
Artificial Intelligence for Resource
Allocation Tasks

Dissertation zur Erlangung des Doktorgrades

an der Fakultät für Mathematik, Informatik und Statistik

der Ludwig-Maximilians-Universität München

vorgelegt von

Niklas Strauss

Munich, den 17.09.2024

Tag der Einreichung: 17.09.2024

Erstgutachter: Prof. Dr. Matthias Schubert
LMU Munich

Zweitgutachter: Prof. Dr. Goce Trajcevski
Iowa State University

Drittgutachter: Prof. Dr. Sebastian Tschiatschek
University of Vienna

Vorsitz: Prof. Dr. Eyke Hüllermeier
LMU Munich

Tag der Disputation: 20.12.2024

Eidesstattliche Versicherung
(siehe Promotionsordnung vom 12.07.2011, § 8, Abs. 2 Pkt. 5)

Hiermit erkläre ich an Eides statt, dass die Dissertation von mir selbstständig und ohne
unerlaubte Beihilfe angefertigt wurde.

Munich, den 17.09.2024

Niklas Strauss

CONTENTS v

Contents

Abstract vii

Zusammenfassung ix

1 Introduction 1

2 Background on Artificial Intelligence 5
2.1 Deep Learning . 5
2.2 Reinforcement Learning . 7

3 Resource Allocation Tasks 17
3.1 Discrete Resource Allocation . 18

3.1.1 Dynamic Ambulance Redeployment 18
3.1.2 Dynamic Electric Ambulance Redeployment 22

3.2 Stochastic Resource Collection . 24
3.3 Continuous Resource Allocation Tasks . 27

3.3.1 Overview of Continuous Resource Allocation Tasks 28
3.3.2 Solving Continuous Allocation Tasks 31

4 Overview of Contributions 33
4.1 Spatial-Aware Deep Reinforcement Learning for the Traveling Officer

Problem . 33
4.2 Reinforcement Learning for Multi-Agent Stochastic Resource Collection . . 34
4.3 A Comparison of Ambulance Redeployment Systems on Real-World Data . 34
4.4 DEAR: Dynamic Electric Ambulance Redeployment 35
4.5 Constrained Portfolio Management Using Action Space Decomposition for

Reinforcement Learning . 36
4.6 Simplex Decomposition for Portfolio Allocation Constraints in Reinforce-

ment Learning . 37
4.7 Autoregressive Policy Optimization for Constrained Allocation Tasks 37

vi CONTENTS

5 Conclusion and Outlook 39
5.1 Limitations and Future Work . 39

References 41

Acknowledgements 59

Appendix 61
A Spatial-Aware Deep Reinforcement Learning for the Traveling Officer

Problem . 61
B Reinforcement Learning for Multi-Agent Stochastic Resource Collection . . 73
C A Comparison of Ambulance Redeployment Systems on Real-World Data . 92
D DEAR: Dynamic Electric Ambulance Redeployment 101
E Constrained Portfolio Management Using Action Space Decomposition for

Reinforcement Learning . 112
F Simplex Decomposition for Portfolio Allocation Constraints in Reinforce-

ment Learning . 129
G Autoregressive Policy Optimization for Constrained Allocation Tasks 138

ABSTRACT vii

Abstract

In recent years, innovations in artificial intelligence have led to advances in many differ-
ent areas, ranging from natural language processing to computer vision. One area that is
of special interest are resource allocation tasks. The field of resource allocation includes
a diverse range of tasks. Oftentimes, resource allocation tasks are complex sequential
decision making problems like portfolio optimization, the traveling officer problem, or
redeploying ambulances to base stations. Deep reinforcement learning offers a way to
solve these tasks. However, in order to achieve state-of-the-art performance, existing
neural network architectures are not sufficient and, in this thesis, we propose several
novel architectures. While spatial resource allocation tasks typically have discrete action
spaces, some allocation tasks, like portfolio optimization, have continuous action spaces.

The contributions in this thesis handle three types of allocation tasks: discrete re-
source allocation, resource collection, and continuous resource allocation with allocation
constraints.

First, we focus on discrete resource allocation and resource collection. More specifi-
cally, we look into different spatial resource allocation tasks, presenting a spatial-aware
reinforcement learning-based approach for the traveling officer problem, a prominent
resource collection task, achieving state-of-the-art performance. We also propose an ap-
proach for multi-agent stochastic resource collection featuring a novel neural network
architecture. After that, we focus on dynamic ambulance redeployment. We develop a
high-performance event-based simulator, conduct comparisons and benchmarks of exist-
ing approaches using real-world data. After that, we are the first to develop an approach
for dynamically redeploying electric ambulances. Our method deploys the ambulance to
the base station which minimizes the energy deficit.

Afterward, we continue with continuous resource allocation tasks featuring simplex
action spaces accompanied with allocation constraints. One of the most important con-
tinuous action resource allocation tasks is portfolio optimization, where a portfolio man-
ager allocates its wealth across various assets in each time step over an investment
horizon. In practice, these tasks often come with allocation constraints. We develop
approaches to efficiently and effectively incorporate one and two allocation constraints
using a decomposition of the simplex, allowing us to learn a policy using standard deep
reinforcement learning approaches. Our methods never violate the constraints, even
during training. Furthermore, we propose an approach capable of handling an arbitrary
number of constraints by iteratively sampling actions in each dimension autoregressively,

viii ABSTRACT

while utilizing linear programming to compute the action bounds. Our approach remains
trainable using existing reinforcement learning algorithms.

ZUSAMMENFASSUNG ix

Zusammenfassung

In den letzten Jahren haben Innovationen im Bereich der künstlichen Intelligenz zu
Fortschritten in vielen verschiedenen Bereichen geführt, die von der Verarbeitung
natürlicher Sprache bis hin zum maschinellen Sehen reichen. Ein besonders interes-
santer Teilbereich sind Ressourcenzuweisungsprobleme, welche ein breites Spektrum
an verschiedenen Problemen und Anwendungen umfassen. Häufig handelt es sich
bei Ressourcenzuweisungsproblemen um komplexe sequentielle Entscheidungsprobleme
wie Portfoliooptimierung, das Problem des reisenden Parkbeamten oder die dynamis-
che Umverteilung von Krankenwagen zu Basisstationen. Deep Reinforcement Learn-
ing bietet eine Möglichkeit, diese Probleme zu lösen. Für eine effektive Lösung,
reichen die bestehenden neuronalen Netzarchitekturen jedoch nicht aus. Deshalb
schlagen in dieser Arbeit wir mehrere neue Architekturen vor. Während räumliche
Ressourcenzuweisungsprobleme typischerweise diskrete Aktionsräume aufweisen, haben
einige Zuweisungprobleme, wie zum Beispiel Portfoliooptimierung, kontinuierliche Ak-
tionsräume.

In dieser Arbeit behandeln wir drei Arten von Zuweisungproblemen: diskrete
Ressourcenzuweisung, Ressourcensammlung und kontinuierliche Ressourcenzuweisung
mit Allokationsnebenbedingungen.

Zunächst konzentrieren wir uns auf die diskrete Ressourcenzuweisung und
Ressourcensammlung. Genauer gesagt untersuchen wir verschiedene räumlichen
Ressourcenzuteilungsprobleme und stellen einen auf räumlichem Lernen basierenden
Ansatz für das Problem des reisenden Parkbeamten vor, ein prominentes Problem der
Ressourcensammlung, bei welchem unser Ansatz eine deutlich bessere Leistung als ex-
istierende Verfahren erzielt. Außerdem schlagen wir einen Ansatz für die stochastis-
che Ressourcensammlung mit mehreren Agenten vor, welcher eine neuartige neu-
ronale Netzwerkarchitektur beinhaltet. Danach konzentrieren wir uns auf die dynamis-
che Umverteilung von Krankenwagen. Wir entwickeln zunächst eine leistungsstarke,
ereignisbasierte Simulationsumgebung und führen Vergleiche und Benchmarks beste-
hender Ansätze mit realen Daten durch. Danach entwickeln wir als erste einen Ansatz
zur dynamischen Umverteilung von elektrisch angetriebenen Krankenwagen. Unsere
Methode verteilt den Krankenwagen zu der Basisstation, an der durch diesen das En-
ergiedefizit am meisten minimiert wird.

Danach befassen wir uns mit kontinuierlichen Ressourcenzuweisung, welche
Simplex-Aktionsräume mit Allokationsnebenbedingungen aufweisen. Eines der wichtig-
sten Probleme der kontinuierlichen Ressourcenzuweisung ist Portfoliooptimierung, bei

x ZUSAMMENFASSUNG

der ein Portfoliomanager sein Vermögen in jedem Zeitschritt über einen Anlagehorizont
auf verschiedene Vermögenswerte aufteilt. In der Praxis sind diese Anwendungen oft mit
Allokationsnebenbedingungen verbunden. Wir entwickeln Ansätze zur effizienten und
effektiven Einbeziehung von ein und zwei Allokationsnebenbedingungen unter Verwen-
dung einer Dekomposition des Simplexes, die es uns ermöglicht, eine Strategie mit Hilfe
von bestehenden Deep Reinforcement Learning-Ansätzen zu lernen. Unsere Methoden
verletzen niemals die Nebenbedingungen, auch nicht während des Trainings. Darüber
hinaus schlagen wir einen Ansatz vor, der in der Lage ist, eine beliebige Anzahl von
Nebenbedingungen zu handhaben, indem wir iterativ Aktionen in jeder Dimension au-
toregressiv sampeln. Hierbei nutzen wir lineare Programmierung zur Berechnung der
Aktionsgrenzen verwenden. Unser Ansatz kann mit bestehenden Deep Reinforcement
Learning-Algorithmen trainiert werden.

1

Chapter 1

Introduction

In recent years, innovations in artificial intelligence have led to advances in many dif-
ferent areas, including natural language processing [163, 40, 125, 162], computer vi-
sion [44, 128, 68], and reinforcement learning [108, 144, 145]. One area that is of
particular interest and the focus of this thesis is resource allocation. The term re-
source allocation refers to the process of allocating limited resources to entities, a
task which occurs in a multitude of real-world applications, such as financial eco-
nomics [102, 103, 172, 143, 46], managing blood inventories [121], manufactur-
ing [80, 75, 20, 21, 158], or managing ambulances [19, 129, 148, 164]. Effective
resource allocation ensures that limited resources are optimally allocated in order to
achieve objectives, such as maximizing profits, minimizing costs, and many others. Nu-
merous complex decision making problems can be formulated as resource allocation
tasks. Notable instances include portfolio optimization [102, 103, 143, 46], the dy-
namic redeployment of ambulances between base stations [19, 129, 148, 164], allocat-
ing air-defenses or attack missiles to cites [37], and selecting drill sites to extract natural
resources [85, 117]. In all resource allocation tasks, a limited resource is distributed
among entities to optimize a certain objective. For instance, in portfolio optimization
the investor distributes its money (resource) among several assets (entities) to maximize
returns (objective). Although various types of resource allocation tasks exist, we focus
on three key areas in this thesis: discrete resource allocation, resource collection, and
continuous resource allocation with allocation constraints. Each of these areas comes
with unique challenges, applications, and solutions, which we will explore in this thesis.

In discrete resource allocation, the resources are not divisible, as they represent
countable instances, such as persons, ambulances, trucks, machines, and so forth. In
this thesis, we focus on a specific discrete resource allocation task: dynamically rede-
ploying ambulances. In this problem, ambulances are dynamically redeployed to base
stations to minimize the response times to subsequent incidents. In addition to clas-

2 1. Introduction

sical ambulance redeployment, we also introduce a new setting: the redeployment of
electrical ambulances, which adds an additional layer of complexity due to recharging
and managing battery levels. This problem is of particular interest because emergency
medical system operators in both the UK [67] and US [27] plan to purchase electric
ambulances. However, the existing research on electric ambulances is still very limited.
Thus, we address this the lack of redeployment methods for electric ambulances in this
thesis.

Resource collection represents a special type of (discrete) resource allocation, where
the allocation is reversed. In this task, the agent (resource) is allocated to a set of col-
lection resources (entities) with the objective of collecting as many collection resources
as possible. In this thesis, we focus specifically on stochastic resource collection in both
single-agent and multi-agent scenarios. Resource collection tasks are often spatial prob-
lems. The traveling officer problem represents a prominent instance of stochastic re-
source collection [136, 137, 150]. In this problem, a parking officer attempts to fine as
many parking violations as possible by traversing a road network. The current state of
each parking spot is provided by a sensor network. However, the task is highly stochastic
and complex due to the inherent uncertainty in the future states of parking spots, which
must be considered when planning.

Subsequently, we turn to continuous resource allocation with a specific focus on allo-
cation constraints. In contrast to discrete resource allocation, continuous resource allo-
cation allows the resource to be arbitrarily divided and, thus, an allocation represents the
proportion of the resource assigned to each entity. Portfolio optimization is among the
most important applications of continuous resource allocation. In many instances, con-
tinuous resource allocation tasks include allocation constraints [19, 97, 132]. Typically,
allocation constraints are explicitly defined and expressed as a set of linear inequalities
on the allocations, e.g., only allocate a maximum of 20% to a group of entities. In this
thesis, we propose specialized approaches for handling allocation constraints that out-
perform previous methods. By leveraging the geometric properties of the constrained
action space, which forms a convex polytope, we develop methods to decompose the
action space into dependent and independent subspaces, allowing for more effective op-
timization.

Resource allocation tasks are often characterized by their complexity and dynamic
nature, i.e., they are complex sequential decision making problems. Thus, reinforcement
learning is a well-suited framework for solving resource allocation tasks. However, due to
the unique characteristics specialized solutions are often required to successfully apply
reinforcement learning to resource allocation tasks. In this thesis, we focus mostly on
resource allocation in spatial problems and portfolio optimization. We propose numerous
novel solutions designed for the specific requirements of these tasks, often based on deep
reinforcement learning.

3

The remainder of this thesis is structured as follows. In Chapter 2 we give a brief back-
ground on artificial intelligence, including neural networks and reinforcement learning.
In Chapter 3, we categorize resource allocation before we detail various different re-
source allocation tasks, their applications, and review related work. In Chapter 4, we
present an overview of the main contributions in this thesis. The works included in this
dissertation can be found in the Appendix. Finally, we conclude the thesis with Chap-
ter 5, where we summarize the key findings, discuss the limitations of current methods,
and outline potential directions for future research.

4 1. Introduction

5

Chapter 2

Background on Artificial Intelligence

In recent years, artificial intelligence achieved breakthroughs in many fields and thus
gained a lot of interest [40, 125, 162, 128, 108, 144, 145]. The field of artificial intelli-
gence is very broad and different definitions of what artificial intelligence is exist [131].
In this thesis, our focus is on resource allocation tasks. Thus, we concentrate on the part
of artificial intelligence for decision making and reinforcement learning. In particular,
deep learning has played a crucial role in many of these recent advancements. Further-
more, the combination of reinforcement learning and deep learning (deep reinforcement
learning) has achieved remarkable results, a technique that we often utilize in this thesis
to solve resource allocations tasks.

Before we go into the specifics of resource allocation, we provide background on
artificial intelligence. We start with a brief introduction to neural networks. Afterward,
we continue with reinforcement learning. At the end of this chapter, we briefly look into
multi-agent reinforcement learning and constrained reinforcement learning.

2.1 Deep Learning

Most of the recent successes in artificial intelligence have been achieved by deep learning.
Examples are large language models [40, 125, 162], text-to-image models [128, 124],
or agents achieving superhuman performance playing popular games [108, 144, 145].
Since deep learning plays an important role in many of our solutions, we want to give a
brief overview. For a more detailed introduction, we refer the reader to the book of [60].

Multi-Layer Perceptron

A multi-layer perceptron (MLP) or feed-forward neural network is one of the most com-
mon deep learning models [60]. It consists of an input layer and one or more hidden

6 2. Background on Artificial Intelligence

layers. Each layer consists of nodes, often called neurons, that are connected to all
neurons in the subsequent layer, forming a fully connected network. Neurons use a
non-linear activation function to process the weighted sum of inputs received from the
previous layer. Each hidden layer in an MLP has a non-linear activation function σ, a
learnable weight matrix W ∈ Rdin×dout, a learnable bias term b ∈ Rdout, and receives an
input vector x ∈ Rdin. Formally, a hidden layer is defined as a function:

f(x) = σ(WTx+ b) (2.1)

Common activation functions include ReLU (max{0, α}), (logistic) sigmoid (1
1+exp(−α)

),

or the hyperbolic tangent (exp(α)−exp(−α)
exp(α)+exp(−α)

) [60]. These activation functions introduce non-
linearities that enable the network to model and learn complex relationships between
the input and outputs. Training an MLP typically involves adjusting its parameters to
minimize the error between the output of the network and the actual target values. This
error is measured by a loss function. Backpropagation is used to calculate the gradient of
the loss function with respect to the parameters of the network. Optimization algorithms,
such as stochastic gradient descent (SGD) or Adam [82], use these gradients to update
the network’s parameters. While the MLP is a widely used deep learning architecture
due to its simplicity and effectiveness, more specialized architectures tailored for specific
tasks and data exist.

Convolutional Neural Networks

For example, convolutional neural networks [89] (CNN) are commonly utilized in com-
puter vision tasks, such as object detection [58], image classification [86], or semantic
segmentation [109]. CNNs are special kind of neural network designed to process data
structured in a regular grid-like topology [60]. For example, images can be seen as 2-D
grid of pixels, while time-series data can be thought of as a 1-D grid [60]. By applying
learnable filters, also known as convolution kernels, across the input data, a CNN can
capture simple patterns, such as edges, textures, or colors, in the early layers and more
complex features, like complete objects, in deeper layers [90, 86, 68].

Recurrent Neural Networks

In contrast, recurrent neural networks [130] (RNN) are specifically designed for process-
ing sequential data which occurs in time-series forecasting [71], speech recognition [61],
or natural language processing [154]. RNNs share parameters across time steps and
the network is recursively applied, i.e., the output of the previous time step is an in-
put to the current time step, resulting in a very deep computational graph. However,
traditional RNNs struggle with long-term dependencies due to the vanishing gradient

2.2 Reinforcement Learning 7

problem [72, 14]. To overcome this problem, the long short-term memory (LSTM) has
been introduced by [73]. The LSTM uses memory cells and gating mechanisms, which
allow to maintain and update information over long sequences, making them capable
of learning long-range dependencies and capturing temporal dynamics effectively. RNNs
are also a popular architecture for solving partially observable reinforcement learning
problems [133].

Transformer

The transformer is currently the most popular architecture in natural language pro-
cessing, outperforming traditional recurrent neural networks, like the LSTM, on many
tasks [40, 125, 92, 32, 162, 24]. In [163], the authors introduced the transformer ar-
chitecture, which relies on an attention mechanism to process the input data in paral-
lel, rather than sequentially. This parallel processing allows to more effectively model
long-term dependencies. The transformer is the backbone of models like BERT [40]
and GPT [125], which achieved impressive results in tasks such as machine transla-
tion or question-answering systems. The success of the transformer is not only limited
to natural language processing. Many transformer-based approaches achieved state-of-
the-art performance in domains like computer vision [44, 100, 17] or reinforcement
learning [26, 93].

Graph Convolutional Neural Network

Graph convolutional networks [83] (GCN) are a class of deep learning architectures
designed for graph data. In contrast to CNNs, which are designed for data with a regular
grid-like topology, GCNs generalize convolutions to graph-structured data, enabling them
to aggregate information from neighboring nodes to learn representations of graphs. This
makes GCNs particularly well-suited for tasks like node classification, link prediction, or
graph generation in applications such as social network analysis, molecular chemistry, or
recommender systems [83, 165, 57, 59, 79, 66, 179].

Although the field of deep learning is vast, we will now shift our focus to reinforce-
ment learning. For a more comprehensive introduction to deep learning, we refer the
reader to the book of [60].

2.2 Reinforcement Learning

Machine learning can be divided into four categories [110]: supervised learning, unsu-
pervised learning, semi-supervised learning, and reinforcement learning. In supervised
learning a problem is solved using labeled samples. Unsupervised learning consists of

8 2. Background on Artificial Intelligence

finding patterns in the data without labels. The combination of supervised and unsuper-
vised learning is known as semi-supervised learning. In this setting, only part of the data
is labeled. The goal in reinforcement learning is to solve a problem by trial-and-error.
Therefore, an agent interacts with the environment (often a simulator) to learn a policy.
The agent receives a reward signal from the environment which guides learning [151].
A visualization of this process can be found in Figure 2.1.

Figure 2.1: The agent-environment interface used in reinforcement learning. From Sec. 3.1 [151].

Markov Decision Process

Formally, reinforcement learning uses the framework of Markov decision processes
(MDP) to define the interaction between the agent and its environment [151]. An
MDP can be defined as a tuple ⟨S,A, P,R, ρ0⟩, where S denotes the set of all possible
states, A the set of all possible actions, P : S × A × S → [0, 1] is the transition function,
R : S × A→ R is the reward function, and ρ0 : S → [0, 1] is the distribution of the initial
state S0. Oftentimes, a discount factor γ ∈ [0, 1] is used. A trajectory τ , also referred to
as rollout or episode, is a sequence of states, actions, and rewards:

τ = S0, A0, R1, S1, A1, R2 . . . ST (2.2)

Here, St, At, Rt denote the state, action, and reward at time-step t, respectively. The
sequence terminates at time T with the terminal state ST . The probability that the pro-
cess transitions to the new state St+1 is given by transition function P and only depends
on the current state St and the action At, independent of all previous states and actions.
This is known as the Markov property. The transition function can be either determin-
istic St+1 = P (St, At) or stochastic St+1 ∼ P (·|St, At). The actions are generated by a
policy function π(St), which also can be either deterministic At = π(St) or stochastic
At ∼ π(·|St). The return Gt is defined as the sum of rewards from time-step t to T :

Gt = Rt+1 +Rt+2 + . . .+RT (2.3)

2.2 Reinforcement Learning 9

In the infinite-horizon discounted case, the return Gt is total discounted reward from
time-step t:

Gt =
∞∑

k=0

γkRt+k+1 (2.4)

The goal in reinforcement learning is to find a policy π that maximize the expected
discounted reward:

J(π) = ES0∼ρ0 [Vπ(S0)] = E(S0,A0,...)∼π

[∞∑

t=0

γtR(St, At)

]
(2.5)

This can be expressed as: π∗ = argmaxπ J(π), where π∗ denotes the optimal policy. How-
ever, finding an optimal policy can be hard and there are different ways to accomplish
this.

Value Functions The estimation of value functions is a key component in almost all
reinforcement learning algorithms. Value functions are functions of states (or state-
action pairs) that estimate how good it is for the agent to be in a given state (or how
good it is to perform a given action in a particular state) [151]. The notion of ”how
good” is defined in terms of future rewards that can be expected, or more precisely, the
expected return [151]. The rewards the agent can expect to receive in the future depends
on what actions it will take. As a consequence, value functions are defined with respect
to a specific way of acting, i.e., a policy [151].

Formally, the value of a state s ∈ S is the expected return when starting in s and
following the policy π thereafter:

Vπ(s) = Eπ[Gt|St = s] (2.6)

In a similar way, an action-value function is defined. It represents the value of taking
action a in state s under a policy π, i.e., the expected return of starting in state s, taking
action a, and thereafter following policy π. This function is commonly known as Q-
function:

Qπ(s, a) = Eπ[Gt|St = s, At = a] (2.7)

Value functions can be defined in terms of immediate rewards and fu-
ture discounted rewards. This recursive relationship is considered a funda-
mental property of value functions and used throughout reinforcement learning.

10 2. Background on Artificial Intelligence

This equation is known as the Bellman equation:

Vπ(s) = Eπ[Gt|St = s]

= Eπ[Rt + γGt+1|St = s]

= Eπ[Rt + γVπ(St+1)|St = s]

=
∑

a

π(a|s)
∑

s′,r

P (s′, r|s, a)[r + γVπ(s
′)]

(2.8)

Let us note that the Bellman equation can also be defined for action-value functions.

Dynamic Programming In the context of reinforcement learning, the term dynamic
programming refers to a number of methods that compute optimal policies given a com-
plete and perfect model of the environment as an MDP. However, given the requirement
of a complete model of the environment and their great computational expenses, classi-
cal dynamic programming is of limited use in reinforcement learning [151]. Nonetheless,
its theoretical foundations are essential to reinforcement learning. The idea in dynamic
programming is to use the Bellman equations to iteratively evaluate functions and im-
prove the policy. Policy evaluation, sometimes referred to as prediction, is the process of
determining the state-value function for a given policy. Using the Bellman equation, the
value function of a state is updated iteratively:

Vk+1(s) = Eπ[Rt+1 + γVk(St+1)|St = s] =
∑

a

π(a|s)
∑

s′,r

P (s′, r|s, a)[r + γVk(s
′)] (2.9)

The initial approximation V0 is chosen arbitrarily. Each iteration of iterative policy
evaluation updates the value of every state once to obtain a new approximation of the
value function Vk+1. The update is repeated until the value function convergences.

Policy improvement uses the value function obtained by policy evaluation to find a
better policy. The idea is to improve the current policy by constructing a greedy policy π′

from the current value function. For this we calculate the action-value function from the
current value function:

Qπ(s, a) = E[Rt+1 + γVπ(St+1)|St = s, At = a] =
∑

s′,r

P (s′, r|s, a)[r + γVπ(s
′)] (2.10)

Acting greedy according to this action-value function is guaranteed to yield a policy
π′ that is as good as, or better then the current policy π, according to the policy improve-
ment theorem [151].

Now that we have obtained a better policy π′, we can obtain its value function Vπ′

and improve it to get an even better policy π′′. Thus, we can iteratively obtain an optimal

2.2 Reinforcement Learning 11

policy by alternating between policy evaluation and policy improvement. This process
is called policy iteration. In some variations of policy iteration, the evaluation and im-
provement step are not strictly separated. Instead, they can occur simultaneously. This is
referred to as generalized policy iteration and many reinforcement learning algorithms
can be viewed in this framework [151].

Value-Based and Policy-Based Reinforcement Learning

The MDP and its dynamics are often unknown [151]. Reinforcement learning is a method
that can discover optimal policies by interacting with the MDP, therefore no prior knowl-
edge of the environment dynamics are necessary [151]. While classical reinforcement
learning employs methods such as table-based Q-learning, this approach is not scalable
to high-dimensional and complex state/action spaces like image inputs or continuous
control problems. To overcome these problems, deep learning can be combined with
reinforcement learning. Deep reinforcement learning can be broadly classified into two
paradigms. Policy-based methods directly optimize the policy parameterized by a neu-
ral network, whereas value-based methods do not explicitly learn a policy but derive
it from a value function parameterized by a neural network. One of the most famous
policy-based methods is REINFORCE [170]. DQN [108] is an example for a popular
value-based method. However, before we can proceed to detail these methods, it is first
necessary to introduce some fundamental concepts.

Monte Carlo Methods Value functions and optimal policies can be estimated from ex-
perience without knowledge of the complete environment [151]. Monte Carlo methods
are one such class of methods that solve the reinforcement learning problem by averag-
ing sample returns. To compute these empirical returns, they require experience in the
form of complete episodes (trajectories) – sequences of states, actions, and rewards –
sampled from the environment. It is required that all episodes must terminate eventu-
ally. Using the sampled episodes, we can perform policy evaluation to estimate the state
or state-action values as follows:

Q(s, a) =

∑T
t=1 1[St = s, At = a]Gt∑T
t=1 1[St = s, At = a]

, (2.11)

where 1[St = s, At = a] is a binary indicator function that either counts every visit of
the state-action pair in the episode (”every-visit”) or only the first encounter of the state-
action pair in the episode (”first-visit”).

In order to learn the optimal policy by using Monte Carlo, we use the idea of gen-
eralized policy iteration. This approach alternates between complete steps of policy im-
provement and policy evaluation. In policy improvement, a greedy policy is constructed

12 2. Background on Artificial Intelligence

with respect to the current action-value function estimates. The policy evaluation step is
performed as previously described.

Temporal-Difference Learning An important advancement in reinforcement learning
are temporal-difference learning methods, which integrate ideas from both Monte Carlo
learning and dynamic programming [151]. Similar to Monte Carlo methods, temporal-
difference methods can directly learn from episodes of experience. Moreover, like dy-
namic programming methods, temporal-difference methods are able to learn from in-
complete episodes, i.e., there is no requirement to wait until an episode terminates.
Temporal-difference methods update estimates in part on learned estimates, without
waiting for the final outcome (they bootstrap) [151].

The simplest temporal-difference method makes the following update to estimate the
state-value:

V (St)← V (St) + α[Rt+1 + γV (St+1)− V (St)] (2.12)

Here, the learning rate α ∈ (0, 1] is a constant hyperparameter. In contrast to Monte
Carlo methods, this update can be made immediately upon transitioning to St+1 and
receiving reward Rt+1. This method is referred to as TD(0) or one-step TD. The key
idea is to update the value function V (St) towards an estimated return Rt+1 + γV (St+1)

known as the temporal-difference target. In contrast, in Monte Carlo methods the target
for the update is Gt.

Having introduced how to use temporal-difference learning for predictions, we now
to turn our attention to its application for control, i.e., learning an optimal policy. Like
in Monte Carlo methods, we again follow the framework of generalized policy improve-
ment. However, temporal-difference methods are used for the evaluation or prediction
part.

SARSA is an on-policy temporal-difference control algorithm that uses the following
update based on (state, action, reward, state, action) quintuples (hence the name):

Q(St, At)← Q(St, At) + α[Rt+1 + γQ(St+1, At+1)−Q(St, At)] (2.13)

The actions are selected according to a policy derived from Q (e.g., ϵ-greedy).

Q-learning [168] is a popular off-policy temporal-difference method for learning op-
timal policies. The Q-function is updated according to the following equation:

Q(St, At)← Q(St, At) + α[Rt+1 + γmax
a

Q(St+1, a)−Q(St, At)] (2.14)

2.2 Reinforcement Learning 13

In this approach, the learned action-value function Q directly approximates the opti-
mal action-value function, independent of the policy being followed to pick the second
action At+1 [151].

Deep Q-Networks Although it is theoretically possible to memorize the Q-function for
all state-action pairs in Q-learning in a table, this becomes quickly infeasible for large
state or action spaces. Therefore, function approximators (such as neural networks)
are used to approximate Q-values. However, Q-learning can suffers from instability and
convergence issues when combined with non-linear function approximators and boot-
straping [151]. Deep Q-Networks (DQN) is an algorithm that combines Q-Learning with
deep neural networks as function approximators [108]. To improve and stabilize train-
ing, DQN uses two key techniques: experience replay and a periodically updated target
network. The loss function is defined as follows:

L(θ) = E(s,a,r,s′)∼U(D)

[
(r + γmax

a′
Qθ−(s

′, a′)−Qθ(s, a))
2
]
, (2.15)

where U(D) is the uniform distribution over the replay memory and θ− denotes the
parameters of the frozen target Q-network, which is periodically updated.

Policy Gradient Methods All methods introduced until this point aim to learn state-
value or action-value functions and then derive the policy from the value function. In
contrast, policy gradient algorithms directly learn a policy as a parameterized function
πθ. The policy may be parameterized by a neural network. We aim to learn the policy
parameters based on the gradient of some scalar performance measure J(θ). The per-
formance measure J(θ) is defined differently for the episodic and continuing case. For
the sake of simplicity, we will only derive the episodic case and direct the reader to the
book of [151] for the continuing case. In the episodic case, we define the performance
measure as the value of the start state of the episode S0:

J(θ) = Vπθ
(S0) (2.16)

The policy parameters can now be optimized by updating them using the gradient
∇θJ(θ). However, computing this gradient may seem challenging, given that the perfor-
mance depends on both the action selections (which are directly determined by πθ) and
the distribution of states in which those selections are made (which are indirectly deter-
mined by πθ) [151]. While the effect of the policy parameters on the actions in a given
state can be computed relatively straightforwardly, the effect of the policy on the state
distribution depends on the environment and is generally unknown. Fortunately, the pol-

14 2. Background on Artificial Intelligence

icy gradient theorem provides an analytical solution for the gradient of the performance
measure ∇θJ(θ) that does not require the derivative of the state distribution:

∇θJ(θ) ∝
∑

s

µ(s)
∑

a

Qπ(s, a)∇θπθ(a|s) = Eπθ
[Qπ(s, a)∇θ lnπθ(a|s)] (2.17)

In the episodic case, the constant of proportionality corresponds to the average length
of an episode and µ is the on-policy distribution under π. For a detailed proof and further
derivations, we refer the reader to the book by [151].

We now introduce REINFORCE [170], also known as Monte Carlo policy gradient,
which is a very popular policy gradient method. It relies on returns that are estimated at
the end of an episode as in Monte Carlo methods. More specifically, Gt are the returns
from time step t to the end of the episode. Using the sampled expectation of returns, we
can derive the following gradient:

∇θJ(θ) = Eπθ
[Gt∇θ lnπθ(At|St)] (2.18)

A widely used variation of REINFORCE is to subtract a baseline from the returns
Gt in order to reduce the variance of the gradient estimation while keeping the bias
unchanged. One such commonly used baseline is to subtract the estimated state-value
V (s).

Actor-critic methods combine policy-based and value-based reinforcement learn-
ing [151]. In addition to the policy-function, these methods learn a value-function,
which can help learning policy [151]. Despite the fact that REINFORCE with a baseline
learns both a policy and a state-value function, it is typically not considered to be an
actor-critic method because the baseline is not used as a critic [151]. The key differ-
ence between a critic and a baseline is that a baseline is not used for bootstrapping. It
only serves as a baseline for the state whose estimate is being updated [151]. Hence, in
contrast to a critic, a baseline does not introduce bias by bootstrapping [151]. While RE-
INFORCE with a baseline is unbiased, it tends to learn slowly due to the high variance,
a common issue in Monte Carlo methods [151]. To leverage the advantages of both
temporal-difference methods and policy gradient methods, actor-critic approaches with
a bootstrapping critic are used [151]. Many widely used reinforcement learning meth-
ods are actor-critic based, including prominent examples such as PPO [139] or SAC [65].
PPO [139] is an actor-critic based algorithm that replaces the trust-region of TRPO [138]
with clipped likelihood ratios, thereby enabling first-order optimization. SAC [65] is an
off-policy actor-critic variant that optimizes an objective that balances expected returns
and entropy. With this, we conclude our background on reinforcement learning.

2.2 Reinforcement Learning 15

Multi-Agent Reinforcement Learning

In many cases, multiple agents interact with the environment simultaneously. This set-
ting is referred to as multi-agent reinforcement learning (MARL). MARL is particularly
challenging due the complex interactions between the agents.

In single-agent reinforcement learning, the environment is typically modeled as a
Markov Decision Process (MDP). Since multi-agent reinforcement learning is very broad
there exists no one-fits-all formalism. However, oftentimes a stochastic game can be used
to model the environment in multi-agent reinforcement learning. A stochastic game can
be seen as the extension of an MDP to multiple agents. Formally, it is defined as a tuple
M = ⟨I, S, A, P,R, γ⟩, where I = {1, . . . , N} is a set of agents, S is a set of states, A =

⟨A1, . . . AN⟩ is the joint action space, P the joint transition function, R = ⟨R1, . . . , RN⟩
is a set of reward functions, and γ is a discount factor. Many different variations of
multi-agent settings exist. For example, when all agents share the exact same individual
reward function ri = rj for i, j ∈ I, the game is referred to as fully cooperative. In
case of a two-agent game with opposing reward functions r1 = −r2, the game is called
a zero-sum game, where the agents are in direct competition, i.e., what one agent gains
is lost by the other. General-sum games are between these two extremes, where agents
may cooperate to some extent while still being in some competition [74].

A key challenge in multi-agent reinforcement learning is that the amount of possible
joint actions exponentially increases with the number of agents. The joint action space is
usually so large that it is infeasible to solve it directly [63]. Independent learners [152]
are a common technique, where each agent is trained using single-agent reinforcement
learning in the same environment concurrently. However, this method can lead to is-
sues such as the credit assignment problem, where it becomes difficult to determine
the impact of an individual action. Apart from that, centralized training decentralized
execution (CTDE) is a common paradigm, where agents use global information during
training but only have access to local information during execution [63]. For a more ex-
tensive overview of multi-agent reinforcement learning, we refer the reader to the survey
of [63].

Constrained Reinforcement Learning

Many tasks in reinforcement learning involve constraints to limit the agent’s behavior
to ensure safety. This is especially common in resource allocation tasks [19, 97, 132].
Most of the literature in constrained reinforcement learning, also known as safe rein-
forcement learning, focuses on soft cumulated constraints [99, 64]. This setting can be
formalized as a constrained Markov Decision Process (CMDP) [8]. A CMDP extends the
standard MDP by incorporating a number of cost functions CF1, . . . , CFn. Similar to re-
ward functions, the cost functions are typically not explicitly defined in a closed form in

16 2. Background on Artificial Intelligence

safe reinforcement learning [99, 64]. Most of the literature in safe reinforcement learn-
ing focuses on expected cumulated costs [99, 64]. In this setting, the expected cumulated
costs of each cost function JCFi

should be smaller than a limit ϵi:

Jπθ
CFi

= Eτ∼π

[∞∑

t=0

γtCFi(st, at)

]
≤ ϵi (2.19)

In a CMDP and safe reinforcement learning the objective is to maximize the expected
rewards while ensuring that the expected costs stay within the specified limit:

max
θ

JR(πθ)

s.t. JCFi
(πθ) ≤ ϵi

While most of the research in safe reinforcement learning focuses on cumulated con-
straints, there is also a type of constraints, which must be satisfied at every step. These
type constraints are known as instantaneous constraints and can be defined in a similar
way:

max
θ

JR(πθ)

s.t. CFi(st, at) ≤ ϵi ∀st, at

In practice, since CFi is typically not explicitly defined, reinforcement learning agents
often violate these constraints due to their lack of prior knowledge about the environ-
ment and the cost functions, necessitating learning through trial and error.

In contrast, hard constraints must be strictly satisfied and these constraints are ex-
plicitly defined in closed form:

max
θ

JR(πθ)

s.t. CFi(st, at) ≤ 0 ∀st, at

While hard constraint are less commonly encountered in the safe reinforcement
learning literature, linear hard constraints are especially common in resource allocation
tasks [19, 97, 132]. Note that this setting can be modeled as a CMDP and thus solved
using standard safe reinforcement learning techniques for soft constraints. However, this
does not guarantee that the constraints will be satisfied at all times [99, 43].

17

Chapter 3

Resource Allocation Tasks

Resource allocation is an umbrella term for a broad class of different tasks. In this chap-
ter, we will give an overview of different classes of resource allocation tasks and their re-
search challenges. At the core, resource allocation refers to allocating a limited resource
over various entities in order to fulfill a goal or optimize an objective [75]. In this thesis,
we focus on resource allocation tasks that go on over a time-frame in which allocations
must be made periodically [80]. Resource allocation occurs in many applications from
operations research [85, 37], managing the location of ambulances [19, 129, 148, 164],
financial economics [102, 103, 172, 143, 46], or manufacturing [80, 75, 20, 21, 158]. A
prominent resource allocation task, for example, is optimizing an investment portfolio.
Here, the portfolio manager distributes its wealth (resource) over various assets (enti-
ties) to maximize the return (objective) [102, 103, 172, 143, 46]. Another prominent
example is dynamically allocating ambulances (resource) to base stations (entities) in or-
der to reduce the response times (objective) [19, 129, 148, 164]. Other tasks include the
weapons allocation problem, where one needs to allocate air-defenses or attack missiles
to cities [37]. Drilling for oil can also be formulated as a resource allocation problem.
Here, one needs to select where to drill among possible drill sites in order to provide best
returns [85, 117]. While there exist many different resource allocation tasks, in this the-
ses we focus on three different areas: discrete resource allocation, continuous resource
allocation with allocation constraints, and resource collection.

In discrete resource allocation, the agent needs to allocate a discrete resource to
entities. Discrete resources are not divisible since they represent persons, ambulances,
trucks, machines, or other countable instances. Formally, we have a set of m resources
R = {ri}i=1...m and a set of n entities E = {e1, . . . , en}. Each resource ri must be allocated
to an entity. An allocation maps each resource to an entity: a = {a1, . . . , am}, where
ai ∈ {1, . . . , n} is the index of the entity assigned to resource ri.

18 3. Resource Allocation Tasks

Resource collection can be seen as a special case of (discrete) resource allocation.
Here, the agent needs to periodically choose from set of collection resources, i.e., the
agent (resource) is allocated the collection resources (entities) to collect as many of them
as possible (objective). Many spatial optimization problems, such as the taxi dispatch
problem or the traveling officer problem, can be formulated as resource collection tasks.

In continuous resource allocation, we have a limited resource that must be distributed
over a set of n entities E. In contrast to discrete allocation tasks, the resource is divisi-
ble,i.e., the allocation a = {a1, . . . , an} ∈ Rn

0,+s.t.
∑n

i=1 ai = 1 represents the proportion of
the resource assigned to each entity. Thus, the allocation takes non-negative real values
and needs to be completely allocated.

Having outlined the three key areas resource allocation which we address in this
thesis, we now proceed with providing a detailed examination of each. In particular, we
will detail the specific tasks in each area and give a comprehensive analysis of existing
solutions.

3.1 Discrete Resource Allocation

In a discrete resource allocation task, the agent is required to allocate a discrete resource
to the entities. These resources, representing items like humans, machines, or ambu-
lances, cannot be divided. Formally, we define a set of m resources R = {ri}i=1...m and
a set n entities E = {ei}i=1...n. Each resource ri must be allocated to one of the entities.
An allocation is a function that maps each resource to an entity: a = {a1, . . . , am}, where
ai ∈ {1, . . . , n} is the index of the entity assigned to resource ri. Let us note that multiple
resources can be assigned to a single entity and that some entities might not have any
resource assigned to them.

While there exist many discrete resource allocation tasks, we will focus on dynamic
ambulance redeployment. In this task, the emergency medical system (EMS) operator
dynamically assigns ambulances (resource) to base stations (entities) to reduce response
times or achieve response time targets with fewer ambulances (objective) [148].

The shift to electric vehicles leads to the emergence of electric ambulances. Due to
charging, this task is more complex than that of combustion engine ambulances. This
variation, known as dynamic electric ambulance redeployment, is introduced in this the-
sis. However, before we introduce this task, we first discuss classical dynamic ambulance
redeployment without considering electric ambulances.

3.1.1 Dynamic Ambulance Redeployment

Ambulances are stationed at base stations from where they are dispatched to incidents.
After handling an incident, they return to a base station and wait until they are dis-

3.1 Discrete Resource Allocation 19

Drive to incident scene

Time at incident scene

Drive to hospital

Time at hospitalDrive to base station

Charge at base station

Wait at base station

Redeploy

Dispatch

Figure 3.1: A visualization of the EMS process. Red indicates the additional step for electric vehi-
cles. From [129].

.

patched to the next incident. This process is illustrated in Figure 3.1. Due to varying
demands of ambulances, strategically redeploying them to base stations can improve
response times and reduce the number of ambulances needed to operate the EMS sys-
tem [4]. Many approaches allow redeployment only after an ambulance finished han-
dling an incident [76, 78], a setting also adopted in this thesis. Some approaches, how-
ever, periodically redistribute ambulances [19, 180].

Redeployment Methods

The ambulance location problem, i.e., where to place ambulances, has been the subject
of extensive research since it was first introduced in the 1970s [34, 113, 155, 15, 134,
164, 18]. Existing methods can be classified into either static or dynamic approaches.

Static Ambulance Redeployment In static approaches, each ambulance is assigned
to a fixed base station, returning to the same station after handling an incident [15].
Many static approaches can be formulated as mixed integer linear programs [15]. One
of the earliest solutions is the Maximum Coverage Location Problem (MCLP) [34]. In
this approach, the ambulances are located (i.e., assigned to base stations) to maximize a
coverage objective. However, this model assumes that ambulances are always available
and the model is unable to place more than one ambulance at a base station. In [55], the
authors introduce the Double Standard Model (DSM), which extends the MCLP to cover
each demand location by at least two ambulances. The authors of [38] propose the
Maximum Expected Covering Location Problem (MEXCLP), an approach that assumes
that ambulances are busy with a certain probability. The Average Response Time Model
(ARTM) [45] uses an objective that minimizes the average response time from the near-
est station. In the Expected Response Time Model (ERTM) [15], the authors build on
ARTM and optimize an objective that minimizes the expected response times, i.e., they
take the availability of ambulances in a given area into account, allowing for the possibil-

20 3. Resource Allocation Tasks

ity that an ambulance might be dispatched from a base station that is further away. The
authors of [18] propose a static model that further takes into account the stochasticity
and focuses on robustness. In [180], the authors use simulated request and a greedy
approach for the static allocation of ambulances.

Dynamic Ambulance Redeployment Dynamic approaches, in contrast, allocate am-
bulances dynamically to base stations taking into account real-time information, such
as the current availability and locations of ambulances, as well as time-dependent
shifts in incident frequencies at different locations. Such shifts may be due to daily
or seasonal patterns. Therefore, dynamic redeployment can result in improved re-
sponse times compared to static policies. This is due to the stochastic nature of
incoming emergency calls and the potential for imbalances in the ambulance distri-
bution that are not accounted for in static approaches. Consequently, EMS oper-
ators are able to provide a better service level without the necessity of increasing
the number of ambulances [76]. Studies of North American EMS operators show
that in recent years many EMS operators start utilizing dynamic redeployment strate-
gies [25, 169, 4, 76]. There are numerous different dynamic approaches that have been
developed [56, 76, 4, 16, 78, 105, 104, 113, 155, 180, 134]. Some approaches are based
on lookup tables [4]. They calculate optimal solutions for each possible state in ad-
vance and the dispatcher attempts to redeploy ambulances in a manner that aligns with
the configuration suggested by the lookup table. However, a major downside of these
methods is the workload required (i.e., the movement of ambulances) to ensure that
the system is in compliance with the lookup table. Furthermore, in busy regions where
the number of idle ambulances fluctuates rapidly, the system will not be in compliance
with the lookup table most of the time [76]. In a different line of research, approaches
explicitly model the stochasticity of the EMS system and obtain solutions through either
dynamic programming [16, 11, 135] or heuristics [76, 134, 56]. However, an exact
dynamic programming formulation is intractable. Therefore, approximate dynamic pro-
gramming approaches have been proposed [105, 104, 135]. As noted by [76], these
approaches rely heavily on expert knowledge for their implementation, which makes
them impractical and inaccessible. Additionally, their performance is highly dependent
on the choice of base functions and thus unlikely to work in general settings [76]. Sev-
eral heuristics have been proposed that are based on meta-heuristics [134, 56]. One
of the earliest approaches is that of [56], which based on a tabu search. In [134], the
authors use meta-heuristics based on genetic algorithms. However, the redistribution
of ambulance only occurs at shift changes (e.g., from night shift to day shift). Another
prominent approach is DMEXCLP [76], which is a dynamic version of MEXCLP that, at
each redeployment, selects the base station that yields the largest increase in coverage
(according to the MEXCLP objective). In [180], the authors further extend their greedy

3.1 Discrete Resource Allocation 21

Figure 3.2: A map of San Francisco. Hospitals are indicated with red markers. Blue markers
indicate base stations without fast-chargers, while orange indicates base stations with
fast-chargers. From [129].

approach to a dynamic setting, where ambulances are periodically redistributed, by us-
ing a myopic greedy policy for each time-period. In [78], the authors present a deep
reinforcement learning-based approach, which makes use of a demand forecast based
on historical averages as well as the current distribution of ambulances over base sta-
tions. In [19], the authors use reinforcement learning for resource allocation tasks with
hierarchical constraints and evaluate their method in an ambulance redeployment task.
Their approach periodically reassigns all ambulances to base stations, upon which idle
ambulances travel to the newly assigned station. In [119], the authors build a solution
based on Monte Carlo tree search to dynamically position ambulances after an incident
is reported. Following the same framework, in a very recent paper [146], the authors use
multi-agent reinforcement learning. Specifically, one policy selects a region and another
one rebalances ambulances within that region.

Related Tasks

Furthermore, research also extends to similar tasks such as ambulance dispatch, where
one selects which ambulance is dispatched to an incident [39, 111, 11, 77]. In ambulance
demand forecasting, researchers try to predict how many incidents, i.e., the demand
for ambulances, will occur in a certain area [140, 167, 186, 185]. This information is
important for many redeployment approaches [78].

22 3. Resource Allocation Tasks

Simulation and Evaluation In order to evaluate and train redeployment policies, a
simulator is crucial. For example, the EMS operator can test a redeployment policy in
a simulator first before rolling it out, since if the policy does not perform well, lives are
at risk. Furthermore, reinforcement learning agents usually use a simulator for training,
as they require a large number of trials to learn effectively. However, existing simulators
for ambulance redeployment have limitations: they are not suited for reinforcement
learning [134, 135, 115, 18], are not publicly available [39, 134, 119, 135, 70]1, or
cannot make use of real-world data [19, 180, 6, 76, 184]. For example, the openly
available simulator of [115], is limited to static policies and does not allow dynamic
redeployment. In contrast, the simulator of [6] is well suited for reinforcement learning,
however, it is unable to replay real-world incident data. Additionally, many real-world
datasets are not publicly available or only synthetic data fitted on the data is published,
which limits comparability of approaches [134, 119, 146, 164, 70]. To the best of our
knowledge, we are the first to use real-world EMS incident data from the city of San
Francisco that is publicly available for ambulance redeployment [148]. A visualization
of the area used, including hospitals and base stations, can be found in Figure 3.2.

In ambulance redeployment, researchers mainly consider two metrics: the response
time target (RTT) and the average response time (ART). The RTT measures the fraction
of incidents where an ambulance arrived within a specific threshold at the incident. Typi-
cal values are 8, 10, or 12 minutes, depending on regulations or EMS guidlines [134, 15].
In San Francisco, for example, the EMS operator’s target is that an ambulance arrives
within 10 minutes for at least 90% of the time for live-threatening incidents [129]. An-
other metric that researchers commonly look at is the ART, the average of response
times [76].

3.1.2 Dynamic Electric Ambulance Redeployment

Today, the majority of ambulances are internal combustion engine (ICE) vehicles. Am-
bulances are often modified versions of standard vehicles. However, due to the planned
phase-out of combustion engine vehicles, it is likely that ambulances will also be based
on electric vehicles in the future. In fact, this transition is already happening. Electric
ambulances have already been developed and pilot-tested in real-world operations [1].
Furthermore, operators in both the UK [67] and the US [27] are making plans to pur-
chase electric ambulances. However, the transition to electric ambulances requires signif-
icant changes in operational procedures, as the battery level and the associated charging
requirements of the ambulances must be taken into account. Charging is a much more
time-consuming process than refueling, particularly when using regular power outlets
instead of fast chargers. Furthermore, the installation of fast chargers is costly. As a re-

1[70] was initially publicly available, however, all links are dead (08/2024).

3.1 Discrete Resource Allocation 23

sult, not every station might be outfitted with a fast charger and the number of available
fast chargers will be limited. It is therefore essential to consider the impact of charging
times when redeploying electric ambulances. Additionally, the current battery level and
resulting range must be taken into account, given that ambulances are only dispatched
in a way that ensures that they will not run out of battery while handling an incident.
Although EMS operators are planning to purchase electric ambulances, the research on
this topic is extremely limited. To the best of our knowledge, [127] are the first to
discuss the high-level challenges associated with switching to electric ambulances in a
vision paper without providing concrete solutions. Given the challenges associated with
electric ambulances, dynamically redeploying electric ambulances is an important aspect
to enable a successful transition to electric ambulances. We are the first to formalize
this task, evaluate existing redeployment strategies developed for ICE vehicles, propose
a dynamic redeployment method for electric ambulances, develop a publicly available
simulator, and show the feasibility of using electric ambulances in a realistic simulation
in [129]. This work is presented in Appendix D. Operating electric ambulances presents
a more complex scenario than operating ICE ambulances. This includes factors such as
the availability and location of fast chargers, varying battery capacities of different am-
bulance models, and differences in charging speeds depending on both the ambulance
model and installed charger. Many of these factors cannot be changed easily and, thus,
the transition to electric ambulances requires careful planning in advance. For instance,
installing a fast charger is costly and takes a significant amount of time (due to obtaining
permits and installation). Similarly, purchasing electric ambulances requires careful and
complex planning that involves selecting the right model (considering battery capacity,
range, charging speeds), determining the number of ambulances required, and training
the crews. This underscores the importance of a flexible and realistic simulator so that
EMS operators are able to asses the impact of these factors and can successfully transition
to electric ambulances.

In a recent pre-print, the authors of [42] examine the impact of transitioning to elec-
tric ambulances by conducting a case study in the region of Utrecht, Netherlands. Their
case study is based on a simulator and the authors worked closely with EMS operators
in the Netherlands, who showed interest in adapting electric ambulances. Although the
researchers did not dynamically redeploy ambulances and instead used the static MEX-
CLP model, which does not consider the specifics of electric ambulances, their case study
indicates that transitioning to electric ambulances is feasible under certain conditions.

24 3. Resource Allocation Tasks

3.2 Stochastic Resource Collection

Resource collection can be viewed as a special subclass of (discrete) resource allocation,
where the roles of resources and entities are reversed. In this task, the agent is required to
choose among a set of collection resources. Whether a resource can be collected changes
over time and the agent can observe the state of each resource at the current time t. As
the collection of a resource does not occur instantaneously but rather requires the agent
to reach the resource, it is uncertain whether the resource will still be available upon
arrival. In the context of resource allocation, the agent is the resource that gets assigned
to the collection resources, i.e., the entities. Most resource collection tasks are spatial
problems. More formally, an agent tries to collect as many resources as possible that are
located within a road network G = (V,E,C), where V is a set of nodes, E denotes a
set of edges, and C : E → R+ are the corresponding costs for traversing an edge. Each
resource p ∈ P is mapped to an edge e ∈ E of the road network. In this thesis, we focus
on the most common stochastic resource collection task, the traveling officer problem
(TOP). In this task, an agent traverses a road network with the objective of fining as
many parking violations as possible [136]. The agent has access to the current state of
each parking spot, which is obtained from a sensor network. However, the agent must
also factor in the stochasticity associated with the dynamic state of parking spots. For
example, a parking offender may leave before the officer’s arrival, or a new violation may
emerge [137].

Relation between Stochastic Resource Collection and Other Spatial Optimization
Problems Stochastic resource collection is a spatial task with unique characteris-
tics [137, 150, 136]. In the following, we highlight the differences and similarities to
other spatial optimization problems. The vehicular routing problem (VRP) is a well-
known area of research that received a lot of attention [161, 112, 106, 22]. In the VRP,
the goal is to find the optimal route for one or more vehicles, with the objective of visiting
a given set of customers in the shortest possible time. A crucial distinction to resource
collection is that customers must be visited exactly once [161]. In contrast, in stochas-
tic resource collection, resources (customers) can reappear. Furthermore, in contrast to
VRP, resources in SRC change their collectability state and may not be collectable upon
the agent’s arrival. While there exist many variations of the VRP [161, 54, 22, 136],
to the best of our knowledge, none of those fully consider the dynamic and uncer-
tainty of SRC. For instance, some variants include the appearance of new customers.
However, they do not include the disappearance of customers after an unknown time
interval [54, 22, 137, 136]. Another prominent spatial problem is the traveling sales-
man problem (TSP), which can be viewed as a special case of the VRP with just one
route [13, 84, 51, 106, 54]. SRC can be simplified as a TSP by planning a route with

3.2 Stochastic Resource Collection 25

the resources that are currently collectable [182, 142]. However, this simplification ig-
nores a crucial aspect of SRC: resources may change their status over time. Ignoring this
leads to sub-optimal policies [137, 136]. Additionally, resource collection often contains
a large number of resources for which solving a TSP can be difficult [13, 84, 106]. The
taxi dispatch problem (TDP) is a spatial task that is similar to SRC [137, 153, 81, 136].
Here, a dispatcher tries to optimize the distribution of taxis throughout the city in or-
der to pick up customers more quickly [153, 81]. Despite the similarities between the
two problems, there are significant differences between SRC and TDP. First, in TDP the
dispatcher assigns each customer to a nearby taxi and in general the customer waits for
the taxi to arrive. The dispatcher ensures that customers are not required to wait for an
extended period of time by only assigning taxis that arrive within a certain maximum
wait time. In contrast to SRC, the agent does not need to manage the risk of a customer
disappearing before the taxi’s arrival. Additionally, another key distinction is that in TDP,
the taxi must drive to a location determined by the passenger, which is beyond the taxi
driver’s control. Furthermore, most of the time, the TDP is formulated on a grid rather
then directly on the road network [81, 153, 7, 96]. While the task of SRC shows im-
portant differences to resource collection, TDP, TSP, and VRP can still be regarded as an
instance of the broader field of resource allocation.

Solutions for Stochastic Resource Collection A variety of different approaches specif-
ically designed for stochastic resource collection and its prominent instance, the travel-
ing officer problem exist [137, 182, 69, 142, 150, 141]. These include simple heuris-
tics [142], ant colony optimization [142], as well as various reinforcement learning-
based approaches [137, 182, 69]. In [142], the authors propose a greedy heuristic that
relies on a probabilistic model to select the resource that is most likely to be in violation.
This straightforward heuristic is remarkably effective. Additionally, they propose a more
sophisticated solution based on ant colony optimization by transforming the TOP in a
time-varying traveling salesman problem. An imitation learning-based approach for TOP
has been proposed to approximate optimal policies [141]. In [123], the authors utilize a
genetic algorithm to solve the multiple traveling officers problem, a variation of the trav-
eling officer problem where multiple officers fine parking violations concurrently. Several
reinforcement learning-based approaches have been proposed [137, 182, 69]. In [137],
the authors formulate stochastic resource collection as a Semi-Markov Decision Process
(SMDP) and use a special graph-convolution-based architecture and Semi-double DQN.
The authors of [182] take the well-known attention-based approach for VRP of [84]
and apply it to the TOP. Similarly, in [69] the authors adopt pointer networks, proposed
by [13], to the TOP.

26 3. Resource Allocation Tasks

Figure 3.3: A visualization of the traveling officer problem. A green car indicates an occupied
parking spot, red a violation, and yellow a fined parking spot. A parking spot without
a car is currently free.

The Traveling Officer Problem

The Traveling Officer Problem (TOP) is a very prominent instance of a resource collection
task [137, 182, 69, 142, 150, 141]. In this task, a parking officer traverses a road network
and tries to fine as many parking violations as possible. While the officer has access to
real-time information the current state of parking spots, such as whether a vehicle is
illegally parked, the state of these spots can change by the time the officer reaches them.
For example, a parking offender might leave before the officer arrives or a new violation
occurs in another parking spot. As a result, the traveling officer problem is a highly
dynamic and stochastic task. A visualization of the traveling officer problem is shown in
Figure 3.3.

Formally, the TOP can be modeled as a fixed-horizon Semi Markov Decision Process
(SMDP) [137]. A SMDP is defined as a tuple ⟨S,A, P,R, γ⟩, where S is the set of states, A
denotes the set of possible actions, P represents the transition function, R is the reward
function, and γ denotes the discount factor. Unlike a regular MDP, the transition function
also determines the duration of an action, denoted as τ . In this formulation, which we
follow in this thesis, the set of actions corresponds to all edges that have parking spots,
i.e., the officer travels on the shortest path from it’s current position to the end of the
edge associated with the action. As a result the duration of an action varies. The officer
fines all violation encountered on its way.

Multi-Agent Stochastic Resource Collection

Many real-world stochastic resource collection tasks are too large and complex for a sin-
gle agent to manage the task effectively. For example, when a single agent must collect

3.3 Continuous Resource Allocation Tasks 27

many resources spread over a large area in a short period of time, it might be quickly
overwhelmed. Thus, in many applications multiple agents collect resources concurrently
as a team [150, 123]. However, using multiple agents introduces additional complex-
ity as it is no longer enough for each agent to act independently. Instead, they must
also coordinate their actions to avoid redundant actions and conflicts to achieve a good
overall result. The multiple traveling officer problem (MTOP) is a prominent instance of
a multi-agent stochastic resource collection task. In this task, multiple parking officers
concurrently traverse a road network and try to fine as many parking violations as pos-
sible. The interaction and coordination between multiple parking officers adds another
layer of complexity, in addition to the challenges of the single-agent traveling officer
problem. More specifically, officers need to coordinate their plans and intentions. For
example, if two or more officers target the same area, maybe even patrol the same street
simultaneously, the presence of the second officer might not or only marginally increase
the amount of parking violations fined. Instead, it would be more effective if one of the
officers targets another area to increase the overall number of fined parking violations.
However, if agents fail to cover important areas of the road network in order to prevent
being too close to other agents, violations in these areas will not be fined, resulting in
a poor overall performance. Therefore, agents must consider the plans, intentions, and
policies of other agents in their decisions.

3.3 Continuous Resource Allocation Tasks

So far, we focused on discrete resource allocation problems. However, many allocation
tasks require a continuous allocation. This includes numerous applications including
power distribution, computational load balancing, security screening, and finance [19,
159, 5, 132, 172, 102, 103, 143, 46].

Constraints on the possible allocation play a crucial role in continuous allocation
tasks [48, 118, 107, 9, 2, 19, 132]. For example, an investor may face several restrictions
on possible allocations due to regulations or client preferences, such as limits of how
much of the portfolio can be invested into assets with a certain rating [48, 118, 107, 9, 2].

In this section, we will first define continuous allocation tasks and allocation con-
straints. Then we will give an overview of important continuous allocation problems and
focus especially on portfolio optimization. Finally, we will discuss existing methods to
solve constrained continuous allocation tasks using reinforcement learning.

The goal in continuous allocation tasks is to find an allocation a = {a1, . . . , an} over a
set of n entities E = {e1, . . . , en}. Here, ai ∈ [0, 1] denotes the allocation to entity ei. We
also require that an allocation is completely allocated. In other words, allocations must

28 3. Resource Allocation Tasks

0
0.2

0.4
0.6

0.81

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

a1a2

a
3

(a) Unconstrained standard simplex without additional allocation
constraints.

0
0.2

0.4
0.6

0.81

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

a1a2

a
3

(b) Constrained simplex with a3 ≤ 0.6 and a2 ≤ 0.7

Figure 3.4: Examples of 3-dimensional allocation action spaces (a) unconstrained and (b) con-
strained (valid solutions as red area) using our approach subject of Appendix G. Each
dimension represents the allocation to one entity.

satisfy the simplex constraint, i.e.,
∑n

i=1 ai = 1, and cannot be negative ai ≥ 0. Note that
even with those two constraints, this setting is often referred to as unconstrained.

Continuous resource allocation tasks often come with hard allocation constraints that
restrict the action space. More formally, allocation constraints are a specific class of linear
constraints that are defined as follows

n∑

i=1

ciai ≤ b (3.1)

Here, ci ∈ R denotes the weighting of the allocation variable ai to entity ei and b ∈ R the
corresponding constraint limit.

We only define ≤ constraints since ≥ can be transformed into ≤ constraints by multi-
plying with −1. Additionally, equality constraints a = b can be expressed as two inequal-
ity constraints: a ≤ b and −a ≤ −b.

Geometrically, the action space without allocation constraints forms an n-dimensional
standard simplex. Given, some allocation constraints, the action space forms a convex
polytope. This is illustrated in Figure 3.4

3.3.1 Overview of Continuous Resource Allocation Tasks

In this subsection, we give an overview of the continuous resource allocation tasks and
their corresponding allocation constraints used in this thesis. Portfolio optimization is
among the most important allocation tasks, and thus we use it extensively to evaluate
the performance of our methods. However, there are many different definitions and vari-
ations of portfolio optimization. Therefore, we provide a detailed definition of portfolio

3.3 Continuous Resource Allocation Tasks 29

optimization and the variations used in this thesis. At the end of this subsection, we will
briefly discuss other continuous allocation problems.

Portfolio Optimization

Portfolio optimization is one of the most prominent examples of continuous resource
allocation [102, 103, 143, 46, 172, 49]. In this thesis, we focus on portfolio optimization
tasks, where an investor needs to allocate its wealth over a set of assets in each time-step
over a fixed investment horizon. Formally, we have a set of N assets I = {1, . . . , N}, or in
the framework of resource allocation, entities. At each decision point, we need to decide
the proportion of our wealth which we invest in each asset. Following the framework of
continuous resource collection, we define the action space as all possible allocations:

A = {a ∈ RN
0,+ :

N∑

i=1

ai = 1} (3.2)

Here, ai denotes the allocation to the ith asset. In this formulation, short selling is not
allowed (ai ≥ 0) and the whole wealth has to be invested (

∑N
i=1 ai = 1). Despite these

basic constraints, we refer to this setting as unconstrained.
Allocation constraints are frequently used to restrict or require a minimum amount

of allocation into a specific group of assets due to regulatory requirements or client
preferences [48, 118, 107, 9, 2, 23, 62, 49]. For example, many investment funds are
subject to restrictions that do not allow to invest more than a certain percentage of
their portfolio into a single asset or a sector [62, 49]. Such constraints can be modeled
by setting ci to either 0 or 1 depending on whether the asset ai belongs to the sector
that should be restricted. The value of b ∈ [0, 1] corresponds to the maximum investment
allowed in the sector. Since ci only takes binary values, these constraints are also referred
to as binary constraints. Another example is investing considering ESG (Environmental,
Social und Governance) criteria. In this case, the investor is required to adhere to certain
environmental or sustainability criteria, such as only investing a maximum percentage in
CO2 heavy industries.

Additionally, more complex allocation constraints can be used to integrate criteria
for assets like (estimated) dividend yield or other portfolio measures (like the weighted
average cost of capital, the estimated return on equity, or ESG criteria). Constraints can
than be used that ensure for example a minimum dividend yield of the portfolio or ESG
related metrics [122, 160]. In this case, we create a constraint where each ci corresponds
to the dividend yield associated with the ith asset and b represents the desired minimum
dividend yield (note that ci and b would be multiplied by −1 to obtain the ≤ constraint).
In contrast to binary constraints, the value of ci can be any real number.

30 3. Resource Allocation Tasks

Short selling, or shorting, is a strategy that enables investors to generate profits when
asset prices decline [126, 47, 147]. A common way to build a short position is to borrow
the asset and immediately sell it [126, 47, 147]. At a later point in time the investor
is obliged to repurchase the asset and return it to the lender. In case the value of the
asset has fallen, the short seller makes a profit equal to the difference. However, when
the price of the asset has increased, the short seller suffers a loss due to the obligation
to repurchase the asset to return it to the lender. The act of repurchasing the assets that
were sold short is referred to as ”covering the short”. Additionally, the short seller must
typically pay a fee to borrow the asset. Short selling can be a risky strategy because,
theoretically, there is no limit on how much the price of a stock can increase and, thus,
the potential loss for a short seller is also unlimited [126, 47, 147].

Short selling can be used to construct a 130-30 portfolio. In this popular investment
strategy, the investor first short sells stocks worth 30% of the capital they believe will
underperform and use the resulting 130% of available capital to invest into stocks they
expect to generate the highest returns [91, 53, 87]. This setting can be formulated as
a constrained allocation problem. In this formulation, the subset of assets that will be
shorted are assigned negative allocation weights. Additionally, we require the assets
that are shorted to be mutually exclusive to the assets for which we build long position.
Formally, this can be defined as follows:

{ai ∈ RN :
N∑

i=1

ai = 1,
∑

j∈Vshort

aj = cshort, aj ≤ 0 ∀j ∈ Vshort, ak ≥ 0 ∀k ∈ Vlong} (3.3)

Here, I = {1, . . . , N} represents the set of all assets, Vshort ∈ I are the assets that
must be shorted. Therefore, the allocations to those assets are negative and must add up
to cshort, which denotes the amount of shortage. The set of long positions is denoted as
Vlong ∈ I. Allocations to long positions are positive and must add up to 1 + |cshort|. Note
that Vshort and Vlong are mutually exclusive. Overall, all allocations add up to 1, which
allows the investor to invest 1 + |cshort|.

Other Continuous Allocation Tasks

While portfolio optimization is a very prominent allocation task, allocating compute jobs
to servers in a data center is another important resource allocation task [5, 156]. We
follow the definition of this task as outlined by [5]. In this scenario, we have a set
of n servers (entities) and we need to decide the fraction of each job to be computed
on each server. When a job has been completely computed within its predetermined
maximum allowed time, a reward is given. Each server has different computational

3.3 Continuous Resource Allocation Tasks 31

capabilities and an individual queue of jobs to be still computed which the agent needs
to take into account when scheduling a job. Each job is defined by a payload size,
i.e., the amount of data that needs to be transferred to the server, the number of CPU
cycles required to process the job, and the maximum time allowed until the job needs
to be fully computed. Jobs are generated by a specified number of users following a
Poisson process. Other continuous resource allocation tasks include the allocation of
software-testing resources [114, 88], energy allocation in satellites [101], blockchain
applications [50], or dynamically allocating power in multi-battery systems [159].

3.3.2 Solving Continuous Allocation Tasks

After discussing a variety of different allocation tasks, we now continue by giving an
overview over existing solutions to solve allocation tasks with allocation constraints. Let
us note that we specifically focus on reinforcement learning to solve allocation tasks.

Reinforcement learning is a widely used method for solving continuous allocation
tasks [172, 5, 159, 19, 132, 175]. Many of the most commonly used reinforcement learn-
ing algorithms are policy gradient-based and parameterize a probability distribution over
the action space [139, 65, 12, 166, 94]. However, even in the absence of additional allo-
cation constraints, the probability distribution still needs to fulfill the simplex constraints
in continuous allocation tasks. The Dirichlet distribution is particularly well-suited be-
cause, unlike most other distributions, it ensures that the simplex constraint is always
satisfied. Additionally, it has been shown that using a Dirichlet policy in allocation tasks
often yields better results compared to alternative policies, such as a Gaussian-softmax
policy [159, 5, 172, 175]. Therefore, the Dirichlet policy is a popular choice for many
allocation tasks [159, 175, 172].

Continuous allocation tasks often come with allocation constraints that restrict the
action space [19, 97, 132]. Geometrically, this action space forms a convex polytope.
However, directly parameterizing a probability distribution over such a constrained ac-
tion space is a challenging task. In fact, even uniformly sampling from a convex polytope
can be a surprisingly difficult problem [41, 35].

One way to solve constrained allocation tasks is to transform the problem into a
CMDP and applying standard safe reinforcement learning techniques [43]. To this end,
cost functions are used that measure the violations of each constraint [43]. More specifi-
cally, the cost function measures how much the constraint is violated. Safe reinforcement
learning typically focuses on implicit soft cumulated constraints, where the expected cu-
mulated costs should be smaller then some specified limit ϵi. In this setting, the cost func-
tion is usually not explicitly defined (analogous to the reward function) and a strict ad-
herence to the constraints, especially during training, cannot be guaranteed [43, 99, 64].

32 3. Resource Allocation Tasks

Many safe reinforcement learning approaches are based on Lagrangian relax-
ation [8, 99, 157, 28]. For example, in [29, 116] a primal-dual update mechanism
is used. Other methods introduce penalty terms on the rewards to integrate the con-
straints [181, 157, 98]. Specifically, in [98] (IPO) the authors utilize a logarithmic bar-
rier function, while in [181] (P30), the authors use a penalty function to convert the
constrained problem into an equivalent unconstrained problem. The authors of [30, 31]
construct Lyapunov functions to satisfy the constraints by projecting them back on to the
set of feasible solutions induced by the Lyapunov functions. In [36] (SafetyLayer), the
authors correct unsafe actions through projections based on a linear approximation of a
safety signal. In [97], the authors combine IPO and SafetyLayer for constrained alloca-
tion tasks. The second-order optimization algorithm CPO [3] extends TRPO [138] and
integrates the constraints into the trust region. In PCPO [178], the authors use a two-
step trust region-based approach that also projects actions back onto the constraint set
using a cost critic. Other two-step approaches, like FOCOPS [183] or CUP [176], are also
popular approaches that use first-order optimization. However, these approaches cannot
guarantee constraint satisfaction at all times, especially during training [43, 99, 64].

The majority of literature in constraint reinforcement learning has traditionally fo-
cused on implicit soft constraints. However, several methods for handling explicit hard
constraints have been proposed [95, 19, 120, 43, 132]. In this setting, the constraints
are explicitly given and usually strict adherence is required at all times. Most of these
approaches are projection-based methods that correct infeasible actions, i.e., actions that
do not satisfy the constraints, into feasible actions [95, 19, 120, 43, 132]. Let us note
that the majority of these methods address linear allocation constraints, i.e., tasks where
the action space forms a convex polytope [19, 120, 132]. A notable example is Opt-
Layer [120], a projection-based approach based on OptNet [10]. OptLayer projects
infeasible actions to the closest feasible action on the polytope by solving a quadratic
problem in a differentiable way that allows easy integration into existing reinforcement
learning algorithms. In [19], the authors focus on resource allocation tasks with hi-
erarchical allocation constraints by proposing another projection based approach. The
authors of [95] use a projection method based on Franke-Wolf policy optimization. The
authors of [43] propose a projection based on generalized reduced gradients. In [132],
the authors use an alpha-projection, which is a more efficient way to project an point
outside to the surface of the polytope than quadratic programming. However, it has
been shown that projection-based methods can lead to a biased policy gradient and thus
may impact learning [28, 52, 99]. Additionally, many projection-based methods suffer
from the zero-gradient issue, where small changes in the policy parameters do not lead
to any change in the final output due to the projection mechanism [95].

33

Chapter 4

Overview of Contributions

In this chapter, we provide an overview of the publications included in this thesis and
highlight the most important contributions. We focus on different areas of resource
allocation. Our publications deal with challenges in these areas as well as those that
arise from specific applications. The publications can be found in the Appendix. This
also includes supplementary materials and a description of the author contributions in
each work. This dissertation consists of seven publications that we will now detail [150,
148, 149, 129, 171, 173, 174].

4.1 Spatial-Aware Deep Reinforcement Learning for the
Traveling Officer Problem

Solving complex spatial optimization problems like stochastic resource collection and the
traveling officer problem with reinforcement learning requires specialized solutions and
neural network architecture to achieve a good performance [137]. Nevertheless, current
methods have several limitations. They do not fully account for the spatial relationship
between the parking locations and the officer’s current position, have difficulties scaling
to realistically-sized real-world settings, and struggle in predicting the future implications
of their actions due to the dynamic nature of the traveling officer problem.

In our work [149] (which can be found in Appendix A), we introduce a novel archi-
tecture for solving the traveling officer problem with reinforcement learning. We follow
the formulation of the traveling officer problem as a stochastic resource collection task
with temporally extended actions as proposed by [137]. Our first contribution is a novel
pathing module that is capable of more effectively encoding a temporally extended ac-
tion, particularly the spatial relationships between the officer’s current location, parking
spots, and each action. Our second contribution is a future positioning module that uti-

34 4. Overview of Contributions

lizes message passing to encode the interactions of each action and potential the future
actions, thereby enabling a better estimate of how well the agent is positioned after each
action.

Our approach is able to consistently outperform the current state of the art by up to
22% in terms of fined parking violations using real-world parking data from Melbourne
replayed in a simulator.

4.2 Reinforcement Learning for Multi-Agent Stochastic
Resource Collection

In resource collection tasks, like the traveling officer problem, it is common that multiple
agents work in parallel [123]. In this work [150] (see Appendix B), our first contribution
is to formalize multi-agent stochastic resource collection as a Semi-Markov game. Our
second contribution is a novel architecture that includes an intent combination module
to better asses the intents of other agents. We train the policy of each agent using in-
dependent Q-learning. Even tough the task is cooperative, we show that using selfish
rewards, i.e., rewarding each agent only for the resource collected by itself, results in
a more effective overall policy. We argue that this is because the price of anarchy, i.e.,
the impact of acting selfish over cooperating [33], is low in multi-agent stochastic re-
source collection tasks. This is because agents naturally tend to spread out and avoid
direct competition, a behavior that one would also expect when the agents cooperate.
Therefore, the selfish rewards, which avoid the credit assignment problem, outweigh the
potential benefits of a cooperative joint reward. We evaluate this effect and also com-
pare our approach by performing extensive experiments using a simulator that replays
real-world parking data from the city of Melbourne. We demonstrate that our approach
is able to significantly outperform existing methods. Additionally, we perform several
ablations to examine the impact of individual parts of our architecture.

4.3 A Comparison of Ambulance Redeployment Systems
on Real-World Data

It is challenging to make direct comparisons between existing ambulance redeployment
methods. This is due to the fact that existing researchers frequently use simulators and
datasets that are not publicly available. Moreover, a considerable number of existing
research does not employ real-world data, instead relying on synthetic benchmarks. A
major limitation of many synthetic datasets is the lack of temporal variability. In other
words, the rate of incident occurrence remains constant across different time scales. For

4.4 DEAR: Dynamic Electric Ambulance Redeployment 35

example, the analysis of real-world datasets shows that fewer incidents occur at night
compared to daytime [148]. This can lead to unrealistic scenarios and the development
of redeployment methods that perform well on synthetic data but poorly in the real
world. In light of the ethical considerations involved, it is crucial to examine the impact
of an ambulance redeployment policy on the EMS through the use of a simulator prior to
its implementation in the real world. In this context, accurately replaying real-world data
is important. In this work [148] (found in Appendix C), our first main contribution is the
introduction of an event-based simulator that can replay publicly available real-world
data from the city of San Francisco. One of our primary focus points was developing a
simulator that is well-suited for reinforcement learning to facilitate research in this di-
rection. Our second contribution is the implementation of several existing redeployment
approaches. Finally, our third contribution is the evaluation of existing redeployment
strategies using our high-performance simulation in a close to real-world setting, reveal-
ing that very simple baselines like redeploying to the nearest station oftentimes work
surprisingly well and is able to outperform complex state-of-the-art approaches. This
includes the reinforcement learning-based approach of [78], which struggles to surpass
existing methods, including simple heuristics in many scenarios. We hope to introduce
a more standardized and realistic benchmark for ambulance redeployment and facilitate
future research in this area with our openly available simulator.

4.4 DEAR: Dynamic Electric Ambulance Redeployment

The transition to electric vehicles not only affects individual transportation and public
transport but also impacts emergency services. Since ambulances are often modified ver-
sions of standard vehicles, it is likely that they too will be based on electric vehicles in
the future. In fact, this transition is already happening. Electric ambulances have already
been developed and pilot-tested in real-world operations [1]. Furthermore, operators in
the UK [67] and the US [27] are planning to purchase electric ambulances. However,
the transition to electric ambulances requires significant changes in operational proce-
dures, as the battery levels and the associated charging requirements of the ambulances
must be taken into account. Therefore, we introduce and formalize the new task of dy-
namic electric ambulance redeployment (presented in Appendix D). In our work [129],
we are the first to evaluate the impact of electric ambulances on the EMS systems by
developing a simulator that closely mirrors real-world conditions and is able to replay
actual incident data from the city of San Francisco. We use our simulator to evaluate
how well existing redeployment strategies developed for ICE ambulances perform with
electric ambulances. Additionally, we introduce minimizing energy deficits (MED), a
novel redeployment strategy that considers the charging requirements and battery lev-

36 4. Overview of Contributions

els of electric ambulances. The core idea of MED is to minimize the energy deficit with
each redeployment decision. The energy deficit is calculated using demand estimates
and predicted future charging levels at each base station. The results of our evaluation
demonstrate the effectiveness of our novel redeployment policy in various settings. Fur-
thermore, we show that redeployment strategies developed for ICE ambulances show
a significant drop in performance when applied to electric ambulances. However, with
our approach, electric ambulances can achieve a similar service level comparable to ICE
ambulances (i.e., a response time of less than 10 minutes for 90% of the incidents) with-
out requiring additional ambulances in a realistic scenario using real-world data from
the city of San Francisco. Additionally, we evaluate our approach across a multitude of
different settings with varying numbers of fast chargers, different charging speeds, num-
bers of ambulances, and different years of data. We are consistently able to outperform
the baselines in almost all settings. These results further highlight that under reasonable
conditions transition to electric ambulances is not only feasible but it is possible to do so,
while maintain a comparable service level to ICE ambulances. Additionally, our openly
available simulator can be a crucial tool for EMS operators in planning and transitioning
to electric ambulances.

4.5 Constrained Portfolio Management Using Action
Space Decomposition for Reinforcement Learning

Portfolio optimization is an important resource allocation task that is often accompanied
by binary allocation constraints. In this paper [171] (subject of Appendix E), we propose
a decomposition of the constraint action space into multiple independent subspaces that
can be sampled in parallel. These subspaces can be parameterized with a Dirichlet distri-
bution. Using the Minkowski sum, we can combine the subspaces back into the original
action space. We evaluate our approach in two portfolio optimization tasks. In the first
setting, we construct a long-only portfolio with ESG constraints, where the investor is
required to allocate at least 40% of its portfolio to the stocks of companies with an En-
vironmental Score Metric (ESM) of 80 or higher. The ESM score, which is provided by
the financial data provider LSEG, is a rating system that measures a company’s environ-
mental sustainability. In the second setting, a 130-30 portfolio is constructed through
short-selling. In this case, the investor is required to build a short-position that amounts
to 30% of the available capital. The constraints specify the stocks from which the short
position can be built as well as the size of the short position. Our approach is able
to outperform existing methods, while guaranteeing constraint satisfaction at all times.
Our evaluation also includes backtesting, i.e., evaluating the trained model on unseen
real-world market data. We are able to outperform the baselines with our approach in

4.6 Simplex Decomposition for Portfolio Allocation Constraints in Reinforcement
Learning 37

backtesting as well. Furthermore, we also include theoretical proofs that our decomposi-
tion indeed parameterizes an action space equivalent to the original action space. Thus,
we can guarantee constraint satisfaction.

4.6 Simplex Decomposition for Portfolio Allocation
Constraints in Reinforcement Learning

The primary contribution of this paper [173] (see Appendix F) is the extension of our
previous approach to allow for two binary allocation constraints. We decompose the sim-
plex action space into several unconstrained sub-action spaces that can be parameterized
using a Dirichlet distribution. Importantly, our approach ensures that the constraints are
always satisfied. We also provide a formal proof that our approach always guarantees
constraint satisfaction. We conduct an extensive experimental evaluation focused on the
task of portfolio optimization. As in our previous paper, this also includes backtesting.
The results demonstrate that our approach can consistently outperform the baselines.
Moreover, we also present a proof that our decomposition can always guarantee con-
straint satisfaction by showing that the set of actions from our decomposed surrogate
action space is equivalent to those of the original action space.

4.7 Autoregressive Policy Optimization for Constrained
Allocation Tasks

In our previous papers [171, 173] (see Section 4.5 and Section 4.6), we are limited in the
number of constraints and are only able to handle binary constraints. In this paper [174]
(which can be found in Appendix G), we present an approach that overcomes these lim-
itations and is able to handle an arbitrary number of linear allocation constraints. We
achieve this by defining the policy using an autoregressive decomposition that utilizes
linear programming to sample the allocation for each entity in a step-by-step process.
An illustration of this process can be found in Figure 4.1 Our policy can be trained us-
ing existing policy gradient-based reinforcement learning algorithms, such as PPO [139].
Another key contribution of this paper is the introduction of a novel de-biasing mecha-
nism to ensure that the initial policy samples uniformly across the entire polytope. This
is because uniformly sampling each individual allocation from the range of possible al-
locations in each step results in an exponential decrease of possible allocations for the
remaining entities. Our ablations clearly show that without the de-biasing mechanism,
the policy is unable to overcome this initial bias and converges early to a sub-optimal
policy. Additionally, the de-biasing mechanism makes the policy robust to the order in

38 4. Overview of Contributions

0
0.2

0.4
0.6

0.81

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

a1a2

a
3

(a) Original set of valid solutions, i.e.,
A(1) (red area)

0
0.2

0.4
0.6

0.81

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

amax
1

amin
1

ā1

a1a2

a
3

(b) Remaining valid solutions in A(2)

(red line) after a1 = 0.3 (dashed
blue line) was fixed, i.e., sampled

0
0.2

0.4
0.6

0.81

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

amax
2

amin
2

ā2

a1a2

a
3

(c) Only a single valid solution remains
in A(3) (red dot) after a1 = 0.3
and a2 = 0.5 (dashed blue lines) are
fixed, i.e., sampled

Figure 4.1: Example of sampling process of an action a = (a1, a2, a3) in a 3-dimensional con-
strained allocation task using the approach from our paper Autoregressive Policy
Optimization for Constrained Allocation Tasks (see Appendix G). Figure from Ap-
pendix [174].

which the entities are allocated. We evaluate our approach in three different resource
allocation tasks with a wide range of different allocation constraints: distributing com-
putational workloads, portfolio optimization, and on a novel synthetic benchmark intro-
duced by us. The results demonstrate the effectiveness of our approach, which is able to
significantly outperform existing methods while guaranteeing constraint satisfaction at
all times.

39

Chapter 5

Conclusion and Outlook

In this thesis, we presented multiple advances in different areas of resource allocation.
In the following, we will briefly summarize our main contributions before we discuss
future research opportunities as well as limitations. Resource allocation is a broad topic,
and our work focused on a number of specific areas. From an applications perspec-
tive, we mainly focused on various spatial tasks and portfolio optimization. Specifically,
we improved stochastic resource collection in single [149] as well as multi-agent sce-
narios [150]. Furthermore, we examined dynamic redeployment of combustion engine
ambulances [148] and electric ambulances [129] in this thesis, two examples of dis-
crete resource allocation. Afterward, we looked into continuous resource allocation with
allocation constraints, with portfolio optimization as a key application. We developed ap-
proaches that can effectively incorporate one [171] and two allocation constraints [173]
into standard reinforcement learning algorithms using a decomposition of the simplex
action space. Finally, we propose an approach that is able to handle an arbitrary number
of allocation constraints by iteratively sampling actions in each dimension autoregres-
sively by utilizing linear programming to compute the range of possible actions [174].
Again, our approach can be trained using standard reinforcement learning algorithms,
such as PPO.

5.1 Limitations and Future Work

In general, we envision several main axes for future work:

• Currently, numerous resource allocation tasks have been addressed by using task-
specific, specialized approaches [150, 149, 129, 5, 132]. Developing more generic
solutions that can be applied across various resource allocation tasks represents a
promising research direction. In particular, foundation models have been shown

40 5. Conclusion and Outlook

to cover a wide range of tasks in natural language processing or computer vi-
sion [40, 125, 128, 124]. Given the success of foundation models in these domains,
researchers also proposed the use of foundation models for decision making [177].
The development of a foundation model for resource allocation tasks represents a
promising but challenging area of research.

• While some resource allocation tasks can be effectively solved for a large number
of resources or entities, many existing solutions struggle to scale. For instance,
approaches in continuous resource allocation, particularly portfolio optimization,
are limited to a small number of assets. Therefore, overcoming these limitations
yields a promising opportunity for future research.

• While the aforementioned directions for future research described opportunities in
the broad field of resource allocation, individual tasks offer a many task-specific
research opportunities. For example, in electric ambulance redeployment, man-
aging dispatch and redeployment jointly represents a promising research direc-
tion. In continuous resource allocation, the combination of our approaches with
safe reinforcement learning methods to address allocation and other safety con-
straints simultaneously is an exiting research opportunity. Furthermore, it should
be investigated, if our approaches can be transferred to certain types of non-linear
constraints and discrete action spaces. Finally, there exists a plethora of different
resource allocation tasks. Thus, applying our approaches to new use cases is an
interesting research direction.

Overall, we have made substantial contributions to both individual resource alloca-
tion tasks as well as to the broader field. Nevertheless, as outlined, numerous opportu-
nities for future research remain.

REFERENCES 41

References

[1] Was 500 electric ambulance - wietmarscher ambulanz- und sonder-
fahrzeug gmbh. https://www.was-vehicles.com/en/innovation/

was-500-electric-ambulance.html [Accessed: (2024-08-09)].

[2] G. Abate, T. Bonafini, and P. Ferrari. Portfolio constraints: An empirical analysis.
International Journal of Financial Studies, 10(1):9, 2022.

[3] J. Achiam, D. Held, A. Tamar, and P. Abbeel. Constrained policy optimization. In
International conference on machine learning, pages 22–31. PMLR, 2017.

[4] R. Alanis, A. Ingolfsson, and B. Kolfal. A markov chain model for an ems system
with repositioning. Production and operations management, 22(1):216–231, 2013.

[5] L. Ale, S. A. King, N. Zhang, A. R. Sattar, and J. Skandaraniyam. D3pg: Dirichlet
ddpg for task partitioning and offloading with constrained hybrid action space
in mobile-edge computing. IEEE Internet of Things Journal, 9(19):19260–19272,
2022.

[6] M. Allen, K. Pearn, and T. Monks. Developing an openai gym-compatible frame-
work and simulation environment for testing deep reinforcement learning agents
solving the ambulance location problem. arXiv preprint arXiv:2101.04434, 2021.

[7] A. Alshamsi, S. Abdallah, and I. Rahwan. Multiagent self-organization for a taxi
dispatch system. In 8th international conference on autonomous agents and multi-
agent systems, pages 21–28, 2009.

[8] E. Altman. Constrained Markov Decision Processes, volume 7. CRC Press, 1999.

[9] N. Amenc, F. Goltz, and A. Lioui. Practitioner portfolio construction and per-
formance measurement: Evidence from europe. Financial Analysts Journal,
67(3):39–50, 2011.

https://www.was-vehicles.com/en/innovation/was-500-electric-ambulance.html
https://www.was-vehicles.com/en/innovation/was-500-electric-ambulance.html

42 REFERENCES

[10] B. Amos and J. Z. Kolter. Optnet: Differentiable optimization as a layer in neural
networks. In International conference on machine learning, pages 136–145. PMLR,
2017.

[11] T. Andersson and P. Värbrand. Decision support tools for ambulance dispatch and
relocation. Journal of the Operational Research Society, 58(2):195–201, 2007.

[12] K. Arulkumaran, M. P. Deisenroth, M. Brundage, and A. A. Bharath. Deep rein-
forcement learning: A brief survey. IEEE Signal Processing Magazine, 34(6):26–38,
2017.

[13] I. Bello, H. Pham, Q. V. Le, M. Norouzi, and S. Bengio. Neural combinatorial
optimization with reinforcement learning. arXiv preprint arXiv:1611.09940, 2016.

[14] Y. Bengio, P. Frasconi, and P. Simard. The problem of learning long-term depen-
dencies in recurrent networks. In IEEE international conference on neural networks,
pages 1183–1188. IEEE, 1993.

[15] P. L. V. D. Berg and J. T. V. Essen. Comparison of static ambulance location mod-
els. International Journal of Logistics Systems and Management, 32(3-4):292–321,
2019.

[16] O. Berman. Dynamic repositioning of indistinguishable service units on trans-
portation networks. Transportation Science, 15(2):115–136, 1981.

[17] M. Bernhard, N. Strauß, and M. Schubert. Mapformer: Boosting change detection
by using pre-change information. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 16837–16846, 2023.

[18] D. Bertsimas and Y. Ng. Robust and stochastic formulations for ambulance deploy-
ment and dispatch. European Journal of Operational Research, 279(2):557–571,
2019.

[19] A. Bhatia, P. Varakantham, and A. Kumar. Resource constrained deep reinforce-
ment learning. In Proceedings of the International Conference on Automated Plan-
ning and Scheduling, volume 29, pages 610–620, 2019.

[20] G. R. Bitran and A. C. Hax. On the design of hierarchical production planning
systems. Decision Sciences, 8(1):28–55, 1977.

[21] G. R. Bitran and A. C. Hax. Disaggregation and resource allocation using convex
knapsack problems with bounded variables. Management Science, 27(4):431–441,
1981.

REFERENCES 43

[22] G. Bono, J. S. Dibangoye, O. Simonin, L. Matignon, and F. Pereyron. Solving multi-
agent routing problems using deep attention mechanisms. IEEE Transactions on
Intelligent Transportation Systems, 22(12):7804–7813, 2020.

[23] A. Braun, H. Schmeiser, and F. Schreiber. Portfolio optimization under solvency ii:
Implicit constraints imposed by the market risk standard formula. Journal of Risk
and Insurance, 84(1):177–207, 2017.

[24] T. B. Brown. Language models are few-shot learners. arXiv preprint
ArXiv:2005.14165, 2020.

[25] G. Cady. 200 city survey. jems 2001 annual report on ems operational & clini-
cal trends in large, urban areas. JEMS: a journal of emergency medical services,
27(2):46–65, 2002.

[26] L. Chen, K. Lu, A. Rajeswaran, K. Lee, A. Grover, M. Laskin, P. Abbeel, A. Srini-
vas, and I. Mordatch. Decision transformer: Reinforcement learning via sequence
modeling. Advances in neural information processing systems, 34:15084–15097,
2021.

[27] E. Chhabra. Ambulance business goes electric with its new fleet,
Apr 2022. https://www.forbes.com/sites/eshachhabra/2022/04/14/

ambulance-business-goes-electric-with-its-new-fleet/ [Accessed: (2024-
08-09)].

[28] P.-W. Chou, D. Maturana, and S. Scherer. Improving stochastic policy gradients in
continuous control with deep reinforcement learning using the beta distribution.
In International conference on machine learning, pages 834–843. PMLR, 2017.

[29] Y. Chow, M. Ghavamzadeh, L. Janson, and M. Pavone. Risk-constrained reinforce-
ment learning with percentile risk criteria. Journal of Machine Learning Research,
18(167):1–51, 2018.

[30] Y. Chow, O. Nachum, E. Duenez-Guzman, and M. Ghavamzadeh. A lyapunov-
based approach to safe reinforcement learning. Advances in neural information
processing systems, 31, 2018.

[31] Y. Chow, O. Nachum, A. Faust, E. Duenez-Guzman, and M. Ghavamzadeh.
Lyapunov-based safe policy optimization for continuous control. arXiv preprint
arXiv:1901.10031, 2019.

[32] A. Chowdhery, S. Narang, J. Devlin, M. Bosma, G. Mishra, A. Roberts, P. Barham,
H. W. Chung, C. Sutton, S. Gehrmann, et al. Palm: Scaling language modeling
with pathways. Journal of Machine Learning Research, 24(240):1–113, 2023.

https://www.forbes.com/sites/eshachhabra/2022/04/14/ambulance-business-goes-electric-with-its-new-fleet/
https://www.forbes.com/sites/eshachhabra/2022/04/14/ambulance-business-goes-electric-with-its-new-fleet/

44 REFERENCES

[33] C. Chung, K. Ligett, K. Pruhs, and A. Roth. The price of stochastic anarchy. In
Algorithmic Game Theory: First International Symposium, SAGT 2008, Paderborn,
Germany, April 30-May 2, 2008. Proceedings 1, pages 303–314. Springer, 2008.

[34] R. Church and C. R. Velle. The maximal covering location problem. Papers in
regional science, 32(1):101–118, 1974.

[35] K. Ciomek and M. Kadziński. Polyrun: A java library for sampling from the
bounded convex polytopes. SoftwareX, 13:100659, 2021.

[36] G. Dalal, K. Dvijotham, M. Vecerik, T. Hester, C. Paduraru, and Y. Tassa. Safe
exploration in continuous action spaces. arXiv preprint arXiv:1801.08757, 2018.

[37] J. M. Danskin. The theory of max-min and its application to weapons allocation
problems, volume 5. Springer Science & Business Media, 2012.

[38] M. S. Daskin. A maximum expected covering location model: formulation, prop-
erties and heuristic solution. Transportation science, 17(1):48–70, 1983.

[39] D. H. Dayapule, A. Raghavan, P. Tadepalli, and A. Fern. Emergency response
optimization using online hybrid planning. In IJCAI, pages 4722–4728, 2018.

[40] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. Bert: Pre-training of
deep bidirectional transformers for language understanding. arXiv preprint
arXiv:1810.04805, 2018.

[41] P. Diaconis, G. Lebeau, and L. Michel. Gibbs/metropolis algorithms on a convex
polytope. Mathematische Zeitschrift, 272(1):109–129, 2012.

[42] N. A. Dieleman and C. J. Jagtenberg. Electric ambulances: will the need for
charging affect response times? Available at SSRN 4874479, 2024.

[43] S. Ding, J. Wang, Y. Du, and Y. Shi. Reduced policy optimization for continuous
control with hard constraints. Advances in Neural Information Processing Systems,
36, 2024.

[44] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner,
M. Dehghani, M. Minderer, G. Heigold, S. Gelly, et al. An image is worth
16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

[45] M. Dzator and J. Dzator. An effective heuristic for the p-median problem with
application to ambulance location. Opsearch, 50:60–74, 2013.

REFERENCES 45

[46] E. J. Elton, M. J. Gruber, and M. W. Padberg. Simple criteria for optimal portfolio
selection. The Journal of finance, 31(5):1341–1357, 1976.

[47] J. E. Engelberg, A. V. Reed, and M. C. Ringgenberg. Short-selling risk. The Journal
of Finance, 73(2):755–786, 2018.

[48] M. Escobar-Anel, M. Kschonnek, and R. Zagst. Portfolio optimization with
allocation constraints and stochastic factor market dynamics. arXiv preprint
arXiv:2303.09835, 2023.

[49] F. J. Fabozzi and H. M. Markowitz. The theory and practice of investment man-
agement: Asset allocation, valuation, portfolio construction, and strategies, volume
198. John Wiley & Sons, 2011.

[50] J. Feng, F. R. Yu, Q. Pei, J. Du, and L. Zhu. Joint optimization of radio and
computational resources allocation in blockchain-enabled mobile edge computing
systems. IEEE Transactions on Wireless Communications, 19(6):4321–4334, 2020.

[51] M. M. Flood. The traveling-salesman problem. Operations research, 4(1):61–75,
1956.

[52] Y. Fujita and S.-i. Maeda. Clipped action policy gradient. In International Confer-
ence on Machine Learning, pages 1597–1606. PMLR, 2018.

[53] G. L. Gastineau. The short side of 130/30 investing for the conservative portfolio
manager. Journal of Portfolio Management, 34(2):39, 2008.

[54] M. Gendreau, G. Laporte, and R. Séguin. Stochastic vehicle routing. European
journal of operational research, 88(1):3–12, 1996.

[55] M. Gendreau, G. Laporte, and F. Semet. Solving an ambulance location model by
tabu search. Location science, 5(2):75–88, 1997.

[56] M. Gendreau, G. Laporte, and F. Semet. A dynamic model and parallel tabu search
heuristic for real-time ambulance relocation. Parallel computing, 27(12):1641–
1653, 2001.

[57] J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and G. E. Dahl. Neural message
passing for quantum chemistry. In International conference on machine learning,
pages 1263–1272. PMLR, 2017.

[58] R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich feature hierarchies for
accurate object detection and semantic segmentation. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 580–587, 2014.

46 REFERENCES

[59] V. Gligorijević, P. D. Renfrew, T. Kosciolek, J. K. Leman, D. Berenberg, T. Vatanen,
C. Chandler, B. C. Taylor, I. M. Fisk, H. Vlamakis, et al. Structure-based protein
function prediction using graph convolutional networks. Nature communications,
12(1):3168, 2021.

[60] I. Goodfellow, Y. Bengio, and A. Courville. Deep learning. MIT press, 2016.

[61] A. Graves, A.-r. Mohamed, and G. Hinton. Speech recognition with deep recurrent
neural networks. In 2013 IEEE international conference on acoustics, speech and
signal processing, pages 6645–6649. Ieee, 2013.

[62] E. Grizickas Sapkute, M. Sánchez-Granero, L. Garćıa, and J. Trinidad Segovia.
The impact of regulation-based constraints on portfolio selection: The spanish
case. Humanities and Social Sciences Communications, 9(1):1–14, 2022.

[63] S. Gronauer and K. Diepold. Multi-agent deep reinforcement learning: a survey.
Artificial Intelligence Review, 55(2):895–943, 2022.

[64] S. Gu, L. Yang, Y. Du, G. Chen, F. Walter, J. Wang, and A. Knoll. A review of
safe reinforcement learning: Methods, theory and applications. arXiv preprint
arXiv:2205.10330, 2022.

[65] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine. Soft actor-critic: Off-policy maxi-
mum entropy deep reinforcement learning with a stochastic actor. In International
conference on machine learning, pages 1861–1870. PMLR, 2018.

[66] W. Hamilton, Z. Ying, and J. Leskovec. Inductive representation learning on large
graphs. Advances in neural information processing systems, 30, 2017.

[67] C. Hampel. Nhs develops electric ambulances with ford, Jan 2024. https://www.
electrive.com/2021/08/09/nhs-procures-fleet-of-electric-ambulances/

[Accessed: (2024-08-09)].

[68] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition.
In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 770–778, 2016.

[69] R. He, X. Xiao, Y. Kang, H. Zhao, and W. Shao. Heterogeneous pointer network
for travelling officer problem. In 2022 International Joint Conference on Neural
Networks (IJCNN), pages 1–8. IEEE, 2022.

[70] S. G. Henderson, A. J. Mason, et al. Bartsim: a tool for analysing and improving
ambulance performance in auckland, new zealand. In Proceedings of the 35th

https://www.electrive.com/2021/08/09/nhs-procures-fleet-of-electric-ambulances/
https://www.electrive.com/2021/08/09/nhs-procures-fleet-of-electric-ambulances/

REFERENCES 47

annual conference of the operational research society of New Zealand, Wellington,
New Zealand, pages 57–64, 2000.

[71] H. Hewamalage, C. Bergmeir, and K. Bandara. Recurrent neural networks for time
series forecasting: Current status and future directions. International Journal of
Forecasting, 37(1):388–427, 2021.

[72] S. Hochreiter. The vanishing gradient problem during learning recurrent neural
nets and problem solutions. International Journal of Uncertainty, Fuzziness and
Knowledge-Based Systems, 6(02):107–116, 1998.

[73] S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural computation,
9(8):1735–1780, 1997.

[74] J. Hu and M. P. Wellman. Nash q-learning for general-sum stochastic games.
Journal of machine learning research, 4(Nov):1039–1069, 2003.

[75] T. Ibaraki and N. Katoh. Resource allocation problems: algorithmic approaches.
MIT press, 1988.

[76] C. J. Jagtenberg, S. Bhulai, and R. D. van der Mei. An efficient heuristic for real-
time ambulance redeployment. Operations Research for Health Care, 4:27–35,
2015.

[77] C. J. Jagtenberg, S. Bhulai, and R. D. van der Mei. Dynamic ambulance dispatch-
ing: is the closest-idle policy always optimal? Health care management science,
20:517–531, 2017.

[78] S. Ji, Y. Zheng, Z. Wang, and T. Li. A deep reinforcement learning-enabled dy-
namic redeployment system for mobile ambulances. Proceedings of the ACM on
Interactive, Mobile, Wearable and Ubiquitous Technologies, 3(1):1–20, 2019.

[79] J. Jumper, R. Evans, A. Pritzel, T. Green, M. Figurnov, O. Ronneberger, K. Tun-
yasuvunakool, R. Bates, A. Ž́ıdek, A. Potapenko, et al. Highly accurate protein
structure prediction with alphafold. nature, 596(7873):583–589, 2021.

[80] N. Katoh and T. Ibaraki. Resource allocation problems. Handbook of Combinatorial
Optimization: Volume1–3, pages 905–1006, 1998.

[81] J. Kim and K. Kim. Optimizing large-scale fleet management on a road net-
work using multi-agent deep reinforcement learning with graph neural network.
In 2021 IEEE International Intelligent Transportation Systems Conference (ITSC),
pages 990–995. IEEE, 2021.

48 REFERENCES

[82] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. In Y. Bengio
and Y. LeCun, editors, 3rd International Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings,
2015.

[83] T. N. Kipf and M. Welling. Semi-supervised classification with graph convolutional
networks. arXiv preprint arXiv:1609.02907, 2016.

[84] W. Kool, H. van Hoof, and M. Welling. Attention, learn to solve routing problems!
In International Conference on Learning Representations, 2019.

[85] B. O. Koopman. The optimum distribution of effort. Journal of the Operations
Research Society of America, 1(2):52–63, 1953.

[86] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep
convolutional neural networks. Advances in neural information processing systems,
25, 2012.

[87] C. Krusen, F. Weber, and R. A. Weigand. 130/30 funds. The Journal of Retirement,
2008(1):176–185, 2008.

[88] P. Kubat and H. S. Koch. Managing test-procedures to achieve reliable software.
IEEE Transactions on Reliability, 32(3):299–303, 1983.

[89] Y. LeCun, B. Boser, J. Denker, D. Henderson, R. Howard, W. Hubbard, and
L. Jackel. Handwritten digit recognition with a back-propagation network. Ad-
vances in neural information processing systems, 2, 1989.

[90] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

[91] M. L. Leibowitz, S. Emrich, and A. Bova. Modern portfolio management: active
long/short 130/30 equity strategies, volume 488. John Wiley & Sons, 2009.

[92] M. Lewis, Y. Liu, N. Goyal, M. Ghazvininejad, A. Mohamed, O. Levy, V. Stoy-
anov, and L. Zettlemoyer. Bart: Denoising sequence-to-sequence pre-training
for natural language generation, translation, and comprehension. arXiv preprint
arXiv:1910.13461, 2019.

[93] W. Li, H. Luo, Z. Lin, C. Zhang, Z. Lu, and D. Ye. A survey on transformers in
reinforcement learning. arXiv preprint arXiv:2301.03044, 2023.

[94] Y. Li. Deep reinforcement learning: An overview. arXiv preprint arXiv:1701.07274,
2017.

REFERENCES 49

[95] J.-L. Lin, W. Hung, S.-H. Yang, P.-C. Hsieh, and X. Liu. Escaping from zero gra-
dient: Revisiting action-constrained reinforcement learning via frank-wolfe policy
optimization. In Uncertainty in Artificial Intelligence, pages 397–407. PMLR, 2021.

[96] K. Lin, R. Zhao, Z. Xu, and J. Zhou. Efficient large-scale fleet management via
multi-agent deep reinforcement learning. In Proceedings of the 24th ACM SIGKDD
international conference on knowledge discovery & data mining, pages 1774–1783,
2018.

[97] Y. Liu, J. Ding, and X. Liu. A constrained reinforcement learning based approach
for network slicing. In 2020 IEEE 28th International Conference on Network Proto-
cols (ICNP), pages 1–6. IEEE, 2020.

[98] Y. Liu, J. Ding, and X. Liu. Ipo: Interior-point policy optimization under con-
straints. In Proceedings of the AAAI conference on artificial intelligence, volume 34,
pages 4940–4947, 2020.

[99] Y. Liu, A. Halev, and X. Liu. Policy learning with constraints in model-free rein-
forcement learning: A survey. In The 30th international joint conference on artificial
intelligence (ijcai), 2021.

[100] Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin, and B. Guo. Swin trans-
former: Hierarchical vision transformer using shifted windows. In Proceedings
of the IEEE/CVF international conference on computer vision, pages 10012–10022,
2021.

[101] J. J. G. Luis, M. Guerster, I. del Portillo, E. Crawley, and B. Cameron. Deep re-
inforcement learning for continuous power allocation in flexible high throughput
satellites. In 2019 ieee cognitive communications for aerospace applications work-
shop (ccaaw), pages 1–4. IEEE, 2019.

[102] H. Markowitz. Portfolio selection. The Journal of Finance, 7(1):77–91, 1952.

[103] H. Markowitz. Portfolio Selection: Efficient Diversification of Investments. Cowles
Foundation for Research in Economics at Yale University. Monograph 16. ”The
method of analysis presented in this monograph was originally developed for ...
the author’s doctoral dissertation. University of Chicago.” Includes bibliography.
Wiley, 1959.

[104] M. S. Maxwell, S. G. Henderson, and H. Topaloglu. Tuning approximate dynamic
programming policies for ambulance redeployment via direct search. Stochastic
Systems, 3(2):322–361, 2013.

50 REFERENCES

[105] M. S. Maxwell, M. Restrepo, S. G. Henderson, and H. Topaloglu. Approximate
dynamic programming for ambulance redeployment. INFORMS Journal on Com-
puting, 22(2):266–281, 2010.

[106] N. Mazyavkina, S. Sviridov, S. Ivanov, and E. Burnaev. Reinforcement learn-
ing for combinatorial optimization: A survey. Computers & Operations Research,
134:105400, 2021.

[107] R. O. Michaud and T. Ma. Efficient asset management: a practical guide to stock
portfolio optimization and asset allocation., 2001.

[108] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare,
A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, et al. Human-level control
through deep reinforcement learning. nature, 518(7540):529–533, 2015.

[109] Y. Mo, Y. Wu, X. Yang, F. Liu, and Y. Liao. Review the state-of-the-art technologies
of semantic segmentation based on deep learning. Neurocomputing, 493:626–646,
2022.

[110] M. Mohammed, M. B. Khan, and E. B. M. Bashier. Machine learning: algorithms
and applications. Crc Press, 2016.

[111] A. A. Nasrollahzadeh, A. Khademi, and M. E. Mayorga. Real-time ambulance
dispatching and relocation. Manufacturing & Service Operations Management,
20(3):467–480, 2018.

[112] M. Nazari, A. Oroojlooy, L. Snyder, and M. Takác. Reinforcement learning for
solving the vehicle routing problem. Advances in neural information processing
systems, 31, 2018.

[113] D. Neira-Rodado, J. W. Escobar-Velasquez, and S. McClean. Ambulances deploy-
ment problems: categorization, evolution and dynamic problems review. ISPRS
International Journal of Geo-Information, 11(2):109, 2022.

[114] H. Ohtera and S. Yamada. Optimal allocation and control problems for software-
testing resources. IEEE Transactions on Reliability, 39(2):171–176, 1990.

[115] J. Ong, D. Kulpanowski, Y. Xie, E. Nikolova, and N. M. Tran. Openems: an open-
source package for two-stage stochastic and robust optimization for ambulance
location and routing with applications to austin-travis county ems data. arXiv
preprint arXiv:2201.11208, 2022.

REFERENCES 51

[116] S. Paternain, M. Calvo-Fullana, L. F. Chamon, and A. Ribeiro. Safe policies for
reinforcement learning via primal-dual methods. IEEE Transactions on Automatic
Control, 68(3):1321–1336, 2022.

[117] M. Patriksson. A survey on the continuous nonlinear resource allocation problem.
European Journal of Operational Research, 185(1):1–46, 2008.

[118] S. Perrin and T. Roncalli. Machine learning optimization algorithms & portfolio
allocation. Machine Learning for Asset Management: New Developments and Finan-
cial Applications, pages 261–328, 2020.

[119] G. Pettet, A. Mukhopadhyay, M. J. Kochenderfer, and A. Dubey. Hierarchical plan-
ning for dynamic resource allocation in smart and connected communities. ACM
Transactions on Cyber-Physical Systems, 6(4):1–26, 2022.

[120] T.-H. Pham, G. De Magistris, and R. Tachibana. Optlayer-practical constrained
optimization for deep reinforcement learning in the real world. In 2018 IEEE
International Conference on Robotics and Automation (ICRA), pages 6236–6243.
IEEE, 2018.

[121] W. B. Powell. Approximate Dynamic Programming: Solving the curses of dimension-
ality, volume 703. John Wiley & Sons, 2007.

[122] Y. Qi and X. Li. On imposing esg constraints of portfolio selection for sustainable
investment and comparing the efficient frontiers in the weight space. Sage Open,
10(4):2158244020975070, 2020.

[123] K. K. Qin, W. Shao, Y. Ren, J. Chan, and F. D. Salim. Solving multiple travelling of-
ficers problem with population-based optimization algorithms. Neural Computing
and Applications, 32:12033–12059, 2020.

[124] A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal, G. Sastry,
A. Askell, P. Mishkin, J. Clark, et al. Learning transferable visual models from
natural language supervision. In International conference on machine learning,
pages 8748–8763. PMLR, 2021.

[125] A. Radford, K. Narasimhan, T. Salimans, I. Sutskever, et al. Improving language
understanding by generative pre-training. 2018.

[126] A. V. Reed. Short selling. Annu. Rev. Financ. Econ., 5(1):245–258, 2013.

[127] E. S. Rigas, A. Billis, and P. D. Bamidis. Can artificial intelligence enable the
transition to electric ambulances? In Challenges of Trustable AI and Added-Value
on Health, pages 73–77. IOS Press, 2022.

52 REFERENCES

[128] R. Rombach, A. Blattmann, D. Lorenz, P. Esser, and B. Ommer. High-resolution
image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF con-
ference on computer vision and pattern recognition, pages 10684–10695, 2022.

[129] L. Rottkamp, N. Strauß, and M. Schubert. Dear: Dynamic electric ambulance
redeployment. In Proceedings of the 18th International Symposium on Spatial and
Temporal Data, pages 11–20, 2023.

[130] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning representations by
back-propagating errors. nature, 323(6088):533–536, 1986.

[131] S. J. Russell and P. Norvig. Artificial intelligence: a modern approach. Pearson,
2016.

[132] S. Sanket, A. Sinha, P. Varakantham, P. Andrew, and M. Tambe. Solving online
threat screening games using constrained action space reinforcement learning.
In Proceedings of the AAAI Conference on Artificial Intelligence, volume 34, pages
2226–2235, 2020.

[133] A. M. Schäfer, S. Udluft, et al. Solving partially observable reinforcement learning
problems with recurrent neural networks. In Workshop Proc. of the European Conf.
on Machine Learning, pages 71–81, 2005.

[134] M. E. Schjølberg, N. P. Bekkevold, X. Sánchez-D́ıaz, and O. J. Mengshoel. Com-
paring metaheuristic optimization algorithms for ambulance allocation: An exper-
imental simulation study. In Proceedings of the Genetic and Evolutionary Computa-
tion Conference, pages 1454–1463, 2023.

[135] V. Schmid. Solving the dynamic ambulance relocation and dispatching problem
using approximate dynamic programming. European journal of operational re-
search, 219(3):611–621, 2012.

[136] S. Schmoll. Navigation with uncertain spatio-temporal resources. PhD thesis, lmu,
2021.

[137] S. Schmoll and M. Schubert. Semi-markov reinforcement learning for stochastic
resource collection. In Proceedings of the Twenty-Ninth International Conference on
International Joint Conferences on Artificial Intelligence, pages 3349–3355, 2021.

[138] J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz. Trust region policy
optimization. In International conference on machine learning, pages 1889–1897.
PMLR, 2015.

REFERENCES 53

[139] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

[140] H. Setzler, C. Saydam, and S. Park. Ems call volume predictions: A comparative
study. Computers & Operations Research, 36(6):1843–1851, 2009.

[141] W. Shao, F. D. Salim, J. Chan, S. Morrison, and F. Zambetta. Approximating op-
timisation solutions for travelling officer problem with customised deep learning
network. arXiv preprint arXiv:1903.03348, 2019.

[142] W. Shao, F. D. Salim, T. Gu, N.-T. Dinh, and J. Chan. Traveling officer problem:
Managing car parking violations efficiently using sensor data. IEEE Internet of
Things Journal, 5(2):802–810, 2017.

[143] W. F. Sharpe. A simplified model for portfolio analysis. Management science,
9(2):277–293, 1963.

[144] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den Driessche,
J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, et al. Mas-
tering the game of go with deep neural networks and tree search. nature,
529(7587):484–489, 2016.

[145] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez, T. Hu-
bert, L. Baker, M. Lai, A. Bolton, et al. Mastering the game of go without human
knowledge. nature, 550(7676):354–359, 2017.

[146] A. Sivagnanam, A. Pettet, H. Lee, A. Mukhopadhyay, A. Dubey, and A. Laszka.
Multi-agent reinforcement learning with hierarchical coordination for emergency
responder stationing. In Forty-first International Conference on Machine Learning,
2024.

[147] K. F. Staley. The art of short selling, volume 4. John Wiley & Sons, 1996.

[148] N. Strauß, M. Berrendorf, T. Haider, and M. Schubert. A comparison of ambulance
redeployment systems on real-world data. In 2022 IEEE International Conference
on Data Mining Workshops (ICDMW), pages 1–8. IEEE, 2022.

[149] N. Strauß and M. Schubert. Spatial-aware deep reinforcement learning for the
traveling officer problem. In Proceedings of the 2024 SIAM International Conference
on Data Mining (SDM), pages 869–877. SIAM, 2024.

[150] N. Strauss, D. Winkel, M. Berrendorf, and M. Schubert. Reinforcement learning
for multi-agent stochastic resource collection. In Joint European Conference on

54 REFERENCES

Machine Learning and Knowledge Discovery in Databases, pages 200–215. Springer,
2022.

[151] R. S. Sutton and A. G. Barto. Reinforcement learning: An introduction. MIT press,
2018.

[152] M. Tan. Multi-agent reinforcement learning: Independent vs. cooperative agents.
In Proceedings of the tenth international conference on machine learning, pages 330–
337, 1993.

[153] X. Tang, Z. Qin, F. Zhang, Z. Wang, Z. Xu, Y. Ma, H. Zhu, and J. Ye. A deep value-
network based approach for multi-driver order dispatching. In Proceedings of the
25th ACM SIGKDD international conference on knowledge discovery & data mining,
pages 1780–1790, 2019.

[154] K. M. Tarwani and S. Edem. Survey on recurrent neural network in natural lan-
guage processing. Int. J. Eng. Trends Technol, 48(6):301–304, 2017.

[155] J. Tassone and S. Choudhury. A comprehensive survey on the ambulance routing
and location problems. arXiv preprint arXiv:2001.05288, 2020.

[156] G. Tesauro et al. Online resource allocation using decompositional reinforcement
learning. In AAAI, volume 5, pages 886–891, 2005.

[157] C. Tessler, D. J. Mankowitz, and S. Mannor. Reward constrained policy optimiza-
tion. In International Conference on Learning Representations, 2019.

[158] P. T. Thach and T. Thang. Problems with resource allocation constraints and
optimization over the efficient set. Journal of Global Optimization, 58(3):481–
495, 2014.

[159] Y. Tian, M. Han, C. Kulkarni, and O. Fink. A prescriptive dirichlet power allocation
policy with deep reinforcement learning. Reliability Engineering & System Safety,
224:108529, 2022.

[160] C. Torricelli, B. Bertelli, et al. Esg compliant optimal portfolios: The impact of
esg constraints on portfolio optimization in a sample of european stocks. CEFIN
WORKING PAPERS, 2022.

[161] P. Toth and D. Vigo. The vehicle routing problem. SIAM, 2002.

[162] H. Touvron, T. Lavril, G. Izacard, X. Martinet, M.-A. Lachaux, T. Lacroix,
B. Rozière, N. Goyal, E. Hambro, F. Azhar, et al. Llama: Open and efficient foun-
dation language models. arXiv preprint arXiv:2302.13971, 2023.

REFERENCES 55

[163] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser,
and I. Polosukhin. Attention is all you need. Advances in neural information pro-
cessing systems, 30, 2017.

[164] S. M. Vazirizade, A. Mukhopadhyay, G. Pettet, S. El Said, H. Baroud, and A. Dubey.
Learning incident prediction models over large geographical areas for emergency
response. In 2021 IEEE International Conference on Smart Computing (SMART-
COMP), pages 424–429. IEEE, 2021.

[165] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Liò, and Y. Bengio. Graph
attention networks. In International Conference on Learning Representations, 2018.

[166] X. Wang, S. Wang, X. Liang, D. Zhao, J. Huang, X. Xu, B. Dai, and Q. Miao.
Deep reinforcement learning: A survey. IEEE Transactions on Neural Networks and
Learning Systems, 35(4):5064–5078, 2022.

[167] Z. Wang, T. Xia, R. Jiang, X. Liu, K.-S. Kim, X. Song, and R. Shibasaki. Forecasting
ambulance demand with profiled human mobility via heterogeneous multi-graph
neural networks. In 2021 IEEE 37th International Conference on Data Engineering
(ICDE), pages 1751–1762. IEEE, 2021.

[168] C. J. Watkins and P. Dayan. Q-learning. Machine learning, 8:279–292, 1992.

[169] D. M. Williams. Jems 2008 200 city survey: the future is your choice. JEMS: a
journal of emergency medical services, 34(2):36–51, 2009.

[170] R. J. Williams. Simple statistical gradient-following algorithms for connectionist
reinforcement learning. Machine learning, 8:229–256, 1992.

[171] D. Winkel, N. Strauß, M. Schubert, Y. Ma, and T. Seidl. Constrained portfolio
management using action space decomposition for reinforcement learning. In
Pacific-Asia Conference on Knowledge Discovery and Data Mining, pages 373–385.
Springer, 2023.

[172] D. Winkel, N. Strauß, M. Schubert, and T. Seidl. Risk-aware reinforcement learn-
ing for multi-period portfolio selection. In Joint European Conference on Machine
Learning and Knowledge Discovery in Databases, pages 185–200. Springer, 2022.

[173] D. Winkel, N. Strauß, M. Schubert, and T. Seidl. Simplex decomposition for port-
folio allocation constraints in reinforcement learning. In ECAI, 2023.

[174] D. Winkel, N. A. Strauß, M. Bernhard, Z. Li, T. Seidl, and M. Schubert. Autore-
gressive policy optimization for constrained allocation tasks. In The Thirty-eighth
Annual Conference on Neural Information Processing Systems.

56 REFERENCES

[175] H. Yang, H. Park, and K. Lee. A selective portfolio management algorithm with
off-policy reinforcement learning using dirichlet distribution. Axioms, 11(12):664,
2022.

[176] L. Yang, J. Ji, J. Dai, L. Zhang, B. Zhou, P. Li, Y. Yang, and G. Pan. Constrained
update projection approach to safe policy optimization. Advances in Neural Infor-
mation Processing Systems, 35:9111–9124, 2022.

[177] S. Yang, O. Nachum, Y. Du, J. Wei, P. Abbeel, and D. Schuurmans. Foundation
models for decision making: Problems, methods, and opportunities. arXiv preprint
arXiv:2303.04129, 2023.

[178] T.-Y. Yang, J. Rosca, K. Narasimhan, and P. J. Ramadge. Projection-based con-
strained policy optimization. In International Conference on Learning Representa-
tions, 2020.

[179] R. Ying, R. He, K. Chen, P. Eksombatchai, W. L. Hamilton, and J. Leskovec. Graph
convolutional neural networks for web-scale recommender systems. In Proceed-
ings of the 24th ACM SIGKDD international conference on knowledge discovery &
data mining, pages 974–983, 2018.

[180] Y. Yue, L. Marla, and R. Krishnan. An efficient simulation-based approach to
ambulance fleet allocation and dynamic redeployment. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 26, pages 398–405, 2012.

[181] L. Zhang, L. Shen, L. Yang, S. Chen, B. Yuan, X. Wang, and D. Tao. Penal-
ized proximal policy optimization for safe reinforcement learning. arXiv preprint
arXiv:2205.11814, 2022.

[182] R. Zhang, C. Yang, and X. Peng. Dynamic graph attention network for traveling of-
ficer problem. In 2022 International Joint Conference on Neural Networks (IJCNN),
pages 1–7. IEEE, 2022.

[183] Y. Zhang, Q. Vuong, and K. Ross. First order constrained optimization in policy
space. Advances in Neural Information Processing Systems, 33:15338–15349, 2020.

[184] L. Zhen, K. Wang, H. Hu, and D. Chang. A simulation optimization framework
for ambulance deployment and relocation problems. Computers & Industrial En-
gineering, 72:12–23, 2014.

[185] Z. Zhou. Predicting ambulance demand: Challenges and methods. arXiv preprint
arXiv:1606.05363, 2016.

REFERENCES 57

[186] Z. Zhou and D. S. Matteson. Predicting melbourne ambulance demand using
kernel warping. 2016.

58 REFERENCES

ACKNOWLEDGMENTS 59

Acknowledgements

First and foremost, I would like to express my sincere gratitude to my supervisor,
Matthias Schubert, for all the guidance, constant support, and invaluable feedback
throughout my PhD. Thank you for giving me the opportunity to obtain my PhD under
your supervision.

I am also extremely grateful to my reviewers, Goce Trajcevski and Sebastian Tschi-
atschek, for their willingness to dedicate their valuable time to reviewing this thesis.

I would also like to express my gratitude to my colleagues, co-authors, and friends
in our chair who have supported and assisted me in numerous ways over the past years.
Specifically, I want to thank David, Lukas, Maxi, Sandra, Max, Collin, Zongyue, Joao,
Franz, Thomas, and Susanne. It was a great pleasure to work with you.

Furthermore, I am very grateful to my family and friends for their unwavering support
during my PhD. Thank you!

60 ACKNOWLEDGMENTS

APPENDIX 61

Appendix

A Spatial-Aware Deep Reinforcement Learning for the
Traveling Officer Problem

Venue 2024 SIAM International Conference on Data Mining

DOI https://epubs.siam.org/doi/10.1137/1.9781611978032.99

Declaration of authorships The research idea was proposed, developed, and concep-
tualized by Niklas Strauss and discussed with Matthias Schubert. The implementations
and the experiments were done by Niklas Strauss. The manuscript was written by Niklas
Strauss and improved by Matthias Schubert.

Publication

https://epubs.siam.org/doi/10.1137/1.9781611978032.99

Spatial-Aware Deep Reinforcement Learning for the Traveling Officer Problem

Niklas Strauß∗ Matthias Schubert∗

Abstract
The traveling officer problem (TOP) is a challenging stochas-
tic optimization task. In this problem, a parking officer is
guided through a city equipped with parking sensors to fine
as many parking offenders as possible. A major challenge in
TOP is the dynamic nature of parking offenses, which ran-
domly appear and disappear after some time, regardless of
whether they have been fined. Thus, solutions need to dy-
namically adjust to currently fineable parking offenses while
also planning ahead to increase the likelihood that the of-
ficer arrives during the offense taking place. Though vari-
ous solutions exist, these methods often struggle to take the
implications of actions on the ability to fine future park-
ing violations into account. This paper proposes SATOP,
a novel spatial-aware deep reinforcement learning approach
for TOP. Our novel state encoder creates a representation
of each action, leveraging the spatial relationships between
parking spots, the agent, and the action. Furthermore, we
propose a novel message-passing module for learning future
inter-action correlations in the given environment. Thus, the
agent can estimate the potential to fine further parking vi-
olations after executing an action. We evaluate our method
using an environment based on real-world data from Mel-
bourne. Our results show that SATOP consistently outper-
forms state-of-the-art TOP agents and is able to fine up to
22% more parking offenses.

Keywords: Reinforcement Learning, Deep Learning,

Spatial Optimization, Traveling Officer Problem

1 Introduction

In recent years, reinforcement learning (RL) has been
successfully applied to tackle complex optimization
problems [2, 10]. One of these optimization tasks that
has attracted significant attention is the traveling officer
problem (TOP) [16, 15, 13, 8, 22] where a parking of-
ficer navigates through a sensor-equipped road network
and tries to fine as many parking offenders as possible
during a shift. Though the locations of current parking
offenses are known to the officer due to real-time data
from the sensor network, the agent has to travel to the
location before writing out a ticket. Thus, the offender
might leave before the agent arrives, and new offenses
might occur in the meantime.

As pointed out in previous works [13, 17], TOP
yields considerably different challenges from related
routing-based problems such as the vehicle routing
problem (VRP) or the taxi dispatch problem (TDP).
For instance, in TOP, violations might yield rewards

∗Munich Center for Machine Learning, LMU Munich
{strauss,schubert}@dbs.ifi.lmu.de

only for a very short time, and offenders do not wait
for the agent to arrive. In contrast, VRP and TDP
settings usually guarantee a certain waiting time, and
the cost of not visiting a location is usually considerably
higher than in TOP. In TOP, the agent is not considered
to require a significant time to write a ticket and can
continue its task from the same location. In contrast, in
VRP and TDP, agents often must spend time handling
customers and might have to change location within this
time, e.g., in case of a taxi trip.

Several approaches have been proposed to solve
TOP. These include heuristics [16], ant colony optimiza-
tion [16], imitation learning [15], and RL [13, 22, 8].
However, existing approaches have limitations as they
may not fully exploit the spatial relationships between
parking locations and the officer’s current location,
struggle to scale to realistically sized settings, and have
difficulty assessing possible future implications of ac-
tions due to the dynamic nature of TOP.

In this paper, we propose SATOP, a RL-based agent
that leverages a novel spatial-aware neural network ar-
chitecture for TOP. Our agent considers all edges con-
taining parking locations as actions and travels on the
shortest path to this destination as proposed in [13].
This implies that our agent works on a Semi Markov
Decision Process (SMDP), as different actions take dif-
ferent times to execute. To capture the impact of
these temporally extended actions, our novel architec-
ture employs a pathing module evaluating the path the
agent will take to reach the target location of an ac-
tion. In addition, we propose a future positioning mod-
ule, which encodes the correlations between actions and
possible future actions using a spatial-aware message-
passing mechanism. This way, our new architecture can
more easily adapt to the dynamics of TOP and learn
the potential of fining future offenses. In contrast to
existing RL-based approaches for TOP, our method is
able to consistently outperform classical optimization
approaches such as ant colony optimization by a large
margin.

In line with previous research, we evaluate SATOP
on a simulation environment that replays real-world
parking data from Melbourne. We compare our ap-
proach with state-of-the-art methods for TOP. Our
experimental evaluation shows that our method can

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited

62 APPENDIX

consistently outperform state-of-the-art approaches, in-
cluding existing RL-based approaches. Furthermore, we
investigate the impact of various architectural choices in
an ablation study. To summarize, our main contribu-
tions are as follows:

• A pathing module to encode the impact of an action
in a more comprehensive way.

• A novel message passing-based future position-
ing module encoding inter-action correlations and,
thus, the potential of fining future offenses.

• A joint architecture that outperforms state-of-the-
art methods for TOP by a significant margin of up
to 22%.

The remainder of this paper is organized as follows:
Section 2 provides a comprehensive review of related
work, and places TOP in the context of similar opti-
mization problems. In Section 3 and Section 4, we for-
mally define the task and present the architecture of
SATOP, including both new modules. Section 5 de-
scribes our experimental setup and the results of our
evaluation. Finally, Section 6 concludes the paper with
a summary of our contributions and ideas for future
work.

2 Related Work

2.1 TOP and Related Spatial Optimization
Problems In this section, we compare TOP to re-
lated problems, namely the VRP, the traveling sales-
man problem (TSP), and the TDP. We also highlight
the unique challenges and differences inherent to TOP
compared to these related tasks.

The VRP has been extensively studied by AI re-
searchers [5, 2, 3, 10, 11]. It involves one or more vehi-
cles that must visit a given set of customers in minimal
time. Though violations and customers represent lo-
cations that provide a reward when visited, customers
in the VRP need to be visited exactly once. In TOP,
parking spots can dynamically change their status and
offenders do not wait for the agent to fine them. Thus,
in contrast to VRP, agents must reach violations before
the offenders leave on their own. While various VRP
variants exist [3, 10, 5], they do not fully include the dy-
namic and uncertain nature of TOP. For instance, some
variations consider the appearance of new customers
during the day, but they do not include the disappear-
ance of customers after an unknown time interval [5, 3].

The well-known TSP can be viewed as a special case
of VRP. Although one might attempt to simplify TOP
to a variant of the TSP by planning a path through
the current violations [22, 16], this approach overlooks
a critical aspect: the changing states of parking spots

over time. Ignoring this aspect can lead to sub-optimal
strategies. Moreover, in TOP, the number of parking
spots can be significantly higher than in traditional TSP
instances, making it difficult to solve the TSP. In recent
years, RL-based methods to address the TSP [2, 10]
emerged, but the dynamic nature of TOP necessitates
novel approaches tailored to its unique demands.

The most closely related task to TOP is TDP, where
dispatchers distribute taxis throughout a city to facil-
itate quick customer pick-ups [19, 9]. However, signif-
icant differences exist between TOP and TDP despite
their similarities. In TDP, a dispatcher assigns each
customer a nearby taxi. In general, the customer is ex-
pected to wait for the taxi to arrive, and the dispatcher
only assigns taxis that can reach the customer within
a maximum waiting time. In TOP, the agent has to
manage the risk that a violation might disappear be-
fore its arrival. Another difference between TDP and
TOP is that after picking up a customer, a taxi has to
drive to a location determined by the customer. Thus,
information about other available customers is usually
outdated at the time of the drop-off. Finally, most TDP
approaches employ grid abstractions rather than work-
ing directly on the road network [9], making them inade-
quate for handling the fine-grained spatial requirements
of TOP. Notably, TDP typically involves managing a
large fleet of taxis, unlike TOP tasks that are often ex-
ecuted by a single agent [19, 9].

2.2 Methods for Solving TOP In recent years,
various solutions for TOP were proposed [16, 13, 22, 8]
approaching the problem from different angles.

In [16], the authors introduce TOP and propose
a simple yet effective greedy heuristic that employs
a probabilistic model to determine the next parking
spot to visit. Additionally, they transform TOP into
a time-varying TSP, which is solved using ant colony
optimization.

Several works have utilized RL to tackle TOP [13,
22, 8]. In [8], the authors introduced a RL-based solu-
tion for TOP using pointer networks inspired by [2].
Furthermore, TOP has been approached by using
attention-based architectures and RL in an attempt to
leverage the advantages of attention mechanisms in re-
lated tasks like the TSP. The authors of [22] adopted
the well-known attention-based architecture from [10]
to solve TOP using RL. The authors of [13] take a
distinctive approach by formalizing TOP as a SMDP
with temporally extended actions. They introduce a
state encoder combined with RL to address TOP. Their
approach yields comparable performance to previous
works in most settings and is only able to outperform
them in scenarios with a large number of parking spots.

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited

A Spatial-Aware Deep Reinforcement Learning for the Traveling Officer Problem63

While we follow their formalization with temporally ex-
tended actions, we introduce a novel architecture, en-
abling our approach to consistently outperform all ex-
isting baselines in all settings.

While this paper focuses on the single-agent TOP,
the multiple traveling officer problem (MTOP), where
multiple officers are employed to fine parking violations,
has also received attention. A particular challenge
in MTOP is the coordination among multiple officers.
Thus, researchers employed genetic algorithms [12] or
RL techniques [17] to tackle the coordination among
agents. In [17], the authors utilized RL to solve the
MTOP. They adapt the state encoder of [13] and
introduce several extensions to enable effective officer
coordination.

3 The Traveling Officer Problem

In TOP, an officer tries to fine as many parking offenses
as possible by traversing a road network G = (V,E,C),
where V is a set of vertices (intersections), E is a set
of edges (road segments), and C : E → R+ denotes the
travel time of the officer for an edge. Each parking spot
p ∈ P is mapped to an edge e ∈ E of the road network.
We refer to the set of parking spots located on edge e as
PE(e). The officer observes the state of each parking
spot at the current time t. The status indicates whether
a parking spot is free, occupied, in violation, or already
fined. Whenever the officer passes by a parking spot
in violation, the officer writes a ticket, and the spot’s
status is set to fined.

We model TOP as a fixed horizon SMDP where
the episode length tend corresponds to the duration of
the shift of a parking officer. In a SMDP, temporally
extended actions are introduced, enabling the agent to
take actions that span multiple time steps. This allows
treating road segments with varying travel times as
actions. In addition, we allow the officer to perform
extended actions that follow a path from the officer’s
current location to any edge hosting a parking spot as
in [13].

Formally, a SMDP is a five-tuple (S,A, T,R, γ),
where S is the set of states, A is the set of actions,
T is a probabilistic transition function, R is the reward
function, and γ denotes the discount factor. Unlike an
ordinary Markov Decision Process (MDP), the transi-
tion function T also comprises the duration of a state
transition τ .

We specify the underlying discrete-time SMDP for
TOP as follows:

S represents the set of possible states. Each s ∈ S
contains information about the current daytime, the
officer’s location loco, and the state of each parking spot
p ∈ P .

A denotes the set of actions. Following the formu-
lation of [13], the action space corresponds to the subset
of all edges E hosting parking spots. Thus, an action
a ∈ A corresponds to traveling from the officer’s cur-
rent position to the end of the associated edge ea ∈ E.
The agent’s path can be computed with a dedicated
policy. Here, we compute the shortest path w.r.t. the
agent’s travel time and compute paths with Dijkstra’s
algorithm. We denote the set of parking spots along the
route from the officer’s current position to the target of
action a as PRa

1.
T (st+1, τ |st, at) : (S×R+×A×S)→ [0, 1] denotes

the state transition probabilities. While the agent’s
position change is deterministic, the state of parking
spots is non-deterministic. A parking spot’s state might
change due to the officer fining an offense or an unknown
stochastic process modeling parking occupancy. The
transition function also includes the duration of the
transition τ , given by the travel time along the path
representing action a.

R : (S × A× S)→ R denotes the reward function.
The agent receives a time-discounted reward ζt =∑τ−1

j=0 γ
jrt+j+1, where rt+j denotes the reward received

at time step t+j during the temporally extended action
a with duration τ time-steps. The officer gets a reward
of +1 for any parking violation fined along the path
corresponding to action a.

The objective of an agent is to maximize the ex-

pected time-discounted reward E
[∑tend

t=0 γtrt+1

]
.

4 A Spatial-Aware TOP Agent

A good policy for TOP requires the agent to consider
two aspects: During the current action, the agent
has to anticipate the likelihood that parking spots
are in violation upon arrival. In addition, the agent
has to assess the potential to fine further parking
violations during future actions. Our novel architecture
effectively covers both aspects by incorporating the
spatial relationships between parking locations and the
agent’s location with a novel pathing module and a
future positioning module to assess the potential to fine
parking violations within future actions. A schematic
overview of our novel architecture, named SATOP, can
be found in Figure 1. For readability, we detail the exact
parameters of our architecture in the Appendix.

4.1 Input Features Even though the agent observes
the current status of the parking spots and its own posi-
tion, this observation does not satisfy the Markov prop-
erty. For instance, information about the current park-

1For the sake of readability, we omit the current location officer
loco from our notation.

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited

64 APPENDIX

Pa
th

in
g

M
od

ul
e

Fu
tu

re
Po

si
tio

ni
ng

MLP

Routing
Aggregation

 Action Target
Aggregation

c

MLP

...

aggregate on shortest path
from current locactionaggregate on

target edge

parking spots

parking spot
representations

action target
representation

action path
representation duration

action representation

Message Passing (xN)

MLP

Q-Values

among actions
action representation

 latent representations
 networks & operations
 inputs

road network

Figure 1: A schematic overview of our novel architecture
consisting of the pathing module (red) and the future
positioning module (blue). Best viewed in color.

ing duration and the maximum allowed parking dura-
tion yield essential information for learning transition
probabilities. Therefore, as in [13], we enrich the ob-
servation with additional features summarizing the rel-
evant history. Let us note that we explored training
LSTM and Transformer-based encoders to learn those
features. However, using the handcrafted features gen-
erated comparable results while being significantly more
computationally efficient. The input to our agent con-
sists of a feature vector for all parking spots pi ∈ P
describing the state of pi relative to the agent’s position
loco and the current time of the day. The input vec-
tor for a parking spot pi at time t contains its current
status, either free, occupied, violation, or fined, as a one-
hot encoding. In addition, we add x and y coordinates
of the spot’s location being normalized to the operation
area’s bounding rectangle, which helps identify spatially
related parking opportunities. Furthermore, we add a
normalized timestamp to allow the agent to differentiate
between daytimes. To estimate the likelihood of a sta-
tus change, we provide an additional feature indicating
the remaining parking duration for occupied spots. The
same feature encodes the time interval a parking spot
yields a violation if its status is violation. In particu-

lar, a value of -1 to 0 indicates the remaining allowed
parking time, while a positive indicator up to a value
of 2 indicates how long the parking spot is already in
violation. In addition, we provide a feature indicat-
ing whether an occupied parking spot might exceed the
maximum allowed parking duration within the time the
officer would need to reach this parking spot. This way,
the agent can learn to travel toward parking spots that
are not in violation yet but might be soon. Finally, we
add features for the officer’s normalized distance, travel
time, and arrival time to the parking spot pi.

4.2 Parking Spot Representations First, we em-
ploy an MLP to generate a latent dh-dimensional rep-
resentation hpi for each parking spot pi ∈ P based on
its current observation and a dle-dimensional learnable
embedding vector. While the weights of the MLP are
shared across all parking spots, the embedding vector is
not shared to allow the network to learn parking spot-
specific representations.

4.3 Pathing Module In our formulation of TOP,
each action a corresponds to traveling to a specific ac-
tion target ea. Since the agent’s current position varies,
the parking spots the agent will pass by when executing
an action also vary. Therefore, we compute an encod-
ing for each action a, which captures the information of
parking spots along the corresponding path to the ac-
tion target ea. All modules in our architecture described
in the following either aggregate information to a per-
action level or work on per-action representations. The
weights of the modules are shared across all actions. To
enhance readability, we describe our architecture on a
per-action level. In practice, implementations perform
the computations for all actions simultaneously using
matrix operations. Our novel pathing module consists
of several components described in the following.

Action Target Encoder To describe an action a
in our setting, we first create a representation of each
action target ea by building a weighted aggregation over
the parking spots pi ∈ PE(ea). The action target
ea yields essential information since it represents the
agent’s position after action a is performed. Thus,
it plays an important role for the future positioning
module described in Section 4.4. In particular, we
combine the latent representation hpi

of the parking
spots pi ∈ PE(ea) on each action’s a target edge ea
into a vector ata in the following way:

(4.1) ata = σ
((∑

pi∈PE(ea)

W athpi

)
+ bat

)
,

where W at (dh × dat) and bat denote the parameters of
the layer, which are shared among all actions, and σ(·)

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited

A Spatial-Aware Deep Reinforcement Learning for the Traveling Officer Problem65

is the activation function.
Route Aggregation Module In addition, we in-

troduce the route aggregation module, where we aggre-
gate the latent representations of parking spots along
the path from the officer’s current location loco to the
action target ea. In this aggregation, we weight the la-
tent parking spot representations hpi

by the normalized

travel time ϕ̂a(loco, pi) from the officer’s current loca-
tion loco to the parking spot pi ∈ PRa along the route
to the action target ea. Additionally, we scale the nor-
malized travel times using a learnable parameter θ ∈ R
that is shared among all actions. This results in a dh-
dimensional path representation ara for each action a
that is computed as follows:

(4.2) ara =
∑

pi∈PRa

θ · ϕ̂a(loco, pi) · hpi

Action Representations Next, we concatenate
the path representation ara with the corresponding
action target representation ata and the expected travel
time to the action target durationa

2 for each action a.
We pass this combined information through an

MLP, resulting in dah-dimensional action representa-
tions ah(0)

a which combines all three inputs:

(4.3) ah(0)
a = MLPah([ara,ata, durationa])

Here, [·, ·, ·] is the action-wise concatenation operator,
and the MLP parameters are shared between all actions.

4.4 Future Positioning Module To estimate how
well the agent is positioned after each action, we per-
form message passing between actions and possible fu-
ture actions. In this process, the agent is able to aggre-
gate information from potential future actions into each
action’s representation utilizing the spatial relationship
between them. Therefore, we create a graph structure
where nodes contain the latent representations of ac-
tions and edges link to possible future actions.

We already created rich representations ah(0)
a for

each action (”node”) in the pathing module. To com-
pute information about the links between actions, we
define the edge information between action a and a pos-
sible future action a′ as δa,a′ . In particular, we employ
the travel time and the number of parking spots along
the path between ea and ea′ as δa,a′ . Then, we trans-
form each edge information δa,a′ into an importance

factor δ̂
(l)
a,a′ by passing the information through an MLP

2Let us note that durationa is the computed travel time for

the shortest path the agents computed, whereas τ describes the
required time of an action provided by the environment.

with an output size of 1, followed by a tanh activation
to constrain its range:

(4.4) δ̂
(l)
a,a′ = tanh

(
MLP

(l)
δ (δa,a′)

)

The parameters of this MLP are shared across all links.
In the next step, we use this importance factor to

combine the information ah
(l−1)
a′ from all possible future

actions a′ ∈ A for each action a:

âh
(l)

a = σ
((∑

a′∈A

δ̂
(l)
a,a′W

ah,(l)ah
(l−1)
a′

)
+ bah,(l))

)
(4.5)

ah(l)
a = LN(l)

(
âh

(l)

a + ah(0)
a

)
(4.6)

Here, l ∈ {1, . . . , N} denotes the layer index. We share

the (dah×dah) weight matrixW ah,(l) and bah,(l) between
all actions and possible future actions but not between
layers. For each layer, we apply layer normalization
(LN) [1] and incorporate residual connections [7]. We
choose ELU [4] as the activation function σ(·).

We use two future positioning module layers to en-
able efficient message passing and parking spot infor-
mation aggregation across possible future actions. The
process ensures that the neural network captures signif-
icant spatial and temporal dependencies between possi-
ble future actions and parking spots.

4.5 Q-Value Estimation Finally, we employ an-
other MLP with an output size of 1 to reduce the action
representation ah(N)

a of each action a into a final Q-
Value, which provides estimates of the expected return
associated with each action:

(4.7) Qa = MLPQ(ah
(N)
a)

The weights of the network are shared between actions.
Employing our proposed neural network architec-

ture enables the agent to effectively assess parking vio-
lations on the route and anticipate its future positioning
after executing actions in TOP, thus allowing the agent
to learn effective policies.

4.6 Training Given the formulation of TOP with
temporally extended actions, we utilize DoubleDQN [20]
adapted to the semi-Markov setting to train the agent.
While several state-of-the-art RL algorithms are based
on policy gradients [18, 14, 6], their application to
our architecture is difficult. Many of these algorithms
require learning a compatible shared representation that
actor and critic utilize [18]. However, this proved
challenging with our architecture because we separated
the representation of different actions early on. To still
explore these approaches, we conducted experiments
training our proposed architecture using algorithms like

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited

66 APPENDIX

PPO [14] and SAC [6] on a concatenation of all action
representations. Unfortunately, these attempts resulted
in sub-optimal performance and training instabilities.
Hence, we turned our attention to the DoubleDQN
algorithm, which has successfully dealt with TOP [13].
We utilize a replay buffer and update the parameters of
our network using a batch of transitions. We minimize
the following loss function:

(4.8) L(Θ) = Est,at,τ,rt:t+τ−1

[
(yt −Q(st, at; Θ))2

]

where yt =
∑τ−1

j=0 γ
jrt+j + γτQ(st+τ , a

′
t+τ ; Θ

′). Here,
a′t+τ represents the optimal action with respect to
Θ, i.e., a′t+τ = argmaxat+τ∈A(st+τ) Q(st+τ , at+τ ; Θ).
Θ corresponds to the parameters of the behavior Q
network and Θ′ represents the parameters of the frozen
target Q network, which are periodically updated by
copying from Θ.

5 Evaluation

In this section, we provide an extensive experimental
evaluation of our novel approach, SATOP. We imple-
ment an event-based simulator in C++ for TOP with
OpenAI Gym-compatible Python bindings. To repli-
cate real-world conditions, we utilize parking data from
Melbourne in 2019, sourced from the city’s open data
platform 3. To create different graph structures and ex-
plore the transferability of hyperparameters, the city of
Melbourne is divided into three distinct areas, namely
Docklands, Queensberry, and Downtown. We obtain
the walking graph from OpenStreetMap 4. The charac-
teristics of these areas are summarized in Table 1 and
Figure 2. To ensure an unbiased evaluation, we split the
parking event dataset into a training, validation, and
test set. Since parking patterns tend to exhibit weekly
trends and to avoid biases introduced through week-
days, we account for this by partitioning the dataset
by the remainder of dividing the day of the year by
13: If the remainder is 0, the day is included in the
test set. If the remainder is 1, we add the day to the
validation set. The remaining days are assigned to the
training set. We consider each day as an episode and
to improve diversity, we shuffle the order of the train-
ing days. The officer’s workday spans 12 hours each
day from 7AM to 7PM. We set the travel speed of the
officer to 5km/h. To accelerate the training process,
the agent interacts with several environments simultane-
ously. We implement our approach within the Tianshou
framework [21], which provides a reliable and efficient
platform for RL. Hyperparameters were tuned using the

3https://data.melbourne.vic.gov.au/explore/dataset/

on-street-car-parking-sensor-data-2019/information/
4https://www.openstreetmap.org

Area Docklands Queensberry Downtown

Nodes 1,435 1,711 6,806
Edges 4,307 5,356 21,369

P. Spots 487 639 1,481
Actions 166 177 493

Table 1: Characteristics of the different areas used in
our evaluation. Note that the number of actions is much
smaller than the number of parking spots or edges.

Figure 2: Visualization of the areas used in our eval-
uation: Queensberry (green), Docklands (blue), and
Downtown (red). Best viewed in color.

Docklands area and the resulting hyperparameters were
applied to all areas. The test results are generated by
using the weights achieving the highest validation re-
sults during training. Each training run is executed on a
single GPU within a cluster consisting of various GPUs
equipped with 24GB to 48GB of GPU memory. The
full details regarding the environment parameters, hy-
perparameters, and training procedures can be found in
the Appendix 5. As a significant part of the research
in this domain does not publish their implementation,
uses data from different years, and employs varying pre-
processing and data splits, our work strives to provide
an extensive comparison to related approaches and es-
tablish a benchmark in the field. To promote standard-
ization and facilitate future research, we openly publish
our framework and baseline implementations 5.

5.1 Baselines In order to evaluate the performance
of our proposed neural network architecture SATOP,
we compare it against several state-of-the-art methods
commonly used in this domain.

5https://github.com/niklasdbs/satop

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited

A Spatial-Aware Deep Reinforcement Learning for the Traveling Officer Problem67

Area Queensberry Docklands Downtown
Algorithm Validation Test Validation Test Validation Test

Greedy [16] 166.59 166.79 223.59 224.96 209.48 208.96
ACO (0.1s) [16] 192.17 192.36 262.45 261.89 231.86 231.89
ACO (1.0s) [16] 197.21 196.93 271.24 271.11 261.66 253.57
SDDQN [13] 185.31 187.07 268.59 267.25 292.41 289.46
DGAT [22] 159.1 158.64 181.28 176.46 138.59 137.18
PTR [8] 161.31 159.04 223.55 222.11 150.41 149.39
SATOP (ours) 209.45 210.89 314.31 310.71 359.0 353.25

Table 2: Average number of parking violations fined per day across Queensberry, Docklands, and Downtown on
the validation and test data.

5.1.1 Greedy The greedy approach, proposed
by [16], uses a probability model to determine the next
parking spot to visit. It selects the spot with the high-
est probability of still being in violation upon arrival.
The approach assumes that the distribution of parking
violations follows an exponential distribution. While
this method provides a simple and easy-to-compute
solution, it yields surprisingly effective results.

5.1.2 ACO The authors of [16] address TOP by
simplifying it to time-varying TSP. By applying ant
colony optimization, this approach attempts to find an
optimal sequence of visits to different locations. As the
ACO approach requires computing the solution during
inference, we limit the computation time to 0.1 and 1.0
seconds.

5.1.3 SDDQN [13] developed a state-of-the-art RL
approach for TOP. Its performance serves as a bench-
mark for evaluating the effectiveness of our novel archi-
tecture.

5.1.4 PTR The authors of [8] propose simplifying
TOP to a variant of the TSP and solve it using pointer
networks based on the work of [2].

5.1.5 DGAT In [22], the authors apply the well-
known approach from [10] to solve TOP using an
attention mechanism. They also simplify TOP to a
variant of the TSP.

5.2 Metrics The primary objective of TOP is to fine
as many parking violations as possible. Hence, we use
the average number of fined violations per day as our
primary metric for assessing performance.

5.3 Results In this section, we demonstrate the su-
perior results of SATOP across different areas, namely
Queensberry, Docklands, and Downtown. The perfor-

mance of various approaches including Greedy, ACO
with different time limits (0.1s and 1.0s), SDDQN, PTR,
DGAT, and our proposed approach SATOP are evalu-
ated based on both validation and test sets.

Table 2 displays the average number of fined park-
ing violations per day for each approach in the different
areas. The results demonstrate the outstanding perfor-
mance of our approach, outperforming all other algo-
rithms across all areas on both the validation and test
data.

In the Queensberry area, SATOP achieves a signif-
icantly better average number of fined violations with a
score of 210.89 (test set) and 209.45 (validation set). It
outperforms all other methods, with DGAT, PTR, and
Greedy trailing far behind with test scores of 158.64,
159.04, and 166.79, respectively. SDDQN achieves a
score of 187.07. While ACO with different time limits
shows promising results with test scores of 192.36 (0.1s)
and 196.93 (1.0s), SATOP is still significantly more ef-
fective in this scenario.

In the Docklands area, SATOP continues to show its
superiority, achieving a score of 314.31 on the validation
set and 310.71 on the test set, easily surpassing all other
methods. The closest competitor in this area is the ACO
(1.0s), with a score of 271.24. In line with previous
research, SDDQN (with a score of 267.25) is unable to
outperform the ACO, but it still manages to outperform
the Greedy baseline (224.96) significantly.

In the Downtown area, our approach again stands
out as the top-performing method, with a score of 353.25
(test set) and 359.0 (validation set). Downtown is the
largest and most challenging area. Notably, DGAT and
PTR trail far behind in this scenario and exhibit a drop
in performance compared to Docklands. A possible
explanation for this is that they treat TOP as a variant
of the TSP, which is difficult to solve because of the
large number of parking spots. ACO (1.0s) also shows
a slight decrease in performance (261.66) compared
to Docklands (271.24), while SATOP manages to fine

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited

68 APPENDIX

Area Docklands Downtown
Ablation Validation Test Validation Test

SATOP (ours) 314.31 310.71 359.0 353.25
No Future Pos. Module -31.24 -30.07 -32.72 -34.82
Future Pos. Module: Only Travel Time as Link Info (δ) -3.76 -1.14 -4.76 -7.79
Pathing Module: No Action Target Encoder -6.10 -5.57 -6.62 -11.36
Pathing Module: No Route Agg. Module -3.38 -5.21 -7.07 -9.07
No Spot Specific Representations -5.93 -5.53 -4.38 -7.64

Table 3: Ablations evaluated on the Docklands and Downtown area. We report the reduction in average number
of fined violations per day.

significantly more parking violations than in Docklands.
SDDQN, our closest competitor, is able to outperform
all other baselines with scores of 289.46 (test set) and
292.41 (validation set). Still, our approach is able to fine
nearly 64 more parking violations per day on average on
the test data, which is an improvement of 22%.

Furthermore, our results reveal that DGAT and
PTR perform inferior in all areas. These approaches
treat TOP as a variant of the TSP and solve it using
RL. In both papers, the authors limited the evaluation
to only a small number of parking spots (150 max),
which is only 10% of the parking spots in Downtown and
around 30% of the parking spots in Docklands (the area
with the fewest parking spots). Our results indicate that
these approaches have difficulties scaling to real-world
scenarios. Furthermore, this underscores the distinct
characteristics of TOP and the TSP.

Overall, the results presented in Table 2 provide
compelling evidence of the effectiveness of SATOP.
Our method consistently outperforms other algorithms
across all areas, demonstrating its potential to effec-
tively solve TOP in various settings.

5.4 Ablations We conducted various ablations to
assess the influence of the different components within
our novel architecture. These ablations were carried
out in the Docklands and Downtown area and tested on
both the validation and test datasets. To measure the
performance, we use the average number of violations
fined per day. The results of our ablation study are
presented in Table 3. Notably, the outcomes of the
ablations are consistent across different areas and both
the validation and test datasets.

Removing the future positioning module has a
substantial impact on performance. In both Docklands
and Downtown, eliminating this module resulted in
a sharp reduction of approximately 30 fewer parking
violations fined per day. This performance drop was
consistent across both the test and validation datasets.
In our future positioning module, we make use of

complex edge data. Using only the travel time of the
path and omitting the number of parking spots along
the path leads to a minor decrease in performance (of
around 1 to 8).

Our architecture includes a novel pathing mod-
ule, which cannot be removed entirely since subsequent
modules require a per-action representation. However,
we can examine the impact of excluding specific com-
ponents within this module, namely the action target
encoder and the route aggregation module. Our abla-
tion reveals a slight reduction in performance (around
4 to 11 fewer violations fined per day) when leaving out
either of these components.

Furthermore, we investigate the impact of removing
information that enables the network to differentiate
between individual parking spots and learn spot-specific
representations. This results in a slight decrease in the
average number of parking violations fined (of around 4
to 8).

In summary, our ablation study highlights the im-
portance of the future positioning module in our archi-
tecture. Its removal significantly reduces the agent’s
ability to fine parking violations effectively. Addition-
ally, while we cannot remove the pathing module in its
entirety, its individual components, the action target en-
coder, and the route aggregation module contribute to
the performance, although their exclusion has a compar-
atively smaller impact. Lastly, maintaining the ability
to differentiate between individual parking spots and
learn spot-specific representation has a minor perfor-
mance benefit.

6 Conclusion

In this paper, we presented SATOP, a novel RL-based
approach for TOP that incorporates various spatial re-
lationships between parking spots, actions, and the of-
ficer’s location. Our novel architecture consists of a
pathing module to learn better representations of ac-
tions by including parking spots along each action’s
path, as well as a future positioning module that allows

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited

A Spatial-Aware Deep Reinforcement Learning for the Traveling Officer Problem69

the agent to assess its positioning after executing an ac-
tion by learning inter-action correlations. We evaluated
our approach and several state-of-the-art baselines us-
ing a simulation environment replaying real-world park-
ing data from Melbourne. Our approach consistently
outperformed all competitors regarding fined violations,
demonstrating its effectiveness in addressing the chal-
lenges of TOP in realistic scenarios.

Our approach opens up several future research di-
rections. First, we plan to extend our spatial-aware ar-
chitecture to the multi-agent version of TOP, where the
coordination between multiple officers poses a signifi-
cant challenge. Further, we want to apply and extend
our architecture to tackle various other spatial tasks be-
yond TOP. One such example is the VRP, which shares
some similarities with TOP but presents its own set of
challenges. Finally, we aim to explore scenarios that in-
clude dynamically changing routes and travel times due
to traffic or other environmental factors.

References

[1] J. L. Ba, J. R. Kiros, and G. E. Hinton, Layer nor-
malization, arXiv preprint arXiv:1607.06450, (2016).

[2] I. Bello, H. Pham, Q. V. Le, M. Norouzi, and
S. Bengio, Neural combinatorial optimization with re-
inforcement learning, arXiv preprint arXiv:1611.09940,
(2016).

[3] G. Bono, J. S. Dibangoye, O. Simonin,
L. Matignon, and F. Pereyron, Solving multi-agent
routing problems using deep attention mechanisms,
IEEE Trans. Intell. Transp. Syst., 22 (2020), pp. 7804–
7813.

[4] D.-A. Clevert, T. Unterthiner, and S. Hochre-
iter, Fast and accurate deep network learning
by exponential linear units (elus), arXiv preprint
arXiv:1511.07289, (2015).

[5] M. Gendreau, G. Laporte, and R. Séguin,
Stochastic vehicle routing, Eur. J. Oper. Res., 88
(1996), pp. 3–12.

[6] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine,
Soft actor-critic: Off-policy maximum entropy deep re-
inforcement learning with a stochastic actor, in Inter-
national conference on machine learning, PMLR, 2018,
pp. 1861–1870.

[7] K. He, X. Zhang, S. Ren, and J. Sun, Identity map-
pings in deep residual networks, in Computer Vision–
ECCV 2016: 14th European Conference, Amsterdam,
The Netherlands, October 11–14, 2016, Proceedings,
Part IV 14, Springer, 2016, pp. 630–645.

[8] R. He, X. Xiao, Y. Kang, H. Zhao, and W. Shao,
Heterogeneous pointer network for travelling officer
problem, in 2022 International Joint Conference on
Neural Networks (IJCNN), IEEE, 2022, pp. 1–8.

[9] J. Kim and K. Kim, Optimizing large-scale fleet man-
agement on a road network using multi-agent deep rein-

forcement learning with graph neural network, in ITSC,
IEEE, 2021, pp. 990–995.

[10] W. Kool, H. Van Hoof, and M. Welling, Atten-
tion, learn to solve routing problems!, arXiv preprint
arXiv:1803.08475, (2018).

[11] M. Nazari, A. Oroojlooy, L. Snyder, and
M. Takác, Reinforcement learning for solving the ve-
hicle routing problem, Adv Neural Inf Process Syst, 31
(2018).

[12] K. K. Qin, W. Shao, Y. Ren, J. Chan, and F. D.
Salim, Solving multiple travelling officers problem with
population-based optimization algorithms, Neural Com-
puting and Applications, 32 (2020), pp. 12033–12059.

[13] S. Schmoll and M. Schubert, Semi-markov rein-
forcement learning for stochastic resource collection, in
Proceedings of the Twenty-Ninth International Confer-
ence on International Joint Conferences on Artificial
Intelligence, 2021, pp. 3349–3355.

[14] J. Schulman, F. Wolski, P. Dhariwal, A. Rad-
ford, and O. Klimov, Proximal policy optimization
algorithms, arXiv preprint arXiv:1707.06347, (2017).

[15] W. Shao, F. D. Salim, J. Chan, S. Morrison,
and F. Zambetta, Approximating optimisation solu-
tions for travelling officer problem with customised deep
learning network, arXiv preprint arXiv:1903.03348,
(2019).

[16] W. Shao, F. D. Salim, T. Gu, N.-T. Dinh, and
J. Chan, Traveling officer problem: Managing car
parking violations efficiently using sensor data, IEEE
Internet of Things Journal, 5 (2017), pp. 802–810.

[17] N. Strauss, D. Winkel, M. Berrendorf, and
M. Schubert, Reinforcement learning for multi-agent
stochastic resource collection, in Joint European Con-
ference on Machine Learning and Knowledge Discovery
in Databases, Springer, 2022, pp. 200–215.

[18] R. S. Sutton, D. McAllester, S. Singh, and
Y. Mansour, Policy gradient methods for reinforce-
ment learning with function approximation, Advances
in neural information processing systems, 12 (1999).

[19] X. Tang, Z. Qin, F. Zhang, Z. Wang, Z. Xu,
Y. Ma, H. Zhu, and J. Ye, A deep value-network
based approach for multi-driver order dispatching, in
Proceedings of the 25th ACM SIGKDD international
conference on knowledge discovery & data mining,
2019, pp. 1780–1790.

[20] H. Van Hasselt, A. Guez, and D. Silver, Deep
reinforcement learning with double q-learning, in Pro-
ceedings of the AAAI conference on artificial intelli-
gence, vol. 30, 2016.

[21] J. Weng, H. Chen, D. Yan, K. You, A. Duburcq,
M. Zhang, Y. Su, H. Su, and J. Zhu, Tianshou: A
highly modularized deep reinforcement learning library,
Journal of Machine Learning Research, 23 (2022),
pp. 1–6.

[22] R. Zhang, C. Yang, and X. Peng, Dynamic graph
attention network for traveling officer problem, in 2022
International Joint Conference on Neural Networks
(IJCNN), IEEE, 2022, pp. 1–7.

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited

70 APPENDIX

Appendix

1 Parameters of Environment, Training, and our Architecture

Parameter Value
Officer Speed 5km/h
Data Year 2019

Working Hour Start 7
Working Hour End 19

γ 0.999
ϵ min 0.01
ϵ-decay exp

Steps til ϵ-decay start 10000
Steps until min ϵ 5000000

Optimizer RMSProp
Learning Rate 0.0001

Alpha 0.99
Batch Size 256

Number of Parallel Envs 8
Replay Buffer Size 100000

Reward Transformation None
Number of Episodes 40 (=8000000 total env steps)

Env Steps per Episode 200000
Start Learning 10000

Train Every Env Steps 32
Target Update Frequency 3125 gradient steps

Parking Spot Encoder (MLP) 256 HDIM, 4 Layers, ELU (no act after last), LN
Parking Spot Rep Dim dh 256

Parking Spot ID Linear Emb Dim (dle) 64
Action Representation Net (MLPah) 1024 HDIM, 4 Layers, ELU, LN, 256 Out Dim
Action Target Hidden Dim (dat) 256
Future Pos Hidden Dim dah 256

Complex Edge Info Net (MLPδ) 256 HDIM, 2 Layers, Tanh
Action Target Encoder Activation (σ) None

Q-Net (MLPQ) 256 HDIM, 4 Layers, ELU (no act after last), LN
Norm Complex Edge Info False,True
Future Pos Activation (σ) ELU

Number of Future Pos Layers (N) 2
Distance Norm Factor 1/3000.0
Duration Norm Factor 1/3000.0
Route Norm Factor (ϕa) 1/3000.0

Learnable Parameter Route (θ) True
Norm Sim Matrix False

Table 1: Parameters of Environment, Training, and our Architecture

In this section we list the hyperparameters of our approach.

A Spatial-Aware Deep Reinforcement Learning for the Traveling Officer Problem71

2 Input Features

Feature Details Encoding
Current Status Free, Occupied, In Violation, Fined One Hot

Optimistic In Violation - Boolean
Time of Day - 0 to 1

Walking Time of Officer - Normalized
Arrival Time of Officer - Normalized

Distance To Spot - Normalized
Occupy/Violation Duration - -1 to 2

X and Y coordinates - Normalized

Table 2: Parking Spot Features

We briefly give a tabular description of the input features.

72 APPENDIX

B Reinforcement Learning for Multi-Agent Stochastic Resource Collection 73

B Reinforcement Learning for Multi-Agent Stochastic
Resource Collection

Venue 2022 European Conference on Machine Learning and Data Mining

DOI https://doi.org/10.1007/978-3-031-26412-2_13

Declaration of authorships The research idea was proposed, developed, and concep-
tualized by Niklas Strauss and discussed with all co-authors. The implementations and
the experiments were done by Niklas Strauss. The manuscript was written by Niklas
Strauss and improved by Max Berrendorf and Matthias Schubert.

Publication

https://doi.org/10.1007/978-3-031-26412-2_13

Reinforcement Learning for Multi-Agent
Stochastic Resource Collection

Niklas Strauß[�][0000−0002−8083−7323], David Winkel[0000−0001−8829−0863], Max
Berrendorf[0000−0001−9724−4009], and Matthias Schubert[0000−0002−6566−6343]

LMU Munich
{strauss,winkel,berrendorf,schubert}@dbs.ifi.lmu.de

Abstract. Stochastic Resource Collection (SRC) describes tasks where
an agent tries to collect a maximal amount of dynamic resources while
navigating through a road network. An instance of SRC is the travel-
ing officer problem (TOP), where a parking officer tries to maximize
the number of fined parking violations. In contrast to vehicular routing
problems, in SRC tasks, resources might appear and disappear by an un-
known stochastic process, and thus, the task is inherently more dynamic.
In most applications of SRC, such as TOP, covering realistic scenarios
requires more than one agent. However, directly applying multi-agent ap-
proaches to SRC yields challenges considering temporal abstractions and
inter-agent coordination. In this paper, we propose a novel multi-agent
reinforcement learning method for the task of Multi-Agent Stochastic
Resource Collection (MASRC). To this end, we formalize MASRC as a
Semi-Markov Game which allows the use of temporal abstraction and
asynchronous actions by various agents. In addition, we propose a novel
architecture trained with independent learning, which integrates the in-
formation about collaborating agents and allows us to take advantage of
temporal abstractions. Our agents are evaluated on the multiple travel-
ing officer problem, an instance of MASRC where multiple officers try
to maximize the number of fined parking violations. Our simulation en-
vironment is based on real-world sensor data. Results demonstrate that
our proposed agent can beat various state-of-the-art approaches.

Keywords: Multi-Agent RL · Navigation · Deep RL

1 Introduction

In many sequential planning tasks, agents travel on a transportation network, like
road or public transportation networks, to reach certain points of interest (POIs)
to earn rewards. One way to differentiate these tasks is according to the time
intervals for which POIs grant rewards and whether these intervals are known
to the agents. For example, for the traveling salesman and the basic vehicular
routing problem (VRP), reaching POIs grants rewards regardless of the time
they are visited. In more sophisticated tasks such as windowed VRPs [11], POIs
only grant rewards during given time windows that are known to the agent. In
contrast, in applications like taxi dispatching and ride-sharing, the agent does not

74 APPENDIX

2 Strauß et al.

know in advance at which time intervals rewards can be earned. Thus, policies
try to guide the agents into areas where collecting rewards is more likely, i.e.,
passengers might show up.

The task of Stochastic Resource Collection (SRC) [21] assumes that resources
have fixed locations and change their availability based on an unknown random
process. Thus, the agent observes currently collectible resources and can try to
reach these before the resources are not collectible anymore. An instance of the
SRC task is the TOP [22] in which a parking officer is guided to fine a maxi-
mal amount of parking offenders. The setting is based on the assumption that
information about parking sensors is available from sensors registering the du-
ration of parking events. As offenders might leave before the officer arrives, not
all resources remain collectible, and thus, agents have to consider the chance of
reaching resources in time. [21] model SRCs as Semi-Markov Decision Processes
(SMDP) and propose an action space that lets the agent travel to any resource
location on a pre-computed shortest path. To find effective policies maximiz-
ing the number of collected resources in a given time interval, a reinforcement
learning (RL) algorithm based on deep Q-Networks (DQN) is proposed. Though
the proposed method learns successful policies for single agents, it often requires
more than one agent to handle sufficiently large areas. Thus, [18] propose a
multi-agent heuristics for guiding multiple officers in a larger area. As RL meth-
ods already showed better performance than known heuristic methods in the
single-agent case, it makes sense to examine multi agent reinforcement learn-
ing (MARL) methods to improve policies. However, known MARL approaches
usually are not designed for Semi-Markov models where agents’ actions require
varying amounts of time. In addition, they often require mechanisms that counter
the problem of the size of the joint action space, which grows exponentially with
the number of agents, and the credit assignment problem when using joint re-
wards. Though there are several methods to counter each of these problems,
most of them do not consider the properties of the MASRC environments with
asynchronous agent actions in a Semi-Markov environment.

In this paper, we formalize MASRC as a selfish Semi-Markov Game (SMG).
We adapt the action space of [21] to let each agent target any resource in the
network. Thus, agents generally terminate their actions in varying time steps.
We propose a selfish formulation where each agent optimizes its own individ-
ual rewards. We argue that a group of independent agents still optimizes the
sum of collected resources sufficiently well as the agents learn that evading other
agents decreases the chances of another agent collecting close-by resources. We
empirically verify our reward design by comparing it to joint rewards. To ap-
proximate Q-values, we propose a neural network architecture that processes
information about resources, agents, actions, and the relation between them. To
combine these types of information, we employ attention and graph neural net-
work mechanisms. This way, our agent can estimate the likelihood of reaching a
collectible resource before it becomes uncollectible or another agent reaches the
resource first. Furthermore, our resource embedding considers the spatial close-
ness of additional collectible resources to make actions moving the agent into a

B Reinforcement Learning for Multi-Agent Stochastic Resource Collection 75

Reinforcement Learning for Multi-Agent Stochastic Resource Collection 3

region with multiple collectible resources more attractive. To evaluate our new
approach, we developed a multi-agent simulation based on real-world parking
data from the city of Melbourne. Our experiments demonstrate superior per-
formance compared to several baselines [18] and (adaptions of) state-of-the-art
approaches [21,1,9]. We compare our methods with heuristic methods proposed
in [18], an adaption of the single-agent SRC method from [21] and an architec-
ture proposed for dynamic multi-agent VRP [1] which is based on the well-known
single-agent architecture [9]. We evaluated the last benchmark to demonstrates
that state-of-the-art solutions for the dynamic VRP do not sufficiently cope with
the additional stochasticity of MASRC problems. To further justify the design
choices in our architecture, we provide ablations studies. To conclude, we sum-
marize the contributions of our paper as:

– A formulation of the MASRC as a Semi-Markov Game building a solid the-
oretical foundation for the development of MARL approaches

– A novel architecture for learning rich state representations for MARL
– A scalable simulation environment for the multi-agent traveling officer prob-

lem (MTOP) problem based on real-world data

2 Related Work

In this section, we review work on related tasks routing an agent through spatial
environments to collect rewards. In addition, we will discuss general multi agent
reinforcement learning approaches.

2.1 Stochastic Resource Collection

One of the most recognized routing tasks in the AI community is the vehicular
routing problem (VRP) where a group of agents needs to visit a set of customer
locations in an efficient way. There exist various variations of the VRP [4] and
some of them include the appearance of new customers during the day [1]. In
contrast to SRC, the setting does not include customers disappearing after an
unknown time interval. This is a decisive difference as it makes the reward of an
action uncertain. In recent years, several approaches have been developed to solve
the vehicular routing problem or some of its variations using DRL [1,9,16,17].
MARDAM [1] is an actor-critic RL-agent - based on [9] - designed to solve VRP
with multiple agents using attention mechanisms. While state and action spaces
of dynamic VRP and MASRC can be considered as very similar, the behavior
of the environment is not. To demonstrate these differences, we compare to an
agent using the architecture of [1] in our experiments.

There exist various papers on multi-agent taxi dispatching [8,12,13,28,32]
which can be formulated as a MASRC task. However, in most settings there
are significant differences to MASRC as the resources are usually not claimed
at arrival. Instead, customers are assigned to close-by taxis the moment the
guest publishes a request to the dispatcher. Thus, reaching the guest in time is

76 APPENDIX

4 Strauß et al.

usually not considered. Furthermore, to the best of our knowledge, only a single
approach works directly on the road network [8]. All other approaches work on
grid abstractions which are too coarse for MASRC. Finally, taxi dispatching
tasks usually involve large and time variant sets of agents. To conclude, known
solutions to taxi dispatching are not applicable to solve MASRC.

The traveling officer problem (TOP), first described by [22] is an instance of
SRC. In [21], the authors propose an Semi-Markov RL-based agent to solve the
single-agent TOP task and name other tasks that can be formulated as SRC.
Later on, the authors of [18] study the MTOP. They propose a population-based
encoding, which can be solved using various heuristics for optimization problems
like cuckoo search or genetic algorithms. Additionally, they propose a simple
greedy baseline that assigns idling officers to the resource in violation using
"first-come-first-serve". Competition between officers is handled by assigning a
collectible resource to the officer with the highest probability that the resource
is still in violation when the officer arrives.

2.2 Multi-Agent Reinforcement Learning

After reviewing solutions to similar tasks, we will now discuss general multi agent
reinforcement learning (MARL) approaches w.r.t. their suitability for training on
MASRC environments. In MARL, a group of agents shares the same environment
they interact with. There are various challenges in MARL: the non-stationarity
of the environment from the perspective of an individual agent, the exponen-
tially increasing joint action space, the coordination between agents, and the
credit assignment problem. A plethora of different approaches to tackle these
challenges exists [6] and we will give a brief overview of the most important
MARL approaches in the following.

Joint action learners reduce the multi-agent problem to a single-agent prob-
lem by utilizing a single centralized controller that directly selects a joint action.
While joint action learners can naturally handle coordination and avoid the
non-stationarity, in practice, these approaches are often infeasible because of the
exponential growth of the joint action space w.r.t. the number of agents [7].

On the opposite site, we can use multiple independent learners [26]. The
agents interact in parallel in a shared environment using a single-agent RL al-
gorithm. In many cases, it has been shown that independent learners can yield
strong performance while allowing for efficient training. However, in some set-
tings, independent learners can suffer from the non-stationarity of the environ-
ment induced by simultaneously learning and exploring agents.

In recent years, approaches have been developed that utilize centralized train-
ing and decentralized execution (CLDE). In [24], the authors presented VDN
that decomposes the joint action-value function as a sum of the individual agents’
Q-function values obtained solely from the agents’ local observation. The authors
of [19] propose QMIX, a method that extends VDN by learning a non-linear
monotonic combination of the individual Q-functions, which allows representing
a larger class of problems. The authors of [3] propose a counterfactual multi-
agent actor-critic method (COMA) that uses a centralized critic that allows

B Reinforcement Learning for Multi-Agent Stochastic Resource Collection 77

Reinforcement Learning for Multi-Agent Stochastic Resource Collection 5

estimating how the action of a single agent affects the global reward in order to
address the credit assignment problem.

Another way to tackle the problem of coordination between agents is to facili-
tate communication between the agents. CommNet [23] is a prominent approach
that learns a differentiable communication model between the agents. Both
CLDE and communication-based approaches suffer from the credit-assignment
problem, which we mitigate through our individual reward design.

A drawback of the named approaches when applied to MASRC is that these
algorithms do not consider temporal abstractions, i.e., actions with varying dura-
tion. The application of temporal abstraction to CLDE requires the modification
of the problem in a way that the decision epochs are synchronized or experience
needs to be trimmed [27]. This way of training is inefficient as it exponentially
increases the number of decision epochs with respect to the number of agents.
The authors of [2,14,5,20,27] investigate temporal abstraction in multi-agent
settings. The authors of [20] first introduce different termination schemes for
actions with different temporal abstractions that are executed in parallel. [14]
propose independent learners to efficiently handle the asynchronous termination
setting, [27] adapt CommNet and QMIX to a setting with temporal abstraction,
while [2] propose a version of COMA in decentralized settings with temporal
abstractions. Let us note that some of these approaches, like COMA, QMIX, or
CommNet, can be adapted to train our function approximation and thus, can
be applied to MASRC. We experimented with these approaches but could not
observe any convincing benefit for solving MASRC. In addition, the use of those
methods tries to learn complex coordination schemes between agents. However,
in MASRC agents basically cannot directly support each other as the only action
impacting other agents is collecting resources.

3 Problem Formulation

We consider the problem of MASRC, where n agents try to maximize the collec-
tion of resources in a road network G = (V,E,C), where V is a set of nodes, E
denotes a set of edges and C : E → R+ are the corresponding travel costs. Each
resource p ∈ P is located on an edge e ∈ E in the road network. Whether a re-
source p is collectible can be observed by the agents but might change over time.
The state changes of resources follow an unknown stochastic process. Whenever
an agent passes a collectible resource, the resource is collected by the agent.

Formally, we model the MASRC problem as a Semi-Markov Game (SMG)
⟨I, S,A, P,R, γ⟩, where I is a set of agents indexed by 1, . . . , n, S is the set of
states, A denotes the joint action space, P is the transition probability functions,
R denotes the reward functions of the individual agents, and γ is the discount
factor.

Agent: A set of n agents moving in road network and collecting resources.
State: st ∈ S denotes the global state of the environment at time t. The

exact information included in the state depends on the actual instantiation, e.g.,

78 APPENDIX

6 Strauß et al.

TOP. Nonetheless, all MASRC tasks share a common structure that can be
decomposed into resources, agents, and environment:

– Resources characterized by the current status, e.g., availability and position.
– Agents defined by their position and ID.
– Environment with features such as the time of the day or an indication of

holidays.

Action: at ∈ A = A1× . . .×An : is the joint action at time t. Following the
single-agent formulation of [21], we define the individual action space Ai of an
agent to correspond to the set of edges E, i.e., the agent will travel on the shortest
path to the corresponding edge. This allows to focus on the MASRC task itself
rather than solving the routing problem, where high-performance deterministic
algorithms are available. Therefore, the individual actions have varying duration,
depending on the agent’s position and target location. As a result, agents may
have to asynchronously select actions at different decision times. Between those
decision times, agents continue to their target. Formally, we can reduce this to
a synchronous setting, and thus the given joint action space, by introducing a
special "continue" action, as described in [14].

Reward: Each agent i has an independent reward function Ri ∈ R, where
R : (S×A)→ R. Each agent i independently tries to maximize its own expected
discounted return E

[∑∞
j=0 γ

jri,t+j

]
. Each agent’s individual reward function

corresponds to the resources collected by the agent itself. The reward is incre-
mented by 1 for each collected resource. A resource is collected when an agent
passes a collectible resource.

State Transition Probability: With

(st+1, τ | st,at) : (S × R+ ×A× S)→ [0, 1] ⊂ R (1)

we denote the probability of transitioning to the state st+1 from the current
state st by taking the joint action at. Although, some effects of an action are
deterministic (e.g., the positions of the agents), the state changes of resources are
uncertain and the exact dynamics are unknown. Unlike in a Markov Game, in a
SMG, we additionally sample the number of elapsed time-steps τ of the action
at. The smallest feasible temporal abstraction is the greatest common divisor of
all edge travel times. The duration is determined by the individual action ai ∈ a
with the shortest duration, which is a multiple of the smallest feasible duration.
As a result, an agent receives a time-discounted reward ζ =

∑τ−1
j=0 γ

jrt+j+1.

4 Method

In this section, we introduce our novel multi-agent RL agent. At first, we provide
some insight into our reward design. Secondly, we present our training procedure
that is based on independent DQN [25]. After that, we describe the inputs to our
architecture and name the particular features for our evaluation on the MTOP
task. Finally, we introduce our novel function approximator for the MASRC
problem that facilitates coordination between the agents.

B Reinforcement Learning for Multi-Agent Stochastic Resource Collection 79

Reinforcement Learning for Multi-Agent Stochastic Resource Collection 7

4.1 Individual Rewards

In general, the goal of MASRC is to maximize the expected joint reward
E
[∑|I|

i=0

∑∞
j=0 γ

jri,t+j

]
. However, we decided to use individual rewards to avert

the credit assignment problem, which leads to a Markov Game where agents act
selfishly. In literature, the impact of such selfish behavior is commonly denoted as
the "price of anarchy" [10]. In the context of MASRC, we argue that the price
of anarchy is likely to be very low and outweighed by the benefits of having
a reward function that allows the agents to assess the impact of their actions
more directly and thus mitigates the credit assignment problem. This is because
in MASRC helping other agents directly is not possible. Therefore, coordination
boils down to not getting in the way of other agents. There might be cases where
a joint reward might lead to policies where particular agents would target far-
off resources decreasing their own but increasing the sum of collected resources.
However, we observed in our experiments that these cases are rare. We provide
an empirical evaluation of our reward design choice compared to joint rewards
in Section 6.3.

4.2 Training

Independent DQN [25] combines independent learners [26] and DQN [15]. To
speed up learning, we share the network parameters between agents and dis-
tinguish them by their IDs [31]. Independent learning provides a natural way
to handle settings with asynchronous termination [14]. In independent learning,
each agent treats the other agents as part of the environment. However, this may
lead to sub-optimal coordination between the agents. To mitigate this problem,
we introduce an architecture that allows each agent to efficiently reason about
the intents of other agents. We utilize a DoubleDQN [29] adapted to the Semi-
Markov setting. We update the network parameters with respect to a batch of
transitions collected from all agents by minimizing the following loss function:

L(Θ) = Est,at,τ,rt:t+τ−1,st+τ
[loss(yt, Q(st, at;Θ))] (2)

where yt =
∑τ−1

j=0 γ
jrt+j + γτQ(st+τ , a

′
t+τ ;Θ

′). The action a′t+τ is the optimal
action w.r.t to Θ, i.e., a′t+τ = argmaxat+τ∈A(st+τ) Q(st+τ , at+τ ;Θ). Θ denotes
the parameters of the behavior Q network and Θ′ denotes the parameters of
the frozen target Q network which are periodically copied from Θ. To improve
clarity, we omitted the indices indicating the individual agents. We use a smooth
L1 loss.1.

4.3 Input Views

In the following, we will briefly describe the inputs to our function approximation
and name the particular features for our evaluation on the MTOP task.
1 cf. https://pytorch.org/docs/stable/generated/torch.nn.SmoothL1Loss.html

80 APPENDIX

8 Strauß et al.

Resource Features We encode each resource from the perspective of each
individual agent separately. To this end, we add features describing the relation of
the agent to the resource, e.g., the distance or arrival time. This results in n times
different views of each resource. The resource view for the MTOP contains a one-
hot-encoding of the resource’s current status, i.e., free, occupied, in violation, or
fined. Additionally, we provide a flag that indicates whether a parked car would
be in violation if it remains parked and the officer would directly go there.
Finally, we add the current time of the day, walking time, agent arrival time,
and distance to the resource. All these features are normalized. We add a real-
valued number between -1 and 2, indicating how long a car is still allowed to
occupy the resource and how long it is in violation, respectively. A score greater
than zero indicates a violation. Finally, we add the normalized coordinates of
the resource’s position.

Agent Features For MTOP, it consists of a one-hot encoding of the agents’
ID, the normalized coordinates of its current position and target, as well as the
normalized walking time and distance to its target.

Spatial Relation To capture the spatial interaction between the resources,
we create a distance matrix for each agent. There is one row in the matrix
for each action consisting of the network distance of the action target to each
resource, the distance between the agent, and the action target to each row.

4.4 Architecture

An effective policy in MASRC requires an agent to consider the complex inter-
action between resources, actions, and other agents to estimate the likelihood of
reaching a collectible resource. To capture those dependencies, our novel architec-
ture first encodes the action-level intents of each agent using the resources and
their spatial relationship solely from the perspective of each individual agent,
i.e., ignoring the other agents. We call this module the Shared Action Encoder.
After that we continue by combining the perspective of the current agent with
the action-level intents of the other agents using multi-head attention in the
Intent Combination Module. This allows an agent to asses the likelihood that
another agent catches collectible resources first. While the inputs are different,
the parameters of all networks are shared between all agents.

Shared Action Encoder In the context of SRC, the value of an action, i.e., the
likelihood of reaching resources in time, depends largely on the state of resources
near the target [21]. We argue that in a multi-agent setting, the simple distance
weighting from [21] is not expressive enough to capture the complex dependency
of an action’s value on, e.g., the uncertainty of reaching the resource in time.
Thus, we propose an extended Shared Action Encoder to calculate agent-specific
action embeddings, based upon the agent’s features, and resources’ features, as
well as the distances. We provide the pseudo-code roughly following PyTorch
style in Fig. 2, and show an overview in Fig. 1.We begin by transforming the
agent’s features with an MLP (cf. line 3). Next, we calculate unnormalized agent-
specific resource to action relevance scores combining information from the agent

B Reinforcement Learning for Multi-Agent Stochastic Resource Collection 81

Reinforcement Learning for Multi-Agent Stochastic Resource Collection 9

Resource EmbeddingResource EmbeddingResource Embedding

Matrix Multiplication

Action Embedding Net Agent ID

Resource Embedding Net

Resource Features

Action Embedding

Resource FeaturesResource Features

Relevance Matrix

Distance To
ActionSoftmax

Relevance Matrix

Distance Matrix Agent Embedding

Relevance Net

Distance To Action

Agent Embedding Net

Agent Features Agent ID

Fig. 1: Conceptual overview of the Shared Action Encoder. This module creates
a rich representation for each action based on the resource states from the per-
spective of an individual agent. The module captures the spatial relationship of
resources around each action’s target using a graph neural network mechanism.
Networks and operations are colored yellow, the output of the module and cru-
cial intermediate representations are purple, while blue denotes input features.

1def sea(feat_ag , feat_res , i_ag , dist , dist_ag2ac):
2""" Shared action encoder for a single agent."""
3x_ag = mlp1(feat_ag)
4# shape: (dim_ag ,)
5rel_act_res = mlp2(cat(broadcast([
6x_ag[None],
7dist_ag2ac[None],
8dist ,
9]), dim=-1))
10# shape: (n_action , n_res)
11rel_act_res = softmax(rel_act_res , dim=-1)
12# shape: (n_action , n_res)
13x_res = mlp3(feat_res)
14# shape: (n_res , dim_res)
15x_act = rel_act_res @ x_res
16# shape: (n_act , dim_res)
17return mlp4(cat(x_act , i_ag , dist_ag2ac))

Fig. 2: Pseudocode for the Shared Action Encoder following PyTorch style.
feat_ag denotes the agent’s features, feat_res the (agent-specific) resource
features, i_ag the agent’s ID, and dist the action-resource distance matrix, and
dist_ag2ac the distance from the current agent to all actions (which are target
edges). mlp1 to mlp4 are separate MLPs.

82 APPENDIX

10 Strauß et al.

Action Embedding Current Agent Action Embedding Other Agent

Sum

Multi-Head-Attention

KeyQuery Value

Action Embedding Other AgentAction Embedding Other Agent

Q-Network Agent ID

Q-Values

Fig. 3: In the Intent Combination Module, we enrich the action embedding of
a single agent with information about the other agents’ actions using multi-
head attention. Afterwards, we reduce the enriched action representations to
a Q-value for every action with an MLP. Networks and operations are colored
yellow, inputs coming from the Shared Action Encoder are purple, and blue
denotes input features.

representation, the distance from the agent to the action (i.e., edge), and the
action-to-resource distance matrix using another MLP (cf. lines 5-9). These rel-
evance scores are subsequently normalized using the softmax operator (cf. line
11). The resource features are first transformed by an MLP, before we use the
previously computed relevance scores for aggregating them per action (cf. line
13-15). A final MLP combines this information with distance to the agent as
well as the agent ID (cf. line 17). In the following, we denote the result of this
component as E.

Intent Combination Module Information about the other agents’ intents
is crucial in multi-agent settings - thus, we propose an attention-based mech-
anism to update an agent’s action representations by considering the ones of
other agents. Let Ei denote the output of the shared action encoder for agent
i. For scalability, we first aggregate the latent actions of all other agents Ei :=∑

j∈I\{i} Ej . Next, apply a multi-head attention mechanism [30] with Ei as
query and value and Ei as key. Finally, we reduce every row of the result, corre-
sponding to the co-agents-aware action representation, to a single Q-value using
an MLP. This MLP also receives the agent ID as an additional input to allow
diversification of the agents.

B Reinforcement Learning for Multi-Agent Stochastic Resource Collection 83

Reinforcement Learning for Multi-Agent Stochastic Resource Collection 11

Area Nodes Edges Resources Edges with Resources
Docklands 1,435 4,307 487 166
Queensberry 1,711 5,356 639 177
Downtown 6,806 21,369 1,481 493

Fig. 4: Description and illustration of the different areas used in our evaluation:
Docklands (blue), Downtown (red), and Queensberry (green). Notice that typ-
ically only a small fraction of edges contains resources and there can be more
than one resource per edge.

5 Simulator Design

To the best of our knowledge, there is no publicly available simulation for MTOP.
To enable effective training of reinforcement learning agents, we implement a
simulator that can replay real-world sensor data and parking restrictions, which
allows us to simulate as close as possible to the real world. The walking graph,
i.e., road network, is extracted from OpenStreetMap2. We assign parking spots
to the closest edge in the graph. When an agent passes a resource in violation, it
will be fined. The time for fining a violation is set to zero in our simulation. The
agent collects a reward of +1 for every fined resource. All agents start at the
same place every day. They work for 12 hours from 7 am to 7 pm. Each agent
has a walking speed of 5km/h.

For our evaluation, we use openly available on-street parking sensor data and
parking restrictions from the city of Melbourne in 2019 3. We divide Melbourne
into three areas to study different graph structures and hyperparameter transfer-
ability. Details regarding the areas can be found in Fig. 4. Each run was trained
using a single GPU on a cluster consisting of RTX A6000 (48GB) and A100
(40GB) GPUs. The code of our simulation and agents is publicly available.4

6 Experimental Evaluation

We split the parking event dataset into a training, validation, and test set. Park-
ing follows weekly patterns. To avoid biases introduced through weekdays, we
split the dataset as follows: If the remainder of the day in the year divided by 13
is 0, we add the day to the test set. In case the remainder is 1, we add the day
to the validation set. The remaining 308 days are added to the training set. An
episode is equivalent to a working day. The order of the training days is shuffled.
To speed up training, the agent interacts with eight environments in parallel.

The transferability of the hyperparameters across different regions and num-
bers of agents is important. We tuned the hyperparameters in a single area
2 https://www.openstreetmap.org
3 https://data.melbourne.vic.gov.au/browse?tags=parking
4 https://github.com/niklasdbs/masrc

84 APPENDIX

12 Strauß et al.

(Docklands) with two agents. Agents were trained using early stopping. The
test results reported are with respect to the best validation results. The full
hyperparameter setting can be found in the supplement.

6.1 Baselines

Greedy We modify the greedy baseline from [18] for better performance: Instead
of assigning agents to the resource with the earliest violation time, we directly
use the catching probability from the the tie-breaking mechanism.

LERK The authors of [18] propose to solve the MTOP by representing it using
leader-based-random-key encoding (LERK) and then solve it using various clas-
sical heuristic solvers developed for combinatorial issues. One of these heuristics
that yielded the best performance was the genetic algorithm, which we have
implemented.

MARDAM [1] is an actor-critic RL-agent - based on [9] - designed to solve
dynamic-VRP with multiple agents using attention mechanisms. While they
propose a method to transform the underlying Markov game into a sequential
MDP, this transformation is not possible for MASRC tasks. Therefor, we train
their architecture using independent actor-critic. Due to the dynamic state of
resources in MASRC tasks, we need to calculate the customer-embeddings (i.e.,
resource), in every step using a Transformer which is computationally expensive
and memory intense. As a result, we are not able to train the agent on full
episodes and need to rely on bootstrapping.

SASRC We train the architecture of [21] that has been proposed for the SASRC
using independent learning with shared independent learners. We add the agent-
id to the final network so that agents can differentiate their behavior. Addition-
ally, we add information about the targets of all agents to the resources, which
allows the agent to incorporate information about other agents and thus benefits
learning [31].

6.2 Results

As the evaluation metric, we use the average number of violations fined per day.
We evaluate in three different areas using two, four, and eight agents. The results
in Table 1 show that our proposed approach can surpass the other approaches
and baselines in various regions and across different numbers of agents. We can
beat MARDAM, a state-of-the-art algorithm designed for multi-agent dynamic-
VRP, by a large margin. This underlines that approaches for SRC tasks need
to be able to handle the increased stochasticity. Moreover, MARDAM requires
a massive amount of GPU memory due to the use of the transformer encoder in
large settings like Downtown with eight agents. For this setting, our approach

B Reinforcement Learning for Multi-Agent Stochastic Resource Collection 85

Reinforcement Learning for Multi-Agent Stochastic Resource Collection 13

Table 1: Average number of violations fined per day in Docklands, Queensberry,
and Downtown for 2, 4, and 8 agents on the validation and test set.

2 Agents 4 Agents 8 Agents
Area Algorithm Validation Test Validation Test Validation Test

Docklands

Greedy 186.93 192.67 304.32 300.22 442.57 439.33
LERK 244.78 245.11 328.61 330.56 424.32 418.19

MARDAM 339.79 336.37 418.96 416.44 482.57 479.78
SASRC 343.82 304.19 476.07 465.52 551.86 544.63
OURS 388.32 379.59 527.21 518.52 588.04 580.00

Queensberry

Greedy 180.46 189.15 240.5 250.07 277.54 286.56
LERK 192.18 198.78 233.86 245.07 260.79 271.67

MARDAM 225.18 229.85 247.29 255.41 257.04 267.81
SASRC 222.61 231.41 257.11 266.00 263.79 273.15
OURS 244.43 255.41 271.39 281.59 284.75 294.37

Downtown

Greedy 138.79 144.63 256.14 257.33 429.93 435.22
LERK 213.57 219.19 298.32 305.40 430.18 428.19

MARDAM 340.54 342.37 469.18 471.26 255.82 260.93
SASRC 425.68 418.48 657.61 658.04 815.68 815.41
OURS 495.07 494.70 710.75 713.3 866.04 867.93

uses approximately 16 times less GPU memory during training. As a result,
the batch size needs to be reduced for those settings, which may impact perfor-
mance. Additionally, the episode length in MASRC tasks is much longer than
in a typical VRP, which makes learning on whole episodes impossible. Further-
more, the experiments show that our approach yields considerably better results
than existing heuristic solvers designed for the MTOP, such as LERK, which
require intensive computational resources at inference time. While our approach
requires several days of training it only needs a few milliseconds at inference
time.The authors of LERK [18] state a runtime of 4.67 minutes for making a
single decision with seven officers using their fastest approach. This makes the
application of their algorithm in real-world settings infeasible.

6.3 Ablation Studies

To assess the individual components’ impact on the final performance, we pro-
vide several ablation studies. We conduct the ablations with two agents on the
validation set in the Docklands area and report the average number of violations
fined per day. The results of the ablations can be found in Table 2, where they
are sorted decreasingly by performance, i.e., the highest impact is on the right.

We observe that not using an action embedding network has the strongest
impact on the performance resulting in an 8.3% reduction in performance. Since
the reduction is less severe when removing inputs of this network, the effect
can be primarily attributed to the additional non-linear transformation after re-
source aggregation. Switching from individual to joint rewards is next in terms
of relevance. We observe that using joint rewards performs considerably worse,

86 APPENDIX

14 Strauß et al.

Table 2: Ablations performed in the area of Docklands with two agents. We
report the average number of caught violations per day. The second row shows
the relative performance compared to the base configuration. The values are
sorted decreasingly, i.e., the highest impact is on the right.

O
U

R
S

W
it

h
O

th
er

A
ge

nt
s’

T
ar

ge
t

W
it

ho
ut

A
ge

nt
ID W

it
ho

ut
R

es
ou

rc
e

P
os

it
io

n
W

it
ho

ut
A

ge
nt

E
m

be
dd

in
g

N
et

w
or

k
W

it
ho

ut
D

is
ta

nc
e

T
o

A
ct

io
n

Jo
in

t
R

ew
ar

d
W

it
ho

ut
A

ct
io

n
E

m
be

dd
in

g
N

et
w

or
k

absolute 388.32 378.54 375.39 370.36 365.25 360.96 359.71 356.18
relative 100.0% 97.5% 96.7% 95.4% 94.1% 93.0% 92.6% 91.7%

leading to a 7.4% reduction in performance,5 which we attribute to the credit
assignment problem. Ignoring the distance to the action leads to a reduction of
7.0%. Without this information the agent lacks input to assess the inherent re-
ward uncertainty in far actions. The agent embedding network is the next crucial
component, with a reduction of 5.9%. Without it, the model cannot utilize the
agent features, such as its position. Not having access to the agent ID aggravates
diversification of agent policies and leads to a performance decrease of 3.3%. Fi-
nally, adding other agents’ target information to the agent-specific views of the
resources leads to slightly worse performance of around 2.5%, despite yielding
improvements in the SASRC baseline. This indicates that our architecture can
already sufficiently incorporate the intents of other agents for effective coordi-
nation.

7 Conclusion

In this work, we have formalized Multi-Agent Stochastic Resource Collection
(MASRC) as a Semi-Markov Game, providing a solid theoretical framework for
the development of new approaches. We further proposed a novel architecture to
solve MASRC tasks featuring an innovative intent combination model which per-
mits re-assessment of action representations based on the other agents’ action
representations. To enable evaluation, we introduced an efficient agent-based
simulation for the MTOP task, for which we publish the source code to sup-
port the community in future research. Using the simulation, we could demon-
strate that our approach is able to beat existing heuristic baselines, adaptions of
state-of-the-art single-agent SRC solutions, and approaches for the multi-agent
dynamic-VRP in terms of fined violations. On a more fundamental level, our
results indicate that existing approaches for multi-agent dynamic-VRP struggle
to handle the increased dynamics in MASRC tasks, and thus MASRC requires
specialized solutions. In future work, we want to include dynamic travel times.

5 Notice though that even with joint rewards, our approach is able to beat baselines
trained with individual rewards.

B Reinforcement Learning for Multi-Agent Stochastic Resource Collection 87

Reinforcement Learning for Multi-Agent Stochastic Resource Collection 15

Furthermore, we want to investigate the transfer of trained policies between dif-
ferent areas and numbers of agents. Finally, we will research further scaling our
approach to very large graphs.

8 Acknowledgments

We thank the City of Melbourne, Australia, for providing the parking datasets
used in this paper and Oliver Schrüfer for contributing the implementation of
LERK. This work has been funded by the German Federal Ministry of Education
and Research (BMBF) under Grant No. 01IS18036A. The authors of this work
take full responsibilities for its content.

References

1. Bono, G., Dibangoye, J.S., Simonin, O., Matignon, L., Pereyron, F.: Solving multi-
agent routing problems using deep attention mechanisms. IEEE Trans. Intell.
Transp. Syst. 22(12), 7804–7813 (2020)

2. Chakravorty, J., Ward, N., Roy, J., Chevalier-Boisvert, M., Basu, S., Lupu,
A., Precup, D.: Option-critic in cooperative multi-agent systems. arXiv preprint
arXiv:1911.12825 (2019)

3. Foerster, J., Farquhar, G., Afouras, T., Nardelli, N., Whiteson, S.: Counterfactual
multi-agent policy gradients. In: AAAI. vol. 32 (2018)

4. Gendreau, M., Laporte, G., Séguin, R.: Stochastic vehicle routing. Eur. J. Oper.
Res. 88(1), 3–12 (1996)

5. Han, D., Boehmer, W., Wooldridge, M., Rogers, A.: Multi-agent hierarchical rein-
forcement learning with dynamic termination. In: Pacific Rim Int’l Conf on Arti-
ficial Intelligence. pp. 80–92. Springer (2019)

6. Hernandez-Leal, P., Kartal, B., Taylor, M.E.: A survey and critique of multiagent
deep reinforcement learning. Auton Agent Multi Agent Syst 33(6), 750–797 (2019)

7. Hu, J., Wellman, M.P., et al.: Multiagent reinforcement learning: theoretical frame-
work and an algorithm. In: ICML. vol. 98, pp. 242–250. Citeseer (1998)

8. Kim, J., Kim, K.: Optimizing large-scale fleet management on a road network using
multi-agent deep reinforcement learning with graph neural network. In: ITSC. pp.
990–995. IEEE (2021)

9. Kool, W., Van Hoof, H., Welling, M.: Attention, learn to solve routing problems!
arXiv preprint arXiv:1803.08475 (2018)

10. Koutsoupias, E., Papadimitriou, C.: Worst-case equilibria. In: Annual symposium
on theoretical aspects of computer science. pp. 404–413. Springer (1999)

11. Kumar, S.N., Panneerselvam, R.: A survey on the vehicle routing problem and its
variants (2012)

12. Li, M., Qin, Z., Jiao, Y., Yang, Y., Wang, J., Wang, C., Wu, G., Ye, J.: Efficient
ridesharing order dispatching with mean field multi-agent reinforcement learning.
In: The world wide web conference. pp. 983–994 (2019)

13. Liu, Z., Li, J., Wu, K.: Context-aware taxi dispatching at city-scale using deep
reinforcement learning. IEEE Trans. Intell. Transp. Syst. (2020)

14. Makar, R., Mahadevan, S., Ghavamzadeh, M.: Hierarchical multi-agent reinforce-
ment learning. In: Proc. of the fifth Int’l Conf on Autonomous agents. pp. 246–253
(2001)

88 APPENDIX

16 Strauß et al.

15. Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D.,
Riedmiller, M.: Playing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602 (2013)

16. Nazari, M., Oroojlooy, A., Snyder, L., Takác, M.: Reinforcement learning for solv-
ing the vehicle routing problem. Adv Neural Inf Process Syst 31 (2018)

17. Peng, B., Wang, J., Zhang, Z.: A deep reinforcement learning algorithm using dy-
namic attention model for vehicle routing problems. In: International Symposium
on Intelligence Computation and Applications. pp. 636–650. Springer (2019)

18. Qin, K.K., Shao, W., Ren, Y., Chan, J., Salim, F.D.: Solving multiple travelling of-
ficers problem with population-based optimization algorithms. Neural Computing
and Applications 32(16), 12033–12059 (2020)

19. Rashid, T., Samvelyan, M., Schroeder, C., Farquhar, G., Foerster, J., Whiteson, S.:
Qmix: Monotonic value function factorisation for deep multi-agent reinforcement
learning. In: ICML. pp. 4295–4304. PMLR (2018)

20. Rohanimanesh, K., Mahadevan, S.: Learning to take concurrent actions. Adv Neu-
ral Inf Process Syst 15 (2002)

21. Schmoll, S., Schubert, M.: Semi-markov reinforcement learning for stochastic re-
source collection. In: IJCAI. pp. 3349–3355 (2021)

22. Shao, W., Salim, F.D., Gu, T., Dinh, N.T., Chan, J.: Traveling officer problem:
Managing car parking violations efficiently using sensor data. IEEE Internet of
Things Journal 5(2), 802–810 (2017)

23. Sukhbaatar, S., Fergus, R., et al.: Learning multiagent communication with back-
propagation. Adv Neural Inf Process Syst 29 (2016)

24. Sunehag, P., Lever, G., Gruslys, A., Czarnecki, W.M., Zambaldi, V., Jaderberg,
M., Lanctot, M., Sonnerat, N., Leibo, J.Z., Tuyls, K., et al.: Value-decomposition
networks for cooperative multi-agent learning. arXiv preprint arXiv:1706.05296
(2017)

25. Tampuu, A., Matiisen, T., Kodelja, D., Kuzovkin, I., Korjus, K., Aru, J., Aru,
J., Vicente, R.: Multiagent cooperation and competition with deep reinforcement
learning. PloS one 12(4), e0172395 (2017)

26. Tan, M.: Multi-agent reinforcement learning: Independent vs. cooperative agents.
In: ICML. pp. 330–337 (1993)

27. Tang, H., Hao, J., Lv, T., Chen, Y., Zhang, Z., Jia, H., Ren, C., Zheng, Y., Meng, Z.,
Fan, C., et al.: Hierarchical deep multiagent reinforcement learning with temporal
abstraction. arXiv preprint arXiv:1809.09332 (2018)

28. Tang, X., Qin, Z., Zhang, F., Wang, Z., Xu, Z., Ma, Y., Zhu, H., Ye, J.: A deep
value-network based approach for multi-driver order dispatching. In: Proc. of the
25th ACM SIGKDD. pp. 1780–1790 (2019)

29. Van Hasselt, H., Guez, A., Silver, D.: Deep reinforcement learning with double
q-learning. In: AAAI. vol. 30 (2016)

30. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser,
Ł., Polosukhin, I.: Attention is all you need. Adv Neural Inf Process Syst 30 (2017)

31. Zheng, L., Yang, J., Cai, H., Zhou, M., Zhang, W., Wang, J., Yu, Y.: Magent: A
many-agent reinforcement learning platform for artificial collective intelligence. In:
AAAI. vol. 32 (2018)

32. Zhou, M., Jin, J., Zhang, W., Qin, Z., Jiao, Y., Wang, C., Wu, G., Yu, Y., Ye, J.:
Multi-agent reinforcement learning for order-dispatching via order-vehicle distribu-
tion matching. In: Proc. of the 28th ACM Int’l Conf on Information and Knowledge
Management. pp. 2645–2653 (2019)

B Reinforcement Learning for Multi-Agent Stochastic Resource Collection 89

Supplementary Material

Niklas Strauß[0000−0002−8083−7323], David Winkel[0000−0001−8829−0863], Max
Berrendorf[0000−0001−9724−4009], and Matthias Schubert[0000−0002−6566−6343]

LMU Munich
{strauss,winkel,berrendorf,schubert}@dbs.ifi.lmu.de

1 Hyperparameters

Table 1: Parameters of our architecture and environment
Parameter Value
γ 0.999
ϵ min 0.01
ϵ-decay exp
Steps until min ϵ 1500000
Start Learning 5000
Optimizer RMSProp
Learning Rate 0.0001
Alpha 0.99
Target Update Frequency 2500/5000 gradient steps
Batch Size 256 (128 Downtown 8 Agents)
Train Every 32
Replay Size 250000
Number Of Parallel Envs 8
Reward Transformation tanh
Number of Env Steps 25/50 * 10e6
Prioritized Replay False
Early Stopping True
Resource Encoder (MLP3) 512 HDIM, 2 Layers, ReLU
Agent Encoder (MLP1) 256 HDMIM, 2 Layers, ReLU, Output 512
Relevance Network (MLP2) 512 HDIM, 4 Layers, ReLU
Action Encoder (MLP4) 512 HDIM, 4 Layers, ReLU
Q-Network 512 HDIM, 6 Layers, ReLU no act after last
Number Of Attention Heads 8
Relevance Normalization Softmax
Gradient Clipping False/2.0
Other Agent Reduction sum
Walking Speed 5km/h

2 Input Features

90 APPENDIX

2 Strauß et al.

Feature Details Encoding
Status Free, Occupied, In Violation, Fined One Hot
Optimistic In Violation - Boolean
Current Time Of Day - 0 to 1
Walking Time of Agent - Normalized
Arrival Time of Agent - Normalized
Distance to Resource - Normalized
Occupy/Violation Duration - -1 to 2
X and Y Coordinates - Normalized

Table 2: Resources Features from the perspective of an agent

Feature Details Encoding
Agent ID - One Hot
Current Position Coordinates Normalized
Target Position Coordinates Normalized
Distance to Target - Normalized
Walking Time to Target - Normalized

Table 3: Agent Features

B Reinforcement Learning for Multi-Agent Stochastic Resource Collection 91

92 APPENDIX

C A Comparison of Ambulance Redeployment Systems
on Real-World Data

Venue 2022 IEEE International Conference on Data Mining Workshops (ICDMW)

DOI https://doi.org/10.1109/ICDMW58026.2022.00010

Declaration of authorships The research idea was proposed, developed, and concep-
tualized by Niklas Strauss and discussed with all co-authors. Niklas Strauss did the main
part of the implementation, and the students implemented some of the baselines. The
manuscript was written by Niklas Strauss and improved by the co-authors.

Publication

https://doi.org/10.1109/ICDMW58026.2022.00010

A Comparison of Ambulance Redeployment
Systems on Real-World Data

Niklas Strauß
MCML, LMU Munich
strauss@dbs.ifi.lmu.de

Max Berrendorf
MCML, LMU Munich

max.berrendorf@gmail.com

Tom Haider
Fraunhofer-Institut für Kognitive Systeme IKS

tom.haider@iks.fraunhofer.de

Matthias Schubert
MCML, LMU Munich

schubert@dbs.ifi.lmu.de

Abstract—Modern Emergency Medical Services (EMS) benefit
from real-time sensor information in various ways as they provide
up-to-date location information and help assess current local
emergency risks. A critical part of EMS is dynamic ambulance
redeployment, i.e., the task of assigning idle ambulances to
base stations throughout a community. Although there has
been a considerable effort on methods to optimize emergency
response systems, a comparison of proposed methods is generally
difficult as reported results are mostly based on artificial and
proprietary test beds. In this paper, we present a benchmark
simulation environment for dynamic ambulance redeployment
based on real emergency data from the city of San Francisco.
Our proposed simulation environment is highly scalable and is
compatible with modern reinforcement learning frameworks. We
provide a comparative study of several state-of-the-art methods
for various metrics. Results indicate that even simple baseline
algorithms can perform considerably well in close-to-realistic
settings. The code of our simulator is openly available at
https://github.com/niklasdbs/ambusim.

Index Terms—Urban Simulation, Public Health, Dynamic Am-
bulance Redeployment, Reinforcement Learning

I. INTRODUCTION

In recent years, the amount of real-time sensor data has
increased dramatically, providing more accurate insights into
complex urban systems. These data sources offer unprece-
dented opportunities to improve mobility-centered systems and
processes for smarter cities. One particular example are emer-
gency response systems, where sensor data can help to assess
emergency risks, estimate hospital occupation rates, or provide
up-to-date location data of incidents and ambulances [1].

For many life-threatening conditions, such as cardiac arrest
or stroke, the likelihood of survival depends critically on an
ambulance arriving in time. Sensor data can prove particularly
valuable in emergency response systems as it allows opti-
mization of these systems based on real-time information. To
ensure a timely treatment of patients, a plethora of research
has been conducted to help Emergency Medical Service (EMS)
providers optimize their infrastructure and operations and thus,
reduce response time, i.e., the time an ambulance needs to
arrive at an incident [2]. In most communities, ambulances
are stationed at fixed locations, so-called base stations, from
which they are dispatched to incidents by the EMS operator.
After providing pre-hospital care at an incident, the ambulance
either directly returns to a base station or transports the
patient to a hospital before going to a base station. One
problem of particular interest is dynamic ambulance redeploy-

ment (DAR) [3]–[5] which refers to the task of dynamically
redistributing the ambulances to different base stations after
completely handling an incident. Thus, DAR controls the
number of available ambulances at each base station while
utilizing real-time information. Although efficient policies for
DAR have been studied in literature, an objective comparison
of the proposed methods is difficult due to the use of pro-
prietary datasets. Moreover, these datasets are often artificial,
e.g., making explicit assumptions about the distributions of
incidents, without a direct link to real-world data. In this paper,
we provide a novel benchmark simulation based on real-world
data and provide a comprehensive evaluation of the various
DAR methods. In particular, our contributions are as follows:

• We propose a new benchmark simulation environment
for DAR based on openly accessible data across 20 years
of real emergency data from the city of San Francisco.
The event-based simulation is highly-scalable and written
in C++, but also offers Python bindings following the
OpenAI Gym API [6], an established standard in the field
of reinforcement learning.

• We provide implementations of various state-of-the-art
DAR methods, as well as several competitive baselines.

• We conduct a benchmark study of these methods us-
ing various metrics. We provide evidence that simple
baselines perform surprisingly well in close-to-realistic
settings.

Our paper is structured as follows: In Section II, we
introduce the problem setting before reviewing existing work
in Section III. We continue to describe our simulation environ-
ment in Section IV, and the dataset in Section V. In Section VI
we present our comparative study before we summarize our
work in Section VII.

II. PROBLEM SETTING

In this section, we describe the process of how the EMS
operates. A visual outline of this process can be found in
Figure 1. When the EMS operator receives a call, an idle
ambulance is dispatched from a base station and travels to
the incident site. Usually, the closest available ambulance will
be dispatched. In case there is no ambulance available, the
incident will be handled as soon as an ambulance becomes
available again. Once the ambulance arrives at the emergency
site, it provides pre-hospital care to the patient. If necessary,
the patient will subsequently be transported to a hospital.

C A Comparison of Ambulance Redeployment Systems on Real-World Data 93

Incident

Dispatch Ambulance

On-Scene

Needs

Hospital?

Bring to Hospital

Return to Base

yes

no

Fig. 1. Simplified schematic overview of the modeled EMS process. Blue
boxes denote decision points handled by the dispatch, hospital and redeploy
policy.

Otherwise, the ambulance will be directly redeployed to a
base station. When the ambulance arrives at the base station,
it becomes idle and is ready to be dispatched again.

The state of this simulation contains information about
ambulances, base stations, hospitals, and incidents, as well as
global information like the current time of the environment.
In the following, we provide a detailed description:

a) Ambulances: The state contains information about the
activity (e.g., idle), current location, destination, and estimated
arrival time at the destination for each ambulance.

b) Base Stations: Base stations have a fixed location
where ambulances wait for incidents. We do not limit the
number of ambulances per station.

c) Hospitals: Each hospital has a specific location and
an unlimited capacity of patients it can handle.

d) Incidents: Each incident contains the following in-
formation: time of call, location of the incident, whether the
patient has been transported to a hospital, the time spent at
the incident, and the time spent at the hospital. Whenever an
incident occurs and no ambulance is available, the incident gets
queued and will be rescheduled when an ambulance becomes
available again.

During this process, the EMS operator employs three poli-
cies to make decisions:

• Dispatch policy: Deciding from which base station an
ambulance should be dispatched to an incident is de-
noted as the ambulance dispatch problem (ADP). In
practice, dispatching the closest available ambulance is
prevalent [2].

• Hospital policy: This task is about selecting a hospital to
transport a patient to if deemed necessary [2]. Selecting
the closest hospital is the default policy here es as well.

• Redeploy policy: Select the base station to redeploy an
ambulance after completely handling an incident [1].

In this paper, we focus on the redeploy policy as it is the
only task that is not time critical. For example, dispatching
an ambulance from a base station further away directly affects
the time until pre-hospital care is provided to patient, while
redeploying is not time critical. Thus, ambulance redeployment
yields sufficient room for optimization. Redeployment can be
solved by assigning a fixed base station for each ambulance.
In this case, the problem is referred to as ambulance location
problem (ALP) [7]. In contrast, there is the DAR [3] task,
which facilitates real-time information to select base stations
fitting to the current situation. An overview of existing meth-
ods for both approaches is given in the next section. During
simulation, the policies are employed to select actions that
result in new events, which are added to the priority queue of
the simulation.

III. RELATED WORK

Motivated by the vital importance of emergency services,
optimizing their operations has been a research focus for many
years. While the focus of this paper is the DAR, there exists
a number of approaches that optimize other parts of the EMS
process, e.g., ambulance dispatching. For an overview of these
related tasks, we refer the reader to the recent survey of [2]. In
the following, we review related work in the field of (dynamic)
ambulance redeployment and EMS simulation.

A. Ambulance Redeployment

There is a considerable amount of literature on the DAR.
We continue by giving an overview of the most important
approaches.

1) Static ALP: Early work in ALP focused primarily on
static redeployment models, i.e., each ambulance is assigned
to a fixed home base to which it is deployed to whenever
it becomes idle [8]–[11]. These static models can be used to
determine where to locate base stations, as well as the number
of ambulances for each base station [3].

In a recent study on static redeployment models [7], the
authors compared several static ALP models and found that the
maximum expected covering location problem (MEXCLP) [9]
and expected response time model (ERTM) [7] perform best
with respect to commonly considered criteria like response
times. Both models search for a static policy to distribute a lim-
ited number of ambulances over a set of possible base stations.
Ambulances are modeled to be busy with a pre-determined
probability (busy fraction). The resulting optimization problem
can be solved using integer linear programming.

2) DAR: A disadvantage of static models is that they do not
make use of real-time information like the current availability
of ambulances or time-dependent shifts in incident frequencies
at different locations, e.g., due to daily or seasonal patterns.
As a result, recent research focuses on dynamic redeployment
models. Some of the approaches proposed to make use of
lookup tables [12], i.e., an optimal configuration is pre-
computed for each possible system state and a dispatcher tries
to redeploy the ambulances such that they match the configura-
tion suggested by the lookup table. A major downside of these

94 APPENDIX

approaches is the workload (ambulance movements) required
to ensure that the system is in compliance with the lookup
table. Another class of approaches models the randomness in
the system explicitly, either through a dynamic programming
formulation [13], [14] or heuristic approaches [3]. However,
an exact dynamic programming formulation is intractable. As
a result, approximate dynamic programming approaches have
been proposed [15], [16]. Yet, the authors of [3] note that
these approaches are still impractical due to the need for
an expert to implement these. Additionally, the performance
highly depends on the base functions used, and thus the
approach is unlikely to work well in general settings [3]. In [3],
the authors propose dynamic MEXCLP, an efficient dynamic
heuristic based on MEXCLP. To the best of our knowledge, [5]
is the only approach published that uses (deep) reinforcement
learning (RL) to solve the DAR. It utilizes a demand forecast
based on historical averages as well as the current distribution
of ambulances over base stations.

B. Simulation

As direct evaluation of different policies is difficult, e.g., due
to ethical concerns, simulators have been widely used [3], [15],
[17]–[22]. However, existing simulators have either important
drawbacks, are not publicly available [15], [17], [21]1, do not
publish the dataset used [15], [18], [21], or are not able to
replay real-world incident events [3], [18], [19], [22].

For example, the simulator of [23] does not support dynamic
redeployment policies and is not suited for RL, while the
simulator of [22] is unable to replay real-world incidents. The
simulator of [24] is one of the very few simulators that are
openly available, can replay real-world incidents, and support
dynamic redeploy policies. However, a major drawback of this
simulator is that it is not well suited for (deep) RL because it
does not have the structure necessary to train RL agents, which
require making observations, deciding on an action thereupon
and receiving information about the next state and (immediate)
reward.

A further problem that hinders research in the area is the
lack of openly available real-world datasets [2]. As a result,
most simulators use synthetic or closed-source data.

IV. SIMULATION ENVIRONMENT

In this section, we introduce the architecture of our high-
performance simulator. The simulator allows to examine a va-
riety of scenarios, and thus gain valuable insights about various
policies. This includes varying the number of ambulances,
changing the location and number of base stations, or even
removing certain hospitals.

A. General Architecture

The simulation implements the general problem setting
described in Section II. It is implemented as a discrete event-
based simulation, i.e., around a priority queue that stores
events with their time. The queue is initialized by adding all
incidents from the real-world data as an event. Subsequently,

1 [21] was initially public, however all links are dead.

the simulator handles the events in chronological order. Certain
events require making dynamic decisions and thus add new
events to the queue. For example, when an incident occurs,
the dispatch policy needs to be called and events for traveling
to the incident need to be created as well as events for detailing
the pre-hospital care. Since the ambulances operate in a road
network, routing and traveling in this network plays a vital
role in modeling the EMS process. In a pre-processing step,
we map the locations of base stations, hospitals, and incidents
to the nearest node in a road network graph obtained from
OSM2. Since we are replaying real-world events, all incident
locations are known in advance. This enables us to accelerate
the simulation by pre-computing the travel times between: base
stations and incidents, incidents and stations, incidents and
hospitals, and hospitals to base stations.

B. Policies

Since the simulation is built to support research in the field
of improved policies for EMS, each of the three policies for
ambulance dispatching, selecting a hospital, and redeploying
an ambulance is separated into extensible modules with a
clear API, which allows exchanging policies easily. For our
comparative study, we focus on DAR and thus provide multi-
ple implementations of redeployment policies covering simple
heuristics as well as state-of-the-art methods. For the other
two tasks, we implemented common baseline policies.

1) Dispatch Policies: The first module is the dispatch pol-
icy, i.e., this module decides by which ambulance an incident
should be handled. We implement the prevalent nearest station
policy, which dispatches an available ambulance from the
station with the shortest travel time to the incident [2].

2) Hospital Policies: In some (but not all) cases, a patient
needs to be transported to a hospital after the on-site care is
finished. In our simulation, the decision of whether a patient
is transported to a hospital is based on real-world data. The
decision to which hospital a patient is transported is decided
by the hospital policy module. In practice, a patient is often
taken to the closest hospital [2], which we also implemented
as the default policy.

3) Redeployment Policies: The main focus of our study is
on dynamic redeployment policies. The redeployment policy
decides on the base station the ambulance is sent to whenever
an ambulance finishes handling an incident. We implement
various policies that are commonly used for (dynamic) am-
bulance redeployment. These include simple heuristics, com-
monly used SOTA static and dynamic redeployment models,
as well as a RL based approach.

• Random Baseline: This very simple baseline redeploys
the ambulance to a random station. Thus, it provides
insight into whether an intelligent policy is necessary in
the first place.

• Least Ambulances This baseline deploys the ambulance
to the station that currently has the least ambulances [5].
Ambulances already heading towards the station are also

2https://www.openstreetmap.org/

C A Comparison of Ambulance Redeployment Systems on Real-World Data 95

considered when determining the station with the least
ambulances.

• Nearest Base Station: This baseline deploys the ambu-
lance to the station that is closest to its current posi-
tion [5].

• MEXCLP is a very popular static ambulance location
model by [9] that tries to maximize a coverage criteria
by solving an integer linear program. It is considered to
be one of the best performing static models [3], [7].

• ERTM [7], the expected response time model, is a SOTA
static ambulance redeployment model. In contrast to
MEXCLP, it does not optimize a coverage criteria but
instead minimizes the expected response time.

• DMEXCLP is an efficient dynamic redeployment heuris-
tic that utilizes real-time information [3]. DMEXCLP
sends the ambulance to the base station maximizing the
marginal coverage according to the MEXCLP model.

• DRLSN is a RL-agent for the DAR task. It utilizes a de-
mand forecast based on historical averages as well as the
current distribution of ambulances over base stations [5].

C. Redeployment Agents

The simulation has a particular focus on efficiently support-
ing RL. In RL, an agent learns a policy by interacting with
the environment, i.e., the simulator, in discrete time steps. The
interaction between the agent and the environment follows
a certain schema: At each time step, the agent receives an
observation and selects an action that is passed back to the
environment. The simulator then transitions to a new state
and returns an observation and a reward signal to the agent.
Since the predominant language for (deep) RL research is
Python, we implement the redeployment agents in Python
and implement the field standard for interfacing simulation
and agents, the OpenAI Gym API [6]. Thereby, we combine
the benefits of using C++ for efficiently running a complex
simulation with the benefits of using Python for deep learning
and RL. We utilize pybind11 [25] to create Python binding
of our C++ simulator.

D. Observation Encoders

Different agents base their redeployment decision on dif-
ferent information and require to encode this information
in a special format, the so-called observation. Hence, our
simulator specifies a flexible and efficient API to create an
observation based on the state of the simulator (e.g., location
and status of ambulances, current time, travel times, ...) and
additional data sources such as IoT data or historical demand
averages. For example, a RL agent may require a complex
encoding of the state as a floating point tensor, while some
heuristics only require the number of ambulances in each
station. We encapsulate the complete state of the environment
in an object that is passed to the observation creator to build
the observation. A benefit of this structure is that it allows
for the easy integration of various data sources like urban IoT
data.

V. DATASET

A major problem that hinders research is the lack of an
openly available dataset containing real-world incidents [2].
Using real-world data instead of sampled synthetic incidents
is crucial to realistically evaluate different approaches without
biases introduced by making simplifying assumptions. Further-
more, this also has the potential to learn better policies using
deep RL models that can exploit statistical patterns that are
not present in the simplified synthetic datasets.

In San Francisco, the fire department handles medical 911
calls and the operation of the EMS service. The city publishes
a dataset containing these non-police 911 calls3. To the best
of our knowledge, this dataset has not been used for the DAR
task. This dataset includes, among other things, the date and
time when the call is received, when a unit arrives on scene,
the time when a unit begins the transport to the hospital, if
applicable, as well as the arrival time at the hospital and the
time it becomes available again. From these data, we are able
to infer whether a patient has been transported to a hospital, the
time spent on-scene providing pre-hospital care, as well as the
duration the ambulance spent at the hospital. The location of
the incident is obfuscated either to the midblock, intersection,
or call box to protect the privacy of the caller.

A preprocessing step is required to infer some of the
aforementioned data, filter out non-ambulance entries, and a
very small amount of invalid entries, e.g., when the order
of the process times are invalid. Additionally, we restrict the
incidents to the area depicted in Figure 2 to exclude incidents
at the airport. We utilize 20 years of incidents from 2001
until 2021. In this time period, a total of 1,616,559 incidents
occurred. The number of incidents in each year is detailed
in Figure 4. In order to accurately assess the performance of
different models, we split the dataset into training, validation,
and testing as follows: We assign the first 18 years of data
from 2001 to 2019 as the training set, and use 2020 and 2021
for validation and testing, respectively. For our simulation,
additional preprocessing is required. Among other things, this
includes converting time formats and pre-computing travel
times. Some decision policies also require additional infor-
mation like historical demand averages or demand weights
and points. We define the demand locations to be a Voronoi
decomposition around the base stations. Following [7], we use
the average number of calls per year as the demand weights.
The validation set is used to calculate these demand weights.

The road network graph and travel times are obtained from
open street maps. The road network spans over an area of
around 184 square kilometers and contains 9,586 nodes and
26,762 edges. All incidents, stations, and hospitals are mapped
to the closest node in the network.

In order to realistically simulate an EMS system, the loca-
tion of the base stations and hospitals are required. Unfortu-
nately, these are not published on the open data portal. We
will publish the location of stations and hospitals, as well as

3https://data.sfgov.org/Public-Safety/Fire-Department-Calls-for-Service/
nuek-vuh3

96 APPENDIX

Fig. 2. Locations of base stations (blue) and hospitals (red).

the preprocessed dataset. In San Francisco, ambulances are
based in 45 fire stations. The location of the fire stations
have been extracted from the website of the San Francisco
fire department. According to San Francisco Emergency Med-
ical Response4, the EMS operators transport patients to 11
hospitals (within the city of San Francisco) whose locations
have been manually obtained. The locations of stations and
hospitals are visualized in Figure 2.

In the following, we outline the most important character-
istics of the dataset. The spatial distribution of incidents is
visualized in Figure 3. Figure 4 details the number of incidents
per year, ranging from around 64,000 calls in 2012 up to
97,000 in 2019. Finally, Figure 5 shows the incidents per
month without a clear pattern. Additionally, the dataset con-
tains different temporal patterns. The distribution of incidents
by day of the week is illustrated in Figure 6 showing more
frequent incidents at the weekend, while Figure 7 shows the
varying frequency of incidents during the day, with a peak
frequency in the evening and the lowest frequency in the late
night.

VI. EVALUATION

In this section, we first briefly detail the performance of
our simulator before evaluating the implemented baselines on
the San Francisco dataset. In order to ensure a fair compar-
ison across all algorithms, at the start of the simulation all
ambulances are uniformly distributed over the base station.
Hyperparameters are selected on the validation set with respect
to the average response time.

A. Simulator Performance

In this section, we evaluate the speed of our simulator. This
is particularly important for training RL agents, as they typi-
cally require many interactions with the simulator, and hence

4http://sfemergencymedicalresponse.weebly.com

Fig. 3. Spatial distribution of incidents in San Francisco displayed as a
heatmap. Lower numbers of incidents are more blueish while higher numbers
are more yellowish. Best viewed in color.

2001 2003 2005 2007 2009 2011 2013 2015 2017 2019 2021
Year

65000

70000

75000

80000

85000

90000

95000

Nu
m

be
r o

f I
nc

id
en

ts

Fig. 4. The number of incidents in each year.

2 4 6 8 10 12
Month

5800

6000

6200

6400

6600

6800

7000

Nu
m

be
r o

f I
nc

id
en

ts

Fig. 5. Number of incidents in each month. The shaded area shows the 95%
percentile obtained by bootstrapping.

C A Comparison of Ambulance Redeployment Systems on Real-World Data 97

Monday Tuesday Wednesday Thursday Friday Saturday Sunday
Day of Week

202.5

205.0

207.5

210.0

212.5

215.0

217.5

220.0

Nu
m

be
r o

f I
nc

id
en

ts

Fig. 6. Number of incidents per weekday. The shaded area shows the 95%
percentile obtained by bootstrapping.

0 5 10 15 20
Hour of Day

4

5

6

7

8

9

10

11

Nu
m

be
r o

f I
nc

id
en

ts

Fig. 7. The hourly number of incidents over the course of the day. The shaded
area shows the 95% percentile obtained by bootstrapping.

a high-performance simulator can dramatically reduce training
time. Note that comparing absolute runtime is difficult [26],
and thus, the following comparison should be taken with a
grain of salt.

According to [24] their simulator is one of the fastest EMS
simulators available. In their paper, they report a runtime of
3.0295 seconds for simulating one year for a smaller setting
with only 4 hospitals, 14 stations, and 16 ambulances on an
Windows 10 computer with a 2.4 GHZ Intel i7-5500U CPU
and 8GB RAM.

After warmup and with 20 ambulances, our simulator is
able to simulate a whole year with around 90,000 incidents in
approx 0.72 seconds using the nearest base station agent. We
measured the time on a system with an AMD Ryzen 7 2700X
Eight-Core Processor at 3.7GHz and 64 GB RAM on Ubuntu
20.04.2 LTS with a 5.4 Linux kernel and Python 3.8.10. Notice
that the simulation runs single-threaded, i.e., does not benefit
from the multi-core processor. Even though the hardware is
different, this indicates that our simulator might be faster, and
in particular, is well-suited for a RL application.

B. Metrics

There are various ways to evaluate the performance of an
EMS system. The most common metrics, however, are the
average response time and the x minute pick-up ratio. The
average response time is the time it takes on average from
when a call happens until the ambulance arrives at the incident
location. The x minute pick-up ratio is the relative frequency
of an ambulance arriving at latest after x minutes. This is also
in line with regulatory requirements in many communities.
For example, in San Francisco, an ambulance should arrive
within 10 minutes at an incident. The EMS operators target
is to handle more than 90% of incidents within that quota.
Therefore, our simulator collects these two metrics, which are
commonly used in practice and literature [7].

C. Comparison of Redeployment Algorithms

We compare several redeployment algorithms on the real-
world dataset from the city of San Francisco. For this com-
parison, we set the number of ambulances to 15. We evaluate
the approaches with respect to the average response time and
the ratio of pickups within 10 minutes. The comparison results
are detailed in Table I and Table II respectively.

Interestingly, the nearest base station model performs best
with respect to the pickup ratio within 10 minutes. Its pickup
ratio is 96% on the test set. The MEXCLP, DMEXCLP,
ERTM, and DRLSN models are able to achieve marginally
worse results ranging from 93% to 95%. The random agent
performs worst with 85% followed by the least ambulances
baseline with 89%. Noticeably the random agent performance
is still relatively high, indicating that there is a sufficient
number of ambulances and the incidents do not follow a
strongly imbalanced pattern.

The ERTM model achieves the best average response times,
around 234 seconds on the test set. The nearest base station
baseline performs surprisingly well with 237 seconds. More-
over, the RL agent is not able to achieve the best performance,
however, the gap is not very large: Its performance is around
12 seconds worse than the ERTM model. Another interesting
finding is that the MEXCLP agent is able to achieve a
slightly better average response time than its dynamic heuristic
(DMEXCLP). However, when comparing the pickup ratios,
DMEXCLP offers marginally better performance.

In line with previous research [7], we can confirm the
strong performance of ERTM. Surprisingly, the very simple
nearest base station is able to achieve very good results and
can beat all baselines with respect to the 10 minute pickup
ratio. Furthermore, its average response times are only slightly
worse than ERTM. Overall, we are surprised that the DRLSN
is not able to beat the other approaches. This is in contrast
to previous results reported on other (not publicly available)
datasets.

An important question for the EMS operator is to select the
right number of ambulances. Using too few ambulances leads
to high response times and risks the patient’s life. On the other
hand, budget constraints only allow operating a limited number
of ambulances.

98 APPENDIX

TABLE I
AVERAGE RESPONSE TIME IN SECONDS FOR DIFFERENT POLICIES AND

15 AMBULANCES.

Policy Validation Testing

Random 380.41 409.55
Least Ambulances 307.12 336.91
Nearest Base Station 228.05 236.84
MEXCLP 281.62 301.12
DMEXCLP 296.69 305.68
ERTM 218.16 234.15
DRLSN 221.42 246.07

TABLE II
RESULTS 15 AMBULANCES PICKUP WITHIN 10 MINUTES RATIO FOR

DIFFERENT POLICIES AND 15 AMBULANCES.

Policy Validation Testing

Random 0.86 0.85
Least Ambulances 0.91 0.89
Nearest Base Station 0.96 0.96
MEXCLP 0.94 0.93
DMEXCLP 0.95 0.94
ERTM 0.95 0.94
DRLSN 0.94 0.93

In Figure 8 and Figure 9, we compare the influence of the
number of ambulances on the average response time and 10
minute pickup ratio on the test set. For this what-if scenario,
we pick different numbers of ambulances between 10 to 32.
With regard to the 10 minute pickup ratio, we can observe that
10 ambulances are not enough to ensure efficient operation.
The best approach is only able to meet that target for less than
50% of the incidents. Adding four more ambulances has a huge
impact on the 10 minute pickup ratio, with an increase to 0.92.
However, increasing the number of ambulances even further
has only marginal benefits, 18 ambulances are enough to reach
a pickup ratio of 0.99. In Figure 8, we can observe a similar
trend for the average response time. The Nearest base station
approach works surprisingly well in scenarios where the EMS
system is overwhelmed and incidents start queuing up because
it minimizes the time until an ambulance can handle the next
incident.

VII. CONCLUSION

In this paper, we introduced a high-performance, easily
extendable, open-source simulator for the DAR problem. Ad-
ditionally, we presented an openly available real-world dataset
that, to the best of our knowledge, has not been used for
the DAR task. We also compared the performance of several
SOTA approaches and baselines on this dataset, which led
to interesting findings. Surprisingly, the performance of the
simple nearest base station heuristic worked surprisingly well
and was able to beat more sophisticated approaches with
respect to the pickup time within 10 minutes. Additionally,
the average response time of this baseline is only marginally
worse than the ERTM model, the best performing model with
respect to this metric.

10 15 20 25 30
Number of Ambulances

102

103

Av
er

ag
e

Re
sp

on
se

 T
im

e
[s

]

Agent
Nearest Station
ERTM
MEXCLP
DMEXCLP
DRLSN
Random
Least Ambulances

Fig. 8. Comparison of the average response time in seconds on the test set
on a logarithmic scale for number of ambulances between 10 and 32.

10 15 20 25 30
Number of Ambulances

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
10

 M
in

ut
e

Pi
ck

up
 R

at
io

Agent
Nearest Station
ERTM
MEXCLP
DMEXCLP
DRLSN
Random
Least Ambulances

Fig. 9. Comparison of the 10 minute pickup ratio on the test set for number
of ambulances between 10 and 32.

Overall, our paper represents a significant step towards
comparable research in the area of DAR. Furthermore, the
availability of an open-source simulator and dataset consider-
ably reduces the barrier to do research in the field and thus
encourages the development of new approaches. In contrast
to most existing simulators, our simulator is well suited for
training RL agents, which have been able to achieve SOTA
performance in many applications. Moreover, RL is well suited
to integrate data from smart cities and thus has the potential
to improve the operation of EMS systems. Therefore, we are
convinced that our simulator enables a promising field of
research.

In recent years, an increasing amount of real-time sensor
data has become available in smart cities and allows precise
insights into complex urban systems. In a future line of
work, we want to integrate such data sources and utilize their
potential to improve EMS operations. For example, data from

C A Comparison of Ambulance Redeployment Systems on Real-World Data 99

public transportation systems could be considered to detect
gatherings of people and improve the estimate of how many
people are currently in certain parts of the city, and thus
the probability of a medical emergency [27]. Furthermore,
integrating dynamic travel times, i.e., real-world traffic infor-
mation, has the potential to make the simulation more accurate
as well as developing policies that adapt to the dynamic traffic
conditions [28], [29].

Our experiments have shown that existing RL approaches
cannot surpass simple heuristics. Since RL agents are theoreti-
cally able to learn complex strategies and have shown impres-
sive performance on similar tasks [30]–[32], it is promising to
further investigate developing improved RL methods.

In a future line of work, we want want to allow utilizing
severity information about emergencies and permit ambulances
to directly serve new incidents without returning to a base
station beforehand. Another major resource direction is the
integration of valuable urban IoT data, such as real-time traffic
information, location and health data from mobile devices, or
micro-weather data.

ACKNOWLEDGEMENTS

This work was funded by the Bavarian Ministry for Eco-
nomic Affairs, Regional Development and Energy as part of a
project to support the thematic development of the Institute
for Cognitive Systems. We would like to thank Hyeri An,
Kerui Zhang, and Jingcheng Wu for their helpful contributions
regarding the implementation of the simulator and baselines.

REFERENCES

[1] D. Degel, L. Wiesche, and B. Werners, “Data driven ambulance opti-
mization considering dynamic and economic aspects,” in Operations
Research Proceedings 2013, D. Huisman, I. Louwerse, and A. P.
Wagelmans, Eds. Cham: Springer International Publishing, 2014, pp.
105–111.

[2] D. Neira-Rodado, J. W. Escobar-Velasquez, and S. McClean, “Ambu-
lances deployment problems: Categorization, evolution and dynamic
problems review,” ISPRS International Journal of Geo-Information,
vol. 11, no. 2, p. 109, 2022.

[3] C. J. Jagtenberg, S. Bhulai, and R. D. van der Mei, “An efficient heuristic
for real-time ambulance redeployment,” Operations Research for Health
Care, vol. 4, pp. 27–35, 2015.

[4] M. Gendreau, G. Laporte, and F. Semet, “A dynamic model and par-
allel tabu search heuristic for real-time ambulance relocation,” Parallel
computing, vol. 27, no. 12, pp. 1641–1653, 2001.

[5] S. Ji, Y. Zheng, Z. Wang, and T. Li, “A deep reinforcement learning-
enabled dynamic redeployment system for mobile ambulances,” Pro-
ceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous
Technologies, vol. 3, no. 1, pp. 1–20, 2019.

[6] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schul-
man, J. Tang, and W. Zaremba, “Openai gym,” arXiv preprint
arXiv:1606.01540, 2016.

[7] P. L. V. D. Berg and J. T. V. Essen, “Comparison of static ambulance
location models,” International Journal of Logistics Systems and Man-
agement, vol. 32, no. 3-4, pp. 292–321, 2019.

[8] R. Church and C. ReVelle, “The maximal covering location problem,”
in Papers of the regional science association, vol. 32, no. 1. Springer-
Verlag, 1974, pp. 101–118.

[9] M. S. Daskin, “A maximum expected covering location model: formula-
tion, properties and heuristic solution,” Transportation science, vol. 17,
no. 1, pp. 48–70, 1983.

[10] C. ReVelle and K. Hogan, “The maximum availability location problem,”
Transportation science, vol. 23, no. 3, pp. 192–200, 1989.

[11] C. Toregas, R. Swain, C. ReVelle, and L. Bergman, “The location of
emergency service facilities,” Operations research, vol. 19, no. 6, pp.
1363–1373, 1971.

[12] R. Alanis, A. Ingolfsson, and B. Kolfal, “A markov chain model
for an ems system with repositioning,” Production and operations
management, vol. 22, no. 1, pp. 216–231, 2013.

[13] O. Berman, “Dynamic repositioning of indistinguishable service units
on transportation networks,” Transportation Science, vol. 15, no. 2, pp.
115–136, 1981.

[14] T. Andersson and P. Värbrand, “Decision support tools for ambulance
dispatch and relocation,” in Operational Research for Emergency Plan-
ning in Healthcare: Volume 1. Springer, 2016, pp. 36–51.

[15] M. S. Maxwell, M. Restrepo, S. G. Henderson, and H. Topaloglu,
“Approximate dynamic programming for ambulance redeployment,”
INFORMS Journal on Computing, vol. 22, no. 2, pp. 266–281, 2010.

[16] M. S. Maxwell, S. G. Henderson, and H. Topaloglu, “Tuning approx-
imate dynamic programming policies for ambulance redeployment via
direct search,” Stochastic Systems, vol. 3, no. 2, pp. 322–361, 2013.

[17] V. Schmid, “Solving the dynamic ambulance relocation and dispatching
problem using approximate dynamic programming,” European Journal
of Operational Research, vol. 219, no. 3, pp. 611–621, 2012. [Online].
Available: http://dx.doi.org/10.1016/j.ejor.2011.10.043

[18] Y. Yue, L. Marla, and R. Krishnan, “An efficient simulation-based
approach to ambulance fleet allocation and dynamic redeployment,”
Proceedings of the National Conference on Artificial Intelligence, vol. 1,
pp. 398–405, 2012.

[19] L. Zhen, K. Wang, H. Hu, and D. Chang, “A simulation optimization
framework for ambulance deployment and relocation problems,” Com-
puters & Industrial Engineering, vol. 72, pp. 12–23, 2014.

[20] D. Bertsimas and Y. Ng, “Robust and stochastic formulations for
ambulance deployment and dispatch,” European Journal of Operational
Research, vol. 279, no. 2, pp. 557–571, 2019.

[21] S. G. Henderson, A. J. Mason et al., “Bartsim: a tool for analysing
and improving ambulance performance in auckland, new zealand,” in
Proceedings of the 35th annual conference of the operational research
society of New Zealand, Wellington, New Zealand. Citeseer, 2000, pp.
57–64.

[22] M. Allen, K. Pearn, and T. Monks, “Developing an OpenAI Gym-
compatible framework and simulation environment for testing Deep Re-
inforcement Learning agents solving the Ambulance Location Problem,”
arXiv preprint arXiv:2101.04434, 2021.

[23] J. Ong, D. Kulpanowski, Y. Xie, E. Nikolova, and N. M. Tran, “Open-
EMS: an open-source Package for Two-Stage Stochastic and Robust
Optimization for Ambulance Location and Routing with Applications
to Austin-Travis County EMS Data,” arXiv preprint arXiv:2201.11208,
2022.

[24] S. Ridler, A. J. Mason, and A. Raith, “A simulation and optimisation
package for emergency medical services,” European Journal of Opera-
tional Research, vol. 298, no. 3, pp. 1101–1113, 2022.

[25] W. Jakob, J. Rhinelander, and D. Moldovan, “pybind11
– seamless operability between c++11 and python,” 2017,
https://github.com/pybind/pybind11.

[26] H. Kriegel, E. Schubert, and A. Zimek, “The (black) art of runtime
evaluation: Are we comparing algorithms or implementations?” Knowl.
Inf. Syst., vol. 52, no. 2, pp. 341–378, 2017. [Online]. Available:
https://doi.org/10.1007/s10115-016-1004-2

[27] H. Zou, Y. Zhou, J. Yang, and C. J. Spanos, “Device-free occupancy
detection and crowd counting in smart buildings with wifi-enabled iot,”
Energy and Buildings, vol. 174, pp. 309–322, 2018.

[28] H. Taghipour, A. B. Parsa, and A. Mohammadian, “A dynamic approach
to predict travel time in real time using data driven techniques and
comprehensive data sources,” Transportation Engineering, vol. 2, p.
100025, 12 2020.

[29] M. Sarrab, S. Pulparambil, and M. Awadalla, “Development of an iot
based real-time traffic monitoring system for city governance,” Global
Transitions, vol. 2, pp. 230–245, 2020.

[30] K. Lin, R. Zhao, Z. Xu, and J. Zhou, “Efficient large-scale fleet
management via multi-agent deep reinforcement learning,” in Proc. of
the 24th ACM SIGKDD, 2018, pp. 1774–1783.

[31] S. Schmoll and M. Schubert, “Semi-markov reinforcement learning for
stochastic resource collection,” in IJCAI, 2021, pp. 3349–3355.

[32] W. Kool, H. van Hoof, and M. Welling, “Attention, learn to solve routing
problems!” in International Conference on Learning Representations,
2018.

100 APPENDIX

D DEAR: Dynamic Electric Ambulance Redeployment 101

D DEAR: Dynamic Electric Ambulance Redeployment

Venue 18th International Symposium on Spatial and Temporal Data

DOI https://doi.org/10.1145/3609956.3609959

Declaration of authorships The research idea was developed and conceptualized by
Lukas Rottkamp and Niklas Strauss and discussed with Matthias Schubert and Niklas
Strauss. Lukas Rottkamp implemented the approach and extended the simulation written
by Niklas Strauss to electric ambulances. Niklas Strauss and Lukas Rottkamp wrote the
manuscript which was improved by all co-authors.

Publication

https://doi.org/10.1145/3609956.3609959

DEAR: Dynamic Electric Ambulance Redeployment
Lukas Rottkamp∗
MCML, LMU Munich
Munich, Germany

rottkamp@cip.ifi.lmu.de

Niklas Strauß∗
MCML, LMU Munich
Munich, Germany

strauss@dbs.ifi.lmu.de

Matthias Schubert
MCML, LMU Munich
Munich, Germany

schubert@dbs.ifi.lmu.de

ABSTRACT
Dynamic Ambulance Redeployment (DAR) is the task of dynami-
cally assigning ambulances after incidents to base stations to mini-
mize future response times. Though DAR has attracted considerable
attention from the research community, existing solutions do not
consider using electric ambulances despite the global shift towards
electric mobility. In this paper, we are the first to examine the impact
of electric ambulances and their required downtime for recharg-
ing to DAR and demonstrate that using policies for conventional
vehicles can lead to a significant increase in either the number
of required ambulances or in the response time to emergencies.
Therefore, we propose a new redeployment policy that considers
the remaining energy levels, the recharging stations’ locations, and
the required recharging time. Our new method is based on min-
imizing energy deficits (MED) and can provide well-performing
redeployment decisions in the novel Dynamic Electric Ambulance
Redeployment problem (DEAR). We evaluate MED on a simulation
using real-world emergency data from the city of San Francisco
and show that MED can provide the required service level without
additional ambulances in most cases. For DEAR, MED outperforms
various established state-of-the-art solutions for conventional DAR
and straightforward solutions to this setting.

CCS CONCEPTS
• Information systems→ Spatial-temporal systems; • Com-
puting methodologies→ Simulation environments.

KEYWORDS
Ambulance Redeployment, Optimization, Spatio-Temporal Data
ACM Reference Format:
Lukas Rottkamp, Niklas Strauß, and Matthias Schubert. 2023. DEAR: Dy-
namic Electric Ambulance Redeployment. In Symposium on Spatial and
Temporal Data (SSTD ’23), August 23–25, 2023, Calgary, AB, Canada. ACM,
New York, NY, USA, 10 pages. https://doi.org/10.1145/3609956.3609959

1 INTRODUCTION
The Emergency Medical Service (EMS) is a critical part of health
infrastructure all over the world [15]. Paramedics are often the first
professional aid in health emergencies and are responsible for safe
∗Both authors contributed equally to this research.

This work is licensed under a Creative Commons Attribution International
4.0 License.

SSTD ’23, August 23–25, 2023, Calgary, AB, Canada
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0899-2/23/08.
https://doi.org/10.1145/3609956.3609959

and quick transport to a secondary care unit such as a hospital. A
low response time to emergency calls has increased survival and
recovery rates in life-threatening health conditions such as cardiac
arrest [5, 18]. Ambulance response times to emergencies depends
on various factors, such as the emergency call itself, the processing
time needed for dispatch, the readiness of a qualified paramedic
team, and its travel time to the incident location. Travel time is
a substantial factor. While it can be accelerated by using high-
powered vehicles and specialized training for driving in emergency
conditions, the initial distance of the ambulance to the incident site
is the most prominent factor, with various approaches trying to
minimize this distance by proper ambulance placement.

Today, most ambulances are outfitted with internal combustion
engines (ICE) using fossil fuels. However, the growing public de-
mand for less air pollution and less release of greenhouse gases
promotes the transition towards electric vehicles (EV). Electric am-
bulances further come with additional benefits, such as a smoother
acceleration improving in-ambulance care. Thus, a first generation
of electric ambulances is already commercially available.

Ambulances are usually positioned at base stations strategically
placed over a city or coverage area to minimize incident response
times. Incoming emergency calls are assigned to an ambulance,
which drives to the incident location. Some incidents can be re-
solved on-site, while in other cases, patients need to be transported
to a hospital. After completing their assignment, ambulances return
to a base station. While ambulances could return to their origin
station, it is often advisable to select another base station based
on the actual ambulance distribution at this time. This selection of
base stations is known as the Dynamic Ambulance Redeployment
(DAR) problem in literature [13, 16, 23].

In this paper, we show that existing approaches do not perform
well when confronted with electric ambulances. First, we present
a formal definition of the Dynamic Electric Ambulance Redeploy-
ment Problem (DEAR), which extends existing DAR formalizations
by battery levels, range restrictions, charging stations, and recharg-
ing. Based on this extension, we can examine the performance of
established state-of-the-art methods for dynamic ambulance rede-
ployment, which do not consider these aspects. Afterwards, we
present the minimizing energy deficits (MED) approach, designed
to avoid these shortcomings and provide state-of-the-art ambulance
redeployment for E-Ambulances. Our method is based on matching
the predicted future demand in the area of each base station to the
joint energy level of the ambulances. The energy level of vehicles
at a base station is extrapolated for the same time frame as the
future demand and considers any recharging activity increasing
the energy level. Based on both estimations on future development,
MED assigns ambulances to those base stations where the deficits
between the energy level and the demand are expected to be the
largest. We compare MED to various state-of-the-art conventional

11

102 APPENDIX

SSTD ’23, August 23–25, 2023, Calgary, AB, Canada Lukas Rottkamp, Niklas Strauß, and Matthias Schubert

ambulance redeployment methods on an extended environment of
[23]. Our results demonstrate that the conventional DAR methods
suffer significant performance decreases in various settings. In con-
trast, MED can cope well with the requirements of E-Ambulances,
often compensating for their drawbacks against using conventional
ICE ambulances.

To summarize, our contributions are as follows:
• We formalize DEAR, an extension of the DAR problem con-
sidering electric ambulances.

• We extended a DAR simulation environment based on real-
world data to consider the DEAR setting and examine the
performance of conventional DAR methods.

• We propose MED and present experimental results showing
that it copes well with DEAR compared to existing DAR
methods and basic DEAR approaches.

The remainder of this paper is structured as follows: Related work
is presented in Section 2. We then formulate the Dynamic Electric
Ambulance Redeployment Problem (DEAR) in Section 3 and pro-
pose MED in Section 4. We evaluate established DAR approaches
and MED for DEAR using a simulation based on real-world incident
data from San Francisco in Section 5 and summarize our work in
Section 6.

2 RELATEDWORK
The ambulance location problem (ALP) is an established research
topic. Existing approaches can be classified into static and dynamic
methods: In static methods, ambulances are stationed at fixed base
stations and always return to the same base station after an inci-
dent has been handled [7, 8, 19]. One way to obtain a static assign-
ment is to solve the Maximum Expected Covering Location Problem
(MEXCLP) [8, 13]. Its solution maximizes the expected coverage
of incident locations. In contrast to the Maximum Coverage Lo-
cation Problem [7] it is based on, the underlying model assumes
an ambulance to be busy with a certain probability. In this way,
ambulances that are unavailable due to being on a mission, are not
included in the coverage calculation. This reasonable modification
has been proven to be advantageous compared to earlier methods
[12, 13]. Expected Response Time Model (ERTM) [3] is another static
approach that has shown excellent performance due to its direct
minimization of the expected response time [3, 23].

Current state-of-the-art ALP solutions use a dynamic assignment
due to the volatility of the problem [13]. The dynamic assignment of
ambulances is also called Real-Time Ambulance Redeployment Prob-
lem or Dynamic Ambulance Redeployment Problem (DAR). Dynamic
redeployment leads to better response times than static return poli-
cies because the stochastic nature of incoming emergency calls can
lead to imbalances in ambulance distribution which are ignored by
static approaches [10, 11]. The redeployment decision is primarily
based on the locations of ambulances and base stations but may
also take other factors, such as demand distributions, into account.
The DMEXCLP approach by [13] is a dynamic variation of MEXCLP.
At each redeployment step, it selects the base station providing the
largest coverage increase in the respective situation according to
the MEXCLP strategy. This way, DMEXCLP takes the actual distri-
bution of ambulances into account. A reinforcement-learning based

Drive to incident scene

Time at incident scene

Drive to hospital

Time at hospitalDrive to base station

Charge at base station

Wait at base station

Redeploy

Dispatch

Figure 1: Simplified schematic overview of the modeled EMS
process. Specifics for electric ambulances are shown in red.

approach “Reinforcement Learning Deep Score Network” (DRLSN)
is presented by [14].

A vision paper by [20] highlights the growing importance of
electric ambulances and the associated challenge of keeping a fleet
of ambulances charged. It suggests a high-level framework for am-
bulance scheduling concerning the optimal use of renewable energy
sources, including predictive components for patient demand and
energy production and use. Though this work is related, it does nei-
ther propose a formalization of DEAR nor does it provide a method
for the redeployment problem for electric ambulances.

3 PROBLEM DEFINITION
In this section, we will provide a formal definition of the Dy-
namic Electric Ambulance Redeployment (DEAR) problem, out-
lining the operational process of the Emergency Medical Services
(EMS) provider and considering the specifics of electric ambulances.
Figure 1 provides a visual representation of the EMS process. When
an incident occurs, the EMS operator receives a call, and an available
ambulance is dispatched from a base station to the incident location.
In our scenario, the ambulance closest in driving time is dispatched
to ensure a prompt response. If no ambulance is available, the inci-
dent is handled as soon as an ambulance becomes available again.
Upon arrival at the incident, on-site care is provided to the patient.
Depending on the patient’s condition, subsequent transport to a
hospital may be necessary. Otherwise, the ambulance is redeployed
from the incident site to a base station. Once the ambulance arrives
at a base station, it becomes idle and available for dispatch. Consid-
ering electric vehicles introduces unique challenges compared to
Internal Combustion Engine (ICE) vehicles. The downtime for refu-
eling ICE vehicles is typically not a significant concern due to their
long ranges and fast refueling times. However, electric vehicles
have shorter ranges and require substantial charging time. There-
fore, factors such as charging downtime, battery levels, and the
availability of fast chargers at base stations need to be considered in
the EMS process. It is crucial only to dispatch an electric ambulance
if its battery is sufficiently charged to not run out of energy while
handling the incident. Therefore, we define a minimum dispatch
range 𝜏MDR (measured in time units) as the worst-case trip, starting
from the current base station to any incident location, followed by
transportation to any hospital, and finally redeployment to a base
station.

Electric ambulances can be charged at regular AC outlets (we
refer to them as slow chargers), which are already available in large

12

D DEAR: Dynamic Electric Ambulance Redeployment 103

DEAR: Dynamic Electric Ambulance Redeployment SSTD ’23, August 23–25, 2023, Calgary, AB, Canada

numbers at base stations. However, slow chargers have limited
power output, resulting in extended charging times and longer
downtimes of ambulances. Charging times can be significantly re-
duced by installing high-voltage DC chargers (fast chargers specifi-
cally installed for electric vehicles) at base stations. However, their
number is limited because installation presents a significant cost
factor and constraints caused by the capabilities of the energy grid.

Assigning chargers to ambulances at a base station requires a
charging policy when the number of ambulances exceeds the num-
ber of fast chargers. The objective is to charge ambulances in a
manner that allows them to reach the minimum dispatch range
𝜏MDR as quickly as possible, thereby maximizing the number of
available ambulances. It is also important to avoid an unreasonably
high number of re-plugging actions by staff. To achieve these goals,
we implement the following approach: Ambulances below 𝜏MDR are
categorized as high-priority and are charged first. If there are more
high-priority ambulances than available chargers or fast charg-
ers, the ambulance with the shortest time required to reach 𝜏MDR
is prioritized for charging. This ensures that ambulances are pre-
pared for service at the earliest possible time. Once an ambulance
reaches 𝜏MDR, it becomes a low-priority ambulance. For charging
low-priority ambulances, we prioritize ambulances with the lowest
battery level to minimize the number of re-plugging actions. Re-
plugging can occur when an ambulance at the station is sufficiently
charged to provide the minimum dispatch range, is fully charged,
arrives, or is dispatched.

Now, we present a formal definition of the novel DEAR problem,
considering the aforementioned characteristics. In this task, an
operator needs to dynamically select a base station to redeploy an
ambulance to after the ambulance finishes handling an incident,
either from the incident site or the hospital.

The road network is represented as a graph𝐺 = (𝑉 , 𝐸), where𝑉
is the set of nodes representing locations in the road network, and 𝐸
is the set of directed edges representing road segments connecting
the nodes.

Incidents are emergencies requiring medical attention by an
ambulance and are denoted as 𝐼 . Each incident is mapped to the
nearest node in the graph.

Base Stations Let𝑊 be the set of base stations available within
the road network, where ambulances are stationed and dispatched
to incidents. Each base station is mapped to the closest node in the
road network. Base stations are equipped with charging infrastruc-
ture to support the operation of electric ambulances. They possess
an unlimited number of slow chargers (regular AC outlets) and
have varying numbers of fast chargers. Not all base stations are
guaranteed to have fast chargers available.

Hospitals The set 𝐻 represents the hospitals. Similar to base
stations, hospitals are mapped to the closest node in the graph.

Ambulances are electric vehicles, introducing specific charac-
teristics that affect their operational constraints. Key properties
include battery level and capacity, energy use per time, and charg-
ing characteristics. The charging rate of an ambulance depends on
various factors, including its current battery level and the power
output of the charger. A linear charging function is utilized, al-
though other charging functions may also be employed. We assume
that all ambulances are the same type, i.e., their key properties
are equal. Let us note that our method can easily be adapted to

more specific settings if required. Ambulances are initially assigned
to base stations and can be dynamically redeployed to other base
stations depending on incident demand. We allow an ambulance to
be redeployed only after finishing handling an incident.

Travel Times In our setting, the travel times 𝜏 (𝑖, 𝑗) between two
nodes 𝑖, 𝑗 ∈ 𝑉 are assumed to be deterministic and do not vary with
traffic conditions. When responding to an incident or transporting
a patient, ambulances use lights and sirens to alert other drivers,
enabling them to travel at fast speeds [4]. We denote the travel time
with lights and sirens activated as 𝜏 (𝑖, 𝑗).

4 MED: MINIMIZE ENERGY DEFICIT
In this section, we introduce our approach Minimize Energy Deficit
(MED) for the DEAR problem.

While approaches for solving the DAR problem can be applied,
they do not take the additional complexity of electric ambulances
into account. Our evaluation demonstrates that this leads to drasti-
cally degraded response times or requires multiple additional am-
bulances to maintain EMS service levels compared to combustion
engines.

Thus, it is crucial for a redeployment policy to take battery levels
and charging into account. MED is based on the concept of match-
ing the anticipated energy demand at different stations with the
expected energy supply at those stations. While the energy demand
depends on the incidents and, consequently, the amount of energy
needed to handle all incidents. On the other hand, the expected
energy supply depends mainly on the distribution of ambulances
across the base stations, which is influenced by redeployment deci-
sions. Whenever a redeployment decision needs to be made, our
approach deploys the ambulance to the station, which minimizes
the energy deficit.

Our proposed method consists of three steps described in the
remainder of this section:

(1) Determine the expected energy demand.
(2) Determine the expected energy supply.
(3) Calculate and minimize the energy deficit.

4.1 Expected Energy Demand
We introduce the concept of energy demand 𝜃𝑤 , which refers to the
expected energy required to handle incoming incidents within the
lookahead duration Δ𝑡 at base station𝑤 . It is determined based on
the expected number of incidents in the vicinity of the base station
𝑑𝑤 (𝑡now,Δ𝑡) during the lookahead duration and an expected energy
use per incident 𝜌𝑤 . The expected energy demand can be expressed
as the product of these:

𝜃𝑤 = 𝑑𝑤 (𝑡now,Δ𝑡)𝜌𝑤 (1)
We define the demand forecast 𝑑𝑤 (𝑡now,Δ𝑡) as a function that

estimates the expected number of incidents in the vicinity of the
station 𝑤 from the current time 𝑡now until 𝑡now + Δ𝑡 . Numerous
approaches have been proposed in the literature for predicting am-
bulance demand [21, 22, 25, 26]. These methods include but are not
limited to machine learning techniques, time series analysis, and
statistical models. In this paper, we compute an hourly historical
average for demand prediction. [6] shows that this method yields a
strong baseline for predicting ambulance demand. Let us note that

13

104 APPENDIX

SSTD ’23, August 23–25, 2023, Calgary, AB, Canada Lukas Rottkamp, Niklas Strauß, and Matthias Schubert

our approach does not depend on a specific forecasting method and
likely benefits from more accurate predictions. We leave the explo-
ration of more sophisticated demand models to future research.

The vicinity 𝑉𝑤 of a base station𝑤 is defined to be the incident
locations 𝑖 ∈ 𝑉 where the travel time 𝜏 (𝑤, 𝑖) is shorter than from
any other station. Mathematically, this can be expressed as follows:

𝑉𝑤 = {𝑖 ∈ 𝑉 |𝜏 (𝑤, 𝑖) ≤ min
𝑤′∈𝑊

𝜏 (𝑤 ′, 𝑖)} (2)

Using historical incident data, we calculate the average number
of incidents per hour 𝜅𝑤 (ℎ) in the vicinity of each base station
𝑤 and each hour of day ℎ ∈ {0, ..., 23}. Let 𝛽ℎ ∈ [0, 1] represent
the fraction of hour ℎ in the time interval [𝑡now, 𝑡now + Δ𝑡]. The
demand forecast is then given by:

𝑑𝑤 (𝑡now,Δ𝑡) =
∑︁

ℎ∈{0,...,23}
𝛽ℎ𝜅𝑤 (ℎ) (3)

Determining the expected energy per incident within the prox-
imity of each station holds significant importance. This necessitates
evaluating the energy expenditure for traveling from a base station
to the incident location, potentially to a hospital and returning to a
station. A simplistic approach would assume that incidents solely
occur at the centers of each demand area (i.e., the base stations),
then travel to the nearest hospital, and finally return to the closest
station. However, such an approach lacks accuracy. Therefore, we
assume that the locations of incidents are uniformly spatially dis-
tributed across all possible incident locations 𝑖 ∈ 𝑉𝑤 in the vicinity
of 𝑤 . We consider the probability of requiring transportation to
a hospital, as well as accounting for the distribution of patients
transported to different hospitals and the expected energy for rede-
ployment to a station. The hospital distribution and the probability
of requiring hospital transportation are derived from historical data.

We denote the proportion of incidents requiring hospital trans-
portation as 𝛼 , while 𝛼ℎ is the fraction of these incidents handled
by hospital ℎ. To calculate the expected energy use per incident
𝜌𝑤 in the vicinity of station 𝑤 , we first determine the expected
driving time for fully handling an incident and redeployment to a
station. Subsequently, we estimate the energy usage by multiply-
ing the resulting driving times with the parameter 𝑃𝑑𝑟𝑖𝑣𝑖𝑛𝑔 , which
approximates the energy consumed per unit of time:

E(𝜌ℎ𝑜𝑠𝑝𝑖𝑡𝑎𝑙 (𝑖)) =
∑︁
ℎ∈𝐻

𝛼ℎ
1
|𝑊 |

∑︁
𝑤′∈𝑊

(𝜏 (𝑖, ℎ) + 𝜏 (ℎ,𝑤 ′)) (4a)

E(𝜌𝑏𝑎𝑠𝑒 (𝑖)) =
1
|𝑊 |

∑︁
𝑤′∈𝑊

𝜏 (𝑖,𝑤 ′) (4b)

𝜌𝑤 = 𝑃𝑑𝑟𝑖𝑣𝑖𝑛𝑔
1

|𝑉𝑤 |
∑︁
𝑖∈𝑉𝑤

𝜏 (𝑤, 𝑖)+𝛼E(𝜌ℎ𝑜𝑠𝑝𝑖𝑡𝑎𝑙 (𝑖))+(1−𝛼)E(𝜌𝑏𝑎𝑠𝑒 (𝑖))

(4c)

4.2 Expected Energy Supply
This section focuses on outlining the methodology for calculating
the expected energy supply 𝜙𝑤 , at a base station𝑤 over a specific
time period. The actual energy supply depends on the demand,
as ambulances may leave the base station to respond to incidents.
While it is theoretically possible to model the distribution of inci-
dents and to sample from an exponentially expanding set of future

scenarios to derive estimates, finding optimal solutions is computa-
tionally intractable. Even approximations similar to the hindsight
planning approaches in [24] are impracticable due to the inherent
complexity and real-time constraints of the DEAR problem. To ad-
dress this, we propose calculating an optimistic, expected energy
supply𝜙𝑤 , assuming that no incidents occur and no ambulances are
redeployed during the prediction horizon, effectively disregarding
the demand. This simplification allows for a deterministic calcula-
tion. However, we account for the probability of ambulances being
dispatched and subsequently reducing the energy supply during the
lookahead duration Δ𝑡 . This is achieved by introducing a charging
discount factor 𝛾 ∈ [0, 1] to adjust the expected energy supply,
resulting in 𝜙𝑤 = 𝛾𝜙𝑤 . Note that even with those assumptions, de-
termining the expected energy supply still requires simulating the
complex charging logic and considering the arrivals of ambulances
en route to the base station.

4.3 Minimize Energy Deficit
After we have defined the expected energy demand and supply, we
continue by specifying how to calculate the energy deficits and sub-
sequently dynamically redeploy ambulances. To define the energy
deficit 𝛿𝑤 at a specific base station𝑤 , we calculate the difference
between the expected energy demand and supply: 𝛿𝑤 = 𝜃𝑤 − 𝜙𝑤 .
However, simply minimizing this deficit has certain limitations. For
instance, if a station already has sufficient supply to meet the de-
mand, adding more supply would be unnecessary, even if it reduces
the deficit. Therefore, we introduce a weighted deficit 𝜔𝑤 using
a soft plus function [9]. This function assigns lower importance
to stations with negative deficits (i.e., surplus supply compared to
demand) and prioritizes stations with high deficits. The weighted
deficit is calculated as follows:

𝜔𝑤 = log(1 + 𝑒𝑥𝑝 (1
100𝛿𝑤)) (5)

In the last step, we describe the methodology for using the
weighted energy deficit𝜔𝑤 to make redeployment decisions. When-
ever an ambulance 𝑎 needs to be redeployed, we simulate sending
the ambulance to each base station 𝑤 to obtain 𝜔𝑤 (𝑎). This is
used to calculate the reduction in the expected weighted energy
deficit 𝜔𝑤 − 𝜔𝑤 (𝑎) at each station. Subsequently, we redeploy the
ambulance to the station that yields the most significant reduction.

4.4 Computational Complexity
Making ambulance redeployment decisions is a time-critical task,
and any method should be able to compute a redeployment deci-
sion within seconds. Consequently, we designed our approach with
this requirement in mind. To make each redeployment decision,
we must assess the expected energy demand 𝜌𝑤 and the expected
energy supply 𝜙𝑤 at each station 𝑤 both with and without the
ambulance being redeployed. The energy demand consists of two
components, the expected number of incidents and energy use per
incident. The complexity of the former depends on the demand
prediction model used. In this paper, we use the historical average,
which can be pre-computed so that a prediction can be made in
constant time. The second component, the expected energy use
per incident, is a constant factor that can also be pre-computed.
Therefore, calculating the expected energy demand has constant

14

D DEAR: Dynamic Electric Ambulance Redeployment 105

DEAR: Dynamic Electric Ambulance Redeployment SSTD ’23, August 23–25, 2023, Calgary, AB, Canada

complexity. The primary computational effort lies in determining
future energy supplies, which involves simulating the charging
logic of each ambulance. As we assume optimistically that ambu-
lances will not be deployed, they will eventually reach full charge,
and their energy supply will no longer change. In other words,
each ambulance adds a particular constant computational effort to
simulate. From a computational point of view, the time complexity
of determining future energy supplies is linear in the number of
ambulances, resulting in a complexity of 𝑂 (|𝐴|).

Our approach has an overall worst-case time complexity of
𝑂 (|𝐴| |𝑊 |). For each station, we need to calculate the expected
energy demand (with constant complexity due to pre-computation)
and compute the expected energy supply twice.

We implemented our method in C++ to obtain evaluation results
presented in the next section. Executed on a notebook with Intel®
Core™ i7-10750H CPU, one redeployment decision is obtained in ap-
proximately 0.23 milliseconds during a typical evaluation run with
45 base stations and 25 ambulances. Repeating the measurements
with 1,000 ambulances in the environment (an unreasonably high
number for benchmark purposes only), one decision is obtained in
approx. 0.26 ms. These results satisfy the real-time requirement.

5 EVALUATION
In this section, we evaluate various solutions in a DEAR setting
based on real-world emergency data from the city of San Francisco.
We will first detail our experimental setup and, afterward, exam-
ine the impact of electric ambulances on DAR solutions and the
performance of our newly proposed method MED.

5.1 Simulation environment
We evaluate various scenarios using an event-based simulator that
replays real-world emergency data. This simulator mirrors the
DEAR problem defined in Section 3 to simulate the operations of
the EMS with electric ambulances. The foundation of our simula-
tor is an openly accessible simulation environment for dynamic
ambulance redeployment developed by [23]. Since this simulation
does not consider electric vehicles, we extended it to include vehi-
cles’ battery state, charging, and energy use. Further, base stations
were modified to contain a definable number of chargers of speci-
fied charging power with the problem definition’s charging logic.
Note that charging electric vehicles is a complex process influenced
by factors such as battery level, battery condition, and ambient
temperature. Similarly, energy usage depends on variables like driv-
ing profile, traffic conditions, and secondary loads such as heating
or equipment required for patient care. Given the complexity of
modeling these factors accurately, we simplify our simulation by
utilizing constant values for charging power and driving energy
usage, respectively.

The simulated EMS system is based on the city of San Francisco,
USA. The system contains eleven hospitals and 45 base stations.
Their locations are depicted in Figure 2. The road network graph
used in the simulation was acquired from OpenStreetMap 1, with
intersections representing the graph nodes. Hospitals and base sta-
tions were attached to the nearest node in the graph. Driving times

1ODbL license https://www.openstreetmap.org/copyright. Map data copyrighted by
OpenStreetMap contributors and available from https://www.openstreetmap.org.

Figure 2: Simulation environment of San Francisco, USA. Lo-
cations of base stations are marked in orange if a fast charger
is present and otherwise, in blue; Hospitals are marked in
red. Note that population density is highest in the downtown
area (top right). Map data © OpenStreetMap contributors.

were computed based on the shortest path with respective street
limits depending on the road type. To account for traffic and slowing
down due to turns and crossings, we calibrated the driving times
based on estimates by HERE Traffic 2 by multiplying a constant
factor. Based on this method, the average speed, including traffic
congestion, was estimated to be 32 𝑘𝑚

ℎ . Ambulances returning to a
base station are assumed to drive at traffic speed. However, when
moving toward an incident or hospital, ambulances are granted
certain exemptions from traffic regulations, allowing them to drive
faster. Nevertheless, traffic congestion and safety considerations
still limit realistic driving speed. Thus, we scaled driving times
accordingly, resulting in an average emergency speed of 50 𝑘𝑚

ℎ as
suggested by [11].

The city of San Francisco has made real incident data publicly
available through their Fire Department Calls for Service dataset 3.
This dataset contains historical records of health emergency calls,
including information such as the date, time, and location of each
emergency. This enables us to simulate the historical occurrence
of incidents with arbitrary configurations of base stations, ambu-
lances, and redeployment methods. However, it is important to note
that while the dataset indicates whether a hospital was targeted,
specific details such as the hospital’s name or location are not dis-
closed. Selecting a suitable hospital involves a complex decision
process, including various factors such as the patient’s medical
needs, hospital occupancy levels, patient preferences, and the prox-
imity to hospitals [1]. Since this information is unavailable to us,
2https://www.here.com/platform/traffic-solutions/real-time-traffic-information
3https://data.sfgov.org/Public-Safety/Fire-Department-Calls-for-Service/nuek-vuh3

15

106 APPENDIX

SSTD ’23, August 23–25, 2023, Calgary, AB, Canada Lukas Rottkamp, Niklas Strauß, and Matthias Schubert

we determine target hospitals by random sampling according to the
real-world distribution of patient transports to hospitals between
February 2022 and February 2023 published by the Data Working
Group (DWG) of the City of San Francisco 4. Note that this random
sampling was done as a preprocessing step, ensuring the hospital
transportations are consistent across all experiments. Locations of
incidents were mapped to the nearest graph node in our simulation.

5.1.1 Placement and power of fast chargers. As discussed in our
introduction, cities will likely outfit only a subset of base stations
with fast chargers, primarily due to installation costs. Therefore,
we strategically locate fast chargers at the stations with the high-
est demand, assigning one fast charger per station. Note that ac-
cording to our problem definition, additional slower chargers are
already present at every station. In our evaluation, we considered
three different types of fast chargers, each offering different charg-
ing powers. The first type is a high-power DC charger delivering
50 kW of charging power. The second type is a cheaper three-phase
AC charger delivering 22 kW charging power. Lastly, we considered
a more expensive option of 100 kW charging.

5.1.2 Electric Ambulance Models. The battery capacity and aver-
age driving energy use (𝑃driving) in our simulation are based on
real-world electric ambulances. We base our experiment values on
electric ambulance “WAS 500” because it is a suitable replacement
for ICE ambulances and technical data is readily available 5. We set
the battery capacity to 87 kWh, based on the specifications provided
in the datasheet of the ambulance. To determine 𝑃driving, we con-
sider the average speed and the energy usage from the datasheet.
We calculate this value as 30 kW.

5.2 Metrics
As motivated in our introduction, minimizing ambulance response
times is critical for EMS providers. In an ambulance redeployment
context, response times are usually defined as the time between
dispatching an ambulance at its base station and its arrival at the
incident scene. Aggregated metrics used for evaluating the per-
formance of EMS systems are the average response time (ART)
and the fraction of response times within a certain response time
threshold (RTT) [17, 23]. RTT values and targeted fractions are set
differently by different institutions [17]. San Francisco’s Emergency
Medical Services Agency aims to arrive at life-threatening incidents
within a 10 minute threshold at least 90% of the time [2, 23]. We
use this metric extensively in our evaluation, denoting it as RTT10.
We occasionally also include RTT fractions for 8 minutes (RTT8)
and 12 minutes (RTT12).

5.3 Baselines
We compare our method MED (Minimize Energy Deficit) with sev-
eral straightforward baselines as well as several state-of-the-art
approaches for redeploying combustion engine ambulances. The
most simple baseline is RAND, which redeploys the ambulance
to a random base station. NEAR selects the base station which
can be reached fastest by the ambulance (i.e. minimizes driving
time). NEARC and NEARF similarly select the nearest station but

4http://sfemergencymedicalresponse.weebly.com/ambulance-destinations.html
5https://www.was-vehicles.com/en/innovation/was-500-electric-ambulance.html

Table 1: RTT10 performance of conventional methods in the
ICE case compared to the EV case with different charging
powers and 24 ambulances.

Scenario ERTM DRLSN MEXCLP DMEXCLP
ICE 0.88 0.90 0.83 0.89
EV 22 kW 0.47 0.40 0.30 0.20
EV 50 kW 0.72 0.85 0.58 0.57
EV 100 kW 0.76 0.86 0.67 0.56

consider only stations with chargers (NEARC) or free, fast chargers
(NEARF), respectively. Note that this method checks availability
at query time. We also include state-of-the-art approaches from
the DAR problem discussed in (Section 2) and refer to them as con-
ventional approaches. These approaches consists of static methods,
namely ERTM[3] andMEXCLP[8, 13], a dynamic method called
DMEXCLP[13], and the reinforcement learning based approach
DRLSN[14]. Let us note that DRLSN is trained in an environment
considering DEAR, and thus, it can learn the specific behavior of
E-Ambulances. However, we did not change the agent itself as a
straightforward extension of observation data did not yield im-
proved results.

5.4 Results
In this section, we present the results of our experimental evalua-
tion based on the previously described simulation environment to
answer the following research questions:

(1) How large is the effect of replacing ICE ambulances with
EVs using established DAR methods?

(2) Does our approach MED perform better than methods from
related work for DEAR?

(3) What is the influence of simulation parameters such as the
number of available chargers?

(4) How sensitive is our approach to variation of its parameters?
For all experiments, methods were evaluated by simulating one

year of incidents (test set) in our simulation. The resulting response
times were then aggregated to obtain RTT10 and ART metrics. The
respective previous year (validation set) was used to determine
the method’s parameters, such as historical demand and selecting
hyper-parameters. The best set of hyper-parameters (according
to the RTT10 metric) was selected for evaluation on the test set.
Experiments were conducted for the years 2015 to 2022. Due to the
numerous parameters involved, including different combinations
of years, ambulance quantities, charger quantities, charging power,
etc., we cannot present all results here. Unless indicated otherwise,
the experiments were conducted with incidents from the year 2022,
using 15 fast chargers, each providing 50 kW charging power. Ad-
ditionally, we included variations of these parameters to facilitate a
comprehensive comparison of methods under different scenarios.

5.4.1 Effect of switching to electric ambulances. In this section, we
analyze the effectiveness of methods for ordinary DAR settings
(conventional approaches) when being applied to the DEAR prob-
lem. We present the results for ICE and EV scenarios containing
24 ambulances in Table 1, as 24 ambulances are required for the

16

D DEAR: Dynamic Electric Ambulance Redeployment 107

DEAR: Dynamic Electric Ambulance Redeployment SSTD ’23, August 23–25, 2023, Calgary, AB, Canada

18 19 20 21 22 23 24 25 26 27 28 29
Number of ICE ambulances

0

1

2

3

4

5

6

Ad
di

tio
na

l a
m

bu
la

nc
es

 n
ee

de
d

DRLSN
ERTM

Figure 3: Number of additional ambulances needed to reach
same performance (RTT10 metric) as in the non-EV scenario
for best methods from related work. 50 kW charging power.

first method to reach the RTT10 target of 90%. We observe a sig-
nificant decline in the RTT10 metric when introducing energy use
and charging, with some cases showing a reduction of more than
50% in performance. Using 22 kW fast chargers results in inferior
performance: ERTM receives the best 22 kW RTT10 score (0.47),
which is not acceptable for an EMS provider, despite its signifi-
cantly better performance (0.88) in the ICE case. When using 50
kW or 100 kW fast chargers, the decline in performance is less
severe but still substantial. DRLSN achieves best RTT10 scores in
the ICE (0.90), 100 kW (0.86) and 50 kW (0.85) cases. Notably, its
reward-based algorithm shows the ability to learn certain charac-
teristics of the EV environment despite not explicitly observing
energy-related data. Its poor performance in the 22 kW case may be
explained by rewards being too sparse to enable effective training.
Like ERTM, bothMEXCLP and DMEXCLP show drastic decreases in
performance. Although the dynamic method DMEXCLP performs
better than the static approaches ERTM and MEXCLP in the ICE
case, it experiences substantial difficulties in the EV scenarios, even
showing worse results in the 100 kW case compared to 50 kW. Over-
all, results indicate that using fast chargers with 22 kW charging
power will not enable acceptable performance with these meth-
ods. Increasing the charging power to 50 kW improved the results,
but additional ambulances are still necessary. Installing 100 kW
chargers does not appear to improve results substantially. As in-
frastructure investments generally increase with higher charging
power, emergency medical service providers should be aware of
this effect when transitioning to electric ambulances.

Figure 3 provides insights into the number of additional ambu-
lances needed when transitioning from ICE to EV ambulances. It
depicts the number of additional ambulances required to reach an
equal or better RTT10 performance compared to non-EV ambu-
lances for the ERTM and DRLSN. We use 50 kW chargers in the
scenario, as there is a minimal improvement when using 100 kW.
ERTM requires an additional 3 to 6 ambulances. DRLSN requires 2
to 4 additional ambulances when replacing up to 25 ICE ambulances.
In settings replacing more than 25 ICE the number of additional
ambulances can decrease to 1.

Overall, our results show that employing conventional methods
from related work on the DEAR problem requires more ambulances

Table 2: Performance of all methods when using 24 ambu-
lances and 50 kW charging power.

Method RTT8 RTT10 ART
MED 0.87 0.92 4.64
NEAR 0.79 0.88 6.50
NEARF 0.79 0.87 5.38
DRLSN 0.81 0.85 5.90
NEARC 0.75 0.84 5.89
ERTM 0.68 0.72 19.27
MEXCLP 0.50 0.58 32.44
DMEXCLP 0.49 0.57 33.87
RAND 0.01 0.01 153.09

to achieve a similar level of performance compared to ICE ambu-
lances. Additionally, an interesting finding is that the difference
between 50 kW and 100 kW charging is minimal in contrast to
charging with 22 kW.

5.4.2 Performance of MED. We now introduce results for our ap-
proach MED and compare them to state-of-the-art conventional
methods developed for DAR, as well as our DEAR baselines. Results
for all methods are shown in Table 2. We again chose 24 ambulances
and 50kW charging power due to the previously mentioned practi-
cal relevance of this scenario. Our approach MED outperforms all
other methods across all metrics. Specifically, it achieves an RTT10
value of 0.92, which is well within the 90% target. The average
response time (ART) of 4.64 minutes is about 45s faster than the
second-best method NEARF, and 75s less than DRLSN, the best con-
ventional method from related work. It is worth noting that another
nearest station method, NEAR, also demonstrates surprisingly good
performance, securing the second-best RTT10 value of 0.88. The
best performing conventional method is DRLSN (0.85), followed
by ERTM (0.72). The difference between RTT10 and ART scores,
especially when considering the comparatively good performance
of simplistic baselines such as NEAR or NEARF underlines the ob-
servation that conventional methods do not perform well in the
evaluated EV scenario. In contrast, MED performs better in DEAR
(RTT10 of 0.92) than the best DAR approach in the corresponding
ICE scenario (RTT10 of 0.90, compare Figure 1).

The relationship between the number of deployed ambulances
and the performance is illustrated in Figure 4 for the best-performing
methods. MED consistently demonstrates strong results across all
metrics. Analyzing the RTT10 performance in Figure 4a, it becomes
evident that MED outperforms other approaches with a substantial
gap to the second best method up to a number of 29 ambulances. As
noted before, it is the first to exceed the 90% RTT10 target (dashed
red line). Furthermore, its performance considering the ART met-
ric (Figure 4b) is superior to others in the most interesting region
(due to its closeness to the 90% RTT10 target) of about 24 ambu-
lances. When 22 or fewer ambulances are used, method NEARF
yields lower ART values. This is because in these cases, demand
for ambulances, and the energy use that comes with it, is so high
that all other objectives fade in comparison to obtaining energy as
fast as possible. As the NEARF method is designed to immediately
drive to the nearest free charger, regardless of its location or any

17

108 APPENDIX

SSTD ’23, August 23–25, 2023, Calgary, AB, Canada Lukas Rottkamp, Niklas Strauß, and Matthias Schubert

18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
Number of ambulances

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

RT
T1

0

DRLSN ERTM MED NEAR NEARF

(a) RTT10 metric. Dashed line indicates 90% target.

18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
Number of ambulances

0

5

10

15

20

AR
T

(m
in

ut
es

)

(b) ART metric.

Figure 4: Performance comparison of best methods for 50 kW
charging power.

other criteria, it fulfills this objective well. In situations where a sub-
stantial number of ambulances (27 or more) are available, methods
from previous research narrow the gap. At this point, the locations
and availability of chargers become less critical as it becomes more
likely that a charged ambulance is stationed sufficiently close to
any incident. Furthermore, slow charging is sufficient to make sure
that drained ambulances will be available at a later point in time.
It is, however, interesting that the gap for the RTT10 metric (c.f.
Figure 4a) closes more slowly that the gap in ART (c.f. Figure 4b).
This indicates that MED still allows significantly fewer incidents
that are not handled within the 10-minute limit than compared
methods up to 29 ambulances.

As emergency service providers usually aim to fulfill a certain
minimum service level, we provide the number of ambulances
needed to reach a 90% fraction of common RTT values in Table 3.
An important observation is that MED requires the lowest num-
ber of ambulances to reach the target in all cases. A RTT8 target
is reached by deploying 26 ambulances with MED, whereas the
second best method, DRLSN, requires 29 ambulances. The RTT10
and RTT12 targets are reached with 24 and 22 ambulances, respec-
tively, requiring two and one ambulances less than the runner-up.
It is worth mentioning that most methods failed to reach the RTT8
target for fleet sizes up to 40, which is the maximum number of
ambulances considered in our experiments.

Table 3: Number of ambulances needed to reach the 90% RTT
target for various RTT values. 50 kW charging power.

Method 8 min 10 min 12 min
MED 26 24 22
DRLSN 29 26 25
NEAR > 40 26 24
ERTM 30 29 29
DMEXCLP > 40 32 31
MEXCLP > 40 32 29
NEARC > 40 > 40 23
NEARF > 40 > 40 23
RAND > 40 > 40 > 40

Table 4: Performances ofMED compared to bestmethod from
related work for each evaluation year. In each year, MED
performed best, followed by DRLSN. The number of ambu-
lances in each row was determined as the lowest amount
that reached 90% RTT10 for the given year. Column Diff for
RTT10 is the decrease of incidents that could not be reached
within 10 minutes. Column Diff for ART is the decrease in
response times.

Year RTT10 ART
MED DRLSN Diff MED DRLSN Diff

2015 0.901 0.860 -29.18% 4.810 5.551 -13.34%
2016 0.907 0.867 -30.57% 5.101 5.916 -13.78%
2017 0.919 0.877 -34.28% 4.494 5.345 -15.92%
2018 0.912 0.867 -33.63% 4.679 5.491 -14.79%
2019 0.910 0.875 -28.19% 4.579 5.469 -16.27%
2020 0.908 0.872 -28.18% 4.635 5.476 -15.37%
2021 0.905 0.852 -35.42% 4.927 5.767 -14.57%

To see if the superior performance of MED can be reproduced
in other years, we repeated the experiment above for each pair
of years starting in 2015. This includes fitting parameters on the
given year and testing methods’ performance in the following year.
The results summarized in Table 4 show that MED can reach the
90% RTT10 target with fewer ambulances than methods from re-
lated work each year. The difference in incidents that could not
be reached within 10 minutes is considerably lower in these cases,
namely between 28.18% to 35.42% lower. Average response times
also decrease consistently for all years. In absolute numbers, this
means reducing average response times by about 50 seconds in our
experiments, which can be valuable in critical emergencies.

These results demonstrate the superior performance of MED
for the DEAR problem across various scenarios. Furthermore, as
MED in DEAR displays a similar or better performance than com-
pared methods in the ordinary DAR environments based on ICE
ambulances, we can conclude that switching to an equally-sized
fleet of E-Ambulances can be done without significantly decreasing
response times.

18

D DEAR: Dynamic Electric Ambulance Redeployment 109

DEAR: Dynamic Electric Ambulance Redeployment SSTD ’23, August 23–25, 2023, Calgary, AB, Canada

18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
Number of ambulances

0.4

0.5

0.6

0.7

0.8

0.9

1.0

RT
T1

0

22 kW 50 kW 100 kW

(a) RTT10 metric.

18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
Number of ambulances

0

10

20

30

40

50

60

AR
T

(m
in

ut
es

)

(b) ART metric.

Figure 5: Performance of MED for different charging powers.

5.4.3 Varying power and number of chargers. The performance
of MED for different charging rates and numbers of deployed am-
bulances is presented in Figure 5. It can be seen again that the
difference between 50 kW and 100 kW fast charging power is min-
imal. However, 22 kW charging results in inferior performance.
For example, the RTT10 target is reached with 25 ambulances in-
stead of only 24 for both higher charging rates. This disparity
becomes more apparent as the number of ambulances decreases, as
the per-ambulance energy use and corresponding charging activity
increases in such scenarios. With increasing numbers of ambu-
lances, the charging pressure vanishes, which can be seen in the
convergence of all powers’ measurements. Figure 6 depicts the re-
sults of different methods for varying the number of installed fast
chargers. As before, we use 24 ambulances as the lowest amount to
be sufficient to reach the 90% RTT10 target. ERTM, MEXCLP, and
DMEXCLP exhibit a slow increase of performance when increas-
ing the number of fast chargers and thus appear to be especially
ill-suited for the EV scenario. In contrast, the performance of MED,
NEAR, NEARF and DRLSN follows an early quick increase with a
slower rise once about three fast chargers are installed, i.e., they
appear to either use less energy or utilize fast chargers better, or
both. It should be noted that MED is the only approach that meets
the 90% RTT10 level. Furthermore, MED’s performance does not
substantially increase when more than 11 chargers are installed
in the environment. To summarize, our method tailored for EV

0 2 4 6 8 10 12 14 16 18 20 22 24
Number of fast chargers

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

RT
T1

0

MED
NEAR

ERTM
NEARF

MEXCLP
DRLSN

DMEXCLP

Figure 6: Comparison of RTT10 performance for different
numbers of fast chargers. Scenario with 24 ambulances and
50 kW charging power.

15 20 25 30 35 40 45 50
Lookahead in minutes

0.90
0.91
0.92
0.93
0.94

RT
T1

0

0.2 0.4 0.6 0.8 1.0
Charging Discount Factor

0.90
0.91
0.92
0.93
0.94

RT
T1

0
Figure 7: Performance of MED for varying hyper-parameters.
Scenario with 24 ambulances and 50 kW charging power.

scenarios requires not only fewer ambulances but also fewer fast
chargers.

5.4.4 Parameter sensitivity. Figure 7 shows how varying MED’s
two parameters affect its RTT10 performance, using the scenario
of 24 ambulances and 50 kW charging. Examining the parameter
lookahead duration Δ𝑡 (Figure 7 left), the optimal value is 25 min-
utes, with a roughly linear decrease when higher or lower values
are used. The sensitivity of our approach to this parameter is low,
as doubling it to 50 minutes only marginally decreases RTT10 per-
formance by about 0.01. Varying the charging discount factor 𝛾
(Figure 7 right) appears to have little effect on performance. The
optimum is at a value of 0.4, which can be explained by charg-
ing processes at base stations being frequently interrupted due to
incoming incidents in this challenging scenario.

5.4.5 Qualitative analysis. Figure 8 shows a snapshot of our simu-
lation from the point of view of our approach MED. The weights
assigned by the method (orange bars) are calculated in a way that
expected demand (red bars) is offset by available energy (blue bars),
i.e., ambulances assigned to the respective base station. The energy
distribution appears to be pretty spread out to minimize response
times. Several base stations necessarily contain zero energy because,
in this scenario, 25 ambulances have to cover all 45 base stations.
However, the gaps are mostly in lower demand areas and can be
covered by nearby base stations with assigned ambulances.

19

110 APPENDIX

SSTD ’23, August 23–25, 2023, Calgary, AB, Canada Lukas Rottkamp, Niklas Strauß, and Matthias Schubert

Figure 8: Snapshot of a simulation with 25 ambulances. Bar
plots indicate base stations’ estimated future energy values
as calculated by MED: Supply (blue); Demand (red); Deficits
(yellow) after nonlinear scaling (higher scores mean higher
priority). Map data © OpenStreetMap contributors.

6 CONCLUSION
In this paper, we introduce the Dynamic Electric Ambulance Re-
deployment (DEAR) problem extending the Dynamic Ambulance
Redeployment (DAR) problem to electric ambulances. We propose
the Minimize Energy Deficits (MED) method, which determines
redeployment actions by estimating the future energy deficit over
all base stations. The energy deficit of a base station weighs a
prediction of future demand against a prediction of the available
energy level corresponding to the remaining range of stationed am-
bulances. We conducted experiments in a realistic scenario using
an event-based simulator based on real-world incidents. Results
show that MED reaches better performance than compared DAR
methods, as well as baselines for EV settings. Furthermore, our
results indicate that transitioning to electric ambulances can be
done without increasing the number of available ambulances while
maintaining comparable response times.

For future work, we plan to explore using more sophisticated
prediction methods for demand and available energy. Furthermore,
we want to examine sequential planning approaches considering
multiple decisions in advance.

REFERENCES
[1] San Francisco Emergency Medical Services Agency. [n. d.]. San Francisco

EMS Ambulance Destinations. http://sfemergencymedicalresponse.weebly.com/
ambulance-destinations.html

[2] San Francisco Emergency Medical Services Agency. 2011. Prehospital Provider
Standards (Policy 4000). https://www.sfdph.org/dph/files/EMS/Policy-Protocol-
Manuals/Policy-Manual/1538-4000ProviderStandards09-01-2011.pdf

[3] Pieter L Van Den Berg and J Theresia Van Essen. 2019. Comparison of static ambu-
lance location models. International Journal of Logistics Systems and Management
32, 3-4 (2019), 292–321.

[4] Lawrence H Brown, Christa L Whitney, Richard C Hunt, Michael Addario, and
Troy Hogue. 2000. Do warning lights and sirens reduce ambulance response
times? Prehospital Emergency Care 4, 1 (2000), 70–74.

[5] Andreas Bürger, Jan Wnent, Andreas Bohn, Tanja Jantzen, Sigrid Brenner, Rolf
Lefering, Stephan Seewald, Jan-Thorsten Gräsner, and Matthias Fischer. 2018.
The effect of ambulance response time on survival following out-of-hospital
cardiac arrest: an analysis from the German resuscitation registry. Deutsches
Ärzteblatt International 115, 33-34 (2018), 541.

[6] Nabil Channouf, Pierre L’Ecuyer, Armann Ingolfsson, and Athanassios N
Avramidis. 2007. The application of forecasting techniques to modeling emer-
gency medical system calls in Calgary, Alberta. Health care management science
10 (2007), 25–45.

[7] Richard Church and Charles ReVelle. 1974. The maximal covering location
problem. In Papers of the regional science association, Vol. 32. Springer-Verlag
Berlin/Heidelberg, 101–118.

[8] Mark S Daskin. 1983. A maximum expected covering location model: formulation,
properties and heuristic solution. Transportation science 17, 1 (1983), 48–70.

[9] C Dugas, Y Bengio, F Bélisle, and C Nadeau. 2001. Incorporating second order
functional knowledge into learning algorithms. Advances in Neural Information
Processing Systems 13 (2001), 472–478.

[10] Shakiba Enayati, Maria E Mayorga, Hari K Rajagopalan, and Cem Saydam. 2018.
Real-time ambulance redeployment approach to improve service coverage with
fair and restricted workload for EMS providers. Omega 79 (2018), 67–80.

[11] Michel Gendreau, Gilbert Laporte, and Frédéric Semet. 2001. A dynamic model
and parallel tabu search heuristic for real-time ambulance relocation. Parallel
computing 27, 12 (2001), 1641–1653.

[12] Jeffrey Goldberg, Robert Dietrich, Jen Ming Chen, M George Mitwasi, Terry
Valenzuela, and Elizabeth Criss. 1990. Validating and applying amodel for locating
emergency medical vehicles in Tuczon, AZ. European Journal of Operational
Research 49, 3 (1990), 308–324.

[13] Caroline J Jagtenberg, Sandjai Bhulai, and Robert D van der Mei. 2015. An
efficient heuristic for real-time ambulance redeployment. Operations Research
for Health Care 4 (2015), 27–35.

[14] Shenggong Ji, Yu Zheng, Zhaoyuan Wang, and Tianrui Li. 2019. A deep reinforce-
ment learning-enabled dynamic redeployment system for mobile ambulances.
Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technolo-
gies 3, 1 (2019), 1–20.

[15] Olive C Kobusingye, Adnan A Hyder, David Bishai, Manjul Joshipura, Ed-
uardo Romero Hicks, and Charles Mock. 2006. Emergency medical services.
Disease Control Priorities in Developing Countries. 2nd edition (2006).

[16] Matthew SMaxwell, Mateo Restrepo, Shane GHenderson, andHuseyin Topaloglu.
2010. Approximate dynamic programming for ambulance redeployment. IN-
FORMS Journal on Computing 22, 2 (2010), 266–281.

[17] Laura A McLay and Maria E Mayorga. 2010. Evaluating emergency medical
service performance measures. Health care management science 13 (2010), 124–
136.

[18] Jill P Pell, Jane M Sirel, Andrew K Marsden, Ian Ford, and Stuart M Cobbe. 2001.
Effect of reducing ambulance response times on deaths from out of hospital
cardiac arrest: cohort study. Bmj 322, 7299 (2001), 1385–1388.

[19] Charles ReVelle and Kathleen Hogan. 1989. The maximum availability location
problem. Transportation science 23, 3 (1989), 192–200.

[20] Emmanouil S Rigas, Antonis Billis, and Panagiotis D Bamidis. 2022. Can Artificial
Intelligence Enable the Transition to Electric Ambulances? In Challenges of
Trustable AI and Added-Value on Health. IOS Press, 73–77.

[21] Hubert Setzler, Cem Saydam, and Sungjune Park. 2009. EMS call volume pre-
dictions: A comparative study. Computers & Operations Research 36, 6 (2009),
1843–1851.

[22] Krisjanis Steins, Niki Matinrad, and Tobias Granberg. 2019. Forecasting the
demand for emergency medical services. (2019).

[23] Niklas Strauß, Max Berrendorf, Tom Haider, and Matthias Schubert. 2022. A
Comparison of Ambulance Redeployment Systems on Real-World Data. In Pro-
ceedings of the 1st Workshop on Urban Internet-of-Things Intelligence (UNIT 2022)
co-located with the 22nd IEEE International Conference on Data Mining (ICDM
2022).

[24] Niklas Strauß, Lukas Rottkamp, Sebastian Schmoll, and Matthias Schubert. 2021.
Efficient Parking Search using Shared Fleet Data. In 2021 22nd IEEE International
Conference on Mobile Data Management (MDM). IEEE, 115–120.

[25] Zhaonan Wang, Tianqi Xia, Renhe Jiang, Xin Liu, Kyoung-Sook Kim, Xuan Song,
and Ryosuke Shibasaki. 2021. Forecasting ambulance demand with profiled
human mobility via heterogeneous multi-graph neural networks. In 2021 IEEE
37th International Conference on Data Engineering (ICDE). IEEE, 1751–1762.

[26] Zhengyi Zhou and David S Matteson. 2015. Predicting ambulance demand:
A spatio-temporal kernel approach. In Proceedings of the 21th ACM SIGKDD
international conference on knowledge discovery and data mining. 2297–2303.

20

D DEAR: Dynamic Electric Ambulance Redeployment 111

112 APPENDIX

E Constrained Portfolio Management Using Action
Space Decomposition for Reinforcement Learning

Venue 2023 Pacific-Asia Conference on Knowledge Discovery and Data Mining

DOI https://doi.org/10.1007/978-3-031-33377-4_29

Declaration of authorships The research idea was proposed by David Winkel and de-
veloped and discussed with Niklas Stauss and Matthias Schubert. The other co-authors
also participated in some of the discussions. David Winkel wrote the manuscript, which
was improved by Niklas Strauss and Matthias Schubert.

Publication

https://doi.org/10.1007/978-3-031-33377-4_29

Constrained Portfolio Management Using
Action Space Decomposition
for Reinforcement Learning

David Winkel1,2(B) , Niklas Strauß1,2 , Matthias Schubert1,2 ,
Yunpu Ma1,2 , and Thomas Seidl1,2

1 LMU Munich, Munich, Germany
{winkel,strauss,schubert,ma,seidl}@dbs.ifi.lmu.de

2 Munich Center for Machine Learning (MCML), Munich, Germany

Abstract. Financial portfolio managers typically face multi-period
optimization tasks such as short-selling or investing at least a partic-
ular portion of the portfolio in a specific industry sector. A common
approach to tackle these problems is to use constrained Markov decision
process (CMDP) methods, which may suffer from sample inefficiency,
hyperparameter tuning, and lack of guarantees for constraint violations.
In this paper, we propose Action Space Decomposition Based Optimiza-
tion (ADBO) for optimizing a more straightforward surrogate task that
allows actions to be mapped back to the original task. We examine our
method on two real-world data portfolio construction tasks. The results
show that our new approach consistently outperforms state-of-the-art
benchmark approaches for general CMDPs.

Keywords: Reinforcement Learning · Constrained Action Space ·
Decomposition · CMDP · Portfolio Optimization

1 Introduction

Constrained portfolio optimization is an important problem in finance. A typical
example is a portfolio that must have at least 40% of the total portfolio value
invested in environmentally friendly companies at each time step of the invest-
ment horizon or a portfolio that is not permitted to invest more than 20% in
a particular industry sector. Another example of an action constraint task is a
130-30 strategy, in which the portfolio manager bets on group A of (potentially)
overperforming stocks against group B of (potentially) underperforming stocks.
This strategy is carried out by short-selling stocks worth 30% of the investment
budget from Group B and leveraging the investment into stocks worth 130% of
the investment budget from Group A.

The action space for these tasks can be considered as a continuous distribu-
tion of weights for a given set of assets. Therefore, reinforcement learning (RL)
with policy gradient [16] is well-suited for this task. Because the invested capital

c© The Author(s) 2023
H. Kashima et al. (Eds.): PAKDD 2023, LNAI 13936, pp. 373–385, 2023.
https://doi.org/10.1007/978-3-031-33377-4_29

E Constrained Portfolio Management Using Action Space Decomposition for
Reinforcement Learning 113

374 D. Winkel et al.

totals 100%, the codomain of the policy function is typically assumed to be a
standard simplex. Existing solutions model the policy using a softmax output
layer [1] or based on the Dirichlet distribution [20]. However, the constraints
mentioned above cause a change in the shape of the policy’s codomain, making
the standard solutions no longer directly applicable.

A way to optimize policies for tasks with constrained action spaces is by using
approaches for CMDPs with constraints on the action spaces. However, state-of-
the-art general approaches for CMDPs often have drawbacks such as expensive
training loops, sample inefficiency, or only guarantees for asymptotical constraint
compliance [2,4,10,19,21].

In this paper, we propose ADBO, a dedicated approach for dealing with the
two important types of investment tasks mentioned previously: (a) investment
tasks that invest at least or at most a certain percentage of a portfolio in a specific
group of assets, and (b) short-selling tasks. ADBO can overcome the aforemen-
tioned shortcomings of general policy optimization methods for CMDPs. This
is achieved by decomposing the non-standard-simplex action space into a sur-
rogate action space. Solutions found in the surrogate action space can then be
mapped back into the original constrained action space. In contrast to the non-
standard-simplex action space, the surrogate action space is designed to be easily
represented in the policy function approximator, allowing us to model the prob-
lem as a standard Markov decision process (MDP). Due to the lack of penalties
and reward shaping, finding an optimal policy for an MDP is less complex than
finding an optimal policy for a CMDP with constrained actions. Furthermore,
ADBO ensures that the actions adhere to the constraints both during and after
training.

In the experimental section, we demonstrate that the ADBO approach can
handle two types of investment tasks using real-world financial data. The first
task focuses on investing each time step at least a certain percentage of the port-
folio in companies considered to be environmentally sustainable. The second task
allows the agent to short-sell selected stocks, i.e., allowing for negative portfo-
lio weights. Our proposed approach outperforms the state-of-the-art benchmark
approaches for handling CMDPs on various criteria in both tasks.

2 Related Work

CMDPs were introduced by [3] to model constrained sequential decision tasks.
constrained Reinforcement Learning (CRL) approaches for finding optimal poli-
cies for CMDPs have a wide range of applications, including finance [7,20],
autonomous electric vehicle routing [14], network traffic [9], and robotics [2,8].
A Trust Region-based approach was introduced by [2] to find optimal poli-
cies for CMDPs that may still exhibit constraint violation due to approximation
errors. Another approach proposed by [6] is based on prior knowledge and
involves a one-time pretraining to predict simple one-step dynamics of the envi-
ronment. Lagrangian-based approaches are another option for dealing with
CMDPs. These approaches convert the original constraint optimization problem

114 APPENDIX

Constrained Portfolio Mgmt. Using Action Space Decomp. for RL 375

into an unconstrained optimization problem by applying a Lagrangian relaxation
to the constraints. Lagrangian-based approaches can be classified into two types:
The first type is Primal-Dual algorithms, in which the Lagrange multipliers
for a saddle point problem are chosen dynamically [5,19]. The second type of
Lagrangian-based approach employs manually selected Lagrange multipli-
ers, which remain static, as shown in [13,17]. Instead of a saddle point problem,
as in the first type, using a static Lagrange multiplier transforms the prob-
lem into a maximization problem, which is more stable and computationally
less expensive to solve. Some approaches carefully select Lagrange multipliers
to model preferences in a trade-off problem rather than as a means to enforce
constraints in an optimization problem. This is commonly seen in risk-return
trade-off settings, such as in [7,17,20].

The factorization of high-dimensional action spaces in RL, i.e., split-
ting action spaces into smaller sub-action spaces as a Cartesian product, is an
active area of research that has resulted in improved scalability and training
performance. In their work, [11] introduce the Sequential DQN approach, which
trains the agent for a sequence of n 1-dimensional actions rather than training
the agent for n-dimensional actions of the original action space, effectively fac-
torizing the original action space. The approach by [18] introduces an action
branching architecture, which models the policies for the sub-action spaces in
parallel. Our approach, like theirs, uses a Cartesian product of sub-action spaces.
However, the sub-action spaces in our new approach ADBO are the outcome of
a decomposition based on the Minkowski sum, resulting in a surrogate action
space rather than a factorization of the original action space.

3 Problem Setting

We consider an agent that needs to allocate wealth across N different assets
over T time steps. The allowed actions of the agent are defined by the investor’s
investment task and are contained in the constrained action space A. The
investment task type T1 requires the investor to invest at least cT1 of the port-
folio into assets from group VT1. In practice, these group definitions are often
linked to individual risk profiles, industry sectors, or features such as being
an environmentally friendly investment. The action space for investment task
type T1 is then defined as

AT1 =

{
a ∈ RN :

N−1∑

i=0

ai = 1 ,
∑

i∈VT1

ai ≥ cT1 , ai ≥ 0, cT1 > 0

}

and represents an N -dimensional convex polytope. Task type T1 also includes
cases that require investing at most cT1 into assets in VT1 because this case
is equivalent to investing at least (1 − cT1) into the remaining assets ai for
i ∈ I \ VT1.

The investment task type T2 represents investors who believe that a group
of assets VT2 will underperform relatively compared to the rest of the invest-
ment universe I. The investor pays a borrowing fee to short-sell assets in group

E Constrained Portfolio Management Using Action Space Decomposition for
Reinforcement Learning 115

376 D. Winkel et al.

VT2 worth |cT2| of his total portfolio value and then uses the freed-up cash to
invest 1 + |cT2| into assets of the other investment universe. The action space
for investment task type T2 is defined as

AT2 =

⎧
⎨
⎩a ∈ RN :

N−1∑

i=0

ai = 1,
∑

j∈VT2

aj = cT2, aj ≤ 0, ak ≥ 0 ∀k ∈ I \ VT2, cT2 < 0

⎫
⎬
⎭

and represents an N -dimensional convex polytope as well.
The observation space is defined as O = W ×V ×U where W ⊆ R+ is the

current absolute wealth level, V ⊆ RN is the current relative portfolio weight
of each of the N assets, and U ⊆ RN represents all the observed single asset
returns from the previous time step.

The economic return of each asset is individually modeled for each time step
by the random vector Θ = [Θ0, . . . , ΘN−1] ∈ U . The portfolio return is then a
random variable with an expected value denoted as IE [ΘPF] = aᵀIE [Θ] with the
portfolio weights a ∈ A. There are two potential sources of cost to consider for
the agent: First, the transaction costs caused by changes in the portfolio weights
at in time step t by the agent defined as tct = (|at − vt|)ᵀ

c, where vt ∈ V
and vector c = [c0, .., cN−1] represents the asset-specific transaction costs caused
by trading a specific asset. Second, borrowing fees in case the agent is allowed
to short-sell assets. These costs occur every period as long as assets are short-
sold, i.e., assigned to a negative portfolio weight. The borrowing fees are defined
as bft = (1ai<0 ◦ at)

ᵀb where 1ai<0 is an indicator vector signaling for each
individual asset ai if the current portfolio weight is negative, ◦ is an operator for
element-wise vector multiplication, and the vector b = [b0, .., bN−1] represents
asset-specific borrowing fees per time step.

The reward for the agent is a combination of transaction costs tc, borrowing
fees bf , and a realization ϑPF of the random variable of the portfolio’s economic
return ΘPF , i.e., r = ϑPF −tc−bf . The agent’s goal is to maximize the expected
cumulative reward, which we will refer to as total economic payoff.

4 Solution as CMDP

A CMDP is an extension of an MDP and is defined as a tuple (S,A, R, P, γ, C)
where S is the set of states, A is the set of actions, R is the immediate reward
function, which maps transition tuples to their respective expected reward, i.e.,
R : S × A × S → R. P denotes the transition probability function, whereas
P (st+1|st, at) gives the probability of transitioning to state st+1 ∈ S given state
st ∈ S and action at ∈ A. The parameter γ ∈ [0, 1) represents a discount factor.
C = {C0, . . . , Cm} is a set of immediate constraint functions Ci : S ×A×S → R
for i ∈ {0, . . . , m} that map transition tuples to the respective cost. We let
rt+1 := R(st, at, st+1) and define the return for a trajectory τ as the observed
discounted cumulative rewards. The objective function J is then defined as the

expected return for a given policy π, i.e., J(π) := IEτ∼P (τ |π)

[∑T−1
t=0 γtrt+1

]
.

116 APPENDIX

Constrained Portfolio Mgmt. Using Action Space Decomp. for RL 377

The expected cumulative discounted immediate cost for constraint i under

policy π is defined as JCi
(π) := IEτ∼P (τ |π)

[∑T−1
t=0 γtCi(st, at, st+1)

]
. We also

define constant trajectory constraint limits d0, . . . , dm. The optimization prob-
lem for the CMDP is then defined as:

maximize
π

J(π) = IE
τ∼P (τ |π)

(G) = IE
τ∼P (τ |π)

[
T−1∑

t=0

γtrt+1

]

s.t. JCi
(π) ≤ di ∀i

In the following, we will show how to formulate the tasks defined in Sect. 3
as a CMDP. In Sect. 3, we defined the observation space O, the constrained
action space Ai, and the reward R. The transition function P and the state
space S are unknown. However, we assume that we can sample transitions from
an environment. Therefore, we can employ reinforcement learning based on a
learned state representation function to learn effective policies. To address the
action constraints of tasks T1 and T2, we define the following cost function for
each respective task i ∈ {1, 2}: CTi

(st, at, st+1) = 1at �∈ATi
· ζ where constant ζ >

0 indicates the non-zero cost of a constraint violation. The respective constraint
for each task is then defined as JCTi

(π) ≤ 0.

5 Action Space Decomposition Based Optimization

We define a surrogate MDP (S, Ã, R, P, γ) and ensure that there exists a surjec-
tive function f : Ã → A that allows reaching any a ∈ A from at least one ã ∈ Ã.
For a formal description of our method, we first introduce the Minkowski sum:

Definition 1. Given two sets A and B of vectors in n-dimensional Euclidean
space, the Minkowski sum of A and B is generated by adding each vector in
A to each vector in B, i.e., the set A + B = {a + b|a ∈ A, b ∈ B} in which we
refer to A and B as Minkowski summands.

In our setting, the Minkowski sum describes how multiple decomposed action sets
can be combined to reconstruct the original constraint action set. The masked
scaled standard simplex (MSSS) describes a part of the original constrained
action which can be described as a simplex:

Definition 2. Let mask M ⊆ {0, . . . , N − 1}. MSSS is defined as:

MSSSM,c =

⎧
⎨
⎩y ∈ RN :

∑

j∈M

yj = c, yi = 0 ∀i ∈ I \ M

⎫
⎬
⎭

with either (c ≥ 0 ∧ yi ≥ 0 ∀i ∈ M) or (c < 0 ∧ yi ≤ 0 ∀i ∈ M).

The surrogate action space is modeled as the Cartesian product of indepen-
dent sub-action spaces Ã = Ã1×Ã2. The sub-action spaces Ãi with i ∈ {1, 2} are
required to have the two properties: (a) being a decomposition of A in such a way

E Constrained Portfolio Management Using Action Space Decomposition for
Reinforcement Learning 117

378 D. Winkel et al.

that the Minkowski sum (see Definition 1) of all the sub-action spaces Ãi is A,
i.e., A = Ã1+Ã2, and (b) being an MSSS as defined in Definition 2. Property (a)
guarantees the existence of function f that can be defined as f(ã) = ã1 + ã2 = a
with ã = [ã1, ã2] ∈ Ã ⊂ R2N and ãi ∈ MSSSi ⊂ RN for i ∈ {1, 2}, i.e., a
summation of vectors in a subspace of RN . Property (b) allows utilizing well-
established RL methods for handling standard simplex action spaces with only
minor modifications by adding a scaling and masking logic in order to model
single MSSS action spaces.

The following two theorems show that constrained action spaces as defined in
Sect. 3 can be decomposed into two MSSS that satisfy both of the requirements
mentioned above. Theorem 1 describes the decomposition for task T1:

Theorem 1. Any convex polytope P �= ∅ defined as

∑

i∈I

xi = 1, xi ≥ 0 ∀i ∈ I,
∑

i∈V1

xi ≥ c1

with c1 > 0, I = {0, . . . , N − 1} and V1 ⊆ I can be decomposed into two MSSSs:

MSSSS1,z1
, i.e. ∀y1 ∈ MSSSS1,z1

:
∑

S1

yi,1 = z1 with S1 = V1 and z1 = c1

MSSSS2,z2
, i.e. ∀y2 ∈ MSSSS2,z2

:
∑

S2

yi,2 = z2 with S2 = I and z2 = 1 − c1

so that the Minkowski sum of the MSSSs equals the original polytope P .

Correspondingly, the following theorem formulates the decomposition of the
action space in task T2:

Theorem 2. Any convex polytope P �= ∅ defined as

∑

i∈I

xi = 1,
∑

i∈V1

xi = c1, xi ≥ c1 ∀i ∈ V1, xi ≤ 0 ∀i ∈ V1, xi ≥ 0 ∀i ∈ I\V1

with c1 < 0, I = {0, . . . , N − 1} and V1 ⊆ I can be decomposed into two MSSSs:

MSSSS1,z1 , i.e. ∀y1 ∈ MSSSS1,z1 :
∑

S1

yi,1 = z1 with S1 = V1 and z1 = c1

MSSSS2,z2 , i.e. ∀y2 ∈ MSSSS2,z2 :
∑

S2

yi,2 = z2 with S2 = I\V1 and z2 = 1 − c1

so that the Minkowski sum of the MSSSs equals the original polytope P .

Theorem 1 and 2 can be proven by showing that the two sets of closed half-
spaces, one describing the polytope P and the other describing the Minkowski
sum of the two MSSSs, are equal resulting in the equality of the two polytopes.

ADBO is based on the PPO algorithm [15]. The agent’s policy network is
designed in such a way that the action representation is distributed across multi-
ple independent segments, i.e., one head for each MSSS. A shared state encoder,

118 APPENDIX

Constrained Portfolio Mgmt. Using Action Space Decomp. for RL 379

on the other hand, provides a learned state representation to both heads. For
the state encoder we use a neural network of four fully connected layers of size
1024, 512, 256, and 64 with ReLU activation functions followed by GTrXL ele-
ment allowing to handle tasks requiring memory. The GTrXL element is based
on [12]. The element is composed of a single transformer unit with a single
encoder layer as well as a single decoder layer with four attention heads and an
embedding size of 64. While the sub-actions in ADBO are stochastically inde-
pendent, the parameters of the two distributions from which the sub-actions
are drawn are partially coordinated, i.e., parts of the actions rely on the same
shared latent state representation. To further ensure coordination between the
sub-actions, the different sub-actions are all evaluated using a joint reward. This
means that if a joint action performs poorly, all independent segments receive a
poor reward signal, regardless of individual sub-action performance.

We use a Dirichlet distribution to model each MSSS in the architecture
of the policy function approximator. The expected value of a random vector
X = [X0, . . . , XN−1] following a Dirichlet distribution with a parameter vec-

tor of α = [α0, . . . , αN−1] is defined as IE[Xi] = αi ·
(

N−1∑
n=0

αn

)−1

with αi >

0 for i ∈ {0, . . . , N − 1}. By adjusting the parameter vector of a Dirichlet dis-
tribution and applying a linear scaling transformation, we can create a random
variable with the set of all possible realizations equaling MSSSM,c. The set
M contains index values which we map to an N -dimensional indicator vector
1M , with the vector’s elements set to one if their respective index occurs in M
and zero otherwise. The parameter vector passed to the Dirichlet distribution
is calculated as α1M

= max(α ◦ 1M , ε), where α is the initial parameter vec-
tor before applying the masking and ε > 0 is an arbitrary small number. The
operator ◦ represents element-wise multiplication for vectors. In the final step,
a linear scaling transformation is applied, i.e., Y = c · X with X ∼ Dir(α1M

).
ADBO requires the uses of two MSSSs, i.e., MSSSM1,c1

and MSSSM2,c2
.

It should be noted that the gradient of the policy during training is based on
a policy interacting with the surrogate action space π̃(·|s) rather than a policy
interacting with the original constrained action space π(·|s). We only use f
to convert ã into a representation a that can interact with the environment.
Various inputs ã for f may sum to the same output value a, resulting in f being
a many-to-one function. For some ã ∈ Ã, this results in P(ã|s) �= P(a|s) with
a = f(ã). However, we argue that finding one possible representation for an
action a belonging to an optimal policy for the original problem is sufficient
from an optimization standpoint.

6 Experiments

The environment is based on [20], and uses the same real-world financial data
from the Nasdaq-100 index that was fetched and processed using the qlib pack-
age.1 The investment universe of the environment consists of 13 assets, one of

1 https://github.com/microsoft/qlib/tree/main.

E Constrained Portfolio Management Using Action Space Decomposition for
Reinforcement Learning 119

380 D. Winkel et al.

which is cash. The remaining 12 assets are chosen at random from a list of 35
stocks that remain after filtering the Nasdaq-100 data set for companies that
have been part of the index since January 1, 2010 and have no missing data.
The original Nasdaq-100 data set is supplemented with the Environmental Score
Metric (ESM) assigned by financial data provider LSEG.2 The score rates a com-
pany’s environmental sustainability based on various evaluation categories, such
as carbon emissions, willingness to innovate in this field, and transparency in
reporting relevant information. The score ranges from 0 to 100, representing the
percentiles of a ranking system.

We compare ADBO to three other state-of-the-art approaches for optimiz-
ing policies in CMDPs. RCPO is proposed by [19] and belongs to the class of
Lagrangian-based approaches. The interior-point policy optimization approach
IPO is introduced by [10]. P3O is proposed by [21] and uses a first-order opti-
mization over an unconstrained objective with a penalty term equal to the origi-
nal constraint objective. All benchmark approaches are implemented in the RLlib
framework3 based on their papers and publically available.4

Two experimental settings are examined: the SUSTA setting is based on
task type T1. The investor must invest at least 40% of his capital in the top 20%
of environmentally sustainable companies, i.e., companies with an ESM score
of 80 or higher. A score of 80 or higher “indicates excellent relative [...] perfor-
mance and a high degree of transparency in reporting material” by a company.5

The SHORT setting is based on task type T2. It employs a 130-30 strat-
egy, a popular long/short equity strategy among investors to invest 130% of
the available capital in stocks they believe will outperform and short-sell stocks
worth 30% of the available capital they believe will underperform. In the exper-
iments, we choose the companies Automatic Data Processing Inc., Paccar Inc.,
and Amgen Inc. to be sold short based on being the worst performers in 2020,
the final year before the start of the backtesting period.

Ashort is not a subset of the standard simplex because negative weights are
permitted. As a result, the RCPO, IPO, and P3O approaches must be modified
to be applicable to SHORT setting. The agent performed very poorly in initial
tests using RN as a base action space and applying constraints accordingly and
was unable to learn meaningful policies. Instead, using a standard simplex as
the base action space and applying action scaling produced better results. For
action scaling, the agent uses the output of a Dirichlet distribution as an encoded
action ã = [ã0, . . . , ãN−1] that is then transformed, i.e., scaled into the final
action a = [a0, . . . , aN−1]: the cumulative weights of the stocks sold short and
the cumulative weights of the stocks bought long are added up in their absolute
values, resulting in a scaling factor αtotal = |αlong| + |αshort|. Then, for all
elements i of the encoded action ai = ãi ·αtotal that are bought, a positive scaling
factor is applied, and for all elements j of the encoded action aj = ãj · (−αtotal)

2 https://www.lseg.com/.
3 https://docs.ray.io/en/master/rllib/index.html.
4 https://github.com/DavWinkel/RL ADBO.
5 https://www.refinitiv.com/en/sustainable-finance/esg-scores.

120 APPENDIX

Constrained Portfolio Mgmt. Using Action Space Decomp. for RL 381

0 0.5 1 1.5 2

·106

0

0.1

0.2

0.3

Training steps

T
ot

al
ec

on
om

ic
p
ay

off

P3O
IPO

RCPO
ADBO

(a) SUSTA setting

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

·107

0

0.1

0.2

0.3

0.4

0.5

Training steps

T
ot

al
ec

on
om

ic
p
ay

off

P3O
IPO

RCPO
ADBO

(b) SHORT setting

0 0.5 1 1.5 2

·106

0

0.25

0.5

0.75

1

Training steps

%
of

st
ep

s
in

v
io

la
ti

on

P3O
IPO

RCPO
ADBO

(c) SUSTA setting

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

·107

0

0.25

0.5

0.75

1

Training steps

%
of

st
ep

s
in

v
io

la
ti

on

P3O
IPO

RCPO
ADBO

(d) SHORT setting

Fig. 1. Performance during training for all four approaches in the SUSTA setting and
the SHORT setting regarding Total economic payoff and % of steps in violation.

that are sold short, a negative scaling factor is applied. It should be noted that
actions generated as described above are no longer guaranteed to sum up to
1.0. Because IPO is a logarithmic barrier function-based approach that does not
apply to equality constraints, we must additionally soften equality constraints of
the form x = c to inequality constraints that allow values in a α-neighborhood
of x, i.e., x ≤ c + α and x ≥ c + α.

To evaluate the four approaches, we will report performance during and after
training for both the SUSTA setting and the SHORT setting. The total economic
payoff defined in Sect. 3 is used to measure economic performance. The results of
the SUSTA setting will be discussed first. The training in the SUSTA setting lasts
500 iterations and consists of approximately 2.1 million training steps. Figure 1a
shows that ADBO and P3O perform best during training by steadily improv-
ing their total economic payoff. RCPO also shows improvements, although at
a much slower rate. Table 1 shows the evaluation of economic performance fol-
lowing training completion in two setups: in the (A) environment setup 1000
trajectories are sampled from the same environment used for the training. ADBO
generates the highest total economic payoff in the SUSTA setting, followed by

E Constrained Portfolio Management Using Action Space Decomposition for
Reinforcement Learning 121

382 D. Winkel et al.

P3O, RCPO, and IPO. In the (B) backtesting setup a single trajectory,
namely the real-world Nasdaq-100 trajectory in 2021, is used for evaluation.
In the backtesting year 2021, the overall yearly performance of the Nasdaq-
100 index was above average, returning 27.5%, indicating that the individual
stocks that comprise the index were also performing well. As a result, the four
approaches generated high returns in the (B) backtesting setup, with ADBO
performing best, followed by P3O. In the SHORT setting, the training time had
to be increased significantly. This increase was required because IPO, RCPO,
and P3O failed to generate constraint-compliant actions satisfactorily. However,
due to insufficient training progress, which will be discussed in detail later in
this section, the training was eventually stopped after 3500 iterations, consisting
of approximately 14.7 million training steps. Figure 1b depicts the evolution of
the total economic payoff during training. After roughly 1 million training steps,
the performance of ADBO converges to a level that it then maintains for the
remainder of the training. P3O improves its performance over 3 million training
steps until it reaches a stable level. IPO improves its performance during the first
million training steps and then stabilizes, whereas RCPO does not show signif-
icant improvements in total economic payoff during training. Table 1 shows the
performance evaluation in the SHORT setting after the training is completed.
In the (A) environment setup, ADBO performs best, with an average total eco-
nomic payoff of 42.72%, followed by P3O with 35.12%. ADBO outperforms its
benchmark approaches by a wide margin in the (B) backtesting setup, achieving
a total economic payoff of 102.05%.

The experiments show that violations of the action constraints occurred dur-
ing the training of IPO, RCPO, and P3O in the SUSTA setting. Figure 1c shows
that this is especially true at the beginning of the training phase, while the num-
ber of time steps with actions in violation decreases almost to zero later on. After
completion of the training in the (A) environment setup, RCPO is the only app-
roach generating actions in violations, as shown in Table 1. However, violations
occur only on a small number of time steps, i.e., nine out of 12’000 time steps.
All approaches are free of constraint violations in the (B) backtesting setup. For
the SHORT setting, the majority of actions generated by the approaches IPO,
RCPO, and P3O violated the constraints during training. However, as train-
ing time progresses, the number of actions in constraint violation decreases for
RCPO and P3O. As a result, the training time was increased sevenfold when
compared to SUSTA setting. Nevertheless, the training was eventually halted
due to insufficient speed in reducing constraint violations. Figure 1d shows the
best-performing variants of the agents after extensive tuning of their hyperpa-
rameters. Table 1 displays the evaluation results after the training in the SHORT
setting was completed. In the SHORT setting, IPO, RCPO, and P3O fail to gen-
erate results free of constraint violations for both the (A) environment and (B)
backtesting setups. ADBO, on the other hand, guarantees by design actions free
of violations during and after training.

122 APPENDIX

Constrained Portfolio Mgmt. Using Action Space Decomp. for RL 383

Table 1. Evaluation after training is completed. (A) environment setup has a total
of 12’000 time steps (1000 trajectories), (B) backtesting setup has a single trajectory
with 12 time steps.

SUSTA setting SHORT setting

Total econ.
payoff (12
months)

Total violations Total econ.
payoff (12
months)

Total violations

(A) environment

RCPO 0.2238 0 0.2418 8656

IPO 0.2013 0 0.2721 11943

P3O 0.2561 9 0.3512 10865

ADBO (Ours) 0.2603 0 0.4272 0

(B) backtesting

RCPO 0.4640 0 0.5285 9

IPO 0.3499 0 0.6262 12

P3O 0.5475 0 0.7654 11

ADBO (Ours) 0.5758 0 1.0205 0

7 Conclusion

In this paper, we train agents to manage investment portfolios over multiple
periods, given two types of tasks that are commonly encountered in practice.
Task type T1 constrains the allocation of a particular group of assets, e.g.,
assets belonging to a specific industry sector. Task type T2 requires the investor
to short-sell one group of assets while increasing the investment in another. We
propose ADBO, which finds a performant policy for a surrogate MDP rather than
for the more complex CMDP. The surrogate MDP is based on an action space
decomposition of the original action space. We show that ADBO outperforms
general CMDP approaches for both task types in experimental settings. For
future work, we will examine extensions of action space decomposition based on
the Minkowski sums to a broader group of convex polytopes.

References

1. Abrate, C., et al.: Continuous-action reinforcement learning for portfolio allocation
of a life insurance company. In: Dong, Y., Kourtellis, N., Hammer, B., Lozano, J.A.
(eds.) ECML PKDD 2021. LNCS (LNAI), vol. 12978, pp. 237–252. Springer, Cham
(2021). https://doi.org/10.1007/978-3-030-86514-6 15

2. Achiam, J., Held, D., Tamar, A., Abbeel, P.: Constrained policy optimization. In:
International Conference on Machine Learning, pp. 22–31. PMLR (2017)

3. Altman, E.: Constrained Markov decision processes: stochastic modeling. Rout-
ledge (1999)

4. Ammar, H.B., Tutunov, R., Eaton, E.: Safe policy search for lifelong reinforcement
learning with sublinear regret. In: International Conference on Machine Learning,
pp. 2361–2369. PMLR (2015)

E Constrained Portfolio Management Using Action Space Decomposition for
Reinforcement Learning 123

384 D. Winkel et al.

5. Bhatnagar, S., Lakshmanan, K.: An online actor-critic algorithm with function
approximation for constrained Markov decision processes. J. Optim. Theory Appl.
153(3), 688–708 (2012)

6. Dalal, G., Dvijotham, K., Vecerik, M., Hester, T., Paduraru, C., Tassa, Y.: Safe
exploration in continuous action spaces. arXiv preprint arXiv:1801.08757 (2018)

7. Di Castro, D., Tamar, A., Mannor, S.: Policy gradients with variance related risk
criteria. arXiv preprint arXiv:1206.6404 (2012)

8. Gu, S., Holly, E., Lillicrap, T., Levine, S.: Deep reinforcement learning for robotic
manipulation with asynchronous off-policy updates. In: 2017 IEEE International
Conference on Robotics and Automation (ICRA), pp. 3389–3396. IEEE (2017)

9. Hou, C., Zhao, Q.: Optimization of web service-based control system for balance
between network traffic and delay. IEEE Trans. Autom. Sci. Eng. 15(3), 1152–1162
(2017)

10. Liu, Y., Ding, J., Liu, X.: Ipo: Interior-point policy optimization under constraints.
In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 4940–
4947 (2020)

11. Metz, L., Ibarz, J., Jaitly, N., Davidson, J.: Discrete sequential prediction of con-
tinuous actions for deep RL. arXiv preprint arXiv:1705.05035 (2017)

12. Parisotto, E., et al.: Stabilizing transformers for reinforcement learning. In: Inter-
national Conference on Machine Learning, pp. 7487–7498. PMLR (2020)

13. Peng, X.B., Abbeel, P., Levine, S., Van de Panne, M.: DeepMimic: example-guided
deep reinforcement learning of physics-based character skills. ACM Trans. Graph.
(TOG) 37(4), 1–14 (2018)

14. Qin, Z., Chen, Y., Fan, C.: Density constrained reinforcement learning. In: Inter-
national Conference on Machine Learning, pp. 8682–8692. PMLR (2021)

15. Schulman, J., Wolski, F., Dhariwal, P., Radford, A., Klimov, O.: Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347 (2017)

16. Sutton, R.S., McAllester, D., Singh, S., Mansour, Y.: Policy gradient methods
for reinforcement learning with function approximation. In: Advances in Neural
Information Processing Systems 12 (1999)

17. Tamar, A., Mannor, S.: Variance adjusted actor critic algorithms. arXiv preprint
arXiv:1310.3697 (2013)

18. Tavakoli, A., Pardo, F., Kormushev, P.: Action branching architectures for deep
reinforcement learning. In: Proceedings of the AAAI Conference on Artificial Intel-
ligence, vol. 32 (2018)

19. Tessler, C., Mankowitz, D.J., Mannor, S.: Reward constrained policy optimization.
In: International Conference on Learning Representations (2018)

20. Winkel, D., Strauß, N., Schubert, M., Seidl, T.: Risk-aware reinforcement learn-
ing for multi-period portfolio selection. In: Amini, M.R., Canu, S., Fischer, A.,
Guns, T., Kralj Novak, P., Tsoumakas, G. (eds.) Machine Learning and Knowl-
edge Discovery in Databases. ECML PKDD 2022. LNCS, vol. 13718. Springer,
Cham (2022). https://doi.org/10.1007/978-3-031-26422-1 12

21. Zhang, L., et al.: Penalized proximal policy optimization for safe reinforcement
learning. In: Proceedings of the Thirty-First International Joint Conference on
Artificial Intelligence, IJCAI-22, pp. 3744–3750 (2022)

124 APPENDIX

Constrained Portfolio Mgmt. Using Action Space Decomp. for RL 385

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

E Constrained Portfolio Management Using Action Space Decomposition for
Reinforcement Learning 125

1

A Proofs

Proof (of theorem 1). If two polytopes P and M can be fully described by an equivalent system of
equations and inequalities then they are equal. Given a convex polytope P ̸= ∅ defined by the following
system

∑

i∈I

xi = 1

xi ≥ 0 ∀i ∈ I
∑

i∈V1

xi ≥ c1

with c1 > 0 (otherwise the constraint is a non-active constraint and can be dropped), I = {0, . . . , N−1}
and V1 ⊆ I and the set of two masked scaled standard simplices (MSSSs):

MSSSS1,z1 , i.e. ∀y1 ∈MSSSS1,z1 :
∑

S1

yi,1 = z1 with S1 = V1 and z1 = c1

MSSSS2,z2 , i.e. ∀y2 ∈MSSSS2,z2 :
∑

S2

yi,2 = z2 with S2 = I and z2 = 1− c1

on which we apply the Minkowski sum MSSSS1,z1 + MSSSS2,z2 = M , we proof the equivalence of
both systems describing the polytopes P and M . We note for the upper and lower bounds of the single
variables in the elements of y1 ∈MSSSS1,z1 and y2 ∈MSSSS2,z2 that

yi,1 ≤z1 ⇒ ymax
i,1 = z1 for i ∈ S1

yi,2 ≤z2 ⇒ ymax
i,2 = z2 for i ∈ S2

yi,1 ≥0 + z11|S1|=1 ⇒ ymin
i,1 = 0 + z11|S1|=1 for i ∈ S1

yi,2 ≥0 + z21|S2|=1 ⇒ ymin
i,2 = 0 + z21|S2|=1 for i ∈ S2

Additionally, we note that the resulting upper and lower bounds for the single variables xi for i ∈ I
in the original polytope P are:

xi ≤1 for i ∈ V1

xi ≤1− c1 for i ∈ I\V1

xi ≥0 + c11|V1|=1 + (1− c1)1|I|=1 for i ∈ V1

xi ≥0 for i ∈ I\V1

We can deduce that for any element (y1 + y2) ∈M with y1 ∈MSSSS1,z1 and y2 ∈MSSSS2,z2 the
following conditions are fulfilled:

∑

V1

xi =
∑

V1∩S1

yi,1

︸ ︷︷ ︸
=z1=c1

+
∑

V1∩S2

yi,2

︸ ︷︷ ︸
≥0

≥ c1

∑

I

xi =
∑

I∩S1

yi,1

︸ ︷︷ ︸
=z1=c1

+
∑

I∩S2

yi,2

︸ ︷︷ ︸
=z2=1−c1

= 1

126 APPENDIX

2

Additionally, we also check the conditions for the single variables xi for i ∈ I. For the upper and lower
bound for any element (y1 + y2) ∈M the following is true

xi = yi,1 + yi,2 ≤ ymax
i,1 1i∈S1︸ ︷︷ ︸
=z1=c1

+ ymax
i,2 1i∈S2︸ ︷︷ ︸
=z2=1−c1

= 1 for i ∈ V1

xi = yi,1 + yi,2 ≤ ymax
i,1 1i∈S1︸ ︷︷ ︸

=0

+ ymax
i,2 1i∈S2︸ ︷︷ ︸
=z2=1−c1

= 1− c1 for i ∈ I\V1

xi = yi,1 + yi,2 ≥ ymin
i,1 1i∈S1︸ ︷︷ ︸

=z11|S1|=1=c11|V1|=1

+ ymin
i,2 1i∈S2︸ ︷︷ ︸

=z21|S2|=1=(1−c1)1|I|=1

= c11|V1|=1 + (1− c1)1|I|=1 for i ∈ V1

xi = yi,1 + yi,2 ≥ ymin
i,1 1i∈S1︸ ︷︷ ︸

=0

+ ymin
i,2 1i∈S2︸ ︷︷ ︸

=z21|S2|=1=(1−c1)1|I|=1

= (1− c1)1|I|=1︸ ︷︷ ︸
=0

for i ∈ I\V1

Note that the bounds for I\V1 can only be active for I\V1 ̸= ∅ which can only occur iff |I| > 1. As just
shown the set P and M can be described by an same the system of equations and inequalities which
proves that P = M .

Proof (of theorem 2). If two polytopes P and M can be fully described by an equivalent system of
equations and inequalities then they are equal. Given a convex polytope P ̸= ∅ defined by the following
system

∑

i∈I

xi = 1

xi ≥ c1 ∀i ∈ V1

xi ≤ 0 ∀i ∈ V1

xi ≥ 0 ∀i ∈ I\V1∑

i∈V1

xi = c1

with c1 < 0, I = {0, . . . , N − 1} and V1 ⊆ I and the set of two MSSSs:

MSSSS1,z1 , i.e. ∀y1 ∈MSSSS1,z1 :
∑

S1

yi,1 = z1 with S1 = V1 and z1 = c1

MSSSS2,z2 , i.e. ∀y2 ∈MSSSS2,z2 :
∑

S2

yi,2 = z2 with S2 = I\V1 and z2 = 1− c1 ≥ 0

on which we apply the Minkowski sum MSSSS1,z1 + MSSSS2,z2 = M , we proof the equivalence of
both systems describing the polytopes P and M . We note for the upper and lower bounds of the single
variables in the elements of y1 ∈MSSSS1,z1 and y2 ∈MSSSS2,z2 that

yi,1 ≤0 + z11|S1|=1 ⇒ ymax
i,1 = 0 + z11|S1|=1 for i ∈ S1

yi,2 ≤z2 ⇒ ymax
i,2 = z2 for i ∈ S2

yi,1 ≥z1 ⇒ ymin
i,1 = z1 for i ∈ S1

yi,2 ≥0 + z21|S2|=1 ⇒ ymin
i,2 = 0 + z21|S2|=1 for i ∈ S2

Additionally, we note that the resulting upper and lower bounds for the single variables xi for i ∈ I in
the original polytope P are:

xi ≤0 + c11|V1|=1 for i ∈ V1

xi ≤1− c1 for i ∈ I\V1

xi ≥c1 for i ∈ V1

xi ≥0 + (1− c1)1|(I\V1)|=1 for i ∈ I\V1

E Constrained Portfolio Management Using Action Space Decomposition for
Reinforcement Learning 127

3

We can deduce that for any element (y1 + y2) ∈ M with y1 ∈ MSSSS1,z1 and y2 ∈ MSSSS2,z2 the
following conditions are fulfilled:

∑

V1

xi =
∑

V1∩S1

yi,1

︸ ︷︷ ︸
=z1=c1

+
∑

V1∩S2

yi,2

︸ ︷︷ ︸
=0

= c1

∑

I

xi =
∑

I∩S1

yi,1

︸ ︷︷ ︸
=z1=c1

+
∑

I∩S2

yi,2

︸ ︷︷ ︸
=z2=1−c1

= 1

Additionally, we also check the conditions for the single variables xi for i ∈ I. For the upper and lower
bound for any element (y1 + y2) ∈M the following is true

xi = yi,1 + yi,2 ≤ ymax
i,1 1i∈S1︸ ︷︷ ︸

=0+z11|S1|=1=0+c11|V1|=1

+ ymax
i,2 1i∈S2︸ ︷︷ ︸

=0

= 0 + c11|V1|=1 for i ∈ V1

xi = yi,1 + yi,2 ≤ ymax
i,1 1i∈S1︸ ︷︷ ︸

=0

+ ymax
i,2 1i∈S2︸ ︷︷ ︸
=z2=1−c1

= 1− c1 for i ∈ I\V1

xi = yi,1 + yi,2 ≥ ymin
i,1 1i∈S1︸ ︷︷ ︸
=z1=c1

+ ymin
i,2 1i∈S2︸ ︷︷ ︸

=0

= c1 for i ∈ V1

xi = yi,1 + yi,2 ≥ ymin
i,1 1i∈S1︸ ︷︷ ︸

=0

+ ymin
i,2 1i∈S2︸ ︷︷ ︸

=0+z21|S2|=1=0+(1−c1)1|(I\V1)|=1

= 0 + (1− c1)1|(I\V1)|=1 for i ∈ I\V1

which proves the equivalence of the system of equations and inequalities describing P and M , i.e.,
P = M .

B Investment universe

Index ISIN Ticker Name
Environmen-
tal Score
Metric

NAICS Sector Name

0 - CASH CASH - -
1 US7475251036 QCOM Qualcomm Inc. 67.47 Manufacturing
2 US0567521085 BIDU Baidu Inc. 41.51 Other information services

3 US0530151036 ADP
Automatic Data
Processing Inc.

43.25
Professional, Scientific, and

Technical Services

4 US8552441094 SBUX
Starbucks

Corporation
86.32

Accommodation and Food
Services

5 US0311621009 AMGN Amgen Inc. 76.28
Professional, Scientific, and

Technical Services
6 US6937181088 PCAR Paccar Inc. 83.90 Manufacturing
7 US0231351067 AMZN Amazon.com Inc. 88.52 Retail Trade
8 US4612021034 INTU Intuit Inc. 78.06 Information
9 US00724F1012 ADBE Adobe Inc. 77.74 Information

10 US67066G1040 NVDA
NVIDIA

Corporation
68.58 Manufacturing

11 US5949181045 MSFT
Microsoft

Corporation
77.92 Information

12 US2786421030 EBAY eBay Inc. 45.49 Retail Trade

Table 1: List of assets used in the environment.

128 APPENDIX

F Simplex Decomposition for Portfolio Allocation Constraints in Reinforcement
Learning 129

F Simplex Decomposition for Portfolio Allocation
Constraints in Reinforcement Learning

Venue 26th European Conference on Artificial Intelligence

DOI https://doi.org/10.3233/FAIA230573

Declaration of authorships The research idea was proposed by David Winkel and de-
veloped and discussed with Niklas Stauss and Matthias Schubert. David Winkel and
Niklas Strauss wrote the manuscript, which was improved by all co-authors.

Publication

https://doi.org/10.3233/FAIA230573

Simplex Decomposition for Portfolio Allocation
Constraints in Reinforcement Learning

David Winkela,b;*, Niklas Straußa,b, Matthias Schuberta,b and Thomas Seidla,b

aLMU Munich, Germany
bMunich Center for Machine Learning (MCML)

ORCiD ID: David Winkel https://orcid.org/0000-0001-8829-0863,
Niklas Strauß https://orcid.org/0000-0002-8083-7323, Matthias Schubert https://orcid.org/0000-0002-6566-6343,

Thomas Seidl https://orcid.org/0000-0002-4861-1412

Abstract. Portfolio optimization tasks describe sequential decision
problems in which the investor’s wealth is distributed across a set of
assets. Allocation constraints are used to enforce minimal or maxi-
mal investments into particular subsets of assets to control for objec-
tives such as limiting the portfolio’s exposure to a certain sector due
to environmental concerns. Although methods for constrained Rein-
forcement Learning (CRL) can optimize policies while considering
allocation constraints, it can be observed that these general methods
yield suboptimal results. In this paper, we propose a novel approach
to handle allocation constraints based on a decomposition of the con-
straint action space into a set of unconstrained allocation problems.
In particular, we examine this approach for the case of two con-
straints. For example, an investor may wish to invest at least a certain
percentage of the portfolio into green technologies while limiting the
investment in the fossil energy sector. We show that the action space
of the task is equivalent to the decomposed action space, and intro-
duce a new reinforcement learning (RL) approach CAOSD, which
is built on top of the decomposition. The experimental evaluation
on real-world Nasdaq-100 data demonstrates that our approach con-
sistently outperforms state-of-the-art CRL benchmarks for portfolio
optimization.

1 Introduction

Portfolio optimization tasks belong to the family of resource alloca-
tion tasks in which an actor needs to allocate the available resources
over a set of choices in each time step. Technically, resource allo-
cation tasks can be considered multi-step decision problems with
a standard-simplex action space describing all possible allocation
choices, e.g., the set of all possible portfolio allocations in a financial
setting. Policy gradient based RL can be used to optimize stochastic
policies over the corresponding simplex action space and thus, they
are often used to optimize portfolio allocation agents. For example,
[20] proposes to use PPO [16] in combination with a Dirichlet action
distribution for risk-aware portfolio optimization.

In many real-world financial settings, investors set maximum and
minimum allocation weights to certain groups of assets for their port-
folio. These constraints might originate from their client’s investment
guidelines, restrictions posed by the regulator, or the investors’ eco-

∗ Corresponding Author. Email: winkel@dbs.ifi.lmu.de

nomic opinion. For example, an investor might need to consider sus-
tainability aspects in addition to generating economic returns. In this
setting, the investor might be required to invest a minimal amount of
30% of the portfolio into green technologies and a maximum amount
of 15% into companies belonging to the fossil energy sector. Alloca-
tion constraints reduce the set of allowed actions for the agent within
the simplex action space, constraining the action space to a subset
of the original simplex action space that can be described geometri-
cally as a convex polytope. Unfortunately, directly modeling a suit-
able action distribution on this polytope, which can be used to formu-
late a parametrizable policy function, is inherently difficult. A viable
alternative approach is constrained Reinforcement Learning (CRL),
which penalizes constraint violations in order to teach the agent to
avoid disallowed actions, e.g., [12, 21, 18]. However, most of these
approaches cannot guarantee that no constraint will be violated, may
exhibit unstable training behavior, or produce suboptimal results, es-
pecially if more than a single allocation constraint is needed.

In this paper, we propose an alternative approach that decomposes
the original constraint action space into unconstrained sub-action
spaces, each containing a subset of the assets. The actions from these
sub-action spaces are then combined back into the original action
space using a weighted Minkowski sum. We exploit that any con-
straint requiring a maximum investment into a subset of assets is
equivalent to requiring a minimum investment in the inverse subset
of assets. This allows us to consider only constraints requiring a min-
imum allocation to asset groups. For the case of two allocation con-
straints, we decompose the action space into four sub-action spaces.
The first sub-action space invests into the assets that are restricted by
both allocation constraints. The second and third sub-action spaces
ensure the fulfillment of each constraint after the allocations in the
first sub-action space. The final sub-action space freely distributes
the remaining funds which were not needed to fulfill the constraints.
The allocation of assets in each sub-action space can be parameter-
ized using an unconstrained Dirichlet distribution. We employ PPO
[16] to optimize the policy function over the joint distribution of the
sub-action spaces. Our new approach CAOSD ensures a tractable
computation of the joint probability and gradients of the sub-action
spaces through an auto-regressive architecture. Additionally, we use
a transformer-based encoder of the current pricing structure of the
market which is based on the recent price development.

We demonstrate the effectiveness of our novel approach in port-

ECAI 2023
K. Gal et al. (Eds.)
© 2023 The Authors.
This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).

Please check ArXiv or contact the authors for any appendices or supplementary material mentioned in the paper.

doi:10.3233/FAIA230573

2655

130 APPENDIX

folio optimization tasks based on real-world Nasdaq-100 index data.
The results show that our approach is able to generate significantly
higher returns than state-of-the-art constraint RL methods in the
overwhelming majority of cases.

The main contributions of this paper are the following:

• We introduce a novel decomposition for constrained simplex ac-
tion spaces with two allocation constraints into several uncon-
strained sub-action spaces.

• We propose a new method named CAOSD utilizing this decom-
position to effectively apply standard RL algorithms like PPO on
a surrogate action space.

• We demonstrate that CAOSD is able to significantly outperform
state-of-the-art CRL benchmark approaches on real-world market
data.

Our paper is structured as follows: In Section 2, we give an
overview of the related work and continue in Section 3 with a for-
mal problem definition. Afterward, we introduce our decomposition
and show how to utilize the decomposition for RL in Section 4. We
proceed with an extensive experimental evaluation of our approach
in Section 5 before concluding the paper in Section 6.

2 Related Work
Portfolio optimization tasks with allocation constraints can be for-
mulated as constrained Markov decision processes (CMDPs) [3] and
policies can be optimized using CRL approaches [12, 21, 18]. Note
that our novel decomposition is able to parameterize the constraint
action space directly, and thus, the task can be formulated as an
(unconstrained) Markov decision process (MDP), for which optimal
policies can be found through standard RL algorithms.

CMDPs have seen successful applications in fields such as net-
work traffic [11], and robotics [10, 2]. Finance applications such as
[4, 20] use a scalarized objective function to maximize the return
while penalizing for risk to perform a multi-objective, i.e. risk/return,
portfolio optimization. The allocation constraints in our setting al-
low also to control for risk as they can be used to limit the investor’s
exposure to risky sub-markets. [1] combine the risk/return optimiza-
tion while also considering allocation constraints. They enforce these
constraints by using a penalizing CRL approach stating that “there is
no straightforward way to design an actor-network so that all pro-
posed actions are compliant”. Our approach tackles this challenge
and provides a way to do so on an actor-network level without the
need for a penalty term.

There are different approaches to identify optimal policies in
a CMDP setting. Penalty-based approaches include an additional
penalty term into the objective function representing the constraints.
An example is Lagrangian-based approaches such as [18, 5] that
transform a constrained optimization problem into an unconstrained
one by applying Lagrangian relaxation. A subsequent step solves a
saddle point problem by optimizing the objective function and dy-
namically adjusting the penalty factor λ.

Alternative penalty-based approaches, such as [12], employ
interior-point methods. Common drawbacks of penalty-based ap-
proaches are the need for additional hyperparameter tuning, expen-
sive training loops, and the lack of guarantees for satisfying the con-
straints. An alternative approach is based on defining Trust Regions
[2], which may produce constraint violations due to approximation
errors. Furthermore, there are approaches based on prior knowledge
[9] which pretrain a model to predict simple one-step dynamics of
the environment. Other approaches are based on the use of Lyapunov

functions to solve CMDPs by projecting either the policy parame-
ter or the action onto the set of feasible solutions induced by state-
dependent linearized Lyapunov constraints [6, 7]. However, this ap-
proach can be computationally expensive and, in some cases, numer-
ically intractable, especially as the action space grows larger [7].

Our method relies on a novel decomposition of the action space
into sub-spaces. Thus, approaches factorizing the action spaces are
another important research area that is related to this work. In [17],
the authors introduce action branching, which divides the action
space into independent sub-action spaces. In contrast, our prob-
lem involves modeling sub-action spaces that depend on each other.
Auto-regressive approaches, which can model dependencies between
sub-action spaces [13, 19, 15], are another common method for the
factorization of the action spaces. Unlike these works, our approach
focuses on a novel decomposition of a constrained simplex action
space to make the optimization problem easier to solve using stan-
dard RL methods.

3 Problem Setting
An MDP is a 5-tuple (S,A,P,R, γ) where S represents the state
space, A the set of available actions, P the transition function de-
scribing the distribution over future states s′ given a state-action pair
(s, a), R is a reward function r : S × A × S → R and γ is the
discount factor.

For portfolio allocation tasks, A is defined as a simplex
over a set of N assets I = {0, . . . , N − 1}, i.e., A ={

a ∈ RN
0,+ :

∑N−1
i=0 ai = 1

}
. In other words, ai describes the posi-

tive relative amount of capital assigned to the ith asset.
An allocation constraint is defined by a subset V ⊆ I of assets

and a threshold value c ∈ [0, 1] and implies that
∑

j∈V aj ≥ c for
all allocations a ∈ A. Thus, at least the amount c of the available
capital must be allocated to assets from the set V . Let us note that
any less-than constraint can be rewritten into a greater-equal con-
straint and vice versa. In particular, assigning at most c into assets
from V is equivalent to assigning more than (1 − c) into the re-
maining assets I \ V , e.g., in a three asset setup with asset weights
x1 + x2 + x3 = 1 the greater-equal constraint x1 + x2 ≥ 0.3 is
equivalent to the constraint x3 < 0.7. Thus, without the loss of gen-
erality, we will assume greater-equal constraints in the following. For
portfolio allocation tasks with one or more allocation constraints, the
action space is a convex polytope within the original simplex of all
N -dimensional allocation vectors.

The goal of a constrained portfolio allocation task is to find a
policy πθ maximizing the expected reward Eτ∼πθ [

∑T−1
t=0 γt · rt+1]

where rt+1 is the direct reward observed for the tth state transition
of episodes τ sampled by πθ while only using allowed allocations. In
our setting, the reward corresponds to the direct economic returns of
the entire portfolio. Finding a suitable formulation for πθ becomes
more and more complex with an increasing number of allocation
constraints. In the following, we will formulate πθ for up to two al-
location constraints which can directly be used in combination with
standard actor-critic and policy gradient RL algorithms. Thus, we
consider the following action space with V1 ⊆ I and V2 ⊆ I:

A2C =

{
a ∈ RN

0,+ :
∑

i∈I

ai = 1,
∑

j∈V1

aj ≥ c1,

∑

k∈V2

ak ≥ c2, 0 ≤ c1 ≤ 1, 0 ≤ c2 ≤ 1

}

D. Winkel et al. / Simplex Decomposition for Portfolio Allocation Constraints in Reinforcement Learning2656

F Simplex Decomposition for Portfolio Allocation Constraints in Reinforcement
Learning 131

4 Constrained Allocation Optimization with
Simplex Decomposition (CAOSD)

As mentioned in Section 3, the action space underlying our problem
is a convex polytope within the standard simplex over a universe of n
assets. Thus, directly defining a parameterizable probability distribu-
tion that could be used in a policy function for reinforcement learning
is rather complex. To avoid this complexity, we propose to decom-
pose the action space into four standard simplices over subsets of I .
For a proper weighting, allocations taken from these four standard
simplices add up to form a complete allocation action in the origi-
nal action space. In the following, we will describe the simplices and
how to compute weights, guaranteeing that the original and the de-
composed action set are equivalent. Afterward, we will describe how
a policy function can be defined on top of the decomposed action
space and how policy gradient based reinforcement learning meth-
ods can be applied.

4.1 Action Space Simplex Decomposition

To formalize our approach, we begin by defining the basic elements
of our decomposition, i.e., the padded standard simplices and their
combination with the weighted Minkowski sum.

Definition 1. Let I = {0, . . . , N − 1} be a set of indices referring
to respective dimensions in RN . Let SK be a standard simplex in
the subspace defined over the dimensions indicated by the index set
K ⊆ I . Let gK : R|K| → RN be a function that projects SK

into RN , by padding the entries for any elements in RN in those
dimensions with indices I \K with 0. Applying the function g on SK

then yields a padded standard simplex (PSS) defined as:

PSSK = gV (SK) =

{
y ∈ RN

0,+ :
∑

j∈K

yj = 1; yi ≥ 0 ∀i ∈ K;

yj = 0 ∀j ∈ I \K

}
for K �= ∅

and

PSSK = gV (SK) =

{
y ∈ RN

0,+ : yj = 0 ∀j ∈ I

}
for K = ∅

Definition 2. Given n sets of vectors Q1, . . . , Qn in RN , the
weighted Minkowski sum of Q1, . . . , Qn is generated by adding
each combination of vectors from sets Qi after applying a respec-
tive weighting factor zi, i.e., (Qi)zi = {zi · qi|qi ∈ Qi} with
i = {1, . . . , n}. We write the weighted Minkowski sum of the sets
as Mz = (Q1)z1 + . . . + (Qn)zn = {z1 · q1 + . . . + zn · qn|q1 ∈
Q1, . . . , qn ∈ Qn}. We refer to (Qi)zi for i = {1, . . . , n} as the
weighted Minkowski summands.

Our approach identifies four PSSs and a weighting vector z =
[z1, z2, z3, z4] that can be combined as a weighted Minkowski sum
Mz = (PSS1)z1 + (PSS2)z2 + (PSS3)z3 + (PSS4)z4 such that
Mz = A2C .

The first weighted Minkowski summand PSSK1 is built over the
intersection of assets K1 = V1 ∩ V2. Investing into these assets con-
tributes to fulfilling both constraints. In fact, if c1 + c2 > 1, we need
to invest at least a portion of z1 = c1+c2−1 into assets from V1∩V2

to avoid over investment.
The second weighted Minkowski summand PSSK2 is defined

over the assets in V1 = K2. To fulfill the first constraint, we have
to make sure that we at least invest c1 into assets in V1. However,

PSSK1

PSSK2

PSSK3

PSSK4

V1 ∩ V2

V1

V2 I

Figure 1: Set of padded variables represented as white area, set of
modeled variables represented as colored area for each of the four
PSSs.

we need to consider that any capital z1 already being allocated into
PSSK1 also contributes towards fulfilling this constraint. Corre-
spondingly, PSSK3 is defined over the assets in K3 = V2 and re-
quires an investment of c2 minus any allocation made to V1∩V2 from
PSSK1 and PSSK2 . Finally, PSSK4 is defined over the complete
asset universe I . It covers the case, that not any available capital is
needed to fulfill the allocation constraints. Thus, any remaining cap-
ital 1− (z1 + z2 + z3) can be freely allocated among the assets in I
to maximize the economic return. An illustration of the four sets be-
ing covered by these weighted Minkowski summands can be found
in Figure 1.

To demonstrate the basic principle, consider an allocation task in
which our capital must be allocated over five assets a1, a2, a3, a4 and
a5. The first constraint c1 requires to allocate at least 30% weight to
the group of variables with index V1 = {1, 3}. The second constraint
c2 requires to allocate at least 50% weight to the group of variables
with index V2 = {2, 4}. Thus, the set of feasible solutions, i.e. the
action space, is defined by the polytope

P0 =

{
a ∈ R5 :

∑

i∈I

ai = 1;
∑

i∈V1

ai ≥ 0.3;
∑

i∈V2

xi ≥ 0.5;

xi ≥ 0 ∀i ∈ I = {1, 2, 3, 4, 5}
}

Given the four PSSKj with the respective index sets of K1 = ∅,
K2 = V1, K3 = V2, K4 = I and the weighting vector z =
[z1, z2, z3, z4] = [0.0, 0.3, 0.5, 0.2]. The corresponding weighted
Minkowski sum M will equal P0 as shown in the following: Any fi-
nal allocation a = [a1, a2, a3, a4, a5] ∈ M is the vector sum of four
vectors ãj = [ã1,j , ã2,j , ã3,j , ã4,j , ã5,j] ∈ (PSSKj)zj ⊂ R5 for
j ∈ {1, 2, 3, 4}, i.e. a = ã1 + ã2 + ã3 + ã4. The first sub-weighting
vector ã1 will be (0, 0, 0, 0, 0) due to K1 = ∅ as we cannot invest
into any assets. Any sub-weighting vector ã2 ∈ (PSSK2)z2 will al-
locate a total of z2 = 0.3 weight to the variables with an index in
V1, ensuring that any a ∈ M will always satisfy the lower bound
of the first constraint c1 = 0.3. Any vector ã3 ∈ (PSSK3)z3 will
allocate a total of z3 = 0.5 weight to the variables with an index in
V2, ensuring that any a ∈ M will always satisfy the lower bound

D. Winkel et al. / Simplex Decomposition for Portfolio Allocation Constraints in Reinforcement Learning 2657

132 APPENDIX

of the second constraint c2 = 0.5. Any vector ã4 ∈ (PSSK4)z4

will allocate the remainder of z4 = 0.2 weight to any combination
of variables in I , (a) ensuring that

∑
i∈I ai = 1 and (b) potentially

allocating additional weight to the variables with indices in V1 and
V2 (since V1 ⊆ I and V2 ⊆ I), allowing a ∈ M to exceed the lower
bounds of c1 and c2, i.e.

∑
i∈V1

ai ≥ 0.3 and
∑

i∈V2
ai ≥ 0.5. As

a result, the sets M and P0 have an identical H-representation (see
Definition 3), i.e. being specified by the identical sets of constraints,
making them identical polytopes.

In the following, we will introduce a weighting scheme selecting z
which guarantees general equivalence between M and P0. First, we
formalize our constrained action space A2C as convex polytope and
introduce its H-representation.

Definition 3. A convex polytope P in Rn is defined as a polytope
that additionally is also a convex set. P can be viewed as the set of
solutions to a system of linear inequalities, i.e., the intersection of a
finite number of closed half-spaces, called P ’s half-space represen-
tation (H-representation):

a11x1 + a12x2 + · · ·+ a1nxn ≥ b1

a21x1 + a22x2 + · · ·+ a2nxn ≥ b2

...
...

...
...

am1x1 + am2x2 + · · ·+ amnxn ≥ bm

The general formulation on how to identify the four PSSKj with
their respective index sets Kj and the definition of the weight-
ing vector z can be found in Theorem 1. Let us note that we
define the weighting vector z as an autoregressive function with
z = [z1, z2(z1), z3(z1, z2, y2), z4(z1, z2, y2, z3)] which results in
an adaptive weighting vector depending on each current combination
of elements in PSSKj for all j = {1, 2, 3, 4}.

Theorem 1. Any polytope P defined by the system

∑

i∈I

xi = 1; xi ≥ 0 ∀i ∈ I;
∑

i∈V1

xi ≥ c1;
∑

i∈V2

xi ≥ c2

with I = {0, . . . , N − 1}, V1 ⊆ I and V2 ⊆ I can be expressed as
a weighted Minkowski sum with the four weighted Minkowski sum-
mands with yi,j = [y0,j , . . . , yN−1,j] ∈ (PSSKj)zj :

(PSSK1)z1 : K1 = V1 ∩ V2 and z1 = max(0, c1 + c2 − 1)

(PSSK2)z2 : K2 = V1 and z2 = max(0, c1 − z1)

(PSSK3)z3 : K3 = V2 and z3 = max(0, c2 − z1 − z2,∩)

where z2,∩ =
∑

i∈V1∩V2

yi,2

(PSSK4)z4 : K4 = I and z4 = 1− z1 − z2 − z3

Proof. Showing that two convex polytopes have an equivalent H-
representation, i.e. an equivalent system of linear inequalities de-
scribing them, proves that they are identical.

When calculating the weighted Minkowski sum M of the four
PSSs, we can deduce that for any element x = (y1 +y2 +y3 +y4) ∈
M with y1 ∈ (PSSK1)z1 , y2 ∈ (PSSK2)z2 , y3 ∈ (PSSK3)z3

and y4 ∈ (PSSK4)z4 the following constraints are fulfilled:
The contribution to the variables

∑
V1

xi by (PSSK1)z1 and
(PSSK2)z2 will always be max(0, c1+c2−1)+max(0, c1−z1) =

c1 while (PSSK3)z3 and (PSSK4)z4 can optionally contribute pos-
itive weight, resulting in
∑

i∈V1

xi =
∑

i∈V1∩K1

yi,1

︸ ︷︷ ︸
=z1=max(0,c1+c2−1)

+
∑

i∈V1∩K2

yi,2

︸ ︷︷ ︸
=z2=max(0,c1−z1)

+
∑

i∈V1∩K3

yi,3

︸ ︷︷ ︸
≥0

+
∑

i∈V1∩K4

yi,4

︸ ︷︷ ︸
≥0

≥ c1.

The contribution to the variables
∑

V2
xi by (PSSK1)z1 ,

(PSSK2)z2 , (PSSK3)z3 will always be z1 + z2,∩ + max(0, c2 −
z1−z2,∩) = c2 while (PSSK4)z4 can optionally contribute positive
weight, resulting in

∑

i∈V2

xi =
∑

i∈V2∩K1

yi,1

︸ ︷︷ ︸
=z1

+
∑

i∈V2∩K2

yi,2

︸ ︷︷ ︸
=z2,∩

+
∑

i∈V2∩K3

yi,3

︸ ︷︷ ︸
=max(0,c2−z1−z2,∩)

+
∑

i∈V1∩K4

yi,4

︸ ︷︷ ︸
≥0

≥ c2.

The total weight contribution from all four (PSSKj)zj for j =
{1, 2, 3, 4} to all variables

∑
I xi will be always z1 +z2 +z3 +(1−

z1 − z2 − z3) = 1, i.e.
∑

i∈I

xi =
∑

i∈I∩K1

yi,1

︸ ︷︷ ︸
=z1

+
∑

i∈I∩K2

yi,2

︸ ︷︷ ︸
=z2

+
∑

i∈I∩K3

yi,3

︸ ︷︷ ︸
=z3

+
∑

i∈I∩K4

yi,4

︸ ︷︷ ︸
=z4=1−z1−z2−z3

= 1.

Additionally, we check the constraints for the single variables xi

for i ∈ I . Since for yj = [y0,j , . . . , yN−1,j] with j = {1, 2, 3, 4} all
single variables yi,j with i ∈ I are defined to be greater equal than
zero, it follows that

xi = yi,1︸︷︷︸
≥0

+ yi,2︸︷︷︸
≥0

+ yi,3︸︷︷︸
≥0

+ yi,4︸︷︷︸
≥0

≥ 0 ∀i ∈ I

which shows the equivalence of the two sets of convex closed half-
spaces defining P and M , which proofs that P = M .

4.2 Task optimization via Reinforcement Learning

After describing the simplex decomposition of the action space, we
will now define a stochastic policy function based on our novel de-
composition which can be used for policy optimization with policy
gradient based RL approaches.

We optimize the policy on a surrogate action space Ã = Ã1 ×
Ã2×Ã3×Ã4, which is the Cartesian product of the four sub-action
spaces. These sub-action spaces correspond to the four PSSKj when
decomposing A2C as introduced in the previous section. An action
ã ∈ Ã can be mapped into the original action space by using the
weighted asset-wise sum over the sub-action spaces: a = z1 · ã1 +
z2 ·ã2+z3 ·ã3+z4 ·ã4. Note that each surrogate action ã maps to one
particular action a in the original action space A but not vice versa.
In other words, the mapping is surjective but not bijective. Based on
this property, we can show that any optimal policy on the surrogate
action set Ã is optimal on the original action space A as well.

D. Winkel et al. / Simplex Decomposition for Portfolio Allocation Constraints in Reinforcement Learning2658

F Simplex Decomposition for Portfolio Allocation Constraints in Reinforcement
Learning 133

s state
encoder

xs

Branch
one

Branch
two

Branch
three

Branch
four

ã1 ã2 ã3 ã4

α1 α2 α3 α4

Figure 2: Auto-regressive architecture. The dashed arrows represent
the process of sampling from a Dirichlet distribution to generate a
sub-action ãj .

Theorem 2. Given the constraint allocation task (S,A,P,R, γ) as
defined in Section 3 with the surrogate action space Ã correspond-
ing to the action decomposition defined in Theorem 1. Any optimal
policy over the surrogate action space Ã, π∗

Ã with Q(s, π∗
Ã(s)) ≥

Q(s, πÃ(s)) for any state s ∈ S and any policy πÃ(s), implies an
optimal policy π∗

A on the original action space A.

Proof. We know from Theorem 1 that there exist weights z which
allow to represent any a ∈ A by at least one surrogate action ã. In
addition, we know that for any state s ∈ S and any action a ∈ A,
the state-action value function Q(s, a) is the same for any ã map-
ping to a as the reward received for performing ã is provided by the
environment via performing the joint action a.

Thus, for any optimal policy π∗
Ã, there exists a corresponding pol-

icy π∗
A providing the same Q-values. Now assume that π∗

A is not
optimal and thus, there would be a policy π̂A with Q(s, π̂A(s)) >
Q(s, π∗

A(s)) for at least one state s ∈ S. Since the mapping between
the Ã andA is surjective, there must exist a decomposition of π̂A(s)
to the surrogate action space yielding higher Q-values than π∗

Ã(s)
which contradicts the optimality of π∗

Ã.

Theorem 2 shows that any well-performing policy in Ã can be
mapped to an equally well-performing policy over A.

After introducing the surrogate action space, we will introduce our
stochastic policy function over Ã. We model each sub-action space
with a Dirichlet distribution with a parameter vector αKj , which
is obtained by a neural network. Our policy function that is based
on the decomposition described in Theorem 1, requires an iterative
computation of the weighting vector z. Our algorithm for sampling
an action is detailed in Algorithm 1. In each step, we sample the
asset allocation for PSSKj by the corresponding Dirichlet distribu-
tion Dirj and then determine the corresponding weight zj . In the
end, the weighted asset-wise sum is computed and returned as joint
action which is applied to the environment.

An overview of our architecture is depicted in Figure 2. We first
create a representation xs of the observation s using a transformer
model. Each sub-action space is parameterized by an MLP using the
representation xs as well as all sampled surrogate actions from the
previous sub-action spaces. This structure allows a tractable compu-
tation and optimization of the joint surrogate action ã probability:
P (ã1, ã2, ã3, ã4|xs) = P (ã1|xs) ·P (ã2|ã1, xs) ·P (ã3|ã2, ã1, xs) ·
P (ã4|ã3, ã2, ã1, xs).

We employ a policy gradient approach based on the PPO algorithm
introduced by [16]. Note that our method can also be used with other
policy gradient based RL methods.

The state encoder is composed of three fully connected layers of
size 512, 256, and 128 with ReLU activation functions that feed into

Algorithm 1 Action Generation using the Simplex Decomposition
Input: Index set of all N assets in the investable universe I =
{0, 1, ..., N − 1}; Two allocation constraints C1 :

∑
i∈V1

xi ≥ c1

and C2 :
∑

i∈V2
xi ≥ c2

Define:
K1 = V1 ∩ V2, K2 = V1, K3 = V2 and K4 = I , fj is an autore-
gressive policy network branch for j = {1, 2, 3, 4}
Begin action generation:

1: calculate α1 from f1(xs), sample ã1 from Dir(α1)
2: set z1 = max(0, c1 + c2 − 1)
3: set qV1∩V2 := z1

∑
i∈V1∩V2

xi,1

4: calculate α2 from f2(xs, ã1), sample ã2 from Dir(α2)
5: set z2 = max[0, c1 − z1]
6: update qV1∩V2 := qV1∩V2 + z2

∑
i∈V1∩V2

xi,2

7: calculate α3 from f3(xs, ã1, ã2), sample ã3 from Dir(α3)
8: set z3 = max[0, c2 − qV1∩V2]
9: calculate α4 from f4(xs, ã1, ã2, ã3), sample ã4 from Dir(α4)

10: set z4 = 1− z1 − z2 − z3

11: calculate action a by adding the weighted sub-actions:
z1 · ã1 + z2 · ã2 + z3 · ã3 + z4 · ã4 = a

a GTrXL element, allowing also to handle tasks that require mem-
ory. GTrXL is based on [14] and is specifically designed to utilize
transformers in an RL setting. The GTrXL element is composed of a
single transformer unit with a single encoder layer and a single de-
coder layer with four attention heads and an embedding size of 64.
The different branching modules are all made up of two fully con-
nected layers of size 64 and 32, respectively, with a ReLU activation
function after the first layer and a softplus activation function for the
final output layer.

5 Experiments

5.1 Constrained Portfolio Optimization Tasks

We evaluate our approach in the financial setting on various con-
strained portfolio optimization tasks. The environment is based on
[20] and uses real-world data from the Nasdaq-100 index that has
been processed by the qlib package.1 The data is used to estimate
the parameters of a hidden Markov model (HMM), which is then
used to generate trajectories. The monthly closing stock prices from
January 1, 2010 to December 31, 2020 are included in the data set.
An additional data set containing monthly closing prices from Jan-
uary 1, 2021 to December 31, 2021 is exclusively used to backtest
the approaches. The environment’s investment universe consists of
12 assets plus the special asset cash. Cash has neither a positive or
negative return and remains stable over time. The remaining 12 as-
sets are chosen at random from a pool of 35 pre-selected assets from
the Nasdaq-100 data set. The assets were pre-selected based on the
fact that they have been a member of the index at least since January
1, 2010, and there were no missing data entries.

In the following, we provide a detailed description of the portfolio
optimization task. An agent is required to invest his wealth into N
different assets based on asset allocation decisions made at each time
step of the investment horizon T . The constrained action space for
this task is described by A2C as defined in Section 3, where the sets
V1 and V2 contain the indices of assets affected by the respective
constraint. These allocation constraints in the financial setting can
be motivated by various factors, such as the need to invest at least a

1 https://github.com/microsoft/qlib/tree/main

D. Winkel et al. / Simplex Decomposition for Portfolio Allocation Constraints in Reinforcement Learning 2659

134 APPENDIX

certain percentage of the portfolio into a group of assets in a specific
sector or with a certain risk classification.

The observation space is defined as O = W × V × U . The set
W ⊆ R represents the agent’s current absolute level of wealth, the
set V ⊆ RN describes the current portfolio allocation, and the set
U ⊆ RN is the observed single asset economic returns from the
previous time step.

The total portfolio return r = ϑPF − tc is the agent’s reward
for each time step and is defined as the realized portfolio’s return
ϑPF minus any transaction costs tc that occurred. The portfolio’s re-
turn is a random variable ΘPF = aᵀΘ based on the random vector
Θ = [Θ0, . . . , ΘN−1] representing the economic returns of the sin-
gle assets and the deterministic vector a that represents the portfolio’s
allocation weights selected by the agent. The cumulative portfolio to-
tal return over the investment horizon of 12 months, i.e. T = 12 time
steps, is defined as

ν =

T−1∑

t=0

rt+1

and in the following referred to as the annualized total portfolio re-
turn.

5.2 Experimental Setup

As previously stated, two evaluation environments are used: (1) the
simulation environment and (2) the backtesting environment. We con-
duct a total of 100 experiments, each with a unique constraint con-
figuration, i.e., a unique combination of two allocation constraints.
Each constraint configuration is evaluated on both evaluation envi-
ronments with the goal of comparing the performance of the ap-
proaches for different constraint configurations (a) on the environ-
ment the agents were originally trained on and (b) on unseen, real
world data.

Each experiment uses a different random seed as well as a ran-
domly generated constraint configuration. A constraint configuration
is made up of two allocation constraints Cj of the form

∑
i∈Vj

ai ≥
cj with j ∈ {1, 2} where Vj represents the set of affected assets and
cj the constraint’s threshold value. To generate both allocation con-
straints at random, we sample the number of affected assets between
1 and 12. We rule out the possibility of selecting 0 or 13 assets since
any greater equal allocation constraint would be either infeasible or
trivial. The sampled number defines the number of specific assets
which are then sampled from the list of 13 assets, i.e. the invest-
ment universe, without replacement resulting in Vj . Subsequently cj

is sampled from a uniform distribution in the interval [0, 1]. The pro-
cess is repeated for the second allocation constraint as well resulting
in a randomly generated constraint configuration. In a final step it is
verified that the resulting polytope P as defined in Section 3 is not
an empty set, i.e. a system that does not have a feasible solution.2

We compare our CAOSD approach to four other approaches, one
of which is a naive random approach and three of which are state-of-
the-art CRL approaches. The CRL approaches typically model con-
straint violations on a trajectory level, which means that they con-
strain the expected discounted sum of costs that occurred in each
time step [3]. However, they can be adjusted to model allocation con-
straints that must be satisfied at each time step. This can be done by
defining the costs at each time step in such a way that they return a

2 This can be checked by determining whether the V-representation of P
contains at least one vertex.

positive value if an allocation constraint is violated and zero other-
wise. When a violation occurs in any time step, the discounted sum
of costs will be greater than zero. Therefore, we can constrain every
time step in the trajectory implicitly by imposing a constraint on the
trajectory level that the expected discounted sum of costs needs to be
less than or equal to zero.

The first CRL benchmark approach is the Lagrangian-based
RCPO introduced by [18]. The second benchmark approach is
IPO proposed by [12] that uses an interior-point method to opti-
mize the policy. The third approach is P3O by [21], a first-order op-
timization approach that uses an unconstrained objective in combi-
nation with a penalty term equaling the original constraint objective.
The benchmark approaches are implemented in the RLlib framework
based on their papers.3 The code for all approaches is made pub-
licly available.4 All agents were trained on a cluster using various
types of commercially available single GPUs. All approaches were
extensively tuned in terms of hyperparameters using a grid search.
Additional information on the hyperparameter tuning process can be
found in the Appendix. During evaluation, RL agents take the action
with the highest likelihood.

In addition to the three benchmark approaches we also utilize a
random approach. This approach uniformly draws actions, i.e. asset
allocations, from the constrained polytope. Efficient uniform sam-
pling from a polytope is a surprisingly complex task, therefore we
follow [8] to obtain uniform samples from the constrained action
space. Using several rollouts of this baselines allows us to establish
an estimate of the difficulty of an experiment, since the possible re-
turns are highly dependent on the allocation constraints.

5.3 Evaluation

In our evaluation, we first compare the performance of our approach
and the benchmarks over the entire set of experiments, which demon-
strates the effectiveness of our approach in various settings. After-
ward, we discuss the performance and convergence during training
and take a detailed look at a single experiment. A key metric of the
evaluation is the agents’ mean annualized total portfolio returns. We
define the mean annualized total portfolio return for each of the five
approaches, i.e. app = {RCPO, IPO, P3O, CAOSD, RDM},
and each of the environments, i.e. env = {sim, bt}, as ν̄env

app =
1

J

∑J−1
j=0 νenv

app,j where J is the number of evaluation trajectories.
For the simulation environment J = 1000 trajectories per approach
are evaluated after the agents’ training is completed.

In backtesting – with the exception of the random approach – only
the single real-world trajectory is evaluated to measure the agents’
performance since their evaluation is deterministic. The random ap-
proach is treated differently since its evaluation remains stochastic
due to its previously mentioned design to always sample uniformly
an action from P . To reduce the variance in the results, we evaluate
ν̄bt

RDM on J = 1000 rollouts during backtesting.
We use two measures to evaluate the performance of the ap-

proaches over all experiments. The first measure, θ̄env
app , is the av-

erage of the mean annualized return of each approach over all exper-

iments. More formally, θ̄env
app =

1

N

∑N−1
i=0 ν̄env

app,i, where N = 100

is the number of experiments. Since the return that can be achieved
in each experiments varies greatly depending on the constraint con-
figuration, our second measure is defined as the difference of returns

3 https://docs.ray.io/en/master/rllib/index.html
4 https://github.com/DavWinkel/SimplexDecompositionECAI

D. Winkel et al. / Simplex Decomposition for Portfolio Allocation Constraints in Reinforcement Learning2660

F Simplex Decomposition for Portfolio Allocation Constraints in Reinforcement
Learning 135

θ̄env
app

Upper 95%
CI

Lower 95%
CI

Simulation
RCPO 0.292 0.299 0.284

IPO 0.212 0.217 0.207
P3O 0.305 0.314 0.296

CAOSD 0.327 0.335 0.319
Random 0.209 0.217 0.201

Backtesting
RCPO 0.497 0.521 0.474

IPO 0.35 0.365 0.334
P3O 0.522 0.552 0.492

CAOSD 0.552 0.582 0.522
Random 0.333 0.355 0.311

Table 1: Evaluation of θ̄env
app and its 95% confidence interval for all

approaches in both environments for N=100 experiments after train-
ing is completed.

of each approach to the performance of the random baseline in the

same experiment: δ̄env
app =

1

N

∑N−1
i=0 ν̄env

app,i − ν̄env
RDM,i.

δ̄env
app

Upper 95%
CI

Lower 95%
CI

Simulation
RCPO 0.082 0.093 0.071

IPO 0.003 0.012 -0.007
P3O 0.096 0.108 0.084

CAOSD 0.118 0.129 0.106

Backtesting
RCPO 0.164 0.196 0.132

IPO 0.017 0.046 -0.012
P3O 0.189 0.227 0.151

CAOSD 0.219 0.258 0.179

Table 2: Evaluation of δ̄env
app and its 95% confidence interval for the

non-random approaches in both environments for N=100 experi-
ments after training is completed.

Table 1 and Table 2 show the performance of the approaches for
both metrics in both environments as well as their corresponding
95% confidence intervals. The CAOSD approach shows consider-
able improvements over the other approaches in both metrics and
both environments. These improvements are statistically significant
on a 95% confidence interval. The P3O approach ranks second in
both environments for both metrics before RCPO. IPO is only able
to outperform the random approach in the backtesting environment
while producing similar performance results to the random approach
in the simulation environment.

In the second part of the evaluation, we will discuss the per-
formance of the agents during training on a representative experi-
ment. The experiment has a constraint configuration with the two
allocation constraints C1 :

∑
i∈V1

ai ≥ 0.23 with V1 containing
the indices referring to the company stocks [BIDU, QCOM] and
C2 :

∑
i∈V2

ai ≥ 0.32 with V2 referring to the indices of the compa-
nies [ADBE, SBUX, QCOM] (see Appendix for a detailed list of the
environment’s investment universe). During training, an evaluation
with J = 200 trajectories is performed every 80000 environment
steps.

Figure 3 shows the agents’ mean annualized total portfolio re-
turn during training on the y-axis and the number of environment
steps on the x-axis. The figure also shows the 95% confidence inter-
val of the mean annualized total portfolio return for each of the ap-

0 1 2 3 4

·106

0

0.1

0.2

0.3

Environment steps

M
ea

n
a
n
n
u
a
li
ze

d
to

ta
l

p
o
rt

fo
li
o

re
tu

rn

P3O
IPO

RCPO
CAOSD
Random

Figure 3: Mean annualized total portfolio return during training and
its 95% confidence interval. This figure is best viewed in color.

proaches seen as the shaded areas around the lines. Note that we only
show the training performance for the simulation environment, since
there is no training in the backtesting environment. The CAOSD ap-
proach had the best training performance in the experiment shown in
Figure 3, followed by P3O and RCPO. The IPO approach is not able
to improve the mean annualized total portfolio return during training
and stays comparable to the random approach.

6 Conclusion
In this paper, we examine portfolio optimization tasks with alloca-
tion constraints that require investing at least a certain portion of
the available capital into a subset of assets. The task covers many
real-world use-cases such as investors wanting to limit their expo-
sure to certain groups of assets due to risk concerns, or investors who
want to reflect aspects such as sustainability or social responsibil-
ity in their portfolio allocation. We examine settings that consider
two allocation constraints and present CAOSD which decomposes
the constrained action space into multiple unconstrained sub-action
spaces. We show that the weighted Minkowski sum of these sub-
action spaces is equivalent to the original action space if weights
are chosen properly. Based on the decomposition we introduce a
stochastic policy function that computes proper weights with an auto-
regressive pattern. To optimize the policy for a given task, we apply
a transformer-based state encoder and employ PPO [16] to train our
agent. In the experimental part, we apply our approach to a variety of
constrained portfolio optimization tasks, each characterized by a dif-
ferent set of constraints. We significantly outperform state-of-the-art
approaches from CRL on real-world market data which demonstrates
the effectiveness of our proposed method.

While this work shows decomposition with up to two allocation
constraints, we will investigate decompositions for a greater number
of constraints in future work. This increases the complexity of the
possible relationship structures between the sets of choices, necessi-
tating increasingly complex decompositions. In another line of future
work, we want to examine the application of our approach to other
tasks than portfolio optimization.

References
[1] Carlo Abrate, Alessio Angius, Gianmarco De Francisci Morales, Ste-

fano Cozzini, Francesca Iadanza, Laura Li Puma, Simone Pavanelli,

D. Winkel et al. / Simplex Decomposition for Portfolio Allocation Constraints in Reinforcement Learning 2661

136 APPENDIX

Alan Perotti, Stefano Pignataro, and Silvia Ronchiadin, ‘Continuous-
action reinforcement learning for portfolio allocation of a life insurance
company’, in Joint European Conference on Machine Learning and
Knowledge Discovery in Databases, pp. 237–252. Springer, (2021).

[2] Joshua Achiam, David Held, Aviv Tamar, and Pieter Abbeel, ‘Con-
strained policy optimization’, in International conference on machine
learning, pp. 22–31. PMLR, (2017).

[3] Eitan Altman, Constrained Markov decision processes: stochastic mod-
eling, Routledge, 1999.

[4] Eric André and Guillaume Coqueret, ‘Dirichlet policies for reinforced
factor portfolios’, arXiv preprint arXiv:2011.05381, (2020).

[5] Shalabh Bhatnagar and K Lakshmanan, ‘An online actor–critic algo-
rithm with function approximation for constrained markov decision
processes’, Journal of Optimization Theory and Applications, 153(3),
688–708, (2012).

[6] Yinlam Chow, Ofir Nachum, Edgar Duenez-Guzman, and Moham-
mad Ghavamzadeh, ‘A lyapunov-based approach to safe reinforce-
ment learning’, Advances in neural information processing systems, 31,
(2018).

[7] Yinlam Chow, Ofir Nachum, Aleksandra Faust, Edgar Duenez-
Guzman, and Mohammad Ghavamzadeh, ‘Lyapunov-based safe policy
optimization for continuous control’, arXiv preprint arXiv:1901.10031,
(2019).

[8] Mario Vazquez Corte and Luis V Montiel, ‘Novel matrix hit and run
for sampling polytopes and its gpu implementation’, arXiv preprint
arXiv:2104.07097, (2021).

[9] Gal Dalal, Krishnamurthy Dvijotham, Matej Vecerik, Todd Hester,
Cosmin Paduraru, and Yuval Tassa, ‘Safe exploration in continuous ac-
tion spaces’, arXiv preprint arXiv:1801.08757, (2018).

[10] Shixiang Gu, Ethan Holly, Timothy Lillicrap, and Sergey Levine, ‘Deep
reinforcement learning for robotic manipulation with asynchronous off-
policy updates’, in 2017 IEEE international conference on robotics and
automation (ICRA), pp. 3389–3396. IEEE, (2017).

[11] Chen Hou and Qianchuan Zhao, ‘Optimization of web service-based
control system for balance between network traffic and delay’, IEEE
Transactions on Automation Science and Engineering, 15(3), 1152–
1162, (2017).

[12] Yongshuai Liu, Jiaxin Ding, and Xin Liu, ‘Ipo: Interior-point policy
optimization under constraints’, in Proceedings of the AAAI Conference
on Artificial Intelligence, volume 34, pp. 4940–4947, (2020).

[13] Luke Metz, Julian Ibarz, Navdeep Jaitly, and James Davidson, ‘Discrete
sequential prediction of continuous actions for deep rl’, arXiv preprint
arXiv:1705.05035, (2017).

[14] Emilio Parisotto, Francis Song, Jack Rae, Razvan Pascanu, Caglar Gul-
cehre, Siddhant Jayakumar, Max Jaderberg, Raphael Lopez Kaufman,
Aidan Clark, Seb Noury, et al., ‘Stabilizing transformers for reinforce-
ment learning’, in International conference on machine learning, pp.
7487–7498. PMLR, (2020).

[15] Thomas Pierrot, Valentin Macé, Jean-Baptiste Sevestre, Louis Monier,
Alexandre Laterre, Nicolas Perrin, Karim Beguir, and Olivier Sigaud.
Factored action spaces in deep reinforcement learning, 2021.

[16] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford,
and Oleg Klimov, ‘Proximal policy optimization algorithms’, arXiv
preprint arXiv:1707.06347, (2017).

[17] Arash Tavakoli, Fabio Pardo, and Petar Kormushev, ‘Action branching
architectures for deep reinforcement learning’, in Proceedings of the
AAAI Conference on Artificial Intelligence, volume 32, (2018).

[18] Chen Tessler, Daniel J Mankowitz, and Shie Mannor, ‘Reward con-
strained policy optimization’, in International Conference on Learning
Representations, (2018).

[19] Ermo Wei, Drew Wicke, and Sean Luke, ‘Hierarchical approaches for
reinforcement learning in parameterized action space’, in 2018 AAAI
Spring Symposium Series, (2018).

[20] David Winkel, Niklas Strauß, Matthias Schubert, and Thomas Seidl,
‘Risk-aware reinforcement learning for multi-period portfolio selec-
tion’, in European Conference on Machine Learning and Knowledge
Discovery in Databases. Springer, (2022).

[21] Linrui Zhang, Li Shen, Long Yang, Shixiang Chen, Xueqian Wang,
Bo Yuan, and Dacheng Tao, ‘Penalized proximal policy optimization
for safe reinforcement learning’, in Proceedings of the Thirty-First In-
ternational Joint Conference on Artificial Intelligence, IJCAI-22, pp.
3744–3750, (2022).

D. Winkel et al. / Simplex Decomposition for Portfolio Allocation Constraints in Reinforcement Learning2662

F Simplex Decomposition for Portfolio Allocation Constraints in Reinforcement
Learning 137

138 APPENDIX

G Autoregressive Policy Optimization for Constrained
Allocation Tasks

Venue The Thirty-eighth Annual Conference on Neural Information Processing Systems

Declaration of authorships The research idea was initially proposed by David Winkel
and developed and discussed with Niklas Stauss and Matthias Schubert. David Winkel
and Niklas Strauss did the implementation and experiments. The other co-authors also
participated in some of the discussions. David Winkel and Niklas Strauss wrote the
manuscript, which was improved by all co-authors.

Publication

Autoregressive Policy Optimization for Constrained
Allocation Tasks

David Winkel∗ Niklas Strauß∗

Maximilian Bernhard Zongyue Li Thomas Seidl Matthias Schubert
Munich Center for Machine Learning, LMU Munich

{winkel,strauss,bernhard,li,seidl,schubert}@dbs.ifi.lmu.de

Abstract

Allocation tasks represent a class of problems where a limited amount of resources
must be allocated to a set of entities at each time step. Prominent examples of
this task include portfolio optimization or distributing computational workloads
across servers. Allocation tasks are typically bound by linear constraints describing
practical requirements that have to be strictly fulfilled at all times. In portfolio
optimization, for example, investors may be obligated to allocate less than 30% of
the funds into a certain industrial sector in any investment period. Such constraints
restrict the action space of allowed allocations in intricate ways, which makes
learning a policy that avoids constraint violations difficult. In this paper, we propose
a new method for constrained allocation tasks based on an autoregressive process
to sequentially sample allocations for each entity. In addition, we introduce a novel
de-biasing mechanism to counter the initial bias caused by sequential sampling.
We demonstrate the superior performance of our approach compared to a variety of
Constrained Reinforcement Learning (CRL) methods on three distinct constrained
allocation tasks: portfolio optimization, computational workload distribution, and a
synthetic allocation benchmark. Our code is available at: https://github.com/
niklasdbs/paspo.

1 Introduction

Continuous allocation tasks are a class of problems where an agent needs to distribute a limited amount
of resources over a set of entities at each time step. Many complex real-world problems are formulated
as allocation tasks, and state-of-the-art solutions rely on using Reinforcement Learning (RL) to learn
effective policies [6, 26, 3, 20, 27]. Notable examples include portfolio allocation tasks, where
portfolio managers must allocate the available financial resources among various assets [27], or
allocation tasks of computational workloads to a set of compute instances in data centers [3]. In many
cases, allocation tasks come with allocation constraints [6, 20, 27, 26], such as investing at most 30 %
of the portfolio into a specific subset of the assets or to restrict the maximum workload to certain
servers in a data center. Formally, allocation constraints are expressed as linear constraints and form a
system of linear inequalities, geometrically describing a convex polytope. Each point in this polytope
describes a possible allocation and each dimension corresponds to one of the entities. Allocation
tasks often require hard constraints, i.e., constraints that are explicitly given and must be satisfied
at any point in time. However, most of the existing CRL literature focuses on soft constraints that
are not explicitly given [2, 29, 31, 14, 25]. These approaches typically cannot guarantee constraint
satisfaction and tend to have many constraint violations during training. The majority of these
methods approximate the cumulative costs of constraint violations and optimize the cumulative
reward while trying to adhere to the maximum cumulative costs. While less explored, there exist

∗Both authors contributed equally.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

G Autoregressive Policy Optimization for Constrained Allocation Tasks 139

several techniques that ensure the satisfaction of hard constraints [18, 6, 11, 10, 20]. These approaches
might generate actions that do not satisfy the constraints but utilize a correction mechanism to map
the actions back into the valid action space. In addition, most of these approaches are restricted to
off-policy algorithms [11, 20]. In another line of research, solutions tailored for constrained allocation
tasks have been proposed [27, 28]. However, these solutions are severely limited since they can only
handle a specific subset of linear constraints and cannot handle more than two.

In this paper, we propose Polytope Action Space Policy Optimization (PASPO), a novel RL-based
method that, firstly, decomposes the action space into several dependent sub-problems and, secondly,
autoregressively computes the allocations step-by-step for each entity individually. In contrast
to previous methods for hard constraints, we directly generate an action within the action space.
This makes the correction of invalid actions unnecessary and, thus, avoids potential sampling bias
introduced by the correction. Our new decomposition approach is implemented in a neural network-
based policy function, which can be employed in on-policy and off-policy RL algorithms. We show
that initialization bias can prevent proper exploration in early training which leads to premature
convergence. Thus, we propose a de-biasing mechanism to stabilize exploration in early training
stages.

We evaluate our approach against various baselines on three distinct allocation tasks: portfolio
optimization, distributing computational workload in data centers, and a synthetic benchmark. These
experiments demonstrate that our approach can outperform existing methods consistently and show
the importance of the proposed de-biasing mechanism.

To summarize, the main contributions of our paper are:

• A new autoregressive stochastic policy function applicable to arbitrary convex polytope
action spaces of constrained allocation tasks.

• A new de-biasing mechanism to prevent premature convergence to a sub-optimal policy.
• An empirical evaluation that optimizes our new policy function using PPO [22] and demon-

strates improved results compared to state-of-the-art CRL methods.

The remainder of the paper is structured as follows: In Section 2, we provide an overview of the
related work in CRL, constrained allocation tasks, and autoregressive policy functions. Afterward,
we formalize constrained allocation tasks in Section 3 and present our novel approach in Section 4.
Section 5 describes the results of our experimental evaluation, Section 6 briefly discusses limitations
and future work before Section 7 concludes the paper.

2 Related Work

Resource allocation tasks are a widely researched area with numerous applications spanning logistics,
power distribution, computational load balancing, security screening, and finance [6, 26, 3, 20, 27].
We identify three key research directions that are particularly important when discussing resource
allocation tasks.

Safe Reinforcement Learning The majority of work in CRL addresses soft constraints, a setting
often referred to as Safe RL. We will provide a brief overview of the most important methods in this
field. For a more comprehensive examination of Safe RL, we direct readers to the survey papers by
[15, 12]. A common technique in Safe RL is the use of Lagrangian relaxation [4, 15]. Several works
employ primal-dual optimization to leverage the Lagrangian duality, including [9, 23, 13]. Another
frequently used approach involves different penalty terms [25, 14, 31]. The authors of IPO [14]
propose to use logarithmic barrier functions. CPO [2] extends TRPO [21] to ensure near-constraint
satisfaction with each update. Additionally, two-step approaches such as FOCOPS [32] and CUP [30]
are popular in the field. However, unlike our method, these approaches do not guarantee strict
constraint satisfaction, particularly during training.

Hard Constraints Although less studied than Safe RL, several works address hard instantaneous
constraints on actions to ensure full constraint satisfaction at any time step. Most of these approaches
employ mechanisms to correct infeasible actions, i.e., those that violate constraints, into feasible
actions [18, 6, 20, 11]. In contrast, our method always generates feasible actions without the need
for correction. OptLayer [18] is one of the most prominent examples in this field, which employs
OptNet [5] to map infeasible actions to the nearest feasible action. Similarly, [20] propose a more

2

140 APPENDIX

efficient projection on the polytope action space than OptLayer. The authors of [6] focus on resource
allocation with hierarchical allocation constraints by proposing a faster approximate version of
OptLayer. In [11], the authors propose an off-policy algorithm based on the generalized reduced
gradient method [1] to handle non-linear hard constraints by projecting infeasible actions. In contrast,
our method is not limited to off-policy algorithms.

In [27, 28], the action space is decomposed into independent subspaces. However, these approaches
can only handle up to two allocation constraints. Furthermore, they are only applicable to binary
allocation constraints. In contrast, our approach can handle an arbitrary number of constraints as well
as any type of linear allocation constraints.

Action Space Decomposition/Factorization The decomposition or factorization of multi-
dimensional action spaces has been examined in several works [24, 16, 19]. A notable example
is [24], in which the authors discretize a continuous action space into several independent action
branches, each parameterized by individual network branches. In [16], a variant of DQN [17] that
discretizes a continuous action space into multiple discrete dimensions is proposed. These dimensions
are sequentially parameterized, conditional on the previous sub-actions. Similarly, [19] propose an
autoregressive factorization of an unconstrained action space into dependent sub-problems. Unlike
our approach, these methods focus either on decomposing continuous action spaces into discrete
action spaces or decomposing unconstrained action spaces. However, the decomposition of arbitrary
convex polytope action spaces into tractable sub-action spaces remains a non-trivial challenge that
our approach addresses.

3 Problem Description

An allocation task can be described as a finite-horizon Markov decision process (MDP)
(S,A, T,R, γ), where S represents the state space, A the action space, T : S×A×S → [0, 1] the state
transition function, R the reward function, and γ ∈ [0, 1] a discount factor. The goal of this task is to
find a policy π maximizing the expected cumulative reward Jπ

R = Eπ [
∑n

t=1 γ
tR (st, π(st), st+1)].

The action a is an allocation a = {a1, . . . , an} ∈ A over a set of n entities E = {e1, . . . , en} at
each time step. Each element ai of the action vector a represents the proportion allocated to entity ei.
Furthermore, allocation tasks require a complete allocation, i. e.,

∑n
i=1 ai = 1 and allocations cannot

be negative (ai ≥ 0). Thus, the action space of unconstrained allocation tasks forms an n-dimensional
standard simplex. A visualization of an unconstrained allocation action space is provided in Figure 1a.

Allocation tasks frequently include constraints, such as allocating at most 30% to a subset of the
entities. An example of a constrained action space is visualized in Figure 1b. Formally, an allocation
constraint can be expressed as a linear inequality

∑n
i=1 ciai ≤ b, where ci denotes the weighting of

the allocation variable ai of entity ei and b ∈ R denotes the corresponding constraint limit. For the
sake of readability and simplicity, we only define ≤ constraints since a ≥ b can be transformed into
−a ≤ −b and a = b can be rewritten as a ≤ b and −a ≤ −b.
The action space A of constrained allocation tasks can be easily expressed by a set of linear inequali-
ties, defining a polytope A = {a ∈ [0, 1]n|Ca ≤ b}, where

C ∈ Rm×n =

c11 . . . c1n

...
. . .

...
cm1 . . . cmn

 (1)

is a matrix of coefficients for the m constraints, including those linked to the simplex constraints∑n
i=1 ai = 1 and ai ≥ 0 ∀i ∈ {1, . . . n}, as well as all coefficients for additional allocation

constraints. Let a ∈ [0, 1]n represent an allocation vector and b ∈ Rm is the vector of constraint
limits.

Alternatively, constrained allocation tasks can be defined using the framework of constrained Markov
decision processes (CMDPs). A CMDP extends the standard MDP by a number of cost functions
to incorporate the constraints. The goal is to maximize the expected cumulative reward while
satisfying m constraints on the expected cumulative costs. The expected cumulative costs for
the k-th cost function CFk are defined as Jπ

CFk
= E[

∑T
t=0 γ

tCFk(st, at)]. The m constraints
to be satisfied in the CMDP are then stated as Jπ

CFk
≤ dk, where dk denotes the cost limit with

3

G Autoregressive Policy Optimization for Constrained Allocation Tasks 141

0
0.2

0.4
0.6

0.81

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

a1a2

a
3

(a) Unconstrained standard simplex

0
0.2

0.4
0.6

0.81

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

a1a2

a
3

(b) Constrained simplex with a3 ≤ 0.6 and a2 ≤ 0.7

Figure 1: Examples of 3-dimensional allocation action spaces (a) unconstrained and (b) constrained
(valid solutions as red area).

k ∈ {1, . . . ,m}. To formulate constrained allocation tasks using CMDPs, the cost functions can be
defined as CFk(s, a) = max{0, (Ca)k − bk} to measure any allocation constraint violation as a cost.
In addition, strict adherence to all allocation constraints at any point in time is required, i.e., dk = 0.
By formulating constraint allocation tasks using CMDPs, it becomes possible to use existing methods
from Safe RL for soft constraints. However, these methods cannot guarantee constraint satisfaction at
all times [15]. Let us note that our method does not use cost functions, instead it samples actions
directly from the constrained action space.

4 Polytope Action Space Policy Optimization (PASPO)

Our approach PASPO autoregressively computes the allocation to every single entity in an iterative
process until all allocations are fixed. We will later show that this step-wise decomposition allows for
a tractable parametrization of the action space.

4.1 Autoregressive Polytope Decomposition

PASPO starts by determining the feasible interval [amin
1 , amax

1] for allocations into the first entity e1.
Then, we sample the first allocation a1 from this interval. The details of the sampling process will be
further discussed in Section 4.2. Fixing an allocation impacts the shape of the remaining action space.
Thus, we have to compute the shape of the polytope A(2) described by C(2) and b(2) before we can
sample the next allocation a2.

Each iteration i starts with determining the interval [amin
i , amax

i] of all feasible values for ai. Ge-
ometrically, this interval is bounded by the minimum and the maximum value of the remaining
polytope A(i) in the i-th dimension associated with the allocation ai. To determine amin

i , we solve
the following linear program:

minimize ai

s.t. C(i)a(i) ≤ b(i)

where C(i) are the constraint coefficients for the entities ei, . . . , en, b(i) are the adjusted constraint
limits, and a(i) describes the unfixed allocations. We determine amax

i by solving the respective
maximization problem. For the first iteration i = 1, we define C(1) = C, b(1) = b and a(1) = a.
After sampling an allocation ai from the interval [amin

i , amax
i]. The resulting polytope A(i+1) for the

next iteration i+ 1 is described by the following inequality system:

c1,i+1 · · · c1,n
...

. . .
...

cm,i+1 · · · cm,n

︸ ︷︷ ︸
C(i+1)

ai+1

...
an

︸ ︷︷ ︸
a(i+1)

≤

b
(i)
1
...

b
(i)
m

− ai

c1,i
...

cm,i

︸ ︷︷ ︸
b(i+1)

(2)

To define the new coefficient matrix C(i+1) (red), we remove the first column of the coefficient matrix
of the previous iteration C(i). To calculate the new vector b(i+1) of constraint limits, we subtract

4

142 APPENDIX

0
0.2

0.4
0.6

0.81

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

a1a2

a
3

(a) Original set of valid solutions,
i.e., A(1) (red area)

0
0.2

0.4
0.6

0.81

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

amax
1

amin
1

ā1

a1a2

a
3

(b) Remaining valid solutions in
A(2) (red line) after a1 = 0.3
(dashed blue line) was fixed, i.e.,
sampled

0
0.2

0.4
0.6

0.81

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

amax
2

amin
2

ā2

a1a2

a
3

(c) Only a single valid solution
remains in A(3) (red dot) after
a1 = 0.3 and a2 = 0.5 (dashed
blue lines) are fixed, i.e., sampled

Figure 2: Example of sampling process of an action a = (a1, a2, a3) in a 3-dimensional constrained
allocation task.

the removed column (blue) scaled by the fixed allocation ai from the previous constraint limits b(i)
(yellow). We iterate over all entities until we determine an−1. Allocation an is already determined
as soon as the allocations a1, . . . , an−1 are fixed because of the simplex constraint

∑n
i=1 ai = 1.

Sampling an allocation using this approach always guarantees constraint satisfaction and it is possible
to sample any action in the constrained action space. A formal proof of these guarantees can be found
in Appendix D.

Figure 2 displays a visualization of the process for a 3-dimensional case. The set of valid solutions
before any allocations have been fixed is shown in Figure 2a. Figure 2b depicts the first iteration
after a1 = 0.3 has been determined, and the resulting new polytope A(2), i.e., a set of valid solutions,
shrinks to the red line is shown. Figure 2c shows the second iteration after also a2 = 0.5 has been
determined. It can be seen that the new polytope A(3) contains only a single valid solution represented
as a red dot, making a third iteration unnecessary since the only remaining solution is to allocate
a3 = 0.2, resulting in a final allocation of a = (0.3, 0.5, 0.2).

4.2 Parameterizable Policy Process

Our goal is to define a learnable stochastic policy function over the action space. For unconstrained
allocation tasks, a Dirichlet distribution can be used to parameterize the action space [26, 28]. Unfor-
tunately, to the best of our knowledge, there is no known parameterizable, closed-form distribution
function over arbitrary convex polytopes as in our setting. In fact, even uniform sampling over a
convex polytope is an active research problem [8].

We sequentially constructed an action a from the polytope action space A in the previous section. Now,
we describe how to utilize this process to define a parameterizable policy function over the action
space A. We model the distribution for allocating each individual entity using a beta distribution that
is normalized to the range [amin

i , amax
i]. This distribution is also known as the four-parameter beta

distribution [7]. Its probability density function is defined as:

p(x;α, β, amin
i , amax

i) =
(x− amin

i)α−1(amax
i − x)β−1

(amax
i − amin

i)α+β−1B(α, β)
,

where B(α, β) is the beta function. It is important to note that any other parameterizable distributions
with bounded support in the range [amin

i , amax
i] can be used, such as a squashed Gaussian distribution.

However, our preliminary experiments indicated that the beta distribution performs particularly well.

To optimize the policy πθ(s) over the complete allocations, we follow the approach of [19] for training
an autoregressively dependent series of sub-policies. A fixed but arbitrary order of entities is used
for sampling the allocations ai. The sub-policy πi

θ(ai|a1, . . . , ai−1) is conditional on the previous
allocations a1, . . . , ai−1. Using this autoregressive dependence structure, the policy is defined as:
πθ(a|s) = π1

θ(a1|s) · π2
θ(a2)|s, a1) . . . πn

θ (an|s, a1, . . . , an−1). This policy can be jointly optimized.
We parameterize each sub-policy using a neural network that receives an embedding of the state and
the previously selected actions as input.

5

G Autoregressive Policy Optimization for Constrained Allocation Tasks 143

(a) Mean allocations ai

All
oc

ati
on

 3 Allocation 2

Allocation 1

(b) Uniform sampling

All
oc

ati
on

 3 Allocation 2

Allocation 1

(c) Our initialization

Figure 3: The impact of initialization in an unconstrained simplex. (a) Mean allocations ai to each
entity in a seven entity setup when sampling each individual allocation using the uniform distribution
(red) vs. our initialization (blue). (b,c) Distribution of 2500 allocations in a three entity setup when
sampling each individual allocation uniformly (b) or using beta distributions with parameters set
according to our initialization (c).

Algorithm 1 Maximum likelihood estimation of parameter de-biasing terms
Input: Polytope A = {a ∈ Rn

0,+|Ca ≤ b}, number of samples k
Output: Beta distribution shape parameters α̂i, β̂i as de-biasing terms

1: Let A(1)
j = A for j = {1, . . . , k}

2: Sample k allocations {a(j)}j=1...k uniformly within A via rejection sampling
3: for each dimension i in {1, . . . , n} do
4: for each sample j in {1, . . . , k} do
5: Calculate interval [amin

(j)i , a
max
(j)i] using LP based on A

(i)
j

6: Normalize sampled allocation to support [0,1] of beta distribution: anorm(j)i =
a(j)i−amin

(j)i

amax
(j)i

−amin
(j)i

7: Compute polytope A
(i+1)
j from A

(i)
j using sampled allocation a(j)i (see Eq. 2)

8: end for
9: ML estimation of beta distribution parameters α̂i, β̂i using {anorm(j)i }j=1...k

10: end for

An entropy term is often used to encourage exploration. However, our policy does not have a
closed-form solution for entropy. Therefore, we follow [19] to empirically estimate the entropy:

Hemp(πθ(·|s)) = Ea∼πθ(·|s)

[
n∑

i=1

H
(
πi
θ (·|s, a1, . . . , ai−1)

)
]

(3)

Here, H denotes the entropy of the beta distribution. We compute the expectation within each training
batch to estimate the entropy of the complete policy function over the entropies of single actions. Let
us note that when using an off-policy algorithm, the actions must be resampled using the current
policy. As the current policy might have a significantly different parametrization than the sampling
policy, we have to generate actions based on the current policy to estimate the entropy properly.

4.3 Policy Network Architecture

We create an embedding of the state using an MLP, denoted as fθ(s) = MLP (s). We pa-
rameterize the probability distribution over allocations for each entity using an MLP πi

θi
(s) =

MLP (fθ(s), a1, . . . , ai−1), which receives the latent encoding of the state and the previously sam-
pled allocations a1, . . . , ai−1 as input. Note that each of the MLPs πi

θi
has its own parameters. For

further details, we refer to the Appendix.

4.4 De-biasing Mechanism

A drawback of generating actions by an autoregressive process is that a random initialization of the
beta distributions leads to a sampling bias towards the entities selected earlier in the process. The

6

144 APPENDIX

effect is caused by the autoregressive dependency structure of our process. To sample an allocation of
80% for entity ai the cumulated fixed allocations for earlier entities

∑i−1
j=1 aj must be at most 20%.

However, this is rather unlikely if we initialize the distribution for all entities in a similar way. This
effect can be observed in the red bars of Figure 3a. The red bars correspond to the average allocation
for each dimension when uniformly drawing from an unconstrained seven-dimensional simplex with
our autoregressive process for each entity ei. As expected, the mean for the first dimension is 0.5,
which is the mean of a uniform distribution over the interval [0, 1]. Correspondingly, the mean is
decreased by half for any successive further entity until entity 6, which has the same mean as entity
7 due to the simplex constraint. Even though the bias is more complex for constrained allocation
spaces, a similar effect can be expected.

For policy gradient methods, such a bias in the initialization of the policy function can lead to
convergence to poorly performing policies or long training times. As the initial policy is crucial
for ensuring sufficient exploration of the state-action space, a biased initial distribution leads to
underexplored regions in the state-action space. Consequently, well-performing actions might not
be discovered. To counter this effect, we propose a de-biasing mechanism that adjusts the initial
parameters of beta distributions to estimate a uniform sampling over the joint action space. During
learning, the amount of required exploration decreases, and the parameters of the policy function are
optimized to increase the cumulative rewards. Thus, the impact of our de-biasing mechanism should
diminish over time. We achieve this effect by adding a de-biasing term to the linear layers’ initial
bias terms, predicting αi and βi for entity i. As the default initialization of the bias terms has zero
means, the first iterations use α and β values close to the de-biasing terms.

To determine suitable initial values for each iteration step, we proceed as described in Algorithm 1.
We start by uniformly sampling n data points from the complete action space A. We do this by
rejection sampling, i.e., we sample over the standard simplex and reject the samples outside the action
polytope A. To determine the parameters corresponding to the acquired uniform sample, we project
any allocation for each entity to a standard interval between [0, 1]. However, for this step, we have to
determine the interval [amin

i , amax
i] for each entity following the above process. We determine the

relative position in this interval, corresponding to the position in the named standard interval. After
collecting relative values for each sample and entity, we employ the standard maximum likelihood
estimator to generate an empirical estimate of the αi and βi for each entity ei. The blue bars in
Figure 3a correspond to the results on the unconstrained seven-dimensional unconstrained simplex.
Figure 3b shows autoregressive sampling based on uniform distribution, whereas Figure 3c displays
the result of our initialization for a three-dimensional example. It can be seen that the result of our
initialization of the autoregressive process closely resembles a uniform distribution over the complete
action space.

5 Experiments

In this section, we provide an extensive experimental evaluation of our approach in various scenarios
demonstrating its ability to handle various allocation tasks and constraints. We use two real-world
tasks: Portfolio optimization [27] and compute load distribution [3]. Additionally, we create a
synthetic benchmark with a reward surface generated by a randomly initialized MLP. Each of these
tasks comes with a different set of allocation constraints. We will briefly describe each setting in the
following and refer the reader to the Appendix for more details.

Portfolio Optimization Portfolio optimization is a prominent constrained allocation task. In this
task the agent has to allocate its wealth over 13 assets at each time step. We use the environment
of [27]. Each investment period contains 12 months and the investor needs to reallocate the portfolio
each month. This environment is highly stochastic since each trajectory is sampled from a hidden
Markov model fitted on real-world NASDAQ-100 data. After every 5120 environment steps, we
run eight parallel evaluations on 200 fixed trajectories. Constraints in this setting define minimum
and maximum allocation to groups of assets. Additionally, we add constraints where the constraint
coefficients in C correspond to portfolio measures like a minimum dividend yield or a maximum on
the CO2 intensity.

Compute Load Distribution The environment is based on the paper of [3] and simulates a data
center in which computational jobs need to be split into sub-jobs to enable parallel processing across
nine servers. Here, we use five constraints that are randomly sampled as follows: First, we sample

7

G Autoregressive Policy Optimization for Constrained Allocation Tasks 145

Ours OptLayer Lagrange P3O IPO CPO CUP

0 20000 40000 60000 80000 100000120000140000
Environment Steps

12.25
12.50
12.75
13.00
13.25
13.50
13.75
14.00

Ep
iso

de
 R

ew
ar

d
M

ea
n

0 50000 100000 150000 200000
Environment Steps

0.18

0.20

0.22

0.24

0.26

Ep
iso

de
 R

ew
ar

d
M

ea
n

0 20000 40000 60000 80000 100000 120000 140000
Environment Steps

0

10

20

30

40

50

Ep
iso

de
 R

ew
ar

d
M

ea
n

0 20000 40000 60000 80000 100000120000140000
Timesteps

0

100

200

300

400

500

Nu
m

be
r o

f C
on

st
ra

in
t V

io
la

tio
ns

(a) Synthetic Benchmark

0 50000 100000 150000 200000
Timesteps

0

500

1000

1500

2000

Nu
m

be
r o

f C
on

st
ra

in
t V

io
la

tio
ns

(b) Portfolio Optimization

0 20000 40000 60000 80000 100000120000140000
Timesteps

0

1000

2000

3000

4000

5000

6000

7000

Nu
m

be
r o

f C
on

st
ra

in
t V

io
la

tio
ns

(c) Compute Load Distribution

Figure 4: Learning curves of all methods in three environments. The x-axis corresponds to the
number of environment steps. The y-axis is the average episode reward (first row), and the number of
constraint violations during every epoch (second row). For portfolio optimization (b) we report the
performance running eight evaluation on 200 fixed market trajectories. This is because in training,
every trajectory is different which makes comparisons hard. Curves smoothed for visualization.

the number of affected entities for each constraint. We then sample the constraint coefficients from
the range [0, 1].

Synthetic Environment In addition to the aforementioned environments, we propose a synthetic
benchmark. The reward surface consists of an MLP with random weights. Each episode compromises
two states. As it is completely deterministic, it provides a simple yet effective way to benchmark
approaches for constrained allocation tasks. In this setting, we create the constraints by randomly
sampling 30 points and use their convex hull as the polytope defining the action space. We utilize a
seven-dimensional setting with 611 constraints in our experiments.

5.1 Experimental Setup

We train PASPO using PPO [22] and compare our approach to various baselines, including state-of-
the-art approaches for constrained allocation tasks and Safe RL. Specifically, we compare PASPO
with five representative approaches from Safe RL: CPO [2], CUP [30], IPO [14], P3O [31], and
PPO with Lagrangian relaxation. Additionally, we compare our method to OptLayer [18], a popular
projection-based method for linear hard constraints. To maintain a consistent and fair comparison
across different methods, we use the same hyperparameters across the different methods if possible.
Many Safe RL approaches have difficulties handling equality constraints [11]. Therefore, we use
a Dirichlet distribution to represent the policy in the baselines, thereby ensuring satisfaction of the
simplex equality constraint. We do not share the parameters between the policy and value function.
We use a fully-connected MLP with two hidden layers of 32 units and ReLU non-linearities for each
policy, cost, and value function. In our approach, the state encoder and each policy head consists of a
two-layer MLP. The training process is run for 150,000 steps and the results are averaged over five
different seeds. In the portfolio optimization task, we use ten different seeds due to the stochasticity
of the financial environment and train for 250,000 steps. Given the relatively small network sizes,
training is conducted exclusively on CPUs. We implement our algorithm and the baselines using
RLlib and PyTorch. More details regarding the environments, training, and hyperparameters can be
found in the Appendix.

5.1.1 Performance of PASPO

We visualize the performance and constraint violations of all methods across our three environments
in Figure 4. A tolerance of 1e−3 is used for evaluating constraint violations and we report the total
number of violations per episode. In all three environments, PASPO converges faster to a higher

8

146 APPENDIX

0 5000 10000 15000 20000
Environment Steps

12.5

13.0

13.5

14.0

14.5

15.0

15.5
Ep

iso
de

 R
ew

ar
d

M
ea

n

0 5000 10000 15000 20000
Environment Steps

12.5

13.0

13.5

14.0

14.5

15.0

15.5

Ep
iso

de
 R

ew
ar

d
M

ea
n

Figure 5: Ablations in (a) show the performance of our approach with (blue) and without (orange)
the de-biased initialization. In (b) depicts the impact of the allocation order. We reverse the allocation
order (red).

average return compared to baselines. Additionally, while all compared soft-constraint methods
display constraint violations, only the hard constraint approaches PASPO and OptLayer guarantee to
permanently satisfy the constraints. Finally, we can observe that the variance of PASPO is rather low
compared to other methods. However, in portfolio optimization task (b) our approach displays some
variance which we attribute to the stochasticity of the environment. Overall, these results demonstrate
that our approach is not only able to consistently outperform other algorithms in terms of rewards but
also guarantees no constraint violations.

5.1.2 Importance of de-biased Initialization and Order

We conduct ablation studies to investigate the impact of our de-biased initialization and the order
of entity allocation on our synthetic benchmark. No constraints are applied except for the simplex
constraint to highlight the effects. The results, shown in Figure 5, indicate that without de-biased
initialization (orange in (a)), learning is slower and converges prematurely to a sub-optimal policy.
In (b), we explore the impact of allocation order by reversing it (red) and observe no significant
performance difference. This indicates that our approach is robust to the allocation order due to the
use of the de-biasing initialization.

6 Limitations and Future Work

While PASPO guarantees that constraints are always satisfied, it is considerably more computationally
expensive than standard neural networks in allocation tasks with many entities, as the sampling of
each action requires solving a series of linear programs. RL in high-dimensional continuous action
spaces is a very challenging task. Our approach cannot overcome this issue and also struggles in
very high-dimensional settings. For future work, we plan to extend PASPO to also incorporate state-
dependent constraints. While we evaluate our approach only on benchmarks with hard constraints,
it can be applied to settings with both hard and soft cumulative constraints. In these scenarios, our
method for handling hard constraints can be easily combined with most Safe RL algorithms to handle
soft cumulative constraints.

7 Conclusion

In this paper, we examine allocation tasks where a certain amount of a resource has to be distributed
over a set of entities at every step. This problem has many applications like logistics tasks, portfolio
management, and computational workload processing in distributed environments. In all these
applications, the set of feasible allocations might be bound by a set of linear constraints. Formally,
these restrict the action space to a convex polytope. To define a stochastic policy function that can
be used with policy gradient methods in RL, we propose an autoregressive process that computes
allocation sequentially. We employ linear programming to compute the range of feasible allocations
for an entity given the already fixed allocations of other entities. Our policy function consists of
a sequence of one-dimensional beta distributions where the shape parameters α and β are learned
by neural networks. To counter the effect of initialization bias, we utilize a de-biasing mechanism
to ensure sufficient exploration and prevent premature convergence to a sub-optimal policy. In our

9

G Autoregressive Policy Optimization for Constrained Allocation Tasks 147

experiments, we demonstrate that our novel method PASPO yields better results than state-of-the-art
approaches while not having any constraint violations. Furthermore, we show that our initialization
method yields better results than random initializations and counters the impact of the allocation
order.

10

148 APPENDIX

References
[1] J. Abadie. Generalization of the wolfe reduced gradient method to the case of nonlinear

constraints. Optimization, pages 37–47, 1969.

[2] J. Achiam, D. Held, A. Tamar, and P. Abbeel. Constrained policy optimization. In International
conference on machine learning, pages 22–31. PMLR, 2017.

[3] L. Ale, S. A. King, N. Zhang, A. R. Sattar, and J. Skandaraniyam. D3pg: Dirichlet ddpg for
task partitioning and offloading with constrained hybrid action space in mobile-edge computing.
IEEE Internet of Things Journal, 9(19):19260–19272, 2022.

[4] E. Altman. Constrained Markov Decision Processes, volume 7. CRC Press, 1999.

[5] B. Amos and J. Z. Kolter. Optnet: Differentiable optimization as a layer in neural networks. In
International Conference on Machine Learning, pages 136–145. PMLR, 2017.

[6] A. Bhatia, P. Varakantham, and A. Kumar. Resource constrained deep reinforcement learning. In
Proceedings of the International Conference on Automated Planning and Scheduling, volume 29,
pages 610–620, 2019.

[7] J. Carnahan. Maximum likelihood estimation for the 4-parameter beta distribution. Communi-
cations in Statistics-Simulation and Computation, 18(2):513–536, 1989.

[8] Y. Chen, R. Dwivedi, M. J. Wainwright, and B. Yu. Fast mcmc sampling algorithms on
polytopes. Journal of Machine Learning Research, 19(55):1–86, 2018.

[9] Y. Chow, M. Ghavamzadeh, L. Janson, and M. Pavone. Risk-constrained reinforcement learning
with percentile risk criteria. Journal of Machine Learning Research, 18(167):1–51, 2018.

[10] G. Dalal, K. Dvijotham, M. Vecerik, T. Hester, C. Paduraru, and Y. Tassa. Safe exploration in
continuous action spaces. arXiv preprint arXiv:1801.08757, 2018.

[11] S. Ding, J. Wang, Y. Du, and Y. Shi. Reduced policy optimization for continuous control with
hard constraints. Advances in Neural Information Processing Systems, 36, 2024.

[12] S. Gu, L. Yang, Y. Du, G. Chen, F. Walter, J. Wang, Y. Yang, and A. Knoll. A review of safe
reinforcement learning: Methods, theory and applications. arXiv preprint arXiv:2205.10330,
2022.

[13] Q. Liang, F. Que, and E. Modiano. Accelerated primal-dual policy optimization for safe
reinforcement learning. arXiv preprint arXiv:1802.06480, 2018.

[14] Y. Liu, J. Ding, and X. Liu. Ipo: Interior-point policy optimization under constraints. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 34, pages 4940–4947,
2020.

[15] Y. Liu, A. Halev, and X. Liu. Policy learning with constraints in model-free reinforcement
learning: A survey. In The 30th international joint conference on artificial intelligence (ijcai),
2021.

[16] L. Metz, J. Ibarz, N. Jaitly, and J. Davidson. Discrete sequential prediction of continuous actions
for deep rl. arXiv preprint arXiv:1705.05035, 2017.

[17] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and M. Riedmiller.
Playing atari with deep reinforcement learning. arXiv preprint arXiv:1312.5602, 2013.

[18] T.-H. Pham, G. De Magistris, and R. Tachibana. Optlayer-practical constrained optimization
for deep reinforcement learning in the real world. In 2018 IEEE International Conference on
Robotics and Automation (ICRA), pages 6236–6243. IEEE, 2018.

[19] T. PIERROT, V. Macé, J.-B. Sevestre, L. Monier, A. Laterre, N. Perrin, K. Beguir, and O. Sigaud.
Factored action spaces in deep reinforcement learning, 2021. URL https://openreview.
net/forum?id=naSAkn2Xo46.

11

G Autoregressive Policy Optimization for Constrained Allocation Tasks 149

[20] S. Sanket, A. Sinha, P. Varakantham, P. Andrew, and M. Tambe. Solving online threat screening
games using constrained action space reinforcement learning. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 34, pages 2226–2235, 2020.

[21] J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz. Trust region policy optimization.
In International conference on machine learning, pages 1889–1897. PMLR, 2015.

[22] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Proximal policy optimization
algorithms. arXiv preprint arXiv:1707.06347, 2017.

[23] A. Stooke, J. Achiam, and P. Abbeel. Responsive safety in reinforcement learning by pid
lagrangian methods. In International Conference on Machine Learning, pages 9133–9143.
PMLR, 2020.

[24] A. Tavakoli, F. Pardo, and P. Kormushev. Action branching architectures for deep reinforcement
learning. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 32, 2018.

[25] C. Tessler, D. J. Mankowitz, and S. Mannor. Reward constrained policy optimization. In
International Conference on Learning Representations, 2018.

[26] Y. Tian, M. Han, C. Kulkarni, and O. Fink. A prescriptive dirichlet power allocation policy with
deep reinforcement learning. Reliability Engineering & System Safety, 224:108529, 2022.

[27] D. Winkel, N. Strauß, M. Schubert, Y. Ma, and T. Seidl. Constrained portfolio management
using action space decomposition for reinforcement learning. In Pacific-Asia Conference on
Knowledge Discovery and Data Mining, pages 373–385. Springer, 2023.

[28] D. Winkel, N. Strauß, M. Schubert, and T. Seidl. Simplex decomposition for portfolio allo-
cation constraints in reinforcement learning. In K. Gal, A. Nowé, G. J. Nalepa, R. Fairstein,
and R. Radulescu, editors, ECAI 2023 - 26th European Conference on Artificial Intelligence,
September 30 - October 4, 2023, Kraków, Poland - Including 12th Conference on Prestigious
Applications of Intelligent Systems (PAIS 2023), volume 372 of Frontiers in Artificial Intelli-
gence and Applications, pages 2655–2662. IOS Press, 2023. doi: 10.3233/FAIA230573. URL
https://doi.org/10.3233/FAIA230573.

[29] L. Yang, J. Ji, J. Dai, L. Zhang, B. Zhou, P. Li, Y. Yang, and G. Pan. Constrained update
projection approach to safe policy optimization. Advances in Neural Information Processing
Systems, 35:9111–9124, 2022.

[30] L. Yang, J. Ji, J. Dai, Y. Zhang, P. Li, and G. Pan. Cup: A conservative update policy algorithm
for safe reinforcement learning. arXiv preprint arXiv:2202.07565, 2022.

[31] L. Zhang, L. Shen, L. Yang, S. Chen, X. Wang, B. Yuan, and D. Tao. Penalized proximal policy
optimization for safe reinforcement learning. In Proceedings of the Thirty-First International
Joint Conference on Artificial Intelligence, IJCAI-22, pages 3744–3750, 2022.

[32] Y. Zhang, Q. Vuong, and K. Ross. First order constrained optimization in policy space. Advances
in Neural Information Processing Systems, 33:15338–15349, 2020.

A Environments

The implementation for all three environments can be found at: https://github.com/niklasdbs/
paspo.

A.1 Financial Environment

The financial environment used for testing our approach is based on [28]. The financial market
trajectories in this environment are sampled from a hidden Markov model, which was fitted based
on real-world NASDAQ-100 data from January 3rd, 2011 to December 1st, 2021. The environment
offers differently sized data sets of randomly selected assets contained in the NASDAQ-100. The
experiments in the financial environment for this paper are run with 13 assets, which corresponds to

12

150 APPENDIX

the model_parameter_data_set_G_markov_states_2_12 data set with the include_cash_asset=true
option. We initialize the environment with seed=2.

Table 1 shows a list of the assets used in the experiments.

For the experiments a random combination of two types of constraints typical for financial tasks is
used: (a) a randomly selected subset of assets to either stay above or below an randomly selected
allocation threshold and (b) thresholds for financial or environmental portfolio measures that can
be calculated as an weighted average of the assets’ individual measures, i.e., as a weighted linear
combination. A list of these measure can be found in Table 2.

The experiments include 5 constraints, of which the number constraints of type (a) and type (b) is
randomly decided. The exact implementation can be found in our code polytope_loader.py (gener-
ate_random_fin_env_polytope_rejection_sampling). We use the seed 2 to generate the constraints.

Index ISIN Ticker Name

1 - CASH CASH
2 US5949181045 MSFT Microsoft Corporation
3 US0567521085 BIDU Baidu Inc.
4 US00724F1012 ADBE Adobe Inc.
5 US6937181088 PCAR Paccar Inc.
6 US67066G1040 NVDA NVIDIA Corporation
7 US8552441094 SBUX Starbucks Corporation
8 US4612021034 INTU Intuit Inc.
9 US0530151036 ADP Automatic Data Processing Inc.
10 US0231351067 AMZN Amazon.com Inc.
11 US2786421030 EBAY eBay Inc.
12 US0311621009 AMGN Amgen Inc.
13 US7475251036 QCOM Qualcomm Inc.

Table 1: List of assets used in the environment.

Est. Total
Energy Use

To EVIC
USD in
million

Est. Total
CO2

Equivalent
Emissions To
EVIC USD
in million

Est.
Weighted

Average Cost
of Capital,

(%)

Est.
Dividend
yield, (%)

Est. Return
On Equity,

(%)

CASH 0.00 0.00 0.00 0.00 0.00
MSFT 23.49 1.75 8.19 1.89 40.15
BIDU 70.80 15.17 7.12 0.00 9.01
ADBE 12.98 1.12 6.81 2.28 92.49
PCAR 83.66 10.27 7.31 3.14 -43.29
NVDA 17.17 1.58 6.20 3.00 127.85
SBUX 85.73 6.79 7.24 1.13 26.61
INTU 41.23 17.15 7.87 0.00 21.50
ADP 1.70 0.15 8.12 0.56 22.46
AMZN 4.69 0.39 8.28 0.00 44.48
EBAY 3.49 0.30 9.35 0.02 80.24
AMGN 33.87 3.29 7.09 0.73 37.76
QCOM 47.07 4.09 8.33 2.16 36.06

Table 2: KPI estimates for assets based on 2021 (final year of the used data set, source: Refinitiv);
EVIC - Enterprise value including Cash

13

G Autoregressive Policy Optimization for Constrained Allocation Tasks 151

A.2 Compute Environment

The compute environment used for testing our approach is based on [3]. The agent’s task is to
allocate compute jobs to a given set of servers in a data center. A reward is triggered for each job
that was completed in a predetermined maximum allowed computation time. The challenge of this
environment is that the agent needs to match the queue of jobs still to be allocated with the different
computational capabilities of the servers as well as each server’s individual queue of jobs still to
be computed. It is assumed that the compute jobs in the environment can be arbitrarily split and
computed in parallel. The creation of new compute jobs is triggered by n users and follows a Poisson
process. A job is defined by its payload size, i.e., the data to be transferred to a server, its required
CPU cycles for the processing workload, and its maximum allowed time until the job needs to be
completely processed. These attributes for the jobs that can be created by each user are randomly
sampled at creation of the environment.

The experiments in this paper run with a setup of 9 servers and 9 users that generate compute jobs.
The parameter set used is parameter_set_9_9_id_0. We initialize the environment with seed=1. The
randomly sampled specifications for the nine servers can be found in Table 3 and the job attributes
created by the nine users can be found in Table 4.

To generate the constraints, we first sample the number of affected entities between 2 and 8 for each
constraint and randomly choose the affected entities accordingly. We then uniformly sample constraint
coefficients from the interval [0, 1], as well as a corresponding constraint limit between 0 and 1. We
use a seed of 1 to generate 5 constraints. The implementation can be found in polytope_loader.py
(generate_random_polytope_rejection_sampling).

Index Max Compute Cycles per Second
1 2 836 258 583
2 855 913 878
3 652 109 364
4 789 819 414
5 3 187 852 760
6 974 311 629
7 2 005 143 973
8 1 481 875 307
9 2 216 715 088

Table 3: Server Specifications

User Data Size in Bits
per Job

Required
Compute Cycles

per Job

Average Number
of Jobs Created

per Interval

Interval Length
in Seconds

1 587 168 1 690 694 10 0.01
2 240 447 1 092 255 10 0.01
3 257 396 867 139 10 0.01
4 364 400 819 594 10 0.01
5 387 953 3 463 247 10 0.01
6 309 269 2 300 810 10 0.01
7 44 420 1 129 119 10 0.01
8 318 062 1 092 402 10 0.01
9 490 880 1 044 736 10 0.01

Table 4: User/Job Specifications

A.3 Synthetic Benchmark

In addition to these environments, we propose a synthetic benchmark. Its reward surface consists of
an MLP with random weights. An example of the reward surface in three dimensions is visualized in
Figure 6 Each episode has two states. Since it is completely deterministic, it provides a simple but

14

152 APPENDIX

0

10

20

30

40

50

60

70

80

90

100

100

90

80

70

60

50

40

30

20

10

0

0 10 20 30 40 50 60 70 80 90 100

Al
loc

at
ion

 3 Allocation 2

Allocation 1

6.2

6.4

6.6

6.8

7.0

7.2

7.4

Re
wa

rd

Figure 6: Example of the reward surface of our synthetic benchmark in three dimensions under
constraints.

effective way to benchmark approaches for constrained allocation tasks. In this setting, we create
the constraints by randomly sampling 30 points and use their convex hull as the polytope defining
the action space. We use a seven-dimensional setting with 611 constraints in our experiments. More
specifically, the network has one hidden layer and ReLU as a non-linearity. The input layer receives
the state (as a number, i.e., 0 or 1) and the action as input and has an output size of 32, the hidden layer
has an input size of 32 and output size of 16. The output layer has an input size 16 and a output size
of 1. The exact initialization of the neural network weights can be found in our code (synth_env.py:
MLPRewardNetwork). To generate the environment we use the seed 1 in our experiments.

To generate the constraints, we sample 30 randomly from a Dirichlet distribution with concentration
parameters set to 1. We then build the convex hull of these points and convert the resulting polytope
into its halfspace representation, i.e., a system of linear inequalities which we use as constraints.
We use the seed of 1 to generate the constraints. This results in 611 constraints. The algorithm to
generate the constraints can be found in the code (random_polytope_generator.py)

B Architecture

s state
encoder

polytope
constraints

Branch
one

Branch
two

Branch
three

xs

LP
solver

LP
solver

LP
solver

amin
1 , amax

1 amin
2 , amax

2 amin
3 , amax

3

a1 a2 a3

α1, β1 α2, β2 α3, β3

n

. . .

. . .

. . .

Figure 7: Architecture of PASPO

C Hyperparameters/Training

In Table 5 we list the most important parameters and hyperparameters. The full configurations used
can be found in the config files (yaml/hydra based) in our code (run configs directory). We tuned
hyperparameters on our synthetic benchmark with five dimensions and five constraints.

We do not train using GPUs because of the small network sizes. We used an internal CPU cluster with
consumer machines and servers ranging from 8 to 90 cores and RAM between 32GB and 512GB.

15

G Autoregressive Policy Optimization for Constrained Allocation Tasks 153

Parameter Ours IPO P3O CUP Lag. OptLayer CPO
Training env steps 150,000 (synth, compute), 250,000 (portfolio optimization)
Episode/Rollout length 512 environment steps
Number of parallel envs 8
Learning Rate 1e-3 1e-3 1e-3 1e-3 1e-3 1e-3 –
Gradient clipping 2.0
Minibatch size 64
Optimizer Adam
GAE lambda 0.95
Discount factor 1.0
No. grad update it per
epoch

10 (CPO only for the critic 40)

PPO clip parameter 0.3 0.3 0.3 0.3 0.3 0.3 –
Entropy coefficient 0.01 0.01 0.01 0.01 0.01 0.01 –
Cost limit – 1e-3 0.0 0.0 0.0 0.0 0.0

Table 5: The most important Parameters and Hyperparameters for Various Methods

D Guaranteed Constraint Satisfaction

In the following, we proof that our approach PASPO always guarantees constraint satisfaction and
that our method is able to sample all possible actions from the constrained action space.

Definitions: Let A be the set of all actions that can be sampled with PASPO, and let P = {a ∈
Rn|Ca ≤ b} be the convex polytope that corresponds to constrained action space. We define
A

(i+1)
∗ = {a ∈ Rn|C(i+1)a(i+1) ≤ b

(i+1)
∗ ,∀j = 1, . . . , i : aj = a∗j} where b

(i+1)
∗ = b −

∑i
j=1 a

∗
j

c1j

...
cmj

 and C(i+1) and a(i+1) as defined in the paper.

Thus, A(i+1)
∗ is the restricted action space after sampling/fixing already the allocations a∗1, . . . , a

∗
i .

Theorem 1. Let P = {a ∈ Rn|Ca ≤ b} ≠ ∅ be the convex polytope that corresponds to a
constrained action space. Let A be the set of all the points that can be generated by PASPO. It holds
that A = P .

Proof. Well-defined: Show that A(n) ̸= ∅ if P ̸= ∅.
Induction over i:

i = 1 : A
(1)
∗ = {a ∈ Rn|C(1)a(1) ≤ b

(i+1)
∗ } = {a ∈ Rn|Ca ≤ b} = P ̸= ∅

i→ i+ 1 :

(i+ 1 ≤ n) A
(i)
∗ ̸= ∅ ⇒ ∃a↑, a↓ ∈ A

(i)
∗ : a↑i = amin

i , a↓i = amax
i

Now assume an arbitrary a∗i is sampled from [amin
i , amax

i]

⇒ ∃λ ∈ [0, 1] : a∗i = (λa↓ + (1− λ)a↑︸ ︷︷ ︸
:=aλ

)i

By convexity of polytopes as solution spaces for linear inequality systems, we get:

c1,i · · · c1,n

...
. . .

...
cm,i · · · cm,n

aλi
...
aλn

 ≤ b−

i−1∑

j=1

a∗j

c1j

...
cmj

⇐====⇒

(aλ
i =a∗

i)

c1,i+1 · · · c1,n

...
. . .

...
cm,i+1 · · · cm,n

aλi+1

...
aλn

 ≤ b−

i∑

j=1

a∗j

c1j

...
cmj

⇒ aλ ∈ A

(i+1)
∗

16

154 APPENDIX

To show that A = P :

A ⊆ P : Let a∗ ∈ A. In the last step (n), a∗n is sampled (by design) such that

C(n)a∗n ≤ b−
n−1∑

j=1

a∗j

c1j

...
cmj

⇔ Ca∗ ≤ b⇔ a∗ ∈ P

A ⊇ P : Let a∗ ∈ P.⇔ Ca∗ ≤ b⇔ C(i)a∗ ≤ b(i) ∀i⇔ a∗ ∈ A
(i)
∗ ∀i

⇒ We can construct a∗ by sampling a∗i in every step i.⇒ a∗ ∈ A

The intuition of why our approach can guarantee the satisfaction of constraints is based on three
properties that we utilize: (1) If Pi is the set of solutions to an system of linear inequalities, then
by adding further constraints to the system of linear inequalities there will be a new set of solutions
Pi+1 but always such that Pi+1 ⊆ Pi. (2) For any two points amin and amax in a convex set it
can be implied that there exists a point aλ for which the following is true for its i-th dimension
∃λ ∈ [0, 1] : a∗i = (λamin + (1− λ)amax

︸ ︷︷ ︸
:=aλ

)i (3) Linear Programming can determine the upper and

lower bounds for single variables in a system of linear inequalities, i.e. [amin
i , amax

i]∀i.
We start with the original system of linear inequalities with the solution space P1 ̸= ∅ which is a
convex polytope. We use (3) on P1 to determine the upper and lower bounds for a1, i.e. [amin

1 , amax
1].

We sample a value a∗1 from the range [amin
1 , amax

1]. We know that the solution space P1 must contain
at least one point for which in its 1st dimension a1 = a∗1 due to (2). In the next step we add the further
constraint a1 = a∗1 to the system of linear inequalities. This updated system of linear inequalities will
have the solution space P2. Due to (2) P2 ̸= ∅, as well as P2 ⊆ P1. We then repeat the entire process
and use (3) on P2 to determine the upper and lower bounds for a2, i.e. [amin

2 , amax
2]....

After the n-th iteration a∗n will be determined and we then have completed the generation of point
a∗ = (a∗1, ..., a

∗
n) ∈ Pn ⊆ ... ⊆ P1, i.e. we succeed generating a point a∗ that satisfies all original

constraints P1.

E The Impact of the Allocation Order

As already discussed in the ablations in the main paper, with our de-biased initialization the impact of
the allocation order is small. However, without our de-biased initialization, the order of the allocation
has a significant impact on the performance, as illustrated in Figure 8.

0 5000 10000 15000 20000
Environment Steps

13.0

13.5

14.0

14.5

15.0

Ep
iso

de
 R

ew
ar

d
M

ea
n

Figure 8: The impact of the allocation order on PASPO without de-biased initialization in the synthetic
benchmark with two states, a 7-dimensional action space, and no additional allocation constraints.
Blue depicts the standard allocation order (i.e., e1, e2, . . . , en) and red depicts the reversed allocation
order (i.e., the entities are allocated in the reversed order). A significant difference in performance
can be observed with respect to the order without our de-biased initialization. In contrast, Figure 5b
in the paper shows that with the de-biased initialization the difference is not significant.

17

G Autoregressive Policy Optimization for Constrained Allocation Tasks 155

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We define the scope by thoroughly describing the considered task and empiri-
cally justify our approach in the experiments.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We address the limitations of our method in Section 6.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]

18

156 APPENDIX

Justification: Our paper does not contain theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We describe our experimental setup and the used hyperparameters in the main
paper and the appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

19

G Autoregressive Policy Optimization for Constrained Allocation Tasks 157

Answer: [Yes]
Justification: We disclose the code to reproduce the experiments presented in the paper.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We describe the experimental settings in a reasonable level of detail in the
main paper and provide complete information in the appendix and the submitted code.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We use a 2-sigma confidence interval around the estimated mean shown in all
of our plots.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).

20

158 APPENDIX

• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g., negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We provide information about the compute workers used in the Appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Our research does not involve human subjects and conforms with the NeurIPS
Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: Constrained allocations tasks have no direct societal impacts, however, apply-
ing methods for allocation tasks in certain contexts such as finance may indirectly impact
society.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

21

G Autoregressive Policy Optimization for Constrained Allocation Tasks 159

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: As we are not aware of direct ethical issues or direct negative consequences of
our work, we abstain from putting safeguards as described above in place.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We acknowledge the authors of the Portfolio Optimization and Compute Load
Distribution environments by citing the corresponding papers.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

22

160 APPENDIX

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We publish the code of our implementation and benchmark environments. A
documentation can be found in the Appendix and code.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The research presented in this paper does not involve crowdsourcing nor
human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The research presented in this paper does not involve crowdsourcing nor
human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

23

G Autoregressive Policy Optimization for Constrained Allocation Tasks 161

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

24

162 APPENDIX

	Abstract
	Zusammenfassung
	Introduction
	Background on Artificial Intelligence
	Deep Learning
	Reinforcement Learning

	Resource Allocation Tasks
	Discrete Resource Allocation
	Dynamic Ambulance Redeployment
	Dynamic Electric Ambulance Redeployment

	Stochastic Resource Collection
	Continuous Resource Allocation Tasks
	Overview of Continuous Resource Allocation Tasks
	Solving Continuous Allocation Tasks

	Overview of Contributions
	Spatial-Aware Deep Reinforcement Learning for the Traveling Officer Problem
	Reinforcement Learning for Multi-Agent Stochastic Resource Collection
	A Comparison of Ambulance Redeployment Systems on Real-World Data
	DEAR: Dynamic Electric Ambulance Redeployment
	Constrained Portfolio Management Using Action Space Decomposition for Reinforcement Learning
	Simplex Decomposition for Portfolio Allocation Constraints in Reinforcement Learning
	Autoregressive Policy Optimization for Constrained Allocation Tasks

	Conclusion and Outlook
	Limitations and Future Work

	References
	Acknowledgements
	Appendix
	Spatial-Aware Deep Reinforcement Learning for the Traveling Officer Problem
	Reinforcement Learning for Multi-Agent Stochastic Resource Collection
	A Comparison of Ambulance Redeployment Systems on Real-World Data
	DEAR: Dynamic Electric Ambulance Redeployment
	Constrained Portfolio Management Using Action Space Decomposition for Reinforcement Learning
	Simplex Decomposition for Portfolio Allocation Constraints in Reinforcement Learning
	Autoregressive Policy Optimization for Constrained Allocation Tasks

