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"It is a fundamental criterion for a valid method of isolating primary abilities that the

weights of the primary abilities for a test must remain invariant when it is moved from

one test battery to another test battery. [...] This criterion assumes that the several

test batteries are given to the same population. The primary abilities that define a test

in one population should be identical with the primary abilities which define it in a

second population."

— Louis L. Thurstone, The Vectors of Mind, p. 55, 1935

"Is this possible?"

— Harold Hotelling, handwritten marginal comment



CONTENTS I

Contents

1 Abstract IX

2 Zusammenfassung XI

3 General Introduction 1

3.1 Manuscripts of this Thesis . . . . . . . . . . . . . . . . . . . . . . . . . 2

3.2 Factor Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

3.3 A Formal Definition of Measurement Invariance . . . . . . . . . . . . . 5

3.3.1 The Different Levels of Measurement Invariance . . . . . . . . . 5

3.3.2 When is Measurement Invariance Supported? . . . . . . . . . . 7

3.4 Current State of Measurement Invariance in Psychological Research . . 8

3.4.1 Contribution of Study 1 . . . . . . . . . . . . . . . . . . . . . . 9

3.4.2 Contribution of Study 2 . . . . . . . . . . . . . . . . . . . . . . 10

3.4.3 Contribution of Study 3 . . . . . . . . . . . . . . . . . . . . . . 10

3.5 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4 Study 1: Exploratory Factor Analysis Trees: Evaluating Measure-

ment Invariance Between Multiple Covariates 18

4.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.3 Measurement Invariance . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.4 Exploratory Factor Analysis . . . . . . . . . . . . . . . . . . . . . . . . 22

4.5 Score-Based Recursive Partitioning . . . . . . . . . . . . . . . . . . . . 23

4.6 EFA Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.7 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.7.1 Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.7.2 Toy examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.8 Simulation Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.8.1 Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.8.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.9 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.9.1 Why should you use EFA trees? . . . . . . . . . . . . . . . . . . 48



CONTENTS II

4.9.2 How deep is your tree? . . . . . . . . . . . . . . . . . . . . . . . 50

4.9.3 Limitations and Future Directions . . . . . . . . . . . . . . . . . 51

4.10 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.11 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5 Study 2: New Developments in Measurement Invariance Testing:

An Overview and Comparison of EFA-based Approaches 62

5.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.3 CFA vs. EFA in MI Testing . . . . . . . . . . . . . . . . . . . . . . . . 65

5.4 Multi-group EFA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.4.1 Model Specification . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.4.2 Testing Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.4.3 When To Use MG-EFA . . . . . . . . . . . . . . . . . . . . . . . 68

5.5 Mixture Multi-group EFA . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.5.1 Model Specification . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.5.2 When To Use MMG-EFA . . . . . . . . . . . . . . . . . . . . . 71

5.6 EFA Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.6.1 Model Specification . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.6.2 When To Use EFA trees . . . . . . . . . . . . . . . . . . . . . . 74

5.7 Multi-group Exploratory Factor Alignment . . . . . . . . . . . . . . . . 75

5.7.1 Model Specification . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.7.2 When To Use AESEM . . . . . . . . . . . . . . . . . . . . . . . 77

5.8 Multi-group Factor Rotation . . . . . . . . . . . . . . . . . . . . . . . . 78

5.8.1 Model Specification . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.9 Empirical Demonstration . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.9.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.9.2 Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.9.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.9.4 Synthesis of the Results . . . . . . . . . . . . . . . . . . . . . . 98

5.10 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.10.1 Future Research . . . . . . . . . . . . . . . . . . . . . . . . . . . 101



CONTENTS III

5.11 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.12 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

6 Study 3: A Causal Framework for the Comparability of Latent

Variables 112

6.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6.3 From DAGs to Measurement Models . . . . . . . . . . . . . . . . . . . 115

6.4 Current Practice of Investigating Measurement Invariance . . . . . . . 119

6.5 The Causal Foundations of Measurement Invariance . . . . . . . . . . . 122

6.6 A More Holistic View on Measurement Invariance . . . . . . . . . . . . 125

6.6.1 Simulated Example . . . . . . . . . . . . . . . . . . . . . . . . . 129

6.6.2 Empirical Example . . . . . . . . . . . . . . . . . . . . . . . . . 130

6.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

6.7.1 Limitations and Future Research . . . . . . . . . . . . . . . . . 134

6.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

6.9 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

7 General Discussion 145

7.1 Solutions in Search of a Problem? . . . . . . . . . . . . . . . . . . . . . 145

7.2 Future Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

7.2.1 Tailored Fit Index Cut-Offs . . . . . . . . . . . . . . . . . . . . 148

7.2.2 Effect Size Measures . . . . . . . . . . . . . . . . . . . . . . . . 150

7.2.3 Longitudinal Measurement Invariance . . . . . . . . . . . . . . . 152

7.3 A Note on Recent Criticism Against Measurement Invariance . . . . . . 154

7.3.1 Agreement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

7.3.2 Partial Agreement . . . . . . . . . . . . . . . . . . . . . . . . . 156

7.3.3 Disagreement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

7.3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

7.4 General Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

7.5 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164



LIST OF FIGURES IV

List of Figures

Figure 1 Study 1: Power (1 - type II error rate) of EFA trees to detect lack

of measurement invariance (MI) by sample size N. Configural and

metric denote the type of lack of MI. 20/80 and 50/50 denote the

group size ratio. 4 and 8 denote the number of distractors.

Figure 2 Study 1: Type I error rate (false-positive rate) of EFA trees by

sample size N and number of distractors.

Figure 3 Study 2: Resulting partition after applying EFA trees to the Oxford

Utilitarianism Scale data.

Figure 4 Study 3: Simple DAG of a measurement model where the observed

variables Y1, Y2, and Y3 are caused by a latent common factor C

and latent unique error terms E1, E2, and E3.

Figure 5 Study 3: Simple path diagram of a measurement model. a) LISREL

style: Only error variances are depicted by an arrow without a

node pointing into all endogeneous variables (here: the observed

variables); b) RAM style: variances of both endogeneous and

exogeneous variables are depicted by a double-headed arrow-loop

(here: error variances and variances of the latent variables).

Figure 6 Study 3: DAG with a selection node pointing into the observed

variables. a) Adaptation of Figure 6c in Deffner et al. (2022)

where only one observed variable Y is shown; b) DAG of the

complete measurement model of IB = impartial beneficence where

the selection node points into potentially all observed variables

Y1−5 (depicted by the dotted box around the observed variables).

Figure 7 Study 3: Pairs of measurement models of IB (impartial beneficence)

for which measurement invariance does not hold between the two

groups. a) violation of configural invariance (violation of configural

invariance due to different number of latent variables between

groups is not displayed); b) violation of metric invariance (assuming

standardized data); c) violation of scalar invariance; d) violation of

residual invariance (assuming unstandardized data). Parameters

that might differ between groups are highlighted in blue.



LIST OF FIGURES V

Figure 8 Study 3: DAG with a selection node pointing into the observed

covariate Age which influences all observed variables Y1−5 (depicted

by the dotted box around the observed variables).



LIST OF TABLES VI

List of Tables

Table 1 Study 1: Test statistics and p-values for toy example 1

Table 2 Study 1: Regularized factor solution for toy example 1

Table 3 Study 1: Test statistics and p-values for toy example 2

Table 4 Study 1: Regularized factor solution for toy example 2

Table 5 Study 1: Test statistics and p-values for toy example 3

Table 6 Study 1: Regularized factor solution for toy example 3

Table 7 Study 1: Test statistics and p-values for the first node in toy example

4

Table 8 Study 1: Test statistics and p-values for the second node in toy

example 4

Table 9 Study 1: Regularized factor solution for toy example 4

Table 10 Study 1: Mean and standard deviations of the standardized root

mean squared residuals in the two leaf nodes and split rates for all

54 conditions

Table 11 Study 2: Overview of methods based on exploratory factor analysis

Table 12 Study 2: Results of multi-group exploratory factor analysis between

regions.

Table 13 Study 2: Unstandardized loading matrices of multi-group ex-

ploratory factor analysis of the Oxford Utilitarianism Scale with

region as grouping covariate

Table 14 Study 2: Results of Wald hypothesis tests of loading invariance

across the three regions after multi-group exploratory factor analysis

Table 15 Study 2: Fit statistics for the ten mixture multi-group exploratory

factor analyses of the Oxford Utilitarianism Scale

Table 16 Study 2: Composition of the clusters for the six-cluster solution of

mixture multi-group exploratory factor analysis

Table 17 Study 2: Unstandardized loading matrices of the mixture multi-

group exploratory factor analysis of the Oxford Utilitarianism Scale

with clusters as grouping covariate



LIST OF TABLES VII

Table 18 Study 2: Results of Wald hypothesis tests of loading invariance

across the six clusters of mixture multi-group exploratory factor

analysis

Table 19 Study 2: Unstandardized loading matrices of the mixture multi-

group exploratory factor analysis of the Oxford Utilitarianism Scale

with clusters as grouping covariate with more weight on rotation

than on agreement

Table 20 Study 2: Hypothesis test result in the parent node of the EFA tree

Table 21 Study 2: Hypothesis test result in the eastern node of the EFA tree

Table 22 Study 2: Hypothesis test result in the southern and western node

of the EFA tree

Table 23 Study 2: Unstandardized loading matrices of the exploratory factor

analysis tree of the Oxford Utilitarianism Scale with tree leaf nodes

as grouping covariate

Table 24 Study 2: Results of Wald hypothesis tests of loading invariance

across the four leaf nodes of the exploratory factor analysis tree

Table 25 Study 2: Unstandardized loading matrix of exploratory alignment

of the Oxford Utilitarianism Scale (weighted average loadings across

invariant groups)

Table 26 Study 2: Items and corresponding subscales of the OUS (Kahane et

al., 2018)

Table 27 Study 3: Results of moderated non-linear factor analysis for the toy

example.

Table 28 Study 3: Results of χ2-difference tests between the configural, metric,

and scalar moderated non-linear factor analyses for the simulated

example.

Table 29 Study 3: Results of multi-group confirmatory factor analysis for the

empirical example between regions western and eastern.

Table 30 Study 3: Results of moderated non-linear factor analysis for the

empirical example.



LIST OF TABLES VIII

Table 31 Study 3: Results of χ2-difference tests between the configural, metric,

and scalar moderated non-linear factor analyses for the empirical

example.



1 ABSTRACT IX

1 Abstract

Measurement invariance (MI) means that the psychometric measurement models

underlying a psychological questionnaire or test are equivalent across different groups

or time points. MI is a prerequisite of meaningful between-group comparisons of

measurements that the questionnaire produces. This thesis contains three manuscripts

on methodological issues surrounding MI.

Study 1 introduces a new method to investigate MI, called Exploratory Factor Analysis

Trees (EFA trees). EFA trees enable a data-driven assessment of MI among multiple

continuous and/or categorical covariates (e.g., age, gender, education). To do so,

they employ a score-based recursive partitioning algorithm. The result is a tree-like

structure with so-called leaf nodes that contain partitions of the whole data set within

which the measurement models are equivalent (i.e., for which MI holds). EFA trees

are demonstrated by means of toy examples and investigated more thoroughly in an

extensive Monte-Carlo simulation. The results indicate that EFA trees can reliably

identify non-invariance under different conditions, for example, different sample sizes,

group-size ratios, types of covariates, number of covariates, and types of violations of

MI.

Study 2 provides an overview and comparison of EFA-based approaches to investigate MI

that have been developed in recent years. The manuscript addresses multi-group EFA,

mixture multi-group EFA, multi-group exploratory factor alignment, and EFA trees.

For each method, the strengths and weaknesses as well as the assumptions underlying

the method are detailed. Additionally, multi-group factor rotation is illustrated as a

method to resolve the rotational indetermincy of the EFA model. The application of

all EFA-based methods, combined with multi-group factor rotation, is demonstrated on

an empirical data set from moral psychology. To facilitate the application for applied

researchers, template code in three different statstistical software programs (R, Mplus,

Latent Gold) is made publicly available. In addition, a new R package EFAtree is

developed to more easily implement EFA trees in the software R.

Study 3 moves the investigation of MI from a purely statistical to a more theoretical

focus. A framework based on causal inference, more specifically directed acyclic graphs

(DAGs), is presented. This framework allows to incorporate assumptions about causes



1 ABSTRACT X

of non-invariance in the statistical modeling process. By explicitly depicting these

assumptions in a DAG, researchers can make informed modeling decisions. Ultimately,

this allows to view MI as a substantively interesting topic of research by itself, instead

of a statistical assumption that licenses further analyses. By means of a simulated and

an empirical example, the application of the framework is demonstrated.

In the general discussion, the applicability of the developments of the three manuscripts

is critically assessed. Additionally, topics for future methodological research on MI are

discussed, specifically tailored fit index cut-offs, effect size measures, and longitudinal

MI. The thesis closes with a note on recent criticism against the necessity of MI for

meaningful inference about latent variables.
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2 Zusammenfassung

In der Psychologie interessieren wir uns häufig für die Ausprägung eines psychologischen

Konstrukts bei Personen, zum Beispiel wie extravertiert oder intelligent eine Person ist.

Dies gilt sowohl für die psychologische Forschung als auch für diagnostische Settings,

zum Beispiel in der Einzelfalldiagnostik im Rahmen einer Psychotherapie. Während

in der Forschung meistens Mittelwertunterschiede in psychologischen Konstrukten

zwischen Gruppen von Interesse sind, hat die Diagnostik häufig zum Ziel, akurate

Aussagen über Einzelpersonen zu treffen. Unabhängig vom spezifischen Setting ist

eine zentrale Voraussetzung für zuverlässige Aussagen über Konstrukte, dass deren

Ausprägung adäquat gemessen werden kann. Hierfür greift die Psychologie hauptsächlich

auf Fragebögen zurück. Die Antworten, die eine Person auf die Fragen (Items) eines

Fragebogens gibt, lassen mithilfe psychometrischer Messmodelle Rückschlüsse auf

zugrundeliegende latente Variablen zu, die in diesen Messmodellen das zu messende

Konstrukt repräsentieren.

Psychologische Fragebögen haben viele Kriterien, die Aussagen über ihre Qualität

zulassen, sogenannte Gütekriterien. Ein solches Gütekriterium ist Messinvarianz (MI).

Ein Fragebogen ist messinvariant, wenn er für alle Personen mit derselben Ausprägung

auf einem Konstrukt dasselbe beobachtbare Ergebnis (also dieselben Anworten auf

Fragebogenitems) produziert. Genauer formuliert liegt MI dann vor, wenn die den

Fragebogenitems zugrundeliegenden Messmodelle für alle Personen äquivalent sind,

unabhängig von möglichen Gruppenzugehörigkeiten (z.B. Alter, Geschlecht, Herkunft

oder Bildung). Das vorliegen von MI ist ein fundamentales Kriterium, um Vergleich-

barkeit psychologischer Messungen sicherzustellen. Wenn ein Fragebogen abhängig von

Gruppenzugehörigkeiten unterschiedliche Ergebnisse bei identischer zugrundeliegen-

der Konstruktausprägung hervorbringt, sind latente Mittelwertvergleiche und andere

statistische Inferenzen verzerrt.

Die vorliegende Dissertation beinhaltet drei Manuskripte, die methodologische Themen

zu MI behandeln. In der ersten Studie werden Exploratory Factor Analysis trees

(EFA trees) vorgestellt, eine neue Methode zur Untersuchung von MI basierend auf

explorativer Faktorenanalyse (EFA). Die zweite Studie gibt einen Überblick über neue

methodische Entwicklungen im Bereich EFA-basierter MI-Untersuchung und vergleicht
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diese neuen Methoden mittels eines empirischen Beispiels. In der dritten Studie wird

ein Framework präsentiert, mit dessen Hilfe Ursachen von Verletzungen von MI (d.h.

Non-Invarianz) grafisch veranschaulicht werden können. Dieses Framework basiert

auf grafischen Methoden der kausalen Inferenz und ermöglicht es, die Annahmen der

Methoden aus den ersten beiden Studien darzustellen und zu testen.

Studie 1 stellt EFA trees vor. EFA trees sind eine datengetriebene und explorative

Methode, um MI in Bezug auf mehrere Kovariaten zu untersuchen. Die untersuchten Ko-

variaten können dabei sowohl kontinuierlich (z.B. Alter) als auch diskret (z.B. Bildung)

sein. Darüber hinaus müssen keine zu untersuchenden Gruppenkonstellationen a priori

festgelegt werden. Der den EFA trees zugrundeliegende Algorihmus ist das sogenannte

model-based recursive partitioning. Dies ist ein Likelihood-basierter Algorithmus, der

die Stabilität der Parameter eines Messmodells über alle Kovariaten hinweg testet.

Wenn der Algorithmus Instabilität in den Parametern identifiziert (mittels structural

change tests), dann teilt er den Gesamtdatensatz in Teildatensätze auf. Dieser Prozess

wird in den Teildatensätzen wiederholt, bis die Parameter in diesen stabil sind oder

andere Stoppkriterien erfüllt sind. Das Ergebnis eines EFA trees ist eine baum-ähnliche

Struktur, in deren „Ästen“ Teildatensätze mit invarianten Messmodellen sind. Durch

Betrachten der Kovariaten und ihren entsprechenden Ausprägungen, an denen der

Datensatz geteilt wurde, lassen sich Rückschlüsse darauf ziehen, zwischen welchen

Gruppen die Messmodelle non-invariant sind (z.B. Personen im Alter von 30 Jahren

oder jünger, und Personen älter als 30 Jahre). Die Anwendung von EFA trees wird

anhand einfacher simulierter Beispiele demonstriert. Sie werden außerdem im Rahmen

einer umfassenden Monte-Carlo Simulation evaluiert. Die Ergebnisse dieser Simulation

zeigen, dass EFA trees zuverlässig unter verschiedenen Bedingungen Non-Invarianz

identifizieren.

In Studie 2 wird ein Überblick über in den letzten Jahren entwickelte Methoden zur

Untersuchung von Messinvarianz gegeben. Diese Methoden haben gemeinsam, dass

sie auf der EFA basieren, wodurch sie sich von bisherigen Methoden unterscheiden,

die hauptsächlich auf der konfirmatorischen Faktorenanalyse (CFA) basieren. Durch

die Verwendung der EFA als zugrundeliegendes Messmodell verringert sich das Risiko,

dass Modellfehlspezifikationen auftreten. Die unter Umständen zu strengen Annahmen



2 ZUSAMMENFASSUNG XIII

bezüglich der Ladungen in Messmodellen einer CFA können das Ergebnise von MI-

Untersuchungen verzerren. In der EFA gibt es diese Annahmen nicht, wodurch zusätzlich

ermöglicht wird, auch Nebenladungen hinsichtlich ihrer Invarianz zwischen Gruppen

zu untersuchen. Konkret werden die folgenden Methoden betrachtet und verglichen:

Multi-Gruppen EFA, Mixture Multi-Gruppen EFA, Multi-Gruppen Exploratory Factor

Alignment und EFA trees. Für jede Methode werden die Vor- und Nachteile sowie

statistische Annahmen, die hinter den Modellen stehen, präsentiert. Zusätzlich wird die

Multi-Gruppen Factor Rotation vorgestellt. Alle EFA-basierten MI-Methoden haben,

wie die gewöhnliche EFA, das Problem der rotational indeterminacy (rotationale

Unbestimmtheit). Dies bedeutet, dass die Faktorlösungen beliebig rotiert (sprich:

transformiert) werden können, wodurch zwar die Passung des Modells an die Daten

gleich bleibt, die Interpretation der Lösung aber stark beeinflusst werden kann. Multi-

Gruppen Factor Rotation löst diese Unbestimmtheit, indem die Ladungsmatrizen in

allen Gruppen so rotiert werden, dass sowohl die Einfachstruktur innerhalb der Gruppen

als auch die Ähnlichkeit der Ladungsmatrizen zwischen den Gruppen maximiert wird.

Dies stellt eine Vergleichbarkeit der Lösungen zwischen den Gruppen sicher.

Alle Methoden werden anhand eines empirischen Beispiels aus der Moralpsychologie

demonstriert. Um die Anwendung für Forschende zu erleichtern, wird der Analyse-

code aus drei verschiedenen Softwareprogrammen (R, Mplus und Latent Gold) zur

Verfügung gestellt. Darüber hinaus wurde im Rahmen von Studie 2 ein neues R-Paket

(EFAtree) entwickelt, mit dessen Hilfe die EFA trees aus Studie 1 mit minimalem Auf-

wand angewendet werden können. Die Ergebnisse der empirischen Anwendung zeigen,

dass EFA-basierte Methoden geeignet sind, um Ladungsinvarianz in den Daten zu

untersuchen. Sie können als sinnvolle Ergänzung zu CFA-basierten Methoden gesehen

werden, vor allem wenn sie diesen vorangestellt werden. Ein zentrales Ziel zukünftiger

Forschung sollte es sein, die Fülle an verfügbaren Methoden (EFA- und CFA-basiert)

in einem für die Anwendungsforschung geeigneten Prozess zu ordnen und zu vereinen.

Studie 3 legt den Fokus bei MI-Untersuchungen weg von einer rein statistischen hin

zu einer theoretischeren Betrachtung. Es wird ein Framework basierend auf kausaler

Inferenz präsentiert, mit dessen Hilfe Annahmen über die Ursachen von Non-Invarianz

grafisch veranschaulicht werden können. Im Speziellen werden hierfür Directed Acyclic
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Graphs (DAGs) verwendet. DAGs sind grafische Objekte, die kausale Zusammenhänge

zwischen Zufallsvariablen darstellen. Die Zufallsvariablen werden mit gerichteten Pfeilen

verbunden, wobei ein gerichteter Pfeil zwischen A und B anzeigt, dass A einen direkten

kausalen Effekt auf B hat. Es wird veranschaulicht, wie die in der Literatur zu Fakto-

renanalysen üblichen Pfadmodelle in DAGs für Messmodelle übersetzt werden können

und wie sich Non-Invarianz in DAGs darstellen lässt. Auf Basis dieser Darstellungen

können dann informiertere Modellierungsentscheidungen getroffen werden, als wenn

lediglich herkömmliche Methoden wie die Multi-Gruppen CFA heuristisch angewendet

werden. Darüber hinaus ermöglicht die grafische Veranschaulichung der angenommenen

Ursachen von Non-Invarianz eine tiefergehende Untersuchung dieser möglichen Gründe.

Dies erlaubt es Anwendungsforschenden, MI als inhaltich interessantes Konzept zu

betrachten und so etwas über das zugrundeliegende Konstrukt zu lernen. Dies ist ein

großer Vorteil gegenüber der herkömmlichen, rein statstischen Betrachtungsweise, in der

MI lediglich als zusätzlich zu überprüfende Annahme vor den eigentlichen statistichen

Analysen gesehen wird. Viel mehr enthält das Fehlen von Messinvarianz zwischen

Gruppen Informationen darüber, wie diese Gruppen ein Konstrukt interpretieren oder

wie es sich in diesen Gruppen im Erleben und Verhalten manifestiert.

Die Dissertation schließt mit einer allgemeinen Diskussion. In dieser wird die An-

wendbarkeit der vorgestellten Methoden und des Frameworks aus Studie 3 kritisch

betrachtet. Weitere methodologische Forschung, die vor allem konkrete Anleitungen zur

Anwendung der Methoden sowie Softwareimplementierungen beinhaltet, ist notwendig,

damit die Anwendungsforschung vollumfänglich von den Ergebnisse der drei Manu-

skripte profitieren kann. Zusätzliche inhaltiche Themen zukünftiger Forschung sind

vor allem dynamische Grenzwerte von Fit-Indizes zur Erkennung von Non-Invarianz,

Effektstärkemaße sowie die Konzeptualisierung von MI bei Betrachtung longitudinaler

Daten. Abschließend wird auf kürzlich veröffentlichte Kritik an der Notwendigkeit von

MI für die psychologische Forschung eingegangen.
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3 General Introduction

In psychology, we are almost always interested in some psychological construct in

humans, for example how extraverted or intelligent a person is. This pertains to both

psychological research and diagnostic settings, like psychotherapeutic assessments. In

research, we are often concerned with mean differences between groups on the con-

structs under investigation and in diagnostics, our goal is to make accurate statements

about a single person. Regardless of the setting, a central prerequisite of unbiased

statements about constructs is that they are adequately measured. To measure the

value of a construct, psychologists commonly rely on questionnaires. The responses

to questionnaire items (also: observed variables) are related to a latent variable that

represents the construct we intend to measure (Lord & Novick, 1968). Because of their

prominent role and psychology’s dependence on them, it is crucial that the question-

naires we use to measure constructs are thoughtfully constructed (Wijsen et al., 2022).

There are many definitions of a “good” measurement produced by a questionnaire, for

example that they are objective, reliable, and valid (Bühner, 2021; Kline, 2015). Other

aspects include feasibility, time efficiency, and fairness. Focusing more on the specific

measurement properties of a questionnaire, one important part is that its measurements

are invariant. Measurement invariance (MI) means that the questionnaire measures

the same construct in the same way across all possible groups or time points (Putnick

& Bornstein, 2016; Vandenberg & Lance, 2000). Put differently, if two persons share

the same true score on a specific construct, for example extraversion, an invariant

extraversion questionnaire should produce the same measured score (in the form of item

responses), regardless of other differences between these two persons, like gender, age,

or education. The same applies to subsequent measurement occasions: if a construct is

measured twice on the same individual and this individual’s true score on the construct

does not change over time, then the measured score must remain the same as well.

Consider a depression questionnaire that consistently produces higher measured

scores for younger patients compared to older patients, even though they have the same

level of depression severity (i.e., the same true score). In research, where often group

differences in latent means between groups are analyzed, this lack of MI would lead to

biased inference between younger and older patient groups (Putnick & Bornstein, 2016).
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In settings of single-case assessments, like psychotherapy, younger patients would be

overdiagnosed and older patients, in turn, underdiagnosed with depression, leading to

an inappropriate or inequitable allocation of available treatment. Thus, it is crucial

to establish MI so that our measurements allow for both meaningful comparisons in

research and accurate assessments in diagnostic settings. Only if MI holds, we can be

sure that any difference we observe between groups occurs due to true differences and

not due to differences in measurement (Meuleman et al., 2023).

3.1 Manuscripts of this Thesis

This thesis comprises the following three manuscripts on the topic of MI:

1. Sterner, P., & Goretzko, D. (2023). Exploratory Factor Analysis Trees: Evaluat-

ing Measurement Invariance Between Multiple Covariates. Structural Equation

Modeling: A Multidisciplinary Journal, 30 (6), 871–886. https://doi.org/10.1080/

10705511.2023.2188573

2. Sterner, P., De Roover, K., & Goretzko, D. (2024). New Developments in

Measurement Invariance Testing: An Overview and Comparison of EFA-based

Approaches. Structural Equation Modeling: A Multidisciplinary Journal, 32 (1),

117–135. https://doi.org/10.1080/10705511.2024.2393647

3. Sterner, P., Pargent, F., Deffner, D., & Goretzko, D. (2024). A Causal Framework

for the Comparability of Latent Variables. Structural Equation Modeling: A

Multidisciplinary Journal, 31 (5), 747–758. https://doi.org/10.1080/10705511.

2024.2339396

All manuscripts were conceptualized and written by the first author of this thesis.

David Goretzko was the supervising author in all three studies. Florian Pargent, Kim

De Roover, and Dominik Deffner acted as co-authors. Their individual contributions

are stated in all three manuscripts. Because all manuscripts are a team effort, the

pronoun “we” will be used throughout this thesis and its manuscripts. If the pronoun

“I” is used in the General Introduction or General Discussion, it is to indicate that the

statement is the opinion of the author of this thesis.

The first study (Study 1) introduces a new approach called exploratory factor

https://doi.org/10.1080/10705511.2023.2188573
https://doi.org/10.1080/10705511.2023.2188573
https://doi.org/10.1080/10705511.2024.2393647
https://doi.org/10.1080/10705511.2024.2339396
https://doi.org/10.1080/10705511.2024.2339396
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analysis trees (EFA trees). EFA trees enable a data-driven assessment of MI among

multiple continuous and/or categorical covariates (e.g., age, gender, education). To do

so, they draw on a score-based recursive partitioning algorithm (Hothorn et al., 2006;

Zeileis et al., 2008). The second study (Study 2) provides an overview and comparison

of newly developed EFA-based approaches to investigate MI. Up until recently, MI

was primarily assessed based on confirmatory factor analysis (CFA). By basing the

investigation on EFA instead, specific facets of MI can be assessed in more detail

without the assumption of a potentially too strict measurement model (Nájera et al.,

2023). Finally, the third study (Study 3) details a framework based on causal inference

that enables researchers to reason about the causes of a lack of MI (i.e., non-invariance).

Only by making assumptions about underlying causal structures and possible causes of

violations of MI we can see non-invariance as an interesting research finding by itself.

To make full use of the methods presented in Studies 1 and 2, reasoning about the

underlying structures as suggested in Study 3 is crucial to make informed modeling

decisions.

The remainder of this thesis is structured as follows: First, we provide a more

technical account of MI and its implications. Second, we present the current state of

the literature on MI as well as the gaps which the three studies aim to fill. Third, the

three studies are printed in full length. Forth and last, we discuss the results more

generally by suggesting possible directions for future research and by addressing recent

criticism against the necessity of MI for psychological science.

3.2 Factor Analysis

MI is defined as the equivalence of measurement models across groups or time

points. Thus, to define MI more formally, we first have to introduce the measurement

models underlying its investigations. MI is usually assessed based on multi-group

exploratory or confirmatory factor analysis (MG-EFA and MG-CFA, respectively).

Both models are instances of the more general multi-group common factor model

(Jöreskog, 1971; Sörbom, 1974). EFA is used to freely uncover relations between

manifest (i.e., observed) and latent (i.e., unobserved) variables (Goretzko et al., 2021)

and CFA is used to test an assumed relation between these two types of variables.

Let xig
be a p-dimensional random vector of observed variables (e.g., responses to
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questionnaire items) of observation i in group g (with i ∈ {1, ..., ng} and g ∈ {1, ..., G}).

This vector can be seen as a linear combination of m latent variables (also: factors;

e.g., extraversion or intelligence), that is,

xig
= τg + Λgξig

+ ϵig
(1)

Here, τg is a p-dimensional vector of group-specific item intercept, Λg is a p×m-

dimensional matrix of group-specific factor loadings, ξig is a m-dimensional vector of

latent factor scores, and ϵig
is a p-dimensional vector of error terms. τg describes the

item means when the latent variables are equal to 0 and Λg quantifies the strength of

the linear relation between the manifest and latent variables. Usually, distributional

assumptions are made for estimation purposes (Jöreskog, 1967): The latent factor scores

are assumed to be multivariate-normally distributed, that is, ξig
∼ MV N(αg, Φg),

where αg and Φg denote the group-specific factor means and (co-)variances, respectively.

The error terms are also assumed to be multivariate-normal, that is, ϵig
∼MV N(0, Ψg),

where Ψg is a p× p matrix which contains the group-specific unique variances of the

observed variables on its diagonal and the value 0 on all off-diagonal entries (i.e.,

no correlated errors are allowed). Error terms and factor scores are assumed to be

independent (E(ξϵ⊤) = 0). The group-specific model-implied covariance matrix is

then defined as Σg = ΛgΦgΛg
⊤ + Ψg; that is, variation in item responses can be

decomposed into a part explained by the latent variable and into a unique error part.

When EFA is used, there are no zero-constraints in Λg and the estimated loading

matrix is only determined up to admissible rotations. That is, infinitely many solutions

exist which all have the same fit to the data but lead to different interpretations of the

solution. This rotational indeterminacy has to be resolved per group by specifying a

rotation criterion (for an overview of rotation criteria, see Browne, 2001). In single-

group settings, usually a rotation criterion aiming at an independent clusters structure

(“simple structure”), like geomin, is used. That is, the solution is rotated such that all

observed variables show a high loading on one factor and near-zero loadings on all other

factors. In multi-group settings, the agreement of solutions between groups has to be

considered in addition to simple structure per group in order to meaningfully compare
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solutions across groups (De Roover & Vermunt, 2019). In the studies in this thesis, two

different approaches to tackle the problem of rotational indeterminacy in multi-group

settings are used: in study 1, we use elastic net regularization (Zou & Hastie, 2005),

and in study 2, we use multi-group factor rotation (De Roover & Vermunt, 2019).

3.3 A Formal Definition of Measurement Invariance

MI is formally defined as the equivalence of measurement models across any group

defined by a covariate V, that is

f(xig
|ξig

, Vi) = f(xig
|ξig

). (2)

where f(·) is the probability density function (Mellenbergh, 1989; Meredith, 1993).

Given the latent variable(s) ξig
, the item responses xig

of person i in group g are

independent of this person’s group membership Vi (i.e., their age, gender, education,. . . ).

Because the latent variable ξig
is unobservable, this conditional independence cannot be

tested directly (in Study 3, we provide a definition of MI from the perspective of causal

inference). Instead, to test MI, researchers fit a series of increasingly constrained models

(in the form of Equation 1) to test various nested levels of MI (Van de Schoot et al.,

2012). The idea is that if the parameters of a measurement model are equivalent across

groups (i.e., if MI holds), fitting the model in all groups with equivalence constraints on

some parameters (e.g., equal loadings across groups), should not decrease the combined

model fit. If the fit, however, drops when adding equality constraints between groups,

this is an indication that some parameters are not equivalent across groups and should

be allowed to have group-specific values.

3.3.1 The Different Levels of Measurement Invariance

Usually, four nested levels of MI are consecutively considered (Meredith, 1993;

Putnick & Bornstein, 2016; Vandenberg & Lance, 2000).

3.3.1.1 Configural invariance.

Configural invariance, also called invariance of model form, entails that the same

pattern of free and fixed-to-zero loadings holds across groups. That is, the positions

of the entries in Λg that are estimated freely and the entries that are fixed to zero
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should be equivalent across groups. Additionally, the number of latent variables (i.e.,

the dimension of ξig
) should be equal in each group. It is worth mentioning that this

level of invariance only fully applies to investigations of MI in the context of CFA,

where we impose constraints on Λg. In EFA, where all entries of Λg (i.e., all main- and

cross-loadings) are freely estimated, there is no pattern of free and fixed loadings. A

more relaxed definition might be that the position of loadings estimated to be (exactly)

zero and non-zero must be the same across groups. But because loadings will hardly

ever be exactly zero and a loading of exactly zero can also be interpreted as the absence

of cross-loadings, this definition could also be considered a form of metric invariance,

which will be discussed in the following. Since EFA-based assessment of MI is still in

its infancy, a formal definition of configural invariance for this type of methods has yet

to be agreed on.

3.3.1.2 Metric invariance.

Metric invariance, also called weak invariance, means that the loadings are equivalent

across groups (i.e., Λg = Λk ∀ g, k ∈ {1, ..., G} with g ̸= k). Equal loadings across

groups entail that the (linear) relations between observed and latent variables are

equal across groups. This means that each observed variable or item contributes to

the measurement of the latent variable by the same amount and that they share the

same scale. If metric invariance is supported, latent relations (e.g., covariances between

latent variables) can be compared across groups and one can proceed to test the next

level of MI.

3.3.1.3 Scalar invariance.

Scalar invariance, also called strong invariance, means that, in addition to the

loadings, the intercepts are equivalent across groups (i.e., τg = τk ∀ g, k ∈ {1, ..., G}

with g ̸= k). If scalar invariance holds, the items have the same origin (on the same

scale if metric invariance holds as well) because the intercepts are equal to the item

means if the value on the latent variable is zero. Scalar invariance is required for a

meaningful comparision of latent means.

3.3.1.4 Residual invariance.

Residual invariance, also called strict invariance, is the last level of MI and means

that, in addition to all equivalences above, the unique variances of the observed variables
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(i.e., residual variances) are equal across groups (i.e., Ψg = Ψk ∀ g, k ∈ {1, ..., G}

with g ̸= k). Because the residuals are not part of the latent factor scores, this step

is not a prerequisite of meaningful latent mean comparisons. For this reason, it is

often not considered in investigations of MI. However, for some research questions and

especially single-case assessments it might be interesting to assess because residual

invariance entails that the latent variable is measured with the same precision across

groups (i.e., equal item reliabilities across groups). As this thesis focuses on latent

mean comparisons, residual invariance is not frequently addressed.

3.3.2 When is Measurement Invariance Supported?

The four models (configural, metric, scalar, residual) above are estimated consec-

utively, adding equality constraints on the parameters between groups in a stepwise

manner. For each model, a combined measure of fit across all groups is calculated. If

the fit of the model does not decrease substantially when adding equality constraints

(e.g., equal loadings across groups), this is an indication of MI (Van de Schoot et al.,

2012). Most often, the fit indices that are reported are the root mean squared error

of approximation (RMSEA) and the comparative fit index (CFI). There are rough

rules-of-thumb for changes in these fit indices that would indicate non-invariance (Chen,

2007; Cheung & Rensvold, 2002); for example, an increase of the RMSEA by at least

0.01 and/or a decrease of the CFI by at least 0.01 are an indication that MI is not

supported. Rutkowski and Svetina (2014) proposed more liberal cut-offs in settings

where the number of groups is high (i.e., above 10), especially for the investigation

of metric MI (i.e., when adding equality constraints on the loadings); specifically, an

increase of the RMSEA by at least 0.03 and/or a decrease of the CFI by at least

0.02. Cao and Liang (2022a) provided more details when testing MI in models with

cross-loadings, evaluating the behavior of these fit indices under various model and data

conditions (i.e., in EFA-based analyses). In addition to the inspection of fit indices,

an exact model comparison by means of χ2-difference tests (likelihood ratio test) is

possible, too, because the models are nested. While this test is especially suitable

to detect non-invariance in the presence of cross-loadings (Cao & Liang, 2022a), it

might be too sensitive in large samples and detect practically irrelevant degrees of

non-invariance (De Roover et al., 2022).
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In general, while these cut-offs are helpful in reaching a binary decision regarding

(non-)invarince, they should never be taken at face value. As with model evaluation in

single-group settings, adequate cut-offs depend on sample size, model complexity, and

other nuisance parameters like the absolute size of the loadings (Cao & Liang, 2022b;

Goretzko et al., 2023; Partsch et al., 2024). Instead of simply adopting these fixed

cut-offs, researchers should thus rather take into account as much information regarding

MI as possible, discuss inconsistent results, and —most importantly— evaluate their

results against the background of (model) plausibility and theoretical adequacy.

3.4 Current State of Measurement Invariance in Psychological Research

First, up until recently, MI has been primarily assessed based on CFA (for an

overview of CFA-based methods, see Kim et al., 2017). While this allows to test

assumed relations between observed and latent variables and their invariance across

groups, it also limits the capabilities of investigations of MI with respect to metric MI.

Because in CFA, cross-loadings in Λg are usually not considered, non-invariance due

to cross-loadings cannot be assessed (De Roover et al., 2022). Additionally, the same,

potentially too strict, measurement model has to be assumed across groups which can

lead to model misspecifications (Nájera et al., 2023). To counteract these issues of CFA-

based MI investigations, more methods based on EFA have recently been developed. In

EFA, no strict measurement model has to be assumed, and thus, cross-loadings can be

evaluated for invariance, too. This allows researchers to modify their models without

having to repeatedly test altered versions of a CFA in a data-driven way.

Second, although numerous methods (e.g., Kim et al., 2017) and guides (e.g., Van

de Schoot et al., 2012) to investigate MI are available, it is very rarely done in empirical

studies (Maassen et al., 2023). This is problematic because it raises the question of how

many latent mean differences reported in the literature occurred due to true differences

and how many occurred due to differences in measurements. As a consequence, an

important aspect of methodological research on the topic of MI should be to increase

the prevalence of investigations of MI in psychological science.

The manuscripts of this thesis aim to extend recent advances and address current

issues in research on MI. They introduce a new EFA-based method (Study 1), summarize
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and compare EFA-based methods (Study 2), and propose a framework that assists in

the meaningful application of both CFA- and EFA-based approaches (Study 3). In a

sense, this thesis first expands the methodological toolbox of MI, before cataloging

parts of this toolbox, and ultimately provides a potential guide on how to purposefully

apply its tools.

3.4.1 Contribution of Study 1

The use of EFA in investigations of MI allows researchers to consider MI already in

the earliest stages of questionnaire development. In this stage, EFA is used to uncover

relations between observed and latent variables (Goretzko et al., 2021). This is a

major advantage because at this stage, changes to the item pool or in item wordings

are still possible. If questionnaires are developed as invariant as possible, issues

with non-invariance in subsequent studies where they are applied might be prevented.

Ideally, MI is considered with regard to many different covariates during questionnaire

development. This ensures that it can be applied to compare measurements in a variety

of contexts, regardless of specific group constellations (i.e., across different combinations

of ages, genders, educational backgrounds, but also across regions and countries in

cross-cultural settings). To enable fully exploratory investigations of MI with many

covariates, in Study 1 we introduce EFA trees. EFA trees simultaneously evaluate

multiple continuous (e.g., age) and categorical (e.g., education) covariates for MI in

a data-driven manner. The underlying algorithm is so called model-based recursive

partitioning, a method that repeatedly splits the data in order to increase the fit of a

model estimated on the (partitioned) data (Hothorn et al., 2006; Zeileis et al., 2008).

If EFA trees identify non-invariance of measurement models between groups, they

split the data on the covariate which best explains this non-invariance. In doing so,

they reveal non-invariant groups without the need to specify the groups that are to

be compared in advance. This allows to investigate MI more broadly, both in terms

of different group constellations and with regard to main- and cross-loadings, making

them particulary suitable for questionnaire development. EFA trees join prior work in

which model-based recursive partitioning has been combined with psychometric models.

Most closely related, Brandmaier et al. (2013) introduced structural equation model

trees (SEM trees), and others developed tree-based methods in an item response theory
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paradigm (e.g., Komboz et al., 2018; Strobl et al., 2015).

3.4.2 Contribution of Study 2

MI is a prerequisite for meaningful latent mean comparisons and should therefore

be routinely investigated in psychological studies. Unfortunately, the opposite is the

case: it is very rarely considered (Maassen et al., 2023). Possible reasons for this lack

of investigations of MI are surely diverse. However, one reason that could be ruled

out is that there are not enough methods to properly assess MI. Beyond MG-EFA

and MG-CFA mentioned above, there is a variety of methods that could be applied

to investigate MI, each with specific strengths and weaknesses (e.g., Asparouhov &

Muthén, 2014, 2023; De Roover et al., 2022; Kim et al., 2017). The choice of the

optimal method depends on the data conditions and research goals at hand. This,

in turn, might deter or confuse applied researchers, simply because it is difficult to

maintain an overview over all available options; let alone choose the most appropriate

method for an analysis. Kim et al. (2017) provided a comprehensive overview of

CFA-based methods, facilitating the oversight of different options. Our contribution to

the literature on MI in Study 2 is an overview and comparison of new developments

in the EFA-based assessment of MI. By detailing the strengths and weaknesses of

these recently developed methods, we aim at lowering the barriers to understand and

apply them in research. To facilitate the application of these methods, we provide

openly available R, Mplus, and Latent Gold code that researchers can use as a blueprint

for their own analyses. Building on Study 1, we also developed an openly available

R package, called EFAtree (available at https://github.com/philippsterner/EFAtree).

The EFAtree package contains wrapper functions to grow EFA trees with minimal

coding effort and helper functions to explore the results of EFA trees.

3.4.3 Contribution of Study 3

MI is often described as “essential” (Maassen et al., 2023) or a “prerequisite” for

meaningful comparisons of latent means (e.g., De Roover, 2021; De Roover et al., 2022;

Putnick & Bornstein, 2016; Vandenberg & Lance, 2000). While this is true, it hints at

the current role of MI in psychological research: a statistical assumption that has to be

investigated (more strictly: tested) before the actual analysis of interest. This neglects
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the fact that (a lack of) MI can be an interesting research finding in itself. Discovering

that the same questionnaire works differently across groups can provide information

on how these groups interpret a construct or how it manifests itself in these groups

(Fischer & Rudnev, 2024; Putnick & Bornstein, 2016). This notion is not new in the

literature. For example, Putnick and Bornstein (2016) encouraged readers to not view

investigations of MI as a “gateway test” (p. 87) and Maassen et al. (2023) cautioned

to not take non-invariance as a “roadblock to further analysis” (p. 12). Both groups of

authors argued that assessing MI can yield substantively relevant information to better

understand differences between groups.

What is currently missing, however, is a framework that allows researchers to view

MI as an interesting finding by itself. Without being able to reason about potential

causes underlying a lack of MI, it is difficult to relate the results of investigations of

MI back to the substantive analysis. Therefore, in Study 3, we propose a framework

based on causal inference, more specifically directed acyclic graphs (DAGs), which

allows researchers to explicitly depict their assumptions about potential violations of

MI. This framework builds on recent work by Deffner et al. (2022) who presented a

similar framework but for observed data (i.e., manifest variables). We extend their

framework to typical psychological research settings. In psychology, we usually want to

make claims on the construct level and, consequently, MI becomes an important aspect

of the modeling process.

DAGs are graphical objects that allow us to visualize the causal relations between

variables (Elwert, 2013; Pearl, 1988, 1998, 2012). We demonstrate how commonly

used path diagrams from the linear SEM literature can be translated into DAGs

and how non-invariance can be depicted by selection diagrams (Pearl & Bareinboim,

2014). Following graphical rules of DAGs, informed modeling choices can then be made

to reason about and investigate potential causes of non-invariance. In this, the full

potential of the methods introduced and presented in Studies 1 and 2 can be leveraged.

Only by making informed modeling decisions based on explicitly stated assumptions,

the full potential of a statistical method can be used (for an example of how to take

into account the underlying assumptions of advanced methods, see Luong & Flake,

2023).
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Similar to providing an overview of advanced methods in Study 2, we aim at

increasing the prevalence of investigations of MI in psychological science. The proposed

framework allows researchers to view a lack of MI as an interesting research finding,

instead of just an additional test to license further analyses. This hopefully motivates

researchers to think more thoroughly about potential causes of non-invariance and to

explicitly state the assumptions underlying latent mean comparisons. In the following

three chapters, Studies 1, 2, and 3 are printed in full length.
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4.1 Abstract

Measurement invariance (MI) describes the equivalence of a construct across groups.

To be able to meaningfully compare latent factor means between groups, it is crucial to

establish MI. Although methods exist that test for MI, these methods do not perform

well when many groups have to be compared or when there are no hypotheses about

them. We suggest a method called Exploratory Factor Analysis Trees (EFA trees) that

are an extension to SEM trees. EFA trees combine EFA with a recursive partitioning

algorithm that can uncover non-invariant subgroups in a data-driven manner. An EFA

is estimated and then tested for parameter instability on multiple covariates (e.g., age,

education, etc.) by a decision tree based method. Our goal is to provide a method

with which MI can be addressed in the earliest stages of questionnaire development or

prior to analyses between groups. We show how EFA trees can be implemented in the

software R using lavaan and partykit. In a simulation, we demonstrate the ability of

EFA trees to detect a lack of MI under various conditions. Our online material contains

a template script that can be used to apply EFA trees on one’s own questionnaire data.

Limitations and future research ideas are discussed.

https://doi.org/10.1080/10705511.2023.2188573
https://doi.org/10.1080/10705511.2023.2188573
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4.2 Introduction

In psychometrics, measurement invariance (MI) describes the equivalence of mea-

surements of a construct across groups (Putnick & Bornstein, 2016; Vandenberg &

Lance, 2000). This concerns different groups of a population (e.g., women and men) or

subsequent measurement occasions of the same group (e.g., pre- and post-treatment).

If MI does not hold between two or more groups, it cannot be readily assumed that

the construct of interest has the same meaning to people between these groups. Conse-

quently, analyses like comparisons of means and variances across groups or measurement

occasions will not be meaningful or will even yield distorted results. Multi-group con-

firmatory factor analysis (MG-CFA) is one of the most commonly used methods to test

for MI (Millsap, 2012). However, it is mostly used for comparing two groups. When

comparing many groups, the performance of MG-CFA is reduced because the number

of measurement parameters to pairwisely compare increases exponentially with the

number of groups and non-invariance is falsely detected more easily (Kim, Cao, Wang, &

Nguyen, 2017; Rutkowski & Svetina, 2014). Additionally, researchers have to determine

the groups or at least the grouping variable a priori (e.g., age or gender; in the following

called covariates) (Kim et al., 2017). This often happens with a special application in

mind (e.g., cross-cultural comparisons; Milfont & Fischer, 2010) and is mostly done for

questionnaires that have already been constructed. We argue that MI should ideally

be addressed in the earliest stages of questionnaire development, when changes to

the item pool are still easily possible. To address this issue, we want to introduce a

method that can help researchers to explore MI in their sample and to automatically

identify non-invariant groups: exploratory factor analysis trees (EFA trees). EFA trees

can be seen as an extension of structural equation model (SEM) trees introduced by

Brandmaier, von Oertzen, McArdle, and Lindenberger (2013b). SEM trees combine

SEM with a recursive partitioning algorithm. A SEM is estimated and then tested for

parameter instability by a decision tree based method. Thereby, they allow for testing

for MI with regard to categorical and continuous covariates (Brandmaier, von Oertzen,

McArdle, & Lindenberger, 2013a). This is done in a data-driven manner, that is, no

covariate has to be chosen in advance. Although decision trees and, thus, SEM trees are

already exploratory in nature, so far SEM trees have mainly been applied in the context

of CFA or to longitudinal data but to the best of our knowledge not in the context of
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EFA (Ammerman, Jacobucci, & McCloskey, 2019; Brandmaier, Driver, & Voelkle, 2018;

Brandmaier, Prindle, McArdle, & Lindenberger, 2016; Brandmaier, Ram, Wagner, &

Gerstorf, 2017; de Mooij, Henson, Waldorp, & Kievit, 2018; Simpson-Kent et al., 2020;

Usami, Hayes, & McArdle, 2017; Usami, Jacobucci, & Hayes, 2019). By introducing

EFA trees, we want to extend the SEM tree literature and provide researchers with an

easy-to-use method that grasps the full exploratory potential of SEM trees (Goretzko

& Bühner, 2022; Jacobucci, Grimm, & McArdle, 2017). We illustrate how EFA trees

can be built within the partykit R package (Hothorn & Zeileis, 2015) that provides

tools for model-based recursive partitioning (Hothorn, Hornik, & Zeileis, 2006; Zeileis,

Hothorn, & Hornik, 2008).

The remainder of the paper is structured as follows. First, we describe the concept

of MI and its relevance for questionnaire development in more detail. Second, we

provide an introduction to EFA. Third, we describe the recursive partitioning algorithm

and EFA trees in particular. Last, we show exemplary applications of EFA trees and

investigate the performance in identifying a lack of MI under different conditions in

simulated examples.

4.3 Measurement Invariance

Assessing MI can be a tedious task. In a factor-analytic framework, four nested levels

of MI between groups are considered (Putnick & Bornstein, 2016): a) configural (equal

construct architecture; i.e., same number of latent factors and same location of zero

loadings in the loading matrices across groups. Note that zero loadings are only imposed

in CFA, not in EFA.), b) metric (equal loading sizes), c) scalar (equal intercepts), d)

residual (equal unique variance). As already mentioned, MG-CFA is a straightforward

way to test for MI (see Putnick & Bornstein, 2016 for an illustrative step-by-step

example). However, if there are many groups that have to be compared, this simple

approach reaches its limits. The probability of falsely detecting non-invariance increases

with number of groups to be compared and model fit might be poor due to strict fit

index cut offs (Kim et al., 2017). Rutkowski and Svetina (2014) provided a first remedy

to tackle this issue by suggesting adapted cut-offs for model fit measures. Even further,

scholars developed other CFA-based methods to test MI in these cases with many

groups, for example multilevel factor mixture modelling or alignment optimization
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(Asparouhov & Muthén, 2014). Because going into detail about these methods would

be beyond the scope of this article, we refer readers interested in CFA-based methods

to Kim et al. (2017) for a comprehensive overview. Sass (2011) and Van de Schoot,

Lugtig, and Hox (2012) provide general guidelines on testing for MI.

In addition to these CFA-based methods, other EFA-based methods have been

developed recently. This resolves some of the aforementioned issues, for example that

no restrictive zero loadings have to be imposed. For example, De Roover and Vermunt

(2019) developed multigroup factor rotation to pinpoint non-invariant loadings between

groups. Mixture multigroup factor analysis was suggested as a method to cluster groups

according to levels of MI, specifically metric (De Roover, Vermunt, & Ceulemans, 2022)

and scalar (De Roover, 2021) invariance.

Even though some of these advanced methods can handle many groups, problems

arise when there are no particular hypotheses with regard to the covariates defining

these groups (Brandmaier et al., 2013b). When there are many covariates (e.g., age,

gender, education, ethnicity, etc.), it quickly becomes impossible to test for all of

them with all potential group constellations. Usually when researchers test for MI,

they define a small number of groups based on one or two covariates (e.g., ethnicity

in cross-cultural research). In this, other covariates (or interactions between them)

that may define theoretically relevant groups and for which MI cannot be assumed

might remain undetected. As Brandmaier et al. (2013b) described, SEM trees can

be used to explore the data for non-invariant groups in a data-driven manner (rather

than by theoretically deriving hypotheses a priori). Thus, the concept of recursive

partitioning seems suitable for exploration of MI with many covariates. To expand this

potential to the earliest stages of questionnaire development, we extend SEM trees by

EFA trees. Our aim is to add a method to the tool box that can aid researchers in

exploring and testing for MI in order to develop questionnaires that considered MI right

from the start. Admittedly, this will not render tests for MI prior to actual analyses

between two or more defined groups unnecessary. However, EFA trees may improve

the measurement quality of psychological constructs and hopefully prevent later issues

with data collection and analysis (Jacobucci & Grimm, 2020).
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4.4 Exploratory Factor Analysis

EFA is arguably one of the most widely used methods in psychometrics and

questionnaire development more specifically. Compared to CFA, there are no constraints

on loading paths between the observed variables and the latent factors. Hence, EFA can

be used to uncover the relationships between observed and latent variables (Goretzko,

Pham, & Bühner, 2021; Mulaik, 2010). More formally, let x = (x1, ..., xp)⊤ be the

p-dimensional vector of observed variables. This vector can be described as a linear

function of the m latent factors (Hirose & Yamamoto, 2014; Mulaik, 2010):

x = τ + Λξ + ϵ (3)

where τ = (τ1, ..., τp)⊤ is the p-dimensional vector of intercepts, Λ is the p ×m

matrix of factor loadings, ξ = (ξ1, ..., ξm)⊤ is the m-dimensional vector of latent factor

scores, and ϵ = (ϵ1, ..., ϵp)⊤ is the p-dimensional vector of error terms of the observed

variables. The error terms are assumed to be normally distributed with mean 0 and

variance Ψ. Ψ is a p× p diagonal matrix with the diagonal elements being the unique

variances of the observed variables. The factor correlations are captured as the elements

of the m×m matrix Φ. In EFA, the factors have rotational freedom, that is, there

exist different sets of factor solutions which have an identical fit to the data but might

be easier to interpret. We resolve the issue of rotational freedom by using regularization

(an explanation will follow in a later section). The vector x is usually assumed to be

multivariate-normally distributed with mean vector τ and variance-covariance matrix

Σ = ΛΦΛ⊤ + Ψ (Jöreskog, 1967). In the single-group context, the data are usually

standardized so that τ = 0 and diag(Σ) = 1. In the multi-group context, it is common

to keep the data unstandardized and instead use the covariance matrices for model

estimation.

We later want to understand how EFA trees detect measurement non-invariance. For

this, we have to introduce an estimation function with which the model parameters (i.e.,

factor loadings, factor correlations, and unique variances) are estimated. The algorithm

uses maximum likelihood estimation (MLE). In MLE, parameters are estimated so

that the discrepancy between the model-implied covariance matrix Σ and the observed
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covariance matrix S is minimized (Jöreskog, 1967):

FMLE(Σ, S) = ln |Σ|+ tr(Σ−1S)− ln |S| − p. (4)

MLE has some convenient properties (Fabrigar, Wegener, MacCallum, & Strahan,

1999): In the estimation process, standard errors of the model parameters are computed.

These can be used to calculate confidence intervals and assess the statistical significance

of factor loadings.1 Additionally, fit indexes (e.g., RMSEA, CFI, etc.) can be computed

that are useful for model evaluation and comparison.

4.5 Score-Based Recursive Partitioning

Now that we have elaborated on how the EFA model is estimated, we turn to the

score-based recursive partitioning algorithm (Hothorn et al., 2006; Zeileis et al., 2008).

Specifically, how the algorithm finds parameter instability in the model with respect to

some covariate and splits the data into heterogeneous groups. The algorithm is based

on a tree structure common in machine learning. In detail, the algorithm works as

follows (Hothorn et al., 2006; Zeileis et al., 2008):

1. A model (in our case, an EFA) is fit to the entire sample by estimating the

model parameters via MLE (see equation (4)). Let Π(Y , θ) be the estimation

function in equation (4), θ = (Λ, Φ, Ψ) the vector of model parameters (i.e.,

factor loadings, factor correlations, and unique variances) and Y the observations,

with elements Yi, i = 1, ..., N . The parameter estimates θ̂ can be obtained by

solving the first order condition

N∑
i=1

π(Yi, θ̂) = 0 (5)

whereby

π(Y , θ) = ∂Π(Y , θ)
∂θ

(6)

is the score function of Π(Y , θ).
1To be able to test hypotheses about obliquely rotated factor loadings, Jennrich (1973) showed

how to derive the required standard errors.
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2. A test for parameter stability is performed with regard to every covariate by

means of null hypothesis tests (structural change test). For this, we assess whether

the corresponding scores evaluated at the parameter estimates, π̂i = π(Yi, θ̂),

fluctuate randomly around their mean 0. The scores are ordered according to

their deviation from 0 with regard to a covariate. Under the null hypothesis of

invariant measurement, the deviations should fluctuate randomly. If, however, the

measurement is not invariant, systematic changes in the deviations will be shown

by the ordering. The hypothesis tests use different test statistics depending

on whether a categorical or continuous covariate is evaluated. In this study,

we used a χ2 test for categorical covariates and the supLM statistic (a type of

Lagrange Multiplier statistic) for continuous covariates. The model needs to be

estimated only once to assess MI with regard to different covariates. This is

because the amount of score deviations stays the same, only the ordering changes.

After every covariate has been evaluated, the one associated with the lowest

(Bonferroni-corrected) p-value below a significance level α is selected for splitting

the model. Note that by Bonferroni-correcting the p-values, the prespecified

significance level α is ensured for the whole tree and the issue of multiple testing

is accounted for.

3. Once a covariate for splitting is found, the optimal split point on this covariate

has to be computed. When splitting the model into B segments, two potential

segmentations can be compared by evaluating the segmented estimation functions∑B
b=1

∑
i∈Ib

Π(Yi, θb). For continuous covariates, an exhaustive search over all

potential segmentations is performed. For a split into B = 2 segments, this

can be performed in O(N) operations, where N is the sample size. As an

example, suppose the continuous variable age was identified in step 2 as a

covariate that explains parameter instability. To find the optimal split point,

the algorithm now loops over every value of age from lowest to highest and

compares the segmented estimation functions for the groups that would result

from splitting at the evaluated value. The value of age for which the two

segmented estimation functions are optimized is then selected as the split point.

For categorical covariates, all potential constellations are evaluated. For a split

into B = 2 segments, this can be performed in O(2C−1) operations, with C
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being the number of categories. For example, on the categorical variable marital

status with four categories, the segmented estimation functions of every group

constellation are compared. Again, the constellation for which the estimation

functions are optimized is selected for splitting. Theoretically, the model could be

split into more than two nodes. However, this diminishes interpretability while

simultaneously increasing computational demand (e.g., for continuous variables,

a split into more than two groups, B > 2, would result in an exhaustive search

of order O(NB−1)). In the following, we only consider the case where the model

is split into two nodes (cf. Brandmaier et al., 2013b; Strobl, Kopf, & Zeileis,

2015; Zeileis et al., 2008). Note that if there were three non-invariant groups,

they could still be identified by performing binary splits. For this, the algorithm

would simply split twice on the same covariate.

4. These steps are repeated until a) no parameter instability in a leaf node becomes

statistically significant, b) a prespecified depth of the tree is reached, or c) sample

size in a leaf node falls below a prespecified minimal value. For a thorough

mathematical introduction see Hothorn et al. (2006), Zeileis and Hornik (2007)

and Zeileis et al. (2008).

This algorithm has some convincing advantages (Hothorn et al., 2006; Zeileis et al.,

2008): First, it is possible to efficiently test multiple covariates for parameter instability,

even without hypotheses about split points. This is especially powerful in the case of

continuous covariates like age where manually assessing every potential split point is

not feasible (Putnick & Bornstein, 2016). Second, (non-linear) interactions between

covariates can be considered. This can be done either by adding the interaction term

as a potential covariate or by allowing “deeper” trees. Nodes are conditional on all

prior covariates and split points. Hence, in a tree that was split twice on two different

covariates, these can be seen as an interaction. Third, the algorithm is unbiased. Other

tree algorithms (like CART or C4.5) often tend to favor covariates with many potential

split points and are thus biased toward selecting these covariates for splitting. In

the score-based recursive partitioning algorithm, this selection bias is eliminated by

separating the steps of covariate selection and split point selection. Additionally, the

algorithm works on formal parameter stability tests, which also ensures unbiasedness.

That is, if the parameters in a node are stable, a false decision to split on any of the
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covariates will only be made with a probability of approximately α. Conversely, if the

parameters are in fact unstable, and this instability can be explained by a covariate,

the instability will be detected for a sufficient sample size N. This is because the tests

are consistent at rate
√

N (Zeileis & Hornik, 2007).

We want to point out that using this recursive partitioning approach is not new

in psychometrics and has repeatedly shown good performance. In recent years, it

was primarily employed to models in the IRT framework like dichotomous (Strobl et

al., 2015) and polytomous (Komboz, Strobl, & Zeileis, 2018) Rasch models. They

can be used to detect differential item functioning (DIF; Holland & Wainer, 2012)

between multiple covariates (Debelak & Strobl, 2019). Schneider, Strobl, Zeileis, and

Debelak (2021) provide a tutorial on score-based MI tests in IRT models. We want

to extend this literature by combining recursive partitioning with EFA. This might

be especially useful for complex constructs where multiple scales ought to be tested

for MI simultaneously (Meade & Lautenschlager, 2004). Merkle and Zeileis (2013)

and Merkle, Fan, and Zeileis (2014) introduced this algorithm in a factor-analytic

context. Their work evaluated the performance of the statistical tests used in our

study and thus prepared the technical ground on which our study is built. Both of

their studies focused on comparing different test statistics for continuous (Merkle &

Zeileis, 2013) and ordinal (Merkle et al., 2014) covariates. We aim to add to this

literature by carrying the method to typical psychological research situations. We

hope to provide a broader context, for example by considering different violations of

MI and types of covariates at the same time. In this, we want to enable substantive

researchers to draw on a well-known and commonly used method in psychological

questionnaire development when evaluating MI (Fabrigar et al., 1999; Goretzko et al.,

2021). This could be especially useful in areas like personality or clinical psychology

where constructs are often multi-dimensional.

4.6 EFA Trees

The main purpose of EFA trees is to help researchers to develop questionnaires and

psychological tests that have been constructed as measurement invariant as possible.

Once a preliminary item set has been built and data have been collected, EFA trees

can be used to automatically uncover heterogeneous groups with regard to multiple
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covariates. In this, EFA trees can be seen as fully exploratory.

The focus of the succeeding simulations will be on detecting a lack of configural

and metric MI (Putnick & Bornstein, 2016; Vandenberg & Lance, 2000). That is, we

will primarily investigate the ability of EFA trees to assess the construct architecture

(i.e., number of latent factors and location of zero loadings) and loading sizes across

groups. The two other types of MI, namely scalar (intercept) and residual (unique

variances) MI, build on configural and metric MI. Because in EFA data are most

often standardized, the mean vector τ becomes 0 and will not be relevant anymore.

Additionally, having equal unique variances across groups is hard to achieve and not

necessary for a comparison of latent means (Chen, 2007; Putnick & Bornstein, 2016;

Vandenberg, 2002).

We investigated whether a lack of MI is actually detected by EFA trees. For this,

we first performed four simulations which act as toy examples. In these, we aimed at

demonstrating the application and interpretation of EFA trees to questionnaire data.

Subsequently, we conducted a comprehensive simulation study in which we manipulated

sample size, group size ratio, type of covariate, number of distraction covariates, and

type of lack of MI.
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4.7 Method

4.7.1 Software

The complete code needed to reproduce all analyses can be found at https://osf.io/

7pgrb/. Additionally, we provide a template script which can be used to run an EFA tree

with only small adjustments to the code. We conducted all analyses using the statistical

software R (R Core Team, 2021). The manuscript was written in R markdown using the

package papaja (Aust & Barth, 2020). We simulated standardized data by drawing from

a multivariate normal distribution using the package mvtnorm (Genz et al., 2021). The

recursive partitioning algorithm was implemented using the package partykit (Hothorn

& Zeileis, 2015). In the tree growing function mob, a control argument can be defined

that contains parameters relevant for fitting the algorithm. All control parameters were

set as their default values. Most importantly, this means that for the significance level

for splitting, we set α = 0.05 and p-values were Bonferroni-corrected. For all analyses,

we specified a three-dimensional model with 18 observed variables using the package

lavaan (Rosseel, 2012). Every observed variable was allowed to load freely on every

factor. Because the recursive partitioning algorithm cannot handle unidentified models,

we first defined a model with uncorrelated factors to ensure identification. By setting

the argument auto.efa = TRUE in the lavaan function, all constraints to identify a

model were imposed: factor correlations were set to 0, factor variances were set to 1,

and some factor loadings were constrained to followed an echelon pattern (Rosseel,

2012). Because we assume that no information about the items or the data is available

in advance, it is difficult to provide a general recommendation regarding the selection of

loadings to constrain. If the wrong loadings are constrained, parameter differences that

are critical for the assessment of non-invariance might remain undetected. However,

one can empirically assess whether different selections of constrained loadings have

a considerable influence (Dolan, Oort, Stoel, & Wicherts, 2009). This can be done

by growing more than one tree in parallel with different constrained loadings and

comparing the results.

https://osf.io/7pgrb/
https://osf.io/7pgrb/
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4.7.2 Toy examples

4.7.2.1 Procedure.

The algorithm was employed as described in the section Software. To demonstrate

exemplary applications and interpretations of EFA trees, we further investigated the

estimated models in the leaf nodes after splitting. For this, we extracted the data from

these nodes and re-estimated an unidentified model with correlated factors and all

loading paths freed using regularized EFA (Hirose & Yamamoto, 2014; Scharf & Nestler,

2019). We want to briefly explain our rationale behind using regularized EFA: Once

the EFA model has been estimated, researchers often aim at obtaining an interpretable

solution of the matrix of factor loadings Λ (Mulaik, 2010). The most common goal

is to achieve a so-called simple structure. That is, each item has one high loading on

one factor and low to no cross-loadings on all other factors. The method of choice to

obtain such a structure is rotation of factor solutions. EFA models are rotationally

indeterminate, that is, there is an infinite set of factor solutions that fits a data set

equally well (Mulaik, 2010). Many rotation methods exist with no one best method

(Browne, 2001; Trendafilov, 2014). The best method to use in a specific application

depends on the true factor structure in the population. Because this population factor

structure is almost always unknown, the choice of rotation method is rather subjective

(Asparouhov & Muthén, 2009; Sass & Schmitt, 2010; trying different hyperparameter

settings of the simplimax rotation could help to find a solution with most loadings

close to zero; see Kiers, 1994 for more details).

The very goal of EFA trees is to uncover different structures of a construct between

groups. Thus, it is difficult to pick an optimal rotation method for every EFA estimated

in a leaf node of the resulting tree.2 Taking this into account, we applied regularized

EFA to obtain interpretable factor solutions in the leaf nodes (Hirose & Yamamoto,

2014; Jacobucci, Grimm, & McArdle, 2016). As Scharf and Nestler (2019) demonstrated

in a comprehensive comparison of common rotation methods and regularization, the

latter is not necessarily “better” than rotation in recovering simple structure. However,
2An interesting extension could be to combine EFA trees with the aforementioned multigroup

factor rotation (MGFR; De Roover & Vermunt, 2019). Instead of regularizing the models in the nodes,
MGFR could be applied to investigate group-specific measurement models in the leaf nodes. One
advantage of this approach over regularization would be that one could pinpoint the parameters that
differ across the nodes.
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it proves more objective in the sense that the true structure of the construct does

not have to be known. Essentially, regularization switches the rotation problem of

EFA to a variable selection problem. The regularization was implemented using the

package regsem (Jacobucci et al., 2016). We used elastic net regularization (Zou &

Hastie, 2005) and penalized both the factor loadings and the factor correlations. The

hyperparameters γ (controlling the amount of regularization) and β (controlling the

type of regularization) were tuned by choosing values that minimized the BIC over the

whole sample (Jacobucci et al., 2016). For γ, we tested 100 values in a grid search

starting from γ = 0.001 with a step size of 10−5. For β, we tested all values between

0.05 and 0.95 with a step size of 0.05 (cf. Scharf & Nestler, 2019). For regsem, an

unidentified model was not an issue because the cv_regsem function only requires the

model-implied covariance matrix, not an identified model. In the process of estimation,

the model eventually became identified due to variable selection (Li, Jacobucci, &

Ammerman, 2021).

4.7.2.2 Toy Example 1: Configural Invariance - Different Number of

Factors.

In a first toy example, we investigated whether an EFA tree would detect a violation

of configural invariance caused by differing numbers of latent factors between groups.

Suppose our construct that was measured by 18 indicators. For men, these indicators

were described by three latent factors, whereas for women, there were four latent factors.

The standardized loading matrices on population level were (cf. Scharf & Nestler,

2019):
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ΛMen =



0.75 0 0
0.75 0 0
0.75 0 0
0.75 0 0
0.75 0 0
0.75 0 0

0 0.75 0
0 0.75 0
0 0.75 0
0 0.75 0
0 0.75 0
0 0.75 0
0 0 0.75
0 0 0.75
0 0 0.75
0 0 0.75
0 0 0.75
0 0 0.75



; ΛWomen =



0.75 0 0 0
0.75 0 0 0
0.75 0 0 0
0.75 0 0 0
0.75 0 0 0

0 0 0 0.75
0 0.75 0 0
0 0.75 0 0
0 0.75 0 0
0 0.75 0 0
0 0.75 0 0
0 0 0 0.75
0 0 0.75 0
0 0 0.75 0
0 0 0.75 0
0 0 0.75 0
0 0 0.75 0
0 0 0 0.75


As can be seen, the loading matrices of both men and women did not have cross-

loadings. However, the last indicator of each of the three factors in the group of men

was shifted to a forth factor in the group of women. We simulated a data set with

N = 400 and the dichotomous covariate sex, consisting of 200 men and 200 women.

Additionally, we simulated four covariates as “distractors” to mimic a setting typical for

questionnaire development: two (standard-normally distributed) continuous, one other

dichotomous, and one categorical covariate with four categories. These covariates were

independent from the factorial structure on population level but could have potentially

been selected by the EFA tree as a split variable. As described above, we estimated a

model with three factors (i.e., a misspecified model for women). In parametric notation,

the present violation of configural invariance means that Φ is a 3× 3 matrix for men

and a 4× 4 matrix for women.

The results of the analysis are shown in Table 1. The EFA tree successfully identified

the covariate sex for splitting and ignored the four other covariates. Thus, all men and

all women ended up in two different leaf nodes. We also conducted a parallel analysis

(Horn, 1965) on the data in each leaf node, which correctly suggested three factors in

the “male node” and four factors in the “female node.” Especially in the early stages of

questionnaire development, a parallel analysis in each leaf node seems beneficial.
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Table 1
Study 1: Test statistics and p-values for toy
example 1

sex cov1 cov2 cov3 cov4
statistic 152.45 80.20 122.47 57.43 208.36
p.value 0.00 1.00 0.02 1.00 0.95

Note. Test statistics were a χ2 test for categorical
and the supLM statistic for continuous covariates.
cov1 - cov4 denote the distractor covariates.

Table 2 shows the loading matrices of the regularized EFA models in the two leaf

nodes. The matrices with the theoretically assumed three latent factors show no clear

cause of the violation of MI. However, in the matrix with four latent factors in the

female node, as indicated by the data, it can be seen that the observed variables 6,

12, and 18 load on an additional factor not present in the male node. Unfortunately,

different number of factors cannot be evaluated directly because the algorithm can

only handle one pre-specified model. However, in these cases it would remain unclear

anyways what different numbers of latent factors mean on a conceptual level. This

emphasizes that further analyses on the data in the leaf nodes are crucial to better

understand your data and, ultimately, the construct of interest (cf. Brandmaier et al.,

2013b).
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Table 2
Study 1: Regularized factor solution for toy example 1

Men Women 3 Factors Women 4 Factors
F1 F2 F3 F1 F2 F3 F1 F2 F3 F4
0.72 0.01 0.13 0.73 0.08 0.03 0.72 0.09 0.00 0.03
0.72 0.04 0.07 0.64 0.09 0.03 0.63 0.10 0.01 0.02
0.75 0.00 0.01 0.76 0.00 0.00 0.76 0.00 0.06 -0.02
0.80 0.07 0.01 0.78 -0.03 0.06 0.77 -0.01 -0.02 0.06
0.73 0.06 -0.01 0.68 0.07 0.10 0.67 0.07 0.03 0.10
0.76 0.00 0.00 0.04 0.19 0.23 0.03 0.04 0.68 0.09
0.11 0.72 0.07 0.14 0.72 0.03 0.14 0.72 0.02 0.04
0.00 0.73 0.11 -0.03 0.70 0.10 -0.03 0.71 0.00 0.11
0.11 0.71 -0.04 0.05 0.77 0.04 0.05 0.78 -0.01 0.05
0.04 0.75 0.07 0.06 0.70 0.00 0.06 0.69 0.04 0.00
0.10 0.75 0.00 0.00 0.73 -0.02 0.00 0.69 0.15 -0.04
-0.05 0.77 0.15 0.00 0.22 0.16 0.00 0.07 0.72 0.00
0.13 0.00 0.69 0.00 0.02 0.73 0.00 0.02 0.00 0.74
0.02 0.06 0.73 -0.03 0.00 0.83 -0.03 -0.01 0.08 0.81
0.00 0.16 0.72 0.02 0.05 0.74 0.02 0.06 -0.02 0.75
0.00 0.09 0.71 0.00 0.13 0.75 0.00 0.12 0.07 0.73
0.04 -0.01 0.76 0.02 0.00 0.73 0.02 0.00 0.04 0.72
0.02 0.13 0.71 0.01 0.16 0.26 0.00 0.00 0.70 0.12

Note. F1 - F4 denote the latent factors. The factor solutions were achieved by
re-estimating the models in the leaf nodes via elastic net regularization.

4.7.2.3 Toy Example 2: Configural Invariance - Simple Structure

vs. Cross-Loadings.

In the second toy example, we looked at a different form of configural non-invariance,

that is, simple structure in one group and cross-loadings in the other group. We again

used the construct with 18 indicators from toy example 1. This time, the number of

latent factors was three for both groups. However, the two groups were now defined

by a (standardized) continuous covariate age. We simulated the groups based on the

z-scores at the mean 0: zage ≤ 0 was the “younger” group and zage > 0 the “older”

group. This yielded approximately equally sized groups. Note that while this leads

to two age-groups that have to be uncovered by the EFA tree, it still has to treat age

as a continuous variable when assessing parameter instability on this covariate. The

standardized loading matrix on population level for the younger group was the same as

the one of the men used in toy example 1. For the older group, cross-loadings were

added (cf. Scharf & Nestler, 2019):
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ΛYounger =



0.75 0 0
0.75 0 0
0.75 0 0
0.75 0 0
0.75 0 0
0.75 0 0

0 0.75 0
0 0.75 0
0 0.75 0
0 0.75 0
0 0.75 0
0 0.75 0
0 0 0.75
0 0 0.75
0 0 0.75
0 0 0.75
0 0 0.75
0 0 0.75



; ΛOlder =



0.67 0.22 0.13
0.68 0.09 0.23
0.68 0.27 0.05
0.65 0.39 0.09
0.64 0.13 0.39
0.67 0.18 0.18
0.05 0.68 0.27
0.28 0.63 0.38
0.38 0.63 0.21
0.09 0.69 0.18
0.05 0.73 0.05
0.27 0.67 0.13
0.04 0.40 0.66
0.38 0.25 0.63
0.26 0.18 0.66
0.14 0.09 0.70
0.22 0.22 0.66
0.18 0.09 0.69


ΛOlder had its main loadings at the same location as ΛY ounger but had (considerable)

cross-loadings (up to 0.4). We simulated a data set with N = 1000 and the continuous

covariate age that defined the two groups as described above. Again, we simulated four

distractors: two other (standard-normally distributed) continuous, one dichotomous,

and one categorical covariate with four categories. Factor correlations on population

level were 0.3, factor variances were fixed to 1.

The results are shown in Table 3. The EFA tree identified the covariate age and

split the data approximately at zage = 0 (one observation from the younger group

near the mean 0 was falsely put in the leaf node of the older group). It ignored all

other covariates. The standardized root mean square residuals (SRMR) of the EFA

models in the leaf nodes were 0.01 and 0.01 for the younger and the older group,

respectively, indicating good fit. Additionally, regularization of the models in the leaf

nodes (approximately) recovered the simple structure in the younger group and the

considerable cross-loadings of some observed variables in the older group (see Table 4).

This could be considered an indication of configural non-invariance.
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Table 3
Study 1: Test statistics and p-values for toy
example 2

age cov1 cov2 cov3 cov4
statistic 474.38 94.96 92.62 67.93 217.60
p.value 0.00 0.90 0.95 0.97 0.82

Note. Test statistics were a χ2 test for categorical
and the supLM statistic for continuous covariates.
cov1 - cov4 denote the distractor covariates.

It should be mentioned here that even though an EFA tree can efficiently test

parameter stability on a continuous covariate, in the end it still makes a binary

split. While this might fail to capture gradual differences in parameters, it has the

advantage of interpretability. If one is willing to make the assumption that there are two

discrete groups that are defined along a continuous covariate, EFA trees yield two fully

interpretable and employable models. Additionally, one does not have to prespecify any

covariates that might be associated with non-invariance in the data. We refer readers

who want to assess gradual parameter differences along a known continuous covariate

(without having to split the data) to literature on multiple indicator multiple cause

models (MIMIC models; Muthén, 1989). Note, however, that this approach does not

use fewer assumptions. For example, one assumption that is as strict as ours of two

discrete groups is the exact functional form of gradual differences included in a MIMIC

model (i.e., linear/quadratic/. . . ).



4.7 Method 36

Table 4
Study 1: Regularized factor solution for toy
example 2

Younger Older
F1 F2 F3 F1 F2 F3
0.76 -0.01 0.01 0.70 0.11 0.11
0.76 0.00 0.00 0.65 0.00 0.29
0.72 0.04 0.06 0.72 0.20 0.00
0.76 0.06 -0.02 0.69 0.30 0.06
0.76 0.04 0.02 0.62 0.00 0.42
0.75 0.11 0.04 0.68 0.11 0.15
-0.06 0.78 0.04 0.00 0.66 0.26
0.01 0.77 0.01 0.27 0.59 0.36
0.00 0.78 0.06 0.42 0.57 0.17
0.01 0.73 0.05 0.11 0.64 0.16
0.05 0.76 0.00 0.05 0.78 -0.06
0.03 0.76 -0.03 0.28 0.65 0.07
0.01 0.00 0.72 -0.03 0.35 0.68
0.04 0.00 0.74 0.31 0.15 0.68
0.05 0.00 0.76 0.19 0.13 0.68
-0.01 0.03 0.72 0.08 0.00 0.76
0.00 0.06 0.77 0.15 0.09 0.74
0.02 0.00 0.78 0.08 0.04 0.75

Note. F1 - F3 denote the latent factors. The factor
solutions were achieved by re-estimating the mod-
els in the leaf nodes via elastic net regularization.

4.7.2.4 Toy Example 3: Metric Invariance - Different Loading Sizes.

In a third toy example, metric invariance of our three-dimensional construct with

18 indicators was violated by a categorical covariate marital status with four categories.

More specifically, loading sizes are different for observations that are “single” from

observations from all other categories. The standardized loading matrix on population

level for single observations was the same as the one of the older group used in toy

example 2. For all other categories, cross-loadings were noticibly smaller (cf. Scharf &

Nestler, 2019):
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ΛSingle =



0.67 0.22 0.13
0.68 0.09 0.23
0.68 0.27 0.05
0.65 0.39 0.09
0.64 0.13 0.39
0.67 0.18 0.18
0.05 0.68 0.27
0.28 0.63 0.38
0.38 0.63 0.21
0.09 0.69 0.18
0.05 0.73 0.05
0.27 0.67 0.13
0.04 0.40 0.66
0.38 0.25 0.63
0.26 0.18 0.66
0.14 0.09 0.70
0.22 0.22 0.66
0.18 0.09 0.69



; ΛRest =



0.70 0.11 0.14
0.70 0.17 0.05
0.68 0.16 0.16
0.70 0.05 0.17
0.72 0.08 0.08
0.70 0.11 0.11
0.11 0.69 0.17
0.05 0.72 0.08
0.05 0.72 0.08
0.16 0.68 0.16
0.08 0.71 0.11
0.05 0.71 0.14
0.08 0.14 0.70
0.14 0.14 0.69
0.14 0.11 0.70
0.11 0.05 0.71
0.16 0.14 0.69
0.08 0.05 0.72


Cross-loadings of ΛSingle were as high as 0.40, whereas in ΛRest they reached a

maximum of 0.17. We simulated a data set with N = 400 and the categorical covariate

marital status. In marital status, each category had n = 100 observations. This time,

we simulated eight distractors: four (standard-normally distributed) continuous, two

dichotomous, one other categorical with four categories, and one ordinal covariate with

four categories. Factor correlations on population level were 0.3, factor variances were

fixed to 1.

The results are shown in Table 5. The EFA tree split the data into single and

non-single observations. Every observations was put in the correct leaf node and no

distractor was chosen for splitting. The SRMRs of the EFA models in the leaf nodes

were 0.03 and 0.02 for the singles and the rest group, respectively, indicating good fit.

Table 5
Study 1: Test statistics and p-values for toy example 3

marital status cov1 cov2 cov3 cov4 cov5 cov6 cov7 cov8
statistic 276.70 92.67 87.40 85.69 82.11 70.32 66.77 222.31 215.59
p.value 0.01 0.99 1.00 1.00 1.00 0.99 1.00 0.89 0.97

Note. Test statistics were a χ2 test for categorical and the supLM statistic for con-
tinuous covariates. cov1 - cov8 denote the distractor covariates.

Further inspection of the models in the leaf nodes showed that the recovery of the

population loading matrices was not perfect (see Table 6). It is important to consider
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that regularization might yield imperfect solutions, for example if some parameters

are shrunk too much toward zero. However, in our fully exploratory setting, one can

still see that cross-loadings differ in their amount between the two groups, suggesting

metric non-invariance.

Table 6
Study 1: Regularized factor solution for toy
example 3

Single Rest
F1 F2 F3 F1 F2 F3
0.70 0.02 0.10 0.73 0.04 0.10
0.64 0.00 0.30 0.77 0.04 0.00
0.76 0.12 -0.03 0.72 0.00 0.15
0.70 0.35 0.01 0.75 0.04 0.12
0.62 -0.01 0.45 0.69 0.00 0.09
0.76 0.11 0.00 0.73 0.00 0.12
-0.05 0.80 0.11 0.08 0.75 0.14
0.23 0.62 0.32 0.02 0.69 0.09
0.37 0.67 0.05 0.00 0.77 0.00
0.04 0.80 0.05 0.07 0.72 0.13
0.00 0.75 -0.03 0.10 0.70 0.05
0.26 0.69 0.00 0.06 0.71 0.06
-0.10 0.37 0.70 0.00 0.19 0.70
0.31 0.11 0.72 0.07 0.09 0.71
0.24 0.14 0.63 0.06 0.12 0.73
0.00 0.06 0.78 0.07 0.06 0.69
0.05 0.19 0.72 0.12 0.13 0.68
0.08 0.00 0.75 0.04 -0.06 0.79

Note. F1 - F3 denote the latent factors. The
factor solutions were achieved by re-estimating
the models in the leaf nodes via elastic net regu-
larization.

4.7.2.5 Toy Example 4: Configural and Metric Invariance - Interaction

effects between covariates.

In a forth toy example, we investigated whether EFA trees can capture interaction

effects between covariates. Recall that interactions can be detected by allowing the tree

to split more than once. If a tree subsequently splits data on two different covariates,

these splits can be seen as an interaction between the two split covariates. Again,

we assume our three-dimensional construct with 18 indicators. MI was violated by a

categorical variable sex in that the population loading matrix for women showed a

perfect simple structure whereas for men, cross-loadings were present (i.e., a violation of

configural MI). Additionally, in the “male” leaf node, the population matrices for men

above and below the mean age differed with respect to the size of the cross-loadings
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(i.e., a violation of metric MI; cf. toy example 2). That is, there was an interaction

effect between sex and age in the sense that only the population matrices of men were

affected by age. The standardized loading matrices on population level were the same

as in toy example 2 and 3 (cf. Scharf & Nestler, 2019):
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ΛWomen =



0.75 0 0
0.75 0 0
0.75 0 0
0.75 0 0
0.75 0 0
0.75 0 0

0 0.75 0
0 0.75 0
0 0.75 0
0 0.75 0
0 0.75 0
0 0.75 0
0 0 0.75
0 0 0.75
0 0 0.75
0 0 0.75
0 0 0.75
0 0 0.75



ΛYounger men =



0.67 0.22 0.13
0.68 0.09 0.23
0.68 0.27 0.05
0.65 0.39 0.09
0.64 0.13 0.39
0.67 0.18 0.18
0.05 0.68 0.27
0.28 0.63 0.38
0.38 0.63 0.21
0.09 0.69 0.18
0.05 0.73 0.05
0.27 0.67 0.13
0.04 0.40 0.66
0.38 0.25 0.63
0.26 0.18 0.66
0.14 0.09 0.70
0.22 0.22 0.66
0.18 0.09 0.69



; ΛOlder men =



0.70 0.11 0.14
0.70 0.17 0.05
0.68 0.16 0.16
0.70 0.05 0.17
0.72 0.08 0.08
0.70 0.11 0.11
0.11 0.69 0.17
0.05 0.72 0.08
0.05 0.72 0.08
0.16 0.68 0.16
0.08 0.71 0.11
0.05 0.71 0.14
0.08 0.14 0.70
0.14 0.14 0.69
0.14 0.11 0.70
0.11 0.05 0.71
0.16 0.14 0.69
0.08 0.05 0.72



We simulated a data set with N = 1000 together with the categorical covariate sex

and the continuous covariate age. In sex, there were n = 300 women and n = 700 men.

Of these 700 men, n = 354 were younger than the mean age and n = 346 were older. We

simulated four distractors: two (standard-normally distributed) continuous covariates,

one dichotomous covariate, and one categorical covariate with four categories. Factor

correlations on population level were 0.3, factor variances were fixed to 1.
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Table 7
Study 1: Test statistics and p-values for the first node
in toy example 4

sex age cov1 cov2 cov3 cov4
statistic 269.00 235.69 81.69 106.02 85.48 187.68
p.value 0.00 0.00 1.00 0.43 0.42 1.00

Note. Test statistics were a χ2 test for categorical and
the supLM statistic for continuous covariates. cov1 -
cov4 denote the distractor covariates.

Table 8
Study 1: Test statistics and p-values for the second
node in toy example 4

sex age cov1 cov2 cov3 cov4
statistic 0.00 328.80 87.54 100.67 88.89 195.11
p.value NA 0.00 0.99 0.68 0.24 1.00

Note. Test statistics were a χ2 test for categorical and
the supLM statistic for continuous covariates. cov1 -
cov8 denote the distractor covariates.

The results are shown in Table 7 (for the first node) and Table 8 (for the second

node). Note that the p-values for both covariates sex and age were below the Bonferroni-

correct level of significance of 0.05 but the p-value of sex was lower than that of age.

Thus, the EFA tree first split the data on the covariate sex. Subsequently, it performed

a second split on the covariate age in the male leaf node at zage = −0.00455. This split

point was not exactly optimal because it led two observations that had values below

the mean 0 but above the split point (−0.00455 < zage < 0) to falsely end up in the

“older male” leaf node. Nonetheless, the EFA tree correctly identified the interaction

effect between sex and age. The SRMRs of the EFA models in the leaf nodes were 0.02,

0.01, and 0.02 for the female, the younger male, and the older male groups, respectively.

Further inspection of the models in the leaf nodes showed an approximate simple

structure for women and cross-loadings for men, with high cross-loadings for younger

men and rather small cross-loadings for older men (see Table 9).
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Table 9
Study 1: Regularized factor solution for toy example 4

Women Younger men Older men
F1 F2 F3 F1 F2 F3 F1 F2 F3
0.74 0.04 0.02 0.74 0.16 0.01 0.76 0.09 0.00
0.70 0.00 0.14 0.75 -0.04 0.15 0.71 0.20 0.00
0.71 0.05 0.00 0.75 0.16 0.00 0.72 0.11 0.07
0.77 0.09 0.00 0.72 0.31 -0.08 0.77 0.00 0.08
0.72 0.01 0.13 0.68 0.05 0.30 0.76 0.02 0.06
0.76 -0.02 0.02 0.80 0.00 0.13 0.66 0.16 0.02
0.02 0.76 0.00 0.00 0.61 0.34 0.10 0.68 0.15
0.00 0.72 0.04 0.28 0.54 0.36 -0.03 0.72 0.06
0.10 0.66 0.07 0.42 0.56 0.13 0.02 0.75 0.00
0.01 0.74 0.12 0.18 0.61 0.15 0.15 0.69 0.08
-0.02 0.71 0.08 0.09 0.72 0.00 0.00 0.76 0.00
0.04 0.71 0.00 0.26 0.64 0.08 0.00 0.80 0.04
0.04 0.13 0.69 -0.06 0.35 0.72 0.16 0.12 0.66
0.00 0.10 0.71 0.42 0.12 0.59 0.08 0.16 0.69
0.03 0.08 0.67 0.34 0.06 0.62 0.16 0.03 0.71
0.03 0.00 0.72 0.09 0.00 0.77 0.12 0.00 0.70
0.04 -0.04 0.76 0.24 0.10 0.67 0.17 0.12 0.64
-0.03 0.07 0.72 0.21 0.04 0.64 -0.06 0.00 0.81

Note. F1 - F3 denote the latent factors. The factor solutions were achieved
by re-estimating the models in the leaf nodes via elastic net regularization.

In summary, the toy examples showed that EFA trees can uncover a lack of MI under

typical questionnaire research conditions. One of the main advantages of the method

is that it allows substantive researchers to do what they are used to. They estimate an

EFA and interpret factor loadings by investigating the content of different items and

by making sense of latent factors. The only difference is that now researchers get to

work with two (or possibly more) loading matrices, being able to better understand

heterogeneous groups in their data. However, you do not get statistical information

on which parameters differ across the nodes. This highlights the need for thorough

investigations of the models in the leaf nodes with domain expertise.3 As already

mentioned, an interesting future extension would be to combine EFA trees with MGFR

(De Roover & Vermunt, 2019) to identify specific parameters differences. In the

following, we report the results of a structured simulation study to investigate the

performance of the trees under various conditions.

3During the review process, one reviewer posed the question whether EFA trees would also split
the data if differences occured only in factor correlations between groups. We have created an online
supplement in which we show that EFA trees split the data in this case and demonstrate what this
entails for the invariance of measurements. Additionally, we discuss the use of covariance instead of
correlation matrices when estimating the models in the leaf nodes. The online supplement is openly
available at https://osf.io/7pgrb/.

https://osf.io/7pgrb/
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4.8 Simulation Study

4.8.1 Procedure

The algorithm was employed as described in the section Software. The simulation

study was run on the Linux-cluster of the Leibniz Supercomputing Centre of the

Bavarian Academy of Sciences and Humanities. We manipulated five variables that

mimic typical research conditions and could potentially influence the performance of

the trees:

• Sample size: 400 vs. 1,000 vs. 10,000. With sample sizes of 400 and 1,000 we

investigated conditions typical for questionnaire research (Fabrigar et al., 1999;

Goretzko et al., 2021) and with a sample size of 10,000 we investigated the

asymptotic properties of EFA trees.

• Type of split covariate: categorical vs. continuous. The split variable was either

a categorical (binary) or a continuous variable (following a standard-normal

distribution).

• Group size ratio: 50/50 vs. 20/80. The group sizes in the leaf nodes were either

equal, or skewed so that 20% of the whole sample belonged to one leaf node

and 80% belonged to the other one. For some conditions with a continuous split

covariate, these ratios were only approximately achieved due to random number

generation from a normal distribution. That is, data for the covariate were first

drawn randomly from a standard-normal distribution and were then split into

two groups by choosing a cut point that would lead to the desired group size

ratios (cf. toy example 2). For example, for the ratio 50/50 that corresponded

to a cut point at z = 0. Whereas in theory, this should divide the sample into

two equally sized groups, in practice it could happen that the ratio is not exactly

50/50 because out of the N observations, a few more might have been generated

on one side of the cut point than on the other.

• Number of distractor covariates: 4 vs. 8. For the condition with four distractors,

we simulated one (standard-normally distributed) continuous covariate, one binary

covariate, one categorical covariate with four categories, and one ordinal covariate

with four categories. For the condition with eight distractors, we simulated two

of these covariates each.
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• Type of lack of MI : configural vs. metric. In the condition with lack of configural

MI, we used the loading matrices from toy example 2 (simple structure vs. cross-

loadings). In the condition with lack of metric MI, we used the loading matrices

from toy example 3 (small cross-loadings vs. considerable cross-loadings).

We refrained from including conditions in which the covariates are correlated. This

is a rather simplified setting, but our goal was to provide a first large-scale simulation

to show the performance of model-based recursive partitioning in combination with

EFA. In future studies, we plan to investigate the performance of EFA trees under

more nuanced conditions; e.g., U-shaped relations between parameter instability and

covariates, complicated interactions, and also correlated covariates.

We also added six conditions in which MI was supported, i.e. in which EFA trees

should not split the data (3 sample sizes × 2 numbers of distractors). In total, this

amounted to 54 conditions. We simulated 1,000 data sets per condition, resulting in

54,000 data sets for the analysis. As dependent variables, we compared the type I error

rates (i.e., the rate of falsely splitting invariant data) and type II error rates (i.e., the

rate of falsely missing a split of non-invariant data). Additionally, we looked at the

mean and standard deviation (SD) of the SRMR in the leaf nodes.
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4.8.2 Results
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Figure 1
Study 1: Power (1 - type II error rate) of EFA trees to detect lack of measurement
invariance (MI) by sample size N. Configural and metric denote the type of lack of MI.
20/80 and 50/50 denote the group size ratio. 4 and 8 denote the number of distractors.

Figure 1 shows the power (i.e., the rate of correctly detecting a lack of MI; 1 -

type II error rate) of EFA trees for all conditions. Overall, EFA trees demonstrated a

high power of > 93% for all conditions. EFA trees only missed a split in conditions

where sample size was 400; for the conditions of sample size 1,000 and 10,000 the

data was always split. However, in rare occasions for sample sizes 1,000 and 10,000,

EFA trees chose the wrong covariate for splitting and then encountered problems of

estimating the EFA models in the leaf nodes. We assume that this was due to too

few observations in the nodes after a wrong split covariate (and thus, a wrong split

point) was chosen. For the two conditions of sample size 400, ratio between groups

20/80, continuous split covariate, lack of metric MI, and number of distractors four and

eight (ceteris paribus) the power was markedly smaller than for all other conditions

(95.5% and 93.6%, respectively). Nonetheless, the power for these conditions can still
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be considered good and they are arguably the most complex conditions (small sample

size, unbalanced groups, continuous covariate, and comparison of different sizes of

cross-loadings).
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Figure 2
Study 1: Type I error rate (false-positive rate) of EFA trees by sample size N and
number of distractors.

Figure 2 shows the type I error rates by sample size and by number of covariates.

Most notably, the rate increased with sample size. The type I error rates did not

markedly exceed the significance level we set for the EFA trees (α = 0.05). Only for a

sample size of 10,000 and eight distractors the observed type I error rate was higher

(0.057). When constructing an approximate 95% Wald-confidence interval (CI) around

the observed type I error rates, the CI for sample size 10,000 contained the nominal

level of significance α = 0.05. However, for sample sizes 400 and 1,000 it did not

contain 0.05. This could be an indication that the parameter stability tests are overly

conservative. While from a statistical point of view this might not be ideal, the power

to detect non-invariance was still high in our study. Nonetheless, future simulations

should investigate the behavior of the type I error rate with even larger sample sizes or
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different test statistics.

Table 10
Study 1: Mean and standard deviations of the standardized root mean squared
residuals in the two leaf nodes and split rates for all 54 conditions

Condition Child Node 1 Child Node 2 SD1 SD2 Split Rate

1000, 4, 20/80, categorical, configural 0.016 0.012 0.0014 0.0014 1.000
1000, 4, 20/80, categorical, metric 0.015 0.010 0.0015 0.0012 1.000
1000, 4, 20/80, continuous, configural 0.012 0.016 0.0009 0.0018 1.000
1000, 4, 20/80, continuous, metric 0.010 0.016 0.0008 0.0018 1.000
1000, 4, 50/50, categorical, configural 0.010 0.015 0.0008 0.0013 1.000
1000, 4, 50/50, categorical, metric 0.010 0.013 0.0008 0.0012 1.000
1000, 4, 50/50, continuous, configural 0.015 0.010 0.0012 0.0024 0.998
1000, 4, 50/50, continuous, metric 0.013 0.010 0.0011 0.0026 1.000
1000, 4, none, none, none 0.007 0.010 0.0013 0.0031 0.028
1000, 8, 20/80, categorical, configural 0.016 0.012 0.0014 0.0013 1.000
1000, 8, 20/80, categorical, metric 0.015 0.010 0.0014 0.0008 1.000
1000, 8, 20/80, continuous, configural 0.012 0.016 0.0009 0.0017 0.999
1000, 8, 20/80, continuous, metric 0.010 0.015 0.0008 0.0016 1.000
1000, 8, 50/50, categorical, configural 0.010 0.015 0.0008 0.0012 1.000
1000, 8, 50/50, categorical, metric 0.010 0.013 0.0008 0.0014 1.000
1000, 8, 50/50, continuous, configural 0.015 0.010 0.0012 0.0021 1.000
1000, 8, 50/50, continuous, metric 0.013 0.010 0.0010 0.0022 1.000
1000, 8, none, none, none 0.007 0.012 0.0010 0.0053 0.027
10000, 4, 20/80, categorical, configural 0.005 0.004 0.0004 0.0009 1.000
10000, 4, 20/80, categorical, metric 0.005 0.003 0.0004 0.0007 1.000
10000, 4, 20/80, continuous, configural 0.004 0.005 0.0003 0.0018 0.992
10000, 4, 20/80, continuous, metric 0.003 0.005 0.0002 0.0005 0.999
10000, 4, 50/50, categorical, configural 0.003 0.005 0.0002 0.0005 1.000
10000, 4, 50/50, categorical, metric 0.003 0.004 0.0002 0.0006 0.999
10000, 4, 50/50, continuous, configural 0.005 0.003 0.0003 0.0009 0.993
10000, 4, 50/50, continuous, metric 0.004 0.003 0.0003 0.0007 0.997
10000, 4, none, none, none 0.002 0.003 0.0004 0.0008 0.043
10000, 8, 20/80, categorical, configural 0.005 0.004 0.0004 0.0011 1.000
10000, 8, 20/80, categorical, metric 0.005 0.003 0.0004 0.0009 1.000
10000, 8, 20/80, continuous, configural 0.004 0.005 0.0003 0.0005 0.997
10000, 8, 20/80, continuous, metric 0.003 0.005 0.0002 0.0005 0.999
10000, 8, 50/50, categorical, configural 0.003 0.005 0.0002 0.0006 1.000
10000, 8, 50/50, categorical, metric 0.003 0.004 0.0002 0.0004 1.000
10000, 8, 50/50, continuous, configural 0.005 0.003 0.0003 0.0011 0.992
10000, 8, 50/50, continuous, metric 0.004 0.003 0.0003 0.0011 0.997
10000, 8, none, none, none 0.002 0.003 0.0004 0.0008 0.057
400, 4, 20/80, categorical, configural 0.025 0.019 0.0028 0.0014 1.000
400, 4, 20/80, categorical, metric 0.025 0.016 0.0027 0.0013 1.000
400, 4, 20/80, continuous, configural 0.019 0.026 0.0015 0.0032 0.998
400, 4, 20/80, continuous, metric 0.016 0.025 0.0014 0.0032 0.955
400, 4, 50/50, categorical, configural 0.015 0.024 0.0014 0.0020 1.000
400, 4, 50/50, categorical, metric 0.015 0.021 0.0015 0.0018 1.000
400, 4, 50/50, continuous, configural 0.024 0.016 0.0020 0.0021 1.000
400, 4, 50/50, continuous, metric 0.021 0.016 0.0019 0.0019 1.000
400, 4, none, none, none 0.011 0.017 0.0014 0.0065 0.016
400, 8, 20/80, categorical, configural 0.025 0.019 0.0030 0.0014 1.000
400, 8, 20/80, categorical, metric 0.026 0.016 0.0027 0.0014 0.999
400, 8, 20/80, continuous, configural 0.019 0.025 0.0015 0.0031 0.996
400, 8, 20/80, continuous, metric 0.016 0.025 0.0015 0.0031 0.936
400, 8, 50/50, categorical, configural 0.016 0.024 0.0014 0.0019 1.000
400, 8, 50/50, categorical, metric 0.015 0.021 0.0014 0.0018 1.000
400, 8, 50/50, continuous, configural 0.024 0.016 0.0020 0.0020 1.000
400, 8, 50/50, continuous, metric 0.021 0.015 0.0019 0.0021 1.000
400, 8, none, none, none 0.011 0.016 0.0014 0.0040 0.017

Note. SD = standard deviation. Condition: First entry corresponds to sample
size, second to number of distractors, third to group size ratio, fourth to type
of split covariate, fifth to type of lack of measurement invariance.

Table 10 shows the SRMRs for all conditions in the leaf nodes as well as the

corresponding split rates (i.e., power and type I error rate). As can be seen, all SRMRs

were < 0.03 with SD < 0.01. Differences were most notable between sample sizes, such

that SRMRs were smaller with increasing sample size. This seems reasonable as larger

samples allow for more accurate model estimation.
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4.9 Discussion

We investigated EFA trees as a method to explore and test for MI in a sample

of questionnaire data. Our toy examples showed that EFA trees can be used as a

simple and straightforward extension of methods that substantive researchers are

familiar with. The comprehensive simulation study further highlighted that EFA trees

perform well under various conditions. In all conditions, EFA trees demonstrated a high

power to detect non-invariance while keeping false-positive splits in the pre-specified

range. Ultimately, our goal is to suggest a method that helps researchers to develop

questionnaires that took MI into account from the beginning. Additionally, EFA trees

can be used as a first tool of exploration when analyzing data before more rigorous steps

to test for MI are employed. This is particularly useful when there are no hypotheses

about covariates that might cause non-invariance. Even for questionnaires developed

as invariant as possible, these tests for MI prior to analyses are indispensable. One

should keep in mind here that MI cannot be considered a characteristic of a construct

but needs to be addressed for every construct in every study (Vandenberg, 2002).

4.9.1 Why should you use EFA trees?

From a conceptually and theoretically broader perspective, we see three main

advantages of EFA trees (and the same applies, in our opinion, to SEM trees and

Rasch trees). First, both the seminal review by Vandenberg and Lance (2000) and

the more recent one by Putnick and Bornstein (2016) showed that there is a high

interest and need for tools that can explore and test for MI. This is good news because

addressing MI related issues helps to improve the quality of psychological measurement.

In all areas of psychology, improving measurement quality should be a main goal.

Otherwise, ever more sophisticated data analysis methods (most notably, machine

learning algorithms) cannot unfold their full potential. In fact, as Jacobucci and Grimm

(2020) demonstrated, only small amounts of measurement error already diminish the

effectiveness of machine learning algorithms to model non-linear effects. Of course,

these tree-based methods will not solve all measurement bias related problems. But

by equipping researchers with easy-to-use methods whose outputs they are used to

interpreting, we can hopefully reduce measurement bias induced by non-invariance or

DIF.
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Second, EFA trees can assist researchers in shortening questionnaires or in item

selection by enabling data-driven exploration of your sample. In practice, one of the

main drivers when selecting “good” from “bad” items is the magnitude of factor loadings

(Kleka & Soroko, 2018). However, this neglects the fact that even items with a small

loading might be important from a content validity standpoint. Even further, there

are various reasons why a lack of MI might occur that are arguably more important

than loadings when deciding whether to keep or drop/exchange an item. Chen (2008)

states many reasons, for example: a) the conceptual meaning or understanding of the

construct differs across groups (e.g., for cultural reasons), b) particular items are more

applicable for one group than another, c) the item was not translated properly, and/or

d) certain groups respond to extreme items differently.

EFA trees do not tell you directly which of these reasons applies to your situation.

But they still identify items or whole scales that can then be further explored.4 In

the broadest sense, this might even inform psychological theory development if items

are repeatedly shown to be non-invariant between certain groups (Brandmaier &

Jacobucci, 2023). Put simply, an item with a small loading might be preferable to an

item that works differently between groups (given that the small loading is not due to

non-invariance caused by a covariate that was unmeasured and, thus, undetected by

an EFA tree).

Third, EFA trees might help to improve the quality of decisions in single-case

assessment. In general research, a lack of MI might lead to meaningless results of

comparisons between groups. However, in diagnostic decision making on the single-

case level, a lack of MI might cause misclassifications. It is common to incorporate

diagnostic evidence gathered by tests like personality questionnaires or symptom

severity scales when assessing whether a person is suitable for a job or eligible for a

certain treatment. Ultimately, besides researching human behavior, this is the main

reason why psychological tests are developed in the first place. Thus, it is crucial to

4Note that if factor solutions in the nodes are rotated instead of regularized, the items or scales
that are identified as non-invariant depend on the exact factor rotation. This is because the solutions
are no longer unique and thus different rotations might lead to different interpretations of the solutions.
Regularized solutions are unique given a specific type of regularization (e.g., LASSO, ridge, or elastic
net) and a specific set of hyperparameters. Changing these settings might again yield different
interpretations.
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develop questionnaires that are as invariant as possible between all potential target

groups (Borsboom, 2006). Of course, this is an overly optimistic goal but we should

then at least know for which groups a questionnaire can be used. Imagine using a

depression scale that works differently for men and women, such that men receive lower

test scores of depressivity even though their true score is equal to that of women. As a

consequence, men would on average receive less diagnoses and, thus, less treatment for

their depression or women would be overdiagnosed and overtreated in return. Therefore,

easy-to-use methods for the assessment of MI on a high level can be a powerful tool to

create fair and broadly applicable measures.

4.9.2 How deep is your tree?

One important question we have not yet addressed directly is the depth of EFA trees.

We have mostly talked about EFA trees that split the data once but have also shown

that deeper trees are possible, revealing interactions between covariates. Theoretically,

there is no limit on the depth of a tree (e.g., see Brandmaier et al., 2013b for SEM

trees with up to four splits). However, we recommend that you decide on the depth

of your tree depending on the goal of your analysis (if multiple interactions between

covariates that are associated with non-invariance are present). The main areas of

application of EFA trees are the earliest stages of questionnaire development and prior

to specific analyses between two groups. In both scenarios, we see two main points to

consider when deciding on the depth of your tree: sample size and interpretability.

First, sample sizes in the nodes have to be sufficiently large to allow for stable

model estimations. Only then meaningful conclusions about the structure can be drawn.

When we consider classic recommendations (Fabrigar et al., 1999) and current practice

(Goretzko et al., 2021) regarding sample sizes in EFA, splitting more than once or twice

might lead to too few observations in the leaf nodes.

Second, the heterogeneous groups identified by EFA trees should be reasonably

interpretable (cf. Zeileis et al., 2008). As mentioned earlier, a split is always dependent

on all prior splits. Especially in the earliest stages of questionnaire development, a

main goal should be to identify non-invariant groups on a high level. Additionally,

as explained in the Introduction, EFA trees use hierarchical clustering. That is, each
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split is conditional on the previous split. While this allows to determine the number of

heterogeneous groups in a data-driven manner, the allocation of observations to the

leaf nodes might not be optimal from a clustering perspective. This is less of a problem

with shallow trees, whereas it is amplified when trees become deeper because more

interactions are present. Thus, the deeper the tree is grown, we would recommend to

be more cautious not to overinterpret the models in the leaf nodes.

4.9.3 Limitations and Future Directions

Inevitably, EFA trees come with a few limitations that researchers should keep in

mind when applying the method. One issue when working with a single tree-based

algorithm is that it is dependent on the specific sample (Breiman, 2001). To counteract

this dependency, ensemble learning methods like random forests can be applied. In a

random forest, multiple decision trees are grown in parallel and the results of all trees

are aggregated into a single, more stable prediction of unseen data. Brandmaier et

al. (2016) suggest SEM forests as an extension to SEM trees. They argue that SEM

forests should not be seen as a “better” version of SEM trees but that both algorithms

are complementary analyses. While SEM trees captivate by their interpretability and

the information they yield about a sample at hand, specific partitions may not be

optimal or may not generalize to new samples. SEM forests, in turn, can be used to

obtain more stable estimates about covariates that predict difference in data patterns.

Analogously, EFA trees can be extended to EFA forests. We want to point out two

cautionary notes regarding this extension. First, it should be noted that growing

even a single tree can be very expensive from a computational point of view. If a

continuous covariate is identified as a split variable, the exhaustive search of order

O(N) can take well over one hour to yield a split point (on a standard local machine).

Considering typical ensemble sizes of random forest (say 500 single trees), this can be

time consuming even with parallelization on two or four cores. Of course, researchers

who have supercomputing clusters available can make use of more cores for larger

parallelization setups. Second, while the dependence on a specific sample makes decision

trees unstable in their predictions of new data, the assessment of MI with respect to the

present sample is the primary goal of EFA trees. The main strength of EFA trees lays

in interpretability which we regard higher than predictive performance in this context
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(cf. Zeileis et al., 2008). Although an ensemble approach like random forests increases

the generalizability of predictions, it impedes the inspection of a specific partition. If

the goal is to obtain an interpretable structure for a sample at hand, a single EFA tree

should be preferred.

As mentioned earlier, EFA models in the tree are estimated using maximum

likelihood estimation (MLE). Unfortunately, so far no other estimation method can

be applied because the hypothesis tests used to test for parameter differences need

a well-defined likelihood (Hothorn et al., 2006; Zeileis & Hornik, 2007; Zeileis et al.,

2008). Even though MLE is one of the most commonly used estimation methods for

EFA, it is only suitable for multivariate normal data (Fabrigar et al., 1999; Goretzko

et al., 2021). With the typical use of Likert-type items in psychological questionnaires

(especially when answer options are few), this assumption of normality is questionable.

Researchers should evaluate whether MLE is suitable for their data before applying

EFA trees. Additionally, future studies are needed to assess the performance of EFA

trees under non-normal data, for example with a dichotomous item format.

Another limitation one should keep in mind is that the sensitivity of the tree can only

be governed by the level of significance that is set for the hypothesis tests rather than

by considering effect sizes. That is, EFA trees are calibrated in a frequentist manner

without really taking into account the impact of non-invariance on the subsequent

analyses. Measures exist that directly link the degree of non-invariance to the impact

it has on substantive analyses between groups (e.g., EPC-interest, Oberski, 2014).

Moreover, Chen (2007) comprehensively evaluated the sensitivity of common goodness-

of-fit indexes like SRMR to lack of MI. However, when using EFA trees, one can

calibrate the trees only abstractly by adjusting the level of significance. That is, the

higher the level of significance, the higher the sensitivity to detect smaller degrees

of non-invariance. Similarly, if sample sizes become larger, smaller degrees of non-

invariance become statistically significant without being practically relevant. It is

crucial to thoroughly investigate the models in the leaf nodes to identify whether a

split is actually meaningful. Here, too, can domain expertise help to identify possible

false-positive splits. Future research should investigate measures that could govern

the sensitivity of the tree by considering minimum non-invariance thresholds (i.e., a
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minimum degree of non-invariance that is deemed relevant for splitting).

The last limitation was raised by Strobl et al. (2015) in the context of Rasch trees

and equally applies to EFA trees: If a covariate that causes non-invariance has not been

measured, it cannot be detected by the tree. However, if a covariate that is correlated

with the relevant missing one is available, non-invariance may still be detected (Strobl

et al., 2015). For this reason, a covariate identified for splitting the data cannot simply

be interpreted as the root cause of the lack of MI. That is, any split covariate might

well be just the observed version of a latent variable causing non-invariance. This again

highlights the importance of thoroughly investigating the data and to use EFA trees as

a means of exploration.

4.10 Conclusion

EFA trees offer an easy-to-use and well-known approach to exploring data and testing

for MI. They are especially useful in areas like personality or clinical psychology where

constructs can be multidimensional and complex. We hope to motivate researchers

to test for MI in the earliest stages of questionnaire development but also before

substantive group comparisons. In this, measurement bias in general research will

hopefully be reduced and diagnostic decisions might even become fairer. When it

comes down to it, there is hardly any area of psychology or any research question that

would not benefit from more measurement invariance. Or, to put it in the words of

Meredith (1993) (p. 540): “It should be obvious that measurement invariance [. . . ] are

idealizations. They are, however, enormously useful idealizations in their application

to psychological theory building and evaluation.”
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5.1 Abstract

When comparing relations and means of latent variables, it is important to establish

measurement invariance (MI). Most methods to assess MI are based on confirmatory

factor analysis (CFA). Recently, new methods have been developed based on exploratory

factor analysis (EFA); most notably, as extensions of multi-group EFA, researchers

introduced mixture multi-group EFA, multi-group exploratory factor alignment, EFA

trees, and multi-group factor rotation to resolve rotational indeterminacy in EFA. The

main advantage of EFA-based (compared to CFA-based) assessment of MI is that no

potentially too restrictive measurement model has to be specified. This allows for a more

thorough investigation because violations of MI due to cross-loadings can be considered,

too. For each method, we address the model specification and recommendations for

application, detailing their strengths and weaknesses. We demonstrate each method in

combination with multi-group factor rotation in an empirical example. Differences to

and possible combinations with CFA-based methods are discussed.
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5.2 Introduction

In psychological science, we are almost always interested in investigating some kind

of latent variable (e.g., personality traits like extraversion). The object of research

is often the comparison of mean values of latent variables (or measurements thereof)

between different groups; for example, prosociality or moral judgements across countries

(Bago et al., 2022; House et al., 2020). This includes both comparisons between different

groups (e.g., in cross-cultural research; Milfont & Fischer, 2010) or comparisons across

subsequent measurements within the same group (e.g., pre- and post-treatment).

Latent variables are measured by so called indicators or observed variables (often

questionnaire items) in order to obtain scores of the latent variable (Lord & Novick,

1968; Van Bork et al., 2022). The relationship between observed and latent variables

is captured in the measurement model. To enable meaningful comparisons between

groups, it is crucial to test whether the measurement models are invariant across groups.

Measurement invariance (MI) means that the latent variables are measured identically

across groups; that is, people with the same true score on the latent variable should also

receive the same score on the observed variables (Meredith, 1993; Putnick & Bornstein,

2016; Vandenberg & Lance, 2000). In more technical terms, the parameters of the

measurement model have to be identical across groups.

Multi-group Confirmatory Factor Analysis (MG-CFA) was originally introduced to

test whether a measurement model is invariant across a defined set of groups. However,

MG-CFA reaches its limits when many groups have to be compared (e.g., a covariate

nation with 48 groups; Kuppens et al., 2006). The chance of false-positive findings of

non-invariance increases with the number of groups due to multiple testing (Rutkowski

& Svetina, 2014). Additionally, this amount of hypothesis tests can make it difficult to

tell invariant from non-invariant parameters (Byrne & Vijver, 2010; De Roover et al.,

2022). To improve investigations of MI for cases with many groups, more advanced

methods have been developed. Raykov et al. (2013) developed a multiple testing

procedure to investigate MI that uses the Benjamini-Hochberg correction (Benjamini

& Hochberg, 1995). This controls the false-discovery rate rather than the family-wise

error rate, resulting in a higher power compared to simple multiple testing of MG-CFAs

with Bonferroni correction. Kim et al. (2017) provide a comprehensive overview of
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methods to investigate MI with many groups, for example, Multilevel Factor Mixture

Modeling and Alignment Optimization (Asparouhov & Muthén, 2014). The majority

of these methods developed so far and all methods detailed in Kim et al. (2017) are

based on CFA. While the use of CFA allows to incorporate theoretical considerations

when investigating MI, it can also be too restrictive in terms of model specification. If

the model is slightly misspecified, a CFA-based approach might not accurately recover

the true structure of a model (Nájera et al., 2023).

In recent years, new methods have been developed that are based on exploratory

factor analysis (EFA). As extensions of multi-group EFA (MG-EFA; Dolan et al., 2009),

researchers developed mixture multi-group EFA (MMG-FA; De Roover et al., 2022),

multi-group exploratory factor alignment5 (AESEM; Asparouhov & Muthén, 2023),

and EFA trees (Sterner & Goretzko, 2023). Investigating MI on the basis of EFA

avoids the problem of having to assume a (potentially too) restrictive model across all

groups. The goal of this paper is to give an overview of these recent developments and

to demonstrate the application of EFA-based MI methods. Additionally, because all

of these methods inherit the challenge of rotational indeterminacy of the EFA model,

we illustrate how these methods can be combined with multi-group factor rotation

(MGFR; De Roover & Vermunt, 2019). MGFR resolves the rotational indeterminacy

per group and locates non-invariant factor loadings by means of hypothesis testing. We

demonstrate all of this on an empirical data example from moral psychology (Bago

et al., 2022). Because the methods differ in their assumptions and outcomes, a direct

comparison does not make too much sense. Instead, we provide a guide on when to

use which method in which way. By this, we hope to help researchers to navigate

through the extensive literature on EFA-based methods to investigate MI and increase

the prevalence of MI testing in social scientific research (Leitgöb et al., 2023; Maassen

et al., 2023). To facilitate the application of the presented methods, we provide openly

available R, Mplus, and Latent Gold code.

The remainder of the paper is structured as follows: Section 1 outlines the differences

between CFA- and EFA-based tests of MI. Section 2 presents the four EFA-based
5We abbreviate the method by AESEM following Asparouhov and Muthén (2023). They extended

the alignment method (Asparouhov & Muthén, 2014) to the general exploratory structural equation
model (ESEM; Asparouhov & Muthén, 2009), which leads to the abbreviation AESEM (aligned
ESEM). However, we will only look at the measurement model part of ESEMs, which are EFAs.
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methods (MG-EFA, MMG-FA, AESEM, EFA trees) in detail. For each method, we

address the model specification and recommendations on when to use the method,

detailing their strengths and weaknesses. Section 3 presents MGFR and an overview

table summarizing all methods. Section 4 demonstrates the application of the methods

in combination with MGFR. Section 5 discusses differences to and possible combinations

with CFA-based methods.

5.3 CFA vs. EFA in MI Testing

The main difference between CFA and EFA pertains to the loadings in the model.

A loading quantifies the strength of the relation between a latent factor and an item.

In CFA, some loadings are constrained to zero whereas in EFA all paths between

latent and observed variables are estimated freely (Goretzko et al., 2021; Mulaik, 2010).

Thus, if assumptions about which items measure which latent factor are available, CFA

allows to incorporate these assumptions in the model. If there are no assumptions and

the goal is to uncover the relation between items and latent factors, EFA should be

preferred. This is especially the case during the development of new measures.

As already mentioned, until recently, CFA was the basis for most MI testing

methods (Marsh et al., 2014). As a consequence, MI in this context not only concerns

the equivalence of parameters in the measurement model but also the equivalence of its

architecture; that is, the number of latent factors and the imposed zero-loadings must

hold across groups (De Roover et al., 2022). Needless to say, the strict specification of

the measurement model with zero-loadings is often not tenable (Nájera et al., 2023),

especially when these restrictions have to be assumed across all groups. If the model

is then modified in a data-driven way, its generalizability is diminished because this

strategy capitalizes on chance (MacCallum et al., 1992). Additionally, misspecifications

in the measurement model can introduce bias in the estimation of the remaining

parameters, especially when maximum likelihood estimation is used (Bollen et al.,

2007). Since in EFA no zero-loadings are imposed, none of these problems caused

by model misspecifications are an issue in EFA-based MI testing. EFA as a basis

even makes tests for MI wider-ranging because it allows to assess the invariance of

cross-loadings as well as differences in the position of main loadings (De Roover &

Vermunt, 2019). These advantages are inherent in all methods that we will present.
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5.4 Multi-group EFA

5.4.1 Model Specification

Both MG-CFA and MG-EFA are instances of the more general multi-group factor

analysis model (Jöreskog, 1971; Sörbom, 1974). In MG-EFA, no loading paths between

the observed variables and the latent factors are constrained to zero. Hence, EFA can

be used to freely uncover the relations between observed and latent variables (Goretzko

et al., 2021). Let xig
be the p-dimensional vector of observed variables for subject ig in

group g (with ig = 1, ..., Ng and g = 1, ..., G). This vector can be described as a linear

function of the m latent factors (Mulaik, 2010):

xig
= τg + Λgξig

+ ϵig
(7)

where τg is a p-dimensional vector of group-specific intercepts, Λg is a p × m

matrix of group-specific factor loadings, ξig
is a m-dimensional vector of latent factor

scores, and ϵig
is a p-dimensional vector of error terms. For maximum-likelihood

estimation, the latent factor scores are assumed to be multivariate-normally distributed;

specifically, ξig ∼MV N(αg, Φg), where αg denotes the factor means of group g and

Φg the factor (co-)variances. In MG-EFA, the factors are rotationally indeterminate

per group, which means there are infinitely many sets of factor solutions which have

the same fit to the data but lead to different interpretations of the solution. This has

to be resolved per group by a rotation criterion (De Roover & Vermunt, 2019), which

often improves interpretability by pursuing simple structure – where each observed

variable has near-zero loadings for all factors but one. As already mentioned, we

will employ MGFR to address this issue (details will follow in a later section), which

not only strives for simple structure but also maximizes the similarity of the rotated

loadings across groups. The error terms are also assumed to be multivariate-normal

and independent of the factor scores; specifically, ϵig
∼MV N(0, Ψg), where Ψg is a

p× p diagonal matrix which contains the unique variances of the observed variables

in group g. Combining all of the above, we arrive at the group-specific model-implied

covariance matrix Σg = ΛgΦgΛg
⊤ + Ψg.
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5.4.2 Testing Procedure

In a factor-analytic context, MI is tested by fitting and comparing increasingly

constrained models (De Roover et al., 2022; Vandenberg & Lance, 2000). Many

comprehensive guides for MI testing in this context exist, so we will keep this section

rather short (see e.g., Putnick & Bornstein, 2016; Van de Schoot et al., 2012). The first

step is to test whether configural MI holds. Configural MI means that the construct

architecture, that is, the number of latent factors and the location of zero-loadings are

equivalent across groups. This is tested by estimating the baseline model in equation

(7) per group. Because there are no loadings constrained to zero in MG-EFA, the only

model misspecification that could cause the overall model fit to be bad is a different

number of latent factors. For example, the baseline models for all groups are estimated

with three latent factors but in one group there are actually four latent factors. To

partially identify the model, the factor means αg are set to 0 and the factor covariance

matrix Φg is set to an m×m identity matrix, that is, with factor variances of 1 and

factor covariances of 0 (Van de Schoot et al., 2012). In the next step, the invariance of

factor loadings, called weak or metric MI, is tested. For this, the fit of the baseline

model is compared to the fit of a model in which loadings are constrained to be equal

across groups (i.e., Λ1 = ... = ΛG). If metric MI is supported, latent covariances or

relations (e.g., how extraversion relates to other latent variables) can be compared

between groups (De Roover et al., 2022). Strong or scalar MI is assessed by comparing

the fit of the metric model with the fit of a model with constrained intercepts (i.e.,

τ1 = ... = τG). If scalar MI is supported, comparisons of latent factor means are

warranted (e.g., the means of extraversion). In the last step, strict or residual MI

is tested by constraining the unique variances of the observed variables, that is, the

diagonal of Ψg, to be equal across groups. If residual MI holds and factor variances

are equal as well, this means that the item reliabilities are equal across groups (e.g.,

extraversion is measured with the same precision in different groups) (Vandenberg

& Lance, 2000). However, this level of MI can be difficult to achieve and is not a

prerequisite for the comparison of latent factor means (Chen, 2007; Vandenberg, 2002).

A decrease in fit when estimating a more restricted model is an indication that the

tested level of MI is not supported (Chen, 2007; Cheung & Rensvold, 2002); for example,
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if the comparative fit index (CFI) decreases by more than 0.01 and/or the root mean

squared error of approximation (RMSEA) increases by more than 0.01. Rutkowski and

Svetina (2014) propose more liberal cut-offs for when the number of groups exceeds

10, especially for testing metric MI: a decrease of the CFI by more than 0.02 and an

increase of the RMSEA by more than 0.03. Appropriate cutoffs for model fit evaluation

depend on both model complexity and sample size (Cao & Liang, 2022b; Goretzko et

al., 2023), so researchers should not carelessly adopt proposed values. Cao and Liang

(2022a) provide more detailed recommendations on the choice of common fit measures

to detect violations of MI in models with cross-loadings. A stricter comparison of

the models by a χ2-difference test is also possible as the respective models are always

nested. However, as the test is highly sensitive to sample size, the use of fit indices is

widely considered more suitable (De Roover et al., 2022).

5.4.3 When To Use MG-EFA

When applying MG-EFA, no statistical knowledge beyond that of single-group EFA

is needed. Instead of investigating one loading matrix, researchers get to work with up

to G loading matrices (with G being the number of investigated groups). One thing

that is more challenging in MG-EFA is the choice of rotation and its interpretation.

Choosing the right rotation is never easy because, depending on the rotation, different

interpretations of the factor solutions emerge. When dealing with more than one

loading matrix, the conclusions about invariance or non-invariance might change when

using different rotations (De Roover & Vermunt, 2019). The issue of rotation in the

multi-group case will be discussed thoroughly in the section on MGFR. It should also be

kept in mind that whereas in the single-group case the data are usually standardized, in

multi-group settings it is common to use unstandardized data (i.e., to model covariance

instead of correlation matrices).

MG-EFA comes with a lack of flexibility and strong assumptions that have to

be made. MG-EFA can only test MI on covariates that are measured and for which

hypotheses about non-invariance exist. If a covariate associated with non-invariance is

not measured or if there are no hypotheses about non-invariant group constellations,

MG-EFA reaches its limits. For example, researchers have to choose the covariate

gender and form hypotheses about non-invariant groups to test MI on this covariate.
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However, more often than not the choice of which covariate to test for non-invariance

is not straightforward (Sterner et al., 2024). Testing all available covariates with all

potential group constellations leads to the already mentioned multiple testing problem.

This is emphasized in cases where a covariate encompasses many groups and nearly

impossible when a covariate is continuous (e.g., age; Putnick & Bornstein, 2016). To

summarize, if you want to test MI for a measured categorical covariate with a small

number of groups, and if specifying a CFA model might be too strict, MG-EFA is a

good option. If not, you might want to resort to one of the methods presented in the

following. We will explain how these methods can find unmeasured clusters of groups

for which MI holds, investigate MI along a continuous covariate or identify covariates

associated with MI without any hypotheses about them.

5.5 Mixture Multi-group EFA

5.5.1 Model Specification

MMG-EFA extends MG-EFA by building on the assumption that, although param-

eters differ across groups, some groups have equal measurement parameters. Thus,

there may be clusters of groups based on these parameters for which MI is supported.

Therefore, MMG-EFA performs clustering based on finite mixtures (McLachlan et

al., 2019) to identify groups that have equal parameters in the measurement model

(Leitgöb et al., 2023), for example, equal loadings (De Roover et al., 2022) and/or

equal intercepts (De Roover, 2021). Groups within the same cluster are then modeled

with cluster-specific loadings and/or intercepts. Parameters of the measurement model

that pertain to a higher level of invariance (e.g., unique variances) are still estimated

group-specifically. The parameters of the structural model (i.e., factor means and factor

(co)variances) are also free to vary among groups in the same cluster. The assumption

of underlying clusters implies that the data-generating model of the observed variables

xig is a mixture of multivariate-normal distributions with K components (which we

call clusters). All observations of a group are assumed to stem from the same normal

distribution, that is, there are no parameter differences below the group-level (e.g.,

differences on the observation-level within a group). Because EFA-based methods are

especially useful for evaluating main- and cross-loading differences between groups, we

focus on the model with cluster-specific loadings (De Roover et al., 2022). We refer
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readers interested in the model with cluster-specific intercepts to De Roover (2021).

The MMG-EFA model with cluster-specific loadings for group g is

f(Xg; θ) =
K∑

k=1
πkfgk(Xg; θgk) =

K∑
k=1

πk

Ng∏
ig=1

MV N(xig
; µg, Σgk) (8)

where the model-implied covariance matrix for group g conditional on the cluster

membership zgk = 1 is given by Σgk = ΛkΦgkΛk
⊤ + Ψg. Note that µg are the group-

specific item means, which are equal to the intercepts in case of factor means of 0.

The density of the distribution of the whole population is denoted by f. The prior

classification probability of a group to belong to each of the K clusters is indicated

by πk (thus, ∑K
k=1 πk = 1) and fgk is the kth cluster-specific density for group g. θgk

denotes the parameter set of these distributions, containing both the mean vectors and

covariance matrices. After model estimation, posterior classification probabilities ẑgk

are obtained that indicate the estimated probability that group g belongs to cluster k.

Notice how the loading matrices Λk are now cluster-specific (with rotational freedom per

cluster), whereas the intercepts τg and the unique variances Ψg remain group-specific

(for an explanation why the factor (co-)variances Φgk are group- and cluster-specific,

see De Roover et al., 2022). This renders the covariance matrix Σgk to be group- and

cluster-specific but only the cluster-specific loadings influence the clustering.

It is important to note that the invariance of parameters within each cluster only

holds under the assumption that the correct number of clusters K was extracted. If

too few clusters are selected, MI may not hold within each cluster. If too many clusters

are selected, MI may hold across some of the clusters. This model selection problem is

addressed by combining both the Bayesian Information Criterion (BIC; Schwarz, 1978)

and the Convex Hull procedure (Ceulemans & Kiers, 2006; CHull; Ceulemans & Van

Mechelen, 2005). The BIC tries to strike a balance between model fit and complexity

by adding a penalty for additional free parameters and larger sample sizes. De Roover

et al. (2022) and De Roover (2021) recommend to use the number of groups G for

the sample size when computing the BIC (instead of the actual sample size) because

the clustering operates at the group level. CHull can be seen as a generalization of

the scree test (Cattell, 1966), again trying to balance model fit and complexity. This
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is similar to the approach suggested by Lorenzo-Seva et al. (2011) to determine the

number of factors to be extracted in EFA. We refer readers to De Roover et al. (2022)

and De Roover (2021) for more technical details on these two model selection strategies.

It is best to run multiple MMG-EFAs with different numbers of clusters and to choose

the solution with the lowest BIC and the highest scree-ratio resulting from CHull.

In general, when in doubt about how many clusters to extract, it is recommended

to investigate the two or three best solutions. Only if the additional clusters show

substantive parameter differences, the solution with more clusters should be preferred

over the parsimonious solution with less clusters (De Roover, 2021). Additionally,

applying MG-EFA per cluster to test whether MI holds within each cluster can be a

way to check if the selected number of clusters is plausible.

5.5.2 When To Use MMG-EFA

As mentioned, we focus on the MMG-EFA model with cluster-specific loadings (De

Roover et al., 2022) but the following points also apply to the model with cluster-

specific intercepts (De Roover, 2021). MMG-EFA proves especially useful when you

want to efficiently investigate measurement (non-)invariance across many groups. By

introducing the assumption that there are clusters of invariant groups, the number of

parameters that have to be compared in a pairwise manner are reduced. This can even

be beneficial in case of a medium number of groups. For example, in the case of six

groups, 15 pairwise comparisons would be needed to test all possible pairs of groups

for MI. By assigning these six groups to three clusters (two groups each), the number

of pairwise comparisons is reduced to three. Needless to say, the higher the number of

comparisons, the higher the risk of falsely detecting non-invariance (De Roover, 2021;

Rutkowski & Svetina, 2014).

Similarly, finding clusters of groups according to their measurement parameters

helps in pinpointing which items are problematic with regard to MI (De Roover, 2021).

By comparing the cluster-specific loadings or intercepts, items that are the source

of non-invariance can be identified, again with less pairwise comparisons. Another

advantage is that the clustering might help to remedy small group sizes. When group

sizes are too small to allow for a precise estimation of group-specific parameters,

estimating parameters (e.g., loadings) cluster-specifically helps to achieve more reliable
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estimates.

For now, MMG-EFA can only be applied to continuous data, for which the as-

sumption of normality is plausible. At least, data should be ordinal with five or more

answer categories and no severe non-normality (De Roover et al., 2022). Researchers

should thus make this assumption deliberately and should ensure that the data are

approximately normal. Consequently, checking whether the data are approximately

normal (ideally per group, since normality is assumed per cluster), having at least five

answer categories for the questionnaire items, and having a large sample (to mitigate

the effects of non-normality) are recommended when applying MMG-EFA (De Roover

et al., 2022; Dolan, 1994).

5.6 EFA Trees

5.6.1 Model Specification

Usually, MI is tested with regard to the covariate of interest for comparison (e.g.,

gender). However, MI could also be violated in a more nuanced way by another

covariate which is not considered. EFA trees can uncover covariates that are associated

with violations of MI in a data-driven manner, that is, without any prior assumptions

about which covariates to investigate (Sterner & Goretzko, 2023). To do so, they make

use of model-based recursive partitioning (Hothorn et al., 2006; Zeileis et al., 2008).

This algorithm tests whether parameters of the model are stable across groups that

are defined by some covariate. If the parameters are unstable, it splits the data on the

covariate which best explains this instability. More specifically, they loop through a

three-stage process (Zeileis et al., 2008):

1. A model (in our case, an EFA) is fit to the entire sample by estimating the model

parameters via maximum likelihood estimation. Let Π(Y , θ) be the objective

function, θ = (Λ, Φ, Ψ) the vector of model parameters (i.e., factor loadings,

factor correlations, and unique variances) and Y the observations, with elements

Yi, i = 1, ..., N . The parameter estimates θ̂ can be obtained by solving the first

order condition

N∑
i=1

π(Yi, θ̂) = 0 (9)
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whereby

π(Y , θ) = ∂Π(Y , θ)
∂θ

(10)

is the score function of Π(Y , θ).

2. A test for parameter stability is performed with regard to every covariate by

means of null hypothesis tests (structural change test). For this, the algorithm

assesses whether the corresponding scores evaluated at the parameter estimates,

π̂i = π(Yi, θ̂), fluctuate randomly around their mean 0. In each node, the model

needs to be estimated only once to assess parameter stability (i.e., MI) with

regard to different covariates. After every covariate has been evaluated, the one

associated with the lowest (Bonferroni-corrected) p-value below a significance

level α is selected for splitting the model. Note that by Bonferroni-correcting the

p-values, the prespecified significance level α is ensured for the whole tree and the

issue of multiple testing is accounted for (see Zeileis et al., 2008 for details on the

distribution of the test statistics and how corresponding p-values are computed).

3. Once a covariate for splitting is found, the optimal split point on this covariate

has to be computed. Note how the identification of a covariate to split on and the

search for the split point on this covariate are two separate steps. This ensures

that the bias of other tree algorithms (like CART or C4.5) toward selecting

covariates with many potential split points is remedied. When splitting the model

into B segments, two potential segmentations can be compared by evaluating the

segmented estimation functions ∑B
b=1

∑
i∈Ib

Π(Yi, θb). For continuous covariates,

an exhaustive search over all potential segmentations is performed. For a split

into B = 2 segments, this can be performed in O(N) operations, where N is the

sample size. For categorical covariates, all potential constellations are evaluated.

For a split into B = 2 segments, this can be performed in O(2C−1) operations,

with C being the number of categories. To keep the computational demand low

and the examples illustrative, we only consider splits into two segments. However,

this still allows us to identify covariates that define more than two non-invariant

groups. For this, an EFA tree would simply split twice (or multiple times) on

this covariate.
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These three steps are repeated until a) no parameter instability in a leaf node is

statistically significant, b) a prespecified depth of the tree is reached, or c) the sample

size in a leaf node falls below a prespecified minimal value. For more mathematical

details on the structural change tests, see Hothorn et al. (2006), Zeileis and Hornik

(2007) and Zeileis et al. (2008). For more details regarding EFA trees specifically, see

Sterner and Goretzko (2023).

5.6.2 When To Use EFA trees

The main advantage of EFA trees is that no hypotheses about covariates potentially

associated with (non-)invariance are needed. EFA trees automatically test all covariates

for non-invariance, as opposed to (M)MG-EFA where grouping covariates have to

be specified. In this, they can simultaneously handle categorical and continuous

covariates. If one expects non-invariant groups associated with interactions between

covariates, these interactions can be detected in two ways (Zeileis et al., 2008): Either

the interaction term is added as a potential split covariate into the algorithm; or, to

preserve the exploratory spirit of EFA trees, one could allow “deeper” trees, that is,

trees that split the data more than once. All splits in a tree are conditional on all prior

splits. Suppose an EFA tree splits the data twice on two different covariates age and

gender : Each leaf node (the final node in a tree) can be seen as a group defined by

an interaction between these two covariates that lead to this leaf node, for example,

women that are older than 30 years.

One issue that has to be kept in mind is that EFA trees are rather uninformative

as to why they split the data. That is, there is no information available about which

parameters of the measurement model differ across groups, causing the tree to split

the data (Sterner & Goretzko, 2023). Consequently, researchers have to thoroughly

investigate the models in the leaf nodes. This requires both domain expertise and

experience in interpreting EFA results (e.g., different rotations of a loading matrix). As

already mentioned, different rotations of the resulting solutions might lead to different

conclusions about MI (De Roover & Vermunt, 2019). One remedy we will present below

is the use of MGFR on the models in the nodes. Alternatively, Sterner and Goretzko

(2023) describe how to apply elastic net regularization on the EFA models in the leaf

nodes. Note that, given a specific type of regularization and set of hyperparameters,
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regularization yields a unique solution. However, changing these settings can again

alter the conclusions about MI.

Even though EFA trees can assess MI on multiple covariates at the same time, it can

only detect MI if the covariate causing it is measured (Sterner & Goretzko, 2023). If this

covariate is not measured but a covariate correlated with the relevant one is available,

non-invariance may still be detected (Strobl et al., 2015). As a consequence, if an EFA

tree splits the data on a covariate, we would be cautious to interpret this covariate

as the cause of the non-invariance. Every covariate identified for splitting could also

be an observed indicator of a latent cause. Again, this underpins the importance of

domain expertise when interpreting EFA trees.

To summarize, EFA trees require no hypotheses about the grouping variable(s)

that is (are) relevant to capturing invariance and non-invariance in the data. However,

domain expertise to interpret their results are indispensable. We recommend EFA trees

for two scenarios specifically: First, in the earliest stages of questionnaire development,

EFA trees allow for a thorough screening of various covariates and therefore numerous

groups with varying measurement models. Even though MI is usually considered prior to

latent mean comparisons, taking it into account when constructing a measure can help

to prevent later issues with data analysis. The exploratory nature of EFA trees can assist

researchers to consider every possible group constellation in this phase. Second, they

can be applied prior to group comparisons with many available covariates, especially

when many covariates are continuous. EFA trees can help to identify interactions that

should be accounted for, in order to not render group comparisons meaningless.

5.7 Multi-group Exploratory Factor Alignment

5.7.1 Model Specification

Alignment aims at enabling a comparison of latent means across groups when full

MI is not supported; that is, when there are some small differences in parameters

across groups (Asparouhov & Muthén, 2014, 2023). This is done by first estimating a

configural model, that is, a model where all parameters are estimated group-specifically

(this corresponds to the model in equation (7)). The factor means and variances of

these models are set to 0 and 1, respectively, for each group. In a second step, the
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alignment step, the factor means and variances of the groups are chosen so that the

amount of non-invariance across groups is minimized. This corresponds to minimizing

the differences between loadings and intercepts across groups. It is important to note

that the factor means and variances are unidentifiable. As a consequence, the alignment

does not change the model fit when searching for optimal values of the factor means

and variances. To resolve this unidentifiability and to arrive at the optimal (i.e., “most

invariant”) values, an alignment function F is minimized with respect to the factor

means and variances (Asparouhov & Muthén, 2014, 2023):

F =
∑
m

∑
p

∑
gk<gl

wgk,gl
f(λmpgk

− λmpgl
) +

∑
p

∑
gk<gl

wgk,gl
f(τpgk

− τpgl
) (11)

where gk and gl represent groups k and l (with k ̸= l) for every possible pair,

and λmpgk
and λmpgl

(τpgk
and τpgl

) indicate the factor loadings (intercepts) of groups

k and l, respectively. Because in AESEM cross-loadings are considered, all factors

are aligned at the same time, in contrast to the original alignment method where

all factors are aligned separately (Asparouhov & Muthén, 2023). wgk,gl
is a weight

that depends on the group sizes, wgk,gl
=

√
Ngk

Ngl
, and thus expresses the certainty

with which parameters for a group are estimated. The component loss function f is

used to scale the observed parameter differences among the groups. It is chosen to be√√
x2 + ϵ, where ϵ is a small number, e.g., 0.001. This function is approximately the

same as
√
|x| with ϵ being added to ensure continuous differentiability (Asparouhov

& Muthén, 2014; Robitzsch, 2023). Equation (11) is minimized when the majority

of loadings and intercepts are invariant, and only a small number of parameters are

(largely) non-invariant (i.e., the number of non-invariant parameters is minimized).

Medium-sized non-invariant parameters are avoided by this specific loss function (Kim

et al., 2017).

Alignment cannot be considered a test of a specific level of MI (e.g., metric or

scalar MI). However, the Mplus output provides invariance hypothesis tests for all

parameters across groups (Flake & McCoach, 2018; Luong & Flake, 2023). That

is, for every parameter estimate (e.g., for every loading), it is tested whether it is

equivalent across groups. Additionally, an effect size estimate R2 is provided for each
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parameter (Asparouhov & Muthén, 2014). This coefficient indicates the degree to

which a parameter is invariant across groups, ranging from 0 (completely non-invariant)

to 1 (completely invariant). The combination of these hypothesis tests and effect size

estimates is an indication for the degree of (non-)invariance of a parameter across

groups (Flake & McCoach, 2018).

The alignment approach has been extended to the EFA model in Asparouhov

and Muthén (2023). The only difference to the procedure just described is that the

(unrotated) configural model is rotated first, before being aligned. As usual, the rotation

is done by minimizing a rotation criterion (e.g., geomin). Quite naturally, these separate

steps of rotation and alignment can also be combined by adding the rotation function

to the alignment loss function in equation (11). This joint function is then minimized

with respect to the factor means, factor variances, and the rotation criterion (i.e.,

usually a criterion aiming at simple structure solutions). In order to preserve the order

of first rotating and then aligning the model, Asparouhov and Muthén (2023) assign an

infinitely large weight to the rotation part of the joint function. As a consequence, the

method first estimates a rotated configural model which is then aligned, conditional on

the rotated solution.

5.7.2 When To Use AESEM

As already mentioned, AESEM —or alignment, in general— is not a test of MI

but enables a comparison of latent means without having to make the assumption

of exact MI. Especially in cases with many groups, there are many possibilities of

MI being violated, so assuming exact MI is often unrealistic (Davidov et al., 2014).

One assumption that has to be made for AESEM, however, is that most measurement

parameters are invariant and only few parameters are non-invariant. A rough rule-of-

thumb in the literature is that 25% of the parameters can be non-invariant (Asparouhov

& Muthén, 2014; Flake & McCoach, 2018; Luong & Flake, 2023). If one is willing to

make this assumption, AESEM produces a model with a clear interpretation about

(non-)invariance. Researchers are provided with approximate latent means which

can be used to compare groups even if exact MI is not supported (Asparouhov &

Muthén, 2014, 2023). This makes AESEM a powerful follow-up method for the other

methods presented here and elsewhere because it provides a way of handling non-
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invariant measurement models. One advantage of alignment in general is that it is

well-researched under various conditions and that applications of the method on real

data exist. For example, we refer readers to Munck et al. (2018) and Lomazzi (2018)

for exemplary applications, to Luong and Flake (2023) for an in-depth tutorial, and to

Flake and McCoach (2018) for a simulation study on its performance with polytomous

items. Rudnev (2019) details a tutorial on alignment with Mplus syntax.

A disadvantage of alignment in combination with EFA (i.e., AESEM) is that the

implemented rotation does not pursue agreement of loading matrices between groups.

Instead, when rotating the configural models before the alignment step, AESEM

solely applies a common rotation criterion like simple structure rotation (e.g., geomin,

pursuing one non-zero loading per item) in every group (Asparouhov & Muthén, 2023).

While this yields interpretable loading matrices per group, it is suboptimal for the

evaluation of loading differences between groups (De Roover & Vermunt, 2019). As

we will describe in the section on MGFR, a combined criterion that optimizes simple

structure per group and agreement between groups would be a more suitable choice.

Further, it is unfortunate that such a powerful method is only properly implemented

in the commercial software Mplus. Many more researchers could benefit from this tool

if open-source implementations were available. The only open-source implementation

of the alignment function is provided in the the R package sirt (Robitzsch, 2022).

However, because alignment is not the focus of the sirt package, its functionalities are

limited compared to Mplus (e.g., it only supports alignment per factor, that is, for CFA

models without cross-loadings).

5.8 Multi-group Factor Rotation

5.8.1 Model Specification

As we have mentioned several times throughout this paper, EFA models are only

determined up to admissible rotations. That is, the estimated solutions can be rotated

in infinitely many ways without altering the goodness of fit of the model. To resolve

this rotational indeterminacy, a rotation criterion has to be specified (see Browne, 2001

for an overview). What changes with different rotations, however, is the interpretation

of the solutions. Depending on the rotation, the loading patterns (i.e., the size and
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probably also the allocation of primary and cross-loadings to latent factors) may

completely change for a group. This, in turn, affects the conclusions regarding (non-

)invariance across groups. Consequently, the choice of the rotation criterion is critical

in a multi-group context (De Roover & Vermunt, 2019). If we are only interested

in whether all loadings are invariant, the rotation of the solution is irrelevant. This

is because a fully invariant factor model will show invariant loading patterns among

all groups for every admissible rotation. We would then just compare the fit of the

configural model and the metric MI model. If the loadings are invariant, we can impose

equal loadings across groups and apply simple structure rotation or target rotation

to this single set of loadings. If, however, loadings are non-invariant across group, we

need to stick with the group-specific loadings and our goal would be to identify which

loadings are non-invariant. This is needed to consider partial MI or item selection,

or to reason about potential sources of non-invariance (De Roover & Vermunt, 2019).

Solely applying simple structure rotation per group would not be optimal because it

does not pursue agreement of the rotated factor loadings between groups. De Roover

and Vermunt (2019) introduced MGFR to solve this rotation issue and provide a way

of identifying loading differences between groups by means of hypothesis testing.6 By

applying MGFR, the solutions are rotated both to simple structure per group and

to agreement between groups. For this, MGFR minimizes a rotation criterion and

an agreement criterion (i.e., minimizes disagreement between groups) in a combined

multi-group criterion:

RMG(Λ1, ..., ΛG) = wRA + (1− w)
G∑

g=1
RSS

g (12)

where RA is an agreement criterion for all groups, RSS
g a simple structure rotation

criterion for group g, and w ∈ [0, 1] a weight to assign relative importance to these two

criteria. When optimizing this combined multi-group rotation criterion (by means of

constrained maximum likelihood estimation), the group-specific factor variances and

covariances are allowed to differ across groups, which helps to unravel differences in

loadings from differences in factor (co-)variances (De Roover & Vermunt, 2019). In this,

6To enable hypothesis testing of rotated factor loadings, Jennrich (1973) showed how to derive the
standard errors.
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MGFR is similar to AESEM in the sense that it rotates and rescales the parameters.

However, as shown in equation (12), it performs these two steps at the same time

—so that both rotation and rescaling optimize the agreement— while not considering

the item intercepts. This makes MGFR the better alternative when the focus lies on

investigating metric MI.

RSS
g can currently be oblimin or geomin, or a target rotation toward an assumed

measurement model.7 For RA, De Roover and Vermunt (2019) present two possible

choices, namely, generalized procrustes (GP; Ten Berge, 1977) and loading alignment

(LA). GP minimizes large loading differences between groups while allowing small

differences. This is achieved by applying the least squares principle:

RA
GP =

G∑
gk=1

G∑
gl=gk+1

∑
p

∑
m

(λgkpm − λglpm)2 (13)

Here, λgkpm is the loading of item p on factor m in group gk. Although GP is

originally an orthogonal rotation, the solution can be oblique because MGFR combines

it with an oblique simple structure rotation.

LA is closely related to the alignment function in equation (11) but considers only

the loadings:

RA
LA =

G∑
gk=1

G∑
gl=gk+1

∑
p

∑
m

√√
(λgkpm − λglpm)2 + ϵ (14)

where ϵ is again a small number to ensure continuous differentiability. LA pushes

small loading differences to 0 while allowing (few) large differences. Because loading

differences are then either 0 or large, LA is suitable to disentangle non-invariant and

invariant loadings. Despite this theoretical advantage, MGFR with GP as the RA

criterion performed much better in the simulation studies by De Roover and Vermunt

(2019).

All EFA-based MI-methods inherit the challenge of resolving rotational indeter-

minacy in the multi-group case. In the following empirical demonstration of the
7Varimax rotation is also available but —in most cases— less ideal because it does not allow to

disentangle differences in factor loadings from differences in factor (co-)variances.
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methods, we thus show how they can be combined with MGFR to achieve interpretable

and comparable factor solutions. Table 11 provides an overview of the assumptions,

hyperparameters, and capabilities of the presented EFA-based MI methods.

5.9 Empirical Demonstration

5.9.1 Data

For our empirical demonstration of the presented methods, we used the dataset

published by Bago et al. (2022) and investigated MI of the Oxford Utilitarianism Scale

(OUS; Kahane et al., 2018). In a multilab study, Bago et al. (2022) examined the

influence of psychological and situational factors on the judgement of moral dilemmas.

Following Bago et al. (2022), we excluded participants who showed patterns of careless

responding (i.e., wrong answers to control questions), indicated to have had technical

problems, and did not answer the material in their native language. For simplicity of

the subsequent analyses, we deleted all rows that contained missing values. This led to

a final sample size of N = 21746.

The OUS measures utilitarian thinking, that is, how strongly people believe that

actions should always aim at maximizing the overall good. It consists of two independent

subscales, impartial beneficence (IB; measured by five items) and instrumental harm

(IH; measured by four items). IB describes the attitude that no individual is more

important than another, while IH means that moral rules can be neglected if it is for

a greater good. Participants indicated their agreement to the items on a seven-point

Likert scale (1 = “strongly disagree”, 4 = “neither agree nor disagree”, 7 = “strongly

agree”). The items of the OUS can be found in the Appendix. We refer interested

readers to Kahane et al. (2018) for more details on the OUS. Although assumptions

about which items belong to which subscale are available, we only considered EFA

models in our empirical demonstration (i.e., all items are allowed to load on both factors

IB and IH). This let us illustrate in more detail one of the advantages of EFA-based

MI investigations: they yield a more detailed picture of loading non-invariance by also

taking into account (differences in) cross-loadings.

The data further contain many covariates for which (a violation of) MI of the OUS

can be investigated. We did not consider every covariate with every method. Rather,
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we selected for each method the covariate(s) that we think best demonstrate(s) the

main advantages of the respective method. In general, we applied all methods simply

for didactic purposes to showcase their exemplary application. Our recommendation is

not to always apply all methods. We looked at the following covariates:

• level of religiosity: continuous on a scale from 1 (lowest) to 10 (highest); M = 4.21

SD = 2.79

• region: categorical with three levels “Southern” (N = 4692), “Eastern” (N =

2762), and “Western” (N = 14292)

• age: continuous; M = 26.05 SD = 10.25

• gender: categorical with four levels “male” (N = 6300), “female” (N = 15189),

“other” (N = 63), and “I wish not to answer” (N = 194)

• country of origin: categorical with 45 levels.

5.9.2 Software

The analyses were run in R (version 4.3.1; R Core Team, 2021), Mplus (version

8.9), and Latent Gold (Vermunt & Magidson, 2016), depending on which method is

available in the respective software (see also Table 11). For analyses in R, we used the

packages lavaan (Rosseel, 2012), semTools (Jorgensen et al., 2022), partykit (Hothorn

& Zeileis, 2015), mixmgfa (available at https://github.com/KimDeRoover/mixmgfa/).

Additionally, we created the R package EFAtree (https://github.com/philippsterner/

EFAtree) which implements the EFA trees presented by Sterner and Goretzko (2023).

The paper was written using the package papaja (Aust & Barth, 2020). All code needed

to reproduce the analyses is openly available at https://osf.io/n8x5d/.

5.9.3 Results

5.9.3.1 MG-EFA.

To demonstrate the use of MG-EFA, we investigated MI of the OUS on the covariate

region, that is, between eastern, southern, and western participants. Table 12 shows

that the configural model (with two latent factors for all groups) has an acceptable

model fit. The χ2-difference tests for both the comparisons of the configural and

the metric as well as the metric and the scalar model is significant (both p-values

are < 0.005). Judging by these test results, we would have to conclude that neither

https://github.com/KimDeRoover/mixmgfa/
https://github.com/philippsterner/EFAtree
https://github.com/philippsterner/EFAtree
https://osf.io/n8x5d/
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loadings nor intercepts are equal across the three groups. However, as mentioned, the

χ2-difference test is highly sensitive to sample size, which is quite large for the data

set at hand. Differences in fit indices reveal that the fit of the metric model (where

loadings are constrained to be equal across groups) is not worse than the fit of the

configural model (∆RMSEA = −0.01, ∆CFI = 0.00). Based on cut-off criteria for

a comparison of a small number of groups (in our case: three), the conclusion that

metric MI is supported seems more suitable (Chen, 2007; Cheung & Rensvold, 2002).

When additionally constraining intercepts to be equal across groups, the fit becomes

worse (∆RMSEA = 0.01, ∆CFI = −0.04). Consequently, scalar MI seems to not be

supported. We could conclude that latent covariances or relations (e.g., the correlation

between IB and IH) can be compared between the three groups. Latent factor means,

on the other hand, should not be compared without additional considerations (e.g.,

before establishing partial scalar MI).

Table 12
Study 2: Results of multi-group exploratory factor analysis between regions.

Model χ2 df p-value RMSEA ∆ RMSEA CFI ∆ CFI
configural 1,185.15 57 0.000 0.052 0.000 0.958 0.000
metric 1,339.90 85 0.000 0.045 -0.007 0.953 -0.005
scalar 2,343.10 99 0.000 0.056 0.011 0.916 -0.037

Note. χ2 = Value of the test statistic, df = Degrees of freedom, RMSEA
= Root mean square error of approximation, ∆ RMSEA = Difference in
RMSEA between models, CFI = Comparative fit index, ∆ CFI = Difference
in CFI between models. A p-value of 0 means that it is < 0.001.

As mentioned, the primary focus of EFA-based methods is to investigate differences

in both main- and cross-loadings between groups. Although for this specific sample

metric MI seems to be supported (evaluated across all items), it might still be informative

to investigate the loadings of the individual items between groups. This lets us identify

problematic items that could be changed or dropped to increase the invariance of the

total scale. To achieve loading matrices that are comparable across groups, we used

MGFR with oblimin rotation for all groups and GP as the agreement criterion. The

weight of the agreement criterion was set to 0.5, as recommended starting settings

by De Roover and Vermunt (2019; for more detailed recommendations on how to set

the weight w, see Figure 1 in De Roover and Vermunt, 2019). Additionally, MGFR

as implemented in Latent Gold provides Wald hypothesis tests that indicate which



5.9 Empirical Demonstration 85

loadings on which factor significantly differ across groups. Of course, Wald hypothesis

tests to identify significant differences in loadings could also be applied with any other

rotation method.

Table 13
Study 2: Unstandardized loading matrices of multi-group exploratory factor analysis
of the Oxford Utilitarianism Scale with region as grouping covariate

Eastern Southern Western
Items IH IB IH IB IH IB
Item 1 0.30 0.74 0.29 0.81 0.26 0.77
Item 3 0.01 1.20 0.11 1.20 0.16 1.17
Item 5 -0.17 0.78 -0.25 0.88 -0.26 0.88
Item 7 0.11 0.67 0.20 0.50 -0.02 0.69
Item 9 0.02 1.02 -0.11 0.94 -0.03 0.91
Item 2 1.00 0.16 1.12 0.13 1.14 0.15
Item 4 0.75 -0.05 0.51 0.20 0.58 0.10
Item 6 1.03 -0.04 0.97 -0.08 1.00 -0.06
Item 8 1.14 0.03 1.16 -0.03 1.11 -0.03

Note. IB and IH denote the latent factors impartial beneficence and instrumental
harm, respectively. The factor solutions were obtained by applying multi-group
factor rotation with oblimin rotation for all groups and generalized procrustes as
the agreement criterion. The weight of the agreement criterion was set to 0.5.

Table 13 shows the resulting loading matrices. Table 14 shows the results of Wald

hypothesis tests of loading invariance across the three regions. Due to multiple testing,

we corrected the p-values with the Benjamini-Hochberg correction to control the false-

discovery rate (Benjamini & Hochberg, 1995), using a level of significance of 0.05

(in the table, the corrected p-values are reported). Many main- and cross-loadings

are significantly non-invariant across the three regions. For items 1, 5, 6, and 8 on

factor IH and item 1, 2, 3, 5, 6, 8, and 9 on factor IB, the null hypothesis of loading

invariance is supported by the data. However, because of the large sample size, these

hypothesis tests have a high power to detect even small (and possibly irrelevant)

loading differences. It is thus important to also inspect the loading matrices to pinpoint

especially critical items.8 Most notable are the loading differences between regions on

items 7 (“It is just as wrong to fail to help someone as it is to actively harm them

yourself.”) and 4 (“If the only way to ensure the overall well-being and happiness of
8Effect sizes for MI are available that are independent of the sample size, for example EPC-interest

(Oberski, 2014), dMACS (Nye & Drasgow, 2011), and extensions of dMACS (Gunn et al., 2020).
However, these effect sizes are not (yet) applicable to models with cross-loadings. To identify critical
items, it might thus be advisable to inspect items with the highest differences in loadings across groups
relative to each other. As an outlook, researchers might use the outlying-variable detection method
proposed by De Roover et al. (2017), which is also applicable to loadings of an EFA.
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the people is through the use of political oppression for a short, limited period, then

political oppression should be used.”). The main loading of item 7 is lower for the

southern region (compared to eastern and western regions), while it also has a higher

cross-loading in this group. Similarly, on item 4, both the southern and the western

region have a lower main-loading than the eastern region, where the southern region

again shows a notable cross-loading of 0.20 on this item. Attempts to increase MI of

the OUS between regions could start with these two items.

Table 14
Study 2: Results of Wald hypothesis tests of loading invariance
across the three regions after multi-group exploratory factor analysis

Factor Item Test statistic df p-value
IH Item 1 1.99 2 0.370

Item 2 17.01 2 0.000
Item 3 24.89 2 0.000
Item 4 24.48 2 0.000
Item 5 4.67 2 0.146
Item 6 2.37 2 0.349
Item 7 37.91 2 0.000
Item 8 3.65 2 0.206
Item 9 12.16 2 0.004

IB Item 1 2.52 2 0.420
Item 2 0.80 2 0.670
Item 3 1.18 2 0.664
Item 4 27.86 2 0.000
Item 5 6.31 2 0.097
Item 6 1.05 2 0.664
Item 7 25.88 2 0.000
Item 8 4.48 2 0.198
Item 9 7.00 2 0.090

Note. IB and IH denote the latent factors impartial beneficence and
instrumental harm, respectively. df = Degrees of freedom. A combi-
nation of item and factor indicates for which item the invariance of
loadings of this item on which factor was tested. For example: Item
1 and IB shows result of test of invariance of loadings of item 1 on
factor IB across the three regions. p-values are Benjamini-Hochberg
corrected. A p-value of 0.000 indicates that it is < 0.001.

5.9.3.2 MMG-EFA.

We used MMG-EFA to unravel loading non-invariance of the OUS with regard to

the covariate country. MMG-EFA is especially useful for this covariate because there

are a large number of different countries, specifically 45 countries, in the data. While

it is very unlikely that they all share the same loadings, it is plausible to assume that

there are clusters of countries for which loadings are invariant. To allow for reliable

estimations in each potential cluster, we only considered countries with sample sizes
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larger than 200. This led to 33 countries being considered in the analysis.

Table 15
Study 2: Fit statistics for the ten mixture multi-group exploratory
factor analyses of the Oxford Utilitarianism Scale

Number of clusters log L fp BIC CHull scree ratio
1 -348,941.3 707 700,354.7 NA
2 -348,826.6 722 700,177.7 1.54
3 -348,752.3 737 700,081.6 1.63
4 -348,706.8 752 700,042.9 1.32
5 -348,672.3 767 700,026.3 1.14
6 -348,641.9 782 700,018.0 1.74
7 -348,624.4 797 700,035.5 1.17
8 -348,609.8 812 700,058.8 NA
9 -348,594.5 827 700,080.5 1.21
10 -348,582.1 842 700,108.2 NA

Note. log L = loglikelihood, fp = number of free parameters, BIC =
Bayesian information criterion, CHull = convex hull. NAs can some-
times occur in the CHull procedure. Raising the number of random
starts might alleviate this issue but in our case, even with 100 random
starts some solutions fell under the hull.

First, we conducted MMG-EFAs with one to ten clusters. According to both the

BIC (with the number of groups as sample size) and the CHull procedure, the suggested

number of clusters is six (see Table 15), which is the solution we selected.
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Table 16
Study 2: Composition of the clusters for the six-cluster solution of mixture
multi-group exploratory factor analysis

Cluster Continent Region Country
Cluster 1 Americas Southern Argentina

Americas Western Brazil
Americas Southern Colombia
Asia Eastern India
Europe Western Italy
Europe Western Netherlands
Europe Western Portugal
Europe Western Romania
Asia Southern Turkey

Cluster 2 Oceania Western Australia
Europe Western Austria
Europe Western Bulgaria
Americas Western Canada
Europe Western Switzerland
Europe Western Germany
Europe Western Denmark
Europe Western Spain
Europe Western Greece
Europe Western Croatia
Europe Eastern North Macedonia
Asia Eastern Pakistan
Asia Southern Philippines
Europe Western Serbia
Europe Southern Slovakia
Americas Western United States of America

Cluster 3 Asia Eastern China
Cluster 4 Europe Southern Czechia

Europe Southern France

Europe Western United Kingdom of
Great Britain and Northern Ireland

Europe Western Poland
Cluster 5 Asia Eastern Japan

Europe Western Russian Federation
Cluster 6 Europe Southern Hungary

Table 16 shows the composition of these six clusters. Each country was assigned

to the cluster for which its posterior cluster membership probability ẑgk was highest.

It should be mentioned that ẑgk can take on any value between zero and one, which

allows groups to have high posterior cluster membership probabilities for more than

one cluster. In practice, however, classification uncertainty is rare and limited because

groups usually contain enough sample size for the model to be quite certain about

their classification. In addition to the names of the countries, we added the region (as

assigned in Bago et al., 2022) as well as the geographic region (i.e., the continent a

country belongs to). The clustering does not seem to follow an obvious structure in

terms of regions or continents. However, what can be concluded is that the loadings
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within each cluster are invariant (given that the correct number of clusters was selected).

Two countries, China and Hungary, have their own cluster, which means that they do

not share equivalent loadings with any other country.9

Table 17
Study 2: Unstandardized loading matrices of the mixture multi-group exploratory
factor analysis of the Oxford Utilitarianism Scale with clusters as grouping
covariate

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6
Items IB IH IB IH IB IH IB IH IB IH IB IH
Item 1 0.64 0.40 0.92 0.35 0.34 0.73 0.95 0.35 0.08 0.46 1.12 0.38
Item 3 1.21 0.22 1.24 0.26 0.90 0.31 1.05 0.40 0.94 0.09 1.24 0.32
Item 5 0.83 -0.07 0.77 -0.16 0.61 0.01 0.82 -0.10 0.93 -0.10 0.49 -0.04
Item 7 0.57 0.24 0.56 0.10 0.97 0.02 0.85 -0.03 0.99 0.04 0.62 0.08
Item 9 1.02 0.06 0.82 0.08 1.07 0.12 0.84 0.02 0.98 0.28 0.60 -0.07
Item 2 0.19 1.17 0.32 1.12 0.51 0.80 0.31 1.02 0.30 1.00 0.24 0.92
Item 4 0.41 0.37 0.18 0.58 0.06 0.76 0.10 0.78 0.33 0.64 0.04 1.00
Item 6 0.28 0.81 0.04 0.97 0.03 1.12 -0.01 1.09 0.25 0.88 -0.06 1.04
Item 8 0.07 1.21 0.08 1.09 0.49 0.88 0.23 0.91 0.16 1.21 0.34 0.64

Note. IB and IH denote the latent factors impartial beneficence and instrumental
harm, respectively. The factor solutions were obtained by applying multi-group
factor rotation with oblimin rotation for all groups and generalized procrustes as
the agreement criterion. The weight of the agreement criterion was set to 0.5.

Table 17 shows the loading matrix of each cluster after a MGFR (i.e., the cluster

membership was used as a new grouping covariate). Again, the weight of the GP

agreement criterion was set to 0.5. Table 18 shows the results of Wald hypothesis tests

of loading invariance across the six clusters for all combinations of items and factors.

As can be seen, all main- and cross-loadings but one are significantly non-invariant

(after Benjamini-Hochberg correction). Only for item 5 on the factor IH (which is

a cross-loading), the null hypothesis of loading invariance is supported by the data.

When comparing the loading matrices across clusters, we can see that for some items

in some clusters there was a shift in main- and cross-loadings (e.g., item 1 in cluster 3

and 5, or item 4 in cluster 1). Additionally, some items show large cross-loadings in

some clusters, whereas there are no cross-loadings on these items in other clusters. For

example, item 8 has a large cross-loading in cluster 3 and 6, but no cross-loading in

cluster 1 and 2.
9If a group has its own cluster, it is important to check whether the sample size is large enough to

allow for reliable estimations in this cluster. For our example, this was the case (nChina = 1, 175 and
nHungary = 863).
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Table 18
Study 2: Results of Wald hypothesis tests of loading invariance across
the six clusters of mixture multi-group exploratory factor analysis

Factor Item Test statistic df p-value
IH Item 1 61.22 5 0.000

Item 2 76.76 5 0.000
Item 3 50.23 5 0.000
Item 4 135.13 5 0.000
Item 5 14.99 5 0.010
Item 6 65.57 5 0.000
Item 7 46.32 5 0.000
Item 8 120.13 5 0.000
Item 9 27.69 5 0.000

IB Item 1 323.90 5 0.000
Item 2 61.38 5 0.000
Item 3 74.39 5 0.000
Item 4 77.17 5 0.000
Item 5 38.38 5 0.000
Item 6 102.41 5 0.000
Item 7 111.62 5 0.000
Item 8 128.33 5 0.000
Item 9 74.06 5 0.000

Note. IB and IH denote the latent factors impartial beneficence and
instrumental harm, respectively. df = Degrees of freedom. A combi-
nation of item and factor indicates for which item the invariance of
loadings of this item on which factor was tested. For example: Item
1 and IB shows result of test of invariance of loadings of item 1 on
factor IB across the four clusters. p-values are Benjamini-Hochberg
corrected. A p-value of 0.000 indicates that it is < 0.001.

A few things should be noted here: First, the large sample size leads to a high power

of the Wald hypothesis test, rendering even practically irrelevant loading differences

between clusters statistically significant. Second, the higher the number of clusters

(or groups, in general), the more difficult it becomes for MGFR to rotate the loading

matrices to a solution that is interpretable within each cluster but also comparable

between clusters. Thus, it might be beneficial to change the rotation or agreement

criterion as well as try different weights between these two criteria according to

recommendations by De Roover and Vermunt (2019). This might yield results that

are easier to interpret. Table 19 shows the loading matrices when the weight of the

agreement criterion was set to 0.1 (i.e., putting more emphasis on simple structure

rotation). In our case, while some loadings changed in size, the positions of main- and

cross-loadings did not change notably.
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Table 19
Study 2: Unstandardized loading matrices of the mixture multi-group exploratory
factor analysis of the Oxford Utilitarianism Scale with clusters as grouping
covariate with more weight on rotation than on agreement

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6
Items IB IH IB IH IB IH IB IH IB IH IB IH
Item 1 0.62 0.35 0.91 0.24 0.24 0.71 0.92 0.24 0.02 0.47 1.13 0.19
Item 3 1.22 0.10 1.23 0.11 0.86 0.23 1.02 0.27 0.97 0.03 1.25 0.10
Item 5 0.86 -0.17 0.81 -0.26 0.62 -0.04 0.84 -0.20 0.98 -0.16 0.51 -0.13
Item 7 0.56 0.18 0.57 0.03 0.97 -0.07 0.86 -0.14 1.03 -0.03 0.63 -0.03
Item 9 1.04 -0.05 0.82 -0.02 1.06 0.03 0.84 -0.08 0.98 0.22 0.62 -0.18
Item 2 0.07 1.20 0.20 1.12 0.40 0.77 0.21 0.99 0.16 1.01 0.19 0.90
Item 4 0.38 0.34 0.12 0.57 -0.03 0.76 0.02 0.78 0.25 0.64 -0.02 1.02
Item 6 0.21 0.81 -0.07 1.00 -0.12 1.13 -0.12 1.10 0.13 0.89 -0.12 1.08
Item 8 -0.06 1.25 -0.04 1.11 0.38 0.84 0.14 0.90 -0.01 1.24 0.31 0.59

Note. IB and IH denote the latent factors impartial beneficence and instrumental
harm, respectively. The factor solutions were obtained by applying multi-group
factor rotation with oblimin rotation for all groups and generalized procrustes as
the agreement criterion. The weight of the agreement criterion was set to 0.1.

In general, we could now inspect the item content and link loading differences

between clusters (i.e., countries) to theory and empirical evidence. By doing so, we

might rephrase items to increase the invariance of the OUS. Alternatively, we could

also continue the analyses per cluster because loadings are invariant within each cluster.

For example, we could investigate scalar MI within each cluster and simply refrain

from comparing countries from different clusters.
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5.9.3.3 EFA Trees.

Because EFA trees can simultaneously evaluate multiple covariates for MI, we

investigated MI with regard to level of religiosity, region, gender, and age. We used

the following settings: level of significance was set to α = 0.005, the maximum tree

depth to three (including the first node, i.e., a maximum number of two splits), and the

minimum sample size per node to n = 400. These settings allow for an interpretable

tree but with possible interactions (due to restricted tree depth) and reliable parameter

estimates in each node (due to large minimum sample size per node). At the same

time, the low level of significance mitigates the risk of finding practically irrelevant but

statistically significant non-invariance. Note that we can only “afford” these rather

strict settings because of the large sample. EFA trees could also be used with more

liberal settings in smaller samples (see Sterner & Goretzko, 2023).

Table 20
Study 2: Hypothesis test result in the parent node of the EFA tree

Region Gender Religiosity Age
Test statistic 577.966 595.155 294.987 452.478

p-value 0.000 0.000 0.000 0.000

Note. Test statistics were a χ2 statistic for categorical and a supLM statistic
for continuous covariates. A p-value of 0.000 indicates that it is < 0.001. If mul-
tiple p-values are below the level of significance, the covariate with the smallest
p-value is selected.

Table 20 shows the hypothesis test results in the parent node of the EFA tree.

All p-values are below α, so the covariate with the smallest p-value is selected for

splitting (in this case region with a p-value of 2.9× 10−89). The tree split the data into

a group with only eastern observations and a group with both southern and western

observations.
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Table 21
Study 2: Hypothesis test result in the eastern node of the EFA tree

Region Gender Religiosity Age
Test statistic 0.000 119.487 70.671 121.313

p-value NA 0.005 0.001 0.000

Note. Test statistics were a χ2 statistic for categorical and a supLM statistic
for continuous covariates. A p-value of 0.000 indicates that it is < 0.001. If
multiple p-values are below the level of significance, the covariate with the
smallest p-value is selected. The covariate region was not tested in this node
because with only eastern observations, no further split on the covariate region
is possible.

Table 22
Study 2: Hypothesis test result in the southern and western node of the EFA
tree

Region Gender Religiosity Age
Test statistic 251.377 568.532 218.897 454.176

p-value 0.000 0.000 0.000 0.000

Note. Test statistics were a χ2 statistic for categorical and a supLM statistic
for continuous covariates. A p-value of 0.000 indicates that it is < 0.001. If mul-
tiple p-values are below the level of significance, the covariate with the smallest
p-value is selected.

Table 21 and Table 22 show the hypothesis test results in these two resulting nodes,

respectively. In both nodes, the EFA tree split the data on the covariate age10, resulting

in four final leaf nodes:

• eastern participants with age 27 or younger,

• eastern participants with age 28 or older,

• southern or western participants with age 24 or younger,

• southern or western participants with age 25 or older.

Figure 3 illustrates this tree structure with corresponding sample sizes in the leaf

nodes. It is very likely that the tree would have continued to split the data, had we

allowed deeper trees. However, this would have decreased the interpretability because

it might have led to eight leaf nodes. If interpretation of the resulting partitions (i.e.,

potential three-way interactions between covariates) provides substantial increase in
10It is a coincidence that the tree further split the data on the covariate age in both nodes. It might

have also happened that another covariate for splitting the data was chosen in one (or both) nodes.
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information gained, deeper trees are easily possible (e.g., see Brandmaier et al., 2013

for a SEM tree with eight leaf nodes). We continued our investigation with four leaf

nodes.

Parent node
N = 21,746

Region = Southern 
and WesternRegion = Eastern

Age ≤ 27
N = 2,149

Age > 27
N = 613

Age ≤ 24
N = 12,338

Age > 24
N = 6,646

Figure 3
Study 2: Resulting partition after applying EFA trees to the Oxford Utilitarianism Scale
data.

EFA trees do not provide information on which parameters differ between these four

groups. For now, we can only conclude that there is a violation of MI with regard to an

interaction between the covariates region and age. To better understand possible sources

of non-invariance, EFA trees can be combined with MGFR. The node membership can

be treated as a new grouping covariate. By applying MGFR, the loading matrices in

the nodes can be rotated to increase interpretability of the parameters within nodes

while also ensuring comparability between nodes (i.e., groups).
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Table 23
Study 2: Unstandardized loading matrices of the exploratory factor analysis
tree of the Oxford Utilitarianism Scale with tree leaf nodes as grouping
covariate

Eastern,
Age ≤ 27

Eastern,
Age > 27

South-West,
Age ≤ 24

South-West,
Age > 24

Items IH IB IH IB IH IB IH IB
Item 1 0.32 0.75 0.46 0.58 0.33 0.80 0.31 0.67
Item 3 0.05 1.20 0.20 0.94 0.18 1.18 0.22 1.12
Item 5 -0.15 0.75 -0.05 0.77 -0.20 0.82 -0.24 0.94
Item 7 0.24 0.60 -0.12 0.99 0.08 0.56 0.14 0.71
Item 9 0.07 1.01 0.06 0.97 -0.01 0.91 -0.03 0.90
Item 2 1.03 0.17 0.96 0.20 1.19 0.14 1.18 0.14
Item 4 0.73 -0.07 0.79 0.12 0.52 0.15 0.65 0.14
Item 6 1.04 0.00 1.04 -0.11 1.00 -0.07 0.95 -0.02
Item 8 1.16 0.04 1.12 0.10 1.14 -0.02 1.14 -0.01

Note. IB and IH denote the latent factors impartial beneficence and instru-
mental harm, respectively. South-West stands for both regions southern and
western. The factor solutions were obtained by applying multi-group factor
rotation with oblimin rotation for all groups and generalized procrustes as the
agreement criterion. The weight of the agreement criterion was set to 0.5.

Table 23 shows the loading matrices for all four leaf nodes after applying MGFR

(with the weight of the GP agreement criterion set to 0.5). Table 24 shows the

results of Wald hypothesis tests of loading invariance across the four leaf nodes for

all combinations of items and factors. Again, many main- and cross-loadings are

significantly non-invariant (after Benjamini-Hochberg correction). Only for items 1, 5,

6, 8, and 9 on factor IH and item 2, 6, 8, and 9 on factor IB, the null hypothesis of

loading invariance is supported by the data. Item 7 (“It is just as wrong to fail to help

someone as it is to actively harm them yourself.”) sticks out in both “younger” leaf

nodes. For younger eastern participants, item 7 shows a lower main-loading compared

to both “older” leaf nodes and also has the highest cross-loading in this leaf node.

For younger southern-western participants, it has the lowest cross- but also the lowest

main-loading (in absolute terms). Item 3 has almost no cross-loading in the younger

eastern node but has quite high cross-loadings (> 0.20) in both older nodes (eastern and

southern-western). Item 4 is especially noticeable in the younger southern-western node,

where its main-loading is more than 0.10 lower compared to the older southern-western

node and more than 0.20 lower than in both eastern nodes. Items 7 and 4 here too

seem to be the most prominent items with regard to metric non-invariance.
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Table 24
Study 2: Results of Wald hypothesis tests of loading invariance
across the four leaf nodes of the exploratory factor analysis tree

Factor Item Test statistic df p-value
IH Item 1 4.63 3 0.225

Item 2 30.14 3 0.000
Item 3 21.96 3 0.000
Item 4 37.48 3 0.000
Item 5 10.59 3 0.025
Item 6 6.88 3 0.113
Item 7 31.72 3 0.000
Item 8 0.27 3 0.960
Item 9 6.55 3 0.113

IB Item 1 23.72 3 0.000
Item 2 1.75 3 0.630
Item 3 12.66 3 0.010
Item 4 23.78 3 0.000
Item 5 26.08 3 0.000
Item 6 6.39 3 0.106
Item 7 43.92 3 0.000
Item 8 8.00 3 0.069
Item 9 6.52 3 0.106

Note. IB and IH denote the latent factors impartial beneficence and
instrumental harm, respectively. df = Degrees of freedom. A combi-
nation of item and factor indicates for which item the invariance of
loadings of this item on which factor was tested. For example: Item
1 and IB shows result of test of invariance of loadings of item 1 on
factor IB across the four leaf nodes. p-values are Benjamini-Hochberg
corrected. A p-value of 0.000 indicates that it is < 0.001.
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5.9.3.4 AESEM.

We used the four nodes generated by the EFA tree (cf. Figure 3) as groups across

which AESEM is applied. AESEM could also be applied to a covariate with more

groups (e.g., country with its 45 levels). However, by using the results of the EFA trees,

we can keep the results easier to interpret while also demonstrating how the methods

can be combined.

Table 25
Study 2: Unstandardized loading matrix of
exploratory alignment of the Oxford Utilitarianism
Scale (weighted average loadings across invariant
groups)

Items IB IH
Item 1 0.86 0.28
Item 3 1.32 0.11
Item 5 0.97 -0.26
Item 7 0.80 0.07
Item 9 1.04 -0.07
Item 2 0.14 1.19
Item 4 0.16 0.68
Item 6 -0.08 1.01
Item 8 -0.04 1.18

Note. IB and IH denote the latent factors impartial
beneficence and instrumental harm, respectively.

Table 25 shows the average loadings weighted by the sample size across all invariant

groups (the detailed Mplus output is available at https://osf.io/n8x5d/). That is, these

are the “most invariant” parameters that can be seen as estimates in the groups for

which approximate MI holds. This is the case for almost all loadings. On the factor IB,

only the loadings of item 7 (which is a main-loading) in the younger southern-western

node, and of item 4 (cross-loading) in the younger eastern node were non-invariant

compared to all other nodes. On the factor IH, the loadings of item 3 (cross-loading) in

the eastern younger node, and item 4 (main-loading) in the younger southern-western

node were non-invariant compared to all other nodes. Only for these two groups, these

specific parameters cannot be seen as invariant estimates. It can be concluded that

the proportion of non-invariant loadings is low; only four out of 72 loadings, that is,

5.6% are non-invariant (four nodes with 18 loadings each = 72 loadings). By applying

AESEM to the nodes resulting from an EFA tree, we were thus able to achieve an

https://osf.io/n8x5d/
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approximately invariant set of loadings. This follow-up analysis could even be used

to assess the reason why the EFA tree split the data. It might be that the EFA tree

split the data because non-invariance on the four mentioned loadings was too large or

because of other parameter differences (e.g., factor covariances or residual variances),

given that most loadings are approximately non-invariant (after alignment).

5.9.4 Synthesis of the Results

The various analyses revealed some items that stick out with regard to non-invariance.

Notably, items 4 and 7 showed lower main-loadings and higher cross-loadings compared

to other items, both across regions (MG-EFA) and regions interacting with age (EFA

trees and AESEM). Additionally, the analysis with MMG-EFA revealed that the

investigation of MI across regions as defined by Bago et al. (2022) might not be too

useful because many countries from the same region were assigned to different clusters.

Taking these results together, it might be beneficial to investigate noticeable items

against the background of the covariates across which they are non-invariant (here for

example: items 4 and 7 across regions and age group). Additionally, results of the

MMG-EFA can reveal potentially more adequate clusters of groups than what might

be provided by prior classifications (e.g., the regions by Bago et al. (2022)).

In case of non-invariance, like in our example, the integration of the results also

depends on the stage of the research process. Similar to single-group settings, EFA-

based methods to investigate MI lend themselves to be applied already during scale

development. In this stage, changes to the item pool are often still possible, and

non-invariance could be addressed directly, for example by reformulating items 4 and 7

in the example above. Issues of non-invariance could then be prevented in the future.

If a scale is already developed and EFA-based methods are applied to assess metric MI

for both main- and cross-loadings, a violation of MI could also be seen as an interesting

finding by itself. Using domain expertise, we could reason about potential causes of

MI and model these causes accordingly or test our hypotheses about them (Sterner

et al., 2024). If EFA-based methods are used as a precursor of CFA-based analyses,

one could also aim for partial MI, for example by testing whether freeing certain main-

or cross-loadings in a stepwise manner would improve the fit of the model. For this,

the results of the EFA-based analysis, that is, which main- and cross-loadings were



5.10 Discussion 99

significantly different, could be taken into account, too.

In closing, we want to highlight again that we applied all methods for didactic

purposes. The choice of methods for each individual application depends on the data

set, the available covariates, the research question, and the assumptions one is willing

to make (cf. Table 11).

5.10 Discussion

We presented EFA-based methods to investigate MI. The focus of these methods is

on the investigation of metric MI, that is, the invariance of main- and cross-loadings

across groups. For each method, we detailed the model specification as well as its

advantages and drawbacks. We demonstrated the assumptions that have to be made

and the insights we gain in return in an empirical example. On top of that, we showed

how EFA-based MI methods can be combined with MGFR to resolve the rotational

indeterminacy in multi-group settings.

The main take-away of our presentation and demonstration is that the optimal

choice of a method depends on the question you want to answer, combined with

the specificities of the data at hand. A detailed (yet not exhaustive) overview of

prerequisites and capabilities of each method is given in Table 11. Ideally, the methods

are combined to thoroughly scrutinize the data for MI. For example, the clusters or

nodes resulting from MMG-EFA or EFA-trees, respectively, can be used as groups

in MG-EFA, and the resulting loading matrices can be rotated by MGFR. In this,

covariates with many groups can be reduced to a smaller number of clusters or nodes,

for which we can then, for example, investigate scalar MI by means of hypothesis

testing. We refrained from addressing scalar MI due to the focus of EFA-based methods

on metric MI. However, as we will discuss shortly, EFA-based methods could function

as a precursor of CFA-based investigations of scalar MI. Even further, clusters or

nodes resulting from prior analyses could be used as groups in multi-group (E)SEM

(Asparouhov & Muthén, 2009), allowing us to then model structural relations between

our constructs of interest.

As mentioned in the introduction, EFA-based methods differ from CFA-based

methods mainly in the fact that no (potentially overly restrictive) zero-loadings have to
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be imposed. This allows for a more detailed investigation of metric MI because violations

of metric MI due to cross-loadings can be considered. However, the investigation of

scalar MI is hampered. For example, with EFA trees, the intercepts cannot be included

in the model estimation (in lavaan language: the argument meanstructure must not

be set to TRUE). The intercepts of the items (the parameters we want to test for

invariance) are intertwined with the factor means (the parameters we want to compare

between groups). Even if the intercepts were equal across groups, an EFA tree would

split the data if the factor means were different between groups. Similarly, the results

of MMG-EFA with clustering based on loadings do not consider (non-)invariance of

intercepts. It is possible to cluster the groups on both loadings and intercepts. However,

this entails the assumption that there is one underlying clustering for both of these

sets of parameters (Leitgöb et al., 2023). It is thus more advisable to first cluster the

groups based on the loadings and then, per obtained cluster, continue to cluster the

groups based on the intercepts. When applying AESEM, both loadings and intercepts

are considered and, thus, scalar invariance is also investigated. But because we are also

investigating all cross-loadings for invariance, there are more loadings than intercepts

that are being estimated and aligned (if the specified model has two or more factors).

It should be examined whether this potential dominance of loadings (when minimizing

equation (11)) has some undesired effect on the assessment of scalar MI.

In summary, EFA-based methods are not to be seen as methods “competing” with

CFA-based ones, for example the methods detailed in Kim et al. (2017). Rather, they

are a useful addition to the MI-toolbox that broaden the capabilities of investigating

MI along an exploratory-confirmatory continuum (Nájera et al., 2023). Especially in

the context of scale development, it can be beneficial to apply EFA-based methods

to investigate the violations of MI due to cross-loadings, before using CFA-based

methods to assess scalar MI. An EFA-based method is able to identify potentially

non-invariant cross-loadings and allows us to alter the model based on these results

(which we then have to validate on new data, of course). This approach is superior to

the aforementioned strategy of (repeatedly) modifying CFA models in a data-driven

way because it capitalizes less on chance (MacCallum et al., 1992).
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5.10.1 Future Research

All presented methods are rather new. While they have been investigated thoroughly

in the original papers that introduced them, more simulated and empirical research is

needed to better understand their behavior under various conditions. As mentioned

in the introduction, the alignment method can be seen as the method that has been

researched the most among all methods presented here (Flake & McCoach, 2018;

Lomazzi, 2018; Luong & Flake, 2023; Munck et al., 2018), but much less so when

cross-loadings are present (i.e., when AESEM is used). For all the methods at hand,

not much is known about their performance when, for example, data are non-normal,

covariates are highly correlated, or MI is violated in a nuanced way (for example, a

U-shaped relation between values of a continuous covariate and parameter values).

More broadly, it would be interesting to research and demonstrate how exactly

EFA-based methods can be used as a precursor of CFA-based analyses. On the one

hand, this can be done in methodological studies, for example, by investigating the

benefits of refining a model using EFA-based methods in the context of MI (e.g., instead

of using modification indices in the context of CFA). On the other hand, and maybe

even more importantly, tutorial papers are needed that showcase potential workflows

of MI investigations to provide guidance for applied researchers. Somaraju et al. (2022)

showed a workflow that details use cases and follow up analyses in the context of

MG-CFA and alignment. Such workflows could be extended by preceding EFA-based

analyses. In this, the different groups and models entering the CFA-based analyses

would have been scrutinized, in an exploratory manner, for model (mis-)specifications

and metric MI beforehand, hopefully allowing for a more well-founded investigation of

scalar MI.
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Table 26
Study 2: Items and corresponding subscales of the OUS (Kahane et al., 2018)

ID Item subscale

1 If the only way to save another person’s life during an emergency is to
sacrifice one’s own leg, then one is morally required to make this sacrifice.

IB

2 It is morally right to harm an innocent person if harming them is a
necessary means to helping several other innocent people.

IH

3 From a moral point of view, we should feel obliged to give one of our
kidneys to a person with kidney failure since we don’t need two kidneys
to survive, but really only one to be healthy.

IB

4 If the only way to ensure the overall well-being and happiness of the
people is through the use of political oppression for a short, limited
period, then political oppression should be used.

IH

5
From a moral perspective, people should care about the well-being of
all human beings on the planet equally; they should not favor the well-
being of people who are especially close to them either physically or
emotionally.

IB

6 It is permissible to torture an innocent person if this would be necessary
to provide information to prevent a bomb going off that would kill
hundreds of people.

IH

7 It is just as wrong to fail to help someone as it is to actively harm them
yourself.

IB

8 Sometimes it is morally necessary for innocent people to die as collateral
damage—if more people are saved overall.

IH

9 It is morally wrong to keep money that one doesn’t really need if one can
donate it to causes that provide effective help to those who will benefit a
great deal.

IB

Note. IB = Impartial Beneficence; IH = Instrumental Harm



6 STUDY 3: A CAUSAL FRAMEWORK 112

6 Study 3: A Causal Framework for the Comparability of Latent Variables

Sterner, P., Pargent, F., Deffner, D., & Goretzko, D. (2024). A Causal Framework

for the Comparability of Latent Variables. Structural Equation Modeling: A Multidis-

ciplinary Journal, 31 (5), 747–758. https://doi.org/10.1080/10705511.2024.2339396

The authors made the following contributions. Philipp Sterner: Conceptualization,

Methodology, Formal Analysis, Visualization, Writing - Original Draft Preparation,

Writing - Review & Editing; Florian Pargent: Conceptualization, Methodology, Writing

- Review & Editing; Dominik Deffner: Methodology, Writing - Review & Editing; David

Goretzko: Conceptualization, Methodology, Writing - Review & Editing, Supervision.

6.1 Abstract

Measurement invariance (MI) describes the equivalence of measurement models of

a construct across groups or time. When comparing latent means, MI is often stated as

a prerequisite of meaningful group comparisons. The most common way to investigate

MI is multi-group confirmatory factor analysis (MG-CFA). Although numerous guides

exist, a recent review showed that MI is rarely investigated in practice. We argue that

one reason might be that the results of MG-CFA are uninformative as to why MI does

not hold between groups. Consequently, under this framework, it is difficult to regard

the study of MI an interesting and constructive step in the modeling process. We show

how directed acyclic graphs (DAGs) from the causal inference literature can guide

researchers in reasoning about the causes of non-invariance. For this, we first show how

DAGs for measurement models can be translated into the path diagrams used in the

linear structural equation model (SEM) literature. We then demonstrate how insights

gained from this causal perspective can be used to explicitly model encoded causal

assumptions with moderated SEMs, allowing for a more enlightening investigation of

MI. Ultimately, our goal is to provide a framework in which the investigation of MI

is not deemed a “gateway test” that simply licenses further analyses. By enabling

researchers to consider MI as an interesting part of the modeling process, we hope to

increase the prevalence of investigations of MI altogether.

https://doi.org/10.1080/10705511.2024.2339396
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6.2 Introduction

With increasingly larger and culturally diverse data sets available, social and

behavioral scientists are able to research human experiences and behavior in much

broader contexts. For example, extensive studies have been conducted on cultural

differences in moral judgement (Bago et al., 2022), prosocial behavior (House et al.,

2020), and the values of emotions in societies (Bastian et al., 2014). These new

opportunities come with new challenges: we need transparent and objective rules about

how to adequately compare groups and under which assumptions we are allowed to

generalize results from one group to another. Recently, Deffner et al. (2022) have

presented a detailed framework based on causal inference that does just that: Following

simple graphical rules of so-called directed acyclic graphs (DAGs), their framework

enables researchers to draw inferences and derive licensing assumptions about which

comparisons and generalizations are warranted. Researchers working with variables that

are observable, like dictator game choices in the examples of Deffner and colleagues, can

readily draw on these authors’ framework. However, as Deffner et al. (2022) themselves

state, psychologists are often interested in the constructs underlying the observed

variables (Westfall & Yarkoni, 2016). As psychologists, we do not care whether you

reported you enjoy going out with friends — we care about how extraverted you are. If

we use observed variables as direct representations of the underlying construct (e.g.,

by building a sum score of questionnaire items), we disregard the measurement error

inherent in all psychological measures (Lord & Novick, 1968; Van Bork et al., 2022).

Ignoring this measurement error in the modeling process can lead to distorted inference.

Our model would not be able to distinguish between variation in item responses caused

by the construct and variation caused by error (also referred to as unique item variance).

Westfall and Yarkoni (2016) for example showed that disregarding measurement error

leads to inflated type-I-error rates when trying to statistically control for confounding

covariates. As a remedy, they suggest using structural equation models (SEM), which

are models that explicitly include the measurement error (Bollen, 1989). In a SEM,

constructs are modeled in a measurement model, where a latent variable and the

unique error jointly cause the observed variables (Van Bork et al., 2022). Relationships

between constructs are modeled in the structural model (Mulaik, 2009). While the

use of measurement models allows us to take the measurement error into account,
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it poses a new challenge for comparisons between groups. In order to be able to

meaningfully compare groups, we have to make sure that any difference between groups

occurs only due to true differences (i.e., differences in the latent variable), not due

to measurement differences (Meuleman et al., 2022). This characteristic is called

measurement invariance (MI) and means that the measurement models are equivalent

across groups (Meredith, 1993; Putnick & Bornstein, 2016; Vandenberg & Lance, 2000).

Although numerous guides (e.g., Putnick & Bornstein, 2016; Van De Schoot et al., 2012)

and methods (e.g., Kim et al., 2017) for investigating MI exist, a recent review showed

that it is very rarely done in practice (Maassen et al., 2023). The reasons for this are

surely diverse. We argue that one reason might be that researchers currently have only

little guidance on how to regard the study of MI an interesting and constructive step

in the modeling process. By viewing MI as an informative aspect by itself, we might be

able to learn more about psychological constructs. For this, a framework is needed that

lets us reason about how and why constructs and measures thereof function differently

across groups.

As Deffner et al. (2022) briefly explained, DAGs can be used to depict cases of

measurement (non-)invariance. Consequently, DAGs might be a useful tool for reasoning

about when latent variables are comparable and generalizable. Our aim is to pick up

where Deffner et al. (2022) left off: we want to extend their framework to the case

where claims on the construct-level are of interest so that MI is an additional part of the

modeling process. The article is structured as follows: First, we briefly introduce the

language of DAGs, which are often used in causal inference, and provide a translation

to path diagrams for measurement models used in the psychometric SEM literature.

Second, we outline the current practice of investigating MI and give a summary of

options on how to proceed when MI does not hold. Third, after framing MI as a causal

concept, we demonstrate how DAGs can be used to depict non-invariance by encoding

assumptions about possible causes of group differences. Fourth, we illustrate in a

simulated and an empirical example how following the current practice of investigating

MI might miss important aspects of non-invariance. We show how considering the

whole causal model instead can help researchers to make more informed modeling

choices.
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6.3 From DAGs to Measurement Models

We start by clarifying and defining the terms used throughout this paper. As

already mentioned, DAGs are graphical objects used in causal inference to depict causal

relationships between variables (Elwert, 2013; Pearl, 1998, 2012). They consist of

nodes (the variables) which are connected by edges (directed arrows between these

nodes). If a variable is unobserved (latent), it we enclose it by a dashed circle. An edge

between two variables A and B, denoted by A→ B, means that A has a causal effect

on B. DAGs are called directed because only single-headed arrows are allowed11, and

acyclic because no variable is allowed to be a cause of itself. In general, there are three

different causal structures, with which any set of nodes can be described (Deffner et

al., 2022; Elwert, 2013; Rohrer, 2018):

• The confounder: A← B → C, that is, the confounder B causes both A and C.

• The chain (psychologists know this as a mediator): A → B → C, that is, A

causes C through the mediator B.

• The collider: A→ B ← C, that is, A and C both cause the collider B.

By following the arrows from one variable to another, we can identify the individual

paths by which these variables are connected. For all of these constellations exist clear

rules of independences between variables (Mulaik, 2009; Pearl, 2012). We say that

two variables are conditionally independent if they are unrelated given a (possibly

empty) set of other variables. For the confounder and the chain, conditioning on (also:

adjusting for) the variable “in the middle” renders the other two variables independent.

In this case, we write A ⊥⊥ C | B, meaning that A and C are independent, conditional

on B. For the collider, A and C are unconditionally independent; conditioning on B

would in turn render them dependent and produce a non-causal association. Thus,

conditioning on a variable closes the path (i.e., “stops the flow of information”) in the

case of confounding and mediating variables but opens a non-causal path (i.e., “allows

the flow of information”) in the case of colliders (Elwert, 2013). Conditioning can be

achieved by including the variable as a predictor in the model but also by specific
11Double-headed arrows are sometimes used in DAGs to depict an unobserved common cause

between two variables (Elwert, 2013). However, a double-headed arrow between A and B is identical
to A← U → B, where U is the unobserved common cause of both A and B. We restrict ourselves to
the use of single-headed arrows in this paper.
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sampling or experimental designs (Rohrer, 2018). If a path between two variables is

closed, the path is said to be d-separated (Pearl, 1988). The risk of conditioning on

the “wrong” variable or of missing a variable that should be conditioned on highlights

that it is crucial to clearly define the causal relationships between variables prior to

analyzing or modeling the data. Failure to do so can lead to spurious associations and

distorted inference, for example by accidentally opening paths between variables that

should remain closed. We refer readers to Rohrer (2018) and Wysocki et al. (2022)

for comprehensive guides on how to approach data analysis from a causal inference

perspective.

It is important to note that DAGs depict the causal relationships between a set of

random variables without imposing particular distributions or functional forms of the

relationships (Greenland & Brumback, 2002; Rohrer, 2018; Suzuki et al., 2020). Their

strength lies in making assumptions about the relationships between variables explicit

and thereby revealing testable implications between them. That is, if the DAG depicts

the true data-generating process, applying the graphical rules of (in)dependences tells

us which associations should and should not be observable in the data (Elwert, 2013).

Even if a DAG does not fully represent the true data-generating process, it would

still be useful because all inferences rely on assumptions and a DAG might help to

identify the ones that are otherwise made implicitly. If we are not willing to make

any assumptions, no analysis can be reasonably justified (Deffner et al., 2022). In

this spirit, when setting up a DAG, it is helpful to view the absence of arrows as

strong assumptions and their presence as weak ones (Bollen & Pearl, 2013; Elwert,

2013). An omitted arrow between two variables assumes that the direct causal effect is

exactly zero, whereas an arrow assumes some form of relationship without specifying its

strength or functional form. Thus, the less we are certain about relationships between

variables, the more arrows we should draw.

To bridge the gap between DAGs and path diagrams for SEM —and more specifically,

measurement models— it is helpful to view DAGs as non-parametric SEMs (Bollen &

Pearl, 2013; Pearl, 2012). A non-parametric SEM is a model in which we do not make

assumptions about the functional form of the associations between variables. Consider

the DAG of a simple measurement model in Figure 4.
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Y1 Y2 Y3
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Figure 4
Study 3: Simple DAG of a measurement model where the observed variables Y1, Y2,
and Y3 are caused by a latent common factor C and latent unique error terms E1, E2,
and E3.

The observed variables Y1, Y2, and Y3 are caused by the unobserved (latent) variables

C and E1, E2, and E3. C is called the common factor and interpreted as a common

cause of Y1−3 (Van Bork et al., 2022). Each Y also has its unique cause E that is

independent of C. Interpreting this DAG as a non-parametric SEM, we can formally

describe the vector of observed variables Y as Y = f(C, E). Typically, when dealing

with SEMs, we assume that the relationships are linear and that the variables follow

certain distributions. This gives rise to the equation for measurement models in SEM

(Mulaik, 2010) 12:

Y = τ + ΛC + E (15)

Here, Λ is the matrix of path coefficients (called loadings), quantifying the strength

of the relationship between the observed variables Y and the latent variable C, τ is

the vector of intercepts of Y , and E is the vector of unique error terms of Y which

cannot be explained by C. In addition to this structural assumption, the following

distributional assumptions are often made for estimation purposes: C ∼ N(α, Φ) and

E ∼ MV N(0, Ψ). α and Φ are the expectation and the variance of C, respectively.

The variances of the errors E are captured on the diagonal of Ψ (usually, errors are

assumed to be uncorrelated, so the off-diagonal entries of Ψ are 0). The covariance of

the data is defined as Σ = ΛΦΛ⊤ + Ψ (Jöreskog, 1967); that is, variation in the data

can be decomposed into a part that is explained by the common factor and an error
12Without loss of generality, we are assuming a one-dimensional construct (only one common factor

C ) and drop the person-indeces i for better readability.
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Figure 5
Study 3: Simple path diagram of a measurement model. a) LISREL style: Only
error variances are depicted by an arrow without a node pointing into all endogeneous
variables (here: the observed variables); b) RAM style: variances of both endogeneous
and exogeneous variables are depicted by a double-headed arrow-loop (here: error
variances and variances of the latent variables).

part.

The assumption of linearity lets us now translate our measurement model from a

DAG (Figure 4) to a path diagram (Figure 5), which is a common form of diagram in

the psychological literature (see Epskamp, 2015 for definitions and visualizations of

different styles of path diagrams). Latent variables (in our case: C ) are enclosed by a

circle. Error terms (in our case: E) are not included explicitly. Instead, their variances

are depicted by an arrow pointing into its corresponding observed variable (LISREL

style, Figure 5a)) or by a double-headed arrow-loop on the observed variable (RAM

style, Figure 5b)). Only in RAM style, the variance of the exogeneous variables (in our

case: C ) are also depicted by a double-headed arrow-loop. The observed variables (in

our case: Y ) are enclosed by a rectangle, their intercepts are depicted by a triangle.

Because we assume that all relationships between variables are linear, we can use path

coefficients, that is, a single number on each arrow, to quantify the relationship λ

between C and Y.13 In a DAG, this is not possible because in potentially non-linear

relationships the value of the path coefficient between C → Y depends on the value of

C. When comparing Figure 4 and Figure 5, we can now see that by making structural

and distributional assumptions about our causal model, we can translate the DAG of
13In path diagrams, double-headed arrows between observed variables (i.e., items) are sometimes

used to depict correlated error terms (i.e., item responses that are correlated even after conditioning
on the latent variable). This is closely related to the double-headed arrows in DAGs mentioned in
an earlier footnote. Correlated errors are equivalent to unobserved confounding, that is, failure to
model all influence on the item response besides the latent variable. In the literature on item response
models, this is often called local dependence (Kreiner & Christensen, 2011).
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our simple measurement model into a path diagram.

The relation between DAGs and path diagrams for SEMs has been shown in the

literature (see, e.g., Kunicki et al., 2023 for a comparison) but —to the best of our

knowledge— has so far not been extended explicitly to measurement models14. We argue

that embedding measurement models within wider causal relationships represented

by DAGs can help researchers to investigate MI in a more informative manner. In

the following, we briefly outline how MI is primarily investigated. Subsequently, we

showcase how DAGs can be used to depict (non-)invariance and to decide which

variables have to be included in our model. We illustrate how DAGs can be used

to investigate assumed causes of non-invariance that might be missed by the current

approach.

6.4 Current Practice of Investigating Measurement Invariance

MI is rarely considered in empirical studies on latent variables (Maassen et al.,

2023). Specifically, Maassen and colleagues investigated the practice of MI testing

for 918 latent mean comparisons in 97 articles in the two journals PLOS ONE and

Psychological Science. They found that references regarding MI in these two influential

journals were made for only 40 (4%) of the 918 latent mean comparisons. Additionally,

none of these tests could be reproduced due to unavailable data or lack of details in

reporting of MI testing procedures. It is thus not clear how many claims about latent

variable differences between groups in the literature are actually attributable to true

differences and how many occurred due to measurement non-invariance. By no means

do we want to imply that researchers who do not consider MI are not rigorous. Rather,

our argument is directed against the current practice of investigating MI. As we will

outline below, the current approach does not provide much information about the role

of (non-)invariance in the data-generating process. Additionally, it does not inform

researchers about principled measures to choose an appropriate model to investigate or

consider MI in their analyses.

Prevailingly, MI is (in its simplest form) tested by multi-group confirmatory factor

analysis (MG-CFA) with G groups (Jöreskog, 1971): A covariate that defines the
14But see Bollen and Pearl (2013) who briefly touch on measurement models in combination with

causality.



6.4 Current Practice of Investigating Measurement Invariance 120

groups to be compared is chosen, for example the covariate Region with two groups

western and eastern. First, a factor analysis model (see equation (15)) is estimated

per group, that is, with group-specific loadings, intercepts, and unique variances. This

is called a configural model. A combined goodness-of-fit measure for both groups is

calculated, for example the root mean squared error of approximation (RMSEA) or the

comparative fit index (CFI). A bad fit of the configural model is an indication that the

model itself is misspecified (i.e., missing paths between observed and latent variables

or wrong number of latent variables in one or more groups). Next, a second model is

estimated but now the loadings are constrained to be equal across groups (i.e., Λg = Λk

for all g, k ∈ 1, ..., G). If the overall fit of this model does not drop compared to the

configural model, metric (or weak) MI is supported, that is, loadings are equal across

groups. In a third model, in addition to the loadings, the intercepts of the observed

variables are constrained to be equal across groups (i.e., τ g = τ k for all g, k ∈ 1, ..., G).

If the overall fit is not worse than the fit of the metric model, scalar (or strong) MI

holds. If scalar MI is supported, comparisons of latent means are warranted (Putnick &

Bornstein, 2016; Vandenberg & Lance, 2000). As a rule-of-thumb, an increase of 0.01 of

the RMSEA or a decrease of 0.01 of the CFI when comparing two nested models could

be considered a violation of MI (Chen, 2007; Cheung & Rensvold, 2002). Rutkowski

and Svetina (2014) propose more liberal values of 0.03 in RMSEA-increase or 0.02

in CFI-decrease when testing for metric MI and when the number of groups is high.

Nonetheless, because cut-off values depend on both model complexity and sample

size, researchers should not blindly follow these recommendations (Goretzko et al.,

2023). Since the models are nested, a stricter comparison by means of a χ2-difference

hypothesis test is possible as well. However, this test is sensitive to sample size, so

using fit indices is considered more suitable (De Roover et al., 2022). Beyond scalar

MI, residual MI could be tested by comparing the scalar model with a model in which

the unique variances are constrained to be equal. Because this level of MI is difficult to

achieve and not a prerequisite of latent mean comparisons, it is often not considered.

The results of this investigation do not provide any information on why MI is not

supported. Thus, it is not obvious what to do if we find that MI does not hold or if we

want to consider it as a part of the whole modeling process. We briefly outline a few

options on how to proceed in this case. We refer readers to Leitgöb et al. (2023) for a
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detailed account of the approaches mentioned below. First, one could aim for partial

MI. This is done by identifying so called anchor items, that is, items whose parameters

are invariant across groups. By constraining parameters of these anchor items to be

equal across groups and and allowing the remaining parameters to differ, partial MI can

be established (Vandenberg & Lance, 2000). Unfortunately, there is no clear answer

to the question of how many parameters have to be equal across groups to allow for

meaningful latent mean comparisons (Putnick & Bornstein, 2016). Additionally, the

identification of anchor items is far from trivial (Sass, 2011; Steenkamp & Baumgartner,

1998) and the wrong choice can again bias latent mean comparisons (Belzak & Bauer,

2020; Pohl et al., 2021). Second, more advanced methods to investigate MI could be

applied, for example from the literature on differential item functioning (Bauer et al.,

2020; Kopf et al., 2015; Strobl et al., 2015; Tutz & Schauberger, 2015) or on SEM

(Asparouhov & Muthén, 2014; Brandmaier et al., 2013; De Roover et al., 2022; Schulze

& Pohl, 2021; Sterner & Goretzko, 2023). However, all of these methods entail specific

assumptions about the variables in the data and the relationships between them. To

exploit their full potential, it is crucial to explicitly consider these assumptions in order

to make informed modeling decisions. Luong and Flake (2023) provided a detailed

example of how taking into account the underlying assumptions of advanced methods

to investigate MI could look like. Third, at some point, we might have to accept that

MI does not hold (Leitgöb et al., 2023; Rudnev, 2019). This, however, is an important

finding by itself and should be the starting point of further exploration (for an example,

see Seifert et al., 2024). Especially when constructing or revising psychological tests or

questionnaires, thoroughly exploring why a measure functions differently across groups

can help us to learn more about the construct itself. As Putnick and Bornstein (2016)

put it, investigating MI should not be considered a “gateway test” that licenses us to

further analyze our data. Rather, it should be viewed as an integral part of the whole

modeling process.

What is, in our opinion, currently missing is a theoretical framework in which a

potential lack of MI can be explored. Specifically, a framework is needed which lets

us reason about the causes of non-invariance. As mentioned, because MI is usually

only investigated with regard to the covariate that defines the groups we want to

compare, the only information we get is that MI is violated. Under this approach, it is
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difficult to communicate assumptions about why MI does not hold. Researchers can

therefore not properly decide how their statistical models to investigate MI should look

like. Consequently, they are unable to make full use of the broad arsenal of advanced

methods. By outlining the causal foundations of MI, we now demonstrate how DAGs

can be used to depict (a lack of) MI and to make informed modeling choices.

6.5 The Causal Foundations of Measurement Invariance

When looking at seminal papers on MI, one could argue that MI was a causal

concept from the very beginning. Mellenbergh (1989) depicted non-invariance (he

called it item bias) by some form of DAG and speaks of causal influences as well as

conditional independencies between observed variables (items), latent variables (traits),

and groups. Similarly but more formally, Meredith (1993) would define our observed

variable Y as measurement invariant with respect to selection on some other variable V

if Y and V are independent, conditional on the latent variable C. Thus, MI is formally

defined as

f(Y |V, C) = f(Y |C) (16)

where f(·) is the density function. That is, conditional on the common factor C, the

distribution of the observed variables Y is independent of any variable V (Y ⊥⊥ V | C).

V is usually assumed to be an observed covariate (e.g., age, region, gender, etc.) but

could also be a latent variable. MI thus means that the measurement model is equivalent

in any group within the population. Borsboom (2023) framed MI in an even more

causal language by stating that C should block all paths from any V to Y. That is,

given the latent variable, all observed variables Y and covariates V are d-separated if

MI holds.

In general, conditional independencies are testable implications in the data. The

aforementioned sequential steps of MI testing have to be used because we cannot simply

condition on the unobservable variable C. Its values can only be predicted (in the form

of factor scores) by scores on the observed variables Y.

So far, we have kept our two parallel accounts of DAGs and the investigation of
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MI rather abstract. To now show how (non-)invariance can be depicted by a DAG

and to demonstrate how this can help to investigate MI in a more informative manner,

we want to introduce an empirical example from moral psychology. In a multilab

replication study, Bago et al. (2022) investigated which psychological and situational

factors influence the judgement of moral dilemmas. They gathered data from 45

countries in all inhabited continents, leading to a final sample of N = 22, 112 (after

applying exclusion criteria like careless responding). For the following simulated and

empirical demonstrations, we will use the Oxford Utilitarianism Scale (OUS; Kahane

et al., 2018) from their paper. The OUS measures utilitarian thinking, that is, the

notion that people’s actions should always aim at maximizing the overall good. It

comprises two independent subscales, impartial beneficence (IB; measured by 5 items)

and instrumental harm (IH; measured by 4 items). IB describes the attitude that no

individual is more important than another (e.g., “It is morally wrong to keep money

that one doesn’t really need if one can donate it to causes that provide effective help to

those who will benefit a great deal.”), while IH entails that moral rules can be neglected

if it is for a greater good (e.g., “It is morally right to harm an innocent person if

harming them is a necessary means to helping several other innocent people”). To keep

our examples illustrative, we only consider the measurement model of IB, which is a

one-dimensional model with 5 items. The items are phrased as statements which are

rated on a seven-point Likert scale (1 = “strongly disagree”, 4 = “neither agree nor

disagree”, 7 = “strongly agree”). We refer interested readers to Kahane et al. (2018)

for more details on the OUS.

To depict non-invariance by a DAG, we introduce another type of node, namely

a selection node S . A selection node is not a variable but rather an indication for

a group-specific distribution or causal relationship of the variable it is pointing into

(Deffner et al., 2022; Pearl & Bareinboim, 2014). Thus, they are the key element

when trying to incorporate non-invariance in a DAG. Assume that we want to test

MI of the IB measurement model with respect to a binary covariate Region, defining

group western and group eastern. We depict a group-specific distribution, that is,

non-invariance of our observed variables Y by a selection node pointing into them,

S → Y (see Figure 6).
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Figure 6
Study 3: DAG with a selection node pointing into the observed variables. a) Adaptation
of Figure 6c in Deffner et al. (2022) where only one observed variable Y is shown;
b) DAG of the complete measurement model of IB = impartial beneficence where the
selection node points into potentially all observed variables Y1−5 (depicted by the dotted
box around the observed variables).

Figure 6a) is similar to Figure 6c) in Deffner et al. (2022). However, they showed

a latent variable with only one observed variable, which is not very common in

psychological (questionnaire) assessment. In Figure 6b), the complete measurement

model of IB is shown with a selection node pointing into potentially all observed

variables Y1−5. If one can make more detailed assumptions about group-specific

selection mechanisms on the observed variables, the selection node could also only

point into some, but not all, of the items. In the psychometric literature, this is often

referred to as differential item functioning (Holland & Wainer, 2012; Zumbo, 2007). As

Deffner and colleagues state, Figure 6 shows a selection node pointing into an outcome.

This prevents unbiased comparisons of the observed (and consequently, the latent)

variables between groups. Similar to what we mentioned in the introduction, an absent

selection node is a stronger assumption than an existent one. Not drawing a selection

node pointing into an observed variable encodes the assumption that this variable

(here: questionnaire item) is invariant across all groups. In Figure 6, the selection node

pointing into Y could subsume all four levels of non-invariance. By translating the

DAG with a selection node (also called selection diagram) into a path diagram, we can

see that one DAG implies many different models. In Figure 7, four different pairs (each

consisting of group western and group eastern) of models are shown, where each pair

depicts one level of MI being violated. The group-specific distribution of Y could stem

from:
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a) some paths between IB and Y being 0 in one group or a different number of

latent variables between groups (configural non-invariance; Figure 7a),

b) the size of the loadings λ between IB and Y being different between groups

(metric; Figure 7b),

c) the intercepts τ of Y being different between groups (scalar; Figure 7c),

d) or the variances of the unique errors E of Y being different between groups

(residual; Figure 7d).

Now that we have introduced how to depict non-invariance with a selection dia-

gram15, we can turn to a more elaborate example. Specifically, we now demonstrate

how DAGs can be used to make informed modeling decisions when investigating MI.

We show how disregarding the complete causal model and instead only considering the

groups that we want to compare, can miss important aspects of non-invariance. All

code needed to reproduce the results of the following simulated and empirical example

as well as a reproducible manuscript are available at https://osf.io/2mpq9/.

All analyses were conducted in the statistical software R (R Core Team, 2021),

using the packages lavaan (Rosseel, 2012), semTools (Jorgensen et al., 2016), and

OpenMx (Boker et al., 2011). The paper was written using the package papaja (Aust &

Barth, 2020).

6.6 A More Holistic View on Measurement Invariance

We again consider our example in Figure 6b), that is, we want to compare the latent

means of IB between groups western and eastern (defined by the covariate Region). To

investigate whether scores of IB are comparable between these two groups, that is, if

the measurement models are equivalent, we would first conduct a MG-CFA with Region

as the grouping covariate. However, assume that the true data-generating process is

not the one in Figure 6b) but the one in Figure 8, where an observed covariate Age is

part of the measurement model.

In this setting, the selection node actually points into Age, not into the items Y1−5.

This means that not the distribution of Y1−5 varies between groups but the distribution
15The use of selection nodes to depict non-invariance highlights that —from a causal inference

perspective— the concept of MI is related to transportability. We refer interested readers to Deffner et
al. (2022) and Pearl and Bareinboim (2014) for more details.

https://osf.io/2mpq9/
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Figure 7
Study 3: Pairs of measurement models of IB (impartial beneficence) for which mea-
surement invariance does not hold between the two groups. a) violation of configural
invariance (violation of configural invariance due to different number of latent vari-
ables between groups is not displayed); b) violation of metric invariance (assuming
standardized data); c) violation of scalar invariance; d) violation of residual invariance
(assuming unstandardized data). Parameters that might differ between groups are
highlighted in blue.
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Figure 8
Study 3: DAG with a selection node pointing into the observed covariate Age which
influences all observed variables Y1−5 (depicted by the dotted box around the observed
variables).

of Age. Specifically, in group 1, Age ∼ N(0, 1) and in group 2, Age ∼ N(0.5, 1)

(standardized ages where the mean age is higher in group 2 than in group 1). In this

case, assume IB → Y ← Age to be an interaction between IB and Age, such that

the measurement model for every item is Y = (
√

0.6 + 0.3Age) · IB + E (cf. equation

(15)).16 That is, with increasing Age, the causal relationship between the latent variable

IB and the observed variables Y1−5 grows stronger.

A small simulation of the model depicted in Figure 817 reveals the following: If we

do not consider the DAG in Figure 8 and test MI following the current practice, that is,

only test the invariance of measurement models between groups western and eastern,

we find a significant violation of metric MI (χ2(14; N = 1, 000) = 19.46, p = .003 and

an increase in RMSEA of .028 for the comparison of the configural and the metric

model). However, this result is only half of the picture: It is the different distribution

of Age between groups that is decisive for the result of the MI test. That is, the

group-specific mechanism, indicated by the selection node, is working on Age, not on

the observed variables directly. Conclusions regarding different interpretations of the

construct between groups western and eastern based on the MI test results are rather

uninformative.
16Because DAGs do not impose a functional form on the relationships between variables, all variables

jointly causing another variable can also interact (Deffner et al., 2022; Elwert, 2013).
17With N = 1000 (n = 500 per group), IB ∼ N(0, 1), and diag(Ψ) ∼ Uniform(0.2, 0.6). Together

with loadings of
√

0.6, this results in an average item variance of 1.
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How could DAGs have helped us to achieve more informative results regarding MI?

Had we set up the selection diagram (by theoretical or empirical considerations) as in

Figure 8, we would have seen that MG-CFA with Region as a grouping covariate is

not the right model. Instead, we have to resort to a more flexible model to investigate

MI in this case. We can read from the DAG that Age is an assumed direct cause

of Y1−5 and that we assume Age to have a group-specific distribution. Thus, we

want to include Age in our model in order to close the path between the selection

node and the observed variables Y1−5 (remember that including Age in the model

closes the path S → Age → Y ). Generally speaking, our goal is to make as many

assumptions as possible about covariates between the outcome (in our case Y ) and

the selection node, and then include these covariates in the model. This lets us gain

more detailed information about group-specific mechanisms (i.e., non-invariance) in the

data-generating process and how these mechanisms influence our observed variables.

One option to model the data-generating process depicted in Figure 8 is a type

of moderated SEM called moderated non-linear factor analysis (MNLFA) (Bauer,

2017; Bauer & Hussong, 2009). MNLFA is especially suitable in this case because

it allows the model parameters to depend on any covariate V in the data. In our

example, we can model the expected loadings and intercepts by the regression equations

Λi = Λ0 + DRegionRegioni + DAgeAgei and τ i = τ 0 + bRegionRegioni + bAgeAgei,

respectively.18 Λ0 and τ 0 are the baseline loadings and intercepts, D and b are

vectors19 of linear effects of the covariates Region and Age on the parameters, and i

denotes the person index. This model formulation allows us to estimate the baseline

parameters as well as the individual effects a covariate has on the item parameters. Of

course, if more detailed assumptions about which items are influenced by the covariates

can be made, the equations above can be adjusted by setting the effects of the covariates

on some items to 0. The covariate Region is also included to test its direct effect on

the parameters (besides the assumed direct causal effect of Age). MNLFA can be

estimated in R (R Core Team, 2021) via the package OpenMx (Boker et al., 2011). We

refer readers to Kolbe et al. (2022) for a detailed guide on how to estimate MNLFA in
18Similarly, all other model parameters —like factor means or residual covariances— can be modeled

as functions of covariates. Thus, MNLFA could be seen as a flexible extension to multiple indicator
multiple cause models (MIMIC models; Muthén, 1989).

19In case of more than one latent variable, D would be a matrix with the same dimensions as Λ0.
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OpenMx and specifically how to use it to investigate MI.

From a causal inference perspective, we can justify the model choice like this: the

less we know about our measurement model and the covariates surrounding it, the

more potential differences in parameters we have to consider during estimation and

testing. The more potential differences we have to consider, the more arrows we should

draw in our DAG.

6.6.1 Simulated Example

Table 27 shows the estimated results of a MNLFA for the simulated example

described above. The model parameters (in our example: loadings and intercepts) are

allowed to be moderated by covariates Region and Age as described above. This is

the configural model. The advantage of modeling the assumed causal relationships

like this is that we get detailed estimates of parameters and possible interactions for

every item. As can be seen, Region does not have an influence on neither intercepts

nor loadings, whereas Age has an influence of around 0.3 on the baseline loadings Λ0,

which are around
√

0.6.

Table 27
Study 3: Results of moderated non-linear factor analysis for the toy example.

Item τ0 bRegion bAge Λ0 DRegion DAge

Item 1 -0.07 0.15 -0.05 1.04 -0.05 0.00
Item 2 -0.08 0.03 -0.03 0.80 -0.07 0.35
Item 3 -0.06 0.12 -0.04 0.75 0.01 0.27
Item 4 -0.09 0.06 -0.04 0.74 -0.03 0.30
Item 5 -0.04 0.04 -0.05 0.73 0.04 0.30

Note. τ0 = Baseline intercepts, bRegion = (Additive) Effects of covariate Region on
baseline intercepts, bAge = (Linear) Effects of covariate Age on baseline intercepts,
Λ0 = Baseline loadings, DRegion = (Additive) Effects of covariate Region on baseline
loadings, DAge = (Linear) Effects of covariate Age on baseline loadings. Effects
of Region and Age on other model parameters, e.g., residual variances, are not re-
ported here. Reference category of Region is Eastern. The loading of item 1 was
simulated as 1 for identification purposes.

Beyond visual inspection of the parameter estimates, we can also investigate metric

and scalar MI. This is done by setting the effects of the covariates on the loadings (for

metric MI), and loadings as well as intercepts (for scalar MI) to 0 and comparing these

nested models. The results of this model comparison are shown in Table 28. They
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show that metric MI is violated (by the covariate Age), whereas scalar MI is supported

(i.e., there is no significant moderation of the intercepts by the covariates).

Table 28
Study 3: Results of χ2-difference tests between the configural, metric,
and scalar moderated non-linear factor analyses for the simulated
example.

Comparison ∆− 2LL ∆df p-value
configural vs. metric 290.39 10.00 0.00
metric vs. scalar -113.63 6.00 1.00

Note. ∆− 2LL = difference in -2 times the log-likelihood of the models,
∆df = Difference in degrees of freedom. A p-value of 0 means that it is
< 0.005

By taking into account the whole causal model and using a more flexible method

than simply relying on MG-CFA, we can make a more informed decision regarding MI.

Had we only used MG-CFA, we would try to explain why the two regions western and

eastern have non-invariant measurement models, which would be the wrong question.

On the basis of theoretical and empirical assumptions regarding the causal relationships,

however, we can now reason about why the relationship between the latent variable

IB and its items grows stronger with increasing age. It should be highlighted again

that drawing a DAG with many arrows and using MNLFA entails less assumptions

(or assumptions that are less strong) than using MG-CFA with one covariate. From a

causal inference perspective, MG-CFA could be seen as the MI testing approach with

the most assumptions.

6.6.2 Empirical Example

To mimic the analysis of the simulated example in the example on the real data

published by Bago et al. (2022), we only considered observations from group western

whose age was above 30 years. This was done to achieve two approximately equally sized

groups (nwestern = 2, 911; neastern = 2, 941) with differing mean ages (Mwestern = 43.22;

Meastern = 26.13). Note that this changes the real data, which was done simply for

didactic purposes; the following results should not be interpreted from a substantive

research perspective.

Table 29 shows the results of a MG-CFA, where again a one-dimensional model is
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specified and MI is investigated between the two groups western and eastern. We see

that the results of the χ2-difference test is statistically significant for the evaluation of

both metric and scalar MI. This is an indication that neither of these two levels of MI

hold, that is, neither loadings nor intercepts are equivalent across groups. Considering

the RMSEA, the difference between the configural and metric model does not exceed

commonly suggested cut-offs, therefore supporting metric MI (Chen, 2007; Cheung

& Rensvold, 2002; Rutkowski & Svetina, 2014). The RMSEA difference between the

metric and the scalar model again indicates a violation of scalar MI. Based on these

results, all we can conclude for now is that MI does not hold between the two regions

western and eastern.

Table 29
Study 3: Results of multi-group confirmatory factor analysis for the empirical
example between regions western and eastern.

Model df χ2 ∆χ2 ∆df p-value RMSEA
configural 10 104.36 - - - 0.06
metric 14 142.72 38.36 4 0.00 0.06
scalar 18 373.54 230.83 4 0.00 0.08

Note. df = Degrees of freedom, χ2 = Value of the test statistic, ∆χ2 = Difference
in values of the test statistics, ∆df = Difference in degrees of freedom, RMSEA =
Root mean square error of approximation. A p-value of 0 means that it is < 0.005.

To be able to reason more about the role of non-invariance in the underlying

data-generating process, we again have to consider the complete DAG and model the

data-generating process accordingly. Table 30 shows the results of a MNLFA, where

both covariates Age and Region are allowed to moderate the parameter estimates. In

the empirical example, these results paint a different picture than before. Age has no

effect on both loadings and intercepts, whereas Region directly influences (primarily)

the item intercepts. Specifically, in the group western, the intercepts of items 1, 2,

and 4 are higher compared to group eastern, whereas for item 3, the intercept is lower.

Effects of Region on the loadings are less strong. Similar to the simulated example,

a χ2-difference test can be conducted. By this we can test whether allowing that the

parameters are moderated by the covariates Region and Age significantly increases

model fit (and thus, whether MI is violated).
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Table 30
Study 3: Results of moderated non-linear factor analysis for the empirical example.

Item τ0 bRegion bAge Λ0 DRegion DAge

Item 1 3.68 0.22 0.00 0.96 -0.16 0.00
Item 2 3.21 0.24 0.01 1.41 0.02 -0.01
Item 3 4.26 -0.19 0.01 0.68 0.12 0.00
Item 4 2.77 0.49 0.02 0.82 0.10 0.00
Item 5 3.42 0.05 0.01 1.17 -0.10 0.00

Note. τ0 = Baseline intercepts, bRegion = (Additive) Effects of covariate Region
on baseline intercepts, bAge = (Linear) Effects of covariate Age on baseline inter-
cepts, Λ0 = Baseline loadings, DRegion = (Additive) Effects of covariate Region on
baseline loadings, DAge = (Linear) Effects of covariate Age on baseline loadings.
Effects of Region and Age on other model parameters, e.g., residual variances, are
not reported here. Reference category of Region is Eastern.

Table 31 shows that both levels of MI, metric and scalar, are violated. That is,

the covarirates Region and Age significantly influence the loadings and intercepts in

our measurement model. Because the model outputs estimates for all item parameters

and their moderators, we are able to reason in more detail about the causes of non-

invariance, given our assumptions encoded in the DAG. Of course, detailed inspection

of item contents would now be necessary to explain why a covariate influences the item

parameters. Since this would be beyond the scope of this paper and since we are not

subject matter experts in moral psychology, we end our empirical demonstration here.

However, we hope that this example proves as a starting point for showing how MI can

be investigated according to the underlying causal assumptions.

Table 31
Study 3: Results of χ2-difference tests between the configural, metric,
and scalar moderated non-linear factor analyses for the empirical
example.

Comparison ∆− 2LL ∆df p-value
configural vs. metric 44.66 10.00 0.00
metric vs. scalar 276.26 6.00 0.00

Note. ∆− 2LL = difference in -2 times the log-likelihood of the models,
∆df = Difference in degrees of freedom. A p-value of 0 means that it is
< 0.005
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6.7 Discussion

In this paper, we first introduced the connection between DAGs used in causal

inference and path diagrams of measurement models, which are more common in the

psychometric literature. We then showed how a lack of MI can be depicted by a

DAG. We demonstrated how taking into account the causal relationships between the

measurement model and the surrounding covariates yields more informative results when

investigating MI. If MI is directly violated by a covariate that is not of primary interest

(e.g., age in our example above), DAGs can help to visualize the underlying assumptions.

Specifically, they depict the assumed mechanisms by which the data-generating process

differs between groups. In this, researchers can find appropriate statistical models like

MNLFA that allow them to estimate an extended measurement model. This also lets

us reason about the causes of non-invariance. Only by investigating why MI does not

hold, we can see it as an important finding by itself and draw conclusions about how

different groups interpret a construct (Putnick & Bornstein, 2016).

One critique against DAGs is that it is difficult to specify all causal relationships

(surrounding the measurement model, in our case). This is true but we deem this an

argument against poor psychological theories and not against DAGs. A sound theory

should allow us to specify the relationships between the variables it comprises. Besides,

as mentioned in the introduction, also an incomplete or even wrong DAG can help us

to reveal specific issues in theories. For example, drawing a DAG and realizing that

there is uncertainty regarding some relationships, can be the starting point of further

scientific discourse. In the end, DAGs are not about adding assumptions — they are

about revealing the assumptions that are otherwise made implicitly (Deffner et al.,

2022; Pearl & Bareinboim, 2014).

DAGs and path diagrams are part of a broader class of graphical models that have

been introduced in the psychometric literature. Other examples are graphical Rasch

models and graphical regression models that explicitly depict and model differential item

functioning or local dependence (i.e., correlated item responses even after conditioning

on the latent variable) (Anderson & Böckenholt, 2000; Kreiner & Christensen, 2002,

2011). Similarly, latent class models have been visualized as categorical causal models,

again facilitating the representation of underlying model assumptions, such as local
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independence (Bartolucci & Forcina, 2005; Hagenaars, 1998; Humphreys & Titterington,

2003; Rijmen et al., 2008). In this notion, local dependence is intertwined with

unobserved confounding (i.e., failing to include a covariate that influences the item

response in the measurement model).

6.7.1 Limitations and Future Research

Our goal was to provide a translation between path diagrams of measurement models

and DAGs, thereby framing MI and its investigation as a causal inference problem. In

this, we showed only one example with one observed covariate (i.e., age with different

distributions between groups). Needless to say, many more causal relationships leading

to a violation of MI are conceivable, for example one in which the cause of non-invariance

is latent. A prominent example of this in the literature is acquiescence bias, that is,

the tendency of respondents to agree more to statements or items, irrespective of the

content of the item (D’Urso et al., 2023; Lechner et al., 2019). Even further, beyond the

representation of latent variables as common causes of observed variables, DAGs might

help to depict (non-)invariance in other representations of multivariate data. Most

notably, network models have been proposed as such an alternative conceptualization

(Borsboom et al., 2021), and this field is increasingly interested in the investigation

of invariance of networks across groups (e.g., Hoekstra et al., 2023). In these cases,

graphical tools from the causal inference literature might also aid to reason about the

causes of non-invariance and to find appropriate approaches with which the causal

relationships can be modeled. Future studies could therefore illustrate the usefulness

of DAGs when investigating MI in different scenarios or conceptualizations.

6.8 Conclusion

Many psychological studies concern some comparison of latent scores between groups.

Investigating whether measurement models of the latent variables are equivalent between

groups is crucial for unbiased conclusions. We discussed a theoretical framework in

which MI can be viewed from a causal inference perspective. Reasoning about causes

of differences in how constructs and their measures function across groups can create

valuable insights for scale construction or even theory building. Drawing a DAG which

encodes assumptions about non-invariance helps researchers to make informed modeling
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choices. In this, it might encourage them to view MI as part of the modeling process

and as an interesting topic of research by itself — and not just as an additional test

prior to the actual data analysis. Ultimately, we hope to contribute to an increase in

the prevalence of investigations of MI.
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7 General Discussion

The three manuscripts in this thesis addressed various methodological topics on

MI. Modern statistical approaches were employed to introduce new methods and

concepts that improve investigations of MI. Study 1 presented EFA trees, a new EFA-

based method to assess MI in the earliest stages of questionnaire development. Study 2

provided an overview and comparison of EFA-based methods. By means of an empirical

example in three different statistical software programs, Study 2 hopefully facilitates

the application of these EFA-based methods. Study 3 proposed a framework based on

causal inference that allows researchers to visualize and reason about potential causes

of non-invariance. By using the framework to depict causal structures underlying the

investigation of MI, non-invariance can be viewed as a substantively interesting topic

of research itself.

A detailed discussion of the results and limitations of the three studies can be found

in the respective chapters. In the following, I want to focus on topics beyond this thesis.

First, I critically discuss limitations regarding the general applicability of the methods

and the framework presented in this thesis. Second, I provide an outlook on topics for

future research on MI; specifically, tailored fit index cut-offs, effect size measures, and

longitudinal MI. Third and last, I address recent criticism against the necessity of MI

as a prerequisite for latent mean comparisons.

7.1 Solutions in Search of a Problem?

In the following, I want to critically discuss the utility and applicability of the

proposed methods and framework for applied psychological science — arguably the goal

of methodological research. Throughout this thesis, I have mentioned repeatedly that

MI is rarely investigated in practice although methodological research has shown its

importance when comparing, for example, latent means (Maassen et al., 2023). Thus,

there is a discrepancy between what methodologists recommend and what applied

researchers do when it comes to investigating MI. I have already hinted at two possible

reasons for this mismatch: the difficulty for applied researchers to fully grasp the vast

variety of methods to investigate MI and the notion that MI is merely a statistical

assumption that one has to test to license further analyses — rather than a substantively
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interesting topic by itself. In that sense, the manuscripts of this thesis seem useful for

applied researchers because they address these issues.

However, our manuscripts are not the first to provide an overview and comparison

of methods (Kim et al., 2017; Luong & Flake, 2023) or aim at embedding statistical

concepts in a more applied framework (Van Bork et al., 2022). Thus, as they currently

stand in the literature, the present manuscripts require further efforts to increase the

prevalence of investigations of MI in the psychological literature. Study 1 is the first

paper to introduce EFA trees and complex statistical procedures but without extensive

empirical examples and provides only template code as software implementation of the

method. Study 2 is the first paper to contrast newly developed EFA-based methods

and gives some of these methods their first ever empirical application. Yet still, this

application only demonstrates the methods at hand and, thus, lacks direct connection

to substantive theory. It does, however, improve Study 1 by introducing an R package

for an easier implementation of EFA trees, thus providing a remedy for the software

implementation problem. Study 3 paints a broader picture by shifting the focus from

a purely statistical investigation of MI to a causal assessment of possible reasons of

non-invariance. While this may motivate researchers to approach the issue of (non-

)invariance from a theoretically informed perspective, an end-to-end example based on

substantive theory of how this could be done is needed to increase its applicability for

applied researchers.

To summarize, the manuscripts of this thesis provide important steps forward to

tackle issues of investigating MI. However, as I outline below, further work is needed

to make them readily applicable for applied researchers from various psychological

disciplines. This is especially important to reduce the discrepancy between what method-

ologists recommend and what applied researchers do when it comes to investigating

MI. The mismatch between methodological developments and empirical applications of

statistical methods is neither new nor unique to the topic of MI. Borsboom (2006a)

extensively discussed the discrepancy between psychometrics and psychology, criticizing

that psychometric developments are not integrated into psychological research. Sijtsma

(2006) acknowledged this problem but takes a more lenient position by stating that

psychometric models (as a result of psychometric research) are simply a tool for data
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analysis (see also Sijtsma, 2012). Consequently, he concluded that applied researchers

are most likely to adopt newly developed methods if they are convinced of their su-

periority over classical methods. Additionally, new developments should be easy to

implement.

I fully agree with Sijtsma (2006). Methodological development does not stop once

a method is “developed”; that is, when it is published in a methodological journal.

Rather, it should be seen as a process. I see at least three important steps that

follow the step of introducing a new method: dissemination through tutorials, software

implementation, and collaboration. First, once a method has been introduced, it should

be the methodologist’s goal to disseminate statistical findings to applied researchers.

By writing tutorial papers, methodologists could demonstrate the assumptions needed

to apply a method and the conclusions drawn from its output. This should be done

repeatedly by publishing widely in different fields, as different fields have different

challenges in analyzing data or applying models (Borsboom, 2006a). There are excellent

examples of tutorial and review papers that make methodological concepts, like MI,

comprehensible to applied researchers. These are either tailored to a specific field

of psychology (Putnick & Bornstein, 2016; Somaraju et al., 2022; Vandenberg, 2002;

Vandenberg & Lance, 2000) or to a specific method (Kolbe et al., 2022; Luong &

Flake, 2023). Psychological science can only benefit from such work. To advance in

the process of methodological development of the methods and framework presented in

this thesis, tutorial papers are needed to disseminate their application and usefulness.

Second, the likelihood of newly developed methods being applied increases when they

are available in (ideally open-source) statistical software (Borsboom, 2006a; Sijtsma,

2006). Thus, similar to the theoretical dissemination through tutorial papers, the

implementation of newly developed methods in statistical software is an important

step to increase practical dissemination. Ideally, these two steps are combined, by

including software code in the tutorial papers (see e.g., Pargent et al., 2023). Third,

and perhaps most importantly, method development and application should not be

seen as two different pairs of shoes. Instead, both parts can be integrated, either

by psychometricians applying their models to solve substantive problems (Borsboom,

2006a) or by psychometricians and applied researchers collaborating (Sijtsma, 2006).

This allows methodological research to identify actual issues in applied research that
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need to be addressed.

Much of psychology is a quantitative science. The majority of studies employ

psychometric models to empirical data to find statistical evidence for verbal claims.

Methodological development is therefore crucial to bring psychology forward as a science.

However, it is equally important for methodologists, in general, and psychometricians,

in particular, to maintain a connection to applied research. Especially for investigations

of MI, and thus also for the methods and framework of this thesis, it is important to be

continuously disseminated and implemented in the applied literature to close the gap

between methodological recommendations and applied reality (Maassen et al., 2023) —

be it through tutorials, software implementations, or collaborations. This ensures that

methodological research is not developing statistical solutions in search of an empirical

problem.

7.2 Future Research

7.2.1 Tailored Fit Index Cut-Offs

As discussed in the Introduction of this thesis, MI is primarily investigated by means

of χ2-difference tests and changes in fit indices between increasingly restricted models

(Putnick & Bornstein, 2016; Van de Schoot et al., 2012). When deciding whether a

decrease or increase in fit indices is indicative of non-invariance, researchers usually

draw on fixed cut-offs, for example an increase in RMSEA of 0.01 or a decrease in CFI

of 0.01. Some more nuanced recommendations exist that take into account specific

factors influencing the sensitivity of these indices to violations of MI; for example,

in the context of many groups (Rutkowski & Svetina, 2014) or when models contain

cross-loadings (Cao & Liang, 2022a). This is to be applauded because it allows for a

more accurate assessment of MI, catered to a specific setting. Nonetheless, the fact that

the same cut-offs do not hold for all research conditions and that more fine-grained

recommendations are even necessary raises the question whether (recommendations

of) fixed cut-offs should be applied in the first place. It has been shown repeatedly

that appropriate cut-offs to quantify “good” or “adequate” model fit depend on many

different factors; these include model size, sample size, various nuisance parameters

like loading size, and different types of potential model misspecifications, to name just
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a few (Goretzko et al., 2023; Heene et al., 2011, 2012; Partsch et al., 2024; Savalei,

2012; Savalei et al., 2023). This is because all of these factors influence the sensitivity

of fit indices to identify model misspecifications, making it impossible to reasonably

apply the same cut-off to different data sets and models. Since a lack of MI can be

seen as a form of model misspecification in a MG-CFA model (e.g., equal loadings are

not tenable across groups), these findings are also relevant for investigations of MI by

means of changes in fit indices.

To address this issue in single-group settings, researchers developed ways to “tailor”

cut-offs of fit indices to the model and data conditions at hand. Specifically, McNeish

and Wolf (2023) developed the dynamic fit index cut-offs, Schmalbach et al. (2019)

the ezCutoffs, and Groskurth et al. (2022) a method involving a receiver–operating

characteristic (ROC) curve analysis (for an explanation and comparison of these

methods, see Goretzko et al., 2023). All of these three methods are simulation-based,

allowing to take into account the specific model and data characteristics. In this, more

appropriate cut-offs for real-life applications can be derived. At the same time, they

preserve the possibility to categorically assess the fit of a model, for example, classifying

the fit as “good” or “adequate”.

Especially the dynamic fit index cut-offs by McNeish and Wolf (2023) have received

many extensions, making them broadly applicable. Most notably, they have been

extended to provide tailored cut-offs for ordinal and binary item responses (McNeish,

2023) as well as for any covariance structure model, among others bifactor models

(McNeish & Wolf, 2024). As mentioned by McNeish and Wolf (2023), an important

project for future research would be to extend the dynamic fit index cut-offs to

investigations of MI. That is, instead of relying on the commonly used and suggested

cut-offs (e.g., a decrease in CFI of 0.01), cut-offs tailored to a specific application could

be provided to indicate whether parameter restrictions (e.g., equal loadings across

groups) worsen the fit of a model. As in single-group settings, researchers would have

to specify a configural MG-CFA (hypothesized model) and use this model to create an

alternative, slightly misspecified version (e.g., a MG-CFA with a cross-loading in only

one group). M data sets are then simulated twice, once with the hypothesized and

once with the alternative model as the data-generating model. The hypothesized model



7.2 Future Research 150

could be fit to both sets of M data sets which yields two distributions of fit indices. The

first one represents the distribution of fit indices under correct specification because the

model is fit to the data that were generated using itself as the true model. The second

one represents the distribution of fit indices under misspecification because the model is

fit to the data stemming from a different (non-invariant) data-generating model. These

two distributions could then be used to derive cut-offs with adequate false-positive and

false-negative rates (for more details, see McNeish & Wolf, 2023). Depending on which

model is used as the hypothesized model (configural, metric, scalar, or residual model),

cut-offs for the respective level of MI could be derived. Such dynamic fit index cut-offs

for MI would allow researchers to reach a binary decision regarding (non-)invariance.

At the same time, they take into account that specific model and data characteristics

influence the sensitivity of fit indices to detect non-invariance (Cao & Liang, 2022a,

2022b; Chen, 2007; Cheung & Rensvold, 2002). It should be kept in mind, however,

that this new way of determining a threshold to diagnose non-invariance does not

eleviate the issue of handling non-invariance. We still need appropriate ways of dealing

with a lack of MI, for example by using the causal framework from Study 3.

7.2.2 Effect Size Measures

As just described, MI is currently primarily assessed by changes in fit indices

(e.g., CFI or RMSEA) or by means of χ2-difference tests (Putnick & Bornstein, 2016).

Strictly speaking, these fit indices and even the test statistic of a χ2-difference test can

be seen as an effect size measure (McNeish & Wolf, 2023). However, with regard to

meaningful conclusions about the impact of non-invariance on substantive analyses,

both approaches have downsides. As just discussed, fit indices are heavily influenced

by model and data conditions (Goretzko et al., 2023; Heene et al., 2011; Partsch et

al., 2024). It is difficult to assess let alone quantify the influence of non-invariance on

statistical inference just by changes in fit indices alone. An increase in RMSEA or

a decrease in CFI cannot be directly related to a distortion of p-values or regression

parameters in stastical inference. χ2-difference tests assess the hypothesis of exact

parameter equivalence, that is, a parameter difference between groups of exactly zero.

However, in every analysis, the actual question we should ask is at which degree non-

invariance distorts inference in our substantive analyses, like latent mean comparisons
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(Borsboom, 2006b; Gunn et al., 2020). Put differently, we want to assess whether small,

but non-zero, parameter differences would even matter for our analyses. This raises

the need for effect size measures that provide information whether non-invariance is

large enough to distort statistical inference, instead of just being significantly non-zero

(Funder & Gardiner, 2024).20

To address this issue, Nye and Drasgow (2011) introduced the effect size dMACS

(MACS: Mean and Covariance Structure). dMACS estimates the degree of non-invariance

for each item in a standardized metric (in the sense of standard deviations). Thus, the

magnitude of the effect of non-invariance can be quantified, independent of the sample

size. Additional analyses can then reveal the practical consequences of non-invariance

on parameters like the mean or variance of scores of a scale. One limitation of dMACS

is that it is only applicable to models with an independent clusters structure. Items

with cross-loadings cannot be evaluated because these additional loadings are not

included in the formula of dMACS but would impact the predicted item response (Nye

& Drasgow, 2011). This makes dMACS less ideal when multi-dimensional questionnaires

are investigated for MI with EFA-based methods, which specifically consider and

estimate (differences in) cross-loadings. In these cases, it could only be applied to items

for which cross-loadings are estimated to be (close to) zero. Gunn et al. (2020) have

already extended dMACS to make it more widely applicable, for example to categorical

item responses, but did not consider cross-loadings either. Consequently, for effect

size measures to join the trend of EFA-based assessments of MI, future research could

generalize dMACS to models with cross-loadings.

Another effect size that has been proposed is the expected parameter change-interest

(EPC-interest; Oberski, 2014; Oberski et al., 2015). It quantifies the impact of freeing

parameters that have been restricted on parameters of interest for the substantive

analysis. For example, how does releasing the restriction of equal loading(s) across

groups change the latent means? In this, EPC-interest can be seen as a sensitivity

analysis that does not tell us which parameters are invariant but whether violations

of MI change the conclusions of our substantive analyses (Oberski et al., 2015). By
20Of course, even with standardized effect sizes available, the question would remain what effect

magnitude would be substantially meaningful. Nonetheless, this question could be addressed more
adequately from a content related perspective than the question whether, for example, a difference in
fit indices is meaningful (e.g., similar to interpretations of Cohen’s δ).
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investigating the impact of specific parameter restrictions on parameters of interest,

the model can also be modified, similar to modification indices. But as Oberski

(2014) notes, this strategy inherits the problem of capitalization on chance (and thus,

lacks generalizability; MacCallum et al., 1992) and should not replace theoretical

considerations when altering a model. EPC-interest was introduced considering only

metric and scalar invariance, while assuming configural invariance. However, violations

of configural invariance, like cross-loadings, can affect structural parameters (of interest),

like latent means or regression coefficients (Oberski, 2014). Thus, similar to dMACS,

future research should investigate the applicability of EPC-interest to models with

cross-loadings (i.e., in EFA-based investigations of MI).

7.2.3 Longitudinal Measurement Invariance

This thesis and the manuscripts it comprises focused on the invariance of measure-

ment models between cross-sectional groups, for example different regions. However,

MI also concerns the invariance of measurements across time, that is, across subsequent

measurement occasions (Putnick & Bornstein, 2016; Vandenberg & Lance, 2000). For

example in clinical psychology, it is common to compare pre- and post-therapy depres-

sion scores, sometimes even with additional follow-up measurements at a later time

point (e.g., Fokkema et al., 2013). If we want to conclude that changes in depression

scores occurred only due to true changes in the underlying construct, and not due to

changes in measurement properties, we have to make sure that depression was assessed

equivalently at each time point. This longitudinal view on MI poses an additional

challenge regarding the conceptualization of MI. An interesting topic of future research

would be to tackle this challenge using the causal framework introduced in Study

3: how can we assess longitudinal MI if changes in the interpretation of a construct

between measurements are expected or even desired? In these cases, we would have to

disentangle the different causal influences on item responses over time, for example,

actual changes in the construct, possible interventions between measurements, and

(potentially time-variant) covariates, like gender or age.

Consider a possible depression item targeting somatic complaints, for example some

form of physical pain (e.g., Rush et al., 1996). Somatic complaints can be, but do not nec-

essarily have to be, a symptom of depression according to the 11th revision of the Inter-
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national Classification of Diseases (World Health Organization, 2022). Thus, a positive

relation between (latent) depression severity and the item response pre-treatment may be

plausible (i.e., a positive loading). If we now treat a person with psychotherapy (target-

ing the depression severity) and supplement the psychotherapy with medication (specif-

ically targeting the somatic complaints), the item response might change when being

measured again post-treatment. This change, however, is not necessarily only related to

the psychotherapy reducing depression severity. That is, the causal path to somatic com-

plaints is not only Psychotherapy → Depression Severity → Somatic Complaints

but also Medication → Somatic Complaints. As a result, the criterion of MI is

violated: some covariates (here: medication) are no longer independent of the item

responses (here: somatic complaints rating) given the latent variable (here: depression

severity). This in turn can change the factorial structure of a questionnaire across time

points, for example when the dose of medication changes the loading of the item asking

about somatic complaints. Other items that assess actual symptoms of depression, like

loss of pleasure, might also be answered differently but without changing the factorial

structure. A potential change in item response would simply (and ideally only) be

caused by changes in latent depression severity.21

In fact, Fried et al. (2016a) found that for four commonly used self- and clinician

report depression measures, the factorial structure changed over time. In other words,

longitudinal MI did not hold. While Fried et al. (2016a) extensively discussed possible

reasons for this response shift (e.g., decrease of variability of symptoms across time),

they were not able to “identify the culprit” (p. 1364). Similarly, Fokkema et al. (2013)

found that post-treatment assessment of depression showed different measurement

properties compared to pre-treatment assessments. Specifically, the post-treatment

item scores seemed to overestimate depressive symptoms (scalar non-invariance) and

measurement errors were smaller (residual non-invariance). This might indicate that

patients got better at understanding and evaluating their own symptoms (Fokkema

et al., 2013), which is to be expected and even desired because psychoeducation is a
21One could also question the underlying conceptualization of a reflective measurement model. In

this case, the measurement model would have to be changed, for example to a network model of
interrelated symptoms (Borsboom et al., 2021; Fried et al., 2016b; 2020). Nonetheless, if relations
in a network change over time, the question remains what caused these changes and how we can
make sense of differences in networks (or any other models) across different time points, potentially
including covariates that influence these changes.
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common element of psychotherapy (Donker et al., 2009; Tursi et al., 2013).

I am convinced that incorporating these phenomena into the causal framework of

Study 3 can help us to better understand how constructs and measures thereof function

over time. By depicting our assumptions in a DAG, we can make informed modeling

decisions to test these assumptions and include expected or desired changes of a measure

in our models. This can even be beneficial beyond reflective measurement models,

where DAGs can help to clearly communicate and test different conceptualizations of

psychological constructs. In the spirit of Study 3, making our assumptions explicit lets

us derive which inferences are warranted and which need additional considerations.

7.3 A Note on Recent Criticism Against Measurement Invariance

In recent years, some scholars have not only voiced their concern about the current

practice of investigating MI but also about the concept of MI and its necessity altogether.

Most notable in this regard are the articles by Funder and Gardiner (2024), Robitzsch

and Lüdtke (2023), and Welzel et al. (2023) (in the following, these three groups

of authors are referred to as FRW). FRW question whether MI is really a necessary

condition for meaningful latent mean comparisons. They approach their criticisms

from a statistical (Robitzsch & Lüdtke, 2023), a conceptual (Funder & Gardiner, 2024),

and a somewhat combined standpoint (Welzel et al., 2023). I think it is important to

address this criticism here. The manuscripts of this thesis were not only published

during the same period as these critical articles but they also take a different standpoint:

I strongly argue that measurement invariance is important for meaningful latent mean

comparisons.

FRW raise important and valid points of criticism. My goal is not to refute

every argument raised by FRW. Rather, I want to broadly summarize FRW’s points,

show where I agree and disagree, and provide a different perspective from a (mostly)

methodological standpoint. Fischer et al. (2023) and especially Meuleman et al. (2023)

have commented on Welzel et al. (2023), already addressing most of their points.

Fischer and Rudnev (2024) have recently published a comment on Funder and Gardiner

(2024) in which they provide a comprehensive counter perspective, highlighting the

importance of various forms of invariance for personality science. Adding to these
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detailed commentaries, I focus on some of FRW’s key arguments. Very broadly, I

categorize the arguments raised by FRW into three groups: arguments with which I

personally (1) agree, (2) partially agree, and (3) disagree.

7.3.1 Agreement

FRW voice valid concern about some issues of investigating MI that are surely not

ideal, both from a conceptual and a methodological standpoint. First, Robitzsch and

Lüdtke (2023) and Welzel et al. (2023) criticize that trying to establish partial MI (i.e.,

the invariance of some, but not all parameters) is a threat to (external) validity. I fully

agree. Under partial MI, some items are allowed to have group-specific parameters,

which corresponds to a “downweighting” of these items in their contribution to the

scaling process (Kreiner & Christensen, 2014; Robitzsch & Lüdtke, 2022). This is

especially problematic in cases where more than two groups are compared because the

partial invariance approach might result in different sets of invariant items that are

used for different group comparisons. Even further, both the choice of anchor items

that are fixed across groups and the number of invariant items across groups needed for

meaningful comparisons are neither trivial nor clear (Pohl et al., 2021; Steenkamp &

Baumgartner, 1998). In my opinion, investigating the causes of non-invariance (Sterner

et al., 2024) or analyzing the data on the individual item level (e.g., Seifert et al., 2024)

are (among others) better options than aiming for partial MI, in cases where MI does

not hold between (all) groups.22

Second, Funder and Gardiner (2024) and Robitzsch and Lüdtke (2023) denounce

the cut-offs of fit indices at which we would state that two parameters are non-invariant

(e.g., a decrease in CFI of more than 0.01). They argue that these cut-offs are arbitrary,

all derived from simulation studies, and hinge on the data and model conditions used

in these simulation studies. This is true and I agree, with some remarks. Almost all

practical recommendations for content-related decisions based on statistical analyses are
22It has been argued that partial invariance models are very similar to the analysis of differential

item functioning (DIF; Holland & Wainer, 2012) in an item response theory framework (Thissen,
2024). While the investigations of DIF and MI are conceptually closely related, they have different
historical origins (Thissen, 2024). MI-analyses concerned mostly the relations between observed and
latent variables, focusing more on influences on the factor structure and the validity of a factor analysis
model. DIF-analyses originated later in educational testing to increase fairness across test-takers. My
argument against partial MI models is not meant to be extended to DIF-analyses, which are from a
different paradigm and beyond the scope of this thesis.
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derived from simulation studies. And while Robitzsch and Lüdtke (2023) are correct in

saying that assumptions made in simulation studies are often violated in empirical data

(thus, making their results less generalizable), simulation studies are still a powerful

tool to identify ideal conditions for specific methods and to quantify the impact of

violated assumptions on substantive analyses. Nonetheless, Funder and Gardiner (2024)

and Robitzsch and Lüdtke (2023) make the important point to never take cut-offs

from simulation studies at face value (see also Goretzko et al., 2023). As discussed

earlier, it might be helpful to develop dynamic cut-offs for violations of MI, similar to

the newly developed tailored cut-offs for single-group CFAs or SEMs (Groskurth et

al., 2022; McNeish & Wolf, 2023; Schmalbach et al., 2019). These dynamic cut-offs

take parameters that influence the model fit and its evaluation (e.g., model complexity)

into account and calculate cut-offs that are ideal for the model and data situation

at hand. Additionally, as Funder and Gardiner (2024) suggest, guidance is needed

so that researchers can show that non-invariance across groups is meaningfully large

enough to distort inference — instead of merely showing that differences in parameter

estimates are significantly non-zero. For this, again, simulation studies are needed that

investigate “how much non-invariance is too much”, ideally under many different model

and data conditions.

7.3.2 Partial Agreement

The second category are arguments with which I partially agree. These arguments

raise important questions regarding the use of psychological scales but, in my opinion,

fall short of an explanation why they are an argument against the necessity of MI. All

arguments by FRW in this category can very broadly be summarized as follows: MI,

whether partial or full, contains no information about the (external) validity of a scale,

which FRW say is the more important aspect when comparing constructs across groups.

FRW unanimously raise this point, each of them with their own focus.

7.3.2.1 The case for validity: Funder & Gardiner (2024).

First, Funder and Gardiner (2024) criticize that methods to investigate MI are

internal to a measurement instrument. These methods provide no information about

external validity, that is, the relation of the construct that is measured to other relevant

constructs and criteria. Funder and Gardiner (2024) conclude that this external validity
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is a better metric of evaluation than MI when the goal is to make comparisons across

groups. They make their point by stating that the World Happiness Report rankings

by the Gallup World Poll works with only a single-item measure. Thus, it cannot be

assessed whether this measure is invariant across countries because common methods to

investigate MI draw on inter-item relations (i.e., covariance matrices). Nonetheless, the

World Happiness Report is said to be valid, as it shows high levels of external validity.

Correlations with other well-being scales have been shown (i.e., convergent validity)

and Funder and Gardiner (2024) speak of meaningful correlations of the measure on

the country-level.

In general, I agree with Funder and Gardiner (2024) that MI might not be sufficient

for meaningful group comparisons. External validity, that is, a link to a nomological net

of related constructs and criteria is also important to allow for meaningful comparisons.

However, in my opinion, it is not a question of “either-or”. MI is still necessary in that

we can be certain that constructs are measured equivalently and external relations, like

regression parameters in structural models, are comparable across groups. For example,

covariances between latent variables are only comparable if loadings are invariant across

groups (i.e., if metric MI holds; Fischer & Rudnev, 2024). Surveys like the World

Happiness Report might be a useful and easily understandable tool to broadly assess

happiness across many countries. However, using a single-item rating at only one time

point to measure happiness does not solve all measurement-related issues, like reliability

or MI — these issues just become more difficult or even impossible to address. Thus,

whether happiness “scores” are truly comparable cannot be stated with certainty. As

Funder and Gardiner (2024) noted, its comparability cannot even be assessed in a factor-

analytic framework to investigate MI. As a consequence, comparisons across groups

should be made with caution. For example, assume we found a positive correlation

of the happiness item with general health in two countries. This would be a sign of

validity, assuming that happiness is associated with general health (e.g., Steptoe, 2019).

However, if the correlation was larger in one country than in the other country, MI

would be a necessary condition to be able to interpret the difference of the correlation

between the two countries. We can only substantively interpret these differences in

correlations if we can be certain that it was really happiness that we measured in both
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countries (and not something closely related but slightly different).23

To increase the external validity of psychological measures, Funder and Gardiner

(2024) make the important suggestion to move more toward the collection and use of

behavioral data, instead of mainly self-report data. This, in my opinion, is an excellent

suggestion to enrich psychological data by more than just questionnaire data which

rely on the assumption of MI. Beyond the examples by Funder and Gardiner (2024),

smartphone sensing, that is, the objective collection of smartphone usage behavior

like screen time, are one possible option of these new behavioral data sources (Stachl,

Pargent, et al., 2020; Stachl, Au, et al., 2020). These data can even be combined

with psychological questionnaires in the form of self-reports (Reiter & Schoedel, 2023;

Schoedel et al., 2020).

7.3.2.2 The case for validity: Robitzsch and Lüdtke (2023).

Second, Robitzsch and Lüdtke (2023) suggest that the requirement of MI might

even pose a threat to the validity of a scale; specifically in cases where a differential

functioning of items across groups is imposed by the definition of a construct. Removing

items whose parameters are non-invariant would thus decrease the validity of a scale if

the item is or, by definition of the construct, should be non-invariant. Instead, items

should be added to or removed from a scale on content-related and non-statistical

grounds. Non-invariance should only be reported as a further source of uncertainty in

parameter estimates. For meaningful group comparisons, however, the focus should be

on (external) validity of the scale.

I agree with Robitzsch and Lüdtke (2023) that the removal of items from a scale

should never be based solely on investigations of MI. In fact, the main idea behind the

causal framework in Study 3 is that measures of a construct might function differently

across groups. Theoretical considerations regarding this differential functioning should

be incorporated in measurement models to account for item-by-group interactions (i.e.,

non-invariance). For example, as demonstrated in Study 3, the effects of covariates on

the parameters of a measurement model could be included in the model to account for

these interactions. Even further, I would differentiate between the items measuring a
23Even if the correlations between happiness and a criterion were equal in both countries, this would

not necessarily be evidence that happiness was measured equivalently (cf. Fischer & Rudnev, 2024).
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construct and the measurement model relating these items to a latent variable which

represents the construct. When investigating MI, what we are really investigating is

whether the measurement model we assume to hold is tenable across groups. If this test

of MI fails, this does not necessarily entail that the items are inadequate to measure the

construct. Instead, it could just be that the measurement model needs improvement,

in that it might be too simple or not incorporating important relations between the

items and covariates. Thus, in my opinion, the argument by Robitzsch and Lüdtke

(2023) — that item-by-group interactions or non-invariance might be inherent in a

construct by its definition — is not an argument against the necessity of MI. Rather,

it underscores the importance to think outside the measurement model and include

potential interaction effects on item parameters in our models when investigating MI

(see Study 3).

In general, I would again question whether shifting the focus from MI to external

validity, thereby labeling MI as unnecessary, will make latent mean comparisons more

meaningful. Instead, investigations of external validity should be added to assessments

of MI. Unfortunately, Robitzsch and Lüdtke (2023) neglected to provide methodological

guidance on how applied researchers can proceed in this regard. In their defense, the

article by Robitzsch and Lüdtke (2023) focused on methodological rigor and proofs,

so an applied demonstration of alternative approaches was beyond the scope of their

work. Nonetheless, the main issue I see with the argument by Robitzsch and Lüdtke

(2023) is that, without any alternative to investigations of MI, a key insight for readers

might be that they can simply ignore MI and proceed with their analyses as usual.

For example, He et al. (2024) assessed the invariance of their measures, found that

(scalar) MI is not given, and proceeded with their analyses because Robitzsch and

Lüdtke (2023) showed that MI “is not a prerequisite for meaningful and valid group

comparisons” (p. 4). I see this as problematic because I would question whether “we

do not have to investigate MI” is the opinion of Robitzsch and Lüdtke (2023). Rather,

I understand their point to be that meaningful group comparisons need different or

additional justifications than only the establishment of MI. Investigating MI and using

Robitzsch and Lüdtke (2023) as a citation in case it is not given to proceed with the

analyses, is, in my opinion, not a productive way forward for latent mean comparisons.
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7.3.2.3 The case for validity: Welzel et al. (2023).

Finally, Welzel et al. (2023) criticize that measures of a construct are too easily

delegitimized if they are not invariant. Especially if the measures are “strongly reality-

linked” (p. 1374), that is, if external validity is given by means of correlations with

other constructs or criteria, this be evidence of comparability of said measure.

I agree with Welzel et al. (2023) that a measure of a construct should not be

discarded solely on the ground that it is not invariant. Particularly not, if this non-

invariance was only found by MG-CFA, which Welzel et al. (2023) state to be the

primary method of investigation. MI should always be investigated in more detail

by means of advanced methods (e.g., De Roover et al., 2022; Sterner & Goretzko,

2023) or by reasoning about causes of non-invariance (Sterner et al., 2024). I want to

highlight again that I see non-invariance as an important finding by itself, and that it

should always be treated as such (see also Maassen et al., 2023). Fischer and Rudnev

(2024) emphasised the importance of invariance that even goes beyond the statistical

aspects of MI; for example regarding the conceptualization or operationalization of

constructs. In general, non-invariant measures tell us something about how and why

groups interpret a construct differently (Putnick & Bornstein, 2016).

Meuleman et al. (2023) have already refuted the claim by Welzel et al. (2023) that

external validity of a measure is evidence for the comparability of its scores across

groups. To this I add that — similar to the argument on the World Happiness Report

by Funder and Gardiner (2024) — calling measures "comparable" is, initially, a linugistic

matter. Of course, weaker definitions of comparability than the one postulated by MI

are possible and might also be reasonable. However, every definition of comparability

is obligated to define (and demonstrate) which inferences are warranted under which

conditions. For MI, clearly defined and testable conditions exist that are directly

related to the statistical inferences they are licensing (e.g., Vandenberg & Lance, 2000).

External validity alone is not a sufficient condition to extend our content-related

claims to the construct level, let alone compare measurements of the construct across

groups. The fact remains: every difference we observe between groups can only be

interpreted as a true difference if it cannot be attributed to differences in measurement.

Thus, comparability of measurements across groups hinges on invariant measurements
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(according to its definition in the context of MI; Meuleman et al., 2023).

7.3.3 Disagreement

The third category are arguments with which I personally disagree. In my opinion,

they to some extent provide a biased view on the methodological literature and neglect

important recent developments. My goal is to clear up potential misunderstandings

between the applied and the methodological literature on MI. I do not want to deny

questionable practices or personal experiences that the authors witnessed and reported

in their respective articles.

First, Funder and Gardiner (2024) insinuate a harsh language in the methodological

literature. They criticize the “prohibitionist tone” (p. 2) that is apparently struck in

discussions about MI. They argue that when researchers speak of “failure [to establish

MI]” or of a “violation [of MI]”, these terms imply that in these cases cross-cultural

data cannot be taken seriously or that the data should be ignored. However, words

like “failure” or “violation” are neither prohibitionist nor unique to the topic of MI.

They are common statistical terms. We speak of “failure to reject a null hypothesis”

or “violations of statistical assumptions” in almost every statistical analysis. The

terms are thus scientific jargon and have no hidden meaning. Welzel et al. (2023)

call non-invariance (as found by MG-CFA) a “lethal” (p. 1370) and later a “fatal

verdict that delegitimizes the further use of the respective construct in cross-cultural

comparison” (p. 1372). Maybe the scientific community surrounding cross-cultural

research is more severe in their tone when it comes to discussions about MI. But from

my personal reading of the methodological literature, none of these drastic wordings

are justified. In fact, the very reason why the many different methods to investigate

MI presented in this thesis and elsewhere (e.g., Kim et al., 2017) were developed, is to

enable researchers to analyze their data even in cases of non-invariance; or to at least

properly diagnose its sources and causes. Maassen et al. (2023) explicitly state that

non-invariance should not be seen as a “roadblock” (p. 12). Instead, it can be used to

deepen our understanding of constructs in that it might tell us something about how

and why different groups interpret a construct in different ways. The causal framework

in Study 3 propagates and supports this more constructive view on investigations of

MI.
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Second, Funder and Gardiner (2024) imply that their interpretation of the literature

on MI is that data cannot be used if the measurement models of the constructs are

found to be non-invariant. They see this as particularly problematic in the context of

cross-cultural research because it is difficult to establish MI across many countries. As

just mentioned, I would opt for a different reading of the methodological literature:

ignoring data when models are non-invariant is not the general opinion (e.g., Maassen et

al., 2023). There are a wide variety of methods that were developed to specifically cater

to situations where many groups have to be compared, for example in cross-cultural

research. The methods presented by Kim et al. (2017) as well as MMG-EFA (De

Roover, 2021; De Roover et al., 2022) or EFA trees (Sterner & Goretzko, 2023) are

examples of methods that enable investigations of MI in cases of many groups. They

are not developed to reach a binary decision regarding (non-)invariance but to enable

meaningful data analysis in cases where exact MI does not hold between all groups.

Third, Welzel et al. (2023) base most of their methodological criticism on a

case against MG-CFA. Meuleman et al. (2023) have already commented on their

methodological claims in great detail. Just like Funder and Gardiner (2024), Welzel

et al. (2023) missed the opportunity to acknowledge the large number of studies on

advanced methods to investigate MI that were developed in the last 15 to 20 years.

Many of their arguments depend on their premise that MG-CFA is an “increasingly

fashionable methodology” used in a “newly spreading type of study” (p. 1370). Not only

is MG-CFA one of the oldest methods to investigate MI, it is also (unfortunately) not

of much popularity in empirical studies (Maassen et al., 2023). From the perspective

of causal inference, we also argued that MG-CFA could be seen as the method with

the strictest assumptions among all methods to investigate MI (see Study 3). For this

reason, too, an acknowledgement of the great variety of MI-methods might help to

provide a more constructive view on MI. Most of the methodological flaws regarding

investigations of MI that Welzel et al. (2023) condemn are thus unique to MG-CFA.

These flaws have already been heard and addressed by the many colleagues that have

developed more advanced methods.
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7.3.4 Conclusion

In summary, I think it is important that methodological concepts like MI are being

scrutinized from different perspectives. Through critical discussion, we can improve

our understanding and implementation of MI in psychological science. However, it is

equally important that these discussions take into account all available information.

Most notably, criticism regarding the status quo should be accompanied by alternative

solutions. As always in statistical analyses, there is no free lunch: to enable meaningful

conclusions, we have to make assumptions and we have to make them explicit. Group

comparisons with large samples, validated measures, and plausible models can be

meaningful, even when viewed against the background of violated assumptions, like

non-invariance. But this lack of MI should be properly assessed with appropriate

methods and transparently reported so that readers themselves can evaluate the

validity of the claims in a study. Above all, non-invariance does not preclude the

analysis of any data — it should instead be treated as an important finding by itself.

7.4 General Conclusion

Most of psychology relies on measurements of constructs produced by questionnaires.

This concerns both psychological research and psychological assessment, for example,

in therapy, organizations, or schools. To provide comparable measurements, regardless

of a person’s background variables, we have to ensure that our measurements are

invariant across groups or time. The aim of this thesis was to extend the vast literature

of methodological research on measurement invariance. It introduced a new method

to investigate MI among multiple covariates, provided an overview and comparison of

EFA-based approaches, and suggested a causal framework for future research. These

contributions hopefully motivate applied researchers to more frequently consider MI in

empirical studies that compare psychological constructs. At the same time, the studies

of this thesis have the potential to pave the way for future research on methodological

challenges, for example a conceptualization of longitudinal MI.

To close, psychology can only benefit from a more thorough treatment of the

invariance of its measurements. Only then can we as psychologists be sure that we are

not comparing apples and extraversion, or intelligence and oranges.
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