which represent the truly underlying parame-
ters, can be modeled as a function of fy, f}, 5, p, and 0.
Hence, the parametric and nonparametric likelihood
are identical even beyond the special cases of ASPs and
AHSPs, and MOD-score analysis is equivalent to the like-
lihood-ratio test based on allele-sharing parameters. As
outlined by Strauch [22], this holds for any type of pedi-
gree.

The calculation of the genetic likelihood is pivotal for
both parametric and nonparametric linkage analysis.
Given the complexity of real family data, it cannot be cal-
culated manually in most cases. Large pedigrees, many
markers, and missing genotypes lead to a substantial
number of possible genotype combinations that must be
considered in the likelihood. Two major algorithms are
known that allow for the calculation of the likelihood:
the Elston-Stewart [24] and the Lander-Green algorithm
[25]. The former is genotype-oriented and is based on the
peeling of nuclear families. It makes use of the indepen-
dence of genotypes of different nuclear families within a
pedigree when conditioning on a certain genotype of the
connecting person, the so-called pivot. The Elston-Stew-
art algorithm thereby summarizes identical terms that
correspond to a particular genotype combination within
the likelihood. The algorithm scales linearly with the
number of individuals in a pedigree and exponentially
with the number of analyzed loci. Hence, it is limited to
the analysis of a relatively small number of genetic mark-
ers. The Elston-Stewart algorithm has been implemented
and further optimized in several linkage software pack-
ages such as LINKAGE [26-28], FASTLINK [29, 30],
VITESSE [31, 32], and PSEUDOMARKER [33, 34]. The
Lander-Green algorithm is complementary to the Elston-
Stewart algorithm, such that it treats each marker locus
one after another and distinguishes the marker loci from
the disease locus. The Lander-Green algorithm is im-
plemented in several genetic analysis software packages
such as GENEHUNTER [35], ALLEGRO [36, 37], and
MERLIN [38]. It scales linearly with the number of mark-
ers and exponentially with the number of individuals in a
pedigree. Therefore, the Lander-Green algorithm is well
suited for the analysis of large datasets of genetic markers,
which are typically available for small to moderately large
pedigrees when mapping complex-disease genes. In addi-
tion, it allows both parametric and nonparametric link-
age analysis. This is because, as a first step, inheritance
information is extracted solely from marker data by ap-
plying the concept of inheritance vectors. Then, a para-

Fast Linkage Analysis with MOD Scores
Using Algebraic Calculation

metric or nonparametric scoring function that incorpo-
rates information with regard to the disease phenotypes
of the pedigree members is applied to evaluate a set of
genetic positions of the putative trait locus in terms of
linkage with the markers. In the parametric case, the scor-
ing function corresponds to the ratio of the disease-locus
likelihoods under the assumption of linkage versus no
linkage.

In this paper, we describe a new algorithm for the cal-
culation of the parametric disease-locus likelihood in the
context of the Lander-Green algorithm. This part of the
calculation is the most time-consuming step in a MOD-
score analysis. How can it be accelerated? Our new ap-
proach to a faster implementation is structured according
to the following three aspects:

o Inheritance Vectors and the Identity of the MOD Score
with the Allele-Sharing-Based Test Statistic. Inspired
by the identity of the allele-sharing-based nonpara-
metric likelihood and the parametric likelihood in the
test for linkage, our new algorithm is based on mini-
mizing the effective number of inheritance vectors by
collapsing them into classes, whose members are ob-
served with the same probability function of fy, fi, fo.
and p, i.e. having the same allele-sharing proportions
for a given type of pedigree structure. This approach
has the potential to considerably reduce the number of
floating number operations, because instead of calcu-
lating the disease-locus-likelihood contribution for a
given set of trait-model parameters for each inheri-
tance vector, it needs to be calculated only once for all
members of a certain class.

o Algebraic Formulation of the Disease-Locus Likelihood.
To collapse inheritance vectors into certain classes, i.e.
to recognize which vectors belong to the same class,
the disease-locus-likelihood contribution of each in-
heritance vector must be represented and stored in its
algebraic form. This involves representing it as a sym-
bolic sum of products of penetrances and disease-allele
frequencies for a given combination of disease-locus
genotypes of all individuals in the pedigree. Inheri-
tance vectors with identical symbolic sums can thus
readily be grouped into the same class. This step in-
volves no numerical calculation and needs to be done
only once at the beginning of a MOD-score analysis
for a given pedigree.

o Exploiting Similarities in Family Structures by the Use
of Inheritance Vector Classes. Two pedigrees with a
certain pattern of disease status, each of which can be
represented by a directed acyclic graph, are indistin-
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guishable in terms of the disease-locus-likelihood
structure if they are comprised of the same set of in-
heritance vector classes and the same number of vector
members per class. Hence, two such pedigrees yield
the same disease-locus-likelihood contributions. The
computational effort for LOD-score calculation for
the second pedigree can be entirely avoided. When
two pedigrees are distinct, i.e. yielding different sets of
inheritance vector classes, identical symbolic products
are still stored in a common database to avoid dispens-
able numerical calculations. The computational effort
during the LOD-score calculation is hence further re-
duced by the degree of similarity of pedigrees based on
their inheritance vector classes.

In conjunction with the already existing options and
optimizations of GHM, which are addressed below, our
new algorithm allows for a rapid evaluation of the likeli-
hood for a large number of disease models, as required
during maximization over trait models in a MOD-score
analysis. The reduction of computing time is a prerequisite
for empirically determining p values by performing simu-
lations and MOD-score calculations of many replicates.

It has to be noted that the first version of GHM [13] is
based on GENEHUNTER version 2.1 [39]. Since the re-
lease of GENEHUNTER version 1.0 in 1996 [35], many
improvements have been implemented, which have led to
a significant analysis speedup and which have added var-
ious additional functionalities to the software package
[39-41]. However, these previous improvements did not
concern the calculation of the parametric disease-locus
likelihood as does our new algebraic algorithm. All im-
provements as of GENEHUNTER version 2.1 [39] have
been carried forward to GHM and are complementary to
the algebraic algorithm presented in this paper. For more
information on the original GENEHUNTER software, we
refer to the review by Nyholt [42].

Methods

The Lander-Green Algorithm

Inheritance Vectors

Asa first step, the Lander-Green algorithm enumerates all pos-
sible inheritance vectors in a pedigree. An inheritance vector de-
notes a possible family-specific pattern of segregation of founder
alleles. Each bit of the inheritance vector corresponds to the out-
come of a certain meiosis, which codes the transmission of the
grand-paternally or grand-maternally inherited allele to the child
as a value of 0 or 1, respectively. With # non-founders, there are 2n
meioses and 22" possible inheritance vectors. However, even if the
information is complete, there are 2/ remaining inheritance vectors
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that all have the same probability. This is due to the fact that the
parental origin of founder haplotypes is unknown. In other words,
the bit corresponding to the first child of each founder can be fixed
arbitrarily (e.g. to a value of 0). Hence, the 2*" inheritance vectors
can be grouped into 22" -/ equivalence classes, each comprising
2/ inheritance vectors.

Probability of Observed Marker Genotypes Given a Particular

Inheritance Vector

The algorithm iterates over inheritance vectors and markers
and calculates the probability of the observed genotypes for each
marker conditional on a particular inheritance vector [25]. This
step of the calculation is based on a graph-theoretical process. Fol-
lowing the notation in Kruglyak et al. [35], let G(v) be a graph for
a given inheritance vector v whose vertices are the founder alleles
X = {x}, X5, ..., X} corresponding to the 2f founder alleles at the
marker locus, which are assumed to be distinct by descent (“place-
holder alleles’). An inheritance vector v specifies the placeholder
alleles inherited by each individual in the pedigree. The lines con-
necting the two placeholder alleles that correspond to the genotype
of each individual, as defined by the inheritance vector v, represent
the edges of the graph. The placeholder alleles are then assigned
the actual founder alleles at the marker locus, and placeholder al-
lele assignments that are incompatible with the observed marker
genotypes are eliminated from further consideration. Then, the
probability of drawing the founder alleles from the population, i.e.
the product of allele frequencies of all founders, is calculated, and
the sum of this product is taken over all possible founder allele as-
signments that are compatible with both the inheritance vector
and the observed marker genotypes.

The Markov Chain

The Lander-Green algorithm uses a Markov process to de-
scribe the joint distribution of inheritance vectors along a chromo-
some [25]. This is based on the observation that, under the as-
sumption of no genetic interference, inheritance vectors form a
hidden Markov chain. The observed states are the typed marker
genotypes, and the hidden states are the inheritance vectors. The
matrices of transition probabilities between inheritance vectors at
consecutive markers are a function of recombination fractions be-
tween markers. After the inheritance vector distribution (Peopmpiere)
has been calculated at a certain genetic position, the disease phe-
notypes of the family members are considered by using an appro-
priate scoring function.

The Scoring Function

At this stage of the analysis, different scoring functions are de-
fined for parametric and nonparametric linkage analysis. In a para-
metric analysis, the scoring function is the ratio of the disease-locus
likelihoods under linkage in the nominator versus under no linkage
in the denominator. The disease-locus likelihood is calculated con-
ditional on each inheritance vector. As marker information is often
incomplete, several inheritance vectors are possible, and the condi-
tional probabilities of these vectors given the marker information
(Peomplete) have a nonzero value. Therefore, the sum of the scoring
function is taken over all inheritance vectors weighted by their con-
ditional probability given the marker information (P oppiere)- Under
no linkage between marker and disease locus, the probability of
each inheritance vector no longer depends on the marker data.
Hence, the inheritance vector distribution at a putative disease lo-
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Fig. 1. Depiction of the algebraic algorithm.
Steps that have to be calculated only once

are highlighted in black. The final LOD- ieligRes
score calculation is shaded in light grey and

the interface between the algebraic algo-

rithm and the numeric LOD-score calcula- L 4
tion - the scoring-function arrays of the 22n,

pedigrees — is shown in dark grey. Each in-
heritance vector of a given pedigree with n
nonfounders and f founders is analyzed in
regard to its disease-locus-likelihood contri-
bution. For agiven inheritance vector, all pos-
sible disease-locus-genotype combinations
must be considered. Each disease-locus- .
genotype combination yields a likelihood
contribution that is a product of penetranc-
es and disease-allele frequencies. The sum
over all disease-locus-genotype combinations
is the total disease-locus-likelihood contri-
bution of the given inheritance vector. The
likelihood contribution of each IVDLGC
is stored in its algebraic form. IVDLGCs of
a given inheritance vector that lead to the
same algebraic representation are joined to-
gether by including a coefficient. Inheri-
tance vectors with the same set of IVDLGCs
are assigned to a certain inheritance vector
class. The analysis of inheritance vectors is
petformed for all pedigrees of the dataset,

inheritance

vectors

2) ase
genotypes

whereby all pedigrees of the sample have a miize;:fef:rf;rt
joint IVDLGC storage. This way, a certain Pcomplete of pedigree 1 5 trait models
inheritance vector class can comprise inher- 3

itance vectors of several pedigrees. Finally, m

the trait-model-specific LOD score is calcu- - : 7
lated numerically as the scalar product of finallnuneiglobescorglcalculation
Pomplere and the scoring-function array. This 6D el il 1

step is repeated many times duringa MOD-
score analysis by numerically evaluating the
scoring-function arrays assuming different

Pedigree 2 Pedigree 3 Pedigree m
L 4 ¥
inheritance inheritance inheritance
vectors vectors vectors
X
22f: disease disease disease
genotypes genotypes genotypes
L 4 4 »
. IVDLGCs
Calculated
only once

| Coeflidens ]
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Scoring-function array of pedigree 1 n

L 4

Algebraic calculation
Inheritance vector
classes l

sets of trait-model parameters.

cus position unlinked to the marker locus corresponds to a uniform
distribution with probability 1/2" -/ for each inheritance vector.
Maximizing the logarithm to the base 10 of this likelihood ratio
over the recombination fraction 6 yields the LOD score. When it is
maximized over (fy, f1, f2, and p) in addition to 8, the MOD score is
obtained. Nonparametric scoring functions count the number of
alleles shared IBD by affected pedigree members given a certain
inheritance vector. Popular nonparametric scoring functions are
Spairs a0d Sqyy [35, 43]. Our new algorithm only affects the calcula-
tion of the parametric scoring function, and we refer to McPeek
[44] for more information about nonparametric scoring functions.

The Algebraic Algorithm

Basic Concept

As described by Strauch [22], inheritance vectors can be col-
lapsed into inheritance vector classes if they cannot be distin-

Fast Linkage Analysis with MOD Scores
Using Algebraic Calculation

guished from each other on the basis of the phenotypic structure
of a given family tree. In other words, inheritance vectors being
observed with the same allele-sharing probability z; conditional on
the disease phenotypes and the parameters fy, fi, f>, and p are com-
prised in a certain inheritance vector class. The number of inheri-
tance vector classes, and hence allele-sharing probabilities, de-
pends on the number of persons in a pedigree and hence differs
between different types of pedigrees in a sample. As stated before,
it appears to be very difficult to construct a nonparametric allele-
sharing test, which uses the probabilities z;, along the lines of the
possible triangle test for ASPs, for each of the various pedigree
types contained in the particular sample under study. In addition,
the restriction to genetically possible models is difficult to formu-
late. However, given the identity of the parametric likelihood with
the nonparametric likelihood in an allele-sharing-based test and
the consequential fact that the z;s are a function of (fy, f, o> and p),
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it seems straightforward to use the parametric formulation of the
disease-locus likelihood and to collapse those inheritance vectors
into a certain class that, by an identical probability z; lead to the
same likelihood contribution. An algorithm that makes use of this
structure has the potential to substantially reduce the computa-
tional effort involved in the disease-locus-likelihood calculation
for a given pedigree, since the likelihood needs to be calculated
only for one member of each class.

Analysis of Inheritance Vectors

Our new algorithm starts by analyzing each of the 2"~ in-
heritance vectors of a certain pedigree with regard to its disease-
locus-likelihood contribution. The processing of the marker-locus
likelihood by the GHM software using hidden Markov models to
calculate P pypiere remains untouched by our new approach. The
consecutive steps of the algebraic algorithm can be followed by
looking at figure 1, which depicts the analysis of all pedigrees in a
dataset. For the present, we assume that there is only a single ped-
igree in the dataset. For a given inheritance vector, all possible dis-
ease-locus-genotype combinations must be considered. Each dis-
ease-locus-genotype combination yields a likelihood contribution
that is a product of penetrances and disease-allele frequencies. The
sum over all disease-locus-genotype combinations is the total dis-
ease-locus-likelihood contribution of the given inheritance vector.
In order to avoid many floating point operations each time an in-
heritance-vector-disease-locus-genotype combination (IVDLGC)
is considered, every IVDLGC is stored in its algebraic form. This
way, each inheritance vector can be considered as a set of a certain
number of IVDLGCs, whereby our algorithm builds up a database
of IVDLGCs, such that only combinations leading to a new alge-
braic representation are additionally stored in memory. Essential-
ly, IVDLGC:s are stored in a big table and connected to the inheri-
tance vector classes by the use of pointers. Pointers are a powerful
feature for memory access specific to the C programming lan-
guage, in which GHM is written. IVDLGCs of a given inheritance
vector that lead to the same algebraic representation, i.e. the prod-
uct of a certain combination of parameters (f, f}, f5, and p), are
joined together by incrementing a coefficient (integer) and thus
need not be saved separately, which avoids extra floating point op-
erations and memory.

Identification of Inheritance Vector Classes

All inheritance vectors of a certain class consist of the same set
of IVDLGCs. In particular, if an inheritance vector has the same set
of IVDLGCs as an inheritance vector class already identified during
the course of the calculation, the vector is added to that class. A
previously unobserved set of IVDLGCs for a certain vector leads to
the definition of a new inheritance vector class. An inheritance vec-
tor class corresponds to a certain allele-sharing class in the non-
parametric context. Figure 2 gives a technical depiction of the alge-
braic algorithm for an AST. It illustrates how a specific inheritance
vector is assigned to its corresponding class on the basis of the al-
gebraic calculation of its disease-locus-likelihood contribution.

Calculation of the LOD Score

‘When all inheritance vectors of a given pedigree have been as-
signed to a certain inheritance vector class and the algebraic struc-
ture mentioned above has been determined, the LOD score can
readily be calculated for a given set of trait-model parameters. To
this end, the algebraic representations of IVDLGCs of all inheri-
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tance vector classes are evaluated numerically by inserting the (nu-
meric) values of the parameters (fy, f1, f2, and p) of a specified dis-
ease model. The result of each of these products is further multi-
plied by its associated coefficient, which is equal to the number of
IVDLGCs with the same product in a given inheritance vector
class, and the sum is taken over all products of that class. This way,
the disease-locus-likelihood contributions of all inheritance vector
classes are calculated in a single step and then copied into the scor-
ing-function array of the pedigree, according to the class to which
a certain inheritance vector belongs. The step of finding the dis-
ease-locus-likelihood contribution of the inheritance vector class
that corresponds to a given inheritance vector involves the use of
pointers and dereference operations. Finally, the trait-model-spe-
cific LOD score is calculated as the scalar product of P gmprer. and
the scoring-function array. It is of note that information from
marker data only affects the calculation of Py pprer, which further-
moreis independent of the trait-model parameters. Consequently,
Peomplere has to be computed once for every genetic position and
every pedigree in the dataset, even if some or many pedigrees have
the same structure. However, P omplcr. can be reused for the LOD-
score evaluations under many different trait-model parameters
during the maximization.

Number of Inheritance Vector Classes

The degree to which inheritance vectors can be collapsed into
certain inheritance vector classes, and hence the computational
speedup, depends on the pedigree size and the phenotypes of its
members. For example, with nuclear families and parental pheno-
types unknown, the potential of reduction by collapsing inheri-
tance vectors into classes increases from ASPs over ASTs to larger
sibships. ASPs with 4 possible inheritance vectors have 3 distinct
allele-sharing classes, i.e. inheritance vector classes (0, 1, or 2 alleles
shared IBD). If imprinting is modeled, e.g. using the four-pene-
trance formulation developed by Strauch et al. [45] as implement-
ed in GENEHUNTER-IMPRINTING and GHM, ASPs have 4 al-
lele-sharing classes (in this case, the class of 1 shared allele is fur-
ther distinguished by the parental origin). ASTs with 16 possible
inheritance vectors have 4 and 5 allele-sharing classes for a nonim-
printing and an imprinting model, respectively (Appendix) [23].
In the following, we will assume an imprinting model when deriv-
ing allele-sharing classes, because GHM internally always uses the
four-penetrance formulation. The total number of inheritance
vectors as well as the reduced number of vector classes are given in
table 1 as a function of sibship size of a nuclear family with paren-
tal phenotypes unknown (or set to unknown).

Extension across Pedigrees

A further advantage of the algebraic algorithm is that the con-
cept of storing IVDLGCs can even be extended across pedigrees,
such that all pedigrees of the sample have a joint IVDLGC storage.
A pedigree can thus be considered as a set of certain inheritance
vector classes each consisting of a certain set of IVDLGCs. This
structure, which is the basis of the algebraic algorithm, is depicted
in figure 1. Here, in contrast to the case of considering a single
pedigree, a certain inheritance vector class can comprise inheri-
tance vectors of several pedigrees. Hence, the disease-locus-likeli-
hood contributions of all inheritance vector classes are calculated
in a single step for the entire dataset, and then the result for a cer-
tain inheritance vector class is used for all pedigrees with inheri-
tance vectors that are members of that particular class.
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Example — inheritance vector 0000:
Algebraic calculation of disease-locus-likelihood contribution;
summation over all disease-locus-genotype combinations in
founders (mating types)
Mating type Coefficient to Algebraic form of
(paternal x mater- sum identical disease-locus-likeli-
nal genotype) algebraic terms hood contribution
/DD x DD 1 pif3
DD x Dd 3 3
Dd x DD } 2 praf2
DD x dD 1 plaf i pat
dD x DD 1 Pafd
Bits for meioses Bits for meioses of add- DD x d d } P 2 2f3
of first child (3) itional children (4 and 5) Dd x dD P9°T3, pat
0 o o 0 0o o0 —> Dd x Dd 1 PPa’f}
0o o o 0o o0 1 dD x dD 1 p2q’f 3
0 0 0 0 1 o0 dd x DD } 22,3
0 0 0o 0 1 1 dD x Dd 2 Poaf 3, mat
0 0 o 1 0 o0 Dd x dd 1 PPF3 pat
0 0 0o 1 o0 1 db x dd } 363
7AST7 0 0 0o 1 1 o dd x dD 2 Pafd
0 0 o 1 1 1 dd x Dd 1 PEF3
1 2 —> 0 1 0 0 0 \ dd x dd 1 gf3
0 0 1 0 0 1
0 0 1 0 1 0
0 0 1 0 1 1
o o 0 11 0 o l
0 0 1 1 0 1
0 0 : L 1 0 Assignment to inheritance vector ¢l
0 0 I 101 1 ssignment to e' ance vector class
Bits of the set of distinguishable inheritance vectors Classes Inheritance vectors
for an AST, Since the (grand-)parental origin of the 0 0110, 0111, 1001, 1011, 1101, 1110
parents’ alleles is unknown, the bits corresponding to 1 0011, 1100, 1111
the two meioses of the first child can be fixed arbi- 2pat 0001, 0100, 0101
trarily without loss of generality. Here, both are set omat 0010, 1000, 1010
to zero and not further mentioned in the right half of . ‘
this fi 3 0000
is figure.
Fig. 2. Technical depiction of the algebraic algorithm for an AST. If several inheritance vectors have the same
disease-locus-likelihood contribution, they are joined together in an inheritance vector class.
Table 1. Allele-sharing classes for affected sibships
ASP AST ASQ  ASQui ASS
Number of inheritance vectors (2(27-) 4 16 64 256 1,024
Inheritance vector classes with imprinting taken into account 4 5 11 14 24
Reduction factor (2"/number of inheritance vector classes) 1 32 5.82 18.29 42.67
ASP = Affected sib pair; AST = affected sib triplet; ASQ = affected sib quadruplet; ASQui = affected sib quin-
tet; ASS = affected sib sextet.
SpeedUp heritance vector classes, given a certain disease model, have to be

The initial effort of the algebraic algorithm to identify the in-
heritance vector classes of all pedigrees is high, but the ensuing
calculation of LOD scores assuming a large number of disease
models is sped up considerably, especially when a dataset is com-
prised of pedigrees of only a few types. For example, in a dataset of
1,000 ASTs, the disease-locus-likelihood contributions of the 5 in-

Fast Linkage Analysis with MOD Scores
Using Algebraic Calculation

calculated only once for the whole dataset rather than 1,000 times.

The Peeling Algorithm

In the original version of GHM, the calculation of the parametric
disease-locus likelihood is done separately for each inheritance vec-
tor by applying the Elston-Stewart algorithm, i.e. peeling nuclear
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Table 2. Allele-sharing classes for discordant scenarios

DSP DSQ DML D3G
Number of inheritance vectors (22") 4 64 64 128
Inheritance vector classes with imprinting taken into account 4 28 64 80
Reduction factor (22")/number of inheritance vector classes) 1 2.29 1 1.6

DSP = Discordant sib pair; DSQ = discordant sib quadruplet; DML = discordant marriage loop; D3G = dis-

cordant three-generation pedigree.

Table 3. Overview of scenarios for run-time assessment

Dataset No. 1 2 3 4 5 6 7 8
Pedigree type ASPs  ASTs  ASQs ASQuis ASSs  equal mixture D3Gs  discordant
of 1-5 mixture

For each dataset, 100 pedigrees were simulated using SLINK [51-53] for the genotype data at the disease locus
and the SLINK utility program SUP [51, 54] for the marker genotypes.

Disease model {fy, f1, 2} = {0.01, 0.1, 0.2}; p = 0.05.

Disease locus halfway between marker No. 50 and 51.

We used the following analysis options: ‘imprinting on’, ‘algebraic calculation on/off, ‘dimensions 5’, “saved
models 0/5,000’, ‘number of replicates 1,000’, ‘maximization dense’, ‘penetrance restriction off’, ‘allfreq restric-
tion off’, ‘analysis LOD’, ‘modcalc single’, and “calculate p value’.

families of the pedigree, to the disease locus. For the final remaining
nuclear family of the pedigree or if the pedigree consists of only a
single nuclear family, e.g. an ASP, a brute force calculation is em-
ployed. This calculation is done numerically and separately for each
inheritance vector and for each assumed set of trait-model param-
eters. The LOD score of the currently analyzed family is stored, and
the calculation continues with the next pedigree in the dataset. With
the GHM software, many disease models are evaluated in a single
program run during MOD-score analysis by repeating this step of
thelikelihood calculation. Our new algebraic procedure for calculat-
ing the disease-locus likelihood completely replaces the peeling al-
gorithm, and it is applicable without additional modifications in
case of inbreeding and marriage loops. It therefore significantly de-
creases the run time of a linkage analysis for any type of pedigree.

Maximization Options of GHM

The maximization routine of GHM first evaluates a set of pre-
defined models. The user can choose between predefined grids
with different densities. Moreover, the maximization can either be
performed separately for each tested locus (‘modcalc single’ op-
tion) or jointly for the entire genetic region (‘modcalc global’ op-
tion). With modcalc single, calculation time can be saved by stor-
ing the trait-model-specific arrays of the disease-locus likelihood,
which are needed for every considered genetic position. This op-
tion (‘saved models’) is especially useful when simulations are per-
formed to obtain p values, which is already available with the pre-
vious version of GHM (‘calculate p value’ option [10]).

186 Hum Hered 2014;78:179-194
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Simulations

To demonstrate the performance of our new method, we sim-
ulated datasets and compared the analysis run times of the alge-
braic algorithm to those of the peeling algorithm, which is em-
ployed by the original version that performs numeric calculation.
Datasets either consisted of a single pedigree type, i.e. affected
sibships with 2-6 siblings or three-generation pedigrees includ-
ing unaffected pedigree members (discordant pedigrees), or mix-
tures of affected sibships. The speedup of the algebraic algorithm
might be reduced by an increasing degree of discordance of the
pedigrees, because this mostly leads to a larger number of inheri-
tance vector classes as compared to their concordant counter-
parts (table 2). Therefore, we additionally considered an equal
mixture of 4 discordant pedigree types: (a) discordant sib pairs,
(b) discordant sib quadruplets, (c) discordant marriage loops
(DML), and (d) discordant three-generation pedigrees (D3G).
An overview of the simulated scenarios is given in table 3. Figure
3 depicts the pedigrees used for the discordant scenario including
the one used in the D3G scenario (fig. 3d). Storing of arrays of the
disease-locus likelihood, as already possible with the original
GHM version (saved models option as mentioned above), was
performed with the original algorithm (classic calculation mode).
This was done to ensure a fair comparison to the classic calcula-
tion mode that makes use of run time-saving optimizations al-
ready implemented in the original GHM version. The saved mod-
els option was set to zero (no models saved) when using the alge-
braic algorithm (algebraic calculation mode), because it does not
necessarily benefit from this option. It is of note that both our new
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Fig.3. Discordant pedigrees used in the sim-
ulations for run-time assessment. a Discor-
dant sib pair; b discordant sib quadruplet;
c discordant marriage loop; d discordant c

a 3 4
o—H
1 2

5 6

three-generation pedigree.

method and the saved models option need additional main mem-
ory. In case of the new method, this memory amount crucially
depends on the size and phenotypic structure of the pedigrees, i.e.
the number of inheritance vector classes across the whole dataset,
whereas for the saved models option it depends on the number
and size of the pedigrees. The peeling algorithm without the saved
models option needs less memory albeit performing more float-
ing point operations; it can still be used in case of insufficient
main memory. Here we used a dense grid of disease models (op-
tion ‘maximization dense’), because our new method should be
especially useful when many disease models are evaluated, i.e.
with a thorough maximization, which is likely to increase the
power to map the disease gene under a complex mode of inheri-
tance. In addition to the above-mentioned MOD-score analysis,
p values were calculated (with the calculate p value option of
GHM) by simulating 1,000 replicates generated under the null
hypothesis of no linkage.

Run-Time Assessment

Run time was measured with the performance analysis tool
gprof [46]. gprof measures the total amount of time spent executing
each function of the program. Time due to system calls and wait-
ing for CPU or 1/0 is not considered. Therefore, we additionally
assessed the wall-clock time (WCT), which is the elapsed real time,
i.e. the actual time taken from the start of the program run until
the end. Because the WCT is obtained without any profiling steps,
the program was run without any debugging options turned on.
The speedup of our new method is obtained as follows:

run time with classic calculation mode

Speedup = .
peecip run time with algebraic calculation mode

Fast Linkage Analysis with MOD Scores
Using Algebraic Calculation

All analyses were run on a single processor of the High Perfor-
mance Computing - High Availability - Cluster (HPC-HA-Clus-
ter) of the Helmholtz Zentrum Miinchen, equipped with IBM Intel
Xeon X5690 6C, 3.46 GHz, 12 MB cache, 1,333 MHz 130 W pro-
cessors in the compute nodes.

Results

The results of speedup due to the algebraic algorithm
under the simulated scenarios for the analysis without
calculating p values are shown in table 4, and those for the
analysis with calculating p values are shown in table 5.
Speedup is given based on run-time assessments mea-
sured by the performance analysis tool gprofas well as by
measuring the WCT. Before looking at the speedups in
detail, some technical aspects need to be considered prior
to the interpretation of the results. In general, the gprof
results reflect the speedup achieved by less time spent in
the source code, which equals the number of instructions
executed, but they do not include the time spent waiting
for CPU and memory. Concerning GHM, the percentage
of run time due to time waiting for CPU and memory in-
creases with a larger number of scoring-function arrays
saved in memory (saved models option) in case of the
classic calculation mode, or with a larger number of in-
heritance vectors that must be considered when identify-
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Table 4. Results of the run-time assessment without calculating p values, averaged over 3 program runs

Run time, s Speedup

WCT gprof WCT gprof

classic algebraic classic algebraic
Pedigree type
ASPs 34.65 17.90 28.84 8.73 1.94 3.30
ASTs 95.75 23.76 73.97 15.13 4.03 4.89
ASQs 309.10 43.67 281.38 31.61 7.08 8.90
ASQuis 884.86 99.33 871.10 91.02 891 9.57
ASSs 4,523.33 392.67 3,372.38 378.24 11.52 8.92
Affected mixture 1,010.96 123.47 911.68 106.01 8.19 8.60
D3Gs 400.30 83.00 277.92 71.66 4.83 3.88
Discordant mixture 780.99 105.24 758.98 94.09 7.42 8.07

Classic = MOD-score analysis using the original GHM version; algebraic = MOD-score analysis using our
new algebraic algorithm; gprof = execution time as measured by the profiling software gprof; ASQs = affected sib
quadruplets; ASQuis = affected sib quintets; Affected mixture = mixture of 20 ASPs, ASTs, ASQs, ASQuis, and

ASSs each; D3Gs = sample depicted in figure 3d; Discordant mixture = mixture of discordant pedigrees, 25 of

each sort depicted in figure 3.

Table 5. Results of the run-time with calculating p values, averaged over 3 program runs

Run time, h Speedup

WCT gprof WCT gprof

classic algebraic classic algebraic
Pedigree type
ASPs 9.28 5.49 518 222 1.69 2.33
ASTs 18.74 6.92 9.71 3.22 271 3.02
ASQs 62.85 11.68 17.96 495 538 3.63
ASQuis 243.48 31.85 26.98 9.01 7.64 2.99
ASSs 1,055.51 101.92 34.49 14.87 10.36 2.32
Affected mixture 278.97 33.98 28.81 9.56 8.21 3.01
D3Gs 177.80 20.39 36.84 8.29 8.72 4.44
Discordant mixture 294.83 29.36 29.20 10.69 10.04 2.73

See legend of table 4 for explanations.

ing inheritance vector classes in case of the algebraic cal-
culation mode. For the latter, this is due to an increasing
number of CPU memory cache misses caused by many
crisscross copying processes of disease-locus-likelihood
contributions of inheritance vectors of a given class into
the corresponding memory cells of the scoring-function
array. This copying process to complete the scoring-func-
tion has to be done for each inheritance vector, because
Pompicte» Which will be multiplied with the scoring func-
tion, can be different for inheritance vectors of the same
class. Hence, a larger number of inheritance vectors leads
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to more such copying processes, irrespective of the reduc-
tion factors as calculated in tables 1 and 2. When p values
are calculated, this effect becomes more pronounced, as
scoring-function arrays must be filled in this manner for
every simulated replicate. In addition, it is of note that the
results for the analyses without calculating p values are
subject to a larger variance than those with calculating p
values, because the analyses without calculating p values
took only seconds to a few minutes to complete. With re-
gard to the results in table 4 for the analyses without cal-
culating p values, time waiting for CPU and memory was
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almost negligible. This is due to the fact that, in addition
to time spent for the initial preparation of the dataset,
time was predominantly spent for the initial identifica-
tion of inheritance vector classes in case of the algebraic
calculation mode or the initial numeric calculation of
scoring-function arrays used for model saving in case of
the classic calculation mode with the saved models op-
tion. Hence, the gprof speedups of the scenarios without
calculating p values in table 4 were similar to their corre-
sponding speedups calculated from the WCT. On the
contrary, the gprof speedups of the scenarios with calcu-
lating p values in table 5 were quite constant over varying
pedigree types due to a larger percentage of function calls
invoked by the calculate p value option, which remained
unchanged in the new GHM version. In addition, most of
the computing time as measured by the WCT was spent
waiting for CPU and memory (see explanation above). As
the WCT is more relevant for users, since it is the actual
time they have to wait for results, we concentrate our dis-
cussion of speedup on the WCT. As can be seen in table 4,
the speedup for the analysis without calculating p values
ranged from 1.94 for ASPs to 11.52 for affected sib sextets
(ASSs). These speedups turned out to be roughly propor-
tional to the reduction factors as calculated in table 1. The
speedup for the mixture of nuclear families (8.19) was ap-
proximately the average of the individual speedups for
each pedigree type. The speedups of the D3G and the dis-
cordant scenarios were 4.83 and 7.42, respectively, which
are higher than would have been expected from the re-
duction factorsin table 2. The fact that the increased com-
putational effort of the peeling algorithm to calculate the
disease-locus likelihoods of the D3G and DML pedigrees
is avoided with our new algorithmic approach might be
responsible for that. When p values were calculated, the
speedups for the scenarios of nuclear families ranged
from 1.69 for ASPs to 10.36 for ASSs (table 5), as was ex-
pected from the reduction factors calculated in table 1.
Even though the classic calculation mode took advantage
of model saving, whose effect should be more pronounced
when simulating replicates to calculate p values, the
speedups from table 5 for nuclear families were similar to
those from table 4. The speedup for the mixture of nucle-
ar families was 8.21, which was again roughly the average
of the individual speedups for each pedigree type. The
speedups of the D3G and the discordant scenarios were
8.72 and 10.04, respectively. Here, the speedups were
higher compared to the results without calculating p val-
ues given in table 4. This is due to the fact that the percent-
age of time needed for peeling of the D3G and DML ped-
igrees with the classic calculation mode is even more pro-

Fast Linkage Analysis with MOD Scores
Using Algebraic Calculation

nounced when p values are calculated, because time due
to initial calculations, i.e. the identification of inheritance
vector classes for the algebraic calculation mode and the
initial calculation of scoring-function arrays for the clas-
sic calculation mode, was negligible.

Discussion

The calculation of the disease-locus likelihood in link-
age analysis is a complex task, because data on the ob-
served genetic markers are often incomplete. This leads
to alarge number of possible disease-locus genotypes that
must be considered in the likelihood. MOD-score analy-
sis is a promising route to the genetic dissection of com-
plex traits in the context of family studies. Although time-
consuming, the evaluation of many disease models dur-
ing a MOD-score analysis is essential, because it is thus
likely to increase the power to map genes that act under a
complex mode of inheritance, compared to a simple para-
metric (LOD-score) or nonparametric (NPL-score) anal-
ysis.

Our algebraic algorithm is inspired by the identity of
the allele-sharing-based nonparametric likelihood and
the parametriclikelihood in the test for linkage. It is based
on the concept of inheritance vectors. These are collapsed
into inheritance vector classes, which turn out to be the
distinct allele-sharing classes in the nonparametric con-
text. In the Appendix section, we theoretically derive the
allele-sharing classes for the example of an AST when an
imprinting model is considered. This tedious way of iden-
tifying allele-sharing classes could principally be done for
any type of pedigree considering affected as well as unaf-
fected pedigree members in order to construct an allele-
sharing-based test for linkage (see also Strauch [22]). Due
to the above-mentioned identity, however, it is straight-
forward to express the allele-sharing probabilities as
functions of the trait-model parameters fy, f1, fo, and p,
and to perform a MOD-score analysis, i.e. the parametric
equivalent of the nonparametric test. The algebraic algo-
rithm can thus be considered as a unified approach of
parametric and nonparametric linkage methods. Previ-
ous work has shown that the MOD-score approach can
outperform other linkage methods in terms of power [9].
One of the reasons for this finding is the fact that the per-
formance of LOD scores crucially depends on the speci-
fication of the correct trait model, which is generally un-
known when analyzing complex traits. This problem is
circumvented by the MOD score which, in contrast to the
simple LOD score, is maximized not only over the recom-
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bination fraction but also over trait-model parameters.
However, the calculation of the disease-locus likelihood
has to be done anew for every tested set of trait-model
parameters, and it is the most time-consuming step in a
MOD-score analysis. As a further complication, MOD
scores are inflated when compared to LOD scores, and
simulations to calculate p values have to be performed.
Both aspects, extensive model testing and simulations to
calculate p values, pose a challenge in regard to computa-
tion time and memory demands.

In this paper, we have presented a new algebraic algo-
rithm that considerably reduces the run time of a MOD-
score analysis. By storing unique IVDLGCs in a database
common to all pedigrees in a dataset, the number of float-
ing point operations and the memory demand of our new
method are kept minimal, and similarities of family trees
in terms of disease-locus-likelihood contributions can be
exploited across the whole dataset. This is possible be-
cause the disease locus is treated separately from the
marker loci when using a linkage analysis program such
as GHM [10-13] that is based on the Lander-Green algo-
rithm [25]. The speedup of a linkage analysis with GHM
due to the algebraic algorithm depends on the number of
different pedigree types, the complexity of the pedigrees,
which is expressed by the number of inheritance vectors
and classes, the number of replicates used to calculate p
values, and the number of models saved in memory
(saved models option) when running GHM in the classic
calculation mode. For datasets consisting of only a single
type of nuclear families, the speedup increased with the
number of affected siblings and reached a factor >10 for
ASSsin our analyses (tables 4, 5). Even in the case of ASPs,
we achieved speedups by a factor of more than 1.5 (tables
4, 5). When using an equal mixture of nuclear families
with different numbers of affected offspring, the speed-
ups turned out to be the approximate average of the
speedups of the individual nuclear family scenarios (ta-
bles 4, 5). In the D3G and the discordant scenarios, i.e.
those scenarios with a larger degree of complexity of the
pedigrees and a higher computational burden due to
peeling and loop breaking for the classic calculation mode
of GHM, the speedups increased from the analysis with-
out calculating p values to those with calculating p values
from 4.83 to a factor >8 for the D3G scenario, and from
7.42 to a factor >10 for the discordant scenario. The re-
sults thus clearly show that our new algorithm can sub-
stantially reduce the run time of a MOD-score analysis
with GHM.

In the past, linkage analysis proved to be a valuable tool
for identifying regions of the genome that harbor variants
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responsible for both Mendelian and complex diseases [2].
However, sequencing a rather large genetic region repre-
sented by the linkage signal to determine the causal vari-
ant was not feasible at that time. Nowadays, employing
next-generation sequencing techniques allows for the
identification of rare causal variants of putative complex-
disease genes by combining an initial step of linkage anal-
ysis followed by fine mapping with association analysis.
A major advantage of linkage methods as compared to
methods in association analysis is that information across
families can be combined, such that evidence for a causal
role of a locus can accumulate even if different variants
segregate at that locus in different families, which is
known as allelic heterogeneity [47]. However, locus het-
erogeneity and/or penetrance heterogeneity, i.e. several
allelic variants exist at the same locus each with different
penetrances, can reduce the power of linkage analysis to
map the disease gene. This problem can be diminished
using large pedigrees, which can each be more homoge-
neous with respect to genetic variation than unrelated in-
dividuals or a sample of many small pedigrees [48, 49].
Admittedly, the GENEHUNTER software was originally
designed for the analysis of small to moderately sized ped-
igrees (2n — f < 20 with n non-founders and ffounders in
a pedigree). Such pedigrees are easier to collect for dis-
eases characterized by late onset, low penetrance, and di-
agnostic uncertainty. They are also more likely to reflect
the genetic etiology of the disease in the general popula-
tion [35]. The loss of power due to the uncertainty in pen-
etrance values at the disease locus can be reduced by a
maximization of the disease-locus likelihood over the
trait-model parameters fo, fi, fo, and p as it is done in a
MOD-score analysis. Further robustness can be obtained
by performing an affecteds-only analysis through recod-
ing unaffected individuals as having an unknown pheno-
type. If the penetrance is low, little information is lost by
ignoring the phenotype of unaffected pedigree members.
The power of an affecteds-only MOD-score analysis can
hence be higher, because the MOD-score distribution has
fewer degrees of freedom as compared to the MOD score
in an analysis that uses the phenotype of unaffected ped-
igree members. Even if pedigrees show locus and/or pen-
etrance heterogeneity, it is likely that modest evidence for
linkage can indeed narrow down the genetic region har-
boring the disease gene and can hence be used as a filter
to focus on a more detailed association analysis of the
variants in the region. In addition, using large samples of
small pedigrees allows for the identification of hitherto
unidentified genetic variants as risk factors for complex
diseases (see de Visser et al. [50] for an example with
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ASPs). Therefore, while linkage analysis of rare variants
segregating in large pedigrees has proven to be a powerful
approach, the analysis of smaller pedigrees can also be a
promising route to discover genetic loci responsible for
complex traits by the use of whole-exome or whole-ge-
nome sequence data. Irrespective of the assumed under-
lying genetic architecture of a given collection of small
pedigrees, e.g. a large number of small-effect common
variants, a large number of large-effect rare variants, or a
mixture of both, GHM is well suited for the analysis of
such data.

Extensive model testing, simulations to calculate p val-
ues, and the consideration of many genetic markers in a
MOD-score analysis are indispensable to successfully
map complex-disease genes in the context of family stud-
ies. Our new algebraic algorithm paves the way to an ex-
ceedingly efficient MOD-score analysis, because the eval-
uation of many sets of trait-model parameters and simu-
lations to calculate p values are now feasible within a
reasonable amount of time. Assuming, for example, an
average speedup of 6.84 calculated from table 5, a geneti-
cist doing a linkage study with MOD scores including
simulations to determine p values can obtain results with-
in a day instead of waiting a whole week for the analysis
to finish. This further pushes ahead the maximum size of
pedigrees that can still be analyzed.

GENEHUNTER-MODSCORE is thus a promising
tool to identify rare causal variants segregating within
families using next-generation-sequencing data. The al-
gebraic algorithm is implemented in a new version of
GHM that can be obtained for free from the following
website: www.helmholtz-muenchen.de/ige/service/soft-
ware-download/index.html.
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Appendix

Calculation of Allele-Sharing Classes for an AST Taking

Imprinting into Account (see also Knapp [23] for the

Formulation without Imprinting)

We are interested in the IBD sharing probability distribution
of an AST at a diallelic disease locus with susceptibility allele D,
normal allele d, and allele frequencies p = P(D), g=P(d) =1 - p.

Fast Linkage Analysis with MOD Scores
Using Algebraic Calculation

Taking the parental origin of the alleles into account, 5 IBD con-
figurations can be distinguished. These IBD configurations are
identical to the inheritance vector classes. Table LA presents the
Mendelian probability for each IBD configuration and a represen-
tative sharing among the 3 sibs. Let w¥ (i = 0, 1, 2P%, 2%, and 3)
denote the probability of the i-th configuration at the disease lo-
cus. Further, let D, and D,, denote the paternal and maternal gen-
otype at the disease locus. Let AST be the event that all 3 sibs are
affected, and let IBD; be the event that the sibs have IBD configu-
ration i at the disease locus. For k, I, m, n, € (D, d}, let ¢ b )
denote the probability of the joint occurrence of AST and IBD,
given that the paternal and maternal genotypes are (k, I) and (m,
n). We hence get

clfbm® = P (AST 0 IBDY| Dpgy = (k, 1), Dyar = (m, 1)

= P(AST|IBDY, Dyt = (k, 1), Dot = (m, )
» P(IBDY| Dpar = (k, D), Dy = (m, 1)),

where P(IBDP, | Dpar = (k, 1), Dyt = (1, 1)) reduces to the Mendelian
probability of the i-th IBD configuration, i.e. P(IBDY).

With first-bits € G, G = {00, 01, 10, 11} denoting the first two
bits of the inheritance vector, which correspond to the outcome of
the two meioses leading to the first offspring, we obtain

P(AST|IBDP, Dyt = (k, 1), Dyyar = (m, 1))
= Zfirstbits € ¢ PAAST, first-bits|IBDY, Dpoy = (k, 1), Dy
= (m, n))
= Yfirstbins e g PLAST|first-bits, IBD®, Doy = (ks 1)y Dyar
=(m,n
- P (first-bits| IBDB, Dpay = (k, 1), Dyar = (1, 1)),

where P (first-bits|IBD", Dypay = (k, 1), Dypay = (m, n)) = 1/4 for all
first-bits € {00, 01, 10, 11}.

Thus, we can write for ¢k b 7

% b = 174 P(IBDR) pysp.vits e P(AST|first-bits,
IBDDE» Dpar: (k, 1), Doy = (m, n)).

Then with 7= {D, d}*, it follows

et P(D,, = (K1), D,y = (m.n))

(ki 1mm)E7

= P(AST|IBD; )+ P(IBD) =P (AST NIBD”)
and further
w? =P (IBD,|AST)

o Z (k. n)E7 C[fﬂyl'm'ﬂp (Dpﬂf = (k’ l)’ Dmf = (m, n))
B P(AST) '

For the 5 inheritance vector classes in the context of ASTs we
obtain:

o b = 1164 (P + frn + Foim + o)

C(g:;g’a;ﬁ’ " =3/64 Grnfinfim + fin) + finfin(fim + fin))
bl = 3164 (finfim fiom + fim) + finfinfin + fin))
cbmm = 3164 (fefu fin + fin) + fnfim Fin + fim))
6(5' b = 332 Fienfrenfen + fin) + FimfinUfeam + fien))
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Table 1A. IBD configurations for three affected siblings A, B, and
C (adapted from Knapp [23])

IBD configuration/  Alleles shared IBD by Mendelian
inheritance vector probability
s AB AC BC

3 2 2 2 1/16

2pat 2 1pat 174t 3/16

Zmaf 2 lma[ lmﬂ[ 3/16

1 2 0 0 3/16

0 1pat 0 1mat 3/8

For each IBD configuration, i.e. inheritance vector class, i, the
Mendelian probability and a representative sharing among the 3
siblings are given. Note that the 3 siblings A, B, and C cannot be
distinguished, such that e.g. siblings A and C could be flipped,
which reduces the number of inheritance vector classes. Hence,
with 16 inheritance vectors for an AST, the Mendelian probability
of e.g. inheritance vector class i = 1 is 3/16, because the sharing of
2 alleles IBD can take place either between A and B, A and C, or B
and C, which does not have to be distinguished.

Table 2A. Mating types and conditional probabilities ci (adapted from Knapp [23])

No. Parental Probability c; €, pat Gt ¢ c Yici
mating type of mating
(pat x mat) type
1 DDxDD p* 1/16 3, 3/16 f3, 3/16 f3, 3/16 f3, 318 1%, 1
2 DDxDd 2p’g 132 (F + frpa) 382 (Fafipe 3032(% 3/32 (fHf1, 3/16 (f%2 1, pat 1/8 (f, + fi,
+f2f2],pal) +f31,pal) pat +f1.fll.pat) +f2fll,pat) pat)3
3  DdxDD 2p’g 132 (Fy+ £ mar) 3132 (3 3/32 (% f, 3/32 (f%f,, 3/16 (o fima US(H+A,
+ 21, mat) mat of Lmad) mat oS mat) F S mat) mat)
4 DD x dd quz 1/16f31, pat 3/16f31,pat 3/16f31,pat 3/16f31,pat 3/8f31’ pat fsl,pat
5 ddxDD  pg’ 1/16 /1, mat 316 f  ma 16 ma 316 ma 38 ma Pma
6 DdxDd 4p’q* /64 (F + 2, 3164 (P frpa 3164 (ff), 3/64 (% fo 3/32 (B fi. pat fi mat 1/64 (o + fi,
pat+f31. mat +f30) +f2f21. pat mat +f2f21. mat +f2f20 + +f2f1.patf0 pat +f1. mat
+ 121 matfo + 121 pacfo S pat fi, mat + fo i, macfo, +fo)?
+ fi, macf%0) +fl,palf20) +1, palle, mat)  + f1, pat f1, mat fo)
7 Dd x dd Zp‘f 1/32 (fal,pat +f30) 3/32 (fsl,pal 3/32 (Fl,palﬁ) 3/32 (le, patﬁ) 3/16 (le.patf(! 1/8 (fl,pal
+ %) +f1,pztf20) + /i, patfzﬂ) +1, p:nfzo) +fo
8 ddxDd  2pg 132 (1 ma +£70) 3032 (FPrmacfo 332 (FPrma 332 (Pumatfo 316 (Prmafo U8 (fimat
+ fi, matf%0) +£%) + i, mat f0) + i, mat f20) +fo)
9 dd x dd qt 1/16 3, 3/16 f3 3/16 f3 1/16 3 318 % I

A diallelic disease locus with susceptibility allele D, normal allele d, and allele frequencies p = P(D), g = P(d) = 1 - p is assumed. If the
order of alleles within a parent is ignored, 9 mating types (k, [, m, n) € J, with ] = {D, d}* have to be distinguished. The mating type pro-
babilities are given under the assumption of Hardy-Weinberg equilibrium at the disease locus. ¢ ™™ denotes the probability of the
joint occurrence of 3 affected sibs that have IBD configuration i at the disease locus, given that the paternal and maternal genotypes are
(k, D) and (m, 1). (fo, f1, pat> f1, mav- and f2) are the penetrances with f; denoting the probability that an individual with i copies of the disease
allele develops the disease. For the heterozygous individuals, separate penetrances for paternal and maternal transmission of the disease

allele are distinguished to take imprinting into account.
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Abstract

Introduction: Joint linkage and association (JLA) analysis
combines two disease gene mapping strategies: linkage
information contained in families and association informa-
tion contained in populations. Such a JLA analysis can in-
crease mapping power, especially when the evidence for
both linkage and association is low to moderate. Similarly, an
association analysis based on haplotypes instead of single
markers can increase mapping power when the association
pattern is complex. Methods: In this paper, we present an
extension to the GENEHUNTER-MODSCORE software pack-
age that enables a JLA analysis based on haplotypes and
uses information from arbitrary pedigree types and unre-
lated individuals. Our new JLA method is an extension of the
MOD score approach for linkage analysis, which allows the
estimation of trait-model and linkage disequilibrium (LD)
parameters, i.e, penetrance, disease-allele frequency, and

haplotype frequencies. LD is modeled between alleles at a
single diallelic disease locus and up to three diallelic test
markers. Linkage information is contributed by additional
multi-allelic flanking markers. We investigated the statistical
properties of our JLA implementation using extensive
simulations, and we compared our approach to another
commonly used single-marker JLA test. To demonstrate the
applicability of our new method in practice, we analyzed
pedigree data from the German National Case Collection for
Familial Pancreatic Cancer (FaPaCa). Results: Based on the
simulated data, we demonstrated the validity of our JLA-
MOD score analysis implementation and identified scenarios
in which haplotype-based tests outperformed the single-
marker test. The estimated trait-model and LD parameters
were in good accordance with the simulated values. Our
method outperformed another commonly used JLA single-
marker test when the LD pattern was complex. The ex-
ploratory analysis of the FaPaCa families led to the identi-
fication of a promising genetic region on chromosome
22g13.33, which can serve as a starting point for future
mutation analysis and molecular research in pancreatic
cancer. Conclusion: Our newly proposed JLA-MOD score
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method proves to be a valuable gene mapping and char-
acterization tool, especially when either linkage or associ-
ation information alone provide insufficient power to
identify the disease-causing genetic variants.

© 2024 The Author(s).
Published by S. Karger AG, Basel

Introduction

Traditionally, the identification of human disease
genes is accomplished using the positional cloning ap-
proach, in which linkage analysis serves as the first step to
narrow down the chromosomal position of the putative
trait locus, followed by a fine-mapping association
analysis [1]. Linkage analysis evaluates the co-segregation
of genetic marker alleles together with a trait in families.
Association analysis usually investigates the correlation of
marker and disease-allele frequencies (linkage disequi-
librium [LD]) between unrelated cases and controls on
the population level (e.g., [2, 3]).

A joint linkage and association analysis (JLA) can
substantially increase mapping accuracy and power
because it makes use of both family and population
information [4, 5]. In the following parts of the
introduction, we give a brief review of linkage, associa-
tion, and JLA methods. Subsequently, we introduce our
newly proposed JLA method and describe the objective of
the current paper.

Linkage Analysis

Linkage analysis has widely been used as the primary
tool for the genetic mapping of traits with familial ag-
gregation [6]. Methods of linkage analysis are commonly
distinguished as either being parametric (“model-based”)
or nonparametric (“model-free”). In parametric linkage
analysis, which is also known as model-based or LOD
score analysis, a certain set of trait-model parameters is
explicitly assumed for the segregation of the discase.
Nonparametric linkage analysis methods proceed with-
out explicit assumptions as to the trait-model parameters;
however, it can be shown that certain nonparametric and
parametric linkage tests are equivalent for a particular
type of pedigree [7, 8]. In the simplest case of a diallelic
autosomal trait locus causing a dichotomous disease,
which is assumed throughout this paper, the trait-model
parameters are the disease-allele frequency p,, (“m” for
mutant, with wild-type allele frequency p, = 1-p,,) and
the three penetrances fo, f1, and f», with f; denoting the
probability that an individual with i copies of the disease
allele is affected by the disease. In addition, the recom-

JLA-MOD Score Analysis

bination fraction 6 between marker and trait locus, or the
genetic position x of the putative trait locus in the case of a
multipoint analysis, is modeled. The trait-model pa-
rameters can either be prespecified according to results
from previous segregation analyses or maximized along
with the recombination fraction in a joint segregation and
linkage analysis. A so-called MOD score analysis allows
researchers to jointly investigate segregation and linkage
[9, 10] and avoids a potential loss in power due to model
misspecifications that may occur in standard LOD score
analysis [10]. Due to the maximization over trait-model
parameters, MOD scores are inflated when compared to
LOD scores. Since the asymptotic distribution of MOD
scores is unknown in the general case, p values for the
linkage test must be obtained by simulating the distri-
bution of the MOD score under the null hypothesis of no
linkage. Going beyond pure disease gene mapping, MOD
score analysis can be used in gene characterization
studies, which involve estimation of disease gene prop-
erties such as penetrance and disease-allele frequencies
for ensuing risk calculations [11]. The core statistic of a
MOD score analysis is the likelihood ratio of the pedigree
likelihoods under the alternative hypothesis of linkage
(6 < 0.5) versus under the null hypothesis of no linkage
(6 = 0.5). The likelihood ratio is maximized with respect
to 6 as well as the trait-model parameters. It is of note that
the same set of values for the trait-model parameters is
used for the numerator as well as for the denominator of
the likelihood ratio. As a consequence, the MOD score is
proportional to the pedigree likelihood conditional on the
trait phenotypes and hence leads to unbiased estimates of
the trait-model parameters so that ascertainment through
the trait is irrelevant [12]. However, this only holds for a
linkage analysis in the absence of LD between marker and
trait locus alleles and given a few other conditions
summarized in Ginsburg et al. [13] and Malkin and
Elston [14], which were reviewed and investigated for
MOD score analysis in Brugger et al. [15]. The MOD
score approach is implemented in the software package
GENEHUNTER-MODSCORE (GHM) [16-19], which is
maintained and continuously developed further by our
working group. An implementation of the MOD score
approach for quantitative trait loci, GENEHUNTER-
QMOD, has been developed by Kiinzel and Strauch [20].

Association Analysis

Genetic association analysis tests for a correlation be-
tween disease status and genetic variation to identify
putative disease genes [21]. Association analysis in pedi-
grees has traditionally been done using triads (case-parent
trios) by comparing the probabilities of transmission for
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DOI: 10.1159/000535840

44

+Z0Z UQIB €2 UO 18N ZUIB YOLI0NqIasiesIanun Aq Jpd 0y8SES000/S 8L 81 b/8/L/68/Pd-B1o1E/eYU/ W00 1aBiex /.dny WO papeojumog



6 Paper Il

each marker allele from the parents to their offspring
under the assumption of complete linkage between
marker and trait locus. The ascertainment of parents
thereby enables a joint analysis of multiple marker loci
with a more accurate assignment of the phase of the
marker-locus alleles as compared to case-control data
[22]. Such a procedure leads to a test for LD conditional
on linkage, which has been formalized in the haplotype
relative risk (23] and the haplotype-based haplotype
relative risk method [24]. Moving from triads to larger
sibships, the transmission/disequilibrium test TDT [25]
and its extensions [26-35] are popular examples for
nonparametric methods that draw information from
both the linkage and association component. The
original TDT approach [25] formally tests the null
hypothesis of association but no linkage against the
alternative of linkage in the presence of association in
the analysis of multiple affected individuals from a single
pedigree. When the analysis is restricted to independent
triads, the null hypothesis of the TDT corresponds to no
linkage or no association. Such methods, however, were
originally designed for simple pedigree relationship
structures and do not make use of any information
regarding the mode of inheritance and trait-model
parameters [36]. Several TDT-like approaches and
extensions were implemented in software packages like
FBAT [37, 38], PedGenie [39], QTDT [40], TRANSMIT
[41], and UNPHASED [42]. Notably, Goéring and
Terwilliger [4] have shown how all abovementioned
nonparametric association tests can be parametrized
into a unifying likelihood framework, allowing for
flexible likelihood ratio tests with different combinations
for the null and alternative hypothesis.

Joint Linkage and Association (JLA) Analysis

A JLA analysis combines linkage and association in-
formation gathered from pedigrees, whereby association
information on the population level can also be added
using unrelated individuals. Linkage analysis methods
generally make the assumption of linkage equilibrium
(LE) between alleles at marker and disease loci. However,
disease loci can be in LD with their flanking markers over
a large distance, depending on their map distance and
their population history [43]. Hence, the assumption of
LE can reduce power of the linkage test when compared
to a model that allows for LD [44]. On the other hand, if
LD is present between alleles of the marker loci, assuming
LE can increase the type I error of the linkage test in the
case of missing parental genotypes [45-48]. Association
analysis exploits LD information from the population;
however, its power decays rapidly with increasing

10 Hum Hered 2024;89:8-31
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marker-trait locus distance, i.e, starting already from 1
centiMorgan [2]. Hence, it would be desirable to combine
the two orthogonal mapping information components of
linkage and association into a JLA analysis, which can
have higher power compared to pure linkage or pure
association analysis, especially when analyzing a dataset
comprised of unrelated individuals and families [4, 5].
The idea of a JLA analysis is not new. Already in 1984,
MacLean et al. [49] pointed out that such a JLA analysis
can increase mapping power. In 1988, Clerget-Darpoux
et al. [50] devised the MASC method, in which allelic
association and segregation information is comprised in a
X% sum statistic. Later on, Tienari et al. [51] found that the
incorporation of association into their LOD score linkage
analysis dramatically increased power. Approaches of
JLA analysis to map quantitative trait loci, which are not
further considered in this work, can be found in Fan et al.
[52] and Jung et al. [53].

In model-based analysis, incorporation of association
information is achieved by including a parameter for LD
between investigated genetic markers and the disease
locus in the pedigree likelihood. Such methods, which can
accommodate for association, have been implemented in
popular software packages such as PAP [54] or jPAP [55]
for segregation analysis and LINKAGE [56-58], MEN-
DEL [59, 60], LAMP [61, 62], and PSEUDOMARKER [4,
63, 64] for linkage analysis. Although these im-
plementations offer the ability to include association
information into the calculations, formal joint tests for
linkage and association are less common. A parametric,
likelihood-based approach to JLA analysis was presented
by Lou et al. [5, 65], who also pointed out that neglecting
association information can lead to a loss in statistical
power of the linkage test and to biased estimates of the
recombination fraction. Another JLA approach, im-
plemented in the PSEUDOMARKER software package,
exploits the equivalence of parametric and nonparametric
linkage methods and offers various likelihood ratio tests
with different null and alternative hypotheses including a
JLA test for single markers using twopoint calculations [4,
63, 64]. The JLA method of Xiong and Jin [36] is an
extension to parametric LOD score analysis and has been
implemented in MENDEL by Cantor et al. [66]. The
likelihood-based framework implemented in the software
package LAMP [61, 62] basically corresponds to a MOD
score analysis (under some constraints) that includes
association parameters and incorporates flanking marker
information in a multipoint analysis. However, LAMP
only performs likelihood ratio tests for pure linkage, for
association conditional on linkage, and for the existence
of further unobserved genetic variants apart from a trait
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locus associated with the currently tested marker. In
summary, an analysis that explicitly allows for a joint test
of linkage and association using MOD scores is still
lacking.

JLA Analysis Using MOD Scores

A MOD-score-based JLA analysis offers the joint es-
timation of the recombination fraction (or the genetic
position in a multipoint setting), the penetrance function,
and haplotype frequencies combining alleles of the dis-
ease locus and one or more marker loci. Although
computationally demanding, such estimates can provide
valuable insights into disease etiology and may contribute
to improve genetic risk calculation and counselling [11].
In addition, the MOD score approach, as implemented in
the GHM software package [67], accommodates for ge-
nomic imprinting - an epigenetic phenomenon that is
known to play a role in a growing number of human
diseases [68]. Imprinting is characterized by the depen-
dence of an individual’s liability to develop a disease
according to the parental origin of the mutated allele(s).
The ability of the MOD score approach to estimate trait-
model parameters including the degree of imprinting
depending on different pedigree types has been dem-
onstrated in the context of linkage analysis [15, 69]. In the
presence of LD, trait-model parameter estimates obtained
from a MOD score analysis may be biased because
sampling of pedigrees and individuals is no longer
marker-independent, which is one of the necessary
conditions of the ascertainment/sampling-assumption
free property of the MOD score [12-14, 70], which are
reviewed in [15]. However, the bias is argued to be only
trivial [14, 70].

Linkage Information in JLA Analysis

Gathering linkage information from flanking markers
in a multipoint calculation can increase mapping power
in a JLA analysis as compared to a twopoint analysis [61].
However, usage of linkage information gathered from
flanking markers has so far only been implemented in
LAMP for LD tests conditional on linkage [61, 62].

Single-Marker versus Haplotype-Based Association

Information in JLA Analysis

Another important aspect of JLA analysis is the
question as to whether association information should be
included from either a single marker or multi-marker
haplotypes. There is evidence that haplotype-based as-
sociation methods can outperform single-marker analysis
[71], especially when there are multiple disease-causing
alleles within the same gene and LD between the

JLA-MOD Score Analysis

investigated markers is rather weak [72, 73]. However,
haplotype-based methods are computationally expensive,
especially in the case of missing genotypes, and resultin a
large number of additional degrees of freedom (df) for the
likelihood ratio test, which might diminish power.
Moreover, phase ambiguity of haplotypes needs to be
handled by haplotype frequency estimation methods such
as the expectation-maximization (EM) algorithm [74, 75]
with the additional assumption of Hardy-Weinberg
equilibrium in the population. Yet, the relative effi-
ciency of single-marker versus haplotype-based ap-
proaches for modeling association is largely unexplored
[73]. Remarkably, a JLA method to model LD between
alleles at the trait locus and alleles at more than a single
marker is implemented in MENDEL [66].

Objectives

The current work presents an extension of the MOD
score approach which allows the joint analysis of linkage
and association, using data from arbitrary pedigree types
(extended pedigrees, nuclear families, triads, half-
sibships) and unrelated individuals (singletons). We set
out to implement this joint linkage and association ex-
tension (JLA-MOD score) in a new version of our GHM
software package. To this end, LD was modeled by using
one to three single nucleotide variants (SNVs) as test
markers and by incorporating information for the linkage
component from additional flanking markers with an
arbitrary number of alleles.

In this paper, we thoroughly explain the details of the
methodological advances and their implementation in the
new GHM version 4. Then, we evaluate the type I error
and power of the newly proposed JLA-MOD score using
various simulation scenarios. In addition, we compare
linkage and association parameter estimates obtained
from the JLA-MOD score analysis with the simulated
values. We also evaluate the relative mapping efficiency of
new (JLA) and existing (pure linkage) GHM analysis
options, depending on the underlying simulation sce-
nario. In order to evaluate the costs and benefits of jointly
estimating numerous linkage and LD parameters, we
compare the type I error and power of the JLA-MOD
score with the parsimonious JLA test implemented in the
PSEUDOMARKER software [4, 63, 64]. The PSEUDO-
MARKER method proved to be a powerful approach in
various types of linkage and/or association analyses,
thereby outperforming many other methods [63, 64].
Lastly, we present a JLA-MOD score analysis using
pedigree data from the German National Case Collection
for Familial Pancreatic Cancer (FaPaCa) to demonstrate
the applicability of our new method in practice.

Hum Hered 2024;89:8-31 11
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Methods

Extension of the MOD Score Likelihood Ratio to Accommodate

for LD

In pure linkage analysis assuming a dichotomous trait, which is
governed by a diallelic locus, the MOD score is defined as the ratio
of the likelihoods under the alternative hypothesis of linkage and
the likelihood under the null hypothesis of no linkage, maximized
over the trait-model parameters (penetrances fp, fi, f> and disease-
allele frequency p,,) and the recombination fraction 6 (or, in the
case of a multipoint analysis, the genetic position x):

L(pm fo f1,f20)
1 _ N /PSS
Pm.;:?l)ffzﬂ ogmL (Pm) fu; fl»fz» 0= 0-5)

As mentioned in the Introduction section, the same set of values
for the trait-model parameters is used for the numerator as well as
for the denominator of the likelihood ratio. If imprinting is
modeled, f; is split up into two heterozygote penetrances, f;, p, and
1, map according to the origin of the parental allele [67]. In order to
accommodate for association information, the likelihood is ex-
tended to include a parameter for LD:

max log, L(pm fo f1, f2,6,LD)
pufofuf28LD  CL(Pos for f1> f2,0=0.5,LD = 0)

MOD = (1)

MOD =

@

It is of note that the recombination fraction 6 is confounded
with the allele sharing at the marker locus and hence also with
the trait-model parameters [76], which is commonly avoided by
assuming no recombination between marker and trait locus
[61]. Maximization over 6, or the genetic position x, is nev-
ertheless performed in practice by evaluating (1) or (2) for
different genetic positions. Linkage information is represented
by the distribution of inheritance vectors, which represent the
patterns of founder allele segregation in a pedigree, for a given
genetic position. The inheritance vector contains 1 bit for each
meiosis in the pedigree, with 0 and 1 denoting transmission of
the paternally or maternally inherited allele, respectively. The
distribution of inheritance vectors can be obtained using a
hidden Markov model in the context of the Lander-Green al-
gorithm [77], which is used in GHM. The Lander-Green al-
gorithm scales linearly with the number of analyzed markers
but is limited to the analysis of modestly sized pedigrees. Brief
reviews of the Lander-Green algorithm are given in [19, 78].
The distribution of all inheritance vectors is calculated as-
suming a particular position of the trait locus relative to a
marker or group of markers. In the case of no linkage, the
distribution is uniform, whereas under linkage, it is usually
peaked at few inheritance vectors that are compatible with the
observed marker alleles. This distribution under the assumption
of linkage contributes to the numerator of (1) and (2), whereas
the case of no linkage (6 = 0.5) with a uniform inheritance-
vector distribution contributes to the denominator of (1)
and (2).

Parametrization of LD

In the case of a single test SNV and a diallelic trait locus (TL),
there are 2 x 2 = 4 haplotypes for all combinations of marker-
trait locus alleles, namely: SNV|TL € {0[0, 0|1, 1|0, 1|1} = :
{ho,. . ,hs}, whereby 0 and 1 represent allele codes for the SNV
and the trait locus alleles, with the wild-type allele “+” coded as

12 Hum Hered 2024;89:8-31
DOTI: 10.1159/000535840

0 and with the mutant allele “m” coded as 1. LD can be pa-
rametrized by the respective haplotype frequencies py,, . . ., pi,
in the numerator of equation (2). The denominator of (2)
models LE, i.e., independence of marker and trait locus alleles,
by separate contributions of the test SNV haplotype frequencies
(or allele frequencies in the case of a single test SN'V) and of the
disease (or wild-type) allele frequency to the likelihood. In
pedigree and/or singleton likelihood analysis, it is advisable to
estimate marker-haplotype frequencies directly from the data
under study [23, 79, 80], which can be achieved using the EM
algorithm (see [78]). The obtained values serve as marker-
haplotype frequencies (or allele frequencies for a single test
SNV) in the denominator of equation (2). This way, allele or
haplotype frequencies for the marker data are estimated before
maximizing equation (2), leaving the disease out of the analysis
in the first place. This yields estimates that are identical to those
obtained in a joint analysis of trait and marker phenotypes when
there is in fact no linkage [80]. In the case of a single test SNV,
the EM-estimated allele frequencies are denoted by piM
and pfM for SNV alleles 0 and 1, respectively, whereby
pEDM + pff” = 1. Plugging all these frequencies in equation (2),
the MOD score then reads:

L(Pm’fo’fl’fl’e’Phl'th'Phe)
L(Pus for f 1, f2,6=0.5, pEM, phM )
©

Here, p, and py, can be omitted from the formula due to the
restrictions p,,+p, = 1and 3, ;pi, = 1. Further, 3, o, pp, = ps,
and Y., P, = Pm- Note that the SNV frequencies pj* and pfM
do not correspond to the marginal allele frequencies that can be
calculated from the numerator frequencies pp,, pn,, pn, and pp,,
but instead are fixed values during the maximization of equation
(3) (see also above).

With two test SN'Vs, there are eight marker-trait haplotypes:
SNV, |SNV,|TL € {0[0]0, 0]0|1, 0]1]0, 0]1]1, 1]0]o, 1[0]1, 1[1]0, 1]1]
1} =: {hg,. . ,h7}. The respective haplotype frequencies are denoted
by Phy.-.>Pn,. The corresponding EM-estimated marker-
haplotype frequencies are given by pf™,..., piM. The MOD
score then reads:

MOD = max
Psforf15£ 2,00y 5PigsPiy

lo L(Pm»fc;fhfz;eyph,»---;Ph7)

810 M M

v L( s for f10f156=0.5,pE,..., p)
(4)

Here, p, and py, can again be omitted from the formula due to the
restrictions  p+p, = 1 and Y., .pn=1. Further,
Yicoa46Pn =Ps and Y. ioopn = pm. The EM-estimated
marker-haplotype frequencies in the denominator of equation
(4) are again fixed values and are constant during the maximi-
zation of the likelihood ratio.

In the case of three test SNV, there are 16 marker-trait locus
haplotypes: SNV, |[SN'V,|SNV;|TL € {0]0]0|0, 0/0]0]1, 0|0| 1]0, 0]0] 1|
1, 0]1/0|0, 0|1]0[1, 0]1]1]0, 0|1]1|1, 1[o[o]o, 1|0]0[1, 1[01]0, 1]0[1]1,
1|1]0jo, 1]1]0]L, 1|1]t]o, 1|1]1]1} = : {hg,....hs}. The respective
haplotype frequencies are denoted by pp,...,pn,. The
EM-estimated marker-haplotype frequencies are given by

MOD= max
P fof12f 200 ap)

M o
“The MOD score for three test SNVs then reads:
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’phls)
)
(5)

Here, p, and pj, can again be omitted from the formula due to
the restrictions p,,+p, = 1 and Y., spy =1 Further,
Yicora6810,12,14Ph = Prr and Yy 5500115150k = Pm- The EM-
estimated marker-haplotype frequencies in the denominator of
equation (5) are again fixed values and are constant during the
maximization of the likelihood ratio. More detailed constraints for
the linkage and LD parameters are provided below. It is of note
that singletons and triads only contribute association information
in terms of haplotype frequencies to the likelihood, whereas
pedigrees contribute both linkage and association information.
The MOD score for the complete dataset is obtained by summing
the log-likelihood ratios in equation (3), (4), or (5) over all
pedigrees and singletons in the dataset, with the maximization
being performed over the sum.

MOD= max log,, L(pw>forf1sf2.0 P>
P S0 f 1 f20.Phy Py L(pm,fo,fl,fl,G:O.S,pf,f“

Detailed Formulation of the MOD Score Likelihood Ratio

The likelihood ratios for each pedigree in equations (3), (4), and
(5) can be rewritten in terms of scoring functions for the inher-
itance vectors v at a given genetic position, as well as the
inheritance-vector distributions under linkage and no linkage:

MOD=log;,
> Scoring (v)+ Peompiete (V)

(ZScoringz (V) Peomplete (V)) - (ZScorings (V) - Pui form (V))

Without loss of generality, the following details are explained
for the case of a single test SNV:

o Scoring,(v) contains the product over penetrances for all f+n
individuals in a pedigree (with f denoting the number of
founders and n denoting the number of nonfounders) and
marker-trait locus haplotype frequencies py,, ..., pp, for all f
founders in a pedigree, given a set of ordered founder genotypes
(OFG) of the test SNV and the disease locus as well as ordered
nonfounder genotypes (ONG) as assigned by the OFGs together
with the inheritance vector v. The sum is then taken over those
of the 2¥x2¥ possible OFGs that are compatible with the
observed test SNV genotypes of all individuals in the pedigree:

Y P, Prose.t g(omk)l_[f 9(ONG, (OFG,)

OFG  ke7”
cornpatible

Scoring, (v) =

.7 represents the set of founders and ./ the set of nonfounders
in the pedigree. pj , and ppo,, are the marker-trait locus
haplotype frequencies for founder individual k of the paternally
and maternally inherited haplotypes, respectively, with
OFG;1,0FGy2€{0,1,2,3}.  fg4(0rG,) denotes the penetrance of
founder individual k according to the disease genotype g €{0,“1,
pat”,“1, mat”,2}, which is a function of the ordered genotype OFG.
(comprising test SNV and disease locus) of founder individual k.
£ 9(ONG(0FG.)) denotes the penetrance of nonfounder individual k
according to the disease genotype g, which is a function of the
ordered genotype ONG (comprising test SNV and disease locus)

JLA-MOD Score Analysis

of nonfounder individual k, which again depends on the given set
of ordered founder genotypes (OFG) together with the inheritance
vector v. In the case of genomic imprinting, the ordered genotype
formulation allows us to define different penetrances for indi-
viduals heterozygous at the disease locus by taking the parental
origin of the mutant allele into account. The ordered founder
genotypes are directly assigned within the summation, and the
ordered nonfounder genotypes are determined by the ordered
founder genotypes together with the inheritance vector.

The algorithm to filter out ordered founder genotypes that are
compatible with the observed SNV genotypes of all individuals in a
pedigree and the inheritance vector is explained in the context of
the haplotype frequency estimation in the next section.
® Peomplero(v) denotes the probability for an inheritance vector v

based on the inheritance distribution at a given genetic position

conditional on the additional flanking markers, i.e., the markers
beyond the one, two, or three SNVs tested for LD with the
putative disease locus, as obtained by the Lander-Green
algorithm.

& Scoring,(v) denotes the product over the allele frequencies of the
test SNV, or haplotype frequencies in the case of two or three
test SN'Vs, for all f founders in a pedigree:

Z tharsc“ thm“

OFSG ke
com patible

Scoring, (v) =

where OFSG denotes a particular set of ordered test SNV genotypes
for all founders, p;,om and p;.om are the test SNV allele fre-

quencies for founder mdmdual kof the paternally and maternally

inherited alleles, respectively, with OFSGy,;,0FSGy,€{0,1}, and the

sum is taken over all sets of ordered test SNV genotypes that are
compatible with the observed genotypes.

o Scorings(v) denotes the product over penetrances for all f+n
individuals in a pedigree and disease-allele frequencies for all f
founders given a set of ordered founder disease genotypes
(OFDG). The sum is then taken over all 2% possible OFDGs:

Z l_[POFDGk \Porpay, f g0rpey) l_[f 9(ONDGy (OFDG.v)

OFDGke7 ket

Scorings (v) =

with porpg,, and porpg,, and denoting the disease-locus allele
frequencies for founder individual k of the paternally and maternally
inherited alleles, respectively, with OFDGy,,,OFDGy,€{+,m}.
£ 9(0FDG,) denotes the penetrance of founder individual k according
to the disease genotype g €{0,“1, pat”,“1, mat”,2}, which is a function
of the ordered disease genotype OFDGy of founder individual k.
f 9(ONDG, (0FDG.)) denotes the penetrance of nonfounder individual
k according to the disease genotype ge{0,“1, pat”,“1, mat”, 2}, which
is a function of the ordered disease genotype ONDG;, of nonfounder
individual k, which depends on the given set of ordered founder
dlsease genotypes (OFDG) together with the inheritance vector v.
®  Pniform(V) denotes the probability for inheritance vector v based
on the inheritance distribution at a given genetic position of the
putative disease locus under no linkage with the markers. The
inheritance distribution under the null hypothesis of no linkage
is uniform, i.e., all inheritance vectors are equally likely.
Combining Scorings(v) with Pypitorm(v) reflects the fact that the
trait locus is unlinked to the underlying genetic position and the
marker locus. Conversely, the test SNV remains at its original
genetic position, which is reflected by combining Scoring,(v) with
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Peomplete(V). In summary, identical to equations (3), (4), and (5),
the numerator of equation (6) reflects the alternative hypothesis of
linkage and association of the disease locus with the markers. The
denominator reflects the null hypothesis of no linkage and no
association, for which the disease locus is assumed to be at a
position resulting in complete independence with regard to allelic
correlation and co-segregation.

Haplotype Frequency Estimation

In GHM 4, marker-allele and marker-haplotype frequencies
are directly estimated from the data under study using a gene-
counting based EM algorithm. To this end, haplotype fre-
quencies for clusters of up to three tightly linked SN'Vs in a given
test set as well as allele frequencies for flanking markers with two
or more alleles can be estimated. The recombination fraction
between test SNVs of a given cluster is assumed to be 0, SNVs
within a cluster can exhibit any degree of LD, and missing
genotypes are allowed for founders and nonfounders. Standard
algorithms for the estimation of haplotype frequencies for in-
dependent observations of a population can readily be extended
to include pedigree information, which improves haplotype
frequency estimates for the general population by exclusion of
nonexistent haplotype configurations from the analysis [81].
The haplotype frequency estimation in pedigrees is applied over
the independent parents, whereby their children’s genetic
phenotypes are used to exclude those haplotype pairs from the
analysis, which are possible for the founders, but contradictory
for the children [81]. An implementation of such a procedure in
the context of the Lander-Green algorithm to compute the
haplotype-based disease-locus likelihood in pure linkage anal-
ysis was presented by Abecasis and Wigginton [78] for the
linkage analysis software package Merlin [82]. As GHM is also
based on the Lander-Green algorithm, our implementation of
the haplotype frequency estimation is similar to the method
described in [78]. Noteworthy, the original GENEHUNTER
software also offers methods to identify the most likely hap-
lotypes for each pedigree using the Lander-Green and the Viterbi
algorithm [83]; since GHM is based on GENEHUNTER, these
haplotyping methods have been available in former versions of
GHM as well. A general overview of haplotyping methods for
pedigrees can be found in [84].

The first step of our newly implemented haplotype frequency
estimation algorithm corresponds to the enumeration of the
entire set of inheritance vectors. Since there are 21 meioses in a
pedigree, with n denoting the number of nonfounders, there are
22" inheritance vectors [77], which can be reduced to 22*7
identifiable inheritance vectors for the analysis, with f denoting
the number of founders in a pedigree [83]. Second, the algo-
rithm iterates over all inheritance vectors and markers of the
SNV test set to calculate the probability of the observed ge-
notypes for each marker conditional on a particular inheritance
vector, which essentially reduces to a product of haplotype
frequencies with two frequencies for each founder in the
pedigree. This step is achieved by identifying all ordered
founder genotypes that are compatible with the observed
founder genotypes of a given marker. Next, the conditional
probability of the genotypes of all individuals in the pedigree
given an ordered, and hence phased, founder genotype con-
figuration, i.e., of founder haplotypes, and a given inheritance
vector is calculated for a given marker of the test set by genetic

14 Hum Hered 2024;89:8-31
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descent-graph analysis [85]. Briefly, phased founder alleles are
assigned to all offspring in the pedigree using the inheritance
vector. The correspondingly assigned nonfounder genotypes are
compared to the observed genotypes. The conditional proba-
bility of the genotypes, given a phased founder genotype con-
figuration, then simply takes on the value 1 for a compatible or 0
for an incompatible genotype. These steps are repeated for all
markers of a given set of test SNVs. Finally, the Cartesian
product of all identified possible phased founder genotypes for a
given inheritance vector across all markers of the test set leads to
the set of compatible founder haplotype configurations for this
particular inheritance vector. This process of reducing the space
of possible founder haplotype configurations by descent-graph
analysis is also called diplotype reduction [86], for which an
illustrative example in the context of the Lander-Green algo-
rithm can be found in [78]. If the set of noncontradictory
haplotype configurations for a given pedigree is empty, there
either is an error in the genotypes or relationships in the
pedigree, or a recombination event happened. Although a re-
combination event can contain valuable information [81], the
haplotype frequency calculation cannot proceed in this case.
However, with closely linked SNVs and modestly sized pedi-
grees, recombination events should be rare, even at higher
recombination fractions [81]. The aforementioned steps are
repeated for all s pedigrees in the sample. During the generation
of the set of noncontradictory haplotype configurations, dif-
ferent inheritance vectors will likely yield the same configu-
rations, such that calculations can be saved by incrementing a
coefficient for the number of appearances of a particular
configuration for different inheritance vectors [78]. The results
of these calculations are generic, i.e., not specific for a particular
set of haplotype frequencies and are then used in the following
EM algorithm, which involves two basic steps. First, the ex-
pected number of haplotype copies is estimated, conditional on
current haplotype frequency estimates. Next, these expected
counts are used to obtain new haplotype frequencies. Repeatedly
updating haplotype frequencies and estimated counts in turn
finally converges to maximum-likelihood estimates for the
haplotype frequencies. Convergence to local optima can be
controlled by assuming different sets of starting values for the
first EM iteration. In GHM 4, two sets of initial values for the
haplotype frequencies are applied to monitor convergence. In
the case of a single test SNV, the EM algorithm is initialized in a
first run with equal allele frequencies and in a second run with
the frequencies provided in the marker data file. In the case of
two and three test SN'Vs, the EM algorithm is initialized in a first
run with equal haplotype frequencies and in a second run with
the product of single-marker-allele frequencies, which were
estimated beforehand using a separate round of the EM algo-
rithm. Given a set of initial values for the haplotype frequencies
Ph»r=0,...,2"-1 for m SNVs in the test set, F founders in all s
pedigrees, with f founders in each pedigree, the recursion
formula of the EM algorithm for frequency py, atiteration t+1 is:

h EM(t) , EM(1)
Y 28rsaorsa [ Phorsa,, Phorscy,
OFSG ke
ibl
pEMED) _ szmmbe 7)
he = EM() __EM(D)
2F S Z COFsG H P’lops(;,(‘, Phopscn
OFSG ke
compatible
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where OFSG denotes a p%rNLIictgﬂar set og A(}r:iered test SNV genotypes
for all founders, and Py, and Phgr,, are the haplotype fre-
quencies for founder individiial k of the paternally and maternally
inherited haplotypes at the previous iteration t, respectively, with
OFSGy,1 OFSGy»€{0, ..., 2™ -1} Zg’ﬁsc counts the number of ap-
pearances of haplotype k. in the given OFSG, cogs is the coefficient
counting the number of different inheritance vectors compatible
with OFSG, and .7 represents the set of founders in a single
pedigree. The iteration stops as soon as the haplotype frequencies, or
equivalently the log-likelihood function, do not further improve by a
predefined accuracy limit. The log-likelihood function of the marker
data is necessary to compare different EM solutions obtained using
different initial values. The corresponding marker log-likelihood for
equation (7) is given by:

EM EM
X COFSle-LP’IoFSG“ Prorsc,,
€.

108 (Linarker) = ¥ log S

Parameter Constraints for the MOD Score Calculation

In accordance with former GHM versions, the user can specify
the disease-allele frequency to be bound within a certain range,
typically not larger than 0.5 (default value). With regard to the
penetrances, the user can set the restriction fo<fi<f, (default
setting). The user can also allow for imprinting models, for which
Srpartfimar (defavlt: fi oy = fi s i€, nO imprinting). With regard
to the marker-trait locus haplotype frequencies, the constraints are
coupled to the constraint imposed on the disease-allele frequency.
Without any prespecified restriction, the general constraints are

pm € [0,1]
Py € [0.1]

Y pu=p:

i=0,2,...

Z P = Pm

=13

Y Put Y Pu=pitpm=1

i=02,... =13,

with Yo, _pn corresponding to the sum of those marker-trait
locus haplotype frequencies pj, that carry the wild-type allele of the
trait locus with marginal frequency p., and with },_, ; pj, cor-
responding to the sum of those marker-trait locus haplotypes that
carry the mutant disease allele of the trait locus with marginal
frequency p,,. The marker-locus haplotype frequencies in the
denominator of the MOD score are obtained from the previous
maximum-likelihood estimation and remain fixed in the de-
nominator during the maximization of the likelihood ratio (see
also above).

Maximization Routine for the JLA-MOD Score

GHM 4 maximizes the likelihood ratio using a two-step ap-
proach. First, a predefined grid of values for the disease-allele
frequency and the penetrances is applied. The parameter set,
containing a particular combination of the disease-allele frequency
and the penetrances, is complemented with values for the py,

JLA-MOD Score Analysis

randomly drawn, such that all abovementioned parameter con-
straints are satisfied.

The initial grid-based MOD score, which is obtained by taking
the highest score over all parameter sets, serves as the starting point
for the second step of the maximization routine of GHM 4. In this
second step, GHM 4 uses the local derivative-free, direct-search
optimization method COBYLA (“Constrained Optimization BY
Linear Approximations”) that models the objective as well as any
linear and non-linear equality and inequality constraint functions
by linear interpolations [87, 88]. GHM 4 uses the COBYLA im-
plementation in the programming language C, which is part of the
free/open-source library NLopt (“Non-Linear Optimization”)
(v2.6.2) [89]. The algorithm operates by evaluating the objective
function and the constraints at the vertices of a trust region. If the
optimization problem has a total of N parameters, then the trust
region has a total of N+1 vertices [90]. With this information,
linear approximations of the objective function and constraints are
employed during the optimization process. The strength of CO-
BYLA lies in its robustness, which makes it a suitable tool for noisy
functions [90]. In GHM 4, COBYLA is initialized by the set of
parameters that led to the highest score of the grid-based maxi-
mization, and the return value represents the final MOD score. To
improve convergence, the otherwise deterministic COBYLA al-
gorithm is initialized with different initial step sizes for the
parameters.

Moreover, the user can also specify fixed sets of trait-model
parameters (disease-allele frequency and penetrances), for which
individual MOD scores are calculated. In this case, the maximi-
zation routine works as described above, but optimizes only the
marker-trait locus haplotype frequencies.

Construction of Test Marker Sets

The general assumption of LE between flanking markers in the
calculations (ie., between markers beyond the test SNVs) stays
untouched in GHM 4. Sorting out flanking markers that are in LD
with each other, which is most common when using dense SNVs,
should be done prior to the analysis using selection methods as
described in [91]. Diallelic SN'V's can be used either as test SNVs or
as flanking markers, the latter contributing linkage information
only. Accordingly, two additional input files need to be specified
for a JLA analysis: one containing a list of markers used for the
multipoint linkage calculation (“flanking markers”) and one
containing a list of association regions, defined by the two out-
ermost SN'Vs, for which all combinations of SN'V's (“test markers”)
within a user-specified genetic distance are considered for building
haplotypes of a given size (one, two, or three test SNVs per
haplotype). The assignment of a SNV to both flanking and test
marker sets is automatically recognized and ruled out. In the case
of a recombination event, the current test set will be discarded with
a suggestion to the user to reduce the maximum genetic distance
between test SN'Vs. Alternatively, the user may specify a fixed test
marker set of a particular size (one, two, or three test SNVs) for
JLA analysis, which can also be combined with specifying fixed sets
of trait-model parameters.

Simulation of p Values

Because the distribution of JLA-MOD scores under the null
hypothesis of no linkage and no association is unknown, p values
for statistical inference must be obtained by simulations. To this
end, GHM 4 offers an option to calculate a point-wise p value for
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the JLA test using a particular set of test SNVs, which may have
been identified during a previous JLA analysis with potentially
many sets of test SNVs. The simulation run can be started using the
same input files as for the initial JLA analysis, except that the user
needs to specify the number of replicates and the test marker set of
interest in a slightly adapted GHM commands file. GHM 4 offers
parallel analysis of replicates, so that the user can specify the
number of parallel processes as required for the simulation.
Replicates can be stored on demand or reproduced by specifying
the same random seed. The simulation algorithm works as follows.
First, flanking marker and test marker genotypes are drawn for the
founders based on the corresponding frequency distributions,
which were estimated using the EM algorithm. Flanking marker
and test marker genotypes are assigned to the offspring by gene-
dropping, ie., independent of disease status, according to the
underlying genetic map. Ungenotyped individuals stay un-
genotyped. The p value for the real dataset is calculated according
to p = £, with n being the total number of replicates and k the
number of replicates showing a MOD score that is equal to or
higher than the one obtained from the real dataset.

Data Simulation and Analysis

Simulation Scenarios

In order to evaluate the new JLA analysis option in GHM 4, we
simulated datasets consisting of small to moderately sized pedigrees
and unrelated individuals. Specifically, 20 affected sib-pairs, 20
discordant sib-pairs (a sib-pair consisting of an affected and an
unaffected sibling), 40 affected half-sib pairs (20 with a common
mother, 20 with a common father), two three-generation pedigrees
(3-Gs), 20 triads, 20 affected unrelated individuals (cases), and
20 non-affected unrelated individuals (controls) were simulated.
Two trait models were considered. Trait model 1 (TMI1) was
simulated using a disease-allele frequency p,,, = 0.01 and penetrances
fo=0.01; f; =0.09; f, = 0.17. In addition, a second trait model (TM2)
with maternal imprinting was simulated, also using a disease-allele
frequency of 0.01, with penetrances according to the parental origin
of the disease allele: fo = 0.01; fi par = 0.14; f1 mar = 0.04; 5= 0.17. With
respect to the test markers, we simulated three perfectly linked SNVs
with minor allele frequencies (MAFs) set to 0.1 for all three SN'Vs.
Pairwise LD between alleles at the test markers was set to D' = 0.5.
LD as measured by Cramér’s V (see, e.g., [92]) between the three-
SNV marker haplotypes and alleles at the diallelic trait locus was set
to 0 for the simulations under the null hypothesis of no linkage and
no association (Hy, 4, with 6 = 0.5 between SNV and trait locus) and
also under the null hypothesis of linkage, but no association (Ho, 4»
with 8 = 0 between SN'Vs and trait locus). Hence, the corresponding
values of Cramér’s V between either the single-marker alleles or the
2-marker SNV haplotypes, for which either one or two SNVs were
selected out of the three SNVs, and the alleles at the disease locus
were also 0. Under the alternative hypothesis of linkage and as-
sociation (H;, with 8 = 0 between SNVs and trait locus), three
patterns of LD were considered to investigate the statistical effi-
ciency of modeling LD with 2- or 3-marker haplotypes, as compared
to single-marker JLA or pure linkage analyses. Scenario S1 was
designed as an example in which a single-marker analysis is suf-
ficient to capture the LD pattern, resulting in no further advantage of
the 2- and 3-marker haplotype analyses. Cramér’s V was set to 0.158
between alleles of a single SNV and alleles at the trait locus. The
corresponding Vs for the 2- and 3-marker haplotype formulations
were 0.158 and 0.16, respectively. Scenario S2 was designed as an
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example in which the LD pattern is best captured by a 2-marker
analysis, rendering it superior over the single- and 3-marker hap-
lotype analyses. Cramér’s V was set to 0.175 between haplotypes of
two SNVs and alleles at the trait locus. The corresponding Vs for the
single- and 3-marker haplotype formulations were 0.118 and 0.187,
respectively. Finally, scenario S3 was designed as an example in
which the 3-marker analysis is needed to fully capture the LD
pattern, resulting in an advantage over the single- and 2-marker
haplotype analyses. Cramér’s V was set to 0.474 between haplotypes
of three SN'Vs and alleles at the trait locus. The corresponding Vs for
the single- and 2-marker haplotype formulations were 0.141 and
0.201, respectively.

As to the flanking markers, ten SNVs with a MAF of 0.1 were
simulated in LE with each other on either side of the trait locus
with 0 = 0.002 between each other and with 8 = 0.001 between the
innermost flanking marker on each side and the trait locus, for
both trait models and all LD scenarios. An overview of the
simulated scenarios is given in Table 1. The population haplotype
frequencies of the SNV used for the simulation of marker data in
the three LD scenarios can be found in Tables 2 and 3.

Simulation of Genotype Data

Generation of genotype data with or without imprinting effects
and conditional on affection status was either carried out using
SLINK [93-95] or by its imprinting extension SLINK Imprinting
[96]. The simulation algorithm calculates the probability distri-
bution of genotypes g = g1, &, . . ., g, conditional on the phenotype
values x = x;, %, . . ., X, of n family members in a step-wise manner
until all members have been assigned a genotype, each conditional
on all phenotypes and the set of genotypes assigned before to other
family members: P (g]x) = P (g|x)P (g2|g1, )P (g3]g1> €2, %). . . The
calculation time of this algorithm increases linearly with additional
family members, but exponentially with the number of markers. In
order to speed-up multi-marker simulations, a two-step algorithm
originally developed by Lemire [97] was employed, which exploits
the ability of conditional simulations by SLINK and SLINK Im-
printing and uses a gene-dropping algorithm implemented in the
SLINK utility program SUP [95, 97] to quickly generate a large
number of markers. The first step of the algorithm generates
disease-locus genotypes and trait values using SLINK or SLINK
Imprinting. In the second step, SUP simulates flanking and test
marker genotypes, taking into account the scenario-specific LD
pattern between alleles at the test marker and trait loci.

Assessing Statistical Significance in JLA Analysis

For each scenario in Table 1, 1,000 datasets were simulated as
described in the preceding section. p values were obtained using
999 replicates for each of the 1,000 datasets by applying the new
simulation routine of GHM 4.

Investigated Test Approaches

In order to assess the statistical efficiency of our newly developed
haplotype analysis approach, all scenarios were analyzed using pure
linkage MOD score analysis with the previous GHM version 3
(GHM-MOD) and the newly proposed GHM-JLA analysis (GHM-
JLA) using either one, two, or three test SNVs for the construction of
test marker haplotypes. The same datasets simulated with three test
SNVs were used as the basis for all three LD scenarios. In the case of
the pure linkage and single-marker JLA analysis, the analysis was
performed using the central test SNV only. In the case of the 2-marker
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Table 1. Overview of the simulated scenarios to evaluate the statistical properties of the JLA-MOD score

Trait models and SNV scenarios

™1
6 €{0.0,0.5% pm = 0.01; fo = 0.01; f par = 0.09; f1 mar = 0.09; £, = 0.17
Dominance index D = 0; Imprinting index / = 0

™2
8 €{0.0,0.5}; py, = 0.01; fy = 0.07; fy po = 0.14; f1 e = 0.04; £, = 0.17
Dominance index D = 0; Imprinting index | = 0.625

3 test SNVs with 6 = 0.0 between SNVs

Test SNVs MAF, MAF, MAF; SNV-SNV LD (D")
0.1 0.1 0.1 0.5
LD (Cramér'sV)
Hoa Hob H;
S1 S2 S3
1-SNV-trait-locus LD 0.0 0.0 0.158 0.118 0.141
2-SNVs-trait-locus LD 0.0 0.0 0.158 0.175 0.201
3-SNVs-trait-locus LD 0.0 0.0 0.160 0.187 0.474
10 flanking SNVs on either side of the test SNVs with 8 = 0.002 between flanking SNVs
MAF; 20 Pairwise marker LD (D') Marker-trait locus LD (Cramér'sV)
Flanking SNVs 0.1 0.0 0.0
Map order Ho, a: 10 flanking SNVs left — 6 = 0.001 - 3 test SNVs — 6 = 0.001 - 10 flanking SNVs right — 6 = 0.5 - trait
locus
Ho b H1: 10 flanking SNVs left — 6= 0.001 - trait locus - 6 = 0.0 - 3 test SNVs — 8= 0.001 - 10 flanking SNVs
right

Table 2. Population haplotype frequencies of the marker-trait locus haplotypes used for the simulations

TM1/2

Population haplotype frequencies used for the simulations given
as SNV4|SNV;|SNV3|TL € {pry, Ph,» Phys Phys Phas Phs: Phes Phy> Phgs Phg Phgs Phis Phngs Phuss Phugs Pns}

Frequencies Ho, o/Ho, » H,

S1 52 S3
Pn, = 0[0]0|0 0.010791 0.0101 0.0094 0.0059
Pr, =0]0[0|1 0.000109 0.0008 0.0015 0.005
Ph,= 0|0| 110 0.043659 0.04169 0.0411 0.044
pr, =0[0[1]1 0.000441 0.00241 0.003 0.0001
pr, = 0[1]0|0 0.043659 0.043659 0.04409 0.044
Py = 0[1]0|1 0.000441 0.000441 0.00001 0.0001
pr, =0[1]1|0 0.000891 0.000891 0.00089 0.00089
pr, =0[1]1]1 0.000009 0.000009 0.00001 0.00001
pn, = 1]0|0|0 0.043659 0.04169 0.04409 0.044
Ph, = 1]0[0[1 0.000441 0.00241 0.00001 0.0001
Phyo = ‘||0|1|0 0.000891 0.00081 0.00089 0.00089
Phyy = 1|0|1|1 0.000009 0.00009 0.00001 0.00001
Ph,, = 11 |0|0 0.000891 0.000891 0.00089 0.00089
Phs =111 |()|1 0.000009 0.000009 0.00001 0.00001
Phye = 1|1|1|() 0.845559 0.850269 0.84865 0.84943
Phys = 1|1|1|1 0.008541 0.003831 0.00545 0.00467
JLA-MOD Score Analysis Hum Hered 2024;89:8-31 17
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Table 3. Marginal haplotype frequencies of the marker-trait
locus haplotypes for two SNVs (top) and a single (bottom) SNV
and the trait locus, calculated from the haplotype frequencies for
the marker-trait locus haplotypes for three SNVs and the trait locus
used for the simulations (see Table 2)

™1, TM2

Marginal haplotype frequencies for the 2- and single-marker
analyses (given as SNV;|SNV,|TL and SNV,|TL, respectively).
Values as derived from Table 2

Frequencies  Ho, o/Ho, b H,
S1 S2 S3
2-marker
Ph, = 0/0]0 0.05445  0.05179  0.0505 0.0499
pn, = 0[0]1 0.00055  0.00321  0.0045 0.0051
ph, = 0[1]0 0.04455  0.04455 0.04498 0.04489
ph, = 0[11 0.00045  0.00045 0.00002 0.00011
pn, = 1|0]0 0.04455 0.0425 0.04498  0.04489
pns = 1/0]1 0.00045 0.0025 0.00002  0.00011
prs = 1[1]0 0.84645 085116 0.84954  0.85032
P, =111 0.00855  0.00384 0.00546 0.00468
Single-marker
Phy = 0[0 0.099 0.09429 0.09548 0.09479
pn, =01 0.001 0.00571 0.00452  0.00521
Ph, = 'I|0 0.891 0.89571 0.89452 0.89521
Phy = ’II’I 0.009 0.00429 0.00548 0.00479

analysis, JLA analysis was performed using the left and the central test
SNV (see also Table 4). The disease-allele frequency and penetrance
restrictions were set to the default values (p,,, < 0.5; fo<f) pas f1, mat < f2)-
Imprinting analysis (f}, pa#fi,ma) Was enabled for both trait models. In
the case of GHM-MOD, the analysis was done using the following
additional options: GHM option “maximization dense” for the op-
timization of the trait-model parameters using a dense grid of values,
“calculate p value” to calculate p values (function “pmod”) for the
MOD score, “dimensions 5” to vary all five trait-model parameters
simultaneously during the maximization. We compared type I error
and power of the GHM-JLA tests with GHM-MOD and with the
parsimonious JLA test implemented in the PSEUDOMARKER
software [4, 63, 64] using the dominant and recessive PSEUDO-
MARKER models (PM-DOM, PM-REC) and with all other options
set to their default values. PSEUDOMARKER-JLA tests were eval-
uated using the central test SNV, with p values reported as given by
the program output. In addition, we compared linkage and associ-
ation parameter estimates obtained from the JLA-MOD score with
the values used for the simulations.

Analysis of FaPaCa Families

Pancreatic ductal adenocarcinoma (PDAC) is a challenging
tumor entity with an increasing incidence and a dismal prognosis
[98]. One of the greatest risk factors for developing PDAC is a
positive family history [99]. When two or more first-degree rel-
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atives that do not fulfil the criteria for another inherited tumor
syndrome have PDAC, this is called FaPaCa [99]. The German
National Case Collection of FaPaCa, a tumor registry, was es-
tablished as a screening program for an early detection of FPC and
to further investigate its genetic and molecular basis [100, 101].

To demonstrate the applicability of the GHM-JLA analysis in
practice, we analyzed pedigree data of the FaPaCa registry, con-
sisting of genome-wide array-based genotypes that were obtained
from peripheral blood samples for 193 individuals in 31 families.
Family sizes ranged from triads to multigenerational complex
pedigrees, with 409 individuals in total (overall genotyping rate:
47%). Patient records concerning pancreatic health status, which
were gathered from family history or assessed during visits in the
context of the FaPaCa screening program (see [101] and references
therein for details), served as the basis for our phenotype defi-
nition. Affection status was set to “affected” if the individual had at
least one of the following traits: pancreatic cancer (PC), pancreatic
intraepithelial neoplasia-3 (PanIN-3), or intraductal papillary
mucinous neoplasm with high-grade dysplasia. Screening of pa-
tients started 10 years before the youngest age of onset in the
family or by the age of 40 (since 2016: 50) years, whichever oc-
curred earlier. Over the years, several predisposing mutations have
been identified mainly on the basis of co-occurring tumor types
like breast cancer (BC) or colorectal carcinoma [101]. However,
the genetic predisposition for many FPC families is still unknown
[101]. Hence, in order to focus the gene discovery on those FPC
families, for which the predisposing genetic background is un-
known, we excluded families having at least one known predis-
posing genetic mutation in the gene set including BRCA2, PALB2,
CDNK2a, SUFU, and CHEK2 (see also [101, 102] for more details
about the mutation screening panel). Individuals of an FPC family
that solely had BC were marked as “unknown” because it has been
shown that BC and PC have a common causal pathway, mediated,
e.g., by BRCA1/2 or PALB2 mutations [103]. This procedure
provides a compromise between setting these individuals to
“unaffected,” which is presumably wrong, or to “affected,” which
might have an unduly high impact on the analysis results. Indi-
viduals having patient records concerning pancreatic health status
with no indication of PC, PanIN-3, intraductal papillary mucinous
neoplasm with high-grade dysplasia, or BC, as assessed during the
screening visits, were set to “unaffected.” Despite differences in
median ages, the age range of the first diagnosis of PC for affected
in our final pedigree sample (37-86; median 65) was roughly
comparable to the age range of the unaffected at their last
screening visit (33-74; median 51). Because the definition of age-
dependent thresholds and hence liability classes for developing PC
in the familial context presents a complicated task and is beyond
the scope of this paper, setting all individuals with a negative
screening result to “unaffected,” while setting unscreened indi-
viduals to “unknown,” provides an acceptable working solution to
map genes potentially involved in the complex FPC disease eti-
ology. Genotyping was done using the Infinium Global Screening
Array-24 v1.0 (GSAMD-24v1) from Illumina, which includes
700,078 variants. Genotype calling was performed using the
Genome Studio 2.0 software (Illumina Inc. San Diego, California,
USA). After calling with Genome Studio 2.0, a post-processing
step of the data was done with zCall to refine the quality of rare
variants [104]. The “Whole Genome Association Analysis Toolset”
(PLINK 1.7 [105]) was used for the SNVs quality control. SNVs
with a genotyping rate larger than 90% and not deviating from
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Table 4. Overview of the test SNVs and JLA analysis options

JLA analysis option

Evaluated test SNVs: @ evaluated; @ ignored

SNV1 SNV2

Linkage only

Single test SNV

2 test SNVs

3 test SNVs

Hardy-Weinberg equilibrium (significance threshold p < 5-1075) were
considered in the analysis. For the initial linkage scan using GHM,
SNVs were chosen such that their MAF was larger than 25% and with
pairwise LD between SNV not exceeding 0.05 in terms of the squared
correlation coefficient 7* as calculated by PLINK. Errors in pedigree
structure were identified using identical-by-descent analysis im-
plemented in PLINK as well as the “scan pedigree” analysis option
implemented in GHM. Relationships within and between pedigrees
were investigated using the relationship estimation software packages
KING [106] and TRUFFLE [107]. Genetic positions of the SNV's were
obtained using the map file as provided by the manufacturer, which
was based on the Genome Reference Consortium Human Build 37
(GRCh37).

The analysis procedure was as follows. First, we performed an
initial standard linkage MOD score analysis using GHM with
options “modcalc global,” “imprinting on,” “allfreq restriction on,”
“penetrance restriction on,” “max bits 20,” “maximization dense,”
“dimensions 5,” and “increment step 2.” Then, chromosomes with a
MOD score larger than 3.0 were chosen for JLA analysis. To this
end, the SNV lying next to the maximum linkage signal was used as
the central test SNV in JLA analysis. Additional SNVs on either side
of the central test SNV were added to the dataset, such that JLA
analysis could be performed with a single, two, and three test
marker(s) forming the marker-trait locus haplotype. The addi-
tionally added SNV's also had to pass the abovementioned quality
control; however, the MAF had to be at least 5% and the pairwise LD
in terms of r* between each test SNV and the two flanking linkage
markers was not allowed to exceed 0.1, which should still eliminate
the risk of inflated multipoint linkage scores when parental geno-
types are not available [45, 91]. Because most of the parental ge-
notypes of the FaPaCa families were not available, pedigrees were
pruned for JLA analysis to keep the computations still feasible.
Specifically, pedigrees were pruned such that no pedigree had more
than two untyped founders, except for half-sibs, which were allowed
to have three untyped founders. As it was for the initial linkage scan,
the disease-allele frequency and penetrance restrictions were set to
the default values (p,, < 0.5 fo < fipav fi, mat < f2), and imprinting
analysis (f}, pa#f1, ma) Was enabled. Empiric p values were obtained
using 999 simulated replicates. Due to the exploratory nature of the
analysis, p values <0.05 were considered statistically significant.

Results

The results section is structured as follows. In the first
part, we present the results of the simulated scenarios with
a focus on type I error rate and power of the GHM-JLA

JLA-MOD Score Analysis

analyses as well as the empiric distribution of the JLA-
MOD score. We also demonstrate the validity of the new
GHM-JLA simulation procedure to obtain an empiric p
value for the JLA test. Furthermore, we briefly discuss the
accuracy of the estimated trait-model parameters as well as
the estimated haplotype frequencies obtained from the
GHM-JLA analyses. In the second part, we compare the
results obtained from our GHM-JLA method with those
obtained from the PSEUDOMARKER-JLA analyses with
respect to type I error and power. In the final part, we
present the results of the real data application, i.e., the
GHM-JLA analysis of the FaPaCa families.

Type I Error, Power, and Parameter Estimation

Simulation Scenario Hy, ,: No Linkage, No Association

The results for the GHM-MOD and GHM-JLA
analyses for the datasets simulated under the null
hypothesis of no linkage and no association can be
found in Tables 5 and 6 as well as in online supple-
mentary Table 1 (upper part) (for all online suppl.
material, see https://doi.org/10.1159/000535840). As
can be deduced from Table 5, the type I error rates of
the linkage as well as all JLA tests corresponded well to
their nominal significance level of 5%. With regard to
the results in Table 6, p values for the linkage test were
comparable, irrespective of the method to generate
replicates to obtain empiric p values, i.e., either using
the GHM function “pmod” or the GHM-JLA replicates.
This can be interpreted as a confirmation of the validity
of our new JLA simulation procedure to generate
replicates under the null hypothesis of no linkage and
no association. In the same line, the obviously low trait-
model parameter estimation performance of the JLA
tests did not differ between the original datasets and the
JLA replicates (online suppl. Table 1).

The results regarding the haplotype frequencies for the
single-, 2-, and 3-SNV haplotypes estimated using the EM
algorithm can be found in online Supplementary Figure 1
(left column). As can be deduced from online supple-
mentary Figure 1, the estimated haplotype frequencies
were in good accordance with the simulated values across
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Table 5. Overview of type | error rate and power of the GHM-linkage and GHM-JLA tests for the simulated scenarios

Simulation scenario

Ho, a Ho,u: TM1 Ho, »: TM2 Hy:TM1,S1 Hy:TM1,52 Hp:TM1,S3 Hp:TM2,S1 Hy: TM2,52 Hy:TM2,S3

GHM analysis
option
Linkage only* 0.054 0487 0.687 0.480
1-SNV test marker 0.049  0.365 0.584 0.898
2-SNV test markers 0.055  0.291 0.478 0.842
3-SNV test markers 0.053  0.276 0.452 0.772

0451 0.495 0.667 0.683 0.686
0.751 0.854 0.972 0.933 0.957
0.820 0.886 0.952 0.940 0.959
0.766 0.976 0.912 0.920 0.983

*Values averaged based on the three corresponding results in column “PMOD” in Table 6.

all JLA test marker scenarios. With respect to the hap-
lotype frequencies of the test SNV alleles and the alleles at
the disease locus (online suppl. Fig. 1, right column), the
frequencies deviated from the simulated values due to the
overestimation of the disease-allele frequency, given no
linkage and hence no power for the JLA tests (see also
online suppl. Table 1, top).

Simulation Scenario Hy, : Linkage, No Association

The results for the GHM-JLA analyses for the datasets
simulated under the hypothesis of linkage and no asso-
ciation can be found in Tables 5 and 6 as well as in online
supplementary Table 1 (middle and lower part). As to the
trait model TM1, the linkage test showed higher power
(0.487) than the JLA tests (0.365, 0.291, and 0.276 for the
analyses using one, two, or three test SN'Vs, respectively).
This is due to an increased effective number of df for the
JLA tests as compared to the linkage test. In the same line,
the power of the JLA tests decreased with an increasing
number of test SNVs and hence parameters for the MOD
score. The same held true for the trait model TM2, albeit
the power was generally higher for all tests as compared to
TML. This is because the linkage and all JLA tests allowed
for imprinting models, which lead to an increased power
if imprinting is really present, as it is for TM2.

With regard to Table 6, p values for the linkage test
were comparable, irrespective of the method to generate
replicates to obtain empiric p values. This was in line with
the results obtained under Hy, , (see above).

The estimation accuracy of individual trait-model
parameters was generally low for both trait models
(see online suppl. Table 1), which means that estimates
and standard deviations did not differ much from those
obtained from the corresponding H, , replicates. This is
mainly due to the fact that the power of the JLA tests was
rather low (0.276-0.365 for TM1 and 0.452-0.584 for
TM2, see Table 5). Yet, the LD parameter V, the phe-

20 Hum Hered 2024;89:8-31
DOTI: 10.1159/000535840

nocopy rate fo, and the heterozygote penetrance of the
imprinted sex together with the imprinting index I were
estimated with increased accuracy as compared to the
null hypothesis replicates.

The results for the EM-estimated haplotype frequen-
cies of all JLA test marker sets can be found in online
supplementary Figure 2 (left column) for TM1 and in
online supplementary Figure 3 (left column) for TM2,
which were in good accordance with the simulated values
for both trait models. The corresponding haplotype
frequencies of the test SNV alleles and the alleles at the
disease locus showed an improved accuracy compared to
those obtained under Hy, , due to an improved estimation
accuracy of the disease-allele frequency. This was espe-
cially true for TM2 due to an increased power for the JLA
tests compared to TM1 (see also Table 5; online suppl.
Table 1, middle and bottom).

Simulation Scenario H;: Linkage, Association

TMI. The results for the GHM-JLA analyses for the
datasets simulated under the hypothesis of linkage and
association and using trait model TM1 can be found in
Tables 5 and 6 as well as in online supplementary Table 2.
As can be seen from Table 5, the power of the linkage test
did not substantially change compared to the H,, , sce-
narios, irrespective of the extent of LD (S1, S2, or S3).
With respect to scenario S1, the power of the JLA tests
was higher than the power of the linkage test (0.48) and
decreased with an increasing number of test SN'Vs (0.898,
0.842, and 0.772 for the JLA test using one, two, or three
test SNV, respectively). As to scenario S2, the JLA test
with two test SN'Vs showed higher power than the linkage
test and the tests with one or three test SN'Vs (0.82 vs.
0.451, 0.751, and 0.766, respectively). With regard to
scenario S3, the JLA test with three test SNVs showed the
highest power of all tests (0.976 vs. 0.495, 0.854, and 0.886
for the linkage test and the JLA tests using one or two test
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SNVs, respectively). With regard to Table 6, p values for
the linkage test were comparable, irrespective of the
method to generate replicates to obtain empiric p values.
This was in line with the results obtained under H, , and
Hy, » (see above).

As can be deduced from online supplementary Table 2,
the parameter estimation accuracy generally improved
due to the increased power of the JLA tests under H, as
compared to Hy, ;. Specifically, estimates for the disease-
allele frequency p,,,, the phenocopy rate f;, the imprinting
index I, and the LD parameter V showed improved ac-
curacy as compared to the Hy, , scenario. Interestingly,
parameter estimation performance did not substantially
differ between the three JLA tests.

The results for the EM-estimated haplotype frequen-
cies of all JLA test marker sets for the LD scenarios S1, S2,
and S3 can be found in online supplementary Figures 4-6
(left columns), respectively. In contrast to the results
under H, , and Hy, 5 the corresponding haplotype
frequencies slightly deviated from the simulated values,
which is likely due to marker-dependent ascertainment/
sampling of pedigrees under H,. This way, the haplotype
frequency distribution in the ascertained pedigree sample
does no longer correspond to the population haplotype
frequency distribution, although the difference can be
mitigated by including more healthy controls [108]. The
results of the corresponding haplotype frequencies of the
test SNV alleles and the alleles at the disease locus showed
an improved accuracy compared to those obtained under
Hy, ; and Hy, 3 due to the higher power of the JLA tests
under H; (online suppl. Fig. 4-6, right columns).

TM2. The results for the GHM-JLA analyses for the
datasets simulated under the hypothesis of linkage and
association and using trait model TM2 can be found in
Tables 5 and 6 as well as in online supplementary Table 3.
As can be seen from Table 5, the power of the linkage test
did not substantially change compared to the corre-
sponding Hy, , scenarios, irrespective of the extent of LD
(S1, S2, or S3). With respect to scenario S1, the power of
all JLA tests was higher than the power of the linkage test
(0.667) and decreased with an increasing number of test
SNVs (0.972, 0.952, and 0.912 for the analyses using one,
two, or three test SNV, respectively). As to scenario S2,
the JLA analysis with two test SNVs showed higher power
than the linkage test and the tests with one or three test
SNVs (0.94 vs. 0.683, 0.933, and 0.92, respectively). With
regard to scenario S3, the JLA test with three test SNVs
showed the highest power of all tests (0.983 vs. 0.686,
0.957, and 0.959 for the linkage test and the JLA tests
using one or two test SN'Vs, respectively). With regard to
Table 6, p values for the linkage test were comparable,

JLA-MOD Score Analysis
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irrespective of the method to generate replicates to obtain
empiric p values. This was in line with the results obtained
under H, ,, Hy, 4, and H; with TM1 (see above).

With regard to online supplementary Table 3, the
parameter estimation accuracy generally improved due to
the increased power of the JLA tests under H; as com-
pared to Hy, ;.. Specifically, estimates for the disease-allele
frequency, the phenocopy rate, the imprinting index, and
the LD parameter showed improved accuracy as com-
pared to the Hy ;, scenario. In line with the results for
TML1, parameter estimation performance did not sub-
stantially differ between the three JLA tests. The differ-
ence in power between the three JLA tests was smaller
across all LD scenarios as compared to the results ob-
tained for TM1. The generally higher power for the TM2
analyses compared to the TM1 analyses is due to the fact
that for TM1 imprinting is absent, but accounted for in
the analyses, while imprinting is in fact present for TM2.

The results for the EM-estimated haplotype frequen-
cies of all JLA test marker sets for the LD scenarios S1, S2,
and $3 can be found in online supplementary Figures 7-9
(left columns), respectively. As it was for TM1, the
corresponding haplotype frequencies slightly deviated
from the simulated values compared to the results under
Hy, , and Hy, p, which is likely due to marker-dependent
ascertainment/sampling of pedigrees under H; (see ex-
planation above). The results of the corresponding
haplotype frequencies of the test SNV alleles and the
alleles at the disease locus showed an improved accuracy
compared to those obtained under Hy, ,, Ho, 5, and H;
with TMI due to the higher power of the JLA tests under
H, with TM2 (online suppl. Fig. 7-9, right columns).

JLA-MOD Score Distribution

The empiric distributions of the JLA-MOD score based
on one, two, and three test SNVs and for all investigated
simulation scenarios can be found in Figures 1-3,
showing the results for H, , and Hy, , for H; and TM1,
and for H; and TM2, respectively. As to Hy, , and Hy, 5
(Fig. 1), the empiric distribution of the JLA-MOD score
was shifted toward larger values with an increasing
number of test SNVs. This is because of the increasing
number of effective df with an increasing number of test
SNVs in the JLA test. The corresponding histograms
indicated that the COBYLA optimization algorithm used
in GHM 4 worked properly, meaning that artificial
patterns in the empiric distributions like, e.g., excess point
masses around 0.0 could not be observed. In accordance
with the power values in Table 5, the empiric distribu-
tions for the JLA-MOD scores of the original SLINK
datasets simulated under H, (Fig. 2; 3) were all shifted

22 Hum Hered 2024;89:8-31
DOTI: 10.1159/000535840

toward higher values as compared to the distributions
obtained under Hy , and Hy,_ ; (Fig. 1), with even higher
values for TM2 as compared to TM1. Despite a few larger
outlying values, the empiric JLA-MOD score distribu-
tions all showed an approximately continuous, unimodal
curve with no obvious aberrant pattern, which would
otherwise indicate problems during the optimization
process of the JLA-MOD score calculation.

Comparison with PSEUDOMARKER

The results of the PSEUDOMARKER analyses are
summarized in Table 7. With respect to Hy_,, the quality
of the asymptotic distributions for both PSEUDO-
MARKER models PM-DOM and PM-REC was moderate
(true type I errors 0.0715 and 0.0744 for PM-DOM and
PM-REC, respectively, assuming a nominal type I error
rate of 0.05). Under Hy, , the power did not exceed 0.18
for both PM-DOM and PM-REC as well as for both trait
models TM1 and TM2 (Table 7), whereas the power
ranged from 0.276 to 0.584 using the GHM-JLA tests
(Table 5). Under H; and for TM1, the power ranged from
0.643 to 0.822 for PM-DOM and from 0.528 to 0.721 for
PM-REC (Table 7). The highest power was detected for
the S1 LD scenario, followed by S3. The power was
consistently higher for PM-DOM as compared to PM-
REC. The corresponding power values for the GHM-JLA
tests were consistently higher for the S2 and 83 scenarios.
In the case of the S1 scenario, PM-DOM showed higher
power than the GHM-JLA test using 3 SNVs, which
showed the lowest power among the GHM-JLA tests for
this scenario (0.822 vs. 0.772, respectively, see Tables 5,
7). Under H; and for TM2, the power ranged from 0.68 to
0.789 for PM-DOM and from 0.621 to 0.782 for PM-REC
(Table 7). Again, the highest power was detected for the S1
LD scenario, followed by S3. The power was again con-
sistently higher for PM-DOM as compared to PM-REC,
and it was mostly higher as compared to the corresponding
results for TM1. The corresponding power values for the
GHM-JLA tests were consistently higher for all LD sce-
narios. With regard to the S2 scenario, the GHM linkage-
only test even outperformed the PSEUDOMARKER-JLA
test (GHM linkage-only: 0.683 vs. PM-DOM: 0.680 and
PM-REC: 0.621). A graphical overview of all the type I
error and power values for both the PSEUDOMARKER
and GHM-JLA analyses is given in Figure 4.

Analysis of FaPaCa Families

Identical-by-descent analyses of the FaPaCa families
led to the exclusion of a duplicated individual. The re-
lationship estimation algorithms did not find any sig-
nificant deviation from the relationships given in the
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Distribution of JLA MOD scores
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Fig. 1. Depiction of the empiric distributions of JLA-MOD scores for data simulated under the hypothesis of no
linkage, no association (row 1, depiction only for trait model TM1) and linkage, no association (row 2 for TMI,
row 3 for TM2). The bars of the JLA-MOD scores of the “original” simulated SLINK datasets are colored in dark-
gray; the bars of the simulated GHM replicates are colored in white, overlapping areas are colored in light-gray.
For more information about the simulation scenarios, see Table 1.

pedigree tree and those estimated using the genetic data.
Further, no interrelatedness between pedigrees could be
observed. In total, the final sample consisted of 262 in-
dividuals in 22 pedigrees, with 78 affected, 47 unaffected,
and 137 unknowns. After the initial standard linkage
MOD score analysis on all autosomes, chromosome 22
(MOD score: 3.09 near marker rs5771131 within the
TTLL8 gene on 22q13.33) was further investigated using
JLA analysis. To refine the candidate region for JLA
analysis, we repeated the GHM-linkage scan for chro-
mosome 22, but now with the option “modcalc single” to
obtain best-fitting trait models for every investigated

JLA-MOD Score Analysis

genetic position, which allows a better evaluation of the
width of the linkage signal than the “modcalc global”
option (see online suppl. Fig. 10). Because the candidate
region showed distinctive sex-specific recombination
fractions, we repeated the linkage scan using the sex-
specific genetic distances as given in the Rutgers map v.3
[109] and assuming the Haldane map function, which did
not significantly change the results. We then chose four
additional SNVs in the vicinity of rs5771131 and en-
compassing the two nearby candidate genes IL17REL and
PIM3, according to our criteria given above in the
Methods section. The results of the ensuing JLA analysis
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Fig. 2. Depiction of the empiric distributions of JLA-MOD scores for data simulated under the hypothesis of
linkage and association for trait model TM1 and various LD patterns (row 1: S1; row 2: S2; row 3: S3). For more
details, see Figure 1.

can be found in Table 8. In summary, significant results
were obtained for one single test SNV, two sets of two test
SNVs, and four sets of three test SNVs, all with an im-

lated individuals. The implementation to perform a JLA
analysis using MOD scores has been missing so far. Our

printing index pointing toward maternal imprinting
(Table 8). Remarkably, at least one of the neighboring
markers rs5771069 and rs137878 was present in every

significant test set.

Discussion

In this work, we present an extension to the GENE-
HUNTER-MODSCORE software package [16-19] that
allows a JLA analysis using pedigrees, triads, and unre-

new GHM version 4 now closes this gap. In GHM 4,
association is modeled using haplotype frequencies for up
to three diallelic test markers and a diallelic trait locus. In
addition, we also provide an integrated simulation rou-
tine to calculate empiric p values for the JLA test.

We demonstrated by simulations that a JLA analysis
based on MOD scores can substantially increase power as
compared to the corresponding linkage-only test
(Table 5). This observation was in accordance with the
statement mentioned earlier, saying that a JLA analysis
can substantially increase mapping accuracy and power
because it makes use of both family and population
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Fig. 3. Depiction of the empiric distributions of JLA-MOD scores for data simulated under the hypothesis of
linkage and association for trait model TM2 and various LD patterns (row 1: S1; row 2: S2; row 3: S3). For more
details, see Figure 1.

Table 7. Overview of type | error rate and power of the PSEUDOMARKER-JLA tests for the simulated scenarios as reported by the
PSEUDOMARKER software

PSEUDOMARKER analysis option Simulation scenario

Hoo* How Hog H;y: Hy: H,: Hy: Hy: Hy:

™1 ™2 TM1,S1 TM1,S2 TM1,S3 TM2,S1  TM2,S2 TM2, S3

PM-DOM 00715 0.160 0.178 0.822 0.643 0.766 0.789 0.680 0.754
PM-REC 00744 0.136 0.157 0.721 0.528 0.675 0.782 0.621 0.733

PM-DOM and PM-REC correspond to using the dominant and recessive pseudomarker model in the JLA analysis, respectively.
The PSEUDOMARKER-JLA tests are supposed to asymptotically follow a 50-50 mixture of x? and x? distributions in the case of a
diallelic test marker. *Based on 10,000 SLINK replicates.
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Fig. 4. Depiction of type I error and power values for the six
investigated test statistics and analysis options: GHM-LO: GHM
linkage-only MOD score; GHM-JLA1: GHM-JLA-MOD score
using one test SN'V for the analysis; GHM-JLA2: GHM-JLA-MOD
score using two test SNVs for the analysis; GHM-JLA3: GHM-

information [4, 5]. Moreover, we showed that there are
LD scenarios, for which either the 2- or 3-marker JLA
tests can be more powerful than the corresponding single-
marker test, which confirms another statement men-
tioned earlier, saying that haplotype-based association
methods can outperform single-marker analyses [71],
especially when the LD between the investigated test
markers and the trait locus is rather weak [73].

The problem as to whether ecither single-marker or
haplotype-based JLA tests are generally more powerful is
hard to tackle. Of course, an already high degree of LD
between alleles at a single marker and the alleles at the
trait locus renders the extra LD information gathered
from additional markers less important. However, apart
from LD information, additional test markers can con-
tribute valuable linkage information for the JLA test when
there is reduced linkage information at a single test
marker locus. Furthermore, it is conceivable that LD can

26 Hum Hered 2024;89:8-31
DOTI: 10.1159/000535840

JLA-MOD score using three test SNVs for the analysis; PM-DOM:
PSEUDOMARKER analysis assuming a dominant model for the
analysis; PM-REC: PSEUDOMARKER analysis assuming a re-
cessive model for the analysis. For more information about the
simulation scenarios, see Table 1.

likely be modeled more efficiently using haplotype-based
approaches when there are several independent disease-
associated SNVs in the same LD region [71]. Generally,
whether single-marker or multi-marker haplotypes are
more suitable in a JLA analysis depends on the disease
etiology as a function of the mode of inheritance (number
of disease loci, disease-allele frequencies, penetrances)
and the population history defining the LD block.

The ability to estimate trait-model parameters using
MOD score analysis has been thoroughly discussed in the
literature [12-15, 70]. In the case of a JLA analysis, trait-
model parameter estimates obtained from a MOD score
analysis are argued to be trivially biased [14, 70]. In this
work, however, we did not quantify this bias in detail
because the JLA extension of the MOD score with several
additional LD parameters makes the corresponding pa-
rameter estimation less efficient, and the quantification of
the bias becomes unfeasible. Nevertheless, the parameter
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Table 8. Results of the JLA analyses of the FaPaCa pedigrees using GHM. Chromosome 22 showing a MOD score for the GHM-linkage

test larger than 3.0 was selected for JLA analysis

Chromosome 22: Nearest protein-coding SNV1 SNV2 SNV3 LD Imprinting JLA-MOD p

genes index score value*
TTLL8 IL17REL PIM-3 1528634968 0.013 1.0 1.72 0.178
rs5771069 0311 091 2.62 0.039

rs137878 0.155 0.0 1.01 0.507

rs5771131 0.008 10 2.08 0.100

57290681 0.033 10 1.50 0.243

rs28634968 rs5771069 0.329 10 2.88 0.078

rs28634968 rs137878 0.231 1.0 2,03 0.241

rs28634968 rs5771131 0.329 0.40 1.71 0.399

rs28634968 rs7290681 0.368 0.0 1.50 0431

rs5771069 rs137878 0.521 097 3.65 0.025

rs5771069 rs5771131 0314 0.92 2.96 0.099

rs5771069 57290681 0474 10 3.13 0.053

rs137878  rs5771131 0427 0.70 3.70 0.027

rs137878  rs7290681 0.704 -0.35 1.66 0428

rs5771131 rs7290681 0.17 1.0 227 0219

rs28634968 rs5771069 rs137878 0.573 1.0 448 0.023

1528634968 rs5771069 rs5771131 0.298 093 3.34 0227

rs28634968 rs5771069 rs7290681 0.514 0.0 3.33 0.170

rs28634968 rs137878 rs5771131 0.408 0.60 4.38 0.040

rs28634968 rs137878 rs7290681 0.377 0.0 251 0.393

528634968 rs5771131 rs7290681 0.268 10 244 0.460

rs5771069 rs137878 rs5771131 0.537 0.78 4.50 0.031

rs5771069 rs137878 rs7290681 0.585 091 412 0.062

rs5771069 rs5771131 rs7290681 0.411 0.88 3.79 0.176

rs137878 rs5771131 rs7290681 0.463 0.57 491 0.029

LD is given in terms of Cramér’s V. *Based on 999 GHM replicates. Bold values are statistically significant, p < 0.05.

estimates obtained from the JLA-MOD score analyses in
our simulation study under the alternative hypothesis of
linkage and association often contained at least some
degree of information as opposed to those obtained for
the replicates under the null hypothesis of no linkage and
no association (online suppl. Tables 1-3). Furthermore,
the estimates for the imprinting index were in good
accordance with the simulated values, which means thata
JLA-MOD score analysis can also be used to quantify the
imprinting effect as it is possible with the linkage-only
MOD score [69].

We compared our MOD score JLA test to another
commonly used parsimonious JLA test as implemented in
the PSEUDOMARKER software package [4, 63, 64]. For
the two scenarios under linkage but no LD as well as for
five out of six scenarios with linkage and LD, the MOD
score JLA tests showed consistently higher power than the
PSEUDOMARKER tests. In the LD scenario S1, in which
the single-marker MOD score JLA test outperformed the
2- and 3-marker MOD score JLA tests and which was
simulated under no imprinting (TM1), the PSEUDO-

JLA-MOD Score Analysis

MARKER test assuming a dominant model showed
higher power than the three-marker MOD score JLA test
(Fig. 4).

Although limited to moderately sized pedigrees, GHM
can efficiently calculate MOD scores by the use of many
markers in a multipoint setting. The multipoint calcu-
lation enables the MOD score JLA test to incorporate
flanking marker information, which can substantially
increase power as compared to a twopoint approach as we
have shown in this work. This is because, in the twopoint
setting, all linkage and LD information is gathered only
from the single test marker. Admittedly, the twopoint
PSEUDOMARKER tests are capable of analyzing
markers with more than two alleles, which can entail
higher information content at the test marker locus;
however, the availability of highly polymorphic markers
is often limited in current research projects. Notwith-
standing, the successful applicability of PSEUDO-
MARKER-JLA tests to mixed pedigree data including
larger multigenerational pedigrees is undoubted (see,
e.g. [110]).
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The analysis of the FaPaCa data led to the identifi-
cation of a novel candidate region for mutation analysis in
FPC families on chromosome 22q13.33. The long arm of
chromosome 22 has long been suspected to harbor ge-
netic loci involved in the etiology of PDAC [111] and
endocrine pancreatic tumors [112] using loss of het-
erozygosity mapping; however, the precise genetic loci
involved in the etiology of PC on 22q are still unknown.
Our newly discovered region encompasses the locus of
the proto-oncogene PIM3, a serine/threonine-protein
kinase showing enhanced expression in human PC cells
[113], and the cytokine receptor IL17REL, which was
found to be associated with inflammatory bowel disease
[114] being a potential risk factor for PDAC [115]. In-
terestingly, the candidate region showed a considerable
paternal expression pattern, corresponding to maternal
imprinting. Data on imprinted genes in the context of
PDAC are rare [116], but in light of the longer male
genetic map in this region, the observed maternal
imprinting - at least to some degree — might stem from a
true signal rather than from confounding [117].

With GHM 4, it is now possible to jointly analyze
mixtures of pedigrees and unrelated individuals in a joint
test for linkage and association using up to three diallelic
test markers. The computational burden involved in
MOD score JLA analysis is substantial; however, calcu-
lations are still feasible on most present-day computing
clusters. To save elapsed real time for the computations,
GHM 4 offers an option to compute empiric p values in
parallel. Moreover, GHM 4 offers the possibility to es-
timate haplotype frequencies by the use of the EM al-
gorithm., We have demonstrated by simulations that the
MOD score JLA test has good power under various
linkage and LD scenarios and has the potential to
characterize the disease gene to some extent, especially
when imprinting is present. The MOD score JLA tests all
keep the specified type I error level using a verified in-
tegrated simulation procedure, which can automatically
be run in parallel. GHM 4 thus provides a valuable and
powerful genetic analysis toolbox, unifying MOD score
linkage with haplotype-based association analysis.
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Supplementary Fig. 1: Boxplots of the empiric distribution of haplotype frequency estimates for the ‘original” SLINK datasets simulated under the hypothesis of no linkage,
no association (depiction only for trait model TM1) using either one (row 1), two (row 2), or three (row 3) test SNVs for the GHM JLA analysis. The left column depicts the
frequency estimates of the marker haplotypes leaving the disease locus out of the haplotype formulation, which are obtained using the EM algorithm. The right column
depicts the frequency estimates of the marker-trait locus haplotypes, which are obtained by maximizing the JLA MOD score likelihoad ratio using the COBYLA algorithm.
Expected values (red bullets) can be derived from Tables 2 and 3.
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Hpp, TM1: EM-estimated SNP haplotype frequencies (Originals) Hpp: TM1: JLA-MOD-score derived SNP-disease haplotype frequencies (Originals)
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Supplementary Fig. 2: Boxplots of the empiric distribution of haplotype frequency estimates for the ‘original” SLINK datasets simulated under the hypothesis of linkage, no
association (trait model TM1) using either one (row 1), two (row 2), or three (row 3) test SNVs for the GHM JLA analysis. For more details see Supplementary Figure 1.
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Hyp, TM2: EM-estimated SNP haplotype frequencies (Originals) Hyp, TM2: JLA-MOD-score derived SNP-disease haplotype frequencies (Qriginals)
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Supplementary Fig. 3: Boxplots of the empiric distribution of haplotype frequency estimates for the ‘original’ SLINK datasets simulated under the hypothesis of linkage, no
association (trait model TM2) using either one (row 1), two (row 2), or three (row 3) test SNVs for the GHM JLA analysis. For more details see Supplementary Figure 1.
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H;, TM1: EM-estimated SNP haplotype frequencies (Originals) Hy, TM1: JLA-MOD-score derived SNP-disease haplotype frequencies (Originals)
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Supplementary Fig. 4: Boxplots of the empiric distribution of haplotype frequency estimates for the ‘original’ SLINK datasets simulated under the hypothesis of linkage and
association (trait model TM1, LD pattern S1) using either one (row 1), two (row 2), or three (row 3) test SNVs for the GHM JLA analysis. For more details see Supplementary
Figure 1.
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H;, TM1: EM-estimated SNP haplotype frequencies (Qriginals) Hy, TM1: JLA-MOD-score derived SNP-disease haplotype frequencies (Originals)
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Supplementary Fig. 5: Boxplots of the empiric distribution of haplotype frequency estimates for the ‘original’ SLINK datasets simulated under the hypothesis of linkage and
association (trait model TM1, LD pattern S2) using either one (row 1), two (row 2), or three (row 3) test SNVs for the GHM JLA analysis. For more details see Supplementary
Figure 1.
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H;, TM1: EM-estimated SNP haplotype frequencies (Originals) Hy, TM1: JLA-MOD-score derived SNP-disease haplotype frequencies (Originals)
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Supplementary Fig. 6: Boxplots of the empiric distribution of haplotype frequency estimates for the ‘original’ SLINK datasets simulated under the hypothesis of linkage and
association (trait model TM1, LD pattern S3) using either one (row 1), two (row 2), or three (row 3) test SNVs for the GHM JLA analysis. For more details see Supplementary
Figure 1.
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H;, TM2: EM-estimated SNP haplotype frequencies (Qriginals) Hy, TM2: JLA-MOD-score derived SNP-disease haplotype frequencies (Originals)
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Supplementary Fig. 7: Boxplots of the empiric distribution of haplotype frequency estimates for the ‘original’ SLINK datasets simulated under the hypothesis of linkage and
association (trait model TM2, LD pattern S1) using either one (row 1), two (row 2), or three (row 3) test SNVs for the GHM JLA analysis. For more details see Supplementary
Figure 1.
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H;, TM2: EM-estimated SNP haplotype frequencies (Qriginals) Hy, TM2: JLA-MOD-score derived SNP-disease haplotype frequencies (Originals)
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Supplementary Fig. 8: Boxplots of the empiric distribution of haplotype frequency estimates for the ‘original’ SLINK datasets simulated under the hypothesis of linkage and
association (trait model TM2, LD pattern S2) using either one (row 1), two (row 2), or three (row 3) test SNVs for the GHM JLA analysis. For more details see Supplementary
Figure 1.
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H;, TM2: EM-estimated SNP haplotype frequencies (Qriginals) Hy, TM2: JLA-MOD-score derived SNP-disease haplotype frequencies (Originals)
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Supplementary Fig. 9: Boxplots of the empiric distribution of haplotype frequency estimates for the ‘original’ SLINK datasets simulated under the hypothesis of linkage and
association (trait model TM2, LD pattern S3) using either one (row 1), two (row 2), or three (row 3) test SNVs for the GHM JLA analysis. For more details see Supplementary
Figure 1.

Chromosome 22

2.0

MOD score
1.0
|

I \ I I I T \ I
0 10 20 30 40 50 60 70

Position [cM]

Supplementary Fig. 10: MOD score curve of chromosome 22. Black vertical lines indicate marker positions, red vertical lines indicate positions halfway between markers.
Best-fitting trait models and hence MOD scores were calculated for each investigated position separately (GHM option ‘modcalc single’).
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Supplementary Table 1

™1

Ho.a: Nolinkage, no association

Simulated values

Dominance index

Imprinting index

JLA analysis option P =001 foy =001 fipat = 0.09 Frmae = 009 £,=017 Cramér's V = 0 ne e
Mean (D)
TSNV test marker | Originals 027 (0.21) 0.29(032) 050 (0.40) 0.50 (0.40) 0.73(039) 0.32(032) (100] | -0.04(0.63) 98] 0.01(0.60) [99]
Replicates 026 (0.21) 0.28(032) 048 (0.39) 0.49 (0.40) 0.74(037) 032(032) (100 | -0.07(0.62)(99] | -0.01(0.62) [29]
2 SNV test markers | Originals 030(0.19) 0.21(029) 038 (0.38) 0.38 (0.38) 0.58 (0.42) 0.38(0.24) (100 | 0.0(0.59) (100) 0.0(0.63) [100]
Replicates 0.30(0.19) 0.22(0.29) 039 (0.38) 0.40(0.38) 0.60 (0.42) 0.37/(0.24) [100] -0.01(0.58) [99] 0.0 (0.64) [99]
3 SNV test markers | Originals 037(0.16) 0.19(0.25) 040 (0.35) 039 (0.35) 0.60 (039) 0.35(0.16) [10] 0.03(0.55) (9] 0.02 (0.61) [29]
Replicates 036 (0.17) 0.19(0.25) 038 (0.35) 038 (0.35) 0.59(039) 0.36 (0.18) (5] 0.0(0.55) [100] 0.0 (0.63) [100]
™1 Hy,: Linkage, no
Simulated values
JLA analysis option P = 001 fo =001 fipar = 0.09 fimae = 0.09 =017 Cramér'sV = 0 bominance index Imprinting index
1SNV test marker | Originals 016 (0.19) 0.09 (0.19) 042 (0.38) 041(0.38 0.74(035) 0.12(0.21) [100] | -0.02(0.66) (100] | 0.01(0.46) [100]
Replicates 026 (0.21) 0.28 (0.32) 048 (0.39) 0.49 (0.40) 0.74(037) 0.32 (0.32) (100] -0.06(062) (99] | -0.01(0.61) [99]
2 SNV test markers | Originals 020(0.18) 0.10(0-20) 039(0.37) 037 (0.3 0.64(039) 0.21(0.19) [100] 0.06 (0.63) [99] 0.01(0.49) [99]
Replicates 030(0.19) 0.22(0.29) 039 (0.38) 040 (038 0.60 (042 0.37(0.24) [100) -0.01(0.58) (99] 0.0(0.64) (99]
3 SNV test markers | Originals 028(0.17) 0.07(0.14) 031(0.32) 032032 0.57(038] 0.26 (0.09) (9] 0.01(0.60) (100 | 0.0(0.50) (100]
Replicates 036(0.17) 0.19(0.25) 038 (0.35) 0.38(0.35) 0.59(039) 0.36 (0.18) (5] 0.0(0.55) [100] 0.0(063) [100]
™2 Hyy: Linkage, no association
Simulated values
JLA analysis option P =001 fy =001 fipa = 014 fumae = 0.04 f, =017 Cramér'sy = | Dominance index 'm';"f“l;‘gé"sdex
TSNV test marker | Originals 0.13(0.16) 0.07(0.18) 049 (0.39) 0.25(0.33) 0.71(037) 0.1(0.18)[100] | -0.06(057) [100] | 0.39 (0.46) [100]
Replicates 026 (0.21) 0.28(032] 0.48 (039) 0.49 (0.40) 0.74(034) 0.32(032)[100] | -0.06(0.62)[99] | -0.01(0.61)(99]
2 SNV test markers | _Originals 0.18(0.17) 0.08 (0.19) 044 (0.37) 0.24(031) 0.62(039) 0.17(0.17) [100] | -0.01(0.55) [99] 0.36 (0.49) (99]
Replicates 030(0.19) 0.22(0.29) 039 (0.38) 040 (0.38) 0.60 (0.42) 0.37(0.24) [100] | -0.01(0.58) [99] 0.0(0.64) (99]
3 SNV test markers | Originals 025 (0.16) 0.06 (0.15) 036(0.32) 0.20(0.27) 0.5 (037) 0.26 (0.15) (9] -0.05(0.55) [100] | 0.3 (0.45) [100]
Replicates 036(0.17) 0.19(0.25) 038 (0.35) 0.38(0.35) 0.59(039) 0.36 (0.18) (5] 0.0(055) [100] 0.0(063) [100]

Supplementary Table 1: Overview of trait-model parameter estimates obtained from JLA MOD score analyses. Values are reported for the null hypothesis of no linkage and no association (Ho,q, top) for trait model TM1
and linkage, no association (Hy,,, middle and bottom) for both trait models TM1 and TM2. Values in square brackets indicate the percentage (rounded to the nearest integer) of defined values for Cramér’s V and the

ratios D and /.

Values for ‘Originals’ are based on 1000 simulated datasets (SLINK or SLINK-Imprinting), whereas values for ‘Replicates’ are based on a total of 999000 simulated datasets (GHM-JLA).

Supplementary Table 2

™L Hy: Linkage,
W Simulated values
scenario
Cramér's V:
1SNV: 0.158 Dominance index Imprinting index
JLA analysis option s1 P = 0,01 fo =001 fupar = 0.09 fumac = 0.09 f, =017 25NVs: 0.158 ey o
3SNVs: 0.160
Mean (SD)
1SNV test marker | Originals 0.05 (0.09) 0.05 (0.09) 039(037) 039(037) 0.70(0.37) 0.21(0.20) [100] 0.1(0.69) [100] 0.01(0.30) [100]
Replicates 027(021) 0.28(0.32) 0.48 (0.39) 049 (0.40) 0.74(0.37) 033 (0.33) [100] -0.08 (0.63) [99] -0.01(0.60) [99]
2SNV test markers_| _Originals 0.06 (0.1) 0.06(0.1) 039 (035) 039(0.35) 0.7(0.36) 0.25(0.20) [100] | 0.08 (0.66) [100 0.0(0.32) (100]
Replicates 03(0.19) 0.23(0.29) 0.40 (0.38) 0.40(0.38) 0.61(0.42) 0.38(0.24) [100] -0.02 (0.59) [99] 0.0(0.63) [99]
3SNV test markers | _Originals 0.15 (0.14) 007 (0.1) 0.34(030) 032(0.28) 0.60 (0.36) 047 (0.21) [14] 0.07 (0.61) [100 0.02 (0.33) [100]
Replicates 036 (0.16) 0.19(0.25) 0.38 (0.35) 0.38(0.35) 0.59 (0.39) 037(017) [7] -0.01(0.56) [100] || 0.0 (0.62) [100]
Cramér's V:
1SNV: 0.118 Dominance index |  Imprinting index
JLA analysis option s2 Pm = 0.01 f, =0.01 fipar = 0.09 fimat = 0.09 f, =017 25NVs: 0.175 ne "
3SNVs: 0.187 = =
TSNV test marker | Originals 0.07(0.12) 0.06(0.13) 0.41(038) 0.40(0.37) 0.74(0.36) 020(0.22) [100] | 0.06(0.69) [100] | 0.02(0.35) [100]
Replicates 0.26(0.21) 0.28(0.32) 0.48(039) 0.49 (0.40) 0.74(0.37) 033 (0.33) [100] -0.08 (0.64) [99] -0.01(0.6) [99]
2SNV test markers | _Originals 0.09(0.13) 0.05 (0.11) 0.38(035) 036(0.34) 0.68 (0.38) 0.27(0.21) [100] | 0.07(0.66) [100] | 0.01(0.33) [100]
Replicates 030(0.19) 0.22(0.29) 0.40 (038) 0.40(0.38) 0.61(0.42) 038 (0.24) [100] -0.02 (0.59) (9] 0.0(0.64) (9]
3SNV test markers | _Originals 0.14(0.14) 0.05 (0.08) 032(0.29) 032(0.28) 0.60 (0.35) 0.42(0.19) [9] 0.04(0.62) [100] | 0.01(0.32) [100]
Replicates 036 (0.16) 0.19(0.25) 0.38(035) 0.38(0.35) 0.59 (0.39) 037(017) [5] 0.0(0.56) [100] 0.0(0.63) [100]
Cramér's V:
1SNV: 0.141 Dominance index |  Imprinting index
JLA analysis option 3 Pm = 0.01 fo=001 fupar = 0.09 fimac = 0.09 £ =017 25NVs: 0.201 jins A
3SNVs: 0.474
1SNV test marker | Originals 0.06(0.11) 0.05(0.10 038 (0.36) 038(0.36) 0.71(0.37) 0.21(0.22) [100] | 0.05(0.68) [100] 0.0(0.32) (100]
Replicates 0.26 (0.21) 0.28(0.32 0.48 (0.39) 0.49 (0.40) 0.74(0.37) 033 (0.33) [100] -0.08 (0.83) [99] -0.01(0.60) [99]
2SNV test markers_| _Originals 0.06(0.11) 0.05 (0.09 036 (0.34] 035(033) 067 (0.37) 0.28(0.22) [100] | 0.07(0.66) [100] | 0.01(0.29) [100]
Replicates 030(0.19) 0.23(0.29 0.40 (0.38] 0.40(0.38) 0.61(0.42) 0.38 (0.24) [100] -0.02 (0.59) (9] 0.0(0.64) (9]
3SNV test markers | _Originals 0.06 (0.09) 0.04(0.07) 033 (028) 032(0.28) 0.61(0.35) 0.54(0.19) [11] 0.13(0.61) [100] | 0.01(0.24) [100]
Replicates 036 (0.16) 0.19(0.25) 038(035) 038(035) 0.59(0.39) 038(017) [6] 0.0(0.56) [100] 0.0(0.63) [100]

Supplementary Table 2: Overview of trait-model parameter estimates obtained from JLA MOD score analyses. Values are reported for the null hypothesis of linkage and association (H;) and trait model TM1. For more

information see Supplementary Table 1.
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Supplementary Table 3

™2 inkage,
SN Simulated values
scenario
Cramér's V:
1SNV: 0158 R .
JLA analysis option s1 P = 001 fo=0.01 fipae = 0.14 fimat = 0.04 f, =017 25NVs: 0.158 D"’“‘"a"_cfl'”de" ""';""‘g‘i%"sde"
3SNVs: 0.160 -
Mean (D)
TSNV test marker | Originals 0.03 (0.08) 0.04(0.06) 0.49 (039) 0.14(0.18) 0,69 (038) 0.21(0.18) [100] | -0.10(0.47) (100] | 055 (0.35) [100]
Replicates 027 (021) 0.28(032) 0.48 (039) 0.49 (0.40) 0.74(037) 0.33(033) (100 | -0.08(0.64)(99] | -0.01(0.61)[99]
2 SNV test markers | Originals 0.04(0.08) 0.05(0.08) 052 (0.38) 0.16 (0.18) 0.70 (036) 0.24(0.18) (100] | -0.09(0.45) (100] | 0.54(0.38) [100]
Replicates 030(0.19) 0.23(0.29) 0.40 (038) 0.40(0.38) 0.61(0.42) 0.38(0.24) (100] | -0.03(0.59) [99) 0.0(0.63) (99]
3 SNV test markers | Originals 0.12(0.13) 0.06 (0.08) 042 (0.31) 016 (0.17) 0.58 (035) 047(021) (15] | -0.05(044) [100] | 0.5(0.37) [100]
Replicates 036 (0.16) 0.19(0.25) 0.38 (035) 0.38 (0.35) 0.59 (039) 0.37(0.17) [7] -0.01(056) [100] | _0.0(0.62) [100]
Cramer's V:
1SNV: 0118 ) B
JLA analysis option s2 Pm = 001 fo =001 fupae = 0.14 i mar = 0.04 £ =017 2 SNVs: 0175 Dominance index """l""”o"ié“sde"
3SNVs: 0.187 -
TSNV test marker | Originals 0.05(0.10) 0.04(0.09) 052 (0.40) 016 (0.21) 0.74(035) 0.15(0.16) [100] | -0.13(0.51) (100] | 0.51(0.40) [100]
Replicates 026 (0.21) 0.28(032) 048 (0.39) 0.49 (0.40) 0.74(037) 0.33(033)[100] | -0.08(0.63)(99] | -0.01(0.61)[99]
2 SNV test markers | Originals 0.06 (0.10) 0.05(0.09) 047 (0.37) 015 (0.19) 0.67(037) 0.24(0.18) (100 | -0.12(046) [100] | 0.52(0.4) [100]
Replicates 0.30(0.19) 0.22 (0.29) 0.40 (0.38) 0.40 (0.38) 0.61(0.42) 0.38 (0.24) [100] -0.02 (0.59) [99] 0.0 (0.64) [99]
3 SNV test markers | Originals 0.11(0.13) 0.05(0.07) 042(0.33) 016 (0.19) 0.60 (035) 0.42(0.16) [10] | -0.07(045) [100] | 0.49 (0.39) (100]
Replicates 036 (0.16) 0.19(0.25) 038 (0.35) 038 (0.35) 0.59 (039) 0.37(0.17) [5] 0.0 (0.56) [100] 0.0(0.63) [100]
Cramer's V:
1SNV: 0141 Dominance index | Imprinting index
JLA analysis option $3 P =001 fo =001 fipae =014 fumar = 0.04 f, =017 25NVs: 0.201 e oy
3SNVs: 0.474 -
1SNV test marker | Originals 0.03(0.07) 0.04(0.08) 0.53 (0.40) 0.16(0.21) 0.72(0.37) 0.17(0.16) [100] -0.09 (0.49) [100] 0.55 (0.35) [100]
Replicates 026 (0.21) 0.28(032) 048 (0.39) 0.49 (0.40) 0.74(037) 0.33(033)[100] | -0.08(0.63)(99] | -0.01(0.60) [99]
2 SNV test markers | Originals 0.04(0.08) 0.04(0.09) 049 (0.37) 015 (0.20) 0,69 (037) 0.25(0.18) [100] | -0.11(045) (100] | 0.52(0.38) [100]
Replicates 030(0.19) 0.23(029) 040 (0.38) 040 (0.38) 0.61(042) 0.38(0.24) [100] | -0.02(0.60) [99] 0.0(0.64) (99]
3 SNV test markers | _Originals 0.5 (0.08) 0.04(0.06) 048 (033) 015 (0.17) 0.64(0.34) 0.57(020)[(12] | -0.04(0.41) [100] | 0.55(0.33) (100]
Replicates 036(0.16) 019(0.25) 038(035) 038(0.35) 0.59(0.39) 038(0.17) [6] 0.0(0.56) [100] 0.0(063) [100]

Supplementary Table 3: Overview of trait-model parameter estimates obtained from JLA MOD score analyses. Values are reported for the null hypothesis of linkage and association (H; ) and trait model TM2. Values in
square brackets indicate the percentage (rounded to the nearest integer) of defined values for Cramér's V and the ratios D and I.
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Abstract

Background/Aims: Theoretically, the trait-model parame-
ters (disease allele frequency and penetrance function) can
be estimated without bias in a MOD score linkage analysis.
We aimed to practically evaluate the MOD score approach
regarding its ability to provide unbiased trait-model param-
eters for various pedigree-type and trait-model scenarios.
We further investigated the ability of the MOD score ap-
proach to detect imprinting using affected sib pairs (ASPs)
and affected half-sib pairs (AHSPs) when all parental geno-
types are missing. Methods: Simulated pedigree data were
analyzed using the GENEHUNTER-MODSCORE software
package. Parameter estimation performance in terms of bias
and variability was evaluated with regard to trait-model type
and pedigree complexity. Results: Generally, parameters
were estimated with lower bias and variability with increas-
ing pedigree complexity, especially for recessive and over-
dominant models. However, dominant and additive models
could hardly be distinguished even when using 3-genera-

tion pedigrees. Imprinting could clearly be detected for mix-
tures of mainly ASPs and only few AHSPs with the common
parent of the imprinted sex, even though no parental geno-
types were available. Conclusion: Our results provide guid-
ance to researchers regarding the possibility to estimate
trait-model parameters by a MOD score analysis, including
the degree of imprinting, with certain types of pedigrees.

© 2017 The Author(s)
Published by S. Karger AG, Basel

Introduction

Trait Inheritance and Pedigree Analysis

The inheritance of a trait is defined as the mechanism
by which the joint phenotypic distribution of the particu-
lar trait in pedigree members can explicitly be described
[1]. A pedigree can be considered as a discrete unit of a
population for which the relationship connecting any
pair of pedigree members is unambiguously known.
There is hence no other individual for which a relation-
ship to any of these pedigree members can be established.
Under the assumption that pedigrees implicitly contain
information about details of the mode of inheritance of a
trait through the covariation and cosegregation of the
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trait characteristics among its members, collecting and
analyzing samples of pedigrees can be used to study the
trait inheritance. In genetics, inference about trait inheri-
tance by pedigree analysis is made assuming that the main
factors underlying the inheritance are genes. Mathemat-
ical-genetic models can then be used to describe the trait
inheritance, and these models are tested using pedigree
samples drawn from the population.

If the genetic model of trait inheritance is inferred on
the basis of the pedigree sample, which contains the neces-
sary information through the joint phenotypic cosegrega-
tion in the pedigree members, such an analysis is called
“segregation analysis” [1]. If the purpose of the analysis is
to map the putative disease gene(s), whose existence may
have been previously established by segregation analysis
to specific chromosomal segments by investigation of
cosegregation of DNA marker alleles and the trait pheno-
type, such an analysis is called “linkage analysis” [1]. Now-
adays, pure segregation analysis is of less practical impor-
tance than it has been a few decades ago. With increasing
availability of DNA marker maps and rapid and cost-ef-
fective DNA genotyping techniques, linkage analysis has
become the state-of-the-art technique of pedigree analy-
sis. In addition, association analysis can be performed
with pedigrees as well as samples of unrelated individuals.
However, software packages for segregation analysis like
PAP [2],S.A.G.E. [3],and MORGAN [4, 5] continue to be
available and provide great flexibility with respect to fit-
ting the model for the mode of inheritance (see also e.g.
Kriszt etal. [6] for a recent publication using complex seg-
regation analysis with keratoconus pedigrees).

Linkage Analysis

In earlier times, linkage analysis has been used to map
genes that were already known to exist. In the meantime,
linkage analysis serves 2 purposes: (1) to prove the exis-
tence of a disease gene and (2) to map it [7]. Linkage anal-
ysis methods can be distinguished as model-based or
model-free [8]. The former is also known as parametric
or LOD score linkage analysis for which a certain set of
trait-model parameters regarding the segregation of the
disease is explicitly assumed in the genetic likelihood. The
latter, which is also known as nonparametric linkage
analysis, proceeds without such explicit models. These 2
types of linkage analysis are, however, closely related to
each other. It can be shown that certain nonparametric
and parametric linkage tests are equivalent for any type
of pedigree [9, 10] and can be considered as different ways
to parametrize the allele-sharing probabilities, i.e., the
probabilities of allele(s) shared identical-by-descent
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(IBD) by affected pedigree members, in the genetic likeli-
hood.

Mode of Inheritance and Trait-Model Parameters

A crucial factor in linkage analysis is the true mode of
inheritance. Under the term “mode of inheritance,” 2
concepts are often subsumed that need, however, to be
distinguished. The first concept is the genetic mechanism
of the disease involving the number of loci, the number
of alleles at each locus, and the segregation parameters
including the recombination fraction among the traitloci
as well as between them and any marker(s) [11]. The sec-
ond concept is the genotype-phenotype relation, which is
defined by the penetrance function, i.e., the probability
that an individual with a certain number of copies of the
discase allele is affected by the disease. The genetic mech-
anism of the disease, apart from the recombination frac-
tion, is assumed to be known for linkage analysis. In the
case of a binary trait governed by a single diallelic autoso-
mal locus, which is assumed throughout this paper, the
disease allele frequency p and the 3 penetrances fo, f;, and
o, with f; denoting the probability that an individual with
i copies of the disease allele is affected by the disease, can
be subsumed under the term “trait-model parameters.”
In the case of parametric linkage analysis, trait-model pa-
rameters can either be prespecified according to results
from previous segregation analyses or maximized along
with the recombination fraction in a joint segregation and
linkage (JSL) analysis. A specific type of this approach is
the MOD score analysis, which was first proposed by
Risch [12]. If the genetic mechanism of the trait is not
modelled correctly, however, which is expected in prac-
tice due to the large number of possible inheritance
modes, parameter estimates obtained from a MOD score
analysis will be asymptotically biased [11, 13].

Likelihood and Sample Space

In pedigree analysis, the likelihood given a particular
sample of pedigrees can be defined as the probability to
observe the data available for the individuals in the pedi-
gree, constructed under a certain genetic model. In fact,
any formulation that is proportional to this probability
can be used as the likelihood. The pedigree samples used
for pedigree analysis are collected from what is called the
“real” population that is defined on the basis of usually
unknown factors like the population’s origin and history.
This real population is mapped into a set of disjoint ped-
igrees by the use of those relationships between members
of the real population that can unambiguously be estab-
lished [1]. These disjoint pedigrees are then further deter-
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mined by the predefined sampling design, which parti-
tions the pedigrees into substructures of certain inheri-
tance relations, e.g., sibships with all other relationships
outside sibships being ignored. The resulting structures
are called “true pedigrees.” As described in Ginsburg et
al. [1], pedigree analysis is performed on sampled pedi-
grees collected from the set of true pedigrees. The subset
of pedigrees that in principle can be sampled according
to the sampling design is called the “sample space.” The
sampling procedure involves the pedigree ascertainment
(primary selection), the intrafamilial extension (inclusion
of additional relatives), and the selective inclusion in the
analysis (censoring).

In the following, we will assume that ascertainment
takes place through probands. For each true pedigree,
there are members who could “potentially” become pro-
bands due to prespecified proband characteristics, e.g.,
geographic area, age, sex, but independently of their phe-
notypes. This subset of potential probands in the true
pedigree, including both their relationships and pheno-
types, is called the “proband sampling frame” (PSF, [14]).
It can be shown that assuming the wrong mode of inher-
itance and/or the wrong model for the sampling proce-
dure leads to asymptotically biased trait-model parame-
ters and nuisance parameters of the sampling model
when performing maximum likelihood estimation [15].
In order to obtain unbiased parameter estimates, the ped-
igree likelihood is defined as the probability of the par-
ticular pedigree data having been sampled (ascertained,
extended, and included in the analysis) on the sample
space generated by the sampling procedure under the giv-
en mode of inheritance [1]. The sample space for the giv-
en sampling procedure is the probability that at least 1
pedigree is sampled from the set of true pedigrees [1]. In
this general form, however, the pedigree likelihood can-
not be calculated using only the sampled data [1]. This
would demand knowledge about the distribution of pos-
sible PSFs to calculate the sample space on which the like-
lihood is defined. Therefore, pedigree likelihoods are
conditioned on specific parts of the sampled data to cir-
cumvent this problem and - by the same token - to retain
unbiasedness of parameter estimates. In the following
sections, pedigree likelihoods, which are conditioned on
specific parts of the sampled data, are briefly introduced
in the context of JSL analysis.

Sampling Model-Based Likelihood

As was explained in the previous section, the pedigree
likelihood provides consistent estimates of the trait-mod-
el parameters if it is conditioned on the pedigree having

Estimation of Trait-Model Parameters in
a MOD Score Linkage Analysis

been sampled, i.e., ascertained, extended, and included in
the sample under analysis [16]. This also holds true for
JSL analysis. In parametric JSL analysis, which is the main
focus of this paper, the likelihood is formulated using the
trait-model parameters, i.e., the disease allele frequency p
and the penetrances fy, f}, and f;, as well as the marker al-
lele frequencies and the recombination fractions — and, if
applicable, linkage disequilibria (LD) between loci. These
parameters can be subsumed under the term “joint trait-
marker inheritance parameters” [16]. In addition, infor-
mation about the following aspects must also be included
in the likelihood: (1) the whole PSF structure and its pop-
ulation distribution, which is relevant for ascertainment,
(2) the pedigree extension procedure, and (3) the condi-
tions relevant to inclusion, which could be specific mark-
er genotypes of certain pedigree members. Since the pop-
ulation distribution of the PSF structure is unknown, the
pedigree likelihood can be conditioned on the substruc-
ture of the pedigree that is “relevant to sampling” (RS), in
order to make the likelihood calculable and to properly
take the sampling procedure into account. The structure
RS corresponds to all PSF members of the true pedigree
under study - i.e., the part of the pedigree “relevant to as-
certainment” (RA) - and those pedigree members re-
sponsible for the inclusion of the pedigree in the sample.
Importantly, the likelihood is only conditioned on the
structure RS but not on the phenotypes of the corre-
sponding pedigree members. Since the likelihood in-
cludes explicit details of the sampling procedure, it is
termed “sampling model-based (SMB) likelihood” [16].
The SMB likelihood provides asymptotically unbiased es-
timates of all joint trait-marker inheritance parameters,
including the mode of inheritance, as well as of the pa-
rameters determining the ascertainment, extension, and
inclusion procedure [1].

Sampling Model-Free Likelihood

A sampling model-free (SMF) likelihood can be for-
mulated using a more robust procedure initially proposed
by Ewens and Shute [17] in the context of segregation
analysis, in which uncertainties about the ascertainment
procedure are controlled by conditioning the likelihood
on that part of the pedigree data RA. The latter approach
is called “ascertainment assumption-free” (AAF) and can
readily be extended to be SMF, if the likelihood is also
conditioned on that part of the data RS [16]. The part of
the data RS is the data RA and that part of the data rele-
vant to inclusion, which could be, e.g., certain parental
marker genotypes. In contrast to the SMB likelihood,
which is conditioned only on the structure RS, the SMF
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likelihood is conditioned on the data RS, i.e., structure as
well as marker and trait values RS. This SMF likelihood
provides asymptotically unbiased estimates of all joint
trait-marker inheritance parameters, including the mode
of inheritance, as well as of the extension parameter [1].

Likelihood in a MOD Score Analysis

The question arises which kind of likelihood underlies
a JSL analysis using the MOD score, and if it is in prin-
ciple possible to obtain unbiased parameters from this
procedure. As shown by Clerget-Darpoux et al. [18] and
later also by Elston [11], maximizing the LOD score in the
context of a MOD score analysis is equivalent to maxi-
mizing the likelihood of the marker data, conditional on
the pedigree structure and conditional on all the trait
data, i.e., not only on that part RS. This conditional like-
lihood - from now on referred to as “MOD score likeli-
hood” - does not depend on the ascertainment scheme,
provided that the sampling of pedigrees is independent of
marker data. Hence, this means that selective inclusion of
pedigrees based on marker genotypes (i.e., marker-de-
pendent sampling) is not controlled in the MOD score
likelihood, because it does not contain the inclusion pa-
rameter. As a consequence, the MOD score will yield bi-
ased estimates of the joint trait-marker inheritance pa-
rameters if there is association between disease and mark-
er alleles (LD > 0), because ascertainment is no longer
marker-independent in that case [19].

The following conditions must be satistied to obtain
unbiased estimates of the joint trait-marker inheritance
parameters from a MOD score analysis [1, 19]: (i) the
marker locus must be truly linked to the trait locus, (ii)
the genetic mechanism of the trait (number of loci and
number of alleles at each locus) is known, (iii) sampling
is marker-independent, (iv) the model for the pedigree
extension procedure is known, and either (v) trait values
are available for all members of the PSF, which has to be
completely known, or (vi) the ascertainment is proband-
independent (PI) or single in the sense described by
Hodge and Vieland [20], i.e., all pedigrees have equal
probabilities of being ascertained, independent of pedi-
gree size or structure, or (vii) the joint probability of the
unobserved trait phenotypes of the members of the PSF,
conditional on the trait and marker phenotypes of all the
observed pedigree members, does not depend on the
marker phenotypes. Condition (v) reflects that the MOD
score likelihood can be derived from the SMB likelihood
by conditioning the latter on the trait values of all indi-
viduals, including all PSF members, in addition to the
structure RS. Condition (vi) is due to the fact that the
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MOD score likelihood does not include an ascertainment
parameter as opposed to the SMB likelihood, which con-
tains such a parameter. The probability of ascertainment,
however, actually depends on the joint trait-marker in-
heritance parameters, if sampling is not PI or single [21].
Only with PI or single ascertainment, the probability of
ascertainment no longer depends on these parameters
and can, therefore, be omitted in the likelihood without
influencing the estimates of the parameters [1]. Without
specifying details of the sampling procedure, parameter
estimates are also consistent when missing trait values of
the PSF members do not depend on marker phenotypes
(condition [vii]). However, this only holds in the case of
no LD and no linkage between trait and marker locus, or
if the trait phenotype unambiguously defines the trait
genotype [19].

The MOD score likelihood differs from the SMF likeli-
hood by the fact that it is conditioned on all trait values
(i.e., not only of the PSF members) in addition to the data
RS, and that it assumes PI or single ascertainment as well
as marker-independent sampling, rather than specifying
some value for the ascertainment probability in the likeli-
hood. This is why the MOD score likelihood can be con-
sidered to be somewhere between SMB and SMF. If sam-
pling is marker-independent, but conditions (i), (ii), and
(iv) are not simultaneously satisfied, parameter estimates
obtained from MOD score analyses will be biased. If con-
ditions (i)-(iv) hold, but neither condition (v), (vi), nor
(vii) is met, the estimate of the recombination frequency
will only slightly be biased [1]. In this case, it is of note
that estimates of the recombination fraction are biased
even when trait-model parameters are fixed at their true
values [22].

Summary of Conditions to Obtain Unbiased
Parameter Estimates from a MOD Score Analysis
The pedigree likelihood of the MOD score approach
delivers asymptotically unbiased estimates of the joint
trait-marker inheritance parameters (recombination
fraction, allele frequency, and penetrances, but not the
LD parameter), if the following conditions are satistied
(see also Malkin and Elston [19]):
i The marker is truly linked.
AND
ii The genetic mechanism of the trait (number of loci
and number of alleles at each locus) is known.
AND
iii Sampling (ascertainment, extension, inclusion) of
pedigrees is independent from marker data.
AND
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iv The model of extension is known.
AND

At least 1 of the following 3 conditions is satisfied:

v All members of the pedigree PSF must have measured
trait values (if not sampled, information on trait values
can be gathered using a questionnaire as proposed by
Ginsburg et al. [16]).

OR

vi The ascertainment procedure is PI or single in the
sense of Hodge and Vieland [20].

OR

vii The joint probability of the unobserved trait pheno-
types of the members of the PSF, conditional on the trait
and marker phenotypes of all the observed pedigree
members, does not depend on the marker phenotypes.
Hence, unbiased estimates of the joint trait-marker

inheritance parameters can in principle be obtained

without explicitly formulating the ascertainment and in-
clusion procedures. It should further be noted that the
likelihood correction in a MOD score analysis directly
follows from the AAF method proposed in Ewens and

Shute [17]. Whereas conditions (i)—(iii) are crucial, con-

ditions (v)-(vii) may be of minor impact on the bias of

parameter estimates in practice [20, 23]. With respect to
condition (v), if members of the pedigree PSF are not

sampled and trait values cannot be gathered using a

questionnaire, an approximate likelihood using the sam-

ple mean of the trait value can be constructed [1]. Condi-
tion (iv) could be satisfied as follows. P sampling implies
that fixed pedigree structures are sampled, which renders

a specification of the extension parameter pointless.

With single ascertainment, the pedigree extension mod-

el could be chosen to be trait-independent, such that any

initially sampled subpedigree is further extended using
all available relatives, regardless of their phenotypes and
with a random, trait-independent stopping rule. If this
holds true, an extension parameter does not have to be
formulated in the likelihood. Despite being hard to
achieve in practice, conditions (iv)-(vii) can in theory be
fulfilled. If not, the resulting bias in parameter estimates
is argued to be small [20], but numerical quantification
of the bias of the joint trait-marker inheritance parame-
ters obtained from a MOD score analysis under many
different sampling schemes is not available so far. This
would demand an extensive simulation study to prove
that the MOD score approach is robust with regard to its
ability to estimate parameters, even if some necessary as-
sumptions do not hold. Even if all necessary conditions
are satisfied, a bias of maximum likelihood estimates can
nevertheless occur for finite sample sizes. In addition,

Estimation of Trait-Model Parameters in
a MOD Score Linkage Analysis

variances of the obtained estimates are expected to be
rather large using the MOD score likelihood due to a loss
of pedigree information by conditioning not only on the
pedigree structure but also on the trait data of all indi-
viduals [24].

The focus of the present paper is the proof-of-principle
of the ability of a MOD score analysis to obtain asymptoti-
cally unbiased joint trait-marker inheritance parameters in
practice, given that conditions (i)-(iv) and at least one of
(v)—(vii) are satisfied. In particular, the identifiability (see
also next section) of these parameters using various pedi-
gree types and realistic sample sizes will be investigated.

Identifiability of Inheritance Parameters

Even if the conditions under which the MOD score
provides unbiased estimates of the joint trait-marker in-
heritance parameters are fulfilled, the identifiability of
these parameters is restricted by the type(s) of pedigrees
in a given sample. In a model-based linkage analysis, such
as a MOD score analysis, the penetrances, disease allele
frequency, and the recombination fraction represent a re-
parametrization of the truly underlying allele-sharing
classes [9, 10, 25, 26]. In other words, allele-sharing prob-
abilities (classes) of a given pedigree type can be expressed
in terms of the joint trait-marker inheritance parameters.
In the case of an affected sib pair (ASP), these allele-shar-
ing classes are 2, z;, and z, that an ASP shares 0, 1, or 2
allele(s) IBD with restrictions to genetically possible
models [27]. With z, = 1 - z; - z; and restrictions z; < 0.5
and 2xzj < z), the allele-sharing classes of ASPs form a
2-dimensional parameter space — the so-called “possible
triangle” [27]. Hence, as there are only 3 - 1 = 2 free pa-
rameters that can be estimated from ASP data, there will
be many sets of fy, f1, f2, p, and the recombination fraction
0 that correspond to the estimated 2y, 2, and Z,. With
larger pedigrees, and hence more allele-sharing classes,
the degree to which the trait-model parameters can be
correctly determined should be higher. However, the cor-
responding allele-sharing configurations have hitherto
only been formulated for unilineal, affected relative pairs
(e.g., affected half-sib pairs [AHSPs] [10]), ASPs [27], and
affected sib triplets (ASTs) [28]. The parameter space for
AHSPs is degenerated to a single line [10]. Hence, many
different sets of trait-model parameters correspond to the
same point on this so-called “possible line.”

Using the formulas in Knapp [28], it is possible to draw
the 3-dimensional parameter space for ASTs with empiri-
cally assessed restrictions for genetically possible models
(Fig. 1). However, the parameter restrictions have not been
derived in closed form so far. The parameter spaces for
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larger pedigrees involve a larger number of dimensions,
and the corresponding restrictions for genetically possible
models are expected to have an even more complicated
form [10, 28]. It is of note that for any type of affecteds-
only analysis, the absolute values of penetrances cannot be
determined, because multiplication of all penetrances by
the same factor does not change the result. However, their
ratios are not defined if the penetrance in the denominator

of the ratio is estimated to be 0. Additionally, the ratio is
subject to the estimation variance of both the penetrance
in the numerator and in the denominator.

Imprinting

Genomic imprinting implies dependence of an indi-
vidual’s liability to develop a disease on the parental ori-
gin of the mutated allele(s), leads to a deviation from the
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classic Mendelian assumption of equal contribution of
parental genomes to the progeny and is, therefore, called
a “parent-of-origin effect” [29]. In the context of a para-
metric linkage analysis, imprinting can be modelled using
a 4-penetrance formulation distinguishing the heterozy-
gotes according to the parental origin of the disease allele:
f= (fo fipas fuman f2), as implemented in the program
GENEHUNTER-MODSCORE (GHM) [25, 30-32],
which is a further development of GENEHUNTER-IM-
PRINTING [33]. In the nonparametric context, the al-
lele-sharing class z; of an ASP is split up into z; ,, and
Z) mar according to the parental origin of the shared allele.
The corresponding parameter space of ASPs, hence, ex-
tends to a 3-dimensional tetrahedron which accounts for
disease models with z; , # 21 jyap i.€., for imprinting [34].
In the case of AHSPs, the allele-sharing class z; is distin-
guished as either being z; y; OF 21 mar depending on the
sex of the common parent, i.e., male or female, respec-
tively. Although the information contained in AHSPs on
all trait-model parameters is limited, the information for
imprinting may be high, such that parameter estimates
for fi par and fi ynar using a sample of AHSPs having a com-
mon father and of AHSPs having a common mother
should indicate imprinting if it was really present. In the
case of an informative marker, this even holds if parental
genotypes are missing.

Fig. 1. Graphical depiction of the allele-sharing parameter space
for affected sib triplets (ASTs). The axes notations are defined as
follows (see also Knapp [28]). Axis z1: allele-sharing class z; with
range {0; 3/14}. Axis z2: z, with range {0; 0.75}. Axis z3: z; with
range{0; 1}. The panels top and at the left correspond to “top view.”
The boundary of the parameter space, which is defined by the ge-
netically possible models, was empirically determined by varying
the trait-model parameters {f;, fi, f», p} in the formulas given in

In contrast, imprinting information contained in ASPs
with untyped parents is 0, even in the case of a fully infor-
mative marker, because alleles shared IBD through the
father cannot be distinguished from those shared IBD
through the mother. However, we hypothesize that
the information on linkage and imprinting gained from
AHSPs can be combined with the pure linkage informa-
tion contained in ASPs in the analysis to compensate for
missing parental marker genotypes. If there is sufficient
evidence for linkage, this pedigree scenario should lead to
trait-model parameter estimates reflecting at least some
degree of imprinting. Using GHM, imprinting can be
quantified by looking at the imprinting index I [35], cal-
culated from the estimated penetrances. The imprinting
index equals the difference between the 2 heterozygote
penetrances, normalized by the difference of the homo-
zygote penetrances in order to properly take the case of a
non-0 phenocopy rate or reduced penetrance into ac-
count:

.fl,pm‘ - fl,mm

I =——

fz_fu

An imprinting index of I = 1, therefore, indicates com-
plete maternal imprinting (cmi), whereas I = -1 indicates
complete paternal imprinting (cpi). If penetrances are not
restricted to fy < f; <f, in the analysis, the penetrances f, 4

Knapp [28]. p, disease allele frequency; f;, penetrances, with f; de-
noting the probability that an individual with i copies of the disease
allele is affected by the disease. Light green, dark green, and black
lines were drawn by varying p between 0 and 1. For more details,
see table below. Figures were drawn using rgl: 3D Visualization
Using OpenGL, R package version 0.95.1441 (2016) by Adler,
Murdoch, and others.

Boundary region
Specific point

Trait model type

Light green “protruding” region
Dark green “bottom” region
Black “top” region

Yellow plane (reached from the “top”) fE< fafsfoh > fi2
Yellow plane (reached from the “bottom”)  £;2> fufs; fofs > fi2
Large black sphere

Large blue sphere

Large violet sphere
Large green sphere

h>foforfi<fofsfo#fo
h>fizfoorfo> h>fufi*>fifs foor =0
fE<fifs0<f i< i=0

Hy (21, 22, z3) = (0.1875, 0.375, 0.1875)

(0, 0.75, 0.25) genetically strongest additive/dominant model
(0, 0, 1) genetically strongest recessive model

(3/14, 3/7, 1/7) genetically strongest overdominant model

Violet spheres Recessive models R3, with p = 0.01 closer to Hy
Blue spheres Additive models A3, with p = 0.1 closer to Hy
Red spheres Dominant models D3, with p = 0.1 closer to H,

Green spheres

Overdominant models U3, with p = 0.01 near the red sphere, and U4 near the green sphere
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and fj ;e can, therefore, be estimated to be <fy and >f,.
Thus, the imprinting index may exceed 1 or fall below -1.
In the case of f, = f,, the imprinting index is defined to be
0. In a work by Haghighi and Hodge [36], it was shown
that asymptotically unbiased estimates of parent-of-ori-
gin effects can be obtained using a likelihood formulation
for segregation analysis without including an ascertain-
ment parameter when ascertainment is single. The same
should hold true for the method by Strauch et al. [33] ap-
plied in this paper in the context of parametric linkage
analysis according to the arguments given by Ginsburg et
al. [1] and Malkin and Elston [19], provided that the for-
mulation with 4 penetrances correctly reflects the genetic
mechanism of genomic imprinting.

Aims of the Present Study

The aim of the present study was to evaluate how ac-
curately penetrances, or penetrance ratios in the case of
affecteds-only analyses, and the disease allele frequency of
a monogenic, dichotomous trait can be estimated in a
MOD score analysis. To this end, we performed a simula-
tion study to determine the bias and variability of trait-
model parameter estimation for 6 pedigree types (AHSP,
ASP, AST, discordant sib triplets [DST], discordant sib
quadruplets [DSQ], and 3-generation [3-G] pedigrees)
and 4 types of generic models (recessive, dominant, addi-
tive, and overdominant) as well as an imprinting model.
A single marker locus linked with 8 = 0 to the disease locus
was considered. It is of note that we did not consider the
estimation of the recombination fraction 8 or any LD pa-
rameter in our analysis. That is because the primary focus
of this paper is on the estimation of trait-model parame-
ters, which do not include the recombination fraction.
However, the recombination fraction is confounded with
the trait-model parameters, especially for smaller pedigree
types, like the ones considered in our study, having only a
limited number of allele-sharing classes (see also “Identifi-
ability of Inheritance Parameters” above). In addition, LD
parameters cannot be estimated using GHM so far.

We avoided the problem of an additional bias due to a
possible misspecification of the sampling model for the
likelihood correction. This was done by designing the
simulation study in a way that conditions (i)-(iv) and (vi)
mentioned above to obtain asymptotically unbiased pa-
rameter estimates from a MOD score analysis were satis-
fied as follows (note that only one of conditions [v]-[vii]
needs to be fulfilled):

i The marker was truly linked (6 = 0).
ii A diallelic autosomal binary trait locus, which is usu-
ally assumed as the mode of inheritance in a MOD

110 Hum Hered 2016;82:103-139
DOI: 10.1159/000479738

score analysis, was used for the simulation of pedigree
data.

iii Sampling of pedigrees was marker-independent.

iv Extension of pedigrees was trait-independent.

v -

vi Ascertainment was single in the sense of Hodge and

Vieland [20].

Vvii -

Hence, the questions we aimed to answer in our study
were:

1. For each pedigree type, can the MOD score ap-
proach differentiate between the trait-model types? That
is, are, for example, recessive models recognized as being
recessive, irrespective of the accuracy of the individual
parameter estimates?

2. How does the estimation accuracy change from ASP
to AST, i.e., when adding an affected sibling?

3. How does the estimation differ between an analysis
using only affecteds vs. both affecteds and unaffecteds?

4. How does the estimation accuracy change from DST
to DSQ, i.e., when adding a second unaffected sibling?

5. How does the estimation accuracy change when
more complex pedigrees are considered?

6. How well can imprinting be detected and estimated
in a sample of AHSPs and in a mixture sample of AHSPs
and ASPs when parental genotypes are missing?

The answers to these questions are summarized in the
Results section.

Methods

Nomenclature

Parameters written in capital letters (P, D, Fo, Frpats Fimar F1s
F,, I) denote theoretical parameters and the parameters that were
used for simulation (“true” parameters). Lowercase letters (p, d, fy,
Sipav fiman f1, fo» 1) denote the parameters that were estimated from
simulated data.

Data Generation

The 5 pedigree types shown in Figure 2 (top and middle row)
were chosen for the simulations. We used a sample size of 500
families for each pedigree type to ensure sufficient power to detect
linkage while maintaining reasonable computation times. For cer-
tain trait-model scenarios, we performed additional analyses with
asample size of 1,000 families to assess the degree by which param-
eter estimates are biased due to finite sample sizes. Disease and
marker locus genotypes were simulated using FastSLINK [37-39].
For each pedigree-type-trait-model scenario, we simulated 1,000
replicates. Affection statuses were assumed to be unknown for all
founders. Nonfounders were either affected or unaffected (Fig. 2).

Recessive, additive, dominant, and overdominant trait models
were considered in the simulations. An overview of the simulated
trait models is given in Table 1. Trait models were named accord-

Brugger/Rospleszcz/Strauch
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DsQ

Fig. 2. Pedigree types used for the simula-
tions. ASP, affected sib pair; AST, affected 1
sib triplet; DST, discordant sib triplet;
DSQ, discordant sib quadruplet; 3-G,
three-generation pedigree; AHSP 1, affect-
ed half-sib pair with common father; AHSP
2, affected half-sib pair with common
mother; ?, unknown phenotype; filled sym-
bols, affected; empty symbols, unaffected.

ing to their generic type, i.e., “R” for a recessive model, “D” for a
dominant model, “A” for an additive model, and “U” for an over-
dominant model. For each of the 4 generic types, 3 trait models
with a particular combination of penetrances were simulated
(trait-model names 1-3; Table 1). The setup of the trait-model
parameters was inspired by Xing and Elston [40]. Each of the 3
trait models was simulated with a disease allele frequency P = 0.1
or 0.01. For the lower disease allele frequency P = 0.01, an addi-
tional trait model was simulated with a sample size of 1,000 fami-
lies per replicate for each of the 4 generic types (Table 1). This
amounts to 28 simulated scenarios. Furthermore, an overdomi-
nant model with a different combination of penetrances was sim-
ulated (model U4). For the recessive, dominant, and additive trait
models, 2 further models similar to those in Flaquer and Strauch
[41] were considered (models preceded by “AF” in Table 1). One
of these models was simulated with sample sizes 500 and 1,000,
whereas the other model was simulated with sample size 500 only.
The total number of simulated scenarios, therefore, amounts
to 38.

We furthermore analyzed AHSP and ASP pedigrees under a
model of cpi or cmi. Differing from the scenarios in Table 1, sam-
ples contained a mixture of 2 pedigree types. Three scenarios were

Estimation of Trait-Model Parameters in
a MOD Score Linkage Analysis

considered. In the first scenario, each replicate simulated under the
cpi model contained 100 AHSPs who had a common father and
100 AHSPs who had a common mother (Fig. 2, bottom row). In
the second scenario, each replicate simulated under the cpi model
contained 100 AHSPs who had a common mother and 100 ASPs
(Fig. 2, bottom row). In the third scenario, 20 AHSPs who had a
common mother and 180 ASPs were simulated under the cmi
model. Again, 1,000 replicates were simulated for each scenario
(see Table 2 for an overview of the imprinting simulations). Im-
printing was simulated using the SLINK extension SLINK Im-
printing [42].

For the imprinting model, all founder genotypes were removed
after data generation. The rationale behind this approach is the
following: if the founder genotypes of AHSPs and ASPs are un-
known, information about imprinting can only be inferred from
AHSPs, with ASPs contributing only information about linkage.
As areference for comparison, a corresponding no imprinting (ni)
model was considered.

Data Analysis
We used GHM version 3.1 [25] for MOD score calculation and
trait-model parameter estimation. In particular, we used the GHM
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Table 1. Overview of the simulated scenarios using trait models of the generic types “recessive,” “dominant,” “additive,” and “overdom-

inant”

Model type Name 2 Fy F F, Sample size
Recessive R1 0.01;0.1 0.01 0.01 0.2 500 and 1,000; 500
R2 0.01;0.1 0.01 0.01 0.5 500
R3 0.01; 0.1 0.01 0.01 0.8 500
AFR1 0.2 0.04 0.04 0.2 500 and 1,000
AFR2 0.25 0.003 0.05 0.5 500
Dominant D1 0.01; 0.1 0.01 0.2 0.2 500 and 1,000; 500
D2 0.01; 0.1 0.01 0.5 0.5 500
D3 0.01;0.1 0.01 0.8 0.8 500
AFD1 0.05 0.04 0.2 0.2 500 and 1,000
AFD2 0.25 0.003 0.5 0.5 500
Additive Al 0.01; 0.1 0.01 0.1 0.2 500 and 1,000; 500
A2 0.01;0.1 0.01 0.2 0.5 500
A3 0.01;0.1 0.01 0.5 0.8 500
AFAL 0.1 0.03 0.13 023 500 and 1,000
AFA2 0.5 0.003 0.25 0.5 500
Overdominant Ul 0.01; 0.1 0.01 0.2 0.01 500
U2 0.01; 0.1 0.01 0.5 0.01 500
U3 0.01; 0.1 0.01 0.8 0.01 500 and 1,000; 500
U4 0.35 0.01 0.9 0.01 500

P, disease allele frequency; Fy, Fy, F>, penetrances with F; denoting the probability that an individual with i copies of the disease allele
is affected by the disease.

Table 2. Overview of simulated trait models with imprinting and corresponding no imprinting model

Pedigree structure Model name P F, F\ pat B et F,
Model with 1. 100 AHSPs with a common father + cpi 0.01 0 0 1 1
imprinting 100 AHSPs with a common mother
2.100 AHSPs with a common mother +  ¢cpi 0.01 0 0 1 1
100 ASPs
3.20 AHSPs with a common mother +  cmi 0.01 0 1 0 1
180 ASPs
Comparison Al structures ni 0.01 0 0.5 0.5 1

model

AHSP, affected half-sib pair; ASP, affected sib pair; P, disease allele frequency; Fy, F, F,, penetrances with F; denoting the probabil-
ity that an individual with i copies of the disease allele is affected by the disease; Fy pas, Fy imar heterozygote penetrances distinguished by
the parental origin of the disease allele (pat: paternally inherited, mat. maternally inherited); cpi, complete paternal imprinting; cmi,
complete maternal imprinting; ni, no imprinting.
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options “modcalc single,” “penetrance restriction off,” “allfreq re-
striction off,” “maximization dense,” and “dimensions 4” or “di-
mensions 5 for ni models and imprinting models, respectively.
“modcalc single” enables a separate maximization for each genetic
position. “penetrance restriction off” allows for over- and under-
dominant models, i.e., allows heterozygote penetrance(s) to be
varied freely between 0 and 1 during the maximization. This also
affects the dominance index, which is defined as
D= Fl.pm +E.mm‘ 7Fo 2
E —F '

2 0

D =1 indicates a fully dominant model, whereas D = -1 indicates
a fully recessive model. However, if the penetrances are not re-
stricted to Fy < F) < F,, the dominance index may also exceed 1 or
fall below -1. Note that the dominance index is defined to be 0 for
models with F, = Fy, i.e,, strictly overdominant or strictly under-
dominant models. “allfreq restriction off” allows the disease allele
frequency to be estimated >0.5. “maximization dense” indicates
that the MOD score is calculated for a greater number of pre-
defined models before the fine maximization than in the standard
setting. “dimensions 4” or “dimensions 5” allows all parameters
(disease allele frequency plus 3 penetrances in the case of ni mod-
els or disease allele frequency plus 4 penetrances in the case of im-
printing models) to be varied simultaneously in the maximization.
For the models with imprinting, we ran 2 analyses. For the first,
“imprinting” was set to “off” and “dimensions” to “4,” and for the
second, they were set to “on” and “5,” to obtain ni and imprinting
MOD scores, respectively. Estimates of trait-model parameters
were obtained from the model yielding the highest MOD score in
the analysis.

Results

Estimated values of the trait-model parameters of each
simulation scenario are reported as medians based on
1,000 replicates. Sometimes, penetrances of a given repli-
cate were estimated to be exactly 0, rendering penetrance
ratios undetermined. In this case, penetrance ratios were
either set to a very large number (10°) or to 1, in case both
the numerator and the denominator of the penetrance
ratio were 0. Hence, no information for the estimation of
the median was lost. To facilitate the comparison of the
quality of estimation across pedigree types, we construct-
ed graphics that display all 5 pedigree types using various
trait models. Bias was defined as the deviation of the me-
dian estimate of a parameter from its expected value. The
corresponding measure of variability is the median abso-
lute deviation (MAD). In general, a good estimation
shows both small bias and MAD (high efficiency). Impact
of bias can be considered of minor importance when
MAD is high. In addition to absolute penetrances, the
corresponding evaluation of biasand MAD of penetrance
ratios for ASPs and AST's will be given in a dedicated sec-

Estimation of Trait-Model Parameters in
a MOD Score Linkage Analysis

tion. MOD scores for each model and pedigree type are
displayed in Table 3. Parameter estimation result tables
for each model and pedigree type can be found in the Ap-
pendix.

Recessive Models

The parameter estimation results for recessive models
can be found in Figure 3 and Appendix Tables A1, A5,
and A9. With regard to recessive models, bias and MAD
were often higher for ASPs compared to ASTs (Fig. 3).
This is due to the fact that only 2 out of 4 parameters (3
penetrances and the disease allele frequency) are identifi-
able. With ASTs, 3 out of 4 parameters should be identifi-
able. It is of note that it is impossible in the case of affect-
eds-only analysis to estimate absolute penetrance values;
here, only penetrance ratios, which correspond to geno-
type relative risks, are identifiable in the best case. Con-
sider, for example, the 2 sets of penetrances resulting in
the same MOD score: fy, fi, o = 0.1, 0.5, 1 and fo, fi, o =
1073, 0.005, 0.01, with the first set being more likely to be
evaluated in the analysis due to the predefined trait mod-
els initially tested by GHM before the fine maximization.
Generally, for all types of models (recessive, dominant,
additive, and overdominant), higher MOD scores were
obtained for ASTs compared to ASPs.

With ASPs, most recessive models were recognized as
such, indicated by a median dominance index d < 0. Only
R1, a model with an extremely reduced penetrance, was
estimated as being additive (median d = 0) for P = 0.01.
This is due to the fact that affected persons are more like-
ly to be phenocopies in the context of a strongly reduced
penetrance and a small disease allele frequency, which re-
duces the amount of allele sharing among affected sib-
lings. An equivalent explanation for this can be found in
Figure 4, which shows the projection of the estimated
trait-model parameters for ASP pedigrees on the triangu-
lar parameter space as described in the Introduction (sub-
section “Identifiability of Inheritance Parameters”). For
all models, the estimated values scattered around the true
values without systematic deviation. However, the true
value for model R1 with P = 0.01 lies close to the point of
no linkage in the upper right corner of the triangle. In the
proximity of this point, all types of generic models (reces-
sive, dominant, additive, and overdominant) accumulate
and are hard to distinguish from each other.

For ASTs, all recessive models were clearly recognized
as such. Estimation accuracy of the dominance index D
improved from ASPs to AST's for most recessive models.
Intriguingly, ASTs even showed the best parameter esti-
mation performance in terms of small bias and MAD
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Fig. 3. Illustration of bias and variability of the parameter estima-
tion for recessive models using different pedigree types. The trait-
model parameters used for the simulations are given above the
panels for each trait model. Estimations of the individual param-
eters are depicted by five unique symbols. For each parameter, the
median absolute deviation (MAD) and bias, defined as bias = me-

across all investigated pedigrees for models R2 and R3
both with P=0.01 (Fig. 3). This might be explained as fol-
lows: although only penetrance ratios can in theory be
estimated using ASTs, the corresponding set of absolute
values of the penetrances resulting in such high ratios

Estimation of Trait-Model Parameters in
a MOD Score Linkage Analysis

dian (true parameter value - estimated value), are plotted. Pedi-
gree types (for details, see Fig. 2 and its legend) are displayed on
the x-axis with increasing complexity, i.e., ASPs are located on the
very left side and 3-G pedigrees are located on the very right side.
p disease allele frequency; f;, penetrances; d, dominance index.

(Figure continued on next page.)

(F,/Fy: 50 for R2 and 80 for R3) is limited in a maximiza-
tion starting with a fixed grid of genetically plausible val-
ues (the genotype relative risk of model R1 with P = 0.01
obviously was too low to show the aforementioned ef-
fect). Further, despite the small disease allele frequency, a
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low phenocopy rate together with a high penetrance en-
sures enough information for the estimation of F, in rela-
tion to Fy and F, in the context of ASTs. In addition, the
number of degrees of freedom in an AST MOD score
analysis is lower compared to an analysis with pedigrees
containing healthy individuals, which can lead to a high-
er power of an affecteds-only analysis (see also Flaquer
and Strauch [41]) and hence to a more efficient parameter
estimation for some model types (up to a constant factor
multiplied to all penetrances).

With regard to DSTs and DSQs, all models were cor-
rectly classified as being recessive, and the median dom-
inance index was mostly close to its expected value. In
most cases, median estimates of all parameter values
were similar for the 2 pedigree types. When the true dis-
ease allele frequency was small (P = 0.01), it was always
overestimated. When it was large (P = 0.1), it was always
underestimated. Penetrances Fy and F, were estimated
with high accuracy for models R1-R3 with P = 0.1 and
model AFR2. For models R1-R3 with P=0.01, Fyand F,
were overestimated. In the case of model AFR1, F, was
underestimated; however, F; was estimated with good
accuracy. Median estimates of F, were close to their ex-
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pected values for most models, with higher accuracy for
DSQs compared to DSTs. In general, F, could be esti-
mated more accurately for stronger genetic models,
which is the case for the investigated recessive models
with higher penetrance and disease allele frequency.
MOD scores were comparable for DSTs and DSQs (Ta-
ble 3), except for models R2 (F, = 0.5) and R3 (F, = 0.8)
with P = 0.1 as well as model AFR2 (F, = 0.5). This is due
to the fact that an additional healthy individual increases
linkage information only if penetrance and genotype rel-
ative risk are sufficiently high (F, >> Fy, F for a recessive
model).

Using 3-G pedigrees, median estimated dominance in-
dices were all close to their expected values except for
model R1 with P = 0.01. The estimation of the disease al-
lele frequency was accurate for models R2 and R3 both
with P=0.1 and AFR2 with P = 0.25. The median F, and
F) penetrances were estimated with good accuracy for
models R3 with P = 0.1, R2, and AFR2. The homozygous
mutant penetrance F, was estimated with good accuracy
for models R2 with P = 0.1, R3, and AFR2. However, in
all other cases, the estimated median F, was still larger
than the corresponding medians for Fj and F.

Brugger/Rospleszcz/Strauch

95

VZ0Z YoIB Z1 U0 J8sn zuley YeuloNqIgsIeNsIanun Aq Jpd'BEL6LFO00/ZS66062/E0 H/7-E/Z8liPd-Bioe/eYy W00 JeBIBs/:dny WOy pepeojumog



Anhang A:

Paper 1l

R1,P = 0.1/001,001,02 R1,P = 001]0.01,001,02 R1n1000, P = 001j0.01, 0.01, 0.2 R2,P = 0.1/0.01, 001, 0.5 R2,P = 0.01/0.01,001,05
Ho Ho Ho
05
04
03
& &
02
01+
0 0 0
r T T T T 1 | N N R R
0o PSP S e L e P b
RSO RS I
0 Eo) 9 9
R3, P = 0.10.01, 0,01, 08 R3, P = 0,01/0.01,001,08 AFRIN1000, P = 02/0.04,004,02  AFR2, P = 0.25[0.003, 0.05, 0.5
H H H H
_° S 05 #0 05 e
04+ 04+ 04
03 03 03
7 T 5 T
02 02 02
0.1+ 01+ 01+
0- 04 0 0- 0
I T R e e R
R o & o o (R N O o e D
& 8 g P P RSN IR &g P IE RSN IR
£ £ 2 Y 7

Fig. 4. Recessive models: projections of trait-model parameter es-
timates on the possible triangle parameter space of affected sib
pairs (ASPs). The trait-model parameters used for the simulation
are given above the panels for each trait model, and its projection
in terms of allele-sharing is depicted by a red dot. zy, allele-sharing

With regard to DSTs, DSQs, and 3-G pedigrees,
bias was often smaller than MAD across all models,
yet especially large MADs were obtained for penetrance
F, and models R2 and R3 both with P = 0.01 as well as
for AFR1. Values for bias and MAD did not consistent-
ly decrease when moving from DSTs over DSQs to
3-G pedigrees, except for the weak genetic model R1
with P=0.01 and AFR2 (Fig. 3). Better parameter iden-
tifiability when moving from ASTs to DSTs as mea-
sured by a reduction in bias, especially of the F, pene-
trance, could only be observed for models R1 with P =
0.1 and AFR1.

Estimation of Trait-Model Parameters in
a MOD Score Linkage Analysis

probability thatan ASP shares no allele identical-by-descent (IBD);
zy, allele-sharing probability that an ASP shares 1 allele IBD; trait-
model parameters used for the simulation: disease allele frequency
P and penetrances Fy, Fy, F5.

Dominant Models

Parameter estimation results for dominant models are
given in Figure 5 and Appendix Tables A2, A6, and A10.
The estimation of individual parameters for ASPs and
ASTSs was not very accurate, which is in line with the fact
that exact penetrances cannot be estimated for affecteds-
only pedigrees, as explained above. The median domi-
nance index was underestimated for all models, some of
which were even misclassified as being additive. In the
case of ASPs, this can be explained by the proximity of
both model classes in the triangular parameter space
(Fig. 6, 7). In particular, dominant models without phe-
nocopies are represented by the dashed line, whereas ad-
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Fig. 5. Illustration of bias and variability of the parameter estimation for dominant models using different pedi-

gree types. For more details, see Figure 3.

ditive models lie on the upper edge of the triangle. Hence,
models D1-D3 with P = 0.01 and AFDI, which are lo-
cated closest to the upper edge of the triangle, showed a
median estimated dominance index d close to 0, corre-
sponding to an additive model. The estimation of the
dominance index improved when analyzing ASTs instead
of ASPs for most models. The same holds for the disease
allele frequency, albeit to a lesser degree.

118 Hum Hered 2016;82:103-139
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(Figure continued on next page.)

For DSTs and DSQs, many models were misclassified
as rather additive for both pedigree types when looking
at their corresponding dominance indices. Only the me-
dian dominance index d for model D3 with P = 0.1 clear-
ly pointed to dominance (d = 0.81 for DSTs and d = 0.88
for DSQs). Otherwise, median dominance indices for
models D2, D3, and AFD2 were all positive but clearly
below 1 for both pedigree types. Models D1 and AFD1
even showed median d values around 0 and below 0, re-
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spectively. The disease allele frequency was estimated ac-
curately for models D1-D3 with P = 0.1, overestimated
for models D1-D3 with P = 0.01 and the AFD1 model,
and underestimated for the AFD2 model. Estimates of P
were comparable between both pedigree types. Pene-
trance Fy was mostly underestimated for models D1-D3
and AFD1 using both pedigree types. With regard to F),
models D2, D3, and AFD2 showed good accuracy for
both pedigree types, whereas it was underestimated for
models D1 and AFDI. F, was often overestimated. Simi-
lar to recessive models, MOD scores were comparable
between DSTs and DSQs (Table 3), except for models D2
(Fy, F,=0.5), D3 (F,, F, =0.8), and AFD2 (F,, F, =0.5).
As before, this is due to the fact that an additional healthy
individual increases linkage information only if pene-
trance and genotype relative risk are sufficiently high (F,
F, >> F, for a dominant model). Only in this case, pen-
etrance estimation is also improved for DSQs compared
to DSTs.

In the case of 3-G pedigrees, median d values pointed
towards dominance for all models. Median dominance
indices were close to their expected values for models D2

Estimation of Trait-Model Parameters in
a MOD Score Linkage Analysis

and D3 with P = 0.1 as well as model AFD2. Estimates of
the disease allele frequency showed good accuracy for
models D1 with P=0.1, D2, and D3. Estimates for F,were
mostly close to the expected value. Estimates for F; and
F, were very close to their expected values, with the high-
est accuracy for models D2 and D3.

With respect to dominant models, bias and MAD de-
creased when moving from ASPs over ASTs, DSTs, and
DSQs to 3-G pedigrees for models D1, D2, and D3 all with
P =0.1 (Fig. 5). Median bias for F, seemed to be unduly
small for ASPs for model D2 with P = 0.01. This can be
explained by looking at the corresponding parameter dis-
tribution for ASPs (data not shown), which showed that
F, was mostly estimated near 0 (<0.1 in 25.3% of the rep-
licates) or 1 (>0.9 in 36.6% of the replicates). This is also
reflected in the high MAD of F; (Fig. 5). Generally, for all
dominant models, bias and MAD mostly decreased when
moving from affecteds-only pedigrees over DSTs and
DSQs to 3-G pedigrees. Only for model AFDI, the results
were similar across all pedigree types. Bias was mostly
smaller than MAD across all models for DSTs, DSQs, and
3-G pedigrees.
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Fig.6. Dominant models: projections of trait-model parameter estimates on the possible triangle parameter space

of ASPs. For more details, see Figure 4.

Additive Models

Parameter estimation results for additive models are
depicted in Figure 8 and Appendix Tables A3, A7, and
All. For ASPs, the projection of estimated trait-model
parameters on the triangular parameter space, as dis-
played in Figure 7, illustrates that all additive models are
very close to the upper edge of the triangle. Model AFA2,
which has the weakest genetic effect among the investi-
gated additive models, shows the largest distance to strict-
ly dominant models (dashed line in Figure 7) within the
allele-sharing parameter space of ASPs. The median esti-
mated dominance indices d were close to their expected
values for both ASPs and ASTs, except for model A2,
which showed deviation towards dominance, and model
A3. For most models and both pedigree types, the median

120 Hum Hered 2016;82:103-139
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estimated disease allele frequency p was also close to the
expected value. Again, the estimation of individual pen-
etrances for ASPs and ASTs was not very accurate, given
that these pedigree types contain only affected individu-
als.

For DSTs and DSQs, the median dominance indices
tended towards their expected values, but were not ac-
curate for most models. The estimation of the disease al-
lele frequency was comparable between DSTs and DSQs
and showed good accuracy for models A1 with P =0.01
aswell as models A2 and A3 both with P=0.1. Otherwise,
models with P = 0.01 showed an overestimated disease
allele frequency (A2, A3), whereas for models with P >
0.1 it was underestimated (A1, AFA1, AFA2). Penetranc-
es Fy and F; were estimated accurately for all models and
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Fig. 7. Additive models: projections of trait-model parameter estimates on the possible triangle parameter space

of ASPs. For more details, see Figure 4.

both pedigree types, with a slight underestimation in
some cases. F, was estimated with acceptable accuracy
for both pedigree types; however, it was always underes-
timated, most prominently for model A2 with P = 0.01
(F,=0.5;£,=0.335for DSTs and f, = 0.35 for DSQs). The
parameter estimation did not substantially improve
when using DSQs instead of DSTs (Fig. 8). This is in line
with the MOD scores in Table 3, which were comparable
between DSTs and DSQs, with only a slight increase for
models A3 and AFA2. As before, this is due to the fact
that models A3 and AFA2 show the highest penetrance
and genotype relative risk among the investigated mod-
els, such that an additional healthy individual can con-
tribute at least some extra linkage information in the
analysis.

Estimation of Trait-Model Parameters in
a MOD Score Linkage Analysis

The accuracy of median d values for additive models
was not very high when using 3-G pedigrees in the analy-
sis. However, most dominance indices still pointed to ad-
ditivity. The results for the disease allele frequency showed
good accuracy for models Al and A2, each with P = 0.1,
A3, and AFAL. The estimates for penetrance F, showed
good accuracy for most models. Median estimates for Fy
were mostly identical to their expected value. Penetrance
F, was estimated with good accuracy for models Al and
A2, each with P=0.1, A3, AFA1, and AFA2.

The results for the additive models in Figure 8 showed
a general trend towards less bias when moving from af-
fecteds-only pedigrees over DSTs and DSQs to 3-G pedi-
grees, except for model AFA1. When moving from DST's
over DSQs to 3-G pedigrees, MAD slightly decreased ex-
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Fig. 8. Illustration of bias and variability of the parameter estimation for additive models using different pedigree

types. For more details, see Figure 3.

cept for models A3 with P = 0.01 and AFAL. Bias was
mostly smaller than MAD across all models for DSTs,
DSQs, and 3-G pedigrees.

Overdominant Models

Parameter estimation results for overdominant mod-
els are given in Figure 9 and Appendix Tables A4, A8, and
A12. As already mentioned above, the dominance index
D is defined to be 0 for models with F, = F,, because the
denominator would be 0. Therefore, D cannot serve as a
performance measure for the analyzed overdominant

122 Hum Hered 2016;82:103-139
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(Figure continued on next page.)

models. For ASPs and most models, the median disease
allele frequency p was estimated close to the expected val-
ue. Overdominance, i.e., Fy < F; and F, < F;, was correct-
ly assessed for models U1-U3 with P = 0.1 and U3 with
P =0.01 and a sample size of 1,000 pedigrees (Appendix
Table A4). All other models were classified as rather ad-
ditive (e.g., Ul with P = 0.01) or dominant (e.g., U2 with
P =0.01). The projections of the estimated trait-model
parameters in the parameter space of ASPs are shown in
Figure 10. The allele-sharing estimates of particular mod-
els were not evenly distributed around the true point (e.g.,
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U2 with P=0.1 and U3 with P = 0.1), which might be due
to peculiarities of the parameter space. The true point for
model Ul with P = 0.01 lies between the upper edge of the
triangle, which corresponds to additive models, and the
dashed line, representing dominant models. The location
and distribution of the estimates for this model resembled
those of the additive model A3 with P = 0.1 depicted in
Figure 7. Indeed, the median estimates for Ul with P =
0.01 and A3 with P = 0.1 were similar for all penetrances
as well as the disease allele frequency.

With regard to ASTs, the median disease allele fre-
quency p was estimated close to the true value for all mod-
els. Overdominant models could be better distinguished
from other model types when using ASTs instead of ASPs,
because the corresponding allele-sharing values form a
unique, separated compartment of the 3-dimensional pa-
rameter space (Fig. 1). Hence, overdominance was cor-
rectly assessed for all models except model U4 (Fig. 9,
ASTs). Why model U4 was so difficult to be classified as
overdominant for ASPs and ASTs can be explained as fol-
lows. As can be seen from Figures 1 (ASTs) and 10 (ASPs),
model U4 occupies a distinct part of the parameter space
as compared to models U1-U3. For both pedigree types,
however, it can be shown that this distinct part of the pa-

Estimation of Trait-Model Parameters in
a MOD Score Linkage Analysis

rameter space can as well be occupied by underdominant
models, i.e., Fy > F; and F, > Fy, which is reflected by the
corresponding median penetrance estimates for ASTs
(Appendix Table A4).

For DSTs and DSQs, estimates of the disease allele fre-
quency for models U1-U3 with P = 0.1, model U3 with
P=0.01, and model U4 showed good accuracy; otherwise,
it was clearly overestimated. Median F, penetrances were
estimated around their expected value (0.01) for both
pedigrees, albeit slightly underestimated. Estimations of
the median F; penetrance were accurate for all models,
except model UL. Estimating penetrance F; proved to be
difficult, since only models U3 with P= 0.1 and U4 showed
values that were near their expectations. Generally, an es-
timation of F, is difficult when the disease allele frequen-
cy is low, because only a few individuals of the dataset
actually have a homozygous mutant genotype and can
contribute information to the estimation of F,. Therefore,
the relations F, < F; and F, < F) were only identified for
models U2 and U3 both with P= 0.1 and U4 with P=0.35
for both pedigree types. As explained above, the addition-
al healthy individual in DSQs can increase the MOD
score only if the penetrance and the genotype relative risk
are sufficiently high, which is the case for models U2, U3
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Fig. 10. Overdominant models: projections of trait-model parameter estimates on the possible triangle parameter

space of ASPs. For more details, see Figure 4.

and U4 (Table 3). By the same token, when adding a sec-
ond healthy individual, penetrance estimation was also
improved for model U3 with P = 0.01, which pointed to
overdominance only for DSQs but not for DSTs (Appen-
dix Table A8).

Using 3-G pedigrees, the estimation of the disease al-
lele frequency showed good accuracy for most models,
especially for models U1-U3 with P=0.1 and model U4.
The median penetrances F, were estimated near their
expected value (0.01) for all models, albeit slightly un-
derestimated in most cases. Penetrance F; was estimated
with very high accuracy, with all but one medians esti-
mated exactly at the expected value. The accuracy of the
estimation of F, depended on the disease allele frequen-
cy — models with P 2 0.1 showed good accuracy, where-

Estimation of Trait-Model Parameters in
a MOD Score Linkage Analysis

as F, was always overestimated for models with P = 0.01.
As mentioned above, when the disease allele frequency
is low, the dataset contains too few individuals with a
homozygous mutant genotype that can contribute to the
estimation of F». However, median estimates of F, were
significantly lower than those of F;, which clearly indi-
cates overdominance, except for model Ul with P =
0.01.

For models U1-U3 with P = 0.01, median bias of F,
was high, especially for ASPs, DSTs, and DSQs (Fig. 9).
This is due to the fact that ASPs, DSTs, and DSQs contain
only 2 affected individuals, compared to ASTs and 3-G
pedigrees having 3 affected individuals. The additional
affected individual results in a larger number of mutant
alleles per pedigree and hence in a larger number of ho-
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mozygous mutant individuals. Bias and MAD decreased
when moving from DSTs over DSQs to 3-G pedigrees for
most models. Better identifiability of parameters as mea-
sured by a reduction in bias when using pedigrees with
unaffected individuals could only be observed for models
U1l with P=0.01,U3 with P=0.1,and U4. In DSTs, DSQs,
and 3-G pedigrees, bias was often larger than MAD for F,.
As can be seen from Figure 9, parameter estimation re-
sults were best for models with P 2 0.1, especially when
using 3-G pedigrees.

Penetrance Ratios for ASPs and ASTs

As already mentioned above, the exact numerical val-
ues for trait-model parameters cannot be obtained from
affecteds-only analyses. However, the corresponding
penetrance ratios can in principle be estimated. In Ta-
ble 4, we present the estimation of pairwise ratios of the
penetrances Fg, Fy, F, for all models in our affecteds-only
analyses with ASPs and ASTs. Generally, the variability
(as measured by MAD in our case) for penetrance ratios
is expected to be higher than for the corresponding indi-
vidual penetrances, especially when the expected pene-
trance ratio is high.

For recessive models and ASPs, the 3 penetrance ratios
(F1/Fy; F3/Fo; F5/Fy) were estimated with best accuracy for
models R1, R2, and R3 with the larger disease allele fre-
quency P =0.1. The ratio between F; and Fy, which equals
1 for all recessive models except model AFR2, was usu-
ally well recognized, whereas F,/F, and F,/F, were under-
estimated for models with P =0.01. There was a clear im-
provement in the estimation of the penetrance ratios
F,/Fyand F,/F; when using ASTs for the models with dis-
ease allele frequency P = 0.01 and the AFR1 model. Only
the models R1, R2, and R3, each with P = 0.1, as well as
AFR1 showed a smaller bias than MAD for both ASPsand
ASTs and for all penetrance ratios. While bias of pene-
trance ratios often decreased when using ASTs instead of
ASPs, the corresponding MAD was often higher, espe-
cially for models with P = 0.01 (Table 4).

For dominant models, the penetrance ratio that was
close to 1, i.e., F»/F;, was overestimated for ASPs, albeit
only slightly for models D1-D3 with P = 0.1 and D1 with
P =0.01. The ratios F;/F; and F»/F, were mostly underes-
timated for models D1-D3 with P = 0.1 and AFD2, or
mostly overestimated for models D1-D3 with P = 0.01
and AFD1. The estimation of ratios improved with ASTs
compared to ASPs only for models D1-D3 with P=0.01.
In the case of ASPs, bias was smaller than MAD for all
penetrance ratios and models, except for AFD1n1000 and
AFD2. For ASTSs, in addition to AFD1n1000 and AFD2,
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higher bias than MAD was also obtained for models D2
and D3, each with P=0.1.

For additive models, penetrance ratios were estimated
best for models AFA1 and A1, which were strictly addi-
tive or close to strictly additive, respectively. In general,
the benefit for the accuracy of the estimation of pene-
trance ratios when using ASTs instead of ASPs was not as
clear-cut as for the other models. Here, the estimation
mostly improved for one ratio and deteriorated for an-
other one. For ASPs and ASTs, bias was smaller than
MAD for all penetrance ratios and models, except for
models A2 and AFA2, and, in the case of ASTs, model A3
with P=0.1.

Results for the overdominant models and ASPs showed
that the penetrance ratio F/F, was underestimated for
models Ul and U2 with P = 0.1 as well as model U4 with
P=0.35,and overestimated for models with P=0.01. The
other 2 ratios, F»/Fyand F,/F,, were always overestimated,
even to a higher degree for models with P = 0.01. The pen-
etrance ratios for model U4 could not be estimated accu-
rately, for neither ASPs nor ASTs, due to the confounding
of over- and underdominant models, as explained above.
In most other cases, there was a clear improvement in es-
timation accuracy of all 3 penetrance ratios when using
ASTs compared to ASPs. For both pedigree types, bias
was mostly smaller than MAD for all penetrance ratios
and models.

Summary of Trait-Model Parameter Estimation

Results

The results are summarized as answers to questions
(1)-(5) given in the Introduction section.

(1) The ability of the MOD score approach to differen-
tiate between the trait-model types (recessive, dominant,
additive, and overdominant) was limited by the underly-
ing parameter spaces of the corresponding pedigrees in
the analysis. Among the recessive models, a stronger ge-
netic effect provided a better discrimination from other
model types across all sorts of investigated pedigrees.
Adding one unaffected individual to an ASP pedigree was
mostly sufficient to identify and correctly estimate the pa-
rameters of the recessive model. Additive and dominant
models were generally hard to discriminate using affect-
eds-only data due to their spatial proximity in the corre-
sponding allele-sharing parameter space. The discrimi-
nation between additive and dominant models improved
by adding unaffected individuals and when using 3-G
pedigrees. The correct classification of overdominant
models substantially improved from ASPs to ASTs. With
3-G pedigrees, trait-model parameters of overdominant
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models were mostly estimated with good accuracy,
whereas DST and DSQ data sometimes showed larger
bias than MAD for specific parameters.

(2) As was expected, the estimation of trait-model pa-
rameters and penetrance ratios improved when adding
an affected sibling to an ASP, resulting in an AST. The
identifiability of the trait-model type depended on the
true point of allele-sharing in the corresponding param-
eter space. The parameter space for ASPs is the possible
triangle, whereas the parameter space for ASTs has not
been graphically depicted so far. However, using the for-
mulas given by Knapp [28], we were able to empirically
draw the parameter space for ASTs (Fig. 1), and hence to
hypothesize which model types could be better discrimi-
nated using ASTs compared to ASPs. As was expected
from the structure of the parameter spaces for both pedi-
gree types, estimation accuracy using ASTs was particu-
larly higher for overdominant models compared to ASPs.
Discrimination of additive and dominant models, espe-
cially when the genetic effect was small to moderate, re-
mained difficult. Recessive models were generally identi-
fied as such using either ASPs or AST's due to their clear
spatial separation in the parameter space from other
model types.

(3) In line with our expectations, the identifiability of
absolute values of the penetrances instead of pairwise ra-
tios could be achieved when unaffected pedigree mem-
bers were included in the analysis, i.e., DSTs and DSQs as
well as 3-G pedigrees.

(4) Interestingly, the identifiability of trait-model pa-
rameters was only slightly better when adding a further
unaffected sibling to DSTs, i.e., when using DSQs. The
number of allele-sharing classes of DSTs hence seemed to
be sufficient for the identification of the trait-model pa-
rameters.

(5) With more complex pedigrees, the identifiability of
trait-model parameters further improved for some mod-
els. While the median estimates were mostly similar, us-
ing 3-G pedigrees instead of DST's or DSQs often led to a
reduction in MAD of the parameters.

Imprinting Models

The results of the imprinting scenarios can be found
in Table 5. All parental genotypes were removed for both
AHSPs and ASPs prior to the analysis.

NI Model

Using pedigree structure 1, i.e., AHSPs with one half
of the sample having a common father and the other
half having a common mother, the disease allele fre-
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quency P and the penetrance Fy were estimated with
high accuracy for the ni model in a MOD score analysis
without taking imprinting into account. However, pen-
etrances F) and F, were both underestimated, with more
downward bias for F. It is of note that only 1 free pa-
rameter can in principle be identified from AHSP data
in a MOD score analysis. In the case of the correspond-
ing analysis taking imprinting into account, P and F,
were estimated with high accuracy. Penetrance F, was
estimated close to its expected value; however, the het-
erozygote penetrances were both clearly overestimated.
The median values for the heterozygote penetrances
Fi pa, and F) e were comparable, which was expected
for the ni model. The correct imprinting index I = 0 was
obtained in the analysis of pedigree structure 1 and the
ni model. MOD scores were comparable between the 2
analyses, i.e., with and without taking imprinting into
account, whereby the imprinting MOD score is per def-
inition always as large as the corresponding ni score. In
the case of the ni model, MOD scores were generally
highest using pedigree structure 1 and lowest for pedi-
gree structure 3.

Using pedigree structure 2, i.e., 100 ASPs and 100 AH-
SPs having a common mother, the estimated median dis-
ease allele frequency P and penetrances F, and F; were
close to the expected value in the analysis without taking
imprinting into account. Penetrance F, was underesti-
mated. In the case of the analysis taking imprinting into
account, P and F; were estimated close to the expected
value, whereas the heterozygote penetrances Fy . and
Fi aras well as F, were underestimated. As was with ped-
igree structure 1, the correct imprinting index I = 0 could
be obtained from the analysis of pedigree structure 2.
MOD scores of both analysis types were comparable.

The corresponding values for the trait-model param-
eters for pedigree structure 3, i.e., 180 ASPsand 20 AHSPs
with a common mother, were comparable to those of ped-
igree structure 2 for the ni analysis. When imprinting was
taken into account in the analysis, penetrances F, ,,, and
F, were estimated lower (f; ., = 0.001; f,=0.67) compared
to pedigree structure 2 (f; . = 0.38; 5 = 0.92). Most strik-
ingly, penetrance Fy ,, was estimated close to 0, which
reflects the unidentifiability between paternal imprinting
and ni models when parental genotypes have been re-
moved. It appears counterintuitive at first sight that an
apparently stronger indication of paternal imprinting is
obtained for pedigree structure 3, which contains only 20
AHSPs, compared to pedigree structure 2, which contains
100 AHSPs (Table 5). However, with a larger number of
AHSPs in pedigree structure 2, it is more likely that 2 half-

Estimation of Trait-Model Parameters in
a MOD Score Linkage Analysis

sibs have received the disease allele from the 2 separate
fathers rather than from their joint mother, which reduc-
es the likelihood of a paternal imprinting model. The es-
timated median imprinting index was estimated close to
its expected value, albeit slightly below 0 due to the un-
derestimation of F p.

Imprinting Models

In contrast to the ni model, the presentation of the re-
sults for the imprinting simulations starts with the MOD
scores taking imprinting into account, which are then
compared to the niresults. Using pedigree structure 1 and
the cpi model, the disease allele frequency and the pene-
trances were estimated with good accuracy in a MOD
score analysis taking imprinting into account. The cor-
rect imprinting index I = -1 could be obtained as well.
With regard to the corresponding ni analysis, the median
estimated trait-model parameters of the cpi model were
difficult to interpret due to the following: since the ni
MOD score analysis assumes the equivalence of parental
genomes, i.e., the equivalence of AHSPs having a com-
mon father and AHSPs having a common mother, this
leads to a reduced likelihood and to bias of trait-model
parameter estimates. This is because the truly underlying
genetic mechanism, i.e, the imparity of parental ge-
nomes, is misspecified in a ni MOD score analysis, which
cannot be compensated by maximizing over the ni trait
model. If complete imprinting is really present but not
modelled in the analysis, only the meioses of those AHSPs
with a common parent of the non-imprinted sex contrib-
ute linkage information, whereas the other AHSPs point
at no linkage. Therefore, the MOD score dropped from
26.0 with imprinting to 9.26 without imprinting taken
into account in the analysis, and trait-model parameter
estimates for the ni model were distorted.

Using pedigree structure 2, trait-model parameters
could be estimated with good accuracy in an imprinting
MOD score analysis, except for F,, which was clearly un-
derestimated. In fact, F, was mostly estimated as either 0
or close to 1 (data not shown). This was most likely due
to the fact that a paternal imprinting model with pene-
trances (Fy, Fypap F1mar F2) = (050;1;1) can hardly be dis-
tinguished from an overdominant model with penetranc-
es (0;0;1;0) using ASP data. This was also reflected by a
median imprinting index with a smaller absolute value
than expected (i = -0.1), because i is defined to be 0 if the
estimates of Fy and F, are equal, and a high MAD for the
F, penetrance (0.645; Table 5). Owing to the AHSPs with
a common mother, however, the relation F p << Fy jar
could mostly be determined. With regard to the corre-
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sponding ni analysis, trait-model parameters were esti-
mated with good accuracy, whereby the median hetero-
zygote penetrance f; was estimated close to the mean of
the penetrances F) y4 and F) 5 that were used for the cpi
model simulation. MOD scores of the ni analysis were
comparable to those of the imprinting analysis for pedi-
gree structure 2, because assuming strong maternal allele
sharing is almost as likely as an additive model, for which
allele sharing can take place through parents of both sex-
es. In other words, maternal allele sharing in AHSPs with
a common mother does not imply random (non-excess)
paternal allele sharing in ASPs with untyped parents.

Using pedigree structure 3 and the cmi model, the
combined sample of 180 ASPs and 20 AHSPs having a
common mother led to trait-model parameter estimates
reflecting maternal imprinting, albeit with an underesti-
mation of Fy y, and F; (fy p = 0.9; f> = 0.7). The reason
why F, was underestimated is the same as it was for ped-
igree structure 2. In contrast to pedigree structure 2, the
imprinting analysis yielded substantially higher MOD
scores than the ni analysis, because the non-excess allele
sharing of AHSPs with a common mother can only be
explained by maternal imprinting, whereas for the ni
analysis the non-excess sharing of maternal alleles in
AHSPs reduces linkage information. This goes along with
distorted trait-model parameter estimates for the com-
bined dataset. The imprinting index I was estimated close
to its expected value reflecting maternal imprinting.

Summary of Imprinting Results

The imprinting results are summarized as an answer
to question (6) given in the Introduction section.

Imprinting could reliably be detected in samples that
include AHSPs having a common father as well as AHSPs
with a common mother, even if the parents are untyped
(pedigree structure 1). When analyzing an equal mixture
of ASPs and AHSPs having a common mother, all with
untyped parents, imprinting could in part be declared
when looking at the imprinting index I obtained from the
imprinting MOD score analysis and the cpi model. How-
ever, the difference between the ni and imprinting MOD
score seemed to be marginal, such that there was no sig-
nificant evidence for imprinting. However, using 180
ASPs and 20 AHSPs having a common mother, again
with untyped parents, the results for the cmi model clear-
ly showed that information on imprinting can be extract-
ed when adding a few AHSPs with a common parent of
the imprinted sex to a sample of ASPs with untyped par-
ents, which only harbor information on linkage, to obtain
substantial evidence of imprinting.

130 Hum Hered 2016;82:103-139
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Discussion

The ability of a pedigree analysis to estimate parame-
ters of trait inheritance has been extensively discussed in
the literature [1,11, 16, 19-23]. More specifically, the pos-
sibility to jointly estimate linkage and segregation param-
eters in a MOD score analysis has been debated. A MOD
score analysis does not perform classical segregation
analysis in the sense of determining whether or not there
is major gene segregation, but it estimates some segrega-
tion-model parameters together with parameters for
linkage, which we denote joint trait-marker inheritance
parameters (recombination fraction, LD parameters, and
trait-model parameters: disease allele frequency and pen-
etrances). Since the publication of the AAF method pro-
posed by Ewens and Shute [17], the MOD score has often
been referred to as being AAF, such that it delivers as-
ymptotically unbiased estimates of the trait-model pa-
rameters [11]. It is of note that estimates obtained from
maximum likelihood techniques are naturally biased for
finite sample sizes. However, the problem of ascertain-
ment or sampling was often neglected and most theoreti-
cal work on parameter estimation in linkage analysis as-
sumed what is called PI sampling, i.e., sampling of fixed
pedigree structures independent of any proband. Hence,
if no correction of the likelihood as to the ascertainment
procedure is applied, the estimates of the joint marker-
trait inheritance parameters will be biased.

Over the years, the problem of ascertainment/sam-
pling for linkage analysis was gradually elaborated [1, 16,
19-23]. Presumably the most comprehensive and most
detailed work on these aspects of pedigree analysis is the
book by Ginsburg et al. [1], who claimed that unbiased
estimates can in fact be obtained from a pedigree analysis
(see also Ginsburg et al. [16]). They provided a general
likelihood framework that can be used to accommodate
the likelihood for many aspects of the sampling proce-
dure and also showed how to accomplish sampling cor-
rection in practice. Although their focus was not on the
MOD score approach per se, they provided the above-
mentioned conditions (i)-(vii), under which the MOD
score delivers asymptotically unbiased parameter esti-
mates. Along these lines, one of the goals of the present
paper was to investigate the ability of a MOD score anal-
ysis to obtain unbiased trait-model parameter estimates
in practical situations. To this end, we have thoroughly
recapitulated the theoretical background, including con-
ditions under which the parameter estimates should be
asymptotically unbiased. We then evaluated the param-
eter estimation performance of a MOD score analysis in
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a simulation study. The first condition of correctly speci-
fying the mode of inheritance referring to the number of
loci and the number of alleles at each locus is presumably
most crucial. Therefore, a diallelic autosomal binary trait
locus was used for the simulation of pedigree data, which
is usually assumed as the mode of inheritance in a MOD
score analysis. Although complex disorders are expected
to follow more complicated modes of inheritance, e.g.,
involving a larger number of trait loci, the number of pos-
sible models, i.e., degrees of freedom, to be tested in a
MOD score analysis would be prohibitively large and
procedures to avoid inflated type I error rates would pre-
sumably diminish power. The second condition of mark-
er-independent sampling is often ignored in practice.
However, when performing linkage analysis in the era of
densely available markers, this assumption is likely to
hold, since the limiting step is often the recruitment of an
individual rather than obtaining informative genotypes.
Conditions (iii)-(vi) refer to the sampling procedure,
which is often assumed to be PI. Admittedly, only few
linkage studies are really PI. However, even in this case,
parameter estimation remains free of bias if the sampling
procedure can be controlled. This is the case if either all
members of the PSF have measured trait values (see con-
dition [v]), e.g., by using a questionnaire to include infor-
mation on potential probands not sampled (see Ginsburg
etal. [16]), or samplingis single in the sense of Hodge and
Vieland [20] (see condition [vi]), and the model of exten-
sion is random (see condition [iv]). Then, the MOD score
can readily be used to obtain asymptotically unbiased
joint marker-trait inheritance parameter estimates.
Previous work using simulated pedigree data has
shown that the maximum LOD score is obtained for the
truly underlying genetic model, provided that there is
enough power to detect linkage [43]. However, the focus
of the aforementioned work was only on strictly domi-
nant (f; = f) and strictly recessive models (f; = 0) without
phenocopies (fy = 0) and with the disease allele frequency
fixed at the true value for the analysis. In addition, maxi-
mization was done using a limited set of penetrance val-
ues [43]. In our simulation study, the MOD score with a
more exhaustive maximization as implemented in GHM
was used. Furthermore, we studied a wider range of trait
models and pedigree structures. We did not investigate
the ability of the MOD score to estimate the recombina-
tion fraction and any LD parameters. The recombination
fraction is confounded with the trait-model parameters,
i.e., with the disease allele frequency p and the 3 pene-
trances fy, f1, and f>, and was hence excluded from the es-
timation, but rather fixed at the true value of 8 = 0. Oth-

Estimation of Trait-Model Parameters in
a MOD Score Linkage Analysis

erwise, it would not be possible to distinguish confound-
ing of parameters and bias from each other. In the current
program version of GHM, LD is not modelled. As stated
earlier, to obtain unbiased trait-model parameter esti-
mates, LD between markers and disease locus must in fact
be absent, otherwise sampling is no longer marker inde-
pendent. As noted by Malkin and Elston [19], such a situ-
ation is unlikely when using marker panels of densely
spaced single nucleotide polymorphisms. However, se-
lective inclusion of only a subset of markers can ensure
linkage equilibrium at least between these markers, while
still retaining sufficient information for linkage analysis.
With such a sparser set of markers, it is also less likely that
one of them is in LD with a disease allele. If LD between
marker and disease alleles happens to be present, the ex-
pected bias in parameter estimates is so far unknown.
Further, we did not consider bias of trait-model param-
eters due to gene-environment interactions, which are
usually not controlled in a linkage analysis. In addition,
we did not investigate the ascertainment or sampling bias
that may occur when recruiting families in practice. Still,
the problem of ascertainment or sampling for linkage
analysis with estimation of joint trait-marker inheritance
parameters has been thoroughly reviewed and discussed
in the Introduction section.

Another aspect of estimating trait-model parameters
is their identifiability. It has been shown by Strauch [10]
that the identifiability of trait-model parameters depends
on the truly underlying number of allele-sharing classes.
In addition, only penetrance ratios can be estimated from
affecteds-only data. The identifiability is expected to in-
crease with larger sibships or more complex pedigrees.
Therefore, we were interested in the degree to which the
identifiability of trait-model parameters increases when
adding affected or unaffected siblings to an ASP or when
analyzing a 3-G pedigree.

In this study, we were able to show how trait-model
parameters can in principle be estimated in a MOD score
linkage analysis and to what extent the identifiability de-
pends on the pedigree types in the dataset. Our findings
can provide guidance to researchers aiming to estimate
parameters by a MOD score linkage analysis using family
data. Parameter estimation generally showed smaller bias
and MAD with increasing pedigree complexity for all in-
vestigated model types. Identifiability of trait-model pa-
rameters increased with (a) more affected siblings in an
affecteds-only analysis of nuclear families, although only
ratios of parameter values can be identified in this case,
(b) adding unaffected siblings to nuclear families, and for
some models with (c) adding a generation (3-G pedi-
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grees). Penetrance estimation performance was substan-
tially atfected by confounding of the trait-model param-
eters in terms of their proximity or identity in the corre-
sponding nonparametric allele-sharing parameter space.
This is equivalent to the more “parametric” notion that
the degree of information to accurately estimate param-
eters given their identifiability still depends on the pro-
portions of disease locus genotypes that are induced by
the number of affected and unaffected individuals in a
pedigree, together with the truly underlying trait-model
parameters. Therefore, especially additive and dominant
models can hardly be distinguished, even when analyzing
more complex pedigrees. A sufficient number of pedi-
grees in the sample is a further prerequisite to be able to
actually estimate the parameters in practice, according to
the identifiability that is theoretically possible with a cer-
tain pedigree type. Furthermore, we have shown under
which scenarios imprinting can be detected even if all
parents have missing genotypes. Imprinting could reli-
ably be estimated in terms of the imprinting index I [35]
with the datasets containing both AHSPs having a com-
mon father as well as a common mother. We were also
able to show that it is possible to combine pure linkage
information from ASPs with imprinting-sensitive linkage
information from AHSPs having a common mother to
obtain substantial evidence for maternal imprinting. This
finding indicates that adding AHSPs with a common par-
ent of the imprinted sex draws the trait-model parameter

132 Hum Hered 2016;82:103-139
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estimates of the combined ASP/AHSP sample towards
the truly underlying imprinting model.

In essence, asymptotically unbiased parameter esti-
mates can be obtained from a MOD score analysis, given
that certain conditions are satisfied ([i]-[vii], see Intro-
duction section). In most real-life situations, these condi-
tions can hardly be fulfilled. The extent to which a viola-
tion of any of these conditions or a combination of them
causes biasis unclear and demands further investigations.
Such a subsequent simulation study might reveal situa-
tions in which, despite, for example, an incorrect sam-
pling model, the parameter estimates obtained from the
analysis are essentially correct, which has been referred to
as the “man bites dog” criterion [11]. Along these lines,
the results of our present study are an important prereq-
uisite for future investigations on robustness of MOD
score-based parameter estimation under various sam-
pling schemes.
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Abstract:

Genomic imprinting is a parent-of-origin effect apparent in an appreciable number of human diseases. We have
proposed the new imprinting test statistic MOBIT, which is based on MOD score analysis. We were interested
in the properties of the MOBIT concerning its distribution under three hypotheses: (1) Hy ,: no linkage, no
imprinting; (2) Hy, p: linkage, no imprinting; (3) H: linkage and imprinting. More specifically, we assessed the
confounding between imprinting and sex-specific recombination frequencies, which presents a major difficulty
in linkage-based testing for imprinting, and evaluated the power of the test. To this end, we have performed a
linkage simulation study of affected sib-pairs and a three-generation pedigree with two trait models, many two-
and multipoint marker scenarios, three genetic map ratios, two sample sizes, and five imprinting degrees. We
also investigated the ability of the MOBIT to quantify the degree of imprinting and applied the MOBIT using
a real data example on house dust mite allergy. We further proposed and evaluated two approaches to obtain
empiric p values for the MOBIT. Our results showed that twopoint analyses assuming a sex-averaged marker
map led to an inflated type I error due to confounding, especially for a larger marker-trait locus distance. When
the correct sex-specific marker map was assumed, twopoint analyses have a reduced power to detect imprinting,
compared to sex-averaged analyses with an appropriate correction for the inflation of the test statistic. However,
confounding was not an issue in multipoint analysis unless the map ratio was extreme and marker spacing was
sparse. With multipoint analysis, power as well as the ability to quantify the imprinting degree were almost
equally high when a sex-averaged or the correct sex-specific map was used in the analysis. We recommend
to obtain empiric p values for the MOBIT using genotype simulations based on the best-fitting nonimprinting
model of the real dataset analysis. In addition, an implementation of a method based on the permutation of
parental sexes is also available. In summary, we propose to perform multipoint analyses using densely spaced
markers to efficiently discover new imprinted loci and to reliably quantify the degree of imprinting.

Keywords: confounding, genomic imprinting, linkage analysis, MOD scores, sex-specific recombination frequen-
cies

DOI: 10.1515/sagmb-2018-0025

1 Introduction

The human genetic map length differs between males and females. This is possibly due to mechanisms closely
related to those of genomic imprinting, as regions with sex-specific recombination frequencies often coincide
with imprinted ones (Paldi, Gyapay & Jami, 1995). Genomic imprinting is an epigenetic phenomenon which
is present in all viviparous mammals, some plants and, in a wider sense, some insects like the scale insect
Sciara coprophila, in which it was first described in 1938 (Metz, 1938). As genomic imprinting means the depen-
dence of an individual’s liability to develop a disease according to the parental origin of the mutated allele(s),
it leads to a deviation from the classic Mendelian assumption of equal contribution of parental genomes to
the progeny and is therefore called a parent-of-origin effect (Falls et al., 1999). The degree of genomic imprint-
ing can range from complete inactivation to reduced expression of the respective gene and is established in a
time- and tissue-specific manner. Genomic imprinting is caused by DNA and histone modifications without

Markus Brugger is the corresponding author.
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changing the nucleotide sequence, i.e. it is epigenetic, and is controlled by imprinting centers (ICs) contain-
ing differentially-methylated regions (DMRs) (Lewis & Reik, 2006; Spencer, 2009). Apart from being involved
in embryonic development, such that parthenogenetic embryos which arise from genomes of the same par-
ent are hindered to survive to birth, more and more evidence emerges hinting at imprinting being involved
in many diseases in the adult. Amongst these are Angelman, Beckwith-Wiedemann, Prader-Willi (Walter &
Paulsen, 2003) and Silver-Russell syndrome (Solter, 2006) as well as complex traits like type I diabetes (Bain
etal.,, 1994), atopy (Moffatt & Cookson, 1998), epilepsy (Greenberg etal., 2000), bipolar disorder (Stine et al.,
1995) and Alzheimer’s disease (Davies, Isles & Wilkinson, 2005). Moreover, the rising incidence of imprinting-
associated diseases in children resulting from assisted reproductive technologies (ART) is currently fervently
disputed (Wilkins-Haug, 2009). In addition, it has been suggested that imprinting may also play a role in an-
thropometric traits such as the body mass index (BMI) (Hoggart et al., 2014). The number of imprinted genes
seems to be underestimated (Maeda & Hayashizaki, 2006), which is possibly due to the fact that the applied
statistical methods deliver inconsistent results and lack power due to variable factors like heterogeneity, pen-
etrance, family and dataset size, and imprinting-mimicking confounders such as sex-specific recombination
fractions (Mukhopadhyay & Weeks, 2003; Greenberg et al., 2010).

Imprinting can be tested by linkage analysis methods. Linkage analysis evaluates the co-segregation of ge-
netic marker alleles together with a trait in families. Methods of linkage analysis are commonly distinguished
as either being parametric or nonparametric. In parametric linkage analysis, which is also known as model-
based or LOD score analysis, a certain set of trait-model parameters is explicitly assumed for the segregation
of the disease. In the simplest case of a diallelic autosomal trait locus, which is assumed throughout this pa-
per, these parameters are the disease-allele frequency p and three penetrances f, f;, and f,, with f; denoting
the probability that an individual with i copies of the disease allele is affected by the disease. In addition,
the recombination fraction 8 between marker and trait locus is modeled, or the position x of the trait locus in
the case of a multipoint analysis. The trait-model parameters can either be pre-specified according to results
from previous segregation analyses or maximized along with the recombination fraction in a joint segregation
and linkage analysis. For example, a MOD score analysis allows researchers to jointly investigate segregation
and linkage (Clerget-Darpoux, Bonaiti-Pellié & Hochez, 1986; Risch, 1984). Due to the maximization over trait-
model parameters, MOD scores are inflated when compared to LOD scores. Since the asymptotic distribution
of MOD scores is unknown in the general case, p values for the linkage test must be obtained by simulating
the distribution of the MOD score under the null hypothesis of no linkage. Our group has implemented the
MOD score approach, including a routine to perform simulations under the null hypothesis of no linkage, in the
GENEHUNTER-MODSCORE (GHM) software (Brugger & Strauch, 2014; Dietter et al., 2007; Mattheisen et al.,
2008; Strauch, 2003), which is based on the GENEHUNTER program (Kruglyak et al., 1996). Its application has
led to the identification of a variety of genetic disease loci responsible for congenital heart defects (Flaquer et al.,
2013), allergic rhinitis (Kruse et al., 2012), atopic dermatitis (Christensen et al., 2009), bipolar affective disorder
(Schumacher et al., 2005), and house dust mite allergy (Kurz et al., 2005). Nonparametric linkage methods have
been proposed as an alternative to parametric analysis. These methods promise to avoid trait-model misspec-
ification that may occur when using simple LOD score analyses to map genes responsible for complex traits,
for which the mode of inheritance, i.e. trait-model parameters in this case, is usually unknown. Nonparametric
methods test if affected pedigree members have more alleles in common than would be expected by chance un-
der the null hypothesis of no linkage. They are often considered to be ‘model-free’ because they do not rely on
explicit assumptions as to the trait-model parameters. However, Knapp, Seuchter, and Baur (1994) have shown
that, for samples of affected sib-pairs (ASPs) with the parents’ phenotypes unknown or set to unknown, the
nonparametric mean test is equivalent to a LOD score analysis under a recessive mode of inheritance, and the
possible triangle test proposed by Holmans (1993) is equivalent to a MOD score analysis. In the possible trian-
gle test, the genetic likelihood is expressed in terms of the probabilities z, z;, z, that an ASP shares zero, one, or
two allele(s) identical-by-descent (IBD) with restrictions to genetically possible models (Holmans, 1993). These
allele-sharing probabilities can be expressed as functions of the trait-model parameters fy, f1, f,, p,and @
(Suarez, Rice & Reich, 1978), and hence, the parametric and nonparametric likelihood are identical. Further-
more, Strauch (2007) has shown that the identity of the nonparametric and parametric likelihood holds for any
type of pedigree.

In linkage analysis, it is common practice to use sex-averaged genetic maps even if sex-specific differences
exist. When using the Kong-and-Cox LOD score (Kong & Cox, 1997) or the MOD score (Risch, 1984; Clerget-
Darpoux, Bonaiti-Pellié & Hochez, 1986), this does not change the type I error rate and power of the linkage
test, as shown by Fingerlin, Abecasis, and Boehnke (2006) and Dietter et al. (2007), respectively, but only if
the ratio of available paternal and maternal genotypes equals 1. In contrast, inflated type I error rate and re-
duced power is generally observed in the case of a simple parametric multipoint LOD score analysis (Daw,
Thompson & Wijsman, 2000). In summary, the direction of the deviation in the type I error rate depends on
the sex-specific availability ratio of genotypes, the actual underlying sex-specific map ratio, marker distances,

121



Anhang B: Paper IV

Automatically generated rough PDF by ProofCheck from River Valley Technologies Ltd

DEGRUYTER Bruggeretal.

number of markers, marker information, and sample size (Sieberts & Gudbjartsson, 2005). Therefore it is ad-
visable to adequately model sex-specific recombination frequencies in linkage analysis. The analysis option to
include sex-specific recombination frequencies is available in many linkage analysis software packages like Al-
legro (Gudbjartsson et al. 2000; 2005), Merlin (Abecasis et al., 2002), Superlink (Fishelson & Geiger, 2002), and
GHM (Dietter etal., 2007). In contrast to simple LOD score calculations, the power of parametric MOD score
analyses is generally less affected by map misspecifications due to the maximization over all model parameters,
which effectively serve as nuisance parameters in this case. This holds true for both two- and multipoint anal-
yses. In addition, it has been shown that, especially when analyzing a mixture of different types of pedigrees,
the MOD score approach outperforms other linkage methods in terms of power to identify genes with modest
effect (Flaquer & Strauch, 2012).

Genomic imprinting introduces an asymmetry between paternal and maternal marker transmission pat-
terns and thus can lead to a substantial loss of power when not taken into account. This directly follows from
the statement for standard LOD score analysis that the power to detect linkage is maximal if the analysis model
corresponds to the true disease model (Clerget-Darpoux, Bonaiti-Pellié & Hochez, 1986). Relating to linkage
tests allowing for imprinting, sex differences in genetic maps and imprinting are confounded in both paramet-
ric and nonparametric linkage analyses. It is possible to model imprinting by separately maximizing paramet-
ric LOD scores over male and female recombination fractions (6, and 6,q.. respectively) (Smalley, 1993),
where nonpenetrant cases are explained by fictitious recombinations in the imprinted sex. This results in a
correct (uninflated) estimate of the recombination frequency in the nonimprinted sex and an increased LOD
score, compared to an analysis with a single recombination fraction for both sexes. A more straightforward
approach to model imprinting is to use a four-penetrance formulation distinguishing the heterozygotes ac-
cording to the parental origin of the disease allele f = {fm fi pats f1 mats fz} implemented in the programs GHM
and GENEHUNTER-IMPRINTING (Strauch et al., 2000a). Conversely, it is possible to ‘model’ sex-specific re-
combination frequencies when the above-mentioned four-penetrance formulation is used in the analysis. Im-
portantly, confounding affects both parametric and nonparametric methods through their relation as outlined
by Strauch (2007). In twopoint analyses, when modeling imprinting but not accounting for sex-specific recom-
bination frequencies, imprinting test results can be confounded, leading to an increased type I error rate of the
applied test statistic. A true parent-of-origin effect in regions with sex-specific recombination frequencies can
then only be declared if the nonimprinted sex has the longer genetic map and shows excess allele-sharing in
the analysis (Paterson, Naimark & Petronis, 1999). Generally, the power to detect imprinting is bounded from
above by the power to detect linkage (Lemire, 2005). Using MOD scores, a parent-of-origin effect seems likely
if the MOD score with four penetrances accounting for imprinting ('IMOD score’) is remarkably higher than
the MOD score with only three penetrances not accounting for imprinting. Our newly proposed test statistic
MOBIT (see Methods section) corresponds to the difference between the two aforementioned scores: MOBIT =
(IMOD score) — (MOD score). When applying sex-averaged recombination frequencies when in fact no imprint-
ing but sex-specific recombination fractions are present, the nonimprinting MOD score is reduced due to an
increased number of observed recombinations in the sex with the longer genetic map. In contrast, in an IMOD
score analysis, an additional recombination in the sex with the longer genetic map is not modeled as such but
the offspring is instead interpreted as a nonpenetrant carrier. This leads to an increased difference between the
IMOD and the MOD score, i.e. to confounding. However, when performing multipoint analyses, the disease
locus is confined between flanking markers. Hence, the possibility of double recombinations between two ad-
jacent markers is quite low as long as the marker framework is adequately dense (Strauch et al., 2000b). In this
case, the linkage analysis no longer loses information due to an increased number of recombinations in the sex
having the longer genetic map since linkage to at least one side of the marker framework is preserved, and so
it can be expected that the confounding vanishes. Still, in the case of a sparse marker framework and/or large
sex-specific map ratios, the probability of double recombinations is non-negligible and confounding might
reappear (Strauch et al., 2000b). It has been proposed that confounding is not an issue if map ratios are <5:1 for
LOD score analyses allowing for imprinting (Mukhopadhyay & Weeks, 2003) or <10:1 for quantitative trait loci
(QTL) LOD score analyses accommodating imprinting (Hanson et al., 2001). Furthermore, marker spacings of
<5 cM (Vincent et al., 2006) or <1 cM (Wu, Shete & Amos, 2005) have been proposed to be sufficiently dense to
avoid confounding. However, there is no comprehensive and consensual answer to the question to what extent
marker spacing, sex-specific map ratios, sample size, and pedigree structure influence confounding in two-
and multipoint analyses. This issue is addressed in our extensive simulation study using nuclear families with
two affected siblings and extended pedigrees. Three hypotheses (no linkage and no imprinting; linkage and
no imprinting; linkage and imprinting) were considered in order to thoroughly investigate the performance of
the likelihood-based imprinting test statistic MOBIT and the degree to which imprinting is confounded with
sex-specific maps under various ratios. Further, the effect of the sample size was also investigated. In addi-
tion, power and the ability of the MOBIT to quantify imprinting were assessed. Finally, the MOBIT was also
applied in a real data example on house dust mite allergy to demonstrate the applicability of the MOBIT, for
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which the statistical significance was assessed using two alternative simulation/permutation procedures for
the calculation of empiric p values.

Throughout this paper, a monogenic dichotomous trait is considered. It should be noted that methods also
exist to map imprinted quantitative and ordinal trait loci, see e.g. Shete, Zhou, and Amos (2003) and Feng and
Zhang (2008), respectively. Likewise, it is of note that a variety of nonparametric linkage-based imprinting tests
have been proposed (Lemire, 2005; Liu et al., 2005; Wu, Shete & Amos, 2005; Vincent et al., 2006). However, these
methods either assume independence of parental meioses (Lemire, 2005; Liu et al., 2005; Vincent et al., 2006),
are restricted to nuclear families (Wu, Shete & Amos, 2005; Vincent et al., 2006), do not allow for sex-specific
recombination fractions (Vincent et al., 2006), do not offer quantification of imprinting (Lemire, 2005; Liu et al.,
2005; Wu, Shete & Amos, 2005), or are not explicitly designed for a maximization over the recombination frac-
tion (Lemire, 2005; Liu et al., 2005; Vincent et al., 2006). Correlated meioses can significantly bias imprinting test
results if independent parental meioses are assumed in the analysis (Vincent etal., 2006). It can be shown that
parental meioses are independent for a multiplicative or a strictly recessive trait model, i.e. a recessive model
without phenocopies. A negative correlation of the parental meioses is obtained for additive and dominant
trait models and leads to anticonservative imprinting test results. A positive correlation is induced by recessive
trait models with phenocopies as well as under- or overdominant trait models and leads to a conservative test.
The already existing nonparametric methods, albeit all of them are acknowledged tests for imprinting, are not
further investigated in this work due to their above-mentioned properties that render comparisons with the
parametric MOBIT hardly feasible.

The paper is structured as follows. In the Methods section, the general framework of the MOBIT is intro-
duced. Then, MOBIT analyses using either a sex-averaged or a sex-specific map for the analysis along with the
ability of the MOBIT to quantify imprinting are outlined. At the end of the Methods section, the simulations
and analyses of the present study are explained. This is followed by the Results section presenting the results
of the simulation study and the real data example on house dust mite allergy. The paper concludes with the
Discussion section and a guideline as to how linkage-based imprinting tests should be performed in practice.
In addition, the paper includes an Appendix that contains proofs of the asymptotic distribution of the MOBIT,
a proof of the identifiability of the marker-trait locus distance in the case of a sex-specific MOD score analysis,
and details of a newly developed MOBIT permutation procedure.

2 Methods

2.1 MOBIT -general framework

Generally, in a nonparametric linkage analysis, imprinting can be assessed by looking at the allele-sharing
difference between paternal and maternal meioses (Paterson, Naimark & Petronis, 1999). To investigate parent-
of-origin effects in ASPs, a nonparametric test has been proposed by Knapp and Strauch (2004), which does
not assume independent parental meioses. In that work, the classical Holmans” possible triangle test statistic
T Holmans for ASPs (Holmans, 1993) is extended to the test statistic T,z which includes four instead of three IBD
allele-sharing probabilities by splitting up the probability z; of one allele IBD into two probabilities 20" and
2" according to the parental origin of the allele, such that z, = 2} "y z/"". Regarding the parameter space, this
leads to an extension of the possible triangle to a tetrahedron which accounts for disease models with /] ot % gmat
(see Figure 1). When analyzing ASPs with parental phenotypes set to unknown and employing a sex-averaged
marker map, the parametric MOD score is equivalent to the nonparametric Ty,),q,s (Knapp, Seuchter & Baur,
1994) and the MOD score with four penetrances accounting for imprinting (IMOD score) is equivalent to the
nonparametric Ty g (Knapp & Strauch, 2004). Going beyond a test for linkage adaptive to imprinting, the MOD
and the IMOD score can be combined to test the null hypothesis of linkage but no imprinting by evaluation of
the difference of the respective maximized log-likelihood ratios with and without distinguishing the heterozy-
gotes, which is given by
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Figure 1: Tetrahedron T defining the set of allele-sharing probabilities z = (z,), Zbt, gmat, 22) for affected sib-pairs
(ASPs) that correspond to meaningful genetic models, as a subset of the larger set of all possible allele-sharing proba-
bilities represented by the outer cube.

Between the left half-tetrahedron Tzipxl St and the right half-tetrahedron T’im < (both in dark-grey) lies the sagittal

plane (light-grey), which corresponds to the possible triangle in the nonimprinting parameter space (z,, z,, z,), divid-
ing T into two halves. The left subfigure depicts T with the front plane (light-grey) facing towards the beholder, whereas
in the right subfigure T is turned around, such that the nonimprinting parameter space (z,, z,, z,)can be seen as a black
line dividing T into two halves. Black bullet points on the front triangle (also in light-grey) in the left subfigure corre-
spond to the points in terms of allele sharing that were used to simulate the additive trait model. Hence, the black bullet
in the middle of the frontern triangle corresponds to penetrances f, = 0.03, f; =0.13, f, =0.23, and disease allele fre-
quency p = 0.1. The black bullets on the left side of the front triangle (left subfigure) correspond to imprinting models,
such that the farther left a bullet point lies, the higher is its corresponding imprinting index (I = {0.2; 0.4; 0.6; 0.8; 1}).
Green dots on the light-grey front plane represent maximum likelihood estimates (MLEs) of a MOD score analysis that
takes imprinting into account (IMOD score) using 10,000 replicates of 600 ASPs and a fully informative marker with re-
combination fraction 6 = 0 and the additive trait model. The corresponding nonimprinting MOD score MLEs (red dots)
lie in the middle of the light-grey front plane, which corresponds to the upper edge of the possible triangle, i.e. the non-
imprinting parameter space (z,, z,, z,). Pink and turquoise dots correspond to IMOD and MOD score MLEs under no
linkage, respectively. With regard to the simulated recessive trait model with f, = 0.05, f; =0.05, f, =0.9, and disease
allele frequency p = 0.2, blue and red dots in the upper part of the left subfigure correspond to the IMOD and MOD score
MLEs, respectively.

where Z;_, , , denote the maximum likelihood estimators (MLEs) restricted to the possible set
of allele-sharing probabilities z defined by the possible triangle (A) for the Ty With z4 =
{(zg, 21, 29) + 2, <05, 22y <2y, 2520, 2, 20, 2, >0, 2, =1— 2z, — z,} and the tetrahedron (T) for the Ty
with zp = {(z,, zf’”, z{"‘”, z,) zﬁmt +z{"”’ <05,z < zf'zf < zy 2z < z'l’"” < zy,2z, >0, z}lmt >0, z{”’” >
0,29 >0, zy = 1—2, — 2™ — 21} The equivalence of the likelihoods under the null hypothesis of no link-
age L(%, %, %, %) and L(%, %, %) is shown in Appendix A.1 of the paper. In their Discussion section, Knapp
and Strauch (2004) have proposed a nonparametric imprinting test for ASPs that is (up to a factor of 2 [n(10))
identical to the MOBIT in the context of ASPs. Denoting this nonparametric imprinting test by Ty,,,,., we can
therefore write
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1 L(z,, 2’;””, iq”m, Zy) Tlmpr
MOBIT = .21 = 2
© ZIn(10) © ' LG, 2y, %) 2In(10) @

The null distribution of the T},,,, depends on the true underlying z € H, : 2 = zmet which is either an interior

point of T or lying on its boundary. If z € H, : 2" = 21! is an interior point of T, standard theory predicts that

the asymptotic distribution of the Ty, is x? with 1 df, although the proximity to the boundary of T may affect
the quality of the asymptotic approximation. If z is a point on the boundary of T, the quantiles of the asymptotic
distribution can be smaller than for a x? distribution with 1 df (Knapp & Strauch, 2004). Due to the equality,
when analyzing ASPs, the same properties hold true for the MOBIT. For the point of no linkage z = (i, %, %, % ),
the MOBIT follows a mixture of distributions that includes non-y2 components (see also Self and Liang (1987),
case 8, pp. 608-609). It is noteworthy that the equality of a parametric MOD score analysis with a corresponding
allele-sharing-based test statistic holds in general for arbitrary pedigree structures (Strauch, 2007). However,
the corresponding allele-sharing configurations have only been formulated for unilineal affected relative-pairs
(ARPs), ASPs, and affected sib-triplets (ASTs) so far (Knapp, 2005; Strauch, 2007). The allele-sharing parame-
ter spaces for larger pedigrees involve a larger number of dimensions, and the corresponding restrictions for
genetically possible models are expected to have a more complicated form (Knapp, 2005; Strauch, 2007). Even
for ASTs, the parameter restrictions are unknown so far, which precludes the construction of an allele-sharing-
based test (Knapp, 2005). Therefore, the null distribution of the MOBIT cannot be analytically derived from
an equivalent nonparametric test for larger pedigrees. However, given the equality of the nonimprinting and
imprinting likelihoods under the null hypothesis of no linkage and no imprinting for any type of pedigree
(Appendix A.2), the distribution is expected to be y2 with 1 df, because standard likelihood ratio technique
predicts that the number of degrees of freedom is equal to the difference between the maximized parameters
in the numerator and the denominator, which equals 4 — 3 = 1 in our case, which represents the case of two
nested composite hypotheses (Wilks, 1938) (see also Appendix A.3).

2.2 Sex-averaged MOBIT analysis

Assuming sex-averaged recombination fractions, a MOD score analysis using ASPs is equivalent to Tpyy0es
as shown by Knapp, Seuchter, and Baur (1994), and thus explores the same parameter space of z,, defined by
the possible triangle (whole triangle, light-grey sagittal plane in Figure 1). In particular, a given combination
of penetrances f, f1, f,, disease allele frequency p, and recombination frequency 6 in a parametric analysis
corresponds to a certain point z within the possible triangle in the nonparametric context. How certain sets of
parametric trait-model parameters for ASPs with or without imprinting translate into allele-sharing probabili-
ties can be found in Knapp and Strauch (2004) and Suarez, Rice, and Reich (1978), respectively. Accordingly, the
maximization of the parametric likelihood ratio over the four trait-model parameters and 6 in the MOD score
approach corresponds to maximizing the nonparametric allele-sharing parameters over the two-dimensional
plane of the possible triangle. The IMOD score analysis, on the other hand, explores the whole tetrahedron
T including points for which z}fm # z{" and is equivalent to the Ty k. In this case, the parametric likelihood
ratio is maximized over the disease allele frequency p, the recombination frequency 6, and four penetrance
parameters fo, fipos f1uar, fo distinguishing the heterozygotes, where f ;. # f1 s is equivalent to excess

paternal or maternal allele-sharing, i.e. z’f"f # z[™". Throughout this paper, without loss of generality, 6,4,
< Ouuates is assumed. If no imprinting is present, this corresponds to points in terms of allele-sharing within
the left half-tetrahedron (Tpat , ,ma) in Figure 1.

1 ="

2.3 Sex-specific MOBIT analysis

The parameter space explored by the maximization of the imprinting likelihood remains unchanged when us-
ing a sex-specific marker map, i.e. it is still the whole tetrahedron T for ASPs. However, the maximization of the
nonimprinting likelihood is now enabled to explore parameter space beyond the possible triangle, according to
the sex with the longer genetic map. For a given set of trait-model parameters f,, f;, f,, and p, the parametric
nonimprinting maximization starts with 0,41, = Ofemare = 0 at the corresponding point on the possible trian-
gle. This holds for a sex-specific as well as for a sex-averaged genetic map. Then, in the sex-specific case, the
recombination fraction is varied according to the specified genetic map ratio, i.e. 0 < 8,470 < Ofemate < % in the

analysis. This leads to points z within the left half-tetrahedron T pt_ m: outside the sagittal plane z,, i.e. the
1 1
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possible triangle. The maximization over the recombination frequency continues until the point of no linkage
Oysate = Ofemate = 3 is reached, which corresponds to z = (%, 3 %) Hence, each assumed pair of recombina-
tion fractions 6,,, < 64y, corresponds to a point within T pa ma. These points join to a maximization curve
1 ="
over the recombination fraction for a given set of disease model parameters and a fixed female /male map ratio
as illustrated in Figure 2 (black line with grey diamonds). The maximization is then continued over arbitrary
combinations of trait-model parameters. The range and extent of the parameter space explored by the nonim-
printing maximization within T _ .. depend on (1) the assumed genetic map ratio and (2) the inter-marker
1 1
distance in the case of a multipoint analysis. The more extreme the assumed map ratio, the farther reach such
maximization curves into Tt m«. The same holds for larger inter-marker distances. The point of maximum
1 1

maternal imprinting z = (0, %, 0, %) is only reached with an infinite female/male map ratio. Interestingly,
given a truly underlying nonimprinting disease model with f; ,;; = f} s> @ genetic map ratio less or larger
than 1, and 6 > 0 between marker and trait locus, the respective marker-trait locus distance is identifiable
in a MOD score analysis using ASPs (see Appendix B for a proof). Using a sex-specific map in the analysis
should avoid confounding between genomic imprinting and sex-specific recombination fractions, such that the
type L error rate of the imprinting test does not exceed its nominal level. However, the question arises, whether
the power of the test can be reduced due to a confounding between the genetic position and the trait-model
parameters in the maximization of the likelihoods in equation (1). That is because imprinting can be “mod-
eled” by separately maximizing the likelihood over male and female recombination fractions (8,4, and 8,q1cs
respectively) (Smalley, 1993), which is already done in the nonimprinting likelihood, just as well as by using
the four-penetrance formulation distinguishing the heterozygotes according to the parental origin of the dis-
ease allele f = {fo, f1 pate fi mats fz} (Strauch etal., 2000a) in the imprinting likelihood. However, this effect is
expected to become negligible in the case of a densely spaced marker framework.

Possible imization curve of the assuminga
sex-specific genetic map with a fixed female/male map ratio into the
left half-tetrahedron

Complete maternal imprinting

No linkage, no imprinting:

0 Hoa:z=(4 1 4.4
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Figure 2: A graphical representation of a transversal cut through the tetrahedron T is shown to illustrate the nonimprint-
ing likelihood maximization in terms of the allele-sharing parameters z= (zo, &, 2, zz) within T in an analysis using
affected sib-pairs (ASPs). The effect of a female/male genetic map ratio larger than 1 and maternal imprinting is consid-
ered. For a given set of penetrances f, f;, f,, and the disease allele frequency p, the sex-averaged nonimprinting maxi-
mization over the recombination frequency 0 starts on the corresponding point z on the possible triangle (black middle
line) assuming @ = 0 (upper black diamond). The recombination fraction is then gradually increased, leading to a curve
within the possible triangle (white arrows), until z reaches (3, 1, ;, 1) for @ = 1, i.e. no linkage. In an analysis assuming a
sex-specific map, the maximization over 0 starts at the same initial point z on the possible triangle as in the sex-averaged
analysis, given the same set of disease model parameters and 0 = 0 (upper black diamond). However, the recombination
fraction is now varied according to the genetic map ratio, i.e. b "”:" > 1, which leads to explored points z along acurve
within the left half-tetrahedron T"n’“ mar (black solid curve and grey diamonds). At @ = 1, z again reaches (1, 1, 1, 1)
The extent to which a sex-specific nommprmtmg maximization explores parameter space within szlu- >amats i.e. the out-
reach into the left half-tetrahedron, is increased by a larger female/male genetic map ratio. The point of complete mater-
nal imprinting (0, 3, 0, 1) is only reached for an infinite female /male map ratio. In addition, maternal imprinting causes
z to be shifted farther left (large grey arrow) so that it no longer lies within the maximization scope of a sex-specific MOD
score analysis not allowing for imprinting. These points are then exclusively reached by an IMOD score analysis. Yet, if z
already lies very near to the boundary of T due to large differences in sex-specific recombination fractions (say, z corre-
sponds to the lower grey diamond), it will hardly be shifted farther left by maternal imprinting. Hence, the sex-specific
nonimprinting MOD score analysis is almost equivalent to the IMOD score analysis with respect to the explored parame-
ter space, which leads to a lower power of the MOBIT, especially when maternal imprinting is incomplete. All these con-
clusions equally apply to female/male map ratios smaller than 1 and paternal imprinting.

2.4 Quantifying genomicimprinting

Using the MOBIT, imprinting can be quantified by looking at the imprinting index I (Strauch, 2005) calculated
from the estimated penetrances at the assumed disease locus showing the highest evidence for imprinting. The
imprinting index I = w equals the difference between the two heterozygote penetrances, normalized by
the difference of the homozygote penetrances in order to properly take the case of a nonzero phenocopy rate
or reduced penetrance into account. The question as to what extent trait-model parameters can be estimated
in a MOD score analysis cannot be answered comprehensively in this paper. However, trait-model parameters
can in principle be estimated by a MOD score analysis (Elston, 1989), which had been outlined in the con-
text of the ascertainment-assumption-free method (Shute & Ewens, 1988). However, the identifiability of the

trait-model parameters fo, fi i, f1mas f2. P and 6 depends on the number of allele-sharing classes in the

dataset. In the case of ASPs, the allele-sharing classes are z,, zﬁ’ , zZ"*, and z, when taking imprinting into
account. Hence, as there are only 4 — 1 = 3 free parameters that can be estimated from ASP data, there will be
many sets of ( fo, fipat f1mar, f2, p,and 66) that correspond toa particular estimated ( z, z’l’“t, Zi"t and z,).
With larger pedigrees, and hence more allele-sharing classes, the degree to which the trait-model parameters
can be correctly determined should be higher. It is of note, however, that for any type of affecteds-only analy-
sis, the absolute values of penetrances cannot be determined, because multiplication of all penetrances by the
same factor does not change the result. In order to investigate the ability of our newly proposed MOBIT test to
quantify imprinting, we compared the estimated imprinting degrees in terms of the imprinting index I with
the simulated values when either using a sex-specific or a sex-averaged map in the analysis.

2.5 Simulation and analysis

The families under study were samples of either affected sib-pairs (ASPs) or extended pedigrees with three
generations (3-G) (see Figure 3). A diallelic disease locus causing a dichotomous trait, with parameters that
should reflect the characteristics of complex disorders, was chosen for the simulations. In order to ensure that
the power to detect imprinting is sufficiently high with replicates generated under the selected parameter set
and that the computations are still feasible, power calculations for the linkage test with ASPs were done using
the R package powerpkg (Weeks, 2010) under various parameter sets prior to performing the simulations. The
parental trait phenotypes were set to unknown, and a fully informative marker in complete linkage, i.e. 0 = 0,
with the disease locus was simulated. An additive single-locus disease model with penetrances {f,, f,, f,} =
{0.03, 0.13, 0.23} and disease allele frequency p = 0.1 was chosen, which leads to a power to detect linkage of
approximately 80% using a sample size of 600 ASP families (type I error rate: 107%). The respective sample sizes
for the 3-G pedigrees were derived by initial test simulations. In particular, given 3-G pedigrees, sample size,
a fully informative marker, and a type I error rate of 107, the critical value for the linkage test was determined
under the null hypothesis of no linkage, and power was assessed by simulating completely linked replicates.
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This led to a sample size of 65 3-G pedigrees for the additive trait model. To evaluate the effect of sample
size for confounding, we additionally analyzed samples consisting of 400 ASPs and 45 3-G pedigrees, which
corresponds to a power of 50% to detect linkage. It is of note that the additive trait model lies on the boundary
of the parameter space of ASPs, which affects the null distribution of the MOBIT. Hence, a recessive trait model
withp=0.2and {fy, f;, fo} = {0.05, 0.05, 0.9}, which lies in the interior of the parameter space of ASPs, was also
considered to numerically verify the x# distribution of the MOBIT in the case of no boundary condition. The
sample size used for the simulations for the recessive trait model was chosen to be the same as for the additive
trait model. This way, the degrees of confounding of the imprinting tests are based on the same number of
meioses for both trait models and can thus fairly be compared.

A ASP
e — 1/
1 2
3 4
B 3-G pedigree
—u

[ 1 ]

2 ? @ ? 2
3 5 6 7 4
8 9 10 1

Figure 3: (A) Affected sib-pair (ASP) (B) Three-generation pedigree (3-G).
Pedigrees used for the simulations. ASP: affected sib-pair; 3-G: three-generation pedigree; ?: unknown phenotype; filled
symbols: affected; empty symbols: unaffected.

Generation of genotype data with or without imprinting effects and conditional on affected offspring (with
parental phenotypes assumed to be unknown) were either carried out by SLINK (Ott, 1989; Schiiffer et al., 2011;
Weeks et al., 1990) or by its imprinting extension SLINK Imprinting (Shete & Zhou, 2005). The simulation al-
gorithm calculates the probability distribution of genotypes g = g, &, ..., §, conditional on the phenotype
values X = x, X, ..., X, of n family members in a step-wise manner until all members have been assigned a
genotype, each conditional on all phenotypes and the set of genotypes assigned before to other family mem-
bers: P(glx) = P(g,1x)P(g,1g:, X)P(g31¢1, &2, X)... The calculation time of this algorithm increases linearly with
additional family members, but exponentially with the number of markers. In order to avoid prohibitive compu-
tation times when simulating several markers, a two-step algorithm developed by Lemire (2006) was employed,
which exploits the ability of conditional simulations by SLINK or SLINK Imprinting, respectively, and uses a
gene dropping algorithm implemented in the SLINK utility program SUP (Lemire, 2006; Schiffer et al., 2011)
to quickly generate a large number of markers. This procedure starts with the generation of the disease locus
genotypes and trait values by SLINK or SLINK Imprinting, respectively, where a fully informative marker in
linkage equilibrium (LE) with the disease locus and 6 = 0 is simulated to mark the path of inheritance of the dis-
ease; it is therefore called the ‘descent marker’. Using SUP, it is then possible to simulate single marker alleles or
haplotypes for several markers along the generations allowing for sex-specific recombination frequencies. Four
scenarios were simulated: (1) a fully informative microsatellite marker with 8 = 0 between the marker and the
trait locus; (2) a fully informative microsatellite marker with two nonzero genetic distances to the disease locus;
(3) four microsatellites with four equifrequent alleles corresponding to a mean heterozygosity (HET) of 0.75,
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with the disease locus placed halfway between marker 2 and 3 at various genetic distances; (4) a typical array
of 40 diallelic single-nucleotide polymorphisms (SNPs), each SNP with a minor allele frequency (MAF) of 0.15
corresponding to a mean HET of 0.25, spaced 0.32 cM from each other and the disease locus placed halfway
between SNPs 20 and 21. The genetic distances between the marker(s) and the disease locus in the single and
four-marker scenarios (2) and (3) were 0.5 and 5 cM, respectively. The former distance implies a marker spacing
of 1 ¢cM, which may be used for fine-mapping, and the latter distance corresponds to a sparse marker spacing of
10 cM. Besides sex-equal recombination frequencies, two female/male map ratios were assumed. A map ratio
of 7:3 was simulated as a possible value for an imprinted region like the one on chromosome 11p13 around
the WT1 gene showing a ratio of about 2.1:1 (Paldi, Gyapay & Jami, 1995), whereas a map ratio of about 9:1
can be found in the pseudoautosomal regions PAR1 and PAR2 on the X and Y chromosome (Flaquer, Fischer &
Wienker, 2009; Matise et al., 2007). To evaluate the size and the power of the MOBIT, simulations under three
hypotheses were analyzed: H; ,: no linkage, no imprinting, Hy ;: linkage, no imprinting, and H;: linkage, im-
printing. For the latter, five degrees of maternal imprinting were assumed, corresponding to imprinting indices
of I = {0.2; 0.4; 0.6; 0.8; 1} as defined by Strauch (2005) and given above. Additionally, paternal imprinting, cor-
responding to I = {—0.2; —0.4; —0.6; —0.8; —1}, was also considered, but only for the scenarios with 5 cM between
marker and trait locus. This is because these scenarios correspond to the case in which imprinting occurs in the
sex with the shorter genetic map, so that the impact on power due to sex-specific recombination fractions and
confounding should be especially relevant in the case of large marker-trait locus distances. In the case of the
simulated additive trait model, the penetrances were fo = 0.03 and f» = 0.23 and the average of f jur and f1 yuat
was 0.13, corresponding to the nonimprinting case. An overview of the simulation scenarios can be found in
Table 1. It should be noted that the concepts of dominance, recessivity, or multiplicativity do not make sense
under imprinting conditions (Strauch etal., 2000a). More specifically, a recessive trait model like the one we
used for the simulations has no corresponding ‘recessive’ imprinting model within the diamond of inheritance
(DQI) (Strauch, 2005). Instead, with an increasing degree of imprinting, the model approaches the horizontal

axis of the DOI M = % ), which is closer to additive than dominant or recessive models. A similar

relation holds for the corresponding points in terms of allele-sharing. Therefore, simulations under H; were
only done for the additive disease model, which lies on the horizontal axis of the DOI, and, for reasons of con-
ciseness, only for the twopoint scenarios (1) and (2) as well as the SNPs scenario (4). The number of replicates
was set to 10,000, except for the scenarios under H; with 5,000 replicates.

Table 1: Overview of the simulated scenarios to investigate confounding between sex-specific recombination fractions
and genomic imprinting. SNP: single nucleotide polymorphism; ASP: affected sib-pair; 3-G pedigree: three-generation
pedigree. *Only for the twopoint scenarios with 5 cM marker-trait locus distance.

Simulations under: H, ,: No linkage, no imprinting; H, ,: Linkage, no imprinting; H,: Linkage, imprinting

Map ratio (female : male)
Distance between 11 73 9:1
marker(s) and disease
locus (sex-averaged)

0cM (0=0) 1 marker 1 marker 1 marker
0.5 cM (6 = 0.005) 1 or 4 marker(s) 1 or 4 marker(s) 1 or 4 marker(s)
5cM (6 = 0.048) 1 or 4 marker(s) 1 or 4 marker(s) 1 or 4 marker(s)
0.16 cM (6 =~ 0.0016) 40 SNPs 40 SNPs 40 SNPs

Recombination fraction

based on Haldane map

function

4 markers: disease locus halfway between markers 2 and 3 with a marker spacing of 1 and 10 cM, respectively.

40 SNPs: halfway between markers 20 and 21 with a marker spacing of 0.32 cM.

Segregation of additive trait simulated with penetrances {f,, f,, f,} = {0.03, 0.13, 0.23} and disease allele frequency p =
0.1

Segregation of recessive trait simulated with penetrances {f;, f,, f,} = {0.05, 0.05, 0.90} and disease allele frequency p
=02

Pedigree type Sample size 1 Sample size 2

ASPs 600 400

3-G pedigrees 65 45

Maternal imprinting simulations for additive trait model step-wise with I = W =(0.2; 0.4; 0.6; 0.8; 1)
A )

Paternal imprinting simulations* for additive trait model with I = Lipathomat — (_0.2; —0.4; —0.6; —0.8; —1)

Se—fo

Each simulated replicate was subsequently analyzed by the GHM program, in which both the MOD score
(option ‘imprinting off’) and the IMOD score (option ‘imprinting on’) were calculated in a single program
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run. Technically, the calculation of the MOBIT is realized by applying the GHM option ‘modcalc global’, by
which the maximum of the LOD score over all assumed disease locus positions along the marker map is de-
termined for each trait model, and this maximum is then maximized over different trait models. Further, the
options ‘maximization dense’, ‘penetrance restriction off’, and ‘allfreq restriction off’ were used in the analysis.
In terms of allele-sharing probabilities, the MOBIT compares the MLE of zy (imprinting) with the one of z
(no imprinting) for ASPs, allowing for different disease locus positions in the numerator and the denominator
of the likelihood ratio in equation (1) at which the MLE is calculated. Regarding the twopoint scenarios, the
MOBIT was evaluated at the marker locus and at 100 equally spaced genetic positions lying up to 100 cM away
from the marker locus. In the multipoint scenarios, the MOBIT was calculated with the putative trait locus
positioned directly at the markers and halfway between them. The maximization was done over the aforemen-
tioned set of genetic positions x of the putative trait locus or € in the case of a twopoint scenario as well as over
all trait-model parameters, i.e. the disease allele frequency p and the penetrances f, f1, f, withoutimprinting
or fo, fipatr f1marr fo With imprinting taken into account. All replicates were analyzed using a sex-averaged
map anc{] a sex-specific map with the same genetic map ratio as used for the simulation. The imprinting test
statistic MOBIT = (IMOD score) — (MOD score) was calculated and its empiric distributions under all three hy-
potheses were determined assuming either a sex-averaged or a sex-specific map for the analysis. Finally, the
95% and 99% quantiles of the empiric MOBIT distributions under the Hy, , and H, , hypotheses were obtained.
Empiric quantiles were calculated according to the formula p = £, 1 being the total number of replicates and
k the number of ordered replicates. The test statistic of the k-th ordered replicate, which corresponds to a p
value with 1 — p equal to 95% or 99% , defines the respective empiric quantile. Type I error rates using a nom-
inal 1% and 5% significance level were calculated using the assumed asymptotic distribution of 2 with 1 df.
Power was measured as the proportion of replicates simulated under H;: linkage and imprinting that exceeded
the respective empiric 95% quantile determined under H,, ,, thus ruling out inflated type I error rates due to
confounding of imprinting with sex-specific recombination frequencies. In addition, we assessed the perfor-
mance of the MOBIT with respect to its ability to correctly estimate the imprinting index in the scenarios used
for the power calculations. We also looked for differences in estimation accuracy between sex-averaged and
sex-specific analyses, maternal and paternal imprinting, and the two pedigree types.

2.6 Real dataexample on house dust mite allergy

Due to the dependence of the asymptotic properties of the MOBIT on the truly underlying point in terms of
allele-sharing within the corresponding parameter space, p values obtained from a x? distribution might lead
to false positive or false negative test results in practice. Therefore, one might simulate the MOBIT distribution
under the null hypothesis of linkage, but no imprinting, such that the best-fitting nonimprinting model, in-
cluding the recombination fraction or the genetic position of the disease, is used for the simulation of genotype
data (method bfiim), which can be done ab initio using the software packages SLINK (Ott, 1989; Schiffer etal.,
2011; Weeks et al., 1990) and SUP (Lemire, 2006; Schiffer et al., 2011). Method bfnm is similar to the simulation
approach of the above-described main simulation study using a truly underlying hypothesis, which, however,
is unknown in the general case. An alternative approach, similar to the methods proposed by Dong et al. (2005)
and Whittaker etal. (2003), might be to obtain a p value by the use of a permutation procedure based on the
randomization of the origin of parental alleles in offspring of every nuclear family within a given pedigree
(method perm). Hence, we have developed a permutation procedure for the MOBIT to obtain empiric p values
and implemented it in the GHM software package. Such a procedure effectively isolates the imprinting effect
from overall evidence of linkage (Dong et al., 2005). In contrast to method bfttm, the null hypothesis of the newly
implemented MOBIT-based perm procedure corresponds to an imprinting effect with expectation value 0, con-
ditional on the linkage information of the real dataset. As a consequence, application of method perm can lead
to a completely different sample space compared to method bfitn, and can hence lead to different quantiles and
p values (see also Appendix C). Importantly, the power of a permutation test is restricted by the sample size,
which needs to be sufficiently large to obtain a fine-grained permutation distribution. More details as to the
permutation procedure can be found in Appendix C. To demonstrate the applicability of the MOBIT in practice,
we reanalyzed a subset of the house dust mite allergy dataset, which originally comprises pedigrees from Eng-
land, Germany, Italy, and Portugal (a detailed description of the dataset can be found in Kurz et al. (2000)). The
reanalyzed subset consisted of the English families, which showed a promising result with a maximum imprint-
ing MOD score of 4.76 near the marker locus D8S511 on chromosome 8 when a model that implies complete
maternal imprinting was used in the analysis (Strauch et al., 2000a). The English subset consisted of 19 families
with 125 individuals, including 7 families with 2 affected sibs, 3 families with 3 affected sibs, 5 families with 4
affected sibs, and 4 extended pedigrees. One hundred fifty microsatellite markers were typed on chromosomes
1-21, with an average spacing of 10 cM at each candidate region. With regard to the sparseness of the marker
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map, we used sex-specific genetic distances according to the Généthon map (Dib et al., 1996) in the analysis. As
a first step, nonimprinting MOD scores and IMOD scores were calculated in a single run using the GHM soft-
ware with options ‘modcalc global’, ‘maximization dense’, ‘penetrance restriction off’, and ‘allfreq restriction
off’, which corresponds to a thorough evaluation of many sets of trait-model parameters in the analysis. MOD
scores were calculated at all marker loci and at 9 equally spaced positions between them. Because evidence for
linkage should be coupled with evidence for imprinting, we decided to interpret a significant MOBIT result
to be meaningful when the corresponding IMOD score was higher than 4. For the most promising result, we
obtained an empiric p value for the MOBIT using both methods bfiim and perm. With respect to method bfium,
replicates under the null hypothesis of linkage, but no imprinting, were generated, such that the best-fitting
nonimprinting model was used for the simulation of genotype data for 1,000 replicates using SLINK (Ott, 1989;
Schiffer etal., 2011; Weeks etal., 1990) and SUP (Lemire, 2006; Schiffer et al., 2011). As for method perm, we
generated 1,000 replicates using the newly developed permutation procedure. The corresponding empiric p
value for the real dataset was calculated according to the formula p = £, n being the total number of replicates
and k the number of ordered replicates showing a MOBIT that was higher or equal to the one obtained from
the real dataset.

3 Results
3.1  H, ,:Nolinkage, noimprinting

The empiric 95% and 99% quantiles as well as the corresponding type I error rates assuming a ? distribution
with 1 df of the simulations under Hy ,: no linkage and no imprinting can be found in Table 2 (ASPs) and
Table 3 (3-G pedigrees). Multipoint scenarios often showed slightly higher quantiles due to an increased effec-
tive number of tests compared to twopoint scenarios. It is of note that MOBIT quantiles for ASPs under the
null hypothesis of no linkage and no imprinting are expected to show lower quantiles than the assumed x?
distribution with 1 df (Knapp & Strauch, 2004), which is the distribution of the MOBIT under Hy ;: linkage,
but no imprinting. Due to the absence of linkage, the results did not differ between the additive and recessive
trait model. The results were similar for the investigated two sample sizes. If not stated otherwise, conclusions
drawn from empiric quantiles also apply to the corresponding type I error rates.

Table 2: Empiric quantiles (95% and 99%) and type I error rates (nominal a = 0.05; 0.01) of the simulated ASP scenarios
under H;, ,: No linkage, no imprinting.

ASPs
Trait model Additive Recessive
Sample size 400 600 400 600
Map ratio 11 7:3 9:1 1:1 7:3 9:1 11 7:3 9:1 1:1 7:3 9:1

Analysis using a sex-averaged map

One marker 95% 04632 0.4789 04711 04514 04693 04646 0.4615 0449 0443 04574 04504 04514
99% 0.87 09115 0.859 0.8987 0.8727 0.874 09155 0.8625 0.8702 0.8911 0.8937 0.8903
5% 0.0122 0.013 0.0113 0.0128 0.0121 0.0113 0.0123 0.0109 0.0114 0.0118 0.0115 0.0118
1% 0.0016 0.0018 0.0011 0.0017 0.0009 0.001 0.0017 0.0013 0.0015 0.0015 0.0012 0.0014
Four 95% 05224 0.534 0.5458 0.5462 0.5326 0.5276 0.5328 0.5398 0.5407 0.5355 0.5108 0.5111
markers, 1
cM

99% 0.9569 0.9616 0.9747 0.9575 0.9584 0.9803 0.9374 0.9757 0.982 0.9602 0.9634 0.9433
5% 0.0156 0.0159 0.0165 0.0195 0.0162 0.0154 0.0148 0.0168 0.0174 0.0167 0.0157 0.0146
1% 0.0015 0.0016 0.0021 0.0022 0.0022 0.0018 0.0017 0.0026 0.0019 0.0021 0.0018 0.0014
Four 95% 0.6394 0.6355 0.6346 0.6278 0.6612 0.6249 0.6615 0.6373 0.6308 0.6379 0.6302 0.6326
markers, 10
cM
99% 11121 1.1074 1.134 1.0771 1.1162 1113 1.1649 1.1273 1.0802 1.0901 1.0831 1.1363
5% 0.0258 0.0259 0.0262 0.0248 0.0259 0.0256 0.0277 0.0264 0.0245 0.0267 0.0243 0.0271
1% 0.0033 0.0032 0.0042 0.003 0.0041 0.0034 0.0038 0.004 0.0027 0.0034 0.0027 0.0035
40 SNPs 95%  0.6688 0.6352 0.6536 0.6674 0.6539 0.6399 0.6361 0.6535 0.6457 0.6378 0.6357 0.6347
99% 1.1135 1.1125 1.1329 1.1439 1.1532 1.1963 1.0978 1.1101 1.1287 1.0549 1.1109 1.1004
5% 0.027 0.0273 0.0261 0.028 0.0269 0.028 0.0247 0.027 0.0267 0.0235 0.0247 0.0258
1% 0.0034 0.0038 0.0043 0.0032 0.0033 0.0046 0.0026 0.0037 0.0043 0.0035 0.0031 0.0033
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Analysis using the sex-specific map as employed for the simulation

One marker 95% 04785 0.2678 0.3063 0.4546 0.3115 0.2847 0459 0.2708 0.3129 0456 0.3142 0.315
99% 09041 0.6778 0.7162 0.8863 0.6831 0.6896 0.869 0.6309 0.6989 0.8895 0.7328 0.7305
5% 0.0128 0.0056 0.0062 0.0118 0.0056 0.0058 0.011 0.0052 0.005 0.0125 0.0065 0.0071
1% 0.0014 0.0008 0.0005 0.0017 0.0008 0.0008 0.0011 0.0009 0.0004 0.0015 0.0006 0.0005
Four 95% 0.526 0.524 05168 0.5329 0.5268 0508 0.524 05307 0.5034 0.529 0.5322 0.521
markers, 1
cM
9% 09714 0.9141 09531 0.968 0.9425 0.9186 0.996 0.9753 0.956 0.9858 0.9949 1.0189
5% 0.0167 0.0138 0.0172 0.0166 0.0162 0.0143 0.018 0.0167 0.0161 0.0161 0.0164 0.017
1% 0.0029 0.0014 0.0012 0.0015 0.0012 0.0011 0.0025 0.0023 0.0013 0.0013 0.0022 0.0023
Four 95%  0.6305 0.6315 0.6571 0.6575 0.6509 0.6647 0.6742 0.6682 0.6409 0.6396 0.6709 0.6622
markers, 10
cM
99% 1.0919 1.1001 1.1292 1.1057 1.1789 1.1542 1.1419 1.1411 1.1412 1.1343 1.1374 1.1544
5% 0.0242 0.0251 0.0277 0.0271 0.0252 0.0281 0.0286 0.0285 0.0256 0.0259 0.0282 0.0271
1% 0.003 0.0027 0.0037 0.0034 0.0046 0.0039 0.0035 0.0034 0.0036 0.0033 0.0038 0.0042
40 SNPs 95% 0.6517 0.6351 0.6476 0.6564 0.66 0.6309 0.6431 0.6248 0.6632 0.6212 0.6439 0.6483
99% 1.1255 1.1045 1.1275 1.1396 1.1107 1.1787 1.156 1.1142 1.1284 1.0623 1.0784 1.1038
5% 0.0271 0.0248 0.0285 0.0278 0.0265 0.0267 0.0261 0.0239 0.0289 0.0242 0.0255 0.027
1% 0.0038 0.0034 0.0041 0.0036 0.0032 0.005 0.0026 0.0029 0.0035 0.0029 0.0029 0.003

Values in cM correspond to sex-averaged inter-marker distances. 95% (99%) quantile of a y? distribution with 1 df, divided by 2log(10):
0.8342 (1.4407). For more details see Table 1.

Table 3: Empiric quantiles (95% and 99%) and type I error rates (nominal & = 0.05; 0.01) of the simulated 3-G pedigree
scenarios under H, ,: No linkage, no imprinting.

3-G pedigrees

Trait model additive recessive
Sample size 45 65 45 65
Map ratio 11 7:3 9:1 1:1 7:3 9:1 1:1 7:3 9:1 11 7:3 9:1

Analysis using a sex-averaged map

One marker 95% 1.1784 1.1363 1.1458 12075 1.2013 1.168 1.1842 1.1924 1.1754 1.1781 1.1712 1.2015
99% 1.8483 1.7681 1.8312 1.9187 1.8871 1.8453 1.8695 1.8176 1.8187 1.812 1.7667 1.8368
5% 0.1144 0.1108 0.1113 0.1154 0.1192 0.1164 0.1181 0.1176 0.1138 0.1189 0.1179 0.12
1% 0.0256 0.0231 0.0258 0.0299 0.0285 0.0249 0.0274 0.0269 0.0252 0.0251 0.0243 0.0286
Four 95% 1.0853 1.0879 1.0692 1.1269 1.1052 1.092 1.1044 1.1051 1.0927 1.1092 1.1481 1.1144
markers, 1
cM
99% 1.7545 1.7816 1.7622 1.76 1.7934 1.8055 1.7989 1.7868 1.7949 1.7637 1.7961 1.8015
5% 0.0958 0.0951 0.0935 0.1014 0.1003 0.0975 0.0965 0.0979 0.0929 0.1001 0.1025 0.0995
1% 0.021 0.0206 0.0194 0.022 0.0229 0.0231 0.0223 0.0222 0.0214 0.0235 0.0257 0.0238
Four 95% 1.2165 1.2294 1.2033 1.2327 1.2276 1.2369 1.2221 12127 1.2046 1.2183 1.228 1.2448
markers, 10
cM
99% 1.8925 1.88 1.813 1.8845 1.9003 1.9725 1.8617 1.8686 1.9218 1.9072 1.8998 1.8774
5% 0.1249 0.1212 0.1188 0.1227 0.1248 0.1293 0.1244 0.1188 0.1212 0.1256 0.1282 0.1251
1% 0.0316 0.0318 0.0279 0.0301 0.0296 0.0323 0.0286 0.029 0.0285 0.028 0.0295 0.0291
40 SNPs 95% 1.2651 1.227 1.2115 1.232 1.2571 1.2922 1.2072 12255 1.2246 1.293 1.2674 1.2696
99%  1.9924 1.9454 19114 1.8822 1.9504 2.0957 1.9077 19138 1.9407 1.9018 1.9718 1.8923
5% 0.1311 0.1183 0.1176 0.1263 0.1312 0.1323 0.1199 0.1222 0.1217 0.1282 0.132  0.12
1% 0.0336 0.0301 0.0293 0.0307 0.0316 0.0375 0.0291 0.0302 0.0296 0.035 0.0332 0.0307

Analysis using the sex-specific map as employed for the simulation

One marker 95%  1.1858 1.1558 1.1208 1.1717 1.1595 1.1581 1.2106 1.1611 1.1381 1.1858 1.1819 1.1437
99% 1.8778 17971 17768 1.8822 1.8578 1.815 1.8178 1.8463 1.7848 1.8704 1.8477 1.7957
5% 0.1203 0.1104 0.1036 0.1112 0.1091 0.1126 0.1197 011 0.1064 0.1169 0.1151 0.1078

1% 0.029 0.0254 0.0233 0.0268 0.0267 0.0259 0.0292 0.0255 0.0227 0.028 0.0254 0.025
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Four 95% 1.072 1.0955 1.0979 1.1109 1.1056 1.104 1.1046 1.091 1.1037 1.1857 1.1169 1.1427
markers, 1

cM

99% 1.6991 1.8747 1.7806 1.7489 1.7816 1.816 1.7859 1.7652 1.8067 1.8625 1.7911 1.7291
5% 0.0932 0.0979 0.0951 0.0972 0.0967 0.0982 0.0943 0.0942 0.093 0.1076 0.0979 0.0981
1% 0.0188 0.0231 0.023 0.0227 0.024 0.0222 0.0236 0.0201 0.0223 0272 0.0235 0.0218
Four 95%  1.2274 1.2195 1.1987 1.2344 1.2532 1.2283 1.2313 12519 1.225 1.2216 1.2248 1.2254
markers, 10
cM
99% 1.8604 1.989 1.8855 1.8541 19145 1.9445 19399 1.8588 1.9096 1.8539 1.8985 1.8966
5% 0.1324 0.1244 0.1179 0.1244 0.1284 0.1313 0.1278 0.1272 0.1228 0.1299 0.1273 0.1228
1% 0.0299 0.0304 0.0283 0.0301 0.0323 0.0327 0.0289 0.0311 0.0294 0.0289 0.0283 0.0319
40 SNPs 95%  1.2545 1.2524 1.2274 12462 1.2599 1.2152 12196 12122 1.2577 1.2337 1.2415 1.2623
99% 19474 19433 1.9133 2.0043 2.0074 1.9261 1.9268 1.9235 2.0406 1.8943 1.8754 1.9926
5% 0.1321 0.1328 0.1246 0.1302 0.1258 0.1251 0.1229 0.1218 0.1257 0.1274 0.125 0.1279
1% 0.0327 0.0316 0.0295 0.0333 0.0342 0.0297 0.0297 0.03 0.0317 0.0301 0.0308 0.0346

Values in cM correspond to sex-averaged inter-marker distances. 95% (99%) quantile of a x> distribution with 1 df, divided by 2log(10):
0.8342 (1.4407). For more details see Table 1.

3.1.1  Twopointanalysis (1 marker)

With regard to ASPs, the results of the analyses using a sex-averaged map showed a Hy , distribution of the
MOBIT with smaller quantiles than the assumed x? distribution and showed no differences as to the underlying
map ratios (Table 2). For the analyses using the sex-specific map and ASPs, empiric quantiles dropped for map
ratios >1, which is due to maximization curves along the given map ratio reaching into the left half-tetrahedron
T, £t for ASPs in the nonimprinting likelihood (see also Methods Section 2.3 and Figure 2).

In the case of 3-G pedigrees (Table 3), the MOBIT distributions showed consistently larger quantiles than the
assumed x? distribution, irrespective of the underlying map ratio and whether a sex-averaged or a sex-specific
map was used for the analysis. Obviously, the effect of maximization curves in a sex-specific MOBIT analysis
using 3-G pedigrees is restricted, possibly due to peculiarities of the parameter space around the true point in
terms of allele-sharing under H ,.

31.2  Multipoint analysis

The H; , distribution of the MOBIT for ASPs in the two four-marker scenarios and the 40-SNPs scenario when
using a sex-averaged map also had lower quantiles than the assumed x{ distribution and did not differ between
the map ratios (Table 2). The corresponding sex-specific Hy , quantiles of the multipoint scenarios were not
affected by maximization curves reaching into the left half-tetrahedron Tzllm St for ASPs in the nonimprinting
likelihood and were comparable to the quantiles of the sex-averaged analyses. This is because the maximization
curves are caught between flanking markers in multipoint analyses. In addition, the maximization is multiply
restricted around the true point in terms of allele-sharing under H, , (see Figure 1).

For 3-G pedigrees, similar to the twopoint scenarios, the multipoint MOBIT distributions showed larger
quantiles than the assumed x? distribution, irrespective of the underlying map ratio and whether a sex-averaged
or a sex-specific map was used for the analysis (Table 3).

3.2 H,,:Linkage, noimprinting

The results of the MOBIT analyses under the null hypothesis of linkage, but no imprinting can be found in
Table 4 (ASPs) and Table 5 (3-G pedigrees).

Table 4: Empiric quantiles (95% and 99%) and type I error rates (nominal & = 0.05; 0.01) of the simulated ASP scenarios
under Hy ,: Linkage, no imprinting.

ASPs

Trait model additive recessive
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Sample size 400 600 400 600
Map ratio 1:1 7:3 9:1 1:1 7:3 9:1 1:1 7:3 9:1 1:1 7:3 9:1
Analysis using a sex-averaged map
One marker, 95% 0.8127 0.8287 0.8586 0.8434 0.8329 0.8197 0.8369 0.8356 0.8419 0.836 0.8354 0.8103
0cM

99% 1.3966 1.4299 1.487 1.4243 14276 1.4043 1.3917 1.4254 14168 14321 1.4884 1.3893
5% 0.0472 0.0489 0.0539 0.0513 0.0497 0.048 0.0505 0.0501 0.0516 0.0506 0.0505 0.0461
1% 0.009 0.0099 0.0111 0.0094 0.0095 0.0084 0.0085 0.0095 0.0091 0.0099 0.011 0.0081
One marker, 95% 0.8175 0.8455 0.8625 0.8166 0.8328 0.8433 0.8273 0.8371 0.8699 0.8298 0.8595 0.8674
0.5 cM
99% 13664 1.4581 1.4589 1.4974 1.4654 1.3944 1.4032 1.4467 14678 1.4964 1.5154 1.4719
5% 0.0478 0.0511 0.0539 0.047 0.0495 0.0511 0.049 0.0506 0.056 0.0497 0.0539 0.0542
1% 0.0078 0.0108 0.0111 0.0123 0.0111 0.0094 0.0092 0.0104 0.0108 0.0115 0.0118 0.0107
One marker, 95%  0.8229 0.8682 1.0221 0.833 0.886 1.1239 0.8455 1.3638 2.4917 0.8271 1.582 3.1716
5cM
99% 14326 1.4871 1.7243 14315 14745 1.8918 1.5111 21538 3.5398 1.4483 2.4018 4.3856
5% 0.0483 0.0546 0.079 0.05 0.0579 0.0896 0.0518 0.146 0.4297 0.0489 0.1849 0.5909
1% 0.01 0.0109 0.0189 0.0097 0.012 0.0248 0.0114 0.0431 0.2116 0.0105 0.0651 0.3456
Four 95% 0.8798 0.8735 0.8117 0.8393 0.8897 0.8327 0.8272 0.8543 0.8245 0.8433 0.8574 0.811
markers, 0.5
cM
99% 1.5429 1.4836 1.4203 1.5661 1.503 1445 1.4432 1.4284 14037 1434 1.4294 1.405
5% 0.0553 0.0558 0.047 0.0506 0.0577 0.05 0.0493 0.0531 0.0489 0.0517 0.0533 0.0474
1% 0.0123 0.0113 0.0097 0.0123 0.0123 0.0101 0.0102 0.01 0.0091 0.0098 0.0098 0.0094
Four 95% 0.8681 0.899 0.8564 0.8913 0.9071 0.9268 0.8401 0.9478 1.2909 0.8519 1.021 1.4261
markers, 5
cM
9% 14761 1.4818 1.5257 15218 1.5402 1.64 1.3534 1.6368 2.0907 14882 1.669 2.2446
5% 0.0553 0.0606 0.0541 0.0583 0.0613 0.0636 0.0504 0.0667 0.1248 0.0529 0.0754 0.1535
1% 0.0111 0.0117 0.0114 0.0126 0.0135 0.015 0.0083 0.0155 0.0373 0.0113 0.0164 0.0494
40 SNPs 95% 09035 0.9085 0.9077 0.9064 0.8602 0.8695 0.8694 0.847 0.8503 0.8431 0.8307 0.8514
99% 1.5358 1.5356 1.5856 1.4931 1.4947 1482 1.5095 1.4936 14485 1.4772 1.4455 1.4426
5% 0.059 0.0593 0.0582 0.06 0.0536 0.0546 0.0559 0.0521 0.0523 0.0514 0.0494 0.0517
1% 0.0124 0.0133 0.0133 0.0112 0.0114 0.011 0.0121 0.0116 0.0103 0.0112 0.0103 0.0102
Analysis using the sex-specific map as employed for the simulation
One marker, 95% 0.8454 0.5783 0.5969 0.8367 0.5759 0.5837 0.8374 0.5563 0.604 0.8404 0.5763 0.5944
0cM
99% 14425 1.1514 1.1867 1.3571 1.1316 1.1695 1.4162 1.1266 12076 1.4716 1.1408 1.2211
5% 0.0519 0.0224 0.0268 0.0505 0.0242 0.0253 0.0508 0.0232 0.0263 0.0512 0.0249 0.0252
1% 0.0102 0.005 0.0047 0.0086 0.0046 0.005 0.0096 0.0048 0.0058 0.0108 0.004 0.0057
One marker, 95% 0.8229 0.5614 0.5249 0.8257 0.5563 0.5409 0.8586 0.5061 0.4335 0.8357 0.4973 0.406
0.5 cM
99% 14148 1.2026 1.0503 1.4353 1.1535 1.1095 1.4302 0.9836 0.9405 1.4658 1.1325 0.9144
5% 0.0485 0.0243 0.0191 0.0489 0.0213 0.0213 0.0541 0.0175 0.0137 0.0504 0.0187 0.0125
1% 0.0094 0.006 0.0038 0.01 0.0045 0.0041 0.0099 0.0027 0.002 0.0109 0.0045 0.0015
One marker, 95% 0.8351 0.3985 0.281 0.8166 0.3937 0.2394 0.8439 0.1885 0.0074 0.861 0.1061 0.009
5cM
9% 14262 0.8971 0.7075 1.397 0.8739 0.6432 1.4144 0.5228 0.1073 1.4769 0.372 0.0218
5% 0.0502 0.0128 0.0068 0.0473 0.0111 0.0053 0.0519 0.0034 <0.00010.0536 0.0011 <0.0001
1% 0.0095 0.0025 0.0008 0.009 0.0013 0.0005 0.009 0.0004 <0.00010.0106 <0.0001 <0.0001
Four 95% 0.8568 0.8711 0.8288 0.8521 0.8579 0.8194 0.8352 0.8368 0.8186 0.828 0.8318 0.8478
markers, 0.5
cM
99% 14541 1.5307 1.448 14211 1.4845 14173 1.4331 1.4486 1.3695 1.4455 1.3634 1.4573
5% 0.0537 0.0554 0.0492 0.0527 0.0531 0.0478 0.0502 0.0507 0.0483 0.0491 0.0494 0.0522
1% 0.0107 0.0125 0.0101 0.0094 0.0111 0.0095 0.0098 0.0102 0.0087 0.0101 0.0082 0.0104
Four 95% 0.8973 0.8649 0.8253 0.917 0.88 0.8515 0.7787 0.8621 0.8418 0.8329 0.867 0.8937
markers, 5
M
99% 14615 1.4827 1.3823 1.5867 1.5335 1.4475 1.4048 1.4894 14061 1.4754 1.5133 1.5237
5% 0.0586 0.0555 0.0486 0.0621 0.0577 0.052 0.0421 0.0541 0.0504 0.0498 0.0543 0.0582
1% 0.0106 0.0114 0.0086 0.0136 0.0124 0.0106 0.0087 0.0112 0.0091 0.0106 0.0114 0.0127
15
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40 SNPs 95% 09108 0.8987 0.8362 0.8941 0.8774 0.8419 0.8582 0.8432 0.828 0.8312 0.8153 0.8565
99% 15531 1.4804 1.4479 1.5509 1.4793 1.4533 14704 1.4238 1.3847 14183 1.3961 1.4457

5% 0.0616 0.0599 0.0502 0.0574 0.0546 0.0515 0.0529 0.0516 0.049 0.0497 0.0471 0.0528

1% 0.0131 0.0111 0.0102 0.0138 0.0111 0.0105 0.0113 0.0097 0.0087 0.0093 0.009 0.0102

Values in cM correspond to sex-averaged marker-trait locus distances. 95% (99%) quantile of a x? distribution with 1 df, divided by
21og(10): 0.8342 (1.4407). Values in bold indicate inflated quantiles and type I error rates due to confounding between sex-specific
recombination fractions and genomic imprinting. For more details see Table 1.

Table 5: Empiric quantiles (95% and 99%) and type I error rates (nominal « = 0.05; 0.01) of the simulated 3-G pedigree
scenarios under Hy ,: Linkage, no imprinting.

3-G pedigrees

Trait model additive recessive
Sample size 45 65 45 65
Map ratio 11 7:3 9:1 1:1 7:3 9:1 1:1 7:3 9:1 1:1 7:3 9:1

Analysis using a sex-averaged map

One marker,  95% 1.0483 1.0374 1.0672 0.9659 1.0291 0.9771 0.8145 0.8082 0.821 0.8021 0.8145 0.8275
0cM

99% 1.8388 1.7556 1.7557 1.6499 1.7091 1.6911 1.3563 1.3998 14 13584 14378 1.354
5% 0.0791 0.0802 0.0871 0.0696 0.0777 0.0741 0.0474 0.0467 0.0476 0.0447 0.0477 0.0493
1% 0.0214 0.0201 0.0199 0.018 0.0176 0.0172 0.0076 0.0087 0.0085 0.0081 0.0099 0.0084
One marker, 95% 1.0655 1.0573 1.055 0.9983 0.9878 1.0228 0.8253 0.8433 0.8362 0.8157 0.8685 0.827
0.5 cM
99% 1.7972 1.6659 1.7346 1.6928 1.7089 1.7136 1.3968 1.4412 14075 1.4293 14628 1.4281
5% 0.0874 0.0855 0.0813 0.075 0.0726 0.0759 0.0493 0.0519 0.0506 0.0485 0.0549 0.0489
1% 0.0231 0.0189 0.0208 0.0185 0.019 0.0194 0.009 0.101 0.0095 0.0099 0.0107 0.0096
One marker, 95% 1.0941 1.1011 1.0998 1.0668 1.0603 1.1036 0.8632 0.9687 1.2511 0.9032 1.026 1.4039
5cM
9% 17775 1.8277 1.7539 1.7211 1.8168 1.7925 1.4568 1.6494 2.075 1.5279 1.7263 2.2133
5% 0.0909 0.0916 0.0953 0.0911 0.0855 0.0916 0.0535 0.0686 0.1115 0.0607 0.0778 0.144
1% 0.0222 0.0248 0.0235 0.0222 0.0221 0.0233 0.0104 0.0164 0.0347 0.0129 0.0194 0.0468
Four 95% 09891 1.0036 0.9493 0.9584 0.9382 0.9408 0.8354 0.808 0.7827 0.8024 0.8139 0.775
markers, 0.5
cM
99% 1.7004 1.6667 1.6085 1.6035 1.6421 1.6464 1.444 1.3915 1.3825 1.3559 1.495 1.3931
5% 0.0741 0.0755 0.0653 0.0668 0.0648 0.0646 0.0501 0.0462 0.0439 0.0462 0.0476 0.0419
1% 0.0167 0.0167 0.0142 0.0147 0.0154 0.0161 0.0101 0.0092 0.0083 0.0083 0.0115 0.0089
Four 95% 1.0746 1.0712 1.0277 1.0109 1.027 1.0074 0.7978 0.8499 095 0.806 0.8633 0.9306
markers, 5
cM
99% 17492 1.7618 1.7313 1.6572 1.6982 1.6708 1.4304 1.4569 1.5372 1.3541 1.4902 1.6792
5% 0.0848 0.0887 0.0788 0.0758 0.0781 0.0777 0.0461 0.052 0.0653 0.0465 0.0541 0.0638
1% 0.0209 0.023 0.0182 0.018 0.0195 0.0169 0.0096 0.0106 0.0138 0.009 0.0116 0.0161
40 SNPs 95% 1.0386 1.0255 1.0074 0.9789 0.9925 0.9815 0.7949 0.8175 0.817 0.8381 0.8209 0.8072
99% 1.7208 1.726 1.7 158 1.619 1.7236 1.4125 1.4452 14265 1.4346 1.4263 1.4496
5% 0.0819 0.077 0.0741 0.0726 0.0715 0.0709 0.045 0.0477 0.047 0.0507 0.0482 0.0471
1% 0.0191 0.0191 0.0184 0.0147 0.0155 0.0177 0.0092 0.0102 0.0097 0.0099 0.0095 0.0103

Analysis using the sex-specific map as employed for the simulation

One marker, 95% 1.0608 0.9992 0.9616 0.9594 0.9349 0.9317 0.8177 0.7607 0.7583 0.8074 0.797 0.7729
0cM

99% 1.7583 1.6683 1.5927 1.6848 1.5877 1.6011 1.3415 1.3163 1.3395 1.3737 1.3355 1.3541

5% 0.0792 0.0757 0.0687 0.0701 0.0644 0.0658 0.0482 0.0406 0.0391 0.0461 0.0447 0.0393

1% 0.0192 0.0174 0.0141 0.0173 0.0136 0.0135 0.0072 0.0069 0.0076 0.0083 0.0071 0.0084
One marker, 95%  1.0663 0.9906 0.9635 0.9749 0.9458 0.9498 0.8186 0.7503 0.716 0.8314 0.7356 0.7102
0.5cM

9%  1.7535 1.6446 1.6307 1.6397 1.5692 1.6368 1.3805 1.2754 12609 1.3691 1.2924 1.3014

5% 0.0817 0.0723 0.0711 0.0712 0.0667 0.0663 0.0473 0.0378 0.0359 0.0496 0.0364 0.0358

1% 0.0214 0.0171 0.0156 0.0176 0.0149 0.0154 0.0089 0.0067 0.0055 0.0082 0.0063 0.007
One marker, 95% 1.1129 0.9857 0.974 1.0475 0.9476 0.9565 0.8493 0.719 0.658 0.826 0.7171 0.6731
5cM
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99% 17828 1.6597 1.6038 1.741 1.6496 1.6168 1.4627 1.2505 1.167 1.4412 1.17 1.1188
5% 0.0941 0.0732 0.0731 0.0855 0.0679 0.0689 0.0526 0.035 0.0288 0.0487 0.0325 0.0299
1% 0.0232 0.0173 0.0158 0.0189 0.017 0.0157 0.0106 0.0065 0.0036 0.0101 0.0055 0.0029
Four 95% 0.9874 1.0233 0.9818 0.9555 0.9942 0.938 0.8088 0.8155 0.8084 0.7908 0.7968 0.8094
markers, 0.5
M
99% 17174 1.7472 1.6581 1.6428 1.7033 1.6004 1.3616 1.3805 14248 1.3701 1.3075 1.4083
5% 0.0723 0.0782 0.0723 0.0682 0.0717 0.0651 0.0474 0.0469 0.0466 0.0436 0.0456 0.0463
1% 0.0172 0.0186 0.0162 0.0161 0.0184 0.0144 0.0077 0.0086 0.0096 0.0086 0.0075 0.0095
Four 95% 1.0651 1.0691 1.0344 1.0168 1.0063 0.9618 0.8206 0.825 0.7817 0.8199 0.822 0.7875
markers, 5
M
99% 1.7923 1.7826 1.7352 1.7108 1.61 1.6321 1.4158 1.4263 14319 1.4207 1427 1.3247
5% 0.0872 0.0878 0.0804 0.0764 0.0755 0.0682 0.0486 0.0482 0.0435 0.0484 0.0481 0.0424
1% 0.0221 0.0205 0.0193 0.0188 0.016 0.0168 0.0094 0.0097 0.0099 0.0098 0.0098 0.0072
40 SNPs 95% 1.0363 0.9697 1.0075 0.9758 1.0128 0.9701 0.8032 0.8068 0.8105 0.8163 0.8373 0.8135
99% 1.6783 1.6172 1.6526 1.665 1.6832 1563 1.3855 1.3863 14469 1.3599 1.4731 1.4228
5% 0.0831 0.0718 0.0746 0.0699 0.0765 0.0676 0.0468 0.0466 0.0471 0.0473 0.0508 0.0473
1% 0.0185 0.0162 0.0176 0.0162 0.0184 0.0141 0.0086 0.0091 0.0102 0.008 0.011 0.0089

Values in cM correspond to sex-averaged marker-trait locus distances. 95% (99%) quantile of a x? distribution with 1 df, divided by
21og(10): 0.8342 (1.4407). Values in bold indicate inflated quantiles and type I error rates due to confounding between sex-specific
recombination fractions and genomic imprinting. For more details see Table 1.

3.21 Twopoint, sex-averaged analysis

With respect to ASPs and the additive as well as the recessive trait model, the H, , distribution of the MOBIT
for the scenario with 0 cM between marker and trait locus corresponded well to the expected x? distribution
with 1 df for all map ratios and using a sex-averaged map in the analysis (Table 4). Although the additive trait
model lies on the boundary of the tetrahedron T in terms of allele-sharing for ASPs, it is readily conceivable
that the two front planes in Figure 1 (left side) are explored in two dimensions with the IMOD score and in one
dimension with the MOD score, corresponding to a difference in maximized parameters of 2 — 1 =1, which is
the same as for the interior of T (3 — 2 =1). Taken together, this results in empiric MOBIT quantiles equal to those
of a x? distribution. The corresponding quantiles for the scenario with 0.5 cM between marker and trait locus
for both trait models corresponded to the expected x? distribution for the 1:1 map ratio, with some inflation
when moving to the 7.3 and further to the 9:1 map ratio due to confounding. In the case of the scenario with
5 cM between marker and trait locus, MOBIT quantiles were slightly inflated for the 7:3 map ratio and clearly
inflated for the 9:1 map ratio due to confounding (Table 4). Confounding was more severe for the larger sample
size, the recessive trait model, and the larger marker-trait locus distance.

In the case of 3-G pedigrees and the additive trait model, the MOBIT H, ;, quantiles of the twopoint scenarios
were clearly inflated compared to the expected x* distribution with 1 df (Table 5). This is probably because the
true point in terms of allele-sharing of the additive model also lies on the boundary of the parameter space of
3-G pedigrees as it is for ASPs. In contrast to ASPs, however, this apparently does not lead to 1 df for the MOBIT,
presumably because the parameter space of 3-G pedigrees has a more complicated form with more boundaries.
Further, the inflation increased with increasing marker-trait locus distance, however, additional inflation of
quantiles due to confounding could not be observed (Table 5). With regard to the recessive model, the Hy ;
distribution of the MOBIT for the scenarios with 0 and 0.5 cM between marker and trait locus corresponded
well to the expected y? distribution with 1 df for all map ratios and using a sex-averaged map in the analysis
(Table 5). For the scenario with 5 cM between marker and trait locus, however, inflation of MOBIT quantiles
and hence increased type I error rates due to confounding could be observed.

As can be seen from Table 4 and Table 5, confounding of twopoint scenarios was more severe for ASPs than
for 3-G pedigrees, especially for the recessive trait model (observed type I error rates for the 5 cM twopoint
scenario and a 9:1 map ratio assuming a x? distribution with a nominal a = 5% significance level: 0.5909 and
0.144 for 600 ASPs and 65 3-G pedigrees, respectively).

3.2.2 Twopoint, sex-specific analysis

With regard to ASPs and the scenario with 0 cM between marker and trait locus, MOBIT quantiles were sig-
nificantly lower than those for the expected x? distribution due to maximization curves reaching into the left
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half-tetrahedron Typa m for ASPs in the nonimprinting likelihood for map ratios >1 (Table 4). Quantiles were
1

even lower for the scenlario with 0.5 cM between marker and trait locus and map ratios >1, especially for the
recessive trait model. The results for the 0.5 cM scenario were comparable between the two sample sizes. In
the case of the scenario with 5 cM between marker and trait locus, the deflation of quantiles was increasingly
severe for the larger map ratio, the larger sample size, and the recessive trait model.

With 3-G pedigrees, MOBIT quantiles were deflated with an increasing map ratio and an increasing marker-
trait locus distance for both trait models (Table 5). The degree to which maximization curves according to a
given sex-specific map ratio deflate the MOBIT was smaller for 3-G pedigrees compared to ASPs. This might
be due to the complexity of the parameter space for 3-G pedigrees, such that more spatial restrictions prevent
the maximization curves from reaching farther into the interior of the parameter space.

3.2.3 Multipoint, sex-averaged analysis

In the case of the 4 markers, 0.5 cM scenario, the Hy , distribution of the MOBIT for all map ratios and both
trait models corresponded to the expected y* distribution with 1 df for ASPs (Table 4). As explained above,
slightly higher quantiles for multipoint analysis are due to the increased effective number of tests compared to
twopoint analyses. With respect to the 4 markers, 5 cM scenario and the additive trait model, quantiles were
slightly inflated due to confounding for the larger sample size and a map ratio of 9:1. In the case of the recessive
trait model, quantiles were increasingly inflated due to confounding for larger map ratios and sample sizes.
Again, confounding was more severe for the recessive trait model. The scenario with 40 SNPs and a marker
spacing of 0.32 cM did not show confounding.

In summary, a marker spacing of 1 cM (corresponding to a marker-trait locus distance of 0.5 cM to both
flanking markers) seemed to be sufficient to avoid confounding, even in the case of such an extreme map ratio
as 9:1.

In the case of 3-G pedigrees and the additive trait model, MOBIT quantiles were higher than compared
to the expected y? distribution with 1 df for all multipoint scenarios (Table 5) due to the above mentioned
boundary conditions of the true point in terms of allele sharing in the parameter space of 3-G pedigrees. Slightly
higher MOBIT quantiles were obtained for the 4 markers, 5 cM scenario compared to the 4 markers, 0.5 <M
scenario. The quantiles of the 40 SNPs scenario mostly lay between the two other multipoint scenarios. Despite
the different quantiles for the three marker settings, there was no evidence for confounding for all multipoint
scenarios and the additive trait model. The corresponding quantiles for the recessive trait model corresponded
to the expected x? distribution with 1 df for all map ratios, except for the 4 markers, 5 cM scenario and a map
ratio of 9:1 due to confounding (Table 5).

Again, confounding was more severe for ASPs than for 3-G pedigrees, especially for the recessive trait model
(type I error rates for the 4 markers, 5 <M scenario and a 9:1 map ratio assuming a x? distribution with a nominal
a = 5% significance level: 0.1535 and 0.0638 for 600 ASPs and 65 3-G pedigrees, respectively).

3.2.4 Multipoint, sex-specific analysis

Due to the multipoint setting, in which the putative trait locus is confined between flanking markers, such that
the outreach of maximization curves is limited, all investigated multipoint distributions roughly corresponded
to the expected ¥? distribution with 1 df for ASPs (Table 4). There was only a slight deflation of quantiles for the
multipoint scenarios with a 9:1 map ratio and the additive trait model. The results did not substantially differ
between the two sample sizes.

In the case of the 3-G pedigrees and the additive trait model, MOBIT quantiles were higher than expected
as was explained above. Quantiles only slightly decreased with increasing map ratio (Table 5). In the case of the
recessive model, the distributions roughly corresponded to the expected y? distribution with 1 df. Apart from
the 4 markers, 5 cM scenario, MOBIT quantiles were not deflated due to a map ratio >1.

3.3 H,:Linkage, imprinting

The results of the power calculations for the twopoint scenarios and the 40 SNPs, 0.32 cM scenario can be found
in Figure 4 and Figure 5. The critical values for a test with a true type I error rate of 5% corresponded to the
respective Hy, ;, 95% quantiles of each particular scenario (Table 4 and Table 5 for ASPs and 3-G pedigrees,
respectively). In general, power was higher for the larger sample size for both pedigrees.
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Figure 4: Power to detect imprinting using the MOBIT. For more details see Figure 3.
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Figure 5: Power and estimation accuracy of imprinting index I of the MOBIT for the paternal imprinting model. Median
estimates of [ are depicted as bullets, the corresponding median absolute deviation (MAD; adjusted by a constant (1.4826)
for asymptotically normal consistency) is shown as error bars, and the larger sample size is colored in black. The scenar-
ios are sorted in increasing order based on the absolute value of I from left to right. For more details see Figure 3.

3.31

Twopoint, sex-averaged analysis, maternal imprinting

The power results for the maternal imprinting model using a sex-averaged map in the analysis can be found in
Figure 4 (columns 1-3, rows 1 and 3 for ASPs and 3-G pedigrees, respectively). For the 1 marker, 0 cM scenario,
results for map ratios larger than 1 are not shown, because if € = 0 between marker and trait locus, the existence
of sex-specific recombination fractions in the marker-surrounding genetic region is of no relevance when using
a sex-averaged map for the analysis (see also Table 4 and Table 5 for the respective type I error rates under Hy 3).
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The power of the MOBIT was not affected by the underlying map ratio in the case of the 0.5 ¢cM scenario across
both pedigree types. However, for the 5 cM scenario, larger map ratios showed slightly higher power than
smaller ones across both pedigree types. In general, power was higher for ASPs compared to 3-G pedigrees
across all investigated twopoint scenarios and was slightly lower for larger marker-trait locus distances. In the
case of the 0 cM and 0.5 cM scenarios, a power consistently >80% was obtained for an imprinting index I = 0.4
with ASPs for both sample sizes, whereas power was consistently >80% for I = 0.8 with 3-G pedigrees for both
sample sizes. The corresponding values to obtain a power consistently >80% for the 5 cM scenario were I = 0.6
with ASPs for both sample sizes and I = 0.8 with 3-G pedigrees for both sample sizes.

3.3.2 Twopoint, sex-averaged analysis, paternal imprinting

The results of the power analysis for the paternal imprinting model and a marker-trait locus distance of 5 cM
can be found in Figure 5 (left). For small to moderate imprinting degrees and a map ratio larger than 1, power
was lower compared to the corresponding maternal imprinting scenarios in Figure 4 for both pedigree types.
This is due to the fact that, in the case of ASPs, the true point in terms of allele-sharing is gradually shifted from
Tzrmnra. into Tzllm <a with increasing imprinting degrees, thereby crossing the possible triangle. In the case

of the 1:1 map ratio, however, the corresponding points in terms of allele-sharing instantly lie within Tzfm <amt

even for small imprinting degress and can exclusively be reached by the IMOD score maximization. A similar
behaviour was observed for 3-G pedigrees.

3.3.3 Multipoint, sex-averaged analysis, maternal imprinting

The power results of the MOBIT for the multipoint scenarios differed only slightly between the map ratios and
were generally higher for larger sample sizes (Figure 4, column 4, rows 1 and 3 for ASPs and 3-G pedigrees,
respectively). Power was higher for ASPs compared to 3-G pedigrees. More specifically, a power consistently
>80% was obtained for an imprinting index I = 0.6 with ASPs for both sample sizes, whereas power was con-
sistently >80% for I = 0.8 with 3-G pedigrees for both sample sizes.

3.3.4 Twopoint, sex-specific analysis, maternal imprinting

Regarding the results of the MOBIT for ASPs and the maternal imprinting model, the scenarios with a map
ratio of 1:1 had the highest power, with higher values for larger sample sizes and higher imprinting degrees,
followed by the scenarios with a map ratio of 7:3 (Figure 4, columns 1-3, row 2). The twopoint scenarios with
a map ratio of 9:1 had no power to detect imprinting, which was due to the problem of maximization curves
(Figure 2). The power even dropped below the nominal type I error rate of 5%. This can be explained by the
fact that under Hy ,, where I = 0, a MOBIT greater zero results mainly from maxima in terms of allele sharing
due to sampling variation of the simulated replicates in the right half-tetrahedron T p < (for ASPs), which
is exclusively explored by the imprinting (IMOD score) analysis. An imprinting effect I > 0 shifts the point into
the left half-tetrahedron Tzllm|>llmm, leading to maxima in the right half-tetrahedron being less likely. Due to the

maximization curves, with an assumed map ratio of 9:1, the sample maxima are covered by the nonimprinting
(MOD score) maximization as well as by the imprinting maximization, resulting in a power below 5%. In the
case of the 7:3 map ratio, the same effect is appreciable for I = 0.2, whereas for [ > 0.4, the stronger imprinting
outweighs this effect of maximization curves. In the case of ASPs, there was almost no difference in power
between the scenarios with varying marker-trait locus distances (0 <M, 0.5 cM, and 5 cM) for map ratios >1.

With 3-G pedigrees, the problem of maximization curves seemed to be smaller. The scenarios with a 1:1
map ratio and a larger sample size still had the highest power (Figure 4, columns 1-3, row 4). Interestingly, the
other two map ratios showed comparable power, with again slightly higher power for scenarios with a map
ratio of 7:3 compared to 9:1. In the case of 3-G pedigrees, power was slightly lower for larger marker-trait locus
distances. In addition, power was consistently higher for 3-G pedigrees compared to ASP analyses in the case
of a map ratio >1.
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3.3.5 Twopoint, sex-specific analysis, paternal imprinting

The power for the paternal imprinting model when using a sex-specific map in the analysis (see Figure 5, left)
was substantially higher compared to the respective maternal imprinting model for both pedigree types as
depicted in Figure 4. This is because maximization curves of the nonimprinting MOD score are restricted to
points in terms of allele-sharing that correspond to excess paternal sharing, such that points corresponding
to excess maternal sharing are exclusively covered by the IMOD score maximization. Further, the power was
higher with increasing map ratio for ASPs due to smaller empiric threshold values for the MOBIT as derived
from the respective H, |, simulations (see Table 4). The power was also higher compared to the corresponding
sex-averaged analyses, for which empiric threshold values for the MOBIT under H,, , were inflated due to
confounding (see Table 4). Conversely, the power of the 3-G pedigress was comparable to that of the respective
sex-averaged analyses and was slightly higher for smaller map ratios, similar to the findings in Results Section
33.4.

3.3.6 Multipoint, sex-specific analysis, maternal imprinting

The power results of the MOBIT for the multipoint scenarios depended only slightly on the map ratio, because
the putative disease locus is confined between flanking markers, which largely avoids maximization curves.
Power values for the 1:1 map ratio were somewhere between the 1 marker, 0.5 cM and 1 marker, 5 ¢M scenarios
with higher power observed for larger sample sizes and ASPs (Figure 4, column 4, rows 2 and 4).

3.4 Estimation ofimprinting index | in a sex-averaged MOBIT analysis
3.41 Twopointanalysis, maternal imprinting

The twopoint imprinting parameter estimation results of the sex-averaged MOBIT analyses for ASPs can be
found in Figure 6 (rows 1-3). The estimated median imprinting indices were close to their expected values for
the 0 and 0.5 cM scenarios. In the case of the 5 cM scenario, imprinting indices <0.6 were mostly overestimated,
whereas imprinting indices >0.6 were mostly underestimated. For the larger sample size, the underestimation
was less pronounced. For a given map ratio, the variation as measured by the median absolute deviation (MAD)
was highest for I = 0.6 and lowest for I = 0.2. Further, MAD was slightly lower for the larger sample size for most
investigated scenarios.
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Figure 6: Estimation of imprinting index I by the MOBIT using a sex-averaged map in the analysis of ASPs. For more de-
tails see Figure 3 and Figure 5.

The corresponding imprinting parameter estimation results for 3-G pedigrees can be found in Figure 7
(rows 1-3). Median values of the estimated imprinting indices were close to their expected values, although
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underestimated, especially in the case of lower imprinting indices. MAD was lowest for I = 0.2 and slightly
increased with larger imprinting indices and larger marker-trait locus distances, but did not substantially differ
between map ratios of a given marker-trait locus distance. MAD was lower for the larger sample size for all
investigated scenarios. For most scenarios, MAD of the imprinting index was lower for 3-G pedigrees compared
to ASPs.
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Figure 7: Estimation of imprinting index I by the MOBIT using a sex-averaged map in the analysis of 3-G pedigrees. For
more details see Figure 3 and Figure 5.

3.4.2 Twopointanalysis, paternal imprinting

The parameter estimation results for the paternal imprinting model using a sex-averaged map in the analysis
can be found in Figure 5 (right, rows 1 and 3). The results for both pedigree types and the 1:1 map ratio were
comparable to those of the respective maternal imprinting scenario (see Figure 6 and Figure 7, row 3). Specif-
ically, the point estimate of the imprinting index was either close to or slightly less negative than its expected
value. In the case of a map ratio larger than 1, estimates were often less negative than the expected values.
This is because excess maternal allele-sharing at the disease locus is attenuated by a longer female genetic map,
which reduces the maternal sharing excess at the marker locus.

3.4.3 Multipoint analysis

The multipoint results of the imprinting parameter estimation for the sex-averaged MOBIT analyses using ASPs
can be found in Figure 6 (row 4). Estimated median imprinting indices were close to their expected values across
all map ratios. MAD was highest for I = 0.6 and lowest for I = 0.2. MAD was lower for the larger sample size,
for most investigated scenarios, and did not substantially differ between map ratios.

The corresponding results for 3-G pedigrees are shown in Figure 7 (row 4). Imprinting indices were slightly
underestimated across all map ratios. The underestimation was even a bit stronger than for the twopoint sce-
narios in the case of the 7:3 and 9:1 map ratios. MAD was lowest for I = 0.2 and slightly increased with larger
imprinting indices. Again, MAD was lower for the larger sample size and was comparable with respect to dif-
ferent map ratios. In addition, MAD of the imprinting index was lower for 3-G pedigrees compared to ASPs.

3.5 Estimation ofimprinting index | in a sex-specific MOBIT analysis
3.51 Twopoint analysis, maternal imprinting

The twopoint results of the estimation of the imprinting index I using a sex-specific map in a MOBIT analysis
using ASPs can be found in Figure 8 (rows 1-3). Apart from differences due to sampling variation, the results
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for the 1:1 map ratio were identical to the corresponding scenarios in Figure 6 for the sex-averaged analysis (col-
umn 1, rows 1-3). With increasing map ratio, however, imprinting indices were significantly underestimated,
especially in the case of smaller imprinting degrees (I < 0.8). This was due to maximization curves reaching into
the left half-tetrahedron Tzllmﬂi...., as it was explained above (Results Section 3.3.4), which also applies to the
maximization under imprinting. In the case of a map ratio >1, the corresponding variation in terms of MAD
was slightly higher for larger imprinting indices, compared to the corresponding sex-averaged MOBIT analy-
sis (Figure 6, rows 1-3), but markedly lower for the scenarios with smaller I, in which imprinting indices were
significantly underestimated. MAD was comparable between the two sample sizes.
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Figure 8: Estimation of imprinting index I by the MOBIT using a sex-specific map in the analysis of ASPs. For more de-
tails see Figure 3 and Figure 5.

The results of the imprinting parameter estimation using 3-G pedigrees are depicted in Figure 9 (rows 1-3).
As with ASPs, results for the 1:1 map ratio with 3-G pedigrees were identical to the corresponding scenarios
in Figure 7 for the sex-averaged analysis (column 1, rows 1-3). Estimated median imprinting indices were un-
derestimated across all map ratios and marker-trait locus distances. MAD increased from I = 0.2 over [ = 0.4 to
I = 0.6, with comparable variation for I > 0.6. Further, MAD slightly increased with larger marker-trait locus
distance and map ratio. Compared to the results for ASPs (Figure 8, rows 1-3), a better imprinting parameter
estimation accuracy in terms of lower bias and variability was obtained for 3-G pedigrees and map ratios >1.
This was in accordance with the finding that 3-G pedigrees showed higher power than ASPs in a sex-specific
MOBIT analysis for map ratios >1, probably due to a reduced effect of maximization curves (see Results Section
3.3.4).
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Figure 9: Estimation of imprinting index I by the MOBIT using a sex-specific map in the analysis of 3-G pedigrees. For
more details see Figure 3 and Figure 5.

3.5.2 Twopointanalysis, paternal imprinting

The imprinting index estimation results for the paternal imprinting model using a sex-specific map in the anal-
ysis can be found in Figure 5 (right, rows 2 and 4) for both pedigree types. Estimation accuracy was generally
better compared to the maternal imprinting scenario, especially for ASPs (see also Figure 8). This is due to a
less distinguished effect of maximization curves, which particularly affects allele-sharing points in the other
half tetrahedron T, 2 gt In the case of ASPs, imprinting indices for scenarios with I < 0.6 were overestimated,

whereas those with I > 0.6 were underestimated. The corresponding results for 3-G pedigrees, however, were
similar to the sex-averaged analysis due a less pronounced effect of maximization curves compared to ASPs.

3.5.3 Multipointanalysis

The results of the multipoint scenarios using a sex-specific map in the analysis for ASPs can be found in Figure
8 (row 4). The results were similar to the corresponding sex-averaged analyses (Figure 6, row 4). In particular,
estimated median imprinting indices were close to their expected values across all map ratios. MAD was highest
for I = 0.6 and lowest for I = 0.2. MAD was lower for the larger sample size for most scenarios and did not
substantially differ between map ratios.

The multipoint results for 3-G pedigrees are shown in Figure 9 (row 4). As with ASPs, the results were
similar to the corresponding sex-averaged analyses (Figure 7, row 4). In particular, imprinting indices were
slightly underestimated across all map ratios. MAD was lowest for I = 0.2 and slightly increased with larger
imprinting indices. Again, MAD was lower for the larger sample size and was comparable with respect to
different map ratios. In addition, MAD of the imprinting index was lower for 3-G pedigrees compared to ASPs
(Figure 8, row 4).

3.6 Realdata example on house dust mite allergy

The MOBIT results for all investigated chromosomes can be found in Table 6. Assuming an IMOD score larger
than 4 to be an informative linkage signal, an empiric p value was simulated using the two proposed MOBIT
simulation/permutation procedures for the result on chromosome 8 near marker D8S511 (IMOD score = 4.9675,
MOD score = 3.186, MOBIT = 1.7815, best-fitting nonimprinting model: p = 0.07, f,=0.0, f; =0.0001, f,=0.0;
best-fitting imprinting model: p = 0.14, fo =0.002, f; py =0.06, f; e = 0.0, f; = 0.0, maternal imprinting).
The empiric p value obtained using method bfnm was p = 0.02, whereas it was p = 0.18 using method pern.
We also repeated the analysis using a sex-averaged map and obtained similar results (IMOD score = 5.1301,
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MOD score = 3.2081, MOBIT = 1.9219, p = 0.005 using method bfim and p = 0.178 using method perm). This
finding illustrates that there may exist various ways to construct a valid simulation/permutation test, whereby
the choice that maximizes power with simultaneous control over the type I error rate presumably depends
on the underlying null hypothesis, the actual trait model and investigated pedigree types (see also Churchill
and Doerges (2008)). In the case of the house dust mite data, method perm might have been less powerful than
method bfnm. The corresponding results for the investigated scenarios in Appendix C also showed differences
between the two methods for both sex-averaged and sex-specific analyses. In the case of ASPs and when the
correct sex-specific map was used in the analysis, differences might be due to the fact that the conditional null
hypothesis underlying the perm method implies an invariant nonimprinting maximum likelihood estimate for
the point in terms of allele-sharing (‘preserved linkage’), such that there is no effect of maximization curves
for the permuted replicates in a sex-specific nonimprinting MOD score analysis. Therefore, permuted repli-
cates almost always lead to points in terms of allele-sharing that are exclusively reached by the IMOD score
imprinting maximization (see Appendix Figure 11). As to the method bfnm, due to maximization curves, the
nonimprinting maximum likelihood estimate has good chance to be close to the one obtained by the imprinting
maximization for every simulated replicate, which leads to smaller quantiles of the null distribution compared
to method perm.

Table 6: Results of the MOBIT real data application on house dust mite allergy using a sex-specific map in the analysis.

Chromosome Length in cM MOD IMOD MOBIT
1 238.3 2.5933 2.5933 0
2 240.8 1.9577 3.1872 1.2294
3 147.7 0.8161 2.2488 1.4327
4 153.6 3.7896 3.7991 0.0095
5 140.3 3.1719 3.1771 0.0051
6 154.4 24707 3.2292 0.7584
7 124.9 2.772 3.2912 0.5193
8 41.7 3.186 4.9675 1.7815
9 0 0.602 0.602 0
10 129.3 2.2501 2.5753 0.3253
11 138.25 2.939 3.6833 0.7443
12 101.4 1.5531 1.8384 0.2853
13 87.9 2.8297 2.8297 0
14 37.6 1.03 1.1569 0.1269
15 53.8 1.572 1.6267 0.0548
16 67.3 3.0966 3.1161 0.0195
17 13.4 2.0128 2.0413 0.0286
18 104.7 1.3458 1.3458 0
19 58.5 1.526 2.1838 0.6578
20 0 0.1522 0.1522 0
21 27.5 1.055 2.076 1.021

Length in ¢cM: Length of the chromosomal segment covered by the typed markers. Values in bold indicate the most promising imprinting
test result, for which an empiric p value was calculated using the two proposed MOBIT simulation/permutation procedures.

4 Discussion

Linkage-based testing for genomic imprinting is a challenging task. This holds true for both parametric and
nonparametric linkage analysis methods. In this paper, we proposed the likelihood ratio test statistic MOBIT
as a new test for imprinting, which is based on the parametric MOD score approach (Clerget-Darpoux, Bonaiti-
Pellié & Hochez, 1986; Risch, 1984). The MOBIT is not restricted to the analysis of certain pedigree types, offers
quantification of imprinting, does not assume independent parental meioses, and can readily be calculated us-
ing the GHM software package (Brugger & Strauch, 2014; Dietter et al., 2007; Mattheisen et al., 2008; Strauch,
2003), which also allows usage of sex-specific maps in the analysis. Although the MOBIT can be considered
as a canonical approach to test for imprinting in the presence of linkage, the null distribution of the MOBIT
depends on the truly underlying but generally unknown mode of inheritance, i.e. disease allele frequency and
penetrance function, which corresponds to a certain point in terms of allele-sharing within the allele-sharing
parameter space of a given type of pedigree (see Figure 1 for the example of ASPs). We have shown that the
MOBIT asymptotically follows a y? distribution with 1 df irrespective of the pedigree type (see Appendix A.3).
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In the special case of no linkage, the MOBIT follows a mixture of distributions that includes non-y? components
(see also Self and Liang (1987), case 8, pp. 608-609). As shown in this paper, this leads to quantiles that can be
larger than those obtained assuming x> with 1 df (see Table 3 for 3-G pedigrees). Generally, imprinting tests
based on linkage test statistics are only advised in the case that linkage can be assumed to be present. But even
in the presence of linkage, the quality of the asymptotic approximation of the MOBIT distribution strongly
depends on the truly underlying mode of inheritance. If the true point in terms of allele-sharing lies near the
boundary of the parameter space, MOBIT quantiles can be smaller or larger than those obtained assuming x?
with 1 df. The degree of deviation from the asymptotic distribution directly depends on the structure of the
parameter space of a given pedigree. Presumably, allele-sharing parameter spaces become more complicated
with increasing pedigree complexity, which in turn means that more boundary conditions are to be expected
with more complex pedigree structures. This assumption was underpinned by the present study, such that
MOBIT quantiles for the additive trait model and the 1:1 map ratio corresponded to those expected assum-
ing a x* distribution with 1 df when ASPs were used in the analysis, whereas quantiles were clearly inflated
when using 3-G pedigrees (Table 4 and Table 5, respectively). To circumvent the uncertainty about the qual-
ity of the asymptotic approximation of the MOBIT distribution, we proposed the ab initio simulation (method
bfm) of genotype data based on the best-fitting nonimprinting model obtained from the real dataset MOD
score analysis. Alternatively, we developed a permutation procedure (method perm) similar to those proposed
in Whittaker et al. (2003) and Dong et al. (2005), which generates replicates under the null hypothesis of no im-
printing effect, conditional on the linkage information of the real dataset. During the permutation, the parental
origin of transmitted alleles is randomized, while genotypes and hence linkage information are preserved (see
Appendix C for more details). We have investigated the distributions of MOBIT scores using both methods
bfnm and perm. However, both methods do not compensate for confounding (see Appendix Table 8). In addi-
tion, empiric quantiles and p values differed between the two methods due to differences in the underlying null
hypotheses and sample spaces. Using a real data example on house dust mite allergy, both methods to obtain
empiric values were compared, which, however, led to different results. This finding indicates that differences
in null hypotheses of the two tests may lead to different results and conclusions, especially for the analysis of
complex pedigree data.

Another aspect in linkage-based imprinting testing is the confounding between genomic imprinting and
sex-specific recombination fractions. This affects both parametric and nonparametric linkage methods. With
respect to the MOBIT, type I error rates were increased under the null hypothesis of linkage but no imprinting
(Hy, ) due to confounding of imprinting and sex-specific recombination fractions in a sex-averaged twopoint
analysis for both ASPs and 3-G pedigrees (top of Table 4 and Table 5, respectively, map ratios >1). Confounding
was more severe for ASPs, the recessive trait model, the larger sample size, and the larger map ratio. In general,
confounding is expected to be more severe for trait models with higher allele-sharing, such as the recessive
model used for our simulations, because power to detect linkage and hence the potential of confounding is
stronger in such a case. The same argument holds true for the larger sample size. In the case of ASPs, the H;
distribution of the MOBIT for the 1:1 ma}) ratio under the additive and recessive trait models did not show
confounding and followed the assumed y* distribution with 1 df. In the case of 3-G pedigrees, the correspond-
ing MOBIT quantiles were inflated for the additive trait model, probably because the true point in terms of
allele-sharing lies on the boundary of the parameter space of 3-G pedigrees. In contrast, the MOBIT followed
the assumed y? distribution with 1 df for the recessive trait model, which was expected for non-boundary con-
ditions, irrespective of the pedigree type (see Appendix A.3). Using a multipoint analysis avoided confounding
as long as the marker spacing was sufficiently dense. We were able to show that a marker spacing of 1 cM be-
tween two consecutive markers (marker-trait locus distance 0.5 cM) was sufficient to avoid confounding across
both investigated pedigree types and all map ratios (top of Table 4 and Table 5). However, a marker spacing
of 10 cM between two consecutive markers (marker-trait locus distance 5 cM) led to confounding, with higher
inflated type I error rates for the recessive trait model and for ASPs (top of Table 4 and Table 5).

With regard to the results of the sex-specific analyses (bottom of Table 4 and Table 5), type I error rates of
the MOBIT were not inflated due to confounding for both pedigree types and trait models. However, type I
error rates were deflated for the MOBIT for the twopoint scenarios and—to a lesser extent—for the 4 markers,
10 ¢M scenario due to the problem of maximization curves as depicted in Figure 2. Interestingly, the effect
of maximization curves was less pronounced for 3-G pedigrees, which indicates differences in the parameter
spaces between nuclear families and extended pedigrees. In addition, the effect of maximization curves seemed
to be slightly more severe for the recessive trait model, although this was only seen for ASPs (bottom of Table
4).

Apart from the type I error rate, we also assessed the corresponding power of the MOBIT to detect imprint-
ing. As expected, power to detect imprinting was higher for the larger sample size in all scenarios. In the case
of a map ratio of 1:1, power was generally higher for ASPs (Figure 4 and Figure 5). With regard to the power
calculations when using a sex-averaged map for the analysis, the MOBIT had reasonable power to detect im-
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printing across all investigated marker scenarios, map ratios, and pedigree types (Figure 4 and Figure 5). The
power of the MOBIT only slightly depended on the truly underlying map ratio for the 1 marker, 5 cM scenario
and—to a lesser extent—for the 40 SNPs, 0.32 <M scenario for both pedigree types. Due to the maximization
curve problem, the MOBIT had almost no power in the sex-specific twopoint analyses with map ratios >1 using
ASPs for the maternal imprinting model (second row of Figure 4). With 3-G pedigrees, however, the MOBIT
had markedly better power for all map ratios than with ASPs (last row of Figure 4). With regard to the mul-
tipoint results using 40 SNPs, the MOBIT showed good power to detect imprinting for both pedigree types.
Using a paternal imprinting model, in which the nonimprinted sex now has the longer genetic map, the power
to detect imprinting was reasonably high for sex-averaged and sex-specific analyses as well as for both pedigree
types (Figure 5).

Although the power to detect imprinting is bounded from above by the power to detect linkage, this does
not imply that the power to detect imprinting must be similar for different pedigrees showing similar power
to detect linkage. Put another way, imprinting information is not equivalent to linkage information. Along
these lines, ASPs had generally greater power to detect imprinting than the 3-G pedigrees used in our simu-
lations, although the datasets for both pedigree types contained equal amounts of linkage information due to
adjusted sample sizes. This is because the 3-G pedigree was constructed such that, for maternal imprinting, a
considerable proportion of phenocopies and/or carriers of maternally inherited mutant alleles were simulated
as affected individuals 8 and 9, because of the mother individual 5 propagating the mutant allele down the
pedigree (see Figure 3B). The mutant allele might also have entered the pedigree through founder individual
3 (spouse of mother individual 5), although this being less likely in regard of the rather small disease allele
frequency of p = 0.1.

Using MOD scores, it should in principle be possible to obtain unbiased estimates of the trait-model param-
etersfo, fi pats f1, wats f2, and p (Elston, 1989). This is due to the fact that the likelihood ratio in the MOD score
corresponds to the conditional probability of observing the marker data given the trait phenotypes (Clerget-
Darpoux, Bonaiti-Pellié & Hochez, 1986). However, the identifiability of the trait-model parameters actually de-
pends on the number of free parameters in terms of allele-sharing classes of the investigated pedigree type(s).
With ASPs, the allele-sharing classes are z,, z! o z**, and z, when taking imprinting into account. Hence,
as there are only 4 — 1 = 3 free parameters that can be estimated from ASP data, there will be many sets of
for fipatr fimats f2, p,and 6 that correspond to the estimated z,, 2 “ ziet and z,. With larger pedigtees, and
hence more allele-sharing classes, the degree to which the trait-model parameters can be determined should be
higher. Further information reffering to the ability of a MOD score analysis to correctly determine the truly un-
derlying trait-model parameters for different pedigree types can be found in Brugger, Rospleszcz, and Strauch
(2016). Here, we were interested in the ability of a MOBIT analysis to correctly estimate the degree of imprint-
ing, as defined by the imprinting index I (Strauch, 2005). As a result, the estimated median imprinting indices
of the two- and multipoint analyses assuming a sex-averaged map were close to their expected values for ASPs
and the maternal imprinting model, except the 1 marker, 5 cM scenario, for which indices were overestimated
when <0.6 and underestimated when >0.6 (Figure 6). In the case of 3-G pedigrees, imprinting indices for the
maternal imprinting model were mostly close to their expected values, although always underestimated (Figure
7). In the case of the paternal imprinting model, estimates of the imprinting index were often underestimated
for both pedigree types due to the longer genetic map of the nonimprinted sex (Figure 5). The results of the
sex-specific analyses for ASPs and the maternal imprinting model in Figure 8 indicated that the estimates were
biased towards lower values due to the maximization curve problem, which is in line with the reduced power
values shown in Figure 4. The estimates for the 3-G pedigrees, however, were only slightly different from those
of the corresponding sex-averaged analysis (Figure 9). Specifically, estimated median imprinting indices were
again always underestimated, but to a slightly more severe degree than it was for the sex-averaged analysis. In
contrast, in the case of the paternal imprinting model, imprinting indices could be estimated more accurately
using the correct sex-specific map in the analysis for both pedigree types (Figure 5). Generally, imprinting
indices could be estimated more accurately using ASP pedigrees, because they harbour more imprinting in-
formation compared to the 3-G pedigrees studied here, although power to detect linkage was similar for both
pedigree types (see also explanation above).

Referring to the question whether to opt for a two- or multipoint approach in a MOBIT imprinting analy-
sis, multipoint analysis should generally be preferred, because it showed good power irrespective of the truly
underlying map ratio and whether or not the correct sex-specific map was used in the analysis (see Figure 4).
Moreover, quantification of imprinting in terms of the imprinting index I is more reliable in the multipoint
setting, especially when marker spacing is dense.

It is of note, however, that differences in heterozygote penetrances might also be caused by another parent-
of-origin effect, namely maternal effects. Maternal effects refer to the phenotype of an individual being influ-
enced by the genotype of the mother (Han, Hu & Lin, 2013), whereby it can induce the same phenotypic pattern
in the offspring as genomic imprinting (Hager, Cheverud & Wolf, 2008). Hence, maternal effects and genomic
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imprinting are confounded and cannot be distinguished using the MOBIT or any other existing nonparametric
linkage method by looking at different heterozygote penetrances or parental allele-sharing values, respectively.
A way to separate maternal effects from genomic imprinting has been proposed for parent-offspring data and
was investigated in the context of quantitative trait loci by Hager, Cheverud, and Wolf (2008). An extension of
the MOD score approach that allows to distinguish maternal effects from imprinting would be an interesting
future research item, because this would further refine the possibility of the MOD score approach to character-
ize the disease gene variant, based on trait-model parameter estimates as shown by Brugger, Rospleszcz, and
Strauch (2016).

In this work, we have proposed the new imprinting test statistic MOBIT and evaluated its properties using
extensive simulations. With regard to the effect of confounding, the MOBIT showed inflated type I error rates
when the marker spacing was not dense enough (> 1 cM), which can be remedied by using sex-specific maps.
However, sex-specific twopoint analyses should be avoided, because the test for imprinting has no power when
the underlying genetic map ratio is large, which is due to the so-called maximization curve problem. When a
sufficiently dense marker map with a marker spacing of less than 1 cM is used in the analysis, the difference be-
tween sex-specific and sex-averaged maps is marginal, if not negligible. In such a case, the MOBIT did not show
an effect of confounding, had good power to detect imprinting, and was able to reliably estimate the degree of
imprinting, the accuracy of which depended on the pedigree type used in the analysis. Hence, we recommend
the usage of sufficiently dense marker frameworks to avoid both confounding of sex-specific recombination
fractions and imprinting as well as low power due to the maximization curve problem. In addition, we pro-
posed two alternative simulation/permutation methods to obtain empiric p values for the MOBIT and com-
pared them using a real dataset and various scenarios of the main simulation study. In general, we recommend
to apply the method bfnim, which relies on the fully parametric ab initio simulation of genotypes according to the
best-fitting nonimprinting model obtained from the real dataset analysis, because it is the canonical approach
to generate replicates under the null hypothesis of linkage, but no imprinting. Replicates for the method bfnmn
can readily be generated using the SLINK software package (Ott, 1989; Weeks et al., 1990; Schiffer et al., 2011).
However, there might be situations in which the null hypothesis of method perm, i.e. no imprinting effect, con-
ditional on the linkage information of the real dataset, might also prove useful, e.g. when the research interest
lies in testing a null hypothesis that is confined to the exact realisation of the real dataset. We implemented the
perm method in a new version of the GHM software package. Taken together, the MOBIT is a recommendable
tool to discover new imprinted loci and offers good flexibility with regard to marker scenarios and pedigree
types.

The imprinting test statistic MOBIT and a corresponding p value according to the perm method can be
calculated using the GENEHUNTER-MODSCORE program, which has recently been optimized to provide
a fast linkage analysis with evaluation of many sets of trait-model parameters by algebraic computations
(Brugger & Strauch, 2014). The program can be freely downloaded from our website http:/ /www.helmholtz-
muenchen.de/ige/service/software-download /index.html.
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A Appendix

A1 Proof of the equivalence of the nonimprinting and imprinting likelihood in the test forimprinting
using affected sib-pairs (ASPs) in the case of no linkage

An ASP with arbitrary genotype information (missing or non-missing) for parents and offspring is given. With-
out loss of generality, allele sharing at a single marker is considered. The following equality is to be shown:

1 1 1 1 il 1 1 1 1
Zl:! (wl-o . ; + wjy - E + Wy - ;) = 11:! (wio . ; + Wyypat - 71 + Wjymar - ; + Wiy - Z) (3)

with

P(ibd; = jIgof, i) - P(oft, i) @
P(ibd; =)

wi; = P(gof, libd; = j) =

P(g,4, 1): probability of genotypes of both offspring for the i-th ASP

pat/mat: determines parental, i.e. paternal or maternal, origin of the shared allele in the imprinting likelihood
formulation

P(ibd; = j): probability of sharing j =0, 1, 2 (or 0, 1pat mat 2 with imprinting) alleles identical-by-descent
(IBD) for the i-th ASP under the null hypothesis of no linkage, which is {%, 3 i} for the nonimprinting and

{%, %, i, i} for the imprinting likelihood, respectively

P(ibd; = j| 8o ;) probability of the i-th ASP sharing j =0, 1, 2 (or 0, 17, 1" 2 with imprinting) alleles IBD,
conditional on offspring genotypes, which s {z;,, z;;, z;,} for the nonimprinting and {z,—o, 2 t, zZmat, z,-z} for
the imprinting likelihood, respectively

In order to show that equation (3) holds, it is sufficient to show that the corresponding equality holds for each
ASP:

1 1 1 1 1 1 1
Wi * Z + w;y - E +ZU,-2'Z = Wy, * Z-O-w“,m: . Z + Wiymat Z + Wiy Z ®)
Given the assumption that w;; and w; do not change when the case of ibd = 1 shared allele is distinguished
according to its parental origin, this reduces to:

1 1 1
Wiy - 5 = Wjypat * Z + Wjymar - ‘_1
Wjypat + Wiymat ©)
Wiy = f

Using equation (4), we can write for the right side of equation (6):

P(ibdl = l‘um‘gnﬁ, 1) . P(Soff, 1)

1

4
1mm‘|goff, 1) . P(goff, 1)

i
=4 P(goff, 1) . {P(ibdl = 1pnt|goﬂ, 1) + P(ibdl = lmatlgoﬂ, 1)}
=4. P(goff, 1) - P(ibd, = 1180k, 1)

Wiypat + Wigmat =

, Puibd,

@)

The last step holds because z,, = 2" + z/19t, For w;;, we get:
_ P(ibd; = 1igo, 1) - P(Sof, 1)
- 1

p ®)
=2 P(gof, 1) - Pibd; = 1Igof, 1)

Wiy
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Replacing last line of equation (7) and last line of equation (8) into the last line of equation (6), we get:

2 {Z'P(goff, 1) - P(ibd; = 18,4, 0} =4-P(gof, 1) - Plibd; = 1igog, 1) 9)

Since this holds in general for each ASP, it follows that equation (3) holds for the entire dataset with any number

of ASPs.

A.z Proofofthe equivalence of the nonimprinting and imprinting likelihood in the test for

imprinting using arbitrary pedigrees in the case of no linkage

An arbitrary pedigree type with arbitrary genotype information (missing or non-missing) for founders and
nonfounders is given. Without loss of generality, allele-sharing at a single marker is considered. The numbers
of shared alleles IBD for affected relative pairs are generalized to allele-sharing classes for arbitrary pedigree
structures (see also Brugger and Strauch (2014)). The following equality is to be shown:

J€T wonimp n J€%imp

—

=1 j=0 i=1 j=

P(ibd; = jlgog, 1) P(Got, 1)

(o Pt =) =T Y (s P, =) a0
0

wif = P(goff, i‘ibdi = ]) = P(ibd- :/)

(11

with 7}, denoting the set of allele-sharing classes without imprinting and 7,,,, denoting the set of allele-
sharing classes with imprinting.

e P(g,f +): probability of genotypes of all offsprings for the i-th pedigree

e P(ibd; = j): probability of allele-sharing class j for the i-th pedigree under the null hypothesis of no linkage,

which is a constant value

e P(ibd; = j| 8o ;): probability of allele-sharing class j for the i-th pedigree, conditional on offspring genotypes

In order to show that equation (10) holds, it is sufficient to show that the corresponding equality holds for each

pedigree:

For those allele-sharing classes that are identical with and without imprinting,

Zimp» the corresponding wj; are identical. Hence, equation (12) reduces to:

impr

WET yonimp Vnonimp \Vimp)

€T wanimy €y
Y (wy-Plbd; =) =) (w;-Plibd; =) (12)
j=0 j=0

i.e. those contained in 7;,5,,,, N

(w;; - P(ibd = j)) = > (w;; - P(ibd = ) (13)

we‘V,mP (7, n‘V,mp)

nonimp!

We now plug in equation (11) into equation (13) to get the following:
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P(ibd = jIgos) - P(&oss)
P(ibd = j)

- .
WEY onimp Vnontmp Y tmp)

) 5 P(ibd = jIgog) - P(8oit) P(ibd

L . P(ibd = |
WEV iy P namimpPip) ( )

(P(ibd :].‘goff) 'P(gol‘f))

WED wonimp (P nonimpNVimp)

_ Z (P(ibd = jIgog) - P(Qofe))

WET sy (P omimp Y imp)
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P(goft) - > P(ibd = flgog)

r 7 ’
WE%«eou[wy (7 nonimp rﬁiwp)

= P(goﬁ) : Z P(ibd =]"gnﬁ)

WE iy (P wonimp P imp)s

(16)

Y P(ibd = figot)
WE i PwoningFina) an
= Y P(ibd = jlgq)

WET jp (Vnonimp NV imp)

Given that the sum of IBD probabilities of non-overlapping allele-sharing classes without imprinting must equal
the corresponding sum with imprinting, the likelihoods are identical. This also extends to datasets containing
mixtures of different pedigree types.

A.3  Proofthatthe MOBIT follows a y” distribution with 1 degree of freedom under the null
hypothesis of linkage but no imprinting for arbitrary pedigrees

Given the proof in Appendix A.2, the MOBIT for arbitrary pedigree types, corresponding to equation (1) in
the Methods section for the special case of ASPs, can also be written as a likelihood ratio of the nonparametric
likelihoods taking imprinting into account (numerator) vs. not taking imprinting into account (denominator).
The nonparametric allele-sharing probabilities z can be further expressed as functions of the penetrances, the
disease allele frequency, and the recombination fraction (see also Brugger and Strauch (2014)):

L (Z:
MOBIT = log,, ﬂ
A

nonimp )

L(
L (Zimp(le fi patr i mats for B, 9))
L (znonimp(ﬁ)f Fus for B, 9))
L (for f1 pats fr mats for P 9)
L(fo fis for . 0)

, where Zipy, Znonimpr f;, ﬁ, ﬁ patr fl mats fz, p, 8 denote the maximum likelihood estimators (MLEs) of the re-
spective parameters. Likelihood ratio theory tells us that the ratio in equation (18) follows a x? distribution
with the number of degrees of freedom equal to the difference of independently maximized parameters in the
numerator vs. the denominator (Wilks, 1938), which equals 1 in our case. Further, the hypothesis in the de-
nominator should be a nested composite hypothesis of the one in the numerator (Wilks, 1938), which is true,
because fixing f1 pat = f1, mar in the numerator corresponds to the likelihood in the denominator. It is of note,
however, that the asymptotic distribution no longer holds in the case of boundary conditions with respect to
the alternative hypothesis in the numerator (Self & Liang, 1987). In such a case, the empiric MOBIT distribution
quantiles can be lower or higher than those expected for a x? distribution.

= log,, (18)

= logy,

B Appendix
B.1 Proofthat the marker-trait locus distance is identifiable in a MOD score analysis using ASPs if: i)

sex-specific recombination frequencies are present and used in the analysis; and ii) imprinting is
truly absent

Let (f;, fl} pat’ J:x, matr );0, l;) and (f;’ ffpan fr o £3 p*) be two genetic disease models without imprint-

. . s " . ~ ~  o~pat o omat . .
ing, ie. fl,pm‘:fl, ot And f pat = St mar, and u= (uz, uy,o, uc) + (1/4, 1/4, 1/4, 1/4) and u* =
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(u?z*, uIP "“, uymat, u{;) # (1/4, 1/4, 1/4, 1/4) the corresponding IBD distributions at the disease locus with
~pat  _mat ~ ~
ui =i; and u}” at ;™ Further, ,,#6; and 65, # 05 are sex-specific recombination frequencies (im: male;

f: female) and Z and z* are the IBD distributions at the marker locus that are induced by the sex-specific recom-
bination frequencies. Proposition: From z= z*, it follows:

S
Cf =—Cy (19)
Cm
with @::é} +(1- 6p)? =05, E,,,::éf,, +(1— 9,,)—0.5 and Ci = 674+ (1-67)" =05, Gy, 1= 637+ (1—6;,)7 =05
Proof:
With
T, ¥p) =
‘Pm‘l’f lﬁm(l—lﬁ’f) (1_¢m)¢f (l—le)(l—‘Pf)
(Pm(l_lpf> lﬁmlﬁ’f (1_¢m)(1_¢f) (1—‘/’;71)%
(=) ¥y A=) (A = 9p) Pm¥r P (1= p)
(1—%;)(1—4’[) (1_¢m)¢j 'Pm(l—‘PJ) lprny]f

we have z= T(,,,, f)- i and hence
~pat  .mat ~ ~ ~ ~
21 T :(q’m“lpf)‘(uz"“())/

2y —Zg= (li’m + l?’f —1) - (1 — 1iy).

Let now be 5(¢,,,, ¥5) =

anz’l’f — ¢, (1 - fl’;) -(1- wm)wf (=) (1= le)
-lpm(l"qu) wmlpf (l_wm)(l"lpf) "(1'1/’m)1/’f
A=) (=) (1) Py —Pm (1 =)

(1"lpm)(1"lpf) —(1"%1)% "ll’m(l“l/’f) wnle

It can be shown that T‘l(ll’m, ij) = * S, ¥p). Due to z= z* we have u* =

1
("p%p;*(1*4’r,:)2)'(U’f*(]-*w;)z)
T (¥}, ¥p)- Z and hence also

wpat ~pat ~mat

0 = W™ = (g — ) - By — E) 4 P+ g - D G =5
= [ =i B+ =0 = @+ 45— 0 Gy = B0 | Gy — )
=91 @8 -0 =g o -0+ Gy = 0| iy =)
= 2(C Cp =Cire Cp) - (il = 1lg)

Due to u # (1/4, 1/4, 1/4, 1/4) we have i, — #,> 0, which leads to proposition (19). It remains to be shown
that for two pairs (ém, 5/;) and (6}, Bf*), for which equation (19) holds and for which the ratios of genetic map

distances (using the Haldane mapping function) are identical, §,,= 67, and éf: 07 is always true. To this end,
it should be noted that the range of values for C(¢) = 6* + (1 — )% — 0.5 corresponds to the interval (0, 1/2) if
0 € (0, 1/2) and that C((1 — v2U)/2) = U. Hence, for the genetic distance xf corresponding to Bf’f we have

xt =05 (1-2- (1- \/ﬁ) /2) = ~0.2510g(2C})and
X B logZCf

x, log2Ce,’
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With 5::(} / (ij we hence get

X _ log2 acs
x5 log 2C;,
if (65, 9):’) fulfill equation (19).

In the same line,

?;_f _ log2a” 61,,

X log2 (ij

holds with a* := C;/C,*n and 2= a* := a due to equation (19).
If then

*

7

*
Xm

3R1|\2

it follows from the strict montony of the function g(v) = lffu((i";)) for v € (0, 1/2) that am: C;, and also, due to

equation (19), Ef: Cj’;. Finally, due to the strict monotony of the function C(6), it follows 8,,= 0%, and éf: or.

Furthermore, the identifiability of the disease locus position for ASPs in a sex-specific MOD score analysis
could experimentally be confirmed using the scenario of the main simulation study with 5 cM marker-trait
locus distance (Appendix Table 7). The results further indicated that the position is also identifiable using 3-G
pedigrees, even in the case of no sex-specific differences in the recombination fraction.

Table 7: Estimated median marker-trait locus distances under H;, ,: Linkage, no imprinting when using the sex-specific
map in the nonimprinting analysis as employed for the simulation.

True marker-trait locus distance: 5 cM Estimated median marker-trait locus distance (MAD)
Map ratio 600 ASPs 65 3-G pedigrees

additive recessive additive recessive
1:1 21(14.83) 9 (5.93) 3 (4.45) 5(7.41)
7:3 5(7.41) 5 (4.45) 4 (5.93) 5(7.41)
9:1 5(7.41) 5(2.97) 4 (5.93) 5 (4.45)

MAD: median absolute deviation, adjusted by a constant (1.4826) for asymptotically normal consistency. ASP: affected sib-pair; 3-G
pedigree: three-generation pedigree.

C Appendix

C.1  Description and results of the newly developed MOBIT permutation procedure (method perm)

In brief, replicates under the null hypothesis of an expected imprinting effect of 0, conditional on the linkage
information of the real dataset, are generated by leaving the marker genotypes of the real dataset untouched,
while the parental origin of the alleles in the offspring is randomly permuted for each permutation unit in a
given pedigree. Here, a permutation unit is defined as a nuclear family or, in the case of half-sibs, as a set of nu-
clear families, whose parents are connected by matings with joint offspring. After identification of permutation
units, randomization of imprinting information is achieved by manipulation of the parametric disease-locus
likelihood, where each inheritance vector in the Lander-Green algorithm (Lander & Green, 1987), on which
GHM is based, is assigned a score as a function of the disease allele frequency and the penetrance values (see
also Brugger and Strauch (2014) for more information on the Lander-Green algorithm and the disease-locus
likelihood as implemented in GHM). Each inheritance vector score is then weighted by the corresponding
probability of the marker genotype data given the particular inheritance vector. It can be shown that certain
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inheritance vectors can be collapsed into classes on the basis of the equality of their disease-locus likelihood
contribution (Brugger & Strauch, 2014). In the case of imprinting, where two heterozygote penetrances are
modeled, there is a larger number of inheritance vector classes than without imprinting. This is because cer-
tain inheritance vector classes without imprinting split up in two or more classes by replacing each factor of
the heterozygote penetrance (f;) by the corresponding parental-origin-specific value (] o Or f7 yuar)- It is these
inheritance vector classes that get randomly permuted for a given permutation unit of a pedigree in each new
replicate. It is of note, however, that confounding between imprinting and sex-specific recombination fractions
cannot be avoided using this permutation procedure if the truly underlying sex-specific maps are not used in
the analysis. If sex-specific maps are used in the analysis, they are correctly handled by the permutation proce-
dure. In order to investigate the properties of the MOBIT permutation distribution, we picked a dataset from
the main simulation study and calculated the corresponding permutation distribution as well as the p value
for this dataset. An overview of the investigated scenarios can be found in Appendix Table 8. In the case of
ASPs, we also graphically depicted the resulting points in terms of allele-sharing for the permuted replicates
in the tetrahedral parameter space (Appendix Figure 10 and Appendix Figure 11). This illustrates that the perm
method described here leads to a sample space that is different from the one obtained for the bfnm method,
which is similar to those depicted in Figure 1.

Table 8: Overview of the simulated scenarios to investigate the properties of the two proposed MOBIT simulation/per-
mutation procedures.

Overview of the investigated scenarios for the evaluation of the MOBIT simulation/permutation

procedures
Hypothesis H, ,: No linkage, no H, ;: Linkage, no imprinting H,: Linkage, imprinting
imprinting
Trait model additive/recessive I=04
Map ratio 1:1 9:1 11 9:1 11 9:1
Analysis type  sex-averaged sex-specific sex-averaged sex- sex-averaged sex-specific
averaged/sex-
specific
Pedigree type ~ Sample size Number of
replicates
ASP 600 10,000
3-G pedigree 65 10,000

Scenario: 1 marker, 5 cM (sex-averaged) between markerand disease locus

Segregation of additive trait simulated with penetrances {f;, f, f,} = {0.03, 0.13, 0.23} and disease allele frequency p =
0.1

Segregation of recessive trait simulated with penetrances {f;, f;, f,} = {0.05, 0.05, 0.90} and disease allele frequency p
=02

Maternal imprinting simulations for additive trait model with I = f“}'f# =04
2—Jo

ASP: affected sib-pair; 3-G pedigree: three-generation pedigree.
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Figure 10: Results of the MOBIT permutation procedure (method perm) using a sex-averaged map for the analysis. The
illustration is based on the tetrahedral parameter space T for affected sib-pairs (ASPs, see also Figure 1). Left subfigure:
total view of T; right subfigure: detailed view (slightly rotated to the right) on the points in terms of allele-sharing. For
more details as to the investigated hypotheses and trait models see Appendix Table 8 and Appendix Table 9. Bullets
correspond to points in terms of allele-sharing according to the trait-model parameters and the recombinaion fraction
obtained from the MOD (bullets on the possible triangle) and IMOD score analyses of the picked replicate, which was
used as the real dataset. In some cases, the position of the MOD and IMOD score bullets cannot be visibly distinguished.
Points correspond to allele-sharing IMOD score estimates obtained for each of the 10,000 generated replicates of the MO-
BIT permutation procedure. The color scheme of bullets and dots is as follows. Purple: no linkage, no imprinting (H, ,)
with 1:1 map ratio; green: linkage, no imprinting (H,, ;, additive trait model) with 5 cM marker-trait locus distance and 1:1
map ratio; blue: Hy, |, (recessive trait model) with 5 cM marker-trait locus distance and 1:1 map ratio; red: H, , (additive
trait model) with 5 ¢cM marker-trait locus distance and 9:1 map ratio; grey: linkage and imprinting (H,) with 5 cM marker-
trait locus distance and 1:1 map ratio.
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Figure 11: Results of the MOBIT permutation procedure (method perm) using the correct sex-specific map with a 9:1 fe-
male/male map ratio for the analysis. The illustration is based on the tetrahedral parameter space T for affected sib-pairs
(ASPs, see also Figure 1). Left subfigure: total view of T; right subfigure: detailed view (slightly rotated to the right) on
the points in terms of allele-sharing. Bullets correspond to points in terms of allele-sharing according to the trait-model
parameters and the recombinaion fraction obtained from the MOD and IMOD score analyses of the picked replicate,
which was used as the real dataset. The left of the two blue bullet points corresponds to the best-fitting nonimprinting
model obtained from the MOD score analysis. In all other cases, the position of the MOD and IMOD score bullets can-
not be visibly distinguished. Points correspond to allele-sharing IMOD score estimates obtained for each of the 10,000
generated replicates of the MOBIT permutation procedure. The color scheme of bullets and dots is as follows. Purple:
no linkage, no imprinting (H,, ,) with 9:1 map ratio; green: linkage, no imprinting (H, ,, additive trait model) with 5 cM
marker-trait locus distance and 9:1 map ratio; blue: H , (recessive trait model) with 5 cM marker-trait locus distance and
9:1 map ratio; grey: linkage and imprinting (H,) with 5 cM marker-trait locus distance and 9:1 map ratio.
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Ca.1  Permutation distribution for ASPs

As can be seen from the results of the sex-averaged ASP analyses in Appendix Figure 10, the permutation
procedure generated replicates with an expected equal allele-sharing between the parental sexes on the possible
triangle. Points in terms of randomly unequal parental allele-sharing, which correspond to the permutation
replicates, were stretched out on a more or less straight line perpendicular to the possible triangle, except for
the point of no linkage, where these points were lined up on the outer edges of the tetrahedron. It is of note
that the best-fitting nonimprinting model for every replicate always corresponded to the same point in terms of
allele-sharing as for the real dataset, which illustrates that the permutation procedure in fact generates replicates
under the conditional null hypothesis mentioned above. The same held also true for the permutations using the
sex-specific map in Appendix Figure 11, however, the expected point in terms of allele-sharing was shifted into
the left half-tetrahedron according to the underlying map ratio. In the case of the point of no linkage, replicates
were lined up on either edge of the tetrahedron according to the map ratio. As can be deduced from the points
in terms of allele-sharing of replicates for the dataset originally simulated under H; (black points, Appendix
Figure 11), the permutation procedure reflects peculiarities and boundaries of the parameter space as well as
effects due to sex-specific recombination fractions. With regard to the scenario in which a truly underlying 9:1
map ratio is not taken into account in the analysis (red points, Appendix Figure 10), the corresponding quantiles
were comparable to those of the 1:1 scenarios, indicating that confounding cannot be prevented using such a
permutation procedure. The 95% quantiles of the Hy, , and Hj, scenarios using a sex-averaged map for method
perm (see Appendix Table 9, top) were all similar to each other. Furthermore, the corresponding quantiles of the
sex-specific analyses were quite similar to the sex-averaged ones, which shows that the MOBIT permutation
distribution is less affected by maximization curves, according to the sex-specific map ratio, than the bfnm
method (see Appendix Table 9, top). The latter effect, however, may cause substantial differences in quantiles
and p values between the two methods, and hence also regarding the conclusion whether imprinting is present
or not.

Ca.z2  Permutation distribution of 3-G pedigrees

The results of the MOBIT permutation distribution for 3-G pedigrees can be found in Appendix Table 9, bottom.
The properties of the quantiles were comparable to those for ASPs and seemed to reflect peculiarities of the 3-G
pedigree parameter space as can be deduced from the different quantiles for additive and recessive trait models.
Similar to ASPs, quantiles for the method perm using a sex-specific map in the analysis were also comparable
to those obtained from the corresponding analyses using a sex-averaged map. Unlike for ASPs, the quantiles
for the perm method differed from those obtained by the bfrnm method not only when using a sex-specific map,
but also when using a sex-averaged map in the analysis.
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