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ZUSAMMENFASSUNG

Emergente Muster in biologischen Systemen entstehen aus einfachen Interaktionen zwischen indi-
viduellen Komponenten und führen zu komplexen, organisierten Strukturen über mehrere Skalen
hinweg. Auf zellulärer Ebene treiben Reaktions-Diffusions-Prozesse von Proteinen wesentliche Funk-
tionen wie Polarisation und Zellteilung an. Auf größeren Skalen organisieren sich Gruppen von Zel-
len oder Bakterien zu dynamischen, kollektiven Strukturen. In dieser Arbeit untersuchen wir, wie
nicht-lokale Interaktionen dieses emergente Verhalten beeinflussen. Insbesondere betrachten wir,
wie mechanische Kopplung mit deformierbaren Geometrien die Musterauswahl beeinflusst und wie
langreichweitige Kommunikation in Systemen aktiver Materie die Entstehung neuartiger Strukturen
und kooperativer Funktionalitäten fördert.

Wir beginnen mit der Untersuchung von Musterbildung in räumlich modulierten, röhrenförmi-
gen Geometrien. Der Fokus liegt hier auf den Auswirkungen geometrischer Deformationen auf die
Strukturbildung in Reaktions-Diffusions-Systemen mit reaktiver Kopplung zwischen Spezies im Vo-
lumen und auf einer umschließenden Oberfläche. Diese Systeme stellen relevante, paradigmatische
Modelle für die zelluläre Musterbildungn dar. Durch eine Dimensionsreduktion leiten wir eine ef-
fektive eindimensionale Beschreibung her, die die geometrischen Effekte der Deformationen auf die
Reaktions-Diffusions-Dynamik berücksichtigt. Mit einer störungstheoretischen Analyse identifizieren
wir das räumlich variierende Verhältnis von Volumen zu Oberfläche als den entscheidenden Faktor,
der die Auswahl geometrischer Längenskalen in diesen Systemen bestimmt. Wir zeigen, dass die ge-
bildeten Muster von Proteinsystemen in Wechselwirkung mit den begrenzenden Geometrien stehen.
Durch die Analyse der Langzeitdynamik im System, finden wir eine geometrisch kontrollierte Mus-
terstabilisierung und identifizieren die Minimierung von Grenzflächen als treibenden Faktor hinter
der geometrisch unterbrochenen Vergröberung und Reifung der Strukturen.

Aufbauend auf diesen Ergebnissen untersuchen wir ein System, in dem eine dynamische geome-
trische, nicht-lokale Kopplung zu emergenten Phänomenen führt. Wir betrachten die Entmischung
von membrangebundenen Proteinen, die durch eine Induzierung einer bevorzugten Krümmung mit
der Membran gekoppelt sind. Die resultierenden dynamischen Deformationen der elastischen Mem-
bran erzeugen eine effektive Form nicht-lokaler mechanischer Kopplung. Durch thermodynamische
Analysen zeigen wir, wie Oberflächendeformationen die Entmischung sowohl induzieren als auch
unterdrücken können und durch Selektion einer endlichen Längenskala die Vergröberung und Rei-
fung der Muster stoppen.

Insgesamt stellen wir fest, dass geometrische Effekte, wie statische Deformationen oder dyna-
mische, mechanische Rückkopplungsschleifen, eine bedeutende Rolle bei der Musterbildung und
-dynamik in räumlich-zeitlich modulierten Geometrien spielen.

Im zweiten Teil der Arbeit gehen wir über diese unmittelbare nicht-lokale mechanische Kopplung
hinaus und betrachten die Rolle von langreichweitiger Kommunikation durch chemische und akus-
tische Signale in beweglicher aktiver Materie. Dazu untersuchen wir ein System von selbstangetrie-
benen, polaren Agenten, die mit einem zusätzlichen internen Freiheitsgrad ausgestattet sind. Dieser
interne Zustand, der nicht direkt mit der Bewegung der Agenten gekoppelt ist, implementiert einen
Mechanismus der zur Kommunikation genutzt werden kann. Abhängig von ihrem internen Zustand
und der lokalen Konzentration chemischer Signalmoleküle, können Agenten die Weiterleitung der
Signale unterstützen. Dieser Weiterleitungsmechanismus ermöglicht langreichweitige Kommunikati-
on, da chemische Signale nicht auf diffusive Ausbreitung beschränkt sind, sondern durch Weiterlei-
tung die Ausbreitung von Erregungswellen ermöglichen. Wir zeigen, dass solche chemische Signal-
weiterleitung in Kollektiven aktiver Agenten zu einer hierarchischen Selbstorganisation führt. Das
System nimmt im Verlauf des Aggregationsprozesses verschiedene kollektive dynamische Zustände
ein. Diese Zustände weisen unterschiedliche phänotypische Verhaltensweisen auf und erfüllen je-
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weils spezifische Rollen. Durch die Quantifizierung des dynamischen Informationsgehalts, der mit
der emergenten Ordnung im System verbunden ist, stellen wir einen qualitativen Zusammenhang
zwischen dieser Ordnung und den Signalverarbeitungsvorgängen auf der Ebene der individuellen
Einheiten her.

Aufbauend auf dieser Untersuchung der emergenten Selbstorganisation durch nicht-lokale Kom-
munikation, konzentrieren wir uns auf kooperative Funktionalitäten, die entstehen, wenn Agenten
Informationen über entfernte Regionen des Systems durch Signalübertragung erhalten. Zu diesem
Zweck stellen wir ein Modell akustisch interagierender aktiver Materie vor, bei dem Agenten inter-
ne Oszillatoren besitzen, die kontinuierlich akustische Signale in ihre Umgebung aussenden. Dieses
System dient als Analogon zu einem Kollektiv selbstangetriebener Oszillatoren, die durch ein ge-
meinsames, selbstgeneriertes akustisches Feld wechselwirken und synchronisieren.

Unsere Ergebnisse zeigen, dass Synchronisation es den Agenten ermöglicht, sich selbstorganisiert
zu differenzieren und in unterschiedliche phänotypische Zustände zu aggregieren, die durch unter-
scheidbare akustische Signaturen charakterisiert sind. Über die akustische Kopplung zwischen ein-
zelnen Agenten hinaus ermöglichen die akustischen Signale dass die Kollektive Informationen über
ihre internen Zustände durch spezifische Emissionen in die Umgebung senden. Bemerkenswerter-
weise beobachten wir die Entwicklung kollektiver Funktionalität: Das System passt sich dynamisch
an Umweltveränderungen an, indem es auf reflektierte Signale reagiert. Zudem verleiht die selbstor-
ganisierte Differenzierung den Agenten eine Form von phänotypischer Resilienz, die es dem Kollektiv
ermöglicht, sich selbst nach erheblichen Störungen wiederherzustellen.

Zusammenfassend untersuchen wir verschiedene Szenarien, in denen nicht-lokale Kopplung zu
emergenten Phänomenen führt. Die Arbeit liefert wichtige Erkenntnisse über das Zusammenspiel
zwischen geometrischen Deformationen und mechanischer Kopplung in musterbildenden Systemen
mit Implikationen für die Bildung zellulärer Strukturen. Darüber hinaus beleuchten wir die Rolle
nicht-lokaler Kommunikation in aktiven Materiesystemen, erweitern das Verständnis von emergenter
Selbstorganisation und ebnen den Weg für die Entwicklung funktionaler Systeme aktiver Materie.
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SUMMARY

Emergent patterns in biological systems arise from simple interactions between individual compo-
nents, leading to complex, organized structures across multiple scales. At the cellular level, protein
reaction-diffusion processes drive essential functions such as polarization and division. On larger
scales, groups of cells or bacteria self-organize into dynamic, collective structures. In this thesis, we
investigate how non-local interactions shape this emergent behavior. Specifically, we examine how
mechanical coupling with deforming geometries affects protein pattern selection and how long-range
communication in active matter systems promotes the emergence of novel structures and cooperative
functionalities.

We start by investigating pattern formation within spatially modulated tubular geometries. We
focus on the impact of geometric deformations in bulk-boundary reaction-diffusion systems which
are paradigmatic models for cellular pattern formation. By performing a dimensionality reduction,
we derive an effective one-dimensional description that incorporates the geometric effects of defor-
mations on the reaction-diffusion dynamics. Through perturbative analysis, we identify the spatially
varying ratio of bulk volume to surface area as the key factor driving geometric length scale selection
in these systems. We find that protein systems can collectively form patterns that sense external
geometries. By analyzing the long term dynamics in the system, we find geometrically controlled
pattern stabilization and identify interface minimization as the driving factor behind geometrically
interrupted coarsening.

Building on these findings, we explore a system in which a dynamic geometric non-local coupling
gives rise to emergent phenomena. We consider demixing of membrane-embedded protein systems
where the species geometrically couple to the membrane by inducing a preferred curvature in the
surface. The resulting dynamic deformations of the elastic membrane generate an effective form of
non-local mechanical coupling. By analyzing the thermodynamics of the system, we demonstrate
how surface deformations can both induce and suppress demixing, enforce the selection of a finite
pattern length scale, and arrest coarsening.

Altogether, we find that geometric effects such as static deformations or dynamic mechanical feed-
back loops play a significant role in shaping pattern formation and dynamics in spatio-temporally
modulated domains.

In the second part of the thesis, we go beyond this immediate non-local mechanical coupling and
consider the role of long-distance communication by chemical and acoustic signals in self-propelled
active matter. Therefore we consider a system of self-propelled active agents with polar alignment
that are equipped with an additional internal degree of freedom. This state, which is not directly
coupled to the agents’ self-propulsion behavior, can be used for a communication machinery. De-
pending on their intrinsic states and the local concentration of chemical signaling molecules, agents
can contribute by relaying the signal. Such a relaying mechanism gives rise to long-range commu-
nication as chemical signals are not limited by diffusive spreading but relaying yields trigger wave
propagation of the signals. We find that such a chemical signaling in collectives of active agents
yields a hierarchical self-organization. The system employs different collective dynamic states at dif-
ferent stages of the aggregation process. Thereby the different states exhibit phenotypical behaviors
and fulfill distinct roles. By quantifying the dynamic information content related to the emergent
order in the system, we qualitatively link the emergent order to the signal processing events at the
level of the individual units.

Building on this study on emergent self-organization enabled by non-local communication, we
focus on cooperative functionalities that arise when agents acquire information about distant regions
of the system through signaling. To this end, we introduce a model of acoustically interacting active
matter, where agents possess internal oscillators that continuously emit acoustic signals into their
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environment. This system serves as an analog to a collective of self-propelled oscillators that achieve
synchronization through a shared, self-generated acoustic field.

Our findings demonstrate that synchronization enables agents to undergo self-organized differ-
entiation and aggregation into distinct phenotypic states, each characterized by unique acoustic
signatures. Beyond individual acoustic coupling, these collectives broadcast information about their
internal states into the environment through their specific acoustic emissions. Notably, we observe
the emergence of collective functionality: the system adapts dynamically to environmental changes
by responding to reflected signals. Moreover, the self-organized differentiation of agents confers
a form of phenotypic resilience, allowing the collective to recover robustly even after substantial
perturbations.

In summary, we explore various scenarios where non-local coupling gives rise to emergent phe-
nomena. Our work provides insights into the interplay between geometric deformations and me-
chanical coupling in pattern-forming systems, with implications for cellular structure formation.
Additionally, we shed light on the role of non-local communication in active matter systems, ad-
vancing the understanding of emergent self-organization and paving the way for the development of
functional active matter systems.
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PROJECT ABSTRACTS

GEOMETRIC CONTROL OF PROTEIN PATTERN FORMATION IN BULK-BOUNDARY
SYSTEMS

In this project, we develop an analytical framework to describe pattern-forming reaction-diffusion
systems involving species that diffuse within a bulk volume and species that are bound to a spatially
modulated, enclosing confinement. Specifically, we account for the effects of geometric deformations
in an enclosing tubular structure by deriving an effective, dimensionally reduced description. This
description also accounts for reactive interaction between bulk- and boundary species at the modu-
lated confinement. The presented approach enables an analytic analysis of the linear stability of the
homogeneous steady state as well as of the emergent patterns. For deformed geometries, our anal-
ysis relies on a perturbative treatment that considers spatial deformations as weak deviations from
the undeformed tubular shape. Beyond the initial formation of patterns, we investigate the influ-
ence of geometric deformations on long-term pattern dynamics, particularly focusing on coarsening
processes.

Context. Biological protein systems often exhibit complex interactions among multiple protein
species, particularly through dynamic exchanges between the cytosolic bulk and the membrane6–8.
These interactions give rise to spatially organized patterns, which are essential for critical biological
processes such as cell division and polarization9–12. Similarly, the functional design of some chemical
microfluidic devices with coated reactive surfaces relies on the reactions at the surface and exchange
with a bulk volume13–16.

Studies on protein systems with bulk-boundary coupling have demonstrated that geometric con-
finement strongly influences pattern formation17. For example, by tuning the ratio between reactive
and geometric length scales in models of elliptical cells, one can control the emergence of long-
axis or short-axis polarization18. Furthermore, experiments on reconstituted Min protein systems in
deformed PDMS channels reveal that confining geometric shapes significantly affect pattern length
scales and oscillatory behavior19–21.

Given the crucial role of geometric constraints in reaction-diffusion dynamics, there have been
recent efforts in understanding pattern formation within modulated geometries22 and on deformable
surfaces23. However, so far, a comprehensive framework combining membrane and bulk dynamics
within spatially deformed tubular geometries, along with a systematic investigation of the relevant
contributions in such a controlled, dimensionally reduced setting, has been missing.

Research Question. Here, we first aim to simplify the theoretical description of protein reaction-
diffusion dynamics with reactive bulk-boundary interactions at an enclosing deformed tubular sur-
face, by reducing the system to a single spatial dimension. This reduction makes the system more
amenable to analytical analysis. Subsequently, we study how spatial modulations of the geometry
influence the emergent protein patterns and whether they can stabilize specific length scales in the
long-term dynamics, thereby arresting coarsening processes.

Results. Assuming narrow tubes relative to the length scale of bulk gradients, we simplify the
system by integrating out the angular and radial degrees of freedom within the tubular geometry.
This reduction yields an effective one-dimensional equation that describes protein reaction-diffusion
dynamics, including reactive interactions at the deformed tubular surface.
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Using this reduced equation, we perform a perturbative linear stability analysis, which reveals how
the geometry of the confinement influences the emergent protein patterns. In particular, we predict
that geometric deformations localize the patterns and control their characteristic length scale. These
predictions are validated through numerical simulations of the full reaction-diffusion system within
the tubular domain, showing excellent agreement with our analytical results.

Beyond the initial pattern formation, we analyze the impact of geometric deformations on coars-
ening dynamics. Our findings demonstrate that spatial modulations of the confinement can arrest
coarsening. We identify the system’s intrinsic tendency toward interface minimization as the key
mechanism underlying long-term pattern localization and stabilization within deformed geometries.
By combining the diffusive mass transfer rate during coarsening24,25 with the interface minimization
tendency, given by effective advective contributions in the reduced equations, we derive a criterion
for geometric deformations that effectively halt the coarsening process.

Relevance. The study of bulk-boundary coupled systems and geometric length-scale selection is
of significant relevance for cellular protein systems. Here, the development of a systematic under-
standing of cellular division and self-organization is an ongoing research effort. The dimensionally
reduced description may prove useful to answer the question, which fundamental mechanisms and
aspects need to be taken into account. Moreover, when the underlying assumptions hold, solving the
one-dimensional effective equation can substantially reduce computational costs in comparison to
full 3D numerical simulations, facilitating both analytical and numerical studies. Also for the inverse
question of how do confinements need to be shaped to give rise to specific patters, our approach
may serve as a starting point for design of chemical reactors or dynamic membrane confinements for
artificial cells.

Importantly, our approach can also be extended to include physical membrane mechanics and
dynamic membrane deformations, which interact in feedback with the confined protein patterns.
Such an extension enables the study of mechano-chemical coupling in confined bulk-boundary sys-
tems, positioning the framework as a versatile and generic model for exploring complex geometric
interactions in biological and artificial systems.

PHASE SEPARATION ON DEFORMABLE MEMBRANES: INTERPLAY OF MECHANICAL
COUPLING AND DYNAMIC SURFACE GEOMETRY

This project focuses on the interplay between phase-separation- and elastic membrane dynamics
through mechanical coupling. We study proteins embedded in a two-dimensional elastic membrane,
where these proteins are assumed to induce a concentration-dependent spontaneous curvature. As
a result, the proteins’ demixing dynamics couples to the dynamic membrane, leading to protein-
induced deformations. In turn, via their intrinsic curvature, proteins can sense and respond to
geometric deformations.

The mechanical deformations of the membrane give rise to a non-local coupling between protein
concentrations on the membrane and thereby effect the proteins’ phase-separation dynamics. To de-
scribe this phenomenon, we develop a covariant model equation for the phase-separation dynamics
on the dynamic membrane manifold. We analyze the resulting behavior numerically using Monge
parametrization and explore its long-term thermodynamic implications.

Context. Phase separation is a fundamental mechanism for the formation of structures and chemi-
cally enriched reactive compartments at the cellular level26,27. Thereby, the phase-separation dynam-
ics can take place on two-dimensional surfaces. For example, lipids within lipid bilayer membranes
show phase-separation into structures such as lipid rafts28,29, while the demixing of membrane-
associated proteins can give rise to high-density protein clusters30,31. These variations in lipid com-
position and densities of attached proteins can, in turn, induce membrane deformations32,33.

Recent theoretical work on phase separation in ternary lipid mixtures has demonstrated that a
membrane curvature that depends on the lipid densities, can lead to length-scale selection of emer-
gent patterns, controlled by the membrane-mediated mechanical interactions34. Similarly, numeri-
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cal simulations have shown that the phase separation of membrane-bound proteins is significantly
influenced by the mechanical coupling between protein densities and membrane spontaneous cur-
vature35.

However, these studies omitted key contributions to the dynamics by employing uncontrolled
expansions. For instance, Ref.34 neglected terms that account for temporal changes in the effective
membrane area, thereby only approximately conserving mass. Additionally, both studies neglected
contributions of the spatial variations in the surface metric, which play a significant role for the
protein-protein (or lipid-lipid) interactions driving the demixing behavior.

Research Question. Here, we address the problem of formulating a covariant description of de-
mixing dynamics on deformable membrane surfaces and thereby extend the present descriptions.
Additionally, we aim to systematically expand the full model to determine the characteristics of
pattern formation from the fully mixed state as well as the long-time characteristic length scale of
the system using thermodynamic arguments.

Results. In numerical simulations of the approximation free dynamical equations, we observe a
significant impact of geometric coupling on the demixing dynamics. By tuning the strength of the
induced spontaneous curvature, the stability of the fully mixed state exhibits a transition from sta-
ble, to a conserved Turing (type I) instability, and finally to the classical long-wavelength Cahn-
Hilliard (type II) instability36,37. Notably, in contrast to the uninterrupted coarsening dynamics seen
in the phase-separating system without geometric coupling, a characteristic, persistent length scale
emerges at intermediate spontaneous curvature values.

To quantify this emergent length scale, we account for the system’s relaxation to thermodynamic
equilibrium. By applying a weakly bending approximation for the membrane and integrating out
the membrane-deformation modes, we derive a thermodynamic prediction for the final length scale
in the demixed state. This selected length scale is tunable via the strength of the protein-induced
spontaneous curvature. Our analytical prediction is validated through numerical simulations, which
show excellent agreement

Relevance. The emergence of length scales in phase-separating systems typically requires active
driving or a form of non-local coupling. In this study, we introduce such a coupling through dy-
namic mechanical deformations of a two-dimensional membrane surface, which interacts with the
phase-separating protein densities. Our results demonstrate that this system indeed gives rise to
distinct patterns, suggesting that membrane-mediated coupling can act as a minimal mechanism for
controlling the length scales of demixed phases.

Our study reveals quantitative differences compared to the previous work by Yu et al.34, which
we attribute to the controlled system expansion. Moreover, we observe a qualitative tuning of in-
stabilities in the fully mixed state, highlighting the significant role of mechanical effects in both the
initiation of phase separation and the determination of resulting length scales.

MULTI-SCALE ORGANIZATION IN COMMUNICATING ACTIVE MATTER

In this project, we investigate the role of long-range communication in self-propelled active agents
through chemical signaling. The signaling transmission is sustained by the agents, which can either
relay chemical signals or remain inactive, depending on their internal dynamic state. Additionally, we
introduce a feedback mechanism, coupling the agents’ motion to the collectively established chemi-
cal field, such that agents preferentially move toward regions of higher chemical concentration. We
explore the resulting emergent dynamics and self-organization properties of this chemically com-
municating active matter using a combination of agent-based numerical simulations and continuous
field modeling.
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Context. In biological systems, communication among active agents is essential for enabling col-
lective organization and functionality. Individual units must coordinate their behaviors to achieve
a collective functioning, which often creates evolutionary advantages. For example, in organoid
and tissue formation, mechanochemical cues guide cellular organization, differentiation, and spatial
positioning38,39. Bacteria utilize chemical signaling to coordinate their movement40,41, while social
insects like ants rely on pheromone trails to communicate locations of food sources42. Larger ani-
mals, such as fish and birds, use visual or acoustic signals for long-distance communication to achieve
complex coordinated behavior. A particular example of chemical signaling is seen in Dictyostelium
discoideum, when cells release cyclic AMP to drive aggregation and fruiting body formation under
starvation conditions43–45. Despite the critical role of inter-agent communication in driving collec-
tive behavior within active matter systems, its fundamental role for self-organization is yet not fully
understood.

Research Question. Inspired by these biological examples and motivated by the overall importance
of exchanging information between agents for collective organization, we investigate the role of
communication in the aggregation process of active matter with chemical signaling. Specifically,
we aim to identify minimal motifs required for effective physical long-range communication and
examine how these mechanisms interact with the system’s emergent collective behavior.

Results. In the active matter system with chemical communication, a long-range chemical com-
munication is established through relaying of chemical signals by triggered emission of molecules
by the dispersed agents. This form of communication enables a self-organized hierarchical aggre-
gation process employing diverse collective structures with distinct behaviors at different stages.
At smaller scales, chemically mediated agent-agent interactions first lead to the formation of col-
lectively propagating droplets, which then coalesce into streams and eventually converge toward
stationary, localized vortex states. The vortices, hosting internal spiral wave dynamics, continuously
emit chemical waves into their surroundings, acting as self-organized centers of aggregation that
guide the subsequent structure formation.

To assess the role of communication in the aggregation process, we quantify the emergent order
by measuring the system’s dynamic information content. Thereby, we establish a qualitative link
between the observed collective organization and the signal processing capabilities of individual
agents. Thus, the system’s hierarchical organization and order formation are fundamentally driven
by the collectively established chemical signaling landscape and the signal processing capabilities of
the individual agents.

Relevance. The work sheds light on the mechanisms driving self-organization and structure forma-
tion in communicating active matter. Chemical signaling, which enables long-range communication
via signal relaying, plays a crucial role in the aggregation process. The collectively established chem-
ical signaling field can be seen as a shared reservoir of information to which agents have access
through their signal processing machinery.

A key finding is that the use of distinct phenotypes at various stages of the self-organization pro-
cess improves effectiveness of aggregation. It requires an adaptive differentiation of agents and an
emergence of organizational units. We have demonstrated that such a behavior can be effectively
achieved through chemical communication providing valuable insights for designing self-organized
aggregation behaviors in artificial active matter systems.

By linking individual signal processing to collective self-organization, our results highlight the
essential role of information processing in driving emergence and self-organization. Importantly, the
observed non-linear responses to signals can be readily implemented in technical systems, such as
microrobots, offering promising applications in microrobotics and other artificial systems.
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ACOUSTIC SIGNALING ENABLES COLLECTIVE PERCEPTION AND CONTROL IN ACTIVE
MATTER SYSTEMS

In this project, we investigate emergent phenomena in self-propelled active agents coupled through
acoustic interactions. We develop a model for swarming agents equipped with internal oscillators
that emit acoustic signals into their surroundings. These agents, in turn, perceive the collective
acoustic field and synchronize their individual oscillations with the detected signals. Furthermore,
the agents align their direction of motion towards larger acoustic amplitudes which creates a cou-
pling between the acoustic signaling and the self-propulsion behavior.

Context. In our study on chemically communicating active matter3, we observed that chemical
signaling relies on the propagation of information through signal relaying by active agents. Without
this relaying mechanism, chemical interactions are constrained by the relatively slow process of
diffusive transport. As a result, both the propagation speed of signals and the distance over which
the signals remain effective before dilution are inherently limited by diffusion.

In contrast, wave-based signaling, such as by acoustic or electromagnetic waves, offers the advan-
tage of rapid signal propagation, enabling communication across larger distances, even when agents
are sparsely distributed. For instance, animals like bats, birds, and whales rely on acoustic signals
to communicate over large distances where diffusive transport would be impossible or impractically
slow.

In the field of robotics, the development of synthetic swarms could greatly benefit from incorporat-
ing acoustic or electromagnetic interactions to facilitate communication between agents. However,
despite the significant potential of wave-like signaling not only for such applications, a minimal sys-
tem that implements acoustic communication in an active matter framework so far remained absent.

Research Question. We address the question of how a wave-like signaling between oscillatory
agents enables self-organization and synchronized collective behavior. What are the organizational
principles underlying wave-like coupling of active matter and which functionality can systems gain
from it?

Results. To investigate the role of acoustic coupling in active matter, we conduct numerical simu-
lations of an agent-based model and corresponding continuous field equations. Our findings reveal
that acoustic signaling between oscillatory units drives self-organization into distinct collective states,
each characterized by unique behaviors and acoustic signatures. These emergent structures include
localized blob solutions, motile larvae, and fast-moving snakes, each enabling the agents to achieve
diverse collective functionalities.

Notably, due to the self-organized differentiation of agent behaviors, the collective structures ex-
hibit remarkable resilience, such as phenotype stability under strong perturbations. Additionally,
they develop the ability to collectively orchestrate responses to external stimuli and environmental
changes. Beyond the acoustic interactions between individual agents, agents within aggregates emit
collective signals with distinct acoustic signatures. This facilitates communication across emergent
collectives, enabling information transfer between collective structures on larger spatial scales.

Furthermore, collectives can sense their surroundings by detecting reflections of their emitted
signals, allowing them to respond by modulating their acoustic output and behavior. Similarly, the
collectives can be influenced by externally applied control signals which allows for external triggering
of phenotype transitions and controlling the aggregates’ motion in space.

Importantly, all of these emergent properties arise from the inherent non-locality of signals trans-
mitted through acoustic waves.

Relevance. This study highlights the fundamental organizational principles of swarms, where sim-
ple individual units exchange information to develop collective behavior and coordinated responses
to external cues. In potential technological implementations and applications of active matter sys-
tems, such as microrobotics, individual units are typically small compared to the size of forming
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collectives. They may possess limited processing power and should operate under conditions in
which a full external supervision is challenging. Consequently, achieving an autonomous collective
functionality is essential.

Here, we demonstrate that such a functionality can emerge as a cooperative property through
acoustic information exchange between individual agents. This work marks an important step to-
ward functional active matter and offers design principles for future microrobotic swarms capable of
performing complex tasks, as well as collectively sensing and responding to their environment.
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INTRODUCTION

Emergent patterns are a hallmark of biological systems, arising from simple local interactions
that lead to complex, organized structures. At the cellular level, reaction-diffusion processes drive
protein pattern formation, enabling critical functions such as cell polarization and division. On larger
scales, collectives of active agents, such as cells or bacteria, self-organize into dynamic patterns and
structures through energy consumption and microscopic interactions. These phenomena illustrate
how local rules and interactions can give rise to robust, large-scale organization, a principle relevant
to both living systems and synthetic active materials. In this thesis, we extend the study of such
systems by introducing non-local interactions. Specifically, we examine how mechanical interactions
with deforming geometries influence pattern selection in protein reaction-diffusion systems, and how
long-range communication in active matter drives the emergence of novel patterns, structures, and
cooperative functionalities.

1.1 STRUCTURE FORMATION IN BIOLOGY

Structure formation is a key ingredient for life in which increasingly complex structures emerge
from simpler individual parts. The idea of ‘More is different’, brought forward by Anderson46,47,
is that the sum of many individual parts gives rise to a collective behavior governed by new laws,
where emergent phenomenology is qualitatively different and hard to capture or predict based on the
laws and language of the individual parts. For example, individual molecules can combine to form
macromolecules, which then organize into complex structures such as biological cells. At this level,
new properties emerge and cells exhibit life-like behaviors, such as growth and reproduction, which
are absent at the molecular level. Groups of cells, in turn, form tissues and organs, which together
constitute entire organisms. Remarkably, when these organisms interact in groups, they give rise to
collective behaviors like the synchronized flight of bird flocks or the coordinated swimming patterns
of schooling fish.

For the collective behavior the constituting components interact with each other while these inter-
actions create emergent phenomena. For instance an ideal gas can be seen as a naive extension of
single atoms to collective numbers of atoms. However, in the ideal gas description one fully neglects
the interactions which lead to the collective properties of real gases that deviates from the simpler
ideal gas model. Real gasses exhibit phase-transitions and critical phenomena, all these aspects ar-
rive due to the interactions of gas molecules. Similarly, biological processes relying on physics and
chemistry, living systems exhibit complex phenomena like metabolism, reproduction, and conscious-
ness. These phenomena in principle still follow the underlying laws, e.g. of quantum mechanics,
however, their description requires a different language. Emergent principles like evolutionary fit-
ness, genetic coding, and neural network dynamics govern behavior at higher levels of complexity
and implement a new vocabulary of relevant quantities to consider at the collective level. The emer-
gent collective phenomena introduce new, scale-specific laws to replace the microscopic laws that are
simply no longer adequate for description. New principles emerge that are specific to the scale of the
collective. Thus, for an appropriate description, one chooses a model on the scale of the emergent
patterns and collective structures.

Emergence is a crucial concept in biological systems as their complex behaviors and functions
involve collective interactions at multiple scales. In biology, protein interactions can lead to liquid-
liquid phase separation, a minimal mechanism for structure formation in cellular systems26. Liquid-
liquid phase separation relies on the minimal basis of collective phenomenon as it solely includes
energetic interactions between neighboring particles of different types. Such phase-separating sys-
tems are fully described by thermodynamic considerations and free energy minimization. However,
they exhibit an emergent phenomenon known as demixing, where ordered structures spontaneously
form from an initially homogeneous and noisy state. These collective structures are macroscopic,
with sizes significantly larger than those of the individual units.

Moreover, through nonlinear reactions, proteins can form complex collective macroscale patterns
with stationary, traveling wave, or oscillatory dynamics that are organizing mechanisms behind cell
polarization, mechanic contraction waves, or mid-cell localization of the cellular division machin-
ery48–52. Such reaction-diffusion systems comprise a broad class of physical models that describe the
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dynamics of diffusing species with local reactions such as state changes, or attachment and recruit-
ment processes on reactive surfaces. The collective dynamics of the constituting species, which is
typically driven out of equilibrium by active processes, yields emergent patterns at scales that are
large compared to the extend of single constituents.

Another important example in which novel phenomena emerge from collective behavior is active
matter systems. Here, energy consumption at the level of individual units, e.g. for self-propulsion of
these units, drives the system out of equilibrium leading to remarkable examples of collective emer-
gent behavior, relevant in a multitude of biological structure forming system53–56. For instance, upon
division of eukaryotic cells, mitotic spindle formation ensures segregation of the two copies of DNA
(sister chromatites in daughter cells) during mitosis within the mother cells57–59. This process relies
on the polarization of microtubules and their alignment at the cellular centrosomes. Thereby, motor
proteins exert a force on these microtubules, assuring separation of the gene copies. The emergent
polar order of microtubules is a key ingredient for the cooperative aligned functioning of the motor
proteins. Furthermore, active motion of cells such as in the social amoeba Dictyostelium discoideum60

or of bacteria61 yields cooperative behavior such as aggregation or dynamic tissue remodeling during
morphogenesis62,63

Altogether, liquid-liquid phase separation and reaction-diffusion dynamics are key mechanisms for
structure formation in cellular systems. Active matter, is yet another broad field in which cooper-
ativity of large numbers of individual units gives rise to emergence. In this thesis, we will cover
examples of emergent behavior through a form of non-local coupling in these fields.

1.1.1 LIQUID-LIQUID PHASE-SEPARATION

A particular mechanism of structure formation, relevant to biological system is liquid-liquid phase
separation27. It is based on the classical demixing mechanism as described by the Flory-Huggins
theory of spinodal decomposition where different energetic interaction between solute and solvent
particles give rise to formation of spatially demixed states64. In the context of biological systems, such
a demixing behavior is of large relevance for the formation of cellular structures and membrane-less
compartments. The formation of such compartments allows for an enrichment of molecules inside
and enables a tuning of reactive conditions. For instance germ cell initialization in Caenorhabditis
elegans is established by condensation of P granules and their subsequent localization26. Through
liquid-liquid phase separation, cells can control enzymatic reactions65,66 and it is believed to be an
important mechanism behind several cellular mechanisms such as signaling and stress response67–69.

On its own, liquid-liquid phase separation is a thermodynamic effect and the demixing occurs after
parameter quenching as a thermodynamic equilibrium process. These systems often exhibit Ostwald
ripening and the coarsening process prevails stable structure formation and the system’s ability for
length scale selection70. What is required in addition to the demixing dynamics for the system to
yield stable patterns and structures with a distinct length scale? In cellular systems, one can argue
that coarsening is typically slow and other downstream mechanisms such as active reactions can
either stabilize structures at some time and length scale or the dynamics is actively driven, preventing
coarsening71. For instance, one can achieve stationary size distributions of demixed droplets through
constant nucleation and coalescence events72. Droplet sizes an localization of liquid condensates can
be regulated by active chemical reactions73–75.

Recent studies on mechanically coupled phase-separating systems reveal the possibility for stable
finite length-scale patterns in liquid-liquid phase separation. Changing the preferred curvature of the
lipid membrane they constitute, the mechanical feedback between phase-separation dynamics and
changing geometric properties can yield stable pattern length scales without coarsening34. Another
systems in thermodynamic equilibrium that exhibits such a finite length scale is phase-separation of
block copolymer melts where the length scale can be associated to a present non-local coupling76

In Chapter 3, we will show that the mechanical interactions of phase-separating proteins attached
to an elastic surface lead to an effective non-local coupling. This coupling is responsible for the
emergence of finite pattern length scales, even in the absence of active driving2.
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1.1.2 REACTION-DIFFUSION SYSTEMS

Reaction-diffusion systems are a core element for describing pattern formation in various chemical
and biological systems77–80. They comprise the local transformation of species into others (reaction)
and a spatial coupling that flattens concentration gradient (diffusion). For instance, applications of
reaction-diffusion modeling range from pattern dynamics in the Belouszov-Zhabotinsky-reaction81,82

over surface waves on catalytic Pt-surfaces83–85, to cellular protein patterns86–88.
Reaction-diffusion processes are relevant in various biological systems as they are a remarkable

example for non-equilibrium pattern and structure formation89. To understand their role in biolog-
ical systems, one needs to address large-amplitude patterns, geometrically confined systems, bulk-
boundary coupling, and especially relevant for synthetic cells: mechano-chemical coupling. In the
following we focus on protein reaction-diffusion dynamics and recapitulate general aspects of their
pattern forming capabilities with particular focus on mass-conservation and the role of a reactive
coupling at an enclosing surface.

A LATERAL INSTABILITY YIELDS PATTERN FORMATION

As discussed by Turing in his seminal paper89, reaction-diffusion systems with at least two coupled
species can give rise to spatial pattern formation through the coupling of local reaction kinetics and
spatial diffusion. Thereby, diffusion acts to reduce concentration gradients by promoting spatial
homogenization, distributing molecules uniformly across space. Additionally, the reaction kinetic
locally drive the system towards stationary states (fixed points) for which the reactions are in a
dynamic equilibrium, converting species into one another while retaining the average concentrations
constant. Typically, reaction dynamics drive the system towards stable fixed points establishing
stationary concentration ratios between the different species, or more complicated general stable
attractors. Individually, both diffusion and reaction mechanisms appear to drive the system toward
a homogeneous steady state. However, as Turing demonstrated, their combined effects in a reaction-
diffusion system with two coupled species can give rise to spatial patterns that Turing argued could
template downstream morphogenesis.

The key insight from Turing’s work lies in the fact that the diffusive coupling between chemical
species with different diffusive length scales can induce a lateral instability and drive the formation
of spatial patterns. Turing realized that, even if a system is stable under homogeneous perturba-
tions (and thus returns to its fixed point), the introduction of diffusion can destabilize the system
with respect to heterogeneous perturbations. This spatially extended instability, known as Turing
instability, serves as a general mechanism for the emergence of patterns90. However, recently it has
been explored that, mass-conservation of the species introduces a new twist to this paradigmatic
pattern-forming mechanism80,88,91–94.

MASS-CONSERVING SYSTEMS

Mass-conserving reaction-diffusion systems play a crucial role in modeling biological pattern forma-
tion. Particularly, in cellular systems, proteins or lipids are confined by or, respectively, embedded
within the cell membrane, and changes in protein numbers due to a net production or degradation
are negligible on the typical timescale of pattern dynamics. Therefore, mass conservation is overall
granted which has several implication on the pattern formation mechanisms88,94.

Mass-conserving reaction-diffusion models have been widely used to study biological phenomena,
including polarity formation in cells80,86,91,95. Examples include models for the localization of bud-
ding sites in yeast Saccharomyces cerevisiae93,96,97 or the establishment of long-axis polarization in
C. elegans18, to name a few. The Min protein system in Escherichia coli serves as a paradigmatic
model for cellular pattern formation due to its generic functioning, representative for a broad range
of cellular systems, and the possibility for it to be reconstituted in vitro48,98. Oscillations of the Min
system provide a striking example where mass-conserving reaction-diffusion modeling successfully
captures experimental observations. The modeling approaches yield qualitative and quantitative
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agreement and allow for insights into relevant yet unexplored molecular interactions and parame-
ter dependence of exhibited behavior99,100. The minDE pole-to-pole oscillations are critical for the
mid-cell localization of the division machinery49,101,102. Advanced models of the Min system have
achieved quantitative agreement with both in vivo and in vitro experiments, enhancing our under-
standing of the mechanisms underlying cellular division100. Moreover, the reconstituted Min system,
embedded within giant unilamellar vesicles103,104, represents a promising module for bottom-up
approaches aimed at reconstructing division machinery in artificial cells105,106. Other notable exam-
ples of mass-conserving reaction-diffusion systems include the confined dynamics of Rho enzymes in
starfish oocytes, which guide surface contraction waves during meiotic anaphase5,52,107,108, and con-
served models for head-tail polarization dynamics in Dictyostelium discoideum, which compared to
non-conserving models demonstrate increased robustness and enhanced propagation speed during
polarity formation109, among many others.

Beyond its biological relevance, mass conservation has a profound qualitative impact on pattern
formation. Unlike non-conserved systems, mass-conserving systems exhibit neutral stability of the
homogeneous steady state with respect to changes in the local mass. This property fundamentally al-
ters the nature of pattern-forming instabilities. For instance, while linear stability analysis can predict
lateral instabilities in general reaction-diffusion systems, the presence of a conservation law intro-
duces further constraints that affect the dynamics of pattern formation. Reactive nullclines, which
provide critical insights into the dynamics of well-mixed systems, become directly linked through
the conservation law, effectively reducing the dimensionality of the analysis 1. In conserving sys-
tems, the conserved quantity (e.g., the total mass of a protein) acts as a control parameter that
influences local reactive equilibria. Although local dynamics cannot change this parameter, spatial
heterogeneities in its distribution drive variations in local equilibria, leading to the emergence of
patterns80,88,94. This perspective enables a geometric approach to analyzing lateral instabilities and
the mass-redistribution instability, which underlies pattern formation.

In Chapter 2, we apply this geometric framework to describe the influence of confinement on pat-
tern formation in mass-conserving reaction-diffusion systems inspired by biological protein systems
with bulk-boundary coupling94.

PATTERNS FORMING PATTERNS

Already in his founding discussion Alan Turing pointed out that biological systems may employ a
hierarchy of patterns, transitioning from one to another and thereby, successively, increasing orga-
nizational complexity89. As discussed above, pattern formation is typically studied by means of a
linear stability analysis, in which the reaction-diffusion dynamics is linearly expanded around the
considered homogeneous steady state. However after the onset of the pattern formation instability,
non-linear effects can dominate the subsequent dynamics. Secondary instabilities of the evolving pat-
terns can lead to pulsations, or fingering instabilities of interfaces (equivalent to a Mullins-Serkerka
instability110,111) in which the interfaces begin to undulate and break open112–114. For instance,
depending on curvature and width of pulses, wave instabilities occur in the Belousov-Zhabotinski re-
action115,116 which lead to the propagation of unstable wave segments117. The developing nonlinear
wave solutions can form stationary or propagating waves with varying shapes. Wave trains exhibit
anomalous dispersion relations where the interaction of different peaks in the solution influences
the collective’s propagation velocity118,119. Reaction-diffusion waves show nonlinear properties like
pining at obstacles120 or depinning through wave-wave interactions121.

In addition to secondary instabilities, temporal variations in system parameters can drive the dy-
namic evolution of patterns. For example, aging effects in chemical reactions can lead to a temporal
drift in the observed oscillation periods122. Changes in reaction conditions that trigger transitions
in observed patterns can also be caused by geometric factors. Externally induced cell deformations
have been shown to affect internal protein pattern dynamics, as demonstrated in in vitro experiments
on Min protein oscillations within chemical reactors of varying shapes21. Similarly, dynamic surface

1For example, in a two-component system with conservation law m + c = const, nullclines f(m, c) = 0 and g(m, c) = 0
collapse into a single constraint, g(m, c) = −f(m, c) = 0.
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contraction waves in starfish oocytes have been found to significantly alter the behavior of enclosed
protein concentration patterns5,52.

These higher-order effects often produce patterns and dynamics that deviate from the initially
predicted length scales emerging from a homogeneous state. Therefore, a detailed analysis of poten-
tial long-term dynamics is essential to connect the onset of pattern formation to the system’s actual
temporal behavior.

Another generic mechanism that leads to a dynamic change of pattern length scales in many
reaction-diffusion systems is coarsening. As for Ostwald ripening of binary mixtures in thermody-
namic equilibrium, coarsening also appears in reaction-diffusion systems and especially with existing
conservation laws24,25,123–126. For some of these systems, the conserved equations can be reexpressed
in terms of relaxational dynamics with an effective free energy Lyapunov functional127–129. There-
fore, these systems relax to a minimum of an effective free energy by coarsening and the pattern
length scales successively grow until they reach system size. However, it has been reported that
coarsening can be interrupted for instance by weakly breaking mass-conservation24,25 or through
spatial parameter heterogeneities in the reactive domain130. We will show in chapters 2 and 3
how geometric deformations of an enclosing confinement and mechanical coupling to a deformable
membrane can yield interrupted coarsening. Developing an analytic description for the coarsening
dynamics beyond the onset of pattern formation, we can derive predictions for geometrically or
mechanically controlled pattern length scale selection.

CONFINED BULK-BOUNDARY SYSTEMS

As apparent from the above examples, many pattern-forming systems are confined to spatially re-
stricted geometries. For example, intracellular proteins are confined within the cell body being
either dissolved within the cytosol or attached to the cellular membrane51,131–133. These proteins
often exhibit interdependent dynamics driven by reactive interactions, such as protein attachment,
detachment, or recruitment, which predominantly occur at the enclosing surface134. Consequently,
the boundary plays a central role in the system’s reaction dynamics, enabling an interplay between
the geometry and biochemical processes.

The interaction between geometry and proteins can be explicit in form of a direct curvature sens-
ing, whereby proteins with a specific intrinsic curvature preferentially attach to regions with similar
curvature, locally altering attachment and detachment rates, and other reaction parameters135–137.
This leads to spatially heterogeneous reaction conditions induced by a geometric deformation of the
enclosing membrane. In turn, these proteins may induce membrane curvature changes to align the
membrane shape with their intrinsic curvature, potentially creating a feedback loop between protein
patterning and membrane deformation137. This cooperative mechanical feedback can even produce
quasi-nonlocal mechanical coupling, as we will explore in Chapter 3. For instance, lipids phase sep-
arate in lipid rafts within membranes due to variations in their mechanical properties34. Similarly,
BAR domain proteins induce anisotropic curvature and show preferential binding when attaching to
lipid membranes. This direct geometric feedback mechanism yields an effective curvature sensing
and a curvature mediated recruitment138,139.

In the context of bulk-boundary systems, the protein DivIVA in Bacillus subtilis provides an example
of direct curvature sensing. It preferentially binds to negatively curved membranes, diffusing through
the cytosol and forming persistent aggregates at cell poles to prevent polar localization of the cellular
division machinery140,141.

Beyond such a direct sensing of surface curvature by preferential protein binding, the reactions
driven at the membrane surface allow the system to indirectly probe geometry through the forma-
tion of collective patterns. For instance, Min protein patterns in elliptical geometries are influenced
by the changing bulk-to-boundary ratios between center and polar positions. The patterns respond
to such geometric differences through the cytosolic gradients that emerge via the reactive coupling
at the enclosing boundaries. Thereby the system changes its exhibited behavior between long-axis
and short-axis polarization depending on the length scale of these cytosolic gradients142. In a simi-
lar fashion long axis polarization is implemented by PAR proteins in C. elegans18,143–145. In another
example, stable bipolar patterns of Min proteins in elliptical confinements demonstrate how surface
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curvature is effectively sensed through cytosolic gradients17. In an in vitro setting, the Min protein
system has been shown to develop stable self-organized oscillations along the long axis due to an ef-
fective geometry sensing on the pattern scale146. Additionally, wave-pinning mechanisms of Rho GTP
concentration waves yield insights into the confining geometry through the bulk-boundary coupling
process147.

From a bottom-top theoretical perspective, extensive research has examined diffusive transport
in spatially confined geometries. For spatially modulated confinements, such as channels or tubes,
wider regions act as entropic barriers148–150, requiring more time for particles to sample the domain
and diffuse further. In tubular confinements, diffusion along the central axis can be described using
a space-dependent diffusion coefficient, incorporating the effects of varying tube radii. The effec-
tive diffusion coefficient is given by the Lifson-Jackson equation151. The overarching Fick-Jacobs
framework describes diffusion within spatially modulated tubes under the assumption that perpen-
dicular concentration gradients equilibrate rapidly, enabling projection onto the central axis152–154.
These techniques have been extended to study confined bulk reaction-diffusion systems, revealing
the impact of spatial modulations on traveling wave behavior in channels155,156 and tubes157.

Recently, work on pattern formation on the surfaces of deformed cylinders yielded a pinning
of emergent patterns at particular deformation sites and hinted towards a geometric selection of
emergent pattern lengths. For cylinders with spatially modulated surfaces, the authors applied a
conformal mapping approach to solve the linear dispersion relation of the forming patterns on the
modulated geometries23. Regarding pattern formation in a bulk volume, confined by modulated
geometries, authors in Ref.22 performed a linear stability analysis for particular examples where an-
alytical solutions to the reduced diffusion equation are known. Their study yields a geometric mode
selection within the deformed domains.

Concerning the biologically relevant bulk-boundary systems, so far, effective one-dimensional de-
scriptions have generally relied on ad hoc implementations of differing rates at the cellular poles,
accounting for smaller bulk-to-surface ratios with heuristic adjustments86. Thus, theoretical descrip-
tions of pattern formation in quasi-1D bulk-boundary systems, incorporating bulk and boundary
diffusion with reactive interactions at deformed surfaces, remain incomplete.

In Chapter 2 of this work, we address the challenge of analytically describing confined reaction-
diffusion systems with bulk-boundary coupling. We present a dimensional reduction approach to
derive effective one-dimensional equations that capture the effects of geometric deformations in
tubular confinements. By employing a direct parametrization and expanding for weak perturbations
from an undeformed cylindrical shape, our framework provides a unified approach to studying bulk
and boundary dynamics in a one-dimensional description. We investigate the influence of varying
bulk-to-boundary ratios on pattern formation and demonstrate geometric control over pattern length
scales and the geometric interruption of coarsening processes.

1.1.3 PATTERN FORMATION IN Motile Active Matter

In a broad definition, active matter represents systems that are driven out of equilibrium by active
processes with energy insertion at the level of individual constituents158. In these systems the energy
input at the microscale and its transfer from single constituent to larger structures drives collective
self-organization56. In this thesis, we consider a subset of these systems by focusing on motile or
(self)-propelled active matter. Here the induced energy at the level of individual agents translates
into an active motion of the agents that is distinguishable from random Brownian dynamics. This
active motion can be produced by the individual agents themselves, like the crawling motion of
cells54,55 or as seen in the active motion of chemical Janus particles159. The energy can also be
supplied by mechanical excitation on the individual agent level. For instance, vibrated granular
rods exhibit coarsening dynamics driven by effective attraction through their shape anisotropy and
develop vortex type of motion in confinements160–162. An external generation of motion occurs also
in the actin motility assay, which constitutes an experimental setting for studying emergent behavior
in filamentous active matter. Within this setup, actin filaments show motion induced by interactions
with active motor proteins that are fixed on a cover lip, yielding an actively driven behavior of the
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filaments163,164.
Key aspects of active matter are the propulsion via internal mechanisms such as auto-motility or

motion via active interactions among agents. Self-propulsion of agents necessitates also a direction
of agents in which they move. This could be along gradients in an external field as in the Keller-Segel
model for chemotactic active matter165. In many other cases, the agents are directly equipped with
an internal degree of freedom determining their intrinsic direction of motion. Often, the alignment
of these orientations plays a crucial role in active matter systems166. One typically distinguishes
polar and nematic active agents. Polar agents have an orientation with a direction in space, whereas
nematic agents only have an orientation, but don’t break the forward/backward invariance on the
orientation line. Also the alignment of agents with the direction of their neighbors can be polar or
nematic in nature. For instance there can be different ranges of angles between the orientations of
two colliding agents that either lead to a nematic or a polar alignment. The coexistence of ranges
for both polar and nematic alignment between actin filaments in the actin motility assay has shown
to bring forward also a coexistence of spatially separated polar and nematic order164.

Examples of self-propelled active matter systems cover a large range of scales. Active matter
descriptions are applied to the collective motility of cells such as bacteria55 or social amoeba43,45.
The description of these systems by methods in the active matter field, yield an understanding of
their chemotactic motion165,167,168 and collective behavior5545. But the framework of active matter
is not restricted to such microscopic systems. Equivalent descriptions can be applied for motion
and collective behavior of animals also on larger scales with different applicability and necessary
assumptions and approximations. The framework of active matter yields insights into collective
organization processes underlying the behavior of social insects such as ants169, the flocking and
murmuration behavior of birds170, the swarming and predator-response of schools of fish171,172.

In all these systems, the formalism of propelled active matter is applied to investigate the collective
emergent behavior. Based on detailed studies of the individual dynamics, one typically tries to infer
and explore the emergent behavior using experimental observation or numerical simulations.

In the field of self-propelling active matter one distinguishes wet and dry systems53,173. Dry active
matter describes systems in the overdamped limit. All momenta are transferred into a substrate and
effective motion of agents is overdamped. In contrast ‘wet’ active matter considers the case in which
agents exhibit a momentum. It is called ‘wet’ because their treatment requires the incorporation of
a medium that transfers momenta between agents over a flow field which results in hydrodynamic
interactions between active swimmers174,175. Focusing on aspects such as general organization and
long-range communication between active agents, we in this thesis will focus on the overdamped
dry active matter.

Potentially one of the field founding events was the observation of flocking birds which led to the
question of what are the minimal ingredients necessary to obtain such a behavior? The celebrated
Vicsek model166, describing Langevin dynamics of individual self-propelled agents with a persistent
direction of motion and polar alignment with neighboring agents, showed a non-equilibrium phase
transition. For sufficiently strong interactions, agents align into a polar flock formation. Correspond-
ing phenomenological field equations yielded the theoretical insights into the transition between the
isotropic and the polar flocking state176. The system is found to exhibit true long-range order in a
two-dimensional system, breaking the Mermin-Wagner theorem, valid for systems in thermodynamic
equilibrium and thereby highlighting the active nature of the system’s alignment interactions177.

Another, emergent phenomenon that arises in persistently self-propelled particles with steric re-
pulsion, may appear counterintuitive on first thought. With repulsion alone as the only interaction
between agents that perform persistent random walks, one observes an effective attraction and clus-
ter formation178–180. When two agents collide, they cannot immediately escape the collision area due
to the persistence in their orientation, which only slowly changes. Before the agents change their
direction due to the random fluctuations and can escape the head-to-head collision, other agents
collide and block the route to escape. This can successively lead to large-scale collective cluster
formation. Certainly, the occurrence of this phenomenon depends on the overall agent density and
the rate of stochastic reorientation. This effect reminiscent of aggregation at boundaries181–183 is
called motility induced phase-separation. Initially, it was theoretically predicted on the basis of
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hydrodynamic field equations for a density of active Brownian particles with density-dependent ve-
locity178, and soon also observed in various agent-based numerical simulations that include steric
repulsion179,180,184–186.

DESCRIBING ACTIVE MATTER

For active matter systems, there are various ways of description. Just like describing the motion of
each particle, e.g., in molecular dynamics simulation for reaction-diffusion systems, a possible way
are agent-based simulations. Here one considers the dynamics of the individual active agents and
formulates them on the basis of Langevin equations by putting in microscopic rules for agent behav-
ior and agent-agents interactions. Such rules potentially include the agent’s motility and dynamic
spatial orientation, orientational- or positional noise, and steric repulsion interactions, among oth-
ers. Depending on the complexity of these interactions, this approach already makes a numerical
study of significantly large systems feasible.

However, on the scale of emergent collective structures, order parameters are typically used to
describe the mesoscale organization of the system. For instance, the agent density is such an order
parameter. Averaging over local distributions of agents, it transfers information about the individual
agents’ positions into a mesoscale continuous quantity. In a similar way, one can define order param-
eters for the degree of polar alignment between agents or a nematic tensor, that identifies the local
average orientation in space and the degree of alignment of agents within this direction.

Thus, beyond agent-based models, hydrodynamic field equations offer a description of self-propel-
ling active matter directly at the level of the order parameters. There are field theories which work
on the level of scalar active matter, describing the dynamics of the agent density supplemented by
different dynamics such as chemotaxis165 or density-dependent velocities178. These models, can be
seen as out of equilibrium extensions to classical phase-separating systems187.

The continuous hydrodynamic models can be motivated from symmetry considerations188,189 in-
cluding conservation laws. For instance Toner and Tu used a phenomenological model to describe the
isotropic to polar flocking transition in Ref.176. Even though phenomenological equations allow for
reproduction of behavior observed in various experimental or agent-based numerical studies188,190,
they don’t enable a mapping between the phenomenological and the underlying microscopic pa-
rameters. A general mapping between microscopic interactions and continuous ’hydrodynamic’ field
equations can be involved. There are various approaches which have been developed mainly over
the last decade191–193. The overall idea is, to start from the microscopic behavior of individual agents
and apply a coarse graining scheme, to finally arrive at continuous field equations for the order
parameters.

There are approaches on the basis of Fokker-Planck Equations194 or others that try to include
multi-agent collisions to account for dynamics within high density phases195. Others, that base on
a Smoluchowski equation196 include interactions in form of physical potentials but thereby do not
yield the dependencies between the microscopic and hydrodynamic parameters and require phe-
nomenological stabilizing terms197.

In this work, we focus on the Boltzmann-Ginzburg-Landau framework for deriving hydrodynamic
field equations from the microscopic dynamics of agents191,198–200. The starting point is a Boltz-
mann equation for the state probability density, which includes the agent interactions through tran-
sition probabilities between densities of different states. Assuming molecular chaos and low agent
densities, the state probability density is expanded into Fourier modes of the spatial orientation.
This procedure generates a hierarchy of coupled equations for the Fourier moments. Importantly,
this hierarchy involves couplings to higher-order moments, including two- or multi-moment inter-
actions which necessitates a suitable closure scheme. The Boltzmann-Ginzburg-Landau framework
has proven effective in describing various systems, including the behavior of inelastically aligning
microtubule assemblies198,201,202 and the dynamics of actin filaments in motility assays203.

In chapter 4, we derive hydrodynamic field equations for chemically communicating polar active
matter on the basis of such a Boltzmann approach. In chapter 5, we use similar equations with
phenomenological parameters for the description of polar active matter with acoustic interactions.
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1.2 NON-LOCAL COUPLING

In the case of Turing instabilities, we observed that coupling dynamics across different length scales
can lead to instabilities that drive pattern formation in a system. This highlights a fundamental prin-
ciple: introducing additional couplings or degrees of freedom can unlock new emergent phenomena.
Here, we explore two biologically and technologically relevant systems that exhibit increased com-
plexity and richness when non-local interactions are incorporated.

Through non-local coupling, the individual elements of the systems gain access to information
from distant positions, extending interactions beyond immediate neighbors. This qualitatively novel
aspect can give rise to emergent phenomena, such as long-range correlations, synchronized behavior,
or self-organized patterns that are not present in systems with purely local interactions.

The types of non-local coupling explored in this thesis are twofold. In the first part, we focus on
geometric coupling. We begin by considering bulk-boundary reaction-diffusion dynamics in static
geometric confinements, which introduce a spatial heterogeneity in the system. While this does
not represent a dynamic non-local coupling, it addresses important geometric aspects for confined
cellular pattern formation and lays the groundwork for Chapter 3. There, we will investigate geo-
metric coupling that arises dynamically through membrane deformations, in interplay with phase-
separating protein dynamics. By reducing the pattern-forming mechanism to demixing dynamics, we
are able to isolate the role of mechanical coupling for patterning in the system. As we will demon-
strate, these dynamic geometric deformations generate an effective non-local mechanical coupling
within the system.

In chapters 4 and 5 we will discuss a very different type of non-local coupling. Namely, large
distance communication in active matter systems. Also for these systems the non-local interactions
will give access to information about distant parts of the domain and thereby yield qualitatively new,
emergent phenomena.

1.2.1 GEOMETRIC AND MECHANICAL COUPLING

Geometry and mechanical coupling play a fundamental role in biological pattern formation. Geo-
metric confinement, such as the cell membranes, can impose spatial heterogeneities that influence
the distribution and dynamics of chemical species, leading to the emergence of complex geometri-
cally controlled patterns. Additionally, mechanical deformations, such as protein-induced changes in
membrane shapes, can dynamically couple to the pattern-forming reaction-diffusion processes, cre-
ating a feedback between geometry and chemical dynamics. Investigating these effects provides key
insights into how patterns form and adapt in confined, living systems and, in turn, yield potential
principles for designing synthetic cells.

Of particular relevance for intracellular pattern formation are protein reaction networks that incor-
porate bulk dissolved and boundary-bound species. The nonlinear reaction kinetics at the deformed
surface enables the systems to sense geometric properties such as local bulk-boundary ratios and
changes in available reactive bulk volume and surface are. Therefore, bulk-boundary systems are a
class of reaction-diffusion equations that is particularly amenable to geometric deformations.

In the first part of this thesis, Chapter 2, we consider the coupling of a bulk-boundary protein sys-
tem to a static external modulation of an enclosing cylindrical geometry. The pattern forming system
is confined to this tubular domain while surface species and bulk species interact via reactions on the
surface. The externally imposed geometric deformation introduces a positional information in the
system as it causes a parameter variation over the domain and thereby breaks translational symme-
try. This broken symmetry, gives rise to a geometric pattern selection in the system. We present an
approach to introduce a geometric context into one-dimensional reaction-diffusion models, which
extends the applicability of such models to bulk-boundary systems with spatial modulations of the
enclosing confinement. Within this framework, we can predict the evolving patterns with a very
good agreement to numerical simulations.
Finally, we investigate the long-time dynamics of the system. In particular, we will find that geomet-
ric deformations can induce forces on the interfaces that counteract the coarsening dynamics that
would arise in the system without geometric modulation. We can predict necessary modulations for
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arrested coarsening at different length scales.

In Chapter 3, we discuss a minimal model for mechanical coupling of a phase-separating system
with geometric deformations. In particular, we study a system of proteins embedded into a two-
dimensional deformable manifold. The latter is characterized by a Canham-Helfrich free energy
with preferred curvature that is induced by the presence of one species of the demixing system. We
find that the geometric deformations implement an effective non-local coupling between the phase-
separating protein densities. This leads to a stabilization of patterns with finite wavelength in the
system.

Both these studies investigate the impact of geometric confinements and mechanical coupling on
pattern forming systems. We identify that geometric deformations can induce a non-local coupling
between pattern forming species. We find, that simple forms of non-local information in the system,
be it through an externally induced break of translational symmetry or through self-organized me-
chanical coupling via modulated membrane surfaces, give rise to geometrically controlled pattern
length scales and a selection of final steady states.

1.2.2 LONG-RANGE COMMUNICATION

In active matter systems, steric repulsion and alignment due to shape anisotropies of agents im-
plements a local form of interactions. Agents directly respond to their neighbors by physical cues.
As such, actin filaments in motility assays align with each other for avoiding overlap163 and ac-
tive Brownian particles which experience steric repulsion form clusters via motility-induced phase-
separation180. Thus, even on the basis of such local interactions, systems can develop large-scale
collective structures. If these structures are dense aggregates, they can even achieve a form of large-
distance information transfer, where information is propagated through fast/physical subsequent
nearest neighbor interactions, forming a continuous force chain204. However this is limited to dense
packing of agents as it requires direct adjacency between interacting agents for information transfer.

In the second part of this thesis we ask for the general principles of long-scale communication.
How can agents achieve efficient information transfer and collectively employ the gathered informa-
tion in terms of collective decision-making.

In general, introducing non-local interactions has been shown to make the system more responsive
to external stimuli and to enable it to self-organize over larger ranges205,206. For instance, swarming
active matter with a long-ranging visual coupling between agents yields potentially non-reciprocal
interactions and rich phenomenology207,208.

Inspired by its relevance for biological systems such as for bacterial navigation and slime mold
aggregation, there are various studies on chemically interacting active matter209 starting from the
original studies of Patlak210 and Keller and Segel165,167. For instance, cyclic AMP signaling plays
an important role for fruiting body formation in Dictyostelium cells45,211,212. Upon starvation, the
cells emit chemical signals into their surrounding where they diffuse and transmit information to
distant cells43,213. Similarly, ants and other social insects apply chemical signaling, leaving trails
of pheromones behind, that give information about beneficial paths and potential food sources and
warning for threats214,215. Here, ants perceive very local information about pheromone levels, how-
ever an effective long-scale communication arises through a history of information given by per-
sistent pheromone traces in the environment. Combined with the active motion of the ants, this
translates into a type of long-scale interaction. A chemical field can represent a distributed memory
of the collective. The time scale of that memory is determined by the inverse pheromone decay rate
and diffusive spread.

Chemical communication has been explored in various experimental systems216. For instance,
chemical interactions can help to optimize the collective behavior of self-propelled Janus particles217

or facilitate emergent, chemically controlled oscillations in colloidal systems, that regulate collective
self-assembly and dispersal218. In other experiments, self-propelled autochemotactic droplets exhibit
avoidance of their previous trajectories, as they leave persistent chemorepellent traces in the envi-
ronment. These lasting chemical cues can even result in the active droplets becoming trapped within
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their own paths219. Chemically activated colloidal Janus particles exhibit dynamic aggregate forma-
tion220 and an agent density-depending dynamic switching between large and small clusters. Thus,
the agents can employ changes in the chemical field to perceive densities and cluster sizes221. Most
of these systems involve a localized diffusive spreading of chemical signals and thereby implement a
local organization of the collective behavior.

In contrast, in Chapter 4, we introduce a non-linear chemical signal relaying mechanism which
will lead to a distant spreading of chemical waves and thereby transport signals to other positions.
In particular, we consider a system of self-propelled active agents that are equipped with a Schmitt-
trigger-like internal dynamics. Upon encountering a chemical signal with significant strength, above
a given threshold, agents actively relay the signal by also emitting chemical molecules into their
surrounding. In turn, information propagates not diffusively, but is actively relayed as a nonlinear
trigger wave by the present agents. Given this functionality, the system exhibits a rich organization
into a variety of collective structures. Thereby, we show that the aggregation process occurs by
employing a hierarchy of different states.

Having established the role of non-local coupling for the self-organization process in chemically
communicating active matter, we will turn our focus towards what type of emergent functionality
can arise through a non-local coupling.

A step in this direction are swarmalator models for chiral active matter222. Here, the agents exhibit
a persistent rotation while self-propelling. The rotational motion of agents is coupled to the rotation
of others. Thereby, the agents can synchronize these oscillators, typically via intermediate ad-hoc
synchronization rules. This resembles a version of the celebrated Kuramoto model for interacting
and synchronizing oscillators, with variable interaction partners due to the varying spatial distances
induced by the agent’s/oscillator’s motion. Swarmalator models with local or global coupling be-
tween the agents, for instance, show aggregation into vortex clusters and rings222,223. Similar be-
havior could be reconstructed in collectives of oscillating chiral active agents, called Weasle balls224.
In contrast to the theoretical models, here the mutual synchronization is mediated by steric effects
between the active spheres and their circular two-dimensional confinement. In current swarmalator
models, the intrinsic oscillators of the agents are directly coupled to their chiral motion, preventing
them from serving as independent degrees of freedom that can explicitly facilitate communication.
We aim to explore an alternative approach that incorporates synchronization between the agents’
intrinsic degrees of freedom into their collective dynamics. The interactions of oscillators and the
motion of agents will be interlinked through bi-directional feedback but remain distinct properties,
allowing the agents to communicate information that is not identical to their motility behavior. In
chapter 5, we discuss a system of self-propelled active agents that have an oscillatory state as an
internal degree of freedom. Representing the state of an oscillator that emits acoustic waves into the
surrounding, the agents can synchronize and perceive states from others via acoustic coupling.

In this study, we go beyond existing models by equipping active agents with internal states that
possess intrinsic traits while also being influenced by mutual coupling, mediated through a collec-
tively established chemical or acoustic field. This enables the communication of information that is
distinct from, and additional to, the agents’ self-propulsion dynamics.
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GEOMETRIC CONTROL OF PROTEIN PATTERN FORMATION IN BULK-BOUNDARY SYSTEMS

We present a reduction approach to capture geometric effects on confined reaction-diffusion sys-
tems with bulk-boundary coupling. Our approach yields an effective one-dimensional reaction-
diffusion-advection equation that incorporates the influence of spatio-temporally modulated bound-
aries in a rotationally symmetric cylindrical geometry. This reduction enables the use of various
analytical tools, such as phase-space analysis, to study mass-conserving reaction-diffusion systems.
Through this analysis, we identify an instability condition whereby spatial boundary modulations
can either induce or suppress pattern formation. Using a perturbative linear stability analysis that
includes these geometric deformations, we predict conditions for length-scale selection and pattern
localization based on boundary geometry. Additionally, we apply the reduced model to examine
how geometry can interrupt coarsening. Our findings show that interface minimization within de-
formed geometries acts as a primary driver behind coarsening interruption. This work deepens our
understanding of geometrically controlled pattern formation in confined geometries, with particular
relevance for intracellular protein systems. Our framework also provides an analytic approach for
studying mechano-chemical coupling in general quasi-one-dimensional bulk-boundary systems.

2.1 INTRODUCTION

Pattern formation in biological and chemical systems represents a fundamental self-organization
mechanism to induce an initial symmetry breaking of biochemical species. This symmetry break-
ing underlies various subsequent organization processes, including cell division, polarization, and
specification9–12.

Various experimental and numerical studies have demonstrated the importance of mechano-
chemical coupling2,34,137,225–227 and geometric modulations in controlling confined pattern forma-
tion18,19,86. For instance, the Min protein system exhibits externally controllable reaction patterns
driven by varying geometry228, and elliptic reaction domains can induce different stable bi-polar
patterns as in E. coli cells, not observed in planar geometries17.

In cellular systems, membranes naturally provide spatial confinement by enclosing the cytosolic
bulk volume, serving as reactive interfaces where protein attachment, detachment, or recruitment
processes occur6–8. These non-trivial boundary interactions enrich the influence of geometric modu-
lation on confined pattern formation.

Despite their inherently two- or three-dimensional nature, many confined pattern-forming systems
exhibit length-scale separation, where the dynamics predominantly occurs along a single spatial di-
mension87,228. This reduction in dimensionality provides an opportunity for analytical modeling.
Given the biological significance of protein systems with bulk-boundary coupling and the pronounced
effects of geometric confinement on pattern dynamics120,229–231, we aim to derive an analytically
tractable theoretical model for describing and predicting these geometric effects. To this end, we
extend approaches for confined bulk diffusion systems22,151,157,232–235 by deriving a one-dimensional
reduction of reaction-diffusion (RD) systems with bulk-boundary coupling at a spatio-temporally
modulated membrane boundary (Fig. 2.1). By integrating out the cytosolic bulk volume, we de-
velop a framework for a reduced description of bulk-boundary systems with spatiotemporal domain
modulations which extends beyond existing models on spatially modulated tubular surfaces22,23.
This framework allows us to study geometry-controlled pattern formation using established ana-
lytical tools such as linear stability analysis89, geometric phase-space analysis for mass-conserving
systems88,94, and singular perturbation theory155,236. Applying these techniques to generic two-
component mass-conserving reaction-diffusion models, we predict geometrically controlled pattern
formation, derive criteria for length scale selection and pattern localization, and establish condi-
tions for geometrically interrupted coarsening. These predictions are validated against full three-
dimensional numerical simulations of the deformed bulk-boundary system.

The presented theory systematically incorporates geometric effects into one-dimensional RD mod-
els, moving beyond previous ad-hoc effective formulations, e.g., using space-dependent rates86.
Our approach, therefore, provides an analytically accessible theory that applies to a range of bi-
ological and chemical systems, such as intracellular communication via membrane tunneling nan-
otubes237,238, mechano-chemical feedback in vein networks of Physarum polycephalum239,240, and

14



2

CONFINED BULK-BOUNDARY SYSTEMS

Figure 2.1: Schematic of a system of cytosol (orange) c(r⃗, t) and membrane (blue) species m(σ⃗, t), Eq. (2.1), of proteins
(green) in a rotationally symmetric tube with spatially varying radiusR(x, t). The interaction of both species can be described
via reactive boundary conditions, Eq. (2.2), at the modulated membrane S, which is given as a two-dimensional surface in
R3; ψ : U → S ⊂ R3 with parametric coordinates σ⃗ ∈U ⊂ R2.

polar pattern formation in elongated cells146,241.
Our analysis reveals that spatially varying bulk-boundary ratios and interface minimization are key

mechanisms driving geometric pattern selection and localization. We find that the diffusive interface
minimization is also the driving mechanism behind geometrically interrupted coarsening. Together,
our results suggest that these principles represent general mechanisms governing the pattern forma-
tion of confined bulk-boundary reaction-diffusion systems. These principles are therefore likely to be
broadly relevant across diverse biological and chemical systems.

The paper is organized as follows; after stating the considered setup of coupled bulk-boundary
systems in spatially varying confinement in section 2.2, in section 2.3, we outline the derivation of
the reduced one-dimensional reaction-diffusion description. In section 2.4, we make use of the one-
dimensional reduction of the system to gain insights into geometrically controlled pattern formation
by applying a phase-space analysis of a generic two-component mass-conserving reaction-diffusion
system. In section 2.5, we go beyond this initial analysis and derive predictions for geometrically
controlled pattern and length-scale selection through interrupted coarsening and compare them with
results of 1d and full 3d numerical simulations.

2.2 CONFINED BULK-BOUNDARY SYSTEMS

To model confined reaction networks with bulk-boundary coupling (Fig. 2.2), we consider a general
class of coupled reaction-diffusion equations

∂tm (σ⃗, t) = Dm∆mm + fm(m) + fmc(m, c|S) , (2.1a)

∂tc(r⃗, t) = Dc∆cc + fc(c) . (2.1b)

Throughout this work, we adopt the terminology of biochemical reaction-diffusion systems, although
the proposed approach is applicable to a broader class of systems. Specifically, we denote by
m(σ⃗, t) ∈ Rp and c(r⃗, t) ∈ Rn the surface (σ⃗ ∈ U ⊂ R2) and volume (r⃗ ∈ R3) concentrations of the p
membrane and n cytosolic protein species, respectively; see Fig. 2.1. For simplicity, we assume that
diffusion constants only depend on whether proteins diffuse on the membrane or in the cytosol,
but are otherwise the same. We distinguish between chemical reactions that exclusively involve
membrane-bound and cytosolic proteins (fm(m) and fc(c)), or both of them (fmc(m, c|S)); the
latter may include protein attachment to and detachment from the membrane as well as protein
membrane recruitment. Consequently, these reactions depend on the cytosolic protein concentra-
tions adjacent to the membrane S80. The reaction-diffusion equations are supplemented by reactive
boundary conditions for the cytosolic species,

Dc (n⃗ · ∇) c|S = g (m, c|S) , (2.2)
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Figure 2.2: Exemplary reaction scheme with generic interactions for bulk-boundary protein systems. Besides bulk and bound-
ary diffusion (Dc, Dm), species can occur either dissolved in the bulk (c) or bound to the boundary (m). They can undergo
distinct reaction kinetics within the bulk (fc), and at the boundary (fm, fmc) involving reactive boundary conditions (g,
Eq. (2.2)) for the bulk species.

with outward pointing surface normal unit vector n⃗ at the enclosing boundary S. The quantity
g(m, c|S) represents the reactive boundary contributions to the cytosolic species associated with the
membrane term fmc.

As shown in Fig. 2.2, proteins can either be dissolved in the cytosol (bulk) or bound to the mem-
brane (boundary). Within the cytosol and on the membrane, they show diffusive dynamics with re-
spective diffusion coefficients Dc and Dm. Here, to illustrate the basic principles, we exemplify some
generic protein interactions that can be captured by the reaction-diffusion equations, Eqs. (2.1), and
the boundary condition, Eq. (2.2). Note, however, that the scope of the model encompasses a wide
range of systems beyond these specific cases; for a more realistic set of interactions, we refer the
reader to Refs.18,31,80,88,93,95,97,99,242. For example, proteins within the bulk may undergo state con-
versions, such as ATP hydrolysis, which are incorporated into the bulk reaction dynamics fc(c). To
illustrate this interaction in a representative scenario with two bulk species (n = 2), the bulk reactive
contributions could take the form

∂t

(
c1
c2

)
= Dc∆c

(
c1
c2

)
+
(

λc2
−λc2

)
, (2.3)

for a linear conversion from species c2 to c1. Importantly, a significant part of the reactive interac-
tions typically occurs on the membrane. For instance, attachment, detachment, and recruitment of
proteins contributes both to the reactive term fmc and the reactive boundary condition g. Exemplar-
ily, attachment with rate kattach and auto-recruitment with rate krecruit of a single species p = n = 1
from the bulk (c) to the boundary (m) would yield

fmc (m, c|S) = (kattach + krecruitm) c|S , (2.4)

and the corresponding reactive boundary condition for the bulk species

g (m, c|S) = − (kattach + krecruitm) c|S , (2.5)

that preserves total mass-conservation, n = c + m. The reactive contribution g represents the impact
of the reactions fmc at the boundary on the bulk species as mediated through the reactive boundary
conditions. Finally, the reaction-diffusion equations, Eqs. (2.1), consider reaction kinetics (fm(m))
that only involve membrane-bound species. As such, a local conversion of one species into another
boundary species (e.g., m1 into m2) would give the contributions

fm (m) =
(

−m1
m1

)
, (2.6)

and have no further effect on the bulk reactive boundary conditions. As a final note, it is important
to highlight that the reactive boundary conditions inherently generate bulk concentration gradients
perpendicular to the boundary. These boundary conditions encode that the chemical reactions link-
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ing membrane and cytosolic proteins act as localized sinks or sources at the membrane, driving
changes in concentration. Through diffusive transport into the bulk, this generates concentration
gradients that extend into the bulk over a characteristic length scale ℓc ∼

√
Dcτ 88. Here τ denotes

the timescale of the reaction process at the boundary, e.g., attachment, τ = 1/kattach, Eq. (2.5), and
Dc is the species’ bulk diffusion constant. If this length scale ℓc is small compared to the bulk’s extend
perpendicular to the boundary, the variations in bulk concentrations with increasing distance to the
boundary can significantly influence the dynamics of the reaction-diffusion system.

2.3 DIMENSIONAL REDUCTION

In the following, we consider a tube-like membrane with a spatially modulated and time-dependent
radius R(x, t) of finite length L, as illustrated in Fig. 2.1. Using cylindrical coordinates with r⃗ =
(x, ρ cos ϕ, ρ sin ϕ)T , the boundary S (membrane) is given by a surface of revolution which can para-
metrically be written as

r⃗(x, ϕ) = (x, R(x, t) cos ϕ, R(x, t) sin ϕ)) . (2.7)

In cylindrical geometry, the reaction-diffusion equation of the cytosolic protein density, Eq. (2.1b),
reads

∂tc = Dc

(
1
ρ

∂ρ (ρ ∂ρc) + 1
ρ2 ∂2

ϕc + ∂2
xc

)
+ fc(c) . (2.8)

The outward-pointing surface normal vector of the boundary S is given by,

n⃗ = 1
γ

(
e⃗ρ − R′(x, t) e⃗x

)
, (2.9)

where e⃗ρ and e⃗x are unit vectors in radial direction and along the cylinder axis, respectively (Fig. 2.3),
and a prime denotes the derivative with respect to the center line coordinate x. Here, γ =

√
1 + R′2 is

the local dilation factor of a meridian, i.e., a line on the surface aligned with the centerline direction.
Using this, the boundary condition, Eq. (2.2), can be rewritten as

Dc (∂ρ − R′∂x) c|S = γ g(m, c|S) . (2.10)

We start the derivation of the dimensionally reduced equations from the integral form of the
reaction-diffusion equation for the bulk species c,

d
dt

∫
V

dV c(r⃗, t) = Dc

∫
∂V

dS n⃗ · ∇c +
∫

V

dV fc . (2.11)

This equation states that changes in the particle numbers of each individual bulk component within a
volume V are either due to particle fluxes through the boundary ∂V with surface element n⃗ dS or due
to reactions within the bulk V . Now, consider a thin slice of the modulated cylinder as integration
volume V , bounded by the membrane surface ∂V |S and two parallel discs Fx and Fx+∆x that are
perpendicular to the cylinder axis and separated by an (infinitesimal) distance ∆x apart (Fig. 2.3);
a disc at x0 is defined by

Fx0 =
{

r⃗
∣∣x = x0, ρ ∈ [0, R(x0, t)], ϕ ∈ [0, 2π)

}
. (2.12)

For the following analysis, we assume that cytosolic diffusion is sufficiently fast such that the re-
sulting cytosolic diffusion length ℓc is much larger than the lateral extension of the system, i.e., the
radius of the cylinder: ℓc ∼

√
Dcτ ≫ R(x, t); here τ denotes some characteristic time of the chemical

reactions. Under this condition, crucial for the dimensional reduction, the bulk density can be con-
sidered spatially uniform perpendicular to the cylinder’s center axis, implying rotational symmetry
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Figure 2.3: Schematic of a bulk section confined by a spatially varying tubular membrane surface S, Eq. (2.7), (blue) with
outward-pointing surface normal vector n⃗, Eq. (2.9), and two parallel discs perpendicular to the cylindrical axis (yellow)
separated by a distance ∆x.

and the absence of gradients in the radial direction: c(r⃗, t) ≡ c(x, t). This allows us to express the
left-hand side of Eq. (2.11) as

d
dt

∫
V

dV c(r⃗, t) = ∂t

(
πR2∆x c

)
= πR2 ∆x ∂tc + 2πR Ṙ ∆x c , (2.13)

where a dot indicates the temporal derivative. There are two different contributions to the change
in the bulk concentration: one due to temporal changes in the density and the other due to dynamic
changes in the cross-sectional area. Next, we consider the boundary term,

∫
∂V

dS n⃗ · ∇c, which
can be split into three contributions; one on the enclosing boundary S and two contributing at the
parallel discs Fx. Using the reactive boundary conditions, Eq. (2.10), the first contribution can be
written as

Dc

∫
∂V |S

dS n⃗ · ∇c = 2πR
(
γ ∆x

)
g , (2.14)

where γ ∆x denotes the length of the infinitesimal boundary element of the curved surface. For the
diffusive flux through a disk Fx in positive x-direction, we obtain∫

∂V |Fx

dFx e⃗x · ∇c = πR2(x) ∂xc(x, t) . (2.15)

Subtracting the cytosolic fluxes through the two parallel discs at positions x + ∆x and x, and using
the limit

lim
∆x→0

R2∂xc|x+∆x − R2∂xc|x
∆x

= ∂x

(
R2∂xc

)
|x , (2.16)

one finds that the bulk flux difference (divided by ∆x) can be written as the spatial derivative
∂x

(
DcπR2∂xc

)
. The latter expression is the gradient (along the cylinder axis) of the total diffusive

flux πR2Dc∂xc through the area πR2. Finally, the reactive contributions within the bulk volume read∫
V

dV fc = πR2∆x fc . (2.17)

Thus, collecting all the terms and dividing also the remainder by ∆x, we obtain the reduced one-
dimensional description

∂t(πR2c) = Dc∂x(πR2∂xc) + 2πRγ g + πR2fc , (2.18)
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which can be interpreted as follows: For each bulk component, the temporal change of the bulk line
density, c̃ = πR2c, is driven by the gradient of the total diffusive flux along the cylindrical axis (first
term) 1, net particle exchange with the membrane (second term), and total reactions in the reactive
volume (third term).

Similar to the protein line density in the cytosol, c̃ = πR2 c, one can also define an analogous
line density on the membrane, m̃ = 2πγR m. It corresponds to the protein area density m on the
membrane multiplied by the locally available membrane area 2πR γ. Following the same reasoning
as above, one can derive the dynamics for this membrane line density. Alternatively, as shown in
appendix Section 2.8.1, the reduced membrane dynamics can also be obtained using an approach
outlined in Refs.243,244. The combined set of effective equations for both line densities can then be
expressed as:

∂tm̃ = Dm∂xJm + 2πγR
(
fm(m) + fmc(m, c)

)
, (2.19a)

∂tc̃ = Dc∂xJc + πR2fc(c) + 2πγR g(m, c) . (2.19b)

These equations have a physically plausible geometric interpretation: Following Fick’s law, the cur-
rents Jm and Jc of the diffusive fluxes are determined by gradients in the actual surface and volume
densities:

Jm = 2πRγ−1∂xm , Jc = πR2∂xc (2.20)

The geometric prefactors reflect the fact that currents on the membrane are proportional to the sur-
face area elements 2πR and bulk cross-section πR2, respectively, and that the gradients on the mem-
brane are given by derivatives with respect to the line elements s along the membrane ∂s = γ−1∂x.
The reactive contributions changing the relative masses of the species locally, are weighted with
the locally available reactive bulk volume and surface area, respectively. Thus, reactions at the
membrane (fm, fmc, g) acquire a factor 2πγR and cytosolic reactions fc are weighted with the cor-
responding bulk volume πR2.

The dimensionally reduced reaction-diffusion equations, Eqs. (2.19), can be reformulated in terms
of the volume and area densities as:

∂tm =Dm

γ2

[
∂2

x +
(

R′

R
− R′R′′

γ2

)
∂x

]
m −

(
Ṙ

R
+ R′Ṙ′

γ2

)
m + fm + fmc , (2.21a)

∂tc =Dc

[
∂2

x + 2R′

R
∂x

]
c − 2Ṙ

R
c + fc + 2γ

R
g . (2.21b)

As compared to the original three-dimensional reaction-diffusion equation, Eqs. (2.1), these con-
tain new types of terms, all originating from the spatial and temporal modulation of the membrane.
For the cytosolic line density, these have the following interpretation: The term 2γ

R g is an effective
reaction term due to the bulk-boundary coupling with the prefactor accounting for the local rela-
tion of surface area, 2πRγ, to bulk volume, πR2. The term − 2Ṙ

R c acts as an effective source-sink
term with the delatation prefactor (∂tπR2)/(πR2) = 2Ṙ/R. It indicates that a temporal increase
(decrease) in the local cross-section effectively reduces (increases) the corresponding local volume
density c. Finally, the contribution 2R′

R ∂xc is an effective drift term with the prefactor acting as an
effective drift velocity. It originates from (∂xπR2)/(πR2) = 2R′/R, i.e., a spatial dilatation of the
accessible cross-sectional area. For the membrane line density, there are similar interpretations that
can be inferred from the analysis presented in appendix Section 2.8.1.

1Notably, the diffusive contributions to Eq. (2.18) yield an effective space-dependent diffusion constant, recovering the
classical Fick-Jacobs result for diffusion in spatial confinements149: ∂tc̃ = ∂x

[
DcR2∂x

c̃
R2

]
.
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2.4 GEOMETRICALLY CONTROLLED PATTERN FORMATION IN

TWO-COMPONENT SYSTEMS

In this section, we apply our geometric reduction approach to a specific example, highlighting the in-
sights it offers into the effects of bulk-boundary coupling. We focus on static surfaces of revolution as
enclosing boundaries to examine how spatially varying tube radii, R(x), influence pattern formation
and dynamics.

Specifically, we investigate generic reaction-diffusion models involving a single protein species that
can exist either bound to the membrane or dissolved in the cytosol. We consider reaction kinetics
in which no reactions occur exclusively on the membrane or in the cytosol, that is fm = fc = 0,
but always involve particle exchange between the membrane and the cytosol, fmc = −g = f(m, c),
ensuring mass conservation. This allows us to isolate the effects arising solely from bulk-boundary
coupling and geometric modulation.

In this setting, the effective one-dimensional reaction-diffusion dynamics reduces to

∂tm =Dm

γ2

[
∂2

x +
(

R′

R
− R′R′′

γ2

)
∂x

]
m + f(m, c) (2.22a)

∂tc =Dc

[
∂2

x + 2R′

R
∂x

]
c − 2γ

R
f(m, c) . (2.22b)

As we discussed in the preceding section, in the cytsolic dynamics the reaction term is weighted by
a factor corresponding to the area to volume ratio. Moreover, the spatial modulation in the cross-
sectional area introduces drift terms for both the dynamics of the membrane and the cytosolic density.
Since the drift velocities vdrift scale approximately as R′/R, these drift terms imply that interfaces
in the concentration profiles shift toward narrower sections of the tube, indicating a tendency of
diffusive coupling to minimize interface length. In the following sections, we will explore how these
effective reactive and advective contributions influence pattern formation and localization within
spatially modulated tubular geometries.

The chemical reactions considered conserve the total number N of particles in the systems:

N =
∫ L

0
dx
(
2πγR m + πR2c

)
. (2.23)

This defines an effective line density for the total amount of particles

n(x, t) = 2πγ(x)R(x) m(x, t) + πR2(x) c(x, t) . (2.24)

Since the dynamics conserve mass, this density must obey a continuity equation, as can be inferred
from Eqs. (2.22) or, equivalently, Eqs. (2.19),

∂tn(x, t) = ∂x

[
Dm

2πR

γ
∂xm + Dc πR2∂xc

]
. (2.25)

The total current is a sum of the effective diffusive fluxes on the membrane and in the cytosol, cf.
Eq. (2.20).

2.4.1 MASS-REDISTRIBUTION INSTABILITY

In this section, we consider the stability of a homogeneous steady state (HSS) (m∗, c∗) against spatial
perturbations. It is given by the intersect between the reactive nullcline, f(m∗, c∗) = 0 and the
reactive subspace that follows from the constraint on the total protein mass:

N = m∗VS + c∗VB , (2.26)
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Figure 2.4: Phase-space analysis of geometrically controlled pattern formation. (a) Tube radius R(x), Eq. (2.33), with a
narrow transition of two compartments with R ∼ 0.5 and R ∼ 1. (b) Representation of the phase-space conditions for lateral
instability: a system is laterally unstable if and only if the nullcline’s slope (dashed blue (dark gray) line) at the homogeneous
steady state (m∗, c∗) is smaller than the critical value (solid green (light gray) and orange (medium gray) lines for R = 1
and R = 0.5, respectively). The homogeneous steady state is given as the intersect of reactive nullcline (blue, dark gray)
and the reactive subspace (black, Eq. (2.27)). The total range of lateral instability in the two domains is indicated by the
green (medium gray) and the narrower orange (light gray) bars. (c) Dispersion relations for both parts of the geometry.
Linear growth rates Re(λ(q)) are larger in the broader part (R = 1, green (medium gray)) compared to the narrower section
(R = 0.5, orange (lighter gray)). The parameters are set to Dc = 0.5, Dm = 0.04, k = 0.07, L = 20, and N = 108.

with VS and VB denoting the total membrane area and cytosolic volume, respectively. This relation
can be written as

c(m∗) = n̄ − ν m∗ , (2.27)

where n̄ denotes the average mass density if all proteins were dissolved in the cytosol, and ν := VS/VB

is the total surface to volume ratio; for an illustration see Fig. 2.4(b). Note that we restrict the dis-
cussion to the specific case where only a single stable homogeneous steady state (HSS) exists. In
general, the surface-to-volume ratio, ν, can modify the slope of the relationship in Eq. (2.27), po-
tentially introducing additional intersections with the reactive nullcline and leading to multistable
behavior94.

These steady state concentrations (m∗, c∗) lead to a mass line density

n∗(x) = 2πγ(x)R(x) m∗ + πR2(x) c∗ , (2.28)

which is spatially inhomogeneous due to the spatial modulation of the membrane. To study the
stability of a HSS we use the dynamic equation for the total density, Eq. (2.25), and expand it around
this nonuniform steady state, n(x, t) = n∗(x) + δn(x, t). To leading order this yields an effective
diffusion equation

∂tδn ≈ ∂x

(
Deff(x) ∂xδn

)
(2.29)

with a space-dependent diffusion coefficient:

Deff(x) = Dm
2πR

γ
∂nm∗ + Dc πR2 ∂nc∗ . (2.30)

This effective diffusion equation exhibits an instability, termed mass-redistribution instability94, when
there is anti-diffusion, Deff < 0. Thus, the condition for such an instability of the HSS translates to a
criterion on the slope of the nullcline at the homogeneous steady state:

snc = ∂nc∗

∂nm∗ < − 2
γ(x) R(x)

Dm

Dc
. (2.31)

This criterion is analogous to the slope criterion for a flat geometry94, yet there are crucial differ-
ences. First, even for a cylinder with a constant radius R0, there is a dependence on geometry:
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the instability can be triggered by altering the cylinder’s radius, thereby changing only a geomet-
ric feature of the system. Second, for surfaces of revolution with a spatially varying radius R(x),
the criterion becomes a local one, depending on the local size of the radius as well as the slope of
the surface through the metric factor γ(x) =

√
1 + (R′(x))2. As a result, for example, some regions

along the cylinder might exhibit instability while others do not.

To exemplify these general criteria we consider a reaction kinetics of the form

f(m, c) =
(

k + m2

1 + m2

)
c − m , (2.32)

with a linear attachment and detachment term as well as a nonlinear recruitment term that saturates
at high membrane densities. Such a kinetics has previously been employed in conceptual models for
cell polarity12,87,92,94,245. For the geometric confinement, we choose a hyperbolic tangent with a
smooth transition of width linter = 2, between domains of different radii 0.5 and 1 at the center of
the domain, x = L/2 (Fig. 2.4(a)):

R(x) = 1
2 + 1

4

[
1 + tanh

(
2

linter

(
x − L

2

))]
. (2.33)

We impose no-flux boundary conditions at the cylinder ends.

For the specific case shown in Fig. 2.4, the slope criterion, Eq. (2.31), predicts a mass-redistribution
instability in the left and right domain of the revolving surface, as the condition on a mass-redistribu-
tion instability is fulfilled for both R = 1 and R = 0.5; the nullcline’s slope snc(n) (dashed blue line)
at the HSS is steeper than the slope of the corresponding stability lines, green (medium gray) and
orange (light gray), respectively. Comparing the conditions in the two spatial domains, we observe
that the overall parameter region of total protein masses n̄ exhibiting lateral instability is broader
for the part with larger bulk volume, as indicated by the bars at the bottom of Fig. 2.4(b). This is
in accordance with the dispersion relations obtained from linear stability analysis giving the growth
rates Re(λ(q)) of modes with wave vector q, Fig. 2.4(c), which show larger growth rates in the spatial
domain with the larger radius; see appendix Section 2.8.2 for details on the classical linear stability
analysis.

2.4.2 NUMERICAL SOLUTIONS

To investigate the implications of a spatially varying geometry beyond the linear stability analysis,
we performed numerical simulations of Eq. (2.22) with reaction kinetics given by Eq. (2.32) and
geometry as specified by Eq. (2.33) in Wolfram Mathematica246. Figure 2.5 shows corresponding
kymographs illustrating the time evolution of membrane and cytosolic densities. Consistent with the
slope criterion for a mass-redistribution instability, spatially inhomogeneous density profiles emerge
predominantly in the domain with the larger cross-section. This behavior is in accordance with the
higher linear growth rates, Re[λ(q)], predicted for larger local tube radii. Once these mesa-shaped
profiles have formed, our simulations show that they subsequently translocate toward the narrower
region of the system. This traveling wave behavior arises from the geometry-induced advection
terms in Eqs. (2.22), which imply a drift velocity vdrift ∼ −R′/R, directed toward narrower parts of
the tube. This translocation process can be understood as a tendency of the system for interface
minimization: At smaller tube radii, both the length of the membrane interface and the area of the
cytosolic interface between high and low protein density decrease145. This will be discussed in more
depth in section 2.6 where we will show that this is the driving mechanism behind geometrically
interrupted coarsening.
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Figure 2.5: Kymographs of membrane (blue, left) and cytosol concentrations (orange, right) in a tube geometry with local
radius R(x) as given in Eq. (2.33). Neighboring lines differ by a time interval of 1000 units starting after initial transients
(t = 3000) when a pattern evolved from the initial homogeneous steady state (m∗, c∗) ≈ (0.34, 1.96) perturbed with Gaus-
sian zero-mean white noise with an amplitude of 0.1% of the concentration value; during the initial phase a pattern governed
by the fastest growing mode of the dispersion relation emerges, later dominated by the contributions in the broader section
of the tube. Parameters as listed in Fig. 2.4.

2.5 STABILITY ANALYSIS OF PATTERN FORMATION IN MODULATED

GEOMETRIES

As demonstrated by the elementary example in the previous section, geometric deformations can
significantly influence the dynamics of protein systems with bulk-boundary coupling. In this section,
we systematically investigate how spatial deformations of the membrane can lead to mode selection
in emerging patterns employing a linear stability analysis of the dimensionally reduced equations,
Eqs. (2.22), for weak geometric modulations. This approach yields growth rates for lateral instabili-
ties driven by geometric effects. We compare these analytical findings with numerical simulations of
the full three-dimensional corrugated tube with bulk-boundary coupling.

2.5.1 PERTURBATIVE LINEAR STABILITY ANALYSIS

The dimensionally reduced one-dimensional description, Eqs. (2.22), facilitates an analytic treat-
ment of the lateral stability of homogeneous steady states (HHS) in a geometrically modulated
system. To investigate the impact of a deformed geometry on pattern formation, we perform an
asymptotic perturbation expansion in the deviations from a flat geometry, extending the classical
linear stability analysis.

In a domain of length L, we assume that the tube-like boundary profile is described by a spatially
varying radius

R(x) = R0 + ϵR1(x) , (2.34)

where R0 represents the spatially constant component, given by

R0 = 1
L

∫ L

0
dx R(x) , (2.35)

and ϵ R1(x) denotes a weak modulation of the tube radius with ϵ ≪ 1. Inserting this weakly modu-
lated profile into Eqs. (2.22) and expanding up to the first order in ϵ, one obtains

∂tm = Dm

[
∂2

x + ϵ
R′

1
R0

∂x

]
m + f(m, c) , (2.36a)

∂tc = Dc

[
∂2

x + ϵ
2R′

1
R0

∂x

]
c − 2

R0
f(m, c) + ϵ

2R1

R2
0

f(m, c) . (2.36b)
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To analyze the linear stability of the HSS, (m∗, c∗), we perturb these densities by expanding m(x, t)
and c(x, t) as m(x, t) = m∗ + δm(x, t) and c(x, t) = c∗ + δc(x, t), respectively. Furthermore, we adopt
a factorization ansatz to separate temporal and spatial dynamics as(

δm(x, t)
δc(x, t)

)
=
(

δm(x)
δc(x)

)
exp(−λtt) . (2.37)

This allows us to rewrite Eqs. (2.36) as an the eigenvalue equation for the spatial part

λt

(
δm
δc

)
=
[
D0 + ϵD1 + J

](δm
δc

)
, (2.38)

where for brevity we omitted the arguments in δm(x) and δc(x). Here, the zeroth order diffusion
operator is given by

D0 =
(

Dm∂2
x 0

0 Dc∂2
x

)
, (2.39)

the first order correction reads

D1 =
(

Dm
R′

1
R0

∂x 0
2 R1

R2
0
f∗

m 2Dc
R′

1
R0

∂x + 2 R1
R2

0
f∗

c

)
, (2.40)

and the Jacobian of the reaction kinetics, evaluated at the HSS has the form

J =
(

f∗
m f∗

c

− 2
R0

f∗
m − 2

R0
f∗

c

)
. (2.41)

Equation (2.38) is a linear operator equation comprising a constant term (eigenvalue), λt, obtained
via the separation ansatz, a spatially dependent differential operator, D0 + ϵD1, and a constant ma-
trix term, J . To highlight the distinct nature of these terms, the equation can be reordered as[

λt

(
1 0
0 1

)
− J

](
δm
δc

)
= [D0 + ϵD1]

(
δm
δc

)
. (2.42)

Since, the operator on the left-hand side of this equation is space-independent, also the right-hand
side needs to evaluate to a product with a matrix Λspatial, constant in space, thus, satisfying the
equation

Λspatial

(
δm
δc

)
=
(

λmm λmc

λcm λcc

)(
δm
δc

)
= [D0 + ϵD1]

(
δm
δc

)
. (2.43)

In the following, we seek to calculate the matrix Λspatial perturbatively to replace the spatial contri-
butions [D0 + ϵD1] in Eq. (2.38). Without geometric deformations (ϵ = 0), the solution to equation
(2.43) is given by Fourier modes,

{δm(0), δc(0)} ∈ {cos(qx), sin(qx)} . (2.44)

For a domain with length L and periodic boundary conditions, the wave numbers are given by
q = 2πn/L with n ∈ N. Indicating the dependence on the mode number q, we rename Λspatial ≡ Λq,
and the zeroth order of equation (2.43) (ϵ = 0) reads

Λ(0)
q ≡

(
λ

(0)
mm λ

(0)
mc

λ
(0)
cm λ

(0)
cc

)
=
(

−Dmq2 0
0 −Dcq2

)
. (2.45)
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Next, we consider the effects of the weak spatial deformation by expanding the terms in orders of ϵ,

Λq = Λ(0)
q + ϵ Λ(1)

q + O(ϵ2) , (2.46)

and the vector (δm, δc)T around the zeroth order eigenvector of D0 (Eq. (2.44)),(
δm
δc

)
=
(

δm(0)

δc(0)

)
+ ϵ

(
δm(1)

δc(1)

)
+ O(ϵ2) (2.47)

≡ |u(0)⟩ + ϵ|u(1)⟩ + O(ϵ2) , (2.48)

where we introduced the vector notation |u⟩ = (δm, δc)T for brevity. Then, to first order in ϵ,
Eq. (2.43) reads:

Λ(0)
q |u(1)⟩ + Λ(1)

q |u(0)⟩ = D0|u(1)⟩ + D1|u(0)⟩ . (2.49)

To calculate, the corrections Λ(1)
q , we multiply the equation with the left eigenvectors of D0. Note

that to order ϵ = 0, the boundary and the bulk modes are decoupled, such that δm(0) and δc(0) are
independent and the two independent eigenvectors spanning the eigenspace of the operator D0 are

|u(0)
m ⟩ =

(
δm(0)

0

)
and |u(0)

c ⟩ =
(

0
δc(0)

)
. (2.50)

Thus, choosing these two eigenvectors as basis vectors |u(0)
α ⟩ with α, β ∈ {m, c}, we obtain the

following relation for the components λ
(1)
ij (i, j ∈ {m, c}) of the matrix Λ(1)

q :

⟨u(0)
α | Λ(0)

q u
(1)
β ⟩ + ⟨u(0)

α | Λ(1)
q u

(0)
β ⟩ = ⟨u(0)

α | D0u
(1)
β ⟩ + ⟨u(0)

α | D1u
(0)
β ⟩ , (2.51)

with the scalar product

⟨v|u⟩ =
∫ L

0
v · u dx . (2.52)

Given the diagonallity of Λ(0)
q , the first term can be rewritten as

⟨u(0)
α | Λ(0)

q u
(1)
β ⟩ = λ(0)

αα⟨u(0)
α | u

(1)
β ⟩ . (2.53)

Using the orthonormality of the basis vectors, Eq. (2.50), the second term on the left-hand side yields

⟨u(0)
α | Λ(1)

q u
(0)
β ⟩ = λ

(1)
αβKnorm , (2.54)

with the norm

Knorm =
{

⟨u(0)
α | u

(0)
α ⟩ , for α = β

⟨δm(0) δc(0)⟩ , for α ̸= β
. (2.55)

Finally, we can use the self-adjointness of D0 such that

⟨u(0)
α |D0u

(1)
β ⟩ = ⟨D0u(0)

α |u(1)
β ⟩ = λ(0)

αα⟨u(0)
α |u(1)

β ⟩ , (2.56)

and Eq. (2.51) yields the result

λ
(1)
αβ =

⟨u(0)
α |D1u

(0)
β ⟩

Knorm
. (2.57)
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The matrix Λ(1)
q with components λ

(1)
ij captures the relevant contributions for pattern formation that

arise from the geometric deformation to the first order in ϵ. Incorporating this correction matrix
in Eq. (2.38) by replacing [D0 + ϵD1] = Λq, we can now consider all parts of the linear operator
equation. This substitution leads to the dispersion relation λt ≡ λt(q), which characterizes the linear
growing modes in deformed tubes. Up to the first order in ϵ, it is given as the solution of the
eigenvalue equation

λt(q)
(

δm
δc

)
= [Λq + J ]

(
δm
δc

)
=
(

λ
(0)
mm(q) + ϵλ

(1)
mm(q) + f∗

m λ
(0)
mc(q) + ϵλ

(1)
mc(q) + f∗

c

λ
(0)
cm(q) + ϵλ

(1)
cm(q) − 2

R0
f∗

m λ
(0)
cc (q) + ϵλ

(1)
cc (q) − 2

R0
f∗

c

)(
δm
δc

)
, (2.58)

with the zeroth order values Λ(0)
q stated in Eq. (2.45) and the corrections λ

(1)
ij from Eq. (2.57),

given by

λ(1)
mm(q) = Dm

∫ L

0
dx δm(0) R′

1
R0

∂xδm(0) (2.59a)

λ(1)
cc (q) =

∫ L

0
dx δc(0)

(
f∗

c

2R1

R2
0

+ Dc
R′

1
R0

∂x

)
δc(0) (2.59b)

λ(1)
cm(q) = f∗

m

∫ L

0
dxδc(0) 2R1

R2
0

δm(0) (2.59c)

λ(1)
mc(q) = 0 . (2.59d)

By solving for the eigenvalues λt of the matrix Λq +J , Eq. (2.58), we obtain the growth rates of the
various modes q that emerge from the linear instability of the HSS (m∗, c∗). Within the matrix Λ(1)

q ,
one observes an additional off-diagonal coupling λ

(1)
cm(q) between modes of the membrane (first)

and the cytosolic (second) component that arises from the geometric perturbations. Beyond the
homogeneous term ∼ f∗

m/R0, this additional coupling λ
(1)
cm(q) incorporates the first-order geometric

deformation ϵR1(x) of the tube’s radius. It directly reflects the spatial variations in bulk-to-boundary
ratios, which in consequence play a determinant role in the geometric mode selection. Notably, in
finite-sized domains, x ∈ [0, L], with periodic boundary conditions, the geometric deformations lift
the degeneracy between sine and cosine modes, Eq. (2.45). Thus, the maxima of this perturba-
tive dispersion relation determine the geometric pattern selection, specifying both the characteristic
length scales and the spatial positioning (e.g., sine/cosine modes) of the evolving patterns. The ex-
plicit evaluation of the eigenvalue equation, Eq. (2.58), is performed in Wolfram Mathematica, see
appendix Section 2.8.4. We will discuss particular examples and the implications of our findings for
geometrically induced mode selection later, in Section 2.5.3

2.5.2 TRANSLATIONAL STABILITY OF THE FASTEST GROWING MODE

As discussed in Section 2.4, spatial deformations introduce effective advective contributions in the
dimensionally reduced equations, Eq. (2.21), resulting in the motion of emergent patterns along
the tube’s center axis. Having established the geometrically influenced growth rates of the different
Fourier modes in Section 2.5.1, we now examine their translational stability. Specifically, we assess
whether a small positional offset relative to the geometric deformation causes the modes to return
to their original positions or drift further away. Translationally stable modes will recover their initial
positions, while unstable modes will amplify the spatial deformations. Such a translational shift
would alter the geometrically selected pattern, leading to deviations from the predictions of the
perturbative linear stability analysis (Section 2.5.1).
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In contrast to the previous section, where we analyzed the stability of a spatially uniform state
against spatial perturbations, we are now interested in the stability of the emerging periodic pattern
against translations. We proceed by following the standard procedure from the perturbation theory
of linear operators247–250. To this end, we first consider again the dynamic equation, the emergent
modes originate from,

∂tu(x, t) = [D0 + ϵD1 + J ] u(x, t) , (2.60)

with the Jacobian J , linearized around the HSS. We next, rewrite this equation with the previously
used separation ansatz u(x, t) = u(x)eλtt and combine the terms into a single linear operator L,

0 = [D0 + ϵD1 + J − λt(q)] u(x) = Lu(x) , (2.61)

with the eigenvalue and its correction λt(q) = λ
(0)
t (q) + ϵλ

(1)
t (q) as calculated in Section 2.5.1. In

the following, we want to consider explicitly, the dynamics of the mode, predicted to arise from the
perturbative linear stability analysis, namely uq,0 with wave number q = q̂, i.e. the allowed mode
with the largest growth rate. For this mode, the zeroth order equation (ϵ = 0) without the spatial
deformation gives

0 =
[
D0 + J − λ

(0)
t (q̂)

]
uq̂,0(x) = L0uq̂,0(x) . (2.62)

In the following, we want to consider the impact of the spatial deformations on this mode as a
solution to equation (2.60). In particular, we are interested in the translational dynamics, that is
motion along the x-direction, of the emergent Fourier mode. Therefore, we decompose the solutions
to Eq. (2.61) in terms of a complete basis of L0, including perturbation-induced spatial translations
of the solution with velocity ϵv,

u(x, t) = uq̂,0(x − ϵvt) + ϵuq ̸=q̂,1(x, t) . (2.63)

Here the term uq ̸=q̂,1 includes all the potential deformations that could arise through the geometric
perturbations.

For convenience, we introduce the short-hand coordinate ξ = x − vt, for the reference frame,
co-moving with the perturbed solution. Inserting this ansatz into Eq. (2.60) yields the first order
balance, ∼ O(ϵ),

− vu′
q̂,0(ξ) + ∂tuq ̸=q̂,1(x, t) = L0uq ̸=q̂,1(x, t) + D1uq̂,0(ξ) − λ

(1)
t (q̂)uq̂,0(ξ) . (2.64)

Stationary solutions u0 to Eq. (2.62) are translationally invariant, meaning that u0(x) and u0(x+∆x)
are both solutions. This translational invariance implies that the derivative of the stationary solution,
u′

0(x), satisfies L0u′
0(x) = 0. Thus, also u′

q̂,0(x) is a Goldstone mode associated with the translational
symmetry and serves as the generator of this symmetry. Conversely, the adjoint mode W †

q̂ to the

eigenvalue zero of the adjoint linear operator L†
0, L†

0W †
q̂ = 0, serves as a projector of inputs such

as D′
1uq̂,0 onto the translational mode, which is why the objects W † are sometimes also called the

translational response vectors. Thus, to assess the perturbation-induced translational velocity v of
the emerging mode uq̂,0, we multiply Eq. (2.64) from left with the null space eigenvector W †

q̂ (ξ) of
wavenumber q̂. This yields

v⟨Wq̂(ξ) | u′
q̂,0(ξ)⟩ + ⟨Wq̂(ξ) | ∂tu1(x, t)⟩ =

⟨Wq̂(ξ) | L0u1(x, t)⟩ + ⟨Wq̂(ξ) |
(

D1(x) − λ
(1)
t (q̂)

)
uq̂,0(ξ)⟩ , (2.65)

with the same scalar product as above, ⟨v | u⟩ =
∫∞

−∞ v · u dx. We observe that the first term on

the right-hand side of Eq. (2.65) vanishes as L†
0W †

q̂ = 0. For the remaining deformation contri-
butions, ⟨Wq̂ | ∂tuq ̸=q̂,1⟩, we make the following considerations: Firstly, as we project ∂tu1 onto
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the eigenmode W †
q̂ with a given wave number q̂, only contributions with wavenumber q̂ from ∂tu1

can contribute to this term due to orthogonality of the eigenmodes for different wave numbers q.
Thus, the only contributions of this term could arise through changes of the wavevector by terms
ϵ | ∂tu1⟩ ∼ ϵD1 | ϵu1⟩. However, these are of higher order in ϵ and are therefore neglected.

We continue by solving Eq. (2.65) for the translational velocity v,

v =
⟨Wq̂(ξ) |

(
D1(x) − λ

(1)
t (q̂)

)
uq̂,0(ξ)⟩

⟨Wq̂ | u′
q̂,0⟩

. (2.66)

This relation resembles the solution of the perturbative eigenvalue corrections, Eq. (2.57), requir-
ing a vanishing velocity v = 0, as we derived ⟨Wq̂ |

(
λ

(1)
t (q̂) − D1

)
uq̂,0⟩ = 0 in Section 2.5.1. Thus,

the perturbation-induced velocity at the modes position of emergence vanishes. However, we now
want to analyze if these modes are also translationally stable. To assess the translational stability
of the emergent mode uq̂,0(ξ), we consider a shift, between the mode and the spatial deformations
by introducing an offset D1(x) → D1(x + δ ∆x). This is equivalent to shifting the solution in the
opposite direction. For this offset, we now seek to calculate the velocity v(∆x). For small offsets,
∆x ≪ 1, we can expand

D1(x + ∆x) ≈ D1(x) + ∆xD′
1(x) . (2.67)

Plugging this into the velocity equation, Eq. (2.66), we obtain

v(∆x) − v

∆x
= 1

K0
⟨W | D′

1u0⟩ . (2.68)

with the stationarity of the emergent mode, v(0) = v = 0, as given by Eq. (2.66) and normalization
factor K0 = ⟨W | u′

0⟩. This equation yields the velocity v(∆x) for a given small offset ∆x of
the solution u0 from its stationary position in the fixed spatial deformation D1. If velocity changes
v(∆x) have an opposite sign as offsets ∆x, the geometric perturbation will move the emerging
solution back to its original steady state position, which identifies stable configurations. In contrast,
if v(∆x)/∆x > 0, the considered pattern is translationally unstable.

Next, we evaluate this stability criterion for the emergent mode, predicted by the perturbative
linear stability analysis, Eq. (2.58).

We predict the emergence of a periodic wave u0 =
(
δm(0), δc(0))T

with
{

δm(0), δc(0)} ∈ {sin, cos}
and wavevector q as the maximum of the dispersion relation λt(q) > 0, Eq. (2.58). The two compo-
nents of the eigenvectors are coupled via the bulk-boundary reaction kinetics, therefore they are not
independent, but exhibit the same mode and a fixed ratio between the membrane δm(0) and the bulk
mode amplitude δc(0) = αδm(0), u0 =

(
δm(0), αδm(0))T

with coupling factor α. To study the transla-
tional stability of this mode, we compute all the terms that appear in Eq. (2.68). We obtain the trans-
lational response vector W † as the left eigenvector of Lu0 corresponding to a vanishing eigenvalue,
0 = L†

u0
W † through partial integration of the terms in L†

u0
. It is given as W † =

(
δm(0) ′ α̃δm(0) ′)

with respective coupling factor α̃. Then, the spatial positions, where emergent modes u0 are station-
ary under the spatial deformation ∼ D1 can be calculated as

0 = v = − 1
K0

∫
dx

[
R′

1
R0

(Dm + 2αα̃Dc)
(

δm(0) ′
)2

+ 2R1

R2
0

α̃ (f∗
m + αf∗

c ) δm(0)δm(0) ′
]

, (2.69)

with normalization factor K0 = ⟨W |u′
0⟩. Note that here we assume that the reaction dynamics

are still within the linear pattern-forming regime, thus, we evaluate the reactive contributions in
Eq. (2.69) at the homogeneous steady state. To assess the stability of these points with respect to
translational offsets of the emerging modes, we consider the linearized changes of velocity v for a
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Figure 2.6: Geometry-induced pattern selection. (a) Tube radius modulation R(x), Eq. (2.71), for various corrugation param-
eters δ (light to dark). (b) Phase space of dominant emerging modes (cosine - purple/dark gray, sine - gray) for varying
geometric deformation parameter δ and domain length L. Empty circles denote the absence of a lateral instability of the
HSS. The size of the circles indicates confidence of the result obtained from nine numerical simulations (smallest circle, in-
dicated mode occurs 5 out of 9 times; largest circle, 9 out of 9 times), with nine different initial conditions for each data
point. Analytic predictions for dominant mode (solid line, shaded areas) and stability transition (dashed line, striped area),
Eq. (2.58), match the observed behavior. The remaining parameters are set to Dc = 50, Dm = 0.15, and k = 0.08. Details
on emergent modes along δ = 0.7 (horizontal orange line) and examples for data points L = 11 (1) and L = 14.5 (2) are
shown in Fig. 2.7.

given induced offset ∆x:

∆v

∆x
= − 1

K0

∫ L

0
dx

[
R′′

1
R0

(Dm + 2αα̃Dc)
(

δm(0) ′
)2

+ 2R′
1

R2
0

α̃ (f∗
m + αf∗

c ) δm(0)δm(0) ′
]

. (2.70)

The sign of the term ∆v/∆x will determine the translational stability for the emergent modes. For
the following comparison with results of numerical simulations, we evaluate the stability condition
(Eq. (2.70)) using Wolfram Mathematica246.

2.5.3 MODE SELECTION IN A PERIODIC CONFINEMENT

To illustrate our approach, we focus on a representative case featuring a single externally imposed
geometric length scale, specifically a periodic radial deformation defined by

R(x) = 0.05 [1 + δ − (1 − δ) cos(4π x/L)] , (2.71)

shown in Fig. 2.6(a) for different corrugation parameters δ. This spatial modulation, characterized by
a single length scale L/2, serves as a minimal test setup to study geometry-induced pattern selection
and evaluate the potential of the proposed perturbative approach. We investigate how variations in
the corrugation parameter δ and the system length L influence the emerging patterns. Unlike the
planar tube case (δ = 1), a non-uniform corrugation (δ ̸= 1) lifts the degeneracy between sine and
cosine modes. In the following, we use the dispersion relation λt(q), obtained as the solution of the
eigenvalue problem (Eq. (2.58)), the result of the perturbative analysis. As a particular example, we
consider the lateral stability of the HSS (m∗, c∗) ≈ (0.40, 1.84) for the reaction kinetics defined by
Eq. (2.32) with parameter k = 0.08.
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SIMULATIONS IN FULL THREE-DIMENSIONAL GEOMETRY

Numerical simulations of the full three-dimensional setup with periodic boundary conditions at
x ∈ [0, L], show that the HSS is laterally unstable across a broad range of system lengths L and defor-
mation parameter δ; see Fig. 2.6(b). Within this range, the instabilities are predominantly character-
ized by the emergence of either sine (gray) or cosine (purple) modes, as shown in Fig. 2.6(b). The
simulations were performed using COMSOL Multiphysics®251 implementing Eqs. (2.1) and (2.2),
and using initial conditions corresponding to a HSS perturbed with Gaussian zero-mean white noise
with an amplitude of 0.1% of the concentration values; see appendix Section 2.8.4 for details. For
each indicated combination of the parameters L and δ, we performed a set of nine independent nu-
merical simulations with different realizations of the initial noise. The color of the disks in Fig. 2.6
indicates the predominant modes (sine/cosine) and the size of the disks signifies the fraction of these
dominant modes in the simulations; from 5 out of 9 (smallest) to 9 out of 9 (largest disks). Domi-
nant cosine modes (purple) are present in the quadrants δ > 1, L ≲ 13 and δ < 1, L ≳ 13, whereas
sine modes (gray) predominantly occur for δ < 1, L ≲ 13 and δ > 1, L≳ 13. As stated before, for
the deformation-free case, δ = 1, translational invariance leads to a degeneracy between sine- and
cosine modes, and the two cannot be distinguished. For smaller system sizes (L ≲ 9), we observe
a region where the HSS remains laterally stable (white disks). In these cases, the present unstable
wavelengths exceed the system size, preventing their growth into a pattern. As a result, the system
remains in its HSS.

Inverting the amplitude of the spatial corrugation from δ > 1 to δ < 1 swaps the positions of the
minima and maxima in the radial modulation, with δ > 1 inducing outward modulation and δ < 1
corresponding to inward-directed deformation from the reference radius R(x) = 0.1; see Fig. 2.6(a).

This inversion of the amplitude can also be interpreted as an effective phase shift of the spatial
modulation by ∆x = L/4. Consequently, we also expect a phase shift by the same amount in the
selected emergent modes which would manifest in an exchange of sine and cosine modes in the
numerical simulations as sin

(
2π(x + L/4)/L]

)
= cos (2π x/L). However, in Fig. 2.6(b) we do not

observe a complete anti-symmetry of sine and cosine with respect to the case of a flat tube geometry
(δ = 1). In contrast, we see a strong dependence of the range of stable homogeneous steady states
(white disks) on L that does not reflect the trivial interchange of sine and cosine modes due to the
effective profile shifting by ∆x = L/4 at δ ≷ 1. This asymmetry arises because variations in the cor-
rugation parameter δ also alter the average tube radius R0. Since the bulk volume scales as R2

0 and
the surface area as R0, changes in δ modify the balance between cytosolic and membrane concentra-
tions, a critical factor in pattern selection17. Specifically, outward-directed membrane deformations
(δ > 1) increase the available bulk volume, thereby extending the range of lateral instability, as
demonstrated in Sec. 2.4. Conversely, inward-directed deformations (δ < 1) decrease the bulk vol-
ume and the local, available mass, narrowing the range of lateral instability. This explains the larger
regime of stable HSS for δ < 1 in Fig. 2.6(b).

Altogether, the phase diagram, Fig. 2.6(b), reveals the impact of different geometric modulations
with strength δ ≷ 1 and domain length L on observed dominant modes arising from lateral instability.
Spatial modulations of the confining membrane boundary can alter the average bulk-boundary ratio,
as well as the overall accessible bulk volume and surface area, thereby shifting the maximum of the
dispersion relation and with it the characteristic length scale of the emerging patterns. Moreover,
spatial deformations lift the degeneracy between sine and cosine modes, leading to the localization
of the emerging high-density regions along the tube’s center axis.

COMPARISON WITH LINEAR STABILITY ANALYSIS IN SPATIALLY MODULATED TUBE GEOMETRY

Next, we compare these numerical findings with analytic predictions derived from perturbative linear
stability analysis. As detailed in Section 2.5.1, we determine the dispersion relation λt(q) from solv-
ing the eigenvalue problem, Eq. (2.58), for sine and cosine modes. Notably, the analytic predictions
(shaded regions, solid black lines in Fig. 2.6(b)) align closely with the domain boundaries (local
prevalence of colored disks) identified in the numerical simulations. Specifically, predictions for
lateral stability (white background), cosine-mode instability (purple background), and sine-mode

30



2

STABILITY ANALYSIS OF PATTERN FORMATION IN MODULATED GEOMETRIES

Figure 2.7: Examples of geometric-induced mode selection. Dominant modes of numerical simulations are characterized by
the location ξmax of the maximum of the protein concentration on the membrane, as illustrated in panel (a) for the cutline
along δ = 0.7 in Fig. 2.6. (b) Dispersion relations for sine and cosine modes together with the boundary profiles R and
emerging protein concentrations on the membrane, m, projected onto the tubes’ center-axis for L = 11 (1) and L = 14.5
(2), respectively (see insets). Parameters as in Fig. 2.6.

instability (gray background) generally correspond well with the modes observed in simulations
(represented by colored disks). However, we observe some deviations between the numerically mea-
sured modes and the analytic predictions around a system length of L ≈ 13 (purple-gray striped
regions). In the purple-gray striped region of Fig. 2.6(b), the modes with the largest growth rates
experience translational instability as discussed in Section 2.5.2. This displacement transforms the
modes into new, phase-shifted patterns. From the analysis in Section 2.5.2, we obtain an analytical
transition line (dashed line in Fig. 2.6) which marks the onset of translational instability in the pre-
dicted modes. Within the striped regions, the dominantly emerging modes (sine for δ > 1, cosine for
δ < 1) are expected to become translationally unstable, dynamically transitioning into phase-shifted
states. The three-dimensional numerical simulations (appendix Section 2.8.4) confirm this behav-
ior, showing the translationally stable modes instead of the ones predicted by LSA. For instance, for
the parameter combination δ = 0.5, L = 12.5, the perturbative LSA, Eq. (2.58), identifies the cosine
mode as having the largest linear growth rate, suggesting it should emerge. However, the analytic
treatment of translational stability of that mode (Section 2.5.2) reveals that the geometric deforma-
tions induce a spatial shift, rendering the cosine mode with the largest growth rate translationally
unstable. Instead, a sine mode is found to be translationally stable under these conditions. Consis-
tent with this prediction, numerical simulations for δ = 0.5, L = 12.5 yield patterns corresponding to
the sine mode.

In the following, we investigate in more depth the geometric mode selection process. We discuss
how emergent modes are determined numerically and how the numerical solutions are related to
the analytically obtained dispersion relations. In Fig. 2.7, the positions ξmax of the maximum of the
protein concentration profiles on the membrane, developing in numerical simulations, are given for
various system length L along the cutline δ = 0.7 in Fig. 2.6. We identify the developing pattern
as sine-like (gray) if the position ξmax of the concentration maximum is located close to a quarter
of the system length, x = L/4. Then, the developing pattern resembles a sine-mode with period
L and fulfills the criterion (|ξmax| − L/4)/L < 1/8. Conversely, if the maximum position is closer
towards the center or the outer edges of the domain, i.e., (|ξmax| − L/4)/L > 1/8, we identify the
emergent mode as a cosine mode. For the cutline along δ = 0.7, Fig. 2.7(a), we first observe the
stability of the HSS for lengths L ≤ 9. For increasing system lengths, we then observe a transition
towards sin mode emergence and a switch towards cosine mode selection at L ≈ 13. Panels (b)
illustrate the dispersion relations corresponding to system length L = 11 (1) and L = 14.5 (2),
respectively. We observe that in both cases the dispersion of sine (gray) and cosine modes (purple)
split off the dispersion relation from the planar tube (dashed black line). Given the limited system
size L, the only unstable rescaled wavevector is located at q = 1. For the dispersion relation shown
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in panel (1), we observe that the real part of the sine mode dispersion relation is larger compared
to the cosine mode at the relevant wavenumber q = 1. Thus, one expects a sine mode to evolve.
The inset in the panel illustrates the location of the membrane concentration pattern (blue) that
evolves in numerical simulations of the setup with respect to the radius modulation R (black solid
line). Indeed, we observe a localization of the concentration maximum close to x = L/4, resembling
a sine mode. In contrast, for the parameters L = 14.5 shown in panel (b)(2), the maximum of
the dispersion relation is of cosine type. The membrane concentration pattern (blue) evolving in
numerical simulation indeed is shifted closer to the cosine configuration.

2.5.4 GEOMETRY CONTROLS EMERGENT PATTERNS

In conclusion, we performed a perturbative linear stability analysis incorporating geometric coupling
between bulk and boundary modes to predict the geometry-induced selection of emerging patterns.
By accounting for effective advective terms in the reaction-diffusion equations, our analysis reli-
ably predicted mode selection at the onset of the lateral instability, capturing potential translational
instabilities that influence the dominant modes. Our approach enables an analysis of how spatial
modulations of the membrane can lead to specific pattern length scales and localization, allowing us
to predict the resulting patterns analytically.

We have performed the perturbative linear stability analysis for a two-component mass-conserving
reaction-diffusion system (Eqs. (2.22)) and presented results for a representative single-mode spatial
deformation. However, the proposed approach is equally applicable and effective for more complex
reaction kinetics involving multiple species in arbitrary but weak deformations.

Instead of analytically predicting the behavior of the system for given radial modulations, one
could address the opposite question of how to design a deformation to obtain a desired patterning.
Our analytical framework could be used as a starting point for designing geometric confinements in
bulk-boundary systems to achieve desired target patterns.

Our perturbative linear stability analysis successfully predicts the initial length scales and localiza-
tion of geometrically selected patterns in the linear regime. However, these predictions of the initial
dynamics following the lateral instability may be modified by subsequent nonlinear effects, such as
coarsening, a phenomenon commonly observed in many cellular protein systems24,252. To address
this, we next investigate how geometric deformations affect coarsening dynamics, bridging the ini-
tial patterns with the final steady-state outcomes shaped by spatial modulations of the confining
geometry.

2.6 GEOMETRY-INDUCED INTERRUPTED COARSENING

In the preceding sections, we explored the geometric selection of patterns arising from mass-redistri-
bution instabilities using a linear stability analysis of a one-dimensional effective set of equations
obtained through dimensional reduction, Eqs. (2.22). However, non-linear pattern evolution can
involve a range of complex downstream dynamics, potentially leading to final states that differ sig-
nificantly from the initial patterns. An important phenomenon in long-time dynamics is coarsening
where the merging of solutions and mass transfer between them result in a progressive increase in
pattern length scales.

Recently, it has been shown in the context of protein reaction-diffusion systems with sufficiently
many conservation laws, that this behavior is generally uninterrupted, with pattern length scales
continuing to grow until they approach the system size24,25. Our numerical analysis of such systems
in spatially modulated confinement (see Fig. 2.5) reveals qualitative differences in the long-term
dynamics. In particular, we found that spatial modulations induce a drift of pattern profiles such
that the length of the interface between low- and high-density domains is minimized. In this section,
we investigate how geometric modulations of the membrane can interrupt the coarsening process in
two-component mass-conserving reaction-diffusion systems.
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Figure 2.8: Plateau coarsening in the Brusselator core network. (a) Reactive nullcline (blue, dark gray) and flux-balance
subspace, Eq. (2.73) (purple, lighter gray), of the mass-conserving Brusselator-core model, Eqs. (2.72). An interface solution
connects two plateaus that approach (m−, c−) and (m+, c+) on an infinite domain. (b) Stationary solution (mstat, cstat)
connecting two high-density plateaus with equal masses located at the boundaries of a finite domain [−L/2, L/2]. As plateaus
are saturated, coarsening is mediated by interface shifts. A geometric deformation R, Eq. (2.92) with width w and amplitude
δ affects interface positions and may arrest coarsening. Geometric interface shifts can be computed using the solution’s
translational response functions (Wm,Wc)

To simplify the analysis, we reduce the reaction kinetics to the polynomial form

f(m, c) = m2c − k m , (2.72)

which represents the mass-conserving Brusselator-core model24,25, a reduced form of the well-known
Brusselator reaction network253,254 that realizes local mass-conservation. This model incorporates
recruitment of the bulk species c to the membrane and detachment of the membrane species m
from the surface at a rate k. The model’s nonlinear dynamics is characterized by the nullcline,
f(m, c) = 0, (shown in blue/dark gray) in Fig. 2.8(a). For stationary solutions, (mstat(x), cstat(x)),
to two-component mass-conserving reaction-diffusion systems, the total mass distribution needs to
be constant, ∂tn(x, t) = 0. Thus, integrating the dynamic equation of the mass-density n(x, t),
Eq. (2.25), for a tube with constant radius, R(x) = R0, yields the flux-balance relation94

ηstat = 2
R0

Dm

Dc
mstat(x) + cstat(x) , (2.73)

with constant offset value ηstat; see appendix Section 2.8.3 for details. The prefactor of mstat(x)
weights the contributions of the diffusive fluxes between membrane surface and bulk volume. The
value of the constant ηstat is determined by a balance of all reactive contributions within the do-
main94.

2.6.1 PLATEAU COARSENING IN UNIFORM TUBES

To illustrate the emergence of coarsening and its dependence on spatial modulations of the mem-
brane, we analyze a minimal configuration comprising two connected, equally-sized plateaus, as
depicted in Fig. 2.8(b). This analytically tractable setting captures the essential features of coars-
ening dynamics in confined mass-conserving reaction-diffusion systems as it allows us to study the
mass transfer between the two plateaus as well as the geometric impact on it. This stationary so-
lution (mstat, cstat) of Eq. (2.22) for a constant tube radius R(x) = R0 features two domains of high
membrane concentration, mstat ≈ m+, each with a length L+. These domains are located at the
no-flux domain boundaries at x ∈ {−L/2, L/2} and are connected by a central trough of width 2L−,
where the membrane concentration approaches a lower value mstat(0) ≈ m−. As concentration gra-
dients almost vanish within the plateaus, the corresponding concentrations approximately assume
the steady-state values (m+, c+) and (m−, c−) (black dots in Fig. 2.8). Since the plateau concen-
trations are fixed by these steady-state values, changes in a plateau’s mass are primarily reflected
in shifts of its interface position. Namely, an increase or decrease in a plateau’s mass causes its
interfaces to shift outward or inward with respect to its center of mass, respectively. Neglecting
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Figure 2.9: Coarsening between two mesas. Illustration of mass-transfer between two plateaus. Changes in the plateau masses
Mplateau are mediated by interface shifts (blue arrows) changing the plateau lengths L+. As the total system mass is con-
served, both interfaces need to move in the same direction. Due to finite plateau lengths, the concentration saturation values
(m+, c+) differ from infinitely extended solutions, see appendix Section 2.8.3. The deviations of these concentrations involve
a spatial gradient in the mass-redistribution potential η between the two plateaus. This gradient causes the coarsening mass
transfer with rate σc.

contributions from the interface itself, the total mass within a plateau can be approximated as

Mplateau = L+
(
2πR0m+ + πR2

0c+
)

, (2.74)

where the plateau length L+ is taken up to the inflection point of its interface (Fig. 2.8(b)).
Extending the approach from Refs.24,25 to tubular geometries with constant radius R(x) = R0,

we observe that the two-plateau solution is only metastable, with any small density difference
δM = M right

plateau − M left
plateau between the left and the right plateau being amplified. As shown in ap-

pendix Section 2.8.3, we find

∂t δM = σc δM , (2.75)

with the mass transfer rate

σc = − 6k

1 − Dm/Dc

ℓm

L−
exp (−2L+/ℓm) , (2.76)

where ℓm := (Dm/k)1/2 denotes a diffusion length corresponding to the width of the protein density
interface on the membrane.

This coarsening rate is notably independent of the tube radius R0. This is due to a balance of
effects: while the mass of proteins transported on the membrane and in the cytosol scales with the
perimeter of the tube and the tube’s surface area, respectively, the diffusive fluxes responsible for the
mass transfer also scale with these same factors, cf. the expressions for the total currents, Eq. (2.20).
This implies that the coarsening rate is effectively identical to that for a one-dimensional line24,25;
see appendix Section 2.8.3.

Hence, the conclusions drawn are the same as in Refs.24,25: The rate of mass transport decreases
linearly with the distance 2L− between the plateaus and decreases exponentially with the length
of the plateaus, L+. The coarsening process occurs by a synchronized shift of the two interfaces
towards the plateau with the smaller mass (left plateau in Fig. 2.9).

2.6.2 SPATIAL DEFORMATIONS SHIFT INTERFACES

Next, we introduce a spatial deformation of the tube between the two density plateaus and using the
dimensionally reduced reaction-diffusion equations, Eq. (2.21), we investigate how this affects the
interface profiles and the coarsening dynamics.

As discussed in Section 2.4, spatial deformations generate effective advection terms in the reaction-
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diffusion equations that can lead to geometry-induced shifts of interface positions. In the following,
we will calculate these shifts, by expanding around the symmetric solution with two equally sized
high-concentration plateaus. This analysis yields an additional geometry-induced mass-transfer rate
σg such that the total mass-transfer between the plateaus reads

∂tδM = σtotalδM = (σc + σg) δM . (2.77)

As we will see below, the mechanisms underlying these two mass-transfer rates are fundamentally
different.

To quantify the impact of the geometry-induced contributions, we start from the dimensionality-
reduced dynamics, Eqs. (2.36), that are expanded for weak spatial modulations, R(x) = R0 + ϵR1(x).
In contrast to our analysis of translational stability of the Fourier modes at the onset of the instability
of the spatially homogeneous state (Section 2.5.2), this requires analyzing how spatial deforma-
tions affect patterns showing (sharp) interface profiles. To this end, we consider—as in the previous
subsection—a two-plateau pattern, u0(x) =

(
mstat(x), cstat(x)

)
, which is a solution to the stationary

equation in the absence of spatial deformations,

0 = D0u0 +
(

1
− 2

R0

)
f(u0) . (2.78)

We are interested in the dynamics of such a profile in the presence of weak spatial modulations as
described by Eq. (2.36), namely under the dynamics

∂tu = D0u +
(

1
− 2

R0

)
f(u) + ϵD1u + ϵ

(
0

2 R1
R2

0

)
f(u) , (2.79)

with perturbative differential operator

D1 =
(

R′
1

R0
∂x 0

0 2R′
1

R0
∂x

)
. (2.80)

Anticipating that the spatial modulations of the membrane can induce a motion of the pattern with
velocity v(t) along with deformations of the overall shape of the solution we make the following
ansatz

u(x, t) = u0
(
x − φ(t)

)
+ ϵ u1(x, t) , (2.81)

with the time-dependent offset position φ(t) of the solution u0,

φ(t) =
∫ t

t0

dt′ ϵv(t′) . (2.82)

We define the initial solution at t = 0 as u0(x) with φ(0) = 0 and introduce the shorthand notation
for the coordinates in the co-moving reference frame, ξ := x − φ(t) Inserting this expansion into
Eq. (2.79) yields

ϵ ∂tu1(x, t) − ϵ v u′
0(ξ) =

[
D0 + ϵD1

]
(u0 + ϵu1)

+
(

1
− 2

R0

)
f(u0) + ϵ

(
0

2R1
R0

)
f(u0) + ϵJu0u1 + O(ϵ2) , (2.83)

with the Jacobian (evaluated at u0)

Ju0 =
(

fm fc

− 2
R0

fm − 2
R0

fc

) ∣∣∣∣
u0

. (2.84)
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Thus, using Eq. (2.78), one finds to first order (O(ϵ)),

∂tu1 − v u′
0 = D0u1 + Ju0u1 + D1u0 +

(
0

2R1
R0

)
f(u0)

≡ Lu0u1 + D1u0 +
(

0
2R1
R0

)
f(u0) , (2.85)

with the linear stability operator Lu0 evaluated at the stationary zeroth order solution u0. We assume
that shape deformations of the profile decay sufficiently fast such that one can consider the stationary
limit where ∂tu1 = 0. Then one gets

−v u′
0 = Lu0u1 + D1u0 +

(
0

2R1
R0

)
f(u0) . (2.86)

As for the consideration of the translational stability in Section 2.5.2, we now multiply equation
(2.85) from the left with the translational response vector W †(ξ)

− v ⟨W (ξ)|u′
0(ξ)⟩ = ⟨W (ξ)|Lu0 |u1(x)⟩ + ⟨W (ξ)|D1(x)|u0(ξ)⟩ + ⟨W (ξ) |

( 0
2R1(x)

R0

)
f(u0(ξ))⟩ .

(2.87)

Finally, by the same reasoning as in the analysis of the translational stability of Fourier modes in
Section 2.5.2, using ⟨W |Lu0 = 0, we obtain the geometry-induced velocity as

v(φ(t)) = − 1
K0

(
⟨W |D1(x)|u0⟩ + ⟨W | f(u0)

(
0

2R1
R0

)
⟩
)

, (2.88)

with normalization factor K0 = ⟨W |u′
0⟩. Note that as the right-hand side of the equation only

depends implicitly on time through the time-dependent off-set potions φ(t), we also reexpress the
velocity by the positional argument φ(t). This equation gives the translational velocity of quasi-
stationary profiles u0(ξ) in response to the geometric deformation, as encoded in the operator D1(x)
and spatial modulation R1(x). From this expression for the geometry-induced interface velocity, we
can deduce a linear rate σg of interface shifting to compare with the coarsening rate σc (Eq. (2.76)).

Consider now a small deviation δM of mass between the two plateaus, see Fig. 2.9. Such a shift in
plateau masses is proportional to a shift in interface positions, δM ∼ ∆x, and we need to consider
the solution shifted by φ(t) = ∆x. By this relation, one can connect the geometric mass-transfer rate
σg to the deformation-induced translational velocity, Eq. (2.88), as

ϵv = ∂tφ(t) = ∂t∆x = σg∆x . (2.89)

In the following we seek to calculate the geometry-induced propagation velocity for a solution
u0(x−φ(t)) that is slightly shifted away from the initial symmetric position u0(x). Thus, we consider
the spatial shift φ(t) = ∆x. Will this solution be moved back towards the symmetric case or will the
offset from the symmetric configuration grow over time? Similarly to what we have considered for
the stability of the emergent patterns in Section 2.5.2, we now investigate if the tube deformation
leads to a relaxation back to the case of two equal plateau masses or whether the geometric shift ∆x
between the symmetric solution u0 and the geometric modulation will increase due to the geomet-
rically induced velocity v, Eq. (2.88). Note that the geometric deformation only contributes in areas
where D1 is non-vanishing. Thus, we can neglect any boundary contributions that otherwise would
arise from the spatial shifting. This way we can consider the analogous case of shifting the geometry
instead of the solution.

For small shifts ∆x, we can expand the velocity v by expansion of the spatial deformation contri-
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butions, R(x + ∆x) ≈ R(x) + R′(x)∆x, as

σg = ϵ
v

∆x
≈ ϵ

v(0)
∆x

+ ϵ
∂v(x)

∂x
|x=0

= − ϵ

K0
⟨W (x)|

(
D′

1(x) | u0(x)⟩ + f(u0) |
(

0
2R1
R0

)
⟩
)

. (2.90)

Here we assumed that for the symmetric plateau solution, no translation is induced by the geometry.
This is the case for geometric deformations that are symmetric with respect to the center plane,
between the two plateaus, i.e. at x = 0 in Fig. 2.8(b). Explicitly writing the scalar products yields
the geometric mass-transfer rate

σg = − ϵ

K0

∫
dx

[
Wm

DmR′′
1 (x)

R0
m′

stat + Wc
2DcR′′

1 (x)
R0

c′
stat + Wc

2R′
1

R2
0

f (mstat, cstat)
]

. (2.91)

This puts us now in the position to calculate a necessary geometric deformation to arrest the
coarsening of two plateau solutions shown in Fig. 2.10 with the transition line at σc = σg.

2.6.3 SPATIAL DEFORMATIONS ARREST COARSENING

As a concrete example, we consider a radial modulation of the tube given by an indentation of width
w and amplitude δ (Fig. 2.8(b)):

R = 1 −

{
δ
2

(
1 − cos

(
2π( w

2 +x)
w

))
, − w

2 ≤ x ≤ w
2 ,

0 , else,
(2.92)

and set the system length to L = 9. We set up the system with a two-plateau solution u(x, t) ≈ u0
as given in Appendix 2.8.3.

Figure 2.10 shows the analytically calculated boundary between uninterrupted and interrupted
coarsening, as given by σtotal(δ, w) = 0, in dependence on the deformation parameters w and δ; see
appendix Section 2.8.4 for details on the evaluation of the expressions of the mass transfer rates σc

(Eqs. (2.76)) and σg (Eq. (2.91)).
We observe that as the width w of the membrane indentation increases, the deformation amplitude

δ required to arrest coarsening decreases. From the geometric mass-transfer rate, Eq. (2.91), we can
see that the translational response of the solution is governed by terms ∼ m′

stat, c′
stat which are located

around the plateau interfaces, here exemplarily positioned at x ∈ [−L/3, L/3]. Therefore, wider
indentations interact more strongly with the solution as they reach towards the interface positions,
allowing weaker deformations to effectively counteract coarsening.

We validate the predicted transition line δc(w) between uninterrupted and arrested coarsening
through numerical simulations of the 1d effective Eqs. (2.21) in COMSOL Multiphysics®, see ap-
pendix Section 2.8.4 for details. We find that the numerical results align perfectly with the analytical
predictions (Fig. 2.10). From the kymographs of the membrane protein concentration m(x, t) (in-
sets in Fig. 2.10) we see the qualitative differences between unarrested and arrested coarsening.
For the indentation amplitude δ = δc(1 − 5%), coarsening progresses as expected, whereas, for
δ = δc(1 + 5%), the solution remains in the two-plateau configuration, even at simulation times two
orders of magnitude longer than the coarsening completion took in the unarrested case. This indi-
cates that the geometric deformations are sufficiently strong to counteract diffusive mass transfer,
thereby arresting coarsening.

Taken together, this example demonstrates that geometric deformations can counteract the mass
transfer that in a planar system would lead to coarsening and uninterrupted growth of pattern length
scales. This geometry-induced control of the pattern length scale is mediated by the system’s ten-
dency for interface length minimization. Spatial deformations of the confinement guide interface
motion and thereby determine long-time pattern evolution. Here, we have performed the analysis
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Figure 2.10: Geometrically arrested coarsening. Geometric deformations with amplitudes δ and widths w induce coarsening ar-
rest (purple/light gray shaded) in contrast to uninterrupted coarsening (green, dark gray shaded). The analytically predicted
transition line (black) results from comparing analytic coarsening rates σc, Eq (2.76), and geometric interface shifting rate
σg , Eq. (2.91). Purple (dark gray) and green (lighter gray) dots represent the results of numerical simulations of Eq. (2.22)
with Brusselator-core reaction kinetics, Eq. (2.72), yielding arrested and unarrested coarsening, respectively. Insets show
membrane concentration kymographs of two exemplary solutions for arrested (top right) and unarrested (bottom, left) coars-
ening dynamics at deformation width w = 4. The selected amplitude parameters δ are located at deformations at ±5% of the
analytically predicted transition values.

exemplarily for the Brusselator core model, Eq. (2.72), for which all necessary analytical expres-
sions can be calculated. For more complex reaction kinetics, obtaining these expressions will require
numerical evaluation, though the underlying approach remains viable.

2.7 CONCLUSION

In this work, we developed a minimal model to explore the role of geometry in bulk-boundary
coupled reaction-diffusion systems. Our approach considers a reaction-diffusion system with reactive
exchange between the bulk and boundary components within a radially modulated, rotationally
symmetric cylinder. By performing a dimensionality reduction, we introduce a geometric context to
one-dimensional reaction-diffusion formulations, which allows for analytic tractability and provides
insights into the effects of confinement on pattern formation and dynamics.

The reduction of full reaction-diffusion dynamics to an effective one-dimensional model relies on
key assumptions: that lateral bulk gradients are small relative to the axial gradients driven by bound-
ary reactions, and that the cylindrical geometry is narrow compared to the relevant diffusion lengths.
This quasi-1D reduction, which holds for many observed patterns in elongated cells and microflu-
idic settings, enabled us to integrate out radial and angular dependencies, leading to a simplified
reaction-diffusion-advection equation that accurately captures the role of geometric modulation.

Using this reduced model, we found that a spatial modulation of the confinement directly influ-
ences pattern formation by varying the bulk-boundary ratio. This spatial variation modifies local
reactive equilibria, thus driving pattern selection and localization. Through a perturbative linear
stability analysis of weakly modulated geometries, we predicted the modes of the emerging patterns
and their spatial positioning, with results that aligned well with full 3D simulations. This strong
correspondence validates both the reduced theory and the analytical insights it provides, showing
that geometry significantly influences emergent patterns.

Beyond initial pattern formation, many biological systems exhibit coarsening, a process where pat-
terns evolve to span the entire system. Here, we examined how geometric confinement can prevent
coarsening and stabilize specific pattern scales. By analyzing the effects of radial modulation, we
found that interface minimization plays a key role, as the geometry can effectively arrest coarsening
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by counteracting mass transfer and thereby stabilize distinct pattern scales.
Our study highlights the critical role of geometric confinements on pattern formation and length-

scale selection. We identify the modulation of the bulk-boundary ratios and interface minimization
as primary geometric effects. These insights suggest that these mechanisms are broadly relevant to
confined systems, offering a general framework to understand and manipulate pattern formation in
both biological and synthetic settings.

Our approach highlights a pathway for designing confinement geometries to achieve targeted
pattern configurations, which could be useful in applications such as protein pattern formation in
vesicle-like systems or in chemical reactors with customized confinement shapes. The presented
theory thus opens avenues for precise control over pattern dynamics and localization in various
confined environments.

2.8 APPENDIX

2.8.1 REDUCED MEMBRANE DYNAMICS

For completeness, we include a derivation of the one-dimensional dynamics of surface-bound protein
species, closely following the presentation in Ref.243 and extending it by a coupling to enclosed bulk
protein species. As before, we use a parametric representation of the reactive surface S, Eq. (2.7),
in terms of the angular variable ϕ and the position x along the cylinder axis:

X⃗(x, t) =

 x
R(x, t) cos ϕ
R(x, t) sin ϕ

 . (2.93)

The surface tangent vectors are given by

X⃗x = ∂X⃗

∂x
=

 1
R′ cos ϕ
R′ sin ϕ

 = e⃗x + R′ e⃗ρ , (2.94)

X⃗ϕ = ∂X⃗

∂ϕ
=

 0
−R sin ϕ
R cos ϕ

 = R e⃗ϕ . (2.95)

with norms h1 = |X⃗x| =
√

1 + R′2 and h2 = |X⃗ϕ| = R. In the following, we consider the dynamics
of the chemical components on the surface, m ∈ Rp, in a given subsection Γ ⊂ S; see Fig. 2.11 for an
illustration.

The area concentrations need to fulfill the balance equation

d
dt

∫
Γ(t)

dSX m(X⃗, t) = Dm

∫
∂Γ(t)

dl n⃗∂Γ · ∇m

+
∫

Γ(t)
dSX

[
fm(m) + fmc(m, c|S)

]
, (2.96)

where dSX denotes the surface element and dl the line element along the curve ∂Γ bounding the
surface area Γ, whose normal n⃗∂Γ lies in the tangent plane TS of S. Similar to Eq. (2.11), the
continuity equation for membrane species states that the total change in the number of surface-
bound proteins within an area Γ is either due to diffusive fluxes through the bounding line ∂Γ or
chemical reactions within the domain Γ.

In order to further evaluate the various terms in Eq. (2.96), we need a few basic relations from
differential geometry. Let the boundary ∂Γ be described in parametric form by x0(s) and ϕ0(s) with
s denoting the arclength. Then the tangent vector on ∂Γ can be written as t⃗∂Γ = x′

0(s)X⃗x + ϕ′
0(s)X⃗ϕ.

As the normal vector is element of the tangent space on S, n⃗∂Γ ∈ TS , it can be written in terms of the
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Figure 2.11: Schematic of a small surface element Γ ⊂ S. Its perimeter curve ∂Γ can be described by means of the local
tangent space vectors X⃗x and X⃗ϕ. The curves normal and tangent vector are given by n⃗∂Γ and t⃗∂Γ, respectively.

surface tangent vectors: n⃗∂Γ = αX⃗ϕ + βX⃗x. The parameters α and β can be determined from the
normalization condition and orthogonality to the tangent vector of ∂Γ. This gives

n⃗∂Γ = − x′
0h1

h2 |⃗t∂Γ|
X⃗ϕ + ϕ′

0h2

h1 |⃗t∂Γ|
X⃗x . (2.97)

Using the explicit form for the surface gradient

∇m =
( 1

h2
1

∂xm
)

X⃗x +
( 1

h2
2

∂ϕm
)

X⃗ϕ (2.98)

and the line element dl = |⃗t∂Γ| ds, the interface fluxes in Eq. (2.96) can be written as

∫
∂Γ(t)

dl n⃗∂Γ · ∇m =
∫

∂Γ(t)

ds

[
h2ϕ′

0
h1

∂xm − h1x′
0

h2
∂ϕm

]
= −

∫
∂Γ(t)

dx0
h1∂ϕm

h2
+
∫

∂Γ(t)

dϕ0
h2∂xm

h1

(2.99)

and applying Stoke’s theorem yields∫
∂Γ(t)

dl ∇m · n⃗∂Γ =
∫
Γ

dx0dϕ0

(
∂ϕ0

[
h1

h2
∂ϕ0m

]
+ ∂x0

[
h2

h1
∂x0m

])
. (2.100)

We note that due to an implicit time dependence, one has

d
dt

∫
Γ

m(X⃗(x0, ϕ0, t), t)h1h2dx0dϕ0 =
∫
Γ

[(
mt + ∇mX⃗t

)
h1h2 + m∂t (h1h2)

]
dxdϕ . (2.101)

Altogether, the continuity equation reads

0 =
∫
Γ

{
h1h2∂tm + m∂t (h1h2) − Dm

[
∂ϕ

h1

h2
∂ϕm + ∂x

h2

h1
∂xm

]
− (fm + fmc)h1h2

}
dxdϕ ,

(2.102)
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which needs to hold for every sufficiently small surface segment Γ. For the concrete geometry,
Eq. (2.93), we substitute h1 = γ and h2 = R. Neglecting angular gradients, i.e. ∂ϕm = 0, one gains
the one-dimensional reaction-diffusion equation

∂tm = Dm

γ2 ∂2
xm + Dm

γ2

(
R′

R
− R′R′′

γ2

)
∂xm −

(
Ṙ

R
+ R′Ṙ′

γ2

)
m + fm(m) + fmc(m, c) . (2.103)

In analogy to the derived reduction for the cytosolic species, one obtains effective advective contri-
butions. These account for the space-dependent impact of mass transport on surface concentrations.
In contrast to the bulk case, there are two factors that affect the accessible surface area, namely the
local circumference of the tube and the curvature-dependent boundary line element in x-direction.

2.8.2 LINEAR STABILITY ANALYSIS FOR A PIECEWISE CONSTANT PROFILE.

Complementary to the discussion in the main text based on the dynamics of the total mass, we
here perform a classical linear stability analysis of the HSS for a system within a geometry with an
approximately piecewise constant boundary profile, Eq. (2.33) with a comparably sharp interface
with width linter ≈ 2 = 0.1 L; see Fig. 2.4(b).

Neglecting the impact of the interface, we perform a linear stability analysis for the two ‘separate’
domains, with locally constant radii R1 = 0.5 and R2 = 1. Specifically, we analyze the dynamics of
perturbations (δm, δc) around the HSS (m∗, c∗), Eq. (2.22), which for a constant tube-radius reads

∂tδm = Dm∂2
xδm + f∗

mδm + f∗
c δc , (2.104a)

∂tδc = Dc∂2
xδc − 2

R
(f∗

mδm + f∗
c δc) . (2.104b)

Here, we linearized the reaction term

f(m∗ + δm, c∗ + δc) ≈ 0 + f∗
mδm + f∗

c δc . (2.105)

and abbreviated f∗
α := ∂αf(m, c)|(m∗,c∗) for α ∈ {c, m}.

Using Fourier modes, (δmq, δcq) ∼ exp[iqx + λ(q)t], Eqs. (2.104) becomes an eigenvalue problem

λ(q)
(

δmq

δcq

)
=
[
−
(

Dm 0
0 Dc

)
q2 +

(
f∗

m f∗
c

− 2
R f∗

m − 2
R f∗

c

)](
δmq

δcq

)
. (2.106)

Solving this eigenvalue problem for a given tube radius, one obtains the distinct dispersion relations
shown in Fig. 2.4(c). For a constant tube radius R(x) = R0, we consistently recover the slope
criterion, Eq. (2.31).

For a cylindrical geometry with a spatially constant radius R(x) ≡ R, the impact of the R-
dependent bulk-boundary ratio on the HSS of the enclosed reaction-diffusion system can be in-
corporated by re-scaled reaction rates. Namely, using the line densities for constant tube radii, i.e.,
γ = 1, m̃ = 2π Rm and c̃ = π R2 c, we can transform

f(m, c) = f̃(m̃, c̃) =
[

kon

πR2 + kfb

πR2
m̃2

4π2R2
(
k2

d + m̃2

4π2R2

)] c̃ − koff

2πR
m̃ =

[
k̃on + k̃fb

m̃2

k̃2
d + m̃2

]
c̃ − k̃offm̃ .

(2.107)

For the re-scaled reaction kinetics, pattern formation can be analogously described as done in Ref.94.
In consequence, spatially varying tube radii will lead to heterogeneous reaction conditions due to
the dependence on bulk-boundary ratios.
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2.8.3 PLATEAU-COARSENING IN UNDEFORMED TUBES

In this appendix, we show the calculations to obtain an analytic expression for the coarsening rate
between two plateaus in an undeformed tube. We follow Refs.24,25 by adapting their discussion to
a tubular geometry. First, we seek to calculate the quasi-stationary plateau solutions, Fig. 2.8, in
an uncorrugated tube with constant radius R(x) = R0. We start with the dimensionally reduced
dynamic equations, Eqs. (2.21),

∂tm = Dm∂2
xm + f(m, c) (2.108)

∂tc = Dc∂2
xc − 2

R0
f(m, c) . (2.109)

Adding both equations for the temporal evolution of the mass-density n(x, t) = 2πγRm + πR2c, we
obtain

∂tn = 2πRDm∂2
xm + πR2Dc∂2

xc . (2.110)

For stationary solutions (m, c)(x, t)=(mstat(x), cstat(x)), the dynamics of the mass-density is station-
ary, ∂tn = 0 and the right-hand side of the equation can be integrated as

ηstat = 2
R0

Dm

Dc
mstat + cstat ≡ d̃ mstat + cstat , (2.111)

with a constant mass-redistribution-potential offset ηstat. This equation states a flux-balance relation
for the stationary solutions. The factor d̃ weights the contributions of diffusive fluxes between mem-
brane surface and bulk volume. To construct the two-plateau solution, we dissect it into two symmet-
ric parts each of which consisting of a single interface as a continuous transition from a low-density
plateau mstat(x→ − ∞)=m− in one side of the domain, to a high-density plateau mstat(x→∞)=m+
on the other side. To obtain this elementary stationary single interface solution we need to calculate
the corresponding constant value of η∞

stat. It can be obtained by inserting the flux-balance relation,
Eq. (2.111) into the stationary membrane equation,

0 = Dm∂2
xmstat + f̃(mstat, η∞

stat) , (2.112)

where we reexpressed the reactive contributions as f̃(mstat, ηstat) = f(mstat, ηstat − d̃ mstat). Next, we
multiply the equation with ∂xmstat and integrate over space x ∈ (−∞, ∞). Rewriting the integral in
terms of membrane concentrations, one obtains

0 =
∫ mstat(∞)

mstat(−∞)
f̃(m, ηstat∞)dm , (2.113)

where we applied the no-flux boundary conditions at the outer boundaries. Upon integration, the
relation yields

0 =
[
− d̃

4m4 + η∞
stat

3 m3 − k

2 m2
]mstat(∞)=m+

m=mstat(−∞)=m−

. (2.114)

The lower and upper plateau values (m−, m+) can be obtained from the intersection of the FBS,
Eq. (2.111), with the reactive NC (Fig. 2.8 (a)). The nullcline of the Brusselator-core is given by

0 = −d̃m3 + ηstatm
2 − km , (2.115)
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giving the relevant solutions m− = 0 and m+ =
√

2k/d̃. Thus, solving Eq. (2.114) for ηstat, we
obtain the value

η∞
stat = 3

√
d̃k

2 . (2.116)

Having calculated the plateau values as well as the flux-balance offset, we are in the position to
calculate the infinite single-interface plateau solution by solving Eq. (2.112). The solution is given
by

m∞
stat =

√
k

2d̃

(
1 + tanh

(
−
√

k

Dm

x

2

))
, (2.117a)

c∞
stat = η∞

stat − d̃ m∞
stat . (2.117b)

To construct a combined finite length solution of two high-density plateaus as discussed in the main
text, Fig. 2.8(b), one effectively considers no-flux boundaries at finite positions instead of being
located at ±∞. Accordingly, we introduce a system length L = 2 (L− + L+) with high- and low-
density plateau lengths L+ and L−, respectively. In the sharp interface limit, the plateau lengths are
bounded by the solution’s inflection points (Fig. 2.9) such that the total system mass M = L n̄ of the
two-plateau solution can be estimated as

L

2 n̄ ≈ L−n− + L+n+ . (2.118)

Then, a given system mass fixes the plateau lengths and directly relates them to the plateau den-
sities n± via

L±(L) = ±L

2
n̄ − n∓

n+ − n−
. (2.119)

Figure 2.12: Qualitative illustration of varying plateau densities. Stationary solutions to Eqs. (2.21) on a finite domain exhibit
a shift of the flux-balance subspace (purple) by δηstat. Thereby, concentration saturation values within the plateaus of finite
length L+ are shifted by δm+.

On the finite domain, the plateau values of the infinitely extended solution, Eqs. (2.117), cannot
be attained. Instead, finite solutions approach plateau values that depend on their lengths. The
single interface solution shown in Fig. 2.12 has a finite plateau length L+. Therefore its membrane
concentration value at the domain boundary x = L/2 will saturate below the one of the infinite
solution as ms(L/2) = m+ − δm+. Additionally, for a finite plateau length, it can be shown that
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the flux-balance subspace of the solution is shifted from the infinite one η∞
stat by δηstat

24,25. This has
direct consequences for a solution consisting of two high-concentration plateaus of slightly varying
masses: As plateaus with different masses have different plateau lengths L+, they attain different
saturation concentrations. These variations in saturation values lead to differences in the local mass-
redistribution potential η and the solution is no longer stationary. In turn, coarsening is driven by
the differences in η through

∂tn(x, t) = DcπR2
0∂2

xη(x, t) . (2.120)

Thus, to analyze the coarsening dynamics in a system with two high-density plateaus, as shown
in Fig. 2.9, we can calculate the respective differences from the saturation values of the infinitely
extended solution. These will yield differences in the local mass-redistribution potential, which
drives the mass transport between the two plateaus.

The deviations from the infinite plateau values can be obtained by linearizing the stationary mem-
brane equation, Eq. (2.112), for mstat(x) = m± ∓ δm±,

0 = Dm∂2
xδm± + f̃m|m±δm± . (2.121)

One finds that the saturation values of the infinite domain are approached exponentially as

m∞
stat(x) − m± = ∓a± exp (∓x/ℓ±) , (2.122)

with length scale ℓ2
± = −Dm/f̃m|m± . Here, the amplitude for the Brusselator core reaction kinetics,

Eq. (2.72), with the infinite-domain solutions, Eq. (2.117), is given by

a± =
√

2k

d̃
. (2.123)

Next, to calculate the differences in ηstat from the infinite-plateau values, we take into account
the concentration deviations (δm−, δm+), Eq. (2.122), within the finite-sized plateaus by expanding
Eq. (2.113) around the infinite-domain plateau values to the lowest order in δm± and the finite-
domain correction to the mass-redistribution potential δηstat = ηstat(L−, L+) − η∞

stat,

0 =
∫ m++δm+

m−+δm−

f̃ (m, η∞
stat + δηstat) dm (2.124)

≈ 1
2 f̃m|m+δm2

+ − 1
2 f̃m|m−δm2

− (2.125)

+ δηstat

∫ m+

m−

dmf̃η(m, η∞
stat) . (2.126)

Solving the latter expression for δηstat and taking the derivative with respect to the plateau lengths
L± yields

∂L±ηstat = ± 8k

l±d̃

f̃m|m±

Fη
exp (−2L±/ℓ±) , (2.127)

with shorthand notation

Fη =
∫ m+

m−

dm f̃η (m, η∞
stat) . (2.128)

This equation expresses how the mass-redistribution potential η changes when varying the finite
plateau length. Starting from a configuration with almost equal lengths, this yields the coarsening
rate. Differences in the mass-redistribution potential between two plateau solutions will then drive
the flux of mass from one plateau to the other. In the following, we will relate the lengths of the
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plateaus directly to plateau masses to finally obtain an expression for the mass redistribution due to
coarsening.

In principle, mesa coarsening can occur through two different mechanisms. Namely, on the one
hand, high-concentration plateaus can increase their size by shifting their interfaces outwards. Alter-
natively, two high-concentration mesas can merge by translation towards each other, effectively given
by a shrinking low-concentration plateau in between. These two coarsening modes generally have
different coarsening rates. For the setup of the two high-concentration plateaus at the outer no-flux
boundary conditions discussed in the main text, independent translation of the high-concentration
plateaus is not allowed as the overall length of the connecting low-concentration plateau is fixed
through mass conservation, M ≈ (n+ − n−) L+. Thus, only the first coarsening mode contributes
here. This relation allows us to translate the plateau length change due to coarsening to a change in
respective plateau masses via

∂M

∂L+
= n+ − n− , (2.129)

and we rewrite

∂L+ηstat = (n+ − n−) ∂+
M ηstat . (2.130)

To arrive at the coarsening rate that describes the mass-transfer between two plateaus with almost
equal masses, we expand the mass-redistribution dynamics about two plateaus with equal masses

Finally, this gives the linear coarsening rate

σc(L) = −Dc πR2
0

L−
∂M ηstat

= − 6
√

kDm

L− (1 − Dm/Dc) exp
(

−2
√

k

Dm
L±

)
. (2.131)

This rate describes the onset of the mass-redistribution dynamics between the two plateaus with
minimal mass difference. Neglecting tube corrugations, for a given average tube radius R0, the latter
expression gives the growth rate of mass-differences between two high-concentration plateaus, i.e.,
δM = M2 − M1, with

∂tδM = σc(L) δM . (2.132)

Noteworthy, the coarsening rate is independent of the tube radius. For all radii, mass-transfer is
weighted by the mass differences as expressed through the plateau length. As, in turn, mass fluxes
are also weighted by the potential diffusive transport and, thus, the local bulk area, contributions
cancel out.

Within planar tubes with constant radii, the coarsening proceeds uninterrupted leading to a final
solution with a single high-density plateau located at one side of the domain. However, given that
coarsening occurs through the common shift of the plateau interfaces, geometric deformations can
affect the coarsening dynamics. The contributions of this geometric effect we want to calculate in
the following.

2.8.4 NUMERICAL EVALUATION AND SIMULATIONS

For the analytic solution of derived expressions, i.e., calculations of the combined profiles, response
functions, and evaluation of the coarsening criteria, we implemented the derived expressions in
Wolfram (Mathematica 14.2)246. We complement the analytic treatment with numerical simulations
of the derived one-dimensional reaction-diffusion advection equation, Eq. (2.21), as well as the full
equations Eq. (2.1) and Eq. (2.2) in a three-dimensional corrugated cylinder geometry. All numerical
simulations have been executed with the stated parameters using COMSOL Multiphysics®251. As
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long as the assumption of relaxing bulk gradients perpendicular to the tube surface is met, the 1d
projected dynamics align nicely with the 3d numerical simulations. Note the agreement between
analytic predictions and full 3d numerical simulations in Fig. 2.6.
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PHASE SEPARATION ON DEFORMABLE MEMBRANES

The self-organization of proteins into enriched compartments and the formation of complex pat-
terns are crucial processes for life on the cellular level. Liquid-liquid phase separation is one mech-
anism for forming such enriched compartments. When phase-separating proteins are membrane-
bound and locally disturb it, the mechanical response of the membrane mediates interactions be-
tween these proteins. How these membrane-mediated interactions influence the steady state of the
protein density distribution is thus an important question to investigate in order to understand the
rich diversity of protein and membrane-shape patterns present at the cellular level. This work starts
with a widely used model for membrane-bound phase-separating proteins. We numerically solve
our system to map out its phase space and perform a careful, systematic expansion of the model
equations to characterize the phase transitions through linear stability analysis and free energy ar-
guments. We observe that the membrane-mediated interactions, due to their long-range nature, are
capable of qualitatively altering the equilibrium state of the proteins. This leads to arrested coarsen-
ing and length-scale selection instead of simple demixing and complete coarsening. In this study, we
unambiguously show that long-range membrane-mediated interactions lead to pattern formation in
a system that otherwise would not do so. This work provides a basis for further systematic study of
membrane-bound pattern-forming systems.

3.1 INTRODUCTION

Self-organization in the absence of external guiding cues is a key principle in the creation and main-
tenance of cellular structures. One important mechanism for forming structures and enriched com-
partments is liquid-liquid phase separation26,27, whereby local interactions between components like
proteins or lipids induce demixing into a dense and a dilute phase64. Phase separation also occurs
on cellular lipid membranes, where it leads to the formation of domains such as lipid rafts28,29 or
enriched protein clusters30,31. Such domains are crucial for cellular functions such as polarization255,
sensing33,256, and membrane transport257.

In all these cases, the lipid bilayer membrane acts as an elastic manifold with embedded pro-
teins. This can lead to mutual feedback between the spatial organization of membrane-bound pro-
teins and the mechanical properties of the membrane via interactions that are influenced by the
geometry of the membrane surface. For instance, intracellular proteins can alter properties like
the bending rigidity of lipid bilayer membranes225,258 or may cause deformations due to their in-
trinsic curvature137,259,260. A well-studied instance of phase-separating membrane-bound proteins
that induce curvature involves BAR domains, which form high-density and dilute regions on the
membrane227,260. Lipid-demixing in multi-component membranes is another example of biological
liquid-liquid phase separation, in which lipid-localization can affect local membrane curvature32 as
well as the local protein composition33. This highlights the importance of the dynamic interplay
between phase-separation dynamics and mechanical deformations of surfaces.

Theoretical and experimental studies have explored how membrane curvature influences the
demixing and positioning of lipids and membrane-embedded proteins in response to externally in-
duced (static) membrane deformations261–263. In particular, it has been reported that local curvature
induced by micropipette aspiration induces curvature-dependent lipid sorting in biomembranes264.
Other experimental studies demonstrated phase separation and sorting of lipid rafts in giant unil-
amellar vesicles upon induction of varying curvatures265–267.

The crucial role of membrane curvature for pattern formation of curvature-sensing and curvature-
inducing proteins and lipids has also inspired various theoretical studies on the dynamic interplay
between membrane mechanics and liquid-liquid phase separation268–271. These theoretical analyses
primarily focus on the onset of phase separation and membrane deformations from the initial spa-
tially uniform and flat state, but often do not investigate the subsequent (nonlinear) dynamics lead-
ing to a steady state. Two recent studies have gone beyond the emergence of patterns and studied
these nonlinear dynamics that result from the interplay between phase separation and mechanical
deformations34,35. Using an expansion of their model equations that assumes weak membrane defor-
mations, these authors find that phase separation is altered by the membrane-mediated interactions
between proteins35 and that membrane-mediated lipid-lipid interactions lead to a length-scale selec-
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low high

Figure 3.1: Illustration of the model for phase separation on a deformable membrane surface, in which protein density and
membrane conformations are mechanically coupled. On the membrane surface, represented in the Monge parametrization
by a height field h(x, y), proteins induce local curvature that scales with their concentration ϕ(x, y) (color code). This figure
is reproduced from Ref.2 under license [CC BY 4.0].

tion of emerging patterns34. However, these theoretical studies leave aside two crucial aspects of the
dynamics. Firstly, the analysis in Ref.34 neglects the impact of temporal changes in membrane surface
area on protein and lipid concentrations, thereby only approximately preserving mass-conservation
on the deformable surface for weak deformations. Second, both studies disregard significant con-
tributions from spatial changes in the membrane metric, that affect local interactions between the
phase-separating components and the entropic contributions mediated by changes in membrane
area. Consequently, the question of how the dynamic interplay between membrane geometries and
curvature-inducing phase-separating proteins affects protein dynamics remains unresolved.

Here, we investigate how membrane-mediated interactions influence phase separation of mem-
brane-bound proteins. We model the thermodynamics of the protein-lipid system using the Flory-
Huggins free energy for a symmetric binary mixture272,273. The mechanical deformations of the
liquid membrane are described by the Canham-Helfrich free energy274,275, which accounts for bend-
ing energy and surface tension. The dynamics of protein densities and membrane deformations are
assumed to be coupled mechanically. Specifically, we follow the well-established literature268 and
examine proteins that cause spontaneous local curvature proportional to their density on the mem-
brane. This assumption is supported by experimental studies of BAR domains138,227,276 and clathrin
complexes277,278, where the coupling forces the membrane to locally conform to the (potentially
anisotropic) curvature induced by the protein coating, as illustrated in Fig. 3.1. In a similar fashion,
recent experiments emphasize the induction of membrane curvature by lipid-membrane-attached
MinD proteins in giant vesicles which gives rise to blebbing and protein-controlled vesicle shape
oscillations231,279.

What are the implications of the coupling between protein densities and membrane deformations
for the dynamics of phase separation? While the proteins undergo phase separation and aggregation
in droplet-like domains, they induce membrane deformations, which, in turn, alter the dynamics of
the protein density. In particular, a dynamically deforming membrane affects the protein dynamics
through a spatially and temporally varying surface metric, changing the local concentration gradients
of proteins and their interactions with neighboring proteins.

We present a general covariant description of phase-separation dynamics on dynamic membrane
surfaces. Our theory fully accounts for the effects of spatio-temporal changes in the governing met-
ric, mass-conservation, and the mechanical coupling through isotropic protein-induced curvatures.
This framework is versatile and can be applied to analyze more complex phase-separating systems
involving multiple components or active out-of-equilibrium contributions.

For the generic model system discussed, we find that mechanical coupling induces two distinct
phase-separating (spinodal) instabilities: a classical long-wavelength Cahn-Hilliard instability, which
is also present in the absence of geometric coupling, and a conserved Turing instability, character-
ized by a band of unstable modes that are bound away from zero wavevector but including it as a
marginal mode280. Depending on the mechanical coupling parameters, we observe steady-state pat-
terns with geometrically arrested coarsening dynamics and we determine the pattern length scales
based on thermodynamic arguments. Overall, our study uncovers the mechanical coupling via de-
formable membranes as a mechanism behind membrane-mediated pattern formation and provides
a conceptual basis for systematic investigation of membrane-bound pattern-forming systems.
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The paper is organized as follows: Section 3.2 introduces our model for liquid-liquid phase sep-
aration on dynamic membranes with mechanical coupling. We combine free energy contributions
for the fluid membrane and protein-protein interactions and implement the geometric coupling via
a spontaneous curvature of the proteins. Additionally, we introduce dimensionless parameters and
identify those crucial for tuning the strength of the interactions between the elastic (membrane) and
chemical (protein) contributions to the free energy. Finally, we give the dynamic equations that gov-
ern the evolution of the membrane shape and the protein density. These equations comprehensively
describe the spatiotemporal variations of the membrane metric. They detail how the elastic prop-
erties of the membrane affect protein-protein interactions and mechanical coupling. In section 3.3,
we present the results of our numerical simulations, establishing that our system exhibits arrested
coarsening and length-scale selection for strong coupling between membrane and protein densities.
In section 3.4, we connect numerical and analytical findings on the basis of linear stability analysis.
We examine the problem from two perspectives. Firstly, we conduct a classical linear stability analy-
sis of the dynamic equations, identifying different types of instability with their associated dispersion
relations of unstable modes. Secondly, we study the soft modes of an expanded, effective free energy
of the proteins, which we determine by integrating out the degrees of freedom related to membrane
fluctuations. Consistently, this approach provides analytical expressions for distinguishable instabil-
ity types and the initial pattern length scale. In section 3.5, we further develop this thermodynamic
reasoning and successfully predict the onset of arrested coarsening. Additionally, we derive an an-
alytic estimate for the mechanical length-scale selection of the final steady-state patterns. Finally,
we discuss our findings and shortly outline how our work may be generalized to other systems in
section 3.6. This study is supported by six appendices (Section 3.7): Appendix 3.7.1 provides the
derivation of the dynamic equations, while Appendix 3.7.2 gives details of the numerical simulations.
In appendices 3.7.3 and 3.7.4, we describe in detail the linear stability analysis based on the dynamic
equations and the effective free energy, respectively. We comment on the comparison between the
two approaches in Appendix 3.7.5. Appendix 3.7.6 contains details on the distance measure applied
to obtain the steady-state pattern length scales in the numerical simulations.

3.2 PROTEIN-MEMBRANE DYNAMICS

To investigate the influence of mechanical interactions on the phase separation of proteins, we
construct a minimal dynamical model that takes into account both protein-protein and membrane-
mediated interactions. We assume that the protein-membrane system relaxes towards thermody-
namic equilibrium via gradient dynamics that respect conservation laws. To model this process, we
establish dynamic equations based on the principles of non-equilibrium thermodynamics. Crucially,
when formulating the free energy functional and the corresponding dynamic equations, one has to
consider dynamical changes in the surface metric that arise from the deformations of the membrane
surface.

3.2.1 FREE-ENERGY FUNCTIONAL

We base our study on the free energy functional

F [ϕ, C] =
∫

dA
{

f [ϕ, gab] + e[ϕ, C]
}

, (3.1)

comprised of the functionals for the free energy densities of the proteins on the membrane, f [ϕ, gab],
and the local conformations of the membrane itself, e[ϕ, C]. Both of these functionals, as we will
discuss in detail below, depend on the protein area fraction ϕ on the membrane and the membrane
conformation, given in terms of the curvature C, which is the sum of the principal curvatures, and
the metric tensor gab of the membrane surface, where a, b ∈ {1, 2}. Moreover, for a parametrization
(u, v) of the membrane surface, the infinitesimal surface element is given by dA = √

g du dv, where
g is the determinant of the metric tensor of the curved membrane surface.
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We assume that the functional of the free energy density for the proteins is given by the standard
Flory-Huggins (FH) theory for a symmetric binary mixture (of proteins and lipids)90,272,273

f [ϕ, gab] = ρs kBT
[
f(ϕ) + χ

4ρs
|∇ϕ|2

]
, (3.2)

with the local part
f(ϕ) := ϕ ln ϕ + (1 − ϕ) ln(1 − ϕ) + χ ϕ (1 − ϕ) . (3.3)

In particular, ϕ denotes the protein area fraction on the membrane with a saturation density ρs = 1/v
given as the inverse of the two-dimensional molecular volume v. In the following, we will measure
all lengths in units of a ≡

√
v, setting ρs = 1. While the first two terms describe entropic mixing, the

terms proportional to the (dimensionless) Flory-Huggins parameter χ characterize the interaction
between the proteins. Since the membrane is generally deformed, the differential operator ∇ de-
notes the covariant derivative on the curved membrane, such that |∇ϕ|2 = (∂aϕ)(∂bϕ)gab. Thus, the
FH free energy density becomes a functional of the membrane conformation. For the functional of
the free energy density of the membrane conformations, we assume a Canham-Helfrich form274,275

e[ϕ, C] ≡ e(ϕ, C) = κ

2
(
C − C0ϕ

)2 + σ . (3.4)

It accounts for the free energy costs associated with membrane curvature C and area changes, char-
acterized by two parameters, the surface tension σ and bending rigidity κ. We consider a total
spontaneous membrane curvature mediated by the proteins bound to the membrane. For simplicity,
we assume a linear dependence on the protein concentration ϕ with a proportionality factor C0

281,
which describes the mechanical coupling in the system. Hence, the coupling constant C0 determines
the extent to which the proteins influence the curvature of the membrane.

Assuming the absence of overhangs, we describe the membrane deformation using a Monge
parametrization, representing the membrane surface as a height profile r = (x, y, h(x, y))T . Then,
the membrane curvature282 is given by

C = ∇⊥ ·
[

∇⊥h√
1 + (∇⊥h)2

]
, (3.5)

where ∇⊥ = x̂ ∂x + ŷ ∂y denotes the two-dimensional gradient operator on the base plane, with unit
vectors x̂, ŷ spanning the parametrization domain. The metric tensor is given by

gab =
(

1 + (∂xh)2 (∂xh) (∂yh)
(∂yh) (∂xh) 1 + (∂yh)2

)
(3.6)

and its determinant is g = 1 + (∇⊥h)2.

3.2.2 COUPLED GRADIENT DYNAMICS OF PROTEIN DENSITY AND MEMBRANE
CONFORMATION

We assume that the temporal evolution of the height field h(x, y, t) and the concentration field
ϕ(x, y, t) follow gradient dynamics, neglecting hydrodynamic effects other than friction. For the
fluid membrane conformations, we use relaxational dynamics

∂th = −γ
δF
δh

, (3.7)

where γ is a positive Onsager coefficient; accounting for fluid dynamics beyond friction would re-
quire a more elaborate approach283.

To set up the equation for the protein dynamics, one starts from the conservation law for the
number of proteins, which for an arbitrary domain Ω with boundary ∂Ω on the membrane surface
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reads

∂t

∫
Ω

dA ϕ = −
∫

∂Ω
dl J · n , (3.8)

where J denotes the protein density current and n the outer normal of Ω. Using Stoke’s theorem and
the surface element dA = √

g dxdy, and noting that a dynamically deforming membrane surface has
a time-dependent metric, this results in a modified continuity equation244,284

1
√

g
∂t (√g ϕ) = −∇ · J . (3.9)

Close to thermodynamic equilibrium the particle current J is given by the gradient of the chemical
potential, J = −M∇µ, with a constant mobility M related to the diffusion constant D and the
thermal energy scale by the Einstein relation M = D/kBT 285. The chemical potential µ is given by the
functional derivative of the free energy functional with respect to the area fraction, µ = δF/δϕ. This
results in a covariant form of the Cahn-Hilliard equation286,287 that accounts for a time-dependent
metric,

1
√

g
∂t (√gϕ) = M ∇2 δF

δϕ
, (3.10)

where ∇2 is the Laplace-Beltrami operator

∇2 = 1
√

g
∂a

[√
g gab∂b

]
. (3.11)

Note that Eq. (3.10) gives the protein dynamics in a covariant form and therefore, is valid for arbi-
trary surfaces that give rise to the metric gab. Thus it introduces no further approximations beyond
the Monge representation and should, therefore, be exact as long as overhangs in the membrane
conformations are negligible.

Taken together, Eqs. (3.7) and (3.10) describe the coupled close-to-equilibrium dynamics of pro-
teins and fluid membranes. The proteins undergo phase separation, simultaneously inducing spon-
taneous curvature on the deformable membrane. This mechanical coupling influences the bending
dynamics of the membrane, which in turn affects the protein dynamics through geometric effects
encoded in the dynamic metric of the membrane surface.

3.2.3 NON-DIMENSIONALIZATION AND CHOICE OF PARAMETERS

We now further non-dimensionalize the set of dynamic equations, Eqs. (3.7) and (3.10). In addition
to rescaling length in units of the protein size a ≡ 1/

√
ρs we rescale time by the corresponding

diffusive time scale τ ≡ 1/(Dρs). The main dimensionless parameters determining the mechanical
feedback are the bending rigidity κ/kBT → κ, expressed in units of the thermal energy kBT , the
FH parameter χ, and the protein-induced curvature C0/

√
ρs → C0 in units of the protein size. To

focus on the impact of these key parameters on the mechanical feedback, we keep the dimensionless
surface tension σ/(kBTρs) → σ and the Onsager coefficient γρskBT/D → γ constant throughout the
following analysis.

All parameter ranges are chosen to mirror typical values found for membrane proteins, for in-
stance, BAR domains or clathrin260,288; see Table 3.1. Accordingly, we choose the system size
L = 2 µm, the bending rigidity in the range κ = 0 − 40 kBT 289, the spontaneous protein curvature in
the range C0 = 0 − 0.04 nm−1 290, the membrane surface tension σ ≈ 1 · 10−4 pN nm−1 291, and the
protein size 1/

√
ρs ≈ 55 nm 292. Note that there is a wide range of values of σ reported in the litera-

ture since it can describe different physics. Here we choose a small value of sigma, which represents
the cost of pulling area from a reservoir of thermal fluctuations.

To focus on the impact of membrane-mediated interactions on the evolving patterns, we fix the
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Table 3.1: Ranges of values of the dimensionless parameters in units of the chosen scales (indicated within brackets) taken
from Refs.289–292, as specified in the main text.

χ > 0 protein interaction

C0 [√ρs] 0 − 1.2 protein curvature

σ [kBTρs] 0.16 surface tension

κ [kBT ] 0 − 40 bending rigidity

γ [D/kBTρs] 1 Onsager coefficient

protein interaction parameter to χ = 3 throughout this study, unless stated otherwise. Due to mass
conservation, the total protein mass is fixed and is determined by the initial condition. As our initial
condition, we choose a flat membrane with a homogeneous density of ϕ0(x, y) = 0.3, thus the initial
average area fraction is ϕ̄ = 1

A

∫
dA ϕ(x, y) = 0.3.1 This choice results in spinodal decomposition

on flat membranes, as for ϕ̄ = 0.3 the FH parameter χ = 3 significantly exceeds the spinodal line
χs ≈ 2.38. Additionally, we assume that the time scale of the protein dynamics is comparable to that
of the membrane dynamics γ = 1.

3.2.4 DYNAMIC EQUATIONS AND THEIR INTERPRETATION

We close this section by summarizing the dynamic equations in their dimensionless form. The dy-
namics of the protein density is given by a generalized Cahn-Hilliard equation that fully accounts for
the dynamics of the metric tensor,

∂t(
√

g ϕ)
√

g
= ∇2

[
∂ϕf(ϕ) + ∂ϕe(ϕ, C) − χ

2 ∇2ϕ
]

, (3.12)

where the additional term ∂ϕe(ϕ, C) = −κC0ϕ (C − C0ϕ) describes the coupling of the protein den-
sity to the membrane curvature. The local term now reflects the competition between minimizing
the free energy of the protein system and minimizing the mechanical deformation energy of the
membrane.

In the absence of a coupling to a protein density, the membrane dynamics is driven by the surface
tension σ and the bending rigidity κ of the membrane293

1
γ

∂th = σ C − κ

[
∇2C + C

2
(
C2 − 4CG

)]
, (3.13)

where CG = g−2 det[∂a∂bh] denotes the Gaussian curvature. Accounting for the mechanical coupling
we obtain (see appendix Section 3.7.1 for details)

1
γ

∂th =
[
f [ϕ, gab] + e(ϕ, C)

]
C − κ∇2(C − C0ϕ)

+ κ (C − C0ϕ) (−C2 + 2CG)
− 1

2 χ Cab (∂aϕ)(∂bϕ) , (3.14)

where Cab = g−1/2∂a∂b h denotes the curvature tensor. This still has the overall structure of the
dynamic shape equation, Eq. (3.13), with a few essential new features. The first term now has as a
prefactor the total free energy functional including the contributions from the protein interactions.
The spatial gradients in the curvature are now given relative to the spontaneous curvature imposed
by the protein density distribution. The third contribution from the bending rigidity is no longer

1Note that in our system, the total mass
∫

dAϕ(x, y) is conserved. Thus, if the considered surface area A =
∫

dA changes
over time due to deformations, this will result in dynamic changes in the average protein area fraction ϕ̄.
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weighted with the membrane curvature but with its deviation from the protein-imposed preferred
curvature. The final term couples the curvature tensor to the gradients in the protein distribution.
Notably, upon defining the deviatoric stress tensor

ΣD
ab = χ

2

[
1
2(∂cϕ)(∂dϕ)gcdgab − (∂aϕ)(∂bϕ)

]
, (3.15)

one can rewrite the equation as

1
γ

∂th =
[
f(ϕ) + e(ϕ, C)

]
C − κ∇2(C − C0ϕ)

+ κ (C − C0ϕ) (−C2 + 2CG)
+ Cab ΣD

ab . (3.16)

Now the first term contains only the local free energy contributions and the gradients in the protein
density are absorbed into the deviatoric stress tensor (last term). To leading order in the curvature,
this equation reduces to

1
γ

∂th = σ(ϕ) C − κ∇2(C−C0ϕ) + Cab ΣD
ab , (3.17)

with an effective tension term

σ(ϕ) = σ + f(ϕ) + 1
2 κ C2

0 ϕ2 . (3.18)

This effective tension incorporates the original surface tension σ, a thermodynamic term related to
the protein free energy density f(ϕ), and one mechanical term that arises from the protein-induced
curvature C0.

Finally, linearizing in the height profile with gab = δab + O(h2) one obtains:

1
γ

∂th = σ(ϕ) ∇2
⊥h − κ∇2

⊥(∇2
⊥h−C0ϕ)

+ ΣD
ab (∂a∂bh) , (3.19)

where we assume summation over repeated indices. For these three terms, we now have the follow-
ing physical interpretation. The first term represents a generalized surface tension, which includes
the bare membrane tension, a surfactant-like term due to the local free energy costs for the protein
density, and a mechanical term due to the spontaneous curvature induced by the proteins. The sec-
ond term accounts for the bending cost of the membrane relative to the configuration defined by the
protein-induced spontaneous curvature profile C0ϕ. The third term describes the coupling between
the deviatoric stress of the protein density and the curvature tensor of the membrane.

3.3 OSTWALD RIPENING AND ARRESTED COARSENING

In this section, we present results from numerical solutions (appendix Section 3.7.2) of the dynamic
equations, Eqs. (3.12) and (3.14), to analyze the impact of the mechanical feedback on protein
pattern formation and the system’s coarsening behavior as a function of the protein-induced curva-
ture C0. As discussed in the previous section, we choose the remaining parameters such that on a
flat, non-deformable membrane, the homogeneous steady state ϕ(x, y) = ϕ̄ is unstable against small
spatial perturbation, i.e., the system is in the spinodal decomposition regime.

For small induced spontaneous curvatures, such as C0 = 0.05, the influence of membrane geometry
on the phase separation dynamics of proteins is nearly negligible, resulting in dynamics similar to
classical Ostwald ripening described by the Cahn-Hilliard equation, cf. Fig. 3.2(a). After an initial
perturbation of the homogeneous steady state ϕ0 = 0.3, multiple high-density droplets form, and
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C0(a) (b)

Figure 3.2: Time evolution of the protein area fraction ϕ(x, y, t) (color scale, top) and corresponding membrane curvature
C(x, y, t) (color scale, bottom) for two different protein-induced curvatures C0 = 0.05 (a) and C0 = 0.6 (b). The respective
upper and lower time sequences show the dynamics that emerge from two distinct initial conditions: a protein area fraction
ϕ0(x, y) = 0.3 + ξ with Gaussian zero-mean white noise ξ of amplitude ∼ 5 × 10−4 (upper rows), and a single droplet
(lower rows). The remaining dimensionless parameters are chosen as follows σ = 0.16, γ = 1, κ = 20, and χ = 3. Spinodal
decomposition and coarsening dynamics are observed for C0 = 0.05. The final steady state is a single droplet. In contrast,
for C0 = 0.6, the steady state comprises multiple droplets. Starting from a random protein distribution, droplets form by
spinodal decomposition, but the coarsening process is eventually arrested. Moreover, an initial single droplet state is unstable
and splits into multiple droplets. This figure is reproduced from Ref.2 under license [CC BY 4.0].

larger droplets subsequently grow at the expense of smaller ones (top row in Fig. 3.2(a)). The
Ostwald ripening process continues until only a single droplet remains294,295. Consistently, when
simulations are initialized with a single droplet, it remains stable over time; see the second row in
Fig. 3.2(a) for C0 = 0.05.

In contrast, when the protein-induced curvature is increased to C0 = 0.6, the effects of the mechan-
ical feedback become increasingly prominent. The onset of pattern formation from a homogeneous
steady state is similar for C0 = 0.05 and C0 = 0.6, but is delayed for the larger value of protein-
induced curvatures; see Fig. 3.2(b). Remarkably, in contrast to standard Cahn-Hilliard dynamics, the
mechanical feedback arrests the Ostwald ripening process, and a regular pattern with a preferred
droplet size emerges as the system’s steady state. To verify that the mechanical deformations induce
a length-scale selection, we also performed numerical simulations of the dynamics starting from a
single droplet as an initial condition; Fig. 3.2(b), second row. One observes that the initial droplet
nearly dissolves into the surrounding low-density phase, giving rise to a pattern with twelve droplets.
We attribute this to the high cost of membrane deformation associated with large protein aggregates,
which leads to a gradual dissolution of a single droplet into several smaller ones.

In summary, the mechanical coupling through protein-induced curvature not only arrests the Ost-
wald ripening process but also facilitates the selection of a well-defined wavelength in the final
steady-state patterns. In the following chapters, we use linear stability analysis and thermodynamic
arguments to investigate the underlying mechanism.
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Figure 3.3: Linear stability analysis; (a-d) Dispersion relations λLSA(k) (right) and the corresponding steady-state concen-
tration profiles ϕ(x, y) (left) for χ = 3 and varying protein-induced curvatures C0 = 0.05, 0.3, 0.6, and 0.9, respectively.
Color scale as in Fig. 3.2 for ϕ ∈ [0, 1]. Insets show zoom-ins of the dispersion relations at small wave numbers k. (e) Band
of unstable modes (k−, k+) as a function of the protein-induced curvature C0. For C0 < C*

0, there is a long wavelength
Cahn-Hilliard-type (CH-type) instability with the band extending to zero wavevector, k− = 0. Above the threshold value C*

0
(dashed line), the dispersion relation changes from a CH-type long wavelength instability (magenta) to a conserved Turing-
type (cT-type) instability, in which the band of unstable modes is bound away from k = 0, but connects to the marginal mode
k = 0 (cyan). Above a critical value Cc

0 , lateral instabilities are absent (dotted line). (f) Bifurcation diagram derived from
the dispersion relation of the effective free energy λ, Eq. (3.29), as a function of the protein-induced curvature C0, the FH
parameter χ, and the bending stiffness κ, which shows the boundaries for a CH-type instability (magenta, middle) and a
cT-type instability (cyan, upper). Also shown is the boundary between coarsening and arrested coarsening (dark blue, lower)
derived from the effective free energy functional (C∞

0 , Eq. (3.34)). The dashed line indicates the parameters corresponding
to (a-d) and the gray plane the parameter ranges of C0 and κ corresponding to the simulation results shown in Fig. 3.5. All
other model parameters as specified in Table 3.1. This figure is reproduced from Ref.2 under license [CC BY 4.0].

3.4 LINEAR STABILITY ANALYSIS

To better understand the dynamics and the emerging patterns, we perform a linear stability analysis
(LSA) of the coupled protein and membrane dynamics, Eq. (3.12) and Eq. (3.14), around a spatially
homogeneous steady state. We start with a linear stability analysis of the full dynamic equations and
investigate the dispersion relation for varying protein-induced curvature C0. In addition, we exploit
the thermodynamic nature of the system to obtain analytical expressions for the dispersion relation
and the phase boundaries using free energy arguments.

3.4.1 LINEAR STABILITY ANALYSIS OF THE DYNAMIC EQUATIONS

To perform a linear stability analysis of Eqs. (3.12) and (3.14) around a spatially homogeneous state
we consider small perturbations δh(x) and δϕ(x) with respect to a steady state with spatially uniform
concentration and height fields (ϕ0, h0); the detailed mathematical analysis is given in appendix
Section 3.7.3.

Figure 3.3(a-d) displays the corresponding dispersion relations λLSA(k), i.e., growth rates as a
function of the wavevector k, for a set of different protein-induced curvatures C0 and fixed values for
χ = 3 and κ = 20. Depending on the magnitude of C0, we observe qualitatively different instabilities.
For small parameter values, e.g., C0 = 0.05, the instability is of type-II36, i.e., a long wavelength
instability with a band of unstable modes (0, k+) extending to zero wavevector. This is the same
type of instability as obtained for the spinodal decomposition regime of the Cahn-Hilliard model
in flat geometry (Cahn-Hilliard-type instability). Above a threshold value C∗

0 ≈ 0.25, the dispersion
relation becomes qualitatively different and exhibits a band of unstable modes (k−, k+) that is bound
away from k = 0 < k− such that long wavelength modes are stable; note however that the dispersion
relation approaches zero in the limit k → 0. We refer to this type-I36 lateral instability as a conserved
Turing-type instability, following a recent suggestion in Refs.37,280. For even larger protein-induced
curvature above the threshold value Cc

0 ≈ 0.68, LSA predicts linear stability of the homogeneous
steady state as the largest growth rates λLSA(k) for all modes are non-positive, Fig. 3.3(d). We
attribute this to the stabilizing effect of the mechanical feedback. Since curvature mismatches are
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always associated with energetic costs, these costs must exceed the free energy gain from the protein
mixing entropy at a certain threshold value of protein-induced curvature, so that the homogeneous
steady state becomes energetically favorable.

3.4.2 EFFECTIVE FREE ENERGY IN THE WEAKLY BENDING LIMIT AND LINEAR
STABILITY ANALYSIS

Since we are considering the dynamics of a system relaxing into thermodynamic equilibrium, we can
take advantage of the fact that the equilibrium steady state is encoded in the free energy functional.
Our starting point is the free energy functional, Eq. (3.1), together with the corresponding expres-
sions for the local free energies for the protein density ϕ and the membrane height undulations h,
Eq. (3.2) and Eq. (3.4), rewritten in their non-dimensional form, Eqs. (3.12) and (3.14).

WEAKLY BENDING APPROXIMATION

If one assumes that the gradients in the height fluctuations of the membrane are weak, the surface
element can be approximated as

dA ≈ dx dy
(
1 + 1

2 |∇⊥h|2
)

. (3.20)

Note that this yields a surface tension term for the membrane of the form 1
2 σ
∫

d2x (∇⊥h)2 but in
the same way also multiplies all the terms in the Flory-Huggins free energy. This has, as we will
see below, important implications for the equilibrium steady state patterns since it gives rise to an
effective surface tension. Moreover, we approximate the membrane curvature by its leading order
term

C ≈ ∇2
⊥h , (3.21)

where ∇2
⊥ = ∂2

x + ∂2
y . Taken together, this weakly bending approximation results in a free energy

functional which is quadratic in the height fluctuations, and the part depending on the bending
modes is given by

Fbend =
∫

d2x
{

1
2 κ
(
∇2

⊥h − C0ϕ
)2

(3.22)

+ 1
2

[
σ + f(ϕ) + 1

2 κC2
0 ϕ2 + 1

4 χ(∇⊥ϕ)2
]
(∇⊥h)2

}
.

To proceed further, we assume that in the term proportional to (∇⊥h)2 one can replace the protein
density field ϕ by its spatial average ϕ̄ such that the free energy becomes quadratic in both the protein
density and the height field.

Then, the corresponding harmonic part of the total free energy functional can approximately be
written in Fourier space as follows:

Fbend ≈
∑

k

{
1
2
[
κk4 + σ(ϕ̄)k2] |hk|2

+ 1
2 κC2

0 |ϕk|2 + κC0k2hkϕ∗
k

}
, (3.23)

with the effective tension
σ(ϕ̄) = σ + f(ϕ̄) + 1

2 κ C2
0 ϕ̄2 . (3.24)

The two additional terms, other than the membrane surface tension σ, arise from the changed free
energy costs or gains associated with protein coverage of the membrane (second term) and the
induced spontaneous curvature (third term). These contributions can be interpreted as a type of
“surfactant" effect. Just as surfactants alter the properties of liquid interfaces by modifying surface
tension, these additional terms adjust the membrane’s surface energy. Specifically, the proteins’
influence can either stabilize or destabilize the membrane, akin to how surfactants can either reduce
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or enhance surface tension. We focus on parameter regimes where this effective surface tension
remains positive, as a negative value would signify an instability in the overall system.

Given the harmonic form of the coupling term in Eq. (3.23), one can perform the path integral
in the partition sum over the bending modes by completing the square. Thereby, one obtains an
effective coupling term of the form

Fcoupling = 1
2
∑

k

[
κC2

0 − (κ C0)2k2

σ(ϕ̄) + κk2

]
|ϕk|2 , (3.25)

where the summation runs over all Fourier modes compatible with the chosen boundary conditions
(typically chosen as periodic boundary conditions). Combining this effective coupling term with the
remainder of the FH free energy gives us the following effective total free energy functional

Feff[ϕk] = 1
2
∑

k

[
κC2

0 − (κC0)2k2

σ(ϕ̄) + κk2
+ 1

2 χk2
]

|ϕk|2

+
∫

d2x f(ϕ) . (3.26)

Importantly, the effective coupling term, which is due to the long-range nature of the membrane-
mediated interactions, changes the physics at large length scales. In contrast to the original stiffness
term 1

4 χ k2|ϕk|2 in the FH free energy, it behaves differently at long wavelengths. Thus, for a finite
surface tension σ(ϕ̄), one finds asymptotically in the long wavelength limit, |k| ≪ σ(ϕ̄)/κ,

Fcoupling ≈ 1
2
∑

k

[
κC2

0 − (κ C0)2

σ(ϕ̄)
k2
]
|ϕk|2 . (3.27)

This reduces the magnitude of the stiffness term and can even make it negative, transforming a
Cahn-Hilliard-type instability into a conserved Turing-type instability, as we will discuss next.

LINEAR STABILITY ANALYSIS OF EFFECTIVE FREE ENERGY

With the above form of the effective free energy one can write down the dynamics in the limit where
membrane dynamics is equilibrated on the timescale of the protein density dynamics as

∂tϕ = ∇2 δFeff

δϕ
. (3.28)

Linear stability analysis then gives for the growth rates of the Fourier modes,

λ(k) = −k2
[
f ′′(ϕ̄) + κ C2

0 + 1
2 χeff(k) k2

]
, (3.29)

where χeff(k) denotes the stiffness parameter renormalized by the bending modes and the general-
ized surface tension,

χeff(k) = χ − 2 (κ C0)2

σ(ϕ̄) + κ k2
. (3.30)

In addition, the leading order term −f ′′(ϕ̄) k2, which determines the position of the spinodal in the
CH model through the sign change of the curvature of the free energy density f ′′(ϕ̄), is shifted by a
constant κ C2

0 , depending on the spontaneous curvature.
Figure 3.3(f) shows the bifurcation diagram resulting from the dispersion relation of the effective

model, Eq. (3.29), as a function of the FH parameter, bending stiffness, and spontaneous curvature.
It demonstrates that, depending on the values of these parameters, the spatially uniform state can
become unstable through either a CH-type or conserved Turing-type instability. These transitions
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align with the transitions obtained from the full model (see appendix Section 3.7.5). In the regime
where the instability is of CH-type, i.e., a long-wavelength instability, the spinodal line is given by
the condition f ′′(ϕ̄) + κ C2

0 = 0, resulting in

2χ = 1
ϕ̄ (1 − ϕ̄)

+ κ C2
0 . (3.31)

Below this spinodal surface, the dynamics is essentially equivalent to those described by the stan-
dard Cahn-Hilliard model. This involves an initial phase of spinodal decomposition followed by a
subsequent coarsening process.

However, this CH-type transition with a long wavelength instability can be pre-empted by a finite
wavelength conserved Turing-type instability, where a band (k−, k+) of modes becomes unstable.
This band emerges if the following condition is met (see appendix Section 3.7.4)

Cc
0

2 = 4
ϕ̄2
(
ϕ̄2χ − 16κ

)(ϕ̄2f ′′(ϕ̄) + σFH

(
4 − 1

2κ
ϕ̄2χ

)
− 2
√

ϕ̄2f ′′(ϕ̄)
(
4κf ′′(ϕ̄)/χ − 2σFH

)
+ 4σ2

FH

)
, (3.32)

where one has f ′′(ϕ̄) = 1/[ϕ̄(1 − ϕ̄)] − 2χ and we defined σFH := σ + f(ϕ̄). The resulting bifurcation
surface is depicted as the cyan upper surface Cc

0(χ, κ) in Fig. 3.3(f). The boundary between the
conserved Turing-type and CH-type transitions is given by equating Eq. (3.31) and Eq. (3.32); see the
thick black line in Fig. 3.3(f). For parameter ranges with an initial conserved Turing-type instability,
Eq. (3.31) delineates the change from this conserved Turing-type to a CH-type dispersion relation.

Comparing the dispersion relation of the full model, λLSA(k) with that of the effective model,
Eq. (3.29), two observations can be made. First, the effective dispersion relation is obtained from
the full dispersion relation in the limiting case of a strong timescale separation between the protein
density dynamics and the membrane dynamics. However, in our numerical simulations we chose
comparable timescales, i.e. γ = 1, for both dynamics. As membrane deformations are rather weak,
we still observe a co-localization of deformations with protein aggregates, and hysteresis from previ-
ous membrane configurations is still negligible. Second, the phase boundaries for the Cahn-Hilliard
and conserved Turing-type instabilities remain unchanged even if there is no separation of time
scales; see appendix Section 3.7.5.

3.5 THERMODYNAMICS AND LENGTH-SCALE SELECTION

To better characterize the emergence of the finite pattern length scale and the arrest of coarsen-
ing, we simulated the system dynamics across a larger region in parameter space, for a fixed value
of χ = 3 and encompassing variations in protein-induced curvature (C0 ∈ [0, 1.2]) and membrane
bending stiffness (κ ∈ [0, 40]). Figure 3.4 shows the corresponding results for the inter-droplet dis-
tance (see appendix Section 3.7.6) in the stationary state. It reveals the existence of two distinct
phase boundaries.

First, a spinodal line (cyan) marks the onset of the instability of a spatially uniform state against
small perturbations. In the parameter range shown, this transition is a conserved Turing-type insta-
bility, given by Eq. (3.32); there is excellent agreement between the predicted and the numerically
observed transition (Fig. 3.4). Below the spinodal line, our numerical simulations show that the
system initially undergoes spinodal decomposition and Ostwald ripening. However, this coarsening
process does not reach completion; instead, it eventually arrests, and results in the formation of a
spatial pattern with periodic arrangements of droplets of finite size. This is distinct from the Ost-
wald ripening process that we observe in a parameter regime where the transition is driven by a
Cahn-Hilliard-type long wavelength instability. Upon decreasing the protein-induced curvature C0
for a fixed value of the bending rigidity κ, our simulations show that both the distance between
the droplets and their size increase; see the black dashed line and the corresponding panels for the
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Figure 3.4: Inter-droplet distance d (color code) in the final stationary state of numerical simulations of the system described
by Eq. (3.12) and Eq. (3.14), for different values of protein-induced curvature C0 and bending rigidity κ in a square domain
with side length L = 2 µm. The spinodal line for the conserved Turing-type transition (Cc

0 , cyan, light gray) marks the onset
of pattern formation predicted by linear stability analysis; see Eq. (3.32). With decreasing protein-induced curvature (C0),
the length scale of the emerging droplet pattern increases (black dashed line at κ = 20); the panels on the right show
corresponding snapshots of these patterns at the parameters indicated by the green symbols. The transition from a finite
number of droplets to a single droplet in a finite size system is indicated by a solid purple (dark gray) line (CL

0 , Eq. (3.37)).
The phase boundary between an infinitely extended system that shows arrested coarsening and one that exhibits Ostwald
ripening is shown by the dashed blue (medium gray) line (C∞

0 , Eq. (3.34)). All system parameters as in Fig. 3.3, where
parameter ranges of C0 and κ are indicated as a gray plane. This figure is reproduced from Ref.2 under license [CC BY 4.0].

patterns in Fig. 3.4. Eventually, in the finite-sized system simulated here, there is a threshold line for
the protein-induced curvature below which the system exhibits only a single droplet, cf. solid purple
line in Fig. 3.4.

3.5.1 THERMODYNAMIC LENGTH-SCALE SELECTION

Why does the system exhibit coarsening arrest within an intermediate range of protein-induced
curvature and bending rigidity? One way to address this question would be to use methods from
nonlinear dynamics and perform a weakly nonlinear analysis along the lines introduced by Matthews
and Cox296, which accounts for the presence of the long wavelength marginal mode at k = 0. In
the present case, however, there is a more straightforward approach, as the dynamics relax to a
thermal equilibrium state determined—at the mean-field level—by the minimum of the free energy
functional. In general, thermodynamic systems with only short-ranged interactions show Ostwald
ripening with the equilibrium state given by complete phase separation. Here, however, we have
long-ranged interactions between the proteins mediated by the elastic deformation of the membrane
surface. It is known that the balance between the short-ranged forces driving phase separation
and the long-ranged forces that impose ordering constraints can lead to the formation of patterns.
A classical example are block copolymer melts, where the long-range interaction is mediated by
connections between different chemical sequences in the copolymer chain76. In the present context,
there is an intriguing twist to this narrative due to the significance of geometric effects inherent in
the metric of the membrane surface.

The length scale of the final pattern can be determined from the effective free energy functional
derived in the previous section, Eq. (3.26). Following the approach in Ref.76, this length scale is
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obtained by finding the wave vector that minimizes the effective free energy functional density,

k2
min = C0

√
2σ(ϕ̄)

χ
− σ(ϕ̄)

κ
. (3.33)

This relation shows that thermodynamically one should have a transition from microphase separation
(arrested coarsening) to full coarsening for kmin = 0, equivalent to

C∞
0 = 1

κ

√
χ σ(ϕ̄)

2 . (3.34)

Substitution of the effective surface tension, Eq. (3.24), and solving for C∞
0 yields

C∞
0 =

√
χ(σ + f(ϕ̄))

2κ2
(
1 − χϕ̄2/(4κ)

) ; (3.35)

see the dashed blue line in Fig. 3.4.

3.5.2 FINITE SIZE EFFECTS

On comparing our numerical simulations with the above thermodynamic results we have to account
for finite size effects. The wavevector kmin defines the inter-droplet distance

d = 2π

kmin
(3.36)

of the steady-state pattern. Figure 3.5 compares the simulation data for the cutline κ = 20 in Fig. 3.4
alongside this analytical expression for the inter-droplet distance. The average distance between
droplets decreases with increasing protein curvature C0 and we observe good agreement with the
simulation results. However, as we consider a finite-size system, the inter-droplet distance takes
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Figure 3.5: Comparison of the analytical result for inter-droplet distance Eq. (3.36) (black line) and the simulation results for
the cutline κ = 20 in Fig. 3.4 (blue dots). Both are in a good agreement, with minor deviations due to finite size effects and
the harmonic approximation used to derive the effective free energy. The panels on top show the pattern corresponding to
the length scale indicated by the green symbols. The system size, given by the horizontal dashed line, restricts the maximum
possible distance. The regime showing microphase separation is limited by C∞

0 (Eq. 3.34) and Cc
0 (Eq. 3.32) as indicated by

the vertical dashed lines. This figure is reproduced from Ref.2 under license [CC BY 4.0].
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on discrete values. Moreover, since the hexagonal symmetry of the periodic arrangement of the
droplets is not consistent with the square domain used in the simulations, there are geometric frus-
tration effects; for a discussion see appendix Section 3.7.6. Finally, there may also be deviations
between the simulation results and the thermodynamic expression, because we have used harmonic
approximations in the derivation of the effective free energy (Sec. 3.4.2).

Figure 3.5 also illustrates that the inter-droplet distance is limited by the system size and the
boundary between coarsening an arrested coarsening is shifted compared to an infinite system. The
maximum distance between two droplets in our finite domain is d2 = L/

√
2. Thus, we estimate the

boundary between microphase separation (two or more droplets) and complete Ostwald ripening
(one droplet) for our finite square domain with length L through the condition

d = L√
2

. (3.37)

The corresponding critical value of the protein-induced curvature CL
0 (κ) is shown in Fig. 3.4 as the

purple line. As the system size increases and finite-size effects decrease, we expect the agreement
between the analytically predicted and numerically measured pattern length scales to improve even
further, in addition to the already good agreement for the finite-size system. Specifically, as the
systems become larger, we anticipate that the critical transition lines will converge, i.e., CL

0 → C∞
0

in the limit L → ∞. Since we do not anticipate any fundamentally new effects to arise at larger
scales, we will omit the technical challenge of performing numerical simulations of larger systems
here.

3.6 DISCUSSION

In this study, we investigated phase separation on membranes that dynamically evolve their shape,
by integrating a Flory-Huggins theory for symmetric binary mixtures with a Canham-Helfrich theory
for fluid elastic membranes. Specifically, we focused on systems where the density of molecules un-
dergoing phase separation induces spontaneous membrane curvature, thereby facilitating a coupling
with the membrane’s mechanical deformations.

We employed a general covariant framework to describe phase-separation dynamics on mem-
branes with dynamically evolving geometry, deliberately avoiding the use of small deformation or
dilute phase expansions that are commonly used to simplify the analysis. The resulting set of cou-
pled dynamic equations for protein density and membrane conformations account for the effects of
spatiotemporal variations in the prevailing surface metric, ensure mass conservation, and capture
the mechanical coupling arising from protein-induced curvatures.

The analysis of these dynamic equations shows that liquid phase separation on deformable mem-
branes exhibits three qualitatively different phenomenologies. First, we observe a regime with stable,
spatially homogeneous steady states, where proteins maintain a mixed state with a uniform concen-
tration across a flat membrane. Second, we find a regime characterized by a fully coarsened phase-
separated steady state, where proteins aggregate into a single high-density droplet surrounded by a
low-density phase. Finally, we also find a regime of arrested coarsening, where protein aggregation
is counteracted by the energetic cost of membrane deformation induced by the mechanical coupling
to the protein density. In this regime, the length scale of the emergent pattern is determined by the
trade-off between the thermodynamics of protein mixing and membrane bending energy costs.

An interesting and notable feature of phase separation on deformable membranes is that the dis-
persion relation changes from a standard Cahn-Hilliard-type long wavelength instability to a con-
served Turing-type instability above a certain threshold value for the spontaneous curvature. The
Cahn-Hilliard instability leads to Ostwald ripening, where smaller droplets dissolve into larger ones,
resulting in coarsening of the phase-separated structures over time. In contrast, the conserved Tur-
ing instability, characterized by a band of unstable modes and a marginal mode at zero wavevector
in the dispersion relation, drives the formation of spatial patterns with a finite wavelength. Since
we study the dynamics of a protein-membrane system that relaxes to a thermodynamic equilibrium,
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one can take advantage of the fact that the thermal equilibrium state is encoded in the free energy
functional. By minimizing this effective free energy density, where membrane conformations were
integrated out, we were able to determine the length scale of the patterns. The analytical results
obtained through this method showed excellent agreement with our numerical simulations.

Similar to recent findings in Ref.34, our results highlight that curvature-mediated interactions, in
conjunction with phase separation, can serve as a minimal motif for pattern formation with a well-
defined length scale, determined by the material parameters of the system. Notably, this mechanism
does not depend on complex biochemical pathways but rather on generic features of the membrane’s
lipid composition34 or protein interaction with the membrane279,297. The dynamics of the membrane
and the density field discussed in our work are qualitatively similar to those in Ref.34, but differ in
several key aspects. First, we avoid expanding the membrane dynamics beyond the intrinsic limits of
Monge representation. Second, we incorporate the effects of the surface metric in the Flory-Huggins
free energy, resulting in an effective membrane tension. Finally, we account for the metric in the
time derivative of protein density to ensure accurate protein mass conservation. These differences
lead to distinct predictions for the phase diagram, particularly in how the phase boundaries depend
on model parameters such as the protein-induced curvature.

In our current analysis, we have neglected the in-plane lipid flow within the membrane. Extending
recent work35, which incorporates this flow, to the nonlinear Monge regime explored here would be
a valuable next step. Additionally, another promising research avenue would involve accounting for
the fluid flow of the surrounding liquid beyond the Rouse approximation used in our present study.

Finally, an intriguing open research question that could be explored by adapting our theoret-
ical framework is how dynamics and steady states are affected in systems with broken detailed
balance. This includes systems where the de-mixing dynamics is described by the nonreciprocal
Cahn-Hilliard equations280,298–300 and various pattern-forming systems87,88,94,239,244. For instance,
two-component mass-conserving reaction-diffusion system on deformable surfaces, exhibit geometri-
cally induced pattern-forming instabilities and the occurrence of oscillations and traveling waves, not
present without geometric coupling244. The general correspondence between Cahn-Hilliard models
and reaction-diffusion systems with conservation laws24,301 promises the possibility of directly apply-
ing the approaches presented here to such systems and extending them to even more general active
matter.

3.7 APPENDIX

3.7.1 NON-DIMENSIONALIZED DYNAMIC EQUATIONS

As discussed in the main text, we base our study on the non-dimensionalized effective free energy
functional

F =
∫

dA
[
σ + κ

2
(
C − C0ϕ

)2

+
(
ϕ ln ϕ + (1 − ϕ) ln (1 − ϕ)

)
+ χϕ(1 − ϕ) + χ

4 |∇ϕ|2
]

. (3.38)

We assume in the following that all quantities are non-dimensionalized as discussed in Sec. 3.2.3.
In order to derive dynamic equations for the membrane height field h and the protein density ϕ, we
assume gradient dynamics towards minima of the effective free energy functional F . In particular,
we assume relaxational (model A) dynamics for the height field,

∂th = −γ
δF
δh

, (3.39)
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and Cahn-Hilliard (model B) dynamics for the conserved protein field ϕ,

1
√

g
∂t (√gϕ) = ∇2 δF

δϕ
. (3.40)

To derive the explicit form of the dynamic equations, we need to perform the variation of the free
energy functional with respect to the height field h and the protein area fraction ϕ. For the dynamics
of the height field, we make use of the fact that the variations of the curvature, metric, and metric
tensor, respectively, are given by282

δC =
(
∆ + C2 − 2CG

) δh
√

g
, (3.41)

δg = −2 g C
δh
√

g
, (3.42)

δgab = 2 Cab δh
√

g
. (3.43)

Here

Cab = 1√
1 + (∇⊥h)2

(
∂2

xh ∂2
yxh

∂2
xyh ∂2

yyh

)
(3.44)

denotes the extrinsic curvature tensor, C is the total curvature, defined in the main text, Eq.(3.5),
and

CG = det[∇⊥∇⊥h]
(1 + (∇⊥h)2)2 (3.45)

is the Gaussian curvature.

Given the free energy functional F , Eq. (3.38), we find for the local part of the functional

δ

∫
dA ftot[ϕ, gab, C] = δ

∫
dxdy

√
g ftot[ϕ, gab, C]

=
∫

dxdy

[
1

2√
g

δg ftot + √
g δftot

]
=
∫

dA

[
−ftotC

δh
√

g
+ δftot

]
. (3.46)

Here the total free energy density is given by the sum of the Canham-Helfrich and the Flory-Huggins
free energy Eq. (3.38):

ftot[ϕ, gab, C] = f [ϕ, gab] + e[ϕ, C] (3.47)

= f (ϕ) + χ

4 (∂aϕ)(∂bϕ)gab + e(ϕ, C) ,

where we have used |∇ϕ|2 = (∂aϕ)(∂bϕ)gab.

By combining the variation of the curvature C (Eq. (3.41)) and the metric tensor gab (Eq. (3.43))
with the above results, one obtains the variation of the free energy functional
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δF =
∫

dA
[

− C
(
f [ϕ, gab] + e [ϕ, C]

) δh
√

g
+ χ

4 (∂aϕ)(∂bϕ)δgab + ∂Ce [ϕ, C] δC
]

=
∫

dA
[

− C
(
f [ϕ, gab] + e [ϕ, C]

) δh
√

g
+ χ

2 (∂aϕ)(∂bϕ)Cab δh
√

g
+ ∂Ce [ϕ, C]

(
∆ + C2 − 2CG

) δh
√

g

]
=
∫

dxdy
[

− C
(
f [ϕ, gab] + e [ϕ, C]

)
+ χ

2 (∂aϕ)(∂bϕ)Cab + ∆∂Ce[ϕ, C] + (∂Ce [ϕ, C])
(
C2 − 2CG

)]
δh . (3.48)

In the last step we have integrated the term (C − C0ϕ) ∆h twice by parts and assumed vanishing
boundary terms. Insertion of the equations for the free energy densities gives the variation of the
free energy functional with respect to the height field

δF
δh

= − C

[
ϕ ln ϕ + (1 − ϕ) ln(1 − ϕ) + χϕ(1 − ϕ) + χ

4 |∇ϕ|2 + κ

2 (C − C0ϕ)2 + σ

]
+ χ

2 (∂aϕ) (∂bϕ) Cab + ∆κ(C − C0ϕ) + κ(C − C0ϕ)
(
C2 − 2CG

)
. (3.49)

From this, we can read off the dynamic equations for the height field

1
γ

∂th =
[
f [ϕ, C] + e(ϕ, C)

]
C − κ∇2(C − C0ϕ) + κ (C − C0ϕ) (−C2 + 2CG) − χ

2 Cab (∂aϕ)(∂bϕ) .

(3.50)

Analogously, the dynamic equation for the protein concentration reads

1
√

g
∂t(

√
gϕ) =∇2

[
∂ϕe (ϕ, C) + ∂ϕf (ϕ) − χ

2 ∇2ϕ

]
=∇2

[
− C0κ(C − C0ϕ) + ln

(
ϕ

1 − ϕ

)
+ χ(1 − 2ϕ) − χ

2 ∇2ϕ

]
. (3.51)

3.7.2 NUMERICAL SIMULATIONS

We solved Eq. (3.12) and Eq. (3.14) numerically in two spatial dimensions using finite element
methods with the commercially available software COMSOL Multiphysics v.6.1251. The simulations
were performed on a square domain with side length L = 2 µm and periodic boundary conditions. As
an initial condition, we used one droplet or a homogeneous protein density ϕ0(x, y) = 0.3 perturbed
by Gaussian zero-mean white noise with an amplitude ∼ 5×10−4. The total protein mass was chosen
to be the same for the one droplet and the homogeneous protein density.

3.7.3 LINEAR STABILITY ANALYSIS

We perform a linear stability analysis (LSA) around the spatially homogeneous state (h0, ϕ̄). To this
end, we introduce small perturbations of the concentration field ϕ = ϕ̄ + δϕ and the height field
h = h0 + δh with respect to the spatially homogeneous state and linearize the dynamic equations,
Eq. (3.12) and (3.14),

∂t

(
δh
δϕ

)
= J ·

(
δh
δϕ

)
(3.52)
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with the Jacobian

J =
(

Jhh Jhϕ

Jϕh Jϕϕ

)
, (3.53)

where

Jhh = −1
2γk2[2ϕ̄

(
χ − ln

(
1 − ϕ̄

)
+ ln ϕ̄

)
(3.54a)

+ 2
(
κk2 + σ + ln

(
1 − ϕ̄

))
+ ϕ̄2 (κC2

0 − 2χ
) ]

,

Jhϕ = γκ(−C0)k2 , (3.54b)

Jϕϕ = − k2

2
(
ϕ̄ − 1

)
ϕ̄

[
ϕ̄2 (χ (k2 − 4

)
+ 2κC2

0
)

(3.54c)

− ϕ̄
(
χ
(
k2 − 4

)
+ 2κC2

0
)

− 2
]

Jϕh = κ(−C0)k4 . (3.54d)

The largest eigenvalue of the Jacobian determines the highest growth rate. The analysis of analyt-
ical expressions is implemented in Mathematica 13.1246. Solving for the largest eigenvalues of the
Jacobian J as a function of wavevector k yields the dispersion relations and the bifurcation diagram
shown in Fig. 3.3.

3.7.4 LINEAR STABILITY ANALYSIS FOR THE REDUCED MODEL WITH AN EFFECTIVE
FREE ENERGY

In this chapter we analyze the dispersion relation obtained from the effective free energy functional,
Eq. (3.29). We determine the region in the (χ, κ, C0) phase space, where a conserved Turing-type
instability exists, by investigating the roots k− and k+ of the dispersion relation Eq. (3.29)

k+ = 1
√

χκ

[
− ( 1

2 χσ
(
ϕ̄
)

+ κf ′′(ϕ̄)) +
√

( 1
2 χσ (ϕ) + κf ′′(ϕ̄))2 − 2χκσ

(
ϕ̄
)

(f ′′(ϕ̄) + κC2
0 )
] 1

2

,

(3.55a)

k− = 1
√

χκ

[
− ( 1

2 χσ
(
ϕ̄
)

+ κf ′′(ϕ̄)) −
√

( 1
2 χσ

(
ϕ̄
)

+ κf ′′(ϕ̄))2 − 2χκσ
(
ϕ̄
)

(f ′′(ϕ̄) + κC2
0 )
] 1

2

,

(3.55b)

A conserved Turing-type instability can only exist in the regions where k− is defined. From this, two
conditions can be derived

0 = −( 1
2 χσ

(
ϕ̄
)

+ κf ′′(ϕ̄)) −
√

( 1
2 χσ

(
ϕ̄
)

+ κf ′′(ϕ̄))2 − 2χκσ
(
ϕ̄
)

(f ′′(ϕ̄) + κC2
0 ) , (3.56a)

0 =
( 1

2 χσ(ϕ̄) + κf ′′(ϕ̄)
)2 − 2χκσ(ϕ̄)

(
f ′′(ϕ̄) + κC2

0
)

. (3.56b)

We recover the critical protein induced-curvature C∗
0 (χ, κ) from the first equality, Eq. (3.56a). How-

ever, this solution is only valid if the condition ( 1
2 χσ

(
ϕ̄
)

+ κf ′′(ϕ̄)) ≤ 0 is fulfilled. The black solid
line in Fig. 3.3(f) depicts the boundary, given by ( 1

2 χσ
(
ϕ̄
)

+ κf ′′(ϕ̄)) = 0. The second equality is
equivalent to the condition k− = k+, which determines the spinodal for the conserved Turing regime

Cc
0 =

[
4

ϕ̄2
(
ϕ̄2χ − 16κ

)(ϕ̄2f ′′(ϕ̄) + σFH
(
4 − 1

2κ ϕ̄2χ
)

− 2
√

ϕ̄2f ′′(ϕ̄)
(

4κf ′′(ϕ̄)
χ − 2σFH

)
+ 4σ2

FH

)] 1
2

,

(3.57)
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k

Figure 3.6: Comparison of the dispersion relation of the full model λLSA (dashed line) with that of the effective free energy
functional λ (solid line). The dispersion relations agree in the limit of strong time-scale separation. The ranges of unstable
modes agree independently of the time-scale separation, i.e., γ ≫ 1. The parameters are the same as in Fig. 3.3; specifically
we chose C0 = 0.5 and vary γ. This figure is reproduced from Ref.2 under license [CC BY 4.0].

where σFH = σ + f(ϕ̄).
So far, we have derived the critical protein-induced curvature for the transition from a conserved

Turing-type to a Cahn-Hilliard type instability, as well as the critical protein-induced curvature that
defines the spinodal in the conserved Turing-type instability region. Next, we aim to determine the
spinodal for the region with a Cahn-Hilliard-type instability, given by k+ = 0. Again, we recover the
protein induced curvature C∗

0 (χ, κ) as a solution, which is only valid for 1
2 χσ + κf ′′(ϕ0)) ≥ 0.

Taken together, C∗
0 (χ, κ), defines a surface in the parameter space (depicted as the magenta man-

ifold in Fig. 3.3(f)), at which a sign change in the dispersion relation at the origin occurs. Below
the magenta surface, the dispersion relation at the origin is positive, leading to a CH-type instabil-
ity. Above the black line ( 1

2 χσ + κf ′′(ϕ0)) ≥ 0) on this surface, C∗
0 (χ, κ) also satisfies the equation

k+ = 0, thus defining the boundary between a homogeneous system and a phase-separated system.
Below the black line ( 1

2 χσ + κf ′′(ϕ0)) ≤ 0) on this surface, C∗
0 (χ, κ) solves the equation k− = 0,

thereby defining the boundary between a CH-type and cT-type instability. In this case, the spinodal
is given by Cc

0 and is shown as the cyan surface in Fig. 3.3(f).

3.7.5 COMPARISON OF LINEAR STABILITY ANALYSES OF DYNAMIC EQUATIONS AND
FREE ENERGY

We compare the dispersion relation derived from the standard linear stability analysis λ (k) with that
derived from the effective free energy functional. The dispersion relation derived from the effective
free energy functional, in which the height fluctuations have been integrated out, is valid if we can
assume that the height field has already equilibrated on the timescale of the protein dynamics. For a
positive effective surface tension this is equivalent to saying that dynamic changes in the height field
have to be fast compared to the protein dynamics. The dispersion relations for different time-scale
ratios are shown in Fig. 3.6. We make two important observations: The effective dispersion relation
λ(k) follows from the full dispersion relation λLSA(k) in the limit of strong time-scale separation.
Second, the roots of the dispersion relations agree independently of the time-scale separation, and,
thus, also the phase boundaries Cc

0 and C∗
0 , derived in appendix Section 3.7.4, don’t depend on the

time-scales.
While the detailed form of the dispersion relations is distinct from the expressions obtained by

analyzing the effective free energy (see appendix Section 3.7.5), the zeros (marginal modes) of the
dispersion relations, Eqs. (3.55b) and (3.55a), agree. Thus, the bifurcation diagrams that differenti-
ate between regions where the homogeneous state is stable and various types of lateral instabilities
are the same for the full LSA and the LSA based on the effective free energy functional. This re-
flects that the underlying system is thermodynamic, implying that the final steady state should be
independent of specific timescales. By integrating out the height field dynamics to quadratic order,
one effectively assumes a factorization of the contributions within the free energy. This factorization
directly translates into the resulting effective dispersion relation, thereby preserving its characteristic
roots.
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3.7.6 DISTANCE MEASURE

In this section, we explain the method used to define an inter-droplet distance on the basis of the in-
teger number of droplets N and compare it with the inter-droplet distance as measured by averaging
over mutual center-to-center distances of neighboring droplets. Due to geometric frustration, devia-
tions from the regular lattice may occur, leading to slight variations in the inter-droplet distances.

We define the number-derived inter-droplet distance as the characteristic length scale of the pat-
tern

dN =
√

A

N
, (3.58)

where N is the number of droplets in a domain with area A. In Fig. 3.7, we compare the number-
derived inter-droplet distance (blue circles) to the measured distances from simulation snapshots
(magenta dots). The latter is determined by averaging over the distances to all the droplets that can
be reached without intersecting another droplet. We use periodic boundary conditions to calculate
the distance for droplets close to the boundary of the system. Since the simulations are performed in
a finite domain (grey box), the pattern can be geometrically frustrated and deviate from the regular
lattice for some parameter values, as shown in panels ii) and iii) in Fig. 3.7. The number-derived
droplet distance agrees very well with the minimal distance from the simulation snapshots.
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Figure 3.7: Droplet distances in numerical simulations as determined from center-to-center distances (pink dots) and as
derived from the droplet number (blue circles) as a function of the protein induced curvature C0. The measured center-
to-center distance of the droplets is obtained by averaging over the distances to all neighbors that can be reached without
intersecting another droplet in the finite domain (gray box). Bottom panels i)-iii) show three simulation snapshots for different
values of C0 as indicated by dashed lines. The center-to-center distances to the neighboring droplets are indicated by pink
lines in the snapshots. Geometric frustration can be observed in panels ii) and iii). This figure is reproduced from Ref.2 under
license [CC BY 4.0].
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MULTI-SCALE ORGANIZATION IN COMMUNICATING ACTIVE MATTER

The emergence of collective motion among interacting, self-propelled agents is a central paradigm
in non-equilibrium physics. Examples of such active matter range from swimming bacteria and
cytoskeletal motility assays to synthetic self-propelled colloids and swarming microrobots. Remark-
ably, the aggregation capabilities of many of these systems rely on a theme as fundamental as it
is ubiquitous in nature: communication. Despite its eminent importance, the role of communica-
tion in the collective organization of active systems is not yet fully understood. Here we report on
the multi-scale self- organization of interacting self-propelled agents that locally process information
transmitted by chemical signals. We show that this communication capacity dramatically expands
their ability to form complex structures, allowing them to self-organize through a series of collective
dynamical states at multiple hierarchical levels. Our findings provide insights into the role of self-
sustained signal processing for self-organization in biological systems and open routes to applications
using chemically driven colloids or microrobots.

4.1 INTRODUCTION

Active matter encompasses a broad class of non-equilibrium systems that transduce energy stored
in the environment into mechanical motion. In its most common form, locally interacting, self-
propelled agents form coherent collective states that exceed the size of a single agent by orders of
magnitude. Examples range from a variety of biological systems such as swimming bacteria55,302,303,
cytoskeletal motility assays163,304,305, swarms, and flocks and schools of larger animals306, to syn-
thetic self-propelled colloids307,308 and swarming microrobots309,310. There is broad agreement that
self-propulsion, local alignment, and random disorientation of simple agents are fundamental mi-
croscopic determinants that can explain the occurrence of large-scale collective behavior. How-
ever, in addition to local short-range interactions, such as alignment and collisions, many biological
and synthetic systems exhibit various types of long-range signaling strategies. The social amoeba
Dictyostelium discoideum uses cell-to-cell cyclic adenosine monophosphate (cAMP) concentration
waves and chemotaxis to induce aggregation under harsh conditions45,311, insects rely on sound
to coordinate the formation of cohesive swarms312, protein waves control cargo transport313, some
active colloids form oscillating clusters using long-range chemical Ag/AgCl coupling218,314, micro-
robots and robotic fish use infrared, electrical and acoustic signals to communicate315,316. Signal
transduction allows organisms to develop successful survival techniques that give them an evolution-
ary advantage over non-communicating organisms217,317. Communication facilitates the emergence
of novel dynamic steady states, such as large streams and localized vortices45. Without communica-
tion, such states are not generic and are observed only under specific boundary conditions, particle
chirality, or density-dependent feedback mechanisms318,319. Despite its importance, the role of com-
munication in the context of active matter remains largely unexplored.

A significant body of literature focuses on self-propelled particles with diffusive (chemotactic) in-
teractions. Studies on chemotactic colloids report on the formation of localized clusters and colliding
polar bands, both established through motility-induced phase-separation (MIPS)216,320,321. There,
the chemical interactions between different agents are mostly linear and passive, e.g., with a con-
stant emission of the signal by the individual agents322,323. Distinct from these earlier studies, we ask
about the role of an active, non-trivial agent’s response (decision-making) to detected signals. The
information processing and decision-making should enable the complex hierarchical organization
akin to living matter that does not occur in systems with passive chemical signaling.

To reveal the fundamental role of interparticle communication for self-organization, we chose to
study a system of self-propelled units (agents) with local polar-alignment interactions. In addition,
each agent can perform a specific task, namely, to detect and relay a signal transmitted between
agents. Inspired by social amoebae that use cyclic adenosine monophosphate (cAMP) for commu-
nication211, and Gram-negative bacteria that employ acyl-homoserine-lactone (AHL) molecules as
quorum-sensing signals324,325, we consider agents that broadcast a signal in the form of a chemi-
cal substance into the environment, where it spreads diffusively. Once the local level of the signal
exceeds a certain threshold, agents tend to produce and propagate it. Thus, the agents act like a
Schmitt trigger, a simple nonlinear electronic circuit with hysteresis326. Such a signal transduction
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Figure 4.1: Schematics of the agent-based model for communicating active matter and summary of collective dynamic states.
(a), Polar self-propelled particles undergo alignment in binary collisions. (b), A diffusible signal (green) aligns the cells’
orientation vectors. (c), Schematic of a Schmitt trigger with variable threshold cth. (d), Temporal response c(t) of the agents’
signaling system with characteristic time scale τ . (e)-(n), Representative collective dynamic states in the agent-based ((e)-
(i)) and the hydrodynamic model ((j)-(n)). The snapshots illustrate aggregation and vortex formation following initial ring
formation ((e), (j)), where remnant spiral wave arms induce chemical wave propagation in the ring after the spiral core
vanished due to depletion in its center (‘whispering gallery’-modes); active droplets ((f), (k)), with a collective response to
external stimuli; a collective stream ((g), (l)), where agents propagate towards the source of communication waves; a large
vortex with a spiral wave ((h), (m)), and a polar band ((i), (n)). White scale bars indicate a length of 10 units. Colors indicate
the polar orientation of particles (top panels) and the chemical concentration c (bottom panels). White and yellow arrows
illustrate the direction of motion of the particles (top panels) and the propagation direction of signaling activity (bottom
panels), respectively. Parameters are defined in section 4.6.7. This figure is reproduced from Ref.3 under license [CC BY 4.0].

system constitutes a spatially extended excitable medium that generically exhibits spiral waves of
signaling activity. These waves can control the spatial self-organization of the agents by entraining
their direction of self-propulsion. Thus, unlike existing models of amoeboid or bacterial aggrega-
tion213,327–330, self-propelled motion, rather than Brownian motion, is the primary mode of transport
in our system. In contrast to Vicsek-type models166, the model incorporates the ubiquitous signaling
found in biological systems. It thus provides insight into specific behaviors such as aggregation in
social amoebae44 and oscillatory colloids218 and sheds light on the fundamental properties of active
matter consisting of agents with “on-board” signal processing capabilities. The combination of chem-
ical communication and internal information processing leads to an aggregation process involving
collective dynamic states at multiple scales. We identify the decision-making machinery of the indi-
vidual active agents as the driving mechanism for the collectively controlled self-organization of the
system.

4.2 MODEL

We consider an agent-based description of communicating active matter, in which each agent moves
with velocity v = v0n and is endowed with signal detection and relaying capability whose activ-
ity depends on an internal state variable s. The dynamics of the agents’ positions ri= (xi, yi)T is
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described by

dri

dt
= v0ni +

∑
j[rij<2rp]

fij , (4.1)

where ni = (cos φi, sin φi)T is the unit vector in the direction of the i-th agent’s orientation φi, with
i = 1, . . . , N ; N is the total number of agents in the domain. While the speed v0 of each particle is
assumed to be constant, their direction of motion n can change – owing to inelastic binary collisions
that favor polar alignment (Fig. 4.1a) or in response to a chemical signal (Fig. 4.1b). Within an
interaction radius rc, agents align in a polar fashion, i.e., the interaction of an agent with a neighbor
causes both agents to turn towards the average orientation angle with the alignment rate Γ. If agents
approach each other below a critical distance 2rp, they obey a hard-core repulsion interaction cast
as an isotropic short-range force fij between the agents in Eq. (4.1). Akin to chemotaxis, the agents
align with a certain sensitivity ω along the concentration gradient φc = tan−1 (∂yc/∂xc) of the local
maximum of the chemical signal concentration c. These competing alignment processes are generally
error-prone, which is accounted for by a white-noise term ξi with amplitude

√
2DR. Specifically, we

assume that the dynamics of the agent’s orientation φi over time t is given by the Langevin equation

dφi

dt
= −Γ

∑
j,[rij<rc]

sin (φi − φj)
|ri − rj |

+ ω sin (φc − φi) + ξi , (4.2)

incorporating binary inelastic collisions between neighboring agents with spatial distance rij =
|ri − rj |, chemotactic reorientation of agents along the concentration gradient of chemical signal-
ing molecules198, and noise, respectively. The orientation along chemical gradients is implemented
similarly to the agents’ polar alignment with their neighbors. For instance, in social amoeba the
ability of chemotaxis is stable over large ranges of concentrations and alignment can be assumed
to be independent of the absolute signal strength212. Signal detection and self-sustained relaying
are modeled by a Schmitt trigger (Fig. 4.1c): if the signal amplitude (i.e., chemical concentration)
is above some threshold value (c > cth), an agent in a quiescent state (s0 = 0) switches into an
excited state (sex > 0), and over a period τ it broadcasts the signal (Fig. 4.1d), i.e., releases a certain
amount of the chemical into the environment, where it diffuses (with diffusion constant Dc) and is
also degraded with rate α. This yields the chemical signal dynamics

∂tc = Dc∇2c − αc + β

N∑
i=1

f (|r − ri|) ϕ(si, c) , (4.3)

with a Gaussian spatial source distribution f(|r|), Laplace operator ∇2, and temporal derivative ∂t.
The agents act as sources of the chemical signal as

βϕ(si, c) = β(1 − si)Θ(c − cth) , (4.4)

with Heaviside-type signal detection and production rate β. The threshold value cth as well as the
source strength depend on the internal state, whose dynamics, for simplicity, is assumed to be linearly
adapting to the signal concentrations,

dsi

dt
= ϵ (c − si) . (4.5)

The response of the agents’ state si to recent stimuli mimics adaptation of receptor sensitivity and
productiveness of the signal-emission. Taken together, the model incorporates the fundamental in-
gredients of a system of self-propelled active matter capable of communication; see section 4.6.1 for
a more extensive description of the agent-based model. Exemplary aggregation dynamics of a system
without active decision making are studied in section 4.6.6. As a complementary approach based on
this microscopic model, we derive a hydrodynamic theory formulated in terms of the agents’ density
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field ρ(r, t), the polarization field p(r, t), the internal state variable s(r, t), and the concentration of
the chemical signal c(r, t), all of which depend on the spatial position r and time t,

∂tρ(r, t) = −v0∇ · p + Dρ∇2ρ , (4.6a)

∂tp(r, t) = σ (ρ − 1) p − δ|p|2p + Dp∇2p − χp · ∇p − Q(ρ)∇ρ + ρω∇c , (4.6b)

∂tc(r, t) = Dc∇2c − αc + ρβΘ (c − cth) (1 − s) , (4.6c)

∂ts(r, t) = Dρ∇2s − ϵ (s − c) − v0p · ∇s . (4.6d)

The hydrodynamic model comprises a coupled set of partial differential equations for these fields
with basically the same parameters as the agent-based model (see section 4.6.2 for details and section
4.6.5 for a derivation of the hydrodynamic theory from the agent-based model). In the absence of
communication, e.g., c ≡ 0, the parameters σ and δ regulate the emergence of polar order above
a mean-field critical density ρc = 1 when polar alignment interactions outweigh angular diffusion.
Based on the large-scale field equations, we can study the dynamics of communicating active matter
on length- and time-scales, not accessible with agent-based numerical simulations due to their high
computational costs.

4.3 COLLECTIVE DYNAMIC STATES

Communicating active matter exhibits unprecedentedly rich spatiotemporal dynamics and collective
states, both during aggregation and in the final non-equilibrium steady state. The agent-based model
and the hydrodynamic theory show that the emergence of order occurs through the hierarchical
formation of distinct collective dynamic states (Supplementary Movie 1331). These states include
directed particle streams in which the agents move towards the source of chemical waves, ring-like
streams with agents migrating along closed paths, compact motile droplets (active droplets), and
large vortices that serve as sources of chemical spiral waves (Fig. 4.1e-n). The juxtaposition of
the spatial organization of the particles (Fig. 4.1e-n, top panels) and the concentration field of the
chemical signal (Fig. 4.1e-n, bottom panels) reveals a tight interdependence between the collective
states of active matter and the chemical patterns.

Each of the collective dynamic states has a specific dynamics and a degree of stability. Vortices
are well-localized and are stabilized by spiral waves trapped inside these dense aggregates. Their
polarization vector p is oriented perpendicular to the outer vortex boundary and points inward, pre-
venting agents from escaping and, therefore, stabilizing the vortex (Fig. 4.1h,m). While vortices are
stable and robust, ring-like particle streams (Fig. 4.1e,j), retained by “whispering-gallery” waves,
are long-lived but metastable and are typically engulfed by neighboring vortices (Supplementary
Movie 9331). Active droplets (Fig. 4.1f,k) lack an intrinsic source of excitable waves, and their direc-
tion of migration is generally determined by external signal gradients. They dissolve in the absence
of guiding stimuli. A particle stream (Fig. 4.1g,l) can be considered a limiting case of a ring-like
stream (with an infinite radius of curvature and planar signaling waves). It establishes an efficient
collective long-distance particle transfer towards the source of the signaling waves. Finally, we also
observe bands resembling the polar bands that develop in non-communicating Vicsek-like models166

(Fig. 4.1i,n). However, if agents in polar bands are coupled to chemical signaling waves propagat-
ing along the bands, as shown in Fig. 4.1i,n, this will induce a change of the agents’ orientation
and may lead to a transition towards stream-type solutions as depicted in Fig. 4.1g,l. Given these
phenomenological observations, we ask two fundamental questions: How can different collective
dynamic steady states be selected by tuning characteristic properties of the particle dynamics and
the communication process? How can one characterize the hierarchical self-organization process
and quantify the information processing involved? Figure 4.2 shows the (qualitative) phase diagram
with the representative collective dynamic states as a function of the agents’ mobility and signal
sensitivity. In contrast to the isotropic-polar transition in Vicsek-type systems at ρ = 1176, order here
emerges at much lower densities, depending on the signal sensitivity (Figure 4.6). This is due to the
alignment of the polar particles with the collectively established signaling field. At a given particle
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Figure 4.2: Principal collective dynamic states in the hydrodynamic model. The phase diagram of dominant (meta-stable)
dynamic states in the ω − v0 (signal susceptibility and motility) parameter space is shown in the lower panel (g), and
snapshots of corresponding numerical simulations of the hydrodynamic model, starting from a homogeneous initial density
ρ0 = 0.6 and random initial excitations of the signaling system are depicted in the upper panels. Colors indicate the polar
orientation within the aggregates. (a), active droplets (three are highlighted by white circles), (b), vortex states, (c), ring
solutions, (d), “silent” polar bands, (e), streams, (f), polar bands with signaling activity. See Supplementary Movies 2-7331.
The polar relaxation rate is set to σ = 0.02, remaining parameters are given in section 4.6.7. White bars indicate a length of
50 units. This figure is reproduced from Ref.3 under license [CC BY 4.0].

density, the dominant collective dynamic state in the asymptotic non-equilibrium steady state is de-
termined by the relative fraction of motility and signaling effects. Vortices and rings are the dominant
structures in a parameter regime with low motility and high signaling sensitivity. Thereby, vortices
exhibit a balance between the persistent self-propulsion promoting agents away from the localized
vortices and chemotactic attraction towards the vortex’ center due to persistent spiral wave activ-
ity in the signaling field. If self-propulsion outweighs the attractive force established by collective
signaling, vortices split up, and ring-like states become the predominant solution. If self-propulsion
is rather weak and dominated by diffusion effects, the steady-state is governed by active droplets.
Conversely, for vanishing signal sensitivity, the model reduces to a Vicsek-type model166, and only
polar bands are found. These can either host persistent signaling activity or remain in the quiescent
state of the signaling machinery, just like system-spanning polar bands in Vicsek-like models. Next,
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HIERARCHICAL SELF-ORGANIZATION

we asked how the hierarchical aggregation process from a disordered arrangement of particles to
the final nonequilibrium steady state can be understood based on our characterization of the various
collective dynamic states (Fig. 4.1). To this end, we focus on a parameter regime with intermediate
polarity relaxation times and a balance between motility and signaling effects, which ultimately gives
rise to vortex states.

4.4 HIERARCHICAL SELF-ORGANIZATION

Our agent-based simulations and numerical integration of the hydrodynamic theory consistently
show that the hierarchical self-organization process is facilitated by an intricate interplay of self-
propulsion, signaling, and information processing (Fig. 4.3, Supplementary Movie 8331). Initially,
small-scale density fluctuations form, out of which droplets, streams, and small clusters later emerge.
These initial aggregation processes are facilitated by short distance signaling waves and a local mu-
tual entrainment. At later stages, the aggregation is orchestrated by spiral waves of signaling activity.
Interestingly, there is competition between the spiral waves: Those that occupy larger and denser
areas (mounds) accordingly have a higher frequency and displace smaller spiral waves (Figure 4.5).
As a result, higher particle density provides a positive feedback mechanism that favors the formation
of larger aggregation centers332. The aggregation stage is characterized by competition between par-
ticle clusters, which is quite different from that of non-signaling active matter [e.g. motility-induced
phase separation (MIPS)], where the number of clusters scales as Nc ∼ t−η with η ≈ 2/3 180. In
our hydrodynamic model, we observe multi-scaling behavior, indicating qualitatively distinct types
of processes (Fig. 4.3a,b) for the time evolution of the cluster number and the density and polariza-
tion fields. Initially, we observe Nc ∼ 1/t (Fig. 4.1a), consistent with interface-controlled Ostwald
ripening of clusters70. Once the streams have formed, there is a qualitative change in the aggrega-
tion process. The aggregation rate is now limited by the persistent directed motion of clusters and
streams which migrate towards the aggregation centers. This leads to a much faster decay of the
cluster number, even compared to the ballistic coalescence of clusters which would correspond to
η = 2. This ‘streaming phase’ is followed by the formation of a few localized vortices that contain
most agents. Due to the low particle density in between the vortices and the resulting lack of signal
transmission, the interaction between these structures is strongly attenuated, and the coarsening
process is slow. Since the signaling field decays exponentially (with diffusion length Lc ∼

√
Dc/α),

one expects a logarithmic coarsening law Nc ∼ 1/ ln t 333, consistent with the slow decay seen in our
numerical data (Fig. 4.3c).

Thus, the ability to process information and make decisions results in the radically different orga-
nization of polar active matter. Ordering begins below the threshold of the polar-isotropic transition.
The process leading to the formation of large vortices as robust attractors in the final stage of aggre-
gation is much faster than that observed in non-signaling active matter or active matter with passive
chemical signaling320. This is because it can exploit multi-scale collective intermediate states, whose
respective frequencies are quantified in Fig. 4.3c. This classification confirms the observed phe-
nomenology. The initial phase is dominated by coarsening of droplets. Once organizing vortices
emerge, they establish persistent signaling waves. This causes a rapid decrease in the number of
droplets and induces progressive aggregation through the formation of streams towards the vortices.
In the final phase, a slow coarsening process occurs among the vortices with a corresponding loga-
rithmic decrease in their number. Information processing drives self-organization Since each agent
is endowed with a decision-making capability, we also sought to characterize the course of informa-
tion processing during the multi-scale hierarchical aggregation process. To this end, we quantified
the time evolution of the information content I(t) in the system, using the computable informa-
tion content of a lossless compressed configuration of the physical fields c, ρ, p and s 334,335. In
particular, we consider the file sizes obtained by the Lempel-Ziv-Welch compression algorithm336 as
implemented in the PNG file format (see section 4.6.4). The system’s information content changes
over time as individual agents process information in response to external stimuli employing their
self-propulsion and intrinsic signal processing capability (Schmitt triggers). In the absence of sig-
naling, self-propulsion and local interactions are unable to create order at subcritical densities due
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Figure 4.3: Hierarchical self-organization and information processing. (a) Time dependence of the cluster number Nc for
different values of the mobility parameter v0 in rescaled quantities t · v0 and Nc/

√
v0. The unlabeled black line indicates the

estimate Nc ∼
(
N0 − κt2

)
/t. (b) Simulation snapshots at time t, displaying droplet ripening, vortex-controlled aggregation,

and merging of vortices. The scale bar indicates a length of 100 units. Colors indicate polar orientation (top panels) and
signaling concentration (bottom panels), respectively. (c) Time-resolved classification of collective dynamic states averaged
over six simulation runs; the lighter shades define intervals of standard deviations. Initially, droplets grow and aggregate to
form streams and vortices. (d) Time evolution of the information processing rate R of the signaling system and standard
deviations (grey) averaged over six simulation runs. (e) Comparison of the rate of change dI/dt of the stored information
as predicted from Eq. (4.7) (blue) and the temporal derivative of compressed file sizes (orange). (f) Time dependence of the
information content of the various fields, Eqs. (4.6). Parameters are omega = 0.05 and the values given in section 4.6.7.
Panels (b)-(f) show simulation results and analysis for v0 = 0.5. See section 4.6.4 for details. This figure is reproduced from
Ref.3 under license [CC BY 4.0].

to dominant angular diffusion; accordingly, the information content will decline exponentially with
some decay rate λ as the system approaches the disordered homogeneous state. Here, however,
there is information processing which leads to self-organization and induces order. We quantify the
information processing by the rate R of agents transitioning to the refractory state, i.e., agents that
emit a signal in response to a stimulus and therefore process information (Fig. 4.3d). Altogether, we
expect the system’s information content to follow the dynamics

dI

dt
∼ R − λI (4.7)

with a fitting parameter λ. That, in turn, implies that the temporal change in the stored infor-
mation depends exclusively on the initial information content and the measured processing rate R.
The basic hypothesis, Eq. (4.7), is validated by our numerical simulations (Fig. 4.3e). On a qualita-
tive level, it agrees very well with the predicted evolution of information content. In particular, the
prediction captures not only the overall trend but also coincides with important landmark points of
the evolution. This affirms our assertion that the signaling machinery is key for information process-
ing and the driving mechanism behind self-organization in the system. The rate of change of the
encoded information approaches a final state in which the order generated by persistent signaling
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offsets the loss of correlation created by the agents’ self-propulsion. An analysis of the amount of
information stored in the various fields also reveals the different stages of the aggregation process
(Fig.4.3f). We observe that the amount of information stored in the density field decreases and
eventually approaches a comparably low value once the mass has accumulated in only a few stable
vortices. This reflects the results of the cluster number analysis (Fig. 4.3a), including the qualita-
tive change in aggregation dynamics between the dominance of ripening and the dominance of the
guided movement of active droplets. In contrast to the homogeneous density field, the informa-
tion content of the polarity field saturates at higher values, which correlates with the presence of
persistent vortex states. Interestingly, the information content of the chemical concentration field c
exhibits a super-exponential decay. This confirms that information processing is mainly performed
by the signaling machinery, which makes it an essential factor in the organization of the aggrega-
tion process. Moreover, it approaches its baseline information level earlier than the density field,
indicating the transition towards the phase of nearly isolated vortex states.

4.5 DISCUSSION

In conclusion, we have introduced a new class of active matter equipped with self-sustaining signal-
ing capabilities: it allows self-propelled agents to communicate and process information. Communi-
cation and decision-making enable hierarchical self-organized aggregation to emerge via a sequence
of distinct collective dynamic states. While our model is generic and does not rely on specific biolog-
ical or chemical details, the observed phenomenology closely resembles the aggregation dynamics
of social amoebae, including the formation of stable vortices45 and metastable rings43. Commu-
nication induces a non-trivial self-organized attraction that gives rise to the formation of a rich
variety of collective dynamic states. The exhibited behavior in terms of collective dynamic states
and the collectively controlled aggregation process is a clear advance compared to current models of
chemotactic colloids. Besides the variety of observed states, communication and active information
processing introduce a new framework of collective organization. It allows for much faster aggre-
gation times and a controlled competition between aggregation centers as high-density clusters can
enlarge their basin of attraction. There are several potential extensions to the model, such as locally
coupled self-propelled relaxation oscillators, signaling nematic active matter, or self-propelled agents
coupled via sound or electromagnetic waves, which may have direct relevance to technological ap-
plications such as self-organizing swarms of minimal drones or functional micro-robots. Information
processing could be introduced by modifying the chemistry of colloids and droplets, thus allowing
experimentally accessible realizations to be directly established for silver-chloride Janus colloids ex-
hibiting chemical oscillations and synchronization218,314, and for self-propelled emulsions hosting
the Belousov-Zhabotinsky reaction337, to name but two. Decision-making can also be implemented
using simple electronic circuits in mass-manufactured microrobots. These may open new avenues
for applications of active matter in nanoscience and robotics.

4.6 APPENDIX

4.6.1 A DETAILED DESCRIPTION OF THE AGENT-BASED MODEL

In the agent-based model, we consider self-propelled particles with radius rp in a two-dimensional
square periodic domain with side length L. The particles move with constant speed v0 in the plane.
The dynamics of the agents’ positions ri is described by Eq. (4.1). The direction of movement can be
changed by polar alignment during collision events, chemotactic responses to signaling molecules,
or stochastic fluctuations. If two agents come within a distance of less than 2rp, they are repositioned
according to the following hard-core repulsion rule: overlapping particles are shifted in the direction
of their distance vector by equal amounts until a distance of 2rp is restored. Within an interaction
radius rc > 2rp, agents align in a polar fashion, i.e. the interaction of an agent i with a neighbor
j causes both agents to turn towards the average orientation angle with the alignment rate Γ. The
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agents also align with the direction φc = tan−1 (∂yc/∂xc) of the local maximum of the chemical
signal concentration c with the susceptibility coefficient ω. Both alignment interactions are imperfect,
which we account for by adding zero-mean white noise ξi with amplitude

√
2DR:⟨ξi(t)ξj(t′)⟩ =

2DRδijδ(t−t′). In total, the dynamics of the agent’s orientation φi is given by the Langevin equation,
Eq. (4.2).

The system of agents establishes self-sustaining chemical signaling as a means of information
processing and transmission. Each agent is equipped with an internal state variable si ∈ [0, 1] that
determines whether or not it perceives the environment and transmits signals by emitting a chemical
substance. We take the magnitude of si to be the refractoriness of an agent to external signals, i.e.,
a measure of how responsive it is to relay a signal: si = 0 then corresponds to the state with the
lowest refractoriness (highest susceptibility). The agents are assumed to sense the environment by
linearly adapting to the local concentration level c of the chemical field with rate ϵ, Eq. (4.3), and act
as nonlinear sources of the chemical signal c. This release of chemicals depends on both the internal
state of the agents and the environment. We assume the source strength to be of the threshold form,
Eq. (4.4), where β denotes the release rate and cth a threshold above which agents can detect and
relay signals and below which they remain quiescent; Θ(x) denotes the Heaviside step function with

Θ(x) ≡

{
1 ,for x > 0,

0 ,else.
(4.8)

The agent’s signaling receptors are assumed to undergo state-dependent changes in susceptibility
that implement potential saturation effects and adaptation to varying levels of signaling molecules
in the environment. Specifically, we take the threshold value cth to be a linear function of the state
variable si,

cth(si) = (si + b)/a , (4.9)

implementing a higher threshold for signal detection at larger state values of the refractoriness si.
The parameter b sets the baseline threshold and the factor 1/a specifies the linear increase of the
threshold cth(si) with growing state values. Additionally, to implement the agents’ ability to process
detected signals and respond to them, the release of chemicals shall depend on the internal state
si of an agent: In terms of their signal production, agents in the most susceptible state (si = 0)
react most vigorously to super-threshold stimuli. The rate of signal release is assumed to decrease
linearly (1 − s) with increasing si. Note that for the set of parameters used in this study, section
4.6.7, the states si do not exceed values of one. Therefore, agents are always either quiescent and
do not contribute to the chemical signaling field or act as sources for it. Taken together, the interplay
between the internal dynamics s and the chemical field c in a well-mixed environment is given by

ds

dt
= ϵ (c − s) , (4.10a)

dc

dt
= −αc + βϕ (s, c) , (4.10b)

which also accounts for degradation of the emitted signal at a rate α. Equations (4.10) constitute
a nonlinear two-component system, which shows excitable behavior; see Supplementary Fig. 4.4a
for an illustration of the phase-space flow. The quiescent state, corresponding to c = s = 0, is
linearly stable and has a finite domain of attraction. However, if for s = 0 the input signal cin
exceeds the threshold cin > cth (s = 0) = b/a, the system performs a long excursion in phase space
before returning to c = s = 0; see the red phase space trajectory in Supplementary Fig. 4.4a.
Note that the amplitude of the response (extent of the red trajectory in phase space) is mainly
determined by the phase-space flow and only weakly depends on the initial input strength cin. This
ensures a sufficiently strong transmission of any super-threshold signals. The phase-space trajectory
in Supplementary Fig. 4.4a yields the excitation pulse displayed in Supplementary Fig. 4.4b, which
shows fast excitation and emission of signals and a slower refractory dynamics that restores the
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susceptible state (c = s = 0). The duration of the refractory period τ is determined by the inverse of
the relaxation rate ϵ−1. Taken together, the excitable dynamics resemble the behavior of a Schmitt
trigger (Fig. 4.1c), a circuit with closed negative feedback, which exhibits hysteresis-like dynamics
representative of e.g. relaxation oscillators. In particular, the appropriate delay between the fast
production of signaling molecules and the slower adaptation of the agent’s internal state can be
achieved by choosing β/ϵ ≪ 1, resulting in a relaxation dynamics with a rapid response to a stimulus
followed by a slower refractory period. Model parameters are summarized in section 4.6.7.

To formulate the spatial dynamics of the signaling molecules in terms of a concentration field
c, one must specify how the molecules emitted by the agents are distributed in their vicinity. We
use a source distribution given by a normalized Gaussian profile f ∼ exp

[
−(x2 + y2)/(2w2)

]
with

characteristic width w ≡ 2rp. In addition, we account for the center-of-mass diffusion (with diffusion
coefficient Dc) and degradation with rate α, so that together with the source terms for each agent
one obtains Eq. (4.3). We choose the decay rate α to be of the same order of magnitude as the
positive source contributions, terms ∼ β, to the signaling field c for average agent densities. On
the scale of individual agents, signal diffusion is assumed to be fast compared to the agents’ self-
propulsion velocity, 1 ≪ Dc/ (rpv0). The parameters used in the numerical simulations are specified
in Table 4.1.

4.6.2 A DETAILED DESCRIPTION OF THE HYDRODYNAMIC MODEL

In this section, we give a detailed description of the hydrodynamic model, Eqs. (4.6), that we intro-
duced in the main text for communicating active-matter systems. This dynamic field theory is formu-
lated in terms of a set of evolution equations for the following fields: the number density of particles
ρ, the vector order parameter characterizing the particles’ local average polar alignment p = ⟨ni⟩,
the concentration of the signaling species c, and the state of refractoriness s. A representative vor-
tex solution with internal spiral-wave activity of the signaling fields is shown in Supplementary
Fig. 4.4a. We observe an approximately circular high-density cluster within which the particle orien-
tation revolves around its center and aligns with the density gradients at the interface to the outer
low-density regime. This vortex state is accompanied by the emergence of a spiral wave established
inside the high-density domain by the chemical field and the adapting signaling states of the agents.
The time evolution of the agent’s density field ρ(r, t), Eq. (4.6a), is given by an advection-diffusion
equation, which accounts for advective transport due to the particles’ self-propulsion with speed v0
and diffusion of the center of mass with diffusion constant Dρ. The center-of-mass diffusion has no
direct counterpart in the agent-based model as it has been neglected there. However, for complete-
ness and to regularize density gradients, it is included in the hydrodynamic theory. The direction
of self-propulsion, described by the polar field p(r, t), can be changed by interparticle interactions,
stochastic fluctuations, and signaling-induced reorientations: The first three terms in Eq. (4.6b), for
the time evolution of the polarity field correspond to a time-dependent Ginzburg-Landau model de-
scribing the dynamics close to an isotropic-polar phase transition; units for the density ρ are chosen
such that the critical density is set to unity. The persistence parameter σ defines the relaxation time,
the parameter δ sets the magnitude of polar order, and Dp implements the elasticity in a one-Frank-
constant approximation. Moreover, to make the model more general, we include a term χp · ∇p
that accounts for self-advection. In the numerical simulations, the corresponding parameter χ is set
to a small value and does not contribute critically to the qualitative behavior of the system. The
coupling between the orientational order and density combines both self-advective and steric effects
incorporated in the function

Q(ρ) = v0

2 [exp (−32ρ) + exp (16(ρ − 2))] . (4.11)

The steric effects can be modeled as an effective pressure. As derived in section 4.6.5, see Eq. (4.27),
we include the low-density contribution as an amplitude Q(ρ → 0) = v0/2. For increasing densities,
we assume that collective effects arising from particle interactions counteract the steric repulsion,
and therefore reduce the amplitude of the function Q(ρ). Complementing this, for high densities,
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the effective pressure contributions outweigh the collective effects again due to the finite volume of
agents. Therefore, the amplitude Q(ρ) increases at a critical maximum density of ρ = 2. The cou-
pling of the polar order to signaling encoded by the chemical concentration field enters in Eq. (4.6b)
via the term ω∇c. It describes the alignment of the polarization field in the direction of the lo-
cal maximum of the signal concentration c with susceptibility parameter ω. The dynamics of the
chemical concentration field c, Eq. (4.6c), is a direct transfer from the agent-based model, Eq. (4.3).
Coarse-graining the equation, we replace the discrete sum of Gaussian source terms

∑
i f (|r − ri|)

by a density-dependent continuous contribution ∼ ρ(r, t). The dynamics of the state variable s,
Eq. (4.6d), includes diffusive, reactive, and advective contributions. Here, the first term simply
corresponds to the center-of-mass diffusion of the particles as in Eq. (4.6a). The second term corre-
sponds to the relaxation of the local state variable s to the corresponding local value of the signaling
field c, where ϵ denotes the relaxation rate. Therefore, the magnitude of the rate ϵ controls the
timescale over which the internal signaling state s adapts to the chemical concentrations c. Finally,
the term ∼ p ·∇s incorporates the local change of the agents’ signaling states s by means of their self-
propulsion. The regularizing prefactor v = v0 tanh (|m|/ρ) /|p| ensures the boundedness of effective
self-propulsion velocities for low densities ρ → 0.

4.6.3 NUMERICAL IMPLEMENTATION

We integrate the agent-based model, Eqs. (4.1)-(4.5), on a square periodic domain with side length
L over discretized time intervals ∆t. For each time step, the continuous particle positions and ori-
entations are updated following Eqs. (4.1), (4.2) and the hard-core repulsion rule, using an Euler-
Maruyama scheme. For efficient identification of potential interaction partners at each time step,
particles are assigned to virtual grid cells. We check for collisions within a particle’s grid cell and its
surrounding cells. Agents that pass through a virtual grid cell’s boundaries are reassigned to their
new grid cell. Based on the updated agent positions, we compute the agents’ source contributions,
∼ β to the continuous signaling field c. Subsequently, we solve the temporal dynamics of the sig-
naling field, Eq. (4.3), in Fourier space by a forward Euler integration scheme and then obtain the
representation in real space by inverse Fourier transform. We apply a fast Fourier transform algo-
rithm for these transformations. Concluding the calculations for a given time, we update the internal
states of the agents using the same forward Euler time integration scheme for Eq. (4.5). For the sim-
ulations with 4000 agents, shown in Fig. 4.1, we use a total system size of 200 × 200, resolved by
200 Fourier modes per spatial direction and a time step of Deltat = 0.01. The depicted solutions are
neither dependent on the selected spatial or temporal resolution which we verified by corresponding
simulations with higher accuracy.

The set of continuous hydrodynamic equations, Eqs. (4.6), is solved in a square periodic domain
by a quasi-spectral method and a semi-implicit time integration with discretized time steps ∆t. For
each time step, we make use of fast Fourier transform of the field quantities to calculate their spatial
derivatives. Also, we compute the Fourier transform of the nonlinear contributions to the dynamics,
and apply an exponential time differencing scheme of second order (ETD2) to integrate the complete
set of equations in Fourier space over a time interval ∆t 52. In doing so, all linear contributions to
the dynamics, Eqs. (4.6), are implicitly solved for, while nonlinearities are included explicitly via
their first-order forward finite difference approximation. The eigenvalues and pseudoinverse of the
matrix representation of the linear dynamics of Eqs. (4.6), necessary for ETD2, are calculated once
at the beginning of the runtime using the linear algebra library Eigen338. We initialize the system
with homogeneous densities and polarity fields with small zero-mean white noise perturbations.
The chemical system is initialized by exciting randomly positioned and oriented two-dimensional
Gaussian kernels of characteristic lengths ranging from 20 to 30 units and widths of 5 units. The
model parameters are given in section 4.6.7. For all simulations, time steps and spatial resolutions
have been adapted to optimize runtime while ensuring that results do not depend on the chosen
discretization.
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4.6.4 QUANTIFICATION OF THE AGGREGATION PROCESS

The self-sustaining signaling mechanism we consider has a threefold effect on the formation and
organization of large-scale structures in the active polar system. Firstly, signaling enables pattern
formation from a homogeneous density, even below the critical density (ρc ≡ 1) for the polar or-
dering transition. Secondly, stronger chemotactic susceptibility of the polar orientation to the es-
tablished signaling significantly increases the rate of the self-organization process, as can be seen in
Supplementary Figure 4.6. Starting from an initially spatially uniform density ρ0, the aggregation
times Taggr for crossing the isotropic-to-polar ordering transition at ρc ≡ 1 decrease significantly for
larger signal susceptibilities ω. And thirdly, spiral waves as sources of persistent signaling activity
can stabilize the emerging vortex structures, as can be seen from the results of the numerical simu-
lations, e.g., Fig. 4.3. To gain a better understanding of the principles underlying the signal-driven
self-organization process and to quantify the degree and type of ordering, we use cluster classifica-
tion analysis and quantify the time evolution of the information content in the system. Both methods
are presented in more detail below. In our numerical simulations, we observe that distinct collective
states dominate the different phases of aggregation; see Fig. 4.3, Supplementary Movie 8331. Dur-
ing an initial phase, droplets of agents are formed and undergo Ostwald-type ripening. Once spiral
waves are established as persistent signaling sources, the droplets show directed motion towards
the strongest of these sources, i.e., they become ‘active’ droplets. The coalescence of these active
droplets leads to the formation of collective density streams. Eventually, streams and active droplets
approach the source of the organizing signal, where they condense into stable clusters. The inter-
play of aggregation due to the intrinsic signaling and the self-propulsion of the polar active matter
typically results in localized vortex solutions. As a means of classifying the various collective states
discussed above, namely droplets, streams and vortices, we analyze clusters with densities ρ > 0.7
(above the system’s average density, which we typically set to ρ0 = 0.6) by quantifying their total
mass, spatial extension along their main axes, and the direction of the effective self-propulsion of
the cluster. The latter represents the direction of the cluster’s center-of-mass motion, ∼

∫
p(r, t) dr.

In particular, we measure the spatial extension of clusters along their main axes (axes with largest
spatial extent), the angle between the main axis and the averaged cluster polarity, and the intrinsic
vorticity ∇ × p of the orientational field. We classify a given aggregate as a stream if the shape factor
(the ratio of major to minor diameter) is larger than 1.4 and the angle between the major axis and
polarity is smaller than π/4; if the shape factor is less than 1.4 and the mean vorticity inside the
domain exceeds a value of 0.01, the aggregate is classified as a vortex. Clusters characterized as nei-
ther streams nor vortices are classified as droplets. Information about domain position, orientation
and shape is obtained by using the first three central moments of the binarized domain with density
threshold ρ = 0.7. As a measure for emerging order in the system, and to quantify the impact of
the signaling machinery on the aggregation process, we consider the total amount of information
stored in the system. Following main text references334,335, the information content can be obtained
by lossless compression of the system’s data, i.e., the data points of the discretized continuous fields,
Eqs. (4.6), for a given time. We analyze the fields at discrete time points with step size ∆t = 200 for
total simulation times of tsim = 40, 000. In order to measure the information content of the system
for a given time, we saved the data of all the separate fields into a collective image with a spatial
discretization of 128 by 128 pixels per field and 256 grey values per pixel. Subsequently we use the
lossless compression in the PNG format to compute the stored information content. The resulting
file sizes then give a corresponding amount of stored information as discussed in the main text; see
Fig. 4.3e,f. Information processing in the system is facilitated by two distinct processes: polar or-
dering due to pairwise collisions and decision making of the individual signaling units, as specified
by the excitable signaling field dynamics. Below the isotropic-to-polar transition at the critical den-
sity (ρc = 1), the disordering effect of the agent’s angular diffusion dominates over their ordering
alignment dynamics, such that in the absence of chemical signaling the system must relax towards
a homogeneous disordered state. This relaxation process is expected to proceed at a rate λ. As an
organizing factor, the signaling machinery counteracts the natural trend of the polar active-matter
system towards the homogeneous state. We hypothesize that most of the information processing
occurs through the signaling machinery, and we quantify its activity by the information processing
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rate R. The latter is represented by the area fraction of the excitable system in the refractory state.
Specifically, we define this state as exhibiting a super-threshold concentration in the chemical signal-
ing field, c > 1. Taken together, we posit that the time evolution of the stored information content
I can be approximated as given in Eq. (4.7). By means of this dynamic equation, and based on
the assumption that information in the system is mainly processed by the signaling machinery, we
are able to predict the temporal evolution of the total stored information. Starting from a value of
the system’s initial information content, and supplied with the time-dependent processing rates R,
Eq. (4.7) allows for a prediction of the temporal dynamics of the stored information. The comparison
between this prediction and the actual dynamics of the stored information content quantified by the
file size of the lossless compressed data at a given time in Fig. 4.3e yields good agreement. This again
validates the basic assumption of signaling-mediated information processing in the system. Based
on the cluster classification and cluster number analysis, we can quantify the three main stages of
the aggregation process described above and in the main text; see also Fig. 4.3 and Supplementary
Movies 1 and 8331. In the following, we describe the basic modes of mass aggregation in terms of the
efficiency of the processes. Consider a system of droplets of equal size, concentration n and diffusion
coefficient D ∼ Sγ , with a yet-to-be determined exponent γ relating the diffusion to the droplet sizes
S. For diffusion-limited coalescence of droplets in two spatial dimensions, the time dependence of
droplet sizes and numbers is given by339

S ∼ tz, Nc ∼ t−z , (4.12)

where the exponent z can be determined from the hydrodynamic equations underlying the aggre-
gation process at the corresponding stages. For instance, the probability of coalescence in a binary
collision process is given by n2, and thus, the mean-field equation for the droplet density n reads

dn

dt
= −D(S)n2 = −D0Sγn2 . (4.13)

Substituting the expressions for S and n, one obtains for the exponent

z = 1
1 − γ

. (4.14)

For the case where diffusion does not depend on the cluster size, γ = 0, one obtains Nc ∼ 1/t.
This behavior is similar to the interface-controlled Ostwald ripening for which the coarsening of
droplets is independent of their diffusive motion. Additionally, our hydrodynamic model gives rise
to directed motion of active droplets, which is guided by organizing spiral waves. Including the
guided movement of active droplets towards the organizing vortices, one can estimate the cluster
number dynamics by

Nc(t) ∼
(
N0 − κt2) /t , with κ > 0 . (4.15)

This estimate incorporates the directed ballistic motion of clusters towards a collective aggre-
gation center ∼ N0 − κt2. Moreover, these clusters may still exhibit interface-driven coarsening,
which is accounted for by an additional factor t−1. Thus, the estimate captures the main behav-
ior of the first two aggregation stages, which are dominated by Ostwald ripening and coordinated
movement of droplets towards spiral waves as organizing centers. This becomes manifest in a good
qualitative agreement between the estimate and the measured evolution of the cluster number as
shown in Fig. 4.3a, with fit parameters N0 = 382, 000 and κ = 0.15. However, at longer times,
vortex-vortex competition, which is not accounted for in the given estimate, becomes increasingly
important. Therefore, the deviations between the estimated and measured dynamics of the cluster
numbers grow as the aggregation process progresses.
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4.6.5 DERIVATION OF THE HYDRODYNAMIC EQUATIONS THROUGH A
BOLTZMANN-LIKE KINETIC APPROACH

In this section we show how the set of hydrodynamic equations,

∂tρ(r, t) = −v0∇ · p + Dρ ∆ρ , (4.16a)

∂tp(r, t) = σ (ρ − 1) p − δ |p|2 p + Dp ∆p − χ p · ∇p − Q(ρ)∇ρ + ρ ω∇c , (4.16b)

∂tc(r, t) = Dc ∆c − α c + ρ β Θ (c − cth) (1 − s) , (4.16c)

∂ts(r, t) = Dρ ∆s − ϵ (s − c) − v̄ p · ∇s , (4.16d)

can be derived from a Boltzmann-like approach for the probability density P (r, φ, t) of finding a par-
ticle at position r with orientation φ at time t; the particle’s orientation is signified by the unit vector
n = (cos φ, sin φ)T . The equation accounts for center-of-mass diffusion, particle self-propulsion,
rotational diffusion, alignment with the signaling field, and interactions between particles:

∂tP (r, φ, t) = Dρ∂i∂iP − v0 ∂i(niP ) + ∂φ

[
DR∂φ + ω(c) sin(φ − φc)

]
P + interactions . (4.17)

The advection term together with the rotational diffusion describe the self-propelled motion of the
particles combined with the angular noise as in the agent-based model. The fourth term corresponds
to a probability flux directed towards orientations that are aligned with the local gradients of the sig-
naling field c with sensitivity parameter ω(c) and φc ≡ tan−1(∂yc/∂xc) = angle (∇c). The interaction
contributions will be discussed further below.

We follow the standard approach for deriving hydrodynamic equations from a Boltzmann-type of
equation by expanding the probability density function in Fourier modes for the spatial orientation
of the director n in two-dimensional space198,199,

P (r, φ) =
∑

k

Pk(r) eikφ , (4.18)

whereby, for the sake of brevity, we suppress the time dependency here and in the following. The
corresponding Fourier coefficients follow from the forward transform

Pk(r) = 1
2π

∫ 2π

0
dφ P (r, φ) e−ikφ . (4.19)

We define the particle density ρ and the density-weighted polar order p by relating them to the
harmonics via the Fourier expansion, Eq. (4.18):

ρ(r) ≡
∫ 2π

0
dφ P (r, φ) = 2πP0 , (4.20)

p(r) ≡
∫ 2π

0
dφ n(φ)P (r, φ) ,

=
∑

k

1
2

∫ 2π

0
dφ
(

eiφ + e−iφ, i
(
e−iφ + eiφ

) )T

Pk(r) eikφ ,

= π
(
P1 + P−1, i(P1 − P−1)

)T
. (4.21)

To describe the intrinsic states of the communicating active matter, we introduce a probability
density P s(s) of particles in a given signaling state s and assume that the total probability density
Ptot(r, φ, s) = P s(s) P (r, φ) factorizes in a part for the signaling state and the distribution for the
agent’s positions and orientations. Thus, the density-weighted signaling state of the agents is given
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by

s̄ ≡
∫

ds

∫ 2π

0
dφ s P s(s) P (r, φ) . (4.22)

In the following, the different contributions to the Boltzmann equation, Eq. (4.17), are analyzed
separately. First, in order to derive expressions for the diffusive contributions in the hydrodynamic
equations we use the projection onto the m-th harmonic,

(. . .)
m

= 1
2π

∫ 2π

0
dφ e−imφ (. . .) , (4.23)

which gives the m-th Fourier coefficient to the expansion above, Eq. (4.18). Applying the projection
operator, Eq. (4.23), onto the corresponding term in Eq. (4.17) one obtains

∂tρ = Dρ∆ρ , (4.24)

for the dynamics of the density. One would obtain the same dynamics for the center-of-mass diffusion
in the polar order field, but contributions from interaction kernels, representing elasticity of the
polarity field, can lead to similar terms, which is why we assume a different coefficient Dp for the
polar field. Continuing with the advective term, (i.e. ∼ v0), the projection onto the modes yields

∂tPm(r) = −v0∂i(niP (r, φ))
m

,

= − v0

2π

∫ 2π

0
dφ
∑

k

Pk(r)eikφ

[
∂xe−imφ (eiφ + e−iφ)

2 + ∂ye−imφ (eiφ − e−iφ)
2i

]
,

= −v0

2

[
∂x

∑
k

Pk(r)(δk,m−1 + δk,m+1) + i∂y

∑
k

Pk(r)(δk,m+1 − δk,m−1)
]

. (4.25)

With the definitions, Eqs. (4.20) and (4.21), we obtain for the field variables

∂tρ(r) = 2π∂tP0(r) = −v0∂ipi(r) , (4.26a)

∂tpx(r) = π∂t(P1(r) + P−1(r)) = −v0

2 ∂xρ(r) , (4.26b)

∂tpy(r) = iπ∂t(P1(r) − P−1(r)) = −v0

2 ∂yρ(r) . (4.26c)

Since a Boltzmann-approach is by design a low-density approximation, these results must be inter-
preted as such and require for an extension to assure well-behavedness at higher densities. Notably,
this applies to the coupling of the polarity field to density gradients, ∂tpi ∼ − 1

2 v0 ∂iρ. At low den-
sities, this term accounts for an effective pressure, increasing with increasing particle densities. At
higher densities, other cooperative effects emerging from anisotropic interactions can dominate the
coupling of the polarity field to density gradients, counteracting the repulsion dominating at low
densities. In addition, at a critical maximum density, which we set to ρ = 2, the effective pressure
increases significantly due to the finite volumes of the agents. Therefore, steric interactions dominate
the cooperative interactions for ρ → 2. We account for these effects by extending the terms ∼ −∂iρ
by a density-dependent prefactor Q(ρ) which is proportional to v0 and has the following form:

Q(ρ) = v0

2

[
exp (−32ρ) + exp (16(ρ − 2))

]
. (4.27)

The function Q(ρ) captures the repulsion at low densities which decays for intermediate densities due
to cooperative effects. Moreover, it limits the maximum density to values ρ ≈ 2 taking into account
the steric repulsion at dense packing of the agents. The presented results do not qualitatively depend
on the particular choice of the function Q(ρ). The scalar field corresponding to the agent’s signaling

84



4

APPENDIX

activity, Eq. (4.22) is directly associated with the agents. Hence, in the same way as the particles it is
advected with the polar flow and exhibits center-of-mass diffusion. From the definition, Eq. (4.22),
we obtain

∂ts̄ = −v0

∫
dφ ds s∂iniP ,

= −v0

∫
dφ ds s

[
∂x

eiφ + e−iφ

2 + ∂y
eiφ − e−iφ

2i

]∑
k

P kP s ,

= −2πv0

∫
ds s

[
1
2 ∂x

(
P φ

−1 + P φ
1
)

+ 1
2i

∂y

(
P φ

−1 − P φ
1
)]

P s ,

and with the definition of the polarity field, Eq. (4.21),

∂ts̄ = −v0∂i

(
s̄ pi

ρ

)
. (4.28)

Thus, the complete diffusive and advective contributions to the dynamics of the density weighted
signaling state s̄ = ρs are given by

∂ts̄ = Dρ∆s̄ − v0∂i

(
s̄pi

ρ

)
. (4.29)

Correspondingly to the agent-based model, we re-express the state field s̄ in terms of the ’state
concentration‘, i.e., the local state normalized by the particle density, s by replacing s = s̄/ρ in Eq.
(4.29); one obtains

∂ts = Dρ∆s − v0pi

ρ
· (∂is) , (4.30)

where we neglected cross-gradient contributions in the density ρ and the field s.

Next, we turn to the contribution of the angular noise to the dynamics of the polar field. Fourier-
expanding the corresponding term ∼ DR in Eq. (4.17) and projecting it onto the jth harmonic
according to Eq. (4.23), yields the equation

∂tPj(r) = −DRj2Pj(r) (4.31)

and, thus, with the definition of the polar field, Eq. (4.21),

∂tp(r) = −2DR p(r) . (4.32)

Finally, regarding the alignment of the agents’ orientation vectors with gradients of the signaling
field c, we want to briefly highlight the origin of the corresponding terms, ∼ ω, in the Boltzmann
equation (4.17) starting from the proposed underlying Langevin dynamics

∂r

∂t
= v0 n(φ) ,

∂φ

∂t
= ξ(t) + ω(c) sin (φ − φc) ,

(4.33)

with the particle position vector r and the angle of the chemical gradient φc = angle(∇c). The
chemotaxis contributes to the Boltzmann equation, Eq. (4.17), directly as the angular drift term

∂tP ∼ −∂φ [ω(c) sin (φ − φc)] P . (4.34)
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Expanding the probability density in the Fourier harmonics as in Eq. (4.18), one obtains

∂tPk = −ω(c)
2π

∫ 2π

0
dφ e−ikφ∂φ

[
sin (φ − φc)

∑
k′

Pk′eik′φ

]
, (4.35)

and after integration by parts

∂tPk = − ikω(c)
2π

∑
k′

∫ 2π

0
dφ [cos(φc) sin(φ) − sin(φc) cos(φ)] Pk′ei(k′−k)φ ,

= − ikω(c)
4π

∑
k′

[cos(φc) (iδk,k′−1 − iδk,k′+1) − sin(φc) (δk,k′−1 + δk,k′+1)] Pk′ . (4.36)

Using the definitions, Eqs. (4.20),(4.21), and neglecting contributions of the second harmonics, the
response of the dynamics of p to the signaling stimulus is given by

∂tpi = ω ρ ∂ic , (4.37)

where we chose a linear dependence of the alignment strength on the signaling amplitude c, namely
ω(c) = 4π ωc. The contributions arising from particles’ interactions can be motivated as done in
Refs.191,198,201. As such, we include for completeness an elasticity like contribution

∂tp ∼ Dp∆p , (4.38)

and a self-propulsion
∂tp ∼ χ p · ∇p , (4.39)

in the model. Both terms may arise from anisotropic interactions, e.g., for elongated particles. They
are not included in the agent-based model and we set the corresponding parameters Dp and χ
to small values as the effects are not crucial for the reported behavior of signaling active matter.
Altogether we obtain the set of hydrodynamic equations

∂tρ(r, t) = −v0∇ · p + Dρ ∆ρ , (4.40a)

∂tp(r, t) = σ (ρ − 1) p − δ |p|2 p + Dp ∆p − χ p · ∇p − Q(ρ)∇ρ + ρ ω∇c , (4.40b)

∂tc(r, t) = Dc ∆c − α c + ρ β Θ (c − cth) (1 − s) , (4.40c)

∂ts(r, t) = Dρ ∆s − ϵ (s − c) − v̄ p · ∇s , (4.40d)

complementing the derived contributions from the Boltzmann equation, Eq. (4.17), with the inter-
action terms, Eqs. (4.38), (4.39), and the continuous versions of the equations for the signaling
machinery, Eqs. (4.3), (4.5) in the main text.

4.6.6 REDUCED MODEL WITHOUT DECISION MAKING

To highlight the role of the individual decision making for the multi-scale aggregation process, for
comparison we also investigate the behavior of a system lacking such a mechanism. In particular, we
modify the source dynamics given in main text Eq. (4.3), such that it becomes independent of the
agents’ internal state,

∂tc(r, t) = Dc∆c − αc + β

N∑
i=1

f(r, t) . (4.41)

The polar agents with dynamics given by Eqs. (4.1), (4.2), and Eq. (4.41), are assumed to contribute
as persistent sources of the signaling field. Similar to what has been reported in reference322, we
observe aster-like stationary cluster formation with interface controlled ripening, see Supplementary
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Fig. 4.7a. Moreover, the interplay between self-propulsion and attraction towards a local aggregation
center can give rise to short-lived ring-like structures and vortices which eventually tend to dissolve
into a few aster-like aggregates as depicted in Supplementary Fig. 4.7b. Since in the modified model
there is only local interactions mediated by the comparably slow diffusion of the signaling field, it
does not exhibit a collective long-range organization of aggregation centers. In contrast to a system
with active decision making, here the established smaller aggregates collide and merge upon random
encounters.

4.6.7 MODEL PARAMETERS

The supplementary tables 4.1-4.3 provide an overview of the system parameters used in the numer-
ical simulations shown in the main text as well as in the supplementary figures and movies. We
measure densities in units of the critical density for the isotropic-polar transition. Time is given in
units of the signal decay rate [α] and lengths are given in units of the resulting diffusion length√

Dc/[α].

Parameter Description Value (continuum model) Value (agent-based)
α signal decay rate 10 0.9
β signal production rate 40 2
a threshold factor 0.9 0.9
b constant threshold 0.05 0.05
ϵ refractory rate 4 0.3

Dc signal diffusion 1 0.9

Table 4.1: Parameters of the signaling system, Eqs. (4.16c), (4.16d), in the excitable regime used for the hydrodynamic- and
the agent-based model, respectively.

Parameter Description Value
v0 propulsion speed 0.2
DR rotational diffusion 0.05
rc interaction radius 2
rp particle radius 0.25
Γ polar alignment factor 0.1

Table 4.2: Parameters of the agent-based model as detailed in section 4.6.1. The chemical susceptibility parameter in Fig. 4.1
is set to ω ∈ {0.1, 0.4, 0.004, 0.2, 0.004} for panels e-i, respectively.

Value
Parameter Description Default Fig. 4.1j Fig. 4.1k Fig. 4.1l,n Fig. 4.1m

v0 motility 0.5 0.1 0.5 0.2 0.1
σ polar persistence parameter 0.01 0.1 0.2 0.5 0.05
ω signal susceptibility 0.1 0.8 0.3 0.8 0.4

Dρ translational diffusion 0.05
Dp elasticity parameter 0.1
χ convective derivative coefficient 0.1
δ magnitude of bulk order 1.0
ρ0 average density 0.6

Table 4.3: Parameters of the hydrodynamic continuum model, described in section 4.6.2.
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Figure 4.4: Signaling-enhanced aggregation capabilities. a, Aggregation times Taggr of the hydrodynamic system, main text
Eqs. (4.6), reaching the polar-order transition at ρ = 1 from a homogeneous initial density ρ0. We observe faster aggregation
for higher initial densities as well as larger signaling susceptibilities ω. b, Corresponding temporal evolution of the system’s
maximum density ρmax evolving from a homogeneous initial density ρ0 = 0.4 for different values of ω. We determine the
aggregation times Taggr (dashed colored lines) as the first times at which the critical density (dashed black line) is reached,
ρmax = ρc = 1. Other parameters as given in section 4.6.7. This figure is reproduced from Ref.3 under license [CC BY 4.0].

Figure 4.5: Spiral waves and vortex solution in the hydrodynamic model. a, Vortex solution with persistent spiral wave
activity in the hydrodynamic model, see section 4.6.2. The composite image containing layers representing the orientation
vector field p(r) (arrows), the local density profile ρ(r), concentration of signaling molecules c(r), and field of state s(r).
b, Dependence of spiral frequency on spatially homogeneous density values ρ. Error bars indicate error ranges arising from
the numerical measurement of spiral frequencies. Parameters as stated in section 4.6.7. This figure is reproduced from Ref.3

under license [CC BY 4.0].
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Figure 4.6: Excitable dynamics of the well-mixed signaling system. The agents serve both as a source of chemical signals and
can adapt their internal state to the chemical environment. In this process, the release of the chemicals by the agents depends
on the internal state of the agents and the state of the environment. The combination of these factors leads to a ‘sense-and-
response’ system that exhibits excitable dynamics. a, Phase-space flow of the excitable system, main text Eqs. (4.3),(4.5). The
black line indicates the nullcline c = s of the agents’ state kinetics, main text Eq. (4.5). Due to the discontinuous switch in
the agents’ signal relaying capability, there are two nullclines (violet and orange) originating from the signaling kinetics, main
text Eq. (4.3), with c = β/α(1 − s) and c = 0, respectively. These nullclines are valid in the correspondingly colored areas
c ≷ (s+ b)/a. The red trajectory highlights an excursion in phase space upon initial excitation. b, Dynamics of the chemical
concentration c and the signaling state s corresponding to the red trajectory in a. Parameters as stated in section 4.6.7. Time
is measured in the units of the decay rate [α]. This figure is reproduced from Ref.3 under license [CC BY 4.0].

c(x,y)

0

30

time

a

b

Figure 4.7: Time evolution of a reduced model, lacking the internal decision making machinery of the self-propelling agents,
main text Eqs. (4.1), (4.2), and Eq. (4.41). The two parameter regimes shown in panels a and b illustrate localized cluster
formation as a generic form of aggregation in the model. The clusters exhibit an interface-controlled coarsening behavior.
a, Formation of localized clusters for small polar alignment Γ = 0.01. b, Cluster formation with intermediate transient
solutions for stronger polar alignment, Γ = 0.1. Agent colors indicate the polar orientation and background colors represents
concentrations of the communication field c(r, t), see Eq. (4.41). Parameters as in table 4.2 with rp = 0.5, β = 0.9, and
ω = 0.05. This figure is reproduced from Ref.3 under license [CC BY 4.0].
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ACOUSTIC SIGNALING ENABLES COLLECTIVE PERCEPTION AND CONTROL IN ACTIVE MATTER SYSTEMS

Emergent cooperative functionality in active matter systems plays a crucial role in various appli-
cations of active swarms, ranging from pollutant foraging and collective threat detection to tissue
embolization. In nature, animals like bats and whales use acoustic signals to communicate and en-
hance their evolutionary competitiveness. Here, we show that information exchange by acoustic
waves between active agents creates a large variety of multifunctional structures. In our realization
of collective swarms, each unit is equipped with an acoustic emitter and a detector. The swarmers
respond to the resulting acoustic field by adjusting their emission frequency and migrating toward
the strongest signal. We find self-organized structures with different morphology, including snake-
like self-propelled entities, localized aggregates, and spinning rings. These collective swarms exhibit
emergent functionalities, such as phenotype robustness, collective decision-making, and environ-
mental sensing. For instance, the collectives show self-regeneration after strong distortion, allowing
them to penetrate through narrow constrictions. Additionally, they exhibit a population-scale per-
ception of reflecting objects and a collective response to acoustic control inputs. Our results provide
insights into fundamental organization mechanisms in information-exchanging swarms. They may
inspire design principles for technical implementations in the form of acoustically or electromag-
netically communicating microrobotic swarms capable of performing complex tasks and concerting
collective responses to external cues.

5.1 INTRODUCTION

What are the most distinct markers of living systems? What makes them so different from the inan-
imate world? These are their ability to move (locomotion), consume energy (metabolism), process
information, and form multicellular aggregates. The onset of collective behavior among simple inter-
acting units is a central paradigm in nonequilibrium physics and an opportunity for materials science
and microrobotics340–342. Biological systems exhibit diverse signaling strategies and mutual synchro-
nization, giving them an evolutionary advantage343,344. For instance, social amoeba use cell-to-cell
signaling through the emission of cyclic adenosine monophosphate (cAMP) concentration waves and
chemotaxis to aggregate under starvation311, insects rely on sound to coordinate the formation of
cohesive swarms312,345, bats and whales use ultrasound sonar for communication, navigation, and
hunting346,347. To what degree can one use simple information processing capabilities to design self-
organized functional aggregates from simple building blocks or to create swarms of active agents
performing elaborate tasks collectively348? Biological systems have mastered complex functional-
ity and environmental adaptation through evolution and self-organization: the tendency of simple
units (e.g., molecules, colloids, cells) to form hierarchical functional superstructures349,350. Out-
of-equilibrium self-organization opens the way to sophisticated aggregated states with many levels
of functionality akin to living systems217,351. Imagine synthetic bottom-up systems capable of com-
municating, making decisions, adapting, and even repairing damages in their collective structures.
However, currently, these features are mostly lacking in simple microrobots352,353, and enabling com-
munication and self-organization in synthetic swarm-like systems is so far perceived as nothing more
than science fiction354,355.

Chemical signaling and emergent self-organization have been extensively studied in various bi-
ological and synthetic systems41, such as social amoebas45, chemically interacting colloidal parti-
cles218, and pheromone-driven social insects42. While effective in facilitating coordinated behaviors,
this form of communication is inherently limited by localized diffusive spreading of information and
the relaying of signals by distributed agents3. As a result, information propagation is comparably
slow and remains constrained to regions where agents are present. In contrast, signaling via acous-
tic and electromagnetic waves, readily accessible to technological systems like microrobots, offers
greater versatility and range. Yet it remains largely underexplored in the context of collective behav-
iors and self-organization.

To examine the potential of acoustic signaling in technical systems, we enhance the communication
capability of individual units (swarmers) through rapid signal exchange by propagating acoustic,
electromagnetic, or surface waves. Each self-propelled swarmer is equipped with an “on-board”
oscillator, broadcasting and detecting acoustic signals356,357. Synchronizing internal oscillator states
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enhances the swarms’ cohesiveness, multifunctionality, and robustness to heterogeneities or disorder.
The self-organization of a collective swarm is guided by the following principles: the swarmers
respond to the common acoustic field by synchronizing their broadcast frequencies and migrating
towards the strongest signal.

Our computational studies reveal the spontaneous formation of a plethora of self-organized struc-
tures with different morphology, including snake-like self-propelled objects, localized aggregates,
and closed, rotating rings. Importantly, these structures exhibit emergent functionalities like phe-
notype robustness, collective decision making, and environmental sensing. Some structures, like
snakes, exhibit shape memory and self-regeneration: after a strong distortion, they are able to re-
cover earlier phenotypes. Akin to an octopus escaping from a cage through a tiny hole, the snake
swarm can squeeze through a narrow constriction and reassemble behind it. These results suggest
new design principles and control strategies for multifunctional synthetic swarms which could be
relevant for various applications, e.g., for pollutant foraging358–360, threat detection361, and tissue
embolization362,363.

Moreover, our approach enriches the traditional scope of active matter: the onset of collective
behavior emerging in the system of interacting self-propelled particles55,364. In addition to alignment
interactions in active systems365, our agents communicate via acoustic waves and synchronize their
intrinsic states. The long-range coupling brings this system closer to the celebrated Kuramoto model
of globally coupled oscillators366. Notably, our agents dynamically reconfigure the coupling due
to the self-organized motion. Contrary to “swarmalator models”222,223, we disentangle the spatial
orientation of agents from their internal communication state, making the system more suitable for
synthetic implementations such as in microrobotic swarms.

5.2 MODEL DESCRIPTION

5.2.1 AGENT-BASED MODEL

In this study, we investigate the dynamics of self-propelled polar agents coupled through wave in-
teractions, using acoustic waves as a concrete example. For simplicity, we assume that the swarmers
move in a two-dimensional plane (their “habitat”), while sound wave propagation occurs in three
spatial dimensions, leading to a realistic non-local acoustic coupling. Specifically, we consider a sys-
tem of N acoustically interacting self-propelled particles (swarmers); see Fig. 5.1. The swarmers
move persistently along their intrinsic orientation nl = (cos φl, sin φl)T at a constant speed v0 with
two-dimensional orientation angle φl. Within an interaction radius rc, they align their direction of
motion with the one of their neighbors (Fig. 5.1a). A repulsive force flj ensures hard-core repul-
sion between agents when they come within a distance of two agent radii, rp. The dynamics of
the agent’s orientation angle φ are governed by polar alignment with neighbors at a rate Γ, as well
as by alignment with the amplitude of the common sound field, i.e., φs = angle(∇|u|), at a rate Ξ.
The adaptation of orientation φl, Eq. (5.1b), is assumed to be error-prone. Therefore, a zero-mean
Gaussian white noise ξl is added to the angular dynamics as a perturbation. In summary, the agents’
position and orientation change according to

drl

dt
= v0nl +

∑
j[rlj<2rp]

flj , (5.1a)

dφl

dt
= −Γ

∑
j[rlj<rc]

sin (φl − φj)
|rl − rj |

+ Ξ sin (φs − φl) + ξl . (5.1b)

We consider agents that are equipped with an internal oscillator continuously emitting sound waves
like a loudspeaker. For simplicity, we model the oscillation using a generic form near a supercritical
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Figure 5.1: Acoustically communicating active matter. (a) Schematics of self-propelled swarmers with polar alignment.
Arrows indicate the swarmers’ direction of motion, nl. (b) Individual swarmers possess an internal oscillator controlling their
acoustic emissions. In turn, their oscillatory states can synchronize via the acoustic field. (c) Swarmers align towards higher
sound amplitudes with acoustic susceptibility Ξ. This figure is reproduced from Ref.4 under license [CC BY 4.0].

Hopf bifurcation, represented by a Stuart-Landau oscillator367,368,

∂tal(t) = (1 + iω) al − (1 + ib) |al|2al + λu(rl, t) . (5.1c)

Here, ω and b describe the linear, respectively, non-linear coupling of frequencies and amplitudes,
and λ determines the coupling rateto the acoustic field u(r, t). Thus, the intrinsic oscillator is affected
by acoustic waves from other swarmers, creating acoustic feedback (Fig. 5.1b). Via emitting acoustic
waves, the swarmers establish a dynamic signaling landscape (soundscape) to which they adapt their
intrinsic oscillation state with respect to their individual baseline frequency ω. The dynamics of the
common acoustic field u(r, t) generated by all constituting agents is given by

1
c2 ∂2

t u(r, t) = ∇2u +
∑N

j=1 w (r − rj) ajδ(z) . (5.1d)

The soundscape evolution is described by the wave equation in three spatial dimensions with the
swarmers’ oscillating membranes as sources w(r) of the sound field, Eq. (5.1d). The function w
specifies the shape of the agent (i.e., round). The speed of sound is denoted by a parameter c and
is assumed to be large compared to the agent velocity v0. The δ(z) function in Eq. (5.1d) stipulates
that all agents are confined to the z = 0 plane. As stated above, in the presence of an established
acoustic field, agents align their motion toward regions of higher acoustic field amplitudes with
susceptibility Ξ (Fig. 5.1c). To integrate numerically the dynamics of the acoustically interacting
self-propelled polar agents, we solve the discrete stochastic equations, Eqs. (5.1a), (5.1b), and the
agents’ oscillatory dynamics, Eq. (5.1c), with a forward Euler-Maruyama method at fixed time steps
dt369. The resulting acoustic field is calculated from Eq. (5.1d) for the quasi-stationary case in the
limit of large sound velocities c ≫ v0 using an inverse Fourier transform of the analytic expression

ũk = g̃k

2c2
√

k2
x + k2

y

, (5.2)
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with Fourier-transformed acoustic source contributions g̃k and wave vector k = (kx, ky)T ; see also
appendix Section 5.6.1. We discretize the entire habitat domain into Fourier modes down to length
scales of the order of a single agent diameter. Subsequently, we integrate the states of the intrinsic
oscillators by incorporating the collectively established acoustic field, see appendix Section 5.6.3 for
details on the numerical integration of the model equations.

5.2.2 CONTINUOUS FIELD EQUATIONS

We complement the agent-based discrete description of the system with corresponding continuous
field equations. The phenomenological equations for the agent density ρ(r, t) and the particles’ polar
orientation field p(r, t) in the two-dimensional habitat r ∈ R2 read

∂tρ(r, t) = −v0∂ipi + µ∇2
2Dρ , (5.3a)

∂tpi(r, t) = σ (ρ − 1) pi − δpjpjpi + κ∇2
2Dpi

− χpj∂jpi − v0

2 P ′(ρ)∂iρ + ρ Ξ ∂i|u|2 , (5.3b)

where the spatial derivatives ∂i with i ∈ {x, y} and the Laplacian ∇2D refer to the two-dimensional
habitat. Field theories with similar contributions have been developed for a range of active matter
systems176,189,370. These theories are particularly relevant for studying biological and experimen-
tal polar and nematic active systems53,365, such as microtubule-kinesin mixtures371 and the actin
motility assay164. Recently, in the latter case, a combination of computational and field-theoretical
approaches has provided insights into the coexistence of nematic lanes and defects in the motility as-
say372. In addition to phenomenological models based on symmetry considerations, hydrodynamic
field equations can be derived from Smoluchowski196 and Fokker-Planck equations194, or through
the Boltzmann-Ginzburg-Landau framework191,198–200. The latter has been successfully applied, for
instance, to inelastically aligning microtubule systems198,201,202 and to actin dynamics in motility
assays203. The approach can also be used to describe biopolymers systems driven by interactions me-
diated by molecular motors373, as well as the collective behavior of chemotactic polar active agents3,
among others.

The rationale behind the above set of continuum equations is as follows: The dynamics of the
density is described by a diffusion-advection equation, Eq. (5.3a), where alongside spatial diffusion
with diffusion coefficient µ, the agents’ self-propulsion induces an advection of density with velocity
v0 along the direction of polar orientation. The dynamics of the density-weighted polar orientation
pi is governed by a third-order polynomial in pi, describing an isotropic to polar order transition
at critical density ρc ≡ 1. For low densities, ρ < ρc, angular diffusion of agents dominates and the
system favors the isotropic state. In contrast, in denser regions, ρ > ρc, an increased polar alignment
between agents induces polar order. Additionally, we consider elastic contributions to the polar field
(∼ κ), which originate from polar alignment of neighboring agents, and self-advection (∼ χ) of
the polar director along the direction of the agent motion pi. Moreover, a pressure-like contribution
(∼ P ′(ρ), with a prime denoting the derivative w.r.t. the density, appendix Sec. 5.6.3) implements the
assumed finite volume of the agents and ensures a maximum density of swarmers. Finally, similar
to chemotactic models322, the polar orientation is coupled to gradients in the signaling field. Here,
it is given by the acoustic field amplitudes |u|2 and the acoustic susceptibility Ξ controls the agents’
alignment strength.

The continuum equations for the acoustic field and the oscillatory states of the agents are obtained
by coarse-graining their agent-based representations. Similar to the agent-based model, swarmers
with density ρ(r, t) and state a(r, t) act as sources of the acoustic field. In the continuum descrip-
tion, the discrete contributions from individual agents become a continuous source term, weighted
by the agent density field ρ(r, t). The rest of the wave equation, Eq. (5.1d), for the propagation of
acoustic signals with sound velocity c remains unchanged. The oscillatory states of the agents are
transformed into a continuous field, a(r, t). Coarse-graining also introduces a diffusion-like contri-
bution to this field (∼ µ), corresponding to the positional diffusion of agents. Additionally, since the
oscillatory states are tied to the individual agents, the state field is advected with the agent velocity
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(∼ v0), similar to the analysis performed in Ref.3 for chemical agent states, with the limit cycle os-
cillations now distributed across the entire domain. As in the discrete model, the synchronization of
oscillatory states is captured through coupling to the acoustic field (∼ λ). Altogether, the continuum
representation of the equations reads

1
c2 ∂2

t u(r, t) = ∇2u + a ρ δ(z) , (5.3c)

∂ta(r, t) = µ∇2
2Da + (1 + iω) a − (1 + ib) |a|2a

− v0
pj

ρ
∂ja + λ u . (5.3d)

For homogeneous densities, ρ = ρ0, one can integrate Eq. (5.3c) in Fourier space which introduces
a long-range coupling to the state field a. This transforms the system into a non-locally (acoustically)
coupled version of the complex Ginzburg-Landau equation (CGLE)368, as shown in appendix Sec.
5.6.2. The emergence of a non-local coupling of oscillators through the acoustic field underscores
potential advantages that acoustic signaling offers to active matter systems. In the case of homo-
geneous density, ρ = ρ0, we observe that acoustic interactions accelerate the coarsening of phase
defects compared to the CGLE, indicating the long-range interaction between the emergent spiral
cores, see appendix Fig. 5.8. Moreover, this coarsening process halts at a characteristic length scale,
where acoustic interactions prevent further attractive forces between phase defects, highlighting
the potential of long-range communication and synchronization between self-organizing collectives.
These effects are crucial for understanding the emergence of the self-organized structures and their
mutual interactions, which we will explore in the following sections.

5.3 SELF-ORGANIZED STATES

As described above, acoustic coupling between agents generates long-range interactions which may
lead to intriguing forms of self-organization and novel functional structures. In this section, we
examine the properties and distinct acoustic signatures of these emergent structures and determine
the conditions under which they occur. We start by employing discrete agent-based simulations of
Eqs. (5.1) and extend our analysis with large-scale numerical simulations of the continuous field
equations, Eqs. (5.3), in the latter part of this section.

5.3.1 AGENT-BASED SIMULATIONS

Acoustic signaling enables the swarmers to communicate, navigate, and assemble. Through acoustic
communication, the agents’ oscillatory states can locally synchronize, enhancing local sound ampli-
tudes. As agents move towards these high-amplitude regions, self-organized collective states with
distinct properties emerge. In Fig. 5.2 we present the predominant collective solutions as a function
of the agent’s velocity v0 and acoustic susceptibility Ξ (Fig. 5.2(a)) and describe their phenomenol-
ogy as well as their acoustic emission in terms of signal amplitudes and frequencies as measured at
a nearby fixed microphone position (Fig. 5.2(b-f)).

The simplest self-organized state is a polar aggregate (blob) in which swarmers are aligned towards
a central pacemaker (white arrows, Fig. 5.2(b)). Since individual agents are oriented towards its cen-
ter, they create an enclosed polar defect. Blob solutions predominantly occur for comparably small
agent velocities and large sound susceptibilities; see Fig. 5.2(a). They emerge from a homogeneous
distribution of swarmers through the initial formation of small aggregates. Then, the aggregating
swarmers become tightly packed and synchronized (similar agent colors in Fig. 5.2(b), color-code
indicates oscillatory phase of agents). Due to the alignment of agents towards larger signaling am-
plitudes, an almost circular region of synchronized agents develops (Fig. 5.2(b)). The entire blob
contributes as a large collective source to the acoustic field and emits, almost isotropically, concen-
tric sound waves into its surroundings. The aggregation, attraction, and mutual activation generate
higher oscillation frequencies (frequency panel, Fig 5.2(b)) and amplitudes (signal panel) and, in
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Figure 5.2: Diversity of collective states. (a) Phase diagram relating the most prominent collective states vs. agent’s self-
propulsion velocity v0 and their susceptibility to align with acoustic signals Ξ. Representative solutions of the agent-based
model, Eq. (5.1), are shown for the five qualitatively distinct phenotypes, with the color code indicating the agents’ oscillatory
phase. (b-f) Representative solutions with their acoustic signatures given by frequency distribution and the acoustic signal
amplitude measured in the vicinity of the collective solutions. Agent color indicates its oscillator phase, white arrows highlight
the local average agent orientation and white scale bars signify a length of 5 units. (b) Localized blob with central polar defect
and target-wave pattern. (c) Larva. A polar wave-emitting defect is located in its head. (d) Rapidly moving snake; no internal
polar defect. Phase waves propagate along its body. (e) Ouroborus, a closed larva-like ring structure. (f) Localized volvox
with a synchronized center decorated by outer circular traveling phase waves or decoherent outer layers. Below each image
(b-f) is the solution’s acoustic signature: spectrogram as obtained from short-time discrete Fourier transform depicted over a
frequency range 0 − 8 Hz (uncoupled agent’s free frequency ∼ 0.07 Hz) and the normalized acoustic signal spatially adjacent
to the respective solution. Parameters as given in Table 5.1. This figure is reproduced from Ref.4 under license [CC BY 4.0].

turn, increasing sound intensities at the aggregate’s center. This self-amplifying effect results in an
emergent pacemaker—a region of agents with increased frequency, leading the phase dynamics—
located in the blob’s center. As a consequence of the increased collective sound amplitudes, the blob
attracts an even growing number of nearby swarmers. In particular, we observe a dominant oscilla-
tory mode in the blob that is at approximately 1.8 Hz; around 25-fold the frequency of the uncoupled
individual agents’ baseline (frequency panel in Fig. 5.2(b)). Additionally, a secondary, incoherent
frequency mode at much lower frequencies is present. It represents the outer agents in the collective
that are not fully synchronized with the center and experience weaker acoustic inputs. From the
normalized signal amplitudes of the solution (lower panel in Fig. 5.2(b)) we see that amplitudes
at a fixed microphone position are modulated over long time scales, representing the slow drifting
motion of the blob solution. As a rather synchronized solution, blobs create a standing wave field
around them and the modulation of the amplitude reflects the drift of the maximum position of the
standing wave.

Another example of a self-organized, symmetry-broken state is an elongated, slowly migrating ag-
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gregate that we term a larva (Fig. 5.2(c). Here, a broken symmetry in the position of the enclosed
polar defect—resulting from an asymmetric aggregation process or the merging of two blobs—may
cause the larva to move slowly but persistently. Larvae are observed for similarly low agent veloci-
ties as blobs but typically at weaker acoustic susceptibilities (Fig. 5.2(a)). In this parameter regime,
agents experience weaker torques towards the phase-leader with the highest sound amplitudes and
the colocalized polar defect. Thus, asymmetries around that polar defect may emerge more read-
ily. As apparent from numerical simulations, the asymmetrically enclosed pacemaker in the larva
emits phase waves, aligning all other swarmers in the aggregate towards it. Given these character-
istics, the larva acts as a motile community that can absorb individual clusters and reintegrate them
into its structure. Investigating its acoustic fingerprint, we observe that the aggregate displays high
collective frequencies (Fig. 5.2(c), frequency panel). For the chosen parameters, these frequencies
are approximately 80 times higher than the frequency of uncoupled individual agents. Such a sig-
nificant frequency increase requires a comparably large amplitude of the collective acoustic field.
Hence, we propose that phase differences between neighboring agents within the larva align with
the acoustic wavelength, enabling all contributing agents to cooperatively reinforce one another. As
a result, signal amplitudes increase and mutual phase velocities accelerate. Consistently, the acoustic
amplitudes received from the larva (Fig. 5.2(c), signal panel) rise considerably as it approaches the
microphone position. As it passes by, the sound amplitudes remain relatively stable, suggesting a
nearly uniform coupling across the entire collective. However, a slight amplification occurs when the
head of the structure is closest to the acoustic detector (t ≈ 350). This highlights a key characteristic
of the larva as its head houses the pacemaker, the region with highest frequency and amplitude (Fig.
5.2(c), signal panel). Compared to the blob solution discussed above, the larva completely passed
the microphone position with its entire length in the time-frame shown, whereas the blob solution
just slightly drifted into a minimum of the standing acoustic wave. This distinction highlights the
persistent, directed motion of the larva solution and represents another significant difference in the
solutions’ acoustic signatures.

Rapidly moving snakes are yet another example of states with collective functionality (Fig. 5.2(d).
They occur at large agent velocities where the directed propagation of agents gives rise to the col-
lective, snake-like motion of these structures. Snakes lack an internal pacemaker such that phase
waves of the oscillation typically propagate from head to tail. The resulting acoustic field aligns all
agents in a common direction along the emerging center line as highlighted by the white arrows
in Fig. 5.2(d). Somewhat similar collective snake-like states have been observed in active matter
with vision cones207. In our study, the latter structures emerge via spontaneous symmetry breaking
from the acoustic interactions and the self-organized information propagation through the phase
waves. The mutual alignment of all the agents within a snake results in a collective propagation ve-
locity of snakes that is comparable to the single swarmer speed v0. Unlike individual agents, snakes
exhibit significantly higher persistence of motion due to the coordinated alignment of neighboring
agents. This enhanced coordination leads to a rapid collective propagation, which is reflected in the
acoustic signal detected by a stationary microphone. The signal shows a brief duration and rapid
modulation as the snake passes by. Additionally, because snakes lack an internal pacemaker and
high self-sustained acoustic field amplitudes, the oscillation frequencies of the agents in the snakes
are relatively low, comparable to those of uncoupled agents. This is evident from the signal and
frequency panels shown in Fig. 5.2(d).

When increasing the sound susceptibility Ξ, larvae can transform into rotating ring-like entities
(top center in Fig. 5.2(a)). Since this process involves the larvae curling into a circular shape and
metaphorically “eating" their tails to form a continuous loop, we refer to these entities as ouroboroi,
inspired by an ancient symbol (Fig. 5.2(e). These ouroboroi display periodic phase waves that prop-
agate through the entire structure, as can be seen from the color-coded phases. Typically, these phase
waves propagate in the direction opposite to the motion of agents, indicated by the white arrows.
Since ouroboroi are essentially “closed-larvae" states, where rotation is limited due to mutual block-
ing of the agents, their acoustic signatures closely resemble those of larvae solutions. However, as
ouroboroi are mainly localized at a given position, the emitted acoustic signal does not decay as
strongly as for the passing larvae; see bottom panels in Fig. 5.2(e).
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Figure 5.3: Collective states in the continuum model. Temporal evolution of the continuum field representation of acoustic
active matter, Eqs. (5.3). Different types of solutions emerge from a disordered homogeneous state. (a) Prevalence of localized
blobs for v0 = 0.05 as shown in the zoom-in on the right side panel. (b) Snakes emerge upon initial blob formation and
partially aggregate into larger blobs for v0 = 0.1. Snake solutions in the continuum model are highlighted in the zoom-in
(rightmost panel). The color indicates local oscillatory phases for densities ρ > 1. Arrows represent the polar orientation
p(r, t). The system size is set to L = 200, and zoom-ins detail the highlighted domains. Remaining parameters as given in
Table 5.2. This figure is reproduced from Ref.4 under license [CC BY 4.0].

Finally, if the structure size of blobs exceeds the range over which constituting agents are able to
acoustically synchronize, the aggregates can become decorated by outer layers of agents with trav-
eling, metachronal waves or desynchronized oscillations (volvoxes) (Fig. 5.2(f). Therefore, hetero-
geneous phase patterns or decorrelated oscillations surround the central phase-synchronized region.
This situation is reminiscent of the “chimera states” occurring in coupled oscillator systems374. The
coexistence of synchronized and desynchronized swarmers is also reflected in the agents’ frequency
distribution, where we observe a constant part with increased frequencies, about 10-fold that of free
agents, and an irregular fraction of agents with lower frequencies (frequency panel in Fig. 5.2(f)).
In the example shown in Fig. 5.2(f), featuring metachronal waves, the emitted waves interfere with
the center synchronized oscillations and lead to a strong modulation of the acoustic signal.

Altogether, we observe multiple emergent collective states in the system of acoustically coupled
swarmers. Blobs and volvoxes arise predominantly for small agent velocities and when the sound-
mediated attraction is strong (Fig. 5.2(a)). For weaker acoustic susceptibility/larger agent velocities,
aggregates can become asymmetric, leading to the formation of larvae or ouroboroi solutions. In-
creasing the agent velocities further, the collectives lose any internal polar defects, and snake solu-
tions become predominant. The collective solutions not only feature phenomenological differences
in terms of their polar defect localization or collective propagation velocity but also exhibit distinct
acoustic signatures. The acoustic coupling induces different collective frequency distributions with
varying mean and spread and distinguishable dynamics of acoustic amplitudes. Thereby, the acoustic
system gives rise to cognitive flock configurations through spontaneous symmetry breaking and self-
organized frequency distribution of agents via acoustic coupling. Similar solutions so far required
externally imposed, symmetry breaking vision cones for mutual interactions208.

5.3.2 CONTINUUM EQUATIONS

In this section, we explore the collective dynamics in the continuum model, given by Eqs. (5.3). We
begin by comparing the emerging structures with those found in the agent-based model. Then, we
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Figure 5.4: Acoustic signatures of aggregates in continuous field description. (a) Representation of a blob solution. Densities
ρ > 1 are color-coded by their oscillatory phase (see color bar, Fig. 5.3). The swarmers are oriented towards a central polar
defect; white arrows indicate the average polar direction. (b) Snake-like solution. Phase waves propagate from head to tail
through the structure. The resulting average polar orientation (white arrows) of agents leads to a net motion of the entire
aggregate. White bars represent a length of 10 units and spectrograms show a frequency range from 0 − 4 Hz. This figure is
reproduced from Ref.4 under license [CC BY 4.0].

leverage the continuum field equations to study the behavior of acoustic active matter at large time
and length scales, a regime beyond the reach of the agent-based simulations.

As for the agent-based description, we observe a rich phenomenology due to the acoustic coupling
of swarmers (Fig. 5.3). Upon formation of small clusters, we observe coarsening behavior with the
swarmers merging into larger aggregates. In particular, as in the agent-based model, the system
dynamics strongly depends on the susceptibility parameter Ξ and the swarmer velocity v0. Namely,
at low self-propulsion velocities, v0 = 0.05, we see the formation of multiple small blobs which sub-
sequently coarsen to fewer larger ones (Fig. 5.3(a)); see zoom-in in the rightmost panel. Here, an
aster-like polar orientation of the swarmer matter towards a central defect is prevalent. In addition
to what has been observed for the discrete system, the field equations also exhibit vortex-type blob
solutions with chiral motion around the central defect. At larger velocities, v0 = 0.1, and weaker
signal susceptibility, Ξ = 200, we observe a prevalence of snake-type structures (Fig. 5.3(b)); see
zoom-in for details. As for the agent-based case, these structures are highly motile and free of in-
ternal pace-making polar defects. They typically collide and aggregate into larger structures, but
occasionally also split such that new smaller snakes emerge.

In summary, the continuum model captures two distinct collective phenomena also observed in
the agent-based model: blobs (Fig. 5.3(a)) and snake-like aggregates (Fig. 5.3(b)). Similar to the
agent-based model, blobs in the continuum model also exhibit a high degree of synchronization, as
evidenced by the uniform phase color in Fig. 5.4(a). As swarmers are aligned to the blob’s center,
the collective has an almost vanishing net motion. Combined with the stable synchronization of
the oscillatory matter within, the amplitude of the emitted signal shows only slight modulation (see
signal panel). Oscillation frequencies of the swarmer matter are slightly increased compared to the
uncoupled case, i.e., without the input from the collective acoustic field. In contrast, snake solutions
(Fig. 5.4(b)) are characterized by stronger fluctuations in their acoustic signals (signal panel in
Fig. 5.4(b)). Compared to blob solutions, the snakes exhibit slighly lower oscillation frequencies
(frequency panel) due to the lack of a phase leader with increased collective stimulus.

Notably, we do not observe larva-type structures in the continuum model. We rationalize this
as follows: In the agent-based model, the net motion of larvae results from short-range repulsion
between individual agents and the asymmetrical pushing of agents around the enclosed defect. In
contrast, in the field theory, the finite size of the swarmers is represented by gradients in the swarmer
density, which show only slight variation within the aggregates. Thus, swarmers are mainly advected
in the direction of their self-propulsion —towards the +1 polar defect— implying a lack in persistent
net motion of defect-enclosing structures. Being caused by a high-density effect, the net motion of
larvae is not captured by the gradient expansion which is the basis for the continuum model.
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Figure 5.5: Large scale dynamics of acoustic active matter. Upon emergence of clusters, the aggregates coarsen mediated
by acoustic interactions (rightmost panel). Vertical blue lines indicate the time points of the snapshots (left). Densities are
shown for ρ(r, t) > 1 and color code represents oscillatory phase a(r, t) (color scale as in Fig. 5.3). System length L = 2000.
Parameters as stated in Table 5.2. This figure is reproduced from Ref.4 under license [CC BY 4.0].

Having established the phenomenological relation between the emergent behavior in the agent-
based model and the continuous field representation, we next discuss the large-scale dynamics
(Fig. 5.5). We observe that the acoustic coupling not only enables the formation of aggregates in
the system but it also yields coarsening dynamics that is much faster than typical Cahn-Hilliard-like
Ostwald ripening. Small aggregates interact via emission of acoustic waves and synchronize their
collective oscillations with neighboring aggregates through the acoustic soundscape. This leads to
the formation of large-scale synchronization patterns which overspan multiple clusters (phase colors
in snapshot t = 2000, Fig. 5.5).

This large-scale synchronization between clusters promotes their merging and speeds up aggre-
gation into fewer larger structures. Compared to local diffusive interface-mediated ripening, which
would induce a coarsening dynamics for which the cluster number scales as N ∼ t−1, the acoustic
synchronization yields an accelerated coarsening. Reminiscent of the defect coarsening discussed for
the non-locally (acoustically) coupled complex Ginzburg-Landau subsystem (appendix Sec. 5.6.2),
the cluster number saturates for large times and coarsening is halted at a particular structure dis-
tance. As for the defect coarsening in the non-locally coupled complex Ginzburg-Landau equation,
this inter-cluster distance may be selected by the wavelength of the established acoustic wave field.

Overall, the continuum field equations are a complementary way of assessing the relevance of
acoustic interaction in active matter. They reveal a phenomenology that closely parallels the agent-
based model, which enables us to draw broader conclusions about the role of acoustic coupling in
the large-scale dynamics of the system. Specifically, we find that acoustic waves facilitate nonlocal
phase synchronization and mutual attraction between aggregates, which in turn regulate the length
scales of emergent structures and their interactions. By mediating these long-range effects, acoustic
coupling plays a crucial role in shaping the collective behavior and spatial organization of the system.

The field equations examined in this study provide valuable insights into the large-scale dynamics
of acoustic active matter. Beyond this preliminary investigation, they open up a wide range of po-
tential applications, including wave-coupled swarming systems in heterogeneous media and general
acoustically coupled active media, along with various others. While the field equations qualitatively
capture some key solutions including their acoustic signatures, they fail to represent others such as
the larva solutions. This limitation arises because the continuous model, based on a gradient expan-
sion, does not account properly for high density effects that drive the net motion of the larvae. In
the following, we aim to explore potential applications of the emergent collective solutions which
involve a tractable number of agents. To better incorporate potential small-number effects and gain
more accurate insights, we turn again to the agent-based model.
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5.4 COLLECTIVE FUNCTIONS

The wide spectrum of self-assembled states (Fig. 5.2) provides the opportunity to tailor these states
for specific functions. As we have demonstrated, acoustic active matter generates self-organized
collective states with distinct acoustic signatures. By leveraging this self-organized behavior, we next
show how to harness the emergent collective functionality for a range of practical applications.

In general, individual agents in active matter systems are small in comparison to the collective
structures and, as in our case, have limited processing capabilities. Furthermore, they can only
access local information. Therefore, potential applications rely on cooperation and require a collec-
tively synchronized behavior. This synchronization can be achieved through acoustic interactions.
Importantly, since the systems’ dynamics is relying on self-organization it offers inherent robustness
of the emergent collective states against perturbations such as environmental changes or failure
of individual swarmers. For collectives of identical swarmers, self-organization yields a behavioral
specification —that is, a kind of phenotypic state— by which agents develop different oscillation
frequencies and exhibit self-organized motion due to their acoustic coupling. As this specification is
emergent, individual swarmers can be seamlessly replaced without compromising the functionality
of the group.

With regard to potential applications, emergent collectives must possess the ability to identify
where their action is needed, move accordingly, and assess the effectiveness of their action. This
crucially requires adaptability to their environment and a dynamic, coordinated response to external
cues. Additionally, although self-organization drives these emergent structures, external control may
still be necessary to harness and direct the collective’s functionality. This raises key questions: how
can collectives adapt to changing conditions, and how can they be externally controlled? Acoustic
signaling, in principle, provides a mechanism that enables both these crucial elements. Environ-
mental changes can be detected through the reflection of collectively emitted acoustic signals from
passive objects. A collective response to external stimuli is achieved by modulating the oscillatory
behavior of the swarmers, where changes of the oscillations and the mutual interactions between
swarmers enables the coordination of collective behavior. In the following, we will address these
questions by investigating the self-organization capabilities that emerge at the collective level, in-
cluding the collective perception of the structures and their response to external control inputs.

5.4.1 COLLECTIVE SENSING

A key capability of systems that use (acoustic) waves for communication is their ability to emit and
detect signals. Beyond transmitting signals between agents, these active systems can also acquire in-
formation about their surroundings through the reflections of the acoustic waves off various objects.
However, this requires a collective response of the system, since a single agent on its own cannot
generate a significant response due to its relatively weak emission amplitudes. When agents are or-
ganized in collective states, as discussed above, they are able to synchronize and emit acoustic waves
in unison, substantially boosting the amplitudes of the waves. This coordination results in emergent
cooperative sensing, where the enhanced signal strength and coordinated emissions enable more
effective detection and interpretation of signals reflected from invading objects.

As an illustration of such a sense-and-response capability, we consider the response of a propa-
gating larva and a localized blob to an invading object (Fig. 5.6). As the external object descends
toward the habitat, the acoustic waves emitted by the collective state get reflected at the object. This,
in turn, is perceived by the collective as it results in a change in their oscillatory states. In particular,
we model the spherical waves reflected at the object as quasi-planar and with a homogeneous phase.
This approximation is valid for objects with sufficiently large distance (height above the habitat).
Then, the additional reflective input to Eq. (5.1d) is given by

urefl(r, t) = Arefl ⟨al⟩N e2iωd/c . (5.4)

For the assumed spherical wave solution in three-dimensional space that decays inversely propor-
tional to the distance, the sound amplitude depends on the distance d as Arefl = 1/ (2d). If there is a
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Figure 5.6: Collective sensing of approaching objects. (a) A sequence of snapshots illustrating the phenotype change of
a traveling collective solution (larva) in response to an approaching object (“intruder” / “threat”) above the habitat; the
acoustic signals are reflected at the external object. The temporal evolution of sound frequencies, amplitudes, and the
number of individual clusters in the entire simulation domain L = 50 are displayed in the rightmost panel. The vertical
red line marks the instance when an intruder is introduced. Blue lines indicate times corresponding to the snapshots. The
oscillation amplitude is measured in dimensionless units of Eq. (5.1d). (b) A sequence of snapshots illustrating the response
of a localized collective solution (blob) on an approaching intruder. Disks represent individual agents, and the RGB color map
shows the relative phases; see Fig. 5.2. White arrows indicate the agent’s polar orientation and white bars represent a length
of 5 units. This figure is reproduced from Ref.4 under license [CC BY 4.0].

non-vanishing contribution ⟨al⟩N averaged over all the N acoustic oscillators, the agents receive a re-
flected phase-shifted acoustic feedback signal. The strength of the reflected signal not only depends
on the distance of the reflective object but is significantly determined by the degree of synchroniza-
tion in the emitting collective. The more agents emit signals in unison, the stronger the reflected
signal will be. Thus, the system shows a cooperative exploration of the surroundings.

In our simulations we observe that upon detecting the reflected waves (left panel in Fig. 5.6(a), left
blue indicator in right panel), a larva solution undergoes a dramatic transformation of its morphology
(‘metamorphoses’, center), disassembling into a blob and expelling peripheral swarmers (right panel
in timeseries). The ejection of agents (center blue time marker) is evidenced by the strong increase
in the number of clusters in the entire simulation domain (‘clusters’ panel). Right before this event,
the signal amplitudes increase significantly (‘signal’ panel) as more and more agents of the larva start
to synchronize their oscillatory state. Apparently, at some point, local synchronizations within the
larva become too strong. The larva destabilizes and starts to metamorph into an intermediate state in
which its head and tail form two separate blob-like structures. One of them further emits agents into
the surrounding and eventually decays. This event corresponds to a dip in the aggregate’s oscillation
frequency, as emitted swarmers decouple from the center aggregate. The other developing blob
remains spatially localized and shows a slight vorticity. While the swarmers within the remaining
blob display synchronized oscillations, the expelled swarmers have decoherent phases. Finally, some
of the dispersed agents aggregate into a secondary snake-like structure (second growing mode in
‘frequency’ panel) which is spatially captured in a high-amplitude acoustic wave ring emitted by the
blob (Fig. 5.6(a), last snapshot).

Like larvae, blobs, and volvoxes can also detect and respond to approaching objects via reflected
signals (Fig. 5.6(b)). Once the reflective object is introduced above the habitat (red marker in
right panel), the blob’s acoustic signature is changed: The amplitude of acoustic emission increases
significantly given the additional input through reflection at the intruder. As the reflective object gets
closer to the habitat, the volvox sheds peripheral, desynchronized agents, reducing its overall size

103

https://creativecommons.org/licenses/by/4.0/


5

ACOUSTIC SIGNALING ENABLES COLLECTIVE PERCEPTION AND CONTROL IN ACTIVE MATTER SYSTEMS

(clusters panel). Thereby, the aggregate takes a more circular shape, as agents further away from
the synchronized center can no longer be attracted. At this point, the volvox has reached its carrying
capacity. The ejection of excess swarmers also leads to a slight reduction of the dominant oscillation
frequency (frequency panel) and a dip in the signal amplitude (signal panel).

In both these cases, the collective states responded to the reflective object by altering their collec-
tive behavior. The observed self-organized responses to intruders, along with the resulting behavioral
changes, can be linked to specific collective functions. For instance, the morphological transition
from a larva to a blob corresponds to an externally induced localization of the aggregate. Similarly,
the volvox’s response can be seen as a self-organized, coordinated dispersion of agents in reaction
to the intruder. Since we did not specifically design the system with this functionality in mind, the
observed behavior is emergent, demonstrating that minimal physical interactions between agents
can give rise to a higher-order collective functionality. Again we have observed a correspondence
between the emergent behavior of the aggregates and their collective acoustic signatures. Through
acoustic coupling, the agents emit distinct state information into their surroundings, suggesting a
rudimentary form of inter-collective communication.

5.4.2 COOPERATIVE FUNCTIONALITY

Next, we explore two other types of targeted behavior examining how systems can: (i) navigate
through narrow constrictions and subsequently restore their original shape; (ii) regenerate both
their shape and functionality after experiencing significant distortion.

Figure 5.7(a) shows a time series (t1, t2, t3) of a snake-like collective state navigating through
a narrow constriction in a wall (gray). Upon colliding with the wall, the snake’s shape becomes
significantly distorted, suggesting that only a fraction of the agents might eventually pass through
the constriction (t2). However, after the majority of the agents successfully traversed the slit, the
snake nearly regains its original shape and resumes its movement, pulling the temporarily clustered
agents with it (t3). The rightmost panel in Fig. 5.7(a) shows the dependence of the agents’ passing
fraction on the snake length and the slit width. We observe that the passing fraction decreases
significantly as slit width narrows or snake length increases. For increasingly narrow constrictions,
the snake must greatly reduce its width to fit through, and due to the finite size of the swarmers,
more agents are left behind at the constriction. Similarly, longer snakes with more swarmers also
leave behind a growing number of agents at the slit. These left-behind agents then occasionally form
a stable, localized cluster, preventing them from being pulled through with the snake, which further
reduces the passing fraction. Despite these limitations, we find that snakes are often able to pass
through constrictions much narrower than their initial diameter without leaving any constituting
swarmers behind.

Moreover, we observe that the collective states shown in Fig. 5.2 exhibit shape memory and self-
healing capabilities, enabling them to recover both their morphology and functionality even after
experiencing strong perturbations. For instance, if the pacemaking defect in a larva’s head is de-
stroyed (Fig. 5.7(b), t1), the larva initially ejects some agents (t2). It then recovers by regrowing a
body part that contains a new pacemaker and eventually re-absorbs the ejected agents (t3).

To quantitatively assess how the larva recovers its characteristic behavior upon the perturbation,
we investigate the dependence of the aggregate’s velocity on the position of the included polar
defect (Fig. 5.7(b), right panel). We find that the collective propagation of larvae is determined by
the spatial offset of the polar defect with respect to the center of mass of the aggregate. As agents are
oriented around the enclosed polar defect, asymmetries of the defect position control the collective
velocity. Thus, measuring the collective velocity of various larva solutions in dependence of their
defect offset (black dots, Fig. 5.7(b), right), we observe an approximately linear behavior up to a
saturation value of about 20 % of the single swarmer’s velocity (gray line). The linear dependence of
the collective velocity on the defect localization gives a quantifiable measure for the larva phenotype.
Since the motion of all larvae is driven by the same underlying mechanism, we expect that the
velocity to defect offset ratio for each larva will follow the trend shown by the black dotted line in
Fig. 5.7(b). For the larva depicted in the time series (Fig. 5.7(b)), the strong perturbation causes its
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Figure 5.7: Illustrations of emergent functionalities. (a) A stable snake propagates through a narrow constriction (gray).
The rightmost panel shows the dependence of the passing fraction of agents on slit width and snake length. (b) A larva
regrows cut-off head. Larvae exhibit a saturating linear dependence of collective velocity on enclosed polar defect position
(right panel). Upon recovery, the larva eventually returns to the projected dependence of the collective velocity of larvae
states (colored trace in inset). (c) Distant acoustic communication. Two volvoxes interact via emitted acoustic waves and
assume stable inter-cluster distance, an integer multiple of standing acoustic wave length ∆. Blue lines indicate the times of
the snapshots. (d) Capture, transport, and release of a snake by the acoustic beam (snake-in-the-egg). The applied control
protocol is stable for sufficiently large beacon sizes up to control velocities equal to the individual agent velocity. The right
panel indicates the fraction of successfully captured agents. Agent color code shows oscillatory phase, see Fig. 5.2, and
background shows normalized acoustic field amplitudes |u|2 in gray scale. White bars indicate 5 length units. Parameters are
given in Table 5.1. This figure is reproduced from Ref.4 under license [CC BY 4.0].

polar defect to be abruptly removed. In such cases where there is no enclosed polar defect, we define
the defect position as being located at the outer boundary of the aggregate. Consequently, the defect
offset is taken as the maximum distance from the boundary to the center of mass of the solution. We
observe that upon the strong perturbation, the aggregate leaves the characteristic linear dependence
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of larva velocity on defect position (trajectory, purple, inset Fig. 5.7(b)). It has lost its characteristic
larva behavior and has transitioned to another phenotype with large defect offset up to 60% of the
larva’s total length and velocities up to over 40% of the individual agents. In response, the solution
quickly regrows its head by developing a new enclosed polar defect. By doing so it regains the larva
phenotype and returns to the characteristic velocity behavior of larvae (trajectory, red).

In summary, we have demonstrated that, for specific swarmer characteristics and system param-
eters, the emergent collective states are resilient to perturbations, exhibiting a form of phenotype
memory by recovering after external disruptions. This reveals a mechanism for stable, emergent
functionality that is robust against swarmer replacement and can adapt to environmental changes,
ensuring robustness and flexibility in collective behavior.

5.4.3 COMMUNICATION

In the previous examples, we observed that the different types of collective states exhibit distinct
acoustic signatures. As a consequence, each aggregate emits unique waves into their surroundings,
enabling the potential for inter-collective communication. An elementary example of this commu-
nication is the distance regulation of two volvox solutions (Fig. 5.7(c)). Each volvox emits acoustic
waves into its surrounding with individual signature similar to Fig. 5.2(f). The interference of these
emissions creates a standing wave field between the two aggregates, controlling their mutual dis-
tance. As shown in the rightmost panel in Fig. 5.7(c), the inter-volvox distance oscillates about
metastable distances that depend on the wavelength of the emitted acoustic signals. Given the mu-
tual acoustic input, the solutions have an effective average frequency ωeff, such that the standing
wavelength can be approximated as

∆ ≈ c

ωeff
≈ 5 . (5.5)

Thus, the dynamics of the inter-volvox distance depend on the length scale of the acoustic waves of
the two aggregates, enabling them to measure their distance by means of the emitted wave strength
and signal frequencies.

Beyond this very basic form of interaction studied here, acoustic communication facilitates far
more complex interactions, ranging from the recognition of specific signals with orchestrated re-
sponses up to the development of intricate languages. The acoustic coupling enables the exchange
of information between individuals and collectives. As such it can mediate synchronization between
communities depending on inherent properties and shared or distinct external stimuli.

5.4.4 POSITION CONTROL

Given the system’s use of acoustic communication between agents, it is also responsive to external
acoustic stimuli. As we have seen for the response to reflected signals (Sec. 5.4.1), additional inputs
can give rise to significant changes in the observed behavior of the collectives. This external control
over emergent structures has potential applications, such as manipulating the positioning, orienta-
tion, or even the exhibited phenotypes of the agents. In this section, we will explore how external
acoustic signals can be used to control the spatial positioning of the agents.

Specifically, we study a scenario where we superimpose a bell-shaped acoustic signal with fre-
quency ωc at position rc(t) onto the acoustic field generated by the agents:

uc(r, t) = Ace−(r−rc(t))2/(2σ2
c )eiωct , (5.6)

that is, we add this field as a source term to the dynamics of the acoustic field, Eq. (5.1d). To
be specific, we select a control frequency of ωc = 2ω0, which is twice the frequency of the free
agents. This value is chosen because it closely matches the frequencies observed in snakes, which
are typically elevated by up to an order of magnitude compared to those of free agents. However,
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it is important to note that this particular choice is not essential, and position control can still be
effective with other frequency choices.

For capturing agents and controlling their position, the control signal, with amplitude Ac and
range σc is moved along the protocol position

rc(t) =


(2/3 L, 1/4 L)T

, t < 800 ,

(2/3 L, 1/4 L + vct)T
, 800 ≤ t ≤ L

2vc
,

(2/3L, 3/4L)T
, t > L

2vc
.

(5.7)

Using the focused acoustic beam, we aim to capture snakes and then transport them to a desired
position to subsequently release them (Fig. 5.7(d). Capturing the snake at rc = (2/3 L, 1/4 L)T , we
shift the target position by half system length L = 100 with velocity vc. For the snake solution in
Fig. 5.7(d), the applied control first leads to the disintegration of the snake and the capture of all
its agents inside the beam (snake-in-the-egg, t2). Moving the beam toward the target position can
successfully transport the contained agents to the desired location. Once the beam is switched off,
the agents escape the temporary confinement and readily reassemble into a snake (t3).

Even though this generic, open-loop control scheme does not require detailed knowledge of the
controlled collective, it is successful over a broad range of control parameters. Indeed, it is effective
as long as the beacon range is large enough to capture all the constituting agents and the protocol
velocity does not exceed the free agent’s velocity; see rightmost panel in Fig. 5.7(d). However,
we also observe failure of the applied scheme, predominantly when enforcing a stronger mismatch
between the control velocity and the agents’ free velocity. This failure occurs because the agent’s
orientation rather than positioning is directly impacted by the control. For the results shown in
Fig. 5.7(d), the selected control amplitudes Ac ∼ 100 are in the same order as the acoustic field
amplitudes induced by the snake. Larger amplitude signals or more elaborate closed-loop control
schemes could be applied to implement a more reliable position control. As the applied control
initially causes the snake to transform into a blob, this generic control scheme is also effective for
blob or volvox solutions (not shown here), and we anticipate potential applicability beyond the
example studied in this work.

5.5 DISCUSSION AND OUTLOOK

Unlike systems at thermal equilibrium, active matter has the unique ability to form complex struc-
tures. This capacity arises from the constant input of energy at the level of individual agents, al-
lowing the system to self-organize into dynamic, adaptable patterns. Myosin motors have been
shown to generate force through the conversion of chemical energy, enabling actin filaments in actin
motility assays to form self-organized, coexisting polar density waves and nematic lanes163,164. Col-
loidal Janus particles represent another example of self-organizing active matter, as they harvest
chemical energy to exhibit self-propelled motion375, chemotaxis376, and dynamically aggregate into
clusters221,377. Similarly, mixtures of actin and microtubules can self-organize into polar aster-like
defects378 and active foam structures373,379. These studies, along with many others, highlight the
remarkable self-organization capabilities inherent to active matter systems54,56. Continuously driven
out of equilibrium, these systems transform energy to enable the formation of collective structures
and self-organized patterns. The building blocks of these structures are encoded in the microscopic
interactions between their constituent agents. However, to go beyond self-organisation into complex
structures and achieve even higher-order organization that can perform specific tasks or respond to
environmental changes, an additional mechanism for coordination or interaction among agents is
needed. In essence, to achieve functionality, an efficient means of communication is necessary that
supports both collective decision-making among agents and interaction with the environment.

Several experiments have explored the potential of chemical signaling for the development of
higher-order organization into functional structures: It has been demonstrated that self-avoidance in
self-propelled Janus particles arises from information stored within a surrounding chemical field219.
Active droploids, which are aggregates of colloidal particles, exhibit self-organized polarity and co-

107



5

ACOUSTIC SIGNALING ENABLES COLLECTIVE PERCEPTION AND CONTROL IN ACTIVE MATTER SYSTEMS

herent self-propulsion380. Additionally, there is a growing interest in the possibility of extracting
work from active matter systems. For instance, when agents collectively assemble, asymmetries in
their orientation and positioning can generate net rotational motion of the emergent structures381.
Passive gear-like objects, designed with chiral shapes, can act as nuclei for this aggregation and
thereby promote the breaking of rotational symmetry and inducing effective rotation as a collec-
tive phenomenon382. Similarly, collective activity can be harnessed for driving of active droplets383,
and cargo transport384. While such systems with chemical signaling in active matter have been
well studied in recent years3,216,220,385,386, they rely on the diffusion of chemical species, resulting
in relatively slow information exchange. In contrast, wave-type signaling, such as via acoustic or
electromagnetic waves, offers faster communication and can readily be implemented in various syn-
thetic or micro-robotic systems. Despite its potential advantages, this form of signaling has remained
largely unstudied, and its role in driving emergent functional behaviors is still mostly unexplored.

In this work, we proposed and analyzed a first theoretical model of acoustically coupled active
agents, termed swarmers. These polar agents, which self-propel in a two-dimensional habitat, are
equipped with internal oscillators that continuously emit acoustic waves into their surroundings.
Propagating through the three-dimensional space, these waves enable long-distance communication
among individual agents and facilitating non-local interactions between the emergent collectives of
swarmers they form. We have coupled this long-distance information transfer to the motility of the
agents by assuming that the swarmers align towards regions with higher signal amplitudes, typically
where agents’ oscillations are highly synchronized. We discuss the main results and their broader
implications in the following sections.

5.5.1 EMERGENT COLLECTIVE STATES: BEHAVIORAL AND ACOUSTIC PHENOTYPES

Numerical simulations of this agent-based model reveal a rich diversity of emergent collective states
driven by the intricate interplay of self-propulsion, mechanical alignment, and acoustic signaling.
We observe the formation of localized blobs, in which swarmers cluster around a highly synchro-
nized central region containing a polar defect. Additionally, we identify larva solutions, which move
slowly and exhibit an asymmetrical arrangement of agents around a polar defect. Yet another col-
lective structure we observe are fast-moving snakes, which consist of a cohesive group of swarmers
that are well aligned and move coherently in a common direction. These snake solutions bear a
strong resemblance to structures in polar active matter with vision cone alignment207. There, a
non-reciprocal interaction between agents is globally imposed by varying vision cones that control
the mutual alignment interaction207,208. In contrast, our model features emergent symmetry break-
ing, with a self-organizing pacemaker acting as a phase leader. It guides the propagation of phase
waves through the structure and thereby controls directed information transport. Finally, acous-
tic active matter exhibits volvox structures with synchronized central region and an outer layer of
incoherently oscillating swarmers, and ring-like ouroboros structures. The volvox solutions resem-
ble chimera states in networks of non-locally coupled oscillators characterized by the coexistence
of synchronized and incoherently oscillating agents374,387. In contrast to static networks of oscilla-
tors, volvoxes are a spatially organized chimera structures with a dynamic exchange of interaction
partners due to the self-propulsion of agents. Their synchronized center and the incoherently oscil-
lating outer layers reflect two opposed regimes of acoustic signaling. These could be further linked
to different behavioral modes to gain higher order functionality. As the incoherence in the agents
identifies the positioning within the outer layer of the aggregate, agents could develop properties
important for a specific physical interaction. For instance, they could develop into a static shell,
further protecting the aggregate.

Taken together, acoustic active matter is characterized by a rich variety of phenotypes, each ex-
hibiting distinct morphology and mesoscopic behavior. The occurrence of the different phenotypes
is closely influenced by the chosen values of microscopic agent parameters. Our analysis shows
that slow, highly susceptible swarmers form localized blobs, while fast, persistent agents generate
snake-like structures. The other solutions arise in intermediate regimes. This suggests that ma-
nipulating these microscopic parameters allows for a control of the emergent phenotypes. In this
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study, we focused on emergent functionality based on basic alignment with acoustic amplitude gradi-
ents. However, designing more complex functional structures will increasingly require incorporating
higher-order interactions between microscopic agent parameters and the information derived from
the signaling field.

The emergent structures not only show distinct behavioral phenotypes but also produce spe-
cific acoustic emission characteristics. Each collective state generates different frequency distribu-
tions and emission amplitudes, making structures distinguishable based on their acoustic signatures.
Through the emission of these distinctive signals, the collectives can communicate with one another,
allowing them to identify the type and potentially also the current state of the surrounding solu-
tions. As a result, the collectives can develop varied behavioral responses to the different acoustic
interactions they encounter.

5.5.2 FIELD THEORY OF ACOUSTIC ACTIVE MATTER

Beyond exploring emergent structures, we also investigated how the aggregation process continues
on larger time- and length scales. To access these, we proposed complementary continuous field
equations as a coarse-grained version of the agent-based model. Similar to known hydrodynamic
field equations for polar active matter176,189,196,198,199, our model includes polar alignment interac-
tions of swarmers by a density-dependent isotropic-to-polar order transition and the alignment with
gradients in the acoustic signaling amplitude. This field-based approach successfully reproduces the
blobs and snake solutions as two central collective states of the system. Thereby, the model captures
the essentials of the structures’ phenotypical and acoustic signatures. Over longer time scales, we
have observed rapid coarsening of aggregates, much faster than classical Ostwald-ripening or cluster
aggregation in motility-induced phase separation. Ultimately, clustering stabilizes at a length scale
that is influenced by the acoustic wavelength. We find that different clusters interact with each other
via the acoustic field and extract distance and positional information from it. This highlights once
again the significant role of wave-like coupling in cluster aggregation and long-distance information
transfer. The hydrodynamic field theory serves as an effective tool to study acoustic coupling in very
large systems, and may be valuable for future studies of systems with large agent numbers. Our
study demonstrates that information can be propagated efficiently over large distances. While we fo-
cused on system sizes where wave absorption could be neglected, absorption characteristics can vary
across different media. Future studies with specific settings may need to consider such additional
factors like wave absorption and boundary reflections.

5.5.3 ADAPTIVE RESPONSES AND INTERACTIONS WITH THE ENVIRONMENT

For the emergence of collective functional structures, adaptability to environmental changes is cru-
cial as it enables the collectives to locate target positions and to organize and monitor their function.
It is widely recognized as critical for the functioning of biological systems388, spanning from com-
plex animals such as social insects215 to microscopic organisms like bacteria389. However, despite
its importance, few studies have investigated the capabilities of synthetic active matter systems to
respond to environmental changes. For instance, active colloids can form swirl-like structures and
adapt their self-propulsion in response to external changes390. More broadly, colloidal and de-mixed
droplet systems can measure and respond to changes in their chemical or optical surroundings, and
adapt their self-propulsion accordingly219,381,391. These initial implementations of environmental
sensing in synthetic systems already demonstrate its potential impact on the systems’ collective be-
havior. Unlike these previous studies that rely on individual agents to sense environmental cues,
our results demonstrate a collective form of environmental sensing in acoustic active matter that
emerges as a cooperative function through acoustic synchronization within the collectives. In our
model, the environmental sensing is achieved through the acoustic field. Agents emit synchronized
waves and detect reflections from objects in their surroundings. Thereby, the swarmers gain a coop-
erative increase in the strength of environmental coupling by collectively emitting stronger signals.
We have examined how blob and larva structures respond to an approaching reflective object above
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their habitat. The reflected signals trigger phenotype changes in the solutions and lead to cluster
localization or dispersal of agents. This demonstrates that collectives can sense and react to external
stimuli using the acoustic field. Similarly, inter-cluster communication is facilitated by the acoustic
signals. We observed that two volvox-like aggregates could maintain a stable distance by sensing and
responding to each other’s acoustic emissions, essentially measuring their separation through these
interactions.

Our study also reveals that different collective functions require distinct behaviors of the individual
swarmers. In a system of identical units, the swarmers must adapt and differentiate their behaviors in
response to the acoustic input they receive from their surrounding. As this behavioral differentiation
is self-organized and agents are functionally identical, the system can compensate for agent failures
and dynamically adapt to imposed perturbations. As a result, the collective states acquire a high level
of robustness. For example, snake structures can collectively navigate through constrictions narrower
than their original diameter, and larva structures can recover their polar defect, demonstrating their
resilience.

Finally, we presented that acoustic waves can be used to externally control the system. For in-
stance, snake structures can be captured and relocated via acoustic signals, resuming their behavior
once released at the desired position. Altogether, this enables external supervision and control of the
active matter system through the measurement and application of acoustic signals.

In conclusion, we have shown that wave coupling between self-propelled active agents yields
various distinct functional structures with emergent capabilities. The emission and detection of
acoustic signals by the swarmers enable a fast information exchange over large distances. Through
the acoustic field, aggregates communicate characteristic acoustic signals and gain information about
their environment via a collective sonar-like mechanism.

5.5.4 TOWARDS A CYBERNETICS OF ACTIVE MATTER

We believe that the present study takes an important step towards a new form of active matter that is
able to organize into collective states that can be regarded as phenotypes, which exhibit higher-level
features (functions) that allow them to respond in an adaptive way to changes in the environment.
In the proposed framework of acoustic active matter, the system acquires emergent functionality
without external supervision, relying solely on microscopic interaction rules at the level of individual
swarmers. Similar to neural networks, collective functionality arises from the interaction among
units, with each performing only simple computational steps. This approach keeps individual agents
simple and their computational energy consumption minimal, as each swarmer processes only a
small portion of the information available to the entire cluster.

Our minimal model for wave interaction already demonstrates the rich collective behavior achiev-
able through acoustic coupling. This model offers insights into the fundamental principles of wave-
type interactions and the collective organization of oscillatory self-propelled units, as well as the
emergence of collective sensing. It serves as a foundation for exploring more complex interactions
and microscopic behaviors, guiding the development of functional active matter systems towards
more specific and advanced applications.

The potential applications for unsupervised functional active matter systems are diverse. Once this
form of communication is integrated into synthetic systems, it could enable tasks in environments
that are otherwise inaccessible or hazardous. The robustness and adaptability of these structures sug-
gest significant potential for real-world applications in environments where external supervision is
impractical. For example, following the presented principles, ensembles of acoustically communicat-
ing agents may develop a more evolved cooperative sonar, where phase differences in reflected sig-
nals can be evaluated by the collective, yielding insights into the nature of the reflective objects and
triggering appropriate behavioral responses. The wave-like coupling has been motivated by acoustic
waves and could be used by naval drones or robots in a mechanically coupled medium392–394. One
can expect similar behavior from electromagnetically communicating agents.

From a broader perspective, future studies should extend beyond the microscale energy conversion—
that defines the field of active matter—to explore the ability of agents to perceive and respond to
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their environment. Through communication, these agents can then form collectives that exhibit
cooperative behavior, make collective decisions, and actively reshape their surroundings. Investigat-
ing such functional synthetic active matter lays the groundwork for a cybernetics of active systems,
which focuses on designing and controlling synthetic systems to achieve specific objectives.

5.6 APPENDIX

5.6.1 QUASISTATIC SOLUTION OF THE WAVE EQUATION

The system of acoustic active matter introduces a wave-like coupling between self-propelled oscil-
lators. In the model, the swarmers, confined to their two-dimensional habitat, emit waves into the
surrounding three-dimensional medium. Typically, the acoustic wavelengths are much larger than
the size of the individual agents, and the speed of sound significantly exceeds the self-propulsion ve-
locities of the swarmers. In this section, we explain how we take advantage of these scale differences
to incorporate acoustic coupling by employing a quasi-static solution to the three-dimensional wave
equation with the agents as acoustic sources. The dynamics of the sound field u(r, t) in three spatial
dimensions, r = (x, y, z)T ∈ R3, is modeled using the wave equation

1
c2 ∂2

t u(r, t) = ∇2u +
∑

j

w(r − rj , t)aj(t)δ(z) , (5.8)

with the speed of sound c and active agents as sources confined to the two-dimensional plane at
z = 0. As detailed in the main text, the agents’ source contribution aj(t) is weighted by a Gaussian
kernel w(r, t), representing the agent’s size. Assuming a fast sound dynamics as wave propagation
is fast compared to the agent velocity, i.e., c ≪ v0, we consider the quasi-stationary case,

c2∇2u(r) + gδ(z) = 0 . (5.9)

with general source contributions gδ(z). It can be solved using a separation ansatz for the in-
plane solution in the two-dimensional habitat and the perpendicular out-of-plane direction, u(r) =
ux,y(x, y)Z(z). Assuming periodic boundary conditions within the habitat, we apply a Fourier trans-
form in (x, y)-plane with two-dimensional wave vector k = (kx, ky)T . Then, outside the habitat
plane (z ̸= 0) in the absence of additional sources, the stationary wave equation reads

0 = c2 (−k2
x − k2

y + ∂2
z

)
ũkZ(z) , (5.10)

with Fourier transform ũk ≡ F [ux,y(x, y)] (k). Next, we aim to find the corresponding out-of-plane

bulk solution Z(z). For non-vanishing in-plane wave vectors, k = |k| =
(
k2

x + k2
y

)1/2 ̸= 0, the
equation reads

∂2
z Z(z) =

(
k2

x + k2
y

)
Z(z) , (5.11)

and one can find the solution

Z(z) = e−k|z| , (5.12)

which fulfills the boundary conditions of vanishing contributions at z → ±∞. Waves emitted from
the two-dimensional habitat exponentially decay in the bulk depending on their wave length 1/k.
Accordingly for the homogeneous emission from the bulk, k = 0, the equation reduces to

∂2
z Z(z) = 0 , (5.13)
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with the solution

Z0(z) = α + β|z| . (5.14)

As we neglect absorption in the medium, which is valid for sufficiently small systems, the decay of
waves away from the habitat is only caused by interference effects between the waves emitted at
different position within the two-dimensional plane. The waves will overlay and eventually average
out at some height above the habitat. Homogeneous oscillations on the other hand, will never
average out as they have a net contribution over the whole domain. Next, we consider the sources
at z = 0, such that the full solution to the wave equation has to fulfill

c2 (∂2
z − k2) ũkZ(z) + g̃kδ(z) = 0 . (5.15)

We integrate this equation over a small interval around the habitat z ∈ (−ϵ, ϵ) and subsequently
consider the limit ϵ → 0. As, the integral

lim
ϵ→0

∫ ϵ

−ϵ

Z(z)k2dz = 0 (5.16)

vanishes in the limit, we remain with the terms

lim
ϵ→0

c2∂zũkZ(z)
∣∣∣ϵ
−ϵ

+ g̃k = 0 . (5.17)

Evaluating the limit, we obtain for k ̸= 0,

−2c2ũkkZ(z) + g̃k = 0 , (5.18)

which is solved by

ũkZ(z) = g̃k

2kc2 . (5.19)

For vanishing wave vectors, k = 0, evaluation of the limit in equation, Eq. (5.17), yields

2c2ũ0β + g̃0 = 0 , (5.20)

with the solution

ũ0Z0(z) = ũ0

(
α − g̃0|z|

2c2ũ0

)
. (5.21)

Finally, as argued before, we neglect any homogeneous contributions to the acoustic field, ũ0 = 0
as these would represent global offsets and therefore just shift the baseline of the acoustic field.
Consequently, for a given Fourier representation of the sources, g̃k, the acoustic field at the habitat,
z = 0, is given by

ũk = g̃k

2c2
√

k2
x + k2

y

. (5.22)

Under negligence of damping, we solve the three-dimensional quasi-static wave equation for acoustic
emitters confined to a two-dimensional plane. The resulting acoustic field gives rise to a non-local
acoustic coupling that scales as 1/k in Fourier space. To understand the impact of this non-local
coupling on structure formation, we study a minimal version of the acoustic active matter. Namely,
for homogeneous agent densities, the system simplifies to a non-locally coupled complex Ginzburg-
Landau equation, see appendix Sec. 5.6.2.
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5.6.2 NON-LOCALLY COUPLED COMPLEX GINZBURG LANDAU EQUATION

In the main text, we discuss how for constant densities, ρ ≡ ρ0, the system of acoustic active matter,
Eq. (5.1), can be described by a non-locally coupled version of the complex Ginzburg Landau equa-
tion (CGLE). Indeed, for homogeneous densities and without swarmer motility, ρ(x, y) = ρ0, v0 = 0,
the system reduces to

∂ta = µ∇2Da + (1 + iω) a − (1 + ib) |a|2a + λu|z=0 (5.23)
1
c2 ∂2

t u = ∇2u + ρ0aδ(z) . (5.24)

Assuming large wave propagation velocities c ≫ 1, one can consider the quasi-static wave equa-
tion, namely the Poisson equation,

∇2u = −ρ0aδ(z) , (5.25)

with solutions given by Eq. (5.22), see appendix Sec. 5.6.1. Inserting this solution into Eq. (5.23),
we consider plain wave solutions,

a(x, t) = a0 exp {iΩt + ikx} . (5.26)

Plugging this ansatz into Eq. (5.23) yields a dispersion relation Ω(k),

iΩ = (1 + iω) − (1 + ib) a2
0 + λρ0

2|k|
− µk2 . (5.27)

From it, one can see that the coupling of the oscillatory medium mediated by the acoustic field
induces non-local interactions (∼ 1/|k|) which scale with the wavelength of the considered wave.
Solving this equation, the amplitude and, respectively, the phase of the plane-wave solutions read

a0 = 1 + λρ0

2|k|
− µk2 (5.28)

Ω = ω − ba2
0 . (5.29)

As for the classical CGLE, the frequency of the acoustic wave has a non-linear relationship with the
amplitude as Ω ∼ ba2

0. The non-local acoustic coupling reflects itself in an additional contribution
(∼ λ) which modulates the plane wave amplitude. Considering the group velocity within the plain
wave solution, one gets

vg = ∂Ω
∂k

= 2ba0

[
λρ0k

2|k|3
− 2µk

]
. (5.30)

As such, the acoustic coupling induces a divergence of the group velocity for long wavelength modes,
k → 0. As discussed in appendix Sec. 5.6.1, this is due to the fact that waves overlay and propagate
through the three-dimensional environment. They eventually anihilate over length scales at which
positive and negative contributions vanish on average. For larger wavelength, k → 0, this length
scale over which waves negatively interfere becomes larger and larger. Thus, interactions become
increasingly strong for larger wavelength of the acoustic signals. This non-local coupling on large
length scales has a significant impact on the system’s coarsening dynamics, as we will see below. We
measure the number of phase defects in the non-locally coupled CGLE, Eq. (5.23), for a constant
homogeneous agent density ρ0 = 0.6 over time (Fig. 5.8). Without the long-range acoustic coupling,
λ = 0, we observe slow defect coarsening due to the exponentially decaying interaction between
defects368,395. In contrast, enabling the acoustic coupling yields a significantly faster merging of
defects as regions synchronize via the acoustic field. The final number of defects, Ndefect, saturates
according to the CGLE screening length, Lscreening ∼ 1/bk0, with the wavenumber selected by the
defects k0. The explicit relationship can be obtained from the asymptotic linear stability of the
planar waves emitted by the topological defects368. Then, one can find that the defect number
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Figure 5.8: Temporal evolution of numberNdefect of phase defects. The non-local coupling λ > 0 accelerates defect coarsening
significantly until a final length scale is reached. Measured numbers correspond to a box with side length L = 1000 with
periodic boundary conditions. System parameters as in Table 5.2. This figure is reproduced from Ref.4 under license [CC BY
4.0].

Ndefect ∼ L2/L2
screening, where L represents the system size368. For conciseness, we will not perform

the calculations explicitly here. The study of this minimal system for acoustically non-locally coupled
oscillators emphasizes the significance of the long-range interaction for the coarsening of defects on
a large scale.

5.6.3 DETAILS ON NUMERICAL SIMULATIONS

AGENT-BASED SIMULATIONS

In this section, we give the details of the applied numeric integration scheme for the dynamics of
the N acoustically interacting active agents in a two-dimensional domain (x, y) ∈ [0, L] × [0, L]
with periodic boundary conditions. In the agent-based simulations, we directly solve the equations
(5.1) for the agents’ positions rl, orientation angles φl, and oscillatory states al applying a forward
Euler-Maruyama scheme with fixed time step dt. Agents interact through a hard-sphere interaction
rule flj , causing overlapping agents to shift in the direction of their distance vector equally until a
distance of 2 rp is restored. Further, agents exhibit polar alignment with neighboring agents within
an interaction radius of rc = 4 rp. We assume a stochastic reorientation of individual agents by
adding a zero-mean Gaussian white noise with amplitude ξl to the dynamics of the orientation
angle. For the direct agent-agent interactions, neighborhoods are tracked using regular linked cell
lists with periodic wrapping. To implement the acoustic interactions between swarmers, we compute
the instantaneous quasi-stationary acoustic field in Fourier space as detailed in section 5.2.1. Each
agent contributes as a source according to its real unbinned position with its current oscillator state
al, extended as a Gaussian contribution with width σ = 2 rp. Namely, the source contribution of
agents to the acoustic field is modeled as

w(r) = exp
{

−r2/2σ
}

, with σ = 2 rp . (5.31)

Depending on the size of the studied system, we resolve the acoustic field with 128 up to 512 Fourier
modes per spatial direction. Derivatives of the acoustic field amplitudes with which the swarmers
align their direction of self-propagation are computed in Fourier space. If not stated otherwise,
the swarmers are initially uniformly distributed in the two-dimensional domain, avoiding overlaps
between swarmers when drawing random positions. Their orientation angles are picked from a
uniform distribution, φl ∈ [0, 2π] and oscillatory states are set to the stable amplitude |a| = 1 with
uniformly distributed phases [0, 2π].
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Parameter Description Fig. 5.2 Fig. 5.6(a) Fig. 5.6(b) Fig. 5.7(a) Fig. 5.7(b) Fig. 5.7(c) Fig. 5.7(d)

v0 agent velocity various 0.1 0.1 0.2 0.1 0.2 0.1

DR angular noise 0.02 0.02 0.01 0.01 0.02 0.01 0.01

rp particle radius 0.25

rc interaction radius 4 rp

Γ polar alignment factor 0.1 0.1 0.2 0.2 0.1 0.2 0.2

Ξ sound susceptibility various 0.05 0.1 0.01 0.05 0.2 0.05

ω free oscillator frequency 0.5 0.1 0.5 0.5 0.1 0.5 0.5

b nonlinear frequency coupling 0.5 0.05 0.05 0.5 0.05 0.05 0.05

λ acoustic coupling 0.1 0.1 0.02 0.00001 0.1 0.01 0.1

c sound speed 20 5 50 50 50 50 50

Table 5.1: Parameters used for the agent-based model, Eqs. (5.1).

CONTINUUM FIELD EQUATIONS

In this appendix section, we give details on the numerical solution of the continuum field model for
acoustic active matter, Eqs. (5.3). We consider the equations on a 2D square domain, r = (x, y)T ∈
[0, L] × [0, L]. The pressure-like contribution to the polar field dynamics

P ′(ρ) = exp (−32ρ) + exp (16(ρ − 2)) , (5.32)

implements the minimal and maximal agent densities at the values zero and two, respectively. We
numerically solve the equations for the swarmer density ρ(r, t), oscillator state a(r, t), and polar ori-
entation p(r, t) in Fourier space by applying pseudo-spectral methods with typical resolutions of 256
to 8192 modes per dimension, depending on system size. The critical computations and particularly
the fast Fourier transform are parallelized running on the GPU using CUDA. We implement differen-
tial operators using their respective Fourier kernels, and nonlinearities in the dynamics are computed
in real space. The temporal integration is implemented using exponential time differencing (ETD2),
realizing a semi-implicit solving of the linear contributions to the dynamics. As for the agent-based
simulations, we employ the stationary solutions for the acoustic field u, Eq. (5.2), with continuous
sources g(r, t) = ρ(r, t) a(r, t). The system is typically initialized with a homogeneous density of 0.6,
well below the isotropic to polar order transition at ρ = 1, perturbed with a zero-mean Gaussian
white noise of small amplitude. We initialize the polar order field as well as the swarmer’s complex
oscillatory state with zero-mean Gaussian white noise around vanishing values.

5.6.4 MODEL PARAMETERS

The system parameters used for the numerical simulations of the agent-based model, Eq. (5.1) are
given in Table 5.1. For the numerical simulations of the continuous field equations, Eqs. (5.3), we
used the parameter values detailed in Table 5.2.
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Parameter Description Fig. 5.3 Fig. 5.4 Fig. 5.5 Fig. 5.8

v0 agent velocity various 0.02 (a), 0.1 (b) 0.04 0

µ density diffusion 0.05 0.05 (a), 0.02 (b) 0.02 0

σ polar order transition factor 1 1 1 n.a.

δ polar order magnitude parameter 1 1 1 n.a.

κ polar elasticity 0.05 0.05 0.05 n.a.

χ polar self-advection 0.05 0.05 0.05 n.a.

Ξ sound susceptibility various 5000 (a), 100 (b) 100 n.a.

ω oscillation frequency 0.5 0.5 0.5 0.5

b nonlinear frequency coupling 0.05 0.05 0.05 0.05

λ acoustic coupling 1 (a), 0.001 (b) 1000 (a), 0.001 (b) 1 various

c sound speed 50 50 (a), 20 (b) 50 50

Table 5.2: Parameters used for numerical simulations of the continuous field equations, Eqs. (5.3).
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In this thesis, we explored two different classes of systems in which non-local interactions play
a crucial role in facilitating self-organization and creating emergent, structured behavior. The first
part was concerned with protein demixing and pattern formation in static and dynamic geometries,
as discussed in Chapters 2 and 3, respectively. The second part, Chapters 4 and 5, focused on self-
propelled active matter, where long-range communication between active agents enables collective
dynamics.

In Chapter 2, we analyzed protein pattern dynamics in fixed geometries. Here, spatial variations
of the confinement break translational invariance, introducing spatially heterogeneous conditions
on the enclosed reaction-diffusion dynamics. The behavior of individual proteins is determined by
their immediate surroundings and sampling an entire geometry would take a long time for single
proteins. However, as a collective effect, protein patterns can almost immediately ‘sense’ geomet-
ric properties such as bulk-to-boundary ratios and the spatial confinement through reactive surface
interactions and concentration gradients. The spatial heterogeneity imposed by the geometric defor-
mation rather provides static spatial information than a dynamic non-local coupling. Nevertheless,
this system yields interesting findings on its own and it could be extended to mechano-chemically
coupled systems involving non-local geometric coupling. Here, Chapter 2 sets the stage for the study
of dynamically modulated membrane surfaces discussed in Chapter 3. For this system, we observed
that the dynamic interplay between phase separation of proteins and protein density-dependent
membrane deformations directly induces an effective mechanical non-local coupling between the
protein density patterns.

The second class of systems discussed in this thesis, self-propelled active matter, was addressed
in Chapters 4 and 5, where we investigated the fundamental role of long-range communication in
enabling emergent collective behaviors. Similar to isolated proteins, individual agents have only
access to local information of the system and collecting information on the larger scales would re-
quire a significant amount of sampling, and becomes unfeasible given large system sizes or dynamic
changes of the environment. However, as a collective, the active agents can communicate informa-
tion about states of the system at different positions and thereby develop distinct collective behavior.
The nature of this communication is a central theme in these chapters. In Chapter 4, we focused on
chemical communication as a mechanism for self-organization within active matter. Chemical signal-
ing allows agents to collectively coordinate their behaviors and develop organized spatial patterns.
Moving beyond self-organization, Chapter 5 explored how acoustic coupling enables active agents
to respond collectively to external stimuli. Implementing this mode of communication, we observed
the emergence of collective functionality such as collective perception and cooperative behavioral
adaptation, highlighting the rich dynamics that can arise through non-local interactions.

6.1 GEOMETRIC EFFECTS ON PROTEIN PATTERN FORMATION

GEOMETRY-INDUCED PATTERN SELECTION

Summary In Chapter 2, we developed a minimal framework to study the effects of spatially modu-
lated confinements on protein pattern formation in systems with bulk-boundary coupling. To analyze
the behavior of such systems, we assumed a deformed tubular geometry and derived an effective one-
dimensional equation by dimensional reduction. The dimensionally reduced equations incorporate
the geometric effects such as the spatially varying bulk volume and the surface area via effective
advective terms.

Geometric modulations break the system’s translational symmetry, leading to spatial variations in
local bulk-to-boundary ratios and effective reactive rates. Using the reduced equation, we performed
a perturbative linear stability analysis, treating geometric deformations as weak deviations from
the dynamics in an undeformed tube. Our study analytically predicts the geometrically controlled
wavelength and localization of the emergent patterns. The predictions align very well with the
results of full three-dimensional numerical simulations.

Additionally, we investigated the long-term dynamics of a two-component mass-conserving re-
action-diffusion system24,25. Considering the dynamics within an undeformed tube, we observed
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coarsening behavior in which diffusive mass flux increases the mass in larger high-density domains
at the expense of smaller ones. The pattern length scale increases successively until a single high-
density domain survives. However, we show that in spatially modulated geometries, deformations
can interrupt this coarsening process. The strength of coarsening decreases with increasing distance
between high-density plateaus, while the system’s tendency for interface minimization depends only
on local interactions between the solution and the geometric modulation. Using our analysis, we
identified a critical deformation strength at which these competing effects balance, halting coarsen-
ing and thereby controlling the final pattern length scale.

Discussion In this study, we identified spatially varying bulk-boundary ratios and locally available
mass as key factors driving geometrically induced pattern formation in bulk-boundary systems. The
system’s tendency to minimize interfaces emerges as the primary mechanism behind pattern motion
in spatially varying geometries. Notably, this diffusive interface minimization can counteract mass
transfer during coarsening dynamics, particularly when changes in the mass of localized solutions,
such as mesas, require adjustments of interface lengths. The study of geometrically interrupted
coarsening in the reduced system presented here provides valuable insights into the broader princi-
ples underlying the interaction between geometry and interface dynamics. Overall, we demonstrate
that spatially modulated confinements can control pattern length scales and arrest coarsening, offer-
ing a geometric means of regulating emergent patterns in reaction-diffusion systems.

Building on our study of static tubular geometries, future work could explore dynamic confine-
ments, such as dynamic surface deformations governed by the Canham-Helfrich free energy, as
demonstrated in Chapter 3 for a two-dimensional membrane manifold. Extending the current frame-
work in this direction would enable investigations of minimal models for mechano-chemically cou-
pled bulk-boundary systems. Even in the absence of dynamic modulations, the interplay between
interface minimization and geometric modulation gives rise to non-trivial motion and pattern lo-
calization. Introducing an energetic contribution from an enclosing elastic membrane could further
generate intricate feedback mechanisms. This extended framework could serve as a minimal set-
ting to study processes relevant to cellular organization and experimental systems, like Min-protein-
enclosing vesicles, which exhibit a beating behavior driven by enclosed Min protein oscillations231.
Such investigations may provide valuable insights into pattern localization and the mechanisms un-
derlying length scale selection in biological systems, including cellular patterning.

Furthermore, incorporating flow contributions resulting from membrane contractions could ad-
dress phenomena observed in various biological systems, such as the vein network of Physarum
polycephalum240. These flows can facilitate rapid bulk transport of species, significantly influencing
pattern formation. For instance, in a minimal two-component mass-conserving reaction-diffusion
system, it has been shown that a constant flow in planar geometries can induce pattern formation
and cause patterns to move against the flow direction52. Exploring such effects in an interplay with
dynamic membrane contractions presents an intriguing research question.

For all these proposed extensions, the reduced description presented here could be applied, along
with perturbative approaches, to gain analytical insights into the underlying mechanisms. Addi-
tionally, when the system permits a one-dimensional reduction, the derived dimensionally reduced
equations also provide an efficient basis for numerical simulations. This may be particularly advan-
tageous compared to solving full three-dimensional bulk-boundary reaction-diffusion system, espe-
cially in scenarios involving dynamic variations of the enclosing surface.

MECHANICALLY COUPLED PROTEIN PATTERNS

Summary In Chapter 3, we studied the mechanical coupling between proteins embedded in a
dynamic membrane surface. In our model system, proteins are assumed to exhibit Flory-Huggins
phase-separation dynamics, allowing them to demix. In the presented setting, the proteins interact
with membrane dynamics by inducing a spontaneous curvature which is incorporated in form of a
Canham-Helfrich term in an effective free energy.
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A linear stability analysis of the fully mixed state, complemented by numerical simulations, re-
vealed a transition in the type of instability exhibited by the system. Specifically, the system tran-
sitions from an unbounded Cahn-Hilliard-type instability to a finite-wavelength, conserved Turing
instability. Our results demonstrate that the mechanical coupling of protein densities via membrane
deformations yields an effective surface tension, which quantifies the energetic cost associated with
unfavorable protein concentrations during expansions or contractions of the local membrane surface
area.

For intermediate ranges of the protein-induced spontaneous curvature, we observed the emer-
gence of a finite pattern wavelength in the system’s long-term dynamics. To investigate this arrested
coarsening behavior, we analyzed the effective free energy and expanded it to quadratic order in
both the membrane height and protein density fields. This approach led to an effective equation
incorporating a non-local coupling term, which represents the influence of membrane deformations
on protein densities. The resulting non-local coupling introduces a characteristic length scale into
the system, thereby interrupting coarsening dynamics. Based on this analysis, we derived an ex-
pression for the length scale selected by the geometric interactions which we validated by numerical
simulations.

Discussion Altogether, we find that the effective mechanical coupling through membrane defor-
mations leads to a pattern wavelength selection, that depends on the mechanical properties of the
membrane and the protein-induced curvature.

Interactions between phase-separating proteins that are mediated by deformations of membranes
can serve as a minimal setting for the formation of patters with distinct length scales. Remark-
ably, the geometric regulation of length scales is possible even in such minimal systems that relax
to thermodynamic equilibrium. In cellular contexts, these fundamental mechanisms are likely to
occur but may be further influenced by active processes, such as active protein reactions or active
transport71,73. Therefore, combining protein-induced membrane deformations with active reactions
represents a promising approach to explore the effects of deformation-mediated mechanical coupling
in (weakly) actively driven systems.

Certain proteins, such as BAR domains, exhibit anisotropic shapes, which can induce anisotropic
deformations in the membrane surfaces to which they are bound227,276. These anisotropic membrane
deformations may, in turn, promote deformation-mediated nematic alignment of proteins, thereby
potentially amplifying the induced membrane deformations396,397. A deeper understanding of these
systems could provide valuable insights into processes such as FtsZ ring formation at cellular division
sites and related biological phenomena398–400.

PERSPECTIVES

The presented discussion of coupled phase-separation or reaction-diffusion dynamics with fixed and
dynamic geometric confinements reveals the intricate feedback between mechanical aspects of the
geometry and biochemical pattern formation. Our findings show that the behavior of pattern forming
systems can be effectively controlled by geometric cues as spatial deformations significantly influence
pattern length scales and dynamics. As a result, we have seen that for dynamic geometries, a mu-
tual feedback emerges: protein patterns can induce deformations in the system’s geometry. Thereby
the patterns remodel the domain they are confined in and consequently adapt to these changes.
For instance, in lipid vesicle-enclosed MinDE protein systems, protein-induced membrane curvature
leads to substantial shape changes of the enclosing vesicles231. Similarly, in starfish oocytes, protein-
induced control of actin cytoskeleton contractions generates surface contraction waves that organize
meiotic cell division through dynamic feedback between protein patterns and deformations5,52. For
such experimental systems one could imagine a scenario in which a dynamic geometric confinement
interacts with the embedded protein reaction network. Multiple of these mechano-chemically in-
teracting units could then interact mechanically with each other by exerting deforming forces on
their neighbors and thereby effecting their internal protein pattern dynamics. This would allow for
a mechanical communication between the units mediated through deformations. It is reminiscent
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of the mechano-sensitive behavior of cells in tissues which diversify also on the basis of mechanical
cues and interactions401,402.

Beyond these exemplary systems, the interplay between patterns and geometry represents a fun-
damental mechanism in biological organization. Developing a mechanistic understanding of this
feedback is essential for unraveling the complexity of cellular systems and for exploring key design
principles for constructing artificial cells.

6.2 TOWARDS FUNCTIONAL ACTIVE MATTER

CHEMICAL ACTIVE MATTER

Summary In our study on chemically communicating active matter, Chapter 4, we developed a
model of self-propelled, chemotactic active agents equipped with an excitable internal state. When
these agents detect chemical signals, they can either amplify and relay the signals by emitting ad-
ditional signaling molecules or remain inactive. This non-linear relaying mechanism implements a
minimal form of signal processing. Despite the fact that the chemical signals only diffuse, the agents’
relaying behavior gives rise to trigger wave propagation, enabling relatively rapid signal transport
throughout the entire population. The resulting form of non-local communication facilitates the
system’s self-organization into various collective dynamic states, each characterized by distinct be-
havioral properties.

These states play specific roles within the hierarchical self-organization process: At the first level,
through local chemical interactions, the agents form smaller active droplets exhibiting collective mo-
tion. These droplets subsequently aggregate into few vortex state, localized structures that continu-
ously emit chemical signals via internal spiral wave activity. The vortices thereby act as self-organized
aggregation centers. The emitted signals from these centers organize further aggregation as active
droplets merge into directed streams, converging toward a central vortex. This mechanism results in
a remarkably rapid aggregation process, enabled by the long-range communication.

To quantify the emergent order within the system, we analyzed the information content associated
with the different states observed throughout the aggregation process. We established a qualitative
link between the system’s organization, changes in information content, and the agents’ signal pro-
cessing capabilities. Through this analysis, we identified the individual agents’ processing of the
chemical signals as the fundamental driving mechanism behind the observed self-organization.

Discussion Communicating active matter represents a novel class of systems where the internal
degrees of freedom of active agents enable complex, non-trivial interactions between individual
units. Our analysis of a chemically interacting system reveals that such a communication yields
relaying of signals through agents functioning as excitable nodes. This results in a trigger wave
propagation of signals with amplitudes and velocities persistent over large distances. For effective
communication, it is crucial that local information is either spread across space or retained over time,
allowing agents to acquire collective information. For example, an established chemical field can act
as a form of collective memory.

To access this shared pool of information, the agents could directly change their self-propulsion
behavior in response to the measured chemical field, such as by chemotactic alignment. In our
model, however, also the agents’ internal states are coupled to the chemical field. This coupling
enables non-trivial communication and is essential for achieving long-range signal transport.

The observed self-organization capabilities of this system surpass those seen in purely chemotac-
tic models, such as the renowned Keller-Segel model167 or in synthetic experimental systems like
chemotactic Janus particles sensing fuel gradients376. Introducing internal degrees of freedom to
synthetic systems could therefore unlock new behaviors. For instance, internal chemical reactions
could be implemented in a system of active droplets enclosing Belousov-Zhabotinsky reaction403 or
Min protein enclosing vesicles231. These systems could then implement long-range chemical signal-
ing serving as a communication strategy between the individual units. Such strategies hold promise
for artificial systems requiring efficient long-range coupling and coordination.
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The aggregation process studied in Chapter 4 bears a strong resemblance to the behavior ob-
served in Dictyostelium discoideum, where cyclic AMP serves as a signaling molecule to organize
aggregation43,45. This parallel suggests that the biological system may have gained an evolutionary
advantage by employing a similar chemical communication technique to spread signals effectively
over large distances.

Beyond this specific biological context, our study highlights the critical role of communication in
facilitating self-organization among active agents. We demonstrate how the emergent order in the
system arises from the signal-processing capabilities of individual agents. These findings, along with
the identified minimal motifs for communicating active matter, have broad implications for synthetic
systems and provide insights into the functioning of chemically communicating biological systems.
This may prove particularly significant for the development of functional active matter.

ACOUSTICALLY COUPLED ACTIVE MATTER

Summary In Chapter 5, we introduced a model for acoustic active matter composed of self-pro-
pelled agents capable of acoustic signaling. Each agent possesses an internal oscillatory degree of
freedom, periodically emitting acoustic waves into its environment. These acoustic signals, in turn,
serve as inputs that feed back into the agents’ internal oscillators, creating a coupling mechanism
dependent on the agents’ positions within the collectively established acoustic field. Through this
position-dependent acoustic coupling, the agents form a motile network of oscillators that can syn-
chronize both their spatial positioning and oscillatory states.

Using numerical simulations of an agent-based model and phenomenological hydrodynamic field
equations, we observed a range of emergent collective states. These include localized, fully synchro-
nized ‘blob’ solutions; slowly propagating ‘larvae’, exhibiting enclosed target patterns of oscillations;
and rapidly moving ‘snakes’ that feature phase waves propagating from head to tail through the
structure. Each of these states displays distinct synchronization patterns, leading to the emission of
characteristic acoustic signals that convey information about the structure’s state and location. These
emitted signals enable the structures to communicate collectively and interact dynamically with their
environment.

Thus, the acoustic interactions not only enhance the ability of a few agents to self-organize and
aggregate into coherent collectives but also facilitate a form of collective communication that re-
sults in emergent functionality. For example, we observed inter-cluster communication, whereby
clusters maintain a stable distance from each other through their acoustic signaling. Within the
collective structures, identical agents differentiate their behavior by adapting their internal oscil-
lators in response to inputs from the collective acoustic field. This self-organized differentiation
produces phenotypic states that are highly robust to perturbations. Following strong disturbances,
the structures exhibit remarkable resilience, rearranging their internal order to recover their phe-
notypic organization. Moreover, the collective dynamics are not limited to emitting waves but also
include responses to incoming acoustic signals. For instance, aggregates demonstrated a collective
response to waves reflected from passive objects, undergoing significant changes in phenotype such
as induce localization of a propagating solution or dispersal of agents from an aggregate into the
surrounding environment.

Finally, we explored the controllability of the system through external acoustic inputs. By apply-
ing external stimuli, we effectively guided the spatial positioning of aggregates, demonstrating the
potential for external control over the collective behavior.

Discussion In this work, we presented a model for acoustic interactions in active matter systems.
The physical coupling by acoustic signals enables agents to communicate over large distances, even
across regions only sparsely populated with agents. In contrast to the chemical communication
studied in Chapter 4 which requires signal relaying already over comparably short distances, acoustic
signals typically allow for much larger communication ranges.

A key feature of communicating active matter lies in an additional internal degree of freedom that
is not directly tied to the agent’s self-propulsion. This freedom enables emergent properties within
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the collective that do not fully result from their propulsion behavior alone.
Considering technical implementations of active matter in the field of robotics, acoustic or electro-

magnetic wave-like communication may have broader applicability compared to chemical diffusion,
which can be heavily influenced by flows and turbulence within the medium or other environmen-
tal factors. This is particularly relevant for underwater swarm robotics, where acoustic interac-
tions promise significant advantages404. Establishing functional active matter systems and artificial
swarms is an open field in robotics, highlighting the importance of understanding the underlying
mechanisms behind acoustic coupling for designing such systems.

Future studies could explore behavioral switches in agents driven by their internal states, or in-
vestigate interactions between multiple agent populations, gradually increasing system complexity.
Tasks such as cargo pick up and transport could be implemented by detection through a collective
sonar functionality and propagation towards an acoustic beacon identifying a target position for drop
off. Clearly, for real-world applications, self-organization capabilities and interaction rules will need
to have significantly greater complexity than presented in this initial study. We rather provide a start-
ing point focusing on key ingredients in communicating active matter that already lead to emergent
functionality.

In particular, we identified key advantages of acoustic communication, such as the ability of agents
to synchronize and communicate effectively over long distances. We further showed that collectives
can develop a form of cooperative sonar, where agents emit acoustic waves, collectively perceive
reflections, and adapt their collective behavior in response to the reflected signals.

For unsupervised functional active matter, relying on self-organized behavior represents a promis-
ing approach. If desired behaviors emerge naturally from simple interaction rules, they can arise
reliably, independent of external supervision. In Chapter 5, we presented a first exploration of how
unsupervised self-organization can be realized in acoustically active matter systems.

PERSPECTIVE

After decades of theoretical, numerical, and experimental research on the self-organization of active
matter systems, increasing attention is being directed toward practical applications that make use
of the collective behavior of active matter. Promising areas of application include medical technolo-
gies405 and environmental monitoring tasks406. Rapid advancements are also occurring in the devel-
opment of technological implementations, particularly in the field of artificial robotic swarms407–409,
with a focus on establishing systems for tasks such as artificial pollination410,411 or active monitor-
ing412.

To fully unlock the potential of active matter systems in practical applications, it is essential to
make use of their collective effects. For instance, these effects could be realized through collective
structure formation or by enabling the spread and exchange of information over large distances
among numerous agents in a collective. For such applications, the systems could rely on cooperative
functionalities that are self-organized and emerge from principle behavioral rules. This may be
particularly beneficial for scenarios involving small robots or agents, which are often constrained by
limited memory and processing power. In such cases, collective signal and information processing
becomes critical, as in the absence of external supervision and control of each individual units, the
system must respond self-organized as a unified whole. Another key advantage of self-organized
systems lies in their ability to adapt dynamically to environmental changes and to compensate for
agent failure. This adaptability arises through the self-organized specification of agents within the
collective which is a fundamental mechanism in emergent behavior. Even though agents may be
identical, they can take on different roles within the system. This self-organization ensures that the
collective remains functional, resilient, and capable of fulfilling tasks even when direct control or
supervision is unfeasible.

Our studies represent a step toward understanding emergent collective behavior, particularly the
processes underlying collective decision-making and the emergence of cooperative perception. To
develop functional active matter systems capable of performing real-world tasks, such as those out-
lined above, it is clear that more sophisticated behavioral routines and interaction mechanisms will
be required.
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6.2.1 CLOSING

Overall, this thesis demonstrates how non-local interactions, whether mediated through geometric
deformations or by means of communication, are essential drivers of self-organization and emergent
behavior in both biological and general active matter systems. Our findings reveal principles of
collective dynamics and offer insights into the mechanisms by which systems ranging from proteins
to active agents, overcome local information constraints to exhibit complex, coordinated behaviors
at larger scales.

We discussed relevant subjects such as the impact of geometric deformations and mechanical
coupling on confined pattern-forming systems which is applicable to cellular organization processes
and biological structure formation. We studied the role of long-range communication for collectives
of active agents by which they gain access to information about distant positions and can collectively
organize. These insights address general questions surrounding collective perception, the emergence
of shared decision-making, and the development of cooperative functionalities. Importantly, our
study of elementary communication mechanisms also has potential implications for technological
applications, such as the design of unsupervised robotic swarms. Our work points toward a future
‘cybernetics of active matter’, where emergent cooperativity serves as the foundation for collective
functionality.

By connecting ideas from biology and physics, this thesis provides a deeper understanding of self-
organizing systems and yields principles and potential concepts for bio-inspired technologies and
adaptive active materials. Moving forward, further exploring the balance between local and non-
local interactions could help address challenges in areas such as synthetic biology, swarm robotics,
and material science. Ultimately, this work contributes to the broader vision of harnessing emergent
behaviors to design systems capable of robust, adaptable, and intelligent collective dynamics
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