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Abstract

Traditional public key cryptography relies on certificates to attribute a public key to the
owner. This approach produces significant cost in secure communication because certificates
need to be downloaded and their validity status needs to be tracked. Identity-based Cryptog-
raphy (IBC) offers an alternative by deriving public keys directly from their owners’ unique
identifiers, e.g. email addresses. This method eliminates the need to manage certificates. A
Trusted Third Party (TTP) generates the user’s corresponding secret keys.

A problem arises when a key is revoked because the owner must be able to continue
using their identifier. There are several proposals to handle the revocation problem in IBC.
However, there is little abstract analysis of this problem and the security considerations
are limited to manual proofs for specific approaches and informal explanations of general
properties. This work gives a broader overview: It systematizes revocation mechanisms
overall, identifies three classes of revocation mechanisms in IBC and provides a formalization
for an automated prover to analyze the security properties expected of each class.

The overall systematization happens along two dimensions: 1. “explicit/implicit” (i.e.
validity either needs to be checked or can be ignored by third parties) and 2. “directly/indi-
rectly” (i.e. the mechanism manages revoked keys or it manages valid keys).

All identity-based methods are implicit and indirect, obsoleting all secret keys at a certain
cue and issuing new material to all non-revoked users. They differ in how users obtain new
key material.

This work identifies: 1. The renewal method, where keys are completely replaced, 2. the
individual-update method, where each user receives a customized update token for their
individual key, and 3. the universal-update method, where all users receive the same update
token for their individual keys.

The formalization captures the stages that all classes have in common and the process-
agnostic security goals they ideally achieve. It is adaptable to each class through the math-
ematical dependencies it models for the keys and yields a blueprint model for an automated
analysis with a trace-based prover tool. The proof-of-concept implementation in Tamarin
is the first high-level security analysis of IBC-revocation mechanisms. It confirms both the
weaknesses to decryption key exposure that were found in individual update mechanisms
if they fail to re-randomize the key in the update process and the collusion attack for the
universal update approach that was previously only acknowledged indirectly. It also recon-
ciles the notions of Decryption Key Exposure Resistance and of Forward-/Post-Compromise
Security, which were previously never discussed together.

Based on this work, research might consider more detailed mathematical context of a
certain IBC scheme and its revocation mechanism if and when the problem of modeling
distributive laws is solved. This would allow for a more fine-grained security analysis and
increase trust in revocable identity-based mechanisms. More generally, the proposed formal-
ization can be used as blueprint for the formal verification of obsolescence-based revocation
mechanisms and applications that use key updates outside of IBC.
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Zusammenfassung

Traditionelle Public-Key-Kryptographie nutzt Zertifikate, um öffentliche Schlüssel ihren
Eigentümerinnen zuzuordnen. Dieser Ansatz ist teuer, da man die Zertifikate herunter-
laden und ihre Gültigkeit nachverfolgen muss. Identitäts-basierte Kryptographie (IBK)
erlaubt es, öffentliche Schlüssel direkt aus eindeutigen Identifikatoren, wie z.B. E-Mail-
Adressen, abzuleiten. So erübrigt sich die Zertifikatsverwaltung. Eine vertrauenswürdige
dritte Partei (TTP) erzeugt die entsprechenden geheimen Schlüssel der Nutzerinnen.

Ein Problem tritt auf, wenn ein Schlüssel widerrufen wird, denn die Eigentümerin soll ihren
Identifikator behalten. Trotz mehrerer konkreter Schlüsselwiderruf-Ansätze in IBK gibt es
nur wenig abstrakte Analyse. Deren Sicherheitsbetrachtungen beschränken sich jedoch auf
manuelle Beweise für bestimmte Ansätze oder sind informell. Diese Arbeit bietet einen
umfassenderen Blick: Sie systematisiert Widerrufmechanismen im Allgemeinen, identifiziert
drei Klassen von Widerrufmechanismen in IBK und liefert eine Formalisierung zur Analyse
von Sicherheitseigenschaften jeder Klasse mithilfe eines automatisierten Beweisers.

Die allgemeine Systematisierung hat zwei Dimensionen: 1. ”explizit/implizit“ (d.h. die
Gültigkeit muss von Dritten entweder überprüft werden oder kann ignoriert werden) und
2. ”direkt/indirekt“ (d.h. der Mechanismus verwaltet widerrufene Schlüssel oder verwal-
tet gültige Schlüssel). Alle identitäts-basierten Methoden sind implizit und indirekt: Alle
geheimen Schlüssel verlieren zu einem bestimmten Zeitpunkt ihr Gültigkeit und alle nicht-
widerrufenen Benutzerinnen erhalten neue Schlüssel.

Die Methoden unterscheiden sich in der Generierung neuer Schlüssel. Diese Arbeit iden-
tifiziert: 1. Re-keying, wobei der Schlüssel vollständig ersetzt wird, 2. individuelle Aktu-
alisierungstoken, die jede Benutzerin für ihren individuellen Schlüssel erhält, 3. universelle
Aktualisierungstoken, die alle Benutzerinnen verwenden können.

Die Formalisierung beschreibt die Widerruf-Phasen und die Sicherheitsziele, die alle drei
Klassen idealerweise erreichen. Sie ist für jede Klasse durch die mathematischen Abhängig-
keiten, die sie für die Schlüssel modelliert, anpassbar und liefert eine Blaupause zur Analyse
mit einem Trace-basierten automatisierten Beweiser. Die Proof-of-Concept-Implementierung
in Tamarin ist die erste abstrakte Sicherheitsanalyse von IBK-Widerrufsmechanismen. Sie
bestätigt sowohl die Schwächen gegenüber Decryption-Key Exposure, die in Mechanismen
für individuelle Aktualisierungstoken gefunden wurden, wenn die Schlüssel bei der Aktual-
isierung nicht re-randomisiert werden, als auch den Kollusionsangriff bei der universellen Ak-
tualisierungsmethode, der zuvor nur indirekt anerkannt wurde. Außerdem wird Decryption-
Key Exposure-Resistenz mit Forward-/Post-Compromise-Sicherheit in Einklang gebracht;
die drei Begriffe wurden zuvor nie gemeinsam betrachtet.

Basierend auf dieser Arbeit könnten detailliertere mathematische Zusammenhänge von
IBK-Widerruf-Schemata betrachtet werden, falls das Problem der Modellierung distributiver
Gesetze in automatisierten Beweisern gelöst wird. Dies würde detailliertere Sicherheitsanaly-
sen ermöglichen und das Vertrauen in widerrufbare identitäts-basierte Mechanismen stärken.
Außerdem ist die vorgeschlagene Formalisierung eine Blaupause für die formale Verifizierung
von obsoleszenzbasierten Widerrufmechanismen und Anwendungen jenseits von IBK.
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3.1.1. Boneh & Franklin, 2001: “Näıve” IBC-revocation . . . . . . . . . . . . 20
3.1.2. Boldyreva, Goyal & Kumar, 2008: Non-interactive Revocation . . . . 21
3.1.3. Seo & Emura, 2013: Decryption key exposure attack and resistance . 21
3.1.4. Further work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2. Formal verification of IBC and revocation approaches . . . . . . . . . . . . . 23
3.2.1. IBC and IBC-revocation . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2.2. Other revocation problems . . . . . . . . . . . . . . . . . . . . . . . . 24

4. Assessment and classifications for IBC-revocation mechanisms 27
4.1. Characteristics and comparison . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.2. Two dimensions of key revocation . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.3. Three revocation classes for identity-based cryptography . . . . . . . . . . . . 36

4.3.1. Key renewal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.3.2. Individual update token . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.3.3. Universal update token . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.4. Assessment summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5. Formal model of revocation in Identity-based cryptography 41
5.1. Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

xiii



Contents

5.2. Minimal revocation example . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.3. State diagram and formalization of each state . . . . . . . . . . . . . . . . . . 45
5.4. Security properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.4.1. Forward Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.4.2. Post-Compromise Security . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.4.3. Decryption Key Exposure Resistance Forward and -Backward . . . . . 49
5.4.4. Collusion Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.5. Adversary model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.5.1. Adversary knowledge . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.5.2. Cryptographic primitives and mathematical dependencies . . . . . . . 52

5.6. Formalization summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

6. Modeling IBC-revocation mechanisms 55
6.1. Tool choice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
6.2. Tool background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

6.2.1. Atomic terms, functions and the equational theory . . . . . . . . . . . 56
6.2.2. Facts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
6.2.3. Rules and Action Facts . . . . . . . . . . . . . . . . . . . . . . . . . . 57
6.2.4. Restrictions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
6.2.5. Lemmas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

6.3. The state diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
6.3.1. Translating States to Rules . . . . . . . . . . . . . . . . . . . . . . . . 59
6.3.2. Restrictions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

6.4. The security properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
6.4.1. Forward Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
6.4.2. Post-Compromise Security . . . . . . . . . . . . . . . . . . . . . . . . . 68
6.4.3. Decryption Key Exposure Resistance Forward . . . . . . . . . . . . . . 68
6.4.4. Decryption Key Exposure Resistance Backward . . . . . . . . . . . . . 68
6.4.5. Collusion Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

6.5. The adversary model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
6.5.1. Adversary knowledge . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
6.5.2. Corrupting Secret Values . . . . . . . . . . . . . . . . . . . . . . . . . 69
6.5.3. Dependency between mskt and MPKt . . . . . . . . . . . . . . . . . . 70
6.5.4. Dependency between ID, mskt, t and uskID,t . . . . . . . . . . . . . . 70
6.5.5. Dependency between mskt1 and mskt2 . . . . . . . . . . . . . . . . . . 72
6.5.6. Dependency between uskID,t1 and uskID,t2 . . . . . . . . . . . . . . . 72
6.5.7. Dependency between Keys, Plaintext and Ciphertext . . . . . . . . . . 74
6.5.8. Dependency between Epoch Identifiers . . . . . . . . . . . . . . . . . . 74

6.6. Sanity checks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
6.6.1. Meaningful representation . . . . . . . . . . . . . . . . . . . . . . . . . 75
6.6.2. Minimal assumption checks . . . . . . . . . . . . . . . . . . . . . . . . 76

6.7. Modeling summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

7. Results and Evaluation 77
7.1. Setup and Model execution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
7.2. Results of running the models in Tamarin . . . . . . . . . . . . . . . . . . . 80

7.2.1. Sanity checks for meaningful representation . . . . . . . . . . . . . . . 80

xiv



Contents

7.2.2. Overall trivial attacks . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
7.2.3. Approach-specific trivial attacks . . . . . . . . . . . . . . . . . . . . . 83
7.2.4. Non-trivial attacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

7.3. Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
7.3.1. Approaches’ drawbacks and strengths . . . . . . . . . . . . . . . . . . 86
7.3.2. Decryption Key Exposure attacks in the individual-token approaches . 86
7.3.3. Forward Security and Post-Compromise Security in the universal-token

approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
7.3.4. Collusion Resistance and revocation effect . . . . . . . . . . . . . . . . 87
7.3.5. Reconciling Decryption Key Exposure Resistance and Forward-/Post-

Compromise Security . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
7.3.6. Mitigating attacks using forward/backward effects . . . . . . . . . . . 88
7.3.7. Manual vs. automated analysis . . . . . . . . . . . . . . . . . . . . . . 88
7.3.8. Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

7.4. Characteristics, revisited . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

8. Conclusion 91

A. Blueprint for Tamarin code that models an encryption process with key revocation 95

B. Code for key renewal model 109

C. Code for individual update model (separate) 111

D. Code for individual update model (re-randomized) 113

E. Code for universal update model 115

List of Figures 119

Bibliography 121

Acronyms 131

xv





1. Introduction

Asymmetric cryptography is important for many digital cryptographic processes such as
authentication or key agreement. “Asymmetric” cryptography means that there are two
keys in every interaction: One secret key (with which a user can digitally sign a message,
for example) and one public key (with which another user can verify the signature, but can
not sign another message themself).

In the most common key management system, the Public Key Infrastructure (PKI), the
connection between a user and their key is asserted by a commonly trusted Certificate
Authority (CA): Users register their public key with the CA and provide credible evidence
of both their identity and their ownership of the key they present. If the CA is sure that the
user has provided their true identity and legitimately holds the secret key that corresponds
to the presented public key, it issues a corresponding public key certificate.

This process is tedious because every communication partner who wants to use a public key
needs to check the corresponding certificate first. When time or resources are scarce, these
certificates can become a bottleneck. An example is the Internet of Things (IoT), where many
devices have very limited computing power, small storage, or use a small battery [Gug20].

Adi Shamir [Sha85] proposed a different handling of public keys, namely Identity-based
Cryptography (IBC). In this approach, the public key is inherently bound to the identity of
its owner by the underlying mathematics of the cryptographic scheme. A person’s identity
can, for example, be their e-mail-address. When encrypting an e-mail to a user Alice, for
example, one can simply derive her public key from her address “alice@ibc.edu” (which must
be known anyway to communicate with her). Thus, there is no overhead for looking up and
checking her public key certificate.

In a typical PKI, the secret is chosen freely and the public key is computed accordingly.
In IBC, the process is reversed: The public key (= the identity) is fixed, so the secret key
needs to be derived from it. A user must obviously not be able to determine their own secret
key: Otherwise, any user could calculate any other user’s private key from their identity.
Therefore, the computation of the secret key is outsourced to a so-called Trusted Third Party
(TTP), who is assumed to be trustworthy and to have a secure channel with all users. The
TTP has its own key material, namely a Master Public Key (MPK ) and a Master Secret
Key (msk). It uses the msk to derive the users’ secret keys. For any cryptographic operation
that requires a user’s public key, the master public key is also necessary: This ensures the
mathematical connection between the user’s identity, the user’s secret key, and the TTP, so
that the system works and is trustworthy.

The difference in key management is also consequential for the key revocation, since the
revocation mechanisms used in typical PKI are inconsistent with the IBC ideal of reducing
management overhead. PKI revocation relies on Certificate Revocation Lists (CRL), where
revoked keys are blacklisted, or the certificates expire; other mechanisms rely on whitelisting
valid keys. However, in IBC, the core idea is that users can simply derive a public key from
another user’s identity without checking the keys validity through third-party documents,
so black- or whitelisting would undermine the main idea.
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1.1. Research Questions
There are various proposals for key revocation in IBC, but the corresponding papers either
only graze the topic or propose specific schemes which are evaluated along varying security
notions. The literature lacks a systematic treatment of the topic to gain general insights in
the revocation problem for IBC.

Furthermore, specific IBC-revocation schemes and their security properties are mostly
analyzed only manually (and sometimes corrected, see for example [SE13b]). Computer-
aided analyses improve the understanding of security in many areas [Tri20; Sch+12; Coh+20;
BDS17]; for the cryptographic level (rather than, for example, the implementation level),
trace-based tools like Tamarin or ProVerif are popular tools. Computer-aided analyses of
IBC exist ([BHS19; AB22]), but none specifically covers revocation1.

We fill this gap. While the findings from related work mainly point to the limitations of
analyzing IBC with automated provers, our work suggests that analyzing IBC-revocation is
still worthwhile. This is because insights about revocation can be gained on a protocol level,
whereas analyzing specific schemes requires more detailed mathematical modeling.

The main research questions answered in this work is the following:

How can formal verification with an automated prover be used to assess and
confirm the security properties of various revocation techniques in Identity-Based
Cryptography?

It is answered by considering the following sub-questions:

RQ 1) What, if any, are the systematic commonalities and differences between various revo-
cation approaches in IBC?

RQ 2) How can IBC-revocation approaches and their security properties be formally mod-
eled such that a trace-based automated prover can reason about them?

RQ 3) How can the formalization be translated for an automated prover?

RQ 4) Does the formal verification confirm the assumed security properties?

Through the systematic analysis of commonalities and differences among various revocation
approaches in IBC ( RQ 1)), we understand the characteristics that a formal model must
reflect. Answering RQ 2), we understand how to account for differences between the ap-
proaches while retaining a unified model of their security on the level an automated prover
addresses. Translating these models into a format suitable for an automated prover pursuant
to RQ 3) ensures that the formalization is implementable and shows its limits in modeling
the approaches. By running the models and evaluating the results, we answer RQ 4) and
gain a deeper understanding of IBC-revocation security.

1.2. Methodology
We answer the research questions by conducting a literature review to identify and compare
various IBC-revocation approaches. The literature is selected according to its impact and the

1There is one publication that aims to cover both, but the results are doubtful [SVR21]; see Section 3.2.1.
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novelty of the described approach compared to previous work. The main aspects highlighted
about the described approaches are collected and assembled in a comprehensive overview.

The commonalities identified between the approaches allow us to postulate a systemati-
zation of key revocation approaches in general. The systematic differences identified in the
comparison yield a classification into three general approaches. The literature review further
exhibits five security notions suitable for analysis in an automated prover.

The formalization of IBC-revocation is constructed by addressing the building blocks of
an automated prover model. Using a minimal example for an IBC-revocation process, we
identify the possible states and interactions of the agents in a communication scenario to
be reflected in a formal verification model. The security properties are considered in more
detail and adapted to account for the similarity between certain notions.

Tangible results are obtained by translating the formalization to four distinct formal ver-
ification models. We discuss the drawbacks and strengths found in the analysis, compare
the results to previous findings, reconcile differences between the different security notions
considered in literature, and point out the limitations of the analysis.

1.3. Contributions
• We systematize revocation mechanisms in general and place IBC within it.

• We propose a classification of existing revocation mechanisms in IBC.

• We formalize IBC-revocation mechanisms and the corresponding security requirements
in a format that is suitable for automated reasoning.

• We provide a proof-of-concept implementation of the formalization and a blueprint for
further implementations.

• We reconcile the security notion of Decryption Key Exposure Resistance with Forward-
/Post-Compromise Security and review the claimed security properties in the consid-
ered schemes with automated analysis.

1.4. Structure of this work
Beyond the background explained in Chapter 2, this work is structured as follow:

• Chapter 3 systematically describes the main literature on IBC-revocation, on IBC-
verification, and on automated analysis of other revocation approaches.

• Chapter 4 discusses similarities and differences of various IBC-revocation techniques
found in related work. We identify three abstract classes.

• Chapter 5 unifies the three classes in a formalization that reflects the main processes in
IBC-revocation. It serves as a basis for the specific analysis of each class with respect
to the security notions derived from the literature.

• To show that the formalization is useful and suitable for automated reasoning, it is
translated to a blueprint for automated analysis. Using this, four Tamarin models
are implemented as a working example in Chapter 6.
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• Chapter 7 evaluates and discusses the results of the automated analysis, both in their
own right and compared to previous manual analyses.

1.5. Publications
This section lists the publications by the author, first those related to the thesis topic, then
further publications that are not related to the thesis topic.

Publications that are related to this work

1. Nils gentschen Felde, Sophia Grundner-Culemann, and Tobias Guggemos. “Authenti-
cation in dynamic groups using identity-based signatures”. In: 14th International Con-
ference on Wireless and Mobile Computing, Networking and Communications (WiMob).
Limassol, Cyprus, 2018. doi: 10.1109/WiMOB.2018.8589148

Summary: 2 This publication presents the idea of using identity-based schemes in
group communication for sender authentication and introduces the mathemat-
ically verifiable revocation of the keys by re-calculating all keys in the system
(including master key material). It also presents a taxonomy for choosing IBS-
schemes for constrained scenarios.

Own contribution: S. Grundner-Culemann contributed the taxonomy for IBS schemes,
selected the schemes to evaluate and validated the re-key mechanism. All authors
wrote and edited the paper together.

Other contributions: N. gentschen Felde contributed the description of the scenario
and its requirements for reliable access management. T. Guggemos introduced a
Re-Key phase to the selected schemes and contributed the implementation and
evaluation of the chosen schemes as well as the integration of IBS into a group
key management architecture and the distribution of the keys with a Group Key
Management Protocol.

Relevance for this work: The proposed revocation method is mentioned as related work
outside the scope (see final paragraph of Section 3.1).

2. Sophia Grundner-Culemann and Dieter Kranzlmüller. “EUF-ID-UPD-CMA: A se-
curity notion for key-updatable identity-based signature schemes”. In: crypto day
matters 32. Ed. by Stefan-Lukas Gazdag, Daniel Loebenberger, and Michael Nüsken.
Bonn: Gesellschaft für Informatik e.V. / FG KRYPTO, 2021. doi: 10.18420/cdm-
2021-32-34

Summary: A new notion for “EUF-ID-UPD-CMA”-security (Existential unforgeable
under chosen message, identity and update-period) could help understand revo-
cation mechanisms for identity-based signature keys, specifically the security of
universal updates. This publication proposes a research outline with which a
meaningful notion could be derived and proved useful.

Own contribution: S. Grundner-Culemann proposed the security notion and wrote this
research outline.

2To avoid discrepancies, this summary and the descriptions of the contributions quote the same section
in [Gug20] almost verbatim.
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Relevance for this work: The publication is an abstract for a presentation the author
held at the 32nd “Krypto-Tag” organized by the Gesellschaft für Informatik. The
presentation included an overview of related work, part of which was compared
more extensively in this work ([BGK08; Gug20], see Table 4.1).

3. Sophia Grundner-Culemann. “A Survey of Revocation Mechanisms in Identity-based
Cryptography”. In: crypto day matters 34. Ed. by Daniel Loebenberger and Michael
Nüsken. Bonn: Gesellschaft für Informatik e.V. / FG KRYPTO, 2022. doi: 10.
18420/cdm-2022-34-03
Summary: This publication introduces the idea that there are four different flavors of

key revocation (expiration, blacklisting, whitelisting, and obsolescence) and that
identity-based approaches use either expiration or obsolescence, and reviews im-
portant work in this area together with a list of characteristics that distinguishes
revocation mechanisms.

Own contribution: S. Grundner-Culemann proposed the four revocation classes, dis-
cussed the classification of IBS, conducted the literature review and wrote the
text.

Relevance for this work: The publication is an abstract for a presentation that S.
Grundner-Culemann held at the 34th “Krypto-Tag” organized by the Gesellschaft
für Informatik. The presentation contained a first proposal to think about revo-
cation along two dimensions, and the following discussions inspired changes that
finally led to the version presented in Section 4.2. Further, the talk contained
a comparison of various revocation approaches similar to Table 4.1 (with fewer
related work items and partly different characteristics).

4. Tobias Guggemos and Sophia Grundner-Culemann. “group Identity Based Signatures:
Efficiently revoking signing keys in communication groups”. In: crypto day matters
32. Ed. by Stefan-Lukas Gazdag, Daniel Loebenberger, and Michael Nüsken. Bonn:
Gesellschaft für Informatik e.V. / FG KRYPTO, 2021. doi: 10.18420/cdm-2021-
32-33
Summary: This publication explains, recalling own previous research, the use of sym-

metric tokens for key revocation in identity-based signatures and the examples
(two pairing-based and two Schnorr-like signature schemes that are adapted ac-
cordingly). The publication is an abstract for a presentation.

Own contribution: For this mechanism, S. Grundner-Culemann contributed correct-
ness checks for the integration of the update token in existing schemes, and helped
choose the schemes to which the transformations are applied. Therefore, she
helped review and edit the first draft of this publication.

Other contributions: In previous work, T. Guggemos developed the underlying idea,
applied it to selected schemes and discussed performance and security. He wrote
the first draft of this presentation abstract and presented it at the 34th “Krypto-
Tag” organized by the Gesellschaft für Informatik.

Relevance for this work: The mechanism recalled in this publication [Gug20] is the
only representative of the universal update class formally analyzed in this work. In
this work, it is first introduced in the final paragraph of Section 3.1 and repeatedly
referenced after that.
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Other publications
1. Joo Cho, Stefan-Lukas Gazdag, Alexander von Gernler, Helmut Grießer, Sophia Grundner-

Culemann, Tobias Guggemos, Tobias Heider, and Daniel Loebenberger. “Towards
Quantum-resistant Virtual Private Networks”. In: crypto day matters 31. Ed. by
Marcel Selhorst, Daniel Loebenberger, and Michael Nüsken. Bonn: Gesellschaft für
Informatik e.V. / FG KRYPTO, 2019. doi: 10.18420/cdm-2019-31-22

2. Stefan-Lukas Gazdag, Sophia Grundner-Culemann, Tobias Guggemos, Tobias Heider,
and Daniel Loebenberger. “A formal analysis of IKEv2’s post-quantum extension”.
In: Annual Computer Security Applications Conference. ACM Digital Library. New
York, NY, United States: Association for Computing Machinery, 2021, pp. 91–105.
isbn: 9781450385794. doi: 10.1145/3485832.3485885

3. Stefan-Lukas Gazdag, Sophia Grundner-Culemann, Tobias Guggemos, Tobias Heider,
and Daniel Loebenberger. “Migration zu quantenresistenter IT”. in: Sicherheit in
vernetzten Systemen: 28. DFN-Konferenz. Ed. by Albrecht Ude. Books on Demand,
2021, E-1–E-23. isbn: 9783753448848

4. Stefan-Lukas Gazdag, Sophia Grundner-Culemann, Tobias Guggemos, Tobias Heider,
and Daniel Loebenberger. “Entangled Secrets”. In: Linux Magazine 247 (2021),
pp. 16–19. url: https://www.linux-magazine.com/Issues/2021/247/Quantum-
Computing-and-Encryption (visited on 07/02/2021)

5. Stefan-Lukas Gazdag, Sophia Grundner-Culemann, Tobias Guggemos, Tobias Heider,
and Daniel Loebenberger. “Migration zu quantenresistenter IT”. in: Linux Magazin
04 (2021), pp. 84–88. url: https://www.linux-magazin.de/ausgaben/2021/04/
kryptographie/ (visited on 07/02/2021)

6. Stefan-Lukas Gazdag, Sophia Grundner-Culemann, Tobias Guggemos, Tobias Heider,
and Daniel Loebenberger. “Quantensichere IT: ein Blick in die Glaskugel”. In: DFN
Mitteilungen 99 (2021), pp. 34–38. url: https://www.dfn.de/fileadmin/5Presse/
DFNMitteilungen/DFN_Mitteilungen_99.pdf (visited on 07/02/2021)

7. Stefan-Lukas Gazdag, Sophia Grundner-Culemann, Tobias Heider, Daniel Herzinger,
Felix Schärtl, Joo Yeon Cho, Tobias Guggemos, and Daniel Loebenberger. “Quantum-
Resistant MACsec and IPsec for Virtual Private Networks”. In: Security Standard-
isation Research. Ed. by Felix Günther and Julia Hesse. Cham: Springer Nature
Switzerland, 2023, pp. 1–21. isbn: 978-3-031-30731-7. doi: 10.1007/978-3-031-
30731-7_1

8. Nils Mäurer and Sophia Grundner-Culemann. “Formal Verification of the LDACS
MAKE Protocol”. In: crypto day matters 34. Ed. by Daniel Loebenberger and Michael
Nüsken. Bonn: Gesellschaft für Informatik e.V. / FG KRYPTO, 2022. doi: 10.18420/
cdm-2022-34-24

9. Nils Mäurer, Tobias Guggemos, Thomas Ewert, Thomas Gräupl, Corinna Schmitt,
and Sophia Grundner-Culemann. “Security in Digital Aeronautical Communications
A Comprehensive Gap Analysis”. In: International Journal of Critical Infrastruc-
ture Protection 38 (2022), p. 100549. issn: 1874-5482. doi: 10.1016/j.ijcip.
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2. Background

This chapter provides background knowledge about cryptography and formal methods.
Specifically,

• Section 2.1 describes the concept of information security.

• Section 2.2 introduces (asymmetric) cryptography at beginner level.

• Section 2.3 compares the key management approaches PKI and IBC.

• Section 2.4 gives a definition of revocation and key change from the literature (which
is challenged in Chapter 4).

• Section 2.5 delineates the difference between in-group communication and group com-
munication.

• Section 2.6 gives an overview of standard attacker models used in security analyses.

• Section 2.7 introduces automated reasoning in general and trace-based reasoning in
particular.

2.1. Information security
Whether or not a message is confidential or has an authentic source is a question of in-
formation security, a research field that studies certain properties of information and of its
origin.

In the standard document “ISO/IEC 27000”[ISO18], the International Organization for
Standardization (ISO) and the International Electrotechnical Commission (IEC) define seven
such properties. Many information security goals can be achieved or supported with cryp-
tography. As an example, consider the three properties that are most closely connected to
our work:

Confidentiality Property that information is not made available or disclosed to unauthorized
individuals, entities, or processes

Integrity Property of accuracy and completeness

Authenticity Property that an entity is what it claims to be

One can facilitate . . .

. . . confidentiality by encrypting a message that should be confidential with a crypto-
graphic key, so that only the intended recipient(s) can reverse the encryption (decrypt)
and read the message.

9



2. Background

. . . integrity by applying a mathematical function on the message that generates a forgery-
resistant fingerprint of it. If the fingerprint is attached to the message in a secure
manner, the recipient can re-calculate the fingerprint and compare, thus convincing
themself that the message was not altered in transit.

. . . authenticity by signing a message in an unforgeable way. Any recipient with a corre-
sponding verification key can convince themself that the signature is real and that the
message comes from the stated sender.

In this work, the focus is on encryption- and signature mechanisms that use asymmetric
keys. The next section introduces this concept.

2.2. Asymmetric Cryptography

There are two main flavors of cryptographic keys: Symmetric keys and asymmetric keys.
Symmetric keys allow the user to perform inverse cryptographic operations (encrypt –

decrypt, sign – verify) with the same key. That also means that all parties to a conversation
need to have the same key and that they need to obtain it before they can participate.
However, in many settings the communication partners are not pre-acquainted, have no
private channel to communicate and thus can not agree ex ante on the key they would
like to use. Also, a signature generated with a symmetric key can not be attributed to an
individual user, but only to the group of users who shares this key.

In both cases, asymmetric cryptography (or: public key cryptography) helps: Asymmetric
keys come in pairs of one secret key (which only the owner has) and one public key (which is
public knowledge). The keys invert each other in the following way: Consider communication
partners Alice and Bob. Bob can encrypt a message with Alice’s public key, but he can not
decrypt it. Only Alice can decrypt the message, because only she knows the secret key. For
authentication, Alice signs a message with her secret key and Bob (or anyone) can verify the
signature using Alice’s public key. There is a catch, however: Bob needs to ensure that he
uses the correct public key and is not hoodwinked by an attacker who impersonates Alice
and publishes a false key in her name. The next section discusses such key management
questions.

2.3. Key management: PKI and IBC

Public key cryptography only works if Bob knows which key belongs to Alice. This prob-
lem is most commonly solved with a PKI as defined through the X.509 certificate stan-
dard RFC 5280 [Coo+08]. IBC is an alternative that aims to reduce the management over-
head inherent in PKI. Each approach is explained in more detail below, PKI in Section 2.3.1
and IBC in Section 2.3.2.

2.3.1. Public Key Infrastructure (PKI)

In a X.509-Public Key Infrastructure, Alice’s public key is bound to her identity via a
certificate. She obtains it by registering her public key with a so-called CA, a third party
who issues digital certificates of public keys to users. There are three steps:
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1. Alice chooses an asymmetric key pair. This is done in such a way that the secret
key is not (easily) computable from the public key. Usually this means that Alice
chooses a secret key and derives the public key from it.

2. Alice authenticates herself to the CA, presents her public key and proves that
she holds the corresponding secret key. Note that she does not need to disclose her
secret key to the CA for this.

3. In return, the CA signs and issues a certificate stating that the public key in
question belongs to Alice.

Other users who trust the CA will accept this certificate as proof. It is important to note
that the CA is assumed to be trustworthy. Users who do not know or trust the CA will
accept the certificate if the CA itself is certified by a higher-level CA or by a chain of higher-
level CAs that each certifies their subordinates (Chain of Trust) up to a root-CA which the
users do trust.

While this system is functional and well-established, the certificate management is expen-
sive and cumbersome for users, because they need to download certificates and validate them
before using the corresponding public keys. Also, in most cases, it is not enough to validate
a certificate once, but one must re-validate it regularly to make sure that it has not expired
or been revoked (e.g., because the corresponding secret key was stolen).

There are many variants of this basic idea that aim at mitigating concerns about trust,
performance or security; for a short overview, consult [Bas+14].

2.3.2. Identity-based Cryptography (IBC)

A more straightforward way to connect identity and public key, known as Identity-based
Cryptography (IBC), was proposed by Adi Shamir in 1984 [Sha85]: The idea is to math-
ematically derive Alice’s public key from her identity, or more precisely: from the digital
representation of her identity (e.g., her e-mail address). This setting requires that Alice can
not derive the corresponding secret key herself; otherwise, anybody could derive the secret
key from her identity (= her public key). A so-called TTP needs to compute the secret key
for her. The TTP has an asymmetric key pair (the msk and the MPK ) which it uses to
derive the users’ secret keys1. There are, again, three steps:

1. Alice authenticates herself to the TTP and they establish a secure connection.

2. The TTP derives a (or the) user secret key (usk) for Alice using the msk in
such a way that usk is hard to derive from Alice’s identity or the MPK .

3. The TTP sends Alice her secret key over the secure line so that only she learns
it.

Other users who want to communicate with Alice need to know Alice’s identity and the
MPK . From this they can derive Alice’s public key and encrypt messages or verify signatures
with it. In other words, there is no need for double-checking the connection between Alice’s
identity and her public key: They are mathematically connected through the master keys.

1It is usually pre-supposed that the users trust the master key pair; thus, mechanisms of master key man-
agement are out of scope for this work.
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There are proposals for both Identity-based Encryption (IBE) and Identity-based Signatures
(IBS). A classic IBS scheme consists of the following four algorithms [GG09]:

Setup/Key-generation G outputs the master key pair pmsk, MPKq, depending on a security
parameter λ. Other parameters and functions (e.g., mathematical groups, hashing
functions) that are necessary for the specific scheme are chosen as well.

Extract E outputs a signing key usk for a given identity ID.

Signing S signs a message m from the set of all possible messages M using usk. The output
is a signature σ “ Signuskpmq.

Verification V verifies or falsifies that a signature σ corresponds to a given message m, the
stated sender’s Identity (ID), and the TTP’s MPK .

In practice, IBC is scarcely used [Tel23], because it requires strong trust: Another party
besides the user legitimately knows the private key. This is known as key escrow. Therefore,
schemes are only secure under the strong assumption that the third party is trustworthy.

There are ideas for escrow-free IBE and IBS (see for example [LQ04; Zha+12; YSM10]).
To address key revocation in IBC, it is helpful to understand the basic concept, its imple-

mentation in PKI and the closely related concept of key change. The next section explains
them.

2.4. Revocation and Key Change

The US-American National Institute of Standards and Technology (NIST) defines key revo-
cation as “[a] possible function in the lifecycle of a cryptographic key; a process whereby a
notice is made available to affected entities that the key should be removed from operational
use prior to the end of the established cryptoperiod2 of that key.” [Bar20]

Revoking the public key of a user may be necessary if, for example, she leaves her job
for which she used the key, or her secret key was compromised (i.e. definitely or possibly
disclosed to an unauthorized party), or if she is identified as an attacker.

When unacquainted parties (i.e. parties that have not pre-shared any keys, do not know
each other, or have not established any other trust anchor between each other) want to
communicate using public key cryptography, they always need a third, brokering party like
the CA or the TTP, not only for the first connection, but for revocation, too3.

2.4.1. Revocation in PKI: Certificate Revocation Lists (CRLs)

In the X.509 standard PKI, key revocation is commonly solved with Certificate Revocation
Lists (CRLs) (RFC 5280 [Coo+08]), which record certificates that users should no longer
trust and whose associated public keys they should no longer use although they have not
officially expired.

2In the same document, cryptoperiod is defined as “the time span during which a specific key is authorized
for use by legitimate entities or the keys for a given system will remain in effect”.

3The third party entities that issue certificates/keys and those who revoke them are not necessarily the
same, but for the purposes of this work, all third party key management tasks are attributed to the same
abstract instance. For details about the distinction, see [Gug20], for example.
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This approach is cumbersome because it requires an ad-hoc online validation of certificates
when a connection is (re-)established and usually the download of the entire list [Bas+14].

A faster option for validity checks in PKI is the Online Certificate Status Protocol (OSCP),
where users can inquire online about the current status (revoked or valid) of a certificate.
Still, the latency and resource cost for the client checking a certificate may be significant in
both cases.

2.4.2. Key Change

If a user’s key was revoked but they are still authorized to hold a key, a key change4 may
occur; NIST [Bar20] defines this as “the replacement of a key with another key that performs
the same function as the original key”. As possible key change methods it mentions

a) re-keying, where the replacement key is generated independently of the original key, or

b) key update functions, where the replacement key is derived from the original key.

While key updates may be easier to execute, National Institute of Standards and Technology
(NIST) specifies that they are inadmissible in US-federal applications because an attacker
who breaks one of the keys in the update chain also gains information about replaced or
derived keys.

2.5. In-group communication vs. group communication

The use case of this work is one-on-one communication between any two users who use
asymmetric cryptography for encryption or signing, and who trust the same key management
authority to validate their counterpart’s key. For some discussions in this work, it is useful
to collectively address all users who trust the same key management authority and hold
corresponding keys. We therefore treat the non-revoked users as a “group” and revocation
as an exclusion from this group. In that sense, this work considers “in-group” communication
between any two entities with a valid key.

However, this must not be confused with a discussion of group communication, where a
message has more than one sender or recipient. Messages from a TTP may have several
recipients, but they happen on the key management level, not the communication level for
which keys are modeled. They are assumed to be confidential, authentic and integrity-
protected a priori, so the group-communication aspect is not part of our work.

The terminology for the communication scenario considered in this work includes

users, clients: any entities on the communication level who may send messages, apply for
key material or certificates, and act as adversaries.

members (of the group): the users that currently hold a valid key w.r.t. the trusted key
management party; “former members” are those who previously held a key, which has
since been revoked and not re-keyed nor updated by the trusted party. Adversaries
may be (former) group members.

4Some sources also refer to it as key renewal.
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2.6. Attacker models
The security of a protocol or mechanism is captured by two dimensions: What abilities the
attacker is assumed to have and what the security goals are.

There are four basic attacker models in which to analyze cryptographic protocols. They
can be ordered by the increasing ability they respectively attribute to an attacker5:

1. Logics of knowledge and belief The attacker is not concretely modeled at all and
does not have any concrete ability. The model only examines the information that
honest participants (i.e. participants that follow the protocol rules and do not try to
break the security) can deduce from a successful protocol run (e.g., the message length
if the underlying scheme produces a ciphertext that is as long as the message itself).

2. Dolev-Yao model The attacker is modeled as a (dishonest) message carrier who can
intercept, delay, modify, replay, delete and create messages, and whose abilities are
restricted to these operations (or a subset thereof). This model is named after the
authors who introduced it [DY83].

3. Computational model The attacker model is restricted to polynomial-time compu-
tations and may include Dolev-Yao style abilities like message interception. That an
attacker can not break the protocol or cryptographic scheme is proven by reduction,
i.e. arguing that a successful attack on the scheme would imply a successful attack
on a problem that is believed to be computationally hard. It is also known as the
complexity-theoretic model.

4. Information-theoretic model In this model, the attacker has infinite computa-
tional power and may be modeled with Dolev-Yao-style abilities. Roughly speaking,
information-theoretic security is achieved when an attacker can not recognize that she
has the secret key even when she does.

2.7. Formal verification
Cryptography aims at security. As Bruce Schneier famously stated: “Anyone, from the most
clueless amateur to the best cryptographer, can create an algorithm that he himself can’t
break.” [Sch98; Sch11], meaning that people all too easily convince themselves that they have
created an unbreakable cipher when they have not.

Putting cryptographic mechanisms or protocols under careful, many-eyed scrutiny is there-
fore standard procedure to gain trust in their security. Security claims are most often sup-
ported in the form of manual, pen-and-paper reasoning. Still, history is rife with attack
vectors that went unnoticed for years despite rigorous inspection by third parties [NS78;
VP17; CD23]; RFC 6151 [TC11]. Two reasons can be identified [Bar+21]:

1) Security proofs are typically tedious and complex. Spotting logical errors is notoriously
hard even for the most skilled cryptographers.

5While these models are common understanding in IT security canon, the precise hierarchy is not; it appears
in a lecture video “Cathy Meadows, ”Cryptographic Protocol Analysis” (2/9/04)” uploaded to YouTube
by the “securitylectures” channel, showing a lecture including slides held by Catherine Meadows at the
Naval Postgraduate School.
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2) Correct proofs may be based on oversimplified (and unconscious) assumptions, which
fail to catch certain attacks; again, such modeling errors or their implications can be
hard to spot even for experts.

A famous example for the second kind of oversight is the Needham-Schroeder public key
protocol [NS78]. The protocol proposes a simple mechanism whereby Alice and Bob establish
two shared secrets by encrypting and exchanging “recently generated”6 nonces. The security
argument assumes that the participants do not leak secrets, and under this assumption, the
argument is correct. However, if this assumption is relaxed for Bob, he can easily fool
a third party Charlotte into thinking that she is communicating with Alice, while Alice
rightfully believes she is communicating with Bob. Thus, a seemingly innocuous assumption
can obscure a strong attack. Note that Alice is also fooled in one aspect: Bob masquerades
Charlotte’s nonce as his own in his interaction with Alice. Alice remains unaware of this
and inadvertently decrypts Charlotte’s nonce for Bob.

In this particular example, the flaw was detected with a computer-aided analysis [Low96].
It is one of the first and most prominent cases to illustrate how computer-aided formal
verification methods (also referred to as “automated reasoning”) support human reason-
ing [CM12].

Automated reasoning can also be deployed to analyze protocol implementations rather
than design. There are three main levels [Bar+21]:

1. Design-level security means that the underlying mathematics of the mechanism is sound
(computational security) and the protocol logic holds (symbolic security). For example,
if the protocol aims at authenticating the peers to each other, the design-level check
ensures that the logical design of the authentication is indeed effective. The tools
designed for this feat are also called “model checkers” (because they model the logic
of a process and prove certain statements about the model).

2. Functional correctness and efficiency of a program mean that the implementation faith-
fully translates the design and works efficiently. If the implementation deviates from
the specification, e.g. by hard-coding numbers the protocol requires to be chosen at
random, it can not rely on the security guarantees given on the design-level.

3. Implementation-level security means that an attacker can not learn more than they
should when the implementation is deployed, e.g., through side-channel attacks (where
an adversary observes execution times or other, similar side-effects of running a cryp-
tographic program to deduce secret information).

This work addresses revocation mechanisms and their protocol logic, which belong to the
design level. Symbolic model checking is explained in more detail below.

Symbolic model checking

Symbolic model checking abstracts the implementation details of a protocol and reasons
about its structure and components. There are two flavors:

6The protocol relies on Alice to decide whether the nonce that Bob mirrors back to her was recently generated
by herself, and vice versa for Bob.
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• trace-based reasoning, where the properties of possible protocol runs are analyzed
directly

• equivalence-based reasoning, where two possible protocol runs are compared to each
other and an adversary should not be able to distinguish them

The following explanation only covers trace-based reasoning, because it is the focus of this
work. For details about equivalence-based reasoning, check [Bar+21].

A symbolic model consists of the following:

Atomic symbols like keys, messages, nonces, etc., which can not be split into other com-
ponents. This means that the symbolic model can not reason about the contents of
a message, for example, or find attacks that are based on sending messages that are
similar to previous ones. In the same way, relations between keys can only be modeled
with specific functions or equations and usually do not rely on conventional bit- or
number mathematics.

Cryptographic functions are defined as symbols with a certain arity. For example, the
unary function pkp¨q may symbolically express that Alice’s pkA :“ pkpskAq is the
corresponding public key for her secret key skA. Depending on the way these function
terms are used (either in a process description or in the equational theory), the model
captures specific characteristics of the function and allows the prover to derive other
terms from it.

Equational theories are a means to capture the cryptographic meaning of functions. For
example, the connection between symbols skX and pkpskXq is captured by the following
equation that simultaneously gives meaning to the function symbols signp¨, ¨q and
verifyp¨, ¨, ¨q:

verifypm, signpm, skXq, pkpskXqq “ true

It specifies that the function verify evaluates to true if the second argument is a
signature of the message m with a key skX , the verification is done with the public
key corresponding to skX and the first arguments of sign and verify are identical. If
no other equation allows verifyp¨, ¨, ¨q to evaluate to true, the implication holds both
ways. The specific primitives are treated as black boxes and only their abstract role
in the protocol is modeled; that means, “sign” is a stand-in symbol for any signature
method as long as no further mathematical characteristics (e.g., a lattice problem or
a Diffie-Hellman-problem) are modeled for it.

Program state transitions capture the possible steps in the protocol. States have times-
tamps, which allows ordering them, and each contains different information. For ex-
ample, a state may contain a fact hasKeypAlice, skA, pkpskAqq, which codifies that
Alice owns a secret key skA and a corresponding public key.
Some information may be global, so that it appears in every state after a certain
timestamp. When Alice has created her key pair, hasKeypAlice, skA, pkpskAqq should
be a global fact to model that she can use her keys more than once.
Other information may be ephemeral, so that it is generated during one transition and
can be consumed in a later one. For example, a fact FirstMessageSent may emerge as
the result of an agent action SendFirstMessage and serve as the precondition for the
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next step, SendSecondMessage. In this case, the agent action SendSecondMessage con-
sumes the fact FirstMessageSent and the action SendSecondMessage can not happen
again until SendFirstMessage is triggered again. This way, the order in which steps
occur in the protocol is captured in the program.
These components allow the creation of traces, i.e. finite sequences that consist of any
specified protocol steps. Traces can be checked for properties; for example, a sanity
check for the model can ensure that at least one trace exists where the last step of the
protocol is reached. If the order of the steps is modeled correctly, a successful sanity
check means that a normal run of the protocol is possible in this representation.

Security properties are expressed as (conditioned) trace properties, e.g. saying that in all
traces, if Bob seems to interact with Alice, he actually does, unless the attacker knows
a certain key. A model checker reconstructs all possible ways to reach the specified
state and may thus find traces that violate this claim. If all traces (or at least one
trace, depending on what is claimed) fulfill the statement, the property is proven to
hold.

Attacker model Symbolic reasoning tools most often model a Dolev-Yao attacker [Mea11].
It can execute all the same actions as any agent in the system, knows public values
and might be able to leak certain information (depending on the exact model). The
equational theory allows an attacker to derive new knowledge from any information it
has access to. If a model checker finds an attack against the protocol (i.e. a trace that
violates a security claim), the attack is evident from the trace.
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This chapter provides an overview and a discussion of related work. More precisely,

• Section 3.1 briefly outlines several approaches to IBC-revocation and illustrates their
interrelation (Figure 3.1, explained below). A more detailed analysis and comparison
follows in Chapter 4.

• Section 3.2 presents the current state of research about the formal verification of IBC
and of revocation-like mechanisms.

There is no previous work on formal verification of identity-based revocation mechanisms.

3.1. Revocation in Identity-based Cryptography
The most influential contributions to the problem of identity-based revocation are found in

four publications [BF01; BGK08; LV09; SE13b]. The following three sections outline these
approaches in chronological order:

• Section 3.1.1 introduces “näıve” IBC-revocation as described in [BF01].

• Section 3.1.2 introduces non-interactive revocation as described in [BGK08] and [LV09].

• Section 3.1.3 introduces decryption key exposure attacks and -resistance as described
in [SE13b].

The order serves to highlight the novelty each provides over the previous work; [BGK08] and
[LV09] are similar and therefore introduced together.

Section 3.1.4 describes further work in this research area.
Figure 3.1 provides a systematic overview of certain related work as explained below. The

[nodes] correspond to literature references. The central horizontal axis is ordered chronolog-
ically from left to right, starting with [BF01]. The graph highlights the following:

• The publications denoted in black text are included in the more detailed analysis in
Chapter 4.

• The ones denoted in gray text appear in the illustration because they are the main
references for other work, but are left out of the detailed discussion for the following
reasons:

– [Han+05], because their approach is the only one to use extra hardware for revo-
cation, which makes it harder to compare to the others.

– [TT12], because the construction is not as secure as originally claimed. The arrow
label is therefore crossed out in the illustration.

– [TTW13], because the construction relies heavily on [TT12].
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Figure 3.1.: Interrelation of related work on revocation in IBC: The nodes of this graph
represent publications in which revocation in IBC is discussed, indicating the
authors’ names, year of publication and/or reference handle in the bibliography.
An arrow from one publication pointing to another indicates that the first refer-
ences the second as a main inspiration. Arrow labels indicate the most important
difference that the first claims to make with respect to the second. (Note that
the graph is not complete: Even if no arrow appears between publications, one
might cite the other.)

• Solid arrows point from a chronologically later publication to another one it cites as
main inspiration. The arrow labels state the pivotal difference between the two.

• The dashed arrow highlights the similarity to [BF01] explicitly acknowledged in [SE13b].

• The dotted arrow indicates the main difference between [BGK08] and [Gug20] to place
the latter within the related work landscape even though it cites none of the other
publications in this graph.

3.1.1. Boneh & Franklin, 2001: “Näıve” IBC-revocation

In their publication “Identity-Based Encryption from the Weil Pairing” [BF01], authors
Boneh and Franklin propose the “first fully functional” IBE-scheme (a claim echoed in later
publications [BGK08; ML20]) and include a first, very brief discussion of IBC-revocation.
The authors observe: Since the public key is an arbitrary string, it can include a time stamp,
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delineating different validity periods (which we also call “epochs”). Alice may, for example,
encrypt a message under the public key “bob@example.edu } current-week”, which Bob can
only decrypt with a private key issued for this e-mail-adress and the current week. Alice
therefore does not need to keep track of certificate revocation lists or check whether Bob’s
certificate has expired. A subsequent publication [SE13b] refers to this approach as the
“näıve” one because it is straightforward and not concerned with efficiency.

3.1.2. Boldyreva, Goyal & Kumar, 2008: Non-interactive Revocation

For N non-revoked users in a communication system, the näıve solution to revocation not
only requires the TTP to compute N new keys but to send them to the users over N individ-
ual secret channels. Inspired by an approach where additional devices for each user allow the
TTP to distribute updates over public channels (thus called “non-interactive”) [Han+05],
authors Boldyreva, Goyal and Kumar [BGK08] aim to achieve non-interactive revocation
without extra hardware. They use two concepts:

1. Separation of every user’s secret key into an identity-bound component and a time-
bound component, in which the time-component can be updated.

2. A binary tree data structure to reduce, from linear to logarithmic, the number of key
updates that the TTP needs to compute.

Because of the complexity reduction, the authors call their construction “(efficiently) Re-
vocable Identity-based Encryption (RIBE)”. This denominator is used for many subsequent
approaches (e.g., [LV09; SE14; ML20; TTW12; TT12; Che+12; XWW20]). Mathemati-
cally, the construction relies on polynomials as secret keys. This ensures that update values
that are published for one user are useless for other users, since the correct key can only
be computed from an update on the matching polynomial. By choosing a suitable degree
for the polynomial, a number of attributes (like “identity” and “time”) can be controlled
for in the key. By constructing a binary tree with polynomials assigned to each node and
user secret keys (also polynomials) assigned to each leaf, the number of necessary updates
becomes logarithmic instead of linear in the number of users: If a subset of users shares one
of the higher-level polynomials because they are part of the same sub-tree and no user in
this subset is revoked, the TTP can simply issue an update for this polynomial. Otherwise,
updates for smaller subsets are necessary.

Libert and Vergnaud [LV09] present an important variant: Since [BGK08] only prove
selective-ID security (i.e. only in a model where the attacker targets a specific ID), [LV09]
shows that adaptive-ID secure RIBE (where the attacker can target IDs more flexibly) is also
possible. Their proposal is based on a previous, revocation-free scheme. Since adaptive-ID
security is deemed stronger than selective-ID security, the contribution of such a scheme is
noteworthy.

3.1.3. Seo & Emura, 2013: Decryption key exposure attack and resistance

Seo and Emura [SE13b] contribute the following insight: If the secret key for a certain
validity period (“decryption key” or “signing key”) is computed from a static secret key
and a key update in a reversible manner, and the key updates are broadcast, then exposure
of the derived secret key may allow the computation of the static secret key. The authors
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point out that [BGK08] and [LV09] are vulnerable to this attack. This was not noticed
in the original security analyses because the attack happens outside their security models.
The approach in [BF01] withstands the attack, since there is no static part of any secret
key; keys are always replaced entirely. They propose a RIBE-scheme which combines the
techniques underlying [LV09] with collusion-resistant Hierarchical Identity-based Encryption
(HIBE)s and a re-randomization technique, which allows them to achieve Decryption Key
Exposure Resistance. The scheme is adaptive-ID secure and at least as efficient as [BGK08]
and [LV09].

3.1.4. Further work
The following sections introduce work that,

1. adds quantum-resistance.

2. discusses revocation in identity-based signature schemes

3. proposes an update with constant size

4. proposes master key renewal for revocation

Quantum-resistant schemes

Lattice-based schemes are assumed to withstand attacks from quantum computers, which
may eventually break classical cryptography. A lattice-based RIBE-scheme was proposed
in 2012 [Che+12]. It is based in part on the binary-tree data structure from [BGK08] and
derived from another lattice-based IBE-scheme [ABB10]. More proposals for (revocable)
lattice-based IBE exist (e.g. [Shw+11; CZ15; TW17; TW21]). The open problem of deriving
a RIBE- from any IBE-scheme [SE13b] is solved with a generic construction that allows for an
adaptive-ID secure, lattice-based and decryption-key exposure resistant IBE scheme [ML20]
(bottom row, left, in Figure 3.1).

Signature schemes

There also exist revocable identity-based schemes for signatures (RIBS): The preferred secu-
rity notion for signature schemes to fulfill is strong unforgeability, which is achieved by a con-
struction based on bilinear pairings and a binary tree data structure [Liu+16] (bottom row,
center, in Figure 3.1). The work improves a previously proposed signature scheme [TTW13]
that is strongly based on another encryption scheme [TT12]. Because the publication for the
latter erroneously claims to improve [BGK08], as pointed out in [SE13a], [TT12; TTW13]
are not considered here in detail. There is also a quantum-resistant RIBS-scheme [XWW20]
based on lattices that achieves the weaker existential unforgeability notion (bottom row, right,
in Figure 3.1).

Constant update size

Signatures are also the focus of an approach that improves the update efficiency compared to
[BGK08] from logarithmic to constant [Gug20] (top row, left, in Figure 3.1): Instead of a split
secret key where the time-component may be updated periodically, the approach changes
the msk that underlies all keys. If msk is an element of a cyclic group, multiplying it with
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a random group element ∆ yields a new value that seems random without the knowledge of
∆. Under certain circumstances, this change can be translated to the users’ key by updating
each of them with ∆. Using a binary-tree data structure for the private channels between
TTP and users allows the update to be distributed comparatively efficiently even though
the update can not be broadcast (or revoked users would be able to update their keys, too).

Master key renewal

Another work([gGG18], see Section 1.5) proposes the complete renewal of the master key
material (i.e., a fresh instantiation) to achieve revocation. This implies the complete renewal
of all user key material. While this approach is effective, the dependencies between different
instantiations of an IBC-scheme are outside the scope for this work; this work only considers
systems in which keys of different epochs are at least somewhat mathematically related.

3.2. Formal verification of IBC and revocation approaches
The following two sections describe work on

• formal verification of IBC protocols and related revocation problems

• formal verification of revocation problems outside of IBC

3.2.1. IBC and IBC-revocation
There is little research about formal verification of identity-based protocols. Three publica-
tions stand out:

• The comprehensive study “Symbolic Analysis of Identity-based Protocols” [BHS19]
is the earliest and most important contribution. It discusses how identity-based en-
cryption and -signature schemes can be abstracted in such a way that the trace-based
automated prover Tamarin can reason about them. The paper provides both, a sim-
ple, highly abstracted model for IBC and a mathematically more precise model that
includes details of so-called bilinear pairings. Bilinear pairings are an important in-
gredient of many identity-based schemes, especially early ones (see for example [BF01;
Hes02; Hes03; LQ03; Bae+04]). The authors of [BHS19] find two things:

1. Non-trivial logical attacks are found even by their highly abstract model; hence,
employing a verification tool such as Tamarin is, in fact, useful for understanding
identity-based mechanisms.

2. Models that try to capture the algebraic intricacies of identity-based schemes
quickly outgrow the capabilities of Tamarin because reasoning with distribu-
tive laws is still an open problem for symbolic tools in general. Since identity-
based cryptography relies on distributive laws even when it avoids pairings (e.g.,
[GG09]), algebraically detailed analyses are difficult.

Revocation is not addressed in this publication.

• A recent proposal for cloud-based payment systems [AB22] using identity-based signa-
tures specifically discusses revocation and provides a security- and correctness analysis
using ProVerif [Bla16], another symbolic tool. The proposed mechanism adds a time
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key to the users’ private key material. By updating the time keys, users can be re-
voked indirectly by excluding them from the update. The formalization models time
keys; however, the corresponding security discussion remains superficial. Apart from
an “ability to revoke a key”, there is no specific analysis of the revocation mechanism,
let alone dependencies between validity periods.

• Another claim to model and prove the security of an IBE-based Key Exchange Pro-
tocol using Tamarin is made in [SVR21]. However, the code uses a restriction (“On-
lyOnce()”) from the Tamarin manual in such a way that no session can established
and the lemma is trivially true. Therefore, the analysis is futile.

3.2.2. Other revocation problems

Revocation has been formally analyzed in various publications. Most of them focus on
proving that the mechanism for making the revocation known in the system is correct and
sound. Only few proposals consider dependencies between keys of different epochs (mainly
because in certificate-based approaches, there is none.)

For example, a formal analysis of vehicle-to-everything (V2X) revocation protocols using
Tamarin [Whi+17] shows that their approach (adding a key pair for revocation to disguise
the long-term identity of vehicles) allows revoking vehicles while hiding their long-term
identity from other users. The scope ends at the revocation: There is no discussion (let alone
verification) of how revoked vehicles might be re-keyed afterwards nor of any implications
that a re-key might have for the protocol. The keys are managed through certificates, so no
mathematical dependency between epochs needs to be considered.

Another certificate-based approach [Bas+14] goes further and specifically models not only
revocation, but also key updates to verify the proposed “Attack-resilient PKI”. But, again,
as the infrastructure is based on certificates, there is no mathematical connection between
validity periods to be considered, and the security properties discussed for it pertain to
connection integrity, registration and legitimate updates - to certificate management issues,
in short.

Closer to IBC-revocation approaches are the Double Ratchet (DR) formalizations. The DR
protocol is at the heart of many secure messaging apps (e.g., the Signal App, WhatsApp,
and the Facebook Secret Conversations [CCA23]). It employs two so-called ratchets, the
public-key ratchet and the symmetric-key ratchet. The goal is to encrypt every message
with a new key: The public key ratchet serves to derive the seeds for each epoch of the
symmetric ratchets. From this seed, as long as the epoch continues, a new key is derived for
every message, both by the sender (who encrypts the message) as well as the receiver (who
decrypts the message).

The Signal App’s session management, which includes the Double Ratchet, was formally
analyzed using Tamarin [CCA23]; here the focus is on ensuring that the security guarantees
that X3DH and DR provide for a session between two clients can be translated to a whole
conversation (which is made up of many sessions). A mathematical connection between keys
is considered because session keys are sequentially derived from each other through hashing.
The model abstracts from detailed formalizations of the key exchange mechanism X3DH and
the double ratchet to make the analysis tractable [CCA23].
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The historic progression from Boneh and Franklin’s “näıve” approach to more complex
schemes using structures like binary trees highlights that IBC-revocation is not straight-
forward. Chapter 4 provides a detailed analysis of select schemes, distilling the important
characteristics to compare and contributing high-level insights missing from the literature.
Chapter 5 and Chapter 6 close the research gap between IBC-revocation and formal verifi-
cation methods apparent from this chapter.
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4. Assessment and classifications for
IBC-revocation mechanisms

This chapter discusses the schemes highlighted in Figure 3.1 and various properties they
have. It illustrates commonalities and differences between the schemes to highlight the
research gap. It also gives rise to a systematization of revocation mechanisms in general and
a classification of IBC-revocation approaches in particular. Specifically, the insights from
this chapter are:

a) The security notions considered in the various publications are not universal and rarely
include Forward- and Post-Compromise security, although these are established no-
tions (Section 4.1).

b) Revocation in general can be achieved along two axes (Section 4.2)
i. directly or indirectly
ii. explicitly or implicitly

c) The known approaches to revocation in identity-based cryptography all work implicitly
and indirectly, namely in one of three ways: By key renewal, with an individual update
token, or with a universal update token (Section 4.3).

4.1. Characteristics and comparison

Proposals for identity-based revocation mechanisms typically discuss properties and charac-
teristics that the respective authors deem important. While there are standard properties
considered in most work, others vary between the papers. This leaves open questions.

The following list is a collection of characteristics from the publications in Figure 3.1:

• Encryption or signing algorithm

• Strategy

• Generic approach

• Static secret key part

• Re-randomization

• Update size

• Binary tree data structure

• Update distribution

• Decryption/Signing Key Exposure Re-
sistance

• Forward Security

• Post-Compromise Security

• Collusion Resistance

Each is explained briefly below, together with a corresponding assessment of the publications.
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Table 4.1 is a comprehensive overview of the assessments. It shows which characteristics
the mechanisms are claimed to have (✓) or not have (✗).

The following qualifiers apply:

• Claims made by the authors in the specified publication itself are unmarked.

• Claims made by others are marked with a superscript symbol indicating the source
(see legend).

• Empty cells indicate that neither the publication nor any related work addresses the
property for the proposed scheme, and so does the entry “?”.

A “?” shows where our work contributes an answer: The model proposed in this work helps
understand the security properties of the different mechanisms.

The publications [BGK08], [ML20], and [Gug20] propose several mechanisms. The follow-
ing are considered in the table:

• for [BGK08], the scheme presented their Section 4, “Main construction”

• for [ML20], the scheme presented in the section “A Generic Construction of RIBE with
DKER”

• for [Gug20], the generic approach described in their Section 4.4.3, “Key Updatable
Signature Scheme (KUSS)”

The following paragraphs explain the characteristics and the assessments. The corresponding
row labels in Table 4.1 are denoted by [label].

Encryption or signing algorithm [enc/sig] Every mechanism discussed in this chapter is
either focused on encryption (entry “E” in the table) or signing (entry “S” in the
table).

• Encryption: [BF01; BGK08; LV09; Che+12; SE13b; ML20]
• Signing: [Liu+16; XWW20; Gug20]

Strategy [re-key/token] Two strategies appear in the considered publications: Re-keying
with an entirely new key, and sending update tokens for the user to compute new keys
from their old ones.

• Re-key: [BF01]
• Token: [BGK08; LV09; Che+12; SE13b; ML20; Liu+16; XWW20; Gug20]

Generic approach [gen] Some approaches are generic: Even though they may be exempli-
fied in a specific mechanism, they are applicable to (a subset of) other IBC-mechanisms
that have no inherent revocation mechanism.

• claimed generic: [BF01; SE13b; ML20; Gug20] Of these, [BF01] is noteworthy
because the proposed mechanism is so generic that the publication does not even
discuss it at length: Choosing time-dependent identity values works for any IBC-
scheme and will have the same security as the scheme provides for separate iden-
tities. The other three publications exemplify their approach but also describe it
as transferable to further schemes.
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4. Assessment and classifications for IBC-revocation mechanisms

• not claimed to be generic: [LV09; Che+12; Liu+16; XWW20]
• claimed to be not generic: [BGK08]

Static secret key part [static sk] Some approaches solve the revocation problem by con-
structing a two-component secret key, where one component - the secret key for the
identity - remains fixed, and one component - the secret key for the date - changes.
In these cases, there exists a static part of the secret key (namely the part associated
with the identity), which is the same in all epochs, and updates are generated only for
the time component.
This distinction leads to the use of separate terms in the literature: The static part is
called secret key (sk), the “full” key with which to decrypt (sign) messages is called
decryption key (dk) (signing key (sigk)). To derive the decryption (signing) key of a
given epoch, both components are needed. This work uses the terms “static user secret
key” (susk) instead of sk and “user secret key” (with which to decrypt or sign; usk)
instead of dk/sigk.

• static secret key part used: [BGK08; LV09; Che+12; SE13b; ML20; Liu+16;
XWW20].

• no static secret key part used: [BF01; Gug20] In [BF01], the user’s identity (=
public key) includes a date and the secret key is bound to the time component.
However, secret keys for the same user at different dates are not related.

Re-randomization [re-rand.] If the decryption key is leaked and the decryption key deriva-
tion is invertible, then the attacker can sometimes derive the susk from the decryption
key. To avoid this, one can “re-randomize” the decryption key when deriving it, such
that an attacker can not learn susk from the leak.

• re-randomization used: [SE13b; Liu+16; ML20; XWW20] While [ML20] and
[XWW20] do not call their technique “re-randomization”, only a derived, time-
dependent form of the static keys contributes to the decryption key in their ap-
proaches. We interpret this as re-randomization.

• no re-randomization used, as pointed out by [SE13b]: [BGK08; LV09; Che+12]
• re-randomization not applicable: [BF01; Gug20]

Update size [upd. size] An important goal for “efficient” revocation approaches is reducing
the size of the update which the TTP needs to compute in relation to the number of
(non-revoked) users n ´ r (where n is the number of most recent members, of which r
are revoked and should not receive an update).

• linear amount (Opn ´ rq) of updates: [BF01] Every non-revoked user requires an
individual new key.

• logarithmic amount (Opr log n
r q) of updates: [BGK08; LV09; Che+12; SE13b;

ML20; Liu+16] All of them use the same binary tree-data structure approach to
achieve this reduction (see also “Binary tree data structure”).

• logarithmic amount (Oplog rq) of updates: [XWW20]
• constant amount (Op1q) of updates: [Gug20] The update token chosen at random

by the TTP is the same for all participants.
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4.1. Characteristics and comparison

Binary tree data structure [bin. tree] Many approaches under consideration use a binary
tree data structure for efficiency gains: The nodes of the tree are associated with
information that goes into the derivation of the decryption (signing) key. Leaf nodes
are associated with individual users and a user’s key is derived from all components
assigned to the nodes on the path from the tree root to their corresponding leaf. If
a user is revoked and should not receive an update for the next epoch, the TTP
computes the smallest set of nodes KUNode that does not contain a node on the
path to any revoked user. Then it computes and distributes updates for all nodes
in this set (“KUNode algorithm”). [Gug20] uses the LKH (RFC 2627 [WHA99]) to
gain efficiency: Here, the nodes are associated with (separate) keys to establish secure
(broadcast) channels. When a user is revoked (= should not receive an update for the
next epoch), the TTP computes the smallest set of nodes that does not contain a node
on the path to any revoked user, and encrypts the update token (which is the same
for all non-revoked users) with each key in the set separately. Thus, each non-revoked
user can decrypt one of the resulting cipher texts and receive the update token.

• Binary tree data structure used: [BGK08; LV09; Che+12; SE13b; Liu+16; XWW20;
ML20; Gug20]

• Binary tree data structure not used: [BF01]

Update distribution [upd. dist.] When an individual update is sent to every user over an
individual secure channel they have with the TTP, the update distribution complexity
is linear in the number of non-revoked users n ´ r.
When updates are computed with the KUNode algorithm, the set of updates is useless
for any user whose path in the tree does not contain a corresponding node. Therefore,
the update set can be broadcast or publicly posted [BGK08; LV09] and no secure
channels are required. This is called a “non-interactive” update [Han+05; BGK08].
The update distribution complexity is then constant (Op1q), assuming that publishing
one update has the same cost as posting several updates.
As explained above, a secure broadcast is possible via Logical Key Hierarchy (LKH)
when the update token is the same for all non-revoked users. The complexity of this
update distribution is logarithmic in the number of non-revoked users (Oplogpn ´ rqq).

• linear distribution complexity (Opn ´ rq): [BF01]
• constant distribution complexity (Op1q): [BGK08; LV09; Che+12; SE13b; Liu+16;

XWW20; ML20]
• logarithmic distribution complexity (Oplogpn ´ rqq): [Gug20]

Decryption/Signing Key Exposure Resistance [D/SKER] When Decryption Key Exposure
Resistance (DKER) is achieved, the leak of a decryption key does not allow the ad-
versary to infer other secrets from it [SE13b]. To capture this security notion, it is
necessary to distinguish the leakage of static key parts and leakage of the full decryp-
tion key.
[Liu+16] and [XWW20] naturally infer the property of Signing Key Exposure Resis-
tance (SKER).

• claimed to achieve DKER/SKER: [BF01; SE13b; ML20; Liu+16; XWW20] [BF01]
trivially achieves it, the others achieve it by re-randomization.
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4. Assessment and classifications for IBC-revocation mechanisms

• claimed to not achieve DKER/SKER: [BGK08; LV09; Che+12] The failure to
achieve this property went unnoticed because the security models are incomplete.

• no claim: [Gug20]

Forward Security [Forw. Sec.] For encryption, Forward Security means that messages en-
crypted with an old key stay confidential if a new key (e.g. an updated version of the
old one) is leaked [BG21]. For signatures, it means that a leaked key from one epoch
does not allow an adversary to sign any message from an earlier epoch [BG21].

• claimed for: [Gug20]
• no claims: [BF01; BGK08; LV09; Che+12; SE13b; ML20; Liu+16; XWW20]

[Han+05] points out that the secure channels for distributing the new keys in [BF01]
should be forward secure, but does not apply this concept to the revoked keys them-
selves. Since only one of the considered publications discusses this property, it is not
deemed a standard security notion for IBC-revocation.

Post-Compromise security [Post-C. Sec.] For encryption, Post-Compromise Security means
that messages encrypted with a new key stay confidential if an old key is leaked. For
signatures it means that the leak of an old key can be “healed” so the adversary can
not sign messages in future epochs [CHK21].

• claimed for: [Gug20]
• no claims: [BF01; BGK08; LV09; Che+12; SE13b; ML20; Liu+16; XWW20]

Since only one of the considered publications discusses this property, it is not deemed
a standard security notion for IBC-revocation.

Collusion Resistance [Coll. Res.] In [BGK08], the authors observe that “ [. . . ] in the IBE
setting a revoked user, or the adversary holding its [secret] key, should not be able to
decrypt messages even if it colludes with any number of non-revoked users.”

• claimed for: [BF01; BGK08; SE13b] In [BF01], the introduction states indirectly
that a “fully satisfactory” solution must not prohibit collusion. We interpret the
absence of any further discussion as a claim that the proposed scheme allows it.
For [BGK08], the authors claim that collusion is not useful because the updates
are tailored to the individual or shared polynomials used as keys. Thus, revoked
users can not use any of the available update tokens, because none of them fits
any of the user’s key parts. [SE13b] claim their mechanism inherits Collusion
Resistance from the underlying scheme.

• no claims: [LV09; Che+12; ML20; Liu+16; XWW20; Gug20]

Summary

The following observations from the table are important for this work:

• The commonality of all considered IBC-revocation schemes is a reliance on re-keying
or key updates, called “key change” methods by NIST. This deviates from the NIST
definition of “revocation” (see Section 2.4) but is consistently called “revocation” in
IBC-literature. Section 4.2 addresses this incongruity further.
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4.2. Two dimensions of key revocation

• All publications except two ([BF01; Gug20]) use static keys in their approaches. Inci-
dentally, the two exceptions also significantly deviate from the other publications with
respect to the update size and distribution complexity: Update size is significantly
more complex for [BF01] and significantly less complex for [Gug20] than for the oth-
ers, and the distribution complexity is significantly more complex for both than for
the others. These are systematic differences, which partly answers RQ 1).

• Most publications consider Decryption Key Exposure Resistance, but do not discuss
Forward- and Post-Compromise Security. This raises the question whether the three
notions can be reconciled and if discussing either DKER or the other two is sufficient.

• Only two publications ([BGK08; SE13b]) discuss Collusion Resistance, though the
concept is applicable to all other mechanisms as well.

The next section addresses the systematic commonalities of IBC-revocation schemes by clas-
sifying it within a broader systematization of key revocation methods (Section 4.2). Sec-
tion 4.3 addresses the systematic differences and explains the classification of IBC-revocation
schemes in three classes.

4.2. Two dimensions of key revocation
Recall the NIST’s definition of key revocation from Section 2.4: “A possible function in the
lifecycle of a cryptographic key; a process whereby a notice is made available to affected en-
tities that the key should be removed from operational use prior to the end of the established
cryptoperiod.”

Compared to related work on IBC-revocation, this definition seems quite narrow: None
of the described schemes requires that any notice be made available at all about the validity
of any key or that the so-called cryptoperiod must end prematurely.

In our broader, approach-agnostic understanding, revocation is any process by which an
authorized key management party renders a cryptographic key permanently useless and
invalid.

Which strategy is chosen to revoke keys, depends on specific use cases and their require-
ments. We recognize two core dimensions to consider:

Dimension 1: indirect vs. direct This dimension describes whether a revoked key is han-
dled directly and with actions that are directed at this key (like an announcement
about a specific key) or indirectly, by taking some key management measures that are
directed at non-revoked keys (like re-keying legitimate users).

Dimension 2: implicit vs. explicit This dimension describes whether users who want to use
someones else’s public key need to check its validity explicitly or not.
The revocation mechanism is explicit if users who encrypt a message or verify a sig-
nature need to separately ensure in an extra step that the public key in question is
valid.
Revocation is handled implicitly if users can rely on some inherent mechanism to control
the key validity and do not have to check it. In this case, the system is set up in such
a way that the owner of a revoked public key can no longer use the corresponding
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4. Assessment and classifications for IBC-revocation mechanisms

Figure 4.1.: Invalidating a key can happen through measures that affect the key directly or
indirectly, and which are explicit (and externally overrule the key’s properties)
or implicit (where one of the key’s inherent properties determines its use).
A direct, explicit measure is blacklisting, which prohibits the use of otherwise
valid keys. As the indirect counterpart to blacklists, whitelists explicitly allow
the use of certain keys, and non-listed keys may not be used.
Direct, implicit key validation is achieved by taking away the key from its owner.
Indirectly, a key can implicitly be invalidated by changing the cryptographic
system in such a way that the key becomes obsolete.

private key with new messages. Thus, as long as all users adhere to the most recent
specifications of the system, it is impossible to use a public key illegitimately in this
setting, because it is not the sender’s or verifier’s responsibility to check the validity.
Note that in this case, users may inadvertently send encrypted messages to revoked
parties who can not decrypt it: They have no way to know whose keys are valid or
not.

The two dimensions can be considered orthogonal, yielding four possible combinations (see
Figure 4.1).

From top left to bottom right of Figure 4.1 they are:

explicit and direct This category can be described with blacklisting: The validity of a key
or certificate is handled by the user checking a list that specifies all keys that have been
deemed invalid. A key that is listed there should not be used. Hence, key revocation
is handled by including the key in question in the updated version of the list (direct)
and the list is an extra document referring to the key (explicit). This category is also
the closest to NIST’s requirement that a notice be made available to retract the key
from use before the end of its cryptoperiod. Classic expiration mechanisms that define
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4.2. Two dimensions of key revocation

cryptoperiods can also be direct and explicit, if they are included in a certificate; then
they are specific to a certain key and need to be checked before use.

explicit and indirect This category can be described by whitelisting: The validity of a key
(or the corresponding certificate) is handled by the user checking a list that specifies all
currently valid keys (or certificates). No key that is not expressly listed there should
be used. Hence, key revocation is handled by leaving out the key from the updated
version of the list (indirect), which a user will check before employing the key (explicit).

implicit and direct This category can best be illustrated with physical keys. Consider that
Alice has a padlock (= the public key) and a corresponding physical key (= the secret
key). An implicit and direct way of revoking this key material would be taking away
the key from Alice. This way, the padlock may still be used by anyone and it is not
their responsibility to check whether Alice is allowed or able to unlock it (implicit) and
her key can be removed (direct). Non-revoked keys are not affected by a revocation
and remain usable. This category is unlikely to appear in the digital realm, because it
requires the direct removal of a secret key that has previously been in use, including
any copies. However, digital data that has once been released can afterwards hardly
be removed from the entire system with certainty.

implicit and indirect This category can also be illustrated with physical keys: Consider that
both Alice and Bob have a padlock (= public key) and corresponding key (= secret key)
each. An implicit and indirect way of revoking this key material would be changing
the admissible type of locks (e.g., from a padlock to a combination lock) as soon as
Alice’s keys are revoked. If all participants in the system are notified of this change,
honest users will not use padlocks any longer, but switch to combinations locks, which
renders Alice’s and Bob’s corresponding keys useless. Admissible locks can be used
by anyone without concern (implicit), because it is not their responsibility to check
whether Alice has a fitting key or knows the combination. Revoked keys are affected
only indirectly because the circumstances of key use have changed. New, non-revoked
keys need to be distributed and the “old” keys become obsolete (indirect). As [BF01]
suggests, time stamps can be used as part of an implicit and indirect measure to
synchronize the switch. A system switch could also be announced and synchronized
by the TTP more spontaneously; as long as all users can reliably be informed about it,
the synchronization does not need to happen through timestamps or in another (long)
foreseeable manner.
Note that [BF01] interpret the time stamps as expiration dates. While that is a valid
description, this work only interprets those revocation mechanisms to be “expiration-
based” where the dates are treated as external information about individual keys, not
inherent components of the encryption/signature scheme. In this sense, expiration-
based mechanisms are categorized as direct, explicit revocation.

Using this systematization, it is easy to understand why none of the IBC-schemes in Table 4.1
uses revocation lists:

Recall that a central goal of identity-based cryptography is reduced key management effort,
especially avoiding certificates and similar documents regarding keys. Explicit revocation
techniques with which to communicate key validity statuses are therefore at odds with the
basic idea of IBC. Since implicit, direct revocation techniques are unsuitable for the digital
realm, the only solution for IBC-revocation are implicit, indirect approaches.
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4. Assessment and classifications for IBC-revocation mechanisms

Similar statements appear in the literature: For example, Boldyreva et. al. point out
that since “[. . . ] there is no way to communicate to the senders that an identity has been
revoked, such a mechanism to regularly update users’ private keys seems to be the only
viable solution to the revocation problem” [BGK08]. Others observe that “it is impossible,
based on the conventional IBE model, for the user to immediately revoke and renew his
decryption key only at times he needs to renew [it] without losing the advantage of IBE in
terms of communication cost [. . . ]” [Han+05].

The general systematization of revocation approaches given in this section fully supports
these sentiments. It clearly shows that when the connection to an owner’s identity is an
inherent property of a key, the most consistent way of revoking them is by implicit, indirect
means.

Note that revoking, in any way, the identifying information of a user from which the public
key is derived (i.e. the e-mail-address in the example above) is not discussed in any related
work. Without this option, the key-renewal and updates must inherently reference some
information that distinguishes valid and revoked (or not-yet-valid) keys while the connection
between identity and master key material remains. Most related work uses timestamps as
an example for this information, and for good reason: Time stamps change continuously, in
a foreseeable and unambiguous manner, and are available to all users.

Despite this commonality in the general approach to revocation, there are three main
flavors of handling the time component in detail. The following section explains these dif-
ferences.

4.3. Three revocation classes for identity-based cryptography

Even though all identity-based revocation mechanisms can be classified as implicit and in-
direct, there are still substantial differences. Table 4.1 shows them between three groups
of publications, where the two mechanisms that do not use static keys also differ from the
other ones in update size and -distribution complexity (and also differ between each other
substantially). Indeed, these can be categorized in three main approaches:

• key renewal

• update with individual update tokens

• update with a universal update token

This section outlines the main characteristics of each approach and how they affect ef-
ficiency and security, with a summary of these insights in Table 4.2. The middle column
of this table summarizes the main characteristics of the approach, and the right column
indicates related work discussed in Section 3.1 that falls into the respective category.

4.3.1. Key renewal

This approach treats the time tag as a fixed part of the users’ identities. The system specifies
which time tag to use at which time, i.e. which tag-enhanced “identity” to use1. In this
logic, revocation means that all users acquire “new” identities at the beginning of each new

1Note that the tag does not have to be time descriptor, as long as it is clear which tag to use at what time.
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4.3. Three revocation classes for identity-based cryptography

Table 4.2.: The three revocation categories for IBC have typical characteristics by which
approaches can be classified. The right-most column cites approaches that fall
into the respective class.

class characteristics corresponding literature
key renewal • new keys independent of old keys [BF01]

• distribution complexity linear
• computation complexity linear
• MPK unchanged
• attack vectors: msk, usk

individual • dependence betw. old and new keys [BGK08; LV09]
update token • distribution complexity constant [Che+12; SE13b]

• computation complexity logarithmic [Liu+16; XWW20]
• MPK unchanged [ML20]
• attack vectors: msk, usk, susk, key update

universal • dependence betw. old and new keys [Gug20]
update token • distribution complexity logarithmic

• computation complexity constant
• MPK changes
• attack vectors: msk, usk, key update

epoch. All “old” identities become obsolete, and all non-revoked users receive keys for their
“new” identities via a private channel.

Approaches belong into this class if, in every epoch, the users are supplied with individual
new key material that they can use as is, without putting it in the context of their old key
material.

The class is characterized as follows:

• The old and the new key are completely independent of each other and of other users’
keys.

• Because of this independence, there seems to be no option to distribute the keys in a
more efficient way than over individual private channels2 and there are no apparent
benefits from using any tree effects to reduce the linear distribution complexity for the
TTP.

• In the same way, the TTP must freshly compute all remaining users’ keys after a
revocation. The computation complexity is linear.

• MPK does not change across epochs.

• The attack vectors are msk and usk. Those are values to keep secret from the adversary.

[BF01] is an example for this class.
2It can be argued that key distribution does not need a private channel, because the encrypted values can be

published; however, each key still needs to be encrypted separately, so the 1:1-complexity of the problem
remains.
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4. Assessment and classifications for IBC-revocation mechanisms

4.3.2. Individual update token

This approach treats the time tag as one of several aspects of an identity (similar to attribute-
based encryption techniques [SW05]) in such a way that the key can be updated for every
epoch. Instead of computing and distributing entirely new key material, an update token is
generated for each user individually with which they can update their secret key locally.

Approaches belong into this class if, in every epoch, the users are supplied with an update
token for their key material that they have to apply to their old key material and if this
update is different for at least two non-revoked users in the system (although some users
may get identical updates for a shared portion of their key material), such that a revoked
user could not apply any of the distributed update tokens to their old key to get an update.

The class is characterized as follows:

• The local update mechanism creates a dependency between the old and the new key.

• Because the individual updates are, in themselves, useless to an attacker who does not
hold the corresponding secret key, they can be published. This allows the distribution
complexity for the TTP to be constant.

• The computation complexity is logarithmic if a certain key hierarchy is used (which
all related schemes do). In that case, each user holds several keys. Details are omitted
here; refer to [BGK08] for more information.

• MPK does typically not change across epochs.

• Besides msk and usk, susk and the update tokens are additional attack vectors, as
explained in Section 4.1.

Examples for this class are [BGK08; LV09; Che+12; SE13b; Liu+16; XWW20; ML20].

4.3.3. Universal update token

This approach treats the time tag as a feature of MPK rather than any user’s identity
and uses it in such a way that all users can receive the same update token to update their
individual keys locally.

Approaches belong into this class if, in every epoch, the users are supplied with an update
token for their key material that they have to apply to their old key material and if this
update is identical for all non-revoked users in the system, such that even a revoked user
could update their old key with it.

The class is characterized as follows:

• The updated usk depends on the old one.

• The universal update token must not be published, because the owner of a revoked
key (or an attacker who holds it) could update the revoked key in that case. However,
it is possible to take advantage of tree-like distribution structures, since the informa-
tion is the same for all non-revoked users. The distribution complexity is therefore
logarithmic.

• The computation complexity is constant.
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• Since user secret keys depend on MPK , is must always be updated. The updated MPK
can be published if computing the update token from the new MPK is hard (as is the
case in [Gug20]).

• Besides msk and usk, the update token is an additional attack vector. It is even more
interesting for an attacker than in the case of individual updates, because it can be
used to update any recent decryption key the attacker holds rather than a specific one.
Computing a previous usk is, again, possible if the update mechanism is vulnerable to
decryption key exposure.

[Gug20] is an example for this class.

4.4. Assessment summary
This chapter answers RQ 1): Revocation mechanisms in IBC are systematically similar
because only implicit, indirect means of revocation are consistent with the underlying idea
that public keys (and by extension, their validity) should not have to be looked up. This
allows an abstract, generalized formalization of identity-based revocation mechanisms for
automated analysis (see Chapter 5).

At the same time, the mechanisms differ systematically with respect to their update logic,
and three distinct classes can be recognized in the literature.

For a concrete automated analysis, it is meaningful to consider and compare at least
those three classes. Individual-token update mechanisms can additionally be separated into
mechanisms with re-randomization and those without, so Chapter 6 describes four distinct
models instead of three.
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5. Formal model of revocation in
Identity-based cryptography

This chapter formalizes IBC-revocation to fit the logic of a trace-based automated reasoning
tool:

• Section 5.1 gives an overview of the three building blocks in a trace-based model:

– instructions to model the possible protocol states

– a formalization of the security goals

– a formalization of the cryptographic dependencies and adversary knowledge (which
are intertwined)

• Section 5.2 provides a minimal communication scenario with all important events that
the formalization should be able to capture.

• Section 5.3 derives a state diagram fitting all three classes from the minimal example
and formalizes each state. It explains the execution policies assumed in the model and
the abstraction of secure channels between TTP and each user.

• Section 5.4 formally states the security properties that a revocation mechanism ideally
fulfills, derived from literature.

• Section 5.5 describes the information the adversary can compromise and the mathe-
matical dependencies that the formalization should capture. Together, they model the
adversary knowledge.

The formalization allows a clear comparison between the three classes that are identified in
Section 4.3: The trace-construction guidelines and the security notions remain the same for
all three, but the adversary’s options for attacking the respective mechanisms can be tailored
to each of them individually.

5.1. Overview

A trace-based reasoning tool requires the following information for any model of a crypto-
graphic mechanism:

Trace construction guidelines describe the protocol so that the prover can reason about all
possible protocol runs. The guidelines determine

• the order in which states appear on the trace;
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• possible restrictions from execution policies: For example, if each user may receive
only one secret key from the TTP, but this policy is not implemented by the
protocol logic and instead handled through the TTP’s key management policy,
the trace construction guidelines may specify this.

Desired security properties are formulated as statements about all possible traces. They
either specify that certain undesired behavior occurs on none of them or that reaching
a certain state implies the occurrence of another certain state on the same trace. For
example, an automated reasoning tool may prove to a user that if neither msk nor any
of her keys are ever compromised, an attacker can not decrypt messages intended for
her (by any means captured in the model).

Attacker knowledge and abilities There are two ways for an attacker to learn information:
• Directly compromising an agent: The model should specify the information an

adversary can get from compromising any entity and learning their secret values
directly.

• Deriving it from other information: The mathematical interdependence between
keys or cryptographic computations allows an attacker to learn new values from
known ones. The level of detail with which these dependencies are modeled de-
termine the weaknesses the analysis can or can not find.

5.2. Minimal revocation example
For a clear idea which events the model needs to cover, one must first identify the various
settings that can occur. Meaningful two-party communication within a group should allow

a) adding new, legitimate users to the group in any epoch and providing them with valid
key material for each epoch in which they are part of the group.

b) encrypted (authenticated) communication between any two non-revoked users in the
group in any epoch.

c) removing a user from the group such that she can not decrypt (sign) messages in the
following epoch(s), but the remaining group members can.

d) re-admitting users in such a way that they can not decrypt messages from or sign
messages for epochs in which they were not part of the group.

Functionality b) implies: Whether or not two legitimate group members can communicate
must not depend on their history in the group or how many epochs ago either of them joined.
It must also not depend on any group event that affects neither of them (e.g. other users
joining or leaving the group, or being expelled for any epoch).

A suitable model correctly captures at least the following events in this order (see Fig-
ure 5.1):

(I) The TTP sets up a new group (including master key material) and admits at least two
users, User A and User B, in the first epoch. User A can send an encrypted (signed)
message to User B, which User B correctly decrypts (verifies).
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5.2. Minimal revocation example

Figure 5.1.: Example run of a group communication that contains user admittance after
the first epoch transition, expelling and, in a later epoch, re-admitting a user,
updating remaining users and exemplary communication between the different
users in different epochs
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(II) The TTP revokes all keys and starts a new epoch, but does not expel any users. All
users receive an update to their keys and can continue to encrypt (sign) and decrypt
(verify) messages correctly.

(III) The TTP adds a user C to the group after the first epoch. User C can correctly decrypt
(sign) a message from (to) another group member in the current epoch.

(IV) The TTP expels a user, e.g. User A, from the group. All user keys from that epoch are
immediately revoked. User B and User C receive key updates for the following epoch
and can continue to communicate. User A can not correctly decrypt (sign) a message
from (in) the following epoch.

(V) After User A’s removal, the TTP adds a new User D to the group who can correctly
communicate with User B and User C.

Figure 5.1 illustrates a minimal example that contains events (I) through (V) (indicated
in pink). On the horizontal axis at the top, it shows the four active parties in the com-
munication example: The TTP ( ) and three group members User A, User B and User C
( , , ). A vertical line (“timeline”) for each party shows the chronological order of group
management- and communication events (where only one action at a time can happen) from
start (top) to end (bottom).

The minimal example spans over four epochs t0-t3. The beginning of each epoch is de-
marcated with a coarsely dashed pencil line ( ).

The first epoch starts with the setup of the TTP, who chooses an msk and publishes the
corresponding MPK . Each following epoch is initiated by the TTP who revokes all user keys.

In each epoch there are TTP-actions (denoted in blue) and user actions (denoted
in gray). A blue or gray dot on a timeline denotes a point in time at which the corresponding
party takes an action. A blue or gray arrow may point from the dot to the timeline of a user
who is directly affected by this action. (The TTP is never affected.) Figure 5.1 illustrates
the following scenario:

Epoch t0: Event (I) The TTP sets up a communication group by choosing an msk ( ).
This starts epoch t0 (setup). Then it generates a usk and sends it to User A ( ),
thereby adding User A to the communication group. In the same way, it adds User B.
User A encrypts a message for User B and sends it out ( ). User B successfully
decrypts the message ( ). Then, epoch t0 ends, which automatically revokes all keys
(revoke). This process is managed by the TTP, who determines the epochs.

Epoch t1: Events (II) and (III) Epoch t1 starts. Neither user is expelled, so both receive
an update ( ). The kind of update (new keys, individual update, or universal
update) depends on the encryption (signature) scheme that is used. Both users apply
their update to the key they already have if the scheme is designed accordingly ( ).
Figure 5.1 illustrates a universal update (a two-ring, three-ring, or four-ring token sent
to each remaining group member). Independent of the update, User C is added to the
group. User A encrypts a message and sends it to User C, who successfully decrypts
it. Then, User A is expelled by the TTP ( ). Epoch t1 ends, which implicitly revokes
all keys.

Epoch t2: Event (IV) At the beginning of epoch t2, User B and User C receive an update.
User A does not receive an update, having been expelled at the end of the previous
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epoch. The users apply their updates. Then, User B encrypts and sends a message
to User C, who successfully decrypts the message. User A also receives an encrypted
message from User B, but fails to decrypt it ( )1. Epoch t2 ends, which implicitly
revokes all keys.

Epoch t3: Event (V) Epoch t3 starts. User A is re-admitted to the group (in lieu of a
completely new user) and receives a new key from the TTP. User B and User C receive
updates for their respective keys again and apply them. User B sends an encrypted
message to User A, who successfully decrypts it.

Figure 5.1 deviates from the previously described events in the following ways to be more
succinct:

1. The difference between admitting an entirely new user and re-admitting User A is
abstracted. It treats User A as a new user, who receives fresh key material rather than
an update for their old key material. An ideal model covers both re-admittance of
User A and adding new users after one or more users have been revoked.

2. The effect of revocation on decrypting a message is illustrated, but not the effect on
signing. For the rest of the chapter, encryption is assumed as the default because the
case of signatures can be seamlessly inferred from the case of encryption.

The minimal example shows a protocol run containing all five core events in four epochs.
However, the automated prover should ideally not be limited to proving security only for
this exemplary run but allow arbitrarily long protocol runs where any of these events occur
arbitrarily often in any (meaningful) order between arbitrarily many users. Note that effects
between two or more communication groups are outside the scope; the model is limited to
one communication group.

5.3. State diagram and formalization of each state
The basis of the protocol analysis are “traces”, protocol runs inferred by the program. They
reflect the protocol agents’ possible states and the order in which agents can transition
between them.

To model any protocol, it is therefore essential to have a clear understanding of its state
diagram.

There are four main phases in every epoch of the communication group

• SETUP, where the master parameters are determined

• GET, in which a user gets a valid secret key for the current epoch

• USE, in which users encrypt and decrypt messages or sign and verify them

• DELETE, in which all epoch-bound values become obsolete and all user secrets are
revoked

1Note: User B does not necessarily know whether User A is still a member of the group or not. Not having to
check User A’s status is an express advantage of IBC, but it comes at the cost of unnecessarily encrypting
messages for which the receiver has no key. Attacker models in which such messages are attack vectors
need to consider this. The presented attacker model omits such attacks.
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5. Formal model of revocation in Identity-based cryptography

Figure 5.2.: State diagram of identity-based revocation

Figure 5.2 shows the flow of the protocol with the following states and the order in which
they can occur (denoted by black arrows). Every state belongs to one of the four main
phases, which are indicated on the left and separated by horizontal lines.

setup: The TTP chooses a secret key msk1 and computes MPK1 from scratch. This is the
first state entered in any instance of the process (as denoted by the arrow descending
from a black dot) and the beginning of the first epoch. MPK1 and the first time stamp
are published during the setup. The setup state only occurs once.

get sk: A user receives her first secret key (sk) from the TTP after (re-)entering the group.
This state can only be entered after the first setup or any update setup state of the
TTP (denoted by arrows pointing from these states to get sk). To generate this key,
the TTP needs mskt for the current epoch t, an identity ID of the user and the current
time stamp t. It outputs a corresponding uskID,t and sends it to the user over a secure
channel (which is abstracted in this formalization and assumed to be perfectly secure:
authentic, confidential, integrity-protected etc.).

use pk: Users may use another user’s identity (= their public key pk), MPK and a current
time stamp t to encrypt a message or verify a signature. Even those who do not have
a user secret key themselves can use the public values of others. If MPK is epoch-
independent, users can encrypt messages for future epochs or non-existent users. This
can be modeled if future time stamps or identities are predictable. For simplicity, we
assume that this state can only be reached once the corresponding secret values exist;
therefore, this state can only be reached after the user received valid key material for
through get sk or update sk.
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use sk: A user ID decrypts or signs a message with her own uskID,t that corresponds to
the epoch t for which the message is or was intended. To decrypt, a user needs the
corresponding uskID,t and the ciphertext. To sign, she needs uskID,t and a message.
This state can be reached once the user has a secret key either from entering the group
(get sk) or from updating an old key (update sk).

revoke (advance epoch): The epoch changes and all previously valid keys become obsolete
(= are revoked). A new (unique) time stamp is generated or computed from the
previous time stamp and published. It is determined which users are expelled from
the group, i.e. which users should not receive a re-key or an update token. If the
time stamps are not generated predictably, it is important to record the succession of
time stamps so that the model allows checking dependencies, e.g. whether uskID,t´1
is from the epoch directly preceding the current epoch t, for example. This state can
(sensibly) be reached at any time as soon as there exists at least one uskID,t to revoke.

update setup: If the mechanism requires it, mskt´1 is updated to mskt and MPKt is derived
and published for the new epoch. As indicated by the dotted arrow pointing to this
state matching the dotted arrow line out of revoke, update setup always follows the
revoke-state unless the communication group is deleted for good (denoted by the arrow
pointing to the black dot).

update sk: The remaining users receive a re-key or an update for their secret key material.
For this state, users need either a new key or an update token from the TTP. Like be-
fore, the TTP sends these values to the user over a secure channel (which is abstracted
in this formalization and assumed to be perfect). This state can be reached for every
user as soon as the TTP has advanced the system to the next epoch and updated the
setup values, if necessary.

The state diagram is the same for renewal-, individual-update-based or universal-update-
based revocation. The differences lie in the specific handling of keys in each case (see
Section 5.5). For some approaches, some of the actions do not change the system state (e.g.,
if the setup values are never changed) and could be left out of the diagram; but the verbose
version of the diagram still applies.

5.4. Security properties
The automated analysis needs to capture established, intuitive security notions for the revo-
cation mechanisms on a level of abstraction consistent with the protocol abstractions.

The following sections describe

1. Forward Security

2. Post-Compromise Security

3. Decryption Key Exposure Forward and -Backward, and

4. Collusion Resistance

Notions 1, 2, and 3 are illustrated in Figure 5.3.
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Figure 5.3.: Each security property concerns the leak of a user secret key at a certain time
and what it implies for the security of a message/user secret key from another
epoch. The topmost, gray time axis (ÝÑtime) indicates that in each of the
illustrated cases, a usk is generated (yellowyellow) at the beginning of the epoch
and revoked when the epoch ends. The system advances to the next epoch
(pink) and a new usk is generated (from scratch or through an update). The
revocation of this key is not shown (it is irrelevant). The other four, black time
axes (ÝÑtime) illustrate four distinct security notions, each indicating the leak
of a certain key in one of the two epochs and which messages or keys remain
secure if the security goal is achieved.
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Note that all stated properties are commonly found in related literature, albeit not in
this specific combination and without a distinction between the consequences of decryp-
tion key exposure for previous and for future epochs. They only relate to encryption and
confidentiality. For signatures and authenticity, equivalent properties apply2.

Notation Below, the following notation is used:

• If t denotes an epoch, then t P N is assumed and the arithmetic symbols are used
intuitively in N; for example, t ` x denotes the xth epoch after t.

• uskID,t is the user secret key that is valid for an identity ID in epoch t.

• mskt is the master secret key that is valid in epoch t. If the master secret key is never
updated, the notation still applies and mskt is the same for all epochs t.

5.4.1. Forward Security
This property is in the standard repertoire of security notions and defined for authentication
and both symmetric and asymmetric encryption mechanisms. The term “Forward Secrecy”
is more commonly used for key exchange mechanisms, though not exclusively [BG21]. For
asymmetric encryption, Forward Security means that messages encrypted with a public key
from an epoch t remain confidential even if a secret key of the same user from an epoch
t ` x ą t is compromised (but not the secret key from epoch t itself). This concept is easily
transferable to IBC. In this work, Forward Security therefore means that compromising
uskID,t`x from an epoch t ` x ą t does not give an attacker any advantage when trying
to decrypt a message that was encrypted for an identity ID and an epoch t. Only traces
in which the leak of uskID,t`x is part of the adversary’s attack are considered proof that
Forward Security does not hold or only conditionally holds in the modeled approach.

5.4.2. Post-Compromise Security
This property was first introduced in the context of authenticated key exchange, i.e. pro-
tocols to establish a shared key between two parties who authenticate each other in the
process [CCG16]. Informally speaking, a mechanism achieves Post-Compromise Security if
the communication between two users remains secure even if one party’s keys have been com-
promised. Applied to IBC-revocation and encryption, Post-Compromise Security is achieved
if compromising uskID,t´x from an epoch t ´ x ă t gives an attacker no advantage when
trying to decrypt a message that was encrypted for an identity ID and an epoch t. As
before, only traces in which the leak of uskID,t´x is part of the adversary’s attack are con-
sidered proof that Post-Compromise Security does not hold or only conditionally holds in
the modeled approach.

5.4.3. Decryption Key Exposure Resistance Forward and -Backward
Decryption Key Exposure Resistance is introduced as a security notion in [SE13b] to account
for a weakness of individual update mechanisms in which a part of the key changes in each
epoch but another part remains fixed.

2See, for example, [BG21] for an explanation of forward secure signatures.

49



5. Formal model of revocation in Identity-based cryptography

In these cases, an adversary can pair the static part of the key with any update token to
create a valid key. To understand the security of a RIBE mechanism, three kinds of leaks
need to be considered in the adversary model: of the static key, of the update token, and of
the decryption key derived from them). However, previous models only considered a leak of
either key part, not of the full decryption key.

The security model in [SE13b] contains all three kinds of leaks and allows decryption key
exposure at any time (except the target epoch). Since the static key is re-randomized with
a new token in every epoch, there is no “chain of updates” in individual token approaches;
instead, the updated keys share a direct ancestor (= the static key).

Unlike the security model in [Gug20], the proposed notion does not distinguish between
effects from decryption key leakage before or after an update, even though doing so is
straightforward.

This work therefore differentiates between Decryption Key Exposure Resistance Forward
and -Backward:

Decryption Key Exposure Resistance Forward A mechanism achieves Decryption Key Ex-
posure Resistance Forward if the adversary can not learn uskID,t without compromising
the key itself or mskt, even if uskID,t`x for any later epoch t ` x is compromised.

Decryption Key Exposure Resistance Backward A mechanism achieves Decryption Key
Exposure Resistance Backward if the adversary can not learn uskID,t of an epoch t
without compromising the key itself or mskt, even if uskID,t´x from a previous epoch
t ´ x is compromised.

As before, only traces in which the leak of uskID,t`x (uskID,t´x) is part of the adversary’s
attack are considered proof that Decryption Key Exposure Resistance Forward (Backward)
does not hold or only conditionally holds in the modeled approach.

Note that the security goals of Decryption Key Exposure Resistance on the one hand and
of Forward- and Post-Compromise Security on the other are similar but not identical: While
Decryption Key Exposure Resistance aims at whether an attacker can obtain a key, Foward-
and Post-Compromise Security require that an attacker does not break the confidentiality of
a message. Achieving the former for one direction (forward or backward) implies achieving
Forward/Post-Compromise Security, respectively, because obtaining a key allows decrypting
a message.

5.4.4. Collusion Resistance
Collusion Resistance is an important notion for IBC-mechanisms in which a user identity
consists of distinct components (“attributes”) and all users who share an attribute know the
associated share of the secret key. In these cases, users with distinct attributes may collude
to derive a key that none of them holds individually and that corresponds to an identity
that is a mix of their respective attributes [SW05].

In this work, each identity is associated with only one key, not a set of keys, so the notion
does not directly apply. However, it is useful in the following sense (as, for example, used in
[BGK08; SE13b]): An update mechanism is called collusion resistant if it does not allow any
number of users to decrypt a message together that none of them should be able to decrypt
on their own.
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For the prover to reason about security notions, a model must reflect structural and
mathematical dependencies between keys of various epochs and various users. Together
with the information the attacker can compromise, these elements yield the attacker model
described in the next section.

5.5. Adversary model
To understand whether a specified mechanism achieves a specified goal under realistic cir-
cumstances, the model must specify the adversaries against which the mechanism should be
tested.

For the best security guarantees, the adversary should be restricted as little as possible:
The stronger the adversary, the stronger the security of a mechanism that withstands it.
The following aspects shape the adversary model:

• The private channel from the TTP to each individual user is assumed to be perfect, and
thus the mechanisms securing the usk distribution are not modeled. Other than that,
all channels are assumed to be untrusted, so the adversary knows all public values (like
the MPK and the group members’ identities) and can receive, modify, and intercept
any messages in the network and interject new ones.

• The adversary can appear as a legitimate group member and register (= receive usks
for) as many identities as it chooses.

• The user management, which is done by the TTP, is abstracted and assumed to be
ideal: The adversary can therefore

– not register an already registered identity with the TTP,
– not advance epochs independently from the TTP
– not get the TTP to ignore user- and key management policies (e.g. that fresh

values are used only for new or re-joining members)
– not manipulate the TTP in any other way than compromising and then using its

secret values.

To understand how the adversary might break the security, i.e. what information the
adversary can derive from which inputs into a cryptographic protocol or mechanism, the
possible sources of adversary knowledge need to be modeled. There are two ways for the
adversary to obtain a secret value:

1. She directly receives this information (for example by compromising a user and stealing
one of their secret keys). For an exhaustive model, the adversary should be able to
compromise any public and private information as soon as it exists or at any time
thereafter. However, for non-trivial insights, the adversary may not compromise all
entities. Otherwise, there is nothing to show.

2. She derives it by exploiting the structural, mathematical or cryptographic dependencies
of other known values

The next two sections detail these methods.
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5.5.1. Adversary knowledge

The model must let the adversary know all public values:

• the current epoch t and all previous epochs

• MPK of the current epoch t

• the identities of all registered users (which are their public keys)

• all transmitted cipher texts (since they are sent over insecure channels)

• all public update values for all epochs and identities once they exist

It must also allow the adversary to access secret values on demand. It is important to
include all values that are generated or computed in the process and could possibly be leaked:
For example, a failure to model “decryption key exposure” (what in this model is called usk
leak) in the proof for [BGK08] made it impossible to detect an attack.

The following values need to be included if they exist in an approach:

• mskt for any epoch t

• uskID,t for any identity ID and epoch t in which this key exists

• secret update values for any epoch and identity in which they exist

• static user secret keys suskID,t for any identity ID and any epoch t in which they exist

It is also public knowledge how keys and update values are computed. The next section
details the dependencies for the model to capture.

5.5.2. Cryptographic primitives and mathematical dependencies

To prove an adversarie’s inability to exploit mathematical connections between keys, cipher-
texts or other cryptographic information, the dependencies in question should be modeled
as precisely as possible. However, as has been shown in [BHS19]3, most mathematics under-
lying IBC-schemes rely on distributive laws and are therefore hard to model in trace-based
tools. The essential logic of both identity-based signatures and identity-based encryption
can be and has been modeled, and the goal of this work is to model the essential logic of
revocation and update mechanisms in IBC.

For a meaningful model of update- and re-key-based revocation mechanisms, the cor-
responding mathematics need to be captured abstractly, between keys and cipher texts
(signatures) as well as between various keys4 5.

3The paper focuses on Tamarin, but other tools like ProVerif have similar limitations regarding distributive
laws.

4Dependencies between cipher texts (signatures) of different epochs are not included, because this work is
strictly concerned with updatable keys, not with updatable or malleable encryption (signing), which is a
different area of research (see for example [LT18]).

5While the characteristics described below are standard and appear in all considered schemes, they must be
double-checked when applying the formalization for a new scheme.
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between mskt and MPKt In all considered schemes, MPK is derived from msk in a way
that is hard to reverse (e.g., based on the discrete logarithm problem). Therefore,
derivation of MPKt from mskt must be modeled, but the reverse must not be allowed.

between ID, mskt, t and uskID,t The user secret depends at least on the user identity and
mskt, and may also depend on the epoch identifier t. In all considered cases, computing
mskt from the user secret is hard.

between the keys, the plaintext and the ciphertext The model must allow anyone who
knows the public values to encrypt a plain text for a certain identity. It must allow
anyone to decrypt the resulting ciphertext if, and only if, they have the corresponding
user secret key. The model needs to specify what constitutes this “correspondence”,
namely that the identity, the underlying msk and other values binding the user secret
to the current epoch need to match in a specific way.

between mskt and mskt`1 If mskt and mskt`1 are not the same, the model needs to capture
whether computing one from the other in either direction is possible or not. Note that
MPKt will change, too, if mskt changes, but that this is captured by the derivation
rule between mskt and MPKt.

between uskID,t and uskID,t`1 The model must capture whether and, if so, how user keys
can be derived from each other in either direction of time and between identities.

between epoch identifiers If epoch identifiers (here: t, t`1) have an underlying mathemat-
ical logic, this might interfere with other dependencies and needs to be be modeled.

These dependencies determine the differences between the three classes of IBC-revocation
mechanisms considered in this work. For example, the dependency between uskID,t and
uskID,t`1 is entirely non-mathematical in the key renewal approach and thus, in the model,
whereas the dependency for universal update tokens must model that an adversary can use
the token to update the key for any identity.

The model can therefore be tailored to each class while the main construction guidelines
and the security properties remain the same. This allows a clean comparison between the
mechanisms. The model assumes that every message is unique. Dependence between plain
texts is out of scope for this work.

5.6. Formalization summary

The formalization consists of three parts: 1. Trace construction guidelines, 2. desired security
properties and 3. adversary knowledge.

The following overview summarizes the information that needs to be modeled for a trace-
baced automated analysis of revocation mechanisms in IBC as laid out above:
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Trace construction info j

necessary states:

• setup
• get sk
• use pk
• use sk
• revoke
• update setup
• update sk

Security Properties

• Forward Security
• Post-Compromise

Security
• Forward Decryption

Key Exposure
Resistance

• Backward Decryption
Key Exposure
Resistance

• Collusion Resistance

Adversary Knowledge

• public information
• direct compromise options:

– @t : mskt

– @ID, t : uskID,t

– @ID, t : suskID,t

– private update values
• mathematical dependencies

between
– mskt and MPKt

– mskt, ID, t and uskID,t

– mskt and mstt`1

– uskID,t and uskID,t`1

– keys, plain- and cipher texts
– t and t ` 1

This chapter answers RQ 2) (“How can revocation approaches and their security re-
quirements be formally modeled such that a trace-based automated prover can reason about
them?”). Chapter 6 introduces the translation of this formalization to Tamarin. As ex-
plained before, the trace construction information and the security properties are modeled
once for all classes, as are the compromise options. The differences between the classes are
reflected in how the mathematical dependencies are implemented and in the information that
is public or private. Chapter 7 reports and interprets the results of executing the model,
and contains a sanity check that the minimal example brought forward in this chapter can
be modeled with the proposed implementation.
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6. Modeling IBC-revocation mechanisms

As a proof-of-concept, this chapter shows that the formalization presented in Chapter 5 can
be meaningfully translated for an automated prover.

• Section 6.1 explains why Tamarin is the prover of choice for this work.

• Section 6.2 introduces Tamarin’s logic and the modeling options.

• Section 6.3 through Section 6.5 detail the translation of the formalization to a meaning-
ful Tamarin model. The translation is presented along the same lines as in Chapter 5:

– in Section 6.3, the state diagram

– in Section 6.4, the security properties (which are the same for all classes)

– in Section 6.5, the adversary knowledge (which reflects the differences between
the classes)

• Section 6.6 describes some sanity checks that the model includes to ensure that it
represents the formalization coherently.

Appendix A contains a code blueprint which is the basis for all models. Placeholders (high-
lighted in yellow) indicate where approach-specific code must be added to get a functional
and faithful model. The explanations in this chapter reference the blueprint and the place-
holder insertions in the corresponding model codes (Appendix B through Appendix E).

6.1. Tool choice

The prover of choice for this work is Tamarin because

• it proves correctness (other than, for example, Verifpal [KNT20], which can find mis-
takes but not prove their absence),

• proves properties for “unbounded sessions”, i.e., regardless of the number of sessions
running in parallel (other than, for example, AKiSs [Cha+16] and DeepSec [CKR18]),
and

• has a more precise Diffie-Hellman model than ProVerif [Bla16] and includes bilinear
pairings.

Also, Tamarin was the prover of choice in a previous publication [Gaz+21b] and thus a
familiar tool. In hindsight, the Diffie-Hellman model could not be used as anticipated in this
work: Therefore, Tamarin and ProVerif are equally well-suited.
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6.2. Tool background

Tamarin is a trace-based automatic prover that works with multi-set rewriting [Bas+17].
A multiset is a set in which elements may appear more than once. The prover starts at

a given (multi-)set of facts representing the state of a system at a given time. It re-writes
this set, backtracking an origin for each fact, and thereby constructs a trace that represents
a possible (partial) protocol run.

The multi-set rewriting system is expressed with the following building blocks:

1. Atomic terms, function symbols and the equational theory (which assigns meaning to
function symbols)

2. Facts, the atomic elements of a state

3. Rules and action facts for constructing and reasoning about traces and to assign mean-
ing to function symbols

4. Restrictions on considered traces

5. Lemmas to reason about trace properties

These elements are explained below. For further details consult the Tamarin manual1.

6.2.1. Atomic terms, functions and the equational theory

There are various sorts of atomic terms, each indicated by a typographic marker. Most
notably for the rules in Section 6.3 there are

• fresh variables like „ y

• public variables like $X (that are often used to identify and distinguish protocol agents)

• global constants like ’c’

New terms can be created from existing terms using function symbols. Equations give the
function symbols meaning. Meaning can also be assigned by how symbols interact in rules.
Some functions and equational theories are built-in and can seamlessly be used in models,
for example hash functions, public key encryption, or Diffie-Hellman exponentiation.

As an example, consider public key encryption: With the following line in a rule, the
fresh value „ sk can be identified as the secret key for a public key (using the unary built-in
function pk):

pub key = pk(„ sk)

The equation for public key encryption describes how the binary functions for asymmetric
encryption enc and decryption dec are interrelated:

dec(enc(m, pk(sk)), sk) = m

1version published on November 10, 2022; see https://tamarin-prover.com/manual/index.html for the
current version and https://github.com/tamarin-prover/manual-pandoc for github version
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This specifies that function dec yields a value m (the message) if a) its first argument
matches the encryption of m with a public key for sk, and b) the second argument is sk,
matching the public key used for encryption.

A new term representing the ciphertext for m can therefore be defined as

cipher= enc(„ m, pub key)

6.2.2. Facts
Facts are state descriptions that can take terms as inputs. In the model, three notations
appear:

• Fr(„ x) denotes the input of a fresh variable, for which a new value is assigned every
time the rule is applied and which needs no further backtracking. The rule can use the
fresh value „ x in the output facts.

• In(x) and Out(x) denote information received and sent over a public channel. The
public channel represents a network that is under the adversary’s control. The ad-
versary reads all information x that is sent over the public network (Out(x)) and can
generate In()-facts from values it knows.

• Custom-defined facts SomeFact(„ y, $X, ’c’) can bind values of different sorts to-
gether. Each instance of a fact originates in the output of a rule. It is consumed when
a rule uses it as input. Therefore, each instance can only be used once.
To use them arbitrarily often, custom-defined facts can be made persistent with a
prefix “!”. Once a persistent fact !SomePersistantFact(„ y, $X, ’c’) is output by
a rule, it remains in the multi-set indefinitely (unless restrictions apply).

6.2.3. Rules and Action Facts
Rules represent state transitions. They take facts as input and produce facts as output.
They are denoted as follows:

rule some_transition :
[ ( inputs ) ]
-->
[ ( outputs ) ]

To reason about the protocol or restrict the traces for Tamarin to consider, rules can be
labeled with action facts. Consider the following example where the rule is labeled with the
action fact “OnlyOnce()”:

rule generate_master_keys :
[ Fr (˜sk) ]
--[ OnlyOnce () ]->
[ !MSK (˜sk)
, !MPK(pk(˜sk)) ]

The rule is called generate master keys and takes a fresh value „ sk as input. It outputs
a persistent fact !MSK(„ sk) to record that the value „ sk can be used as a master secret
key. Another persistent fact !MPK(pk(„ sk)) records that pk(„ sk) can be used as the
master public key corresponding to „ sk.

Section 6.2.4 provides an example for using this action fact to restrict a model.
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6.2.4. Restrictions
Restrictions determine the set of traces that Tamarin includes in the proofs. They are
formulated in first-order logic (FOL) over action facts and time points (a special type of
variable, prefixed with #, that only appears in FOL-formulas). Every rule execution happens
at a unique time point.

To ensure, for example, that a rule is executed at most once, label it with the action fact
OnlyOnce() and include the following restriction in the model:

restriction OnlyOnce :
"All #i #j. OnlyOnce ()@ i & OnlyOnce ()@ j ==> #i = #j"

It says that for all time points #i and #j on the trace it must hold that: If the action
fact OnlyOnce() appears both at #i and at #j (that means, any rule with this action fact
is executed at time points #i and #j), then the time points must be the same.

Given this restriction, the prover only considers traces for the model in which this formula
holds. Traces with more than one appearance of the label OnlyOnce() are not considered
for proofs.

6.2.5. Lemmas
Lemmas are statements about the model. There are two classes:

• “All”-statements: If Tamarin proves this, all protocol runs with the specified proper-
ties fulfill the lemma. Disproving this means that Tamarin can construct at least one
protocol run for which the lemma is not true.

• “Existence”-statements: If Tamarin proves this, at least one run of the protocol fulfills
the lemma. Disproving this means that Tamarin can not construct any protocol run
to fulfill the lemma.

Not all lemmas can be proven or disproven: Tamarin may fail to terminate and thus produce
no result. If it terminates, the results hold.

The lemmas are analyzed for arbitrary protocol length and for arbitrary many parallel
instances of the protocol. An agent may occur in several instances at once and is not bound
to have the same role in each of them. (Note that models in this work allow arbitrary many
epochs, but the restrictions exclude parallel sessions because they are out of scope.)

In some cases, Tamarin can not deduce all possible sources of a fact. To mitigate this,
the model can include “sources-lemmas” that are easier to prove. Tamarin can re-use
these statements to reason about other lemmas. Sources-lemmas need to be checked for
correctness; Tamarin will use them even if they are wrong. As an example, loops and other
recurring transitions can be difficult for Tamarin to work with if it fails to identify the
common starting point. A sources-lemma which makes the starting point for a loop explicit
to the prover can help in this case.
The next section explains how the state diagram presented in Section 5.3 is translated to
Tamarin with suitable terms and rules.

6.3. The state diagram
All states of the state diagram (except start and end, which represent start and termination
of a proof) are directly translated to rules in Tamarin, which is explained Section 6.3.1.
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The restrictions discussed in Section 6.3.2 are necessary to refine the model.

6.3.1. Translating States to Rules

This section explains how each state is translated to a rule or rules:

• State “setup” to rule setup

• State “get sk” to rule generate usk

• State “revoke” to rule advance epoch

• State “update setup” to rule update msk

• State “update sk” to rule distribute token and rule update usk

• State “use pk” to rule encrypt

• State “use sk” to rule decrypt

Figure 6.1 illustrates the translation, starting at the top:

• Each rule is represented by one box:
– The pink header displays the rule name (e.g. rule setup).
– The two horizontally separated parts below it represent the inputs (IN/NEW)

and outputs (OUT), respectively.
– The input section is vertically divided into arguments originating from a rule

output or from the public knowledge base (IN) and values that are freshly created
in each rule execution (NEW).

Note that the terms “IN” and “OUT” do not allude to the In()- and Out()-facts in
Tamarin.

• The bold lines and bold font mirror the states from Figure 5.2, thus making apparent
that all states except “update sk” are translated to a single rule, and that “update sk”
is divided into the rules distribute token and update usk, so the TTP’s and the
user’s share of this operation are separated.

• Almost all rule names vary slightly compared to the corresponding state in the state
diagram to make them more specific (e.g. “encrypt” vs. “use sk”) or reflect the process
rather than the protocol logic (“advance epoch” vs “revoke”).

• The arrows in Figure 6.1 indicate the input/output connection between rules, i.e. which
rule is a possible source (arrow base) of input for the same or another rule (arrow head).
Black arrows show input/output connections possible in the first epoch, blue arrows
show connections happening after at least one epoch transition. (The dashed arrow
lines protruding from rule advance epoch are semantically the same as the blue ones;
they are only dashed to make the figure easier to read.)

The following paragraphs describe the rules and the input-/output logic between them.
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6. Modeling IBC-revocation mechanisms

Figure 6.1.: Each state of the formalization (indicated with a black frame and bold label on
top) is implemented through one or two rules (boxes with pink headers, labeled
with the rule names).
The inputs to each rule are either fresh (gray middle part, labeled NEW) or
passed along from other rules (white middle part, labeled IN). The outputs
(bottom white part, labeled OUT) are used further, according to the black and
blue arrows (black denoting events possible in the first epoch; blue, events pos-
sible after the first epoch transition; the output arrows for the epoch identifier t
from rule advance epoch are dashed for readability).
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rule setup:
let
% formula for msk_t computation
% formula for mpk_t computation
in
[ Fr(˜ msk)
, Fr(˜t)
]
--[ OnlyOnce (), Is_Epoch (˜t),

Origin_MPK_MSK (˜ msk, mpk)]->
[ !MSK (˜ msk, ˜t)
, !MPK(mpk, ˜t)
, !Epoch (˜t)
, Out(mpk)
, Out (˜t) ]

Listing 6.1: Blueprint code

rule setup:
let
msk = ˜ msk_new
mpk = pk(msk)
in
[ Fr(˜ msk_new )
, Fr(˜t)
]
--[ OnlyOnce (), Is_Epoch (˜t),

Origin_MPK_MSK (msk, mpk)]->
[ !MSK(msk, ˜t)
, !MPK(mpk, ˜t)
, !Epoch (˜t)
, Out(mpk)
, Out (˜t) ]

Listing 6.2: Code for key renewal

Figure 6.2.: Code comparison for rule setup in the blueprint (Listing 6.1) and in the key
renewal approach (Listing 6.2)

State “setup” to rule setup

This rule (line 10 in Appendix A) represents the start of a protocol run. Therefore, the
premise of this rule only requires fresh facts. The starting values for mskt and MPKt (written
mpkt in the code) are determined by choosing a fresh value for mskt and computing mpkt

as pk(mskt). The first epoch identifier is set to a fresh value.
To make values available for other rules, they need to be output by the rule in some form:

The mpkt and t are public values which the attacker may know, so they are published as
raw values (= added to the knowledge base via the Out()-fact). All values are also made
available for other rules through persistent facts.

There are two reasons to model output as a persistent fact:

1. If the value is not also published, it is kept secret from the adversary and can only be
used in other rules, but not for the adversary’s computations.

2. The values can be re-used as often as necessary and are not consumed at a rule exe-
cution (which would happen with linear facts). This is, for example, necessary so the
same mskt can be used to generate several user keys. Executing rule setup several
times to obtain a linear fact for each usk-generation would generate a fresh mskt each
time instead of the same; so linear facts are not helpful here.

Three rules may use these persistent facts in the first epoch (illustrated by the black arrow
starting at rule setup): The mskt is necessary to generate user keys, the MPKt is needed
to encrypt messages, and the epoch identifier t is needed for key generation, encryption and
to transition to the next epoch. If the TTP’s values are time-invariant and the state “update
setup” is not modeled explicitly, the outputs are also used in later epochs and for user key
updates (not illustrated). Starting with the second epoch, rule update setup may use
mskt to update it for the new epoch (illustrated by the blue arrow starting at rule setup).
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The mathematical connections between the keys are defined individually for each approach;
see Section 6.5 for details and discussion on all the placeholders appearing in this and the
other rules.

State “get sk” to rule generate usk

This rule (line 25 in Appendix A) is called “generate usk” instead of “get sk” because it
encompasses both the generation and the (implicit) distribution of the user secret key, not
only the state in which a user gets their key.

The premise requires an epoch identifier and mskt as persistent facts, so they are not
consumed and can not be supplied by the adversary but must come from another rule
execution. With an approach-specific computation, the rule generates uskID,t for an identity
ID from mskt. The ID is specified as a public value, meaning the prover uses a (fresh or
existing) public value for it when executing the rule. In the conclusion, uskID,t is output as
a persistent fact that binds it to the corresponding epoch and identity.

State “revoke” to rule advance epoch

This rule (line 35 in Appendix A) describes the implementation rather than the logic of the
protocol, so it is called “advance epoch” rather than “revoke”. Since keys are revoked indi-
rectly by transitioning the whole system to the next epoch, this accomplishes the revocation.

Given the current epoch through a persistent fact from either the first setup or from a
previous execution of the rule itself, the TTP chooses a fresh epoch identifier.

The premise requires an epoch identifier as a persistent fact and supplies a fresh value.
The conclusion outputs the new value as a new epoch identifier, both by publishing it and
as a persistent fact, and outputs a reusable fact to record the order of the two epochs for the
update-rules. The rule has two labels, EpochEnded(„ t1) and Consecutive(„ t1, „ t2)
that are used in restrictions and lemmas to account for the correct use and order of epochs.

This rule is independent of the chosen revocation approach.

State “update setup” to rule update msk

This rule (line 45 in Appendix A) requires an epoch identifier tnew, the master secret from
the previous epoch (together with a fact that records the order of old and new epoch), and a
fresh update value in the premise. From the previous mskold and the update value, the secret
key msknew for this epoch is computed according to the approach’s logic. Usually, mpknew

is connected to msknew via the public key function pk(), so this assignment is fixed in the
blueprint. The conclusion of the rule outputs persistent facts !MSK(msk new, „ t new) and
!MPK(mpk new, „ t new) (which bind those values to the corresponding epoch) and adds
mpk new to the adversary’s knowledge base.

State “update sk” to rule distribute token and rule update usk

After an epoch transition, a user who already has a secret key needs an update value to
update it for the new epoch. In the state diagram, the events “TTP creates key for user”
and “user applies update value to old key” are subsumed in the state “update sk”, because
the diagram describes only the states for one user and one TTP. In the prover models,
however, the effects of update value distribution to distinct users must be considered and
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separating the two events allows for a cleaner model. Therefore, this state is divided in two
rules, rule distribute token and rule update usk.

rule distribute token This rule (line 61 in Appendix A) requires as input an epoch
identifier t and the master secret key of t. The update value (“token”) is computed in some
way (which is individual to each approach and needs to be filled in for the placeholder). The
rule outputs it as a persistent fact that binds it to an epoch and a user. Some approaches
distribute (parts of) the update over an insecure channel, which is accounted for with another
placeholder in the conclusion.

rule update usk This rule (line 74 in Appendix A) requires as input an epoch identifier
tnew, a persistent fact that records its connection to the previous epoch told, a user’s key
from epoch told and an update value for tnew. With an approach-specific formula, the user’s
key for tnew is computed and the result recorded as a persistent fact that binds it to tnew

and the user ID.

State “use pk” to rule encrypt

All approaches are modeled as encryption schemes; therefore the rule is re-named to reflect
that the public key is used to encrypt a message for a certain user.

In the premise, this rule (line 86 in Appendix A) takes as inputs mpkt for the encryption
epoch, a fresh message and an epoch identifier to specify the epoch for which the message
shall be encrypted. The ID of the user for whom the message is encrypted must appear as
a public value in the formula that specifies (for each approach individually) how a message
is encrypted in the corresponding approach.

Choosing the message as a fresh value means that the same message can never be encrypted
twice using this rule. Unless the adversary encrypts the same message again, effects from
encrypting the same message to different users can not be discovered. The resulting cipher
is published, which models sending it to the receiver over an insecure channel. There is no
other output.

State “use sk” to rule decrypt

When modeling encryption schemes, the user’s secret key is used to decrypt messages; the
rule is re-named accordingly. This rule (line 99 in Appendix A) takes as input a cipher
generated for an epoch t from the public channel, a user secret key and a master public
key. The master public key is necessary in this rule to match the correct uskID,t against
the cipher, because the connection between them is established through mskt. The code
replacing the placeholders details how uskID,t and cipher are matched against each other
in a certain approach and computes the message that the cipher decrypts to. There is no
output from this rule.
The restrictions in the model, which ensure the correctness of the epoch transitions as well
as some of the TTP’s and the users’ execution policies, are explained in the next section.

6.3.2. Restrictions
The following restrictions model behavior of the TTP and the users that is not captured in
the rules. They are found in lines 133 through 163 of the blueprint code.
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Restrictions achieve two things:

1. Proofs become easier because the trace space is smaller.

2. The attacks excludes unrealistic scenarios. However, it is not necessary (and may even
be detrimental) to exclude all unrealistic scenarios, as long as any attacks the prover
finds do not rely on them.

Proving a lemma for more cases than necessary does not harm its validity. Some restrictions
may be difficult for the prover to process and thus make proofs harder rather than easier
to compute; therefore, skipping restrictions can be a sensible modeling option. Also, if the
model is restricted too heavily, possible attacks may inadvertently be excluded.

The following set of restrictions strikes a balance between these goals and are explained
below:

• SetupOnlyOnce

• End of Epoch holds

• End Epoch Once

• USK Gen or Upd only once per epoch

• GenUSK only if not member in previous epoch

• CreateUpdate and GenUSK not in the same epoch

• CreateUpdate only once per epoch

• Update MSK only once per epoch

• Leak USK only once per epoch

Applying the blueprint to a different approach may warrant a different solution.

SetupOnlyOnce

This restriction ensures that rule setup occurs only once. It is implemented as follows:
restriction SetupOnlyOnce :
"All #i #j. SetupOnlyOnce ()@ i & SetupOnlyOnce ()@ j ==> #i = #j"

This restriction effects that there is only one starting point. Otherwise, the system can have
more than one msk. While this would allow modeling parallel sessions and effects between
communication groups (given extra mechanisms to control group membership), it is out of
scope for this work.

End of Epoch holds

The rules given above are not enough to enforce an epoch transition where only one epoch
exists at a time. When rule advance epoch is executed, the epoch identifier for the ending
epoch must not be used for key generation, updates or encryption anymore. Therefore,
all rules that may only be executed in a specific epoch are labeled Is Epoch(„ t) and
rule advance epoch is labeled Epoch ended(„ t). The restriction states that for all (epoch
identifiers) t, the label Is Epoch(t) can only appear before the label Epoch ended(t):
restriction End_of_Epoch_holds :
"All t #i #j. Epoch_ended (t)@ i & Is_Epoch (t)@ j ==> #j < #i"
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End Epoch Once

The existence of an epoch identifier is not modeled as a consumable fact but as persistent
fact !Epoch(„ t). Therefore, the only condition to execute rule advance epoch is always
met as soon as the first epoch exists. The order of epochs must be unique, however: Time
must be modeled as linear and no epoch can be the predecessor of two different epochs. The
restriction End Epoch Once enforces that Epoch ended(„ t) can occur only once per epoch:
restriction End_Epoch_Once :
"All t #i #j. Epoch_ended (t)@ i & Epoch_ended (t)@ j ==> #i = #j"

USK Gen or Upd only once per epoch

The formalization assumes that the TTP generates only one usk or update token per identity
and epoch. The TTP’s decisions on which keys and tokens are generated are abstracted in
the formalization and in the model. Therefore, the model does not include an attack vector
for fooling the TTP into generating more keys. The restriction enforces this policy through
a label Exists Key, which appears in rule gen usk and rule update usk

restriction USK_Gen_or_Upd_only_once_per_epoch :
"All I usk1 usk2 t #i #j.
Exists_Key (I, usk1, t)@ i & Exists_Key (I, usk2, t)@ j ==> #i = #j"

GenUSK only if not member in previous epoch

Any user who was a member of the communication group in the previous epoch (i.e. le-
gitimately held a valid key) must either receive an update or no key at all. New keys
are distributed only to users for whom no key or update token was created in the previous
epoch. The restriction enforces (using corresponding labels in rule generate user key and
rule advance epoch) that if a key is generated for a user in a certain epoch, they may not
have received a key through rule generate user key or rule update usk in the previous
epoch.
restriction GenUSK_only_if_not_member_in_previous_epoch :
"All I t1 t2 #i #j.
Consecutive (t1, t2)@ #j & GenUSK (I)@ #i & Is_Epoch (t2) @ #i
==> not(Ex usk #k. Exists_Key (I, usk, t1)@ #k)"

CreateUpdate and GenUSK not in the same epoch

Users who were legitimate members in the previous epoch only receive update tokens, not
freshly generated keys, and those who (re-)join but were not members in the previous epoch
only receive freshly generated keys but not updates. So updates and fresh keys are never
created for the same user in the same epoch.
restriction CreateUpdate_and_GenUSK_not_in_the_same_epoch :
"All I t1 t2 #i #j. Consecutive (t1, t2)@ #j & Create_Update (I, t2)@

#i
==> not (Ex #k. GenUSK (I)@ #k & Is_Epoch (t2)@ #k)"
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This restriction excludes implausible attacks where an update token for I is leaked even
though a fresh user key was generated for I in the corresponding epoch (such that an update
token would not make sense for that epoch).

CreateUpdate only once per epoch

The TTP creates only one update for each user and epoch, and only distributes it once.
Legitimate distribution errors (for example, technical issues with the private channel between
user and TTP) are abstracted in this model; private channels are assumed to be perfect. The
user is also restricted to updating their key only once per epoch and can only use update
values distributed via a persistent fact. This reduces the attack surface since it makes update
injections more difficult for the attacker. In the presented models, the results are not affected
by this restriction, so it is safe to include it to simplify the scenarios in the counterexamples
and for reduced runtime.
restriction CreateUpdate_only_once_per_epoch :
"All t I #i #j. Create_Update (I, t)@ #i & Create_Update (I, t)@ #j

==> #i = #j"

Update MSK only once per epoch

The master key material is only updated by the TTP once per epoch. The restriction enforces
this using label Update MSK(„ t), such that rule update msk only be executed once per
epoch.
restriction Update_MSK_only_once_per_epoch :
"All t msk1 msk2 #i #j. Update_MSK (msk1, t)@ #i & Update_MSK (msk2,

t)@ #j ==> #i = #j"

Leak USK only once per epoch

In the presented model, the adversary either does or does not know a key; it therefore
makes no difference whether the same information is leaked repeatedly or taken from the
adversary’s knowledge base once it has been added to it. This restriction is added to reduce
the trace space and make attack examples more straightforward.
restriction Leak_USK_only_once_per_epoch :
"All I t #i #j. LeakUSK (I, t)@ i & LeakUSK (I, t)@ j ==> #i = #j"

With these state rules and restrictions, the main building block of the revocation mecha-
nism is established. The next section explains the lemmas that represent the security goals,
which are formulated as statements about action facts, and Section 6.5 shows how the im-
plementation of the revocation mechanism is refined to capture the adversary abilities and
the mathematical dependencies.

6.4. The security properties

Security properties are formulated as “lemmas”, i.e. first order logic statements about the
traces. The basic structure most often follows the form:
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“It holds for all traces that if a certain label appears at a “time point” #i on the trace,
then the adversary has no knowledge of a secret value unless a certain attack occurs.”

The statements can include multiple time points and labels both on the left and the
right hand side of the implication. There are also implication-free statements about all
(considered) traces or about the existence of traces with certain properties.

The security goals are the same for all models so that the different approaches can be
compared as closely as possible. However, the codes differ slightly because the attacker
model is not the same in all cases; for example, only the individual-token approaches contain
a static usk, so the lemmas for the security goals contain some reasoning about static usk
leakage that is absent in the other models.

The following sections explain the basic translation of the security properties into Tamarin
code that is the same for all approaches. The section on Forward Security includes an exam-
ple and a verbose explanation to showcase the code for such a lemma. The translations for
the remaining security goals are explained more briefly and only reference the corresponding
code in Appendix A.

Chapter 7 compares the exact conditions that need to be included in the lemmas for each
approach to understand whether it achieves the property, thus addressing the placeholders.

6.4.1. Forward Security
According to Section 5.4, “Forward Security means that messages encrypted with a public
key from an epoch t remain confidential even if a secret key of the same user from an epoch
t ` x ą t is compromised”.

The following code example shows the corresponding Tamarin lines from the blueprint
in Appendix A (explanation below):
230 lemma forward_security :
231 "All m I t1 t2 #i #j #k #o.
232 Sent(m,I)@ #i
233 & Is_Epoch (t1)@ #i
234 & Epoch_ended (t1)@ #j
235 & LeakUSK (I,t2)@ #k
236 & Is_Epoch (t2)@ #o
237 & #j < #o
238 ==> not(Ex #l. K(m)@ #l)
239 | (Ex #l. LeakUSK (I, t1)@ #l)
240 | (Ex #l. LeakMSK (t1)@ #l)
241 | (Ex #l. LeakUpdVal (I,t1)@ #l)
242 %other trivial leak"

For all traces and all variables m, I, t1 and t2 (which represent a message, an identity,
and two epoch identifiers) and for all trace time points #i, #j, #k and #o the following holds:

Assume m is encrypted for I in epoch t1 (so, the Sent(m,I) action fact and IsEpoch(t1)
action fact happen at the same time point #i), epoch t1 ends at some time point (which, per
the restriction End of Epoch Holds, happens after the message was sent). Assume further,
that uskI,t2 is leaked for an epoch t2, which occurs after the end of epoch t1 (#j ă #o).
Then there exists no time point #l at which the adversary knows m (denoted by K(m)).

To get functional code, the placeholders (lines prefaced with % and highlighted in yellow)
must be replaced by code to exclude attacks in which the leak of uskI,t2 plays no role (and
which are therefore not valid as counterexamples for Forward Security).
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6.4.2. Post-Compromise Security

Section 5.4 states that “Post-Compromise Security is achieved if compromising uskID,t´x

from an epoch t ´ x ă t gives an attacker no advantage when trying to decrypt a message
that was encrypted for an identity ID and an epoch t”.

The corresponding lemma post compromise security (line 246 in Appendix A) therefore
states that for all traces, (messages) m, (user identities) I, (epochs) t1 and t2 and all trace
time points #i, #j and #k the following holds: Assume uskI,t1 is leaked, epoch t1 ends and
afterwards, a message m is sent to I in an epoch t2. Then there exists no time point #l at
which the adversary knows m as a result of this leak (and other attacks are excluded).

6.4.3. Decryption Key Exposure Resistance Forward

Section 5.4 states that “A mechanism achieves Decryption Key Exposure Resistance Forward
if the adversary can not learn uskID,t without compromising the key itself or mskt, even if
uskID,t`x for any later epoch t ` x is compromised.”

The corresponding lemma (line 266 in Appendix A) therefore states that for all traces,
(user identities) I, (epochs) t1 and t2, all usk1 and usk2, and all trace time points #i, #j
and #k the following holds: Assume there exists a key usk1 that is bound to t1 and identity
I (i.e. it is the result of a user key generation or a user key update in epoch t1, the two rules
in which the corresponding label appears). Assume further that usk2 exists for I at a later
time point t2 (which, per the restrictions, implies that usk1‰usk2 and t1‰t2), and usk2
is leaked at some time point. Then there exists no time point #l at which the adversary
knows usk1 as a result of this leak (and other attacks are excluded).

6.4.4. Decryption Key Exposure Resistance Backward

Section 5.4 states that “A mechanism achieves Decryption Key Exposure Resistance Back-
ward if the adversary can not learn uskID,t of an epoch t without compromising the key
itself or mskt, even if uskID,t´x from a previous epoch t ´ x is compromised.”

The corresponding lemma (line 286 in Appendix A) therefore states that for all traces,
(user identities) I, (epochs) t1 and t2, all usk1 and usk2, and all trace time points #i, #j
and #k it holds that: Assume there exists a key usk1 that is bound to epoch t1 and identity
I (i.e. is the result of a user key generation or a user key update in epoch t1). Assume
further that usk2 exists for I at a later time point t2 (which, per the restrictions, implies
that usk1‰usk2 and t1‰t2), and usk1 is leaked at some time point. Then there exists no
time point #l at which the adversary knows usk2 as a result of this leak (and other attacks
are excluded).

6.4.5. Collusion Resistance

Section 5.4 states that “[a]n update mechanism is called collusion resistant if it does not
allow any number of users to decrypt a message together that none of them should be able
to decrypt on their own.”

The lemma (line 306 in Appendix A) therefore requires that for all traces and all variables
m, I and t (which represent a message, an identity and an epoch identifier) and for any trace
time point #i the following holds: Assume message m is encrypted for I and epoch t, but no
fresh key or update token was generated for identity I in epoch t. Then the adversary can
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rule leak_msk :
[ !MSK(msk,˜t) ]
--[ LeakMSK () ]->
[ Out(msk) ]

Listing 6.3: Code that allows leaking msk to the adversary’s knowledge base

not know m unless the master secret is leaked. Only attack scenarios that include information
from a third user (who is neither the sender nor the recipient of the encrypted message and
not the TTP) are (in this work) considered proof that Collusion Resistance does not hold
or only conditionally holds in the modeled approach. The adversary is then understood to
collude with this third user.

6.5. The adversary model

The following paragraphs describe how each of the adversary’s attack vectors formalized in
Section 5.5 is modeled.

6.5.1. Adversary knowledge

As explained in Section 2.7, an adversary can intercept, delay, modify, replay, delete and cre-
ate messages sent over an unprotected channel. In Tamarin, values appear on the untrusted
channel either as fresh values, which the adversary can create any time and arbitrarily often,
or as rule outputs. The adversary can inject any messages in the protocol via an In(...)-
fact. She can deduce facts using all functions and equations. She can use all rules with
values she knows. The rules for derivation and injection of adversary knowledge appear
in the manual; for this work it suffices to know the action fact K(x), which denotes the
adversary knowing x.

6.5.2. Corrupting Secret Values

If values are only passed as arguments of persistent facts, the adversary can not know them,
so they are secret. To model the corruption of secret values, the code needs to contain rules
that specifically allow the adversary to learn them. Listing 6.3 shows the rule with which
mskt is leaked to the adversary’s knowledge base: If a persistent fact for the master secret
in epoch t exists, then the master secret is sent to the public channel via Out().

Analogous rules exist to leak uskID,t or the update value upd valID,t for a user ID in
epoch t. A placeholder in the blueprint indicates that models may need to include more
leakage lemmas if other secret values exist. For example, the individual-update approaches
contain a secret, static user key suskID which is used to update uskID,t; a leakage rule for
this value is therefore added to these models.

The corresponding label in every rule allows the model to control for various attack sce-
narios in the lemmas, so the conditions of achieving a security goal are transparent and
comparable.
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usk = h($I, „ msk, „ t)
(a) key renewal

susk = h($I, „ msk)
token = token($I, „ msk,„ t)
usk = < susk, token >
(b) individual token, separate

susk = h($I, „ msk)
token = token($I, „ msk,„ t)
usk = h(susk, token)
(c) individual token, re-randomized

usk = usk der($I, msk curr)
(d) universal token

Figure 6.3.: Code that replaces the placeholder for the generation of user secret keys
in each of the four models

6.5.3. Dependency between mskt and MPKt

The rules setup and update msk specify that and how MPKt is computed from mskt. In
all considered approaches, deriving mskt from MPKt is supposed to be hard (because de-
spite MPKt being public, mskt should remain secret). The computation must therefore
be modeled through a function which is not invertible for the adversary. Also, the encryp-
tion/decryption equation must uniquely match the mskt used for the uskID,t-derivation with
the MPKt used for the encryption, so the derivation must happen through a function with
which the match can be enforced. Therefore, the dependency between mskt and MPKt is
modeled via the built-in function pk() (which is irreversible and suited for pattern matching)
in all models: mpk = pk(msk). Only in the universal token approach, the msk is not a fresh
value but modeled through a function msk der: msk = msk der(„ msk fresh). This is nec-
essary to model mskt-updates in such a way that extracting old values from a known mskt

is impossible. Going forward, the argument x in msk der(x) will be called “msk-exponent”2

for readability.

6.5.4. Dependency between ID, mskt, t and uskID,t

In rule generate usk, a placeholder for the user key appears:

27 %formula for the computation of usk

The following paragraphs explain the dependency between ID, mskt, t and uskID,t as re-
flected in rule generate usk. The dependency is also partly reflected in the update mech-
anism, so further details are found there (Section 6.5.6).

As explained in Section 3.2, exactly modeling the mathematics of identity-based encryption-
and signature schemes in Tamarin is difficult. Therefore, the exact functions are abstracted.
The abstractions must, however, capture the essential mathematical properties of the un-
derlying functions as faithfully as possible so attack vectors can be recognized. Figure 6.3
shows the corresponding Tamarin-code to replace the placeholder in each approach.

2This naming alludes to the schemes analyzed in [Gug20], where mskt is the exponent of MP Kt and updated
via exponent multiplication.
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The following properties are captured:

key renewal It must be . . .

• . . . easy to compute uskID,t given ID, t and mskt, but hard to compute given
only ID and t, and

• . . . hard to compute mskt from uskID,t.

Using a one-way function (namely the built-in hashing h(¨)) enforces both. It also
models the uskID,t as non-malleable, meaning a change in msk can not be applied to
usk without re-computing the complete hash. Note that important properties of a
real function for computing uskID,t may be missing here; hashing is not necessarily a
secure way to compute a secret key.

individual token (separate) The formulas ensure that . . .

• . . . the static key is computed independent of the epoch, and easily computed
given ID and msk, but extracting msk from it is impossible (through the properties
of the hash function).

• . . . the token depends on mskt, the user’s identity and the epoch. As long as no
further properties of the function token are modeled, the computation is a one-
way function. That means, it is easy to compute token given ID, t and mskt,
but hard to compute given only ID and t, and extracting msk is impossible.

• . . . given susk and a token for an epoch, it is easy to compute usk. Given usk,
both susk and token can be easily extracted (the tuple function <¨,¨> allows this
in Tamarin).

individual token (rerandomized) The formulas to compute susk and token are the same
as for the individual token (separate)-approach, so the properties are the same,
too. The function for computing usk is different, though: Instead of a function where
susk and token can be extracted given usk, the combination of the two values is re-
randomized with a one-way function (again represented by a hash-function) to yield
usk. This way, knowing usk implies no knowledge of susk or token.

universal token The connection between epoch and uskID,t is not explicit in the universal
token approach. Instead, the connection is made by ensuring both mskt and uskID,t

share a certain value that is freshly chosen for each epoch. Therefore, the function
usk der, with which usk is derived, does not take an epoch identifier as an input,
but only the user’s identity and the current msk-exponent. The function also has
important properties for enabling updates with a universal token; see Section 6.5.6 for
details.

Since the msk-exponent is hidden in msk der (even in leaks, because the adversary can
otherwise extract too much information from the tuple that represents the exponent),
the adversary must be given the ability to compute uskID,t from mskt directly (see
rule msk yield usk in Appendix E, line 128).
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6.5.5. Dependency between mskt1 and mskt2

In rule update msk appears a placeholder for updating mskt (computing msk new).

47 msk new = %formula for msk update

From msk new, the updated MPKt is computed as pk(msk new).
For the approaches using key renewal and individual updates, the master key material is

never updated. Therefore, rule update msk is left out of these models to reduce complexity.
In the universal token approach, „ upd val is applied to the previous master key by ap-

pending it to the msk-exponent: msk new = msk der(<„ upd val, msk old inside>) The
<¨,¨>-function represents the multiplication of the old exponent with the update value. This
built-in function allows nesting updates: A tuple <update, old value> can be extended
to the left with new update values arbitrarily often while keeping the same tuple structure
(which is necessary for pattern matching in other rules). This reflects that each multipli-
cation yields a value that can itself be multiplied with other values, which is an important
property that is otherwise tedious to implement in Tamarin.

Note that without any further rules or equations that describe mathematical properties of
msk der(¨), there are no more attack vectors than leaking the values. To limit the model’s
complexity, division by a previous mskt´x or division/multiplication by update values is not
modeled for msk der(¨) although it is possible in [Gug20]; see Section 7.3.8 for a discussion.

6.5.6. Dependency between uskID,t1 and uskID,t2

For consecutive epochs t1 and t2, rule distribute token and rule update usk establish
the mathematical connection between a user’s respective keys. There are three placeholders:

63 update value = %formula for the computation of the update value
in rule distribute token

70 %other output for token distribution in rule distribute token

76 usk new = %formula for the computation of the usk update
in rule update usk

In the four approaches, these are filled as follows:

key renewal Key updates happen by key renewal, so for a “token”, the TTP generates an
entirely new key, treating the epoch identifier as a part of the user’s identity. Com-
puting a user key from another user’s key must be hard; so in this update mechanism,
it must be hard to compute the user key for a consecutive epoch from a previous one.
This property is modeled by the hash function with which keys are generated. There-
fore, the placeholder replacements are straightforward (line numbering given for the
corresponding code in Appendix B):

61 update value = h($I, msk, t), so the update value is a fresh key for the given
identity, msk and epoch

67 (no further output in rule distribute token)
72 usk new = upd val, so the new user key is instantiated with the fresh key that

is passed to the rule as an update value
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individual token (separate and rerandomized) For the individual approach, a fresh indi-
vidual token is generated for each identity and epoch (rule distribute token). It
is also an important claim of the individual approach that update tokens can be pub-
lished without harming security; therefore, the token is not only output as a persistent
fact but also to the insecure channel over which it is sent to the users. The placeholders
are filled with (line numbers refer to Appendix C):

51 update value = token($I, „ msk, „ t new)

58 Out(update value)

Given suskID, the update is applied with the formula usk new = <susk, upd val> in
the separate approach (Appendix C, line 65) and with usk new = h(susk, upd val)
in the re-randomized one (Appendix D, line 65). Like for the key generation, this
reflects that in the separate approach, the token is seamlessly swapped, and in the
rerandomized approach, the key needs to be re-computed for re-randomization.

universal token For the universal token approach, two properties need to be reflected in the
code:

• Given a token with which msk is updated for a new epoch, it must be possible to
update usk knowing only the token and not msk.

• As described in [Gug20], the proposed mechanisms allow reversing the update
given uskID,t and an update token for epoch t, so that uskt´1 can be computed.
Although the described mechanisms are only for signatures (and no corresponding
encryption mechanisms are known), it is plausible that this property would trans-
late to encryption, so the model must capture it as well. (Likely, the implications
for security translate back to signatures as well.)

The model needs to reflect them in the two rules used for updating user keys, but also
with additional rules that allow the adversary to work with leaked values in the same
way.
The placeholders for the token- and uskID,t-computation are filled as follows (line
numbers refer to Appendix E):

65 in rule distribute token:
msk new = msk der(<„ upd val, msk old>)
update value = „ upd val

That means that the TTP selects the same token for distribution that is used
before to derive the new mskt.

77 in rule update usk:
usk old = usk der($I, old value)
usk new = usk der($I,<„ upd val, old value>)

There is no additional output for rule distribute token since the token is sent over
a private channel.
The two additional rules are:
rule usk der math , which allows updating a given old user key with a given update

value (line 116):
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rule usk_der_math :
[ In( usk_der ($I, <˜ exponent1,exponent2> ))
, In(˜ upd_val )]
--[ USK_der ()]->
[ Out( usk_der ($I, <˜ upd_val, ˜ exponent1, exponent2> ))]

rule usk diff math , which allows reversing a known update in an updated key
(line 122):
rule usk_diff_math :

[In( usk_der ($I, <˜ exponent1,exponent2> ))
,In (˜ exponent1 )]
--[ USK_diff () ]->
[Out( usk_der ( $I,exponent2 ))]

6.5.7. Dependency between Keys, Plaintext and Ciphertext
The model must specify how the moving parts of the encryption interconnect with the
parameters necessary for decryption to reconstruct the underlying message from a cipher
text. The specification must allow the adversary to perform the corresponding steps if it
knows all necessary values. The corresponding placeholders in the blueprint (code lines
given) are:

6 %the encryption/decryption equation of each model [...] in equations

88 %formula for the encryption of message m in rule encrypt

101 %pattern match for the usk in rule decrypt

102 %pattern match for the cipher (ibid.)

103 %computation formula for decrypted message (ibid.)

In the model for key renewal, the equation that defines the functions ibenc and ibdec
(identity-based encryption and decryption) is the following: ibdec(ibenc(m, I, pk(msk),
t), h(I, msk, t)) = m
It is almost identical for the two models for the individual approach, with only h(I, msk, t)
substituted by the respective formulas for computing uskID,t. For the universal approach,
not only is h(I, msk, t) replaced with usk der(I, msk), but t does not appear in the
equation at all; msk is time-dependent in this case, so an explicit reference to the epoch
identifier is unnecessary.

The placeholders for the encryption and decryption mirror the equation, using those parts
of it that are necessary to produce the intended result in the lemmas.

6.5.8. Dependency between Epoch Identifiers
Many approaches propose using time stamps to derive keys and decrypt messages. Time
stamps have an underlying mathematical logic; however, this logic is never conceivably used
in any of the considered approaches and the values are mere placeholders with no inherent
connection. At the same time, introducing a mathematical connection (like summation) to
the epoch identifiers is not straightforward in Tamarin. Therefore, this dependency is not
modeled here.
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6.6. Sanity checks

The model must include sanity checks to ensure that the models makes sense and faithfully
represent the mechanisms in question, and that the exceptions expressed in the security
lemmas are minimal.

6.6.1. Meaningful representation

It needs to be shown that messages can be encrypted and decrypted, both before and after
an update (to check the functionality), and that more than one user can have keys in the
same epoch (to ensure that effects between users can occur). As a special sanity check for
this work, there is a lemma to prove that the model faithfully captures the formalization
given in Chapter 5 by constructing a trace that mirrors the minimal example (Figure 5.1).

It is also necessary to check that the left-hand sides of lemmas that contain implications
are not empty; otherwise, they are trivially true. However, this happens as a side-effect of
identifying the minimal assumptions under which the lemmas hold, which is discussed in
Section 7.2. Therefore, those checks are omitted in this section.

lemma can receive

This lemma states that there exists at least one trace in which the label Receive(„ m)
appears (indicating that some user received a message through rule decrypt), even if no
mskt1 , uskID1,t1 or tokenID1,t1 is ever leaked for any epoch t1 or identity ID1.

lemma can receive after update

This lemma ensures that an updated key can be used for decryption.

lemma two users can have keys in same epoch

Some effects may only be observed if several users are present in the system. Therefore, this
sanity check ensures that at least two users can simultaneously have keys in the modeled
system.

lemma minimal example

To ensure that every model faithfully implements the minimal example illustrated in Chap-
ter 5, every model includes a sanity check lemma that proves the existence of a corresponding
trace. The lemma allows two interpretations of the user who receives a freshly generated key
in the fourth epoch: They may be instantiated with user A or with a new user D. Highly
specific lemmas like these are uncommon because it is usually sufficient to include general
sanity checks. Successful proof of the minimal example lemma implies the veracity of the
other sanity check lemmas; they are still included in the code to demonstrate what more
common sanity check lemmas for such a model are.
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6.6.2. Minimal assumption checks
All lemmas include exceptions for cases in which trivial attacks occur, i.e. the adversary
learns a value but the attack is not a counterexample for the security lemma because it does
not exploit the attack vector on which the lemma focuses. Section 7.2.2 and Section 7.2.3
detail the overall and approach-specific trivial attacks that need to be excluded to prove the
lemmas or find non-trivial attacks. Note that not all possible trivial attacks need necessarily
be excluded if at least one non-trivial attacks are found, because this suffices to conclude
that a security notion is not achieved in that case.

6.7. Modeling summary
The blueprint model and the approach-specific adjustments that are described in this chapter
cover all parts of the formalization: The key management and revocation process (state rules
and restrictions), the adversary knowledge (equations and symbolic dependencies in rules
plus leakage rules), and the security goals (lemmas). The sanity checks help ensure that
formalization and implementation are congruent. Thus, the chapter answers RQ 3) (“How
can the formalization be translated for an automated reasoning tool?”)

Chapter 7 discusses running the concrete models and the results that they yield.
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This chapter reports and discusses the results from running each of the four code variants
presented in Chapter 6 in Tamarin.

Section 7.1 describes the setup and runtime of each model execution. It also explains that
(and where) changes or additions to the code compared to the blueprint are necessary so
that Tamarin runs in reasonable time and with the given memory. The code that yields
the results described in this chapter is available online.

Section 7.2 describes and compares the results for each approach and the (minimal) con-
ditions under which the security goals are met.

Section 7.3 discusses how the results compare to findings from the literature, to what extent
the results reconcile the notions “Forward/Post-Compromise Security” and “Decryption Key
Exposure Resistance”, and the value of the notion “Collusion Resistance”. Limits of the
findings are discussed as well.

7.1. Setup and Model execution
The results were obtained by running the codes on a virtual machine with 40 vCPUs (model:
Intel(R) Xeon(R) Silver 4316 CPU @ 2.30GHz) and 180 GB of main memory. The virtual
machine ran at “LRZ compute cloud”1, a service hosted by Leibniz Rechenzentrum (LRZ,
Leibniz Supercomputing Centre) in Garching. The models were executed running Tamarin
version 1.6.12.

For some lemmas in some models as described in Chapter 6, the execution takes more
than eight hours or does not terminate at all. To enforce termination and shorten runtimes,
the models are adjusted by

• adding helper lemmas for the key renewal- and universal update models to break
unresolved loops

• removing the (inconsequential) time dependency of the master keys in the individual
update models

• limiting the number of epochs and the number of user key up- and downgrades the
attacker can compute in the universal update model

The following paragraphs describe the adjustments in more detail:

key renewal The epoch transitions and the related user- and master key updates create
loops, making it difficult for Tamarin to infer rule setup as the starting point.
While the sanity-check lemmas (except for lemma minimal example) terminate within
a few minutes, lemma forward security does not terminate after several hours in

1https://doku.lrz.de/compute-cloud-10333232.html
2(released Aug 23, 2021 on https://github.com/tamarin-prover/tamarin-prover/releases)
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the key renewal model. The following lemma remedies this ([sources] indicates that
Tamarin uses the result to deconstruct sources for other lemmas):

lemma msk_mpk_never_change [ sources ]:
"All msk mpk #i.
Is_MPK_MSK (msk, mpk)@ #i ==> (Ex #j. Origin_MPK_MSK (msk,

mpk)@ #j)"

Tamarin proves this lemma in under a minute and re-uses the statement; namely,
that for any master key pair that exists at any given time point, there must exist
an execution of rule setup (the only rule where the label Origin MPK MSK() occurs)
featuring the same key pair. As described before (Section 6.5.5), the key update
function is eliminated from the model without a loss in functionality, making the
master key material epoch-independent. The corresponding code terminates proving
the same lemmas.

individual update (both) For the individual updates, the loop from the master key up-
dates introduce so much complexity that running lemma minimal example does not
terminate. When the time-dependence of the master key material is left out of the
model (so, rule update msk is removed, such that msk and MPK are only created
in rule setup and never updated), all lemmas can be verified or falsified within 35
minutes. Since rule update msk only hands over the same master keys to the next
epoch, this adjustment is still a faithful representation of the underlying approaches.

universal update For the universal approach, the complexity from the loops is more difficult
to remedy, since master key material updates have an essential role in the approach.
Two adjustments are necessary to run the code in reasonable time or have the execution
terminate at all:

• The model is restricted to four epochs: This reduces the search space for the traces
drastically and loops that Tamarin can not resolve otherwise are simply limited
in their length. Four epochs are enough to add a member, update their key, revoke
their key, skip one epoch, and then add them again as a member. It is therefore
plausible that within four epochs, Tamarin will detect any procedural attacks in
the model. However, the restriction takes away the generality of the lemmas and
where no attacks are detected, conclusions must be drawn more carefully.
A sources-lemma supports this restriction: When there is a master key update,
it must be either the first, second or third update.

• The derivation of new values from known user secrets via rule usk der and
rule usk diff must also be limited to reduce the amount of cases that Tamarin
can derive from them; otherwise, an infinite loop is possible. Therefore, either
rule may only be executed four times. The number is chosen heuristically to
strike a balance between allowing the model to combine several computations
across epochs and users and reducing the complexity to have the models run in
reasonable time.

Even with these changes to the universal update model, Tamarin can not automati-
cally deduce the source of some facts (which results in so-called partial deconstructions).
This makes it much harder, often impossible, for Tamarin to prove lemmas. If the
program terminates, the resulting proofs and counterexamples are correct.
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Table 7.1.: Approximate time that it takes the run of a lemma or set of lemmas (row) in a
model (column) to terminate. Run times of less than ten seconds (ă 10 s, very
light green), between ten seconds and one minute (ă 1 min, very light green), or
between one and five minutes (ă 5 min, light green) are vigorously rounded with
respect to these three categories; higher values are rounded up to the next minute
and printed in deep green. The values refer to run times on a virtual machine
with 40 vCPUs and 18 GB.

indiv. token, indiv. token,
lemma key renewal separate re-randomized universal token
sources ă 10 s — — ă 10 s

sanity checks ă 10 s ă 10 s ă 10 s ă 10 s
minimal example 12 min 21 min 24 min 1 h 31 min

Forward Security ă 10 s ă 1 min ă 10 s ă 1 min
Post-C. Security ă 10 s ă 10 s ă 10 s ă 1 min
DKER Forward ă 10 s ă 5 min ă 10 s 7 min

DKER Backward ă 10 s ă 10 s ă 10 s ă 1 min
Collusion Res. ă 10 s ă 10 s ă 10 s ă 10 s

Minimal assumption checks for:

Forward Security ă 1 min ă 5 min ă 1 min ă 1 min
Post-C. Security ă 1 min ă 1 min ă 1 min ă 1 min
DKER Forward ă 5 min ă 5 min ă 5 min ă 5 min

DKER Backward ă 1 min ă 1 min ă 1 min ă 1 min
Collusion Res. ă 10 s ă 10 s ă 10 s ă 1 min

total runtime 14 min 31 min 26 min 1 h 44 min

Table 7.1 shows approximate run times for each adjusted model. The rows are divided
in three parts: The first shows the runtimes for sources-lemmas, sanity checks, and the
minimal example described in Section 5.2. The second shows the runtimes for checking
the security goals, and the third, the minimal assumption checks for the security goals.
The measurements refer to runs using the default heuristic and the autoprove option with
default proof-depth (method “a.” in the graphic user interface).

The table shows that in all models, lemma minimal example takes longest to run, with
run times between 12 minutes in the renewal-model up to roughly one and a half hours in
the universal token-model. The remaining lemmas, including trivial attack checks, take
up to 13 minutes in total to prove or disprove. On average, lemmas where counterexamples
were found took longer to complete (namely the minimal assumption checks and the lemmas
for the individual token update, separate, and the universal token update).

Note: Readers who intend to experiment on the code are advised that during the exper-
imental phase of this work, variations of these models repeatedly ran for up to four hours
to yield results. Many variations of the universal token model in particular are difficult
for the prover to reason about and single lemmas can take hours to terminate. Models were
never run for more than 48 hours, and usually not for more than five hours before interrupt-
ing the process (under the assumption that the model could not terminate for this lemma).
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7. Results and Evaluation

Leaving out certain attacker capabilities to check a lemma in a simpler model can be fruit-
ful for finding attacks; e.g., leaving out rule usk diff math can yield a counterexample in
which the function is not needed, but where including the function extends the reasoning
options too much for the analysis to terminate.

7.2. Results of running the models in Tamarin
This section explains proofs and attacks found for the security lemmas in each model. For
readability, the names of four lemmas are abbreviated in the following section:

fs for lemma forward security

pcs for lemma post compromise security

dker f for lemma decryption key exposure resistance forward

dker b for lemma decryption key exposure resistance backward

Table 7.2 shows a) that both the key renewal approach and the individual token approach
with re-randomization achieve (✓) all considered goals, b) that the individual token approach
with separated keys fails (✗) to achieve any goal except Collusion Resistance, and c) that
the universal token approach has none of the desired properties. This conclusion and the
underlying attacks against the two vulnerable approaches are explained in more detail in
the following sections, first discussing trivial attacks that are disregarded for the assessment
and then discussing the non-trivial attacks that support it.

7.2.1. Sanity checks for meaningful representation
In all models, the sanity checks succeed. For example, checking lemma can receive for the
key renewal model yields the trace displayed in Figure 7.1.

The boxes in various shades of green all represent rule executions. The white bubbles
represent adversary actions.

The trace illustrates the following process:
The top-most box shows rule setup, which takes fresh values „ msk and „ t as inputs and
produces

• the persistent fact !Epoch(„ t) (which is passed to the green box directly below, as
indicated by a gray arrow)

• the persistent fact !MSK(„ msk) (also passed to the green box directly below, again
indicated by a gray arrow)

• the Out(pk(„ t))-fact, which is added to the adversary’s knowledge base (as indicated
by a red arrow pointing to the left-most white bubble in the top row of bubbles)

• the Out(pk(„ msk))-fact, which is added to the adversary’s knowledge base (again
indicated by a red arrow, this one pointing to the white bubble in the center of the
top row of bubbles)

• the persistent fact !MPK(„ mpk) (which is passed to the olive-green box on the bottom,
as indicated by a gray arrow)
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7.2. Results of running the models in Tamarin

Figure 7.1.: Illustration of a trace that Tamarin finds to prove lemma can receive in the
key renewal-model (graphic adapted from Tamarin-output to fit the page). The
boxes in shades of green represent rule executions (with inputs in the top row,
rule names and labels in the middle row, outputs in the bottom row). White
bubbles represent adversary knowledge and -actions. The arrows represent fact
transfer (gray: from rule to rule; red: to the public channel; black/dotted: by
the adversary). Details in the text.
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7. Results and Evaluation

Table 7.2.: Each entry indicates whether running a model (column) in Tamarin shows that
it has a property (row) (✓) or not (✗).
Superscript symbols indicate the corresponding attack vector described below:
I: A usk leak for any epoch makes other epochs insecure because the static
key, with which all keys are derived, can be derived from it. Since the update
tokens are published for each epoch, once an attacker has a static key, they can
construct keys for any epoch for which an update token is published. Thus, no
security goal that presumes the leak of a user key (= decryption key) is achieved.
V: A usk leak for an epoch t can be exploited to compromise the user secret
for a previous (following) epoch t ´ 1 (t ` 1) provided that an attacker also
compromises the universal update token for t (t ` 1); in this case, the mathe-
matical characteristics allow downgrading (updating) the user’s key material,
and messages sent before (after) the leak are not secure.
X: A user (re-)joining the group in an epoch t (or an attacker leaking their
key) can read messages encrypted for them for the previous epoch (in which
they were not a member) by colluding with another user and applying the other
user’s update to the leaked key.

individual token individual token
lemma key renewal (separate) (re-randomized) universal token

Forward Security ✓ ✗I ✓ ✗V

Post-comp. Sec. ✓ ✗I ✓ ✗V

DKER Forward ✓ ✗I ✓ ✗V

DKER Backward ✓ ✗I ✓ ✗V

Collusion Res. ✓ ✓ ✓ ✗X

Below rule setup, two arrows, each pointing to a white bubble, illustrate that the adversary
receives the values published by the TTP in the setup of the session. The white bubble with
a gray outline on the top right, labeled “!KU(m) @ #vk.3”, illustrates that the adversary
generates a fresh value m at a time point “vk.3”. The facts !KU(...) represent adversary
knowledge. Prefix “#” indicates time points (as in the rules.) The dotted arrows pointing
to the central white bubble below the first three, illustrate that the adversary encrypts m
using MPK and the epoch identifier „ t with the (public) function ibdec and sends them
over an insecure channel to a user (fourth dotted arrow and “isend” bubble). The green box
in the middle represents lemma generate user key, which receives inputs from rule setup
as described.

It outputs a persistent fact !USK(h($I, „ msk, „ t),$I, „ t) (indicating that uskID,t

was created for a user ID), which is passed to the olive-green box on bottom (gray arrow).
To the lower far left, the green box represents lemma decrypt, which receives the en-

crypted message from the insecure channel and two persistent facts from rule setup and
from rule generate user key. It has no outputs, but only generates the events Receive(m)
and Read($I, „ m, „ t).

This process proves the existence of a trace in which the label Read(„ m) appears and in
which no secret values are leaked.

Minimal-assumption checks for the security lemmas validate the exceptions made for trivial
attacks; Section 7.2.2 explains them in detail.
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7.2. Results of running the models in Tamarin

Table 7.3.: Overview of weaknesses found for each model. These weaknesses allow trivial
attacks against the secrets of a user I for an epoch t with respect to both dker f
and fs (f ), or dker b (b), or all security properties (no superscript).
R is another user, x indicates additional epochs.

individual token individual token
key renewal (separate) (re-randomized) universal token
LeakMSK(x) @x LeakMSK(x) @x LeakMSK(x) @x b(LeakUpdVal(R,t) ^ . . .
LeakUpdVal(I,t) LeakSUSK(I) LeakSUSK(I) . . . LeakMSK(x)) @x ą 0

f LeakUSK(I,t-x) @x ą 0

7.2.2. Overall trivial attacks
All considered security goals require a user I’s key uskID,t for epoch t to remain secret or
require a message m encrypted for user I and epoch t to remain confidential. Two attacks
are considered trivial for all mechanisms, as they are always possible:

LeakUSK(I,t) A direct compromise of the user key in question, which trivially allows the
attacker to learn the key and to decrypt corresponding messages.

LeakMSK(t) A direct compromise of the master secret key with which uskID,t can be directly
derived and allows an attacker to learn the key and decrypt messages.

7.2.3. Approach-specific trivial attacks
Some trivial attacks found by Tamarin exploit approach-specific attack vectors, as summa-
rized by Table 7.3 in the column for each approach and explained in more detail below:

Key renewal There are two special attack vectors for this approach:

LeakMSK(x) for any epoch x Since the master secret never changes in this approach,
leaking it for one epoch means leaking it for every epoch. In the considered model,
the resulting attacks are still trivial because for fs, pcs, dker f and dker b, they are
independent of the assumed leak, and for Collusion Resistance, the master secrets are
assumed to be secure for all epochs anyway.

LeakUpdVal(I,t) In this approach, leaking the update value directly reveals the user
key. So the attacks on the model are trivial with respect to fs, pcs, dker f and dker b.

Individual token (both) There are two special attack vectors for both variations of the
individual token approach:

LeakMSK(x) for any epoch x With the same reasoning as for the key renewal ap-
proach, leaking any master secret keys is considered a trivial attack in this approach.

LeakSUSK(I) The time-independent static key allows constructing any key for epoch I
as long as an update token for an epoch t has been published. The resulting attacks on
fs, pcs, dker f and dker b are trivial, because they are independent of the assumed
leak.
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7. Results and Evaluation

Individual token (separate) There is one more special attack vector for the separate-key
variation of the individual token approach:

LeakUSK(I,x) for any epoch x before t In this variation, the static key can be
extracted from uskID,x for any x. The leak of previously existing uskID,x produces
trivial attacks in the lemmas for fs and dker f; when it is excluded, Tamarin finds
a non-trivial attack where a leak from a later epoch is used to derive the user key of
an earlier one.

Universal token For the universal-token approach, additional trivial attacks need to be
excluded in some lemmas before Tamarin finds non-trivial attacks in the given model.

LeakUpdVal(R,t) ^ LeakMSK(x) @x ą 0 For dker b, which is achieved if earlier usk-
leaks for a user I do not harm the security of uskI,t, a trivial attack is computing
the key from an earlier or later msk-leak and any user’s leaked token for the targeted
epoch t.

7.2.4. Non-trivial attacks

The following attacks are considered non-trivial, as explained below. A non-trivial attack
means that the security property is not (unconditionally) achieved, and the assessments are
recorded in Table 7.2 accordingly.

Individual Token, “separate” approach

When the static key and the update token are not re-randomized in computing uskID,t, the
adversary can directly derive the static key from it if leaked (which is assumed in the lemmas
for fs, pcs, dker f and dker b). Since the update tokens are public, an attacker with a static
key can derive a user key for any epoch in which an update token was published3. Thus, the
key or message from an earlier (fs, dker f) or later epoch (pcs, dker b) is compromised,
too, if the key was updated for it. This contradicts the stated lemmas and the security
properties are not achieved.

As Table 7.2 indicates, the variant where static key and token are re-randomized to yield
the user secret is secure against these attacks; here, leaking the user secret does not allow
an adversary to learn the static key and the same attack is not possible.

Universal Token Approach

In the universal token approach, there are two kinds of attacks respectively undermining:

fs, pcs, dker f and dker b: Although the leak of one user secret key does not di-
rectly harm security (as it does for the separate-key variation of the individual token
approach), the leak can be exploited if a suitable update token for any user is leaked
as well. Therefore, this attack is conditional but not trivial.

3In the Tamarin counterexamples, the published tokens are for (yet) non-existent keys. That is an im-
plausible scenario; however, the attack does not depend on the key having been generated after the token
publication, so the attack itself is plausible. Restrictions to enforce token distribution only for existing
keys make the model more complex; no suitable restriction was found.
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For fs and dker f, which would be achieved if a later leak did not impact the security
of an earlier key/message encrypted for the same user, the attack is possible when
an update for the later epoch is also leaked. Then the attacker can downgrade the
updated key using the token.

For pcs and dker b, which would be achieved if an earlier leak did not impact the
security of a later key/message encrypted for the same user, the attack is possible
when an update for the later epoch is also leaked. Then the attacker can update the
key using the token. The leaked update token may be labeled with any identity; since
it is the same for all members, the attacker does not need to compromise the targeted
user’s token.

Collusion Resistance: Even when no user key or update token is generated for an
identity ID in an epoch t, it is possible to decrypt a respectively encrypted message
or derive uskID,t if both a user key for an earlier or later session and at least one
update token for t (that was generated for any identity, not necessarily ID) are leaked.
Therefore, this attack is conditional but not trivial, and the universal token approach
is not collusion resistant.

As an additional minimality check, lemma collusion resistance proof shows that
the key/message for a revoked user remain unknown to an attacker if neither any msk
is ever leaked nor any user’s token for epochs t or t ` 1.

7.3. Evaluation

Even though the models abstract the precise mathematics of the underlying schemes, they
capture the characteristics well enough to replicate findings from the literature and offer
additional insight. The following sections discuss:

• the drawbacks and strengths of each approach

• the findings on DEKR in the individual-token approaches, which align with previous
research

• the findings on Forward Security and Post-Compromise Security in the universal-token
approach, which disagree with previous research

• Collusion Resistance and the revocation effect

• how to reconcile the notions of DKER and Forward-/Post-Compromise Security

• how to mitigate attacks from forward/backward effects

• the benefits and drawbacks of a manual vs. an automated security analysis

• limitations of the presented models
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7.3.1. Approaches’ drawbacks and strengths
The drawbacks and strengths are implicit in the specific trivial attacks found for each scheme,
which highlight the comparative (but not absolute) weaknesses of each scheme. For example,
a secure channel for update distribution is paramount in the key renewal approach (where
the leak of an update value appears as a specific trivial attack), whereas the individual-token
approach allows publishing the update value with no direct impact. Conversely, the need to
keep a static key secure only appears in the individual-token approach.

While leaking the update token hurts the security of keys and messages more in the
universal token approach, leaking the master secret for any given epoch is less impactful
than in other schemes: Supposing the TTP can re-gain control after a compromise, the msk
(and thus all keys) can be “healed” by generating a fresh update token and the system can
move on from the leak. In all other mechanisms, an msk leak is fatal and the system needs
to be set up from scratch.

7.3.2. Decryption Key Exposure attacks in the individual-token approaches
Tamarin finds the Decryption Key Exposure attacks against the individual-token approach
when there is no re-randomization (which resembles the approach in [BGK08]) and their
absence when there is re-randomization, reproducing the results from the literature [SE13b].

The analysis in this work goes beyond the literature findings in formulating distinguishing
notions for forward and backwards security against Decryption Key exposure. While no
noteworthy difference was observed in the analysis, the distinction may prove useful for
future proposals.

7.3.3. Forward Security and Post-Compromise Security in the universal-token
approach

The Tamarin analysis finds non-trivial attacks against Forward- and Post-Compromise Se-
curity in the universal token approach. However, the underlying literature for this approach,
[Gug20], describes Key Updatable Signature Schemes (KUSS) with a universal update token
and finds them to be Forward- and Post-Compromise secure.

We argue that 1. our findings apply to KUSS-schemes and 2. the discrepancy lies in the
definition of an attack:

1. Even though the model represents encryption rather than signature schemes, the at-
tacks found in Tamarin can be seamlessly transferred: The effect of leaking a token
with which to update a signature key is the same as for the encryption key, and this is
the most prominent attack vector against the revocation scheme. Also, the Tamarin
model abstracts from an additional, accumulative value necessary for signature verifi-
cation in three out of four of the mechanisms described in [Gug20]. This value records
the accumulated update tokens across epochs. However, the attacks remain possi-
ble despite the use of this value, as it does not change the way in which tokens are
distributed and applied in each epoch.

2. The definition of Forward Security in [Gug20] states:
“An adversary compromising some usk and [the accumulated update value
for epoch e˚] in some epoch e˚ does not gain any advantage in forging a
signature for previous epochs e ă e˚. [. . . ]” (see [Gug20], page 49).
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As [Gug20] asserts without further explanation that the mechanisms in question achieve
Forward Security (ibid., page 76), the usk leak is evidently not considered an advan-
tage - perhaps because an additional leak is necessary to exploit it. The respective
paragraph informally explains that Forward Security is achieved against former mem-
bers who re-join the communication group if they do no get enough information upon
re-entry to sign for previous epochs in which they were not members.
However, our work considers any attack possibility for an adversary that arises from
the key compromise in epoch e˚ an advantage (even if the attacker is a legitimate
member in epoch e˚). Therefore, we conclude that the universal token approach does
not achieve Forward Security.

Along the same lines, the Tamarin analysis and the analysis in [Gug20] come to differ-
ent conclusions regarding Post-Compromise Security: The attack mechanism holds for the
presented schemes, but while this work interprets it as evidence that the property is not
achieved, [Gug20] asserts otherwise, explaining that the epoch transition protects new keys
against former members (but not discussing other attackers).

7.3.4. Collusion Resistance and revocation effect

The protection against former and future members is also implicit in the notion of Collusion
Resistance. Tamarin finds a non-trivial attack against the universal token approach, which
requires at least two leaks. While this can be a relatively high bar to clear for an attacker,
in this case it is not: Key revocation sometimes serves to exclude malignant or compromised
users, whose latest user key is known to the attacker (possibly because the user herself is
the attacker). So if, for example, a revoked, malignant user colludes with a non-revoked
user, she can apply their update token to her own key. Thus, the attack is non-trivial and
realistic.

Achieving Collusion Resistance is also a useful sanity check for how effective an approach
is as a revocation mechanism: If, without using the master secret key, a user key can be
obtained for epochs for which the users should not possess one, the revocation is only effective
under stronger assumptions than if a master secret key is needed to obtain non-existing keys.
A realistic collusion scenario thus implies a weaker revocation effect.

7.3.5. Reconciling Decryption Key Exposure Resistance and
Forward-/Post-Compromise Security

The separate individual token approach and the universal token approach are vulnerable
to Decryption Key exposure in either direction. Both approaches are also not Forward- or
Post-Compromise secure. Within each model, the attacks that are found against dker f
and against fs exhibit the same structure, i.e. the leak that is assumed in both notions is
exploited in the same way to yield the user secret of another epoch (dker f) or the decrypted
message (fs). This indicates that the notions are very similar. An attacker who can derive
a secret key can also decrypt messages with it. Therefore, it is intuitive that fs implies
dker f: If the attacker can not decrypt a cipher, they clearly do not know the corresponding
user secret key. The reverse is not necessarily true, because an attacker who has no user
secret key may still find other ways to decrypt the cipher. However, the considered models
allow no such attack, so within their scope, both notions are equivalent.
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In the same way, dker b and pcs are parallel notions that yield structurally similar attacks,
of which pcs intuitively implies dker b, and which within the scope of the considered models
are equivalent (although they may not be in other contexts).

That dker f and dker b are so similar to fs and pcs, respectively, also highlights the
value of splitting the notion of decryption key exposure, which in the literature is treated
as a single property, in two notions that separately consider the impact for future and for
former keys.

7.3.6. Mitigating attacks using forward/backward effects

In both the separate individual token approach and the universal token approach, a user key
leak from one epoch can be directly exploited by applying an update token to obtain a key
for earlier or later epochs.

For the individual token approach, it is clear that the attacks can be mitigated because
the re-randomized version does not observe them.

For the universal token approach, Forward Security would be achieved if updating a key
was mathematically irreversible, because applying the update token to obtain an earlier
version of the key is not an intended use of the token; so this functionality is not needed.
However, such a re-randomization might interfere with the decryption (signature verification)
process if the connection to msk can not be shown from the re-randomized key anymore; so
it is not clear that a suitable, unidirectional function exists.

Post-Compromise Security would afford an entirely different update logic: In the current
form, applying the update token directly to the user key is the intended use of the token,
so compromising the two values seems to be an almost trivial attack. To achieve Post-
Compromise Security, the user key must not yield enough information to update it directly.
Whether this condition is reconcilable with the universal token approach remains an open
question.

7.3.7. Manual vs. automated analysis

As the attack against a mechanism in [BGK08] that was discovered in [SE13b] and the attacks
against the universal token approach described in Section 7.2 indicate, revocation mecha-
nisms in IBC can have attack vectors that a manual analysis underestimates or overlooks.
A computer-aided analysis may be less prone to error because the presentation and results
are as clear and easy to understand as the models in manual analyses, but the evaluation of
the security notions automatically uncovers also less obvious attacks. Once a blue-print is
established, the models are also easily adaptable and the comparison of various mechanisms
is very straightforward.

On the downside, the analysis is only possible on a more abstract level and mathematical
effects from specific key derivation functions can be hard to capture in the model. When the
results from a computer-aided analysis are used to argue for a scheme’s security, it therefore
needs to be addressed how faithfully the underlying functions and processes are represented,
so that readers understand the explanatory power of the model well.

The best use of computer-aided analysis in identity-based revocation therefore lies in
understanding and comparing relatively abstract approaches to learn how various features
and properties influence the security. Specific instantiations of an approach still require a
careful analysis of the underlying functions that are abstracted in the model.

88



7.4. Characteristics, revisited

In a similar way, other revocation- and epoch-based key management systems may benefit
from computer-aided analysis and the models developed and exemplified in Chapter 5 and
Chapter 6.

7.3.8. Limitations
The security assessment and comparison have the following limitations:

rule update msk The models are not perfectly comparable: One includes rule update msk
and the others do not. However, the observed effects from the msk update are impos-
sible in the other approaches. Therefore, it is expected that the comparison yields the
same results as a perfect one.

function msk der(¨) in universal token approach As stated in Section 6.5.5, the attack vec-
tor for computing earlier/later master secrets through update tokens or vice versa are
excluded for complexity reduction. The precise strengths and weaknesses of updat-
ing the master key material are therefore not reflected in the analysis. Also, some
mechanisms in [Gug20] rely on an extra value for verification and signing. This value
was omitted because it does not appear in all cases, but a more detailed analysis is
warranted.

7.4. Characteristics, revisited
This chapter answers RQ 4) (“Does the formal verification confirm previous results? Does
it yield any new insights?”). Table 7.4 shows the completion of Table 4.1 based on the results
from the automated analysis.

Except for [Gug20], the results are congruent with all previous findings. Because the
notion of Decryption (Signing) Key Exposure (one row in Table 4.1) is split in two separate
notions for the analysis, the table has an extra row. The notions for Forward- and Post-
Compromise security, while slightly different than the key exposure notions, add little new
insight per scheme. If the mathematics of encryption/signing are as abstract as in the
presented models, one of the two sets of notions seems to suffice. Collusion Resistance can
be inferred for all schemes except the ones presented in [Gug20]. There, a non-trivial attack
is found, which indicates that Collusion Resistance should be considered in a comprehensive
security analysis.
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8. Conclusion

Identity-based cryptography (IBC) reduces the key management overhead compared to
certificate-based methods because it allows the derivation of a user’s public key from their
identity. Using revocation lists to verify key validity would negate these benefits. Efficient
revocation of identity-based keys has been addressed in several works, but they only propose
individual mechanisms.

This work goes beyond discussing a single approach and offers a more general perspective
on IBC-revocation, finding the following:

• Fundamentally, cryptographic key revocation methods for asymmetric keys can be
a) either explicit or implicit, depending on whether or not users need to check key

validity before use
b) either direct or indirect, depending on whether or not a key revocation affects

only the keys of compromised entities or also others
All identity-based approaches fall into the category “indirect and implicit” because
key users do not need to check key validity and key revocation affects also non-revoked
keys.

• Three classes of IBC-revocation appear in related work:
1. Key renewal: Entirely new keys are computed for all users and it requires a

separate private channel to the TTP for each user. Therefore, the computation-
and distribution complexity is linear in the number of users.

2. Updates with individual tokens: They have constant distribution complexity be-
cause the updates can be published. The computation complexity is logarithmic
if users can hold several, hierarchically structured keys; otherwise, it is linear.

3. Updates with a universal token: They imply minimal computation load for the
TTP but require private channels for the update distribution. If users can hold
several keys for this channel, the distribution complexity is logarithmic, otherwise
it is linear.

• Since [SE13b] introduced the security notion of Decryption Key Exposure Resistance,
most of the recent literature proposing IBC-revocation schemes considers it. This
notion focuses on how key compromises in one epoch effect keys of other epochs.
One recent scheme [Gug20] considers Forward- and Post-Compromise Security instead,
which aim at the effect of leaks on messages rather than keys.
These notions are reconciled in this work with the introduction of Decryption Key
Exposure Resistance Forward and -Backward. In the Tamarin analysis,

– if one of the forward (backward) notions is violated, so is the other.
– the attacks against both forward (backward) notions are structurally the same.
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8. Conclusion

In our analysis, the distinction between forward and backward notions is largely in-
consequential: The considered revocation approaches achieve either both or neither.
However, future analyses might benefit from working with the more precise variants
of Decryption Key Exposure in the same way as literature consistently distinguishes
Forward- and Post-Compromise Security.

• Key renewal and individual token updates achieve Collusion Resistance. The universal
token approach does not. Collusion Resistance is introduced as a new security notion
to understand whether users can combine their secret knowledge to obtain information
they must not have individually.

The main contribution of this work is a framework for the automated analysis of IBC-
revocation approaches, detailing:

a) a state diagram for IBC-revocation

b) security goals

c) dependencies and compromise options exploitable by an adversary

With a proof-of-concept implementation of the formalization in Tamarin, this work fur-
ther contributes a tangible comparison between the considered IBC-revocation approaches:

The proof-of-concept implementation shows that the formalization is adaptable to all
identified revocation approaches. It even yields two more granular models for individual
token updates, in which the structure of the decryption keys reflects the concept of re-
randomization used in some (but not all) instantiations of this approach.

The results obtained from running the four models in Tamarin are only partially in line
with previous findings (where they exist):

• For the individual token approaches, the formalization confirms the attacks against
mechanisms that do not re-randomize keys when updating and that re-randomization
mitigates this problem.

• For the universal token approach, the claimed Forward- and Post-Compromise Security
are not confirmed; though the previous work recognizes the same attack vectors but
deems them negligible, the formalization in this work concludes that they impair the
security.

Besides the comparison with existing results, the formalization and implementations also
delivers new insight by checking the whole range of security notions for all classes rather
than different notions for different classes. The results show

a) that Decryption Key Exposure Resistance is achieved when Forward- and Post-Compromise
Security are achieved (and vice versa), thus reconciling these notions,

b) that Decryption Key Exposure Resistance can be evaluated for effects on past and on
future keys separately, and that attacks in both directions exist, and

c) that Collusion Resistance is not achieved for all classes, which implies that it should
be included in a standard security analysis for IBC-revocation.
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With the formalization and its implementation, this work contributes a tangible compar-
ison between the approaches. Automated analysis is therefore a valuable addition to (often
tedious) manual analysis. The danger of incorrect modeling still exists, and in incorrect
models, possible attacks may go unnoticed; however, the analysis process is different from
manual analysis and can therefore automatically produce insights that may be overlooked
more easily in a manual proof. The analysis remains high-level as the tool can not model
certain mathematical connections in more depth; however, to understand the protocol-level
implications of update mechanisms in key management, the models are well-suited.

Future work
The models implemented for this work offer a comprehensive overview of IBC-revocation
approaches (with encryption as the main focus), but the formalization and the blueprint
are not restricted to this scenario. There are several obvious variations of the proposed
models, for example implementing a signature scheme or modeling the master secret key
dependencies for the universal token approach in greater detail.

Should new ideas for other IBC-revocation approaches emerge, automated analysis can
be useful in the design process to recognize and mitigate security flaws early on, and the
Tamarin blueprint for the model can be used as is to model even a scheme that is yet
unknown. Since the European Telecommunications Standards Institute (ETSI) recommends
IBC for use cases such as the Internet of Things and “public safety and mission critical
applications which require secure one-to-one, group and broadcast communications” [Eur22],
further research in this area can be expected.

The blueprint itself might evolve, too: There are currently research efforts to improve how
Tamarin handles loops and recursions1, which might allow running a less restricted version
of the universal token model (for example). Improvements with respect to the mathematical
dependencies that Tamarin (and trace-based provers in general) can handle might also make
it possible to implement identity-based cryptography and -revocation in more detail.

Looking beyond IBC, the underlying update logic of the formalization appears in other
areas of cryptography, as well: The formalization lends itself to be adapted for ratcheting or
other key management approaches in which keys are updated throughout sequential epochs
(see, for example, the proposal for “Key-updatable public-key encryption” [Ana+20] and the
follow-up work [Eat+22].) The repeated references to the Internet of Things as a use case
for key-updatable public key mechanisms [Gug20; Ana+20] is an indicator that this research
area may draw more interest in the future. If that is the case, the results from this work
may prove a valuable support for understanding the security of such mechanisms.

1by Felix Linker, PhD student with ETH Zurich’s Information Security Group: “Currently, I work on
applying cyclic proof rules to Tamarin such that it can handle looping protocols and recursive data
structures better. More soon!” (cited from https://felixlinker.de/works/)
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A. Blueprint for Tamarin code that models
an encryption process with key revocation

The following code blueprint is a translation of the formalization presented in Chapter 5 to
Tamarin code in accordance with the explanation given in Chapter 6.

Portions highlighted in yellow indicate placeholders: For the blueprint to run in Tamarin,
the placeholders need to be substituted with code implementing the corresponding parts of
the model.

1 theory % theory name
2 begin
3
4 builtins : asymmetric-encryption, hashing % further built-in (s)
5 functions : ibenc /4, ibdec /2

% further function (s) % adjust arity if necessary
6 equations : %the encryption / decryption equation of each model
7 % and any further equation (s)
8
9 // Setup of the master key material and start of first epoch

10 rule setup:
11 let
12 mpk = pk(˜ msk)
13 in
14 [ Fr(˜ msk) // msk is a fresh random value
15 , Fr(˜t) // first epoch identifier is a fresh

random value
16 ]
17 --[ SetupOnlyOnce (), Is_Epoch (˜t) ]-> // system is set up

only once, which happens in epoch t
18 [ !MSK (˜ msk, ˜t)
19 , !MPK(mpk, ˜t)
20 , !Epoch (˜t)
21 , Out(mpk) // mpk and epoch identifier are public

values
22 , Out (˜t) ]
23
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24 // Generation of key material for a user I from scratch in an
epoch t

25 rule generate_usk :
26 let
27 % formula for the computation of usk
28 in
29 [ !Epoch (˜t) // current epoch is t
30 , !MSK(msk, ˜t) ] // and msk exists
31 --[ GenUSK ($I), Is_Epoch (˜t), Exists_Key ($I, usk, ˜t) ]->
32 [ !USK(usk, $I, ˜t) % byproduct facts ]

// usk for I and epoch t exists
33
34 // Advance the system to the next epoch
35 rule advance_epoch :
36 [ !Epoch (˜t1) // If epoch t1 exists,
37 , Fr(˜t2) // draw a fresh random value.
38 ]
39 --[ Epoch_ended (˜t1), Consecutive (˜ t1, ˜t2) ]->
40 [ !Epoch (˜t2) // epoch t2 exists
41 , ! PreviousEpoch (˜ t1,˜t2) // epoch t2 directly follows

epoch t1
42 , Out (˜t2)] // epoch identifier t2 is public

knowledge
43
44 // Update the master key material
45 rule update_msk :
46 let
47 msk_new = % formula for msk update
48 mpk_new = pk( msk_new )
49 in
50 [ !Epoch (˜ t_new) // If epoch t1 exists
51 , ! PreviousEpoch (˜ t_old, ˜t_new) // as a follower of epoch

t_old,
52 , !MSK( msk_old, ˜t_old) // and msk_old is the master secret

from the previous epoch,
53 , Fr(˜ upd_val ) ] // choose a fresh value to apply as an

update .
54 --[ Update_MSK ( msk_new, ˜t_new), Is_Epoch (˜ t_new) ]->
55 [ !MSK( msk_new, ˜t_new) // msk_new exists
56 , !MPK( mpk_new, ˜t_new) // mpk_new exists
57 , Out( mpk_new ) // mpk_new is public
58
59
60 // Create and distribute an update value to non-revoked user I
61 rule distribute_token :
62 let
63 update_value =

% formula for the computation of the update value
64 in
65 [ !Epoch (˜ t_new) // If epoch t1 exists
66 , !MSK(msk, ˜t_new) // and msk for this epoch does
67 ]
68 --[ Is_Epoch (˜ t_new), Create_Update ($I, ˜t_new) ]->
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69 [ ! Update_Value ($I, ˜ t_new, update_value ) // create an update
value for user I

70 %other output for token distribution
71 ]
72
73 // Update the user key
74 rule update_usk :
75 let
76 usk_new = % formula for the computation of the usk update
77 in
78 [ !Epoch (˜ t_new) // If epoch t_new exists
79 , ! PreviousEpoch (˜ t_old, ˜t_new) // as a follower of epoch

t_old,
80 , ! Update_Value ($I, ˜ t_new, upd_val ) // and there is a

current update token for I
81 , !USK( usk_old, $I, ˜t_old)] // who had a usk in the epoch

before,
82 --[ Update_USK ($I, ˜t_new), Exists_Key ($I, usk_new, ˜t_new),

Is_Epoch (˜ t_new) ]->
83 [ !USK( usk_new, $I, ˜t_new)] // then I computes an updated

usk.
84
85 // Encrypt a message for a user ...
86 rule encrypt_message :
87 let
88 % formula for the encryption of message m
89 in
90 [ !MPK(mpk, ˜t) // using mpk,
91 , Fr(˜m) // a fresh random (= unique )

message m,
92 , !Epoch (˜t) // for epoch t.
93 ]
94 --[ Used($I, ˜t), Sent (˜m, $I), Is_Epoch (˜t)]->
95 [ Out( cipher ) // The cipher is sent over an

insecure channel (= public knowledge ).
96 ]
97
98 // Decrypt a message ...
99 rule decrypt_message :

100 let
101 % pattern match for the usk
102 % pattern match for the cipher
103 % computation formula for decrypted message
104 in
105 [ In( cipher ) // (that comes from an insecure

channel )
106 , !MPK(pk(msk), ˜t) // using mpk
107 , !USK(usk, $I, ˜t) // and the user I’s usk.
108 ]
109 --[ Receive (m_dec), Read($I, m_dec, ˜t) ]->
110 [ ]
111
112 %any additional rules
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113
114 // Key Leaks as defined in the adversary model
115 rule leak_msk :
116 [ !MSK(msk,˜t) ]
117 --[ LeakMSK () ]->
118 [ Out(msk) ]
119
120 rule leak_usk :
121 [ !USK(usk, $I, ˜t) ]
122 --[ LeakUSK ($I, ˜t) ]->
123 [ Out(usk) ]
124
125 rule leak_upd_val :
126 [ ! Update_Value ($I, ˜t, update_value_I ) ]
127 --[ LeakUpdVal ($I, ˜t) ]->
128 [ Out( update_value_I ) ]
129
130 %leak for other secret values
131
132
133 // Management-level constraints for the trace construction rules
134 // =============================================================
135
136 restriction SetupOnlyOnce : "All #i #j. SetupOnlyOnce ()@ i &

SetupOnlyOnce ()@ j ==> #i = #j"
137
138 restriction End_Epoch_Once :
139 "All t #i #j. Epoch_ended (t)@ i & Epoch_ended (t)@ j ==> #i = #j"
140
141 restriction End_of_Epoch_holds :
142 "All t #i #j. Epoch_ended (t)@ i & Is_Epoch (t)@ j ==> #j < #i"
143
144 restriction USK_Gen_or_Upd_only_once_per_epoch :
145 "All I usk1 usk2 t #i #j. Exists_Key (I, usk1, t)@ i &

Exists_Key (I, usk2, t)@ j ==> #i = #j"
146
147 restriction GenUSK_only_if_not_member_in_previous_epoch :
148 "All I t1 t2 #i #j. Consecutive (t1, t2)@ #j & GenUSK (I)@ #i &

Is_Epoch (t2) @ #i ==> not(Ex usk #k. Exists_Key (I, usk, t1)@
#k)"

149
150 restriction CreateUpdate_and_GenUSK_not_in_the_same_epoch :
151 "All I t1 t2 #i #j. Consecutive (t1, t2)@ #j & Create_Update (I,

t2)@ #i
152 ==> not (Ex #k. GenUSK (I)@ #k & Is_Epoch (t2)@ #k)"
153
154 restriction CreateUpdate_only_once_per_epoch :
155 "All t I #i #j. Create_Update (I, t)@ #i & Create_Update (I, t)@ #j

==> #i = #j"
156
157 restriction Update_MSK_only_once_per_epoch :
158 "All t msk1 msk2 #i #j. Update_MSK (msk1, t)@ #i &

Update_MSK (msk2, t)@ #j ==> #i = #j"

98



159
160 restriction Leak_USK_only_once_per_epoch :
161 "All I t #i #j. LeakUSK (I, t)@ i & LeakUSK (I, t)@ j ==> #i = #j"
162
163 % additional restrictions
164
165 % sources lemmas
166
167 // Sanity check lemmas
168 // ===================
169 lemma can_receive : exists-trace
170 /* There exists a session in which a user can decrypt a

message . */
171 "Ex m #j. Receive (m)@ #j
172 & not (Ex #i t N. LeakUSK (N,t)@ #i)
173 & not (Ex #i t. LeakMSK (t)@ #i)
174 & not (Ex I t #l. LeakUpdVal (I,t)@ #l)
175 %no other leak
176 "
177
178 lemma can_receive_after_update : exists-trace
179 /* There exists a session in which a user can decrypt a

message after their key was updated . */
180 "Ex m I t t2 #j #k #l. Read(I, m, t2)@ #j
181 & Consecutive (t,t2) @ #k
182 & Update_USK (I, t2) @ #l
183 & k < j
184 & not (Ex #i t N. LeakUSK (N,t)@ #i)
185 & not (Ex #i t. LeakMSK (t)@ #i)
186 & not (Ex I t #l. LeakUpdVal (I,t)@ #l)
187 %no other leak
188 "
189
190 lemma two_users_can_have_keys_in_same_epoch : exists-trace
191 "Ex I1 I2 usk1 usk2 t #j #i. not(I1=I2)
192 & Exists_Key (I1, usk1, t)@ #i
193 & Exists_Key (I2, usk2, t)@ #j
194 "
195
196 lemma minimal_example : exists-trace
197 "Ex
198 t1 t2 t3 t4
199 #r1 #r2 #r3
200 A B C D
201 m1 m2 m3 m4
202 #ga #gc #gd
203 #s1 #s2 #s31 #s32 #s4
204 #rm1 #rm2 #rm31 #rm4
205 #ua2 #ub2 #ub3 #uc3 #ub4 #uc4.
206 Consecutive (t1,t2)@ #r1 & Consecutive (t2,t3)@ #r2 &

Consecutive (t3,t4)@ #r3 & #r1 < #r2 & #r2 < #r3
207 & (All t5 t6 #r4. Consecutive (t5,t6)@ #r4 ==> ( #r4 = #r1 |

#r4 = #r2 | #r4 = #r3))
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208 & GenUSK (A)@ #ga & Sent(m1, B)@ #s1 & Read(B, m1, t1)@ #rm1
209 & Update_USK (A, t2)@ #ua2 & Update_USK (B, t2)@ #ub2 &

GenUSK (C)@ #gc & Sent(m2, C)@ #s2 & Read(C, m2, t2)@ #rm2
& #r1 < #gc & #gc < #r2

210 & Update_USK (B, t3)@ #ub3 & Update_USK (C, t3)@ #uc3 & not (Ex
#ua3 uskA_3 . Exists_Key (A, uskA_3, t3)@ #ua3) & Sent(m3,
C)@ #s31 & Read(C, m3, t3)@ #rm31 & Used(A, t3)@ #s32 &
not (Ex m #rm33. Read(A, m, t3)@ #rm33)

211 & Update_USK (B, t4)@ #ub4 & Update_USK (C, t4)@ #uc4 &
GenUSK (D)@ #gd & Sent(m4, D)@ #s4 & Read(D, m4, t4)@ #rm4
& #r3 < #gd

212 & not (Ex id t # leakUSK . LeakUSK (id, t)@ # leakUSK ) & not (Ex
#i t. LeakMSK (t)@ #i) & not (Ex I t #l. LeakUpdVal (I,t)@
#l)

213 %no other leak
214 "
215
216 // Security properties
217 // ===================
218
219 /*
220 * Forward security :
221 * Messages encrypted for user I and an epoch t remain

confidential,
222 * even if I’s secret key for later epoch t+x is leaked
223 * ( unless there is a trivial attack w.r.t. epoch t).
224 */
225 lemma forward_security :
226 "All m I t1 t2 #i #j #k #o.
227 Sent(m,I) @ #i
228 & Is_Epoch (t1) @ #i
229 & Epoch_ended (t1) @ #j
230 & LeakUSK (I,t2) @ #k
231 & Is_Epoch (t2) @ #o
232 & #j < #o
233 ==> not(Ex #l. K(m)@ #l)
234 | (Ex #l. LeakUSK (I, t1)@ #l)
235 | (Ex #l. LeakMSK (t1)@ #l)
236 | (Ex #l. LeakUpdVal (I,t1)@ #l)
237 %other trivial leak
238 "
239
240 /*
241 * Post-Compromise Security :
242 * Messages encrypted for user I and an epoch t remain

confidential,
243 * even if I’s secret key for an earlier epoch t-x is or was leaked
244 * ( unless there is a trivial attack w.r.t. epoch t).
245 */
246 lemma post_compromise_security :
247 "All m I t1 t2 #i #j #k.
248 LeakUSK (I,t1) @ #i
249 & Epoch_ended (t1) @ #j
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250 & Sent(m,I) @ #k
251 & Is_Epoch (t2)@ #k
252 & #j < #k
253 ==> not(Ex #l. K(m) @ #l)
254 | (Ex #l. LeakUSK (I, t2)@ #l)
255 | (Ex #l. LeakMSK (t2)@ #l)
256 | (Ex #l. LeakUpdVal (I,t2)@ #l)
257 %other trivial leak
258 "
259
260 /*
261 * DKER forward :
262 * A user I’s secret key for an epoch t remains secret,
263 * even if I’s secret key for later epoch t+x is leaked
264 * ( unless there is a trivial attack w.r.t. epoch t).
265 */
266 lemma decryption_key_exposure_resistance_forward :
267 "All I t1 t2 usk1 usk2 #i #j #k.
268 Exists_Key (I, usk1, t1)@ #i
269 & Is_Epoch (t1)@ #i
270 & Exists_Key (I, usk2, t2)@#j
271 & #i < #j
272 & LeakUSK (I, t2)@ #k
273 ==> not (Ex #l. K(usk1)@ #l)
274 | (Ex #l. LeakUSK (I, t1)@ #l)
275 | (Ex #l. LeakMSK (t1)@ #l)
276 | (Ex #l. LeakUpdVal (I,t1)@ #l)
277 %other trivial leak
278 "
279
280 /*
281 * DKER backward :
282 * A user I’s secret key for an epoch t remains secret,
283 * even if I’s secret key for an earlier epoch t-x is or was leaked
284 * ( unless there is a trivial attack on epoch t).
285 */
286 lemma decryption_key_exposure_resistance_backward :
287 "All I t1 t2 usk1 usk2 #i #j #k.
288 Exists_Key (I, usk1, t1)@ #i
289 & Is_Epoch (t1)@ #i
290 & Exists_Key (I, usk2, t2)@#j
291 & #i < #j
292 & LeakUSK (I, t1)@ #k
293 ==> not (Ex #l. K(usk2)@ #l)
294 | (Ex #l. LeakUSK (I, t2)@ #l)
295 | (Ex #l. LeakMSK (t2)@ #l)
296 | (Ex #l. LeakUpdVal (I,t2)@ #l)
297 %other trivial leak
298 "
299
300 /*
301 * Collusion Resistance :
302 * If no update and no fresh key were generated for user I in an
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epoch t,
303 * the adversary can not know a message m encrypted for I
304 * ( unless the master secret for t is leaked ).
305 */
306 lemma collusion_resistance :
307 "All I m t #i.
308 Sent(m, I)@ #i
309 & Is_Epoch (t)@ #i
310 & not (Ex #j. Create_Update (I, t)@ #j)
311 & not (Ex #j. GenUSK (I)@ #j & Is_Epoch (t)@ #j)
312 ==> not(Ex #l. K(m)@ #l)
313 | (Ex #l. LeakMSK (t)@ #l)
314 "
315
316 // minimal assumption checks
317 // =========================
318
319 // Forward Security
320 // -----------------
321
322 // Leaking usk of the target epoch yields a trivial attack .
323 lemma forward_security_uskleak_attack :
324 "All m I t1 t2 #i #j #k #o.
325 Sent(m,I) @ #i
326 & Is_Epoch (t1) @ #i
327 & Epoch_ended (t1) @ #j
328 & LeakUSK (I,t2) @ #k
329 & Is_Epoch (t2) @ #o
330 & #j < #o
331 ==> not(Ex #l. K(m)@ #l)
332 // | (Ex #l. LeakUSK (I, t1)@ #l)
333 | (Ex #l. LeakMSK (t1)@ #l)
334 | (Ex #l. LeakUpdVal (I,t1)@ #l)
335 %other trivial leak
336 "
337
338 // Leaking msk of the target epoch yields a trivial attack .
339 lemma forward_security_mskleak_attack :
340 "All m I t1 t2 #i #j #k #o.
341 Sent(m,I) @ #i
342 & Is_Epoch (t1) @ #i
343 & Epoch_ended (t1) @ #j
344 & LeakUSK (I,t2) @ #k
345 & Is_Epoch (t2) @ #o
346 & #j < #o
347 ==> not(Ex #l. K(m)@ #l)
348 | (Ex #l. LeakUSK (I, t1)@ #l)
349 //| (Ex #l. LeakMSK (t1)@ #l)
350 | (Ex #l. LeakUpdVal (I,t1)@ #l)
351 %other trivial leak
352 "
353
354
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355 // Leaking the update value for the target epoch yields a trivial
attack .

356 lemma forward_security_tokenleak_attack :
357 "All m I t1 t2 #i #j #k #o.
358 Sent(m,I) @ #i
359 & Is_Epoch (t1) @ #i
360 & Epoch_ended (t1) @ #j
361 & LeakUSK (I,t2) @ #k
362 & Is_Epoch (t2) @ #o
363 & #j < #o
364 ==> not(Ex #l. K(m)@ #l)
365 | (Ex #l. LeakUSK (I, t1)@ #l)
366 | (Ex #l. LeakMSK (t1)@ #l)
367 //| (Ex #l. LeakUpdVal (I,t1)@ #l)
368 %other trivial leak
369 "
370
371 // There is another trivial attack .
372 lemma forward_security_suskleak_attack :
373 "All m I t1 t2 #i #j #k #o.
374 Sent(m,I) @ #i
375 & Is_Epoch (t1) @ #i
376 & Epoch_ended (t1) @ #j
377 & LeakUSK (I,t2) @ #k
378 & Is_Epoch (t2) @ #o
379 & #j < #o
380 ==> not(Ex #l. K(m)@ #l)
381 | (Ex #l. LeakUSK (I, t1)@ #l)
382 | (Ex #l. LeakMSK (t1)@ #l)
383 | (Ex #l. LeakUpdVal (I,t1)@ #l)
384 //%other trivial leak
385 "
386
387 // Post-Compromise Security
388 // -------------------------
389
390 // Leaking usk of the target epoch yields a trivial attack .
391 lemma post_compromise_security_uskleak_attack :
392 "All m I t1 t2 #i #j #k.
393 LeakUSK (I,t1) @ #i
394 & Epoch_ended (t1) @ #j
395 & Sent(m,I) @ #k
396 & Is_Epoch (t2) @ #k
397 & #j < #k
398 ==> not(Ex #l. K(m) @ #l)
399 //| (Ex #l. LeakUSK (I, t2)@ #l)
400 | (Ex #l. LeakMSK (t2)@ #l)
401 | (Ex #l. LeakUpdVal (I,t2)@ #l)
402 %other trivial leak
403 "
404

103



A. Blueprint for Tamarin code that models an encryption process with key revocation

405 // Leaking msk of the target epoch yields a trivial attack .
406 lemma post_compromise_security_mskleak_attack :
407 "All m I t1 t2 #i #j #k.
408 LeakUSK (I,t1) @ #i
409 & Epoch_ended (t1) @ #j
410 & Sent(m,I) @ #k
411 & Is_Epoch (t2) @ #k
412 & #j < #k
413 ==> not(Ex #l. K(m) @ #l)
414 | (Ex #l. LeakUSK (I, t2)@ #l)
415 //| (Ex #l. LeakMSK (t2)@ #l)
416 | (Ex #l. LeakUpdVal (I,t2)@ #l)
417 %other trivial leak
418 "
419
420 // Leaking the update value for the target epoch yields a trivial

attack .
421 lemma post_compromise_security_tokenleak_attack :
422 "All m I t1 t2 #i #j #k.
423 LeakUSK (I,t1) @ #i
424 & Epoch_ended (t1) @ #j
425 & Sent(m,I) @ #k
426 & Is_Epoch (t2) @ #k
427 & #j < #k
428 ==> not(Ex #l. K(m) @ #l)
429 | (Ex #l. LeakUSK (I, t2)@ #l)
430 | (Ex #l. LeakMSK (t2)@ #l)
431 //| (Ex #l. LeakUpdVal (I,t2)@ #l)
432 %other trivial leak
433 "
434
435 // There is another trivial attack .
436 lemma post_compromise_security_suskleak_attack :
437 "All m I t1 t2 #i #j #k.
438 LeakUSK (I,t1) @ #i
439 & Epoch_ended (t1) @ #j
440 & Sent(m,I) @ #k
441 & Is_Epoch (t2) @ #k
442 & #j < #k
443 ==> not(Ex #l. K(m) @ #l)
444 | (Ex #l. LeakUSK (I, t2)@ #l)
445 | (Ex #l. LeakMSK (t2)@ #l)
446 | (Ex #l. LeakUpdVal (I,t2)@ #l)
447 //%other trivial leak
448 "
449
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450 // DKER forward
451 // -------------
452
453 // Leaking usk of the target epoch yields a trivial attack .
454 lemma decryption_key_exposure_resistance_forward_uskleak_attack :
455 "All I t1 t2 usk1 usk2 #i #j #k.
456 Exists_Key (I, usk1, t1)@ #i
457 & Is_Epoch (t1)@ #i
458 & Exists_Key (I, usk2, t2)@#j
459 & #i < #j
460 & LeakUSK (I, t2)@ #k
461 ==> not (Ex #l. K(usk1)@ #l)
462 //| (Ex #l. LeakUSK (I, t1)@ #l)
463 | (Ex #l. LeakMSK (t1)@ #l)
464 | (Ex #l. LeakUpdVal (I,t1)@ #l)
465 %other trivial leak
466 "
467
468 // Leaking msk of the target epoch yields a trivial attack .
469 lemma decryption_key_exposure_resistance_forward_mskleak_attack :
470 "All I t1 t2 usk1 usk2 #i #j #k.
471 Exists_Key (I, usk1, t1)@ #i
472 & Is_Epoch (t1)@ #i
473 & Exists_Key (I, usk2, t2)@#j
474 & #i < #j
475 & LeakUSK (I, t2)@ #k
476 ==> not (Ex #l. K(usk1)@ #l)
477 | (Ex #l. LeakUSK (I, t1)@ #l)
478 //| (Ex #l. LeakMSK (t1)@ #l)
479 | (Ex #l. LeakUpdVal (I,t1)@ #l)
480 %other trivial leak
481 "
482
483 // Leaking the update value for the target epoch yields a trivial

attack .
484 lemma decryption_key_exposure_resistance_forward_tokenleak_attack :
485 "All I t1 t2 usk1 usk2 #i #j #k.
486 Exists_Key (I, usk1, t1)@ #i
487 & Is_Epoch (t1)@ #i
488 & Exists_Key (I, usk2, t2)@#j
489 & #i < #j
490 & LeakUSK (I, t2)@ #k
491 ==> not (Ex #l. K(usk1)@ #l)
492 | (Ex #l. LeakUSK (I, t1)@ #l)
493 | (Ex #l. LeakMSK (t1)@ #l)
494 //| (Ex #l. LeakUpdVal (I,t1)@ #l)
495 %other trivial leak
496 "
497
498 // There is another trivial attack .
499 lemma decryption_key_exposure_resistance_forward_suskleak_attack :
500 "All I t1 t2 usk1 usk2 #i #j #k.
501 Exists_Key (I, usk1, t1)@ #i
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502 & Is_Epoch (t1)@ #i
503 & Exists_Key (I, usk2, t2)@#j
504 & #i < #j
505 & LeakUSK (I, t2)@ #k
506 ==> not (Ex #l. K(usk1)@ #l)
507 | (Ex #l. LeakUSK (I, t1)@ #l)
508 | (Ex #l. LeakMSK (t1)@ #l)
509 | (Ex #l. LeakUpdVal (I,t1)@ #l)
510 //%other trivial leak
511 "
512
513
514 // DKER backward
515 // --------------
516
517 // Leaking usk of the target epoch yields a trivial attack .
518 lemma decryption_key_exposure_resistance_backward_uskleak_attack :
519 "All I t1 t2 usk1 usk2 #i #j #k.
520 Exists_Key (I, usk1, t1)@ #i
521 & Is_Epoch (t1)@ #i
522 & Exists_Key (I, usk2, t2)@#j
523 & #i < #j
524 & LeakUSK (I, t1)@ #k
525 ==> not (Ex #l. K(usk2)@ #l)
526 //| (Ex #l. LeakUSK (I, t2)@ #l)
527 | (Ex #l. LeakMSK (t2)@ #l)
528 | (Ex #l. LeakUpdVal (I,t2)@ #l)
529 %other trivial leak
530 "
531
532 // Leaking msk of the target epoch yields a trivial attack .
533 lemma decryption_key_exposure_resistance_backward_mskleak_attack :
534 "All I t1 t2 usk1 usk2 #i #j #k.
535 Exists_Key (I, usk1, t1)@ #i
536 & Is_Epoch (t1)@ #i
537 & Exists_Key (I, usk2, t2)@#j
538 & #i < #j
539 & LeakUSK (I, t1)@ #k
540 ==> not (Ex #l. K(usk2)@ #l)
541 | (Ex #l. LeakUSK (I, t2)@ #l)
542 //| (Ex #l. LeakMSK (t2)@ #l)
543 | (Ex #l. LeakUpdVal (I,t2)@ #l)
544 %other trivial leak
545 "
546
547 // Leaking the update value for the target epoch yields a trivial

attack .
548 lemma

decryption_key_exposure_resistance_backward_tokenleak_attack :
549 "All I t1 t2 usk1 usk2 #i #j #k.
550 Exists_Key (I, usk1, t1)@ #i
551 & Is_Epoch (t1)@ #i
552 & Exists_Key (I, usk2, t2)@#j
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553 & #i < #j
554 & LeakUSK (I, t1)@ #k
555 ==> not (Ex #l. K(usk2)@ #l)
556 | (Ex #l. LeakUSK (I, t2)@ #l)
557 | (Ex #l. LeakMSK (t2)@ #l)
558 //| (Ex #l. LeakUpdVal (I,t2)@ #l)
559 %other trivial leak
560 "
561
562 // There is another trivial attack .
563 lemma decryption_key_exposure_resistance_backward_suskleak_attack :
564 "All I t1 t2 usk1 usk2 #i #j #k.
565 Exists_Key (I, usk1, t1)@ #i
566 & Is_Epoch (t1)@ #i
567 & Exists_Key (I, usk2, t2)@#j
568 & #i < #j
569 & LeakUSK (I, t1)@ #k
570 ==> not (Ex #l. K(usk2)@ #l)
571 | (Ex #l. LeakUSK (I, t2)@ #l)
572 | (Ex #l. LeakMSK (t2)@ #l)
573 | (Ex #l. LeakUpdVal (I,t2)@ #l)
574 //%other trivial leak
575 "
576
577 // Collusion Resistance
578 // ---------------------
579
580 // Leaking msk of the target epoch yields a trivial attack .
581 lemma collusion_resistance_mskleak_attack :
582 "All I m t #i.
583 Sent(m, I)@ #i
584 & Is_Epoch (t)@ #i
585 & not (Ex #j. Create_Update (I, t)@ #j)
586 & not (Ex #j. GenUSK (I)@ #j & Is_Epoch (t)@ #j)
587 ==> not(Ex #l. K(m)@ #l)
588 //| (Ex #l. LeakMSK (t)@ #l)
589 "
590
591 end
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B. Code for key renewal model
The following code portions detail the substitutions for the placeholders in the blueprint
necessary to yield the key renewal model. Each replacement is shown with context. Place-
holders with no counterpart in this overview need to be deleted without replacement in the
final code.

1 theory iberevocbyrenewal
2 begin
3
4 builtins : asymmetric-encryption, hashing
5 functions : ibenc /4, ibdec /2
6 equations : ibdec(ibenc(m, I, pk(msk), t), h(I, msk, t)) = m

...
24 rule generate_user_key :
25 let
26 usk = h($I, ˜msk, ˜t)
27 in
28 ...

...
43 rule update_msk :
44 let
45 msk_new = msk_old
46 mpk_new = pk( msk_new )
47 in
48 ...

...
59 rule distribute_token :
60 let
61 update_value = h($I, ˜msk, ˜t_new)
62 in
63 [ !Epoch (˜ t_new)
64 , !MSK (˜ msk, ˜t_new)
65 ]
66 --[ Is_Epoch (˜ t_new), Create_Update ($I, ˜t_new) ]->
67 [ ! Update_Value ($I, ˜ t_new, update_value ) ]

...
70 rule update_usk :
71 let
72 usk_new = upd_val
73 in
74 ...
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...
82 rule encrypt_message :
83 let
84 cipher = ibenc (˜m, $I, mpk, ˜t)
85 in
86 ...

...
95 rule decrypt_message :
96 let
97 usk = h($I, ˜msk, ˜t)
98 cipher = ibenc(m, $I, pk(˜ msk), ˜t)
99 m_dec = ibdec( cipher, usk)

100 in
101 ...

...
158 // Sources lemmas
159 lemma msk_mpk_never_change [ sources ]:
160 "All msk mpk #i.
161 Is_MPK_MSK (msk, mpk)@ #i ==> (Ex #j. Origin_MPK_MSK (msk,

mpk)@ #j)"
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C. Code for individual update model
(separate)

The following code portions detail the substitutions for the placeholders in the blueprint
necessary to yield the individual update model with separated identity- and epoch key.
Each replacement is shown with context. Placeholders with no counterpart in this overview
need to be deleted without replacement in the final code.

1 theory IbeRevocByIndividualTokenSeparate
2 begin
3
4 builtins : asymmetric-encryption, hashing
5 functions : ibenc /4, ibdec /2, token /3
6 equations : ibdec(ibenc(m, I, pk(msk), t), <h(I, msk), token(I,

msk, t)>) = m

...
25 rule generate_user_key :
26 let
27 susk = h($I, ˜msk)
28 token = token($I, ˜msk,˜t)
29 usk = < susk, token >
30 in
31 ...

...
49 rule distribute_token :
50 let
51 update_value = token($I, ˜msk, ˜t_new)
52 in
53 [ !Epoch (˜ t_new)
54 , !MSK (˜ msk)
55 ]
56 --[ Is_Epoch (˜ t_new), Create_Update ($I, ˜t_new) ]->
57 [ ! Update_Value ($I, ˜ t_new, update_value )
58 , Out( update_value ) ]
59
60 rule update_usk :
61 let
62 susk = h($I, ˜msk)
63 token_old = token($I, ˜msk, ˜t_old)
64 usk_old = < susk, token_old >
65 usk_new = < susk, upd_val >
66 in
67 ...
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...
76 rule encrypt_message :
77 let
78 cipher = ibenc (˜m, $I, mpk, ˜t)
79 in
80 ...

...
89 rule decrypt_message :
90 let
91 susk = h($I, ˜msk)
92 token = token($I, ˜msk, ˜t)
93 usk = < susk, token >
94 cipher = ibenc(m, $I, pk(˜ msk), ˜t)
95 m_dec = ibdec( cipher, usk)
96 in
97 ...

...
106 // Key Leaks as defined in the adversary model

...
122 rule leak_static_usk :
123 [ !SUSK(key, $I) ]
124 --[ LeakSUSK ($I)]->
125 [ Out(key) ]

...
157 lemma can_receive : exists-trace
158 /* There exists a session in which a user can decrypt a

message . */
159 "Ex m #j. Receive (m)@ #j
160 & not (Ex #i t N. LeakUSK (N,t)@ #i)
161 & not (Ex #i. LeakMSK ()@ #i)
162 & not (Ex I t #l. LeakUpdVal (I,t)@ #l)
163 & not (Ex #i N. LeakSUSK (N)@ #i)
164 "
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D. Code for individual update model
(re-randomized)

The following code portions detail the substitutions for the placeholders in the blueprint
necessary to yield the individual update model with re-randomization. Each replacement is
shown with context. Placeholders with no counterpart in this overview need to be deleted
without replacement in the final code.

1 theory IbeRevocByIndividualTokenRerandomized
2 begin
3
4 builtins : asymmetric-encryption, hashing
5 functions : ibenc /4, ibdec /2, token /3
6 equations : ibdec(ibenc(m, I, pk(msk), t), h(h(I, msk), token(I,

msk, t)))= m

...
25 rule generate_user_key :
26 let
27 susk = h($I, ˜msk)
28 token = token($I, ˜msk, ˜t)
29 usk = h(susk, token)
30 in
31 [ !Epoch (˜t)
32 , !MSK (˜ msk) ]
33 --[ GenUSK ($I), Is_Epoch (˜t), Exists_Key ($I, usk, ˜t) ]->
34 [ !USK(usk, $I, ˜t)
35 , !SUSK(susk, $I)]

...
49 rule distribute_token :
50 let
51 update_value = token($I, ˜msk, ˜t_new)
52 in
53 [ !Epoch (˜ t_new)
54 , !MSK (˜ msk)
55 ]
56 --[ Is_Epoch (˜ t_new), Create_Update ($I, ˜t_new) ]->
57 [ ! Update_Value ($I, ˜ t_new, update_value )
58 , Out( update_value ) ]
59
60 rule update_usk :
61 let
62 susk = h($I, ˜msk)
63 token_old = token($I, ˜msk, ˜t_old)
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D. Code for individual update model (re-randomized)

64 usk_old = h(susk, token_old )
65 usk_new = h(susk, upd_val )
66 in
67 ...

...
76 rule encrypt_message :
77 let
78 cipher = ibenc (˜m, $I, mpk, ˜t)
79 in
80 ...

...
89 rule decrypt_message :
90 let
91 susk = h($I, ˜msk)
92 token = token($I, ˜msk, ˜t)
93 usk = h(susk, token)
94 cipher = ibenc(m, $I, pk(˜ msk), ˜t)
95 m_dec = ibdec( cipher, usk)
96 in
97 ...

...
106 // Key Leaks as defined in the adversary model

...
122 rule leak_static_usk :
123 [ !SUSK(key, $I) ]
124 --[ LeakSUSK ($I)]->
125 [ Out(key) ]

...
157 lemma can_receive : exists-trace
158 /* There exists a session in which a user can decrypt a

message . */
159 "Ex m #j. Receive (m)@ #j
160 & not (Ex #i t N. LeakUSK (N,t)@ #i)
161 & not (Ex #i. LeakMSK ()@ #i)
162 & not (Ex I t #l. LeakUpdVal (I,t)@ #l)
163 & not (Ex #i N. LeakSUSK (N)@ #i)
164 "
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E. Code for universal update model

The following code portions detail the substitutions for the placeholders in the blueprint
necessary to yield the universal update model. Each replacement is shown with context.
Placeholders with no counterpart in this overview need to be deleted without replacement
in the final code.

1 theory IbeRevocByUniversalToken
2 begin
3
4 builtins : asymmetric-encryption, hashing
5 functions : ibenc /3, ibdec /2, usk_der /2, msk_der /1
6 equations : ibdec(ibenc(m, I, pk( msk_der ( msk_inside ))), usk_der (I,

msk_inside )) = m
7
8 rule setup:
9 let

10 msk = msk_der (˜ msk_fresh )
11 mpk = pk(msk)
12 in
13 [ Fr(˜ msk_fresh )
14 , Fr(˜t)
15 ]
16 --[ SetupOnlyOnce (), Is_Epoch (˜t), Setup_MSK (msk, ˜t)]->
17 [ ... ]

...

26 rule generate_user_key :
27 let
28 msk_curr = msk_der ( msk_inside )
29 usk = usk_der ($I, msk_inside )
30 in
31 ...

...

47 rule update_msk :
48 let
49 msk_old = msk_der ( msk_old_inside )
50 msk_new = msk_der (<˜ upd_val, msk_old_inside> )
51 mpk_new = pk( msk_new )
52 in
53 ...

...
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63 rule distribute_token :
64 let
65 msk_new = msk_der (<˜ upd_val, msk_old> )
66 update_value = ˜ upd_val
67 in
68 ...

...
75 rule update_usk :
76 let
77 usk_old = usk_der ($I, old_value )
78 usk_new = usk_der ($I, <˜ upd_val, old_value> )
79 in
80 ...

...
88 rule encrypt_message :
89 let
90 cipher = ibenc (˜m, $I, mpk)
91 in
92 ...

...
101 rule decrypt_message :
102 let
103 msk = msk_der ( msk_inside )
104 usk = usk_der ($I, msk_inside )
105 cipher = ibenc (˜m, $I, pk(msk))
106 m_dec = ibdec( cipher, usk)
107 in
108 ...

...
115 // additional rules
116 rule usk_der_math :
117 [ In( usk_der ( $I,exponent ))
118 , In(˜ upd_val )]
119 --[ USK_der ()]->
120 [ Out( usk_der ($I, <˜ upd_val, exponent> ))]
121
122 rule usk_diff_math :
123 [In( usk_der ($I, <˜ exponent1,exponent2> ))
124 ,In (˜ exponent1 )]
125 --[ USK_diff () ]->
126 [Out( usk_der ( $I,exponent2 ))]
127
128 rule msk_yield_usk :
129 [In( msk_der ( msk_inside ))]
130 -->
131 [Out( usk_der ($I, msk_inside ))]
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...
182 // additional restrictions
183
184 restriction only_four_epochs :
185 "All msk2 msk3 msk4 msk5 t2 t3 t4 t5 #i #j #k #l.
186 Update_MSK (msk2, t2)@ #i
187 & Update_MSK (msk3, t3)@ #j
188 & Update_MSK (msk4, t4)@ #k
189 & Update_MSK (msk5, t5)@ #l
190 & not (msk2 = msk3)
191 & not (msk3 = msk4)
192 & not (msk2 = msk4)
193 ==> #i = #l | #j = #l | #k = #l"
194
195 restriction USK_der_rule_only_four_times :
196 "All #i #j #k #l #m.
197 USK_der ()@ #i
198 & USK_der ()@ #j
199 & USK_der ()@ #k
200 & USK_der ()@ #l
201 & USK_der ()@ #m
202 ==> #i = #m | #j = #m | #k = #m | #l = #m"
203
204 restriction USK_diff_rule_only_four_times :
205 "All #i #j #k #l #m.
206 USK_diff ()@ #i
207 & USK_diff ()@ #j
208 & USK_diff ()@ #k
209 & USK_diff ()@ #l
210 & USK_diff ()@ #m
211 ==> #i = #m | #j = #m | #k = #m | #l = #m"
212
213 // sources lemma
214 lemma master_upd_only_three_times [ sources ]:
215 "All upd_val_i msk t #j. Update_MSK (< upd_val_i, msk>, t)@ #j
216 ==> (( Ex t2 #i. Setup_MSK (msk, t2)@ #i & i < j) // @ #j is

first update
217 | (Ex upd_val_2 msk1 t2 #i. msk = <upd_val_2, msk1> &

Setup_MSK (msk1, t2)@ #i & i <j) // @ #j is second update
218 | (Ex upd_val_3 upd_val_2 msk1 t2 #i. msk = <upd_val_3,

upd_val_2, msk1> & Setup_MSK ( msk1,t2 )@ #i & i<j))" //@ #j is
third update

...
332 lemma decryption_key_exposure_resistance_backward :
333 "All I t1 t2 usk1 usk2 #i #j #k.
334 Exists_Key (I, usk1, t1)@ #i
335 & Is_Epoch (t1)@ #i
336 & Exists_Key (I, usk2, t2)@#j
337 & #i < #j
338 & LeakUSK (I, t1)@ #k
339 ==> not (Ex #l. K(usk2)@ #l)
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340 | (Ex #l. LeakUSK (I,t2)@ #l)
341 | (Ex #l. LeakMSK (t2)@ #l)
342 | (Ex #l #y R t. LeakMSK (t)@ #l & LeakUpdVal (R,t2)@ #y)
343 "

...
497 lemma collusion_resistance_proof :
498 "All I m t #i.
499 Sent(m, I)@ #i
500 & Is_Epoch (t)@ #i
501 & not (Ex #j. Create_Update (I, t)@ #j)
502 & not (Ex #j. GenUSK (I)@ #j & Is_Epoch (t)@ #j)
503 ==> not(Ex #l. K(m)@ #l)
504 | (Ex #l t. LeakMSK (t)@ #l)
505 | (Ex R t2 #l #x. Consecutive (t,t2)@ #x & LeakUpdVal (R, t2)@

#l)
506 | (Ex R #l. LeakUpdVal (R, t)@ #l)
507 "
508
509 lemma collusion_resistance_proof_token_old :
510 "All I m t #i.
511 Sent(m, I)@ #i
512 & Is_Epoch (t)@ #i
513 & not (Ex #j. Create_Update (I, t)@ #j)
514 & not (Ex #j. GenUSK (I)@ #j & Is_Epoch (t)@ #j)
515 ==> not(Ex #l. K(m)@ #l)
516 | (Ex #l t. LeakMSK (t)@ #l)
517 // | (Ex R t2 #l #x. Consecutive (t,t2)@ #x & LeakUpdVal (R,

t2)@ #l)
518 | (Ex R #l. LeakUpdVal (R, t)@ #l)
519 "
520
521 lemma collusion_resistance_proof_token_curr :
522 "All I m t #i.
523 Sent(m, I)@ #i
524 & Is_Epoch (t)@ #i
525 & not (Ex #j. Create_Update (I, t)@ #j)
526 & not (Ex #j. GenUSK (I)@ #j & Is_Epoch (t)@ #j)
527 ==> not(Ex #l. K(m)@ #l)
528 | (Ex #l t. LeakMSK (t)@ #l)
529 | (Ex R t2 #l #x. Consecutive (t,t2)@ #x & LeakUpdVal (R, t2)@

#l)
530 // | (Ex R #l. LeakUpdVal (R, t)@ #l)
531 "
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