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Abstract

Rotational ground motion is the angle of ground rotation observed during the deformation
of the Earth. The ratio of rotational amplitude to translational motion offers insights into
local structure. Over the past few decades, studies on the Earth’s internal structure have
mainly relied on the time difference of seismic waves to calculate azimuth-related veloc-
ity changes, namely azimuthal anisotropy. However, heterogeneity often affects studying
anisotropy based on seismic wave travel time, especially in highly complex structures such
as southern California. The splitting of shear waves can effectively constrain the anisotropy
in the lateral direction, but its depth resolution is limited. To address these challenges,
this thesis proposes a new theory that uses the amplitude ratio of 6C (three-component
translation and three-component rotation) ground motion to extract the phase velocity
of surface waves. The underground medium’s azimuthal anisotropy can be characterized
by observing 6C surface wave waveforms from different azimuths. The amplitude ratio
provides information about the local azimuth-dependent surface wave dispersion relation
of the subsurface beneath the 6C station without requiring knowledge of the sources or
structures along the path. To validate this theory, active source experiments based on
teleseismic surface waves are conducted to study the anisotropy of the upper mantle in
southern California. The results indicate that the proposed method makes it possible to
retrieve local anisotropy in the upper mantle with well-determined azimuthal anisotropy
of the asthenosphere. The observed fast axes suggest local rapid changes in plate defor-
mation and complex mantle flow patterns, offering new insights into geodynamic processes
in the region. Furthermore, the interaction of ocean waves with the solid Earth generates
two main signals, known as microseisms. These microseisms provide valuable information
about the energy exchange between different Earth systems. The 6C motions of a small
seismic array at Piñon Flat Observatory (PFO) in southern California make it possible
to examine the seasonal azimuth variation of the two main microseismic sources: primary
and secondary. Based on the 6C ambient noise source, we develop a new theory with
significant practical implications for the field. This theory is based on anisotropy imaging
of the 6C ambient noise source, which allows us to measure local seismic anisotropy from
6C cross-correlation functions (CCF) of ambient seismic noise data. The results indicate
that the stress-induced anisotropy is well resolved and compatible with other tomography
results, providing constraints on the origin of depth-dependent seismic anisotropy. The
practical applications of the proposed 6C anisotropy theory demonstrate its potential to
enhance our understanding of Earth’s anisotropy and its impact on Earth science.
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Chapter 1

Introduction

Rotational motion can be directly measured as part of the wavefield gradient using rota-
tional seismographs (Lefevre, 2014; Bernauer et al., 2021; Zembaty et al., 2021; Igel et al.,
2007, 2021; Fang & Tang, 2021). With the development of rotational ground motion in-
struments such as ring lasers (Schreiber et al., 2014; Igel et al., 2005, 2021) or fiber optic
gyroscopes (Schreiber et al., 2009), various techniques have been developed to exploit the
resulting observations. This has opened up new opportunities for single-station seismo-
logical observations, which are crucial for planetary exploration, seafloor observation, and
volcanology.

By applying adjoint techniques to such joint observations (Fichtner & Igel, 2009), it
demonstrates that 6C (three-components translation and three-components rotation) am-
plitude ratios are sensitive to near-receiver structures, thereby eliminating path effects
of wave propagation. Assuming an isotropic medium or a transversely isotropic (VTI)
medium with a vertical axis of symmetry, only S-related waves can produce rotational
motion (Tang & Fang, 2021a). This allows us to identify and separate wavefields using
polarization properties uniquely (Sollberger et al., 2018; Schmelzbach et al., 2018; Wasser-
mann et al., 2022). Since the rotational component of the S-related wave is perpendicular
to the wave propagation direction and should have the same phase as the corresponding
translational displacement, the propagation azimuth of an earthquake can also be easily
estimated using a single 6C station (Igel et al., 2007; Wassermann et al., 2016; Yuan et al.,
2021). The method of estimating local phase velocity from 6C amplitude ratios has been
verified by actual observations (Igel et al., 2007; Keil et al., 2021; Fang & Tang, 2021).

Furthermore, Tang & Fang (2023) provided a theoretical formula for the cross-correlation
between displacement and rotation and theoretically demonstrated that local phase veloc-
ity can also be extracted from the amplitude ratio of ambient seismic noise. Additionally,
Noe et al. (2022) numerically exploited the rotational motion of body waves in general
anisotropic media. They demonstrated the feasibility of inverting local anisotropic elastic
parameters from rotational motion and strain by estimating body wave velocities from
amplitude ratios. However, there is no study on the anisotropy of 6C surface waves, but
this is of great significance for anisotropy study. Therefore, our study aims to retrieve lo-
cal anisotropy parameters of subsurface structures from surface waves using translational
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displacement and rotation or strain since the amplitude ratio method possesses a locally
sensitive kernel, which is a great advantage for studying seismic anisotropy.

Seismic anisotropy has become a separate field, connecting material properties, stress
alignment heterogeneity, or pore space with dynamic phenomena such as mantle flow or
fluid flow direction (Anderson, 1965; Crampin, 1977; Forsyth, 1975; Anderson & Dziewon-
ski, 1982; Montagner & Tanimoto, 1991; Nataf et al., 1984; Legendre et al., 2021). A com-
prehensive understanding of seismic anisotropy helps characterize subsurface structures and
seismic hazards (Gupta, 1973; Legendre et al., 2021; Teanby et al., 2004). Previous stud-
ies have mainly focused on translational displacements, encompassing P-wave azimuthal
anisotropy (Hess, 1964; Francis, 1969), P-wave polarization (Schulte-Pelkum et al., 2001;
Al-Lazki et al., 2004; Mutlu & Karabulut, 2011), shear wave splitting (Crampin & Chastin,
2003; Vinnik et al., 1989; Silver, 1996), surface wave azimuthal anisotropy, and polariza-
tion analysis (Forsyth, 1975; Hess, 1964; Tanimoto & Anderson, 1985; Montagner & Nataf,
1986; Maupin, 1989; Montagner & Tanimoto, 1991).

Azimuthal anisotropy can be studied through surface wave dispersion by determining
dispersion curves at different azimuthal angles using single-station, inter-station, or array-
based methods. While single-station methods are mainly used to measure fundamental
mode dispersion curves (Levshin et al., 1972; Forsyth, 1975; Ekström et al., 1997), more
complex methods require prior information about source functions or approximate earth
structure (Brown et al., 2022), which limits their application scope. On the other hand,
inter-station or array-based methods use the phase difference between seismograms mea-
sured at different stations to estimate phase velocity and have been successfully applied
to seismic ambient noise combined with cross-correlation analysis (Yao et al., 2006, 2008;
Stehly et al., 2009; Legendre et al., 2021; Shapiro & Campillo, 2004; Shapiro et al., 2005).

The limitation of the traditional single-station method or multi-station method is that
the dispersion measurement yields the average velocity between the source (active source
or passive source) and the station, even though the average inter-station dispersion can
be related to the local phase velocity by integration over the inter-station arc (Legen-
dre et al., 2021). Heterogeneity can significantly affect the results using these methods.
Single-point anisotropy analysis of surface wave polarization motion (Park & Yu, 1993;
Tanimoto, 2004) aims to retrieve azimuthal variations in amplitude or amplitude ratio and
obtain constraints on the anisotropic structure directly below the receiver. However, the
polarization anomaly at a given station depends on the structure below the station and
the structure seen by the wave in a large part of the propagation path unless the structure
is uniformly anisotropic over a large area (Maupin, 2004). Due to the limitations of the
surface wave anisotropy analysis mentioned above (such as heterogeneity effects and polar-
ization complexity), this paper first attempts to find a method based on 6C observations
to characterize the azimuthal anisotropy of the subsurface structure without being affected
by along-path heterogeneity or source effects.

Seismic anisotropy informs us about the alignment of small-scale heterogeneity, such as
fractures, porous media, crystals, or bedding, often oriented according to the local stress
or strain field (Tanimoto & Anderson, 1984; Ribe, 1989; Ghosh & Holt, 2012; Montag-
ner, 1994). This alignment can be connected to the flow direction of the Earth’s mantle.
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The seismic anisotropy in the upper mantle reveals geodynamic processes and the tectonic
evolution of the Earth. The two most powerful methods, surface wave tomography and
shear-wave splitting observations cannot investigate the deep local anisotropy with good
vertical and lateral resolution, resulting in poor constraints on plate deformation processes
of the complex plate boundary beneath the southern California region. The first approach
involves using the shear wave splitting phenomenon, observed for nearly vertically prop-
agating waves (e.g., SKS phase) (Vinnik et al., 1984; Silver & Chan, 1988), to estimate
the polarization of fast quasi-shear waves, which is assumed to be related to the principal
horizontal stress/strain directions (Crampin & Lovell, 1991). This method can be con-
ducted using a single three-component seismic station but lacks depth resolution (Savage,
1999). The second approach uses observations of surface waves from multiple directions on
a seismic array of sufficient size to determine the directional anisotropy of Love or Rayleigh
waves (Forsyth, 1975). This method offers better depth resolution through the frequency
dependence of the surface wave phase velocity (Montagner & Nataf, 1986) but may have
limitations in lateral resolution.

Therefore, we apply the proposed 6C anisotropy approach for the first time to esti-
mate local anisotropy parameters in the upper mantle using surface wave observations.
With its complex tectonic and geodynamic environment, southern California is ideal for
applying this new approach. The dense broadband seismic network in southern California,
operational for several decades, allows us to use a subset of stations as an array, use the
array-derived rotation (ADR) technique (Spudich et al., 1995; Spudich & Fletcher, 2008)
to estimate the rotation, and then apply the single-station technique to the resulting 6C
data. We aim to investigate the agreement between the frequency-dependent anisotropy
parameter and other geophysical or geodetic observations and how this approach provides
new information about the layering and orientation variations of azimuthal anisotropy at
depth.

Microseismic noise on Earth is a valuable resource for studying Earth’s structure. Trans-
lational observations of this noise have been widely used to study the subsurface velocity
structure and seismic anisotropy (Shapiro et al., 2005; Yao et al., 2010). However, the
potential of rotational observations to provide additional constraints on the Earth’s inte-
rior has been a scientific challenge. The interaction of ocean waves with the solid Earth
produces two common types of microseismic noise (Longuet-Higgins, 1950; Iyer, 1958; Has-
selmann, 1963; Obrebski et al., 2012; Stutzmann et al., 2012; Ardhuin et al., 2011, 2015,
2019; Gualtieri et al., 2020, 2021): primary (with 10-20 seconds) and secondary (with 3-10
seconds). It is generally believed that in very shallow waters, the direct interaction of
ocean waves with the seafloor can explain the generation mechanism of primary micro-
seismic Rayleigh waves and Love waves with a period of about 10-20 seconds (Gualtieri
et al., 2020, 2021; Fukao et al., 2010; Saito, 2010). Meanwhile, the origin of secondary
microseismic Rayleigh waves is due to the interaction of two opposing swells, which can
generate secondary pressures that interact anywhere on the seafloor (Longuet-Higgins,
1950; Obrebski et al., 2012).

From a theoretical point of view, it is expected that Rayleigh waves should dominate
secondary microseismic events due to the vertical pressure exerted by ocean waves on the
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seafloor. However, this cannot explain the generation mechanism of secondary microseismic
Love waves with horizontal polarization patterns. The current hypotheses for the mecha-
nism of the secondary microseismic Love waves suggest that the presence of bathymetric
inclines enables leading to the splitting of the vertical secondary-order pressure force in
a component tangent to inclines, which can be responsible for the Love waves (Rind &
Down, 1979; Gualtieri et al., 2020, 2021; Le Pape et al., 2021). In addition, the lateral
heterogeneity within the Earth may also lead to the generation of Love waves due to scat-
tering effects (Rind & Down, 1979; Gualtieri et al., 2020). Despite this, seismologists have
debated the origin of secondary microseismic Love waves for decades. Accurately locating
and tracking microseismic sources has been a challenge to understand better the generation
mechanisms of these two different vibrations, especially Love waves.

To study the generation mechanism of Love waves, it is crucial to observe their seasonal
variation. Previous studies have shown that the direction of the microseismic noise source
can be estimated from 6C observations (Hadziioannou et al., 2012; Gualtieri et al., 2020).
In addition, 6C ground motions can naturally separate microseismic Rayleigh waves into
horizontal components and microseismic Love waves into vertical rotational components
(Hadziioannou et al., 2012; Tang & Fang, 2021a), significantly improving Love wave source
measurements. We use the emerging 6C observations to estimate the seasonal variation of
the microseismic noise source. Since most places worldwide do not have portable rotational
sensing systems to analyze long-term ambient noise observations, we use array-derived
rotation (ADR), which uses wavefield gradient estimates from surface seismic arrays with
appropriate frequency bands. The microseismic rotational motions generated by the small
seismic array at the Piñon Flat Observatory in southern California can be used to study
seismic anisotropy and allow us to investigate long-term changes in microseismic noise
sources.

In addition, our recent theoretical paper (Tang & Fang, 2023) presents a new approach
focusing on the amplitude of rotational microseismic noise data. This approach allows the
measurement of local phase velocities from the amplitude ratios of the 6C cross-correlation
functions, providing local sensitivity to monitor velocity changes in regional structures.
To extend this theory to the rotational anisotropy, local seismic anisotropy is investigated
from the azimuth-dependent 6C cross-correlation functions. We still use a small seismic
array at the Piñon Flat Observatory in Southern California to retrieve rotational ground
motions and investigate local seismic anisotropy for the first time. We highlight that
ground deformations caused by atmospheric pressure are highly sensitive to the rotational
motions generated by the seismic array, especially primary microseismic Love waves, which
are essential for characterizing low-noise rotational motion models of the Earth (Brotzer
et al., 2023). These studies promote the development of sensitive rotational sensors to
expand the potential of 6C observations, allowing the inversion of anisotropy parameters
from point measurements.

The thesis consists of four chapters exploring the proposed 6C surface wave anisotropy
theory and its practical application in observation. These chapters discuss the use of
long-period teleseismic surface waves to study the anisotropy of the upper mantle, the
application of cross-correlation theory of ambient seismic noise sources to examine the
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anisotropy of the upper crust, and the investigation of the mechanism of the microseismic
noise source.

Chapter 2 contains the paper "Single-Point Dispersion Measurement of Surface Waves
Combining Translation, Rotation and Strain in Weakly Anisotropic Media: Theory" pub-
lished in Geophysical Journal International (Tang et al., 2023c) proposes a new theory
for measuring the dispersion relation of surface waves in weakly anisotropic media using
a single station, which consists of translational displacement and rotation or strain. The
azimuth-dependent surface wave dispersion curve can be directly obtained by using the
amplitude ratio of translational displacement to rotation or strain. The amplitude ratio
gives the localized azimuth-dependent dispersion relations of the formation beneath a re-
ceiver without requiring knowledge of the source or structure along the path. The theory
shows that the coupled quasi-Rayleigh (qR) wave and quasi-Love (qL) wave will result
in elliptically polarized rotational motions in anisotropic media. We conduct numerical
experiments, investigate the effects of noise and degree of anisotropy, and demonstrate the
potential for field studies.

Chapter 3 contains the paper "Anisotropy and deformation processes in Southern Cali-
fornia from rotational observations" published in Geophysical Research Letters (Tang et al.,
2023a). Seismic anisotropy in the upper mantle reveals geodynamic processes and the tec-
tonic evolution of the Earth. The two most powerful methods, surface wave tomography
and shear-wave splitting observations cannot investigate the deep local anisotropy with
good vertical and lateral resolution, resulting in poor constraints on plate deformation
processes of the complex plate boundary beneath the Southern California region. Here,
we show that the amplitude ratio of translational displacement and rotation makes it pos-
sible to retrieve the local anisotropy in the upper mantle. Azimuthal anisotropy in the
asthenosphere is well-determined and resolved in lateral and vertical directions. The fast
axis retrieved from amplitude observations indicates the local rapid changes in plate defor-
mation and complex pattern of mantle flow, which is compatible with the distributions of
horizontal mantle flow illuminated by geodetic measurements, providing new insights into
the geodynamic processes of the Southern California region.

Chapter 4 contains the paper "Seismic anisotropy from 6C ground motions of ambient
seismic noise" published in Journal of Geophysical Research: Solid Earth (Tang et al.,
2024). We propose a new approach capable of measuring local seismic anisotropy from
6C (three-component translation and three-component rotation) amplitude observations
of ambient seismic noise data. Our recent theory demonstrates that the amplitude ra-
tio of 6C cross-correlation functions (CCFs) enables retrieving the local phase velocity.
This differs from conventional velocity extraction methods based on the travel time. Its
local sensitivity kernel beneath the 6C seismometer allows us to study anisotropy from
azimuth-dependent CCFs, avoiding path effects. Such point measurements have great po-
tential in planetary exploration, ocean bottom observations, or volcanology. We apply this
approach to a small seismic array at Piñon Flat Observatory (PFO) in southern Califor-
nia, array-deriving retrieves rotational ground motions from microseismic noise data. The
stress-induced anisotropy is well resolved and compatible with other tomography results,
providing constraints on the origin of depth-dependent seismic anisotropy.
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Chapter 5 contains the paper "Seasonality of microseismic sources in Southern Cali-
fornia from 6C ground motions" which will be submitted to a journal soon. Ocean waves
interact with the solid Earth, generating two dominant signals called microseisms, which
carry information about energy exchange between different Earth systems. We show that
6C (three-component translation and three-component rotation) observations can resolve
its seasonal azimuthal variations. We employ the rotational motions retrieved by a small
seismic array at the Pinon Flat Observatory (PFO) in southern California to investigate
the two dominant microseismic sources: primary and secondary microseisms. As expected,
the primary microseismic Rayleigh waves show strong seasonal variations, whereas the sec-
ondary microseismic Rayleigh waves show slight seasonal changes. In contrast, we find that
secondary microseismic Love waves exhibit stable seasonality. This discrepancy from the
secondary microseismic Rayleigh waves provides us with new insights into the generation
mechanism of Love waves. In addition, the results also show that effectively estimating
the natural seasonal variation of microseismic sources can provide constraints for studying
seismic anisotropy, and the rotational motion of primary microseisms retrieved by seismic
arrays is more sensitive to ground deformation caused by air pressure.



Chapter 2

Single-Point Dispersion Measurement
of Surface Waves Combining
Translation, Rotation and Strain in
Weakly Anisotropic Media: Theory

by Le Tang, Heiner Igel and Jean-Paul Montagner
Published in Geophysical Journal International (2023), 235(1), 24-47.
https://doi.org/10.1093/gji/ggad199

2.1 Summary

A new approach is proposed for measuring the dispersion relation of surface waves in
weakly anisotropic media using a single station, which consists of translational displace-
ment and rotation or strain. The azimuth-dependent surface wave dispersion curve can
be directly obtained by using the amplitude ratio of translational displacement to rotation
or strain. Using observations from earthquakes from a variety of azimuths allows us to
characterize the anisotropy of subsurface media. The amplitude ratio gives the localized
azimuth-dependent dispersion relations of the formation beneath a receiver without re-
quiring knowledge of the source or structure along the path. The theory shows that in
anisotropic media the coupled quasi-Rayleigh (qR) wave and quasi-Love (qL) wave will
result in elliptically polarized rotational motions. In addition, rotational motion informa-
tion allows the determination of backazimuth even in general anisotropic media. We carry
out numerical experiments, investigate the effects of noise and degree of anisotropy, and
demonstrate the potential for field studies.
Key words:
Rotational seismology; Seismic anisotropy; Theoretical seismology.
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2. Single-Point Dispersion Measurement of Surface Waves Combining

Translation, Rotation and Strain in Weakly Anisotropic Media: Theory

2.2 Introduction
The study of seismic anisotropy has turned into a field of its own, relating material proper-
ties, stress-aligned heterogeneities, or pore space, with dynamic phenomena such as mantle
flow or fluid flow directions in crustal rocks (Anderson, 1965; Crampin, 1977; Forsyth, 1975;
Anderson & Dziewonski, 1982; Montagner & Tanimoto, 1991; Nataf et al., 1984; Legen-
dre et al., 2021). A complete understanding of seismic anisotropy aids in characterizing
the subsurface structure (e.g., Gupta, 1973; Legendre et al., 2021) and earthquake disas-
ters (Teanby et al., 2004). Previous studies on seismic anisotropy focus on translational
displacement, including P wave azimuthal anisotropy (Hess, 1964; Francis, 1969), P wave
polarization (Schulte-Pelkum et al., 2001; Al-Lazki et al., 2004; Mutlu & Karabulut, 2011),
shear wave splitting (Crampin & Chastin, 2003; Vinnik et al., 1989; Silver, 1996), surface
wave azimuthal anisotropy and polarization analyses (Forsyth, 1975; Hess, 1964; Tanimoto
& Anderson, 1985; Montagner & Nataf, 1986; Maupin, 1989; Montagner & Tanimoto,
1991).
Azimuthal anisotropy based on surface wave dispersion can be studied by determining
the dispersion curves of different azimuth angles using single station methods, interstation
methods, or array-based methods. The single station method has been used principally
to measure fundamental mode dispersion curves (Levshin et al., 1972; Forsyth, 1975; Ek-
ström et al., 1997). Some of the more sophisticated approaches require knowledge of prior
information of the source function or approximate earth structure (e.g., Brown et al., 2022)
limiting the domain of application. The interstation or array-based method (Forsyth et al.,
2005; Pedersen, 2006) makes use of phase differences between seismograms measured at
different stations to estimate phase velocity. This has been successfully applied to seis-
mic ambient noise (Yao et al., 2006, 2008; Stehly et al., 2009; Yao et al., 2010; Legendre
et al., 2021) combined with cross-correlation analysis (Shapiro & Campillo, 2004; Shapiro
et al., 2005). The dispersion measurement of the traditional single-station method or multi-
station method is the average velocity between the source (earthquake source or ambient
noise fictional source) and the station, even if the average interstation dispersion can be
related to the local phase velocity via an integral over the interstation arc (Legendre et al.,
2021). Heterogeneity will also greatly affect results using these methods because the ini-
tially extracted dispersion curve is the average dispersion information along the surface
wave propagation path.
Single-point anisotropy analysis of the polarization motion of surface waves (Park & Yu,
1993; Tanimoto, 2004) seeks to retrieve azimuthal variations of amplitude or amplitude
ratios and obtain constraints on the anisotropic structure directly under the receiver. How-
ever, the polarization anomaly of a given station depends not only on the structure below
the station but also on the structure seen by the wave in a significant part of the propaga-
tion path, unless the structure is uniformly anisotropic over a wide range (Maupin, 2004).
Because of the limitations (heterogeneity effect and complexity of polarization) of the above
surface wave anisotropy analysis, this paper attempts to find a method, characterizing the
azimuthal anisotropy of subsurface structure without the influence of heterogeneity along
the path or source effects.
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The rapid development in rotational sensor technology (Pancha et al., 2000; Schreiber et al.,
2005; Bernauer et al., 2021; Zembaty et al., 2021; Igel et al., 2021) allows us to exploit the
potential application of rotational motions. Under the assumption of an isotropic medium
or transversely isotropic (VTI) medium with vertical symmetry axis, only an S-related
wave (including conversions) can generate rotational motions (Tang & Fang, 2021a). This
allows us to uniquely identify and separate the wavefield using polarization characteristics
(Sollberger et al., 2018; Schmelzbach et al., 2018; Wassermann et al., 2022). Because the
rotational component of an S-related wave is perpendicular to the wave propagation direc-
tion and should have the same phase as the corresponding translational displacement, the
propagation azimuth of an earthquake can also be easily estimated using a single station
(Igel et al., 2007; Wassermann et al., 2016). This even works for the direction of moving
seismic sources (Yuan et al., 2021).
Fichtner & Igel (2009) gave the verification that the sensitivity kernels of the amplitude
ratio (translational displacement and rotation) of surface waves or S waves attain large ab-
solute values only in the vicinity of the receiver, but not the source, and such measurements
may be used for local shear-wave speed tomography. The estimation of local phase velocity
measurements from amplitude ratios has been verified with real observations and a variety
of different rotation sensors (Igel et al., 2007; Wassermann et al., 2016; Keil et al., 2021;
Fang & Tang, 2021). Tang & Fang (2023) gave theoretical formulas of cross-correlation
between displacement and rotation, and theoretically verified that the local phase velocity
can also be extracted from amplitude ratios derived from ambient seismic noise.
Recently, Noe et al. (2022) numerically exploited the characteristics of body waves in a
general anisotropic medium, demonstrating the feasibility to invert local anisotropic elastic
parameters from rotational motions and strain by estimating the body wave velocity from
amplitude ratios. Consequently, we can expect to use the translational displacement and
rotation or strain to retrieve locally anisotropic parameters of subsurface structure from
surface waves. To demonstrate this novel processing approach is the key goal of this study.
The paper is organized into two main sections. First, we establish the theoretical basis of
the azimuth-dependent dispersion measurements from a single seismic station in weakly
anisotropic media. Second, we numerically investigate the capability of extracting the
azimuth-dependent dispersion curve from a single station and illustrate the effect of cou-
pling terms. Furthermore, we compare our approach to the more classic analysis using
phase effects.

2.3 Theory
In Cartesian Coordinates, the strain tensor and rotation can respectively be defined as
(Aki & Richards, 2002):

εij = 1
2(ui,j + uj,i) (2.1)

Ωi = 1
2(uk,j − uj,k) (2.2)
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where ui,j represents the partial derivative of translational displacement of i component
with respect to j component. i,j, and k vary among x, y, and z.
The relation between stress and strain can be given as:

σij = Cijklεkl (2.3)

where Cijkl (i, j, k and l vary among x, y and z) is the fourth-order elastic tensor and σij
represents the stress tensor. Considering the free surface boundary condition, where we
assume that the surface is horizontal, the traction is equal to zero which indicates σiz = 0.
Therefore,

σiz = Cizklεkl = 0 (2.4)

Under the assumption that the media is only weakly anisotropic, the translational dis-
placement of the anisotropic media can be written as a combination of Rayleigh and Love
wave eigenfunctions in the reference isotropic media (Tanimoto, 2004), whose expressions
are given below:

u = aLuL + aRuR (2.5)
where uL and uR are the Love and Rayleigh wave translational displacement of the reference
isotropic medium, respectively, aL and aR are the coefficients to be determined from the
stationarity of the Lagrangian. The dispersion relation and polarization of translational
displacement in anisotropic media derived from the stationarity of the Lagrangian under
the assumption of eq. 2.5 have been verified by comparison with other direct integral
results (Tanimoto, 2004). Therefore, we will derive the polarization of rotation and strain
under this assumption.
In isotropic media, uL and uR have the form:{

uL = [−sinψW (z), cosψW (z), 0]eiκl0(cosψx+sinψy)−iωt

uR = [cosψV (z), sinψV (z), iU(z)]eiκr0(cosψx+sinψy)−iωt (2.6)

where sinψ2 + cosψ2 = 1, ψ is the azimuth of the direction of propagation measured from
the X-axis. κ is the modulus of the horizontal wavenumber vector κ⃗. κl0 and κr0 represent
the wavenumber of Love waves and Rayleigh waves in isotropic media respectively. W (z)
is the depth-dependent eigenfunction of the Love wave, V (z) and U(z) of the Rayleigh
wave. ω is the circular frequency.
Substituting eqs 2.5 and 2.6 into the Lagrangian (Tanimoto, 2004), we obtain:

L(u∗
i , ui) = ω2

∫ 0

−∞
ρu∗

iuidz −
∫ 0

−∞
Cijklε

∗
ijεkldz (2.7)

By using the relations ∂L/∂aL = 0, ∂L/∂aR = 0 (Tanimoto, 2004), the coefficients in the
limit of weak anisotropy under |A−B| ≥ E can be expressed as:
For quasi-Love waves:

(aL, aR) = (1, E

A−B
) (2.8)
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For quasi-Rayleigh waves:
(aL, aR) =

(
− E

A−B
, 1

)
(2.9)

A and B are respectively the quasi-Love and Rayleigh waves’ eigenfrequency square and
E is the coupling term. The detailed expressions of E, A, and B can be found in the
appendix of Tanimoto (2004). The translational displacement of quasi-Love wave can be
expressed from eqs 2.5, 2.6, and 2.8 as:

uqL = [−sinψW (z) + cosψTV (z), cosψW (z) + sinψTV (z), iTU(z)]eiκl(cosψx+sinψy)−iωt

(2.10)
The displacement of quasi-Rayleigh waves can be expressed from eqs 2.5, 2.6, and 2.9 as:

uqR = [sinψTW (z) + cosψV (z),−cosψTW (z) + sinψV (z), iU(z)]eiκr(cosψx+sinψy)−iωt

(2.11)
where T = E

A−B . κl and κr represent the wavenumber of quasi-Love waves and quasi-
Rayleigh waves in anisotropic media respectively.
Eqs 2.10 and 2.11 are obtained by Tanimoto (2004), indicating that because of the effect
of coupling, the polarization of Love waves in anisotropic media becomes elliptical instead
of the linear particle motion in isotropic media. The particle motion of Rayleigh waves has
a transverse component, which is no longer confined in the radial-vertical plane. To derive
the dispersion relations between displacement and rotation or strain, in the next section, we
first derive the polarization of rotation and strain combined with the free surface boundary
condition and then obtain the dispersion formulas.

2.3.1 Isotropic media
Polarization and dispersion relation of rotation and strain in isotropic media

Under the assumption of isotropic layered media, there is no azimuth-dependent velocity
variation. Combining the boundary conditions eq. 2.4 and displacement function eq. 2.6,
we can derive the following equations of eigenfunctions:

V ′(0) = κr0U(0)
(2µ+ λ)U ′(0) + λκr0V (0) = 0

W ′(0) = 0
(2.12)

where µ and λ are the Lamé parameters for isotropic media. U ′, V ′ and W ′ represent the
depth derivatives (∂z|z=0) of the first-order eigenfunctions. Substituting eqs 2.12 and 2.6
into eqs 2.1 and 2.2, we obtain the polarization of rotation and strain at the surface (z = 0)
in Cartesian coordinate (see Appendix C for detailed expressions). To better understand
the polarization of rotation and strain, we project the polarization of eqs 2.6 and (C-1-C-
4) onto the R-T coordinate system (cosψ = 1, sinψ = 0) of the propagation direction (R
direction) shown in Fig. 2.1 with two identical vertical axes.
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Figure 2.1: Diagram of Coordinate transformation.

In this paper, we analyze the polarization of rotational components Ωi(i = r, t, z)
and the radial strain component εrr, which correspond to rotational seismometers and
strain sensors or DAS (Distributed Acoustic Sensing), respectively. After the coordinate
projection (see section 5.4 of Chou & Pagano (1992) for the transformation relationship),
the polarization of translational displacement, rotation, and strain at the surface (z=0) in
the R-T coordinate system can be expressed as
For Love waves: 

ur = 0
ut = W
uz = 0

(2.13)


Ωr = 0
Ωt = 0

Ωz = iκl0W/2
εrr = 0

(2.14)

For Rayleigh waves: 
ur = V
ut = 0
uz = iU

(2.15)


Ωr = 0

Ωt = κr0U
Ωz = 0

εrr = iκr0V

(2.16)

where we omit the exponential term eiκr−iωt. In the following derivation we also omit this
term.
From a theoretical point of view, it is known that the translational displacement of the
Rayleigh wave shows elliptical polarization in the R-Z plane and rotation shows linear
polarization in the T direction. Both translational displacement and rotation of the Love
wave show linear polarization in two orthogonal directions, respectively. Previous studies
of surface waves with rotational components assume isotropic structure (Igel et al., 2007;
Kurrle et al., 2010; Keil et al., 2021; Fang & Tang, 2021; Tang & Fang, 2021b, 2023), except
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for the analysis of body waves by Noe et al. (2022). In the following, we will demonstrate
that in anisotropic media rotational motions are no longer linearly polarized.
Comparing eqs 2.13-2.16, the surface wave dispersion relations can be directly obtained by
combining the polarization of translational displacement and rotation or strain.
For Love waves:

cL(ω) = | u̇t2Ωz

| (2.17)

For Rayleigh waves: {
cR(ω) = | u̇r

εrr
|

cR(ω) = | u̇z

Ωt
| (2.18)

where u̇ represents the first-order temporal derivative of displacement. Eqs 2.17 and 2.18
indicate that the dispersion phase velocity of Love and Rayleigh waves can directly be
measured by the ratio of displacement to rotation or strain. This has been used widely
in previous studies (Igel et al., 2007; Kurrle et al., 2010; Keil et al., 2021; Fang & Tang,
2021).

2.3.2 Anisotropic media
Because of the coupling between quasi-Rayleigh and quasi-Love waves in (weakly) anisotropic
media (Tanimoto, 2004), the polarization of rotation of the two waves is no longer linear
and shows elliptical form. An anisotropic medium is generally characterized by azimuth-
dependent velocity variations. In the following derivation, we will separately consider three
media: vertical transversely isotropic (VTI) media, general orthorhombic media (horizon-
tal transversely isotropic (HTI) media is included), and general anisotropic media, whose
expressions of the elastic tensor can be found in Appendix A. Among them, quasi-Love
and quasi-Rayleigh waves are completely decoupled in VTI media and the phase velocity
does not show azimuthal anisotropy. They are also decoupled for waves propagating along
the symmetry axis and its perpendicular direction for HTI media.

Polarization and dispersion relation of rotation and strain in VTI media

The translational motion of VTI media has the same form as for isotropic media which
can also be expressed by eq. 2.6. Therefore, the displacement, rotation, and strain also
have the same polarization form, except for the vertical strain component εzz = −C13

C33
iκV

of quasi-Rayleigh wave, characterized by different elastic parameters. In addition, the
dispersion formulas of VTI media generally also show the same form as isotropic media in
eqs 2.17 and 2.18.

Polarization and dispersion relation of rotation and strain in general orthorhom-
bic media

Orthorhombic medium with nine independent parameters is characterized by azimuth-
dependent velocity variations derived using the free surface boundary conditions eq. 2.4
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as:
For quasi-Love waves:

sinψTV ′(0) + cosψW ′(0) = κlsinψTU(0)
−sinψW ′(0) + cosψTV ′(0) = cosψκlTU(0)

C33TU
′(0) + C13κlcosψ[−sinψW (0) + cosψTV (0)]+
C23κlsinψ[sinψTV (0) + cosψW (0)] = 0

(2.19a)

For quasi-Rayleigh waves:
sinψV ′(0) − cosψTW ′(0) = κrsinψU(0)
sinψTW ′(0) + cosψV ′(0) = cosψκrU(0)

C33U
′(0) + C13κrcosψ[sinψTW (0) + cosψV (0)]+
C23κrsinψ[sinψV (0) − cosψTW (0)] = 0

(2.19b)

We substitute eqs 2.19a, 2.19b, 2.10 and 2.11 into eqs 2.1 and 2.2, and the polarization of
rotation and strain in Cartesian coordinates can respectively be found in Appendix C. We
project the polarization of eqs 2.10, 2.11 and C-5-C-8 onto the coordinate system (R-T) of
propagation direction (R direction) shown in Fig. 2.1 and the polarization of translational
displacement, rotation, and strain at the surface (z=0) can be expressed:
For quasi-Love waves: 

ur = TV
ut = W
uz = iTU

(2.20)


Ωr = 0

Ωt = κlTU
Ωz = iκlW/2
εrr = iκlTV

(2.21)

For quasi-Rayleigh waves: 
ur = V

ut = −TW
uz = iU

(2.22)


Ωr = 0

Ωt = κrU
Ωz = −iκrTW/2

εrr = iκrV

(2.23)

As illustrated in Fig. 2.3, the translational polarization of the quasi-Rayleigh wave de-
viates from the vertical-radial plane in general orthorhombic media while the quasi-Love
wave transforms into elliptical polarization, in which the coupled quasi-Rayleigh wave will
appear on the transverse component and the coupled quasi-Love wave will appear on the
vertical component (Tanimoto, 2004). The rotational components of both waves exhibit
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elliptical polarization. However, both are only polarized in the vertical-transverse plane
which is perpendicular to the direction of propagation.

Figure 2.2: Diagram of polarization of translational displacement and rotation in isotropic
media. The translational displacement of Rayleigh wave is elliptical polarization, while
the love wave is linear polarization.The rotations of Love and Rayleigh waves are linearly
polarized.

Figure 2.3: Diagram of polarization of translational displacement and rotation in general
orthotropic media. The translational displacement and rotations of Love and Rayleigh
waves are elliptically polarized.

Comparing eqs 2.20-2.23, the surface wave dispersion relations between translational
displacement and rotation or strain can be easily obtained in general orthorhombic media:
For quasi-Love waves:

cL(ω, ψ) = | u̇t2Ωz

| (2.24a)

{
cL(ω, ψ) = | u̇r

εrr
|

cL(ω, ψ) = | u̇z

Ωt
| (2.24b)

For quasi-Rayleigh waves: {
cR(ω, ψ) = | u̇r

εrr
|

cR(ω, ψ) = | u̇z

Ωt
| (2.25a)
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cR(ω, ψ) = | u̇t2Ωz

| (2.25b)

Eqs 2.24a and 2.25a give the local azimuth-dependent dispersion relation of general or-
thorhombic media. An interesting point is that the additional dispersion of eqs 2.24b and
2.25b for general orthorhombic medium come from the coupled waves contributions but
they are generally smaller. From a theoretical point of view, the derived dispersion formu-
las from the coupling term contribution are correct. However, from an observational point
of view, measuring the dispersion curves using this approach is prone to errors due to the
amplitude of the coupling term. When the coupling term is equal to zero, T = 0, the eqs
2.24a, 2.24b, 2.25a and 2.25b degenerate into the isotropic dispersion equations.

Polarization and dispersion relation of rotation and strain in general anisotropic
media

Under the assumption of first-order perturbations, general anisotropic media with 21 inde-
pendent variables degenerate into 13 (monoclinic media in Appendix A) (Smith & Dahlen,
1973; Montagner & Nataf, 1986). The free surface boundary conditions eq. 2.4 results in
the following form:
For quasi-Love waves:

C45[cosψW ′(0) + sinψTV ′(0) − κlsinψTU(0)]+
C55[cosψTV ′(0) − sinψW ′(0) − κlcosψTU(0)] = 0
C44[cosψW ′(0) + sinψTV ′(0) − κlsinψTU(0)]+
C45[cosψTV ′(0) − sinψW ′(0) − κlcosψTU(0)] = 0

C33TU
′(0) = C13κlcosψ[sinψW (0) − cosψTV (0)] − C23κlsinψ[cosψW (0) + sinψTV (0)]

−C36
2 [2sinψcosψκlTV (0) + cosψ2κlW (0) − sinψ2κlW (0)]

(2.26a)
For quasi-Rayleigh waves:

C45[−cosψTW ′(0) + sinψV ′(0) − κrsinψU(0)]+
C55[cosψV ′(0) + sinψTW ′(0) − κrcosψU(0)] = 0
C44[−cosψTW ′(0) + sinψV ′(0) − κrsinψU(0)]+
C45[cosψV ′(0) + sinψTW ′(0) − κrcosψU(0)] = 0

C33U
′(0) = C23κrsinψ[cosψTW (0) − sinψV (0)] − C13κrcosψ[cosψV (0) + sinψTW (0)]

−C36
2 [2sinψcosψκrV (0) + (sinψ2 − cosψ2)κrTW (0)]

(2.26b)

Due to the complexity of the free surface boundary conditions which cannot simplify, the
following derivation except for the third term of eqs 2.26a and 2.26b, we directly substitute
eqs 2.10 and 2.11 into eqs 2.1 and 2.2. The polarization in Cartesian coordinates can be
found in Appendix C. We project the polarization of eqs C-9-C-12 onto the coordinate
system (R-T) of propagation direction (R direction) shown in Fig. 2.1, where translational
components are the same as general orthotropic media, and the polarization of rotation
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and strain at the surface (z=0) can be expressed as:
For quasi-Love waves: 

Ωr = 0
Ωt = (TV ′ + κlTU)/2

Ωz = iκlW/2
εrr = iκlTV

(2.27)

For quasi-Rayleigh waves: 
Ωr = 0

Ωt = (V ′ + κrU)/2
Ωz = −iκrTW/2

εrr = iκrV

(2.28)

The rotational polarization form in general anisotropic media is the same as that of general
orthotropic media shown in Fig. 2.3. The polarization plane is perpendicular to the
propagation direction, which means that even in a generally anisotropic medium, we can
still use the polarization information of the rotation to obtain the back-azimuth. There is
a difference with orthotropic media where it is easy to obtain the dispersion curves using
u̇z/Ωt. The additional term V ′ in Ωt will affect the ratio value, this point is discussed later.
Comparing eqs 2.20, 2.22 with eqs 2.27 and 2.28, we can obtain the surface wave dispersion
relation between displacement and rotation or strain:
For quasi-Love waves:

cL(ω, ψ) = | u̇t2Ωz

| (2.29a)

cL(ω, ψ) = | u̇r
εrr

| (2.29b)

For quasi-Rayleigh waves:
cR(ω, ψ) = | u̇r

εrr
| (2.30a)

cR(ω, ψ) = | u̇t2Ωz

| (2.30b)

The dispersion eqs 2.29b and 2.30b in general anisotropic media come from the coupled
wavefield contributions that are generally smaller. Due to the complexity of the medium,
the rotational polarization is difficult to simplify into a simple form in combination with
the free surface boundary condition equation. Thus, there is no rotational formula that
can be used to calculate the quasi-Rayleigh wave dispersion curve.

2.3.3 Effect of the coupling on the calculation of dispersion curves
The complete decoupling of Rayleigh and Love waves in isotropic and VTI media allows us
to easily measure the local dispersion curves. On the contrary, the coupling effect in weakly
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anisotropic media results in polarization planes of the displacement not perpendicular or
parallel to the direction of propagation. Furthermore, the translational motion of the quasi-
Rayleigh wave is no longer limited to the vertical-radial plane and the quasi-Love wave is
no longer limited to the radial-transverse plane. There is no clear separation between the
two waves unless the group velocity difference is large. Consequently, we have to assess the
effect of the coupling when we apply our theory to real data. The effect of the coupling term
T depends on the phase velocity difference of the two waves and the degree of anisotropy.
This can be described by explicit formulas (Tanimoto, 2004):

T = E

A−B
(2.31)

The numerator and denominator of eq. 2.31 are simultaneously divided by the square of
the wavenumber κ:

T = E/κ2

A/κ2 −B/κ2 = E/κ2

c2
R − c2

L

(2.32)

Eq. 2.32 indicates that if we fix the wavenumber, and the phase velocity difference of two
waves is large enough, the T term tends to zero. Then the coupling term can be neglected.
When we use eqs 2.24a and 2.25a to calculate the dispersion curves and we cannot identify
the coupled quasi-Rayleigh and quasi-Love waves, using eqs 2.20-2.23, we obtain:

| u̇zΩt

| = | [ωTU ]qL + [ωU ]qR
[κlTU ]qL + [κrU ]qR

| (2.33)

| u̇t2Ωz

| = | [ωW ]qL + [−ωTW ]qR
[κlW ]qL + [−κrTW ]qR

| (2.34)

As illustrated in eqs 2.33 and 2.34, the vertical translational displacement and transverse
rotation contain not only the dominant quasi-Rayleigh wave energy, but also the quasi-Love
wave signal generated by the coupling effect, and the transverse translation and vertical
rotation contain not only the dominant quasi-Love wave energy but also the quasi-Rayleigh
wave signal. As shown in eq. 2.32, the effect of the coupling term T will decrease and
tends to zero when the velocity difference between the two modes increases. Consequently,
eqs 2.33 and 2.34 degenerate to:

| u̇zΩt

| ≈ | [ωU ]qR
[κrU ]qR

| = cR (2.35)

| u̇t2Ωz

| ≈ | [ωW ]qL
[κlW ]qL

| = cL (2.36)

It is generally appropriate to calculate the dispersion curves using eqs 2.35 and 2.36 for
long-period teleseismic records because of the large velocity difference between fundamen-
tal quasi-Rayleigh wave mode and quasi-Love wave modes in that frequency range. The
coupling strength is very weak regardless of whether the waveform can be distinguished in
the time window. At this time, we do not need to separate the weakly coupled waveform.
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In contrast, when the velocity difference between quasi-Rayleigh and quasi-Love waves is
small, the coupling effect will become stronger. At this time, it is difficult to distinguish
the two coupled waves which will limit the validation of the derived dispersion formulas. In
the numerical section, we will compute the effect of the coupling term on measuring disper-
sion curves for data processing, and demonstrate that if the radiation energy of the focal
mechanism is large enough, it will weaken the effects of the coupling on the amplitude ratio.

2.3.4 Analytical azimuth-dependent dispersion relation
To verify the derived dispersion relations above, we use the following analytical solution,
which is proposed by Smith & Dahlen (1973). Mochizuki (1986) and Tanimoto (1986) also
showed the equivalent formulas in a spherical earth for the first time. We use these to
benchmark our numerical results in the next section.
By solving eq. 2.7 simultaneously, the azimuth-dependent dispersion relation is obtained
(Tanimoto, 2004), having the same form as derived by Smith & Dahlen (1973); Montagner
& Nataf (1986) after neglecting the coupling term E.

δcL(ω, ψ) = 1
2cL0(ω) [L1(ω)+L2(ω)cos(2ψ)+L3(ω)sin(2ψ)+L4(ω)cos(4ψ)+L5(ω)sin(4ψ)]

(2.37a)

cL(ω, ψ) = δcL(ω, ψ) + cL0(ω) (2.37b)

δcR(ω, ψ) = 1
2cR0(ω) [R1(ω)+R2(ω)cos(2ψ)+R3(ω)sin(2ψ)+R4(ω)cos(4ψ)+R5(ω)sin(4ψ)]

(2.38a)

cR(ω, ψ) = δcR(ω, ψ) + cR0(ω) (2.38b)

Here we define ψ as the azimuth of the wavenumber vector measured anti-clockwise from
the X-axis. δcL(ω, ψ) and δcR(ω, ψ) are the first-order perturbations in phase velocity
dispersion of azimuth- frequency-dependent quasi-Love and quasi-Rayleigh waves. cL0(ω)
and cR0(ω) are phase velocity of Rayleigh and Love waves, respectively, for a reference
isotropic medium. cL(ω) and cR(ω) represent the phase velocity of the quasi-Love wave
and quasi-Rayleigh wave, respectively. Li(ω) and Ri(ω) (i = 1, 2, 3, 4, 5) are respectively
depth integration functions that involve some elastic parameters and eigenfunctions, where
we used a simple integration expression derived by Montagner & Nataf (1986), whose ex-
plicit expressions can be found in eqs (2), (4), and (5) of Montagner & Nataf (1986). We
use the generalized reflection and transmission coefficients method (Chen, 1993) to calcu-
late the eigenfunctions which have been used successfully in many cases (Chen, 1999; Tang
& Fang, 2021a).
It is known that eqs 2.37a, 2.37b, 2.38a and 2.38b are derived based on the assumption of
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Table 2.1: Layer properties of Model 1-reference isotropic media.
Layer Depth(km) Vp(km/s) Vs(km/s) ρ(kg/m3)

1 0-30 6.6 3.8 3000
2 30-∞ 8.0 4.6 3300

first-order perturbation which can be called the ordinary perturbation method without the
contribution of mode coupling. An implicit assumption when utilizing this solution is that
the difference between any two-mode phase velocity is larger than their respective pertur-
bations (Maupin, 1989). This is generally valid for the fundamental mode. Consequently,
we will focus on the analysis of the fundamental modes in the following numerical section.

2.4 Numerical analysis
In this section, we test the theory presented above for different anisotropic models. We
analyze the effect of surface wave coupling on the estimation of dispersion curves. Synthetic
data are generated by simulating the complete seismic wavefield applying a 3D standard
staggered-grid finite difference method (Fang et al., 2014) which has been benchmarked
with the generalized reflection and transmission coefficients method (Tang & Fang, 2021a).
The free surface boundary condition is implemented, and the perfectly-match-layer (PML)
boundary condition is applied to the sides and bottom boundary. A moment tensor source
with a Ricker wavelet source time function is used to generate the synthetic waveforms.
We output translational acceleration components Ai(i = r, t, z) and rotational velocity
components Ωi(i = r, t, z). For the sake of simplicity, the synthetic data generated in a
two-layer model will be used to validate the applicability of the derived theoretical formulas
for all models.

2.4.1 Reference isotropic case
Model 1 is set up to be the reference isotropic medium, whose parameters are listed in
Table 2.1. This is used to calculate the eigenfunction W , V , and U of eqs 2.6, 2.10, 2.11
and in the analytical solution of eqs 2.37a and 2.38a. We focus on long-period seismo-
grams which means that we will neglect the higher-mode surface waves. However, the
numerical modeling has to ensure that there is no (or negligible) higher-mode signal in the
selected period range. Then the selected period range is also used for the following weakly
anisotropic models.
Fig. 2.4 shows that for periods longer than 12s, there is only the fundamental (0th) mode
solution for Model 1. Therefore, in the following numerical analysis, we focus on the period
range of 12-80s. As illustrated in Fig. 2.5, all sources (black circles) are located at (0, 0,
1km), whose azimuth ψ is evenly distributed at 15 degrees ranging from 0 to 90 degrees.
A station (black triangle) is located at the surface. The radial distance between all sources
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and the station is equal to 2500km. The source-receiver geometry of Fig. 2.5 is used for the
following models to verify the effectiveness of measuring the azimuth-dependent dispersion
characteristics in anisotropic media.

Figure 2.4: Theoretical dispersion curves of the reference isotropic Model 1. Rayleigh-0th:
The fundamental mode of Rayleigh wave. Rayleigh-1st: The first higher mode of Rayleigh
wave. Love-0th: The fundamental mode of Love wave. Love-1st: The first higher mode of
Love wave.

Figure 2.5: Distributions of Sources (black circles) and station (black triangle) of reference
isotropic Model 1.

Two sets of synthetic data with different central frequencies, 0.015Hz (Period=66.7s)
and 0.034Hz (Period=29.4s) are generated to ensure a 12s-80s wide-band seismogram. The
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Figure 2.6: Beachball of focal mechanism in eqs 2.39 and 2.40.

magnitude of the moment tensor source is given as (Beachball is shown in Fig. 2.6a)

M =

 0.1 0.2 0.35
0.2 0.25 0.5
0.35 0.5 0.15

 (N ·m) (2.39)

In this model, the grid spacing is 5km and 3km for the two different central frequencies,
respectively, and the time increment is 50ms for the 3D finite difference simulations. Figs
2.7 and 2.8 show the seismograms using the same focal mechanism with different central
frequencies, where translational acceleration Az and rotational velocity Ωt are associated
with Rayleigh waves and At and Ωz are associated with Love waves. This indicates that
the radiation energy of the Rayleigh wave is evenly distributed in seven directions and the
radiation energy of directions of S4-S6 of the Love wave is much smaller. In combination
with eqs 2.17, 2.18 and simulated seismograms of Figs 2.7 and 2.8, we can calculate the
dispersion curves in different directions, where we introduce a robust weighted least-squares
method based on time-frequency analysis to measure the ratio (see Appendix B). The
weight function is equal to 1 for all data points in Model 1.
As illustrated in Fig. 2.9, the measured dispersion points of both the Rayleigh wave
(red) and Love wave (blue) using the ratio dispersion of eqs 2.17 and 2.18 match with the
analytical solution of the fundamental mode in any direction even with smaller radiation
amplitude (see source 4-5 of Love waves). In addition, it also indicates that there are no
higher mode seismograms in the selected periods. Consequently, we will select the period
range of 12-80s to analyze the effect of coupling waves on dispersion measurements in
various anisotropic models.

2.4.2 Contamination through coupled waves
Model 2 is set up to investigate the effect of coupling between quasi-Rayleigh and quasi-
Love waves on calculating dispersion curves. For simplicity, we use a HTI medium with a
symmetric axis parallel to the X-axis.

Model 2 consists of a half-space HTI medium based on Model 1, where the first layer
is the same as that of the reference isotropic Model 1. Table 2.2 lists the medium prop-
erties of Model 2. We use five independent parameters as defined by Takeuchi & Saito
(1972) to describe the HTI medium of Model 2, where αV is the P-wave velocity along the
symmetric axis, αH is the P-wave velocity perpendicular to the symmetric axis, βV is the
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Figure 2.7: Normalized Seismograms of different azimuths with a 0.034Hz (Period=29.4s)
central frequency of reference isotropic Model 1. Az: translational acceleration in the
vertical direction; At: translational acceleration in the transverse direction; Ωt: rotational
velocity in the transverse direction; Ωz: rotational velocity in the vertical direction.

Table 2.2: Layer properties of Model 2-HTI media.
Layer Depth(km) ρ(kg/m3) αV (km/s) αH−αV

αH
βV (km/s) βH−βV

βH
η

1 0-30 3000 6.6 0 3.8 0 1
2 30-∞(HTI) 3300 8.0 5% 4.6 5% 0.7721

S-wave velocity along the symmetric axis and βH is the SH-wave velocity perpendicular to
the symmetric axis. The anisotropic strength of HTI medium for both P-wave and S-wave
is also 5%. The generated seismograms of Figs 2.10 and 2.11 of Model 2 are based on the
same source-receiver geometry (Fig. 2.5), focal mechanism, and period ranges of Model 1.
Combining dispersion eqs 2.24a and 2.25a of HTI media with seismograms in Figs 2.10 and
2.11, the dispersion curves are evaluated utilizing the least-square algorithm (Appendix B),
where all data points are included indicating that the weight function is equal to 1. As
illustrated in Fig. 2.12, the quasi-Rayleigh dispersion curves (red points) calculated by eq
2.25a generally match well with the theoretical dispersion curves (black points) showing
azimuthal anisotropy. The phase velocity increases from 0 degrees to 90 degrees in the
long period range corresponding to HTI medium. The results (blue points) of quasi-Love
wave in the period range of 12s-30s also follow the trend of theoretical solution due to the
reason that the short-period wavefield propagates in the isotropic medium of the first layer
without the effect of anisotropy. On the contrary, the results of the quasi-Love wave deviate
from the theoretical solution in the period range of 35s-80s, especially in the direction of
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Figure 2.8: Normalized Seismograms of different azimuths with a 0.015Hz (Period=66.7s)
central frequency of reference isotropic Model 1. Az: translational acceleration in the
vertical direction; At: translational acceleration in the transverse direction; Ωt: rotational
velocity in the transverse direction; Ωz: rotational velocity in the vertical direction.

S4-S6, indicating that the quasi-Love wave is contaminated seriously by the coupled quasi-
Rayleigh waves. As illustrated by the seismograms in Figs 2.10 and 2.11, the radiation
amplitude of the quasi-Love wave in the direction of S4-S6 is much smaller, especially the
S4 and S5 directions, so that the coupled quasi-Rayleigh waves cannot be ignored (see eq.
2.34). This has an important influence on the results. The radiation amplitude of quasi-
Rayleigh waves in all directions is relatively large which can overshadow the influence of
coupled quasi-Love waves.

To further illustrate the fact that the coupled wavefield is non-negligible when the
radiation amplitude is very weak, we only change the focal mechanism, leaving all other
simulation conditions unchanged, using the moment tensor source can be expressed as
(Beachball is shown in Fig. 2.6b)

M =

 0.1 0.2 −0.35
0.2 −0.25 0.5

−0.35 0.5 0.15

 (N ·m) (2.40)

As shown in Figs. 2.13 and 2.14, the radiation energy of the quasi-Love and quasi-Rayleigh
waves have strong amplitudes in all directions. We use the same dispersion equation as in
Fig. 2.12 to calculate the dispersion curve, and the results are shown in Fig. 2.15. It can
be seen that the dispersion curve of the quasi-Love wave has been improved compared with
the results in Fig. 2.12. This is consistent with the theoretical dispersion trend, but there
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Figure 2.9: Comparisons of dispersion curves of different azimuths calculated using
translation-rotation dispersion eqs 2.17 and 2.18 with seismograms in Figs 2.7 and 2.8,
and analytical solution of the fundamental mode of reference isotropic Model 1. There is
no correlation between the calculated results and the azimuth-dependent radiation pattern.

are still some deviations affected by the coupling. We further note that the deviation of the
quasi-Love dispersion curve in Fig. 2.12 is mainly because the weak radiation amplitude
will further amplify the coupling.

2.4.3 Azimuth-dependent coupling effects

As the anisotropy of the medium increases, the influence of the coupled wavefield on the
amplitude will be larger. However, it can be seen from Figs 2.13 and 2.14 that even though
the radiation amplitude of S4-S6 of the quasi-Love wave is relatively large, the calculated
dispersion curve shown in Fig. 2.15 still has a small deviation in certain azimuths. The
difference in the strength of the azimuthal anisotropy of the two wave types leads to the
coupling being a function of azimuth. Fig. 2.16 shows the T (coupling term) value related to
the coupled wavefield calculated theoretically for wavenumber κ = 5 ∗ 10−5 (the expression
of T can be found in Appendix of Tanimoto (2004)) in Model 2 which shows the correlation
with angle. With this wavenumber, the coupling of S4-S5 is stronger, and the effect on
the ratio value is greater. Fig. 2.17 shows the dispersion curve calculated under different
degrees of anisotropy while other model conditions are kept constant. We conclude that
the influence of the coupled wavefield in the direction of 30 degrees -75 degrees (S3-S6) is
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Figure 2.10: Normalized Seismograms of different azimuths with a 0.034Hz (Period=29.4s)
central frequency of HTI Model 2 using the focal mechanism of eq. 2.39. Az: translational
acceleration in the vertical direction; At: translational acceleration in the transverse di-
rection; Ωt: rotational velocity in the transverse direction; Ωz: rotational velocity in the
vertical direction.

more stronger.

2.4.4 Seismogram stacking to stabilize solution

In order to weaken the effect of coupled wavefield on the results in some directions when
the station is in the radiation node of the source, associated with a small amplitude, and to
obtain a stable and reliable dispersion curve, we consider fitting data with multiple source
seismograms in the same direction to obtain a reliable phase velocity. This is also in line
with the consideration of actual data processing.
The media parameters and geometry of Model 3 are the same with that of model 2, except
that 23 seismograms are generated in each direction with 23 different sources to estimate
the dispersion value. The number of events is selected randomly, even one event with good
radiation amplitude can lead to satisfactory results (see Fig. 2.15). In Model 3, the depth
of sources in each direction is randomly distributed in the range of 5-15km, the center
period of the wavelet is randomly distributed in the 30s-80s, and each magnitude of the
focal mechanism is randomly selected from -1 to 1. Unlike in Models 1 and 2, we also
calculate the radial strain seismogram εrr and radial translation seismogram Ar, which are
associated with the quasi-Rayleigh wave, to illustrate the applicability of the translation-
strain dispersion equation in eq 2.25a.
The least-square method of time-frequency analysis in Appendix B is also performed to
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Figure 2.11: Normalized Seismograms of different azimuths with a 0.015Hz (Period=66.7s)
central frequency of HTI Model 2 using the focal mechanism of eq. 2.39. Az: translational
acceleration in the vertical direction; At: translational acceleration in the transverse di-
rection; Ωt: rotational velocity in the transverse direction; Ωz: rotational velocity in the
vertical direction.

estimate the dispersion value. To reduce the influence of the coupled wavefield, the data
with small radiation amplitude should be removed, which is demonstrated in the analysis
of Model 2. A simple criterion is defined that the data points that are less than 10% of
the maximum amplitude in each periodic signal will be removed, and only more than 10%
of the energy is retained. This criterion is not fixed and can be adjusted according to
the strength of actual anisotropy and noise level. Consequently, the weight function in
Appendix B, which can also be called the filter function, can be expressed as:

wf(ω, ti) =
{

0; | A(ω,ti)
max[A(ω,ti)] | < 10%

1; otherwise
(2.41)

Fig. 2.18 shows the time-period spectra of the first five seismograms (S1 direction) and the
time-period spectra filtered by the weight eq. 2.41. It can be seen that after the processing
of the weight function, the energy below 10% in each period is directly removed. And
the time-period spectra of seismograms associated with other directions (sources) can also
be obtained in the same way, although we don’t show these spectra. This filtering is
also suitable for the suppression of random noise. We will discuss this effect of random
noise in the next section. Fig. 2.19 shows the calculated dispersion results using the
filtered spectra in Figs. 2.18 combined with the dispersion eqs 2.24a and 2.25a, indicating
that the results are consistent with the theoretical solution, whether it is a quasi-Rayleigh
wave (red points) or a quasi-Love wave (blue points). At the same time, the results
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Figure 2.12: Comparisons of dispersion curves calculated using translation-rotation disper-
sion eqs 2.24a and 2.25a with seismograms in Figs 2.10 and 2.11, and analytical solution
of the fundamental mode of HTI Model 2.

(green points) in Fig. 2.19 obtained by the translation-strain dispersion eq 2.25a also
match well the theoretical values. It demonstrates that by using multiple seismograms,
the unfavorable influence of the coupled wavefield can be eliminated, resulting in a stable
and reliable dispersion curve. These simulation results from Model 1-3 demonstrate the
correctness and applicability of the derived dispersion formulas which also means that
the ratio of translational displacement to rotation or strain can identify the azimuthal
anisotropy from a single station 6C (three displacement components and three rotation
components) measurement.

2.4.5 The effect of random noise
From the perspective of seismological observations, the influence of noise or the uncertain-
ties of amplitude measurements cannot be ignored. In particular, this paper uses frequency-
dependent amplitude information to obtain the dispersion curves, and small amplitudes
perturbations may have a strong impact on the results (Kurrle et al., 2010). Therefore,
the least-square solution based on linear regression in Appendix B to fit the data helps to
get a stable solution. The multiple seismograms of quasi-Rayleigh waves in the direction
of azimuth ψ = 0 (S1) in Model 3 are used as input data for our noise analysis. Fig. 2.20
shows the first five seismograms (Az) of Model 3 perturbed with random Gaussian noise
with varying signal-to-noise ratio (SNR). It can be seen that when the SNR is equal to
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Figure 2.13: Normalized Seismograms of different azimuths with a 0.034Hz (Period=29.4s)
central frequency of HTI Model 2 using the focal mechanism of eq. 2.40. Az: translational
acceleration in the vertical direction; At: translational acceleration in the transverse di-
rection; Ωt: rotational velocity in the transverse direction; Ωz: rotational velocity in the
vertical direction.

2, the noise covers the whole time window, and the amplitude of each waveform will be
greatly changed.
We add Gaussian random noise with different signal-to-noise ratios to Az and Ωt at the
same time. To simulate the influence of noise when processing multiple seismograms for
one azimuth , each signal-to-noise ratio is generated 100 times and we calculate the kernel
density function (Botev et al., 2010) of the phase velocity distribution, which represents its
probability density distribution. When calculating the phase velocity using the approach
described in Appendix B, we still use the weight function in eq. 2.41 to exclude amplitudes
less than 10% in each period. Fig. 2.21 shows the kernel density function under different
signal-to-noise ratios, and the black solid line is its theoretical dispersion curve. When
the SNR is equal to 2, it can be seen that most of the energy is confined to the range
within the 1% error bar, especially between 40-60s, benefitting from its large amplitude
energy. For this period range 70-80s with small amplitude energy, its density function
energy distribution is more dispersed than that of other periods. With an improvement
of the signal-to-noise ratio, the energy of its kernel density function becomes closer to the
theoretical dispersion curve. When the SNR is greater than 10, about 90% of the energy is
distributed between a 1% error bar, showing that the dispersion curve obtained from this
signal-to-noise ratio lets us resolve anisotropy of 3%-4% in the medium.
Consequently, for real data processing, the seismic data with a high signal-to-noise ratio
and large radiation amplitude should be selected as much as possible to derive the dis-
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Figure 2.14: Normalized Seismograms of different azimuths with a 0.015Hz (Period=66.7s)
central frequency of HTI Model 2 using the focal mechanism of eq. 2.40. Az: translational
acceleration in the vertical direction; At: translational acceleration in the transverse di-
rection; Ωt: rotational velocity in the transverse direction; Ωz: rotational velocity in the
vertical direction.

persion value, and the solution obtained by using the linear regression method is more
reliable.

2.4.6 Estimating local dispersion characteristics

The commonly used method to study anisotropy based on phase difference measurement
dispersion is to extract the average velocity between the source and the station (earthquake
data), or the average velocity between stations (seismic ambient noise data). Therefore, if
the measured dispersion curve shows angular anisotropy, it is difficult to judge whether it
is caused by heterogeneity or anisotropy.
Model 4 is used to demonstrate the advantage of the ratio method on lateral resolution
compared with the traditional phase difference method in analyzing azimuthal anisotropy.
As shown in Fig. 2.22, the medium in the outer circle where the source is located in an
isotropic medium, with parameters shown in Table 2.1. The inner cylinder with a radius of
500km below the station is an HTI medium with 3% anisotropy of the first layer of body
waves, and the second layer is also a half-space HTI medium model with 4% anisotropy
whose parameters are shown in Table 2.3. The seismograms for Model 4, which are as-
sociated with quasi-Rayleigh waves, are generated using the moment tensor source of eq.
2.40 whose central frequencies are 0.034Hz (period=29.4s) and 0.015Hz (period=66.7s),
respectively. We still use the least-square method in Appendix B to calculate the disper-
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Figure 2.15: Comparisons of dispersion curves calculated using translation-rotation disper-
sion eqs 2.24a and 2.25a with seismograms in Figs 2.13 and 2.14, and analytical solution
of the fundamental mode of HTI Model 2.

Table 2.3: Layer properties of the inner cylinder of Model 4.
Layer Depth(km) ρ(kg/m3) αV (km/s) αH−αV

αH
βV (km/s) βH−βV

βH
η

1 0-30(HTI) 3000 6.6 3% 3.8 3% 0.8489
2 30-∞ (HTI) 3300 8.0 4% 4.6 4% 0.8090

sion points, where the weight function is equal to 1 for all data points. As illustrated in
Fig. 2.23, the estimated dispersion is consistent with the theoretical dispersion curve of
the inner cylindrical medium, reflecting the surface wave dispersion characteristics of the
medium directly below the station. The derived ratio dispersion equation gives the local-
ized azimuthal-dependent dispersion relations of the formation right beneath a receiver.
This suggests that the smaller the wavelength, the smaller the influence of heterogeneity.
Therefore, we expect that the ratio dispersion method will provide a higher lateral resolu-
tion imaging result on azimuthal anisotropy analysis, where the lateral resolution can be
smaller than one wavelength (Tang & Fang, 2023).

2.4.7 Estimation of the azimuth using horizontal rotation
Accurate calculation of the azimuth of the wavefield incident on the station is crucial
in the study of azimuthal anisotropy. It is the most basic parameter in the subsequent
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Figure 2.16: Azimuth-dependent Coupling term T value with wavenumber κ = 5 ∗ 10−5 in
HTI Model 2. The coupling strength is the largest at the azimuths of S4 and S5, and is
decoupled in the directions of S1 and S7.

correct inversion of the anisotropy and the evaluation of the azimuth of mantle flow or
fracture orientation. The error of the angle will directly lead to errors of the anisotropy
parameters. As illustrated in Fig. 2.2 and Fig. 2.3, the polarization characteristics of the
rotation allow us to use the rotation component to calculate the incident azimuth of the
phase velocity without distinguishing the properties of the medium and considering the
effect of the coupled wavefield. The expression for calculating the azimuth can be given as

tan(ψ) = −Ωx

Ωy

(2.42)

The rotational seismograms of Model 2 and 3 with different focal mechanisms are used
to verify the feasibility of using only the rotational component in eq. 2.42. Fig. 2.24
shows that the azimuth calculated from the rotational components is consistent with the
theoretical azimuth and is not affected by the coupled wavefield despite the weak radia-
tion amplitude S4-S6 in Figs 2.9-2.10 and contamination by coupling. The results, which
are calculated with multiple seismograms in Model 3, are in good agreement with the
theoretical values, indicating the applicability of eq. 2.42.

2.4.8 Anisotropy study based on the rotation angle
The polarization characteristics of rotations in Fig. 2.3 show that there is an additional
angle between the propagation direction of the quasi-Rayleigh wave and the horizontal
translation polarization direction in anisotropic media (see Fig. 2.25), which is called the
rotation angle here. Similarly, there is also an additional angle between the quasi- Love
wave and T-axis. This rotation angle is also a function of the propagation direction, so
it can also be used to study azimuthal anisotropy. Taking the quasi-Rayleigh wave as an
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Figure 2.17: Comparisons of dispersion curves calculated using different anisotropic pa-
rameters and analytical solutions of the fundamental mode of HTI Model 2.

example, it can be seen from eq. 2.22 that the formula for calculating the rotation angle
of the quasi-Rayleigh wave is

tan(ψ0) = ut
ur

= −W

V
T (2.43)

where the calculation of ut and ur from ux and uy requires the azimuth which can be
calculated using rotation components in eq 2.42. The tangent function of this angle is rep-
resented by the coupling term T , which is an azimuth-dependent function. Its calculation
is similar to eq. (20) in Tanimoto (2004) who used the ratio of the vertical translation
component of the coupled quasi-Love wave to the horizontal translation component of the
quasi-Love wave to analyze anisotropy, except that the amplitude is different.
Eqs 2.42 and 2.43 provide an alternative method for studying anisotropy. The advantage
is that the azimuth estimation based on the rotation component will not be affected by
the coupled wavefield, while the variables estimated based on the translation component
will be affected by the coupled wavefield.

2.5 Discussion
We derived concise polarization form of rotation and strain based on the first-order per-
turbation. This form allows us to clearly describe the particle motion and the dominant
surface waves can be verified by comparing with the numerical results. However, it is very
hard to verify the dispersion relation (eqs 2.24b and 2.25b) of the coupled waves whose
amplitude is generally pretty small in a weakly anisotropic medium.

This first-order perturbation theory shows that the rotational vector is orthogonal to the
wavenumber vector, so the radial rotational component Ωr is always equal to zero. From
the observational point of view, the recorded seismogram will contain scattering waves
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Figure 2.18: Period-normalized time-period spectra of the first five seismograms (S1 direc-
tion). From top to bottom: time-period spectra of Az; filtered time-period spectra of Az
using weight function of eq. 2.41; removed time-period spectra of Az.

from all directions due to the heterogeneity in the Earth, especially in the short period
range. Therefore, the signal in the radial rotational component of an earthquake comes
from the scattering waves rather than from the effects of anisotropy. As the frequency
decreases, the earth structure generally will become more homogeneous, the amplitude of
the radial rotational component will tend to be zero. This amplitude-dependent dispersion
measurement approach requires very high accuracy for amplitude measurements. Even
a very small amplitude perturbation can results in larger deviation (Kurrle et al., 2010).
Consequently, it is very necessary to use multiple seismogram to obtain a reliable velocity.
For a general anisotropic medium, as illustrated by eqs 2.30a and 2.30b, there is no available
rotational component that can be used to calculate the Rayleigh wave velocity because the
retrieval of phase velocity from eq. 2.30b which is from coupled waves is extremely difficult
from real data. Considering the fact that the earth structure is a general anisotropic
medium, and that the amplitude recorded by a rotational seismometer is more accurate
than those of DAS at a single point observation, and the amplitude of fundamental Rayleigh
waves is less affected by coupled waves than Love waves. So, is it possible to combine
the rotational component to calculate the velocity of quasi-Rayleigh wave for a general
anisotropic medium? Let us consider the assumption that κr0 is close to κr, it means that
the degree of anisotropy is very weak. Then, V ′ ≈ κrU in eq. 2.28 because in isotropic
media, V ′ = κr0U (see eq. 2.12). Combining eqs 2.28 and 2.22, we can also obtain the same
dispersion relation in eq 2.25a for a general anisotropic medium. But there will be some
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Figure 2.19: Comparisons of dispersion curves calculated using translation-rotation and
translation-strain dispersion eqs 2.24a and 2.25a and analytical solution of the fundamental
mode of Model 3.

errors when using the rotational waveform directly measured by the sensor. An alternative
method is to use the ADR (Array Derived Rotation) (Spudich et al., 1995; Spudich &
Fletcher, 2008) approach to retrieve the rotational waveform. However, it requires that
the stations should be distributed as uniformly as possible in different azimuths and its
frequency range is also limited by the aperture of a seismic array. It does not need to
calculate the vertical partial derivative ∂z, which means the V ′ in eq. 2.28 is equal to
zero. Then we can also obtain the same dispersion eqs 2.25a for accurately calculating the
velocity of quasi-Rayleigh wave by combining eqs 2.28 and 2.22. This method has been
verified in our recent real data case (Tang et al., 2023b).
In this paper, we only study the fundamental mode due to the following two reasons:
(1) The perturbation theory used to derive the dispersion formulas is valid only for the
fundamental mode at short periods, and for fundamental modes and lowest overtones
at longer periods (Maupin, 1989). The Rayleigh wave fundamental mode has a dispersion
curve isolated enough from those of the other modes not to suffer from strong coupling with
neighboring modes, while the Love wave fundamental mode will be affected by fundamental
and higher modes of the Rayleigh wave, and the higher modes of Rayleigh wave and Love
wave will suffer from coupling with neighboring modes seriously; (2) Another point to be
considered is that the dispersion curve can be accurately obtained by using our approach
only when there is the energy of single-mode (fundamental mode) in the seismogram. When
the higher mode energy of the surface wave is relatively strong, it is necessary to separate
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Figure 2.20: The first five seismograms (Az, S1 direction) of Model 3 with different SNR.

the modes before calculating the dispersion, which is described in detail by Tang & Fang
(2023) and Kurrle et al. (2010), but it is currently difficult to use a single station to achieve
the mode separation. This is the reason why this method is more suitable for long periods
and teleseismic records of shallow seismic sources, when the higher modes are much weaker
than the fundamental mode that can be neglected. In the future, with enough rotation
sensors, we can use the array method (Tang & Fang, 2023) to separate and calculate the
local dispersion of higher modes.

2.6 Conclusion

We derived the expressions for calculating the dispersion curves in weakly anisotropic
media, using a single observation point which consists of translational displacement and
rotation or strain. We analyzed the influence of surface wave coupling, with effects de-
pending on the anisotropic strength. When the radiation amplitude of the wavefield is
very small, the coupled wave will seriously affect the measurements of dispersion curves.
Therefore, it is necessary to select a waveform with strong radiation amplitude or use mul-
tiple seismograms to fit a stable dispersion value. Even in general anisotropic media, the
polarization plane of rotation is perpendicular to the propagation direction, which provides
a new method to extract the azimuth of wave propagation. We numerically demonstrate
the effectiveness and applicability of the frequency-dependent amplitude ratio method for
deriving anisotropy in the Earth.
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Figure 2.21: Comparisons of dispersion probability energy distribution with different SNR,
while each SNR is simulated for 100 times, and analytical solutions of the fundamental
mode of HTI Model 3.
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Figure 2.22: Distributions of sources and receiver of Model 4.

Figure 2.23: Comparisons of dispersion curves calculated using translation-rotation ratio
eqs 2.24a and 2.25a and analytical solution of the fundamental mode of the inner cylinder
in Model 4.



2.8 Data availability statement 39

Figure 2.24: Comparisons of azimuth calculated using ratio in eq. 2.42 and analytical
solutions with seismograms of Model 2 and Model 3.

Figure 2.25: Diagram of rotation angle ψ0
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3.1 Key Points
• Local seismic anisotropy revealed for the first time from rotational amplitude observa-
tions.
• Azimuthal anisotropy in the local upper mantle of Southern California region is well
resolved in lateral and vertical directions.
• The asthenospheric fast axis matches absolute plate motions, providing new insights on
geodynamic processes in Southern California.

3.2 Abstract
Seismic anisotropy in the upper mantle reveals geodynamic processes and the tectonic
evolution of the Earth. The two most powerful methods, surface wave tomography, and
shear-wave splitting observations, cannot investigate the deep local anisotropy with good
vertical and lateral resolution, resulting in poor constraints on plate deformation processes
of the complex plate boundary beneath the Southern California region. Here, we show that
the amplitude ratio of translational displacement and rotation makes it possible to retrieve
the local anisotropy in the upper mantle. Azimuthal anisotropy in the asthenosphere is
well determined and resolved in lateral and vertical directions. The fast axis retrieved from
amplitude observations indicates the local rapid changes in plate deformation and complex
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pattern of mantle flow, which is compatible with the distributions of horizontal mantle flow
illuminated by geodetic measurements, providing new insights on geodynamic processes of
the Southern California region.

3.3 Plain Language Summary
Rotational motion is the angle of ground rotation observed during Earth’s deformation,
and the ratio of amplitude to translational motion is sensitive to local structure. In the
past few decades, study on the mantle structure inside the Earth has mainly relied on the
time difference of seismic waves to calculate azimuth-dependent velocity changes, namely
azimuthal anisotropy. Due to the correlation between the direction of maximum velocity
propagation and the direction of mantle flow and plate deformation, the study of man-
tle anisotropy can provide evidence for the evolution of the Earth. However, studying
anisotropy based on seismic wave travel time is often affected by heterogeneity, especially
in extremely complex structures such as Southern California. The splitting of shear waves
can effectively constrain the anisotropy of the mantle in the lateral direction, but its depth
resolution is poor. Additional rotational amplitude observations with local sensitivity and
depth resolution can provide better constraints on the study of mantle anisotropy, provid-
ing new evidence for the direction of mantle flow and plate motion.

3.4 Introduction
Seismic anisotropy is a powerful diagnostic tool providing access to information on the
orientation of small scale heterogeneities (e.g., cracked, porous media, crystals, bedding
(Anderson et al., 1974; Crampin, 1978)) that - in many cases - are aligned according to
the local stress or strain field. In turn, principal stress/strain directions can be associated
with the direction of mantle flow (Tanimoto & Anderson, 1984; Ribe, 1989; Ghosh & Holt,
2012; Montagner, 1994). Thus, extracting anisotropic properties plays a significant role in
understanding subsurface processes such as tectonic motions, reservoir behavior, or stress
evolution.

On regional scales, there are two key methodologies to estimate anisotropic parameters.
First, the phenomenon of shear-wave splitting (Crampin et al., 1980) of near-vertically
propagating waves (e.g., SKS phase (Vinnik et al., 1984; Silver & Chan, 1988)) can be
used to estimate the polarization of the fast quasi-shear wave. It is assumed that this
polarization is associated with the dominant horizontal stress/strain direction (Crampin &
Lovell, 1991). This method has the advantage that a single three-component seismic station
can provide the required information. The disadvantage is the lack of resolution with depth
(Savage, 1999). Secondly, surface wave observations from many azimuths observed on a
sufficiently scaled seismic array can be used to determine azimuthal anisotropy from Love
or Rayleigh waves (Forsyth, 1975). This approach - while having some depth resolution
through the frequency-dependence of surface wave phase velocities (Montagner & Nataf,
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1986) - has a poor lateral resolution. Regional full-waveform inversion approaches (Zhu
& Tromp, 2013) intrinsically also provide access to anisotropic parameters by exploiting
surface wave phase information across a broad frequency range, but still with a limited
lateral resolution.

The local deformation can be divided into a symmetric part (the strain tensor) and an
antisymmetric part (three components of rotation). Both are sensitive to seismic anisotropy
(Tang et al., 2023c). In the past few years - through the emergence of multi-component
rotational ground motion instruments such as ring lasers (Schreiber et al., 2014; Igel et al.,
2005, 2021) or fibre-optic gyros (Schreiber et al., 2009) - techniques were developed to ex-
ploit the resulting 6-degrees-of-freedom observations (6 dof, three components of rotations
and three components of translations) opening a new range of opportunities in particular
for single-station observations. Most notably, 6 dof observations provide direct access to
local surface wave phase velocities and propagation directions through the analysis of am-
plitude ratios (Igel et al., 2007), which is capable of extracting the dispersion of different
modes of surface waves (Tang & Fang, 2023). By applying adjoint techniques (Fichtner
& Igel, 2009) to such joint observations, it could be shown that 6 dof point measurements
are sensitive to near-receiver structure, eliminating the path effects of wave propagation.

Here, we apply for the first time the emerging 6 dof technology to the estimation
of local anisotropic parameters in the upper mantle from surface wave observations. As
currently no (portable) rotation sensing system exists that allows the analysis of multi-
azimuth observations, we resort to so-called array-derived rotation (ADR) (Spudich et al.,
1995; Spudich & Fletcher, 2008) that makes use of wavefield gradient estimations from
surface seismic arrays in appropriate frequency bands.

Southern California - characterized by a complex tectonic and geodynamic environment
- is the best location to apply our new approach. The dense broadband seismic networks in
California that have operated for decades allow us to use station subsets as arrays and use
ADR techniques to estimate rotations and subsequently apply single-station techniques to
the resulting 6 dof data. We investigate how the frequency-dependent anisotropic parame-
ters are consistent with other geophysical or geodetic observations and how it provides new
information at depth on the layering and change of orientation of azimuthal anisotropy, as
the 6 dof approach has a substantially higher lateral resolution for upper mantle anisotropy
study than other techniques. Our study motivates the development of high-sensitivity ro-
tation sensors to further extend the potential of 6 dof observations toward the inversion
for anisotropy parameters from point measurements.

3.5 Methods

3.5.1 Azimuthal anisotropy from rotational observations
Our recent theory paper (Tang et al., 2023c) demonstrates that the amplitude ratio of
acceleration to rotational velocity or strain velocity is equal to the analytical azimuth-
dependent phase velocity of the corresponding surface wave (Smith & Dahlen, 1973). Since
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the fundamental Rayleigh wave is generally far away from Love wave modes, the coupled
wavefield has small effects on the Rayleigh wave amplitude. In this paper, we only consider
the fundamental mode of the quasi-Rayleigh wave. The dispersion equation of the dominant
quasi-Rayleigh wave from the amplitude ratio can be expressed as (Tang et al., 2023c): |Az(ω,ψ)

Ωt(ω,ψ) | = cR0(ω) + 1
2cR0(ω)

[R1(ω) +R2(ω)cos(2ψ) +R3(ω)sin(2ψ)
+R4(ω)cos(4ψ) +R5(ω)sin(4ψ)]

(3.1)

where Az(ω, ψ) is the vertical acceleration and Ωt(ω, ψ) is the transverse rotational
velocity. ψ is the backazimuth of the wavenumber vector measured clockwise from the
north direction. cR0(ω) is the phase velocity of the Rayleigh wave for the isotropic medium
considered as a reference model. Ri(ω) (i = 1, 2, 3, 4, 5) are respectively depth integration
functions that involve some elastic parameters and eigenfunctions, where we used a simple
integration expression derived by (Montagner & Nataf, 1986), whose explicit expressions
can be found in Equations (2), (4), and (5) of (Montagner & Nataf, 1986).

Equation 3.1 provides a new method for estimating phase velocities in anisotropic media
which only depends on amplitude information. Its sensitivity kernel attains large absolute
values only in the vicinity of the receiver but not in the vicinity of the source (Fichtner &
Igel, 2009) which means that the phase velocity is only sensitive to the local structure. Its
lateral resolution can be several times smaller than one wavelength (Tang & Fang, 2023).

3.5.2 Phase velocity smoothing and variance
To investigate the azimuth-dependent variation in phase velocity, we set up a simple func-
tion to smooth the phase velocity points in each period, where the smoothed phase velocity
and the standard deviation σ can be expressed as

cR(ω, ψ) =
∑ψ1=ψ′+ψ0
ψ1=ψ′−ψ0

cR(ω, ψ1)
N

,ψ =
∑ψ1=ψ′+ψ0
ψ1=ψ′−ψ0

ψ1

N
,ψ′ ∈ [0, 2π] (3.2)

σ(ω, ψ) =

√√√√∑ψ1=ψ′+ψ0
ψ1=ψ′−ψ0

[cR(ω, ψ1) − cR(ω, ψ)]2
N

(3.3)

where ψ0 is the selected azimuth window width and N represents the number of dispersion
points from ψ′ − ψ0 to ψ′ + ψ0. In the following data analysis, the azimuth window ψ0 is
equal to 60 degrees and ψ′ is from 0 to 360 degrees in one degree interval. The selection of
the azimuth window is a trade-off when considering the large waveform error of ADR and
the best fit between the data and the theoretical anisotropy curve.

3.6 Data
The earthquake data comes from the CI station network (see support information file for
station names), and SCEDC (southern California Seismic Network) data center. Consid-
ering that broadband rotational seismometers have not been permanently deployed widely,
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we selected high-quality permanent broadband seismographs in Southern California region
as an array for retrieving rotational motions by using the ADR approach (Spudich et al.,
1995; Spudich & Fletcher, 2008). We select 110 teleseismic earthquakes with a magnitude
larger than 7.0 (only a few events are between 6.5 and 7.0, see Figure 3.S1) from the global
earthquake catalog from November 2014 to November 2022.

Figure 3.1: (a) Distributions of selected three seismic arrays A1, A2 and A3 and great circle
paths from 110 events. The aperture of the three arrays ranges from 20km to 150km. (b)
Normalized waveform comparison between translational acceleration (m/s2) and retrieved
rotational velocity (rad/s) using the A2 array from the earthquake: M 8.2 - 99 km SE of
Perryville in 2021, Alaska (the red line path in the lower left corner of a). (c) Correlation
coefficients of all events between translation and retrieved rotation of the A2 array.

Due to the uneven distribution of permanent stations in Southern California, it is nec-
essary to choose a station array with high waveform quality and evenly spaced distribution
at all azimuths as much as possible when using the ADR method. To have sufficient avail-
able stations, the minimum distance of the stations we selected is around 20km (see Figure
3.S2), as the spacing between these permanent stations in Southern California is mostly
larger than 20km. The minimum aperture limits the high-frequency threshold, while the
maximum aperture constraints the low-frequency threshold. Here, we choose a maximum
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aperture of around 120km-150km (see Figure 3.S2). After waveform testing, we found that
it is sufficient to calculate the waveform of 300s. For longer periods, its amplitude energy is
too weak, and we will not consider it in this study. We make use of three broadband seismic
arrays (CI network, see Figure 3.S2 for station information) (Figure 3.1a) distributed on
three different tectonic regions (Garlock Fault A1, Transverse Range A2, Salton Trough
A3) near the plate boundary (the San Andreas fault) between the North American plate
and the Pacific plate to understand its local asthenospheric anisotropy. Figure 1a shows
the geometry of the stations. The red triangles in Figure 1a are defined to be the central
station that outputs the translational displacement. The collection of great circle paths
(Figure 3.1a) with enough large events provide a good azimuth coverage for the study of
azimuthal anisotropy in the upper mantle.

Figure 3.2: Backazimuth deviation and calculated dispersion points. Solid red line is the
theoretical phase velocity from isotropic PREM model. (a) Deviations between the great
circle path direction and the azimuths calculated by the horizontal rotation components
(Tang et al., 2023c) of the A2 array in the period range of 120s to 250s. (b), (c) and (d)
are the observed velocity (black lines) of the three arrays calculated using only the data
of the azimuth deviations (red dotted line) within 5 degrees in (a). The 1σ uncertainty is
about 0.1km/s.
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3.7 Results

3.7.1 Rotational motion retrieval and velocity estimation
The red lines in Figure 3.1b show examples of derived rotational waveforms of Rayleigh
waves using the A2 (Figure 3.1a) seismic array (see Figure 3.S3 for A1 and A3 waveforms)
from the earthquake M8.2 at 99 km SE of Perryville, Alaska, in 2021 (red great circle
path in Figure 3.1a). Figure 3.1c shows the correlation coefficient between translation and
derived rotation of the A2 array for these 110 events. The high correlation coefficient close
to 1 in the period range of 120s to 250s (Figure 3.1c) motivates us to choose this period
range for our data analysis. Other period ranges are stronger affected by aperture size and
noise. As illustrated in Equation 1 (see Methods section), the local phase velocity can be
calculated from amplitude ratios. However, the estimated azimuth can be slightly different
from the theoretical great circle path direction due to the effect of heterogeneity along
the propagation path. Therefore, it is necessary to correct the azimuths before velocity
estimations. From a theoretical point of view, the orthogonality between rotational vector
and wavenumber vector allows us to calculate the azimuth using the horizontal rotation
components in a general anisotropic medium as proposed by our recent theoretical work
(Tang et al., 2023c). The backazimuth deviation of the A2 array compared to the theoret-
ical great circle path direction of all events calculated using horizontal rotation (120s-250s
waveform) is shown in Figure 3.2a, which indicates that the deviation of the angle is gener-
ally smaller than 10 degrees, and most of them is within 5 degrees. For the period range of
120s-250s, a 5 degree azimuth deviation is reasonable while larger deviations may be due
to the error from incorrect amplitude observations and the interference with other wave
types. Therefore, we only retain data with azimuth deviation within 5 degrees (within the
range of the red dashed line in Figure 3.2a). We use the weighted least-squares method
(Tang et al., 2023c) to estimate the phase velocity of the Rayleigh wave based on the
amplitude ratio which is shown in Figure 3.2(b-d). The calculated average phase veloc-
ity which is marked by a black solid line is close to the theoretical value of the isotropic
PREM (Preliminary Reference Earth Model) (Dziewonski & Anderson, 1981), especially
for the A1 array. However, the average dispersion curve of the A2 array is slightly larger
than that of PREM. In the depth range of the upper mantle corresponding to 120s to 250s
(150km-450km), there are two uppermost mantle Transverse Ranges high-velocity anoma-
lies beneath A2, one down to a depth of 175 km, and a second one at depths between
340km and 500 km (Schmandt & Humphreys, 2010). The relatively low velocity beneath
A3, west of the Salton Trough, is attributed to partial melt in the asthenosphere as a result
of lithospheric thinning (Schmandt & Humphreys, 2010).

3.7.2 Local azimuthal anisotropy in the upper mantle
Figure 3.3 shows the azimuth-dependent phase velocity variation (black dots) for two peri-
ods, where the isotropic term cR0(ω)+ 1

2cR0(ω)R1(ω) is subtracted (see Figures 3.S4-3.S6 for
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other periods). Because the data coverage of some azimuth range is poor (see Figure 3.2a),
and some data are not available due to large amplitude errors, we average the velocity
estimates in large 120-degree azimuth bins (see Methods section). This leads to the rela-
tively large uncertainties of phase velocity of around 0.1km/s (Figures 3.3 and 3.S4-3.S6).
The red and blue curves in Figure 3.3 are the best-fit curves for 2ψ and 2ψ + 4ψ terms
in Equation (1), respectively. It can be seen that the estimated phase velocity and 2ψ
curve fit well. The curve difference between 2ψ and 2ψ+4ψ is very small (see Figure 3.S7)
as the 4ψ term for Rayleigh waves is negligible (Montagner & Nataf, 1986). Considering
the heterogeneous character of the Southern California region (Schmandt & Humphreys,
2010), the azimuthal velocity variation in the upper mantle can be the result of a mixture
of heterogeneity and anisotropy. Although our method measures the local anisotropy, the
influence of heterogeneity in the wavelength range cannot be ignored. To quantitatively
evaluate the influence of these factors, we calculated the 1ψ best-fit curve (green curve in
Figure 3.3, 3.S7) and the isotropic curve misfit (black curve in Figure 3.S7) to investigate
the effect of a dipping formation (1ψ) and seismic anisotropy. For most periods, the misfit
of 2ψ and 2ψ + 4ψ is significantly smaller than the misfit of the 1ψ term (Figure 3.S7),
indicating that the effect of anisotropy dominates. However, at the period of 130s-170s for
the A1 array, 180s-220s for the A2 array, and 140s-150s for the A3 array (Figure 3.S7),
the misfit of 1ψ is very close to that of 2ψ implying that the velocity also contains the
effect of local strong heterogeneity (Schmandt & Humphreys, 2010). Even though the
distance between the three arrays (about 200km, see Figure 3.S2) is much smaller than
the wavelength (120s-250s: 500km-1200km), the fast wave directions of the three arrays
indicate significant differences in anisotropy pattern, especially between arrays A1 and A2
or A3. Because our approach has a local sensitivity kernel (Fichtner & Igel, 2009), mainly
revealing the properties of the medium beneath the station, the lateral resolution can be
several times smaller than the wavelength (see Figures 3.S9-3.S12 for synthetic tests of
lateral resolution). The peak-to-peak anisotropy strength fluctuates in a large range due
to the error in extracting the rotation amplitude from the incomplete regular seismic array,
and its strength between 0.5% and 1% (Figure 3.S8) is compatible with previous studies
(Yang & Forsyth, 2006; Alvizuri & Tanimoto, 2011; Marone & Romanowicz, 2007). The
uncertainty in the orientation of the azimuthal anisotropy is within 15 degrees for most
periods, allowing us to analyze the local plate deformation of Southern California region.

3.8 Discussion

3.8.1 Mantle flow and plate deformation by local anisotropy ob-
servations

We estimate the corresponding depth range of anisotropic properties based on Rayleigh
waves sensitivity kernels of the PREM model (Dziewonski & Anderson, 1981) and compare
them with joint inversion results using SKS and surface wave data (Marone & Romanowicz,
2007), SKS results (Becker et al., 2012) and geodetic results (Barbot, 2020). At a depth
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of 200km, the most sensitive periods of Rayleigh waves are in the range of 140s-170s. The
fast directions (Figure 3.4) of the three arrays obtained by our method (blue solid lines)
are in good agreement with the direction of the APM (absolute plate motion, black arrows)
(Gripp & Gordon, 2002).

Figure 3.3: Variation of azimuth-dependent phase velocity. Red lines are the best-fit 2ψ
curves. Blue lines are the best-fit curves when 2ψ and 4ψ terms are included. Green lines
are the best-fit 1ψ curves. (a), (b) and (c) are the smoothed phase velocity (black points)
at three different periods from the A1, A2 and A3 array, respectively. The 1σ uncertainty
(about 0.1km/s) is estimated in an azimuth bin based on Equations (7) and (8).

However, the lateral resolution of tomography methods (black solid lines) is limited
by the long period wavelength, making it difficult to distinguish the difference of local
anisotropy between the three observation points. Even though the SKS results (green
lines) display some differences in the anisotropy directions of the three arrays, the derived
fast axis directions deviate substantially from the direction of the APM, especially at
A2 and A3 arrays. Because the SKS results represent the integral effects of the whole
upper mantle, making it difficult to specifically study anisotropy in the asthenosphere
depth range, and to discriminate it from the strong anisotropy observed in the lithosphere
of Southern California region (Yang & Forsyth, 2006; Alvizuri & Tanimoto, 2011) due
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to the collision of plates. The distribution of horizontal mantle flow (black dashed lines
with arrows in Figure 3.4) below the lithosphere obtained from geodetic data is in good
agreement with the results of our amplitude-based observations, especially at A2 and A3.
The fast direction of the Rayleigh wave above the lithosphere near the A2 array (yellow
lines in Figure 3.4) is parallel to the direction of relative motion along the San Andreas
fault (Alvizuri & Tanimoto, 2011), and this anisotropy is interpreted as shear deformation
from the collision of the two plates. In the asthenosphere, the fast wave direction is
northwest-southeast (blue lines in Figure 3.4), and there is about 20 degrees angle with
respect to the fault orientation, which indicates that the anisotropy mechanism of the
mantle here is different from that of the lithosphere, possibly controlled by the horizontal
mantle flow (Barbot, 2020). The obvious anisotropy drop in the period range of 140s to
170s (about 200km depth, Figures 3.S4-3.S6 and Figure 3.S8) in three arrays provides a
new evidence of layering of anisotropy probably indicating the lower boundary of the low-
velocity zone (LVZ) and the significant anisotropy in the middle of LVZ (Karato, 2012).
The fast direction of the asthenosphere (blue lines in Figure 3.4) near the A3 array is
basically parallel to the plate boundary. However, its anisotropy originates from complex
mantle dynamics which is not only affected by an upwelling beneath the Salton Trough
(Humphreys et al., 1984; Kohler, 1999; Yang & Forsyth, 2006) (Salton Buttes, a group of
volcanoes), but also a nearby return flow (Barbot, 2020), where the direction of the mantle
flow is rapidly changing. In contrast, the fast direction of the lithosphere (Alvizuri &
Tanimoto, 2011) near A1 (yellow lines in Figure 3.4) is consistent with the results of SKS,
parallel to the direction of the White Wolf and Garlock faults, while the direction of the
mantle flow here (Barbot, 2020) is also parallel to the fault direction. Combining geodetic
measurements and the evidence from our local anisotropy observations, the horizontal
mantle flow in Southern California indeed has a sharp bend along the San Andreas fault
(plate boundary), while vertical mantle flow may exist, which results in extremely complex
plate deformation (wide blue shaded arrows), faulting distribution and strong heterogeneity
(Tape et al., 2009), revealing its complex tectonic evolution history (Atwater, 1998). So
far, we have only three points of local anisotropy measurements in Southern California. In
the future, additional observations of rotation could be employed to better constrain the
complex geodynamics of upper mantle regions.

3.8.2 Limitations of the ADR approach
In our theoretical study (Tang et al., 2023c), the local seismic anisotropy can be revealed
by the amplitude ratio between acceleration and rotation rate. At present, there are no
broadband rotational seismometers with sufficient sensitivity in the Southern California
region (or elsewhere). To demonstrate the potential of our approach, we selected three
high-quality seismic arrays to retrieve rotational waveforms based on the ADR approach
(see supporting material) in the Southern California region. The ADR is our only choice to
retrieve the rotational waveform even though it has some limitations. The period range is
limited by the aperture of the seismic array, the noise level, the amplitude errors of instru-
ments (Spudich et al., 1995; Spudich & Fletcher, 2008; Donner et al., 2017). To estimate a
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reliable phase velocity of Rayleigh waves, we set two key thresholds to evaluate and select
available rotational waveforms. One is to quantify the similarity between translation and
rotation (Figure 3.1). The other is to quantify the azimuth deviation between theoretical
and estimated azimuths from horizontal rotation components (Figure 3.2).
Strong wavelength-scale heterogeneity underneath the array will undermine the assump-
tion of homogeneity on which ADR methods are based. In addition, the non-uniformity
of the geometric distribution of stations affects the phase and amplitude of the retrieved
rotational waveform. Small errors in the waveform can lead to considerable deviations in
the estimated velocity, which indicates that waveform quality control based on correlation
coefficients (Figure 3.1c) is extremely important.

Figure 3.4: Comparison of fast wave directions from different methods. The solid black line
and dashed black line represent the S-wave fast wave directions jointly retrieved by SKS and
surface waves (Marone & Romanowicz, 2007) at depth of 200km and 300km, respectively.
The solid blue line and dashed blue line represent the Rayleigh wave fast directions retrieved
by the amplitude ratio between translation and rotation at depth of about 200km and
300km, respectively. The black arrow represents the APM directions (Gripp & Gordon,
2002). The green lines represent the fast directions of SKS splitting (Becker et al., 2012).
The dashed black lines with arrows are the horizontal mantle flow streamlines retrieved by
geodetic data (Barbot, 2020). Yellow lines represent the fast direction of Rayleigh wave
in the upper lithosphere estimated from the beamforming method (Alvizuri & Tanimoto,
2011) and blue shaded arrows are estimated plate motion directions from the amplitude
ratio method.
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Consequently, there is an urgent need to develop and deploy portable broadband ro-
tational seismometers with a low noise level (Igel et al., 2021), since direct observations
of rotation can eliminate the period limitation of the ADR method and errors caused by
irregular deployment of stations.
A key point in the study of azimuthal anisotropy is to extract accurate backazimuths. For
the surface wave with a period of 120s to 250s in this paper, we assume that the deviation
of its azimuth comes from waveform errors, rather than the influence of heterogeneity on
the propagation path. However, strong heterogeneity, such as in the Southern Califor-
nia region, can lead to significant deviation in the azimuths (Alvizuri & Tanimoto, 2011),
especially at the lithospheric scale. Therefore, azimuth correction is generally necessary,
and Tang et al. (2023c) also provides a method of estimating the backazimuth using the
horizontal rotation waveform.

3.9 Conclusion

Based on the amplitude ratio between translational displacement and rotation, local struc-
ture and anisotropy can be extracted with a good lateral and vertical resolution at the
same time. It allows us to recover the azimuthal anisotropy of the upper mantle and
to study the plate deformation and local mantle flow with orientation changes at depth,
providing new insights on geodynamic processes and tectonic evolution for the complex
Southern California region. It provides strong constraints for the layering of the upper
mantle anisotropy that remains poorly constrained from current seismological observations
methods, SKS splitting, or surface wave tomography. While the array aperture limits the
frequency range, the analysis presented should provide motivation to further improve the
sensitivity of rotation sensors below the Earth’s low noise level such that in the future the
proposed technique could be applied to single stations. It is expected that the approach
would be particularly useful whenever seismic arrays are not affordable or difficult to im-
plement (e.g., planetary or ocean bottom observations, volcanology, urban seismology, or
structural engineering).
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3.12.1 Supplementary text
Lateral resolution
To demonstrate the lateral resolution of our method can be several times smaller than the
wavelength. We setup a half-space checkerboard HTI (Horizontal transversely isotropic)
model with 2% anisotropy for P wave=8.0km/s and S wave=4.0km/s. As illustrated in
Figure 3.S9, each sub-model (100km*100m) and its surrounding sub-models have orthog-
onal fast directions. There are 13 sources are distributed on a surface circle 3450km away
from the center of checkerboard at every 30 degrees, and the outside of the checkerboard
is anisotropic medium. Synthetic results at three periods 150s, 200s, and 250s in Figures
3.S10-3.S12 indicate that the local fast directions can be distinguished clearly and are in
agreement with analytical solutions even though the wavelength is many times larger than
the sub-models.
Array Derived Rotation (ADR)
We briefly summarize the ADR method as introduced by Spudich et al. (1995). Let
ri(i = 0, 1, ..., N) be the coordinate of the i-th seismic station and Ri = ri − r0 is the
coordinate difference from the station ri to the central station r0. The rotation and strain
can be together characterized by a 3*3 displacement gradient matrix G(Gxy = ux,y), where
ux,y is the derivative of x-component of displacement with respect to the y direction. At
the free surface, the rotation can be expressed as:


Ωx = uz,y

Ωy = −uz,x
Ωz = 1

2(uy,x − ux,y)
(3.S1)

Under the assumption of spatially uniform displacement, the gradient can be expressed
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as:
di = GRi (3.S2)

where di = ui − u0 The rotation can be retrieved by solving G in Equation 3.S2.
The solution P = (ux,x, ux,y,−uz,x, uy,x, uy,y,−uz,y) (Because of the free-surface bound-

ary condition, G has only six nonzero elements) of Equation 3.S2 can be expressed as
(Spudich et al., 1995):

P = (ATC−1
d A)−1ATC−1

d d (3.S3)

where Cd = DCuDT is the covariance matrix of d, Cu is assumed to be σ2
uI3(N+1). I3

is the 3*3 identity matrix and 03 is a 3*3 matrix zeros. η = λ
λ+2µ , η and µ are the Lame’s

parameters. where

Ai =

 Ri
x Ri

y Ri
z 0 0 0

0 0 0 Ri
x Ri

y Ri
z

−ηRi
z 0 −Ri

x 0 −ηRi
z −Ri

y

 (3.S4)

D =


−I3 I3 03 . . . 03
−I3 03 I3 . . . . . .
. . . . . . . . . . . . 03
−I3 03 . . . 03 I3

 (3.S5)

where rotational components in Equation 3.S1 can be derived from elements of P.

3.12.2 Supplementary figures

Figure 3.S1: (a) Distributions of 110 events with magnitude larger than 7.0 (only a few
events are between 6.5 and 7.0) from the global earthquakes catalog from November 2014
to November 2022.
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Figure 3.S2: Relative locations of three Broadband seismic arrays. A1 has 14 stations
(CI.SRT, CI.WBM, CI.TOW2, CI.LRL, CI.CLC, CI.CCC, CI.WRC2, CI.WCS2, CI.WMF,
CI.MPM, CI.SLA, CI.WBS, CI.WOR, CI.DTP), A2 has 18 stations (CI.RIO, CI.LTP,
CI.DLA, CI.OLI, CI.PSR, CI.SMF2, CI.LLS, CI.DEC, CI.CJV2, CI.CHF, CI.SDD,
CI.WSS, CI.BFS, CI.CLT, CI.CJM, CI.RVR, CI.ALP, CI.HOL) and A3 has 13 sta-
tions (CI.IDO, CI.KYV, CI.PSD, CI.CTW, CI.BEL, CI.MCT, CI.HAY, CI.GMA, CI.SLB,
CI.DNR, CI.BOR, CI.TOR, CI.BLA2). The red stations are used to output the transla-
tion. All stations are from CI network of Southern California. The seismometers contain
STS2, CMG3, Trillium and PBB.
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Figure 3.S3: Normalized waveform comparison between translational acceleration (m/s2)
and retrieved rotational velocity (rad/s) using the A1 and A3 arrays from the earthquake:
M 8.2 - 99 km SE of Perryville in 2021, Alaska.
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Figure 3.S4: Velocity variation of A1 array from 120s to 260s. Red lines are the best-fit
2ψ curves. Blue lines are the best-fit curves when 2ψ and 4ψ terms are included. Green
lines are the best-fit 1ψ curves.

Figure 3.S5: Velocity variation of A2 array from 120s to 260s.
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Figure 3.S6: Velocity variation of A3 array from 120s to 260s.

Figure 3.S7: The L2 norm of three arrays between observed phase velocity and estimated
phase velocity (best-fit curve). Black curve: the isotropic best fit curve. Red curve: the
2ψ best fit curve. Blue curve: the 2ψ + 4ψ best fit curve. Green curve: the 1ψ best fit
curve.



3.12 Appendix: Supplementary materials 59

Figure 3.S8: Fast-axis directions and peak-to-peak anisotropy of A1, A2, and A3 arrays.
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Figure 3.S9: Half-space checkerboard HTI (horizontal transversely isotropic) model with
2% anisotropy for P = 8.0km/s and S = 4.0km/s velocity. The black triangles represent
the 9 stations located in a 100km*100km anisotropic sub-model. The red lines indicate
that the fast wave axis along the X-axis (azimuth is 0 or 180 degrees). The black lines
indicate that the fast wave axis along Y-axis (azimuth is 90 or 270 degrees).
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Figure 3.S10: Azimuthal anisotropy of Rayleigh wave of checkerboard model at 150s (wave-
length is about 550km, anisotropic sub-model is 100km*100km in Figure S9) using the
amplitude ratio Equation (1). The vertical solid lines (red and black) represent the theo-
retical fast directions. The fast directions are in agreement with the theoretical model (red
curves: 0 or 180 degrees and black curves: 90 or 270 degrees).



62
3. Anisotropy and deformation processes in Southern California from

rotational observations

Figure 3.S11: Azimuthal anisotropy of Rayleigh wave of checkerboard model at 200s (wave-
length is about 740km, anisotropic sub-model is 100km*100km in Figure S9) using the
amplitude ratio Equation (1). The vertical solid lines (red and black) represent the theo-
retical fast directions. The fast directions are in agreement with the theoretical model.
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Figure 3.S12: Azimuthal anisotropy of Rayleigh wave of checkerboard model at 250s (wave-
length is about 920km, anisotropic sub-model is 100km*100km in Figure S9) using the
amplitude ratio Equation (1). The vertical solid lines (red and black) represent the theo-
retical fast directions. The fast directions are in agreement with the theoretical model.
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Seismic anisotropy from 6C ground
motions of ambient seismic noise

by Le Tang, Heiner Igel, Jean-Paul Montagner and Frank Vernon
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4.1 Key Points
• We show a new approach enabling the extraction of local phase velocity from 6C cross-
correlation functions of ambient noise data.
• Azimuth-dependent 6C cross-correlation functions allow us to study local seismic anisotropy
and its depth dependence.
• Local anisotropy at Piñon Flat Observatory is compatible with compression stress, pro-
viding constraints on stress-induced anisotropy.

4.2 Abstract
We propose a new approach capable of measuring local seismic anisotropy from 6C (three-
component translation and three-component rotation) amplitude observations of ambi-
ent seismic noise data. Our recent theory demonstrates that the amplitude ratio of 6C
cross-correlation functions (CCFs) enables retrieving the local phase velocity. This dif-
fers from conventional velocity extraction methods based on the travel time. Its local
sensitivity kernel beneath the 6C seismometer allows us to study anisotropy from azimuth-
dependent CCFs, avoiding path effects. Such point measurements have great potential
in planetary exploration, ocean bottom observations, or volcanology. We apply this ap-
proach to a small seismic array at Piñon Flat Observatory (PFO) in southern Califor-
nia, array-deriving retrieves rotational ground motions from microseismic noise data. The
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stress-induced anisotropy is well resolved and compatible with other tomography results,
providing constraints on the origin of depth-dependent seismic anisotropy.

4.3 Plain Language Summary
In contrast to the well-known translational displacement of seismic waves, rotation mea-
sures the angle of rotation of a point in a medium as it deforms. Traditionally, the travel
time of cross-correlation functions of translational displacement of ambient seismic noise
and its corresponding propagation distance is used to calculate the velocity of the subsur-
face medium. However, our recent theory shows that the amplitude ratio of translational
displacement and rotation allows us to reveal the local velocity of the medium beneath
the receiver from ambient seismic noise data and to study anisotropy from earthquake
events. This paper points out for the first time that the amplitude observations of 6C
cross-correlation functions of ambient seismic noise provide a new approach to measure
the azimuth-dependent velocity in anisotropic media.

4.4 Introduction
Rotational motion, as part of the wavefield gradient, can be measured directly by rotational
seismometers at high frequencies (Lefevre, 2014; Bernauer et al., 2021; Zembaty et al.,
2021) and in broadband ranges (Igel et al., 2007, 2021). Combining three-component
translation and three-component rotation, a single 6C seismometer shows great potential
in seismological observations, which can investigate the propagation direction of seismic
waves (Yuan et al., 2021; Sollberger et al., 2018) and constrain the local Earth’s velocity
structure (Igel et al., 2007; Wassermann et al., 2016; Keil et al., 2021; Tang & Fang,
2021b; Fang & Tang, 2021; Tang & Fang, 2023; Tang et al., 2023a,c; Tang & Fang, 2023).
The ambient seismic noise, as continuous sources on the Earth, has shown its powerful
potential in studying Earth’s structure based on conventional translation observations (Aki,
1957; Lobkis & Weaver, 2001; Shapiro et al., 2005; Haney et al., 2012). However, it has
been an open scientific challenge whether rotational observations of ambient seismic noise
can provide additional constraints for the Earth’s interior. To investigate the potential
of rotational observations of ambient seismic noise, only a few studies have conducted
theoretical derivations and some preliminary observations. Hadziioannou et al. (2012) made
the first attempt to extract the phase velocity of surface waves from ambient noise data
by combining the translation and rotation observations. However, the overlap of ambient
seismic noise destroys the assumption that the phase velocity extracted by the amplitude
ratio is based on a single plane wave, resulting in larger uncertainty (Wassermann et al.,
2016) in the phase velocity, making it difficult to monitoring small changes in velocities.
Paitz et al. (2019) and Nakahara et al. (2021) carried out theoretical experiments of ambient
noise interferometry to investigate the connections between Green’s functions and cross-
correlation functions or spatial auto-correlation (SPAC) coefficients of rotational ground
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motions, but ignored the potential of the amplitude. Our recent theory paper focuses on
the amplitude of SPAC coefficients of rotational ambient noise data (Tang & Fang, 2023),
which indicates the feasibility of measuring the local phase velocity from amplitude ratios
of 6C cross-correlation functions. This approach has a local sensitivity that differs from
conventional velocity extraction methods based on travel time or phase difference whose
sensitivity mainly distributes along the propagation path.

Figure 4.1: (a) Schematic diagram of a sensitivity kernel of the amplitude ratio method
in Equations (4.1-4.3) from 6C CCFs of a pair of stations. Station-1 has three-component
(3C) translational displacement. Station-2 has three-component translational displacement
and three-component rotation (6C). (b) Distributions of broadband seismic stations. The
black triangles represent 3C stations. The red triangle represents the 6C station of Piñon
Flat Observatory (PFO) while the rotational waveform is retrieved from the ADR approach
using a small seismic array of (c). (c) Reference PFO.6C array which is used to retrieve
rotational motions from ambient noise data. At the blue station, the translational and
rotational components are compared.

The local sensitivity allows us to monitor the velocity variation of the local structure
without considering the path effects of the wave propagation (Tang & Fang, 2023). Study-
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ing local seismic anisotropy (Pham et al., 2010; Tang & Fang, 2021a; Noe et al., 2022) from
rotational ground motions can provide additional constraints on the tectonic evolution of
the Earth (Tang et al., 2023a). The characteristics of rotational ground motions of surface
waves in an anisotropic medium are well resolved in the recent study (Tang et al., 2023c)
based on the first-order perturbation theory. It indicates that the azimuth-dependent
surface wave dispersion curve can be directly obtained by using the amplitude ratio of
translation to rotation or strain, which allows us to investigate the mantle flow and plate
deformations (Tang et al., 2023a). Combining our recently proposed rotational ambient
noise theory (Tang & Fang, 2023) and rotational anisotropy theory (Tang et al., 2023c),
we can study local seismic anisotropy from azimuth-dependent 6C cross-correlation func-
tions. Since permanent high-sensitivity broadband rotation seismometers do not yet exist,
the array-derived rotation (ADR) method is well suited (Spudich et al., 1995; Spudich &
Fletcher, 2008; Donner et al., 2017; Tang et al., 2023a) to retrieve the rotational waveform.
However, the available period range is generally limited by the aperture of a seismic array,
the uncertainty of instruments, and noise level. We select a small seismic array at the
Piñon Flat Observatory in southern California to retrieve rotational ground motions and
study local seismic anisotropy based on our new method for the first time. Ultimately,
such 6C ambient noise data processing would be possible, if sufficiently sensitive sensors
for all motion components would exist. This remains a technical challenge (Brotzer et al.,
2023).

4.5 Methods

4.5.1 Velocity measurement from 6C CCFs
In isotropic media, the phase velocity of surface waves can be extracted from the amplitude
ratio of 6C CCFs (Tang & Fang, 2023).

|
˙CCF (Vz1,Vz2)

CCF(Vz1,Ωt2)
| = cR (4.1)

|
˙CCF (Vr1,Vz2)

CCF(Vr1,Ωt2)
| = cR (4.2)

|
˙CCF (Vt1,Vt2)

2CCF(Vt1,Ωz2)
| = cL (4.3)

where Vz1, Vr1 and Vt1 represent the three-component translational velocity of station-1 (see
Figure 4.1a). Vz2, Vt2, Ωt2 and Ωz2 represent the two-component translational velocity and
two-component rotational rate of station-2, respectively. CCF represents cross-correlation
functions of a pair of stations and the ˙CCF is the time derivative. cR and cL represent
the phase velocity of the Rayleigh wave and Love wave, respectively. Equations (4.1-4.3)
provide a new approach to measure the phase velocity from 6C CCFs of ambient seismic
noise data, whose sensitivity kernel (gray zone in Figure 1a) is located beneath the 6C
station (Tang & Fang, 2023; Fichtner & Igel, 2009; Tang et al., 2023a).
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4.5.2 Azimuthal anisotropy from 6C observations
Our recent theory (Tang et al., 2023c) demonstrates that the amplitude ratio of acceleration
to rotation rate or strain rate is equal to the theoretical azimuth-dependent phase velocity
derived by Smith & Dahlen (1973). In this paper, we only consider the fundamental
mode of Rayleigh waves. The dispersion equation of the Rayleigh wave from amplitude
observations can be expressed as (Tang et al., 2023c):

| V̇z(ω, ψ)
Ωt(ω, ψ) | = c0(ω) +R2(ω)cos(2ψ) +R3(ω)sin(2ψ) +R4(ω)cos(4ψ) +R5(ω)sin(4ψ) (4.4)

where c0(ω) = cR0(ω) + R1(ω). cR0(ω) is the phase velocity of the Rayleigh wave for the
isotropic medium considered as a reference model. V̇z(ω, ψ) is the first-order time derivative
of vertical translational velocity and Ωt(ω, ψ) is the transverse rotational velocity. ψ is
the backazimuth of the wavenumber vector measured clockwise from the north direction.
Ri(ω) (i = 1, 2, 3, 4, 5) are respectively depth integration functions that involve some elastic
parameters and eigenfunctions, where we used a simple integration expression derived by
Montagner & Nataf (1986), whose explicit expressions can be found in Equations (2), (4),
and (5) of Montagner & Nataf (1986). Equation 4.4 provides a new approach for estimating
phase velocities in anisotropic media which only depends on amplitude information. Its
local sensitivity kernel allows us to monitor the local velocity with high lateral resolution
that can be several times smaller than one wavelength (Fichtner & Igel, 2009; Tang &
Fang, 2023; Tang et al., 2023c,a). We replace the vertical velocity and transverse rotation
velocity in Equation 4.4 with the corresponding CCFs in Equation 4.1, which allows us to
study azimuthal anisotropy from ambient seismic noise data.

4.6 Data
The ambient noise data comes from the CI, AE, AZ, PY, BC, and US station networks,
SCEDC (Southern California Seismic Network), and IRIS data center. We select 22 three-
component stations distributed as evenly as possible around the 6C station (see Figure 4.1b)
and use one-year ambient noise data from February 2015 to February 2016 to calculate
cross-correlation functions and investigate the local azimuthal anisotropy. Figure 4.1b
shows the geometry of seismic stations and the red triangle represents the 6C station where
black triangles are the distributions of 3C stations. The distance between the PFO.6C
station and the 3C station can be found in Figure 4.S1, which is from 112km to 512km.
Considering that broadband rotational seismometers have not been permanently deployed
widely, we select three-component broadband seismometers at Piñon Flat Observatory in
southern California as the reference 6C array (see Figure 4.1c) to retrieve rotational ground
motions using the ADR approach (Spudich et al., 1995; Spudich & Fletcher, 2008; Tang
et al., 2023a) from ambient seismic noise data. The period range of wavefield gradients
from the PFO.6C array (the aperture is about 500m) in Figure 4.1c is about 3-50s (Donner
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et al., 2017) allowing the retrieval of rotational motions from two dominant microseismic
noise data (5-10s: Secondary microseismic noise. 10-20s: Primary microseismic noise).

Figure 4.2: Schematic representation of the 6C ambient noise data processing scheme. (1):
single-station preprocessing. (2): 3C station time-domain normalization. (3): 6C station
time-domain normalization. (4): Calculate CCFs and phase velocity estimation.

The ambient noise data processing workflow of the 3C station and the 6C station
are different. The 3C station can completely follow the processing steps summarized by
Bensen et al. (2007). For simplicity, we perform one-bit normalization on the 3C stations.
In contrast, the 6C station requires different amplitude normalization, whose processing
workflow (see Figure 4.2) generally includes: (1) Remove instrument response, remove
trend, remove mean, cut the data to a certain length (e.g. 1 hour or 1 day). We estimate
the power-spectral-density (PSD) of the vertical acceleration at the PFO array using one-
year data (see Figure 4.S2) which indicates that the corner period between secondary
microseisms and primary microseisms is about 11.5s. We rounded and chose the 12s. At
the period of 5-6s, this scattered signal is stronger at some azimuths (e.g. 120-180 degrees).
Therefore, we filter the two dominant microseismic noise data of the PFO.6C station into
two frequency ranges: 7-12s and 12-20s. (2) Amplitude normalization in the time domain:
we perform absolute mean normalization to all components by running a time window
(width: 5s). It must be emphasized that all components should be normalized by the same
absolute mean (see Figure 4.2), where we calculate the absolute mean using rotational
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components (e.g. Rayleigh wave: Ωt and Love wave: Ωz). (3) Calculate the CCFs and
stacking. (4) Extract the phase velocity based on Equations (4.1-4.3). Among them, step
(2) is to preserve the amplitude ratio information during data processing, because the
phase velocity only comes from the contribution of the 6C station (Tang & Fang, 2023).

4.7 Results

4.7.1 Retrieval of 6C CCFs
Due to the high-quality waveform requirement of our approach, it is better to choose
Equation 4.1 instead of Equation 4.2 to calculate the CCFs of Rayleigh waves, because Vz
and Ωt are only associated with Rayleigh waves in isotropic media and the coupling effect
is very small and can be neglected for the fundamental mode in weakly anisotropic media
(Tang et al., 2023c). In contrast, Vr also records ambient Love waves that will contaminate
the waveform of Rayleigh waves and affect the signal-to-noise ratio (Tang et al., 2023c).

Figure 4.3: Rayleigh wave waveform (marked by black dashed lines) comparison (7s-12s)
of CCFs calculated using one-year ambient noise data from five pairs of stations (CI.DSC,
CI.PDM, CI.OLP, CI.SDD, CI.SBB2 and PFO.6C). The red lines represent CCFs between
vertical translation of 3C station and transverse rotation of 6C station. The black lines
represent CCFs between vertical translation of 3C station and vertical translation of 6C
station. Red lines in Figure 4.1b represent their great circle paths.
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Figure 4.4: Normalized CCFs (marked by black dashed lines) of 7-12s in the azimuth
domain based on Equation 4.1. The red lines represent CCFs between vertical translation
of 3C station and transverse rotation of 6C station. The black lines represent CCFs between
vertical translation of 3C station and vertical translation of 6C station.

Figure 4.3 shows the retrieved CCFs of Rayleigh waves of 7-12s using five pairs of
stations (CI.DSC, CI.PDM, CI.OLP, CI.SDD, CI.SBB2, and PFO.6C station) at different
azimuths based on Equation 4.1, in which red lines in Figure 4.1b represent their great
circle paths. The 22 pairs of CCFs (see Figure 4.1b) in azimuth domains for two different
frequency ranges are shown in Figure 4.4 (7-12s) and Figure 4.5 (12-20s). The very high
correlation in the period range of 7-12s between translation-based CCFs and rotation-based
CCFs (see Figure 4.3 and Figure 4.4) indicates the applicability of retrieved rotational
waveform from the ADR approach, making it possible to extract the velocity from the
amplitude ratio. However, in some azimuths, such as around 130-150 degrees and 340
degrees (see Figure 4.4), the noise interference of the cross-correlation function is strong,
which is related to the distribution of secondary microseismic noise at 7-10s mainly coming
from 180-270 degrees backazimuths (Schulte-Pelkum et al., 2004; Stehly et al., 2006). The
distribution of primary microseismic noise at 12-20s is relatively complex, accompanied
by strong seasonal variations (Stehly et al., 2006), resulting in low signal-to-noise ratios
of CCFs and low correlation between translation-based CCFs and rotation-based CCFs
(see Figure 4.5). The asymmetric CCFs of 7-12s in Figure 4.3 and Figure 4.4 indicate the
inhomogeneity of the secondary microseismic noise, mainly originating in the direction of
the Pacific Ocean (Stehly et al., 2006).
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Figure 4.5: Normalized CCFs (marked by black dashed lines) of 12-20s in the azimuth
domain based on Equation 4.1. The red lines represent CCFs between vertical translation
of 3C station and transverse rotation of 6C station. The black lines represent CCFs between
vertical translation of 3C station and vertical translation of 6C station.

From a theoretical point of view, the choice of positive or negative part of the cross-
correlation function is necessary for estimating azimuth-dependent velocity, since the noise
sources corresponding to these two parts come from the symmetry direction and the seismic
velocity by the two parts should have symmetrical azimuths. For example, one is ψ degrees
and the other is ψ + π degrees. As illustrated in Figure 4.3 and Figure 4.4, the ambient
noise of 7-12s mainly comes from one direction of the station pair. To have better azimuth
coverage and to apply to most cases where the cross-correlation function of ambient seismic
noise is asymmetric. Here, we simply use the azimuth of the station pair as the azimuth
of extracted phase velocity. In principle, this operation will not affect the estimation of
seismic anisotropic parameters from surface waves and this point is further elaborated in
the Discussion section.

4.7.2 Velocity estimation and azimuthal anisotropy
As illustrated in Equations (4.1-4.3) and 4.4, amplitude ratios of CCFs enable extracting
local phase velocity and allow us to study the local seismic anisotropy utilizing CCFs at
different azimuths. We use the least-square method introduced by Tang et al. (2023c) to
estimate the phase velocity of the Rayleigh wave using the waveform in Figure 4.4 and
Figure 4.5 based on Equation 4.1. As shown in Figure 4.6, the calculated average phase
velocity from 22 pairs of CCFs marked by a black solid line is compatible with the local
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earth model (Shaw et al., 2015), but slightly faster especially at the primary microseisms
frequency range (12-20s). Compared with the uncertainty (1σ) of 0.2km/s-0.3km/s at the
period range of 7-12s, the period range of 13-20s shows a large uncertainty around 0.3km/s-
0.6km/s, which not only indicates the velocity anisotropy but is also mainly contaminated
by waveform errors related to complex ambient noise distributions (see the Discussion
section), leading to the low waveform correlation and low signal-to-noise ratio (see Figure
4.5). Therefore, we only focus on the period range of 7-12s for our anisotropy study.

Figure 4.6: Velocity comparison between estimated phase velocity of Rayleigh waves at
6-20s from 22 pairs of CCFs and local velocity model (red line) near the PFO region (Shaw
et al., 2015)

.

Because the ADR method is a gradient calculation based on differential methods (Spu-
dich et al., 1995; Spudich & Fletcher, 2008; Donner et al., 2017), which indicates that
the period range is limited by the aperture of the seismic array and the noise level of in-
struments. In addition, the strong wavelength-scale heterogeneity beneath the array will
destroy the homogeneity assumption on which the ADR method is based, and the inho-
mogeneity of the station geometric distribution will also affect the phase and amplitude
of the retrieved rotational waveform. Therefore, quantifying the uncertainty in wavefield
gradients while taking these factors into account has been a great challenge. Currently
we do not know how to consider these factors simultaneously because the effect of real
subsurface heterogeneous structures on waveform gradients is not known. Alternatively,
we average the velocity estimates in 60-degree azimuth bins and calculate the uncertainty
within the selected azimuth bins. The method to calculate uncertainty is detailed in the
supporting material (see supporting materials for uncertainty estimation). The error for
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the anisotropy strength and fast directions can be obtained using an error propagation
technique (Cliford, 1973).

Figure 4.7: Velocity variation of 7-12s of Rayleigh waves in the azimuth domain. Red lines
are the best-fit 2ψ curves and blue lines are the best-fit curves when 2ψ and 4ψ terms are
included in Equation 4.4.

Figure 4.7 shows the measured phase velocity variation using one-year (2015.02-2016.02)
ambient noise data at 6 periods where the isotropic term c0(ω) in Equation 4.4 is subtracted.
The red and blue curves in Figure 4.7 are the best-fit curves for 2ψ and 2ψ + 4ψ terms of
Equation 4.4, respectively. It can be seen that the estimated phase velocity matches with
the 2ψ and 2ψ+4ψ anisotropy term and the difference between the two curves is very small.
From a theoretical point of view, the 4ψ anisotropy term for Rayleigh waves is quite small
as demonstrated by Montagner & Nataf (1986) and can be neglected in many anisotropy
observations. In our study, we only analyze the 2ψ term because the non-homogeneity of
noise sources (Stehly et al., 2006) makes it difficult to resolve the 4ψ term.

Even though the secondary microseismic noise (5-10s) in southern California does not
show seasonal variations (Stehly et al., 2006) in the phase, it is still necessary to investigate
the effect of seasonal noise distributions on velocity measurements, as the amplitude change
is visible (Stehly et al., 2006) with a different signal-to-noise ratio probably leading to
considerable velocity errors. As indicated in Figure 4.8a, the peak-to-peak anisotropy
fluctuates between around 4%-7% over one year, whose difference in anisotropy between
spring-summer and autumn-winter (see Figure 4.S3 for seasonal velocity variations in the
backazimuth domain) is probably due to slight changes in the distribution of noise sources.
However, the estimated fast axis direction of 2ψ term in Figure 4.8b is relatively stable
within a year. The fast axis direction of 7s mainly points to the north-south direction (0-10
degrees), the 10s fluctuate in the backazimuth of 5-15 degrees, and the 12s fluctuate in the
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backazimuth of 10-20 degrees. As indicated in Figure 4.8b, the fast axis seems to show a
transition from north-south to northeast-southwest direction throughout the year.

Figure 4.8: Seasonal variation of anisotropy and fast axis with sliding window of two
months. (a) Seasonal variation of peak-to-peak anisotropy of the 2ψ term at 7s (blue
lines), 10s (black lines) and 12s (red lines). (b) Seasonal variation of fast-axis of the 2ψ
term at 7s (blue lines), 10s (black lines) and 12s (red lines).

4.8 Discussion

4.8.1 Stability of velocity measurement based on 6C CCFs
It is very dangerous to use the waveforms of a single earthquake event to estimate the
velocity from 6C amplitude ratios, since a small disturbance, probably from the uncertainty
of instruments or random noise, on the waveform will have a considerable impact on the
amplitude ratio (Kurrle et al., 2010). Therefore, waveform stacking of a large number of
events is required to obtain a reliable result (Tang et al., 2023c,a). The interaction between
ocean waves and the Earth produces a continuous source of seismic noise, providing the
feasibility of using amplitude ratios to obtain reliable velocity solutions. To investigate
the robustness of the proposed approach based on amplitude observations, we calculate
three variables (see Figure 4.9): (1) signal-to-noise ratio (SNR) (see Figure 4.S4 for the
SNR estimation), (2) correlation coefficients between translation-based CCFs and rotation-
based CCFs, and (3) relative velocity variation of one pair of stations (CI.PDM and PFO.6C
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in Figure 4.1b with 69.4 degrees backazimth) to evaluate how they change during one-year
ambient noise data.

Figure 4.9: Stability of CCFs between CI.PDM station and PFO.6C station. (a) Signal-
to-noise ratio (SNR) of ˙CCF (Vz1,Vz2) at four periods (7s, 10s, 12s, and 15s) using different
data volume. (b) Correlation coefficients between ˙CCF (Vz1,Vz2) and CCF(Vz1,Ωt2) at four
periods (7s, 10s, 12s, and 15s) using different data volume. (c) Relative velocity variation
(cT − cT−1)/cT−1 at four periods (7s, 10s, 12s, and 15s) using different data volume.

With the continuous stacking of ambient noise data, the SNR of CCFs increases to
about 20-30 in one year (see Figure 4.9a) while the SNR of 7s, 10s, and 12s is higher than
that of 15s because of the higher energy of the secondary microseism noise compared with
the primary microseism noise. However, it can be seen that even if the correlation between
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the rotation-based CCFs and the translation-based CCFs has reached more than 99% (see
Figure 4.9b), the extracted phase velocity of the first month by the amplitude ratio still
fluctuates in a large range as shown in Figure 4.9c. It indicates that the cross-correlation
coefficient can not be completely relied on as the only criterion for judging and selecting
high-quality waveform, which is only one important indicator for evaluating waveform.
The obvious improvement of the SNR and the gradual convergence of the corresponding
phase velocity after more data stacking (see Figures 4.9a and 4.9c) imply the necessity
of higher SNR for amplitude-based velocity measurements. After about three months of
data stacking, the relative change in velocity gradually decreases (see Figure 4.9c), and the
phase velocity converges to a stable value, especially for 7-12s, indicating the feasibility of
obtaining a stable and reliable phase velocity through the amplitude ratio of CCFs after
several months ambient noise stacking.

It should be noted that the stable solution of the analyzed station pair only indicates
that a stable solution can be obtained on the premise of obtaining CCFs with a high SNR,
and it is also applicable to long periods (such as 15s in Figure 4.9). Due to the uneven
distribution of ambient noise and seasonal changes, especially the primary microseismic
noise in southern California (Stehly et al., 2006), the observation of velocity at 13-20s is
not stable at all azimuths, which is not conducive to the study of anisotropy.

4.8.2 Effect of noise distribution and coupled waves
The effect of ambient noise distribution on the velocity extraction using the amplitude ratio
of CCFs can be divided into two cases. In the first case, noise sources are mainly distributed
in the stationary zone on one side of the pair of stations (see Figure 4.10b). The phase
velocity in the symmetrical azimuth of the noise source can not be obtained. For example,
in Figure 4.10b, we can only calculate the phase velocity in the 270 degree direction. The
90 degree direction is unknown unless the noise source is distributed this direction (see
Figures 4.10a). This is the key difference from travel time-based tomography methods.
Considering the particularity of the non-uniform distribution of noise sources in southern
California region (Figures 4.3 and 4.4) and the limitations of single point observation, it is
difficult to resolve the relatively complex anisotropic media such as the 4ψ anisotropic term,
while the consideration of the 2ψ term is reasonable. To obtain better azimuthal coverage,
we simply take the azimuth of the station pair as the azimuth of the extracted phase velocity
in Figure 4.7 (see Figures 4.S5 and 4.S6 for velocity anisotropy after considering the real
noise source direction). Because under the assumption of the first-order perturbation, the
Rayleigh wave is only sensitive to monoclinic media (Montagner & Nataf, 1986; Tang et al.,
2023c) (in general anisotropic media, the 21 elastic parameters of anisotropic media will
degenerate to 13 elastic parameters), the phase velocities at the azimuths of ψ and ψ+π are
equal (see Figure 4.10a). Consequently, there is no need to distinguish the CCFs on both
sides when estimating the Rayleigh wave velocity, and theoretically it will not affect the
measurement of anisotropy parameters. In another case, the noise source is not distributed
in the stationary zone (Campillo et al., 2011), which implies that the calculated CCFs are
biased in terms of travel time between the two stations. In contrast, the amplitude can
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be corrected to calculate the local phase velocity, and CCF(Vz ,Ωt) in Equation 4.1 can be
replaced by

√
CCF 2

(Vz ,Ωt)) + CCF 2
(Vz ,Ωr)) after rotating the two components CCF(Vz ,Ωt) and

CCF(Vz ,Ωr) into the direction of the maximum amplitude which is similar to the ORA
(optimal rotation algorithm) (Roux, 2009). Where the horizontal rotational components
Ωt and Ωr are dominated by Rayleigh waves (Tang et al., 2023c).

Figure 4.10: (a) The estimated velocity using the negative and positive parts (sources 1
and 2 respectively) of CCFs of one pair of stations will have opposite backazimuth (ψ and
ψ + π), but the Rayleigh wave has the same velocity. (b) The estimated velocity from the
CCFs of two pairs of stations in parallel from the same noise source will show the same
phase velocity.

Figure 4.11 shows the synthetic verification of correcting the source azimuth deviation.
As indicated in Figure 4.11a, the noise source is evenly distributed in azimuth and is
approximately 1000km away from two stations (black triangle), with a distance of 100km
between the two stations. Due to the deviation of the noise source, there is a significant
difference in the travel time of CCFs (see Figure 4.11b), making it impossible to extract the
velocity between the two stations based on travel time. Similarly, the estimated velocity
using Equation 4.1 is not reliable (black line in Figure 4.11c). However, azimuth correction
using horizontal rotation components

√
CCF 2

(Vz ,Ωt)) + CCF 2
(Vz ,Ωr)) allows us to obtain the

accurate velocity (blue line in Figure 4.11c).
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Figure 4.11: (a) Distributions of seismic sources (vertical force source) and a pair of stations
for investigating the effect of noise source in the non-stationary zone. The analytical phase
velocity of Rayleigh waves is VR = 3.258 + 0.194 ∗ cos(2ψ) + 0.025 ∗ sin(2ψ). (b) Synthetic
CCFs in (a) after normalizing the amplitude of ˙CCF (Vz1,Vz2). (c) Velocity estimation using
CCFs of (b). The black line represents the results from Equation (1) which show large error
compared with the analytical solution marked by red points. The blue line represents the
corrected results of replacing CCF(Vz1,Ωt2) with

√
CCF 2

(Vz1,Ωt2)) + CCF 2
(Vz1,Ωr2)).

Considering the coupling effect of Rayleigh waves and Love waves in anisotropic me-
dia, coupled waves with small amplitudes will be generated on other components of CCFs
(Saade et al., 2015). As illustrated in Figure 4.12, the small amplitude on the CCF(Vz ,Ωz)
probably indicates the coupled wave if the influence of 3D heterogeneous scattering is ex-
cluded, since Vz and Ωz only correspond to Rayleigh waves and Love waves in isotropic
media, respectively. Consequently, the small amplitude on CCF(Vz ,Ωr) (see Figure 4.12)
is the result of a combination of noise source deviation and coupling effects, which in-
dicates that one should be careful to do the noise source correction especially when the
azimuth deviation is quite small. Because it is difficult to quantitatively separate the mag-
nitude of the two small amplitudes, further study is needed in the future. As indicated
in Figure 4.S7, in most azimuths (0-100 degrees, 180-260 degrees), the angle deviation
(tanψ = CCF(Vz ,Ωr)/CCF(Vz ,Ωt)) of the noise source is about 10 degrees, which is quite
small. Therefore, the estimated phase velocities in Figure 4.6 and Figure 4.7 are obtained
without the small azimuth correction. However, the velocity extracted at these azimuths
of 130-180 degrees and 270-360 degrees has been corrected because it shows a larger angle
deviation (see Figure 4.S7), but its low signal-to-noise and scattered waves lead to larger
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uncertainty (see Figure 4.7). Although the azimuth of the noise source at 7-12s can be
corrected using the method, the strong seasonal noise variation makes it difficult to obtain
a stable solution in the long period range. Therefore, further study is needed for the local-
ization and correction of ambient noise sources, such that the 6C-based cross-correlation
technology can be extended to longer period ranges in the future.

Figure 4.12: CCFs (7-12s) between vertical translation of the CI.PDM station and six-
components of the PFO.6C station using one-year ambient noise data. The left three
components ˙CCF (Vz ,Vz), ˙CCF (Vz ,Vr) and ˙CCF (Vz ,Vt) are normalized by ˙CCF (Vz ,Vz) which
are only associated with translation. The right three components CCF (Vz ,Ωt), CCF (Vz ,Ωr)
and CCF (Vz ,Ωz) are normalized by CCF (Vz ,Ωt) which are associated with rotation.

4.8.3 Stress-induced anisotropy from 6C measurements
The lateral resolution of the conventional methods of anisotropy study in southern Califor-
nia is limited by the aperture of stations, wavelength, and strong heterogeneity. In contrast,
the unique local sensitivity kernel of our approach allows us to image the local structure
and to study local anisotropy (Tang et al., 2023c,a). Here, we estimate the corresponding
depth range based on Rayleigh’s sensitivity kernel of the local velocity model (Shaw et al.,
2015) at 7s, 10s, 12s, and 15s (see Figure 4.S8), indicating that the anisotropy at periods
of 7-12s in Figure 4.7 are most sensitive to the upper 5-15km of the crust. We compare
it with other anisotropy results estimated from different methods that have a lateral local
sensitivity kernel. The anisotropy strengths measured near the San Andreas Fault indi-
cate that borehole measurements show around 10% anisotropy in the near surface (Aster
& Shearer, 1991; Boness & Zoback, 2004), and shear-wave splitting results indicate that
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the crustal anisotropy is between 8% and 15% (Boness & Zoback, 2006), demonstrating
the considerable 4%-7% anisotropy shown in Figure 4.8. The derived direction of the fast
axis (red line in Figure 4.13) at 7s sensitive to the upper 5-15km of the crust (see Figure
S8) is consistent with the maximum horizontal compression stress (orange lines in Figure
4.13) (Heidbach et al., 2010) and in agreement with the results of shear-wave splitting in
the upper 20km of the crust (yellow line in Figure 4.13) (Yang et al., 2011) at the PFO
station. Its anisotropy is generally interpreted by preferentially aligned cracks or SPO
(shape-preferred orientation) that are associated with the stress field (Aster & Shearer,
1991; Boness & Zoback, 2004, 2006; Yang et al., 2011; Wu et al., 2022).

Figure 4.13: Stress-induced anisotropy revealed from 6C observations. The red line shows
the fast-axis of Rayleigh waves in the upper crust associated with the stress-induced
anisotropy. The orange lines represent the maximum compression stress directions near
the PFO array, which are determined from borehole breakouts, hydraulic fracturing exper-
iments, and earthquake focal mechaism inversions (Heidbach et al., 2010). The yellow line
represents the fast-axis direction of shear-wave splitting at PFO using local events, which
is sensitive to upper crustal structure (<20km) (Yang et al., 2011). The black lines repre-
sent the fast-axis directions of surface waves using the beamforming tomography method
(Tanimoto & Prindle, 2007). The purple line-a and line-b represent the fast-axis directions
of P waves at around 9km and 16km, respectively, using the P wave tomography method
(Wu et al., 2022). The black arrows show the plate motion directions (Tang et al., 2023a).

In the depth direction, the fast axis shifts from the north-south direction of the upper
crust (7s in Figure 4.8) to the northeast-southwest direction of the middle crust (12s
in Figure 4.8), which is probably due to the onset of the transition from stress-induced
anisotropy to structure-induced anisotropy if we can exclude the uncertainty effect in the
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future. Because the fast axis in the lower crust by the beamforming tomography result
of Rayleigh waves mainly points towards the northeast-southwest direction (Tanimoto &
Prindle, 2007), approximately between 40 and 60 degrees (black lines in Figure 4.13).
This anisotropy is generally caused by the crystallographic preferred orientation (CPO)
of anisotropic minerals formed during rock formation and subsequent deformation (e.g.
(Alvizuri & Tanimoto, 2011; Tanimoto & Prindle, 2007; Wu et al., 2022) for southern
California).

4.9 Conclusion
We propose a new method based on the 6C ambient noise data for investigating the local
seismic anisotropy. The local seismic anisotropy at Piñon Flat Observatory in southern
California in the period range of secondary microseismic noise is resolved, showing stress-
induced seismic anisotropy with small azimuth variations at different depths, providing new
insight into the origin of depth-dependent anisotropy. Sufficient ambient seismic noise data
and the effective ADR technique enable wide and quick applicability in various seismolog-
ical studies. We expect the rapid development of high-quality broadband 6C rotational
seismometers, which are capable of retrieving rotational waveform based on a single 6C
station. Our approach would be particularly useful whenever large seismic arrays are not
affordable or difficult to implement (e.g. planetary exploration, ocean bottom observations,
volcanology, or urban seismology).
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4.12.1 Supplementary text
Uncertainty estimation
We average the velocity estimates in 60-degree azimuth bins and calculate the uncertainty
within the selected azimuth bins.

σd =
√∑N

i=1(di − d)2

N
(4.S1)

where σd is the estimated standard error of the phase velocity, N is the number of
observations in the 60-degree azimuth bins. Writing the five unknowns (c0, R2, R3, R4, R5
in Equation 4.4) in a vector X, we can write the original equation to be satisfied as
D = AX, where A is formed from the azimuth of the i-th data and D is comprised by
measured phase velocity for the i-th datum. The well-known least squares solution to this
problem is X = (ATA)−1ATD. Then we can obtain the uncertainty of other parameters
using the following equations.

Cp = (ATA)−1ATCdA(ATA)−1 (4.S2)

Where Cd is the data covariance matrix. The peak-to-peak anisotropy is
√
R2

2 +R2
3/c0

and the fast direction is arctan(R3/R2)/2 and standard errors for the strength and fast
direction can be calculated from the variation of c0, R2 and R3 using an error propagation
technique (Cliford, 1973).

4.12.2 Supplementary figures
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Figure 4.S1: Distributions of selected broadband seismic stations. The red triangle repre-
sents the 6C station and the black triangles represent the 3C stations.

Figure 4.S2: Power spectral density of vertical acceleration Az (PY.BPH03.BHZ) at PFO
array in 2015.
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Figure 4.S3: Seasonal velocity variation (a: Spring, b: Summer, c: Autumn, d: Winter) at
7s and 12s. Red lines are the best-fit 2ψ curves and blue lines are the best-fit 2ψ and 4ψ.

Figure 4.S4: Signal-to-noise ratio (SNR): computing the ratio of its summed squared mag-
nitude (signal window) to that of the noise (noise window).
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Figure 4.S5: Velocity variation of Rayleigh waves in 7-12s using one-year data after con-
sidering the real noise source direction. Red lines are the best-fit 2ψ curves and blue lines
are the best-fit curves when 2ψ and 4ψ terms are included in Equation 4.4.

Figure 4.S6: Peak-to-peak anisotropy and fast-axis direction of Rayleigh waves in 7-12s
using one-year data after considering the real noise source direction.
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Figure 4.S7: Amplitude comparison (marked by black dashed lines) between CCF(Vz ,Ωt)
and CCF(Vz ,Ωr) of 7-12s in the azimuth domain. The red lines represent CCFs between the
vertical translation of the 3C station and the radial rotation of the 6C station. The black
lines represent CCFs between the vertical translation of the 3C station and the transverse
rotation of the 6C station.
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Figure 4.S8: Sensitivity kernel of Rayleigh waves corresponding to shear wave at 7s, 10s,
12s, and 15s.
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Chapter 5

Seasonality of microseismic sources
in Southern California from 6C
ground motions

by Le Tang, Heiner Igel, Jean-Paul Montagner, Celine Hadziioannou and Frank
Vernon
In preparation (2025)

5.1 Key Points
• A single 6C observation is capable of revealing the seasonality of microseismic sources.
• Array-derived rotational motions are highly sensitive to the atmospheric pressure-induced
ground deformation.
• The secondary microseismic Love waves show large seasonal changes in the southern
California region.

5.2 Abstract
Ocean waves interact with the solid Earth generating two dominant signals called mi-
croseisms, which carry information about energy exchange between different Earth sys-
tems. Here we show that 6C (three-component translation and three-component rotation)
observations are able to resolve its seasonal azimuthal variations. We employ the rota-
tional motions retrieved by a small seismic array at the Pinon Flat Observatory (PFO)
in southern California to investigate the two dominant microseismic sources: primary and
secondary microseisms. The primary microseismic Rayleigh waves show strong seasonal
variations as expected, whereas the secondary microseismic Rayleigh waves show slight sea-
sonal changes. In contrast, we find that secondary microseismic Love waves exhibit stable
seasonality. This discrepancy from the secondary microseismic Rayleigh waves provides us
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with new insights into the generation mechanism of Love waves. In addition, the results
suggest that effectively estimating the natural seasonal variation of microseismic sources
can provide constraints for the study of seismic anisotropy, while the rotational motion of
primary microseisms retrieved by the seismic array is more sensitive to the atmospheric
pressure-induced ground deformation.

5.3 Plain Language Summary
The ubiquitous ambient seismic noise recorded by seismographs with a period of 3-20s
can be explained by the interaction between ocean waves and the solid Earth. The most
convincing mechanism indicates that the interaction between two opposite ocean waves
generates a pressure that causes vertical vibrations on the seafloor. Therefore, it is reason-
able to observe Rayleigh waves in the secondary microseismic noise (3-10s), but it cannot
explain the observed secondary microseismic Love waves. To better understand the gen-
eration mechanisms of these two different vibrations, accurately locating the source of
microseismic noise is a crucial step. Rotational ground motion describes the angle change
of the particle during the Earth’s deformation. Theoretically, the vertical component of ro-
tation is only sensitive to SH-type waves (e.g. Love waves), while the horizontal component
only records the SV-type waves (e.g. Rayleigh waves). The combination of translational
motions and rotational motions provides the feasibility of estimating wave propagation
directions at a single seismometer, making it easy to track the noise source, especially the
controversial Love waves, and resolve its mechanism.

5.4 Introduction
The interaction between ocean waves and the solid Earth contributes to the generation
of two ubiquitous dominant microseisms (Longuet-Higgins, 1950; Iyer, 1958; Hasselmann,
1963; Obrebski et al., 2012; Stutzmann et al., 2012; Ardhuin et al., 2011, 2015, 2019;
Gualtieri et al., 2020, 2021): primary microseismic noise (10-20s) and secondary microseis-
mic noise (3-10s). It is currently widely accepted that ocean waves directly interact with
seafloor in very shallow water can explain the generation mechanism of primary microseis-
mic Rayleigh and Love waves (Gualtieri et al., 2020, 2021; Fukao et al., 2010; Saito, 2010)
at the period of around 10-20s, and the origin of secondary microseismic Rayleigh waves
is due to the interaction of two opposite swells, which can produce second-order pressures
that interact with the seafloor anywhere (Longuet-Higgins, 1950; Obrebski et al., 2012).
From a theoretical point of view, Rayleigh waves should dominate secondary microseismic
events because of the pressure loaded by the ocean waves on the seafloor. However, it
cannot explain the generation mechanism of secondary microseismic Love waves, which
have a horizontal polarization pattern. The current hypotheses for the mechanism of the
secondary microseismic Love waves suggest that the presence of bathymetric inclines en-
ables leading to the splitting of the secondary-order pressure force in a component tangent
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to inclines which can be responsible for the Love waves (Rind & Down, 1979; Gualtieri
et al., 2020, 2021; Le Pape et al., 2021). In addition, lateral heterogeneity within the Earth
may also lead to the generation of Love waves due to scattering effects (Rind & Down,
1979; Gualtieri et al., 2020). Despite this, seismologists have been arguing about the origin
of secondary microseismic Love waves for decades. To better understand the generation
mechanisms of these two different vibrations, especially the Love waves, accurately locating
and tracking microseismic sources has always been a big challenge.

Northern Hemisphere storms have stronger winter peaks compared to Southern Hemi-
sphere storms (Colosi et al., 2021), and the seasonality of storms suggests that the inter-
action between ocean waves and the solid Earth follows seasonal variations. It is expected
and understandable that the microseismic source shows seasonality (Schulte-Pelkum et al.,
2004; Grob et al., 2011; Schimmel et al., 2011; Stutzmann et al., 2012; Shabtian et al., 2024;
Tanimoto et al., 2006, 2016). Due to their different generation mechanisms, the azimuth
of the primary microseismic Rayleigh waves has strong seasonal variations (Stehly et al.,
2006), while the azimuth variation of the secondary microseismic Rayleigh waves is not
significant in the Southern California region (Stehly et al., 2006). It is not clear whether
the seasonal variation of secondary microseismic Love waves is as slight as that of Rayleigh
waves in this region, but its seasonal observation is crucial for the study of the Love wave
generating mechanism.

In the past few years, the emergence of rotational instruments such as ring lasers
(Schreiber et al., 2014; Igel et al., 2005, 2021) or fibre-optic gyros (Schreiber et al., 2009)
techniques makes it possible to directly measure the rotational ground motion. This ad-
ditional observation provides new constraints on the local seismic velocity and seismic
anisotropy, allowing the investigation of the direction of the plate motion and the stress
field (Tang et al., 2023a,c, 2024; Tang & Fang, 2023). The previous study demonstrates
the possibility of estimating the microseismic noise source direction based on 6C obser-
vations (Hadziioannou et al., 2012; Gualtieri et al., 2020). In addition, the 6C ground
motion can naturally separate the microseismic Rayleigh waves into the horizontal rota-
tional components and separate the microseismic Love waves into the vertical rotational
component (Hadziioannou et al., 2012; Tang & Fang, 2021a; Tang et al., 2024), thus play-
ing its great advantage of improving the Love wave source measurements. Therefore, we
aim to track the seasonal variation of noise sources combining the 6C ground motion,
rather than using the conventional noise source imaging approaches (e.g. the beamforming
method (Pelaez Quiñones et al., 2023), polarization method (Iyer, 1958; Schimmel et al.,
2011) and the cross-correlation method (Stehly et al., 2006)).

Here, we apply the emerging 6C observation to the estimation of seasonal variation of
microseismic noise sources. Since currently no (portable) rotation sensing system exists
in most regions around the world that allows the analysis of long-term ambient noise ob-
servations, we employ the so-called array-derived rotation (ADR) (Spudich et al., 1995;
Spudich & Fletcher, 2008; Donner et al., 2017; Tang et al., 2023a, 2024) that makes use of
wavefield gradient estimations from surface seismic arrays in appropriate frequency bands.
The PFO dense broadband seismic network (Frank Vernon, 2014) has been in operation
for several years. The array-derived rotational motion of microseisms can be used to study
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the seismic anisotropy (Tang et al., 2024), and allows us to study the long-term changes in
microseismic noise sources. We emphasize that the atmospheric pressure-induced ground
deformation is highly sensitive to the rotational motions derived by the seismic array, es-
pecially the primary microseismic Love waves, which is crucial for characterizing the Earth
low noise model of rotational motions (Brotzer et al., 2024). Furthermore, we investigate
how to resolve the seasonal azimuthal variations of Rayleigh and Love waves separately
from a single 6C observation.

5.5 Methods

5.5.1 Azimuth estimation of surface waves from a single 6C ob-
servation

Previous studies have shown that a single 6C observation can estimate the arrival azimuth
of an S-type wave (Igel et al., 2007; Hadziioannou et al., 2012; Yuan et al., 2021). Theoret-
ically, it can obtain the azimuth of the surface wave by finding the maximum correlation
coefficient between the acceleration (m/s2) and the rotation rate (rad/s) in the azimuth
domain. However, from the observation point of view, since the waveform is affected by
noise, the azimuth corresponding to the maximum correlation coefficient is not necessarily
the correct azimuth. The azimuth can also be estimated by calculating only the change
in the sign of the correlation coefficient (Yuan et al., 2021). After the coordinate system
is defined, a grid search is performed in the azimuth domain. The angle in the middle of
the positive correlation coefficient region indicates the propagation direction of the surface
wave (see Figure 5.1a). For a given noise window with N sampling points, the backazimuth
Ψ of Rayleigh waves can be expressed as:

ΩT (ψ) = ΩEcos(ψ) − ΩNsin(ψ);ψ ∈ [0, 2π] (5.1)

r(ψ) =
∑N
i=1(Azi

− Az)(ΩTi
− ΩT )√

(∑N
i=1(Azi

− Az)2)(∑N
i=1(ΩTi

− ΩT )2)
;min( ∂r

∂ψ
) |ψ=ψ1 ;max( ∂r

∂ψ
) |ψ=ψ0 (5.2)


Ψ = (ψ0 + ψ1)/2; ψ0 <= ψ1
Ψ = (ψ0 + ψ1)/2 − π; ψ0 > ψ1, (ψ0 + ψ1)/2 > π
Ψ = (ψ0 + ψ1)/2 − π; ψ0 > ψ1, (ψ0 + ψ1)/2 < π

(5.3)

where ψ is the backazimuth from 0 to 2π. ΩN and ΩE represent the rotational rate in the
north and east components, respectively. ΩT represents the rotated horizontal rotational
rate at a certain ψ. r is the Pearson correlation coefficient between vertical acceleration
Az and transverse rotation rate ΩT , while Az and ΩT are their mean values. ψ0 and ψ1 are
the maximum and minimum values of the first-order partial derivative of r with respect to
ψ, respectively. Ψ is the estimated backazimuth.



5.6 Data 95

For Love waves, ΩT , ΩE, ΩN , and Az are replaced by AT (transverse acceleration),
−AE (acceleration in the east component), −AN (acceleration in the north component),
and Ωz (vertical rotation rate), respectively.

5.5.2 Azimuthal seismic anisotropy from 6C amplitude measure-
ments

Our recent paper (Tang et al., 2023c,a, 2024) demonstrate that the amplitude ratio of
acceleration to rotation rate or strain rate is equal to the analytical azimuth-dependent
phase velocity of the corresponding surface wave (Smith & Dahlen, 1973). The dispersion
equation of the Rayleigh wave from the amplitude ratio can be expressed as (Tang et al.,
2023c):  |Az(ω,ψ)

ΩT (ω,ψ) | = cR0(ω) + 1
2cR0(ω)

[R1(ω) +R2(ω)cos(2ψ) +R3(ω)sin(2ψ)
+R4(ω)cos(4ψ) +R5(ω)sin(4ψ)]

(5.4)

where Az(ω, ψ) is the vertical acceleration and ΩT (ω, ψ) is the transverse rotational
velocity. ψ is the backazimuth of the wavenumber vector measured clockwise from the
north direction. cR0(ω) is the phase velocity of the Rayleigh wave for the isotropic medium
considered as a reference model. Ri(ω) (i = 1, 2, 3, 4, 5) are respectively depth integration
functions that involve some elastic parameters and eigenfunctions, where we used a simple
integration expression derived by (Montagner & Nataf, 1986), whose explicit expressions
can be found in Equations (2), (4), and (5) of (Montagner & Nataf, 1986). Equation 5.4
provides a method for estimating phase velocities in anisotropic media which only depends
on amplitude information.

5.6 Data
Considering that broadband rotational seismometers with sufficient sensitivity have not
been permanently deployed widely, we select three-component broadband seismometers
at Piñon Flat Observatory in southern California as the reference 6C station (see Figure
5.1b) to retrieve rotational ground motions using the ADR approach (Spudich et al., 1995;
Spudich & Fletcher, 2008; Tang et al., 2023a, 2024). The ambient noise data comes from
the PY seismic networks (Frank Vernon, 2014), IRIS data center. We select 8 three-
component stations (see Figure 5.1b) and use four-years ambient noise data from January
2016 to January 2020 to investigate the seasonal variation of microseismic noise sources.
In the following air-pressure data analysis, we use the co-located pressure station near the
PY.BPH03 station (see Figure 5.1b). Figure 5.1b shows the geometry of seismic stations
and the black triangles are the distributions of 3C stations, where the aperture of the
seismic array is about 500m. The period range of wavefield gradients from the virtual 6C
station is about 3-50s (Donner et al., 2017), allowing the retrieval of rotational motions
from two dominant microseismic noise data (5-10s: Secondary microseismic noise. 10-20s:
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Figure 5.1: (a) Schematic diagram of the principle (see Equations 5.1-5.3) of azimuth es-
timation for a single 6C station. r is the Pearson correlation coefficient between vertical
acceleration and transverse rotation rate. ψ0 and ψ1 are the maximum and minimum val-
ues of the first-order partial derivative of r with respect to ψ, respectively. Ψ is the real
backazimuth of surface waves. (b) Distributions of selected 8 broadband seismic arrays in
the Pinon Flats Observatory. The small array can be regarded as a virtual 6C station. The
maximum aperture of this array is about 500m. (c) PSD of 6C microseisms in the winter
(2018.September-2018.December and 2018.January-2018.February). The double white ar-
rows indicate the identifiable period range of the amplitude anomaly on PSD. ’R’ and ’L’
represent the Rayleigh and Love wave, respectively. ’Pm’ and ’Sm’ represent the primary
microseisms and secondary microseisms, respectively.
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Primary microseismic noise). We calculate the azimuth of the microseismic noise source
with a 10s moving window. In each 10s waveform window, we search for its incident
azimuth Ψ in the azimuth range of 0-2π based on Equations (5.1-5.3) and estimate the
local velocity using the Equation 5.4. To eliminate the interference of other waves as much
as possible, we set a threshold here, that is, when the maximum correlation coefficient r
of this time window is larger than 0.8, the waveform of this time window is considered to
be the signal of interest, otherwise this window is skipped.

5.7 Results

5.7.1 Atmospheric pressure effect on array-derived rotational mo-
tions

We divide the one-year microseismic data into winter (September-December and January-
February) and summer (March-August) to examine the seasonal variations of microseismic
sources. Figure 5.1c shows the power spectral density (PSD) of the array-derived 6C ob-
servations in winter (see Figure 5.S1 for the PSD in summer) at the PFO array, where
’L’ means that the Love wave dominates in the microseismic noise data and ’R’ indicates
Rayleigh waves. The primary microseismic noise (10–20s) marked by ’Pm’ and the sec-
ondary microseismic noise (5–10s) marked by ’Sm’ in Figure 5.1c can be identified from the
PSD of the acceleration (A). In addition, the PSD of three-component rotation shows that
the secondary (5-10s) microseismic Rayleigh waves and Love waves show obvious peaks at
7s in both winter and summer (see Figure 5.1c and Figure 5.S1) (Ωz records Love waves
while Ωn and Ωe record Rayleigh waves). However, compared with the acceleration, the
PSDs in the primary microseisms and longer period range show an unfavorable trend in
rotational motions, which is marked by white double arrows in Figure 5.1c. Theoretically,
the PSDs of rotational motions should have similar patterns as the acceleration, while the
amplitude anomaly in Figure 5.1c and Figure 5.S1 is not expected to appear in the rota-
tional motions. For Rayleigh waves recorded in horizontal rotational components, its PSD
is mainly contaminated above 20s (see Ωn and Ωe in Figure 5.1c). Therefore, the peak of
the primary microseismic Rayleigh wave (10-20s) is still visible, and the summer value is
relatively weak (see Figure 5.S1). Compared with Rayleigh waves, the PSD of Love waves
in the vertical rotation component is more seriously contaminated starting from 10s (see
Figure 5.1c), making it difficult to distinguish the primary microseismic Love waves.

In theory, the lateral heterogeneity within the seismic array can also lead to amplitude
anomalies using the ADR method. Considering that the PFO region is relatively homo-
geneous, indicates that the heterogeneity effect probably is not the main reason. It has
been demonstrated that the ambient seismic noise at periods of 20-100s is mostly gener-
ated by wind-related surface pressure change when surface pressure is large (Tanimoto &
Wang, 2021). To investigate whether the rotation amplitude anomalies are related to the
pressure-induced ground deformation, we filter the seismic noise and pressure data to a
given frequency range and compare their PSDs. Figure 5.2a shows the scatter density plot
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(each data point represents the PSD of one-hour time window) of the PSD calculated using
two months data (June to July 2018) in the period range of 10–20s. It shows that the co-
herence between acceleration and pressure is smaller than 0.1 (see Figure 5.2a), indicating
the acceleration of primary microseisms is less affected by the air pressure-induced noise.

Figure 5.2: Air pressure effect on the amplitude of microseisms. (a) The scatter den-
sity spectra between the pressure PSD (dB/Hz) and the seismic noise PSD (dB/Hz) of
two months data (2018.June-2018.July) in the period range of 10-20s. The coherence
(Coh<0.1) between pressure and acceleration (A) is much smaller than the coherence
(Coh>0.4) between pressure and rotational rate (Ω). (b) Coherence comparison between
acceleration-pressure (left panel) and rotation-pressure (right panel) in different periods
(3-40s). In the left panel, red, green, and blue lines represent the vertical, east, and north
acceleration components, respectively. In the right panel, red, green, and blue lines repre-
sent the vertical, east, and north rotational components, respectively. ’Sm’ and ’Pm’ with
arrows represent the period range of the secondary microseismic noise and the primary
microseismic noise.
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In contrast, the rotational motions of 10-20s are highly related to the pressure data,
especially the Love wave (see Figure 5.2a and 5.2b) in the vertical rotational motion, whose
coherence is larger than 0.6, implying that the three-components rotation is more sensitive
to pressure-induced ground deformation than translations. As shown in Figure 5.2b, the
small coherence between acceleration and pressure suggests that the pressure effect on
acceleration can be negligible in the two dominant microseismic noise range. However, the
rotational component is suddenly affected from the 10s (Figure 5.2b), indicating that the
PSD anomaly on rotations (Figure 5.2c) is highly related to the atmospheric pressure. It
suggests that the rotational motion of secondary microseisms is more reliable, whereas the
results of primary microseisms must be carefully evaluated when estimating the direction
of the noise source.

5.7.2 Seasonal azimuth variation of microseismic sources

Figures 5.3(a-d) shows the backazimuth density spectrum of microseismic noise sources
estimated by Equations (5.1-5.3) from January 2016 to January 2020. As shown in Figure
5.3a, the secondary microseismic Rayleigh waves are mostly distributed between 200 and
250 degrees, while the winter noise source is slightly shifted to the northwest direction, and
has an obvious seasonal cycle. Although a high correlation coefficient threshold (see the
Data section) is set to evaluate each time window when estimating the noise azimuth, the
error caused by the overlap of noise sources cannot be completely eliminated. Compared
with the slight seasonal variation of the secondary microseismic Rayleigh wave in Figure
5.3a, the seasonal variation of the secondary microseismic Love wave (Figure 5.3b) is ob-
vious and accompanied by a large disturbance range. It is mainly distributed in 275-315
degrees in winter and in 210-270 degrees in summer. In addition, there is also some energy
in the azimuth range of 120-180 degrees (Figure 5.3a and Figure 5.3b), which indicates
that secondary Love waves have few noise sources coming from this direction.

As illustrated in Figure 5.2b, the amplitude of the primary microseisms seems to be
severely contaminated by atmospheric pressure-induced ground deformation, especially
Love waves. It is worth investigating how the pressure-induced ground deformation affects
the backazimuth estimation since the coherence for the primary microseismic Rayleigh
wave is below 0.5, probably can lead to a reliable solution. Therefore, we also filter the
seismic noise data to 10–20s and calculate the backazimuth using Equations (5.1–5.3) with
the same moving time window (see Data section). Figure 5.3c shows that the primary
microseismic Rayleigh waves (10–20s) have strong seasonal backazimuth variations, while
the winter noise mainly comes from two dominant directions, 0–45 and 270–350 degrees,
and the summer noise is around 200–270 degrees. The primary Love wave in Figure 5.3d
shows a complex noise distribution, which appears in almost all backazimuths. It indicates
that the main source comes from around 300-350 degrees, and there is also a recognizable
energy cycle at around 135 degrees, and slight seasonal changes are visible.
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Figure 5.3: Seasonal variations in microseismic backazimuth and velocity from 2016 to 2020
using the array-derived 6C observation. (a) and (b) represent the seasonal backazimuth
variation of the secondary microseismic Rayleigh and Love wave (5-10s), respectively. (c)
and (d) represent the seasonal backazimuth variation of the primary microseismic Rayleigh
and Love wave (10-20s), respectively. (e) and (f) represent the backazimuth and phase
velocity of secondary microseismic Rayleigh wave (5-10s), respectively, where the black
data points are obtained by using Equations (5.1-5.4) with a one-day smoothing window.
Here we only keep the backazimuth between 200 and 260 degrees and velocity between 2.8
and 4.0 km/s. The red and blue lines in (e-g) are the smoothing result using the black data
points with a three-month time moving window. (h) The anisotropy model is obtained by
Tang et al. (2024) using the 6C cross-correlation method. The observation data represents
the phase velocity variation with a 10 degrees smoothing window based on the black data
points of (e-f).
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However, this can be an error affected by atmospheric pressure because of the contam-
ination of the primary Love wave (see Figure 5.1c and Figure 5.2b).

5.8 Discussion

5.8.1 Local seismic anisotropy by seasonal azimuth variations
As shown in Equation 5.4, a single 6C observation enables estimating the local seismic
anisotropy by employing the azimuth-dependent amplitude ratio between acceleration and
rotation (Tang et al., 2023c,a, 2024). Therefore, the obvious seasonal variation of mi-
croseisms in Figures 5.3(a-d) makes it possible to extract the azimuth-dependent seismic
phase velocity to constrain the Earth’s anisotropy. Considering that the amplitude of
the primary microseismic surface waves is contaminated by pressure-induced ground de-
formation (see Figure 5.1c and Figure 5.2), and the Love wave is easily contaminated by
coupled waves in general anisotropic media (Tang et al., 2023c), we aim to measure the
phase velocity of secondary microseismic Rayleigh waves. The black data points in Figures
5.3(e-f) represent the daily backazimuth and phase velocity changes. Their mean value
(red line: backazimuth, blue line: velocity) obtained by a three-month time window shows
consistent seasonal disturbances. This indicates that the observed velocity changes in Fig-
ure 5.3f are probably associated with the noise source change in Figure 5.3e. Although
seasonal temperature changes (Richter et al., 2014) and fluctuations in groundwater levels
(Mao et al., 2022) can also lead to velocity variations, these factors appear insufficient to
explain the velocity fluctuations of about 0.4 km/s in the upper crust (see Figure 5.3f). To
better illustrate that the seasonality of seismic velocity is related to azimuths, we compare
the estimated velocity with the local anisotropy model (see Figure 5.3h) of the Rayleigh
waves (5-10s), which is obtained by the cross-correlation function method (Tang et al.,
2024). The observed results (see Figure 5.3h) show that the azimuth is smaller and the
phase velocity is larger in summer, while the opposite is true in winter, and the trend is
consistent with the azimuth anisotropy model (black line in Figure 5.3h). Although the
extracted velocities deviate from the model and have large uncertainties, the local strong
anisotropy (Tang et al., 2024) can explain the velocity variation of about 0.3 km/s in the
small azimuth range of 220-250 degrees. Consequently, the seasonal change in velocity is
more likely to be the azimuthal anisotropy caused by the change in the azimuth of the
noise source, providing information on the anisotropy of the upper crust.

5.8.2 Origin of microseismic Rayleigh and Love wave sources
We compare our results with those of a relatively large array-based beamforming approach
(Schröer, 2019) (see Figure 5.4 and Figures S(5.S2-5.S4), where the aperture of the seismic
array is about 103km) and project the dominant backazimuth of the noise sources for both
approaches in the global map shown in Figure 5.4 (see Figures S(5.S2-5.S4) for the detailed
beamforming results). As illustrated in Figure 5.4, the dominant primary and secondary
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microseismic Rayleigh waves are consistent with the results of the beamforming methods. It
demonstrates the reliability of the 6C method and suggests that the effects of atmospheric
pressure can be neglected when estimating seasonal Rayleigh wave sources. The generation
mechanism of the secondary microseismic Rayleigh waves at a backazimuth of about 200-
250 degrees (Figure 5.4a) is due to the continuous interaction of two opposite swells that
exerts strong second-order pressure on the seafloor (the black pentagram in Figure 5.4a
indicates the approximate source position of the secondary microseismic Rayleigh wave in
a specific period). The generation of primary microseisms is due to the direct interaction
between ocean waves in shallow waters and the seafloor (Ardhuin et al., 2011, 2015, 2019;
Fukao et al., 2010; Saito, 2010), and is therefore strongly related to the seasonal changes
in global ocean waves (Colosi et al., 2021). It indicates that the primary microseismic
Rayleigh waves mainly come from three directions (Figure 5.4b), among which the sources
around 4-45 degrees are generated by the interaction between Atlantic waves and the
solid Earth, and the sources around 220-270 degrees and 280-350 degrees are excited by
the interaction between Pacific waves and the seabed (Stehly et al., 2006). Although the
primary microseismic Love wave is inevitably affected by the air pressure (see Figure 5.2b),
its source region (around 290-340 degrees in Figure 5.4d) seems to be similar to the results
(around 290-335 degrees in Figure 5.4h) of the beamforming method in winter. However,
it is difficult to compare the 6C results in summer with the beamforming results because
the low energy (Figure 5.3d) and strong atmospheric pressure effect (Figure 5.2b) make it
unreliable.

As shown in Figures 5.4c and 5.4g, the backazimuth of the secondary microseismic
Love wave source from the 6C and beamforming methods is consistent. However, the
result of the beamforming method (Schröer, 2019) shows that there are stable sources
that come from 110-150 degrees in both winter and summer, which may be due to data
errors or other reasons. We cannot reasonably explain this phenomenon and need more
observations. The generation mechanism of secondary microseismic Love waves has always
been controversial. Previous studies (Rind & Down, 1979; Gualtieri et al., 2020; Le Pape
et al., 2021) have shown that it can be generated by the horizontal force split from the
interaction between the second-order pressure of waves in any sea area and the inclined
seabed, or it can be converted in a heterogeneous medium. Both hypotheses can explain
the secondary microseismic Love waves around 210-270 degrees in summer (Figure 5.4c),
because there are a large number of Rayleigh wave sources at around 200-250 degrees
(see Figure 5.4a), which can produce scattering and conversion. However, a considerable
number of secondary microseismic Love wave sources are observed around 275-315 degrees
(Figure 5.4c), and it seems difficult to convert the Rayleigh wave sources of around 220-270
degrees (Figure 5.4a) into Love wave sources in winter. The possible reason is that the
strong ocean waves from the North Pacific in winter (Colosi et al., 2021) and the ocean
waves reflected from the coast generate pressure, which interacts with the inclined seabed
near the coast, and the split horizontal force promotes the generation of Love waves.
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Figure 5.4: Projection of dominant microseismic noise sources in 2016-2017. (a-d) repre-
sent the noise source estimated using the 6C method based on the PFO.6C array. (e-h)
represent the noise source estimated using the beamforming method based on a large seis-
mic array (see Figures S(2-4), the aperture is about 103km) (Schröer, 2019). The yellow
and purple shaded zones represent the noise source projections in summer and winter,
respectively. The grey shaded zone in (g) indicates the overlap of the yellow and purple
shaded zones. The black pentagram indicates the location of the main secondary microseis-
mic Rayleigh wave source obtained by combining observations and numerical simulations
(Obrebski et al., 2012).
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However, these observations and hypotheses need to be combined with accurate velocity
models and storm sources to provide more evidence by simulating the complex interaction
between ocean waves and the solid Earth (Gualtieri et al., 2020). Besides, in further studies,
we need to deploy more seismic arrays or available rotational seismometers to accurately
locate the source region.

5.9 Conclusion

We observe for the first time seasonal variations in the microseismic noise source from 6C
ground motions, especially allowing us to track the secondary microseismic Love waves.
Such azimuthal seasonality of microseismic sources can provide constraints on the study of
local seismic anisotropy. The discrepancy between the sources of secondary microseismic
Rayleigh and Love wave indicates the complexity of the secondary microseismic Love wave
mechanism, which provides us with new insight into the generation mechanism of the sec-
ondary microseismic Love wave. The rotational motion can be used to separate Love waves,
which is crucial for the study of the Love wave generation mechanism. It is expected that
when more available rotational seismometers are deployed, a more accurate explanation
for the origin of the Love wave source can be provided. The current 6C approach should
further motivate the development of portable rotational sensors with sensitivity below the
Earth’s low noise level. In the future, the 6C technique could be applied to portable ro-
tational seismometers, which is expected to be particularly useful whenever seismic arrays
are not affordable or difficult to implement (e.g., planetary or ocean bottom observations,
volcanology, urban seismology).
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5.12 Appendix: Supplementary materials
Contents of this file
Figures 5.S1 to 5.S4

5.12.1 Supplementary figures

Figure 5.S1: PSD of 6C microseisms in the summer (2018.March-2018.August). The double
white arrows indicate the identifiable period range of the amplitude anomaly on PSD. ’R’
and ’L’ represent the Rayleigh and Love wave, respectively.
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Figure 5.S2: Structure of the array used for beamforming. Stations marked in red appear
in both variants while stations marked in blue are only used for the primary oceanic
microseism. For the smaller array the maximum aperture is 103km and 180km for the
larger array (Schröer, 2019).
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Figure 5.S3: The backazimuth of Love waves, averaged over summer and winter, using a
slowness of 0.26s/km. (a) and (b) show the results using the small array for summer and
winter respectively, while (c) and (d) display the results using all stations. The correlations
are plotted for all backazimuths and periods. High values are colored yellow, with a
white dot plotted on the highest beamformer values found within a time or period window
(Schröer, 2019).
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Figure 5.S4: The backazimuth of Rayleigh waves from beamforming methods, averaged
over summer and winter, using a slowness of 0.3s/km. (a) and (b) show the results using
the small array for summer and winter respectively, while (c) and (d) display the results
using all stations. The correlations are plotted for all backazimuths and periods. High
values are colored yellow, with a white dot plotted on the highest beamformer values
found within a time or period window (Schröer, 2019).



Chapter 6

Conclusion and Outlook

This thesis proposes a novel theory for investigating 6C anisotropy in surface waves and
applies it to various data types, from seismic events to ambient seismic noise data. The
agreement between the theory and actual observations demonstrates the practicality of
the 6C anisotropy theory. This paves the way for advancements in rotational seismology
and provides a new approach to examining seismic anisotropy and studying the Earth’s
interior.

First, the thesis presents a concise polarization form for rotation and strain in weakly
anisotropic media using first-order perturbations. This form provides a clear description
of particle motion and allows for the verification of primary surface waves by comparing
them with numerical results. However, verifying the dispersion relation of coupled waves
is challenging due to their typically small amplitude in weakly anisotropic media. The
first-order perturbation theory demonstrates that the rotation vector is perpendicular to
the wavenumber vector, resulting in the radial rotation component Ωr always being equal
to zero. From an observational point of view, recorded seismograms, especially in the short
period range, will contain scattered waves from all directions due to the structure hetero-
geneity of the Earth. Hence, the signal in the radial rotational component of an earthquake
event comes from the scattered waves, not the effect of anisotropy. As the frequency de-
creases, the Earth’s structure generally becomes more uniform, and the amplitude of the
radial rotation component tends toward zero.

Furthermore, this thesis proposes a 6C amplitude-based method for calculating disper-
sion curves in weakly anisotropic media using a single 6C observation. Existing seismic
anisotropy observation methods struggle to provide reliable resolution in both lateral and
vertical directions. For instance, travel-time tomography lacks good lateral resolution,
while amplitude polarization analysis based on a single station can not accurately resolve
depth. Therefore, the proposed 6C surface wave anisotropy theory aims to address these
limitations by simultaneously providing good lateral and vertical resolution. The pro-
posed amplitude-based dispersion measurement method requires extremely high accuracy
of amplitude measurement, as even a minor amplitude disturbance can lead to significant
deviation. Thus, using multiple seismic records is essential to obtain reliable velocities.
This theory also indicates that the fundamental mode of Rayleigh wave is relatively stable,
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as its dispersion curve is well isolated from those of other modes and does not couple too
strongly with adjacent modes. On the contrary, the fundamental mode of Love wave is
influenced by the fundamental mode of Rayleigh wave and higher modes.

Next, we test the proposed 6C anisotropy theory by studying upper mantle anisotropy
in southern California. This region has a complex tectonic and geodynamic environment,
making it an ideal location for our new method. Since no portable rotational sensing sys-
tems can analyze multi-azimuth observations, we use the array-derived rotation (ADR)
method, which utilizes wavefield gradient estimates from a surface seismic array. Our re-
sults demonstrate that we can extract local structure and anisotropy with good lateral and
vertical resolution by considering the amplitude ratio between translation and rotation.
This allows us to understand the upper mantle’s azimuthal anisotropy and study depth-
varying plate deformation and local mantle flow, providing new insights into southern
California’s geodynamic processes and tectonic evolution. Our findings also provide valu-
able constraints on the stratification of upper mantle anisotropy, complementing current
seismic observation methods such as SKS splitting or surface wave tomography.

In addition, extending the 6C anisotropy theory to ambient seismic noise allows us to
study seismic anisotropy without waiting for an earthquake to occur. Therefore, this thesis
proposes a pioneering method for studying local seismic anisotropy based on 6C ambient
noise data. Based on the ambient noise cross-correlation technique, we focus on amplitude
information and extract the azimuth-dependent velocity anisotropy by calculating the am-
plitude ratio of the cross-correlation function of two stations. We analyze the stability of
this method and show that after a long period of noise cross-correlation, the velocity based
on the amplitude ratio can stably converge to the absolute velocity. However, the premise
is that a high signal-to-noise ratio cross-correlation waveform is required. We also analyze
the impact of noise sources on the ratio of cross-correlation waveforms, and the results
show that the noise source deviation can theoretically be solved by azimuth correction.
However, it still produces significant uncertainties in actual data. We apply this method
to the PFO array in southern California and resolve local seismic anisotropy within the
period of secondary microseismic noise. It reveals stress-induced seismic anisotropy with
slightly varying azimuths at different depths, providing new insights into the origin of
depth-dependent anisotropy.

The thesis also analyzes the potential of 6C ground motions in resolving microseismic
source mechanisms. Observing seasonal variations in microseismic noise sources based on
6C ground motions allows us to track secondary microseismic Love waves. This seasonal
variation in the microseismic source azimuth is expected to provide valuable constraints
for studying local seismic anisotropy. The differences between secondary microseismic
Rayleigh and Love wave sources indicate the complexity of the secondary microseismic
Love wave generation mechanism and provide new insights. The potential of rotational
motion to separate Love waves is a crucial step in studying their generation mechanism.
With the deployment of more rotational seismometers, the origin of Love wave sources is
expected to be explained more precisely.

Currently, only a few areas of the world have broadband rotational seismometers with
sufficient sensitivity. To showcase the potential of our method, we have opted to use the
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ADR method to retrieve rotational waveforms from seismic arrays. Although it has some
limitations, ADR is our sole option for obtaining rotational waveforms. The aperture of
the seismic array, the noise level, and the instrument amplitude errors restrict the period
range. The wavelength-scale heterogeneity beneath the array overturns the homogeneity
assumption of the ADR approach. Additionally, the inhomogeneity of the geometric distri-
bution of stations impacts the phase and amplitude of the retrieved rotational waveforms.
Even minor waveform errors can result in significant deviations in estimated velocity. Con-
sequently, there is an urgent need for the development and deployment of portable broad-
band rotational seismometers with low noise levels, as direct observation of rotation can
eliminate the period limitation of the ADR method and errors caused by irregular station
deployment and reduce the influence of structural heterogeneity.

The current 6C method should further promote the development of portable rota-
tional sensors with sensitivity below the low noise level of the Earth. In the future, the
6C technique can be applied to portable rotational seismometers, which is expected to
be particularly useful in expensive or challenging seismic array implementations, such as
planetary or seafloor observations, volcanology, and urban seismology.
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Appendix A

Elastic tensor of anisotropic media

The elastic tensor of VTI media can be expressed as:

CV TI =



C11 C11 − 2 · C66 C13 0 0 0
C11 C13 0 0 0

C33 0 0 0
C44 0 0

sym. C44 0
C66


(A-1)

The elastic tensor of orthorhombic media can be expressed as:

Corth =



C11 C12 C13 0 0 0
C22 C23 0 0 0

C33 0 0 0
C44 0 0

sym. C55 0
C66


(A-2)

The elastic tensor of monoclinic media can be expressed as:

Cmono =



C11 C12 C13 0 0 C16
C22 C23 0 0 C26

C33 0 0 C36
C44 C45 0

sym. C55 0
C66


(A-3)
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Appendix B

Linear regression solution of the
amplitude ratio

In this appendix, we introduce the linear regression least-square solution of the ratio equa-
tion.
We first use the time-frequency transformation method (e.g the wavelet transformation)
to obtain the time-frequency spectra of translational displacement and rotation or radial
strain, which have been successfully used in previous studies (Igel et al., 2007; Kurrle et al.,
2010), and then combine the least-square algorithm to calculate the dispersion curves. We
use the dispersion eq. 2.17 of isotropic media as an example to demonstrate how to cal-
culate a stable phase velocity. In the time-frequency spectra, eq. 2.17 can be expressed
as

cL(ω) = | u̇t(ω, ti)2Ωz(ω, ti)
| (B-1)

Where ti(i = 1..N) represents any time point in the time window for quasi-Love wave. N
is the number of data points. Eq. B-1 is written in the form of a matrix

G0m = d0 (B-2)

WhereG0 = 2[|Ωz(ω, t1)|, . . . , |Ωz(ω, tN)|]T , m = cL(ω) and d0 = [|u̇t(ω, t1)|, . . . , |u̇t(ω, tN)|]T .
To select the appropriate data point, we introduce a weight function wf(ω, ti) for each data
point whose value is equal to 1 or 0. Consequently, eq. B-2 can be given as

Gm = d (B-3)

Where G = 2[wf(ω, t1)|Ωz(ω, t1)|, . . . , wf(ω, tN)|Ωz(ω, tN)|]T .
And d = [wf(ω, t1)|u̇t(ω, t1)|, . . . , wf(ω, tN)|u̇t(ω, tN)|]T . Consequently, the least-square
solution of eq. B-3 can be expressed as;

cL(ω) =
∑N
i=1 wf(ω, ti)2|Ωz(ω, ti)u̇t(ω, ti)|
2 ∑N

i=1 wf(ω, ti)2Ωz(ω, ti)2 (B-4)

When wf(ω, ti) is equal to 0 which means that we remove this data point.
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Appendix C

Polarization of rotation and strain in
anisotropic media

In isotropic media, the polarization of rotation and strain at the surface (z = 0) can be
expressed in Cartesian coordinate as:
For the Love wave; 

Ωx = 0
Ωy = 0

Ωz = iκl0W/2
(C-1)



εxx = −iκl0sinψcosψW
εyy = iκl0sinψcosψW

εzz = 0
εxy = iWκl0(cosψ2 − sinψ2)/2

εxz = 0
εyz = 0

(C-2)

For the Rayleigh wave; 
Ωx = −κr0sinψU
Ωy = κr0cosψU

Ωz = 0
(C-3)



εxx = iκr0cosψ
2V

εyy = iκr0sinψ
2V

εzz = − λ
(λ+2µ)iκr0V

εxy = iκr0sinψcosψV
εxz = 0
εyz = 0

(C-4)

where we again omit the exponential term eiκ(cosψx+sinψy)−iωt. For the sake of simplicity,
the following derivation will also omit the term.
In orthorhombic media, the polarization of rotation and strain at the surface (z = 0) can
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be expressed in Cartesian coordinate as
For the quasi-Love wave; 

Ωx = −κlsinψTU
Ωy = κlcosψTU

Ωz = iκlW/2
(C-5)



εxx = −iκlcosψ(cosψTV − sinψW )
εyy = iκlsinψ(sinψTV + cosψW )

εzz = −C13
C33
iκlcosψ(cosψTV − sinψW ) − C23

C33
iκlsinψ(sinψTV + cosψW )

εxy = iκl(2sinψcosψTV + cosψ2W − sinψ2W )/2
εxz = 0
εyz = 0

(C-6)

For the quasi-Rayleigh wave; 
Ωx = −κrsinψU
Ωy = κrcosψU

Ωz = −iκrTW/2
(C-7)



εxx = iκrcosψ(cosψV + sinψTW )
εyy = iκrsinψ(sinψV − cosψTW )

εzz = −C13
C33
iκrcosψ(cosψV + sinψTW ) − C23

C33
iκrsinψ(sinψV − cosψTW )

εxy = iκr(2sinψcosψV − cosψ2TW + sinψ2TW )/2
εxz = 0
εyz = 0

(C-8)

In general anisotropic media, the polarization of rotation and strain at the surface (z = 0)
can be expressed in Cartesian coordinate as
For the quasi-Love wave;

Ωx = −(κlsinψTU + cosψW ′ + sinψTV ′)/2
Ωy = (cosψTV ′ + κlcosψTU − sinψW ′)/2

Ωz = iκlW/2
(C-9)



εxx = iκlcosψ(cosψTV − sinψW )
εyy = iκlsinψ(sinψTV + cosψW )

εzz = − iκl

C33
[C13(−sinψcosψW + cosψ2TV ) + C23(sinψcosψW + sinψ2TV )+

C36
2 (2sinψcosψTV + cosψ2W − sinψ2W )]

εxy = iκl(2sinψcosψTV + cosψ2W − sinψ2W )/2
εxz = (cosψTV ′ − κlcosψTU − sinψW ′)/2
εyz = (cosψW ′ + sinψTV ′ − TκlsinψU)/2

(C-10)
For the quasi-Rayleigh wave;

Ωx = −(κrsinψU − cosψTW ′ + sinψV ′)/2
Ωy = (cosψV ′ + κrcosψU + sinψTW ′)/2

Ωz = −iκrTW/2
(C-11)
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εxx = iκrcosψ(cosψV + sinψTW )
εyy = iκrsinψ(sinψV − cosψTW )

εzz = − iκr

C33
[C13(cosψ2V + sinψcosψTW ) + C23(−sinψcosψTW + sinψ2V )+

C36
2 (2sinψcosψV + (sinψ2 − cosψ2)TW )]

εxy = iκr(2sinψcosψV − cosψ2TW + sinψ2TW )/2
εxz = (cosψV ′ − κrcosψU + sinψTW ′)/2
εyz = (−cosψTW ′ + sinψV ′ − κrsinψU)/2

(C-12)
It should be noted that under the free surface boundary condition, W ′(0) = ∂zW |z=0 =
σyz = 0 in the reference isotropic media (Takeuchi & Saito, 1972).
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