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Zusammenfassung
Diese Arbeit dokumentiert den Aufbau eines neuen Experiments zur Quantensimulation mit
kalten Ytterbium Atomen. Das entscheidende Merkmal dieses Experiments ist das Vorhanden-
sein sowohl eines optischen Gitters als auch eines Tweezer-Arrays. Die Quantensimulation
mit ultrakalten Atomen hat sich im Laufe der letzten Jahre rasant weiterentwickelt. Ange-
regt durch neue Fragen der Quantenvielteilchenphysik und in Anbetracht des Potenzials für
die Entwicklung von Quantencomputern mit neutralen Atomen, haben diese Experimente
versucht, eine immer präzisierere Kontrolle über die atomaren Freiheitsgrade zu erlangen.
In diesem Zusammenhang haben sich zwei komplementäre Ansätze entwickelt. Optische
Gitter haben sich als äußerst erfolgreich erwiesen, um große, defektfreie Systeme aus kal-
ten Atomen herzustellen, während Tweezer Arrays ein enormes Maß an lokaler Kontrolle
ermöglichen, da sie einzelne Atome einfangen und anordnen können. Der hybride Ansatz
zum Aufbau eines Quantensimulators, der in dieser Arbeit verfolgt wird, vereint die Vorteile
dieser beiden komplementären Ansätze.

Ytterbium hat für diese neuen Ansätze der Quantensimulation zunehmend an Bedeutung
gewonnen- vor allem aufgrund seiner komplexen Energieniveaustruktur. Sein ultra-schmaler
Uhrenübergang wird für den Bau der weltweit präzisesten Atomuhren verwendet, während sei-
ne Kernspin-Freiheitsgrade sowohl zur Entwicklung von Wechselwirkungen mit einzigartigen
Symmetrieeigenschaften verwendet werden als auch um robuste Qubits für Quantencomputer
zu erzeugen. In unserem Experiment haben wir den vorhandenen Werkzeugkasten für die
Quantensimulation mit Ytterbium erweitert, indem wir zwei neue magische Wellenlängen für
den Grundzustand (1S0) und den metastabilen angeregten Zustand (

3P0) des ultra-schmalen
Uhrenübergangs gemessen haben. Gleichzeitig haben wir die Tune-out Wellenlänge für den
Grundzustand dieses Übergangs gemessen sowie auch den Wert der Polarisierbarkeit des
angeregten Zustands bei dieser Wellenlänge bestimmt.

Diese Wellenlängen ermöglichen neue zustandsabhängige Adressierungs- und Präparati-
onsschemata, insbesondere im Rahmen eines hybriden Ansatzes zur Quantensimulation. Ein
besonders interessanter Anwendungsfall ist die Simulation vonGittereichtheorien. Hier ist eine
sehr genaue Abstimmbarkeit nötig, um lokal eichinvarianteWechselwirkungen zwischen Eich-
und Materiefreiheitsgraden zu implementieren, die durch die Grund und Anregungszustände
des Uhrenübergangs kodiert werden können. Diese Arbeit endet mit einer Übersicht der Mög-
lichkeiten, die sich in diesem Zusammenhang durch unser Gitter-Tweezer-Experiment bieten.
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Abstract
This thesis documents the construction of a new experiment for quantum simulation with cold
ytterbium atoms. The defining feature of this experiment is the presence of both an optical
lattice and a tweezer array. Quantum simulation with ultracold atoms has, in recent years,
advanced at a rapid pace. Inspired by new questions in quantum many-body physics and the
potential for quantum computing with neutral atoms, these experiments have sought to obtain
an ever greater degree of control over the atomic degrees of freedom. In this context, two
complementary approaches have emerged. Optical lattices have been immensely successful
at creating large, defect-free systems of cold atoms, while tweezer arrays afford an enormous
degree of local control by being able to trap and arrange individual atoms. The hybrid approach
to building a quantum simulator pursued in this thesis brings together the benefits of both
of these complementary approaches.

Ytterbium has become increasingly important to these new approaches in quantum simu-
lation - in large part due to its intricate level structure. Its ultra-narrow clock transition has
been used to build the world’s most precise atomic clocks, while its nuclear spin degrees of
freedom can be used to engineer interactions with unique symmetry properties or to realize
robust qubits for quantum computing. In our experiment, we have expanded this ytterbium
toolbox by measuring two new magic wavelengths for the ground (1S0) and metastable ex-
cited state (3P0) of the ultra-narrow clock transition. At the same time we also measured the
tune-out wavelength for the ground state of this transition and determine the value of the
excited state polarizability at this wavelength.

These wavelengths provide the opportunity for new state-dependent addressing and prepa-
ration schemes, particularly within a hybrid approach to quantum simulation. One partic-
ularly intriguing use-case lies in the simulation of lattice gauge theories. Here, tremendous
tunability is required to implement locally gauge invariant interactions between gauge and
matter degrees of freedom, which can be encoded using the ground and excited states of the
clock transition. This thesis ends by exploring the possibilities afforded in this context by
our lattice-tweezer experiment.
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Introduction

This thesis is concerned with the interaction of light and matter on very small scales and
at very low temperatures. To give some intuition for just how cold, we briefly consider the
following examples: The coldest temperature ever recorded on earth was measured at−89.2◦C,
or 184K, in the year 1983 at a Soviet research station in Antarctica [1]. This is positively
mild when compared to the 77K at which nitrogen liquifies or the 10K that characterize
interstellar space. Far below even these frigid temperatures, we reach the µK, or even nK,
that are routinely achieved in experiments with cold atoms, such as the one described in this
thesis. What necessitates these cold temperatures?

Ground-breaking research over the past two decades has found that dilute gases of alkali or
alkaline-earth-like (AEL) atoms such as rubidium (Rb) or ytterbium (Yb), when cooled to these
extreme temperatures, can be made to exhibit behavior mimicking or simulating that of an
enormous variety of different physical settings [2]. This includes everything from the electrical
properties of solid state materials such as insulators and semi-conductors [3] to the kind of
fundamental processes encountered in high-energy particle physics [4–6]. Furthermore, these
ultracold gases themselves exhibit interesting behavior that lacks any classical counterpart [7].
The great ambition of cold atomquantum simulators is therefore to offer a deeper understanding
into existing, often times, numerically intractible problems of modern physics, as well as to
enable new insights into the properly quantum mechanical behavior of many-body systems.
This ambition has animated physicists to develop a large number of experimental tools to
probe and control these ultracold quantum gases. It is the aim of this thesis to combine
a number of these existing tools and develop some new ones to help further this ambition
of quantum simulation.

The majority of the experimental tools developed in this context rely on the interaction of
laser light with atoms. This kind of light can, for example, be used to cool atoms by scattering
photons of the right frequency [8]. It is a basic insight of thermodynamics that the temperature
of an object is related to the internal motion of its constituent atoms and molecules [9]. The
more energetic the motion, the hotter the object. Laser cooling works to slow down this motion,
reducing the temperature of atoms with every scattered photon. Laser light can also be used to
trap these atoms once they are cold [10]. In this regard, the two most relevant experimental
tools for our thesis are optical lattices [11, 12] and optical tweezer arrays [13].

Optical lattices are created by interfering laser beams to generate a periodic, standing-wave
potential. Depending on the lattice wavelength, individual atoms can occupy either the peaks
or troughs of this potential, leading to large, defect-free and homogeneous arrays of ultracold
atoms, each separated from its neighbor by no more than a few hundred nanometers. The
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2 Introduction

interaction and tunneling of atoms in this lattice can be precisely tuned by, for example, adjust-
ing the power of the lattice lasers or by the influence of an external magnetic field [14]. Various
regular geometries (such as square, triangular, hexagonal and Kagome) can be achieved by the
correct alignment and the right number of lattice beams. With such clean and controllable
systems it becomes possible to perform the kind of quantum simulation motivated at the outset
of this introduction [2, 3, 15–19]. A paradigmatic model commonly used for this purpose is the
Hubbard model [20, 21]. It can be implemented in optical lattices to investigate metal-insulator
transitions [15, 22], magnetic ordering [23–25] and superconductivity [26]. Beyond the Hub-
bard model, cold atoms in optical lattices can also offer insights into the nature of topologically
non-trivial quantum many-body systems [7, 27]. Much of this research has been spurred on by
the ability to resolve individual atoms at the level of single lattice sites using high numerical
aperture objectives [28–35]. This has allowed physicists to probe observables hard to access
on other experimental platforms, such as full counting statistics and multi-point correlation
functions [36–40]. In combination with AEL atoms, optical lattices have even been used in
metrology to engineer the world’s most precise atomic clocks [41, 42].

Optical tweezers present an alternative to the large-scale and comprehensive optical lattice
approach, by trapping indiviual atoms in tightly focused laser light [43–45]. These tweezers
can be arranged into arrays of arbitrary geometries [46, 47] and dynamically re-sorted within
less than a second [48–51], making for an extremely versatile and flexible platform. These
arrays can be combined with highly-excited Rydberg states to engineer controllable, long-range
interactions [52–57]. In recent years, this has acted as a major catalyst for new directions
in quantum simulation [58–60], quantum metrology [61–63] and quantum computing with
neutral atoms [64–74]. Here, the recent addition of AEL atoms [44, 45, 75] has also granted new
opportunities. These atoms permit different kinds of qubits, some with excellent isolation from
environmental perturbations and long coherence times [66, 67, 70, 71]. This is particularly
important given the pressing challenges faced by neutral atom quantum computers regarding
the fidelity and scalability of logical operations. Current research is strongly focused on the
development of real-time error correction, as well as strategies for mitigating dissipation and
losses [68, 72, 73]. One decisive drawback to tweezer arrays is the lack of tunneling dynamics.
This makes it fundamentally ill-suited to simulating Fermi-Hubbard type physics.

To supplement these two approaches of optical lattices and tweezer arrays, this thesis will
investigate the state-dependent control of Yb. State-dependent control describes the ability to
engineer potentials which independently manipulate and control atoms depending on their
internal states. To date, this ability has been exploited to facilitate new cooling and state prepa-
ration schemes [76–78], simulate out-of-equilibrium dynamics [79–83], investigate strongly
coupled quantum emitters [84] and to realize neutral atom quantum computing protocols [51,
85–88]. In Yb, the ground and long-lived metastable excited state of the clock transition pose a
particularly intruiging pair of states for this purpose. In combination with optical lattices and
tweezer arrays, these state-dependent potentials can be used to extend the ability of quantum
simulators to prepare tailored initial states and engineer complex interactions. Together, these
elements allow for lines of research that have previously remained underexplored due to their
high degree of experimental complexity. One example of interest is the simulation of lattice
gauge theories (LGT) [4], which represent discretized versions of continuous gauge theories,
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such as those familiar from classical electrodynamics and quantum field theory. LGTs are
particularly intriguing because they provide a powerful framework for studying phenomena in
particle physics that are difficult to capture using conventional perturbative methods. A prime
example of such a phenomenon is quark confinement, where quarks are bound together to
form hadrons (e.g., protons and neutrons), and cannot be isolated as free particles [4]. This
non-perturbative behavior is crucial for understanding the fundamental interactions described
by quantum chromodynamics (QCD), the gauge theory underlying the strong nuclear force. Be-
yond particle physics, LGTs have deep connections to open questions in the study of many-body
quantum systems, particularly concerning their thermalization properties [89, 90].

This thesis
In this thesis, we present a new quantum simulation experiment with cold ytterbium atoms
combining optical lattices and tweezer arrays in a hybrid platform. In so doing we develop
a compact experimental apparatus featuring long vacuum lifetimes, flexible magnetic field
control and sub-second cycle times. The last of these elements offers a marked improvement
over cycle times of traditional ultracold atom experiments, which can run on the order of
several (tens) of seconds. This enables us to collect significantly more data within a given
timeframe, thus improving the statisical significance of our results. Furthermore, it facilitates
the reduction of errors arising due to longer timescale drifts in the experimental apparatus.
Within these short cycle times, we demonstrate the fast and efficient loading of ytterbium
atoms into a magneto-optical trap (MOT) and subsequent transfer into either an optical lattice
or a tweezer array. We show the ability to cool atoms in our optical lattice as well as our
tweezer array and verify the trapping of individual atoms in the latter. To probe our atoms,
we implement a number of imaging and spectroscopic techniques.

Using this platform,we enlarge the available toolbox for quantumsimulationwith ytterbium
atoms by measuring state-dependent wavelengths for the ground and excited states of the ultra-
narrow clock transition. We measure two magic wavelengths using high-resolution optical
clock spectroscopy. These are wavelengths where the aforementioned states experience the
same trapping potential. In addition, we perform the first measurements of the ground state
tune-out wavelength by building on a scheme developed by Heinz et al. [91].

Lastly, we describe the ability of our hybrid platform to investigate lattice gauge theories
(LGTs) in a scheme developed in Surace et al. [92] for this precise purpose. We show how the
aforementioned state-dependent wavelengths play a crucial role in this scheme and how our
experiment is uniquely suited to the simulation of complex LGTs beyond one dimension.

Outline
This thesis proceeds in five chapters:

• In Chapter 1, we take a closer look at the quantum simulation toolbox for neutral
ytterbium atoms. We present a theoretical discussion of ytterbium’s electronic structure,
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interactions and the possibility of state-dependent control, as well as a more detailed
analysis of optical lattices and tweezer arrays.

• Chapter 2 then deals with the construction our experimental platform to accomodate
these tools. The chapter is divided into major subsystems of the experiment, such as the
vacuum chamber, the magnetic field coils or the laser systems. We explain the design
philosophy for each subsystem, detail its assembly and describe any tests that were
performed to ensure its functionality.

• Chapter 3 examines a number of experimental methods employed in our experiment.
These include different types of imaging schemes as well as a number of spectroscopic
and cooling methods. We also characterize our MOT and describe the calibration of our
magnetic fields.

• Having established the essentials of our experiment, Chapter 4 turns to themeasurement
of state-(in)dependent wavelengths for the ground and excited state of the Yb clock
transition. Using spectroscopic methods established in the previous chapter, we measure
two magic wavelengths for these states. In addition, we make use of parametric heating
in an optical lattice to ascertain the value of the ground state tune-out wavelength. We
conclude the chapter by presenting our progress towards a measurement of the excited
state tune-out wavelength.

• Finally, Chapter 5 explores the possibility of simulating lattice gauge theories (LGTs)
using our quantum simulation platform. The chapter begins by discussing the essential
features of LGTs and then proposes a way in which the state-dependent wavelengths
measured in the previous chaptermight be combinedwith our optical lattices and tweezer
arrays to simulate quantum electrodynamics (QED) in one and two spatial dimensions.
We also offer some perspectives for the simulation of higher-dimensional LGTs and
associated phenomena, which are particularly well-suited to our experiment.
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CHAPTER 1

The ytterbium quantum simulation toolbox

In this chapter we take a look into the neutral atom quantum simulation toolbox and examine
some of the tools at our disposal. We begin by exploring the electronic properties of the
ytterbium atom and motivate its use in our experiment. This will allow us to appreciate
how state-dependent potentials can be used to manipulate and control this atomic species
(something which we return to in Chapter 4 of this thesis). We then turn to a well-established
tool of quantum simulation in a section on optical lattices before concluding this chapter with
a discussion of optical tweezer arrays.

1.1 The ytterbium atom

1.1.1 Isotopes
Ytterbium is an rare-earth element, finding its place towards the end of the lanthanide series
with an atomic number 𝑍 = 70. It is naturally occuring in seven stable isotopes, five of which
are bosonic [168Yb, 170Yb, 172Yb, 174Yb] and two of which are fermionic [171Yb and 173Yb]. Of
these, bosonic 174Yb is the most abundant [94] and is the isotope used throughout the majority
of this thesis. Along with its other bosonic counterparts, it is lacking in nuclear spin (𝐼 = 0)
and thus features no hyperfine structure. By contrast, the two fermionic isotopes 171Yb and
173Yb exhibit a non-zero nuclear spin of 𝐼 = 1∕2 and 𝐼 = 5∕2 respectively. The presence of
such a large number of stable isotopes means that ytterbium can be used to create interesting
mixtures of different isotopes [95–97].

1.1.2 Electronic structure
At first glance, it may seem odd that an element within this part of the periodic table should
be an ideal candidate for ultracold quantum simulation experiments. After all, many of the
usual candidates for these type of experiments are found within groups I (alkali atoms) and II
(alkaline-earth atoms) of the periodic table. However, just like alkaline-earth atoms, ytterbium
features two valence electrons, giving rise to an alkaline-earth-like (AEL) level structure
[Fig. 1.1]. The singlet (𝑆 = 0) and triplet (𝑆 = 1) configuration of these valence electrons can
be exploited for laser cooling, trapping and imaging.

6
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Figure 1.1 | Level diagram of ytterbium. The relevant transitions in our experiment are named and shown

with their associated wavelengths λ, and linewidths γ. The blue cooling transition in the singlet manifold

is used in our experiment for Zeeman slowing, 2D magneto-optical trapping, cooling and imaging. The

green cooling transition is dipole forbidden leading to a narrower linewidth, which exploit to create a

low-temperature 3D MOT (Section 3.2). The even narrower yellow clock transition doubly forbidden and

used in our experiment for high-resolution atomic spectroscopy (Section 3.3). Values for the spectral

properties of each transition are taken from:
a

[98],
b

[99],
c

[100],
d

[101]. The ground and metastable

excited state of the clock transition are highlighted in blue and yellow respectively.

Broad blue transition.—Within the singlet manifold, the 1S0 ↔1P1 transition is particularly
effective for optical trapping of atoms due to the large radiation force provided by its broad
linewidth of Γ = 2𝜋 × 29.13MHz [98]. In our experiment, we make use of this transition
for Zeeman slowing, optical molasses cooling (Section 3.2) and for generating a 2D magneto-
optical trap (MOT) to transversely cool and redirect the atomic beam (Section 2.5.1). Its small
wavelength of 𝜆 = 398.9nm [102] makes it particularly well-suited for high resolution optical
imaging techniques, while its high scattering rate allows for fast imaging.

Green intercombination transition.—One peculiarity of theAEL level scheme is the existence
of narrow intercombination transitions between spin manifolds. These otherwise dipole-
forbidden transitions (∆𝑆 ≠ 0) are available due to the preponderance of spin-orbit coupling
in elements with atomic numbers 𝑍 > 40, which admixes a small fraction of states from the
opposing spin manifold [103]. The first noteworthy transitions in this respect is the 1S0 ↔3P1
transition. Its relatively narrow linewidth of 182.3 kHz [104] is benefical for laser cooling
with a Doppler temperature of approximately 4 µK. Still, the transition is broad enough to
simultaneously allow for efficient scattering and thus is often used for 3D MOTs of ytterbium,
either in a two-stage architecture in combination with the broad blue transition, or by itself,
as it the case in our experiment.
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Clock transitions.—The second notable set of intercombination transitions are two ultra-
narrow transitions from the ground state to the 3P0 and 3P2 states with a linewidth on the
order of 10mHz [100]. The 1S0 ↔3P0 clock transition is doubly-forbidden in the sense that it
additionally violates the prohibition on 𝐽 = 0↔ 𝐽′ = 0 transitions. In the fermionic isotopes
of ytterbium, only the presence of a non-zero nuclear spin leads to a finite coupling strength
for this transition. Here, the hyperfine interaction results in an admixing of the 3P1 state to the
3P0 state. In bosonic ytterbium, the clock transition is completely suppressed and the necessary
admixing of 3P1 must be generated using an externally applied magnetic field (see Section 3.3.4
onmagnetically inducedRabi spectroscopy). A serendipitous feature of the clock transition is its
insensitivity to magnetic fields owing to the lack of total angular momenta in both states of the
transition ({𝐽, 𝐽′} = 0). This ensures that the 1S0 and 3P0 nuclear spin manifolds are completely
isolated from external magnetic perturbations, making it an ideal candidate for highly sensitive
precision spectroscopy and, more recently, for use as a qubit in quantum computing schemes
of cold AEL atoms [66, 67, 70, 71]. The decoupling of electronic and nuclear spin degrees of
freedom also has important implications for the interaction properties of Yb atoms, which will
be discussed in Section 1.1.3. Optical atomic clocks based on ytterbium atoms have exploited
these features to attain unprecedented levels of stability and reproducability, with fractional
frequency uncertainties at the 10−18 level [105–107].

The 1S0 ↔3P2 transition is magnetic quadrupole (M2)-allowed and as such, it is perma-
nently accessible, even in bosonic ytterbium. The magnetic sensitivity of this state can be
exploited to tune its scattering interactions with the ground state [108] or for single-layer
isolation and imaging in quantum gas microscopes using a magnetic field gradient [35, 109,
110]. While this transition has been known in ytterbium for some time [111], it has now
also been investigated in strontium (Sr) in recent spectroscopic measurements [112, 113]. In
conjunction with its 3P0 counterpart, the 3P2 state has been proposed in the context of quantum
computing schemes as an alternative to the nuclear spin qubit discussed above [114]. Experi-
mentally, the control over this qubit poses a significant challenge, since it requires the precise
control of two optical frequencies to generate a two-photon Raman transition between the 3P0
and 3P2 state. Despite this difficulty, control over this qubit has recently been demonstrated
experimentally, with coherence times on the order of tens of milliseconds and single qubit
rotations on the µs level [115, 116].

Repumping transition.—The higher lying triplet D manifold may be used to repump atoms
from the long-lived 3P0 and 3P2 states back into the ground state for detection and imaging.
In our experiment, we employ the broad 3P0 ↔3D1 transition for this purpose, thus allowing
us to separately image ground and excited state atomic fraction. Though the 3D1 state has
a finite branching ratio into the 3P2 state, this is calculated to be on the percent level [117]
and thus negligible compared to the desired decay channels. For completeness, we mention
the existence of a finite decay from the 1P1 state into the 3D1 state, though this transition is
found to be extremely narrow [101].
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1.1.3 Interactions
As we noted in Section 1.1.2, the absence of total electronic angular momentum (𝐽 = 0) in
the 1S0 and 3P0 states leads to the almost complete decoupling of this degree of freedom from
the nuclear spin 𝐼 in these states. As such, the s-wave scattering properties of these states
are governed exclusively by the electronic degrees of freedom, independent of the nuclear
spin of the participants. This in turn has radical consequences for the interaction dynamics
of these states at low energies, since these are now found to be invariant with respect to
rotations of the nuclear spin. The latter is governed by the special unitary group SU(𝑁), where
𝑁 = 2𝐼 + 1, and thus our interactions are said to be SU(𝑁)-symmetric. More specifically, the
interactions are circumscribed by four scattering lengths 𝑎𝑔𝑔, 𝑎𝑒𝑒, 𝑎+𝑒𝑔, 𝑎−𝑒𝑔 for scattering in the
states |||𝑔𝑔⟩⊗ |𝑠⟩ , |𝑒𝑒⟩⊗ |𝑠⟩ , (|||𝑔𝑒⟩ + |||𝑒𝑔⟩)∕

√
2⊗ |𝑠⟩ , (|||𝑔𝑒⟩ − |||𝑒𝑔⟩)∕

√
2⊗ |𝑡⟩ where |𝑠⟩ and |𝑡⟩

denote the nuclear spin singlet and triplet respectively [118, 119]. Absent any dependency of
these scattering lengths on the nuclear spin, spin-changing collisions are prohibited, a fact
which has been confirmed in systems of cold AEAs on experimentally relevant timescales [120–
123]. Spin systems of ultracold atoms manifesting SU(𝑁) symmetry play a role in a number of
fascinating physical settings [119] and will reappear in Chapter 5 of this thesis, when dealing
with lattice gauge theories.

1.2 State-dependent potentials
In this section we show how basic considerations of light-matter interaction provide a recipe
for creating state-dependent optical potentials. We also discuss the context in which such
potentials have been used in cold atom experiments with a particular focus on the 1S0 and
3P0 states of the Yb clock transition.

1.2.1 Polarizability
Quite generally, we can describe the response of an atom to an external monochromatic
electromagnetic field of the form

𝑬(𝒓, 𝑡) = 𝒆𝐸0(𝒓)𝑒−𝑖𝜔𝑡 + 𝑐.𝑐., (1.1)

with polarization 𝒆 and angular frequency 𝜔 = 2𝜋𝑐∕𝜆, via its ability to induce a dipole moment
𝒅 (i.e. charge separation) in an atom:

𝒅 = 𝛼𝑬. (1.2)

The complex response function 𝛼 is known as the polarizability and characterizes the strength
of the induced dipole moment. This dipole moment in turn, interacts with the external
electromagnetic field, giving rise to an interaction potential of the form [10]:

𝑉𝑎𝑐(𝒓) = −12 ⟨𝒅 ⋅ 𝑬⟩ = − 1
2𝜖0𝑐

Re [𝛼] 𝐼(𝒓). (1.3)
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Figure 1.2 | Clock state polarizabilities. (a) Wavelength dependecy of the intensity-normalized interac-

tion potential [Eq. (1.3)] for the
1

S0 ground state (
|||g⟩) and

3
P0 excited state (|e⟩) of the clock transition,

calculated using a simple empirical model (see Section 4.4 for details). We note the presence of several

distinct points: empty squares indicate tune-out wavelengths, where the scalar polarizability of one state

is zero, while the other retains a finite polarizability. The blue and yellow outlines of the points correspond

to the
|||g⟩ and |e⟩ tune-out wavelengths respectively, which reside at≈ 553 nm and≈ 573 nm. Empty cir-

cles represent magic wavelengths, those where the polarizability of both states is equal in magnitude and

sign. Within the plotted wavelength range, magic wavelengths exist close to 459 nm, 553 nm and 759 nm.

Conversely, filled circles indicate anti-magic wavelengths, with polarizabilities of equal magnitude, but

opposite sign. This conditions is met near 619 nm. (b) Schematic representation of the potentials V(x) at

different state-dependent wavelengths for the states
|||g⟩ and |e⟩. In clockwise order starting from the top

left panel, these are the
|||g⟩ tune-out, |e⟩ tune-out, anti-magic and magic wavelengths.

Here we make use of the intensity 𝐼 = 𝜖0𝑐|𝐸0|2∕2 and perform a time-average over fast-
oscillating terms. In a similar fashion, we can also consider light scattering from the dipole [10]:

Γsc(𝒓) =
1
ℏ𝜔 ⟨�̇� ⋅ 𝑬⟩ =

1
ℏ𝜖0𝑐

Im [𝛼] 𝐼(𝒓), (1.4)

where Γsc is the scattering rate. It is no accident that the imaginary part of the polarizability
gives rise to the dissipative dynamics of the system. This is a consequence of the nature of
linear response functions and holds true for a large class of physical processes [124]. The
close relation between the reactive [Eq. (1.3)] and the dispersive [Eq. (1.4)] components of the
polarizability represents a particular case of the Kramers-Kronig relations [125].

Up to this point, we have made no assumptions regarding the form of the induced dipole
moment nor the nature of the polarizability. To apply this discussion to the ytterbium atom in
a meaningful way, our description of light-matter interaction must account for a multitude
of different atomic transitions, such as those illustrated in the level scheme of the previous
section [Fig. 1.1]. This is achieved by considering the polarizability in its most general form
as a tensor, which can be expressed as a sum of scalar, vector and tensor components in the
following fashion [125–127]:
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𝛼𝑖(𝐹;𝜔) =𝛼
(𝑠)
𝑖 (𝐹;𝜔)

+𝛼(𝑣)𝑖 (𝐹;𝜔)(𝑖𝑬 × 𝑬∗) ⋅ 𝒆𝑧
𝑚𝐹
𝐹 (1.5)

+𝛼(𝑡)𝑖 (𝐹;𝜔)
3 |𝑬 ⋅ 𝒆𝑧|

2 − 1
2

3𝑚2
𝐹 − 𝐹(𝐹 + 1)
𝐹(2𝐹 − 1)

.

Here 𝑖 represents the initial state |𝑖⟩ of a given transition and (𝐹,𝑚𝐹) its corresponding hyperfine
and magnetic quantum numbers. In the bosonic isotopes of ytterbium, the lack of a hyperfine
structure reduces the complexity of the above expression considerably, eliminating all but
the scalar part of the polarizability:

𝛼(𝑠)𝑖 (𝐽;𝜔) =
∑
𝐽′≠𝐽

2
3

𝜔𝐽𝐽′
ℏ(𝜔2𝐽𝐽′ − 𝜔2)

||||⟨𝐽‖𝒅‖𝐽
′⟩||||

2
, (1.6)

summing over all relevant transitions 𝐽 → 𝐽′, where 𝜔𝐽𝐽′ is the the corresponding transition
frequency between fine-structure levels and 𝜔 the previously defined angular frequency of
the electromagnetic field. Associated to each transition is a reduced dipole matrix element
⟨𝐽‖𝒅‖𝐽′⟩. For the 1S0 ground state (|||𝑔⟩), the main contributions to the scalar polarizability
stem from the principal blue transition to the 1P1 state in the spin singlet manifold and the
intercombination transition to the 3P1 state. The 3P0 excited state (|𝑒⟩) couples to a larger set
of higher-lying transitions, thereby complicating the calculation. Furthermore, additional
contributions to the polarizability arise from taking into account dipole transitions due to
particle-hole excitations from the core [128]. We evaluate Eq. (1.6) over a range of frequencies
within the visible spectrum using a number of simplifying assumptions discussed in greater
detail in Section 4.4. The resulting intensity normalized potential 𝑉𝑎𝑐∕𝐼 is plotted as a function
of the wavelength in Fig. 1.2(a).

1.2.2 State-dependent wavelengths

Within the general trend of each state’s polarizability, a number of distinct points deserve
our attention.

Magic wavelengths.—Firstly, we note the presence of so-called magic wavelengths where
the polarizability of both states is equal in magnitude and sign, i.e. 𝛼𝑔 = 𝛼𝑒 [indicated by
empty circles in Fig. 1.2(a)]. This allows for uniform confinement of ground and excited state
in deep optical potentials with vanishing differential ac Stark shift [illustrated schematically in
Fig. 1.2(b)]. As such, magic wavelengths are extremely useful for high-precision spectroscopy
of the type performed in optical lattice clocks [129–134]. The magic wavelength near 759nm is
particularly well-suited to this kind of application. High amounts of laser power are readily
available from commercial laser sources while potential losses from the scattering of trap
photons are kept in check by the relatively modest polarizability of each state. We note that for
very deep traps, scattering due to two-photon resonances near this magic wavelength lead to
non-negligible hyperpolarizability shifts [135, 136]. These are frequency shifts arising from
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electric dipole effects scaling with the electric field in fourth order [137] and will resurface in
our attempts tomeasure the excited state tune-out wavelength in Section 4.5. The 759nmmagic
wavelength has been investigated experimentally and measured to a high degree of precision
for both bosonic and fermionic isotopes of ytterbium [135, 136]. More recently, this wavelength
has been employed to trap individual ytterbium atoms in arrays of tightly confined optical
tweezers [71, 138]. As part of this thesis, two new and previously unkown magic wavelengths
close to 459nm and 553nm are investigated and measured (Section 4.1). The first of these is
independently corroborated byNorcia et al. [139] andused by these authors in a later publication
to assemble a target array of nuclear spin qubits for mid-circuit measurements [51]. Of course,
magic wavelengths are not limited to the states of the clock transition and experimental work in
the domain of quantum computing with ytterbium atoms has made use of magic wavelengths
for the 1S0 and 3P1 states of the intercombination transition [51, 67].

Anti-magic wavelengths.—By simply reversing the sign of the magic polarizability condi-
tion, we arrive at the anti-magic wavelengths [denoted by a filled circle in Fig. 1.2(a)]. It has
been proposed by Yi et al. [140] to use the wavelengths to generate sub-wavelength optical
lattices and exploit the ensuing accelerated tunneling dynamics for enhanced quantum infor-
mation applications. Other proposals have suggested anti-magic wavelengths of the ytterbium
clock states in the context of artifical gauge fields by combining an anti-magic lattice with
an optical superlattice [141].

Tune-out wavelengths.—Last, but not least, we observe a number of zero crossings of the
potential for each state. Here, the polarizability of one state vanishes while the other retains a
finite polarizability. Wavelengths for which this occurs are known as tune-out wavelengths
and allow for state-dependent trapping [142–144] [this is schematically illustrated in the upper
two panels of Fig. 1.2(b)]. In alkali atoms, tune-out wavelengths have been investigated experi-
mentally using a number of different techniques including Kapitza-Dirac scattering [145–147],
interferometry [148] or modulating schemes [149]. Measurements of tune-out wavelengths in
helium have also been used in fundamental tests of quantum electrodynamics [150, 151]. In
AEAs these wavelengths are particularly interesting for the two states comprising the clock tran-
sition. Here, the long-lived nature of these states, along with the prospect of state-dependent
control, has garnered interest in both quantum simulation [152] and quantum computing
contexts [153, 154]. Recently, Heinz et al. measured the ground-state tune-out wavelength
in bosonic 88Sr using a novel modulation scheme relying on parametric heating of a thermal
sample of atoms in an optical lattice [91]. This circumvents the need for a degenerate gas and
thus considerably reduces the measurement complexity. This method was subsequently used
to measure tune-out wavelengths in cold molecules of 23Na40K [155]. During the course of this
thesis, we extend this same scheme to 174Yb to perform the first measurement of the ground
state tune-out wavelength in this isotope [93](see also Section 4.2). In the final chapter of this
thesis, we explain how this tune-out wavelength, together with its excited-state counterpart,
can be used to simulate lattice gauge theories in our experiment (Section 5.3).
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1.3 Dipole traps and optical arrays
The interaction potential 𝑉𝑎𝑐 defined in Eq. (1.3) naturally gives rise to a conservative force
potential of the form [10]:

𝑭(𝒓) = −𝛁𝑉𝑎𝑐(𝒓) =
1

2𝜖0𝑐
Re [𝛼]𝛁𝐼(𝒓). (1.7)

This dipole force is proportional to the gradient of the light intensity and can thus be used to
optically trap atoms. Dipole traps of this kind are used to great effect to cool atomic samples to
degeneracy using a variety of different cooling methods (see Ref. [10] and citations therein).
However, early experimental efforts were also conducted into the trapping [43] and cooling [156,
157] of indiviudal atoms in very tightly focused dipole traps known as optical tweezers. In
combination with acousto-optic deflectors (AODs), spatial light modulators (SLMs) and digital
micromirror devices (DMDs), multiple thousands of these tweezers can be generated and
arranged into arbitrary geometries [74, 158]. Furthermore, these devices allow for the dynami-
cal resorting of tweezers which can be used to great effect to generate homogeneously filled,
defect-free arrays on short timescales [46, 48, 49]. To harness the full potential of tweezer
arrays, long-range distance-dependent interactions, such as those found in Rydberg atoms can
be introduced into the arrays. This not only allows for the simulation of interesting many-body
Hamiltonians [59, 60, 159], but also the implementation of multi-qubit gates with neutral
atoms [73, 160]. In this regard, the trapping of two-valence electron elements in tweezer arrays
has only served to extend the available toolbox for quantum simulation and computation with
optical tweezers [44, 45]. In our experiment, we will use tune-out tweezer arrays for the 1S0
and 3P0 states to realize correlated hopping in an optical lattice. This is a fundamental building
block for our planned simulation of lattice gauge theories (see Chapter 5).

The dipole force discussed above can also be used to create optical lattices. These are
periodic potentials formed by the interference of two counterpropagating monochromatic laser
beams that can be used to trap cold atoms and are a mainstay of modern quantum simulation
experiments [3, 15–18, 22]. Optical lattices are an excellent tool for creating large, homoge-
neous and defect-free systems with tunable tunneling [18]. In our own experiment, we use
optical lattices, tuned to the magic wavelength at 759nm, to perform precision spectroscopy
and cool atoms below the Doppler limit (see Section 3.3). Optical lattices also constitute
a fundamental part of our proposed simulation of lattice gauge theories where more com-
plex potential landscapes need to be manufactured using a combination of different lattice
configurations (Section 5.3.1).

Assuming a Gaussian intensity profile for the lattice lasers, the lattice potential takes
the following form [3]:

𝑉(𝑟, 𝑧) ≈ −𝑉𝑎𝑐𝑒−2𝑟
2∕𝑤(𝑧)2cos2(𝑘𝑧), (1.8)

where (𝑟, 𝑧) are radial and axial coordinates, 𝑉𝑎𝑐 determines the trap depth, 𝑤(𝑧) is the 1∕𝑒2
radius of the beam and 𝑘 = 2𝜋∕𝜆 is its wavenumber. The intensity profile of our laser beam
results in a tight confinement along the axial direction with a oscillation frequency 𝜔𝑧 =
ℏ𝑘
√
2𝑉𝑎𝑐∕𝑚. Additionally, confinement is also present in the radial direction. Here, the
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oscillation frequency is given by 𝜔𝑟 =
√
4𝑉𝑎𝑐∕(𝑚𝑤2

0). A natural energy scale for relating these
trapping frequencies to the atoms in the lattice is the recoil energy 𝐸𝑅 = ℏ2𝑘2∕(2𝑚). At our
optical lattice wavelength of 759nm, the recoil frequency is 𝜈𝑅 ≈ 2 kHz.



CHAPTER 2

Experimental apparatus

In the preceeding chapter, we explored some of the tools available to modern physicists working
on cold atom quantum simulation experiments. Here, we show how our experiment is designed
and built to incorporate many of these tools in order to create a powerful and flexible simulation
platform. This involves the use of techniques from vacuum engineering, laser optics, control
theory and electronics. Each section of this chapter deals with a particular aspect of our
experiment, its design, construction and testing.

2.1 Vacuum system
A good vacuum is an essential precondition for trapping cold atoms. The better the quality of
the vacuum, the fewer the collisions between cold trapped atoms and any residual background
gases. Consequently, a better vacuum results in longer trap lifetimes. To achieve the extremely
low pressures necessary for quantum gas experiments, special chambers need to be constructed.
In the following, we describe the design and performance of the vacuum system used in our
experiment to achieve ultra-high-vacuum (UHV) pressures in the low 10−11mbar range.

2.1.1 Atom source
We employ a comercial atom source1 to generate a collimated beam of ytterbium atoms. This
is the first such atom source manufactured for ytterbium by AOSense. The atomic sample
is heated in an oven and initially collimated via a microcapillary array nozzle. We control
the temperature of our oven using a commercial temperature controller2. We find that for
day-to-day operation of the experiment, an oven temperature of 420◦C is sufficient to generate
an acceptable atomic flux in our glass cell. To confirm the oven flux is as intended, we perform
absorption spectroscopy by interrogating the atomic beam transversely to its propagation
directon using a weak probe beam, as shown in Fig. 2.1(a). We scan the probe beam frequency
across the blue 1S0 →1P1 transition and measure the resulting transmission on an amplified
photodetector3. The probe beam intensity is kept much smaller than the saturation intensity

1AOSense Yb Beam RevC
2SRS - PTC10 with PTC320 thermistor and PTC440 TEC modules
3Thorlabs PDA36A2

15
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Figure 2.1 | Atom source and spectroscopy. (a) Top view of the AOSense Yb Beam RevC atom source

with the relevant beams indicated. A collimated atomic beam is generated by an oven heated to 420
◦

C.

An in-vacuum permanent magnet Zeeman slower slows the atoms before they are transversely cooled

and re-directed by a 2D MOT. We perform absorption spectroscopy on the atomic beam exiting the oven.

(b) Normalized transmission from absorption spectroscopy as a function of the detuning from the
174

Yb

1
S0 →1

P1 resonance. The transmitted light is collected on an amplified photodetector (Thorlabs PDA36A2).

The individual peaks correspond to different isotopes of ytterbium, with peak prominence determined by

their respective natural abundances. At 500
◦

C we find good agreement between our measurement and a

dataset provided to us by AOSense.

of the transition to avoid having to deal with high intensity corrections. A comparison of our
data with a dataset from AOSense at 500◦C yields good agreement [Fig. 2.1(b)]. Unfortunately,
the nozzle of our oven has clogged twice, necessitating two oven swaps. For further details,
we refer the reader to Appendix A.

After exiting the oven, the atomic beam is slowed using a compact in-vacuum permanent
magnet Zeeman slower. Our Zeeman slower light is detuned by −590MHz from the 174Yb
1S0 →1P1 resonance transition frequency. The beam has a 1∕𝑒2 waist of 𝑤 ≈ 3mm, runs
at ≈ 300mW and is incident on a viewport heated to 360◦C using the PTC10 controller.
Subsequently, the atomic beam is further collimated, transversely cooled and diverted onto
the main axis of our vacuum system using a 2D magneto-optical trap (MOT). For this purpose,
we use two elliptically shaped beams (𝑤maj ≈ 15mm, 𝑤min ≈ 2.5mm), detuned by −30MHz
from the same transition as the Zeeman slower and operating at ≈ 15mW each.

2.1.2 Differential pumping
A two-stage differential pumping design guarantees that the pressure in the glass cell remains
in the UHV range even when the temperature in the oven is increased and the pressure in that
part of the vacuum system rises. Differential pumping works by using long and narrow tubes
to interconnect different parts of the vacuum system with dissimilar pressures. The long mean
free path of molecules at UHV ensures that given sufficient pumping speeds, the differing
pressures in each part of the system are maintained at equilibrium. In our system, the first
stage comprises a long tube of diameter 𝑑 = 6mm and length 𝑙 = 113mm in conjunction with
an SAES Z200 pump. This is followed by a second stage of dimension 𝑑 × 𝑙 = 6mm× 50mm
and an SAES D500 pump. The pumps were chosen for their compactness, allowing us to
place them close to the center of the vacuum chamber, thereby mitgating the effect of pipe
conductance on the pumping speed.
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Figure 2.2 | Glass cell. (a) Technical drawing of our glass cell showing the diameter of the the different

viewports attached to our cell. The large ⌀44.00 mm viewports are chosen to accomodate our tweezer

arrays and imaging of the atoms, and are stepped to minimize viewport warping. The ⌀19.50 mm view-

ports are large enough to transmit our 3D MOT beams which have a 1∕e
2

diameter of 10 mm. (b) Image of

our glass cell as mounted in the experiment. A random anti-reflection (RAR) nano-texture is etched into

both sides of each viewport to minimize backreflections. The octagonal frame is made from UV grade

fused silica. This frame is attached to a CF40 flange via a pyrex tube.

By purely considering the conductances of long pipes 𝐶 = 𝜋⟨𝑣⟩𝑑
3

𝑙
(where ⟨𝑣⟩ is the mean

velocity of gas) and scaling the pumping speeds accordingly, we calculate a reduction of four
orders of magnitude in pressure across our vacuum system using this geometry. Given a
maximum atomic source pressure of 1 × 10−8mbar as specified by AOSense, this would result
in a glass cell pressure in the low 10−12mbar. Of course, this does not take into account any
outgassing effects whatsoever and indeed, the actual pressure measured using our hot-cathode
gauge4 close to the glass cell is higher, at around 3 × 10−11mbar.

2.1.3 Glass cell
Our glass cell5 is composed of several double-side random anti-reflection (RAR) nano-textured
viewports6 frit-bonded to an octagonal UV grade fused silica frame. This frame is bonded to a
pyrex cylinder which is attached to a CF40 stainless steel flange. Nano-texturing is a technique
involving the etching of randomly distributed sub-wavelength microstructures into the surface
of the viewports. These structures ensure a gradual change in the refractive index of the glass
through the surface layer, leading to destructive interference in the reflectance across a wide
range of wavelengths and angles of incidence [161, 162]. The side viewports of the octagonal
frame are of diameter ⌀14.5mm and ⌀19.5mm, assembled in an alternating fashion around
the cell. The ⌀19.5mm were chosen to accomodate, amongst others, our 3D MOT beams,
which have a 1∕𝑒2 diameter of 10mm. These viewports are specified to a flatness of 𝜆∕10,
a parallelism of < 5 arcsec and a scratch/dig ratio of 10∕5. The top and bottom viewports
are stepped with a major and minor diameter of 44mm and 34mm respectively, as well as
precisely determined thickness. This geometry was chosen to minimize potential warping
of the viewports which could lead to optical aberrations.

4Edwards Vacuum IG40 EX
5Precision Glassblowing
6Substrates manufactured by LaserComponents with coating by TelAztec
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Figure 2.3 | Vacuum system. (a) Schematic of our vacuum system showing the relevant sections with

the corresponding pressures and vacuum pumps. The system consists of an oven followed by two

differential pumping sections with the purpose of maintaining a constant pressure in the glass cell. The

first differential pumping section features a pneumatically actuated in-vacuum shutter. In practice, this

is kept constantly open while we only use the 2D MOT light for shuttering the oven flux on and off. The

pressure in the system is continuously monitored using a hot-cathode gauge. (b) Render of the vacuum

system as it appears in the lab, with the relevant sections highlighted the corresponding colors from (a.)

2.1.4 Material considerations
The majority of our vacuum system is constructed from 316LN-ESR stainless steel, which was
chosen for its outgassing properties, the ready availability of standard components and its low
magnetic permeability of < 1.005. The latter is an important factor in the reduction of eddy
currents induced by the switching of magnetic field coils in our experiment (see Section 2.2).
The individual components were ordered from VACOM and specified to an outgassing rate
of < 1 × 10−13mbar L s−1 cm−2. We also considered aluminium and titanium due to their
favorable outgassing properties and even smaller magnetic permeability. However, both cost
and lead times prevented us from pursuing these options further. Another option to reduce
the outgassing of our vacuum system would have been to vacuum fire our stainless steel parts
at 950◦C prior to assembly.

2.1.5 Outgassing
A vacuum system can essentially be regarded as a collection of sources and sinks for gas loads
contained therein. Sources of gas loads include: the inital gas load present at atmopsheric
pressure, process gas loads (e.g. helium introduced into the chamber during a leak check),
outgassing and leaks. To counteract the effect of these gas loads, vacuum pumps are required
to serve as gas load sinks in the chamber. Depending on the pressure range and the type of
gases present, a variety of different vacuum pumps are required to achieve the desired pressure.
Within UHV chambers, outgassing is oftentimes the limiting factor to achieving a low pressure.

Outgassing describes the release or transport of gas molecules from within or through a
material. Broadly speaking, it can be divided into three distinct categories:

• Desorption - The release of gas molecules from the surface of a material.

• Diffusion - The release of gas molecules from within the bulk of the material.

• Permeation - The transport of gas molecules through a material.
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A schematic illustration of these processes is provided in Fig. 2.4(b).

Desorption.—Depending on the type of the material and its treatment during the manufac-
turing process, different types of molecules can acrue on its surface. To break the physical or
chemical bonds binding these molecules to the surface, an activation energy 𝐸des is required.
A large class of desorption processes are captured by the Arrhenius equation, where the rate
of molecules desorbing from a surface is given by [163]:

𝑗des = 𝜈0�̃�𝑒−𝐸des∕𝑅𝑇. (2.1)

Here, 𝜈0 ≈ 1013 s−1 is the oscillation frequency of molecules at room temperature, �̃� ≈
1015 cm−2 is the densest monomolecular packing of a square centimeter of a given surface and
R ≈ 8.314 J Kmol−1 is the universal gas constant. In practice, the rate of desorption has been
found to scale polynomially with time i.e 𝑗des ∝ 𝑡−𝑛 [164], where 𝑛 is a scaling constant.

Diffusion.—Diffusion is the release of gas molecules from within the bulk of a material.
This process is governed by Fick’s laws of diffusion [165]:

𝑗dif f = −𝐷
𝑑𝑛𝐿
𝑑𝑥 (2.2)

𝜕𝑛𝐿
𝜕𝑡 = 𝐷

𝜕2𝑛𝐿
𝜕𝑥2

, (2.3)

where 𝑗dif f is the rate of diffusion, 𝑛𝐿 is the concentration of gas molecules in the bulk and 𝐷
is a material dependent diffusion constant which is exponentially decaying with decreasing
temperature. The first law expresses the notion that gas trapped within the bulk will propagate
from areas of high concentration to those of low concentration across a concentration gradient.
The second law is the well-known diffusion equation and describes the density fluctuations
of the gas as it undergoes diffusion. General solutions to these equations exist under certain
well-defined boundary conditions. A reasonable assumption, which is often borne out in
practice, is that the rate of desorption is much faster than the rate of diffusion, 𝑗des ≪ 𝑗dif f .
Consequently, for a material of thickness 2𝑑, the density at the surfaces is vanishing, i.e.
𝑛𝐿(±𝑑) = 0. Defining an initial concentration 𝑛𝐿(𝑥, 𝑡 = 0) =∶ 𝑛𝐿0, a general solution to
the above equations takes the form:

𝑗dif f (𝑥 = ±𝑑) = 2𝐷
𝑑 𝑛𝐿0

∞∑
𝑖=0

𝑒−
(2𝑖+1)2𝜋2𝐷𝑡

4𝑑2 . (2.4)

Notably, the characteristic time constant of diffusion 𝜏dif f = 4𝑑2∕𝜋2𝐷 scales exponentially
with temperature. At room tempertature 𝜏dif f is many orders of magnitude larger than any
bake-out or pump-down timescales. This allows us to approximate the scaling of the diffusion
current by a square-root dependency in the time, 𝑗dif f ∝ 𝑡−1∕2 [166].
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Permeation.—The process of gas permeation through a material is subject to the pressure
gradient across the material and obeys the equation:

𝑗perm = −𝐾 1
2𝑑 (𝑝1 − 𝑝2), (2.5)

where 𝑗perm is the permeation current, 𝐾 is a temperature and material dependent permeation
constant, 𝑑 describes the thickness of the material and 𝑝1 −𝑝2 provides the pressure difference
across the material. In contrast to desorption and diffusion, the permeation current is lacking
an explicit time dependence. Rather, the time-dependence is contained within the evolving
final pressure. However, since the permeation current increases with decreasing final pressure,
we approximate this current in our own calculations by setting 𝑝2 = 0.

Using our knowledge of these outgassing processes, we can calculate the pressure in our
vacuum system as a function of time according to the following formula:

𝑝(𝑡) =
𝑄des + 𝑄dif f + 𝑄perm

𝑆ef f
, (2.6)

where 𝑄des, 𝑄dif f and 𝑄perm are outgassing rates corresponding to desorptive, diffusive and
permeative dynamics in the system (in units of mbar L s−1 cm−2) and 𝑆ef f is the effective
pumping speed of the pumps in our vacuum system. The latter is calculated using the relevant
pipe conductances according to 1∕𝑆ef f = 1∕𝑆x + 1∕𝐶x , while the outgassing rates are deduced
from their respective currents (e.g. 𝑄dif f = 𝑗dif f𝐴, where 𝐴 is the interior surface area of
the vacuum chamber). The results are shown in Fig. 2.4(a). The theory is compared to
pressure data collected during the final bake of our vacuum system and measured using a
hot-cathode gauge (see Section 2.1.6 for details). It is important to note that by this point,
the vacuum system has undergone multiple bakes at varying temperatures (see Section 2.1.6).
The diffusion constant 𝐷 is exponentially dependent on the temperature and as such, greatly
influences the H2 concentration gradient within the bulk. This gradient is frozen out upon
returning to room temperature and therefore the high-temperaure equilibrium dynamics,
including the outgassing rate, are preserved at room temperature. To illustrate this behavior
and calculate the initial concentration of H2 present in our vacuum system immediately prior
to recording the data shown in Fig. 2.4(a), we solve the diffusion equation Eq. (2.3) using the
well-known Crank-Nicolson finite difference method [167]. We set our initial concentration to
be 𝑛𝐿0 = 40 × 106 Pa L/m3 [166] and calculate our diffusion coefficient to be 𝐷 ≈ 3.5 × 10−11 at
400◦C [168]. Under the boundary conditions mentioned previously, we are able to calculate the
density profile in the bulk as the bake progresses [Fig. 2.4(c)] and extract a finalH2 concentration.
The pump-down data is fitted with a 1∕𝑡𝛼 dependence [169, 170] to reflect the approximate
scaling behavior of each outgassing process, as discussed previously. From this fit we find
a scaling exponent of 𝛼 = 0.33, close to a value of 0.5, expected from pre-baked stainless
steel [171]. The discrepancy between the recorded data and the calculated pump-down curves
may stem from the presence of other materials in our vacuum system, most notably, the
different glass varieties used in our glass cell.
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Figure 2.4 | Pressure profiles. (a) Pressure curves for various outagassing processes during the final

pump-down of our vacuum system. The recorded data exhibits a 1∕t
0.33

scaling - close to the expected

t
0.5

behavior of baked stainless steel. As expected, the pressure trends close to the diffusive process,

which is expected to be limiting at UHV. (b) Schematics of the three outgassing processes considered

in our calculations. (c) The density profile of hydrogen in the bulk of our stainless steel chamber walls

as a function of bake time at 400
◦

C. To obtain these profiles, we solve the diffusion equation using the

Crank-Nicolson method. The diffusive dynamics are „frozen-out“ upon returning to room temperature

and serve as the starting point for the pressure profile calculated in (a).

2.1.6 Assembly and bake
Cleaning and pre-baking.—To reduce the outgassing rates of our vacuum components, we
decided to perform several pre-bakes at various stages of the vacuum system assembly. To
remove any surface level contaminants, all steel components were initially cleaned in an
ultrasonic bath consisting of water and a universal cleaning agent7 in a ratio of roughly 100:5 at
60◦C for 10 minutes. Upon removal from the bath, the components were rinsed with deionized
water before being placed in a second ultrasonic bath of acetone for 15 minutes at room
temperature. Subsequently, the components were rinsed with isopropanol and left to air-dry.
We then wrapped the steel parts in UHV aluminium foil and placed them into a vacuum oven.
Here the parts were baked under vacuum at themaximum oven temperature of 200◦C for 72 hrs.

Next we decided to perform an in-situ bake of the steel components. To this end, we
assembled the differential pumping sections of the vacuum system, including the hot-cathode
gauge, but exlcuding the SAES pumps, which were replaced by blind flange placeholders.
Similarly, the connecting flanges to the atom source and the glass cell were sealed off using
blind flanges. To ensure a homogeneous seal around the copper gaskets, the flange screws
were tightened in a star pattern using a torque of 9Nm and 16Nm for CF40 and CF63 flanges

7TICKOPUR R33



22 Experimental apparatus

respectively. In total, twenty thermocouples were attached to the chamber walls at various
points to detect the temperature during the bake. The temperature was recorded using three
TC-08 thermocouple data loggers from Pico Technologies. Heating tape was placed around the
chamber ontop of an initial layer of UHV aluminium foil. This was followed by three layers
of aluminium foil and fiberglass for insulation, ensuring a homogeneous heat distribution.
The chamber was evacuated down to 2 × 10−7mbar by a turbo pump (measured on the pump
stand using a cold-cathode gauge8). Over the course of a day, we carefully ramped up the
temperature of the chamber to 400◦C, where it was maintained for 72 hrs. After ramping
down the temperature, we briefly activated the hot-cathode gauge, measuring a steady-state
pressure of 8.4 × 10−9mbar compared to a turbo pump reading of 2.5 × 10−8mbar. Next, we
attached the SAES pumps and the angle valves and performed a bake at 240◦C for 108 hrs.
The ion pump magnets were removed prior to the bake.

Assembly and alignment.—Assembly of the vacuum system proceeded in two stages. First,
we attached the atom source to the pre-baked steel components. Unfortunately, during this
process we accidentally vented the atom source to atmosphere by failing to completely close the
gate valve infront of the first differential pumping tube before removing the CF16 blind flange
at the end of the tube. As luck would have it, the oxidation rate of ytterbium is rather slow
when compared to alkali or alkaline-earth atoms so that we did not need to replace the oven at
this point. However, an additional bake of the vacuum system was necessary (see Appendix A).
Having attached the atom source onto one end of our baked steel parts, we then flanged the
glass cell onto the other end to complete the assembly of our vacuum system. We used back-
reflected 556nm light to align the glass cell. Specifically, we pre-aligned a 556nm beam to be
perpendicular to the optical table before attaching the glass cell to our vacuum system. Upon
attaching the cell, we overlapped the back-reflections of this guide beam from the top viewport
of the glass cell with the incoming beam by rotating the cell in its flange, thus eliminiating
the roll (𝑦𝑧) degree of freedom. The same procedure was performed at the front of the glass
cell to eliminate the pitch (𝑥𝑧) degree of freedom. Instead of rotating the cell, we found that
slightly tightening the flange screws was already sufficient to counteract any pitch of the glass
cell. We used the same guide beam to compensate the tilt of the entire vacuum system by
tuning the height of the chamber mounts and observing the amount of light in the 2D MOT
section of the atom source. Prior to our final bake, we performed a leak check with helium9

and detected a small leak that was fixed by replacing the copper gasket of the offending flange.
We then placed a protective steel cylinder around the glass before wrapping the entire vacuum
system in several layers of UHV aluminium foil, insulating fiberglass and heating tapes. The
baking temperature was steadily increased at a rate of no more than 15◦C/hr, as governed
by the atom source. The maximum baking temperature was kept below 120◦C around the
atom source (limited by the gate valve) and 150◦C at the glass cell to avoid excessive thermal
gradients across the vacuum system. We maintained the vacuum system at these temperatures
for nineteen days before ramping the heaters down.

Vacuum pump activation.—Upon completion of the final bake, we cycled the oven three
times as per AOSense instructions. A single cycle involved ramping the oven temperature to

8Pfeiffer Vacuum IKR 270
9Leybold Vacuum Phoenix L300
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500◦C and mainting this temperature for two hours while carefully monitoring the pressure
using the cold-cathode gauge on our turbo pump and the oven ion pump controller. Prior to
cycling, the Zeeman slower hot window was ramped to 380◦C. Due to the accidental venting
of the atom source to air, we also had to re-activate the getter pumps in the atom source (SAES
Z100 and STS172). These were activated sequentially by applying specified current ramps to
each pump manually using a set of lab power supplies. We took the opportunity to perform
absorption spectroscopy during each cycling of the oven.

Having cycled the oven, we turned to the getter pump activation in the differential pump-
ing sections. We decided to activate the Z200 and D500 simultaneously to avoid saturating
either pump with dirt from the other. Prior to the getter activation we degas our hot-cathode
gauge, flash the Z200 and D500 ion pumps and perform another leak check. Activation of the
getter elements was performed at 550◦C while carefully monitoring the surrounding flange
temperatures using thermocouples and an infrared camera. We found that the specified 1 hr
activation cycle only partially activated the getters and so another activation was performed
at the same temperature for 3 hrs. Subsequently, we turned on both ion pumps while the
getter temperature was still ramping down (at ≈ 170◦C) and closed the angle valves to the
turbo pump. Within a few hours, the pressure logged by the hot-cathode gauge fell below
×10−11mbar and eventually settled at ≈ 3 × 10−11mbar [see lower panel of Fig. 2.4(a)].

2.2 Magnetic fields
Controllablemagnetic fields are ubiquitous in cold atomexperiments. In our apparatus, they are
required to generateMOTs, perform spectroscopy, spin and state-selective control, the tuning of
atomic interactions and the compensation of earth’s magnetic field. These varied applications
require different types of magnetic fields, which in turn require different types of magnetic
field coils. In this section we describe the coils and magnetic field control employed in our lab.

2.2.1 Mechanical design
Main MOT coils.—Each of our main MOT coils consists of 6 × 8 (radial, 𝜌× axial, 𝑧) windings
of copper hollow core wire of dimensions 4mm× 3mmwith a core diameter of ⌀1.6mm (man-
ufactured by Krämer Energietechnik GmbH). Together, these form coils with an inner (outer)
diameter of ⌀75mm (⌀125.4mm), situated symmetrically about our glass cell as illustrated
in Fig. 2.5(a). The coils are glued into𝑊 × 𝐿 × 𝐻 = 150mm × 180mm × 20mm fiberglass
plates10 using two-component epoxy11 and additionally held in place by heat-resistant zip-ties.
Water-cooled hollow core wire enables the coils to run at currents in excess of 100A for short
durations without a significant increase in temperature. This allows us to generate magnetic
fields of up to 400G at the location of the atoms.

Shim and compensation coils.—To generate magnetic offset fields, we use a set of „shim“
coils. These are small coil pairs wound from AWG18 copper wire and arranged along each spa-

10Erhard Hippe KG EP-GC-201
11DELO DUOPOX AD840
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Figure 2.5 | Magnetic field coils. (a) Render of the magnetic field coils used in our experiment. Two main

MOT coils consisting of water-cooled hollow-core wire provide strong fields for trapping and spectroscopy.

These coils are supplemented by a smaller shim coil pairs in each spatial dimension which allow us to

add an offset to the magnetic field. Along the z-axis, we add an additional compensation coil pair for com-

pensating the earth’s magnetic field. Finally, a set of water-cooled transverse coils along the y-axis allow

us to define a quantization axis at an arbitrary angle in the (yz)-plane. (b) Fast anti-Helmholtz/Helmholtz

and on/off switching is enabled by a MOSFET H-bridge switching circuit. (c) The switch-off duration of

our coils is determined to be 95µs using a ringdown measurement (see main text for details). (d) Our

main MOT coils are able to generate magnetic fields of 8.12(7)G∕ A at the location of the atoms. (e) The

resistance of each of our main coils is measured to be≈ 35mΩ. (f) Temperature of our main coils (with

water cooling) at various currents, each applied for a number of minutes. The expected temperature at

higher currents can be determined from a quadratic fit of the data (solid line). (g) Thermal camera picture

of our coils at a current of 150 A showing the heat distribution in one of the water-cooled main coils.

tial dimension. The shim coils are designed to deliver smaller fields of 1−2Gwhile drawing only
a couple of amperes of current, thus obviating the need for active cooling. Current is provided
to these coils by smaller programmable power supplies12. Along gravity we have an additional
pair of coils of similar dimensions to the shim coils for compensating the earth’s magnetic field.

Transverse coils.—Finally, a rectangular pair of water-cooled coils capable of generating
up to ≈ 25G at 100A is oriented along the 𝑦-axis (transverse to the atomic beam propagation
direction). Switching between a Helmholtz and an anti-Helmholtz configuration is facilitated
by a network of MOSFETs (see Section 2.2.3). In combination with the other coil pairs, this
allows us to add an additional external magnetic field along any arbitrary direction.

12Delta Elektronika - ES150
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2.2.2 Magnetic properties
We estimate the magnetic field strength of our coils along the radial and axial directions by
approximating each winding of hollow core wire as a simple 1D current loop and calculating
its contribution to the total magnetic field via the Biot-Savart law:

𝐵𝜌 =
𝜇0𝐼
2𝜋

1
√
(𝑅 + 𝜌)2 + 𝑧2

𝑧
𝜌 (

𝑅2 + 𝜌2 + 𝑧2

(𝑅 − 𝜌)2 + 𝑧2
𝐸(𝑘2) − 𝐾(𝑘2)) (2.7)

𝐵𝑧 =
𝜇0𝐼
2𝜋

1
√
(𝑅 + 𝜌)2 + 𝑧2

(
𝑅2 − 𝜌2 − 𝑧2

(𝑅 − 𝜌)2 + 𝑧2
𝐸(𝑘2) + 𝐾(𝑘2)) (2.8)

𝑘 =
4𝑅𝜌

(𝑅 + 𝜌)2 + 𝑧2
, (2.9)

where 𝐸(𝑘2) and 𝐾(𝑘2) are elliptic integrals of the first and second kind respectively [172]. 𝑅 is
the radius of the coils, 𝐼 the current flowing through the conductor and 𝜇0 = 4𝜋 × 10−7H/m
is the magnetic permeability of the vacuum. The resulting fields are plotted in Fig. 2.6(a)
in Helmholtz (top two panels) and anti-Helmholtz configuration (bottom two panels). we
calculate a magnetic field strength of 7.38G∕A and a gradient of 1.95G∕ cm∕A at the center of
the coils. We also calculate the homogeneity of the magnetic field at the location of the atoms.
In particular, we are interested in how themagnetic field varies within a region of similar size to
our 3D MOT and also across the 100 µm field of view (FOV) of our objective (see Section 2.5.2).
This is especially relevant for the states of the clock transition, as these form the basis for many
of the quantum simulation encodings we plan to investigate using our apparatus. We define
the inhomogeneity as the change of our magnetic field with respect to the field at 𝐵0 [173]:

inhomogeneity =
𝐵(𝐼, 𝑥, 𝑦, 𝑧)
𝐵(𝐼, 0, 0, 0)

− 1. (2.10)

The result is shown in Fig. 2.6(b). In the top panel we plot the inhomogeneity across a
50mm × 50mm region in the 𝑥𝑧-plane. The location of the MOT coils are indicated by red
rectangles. In the bottom panel, we zoom in on the central 10mm× 10mm region of the top
panel, roughly congruent with the diameter of our 3D MOT beams. Within this region, the
inhomogeneity is calculated to be, at worst, ≈ 2%. Together with a quadratic Zeeman shift of
61.2(1)mHz∕G2 [174], this results in a clock shift of ≈ 400Hz at 400G. This compares favor-
ably with the clock linewidth at these field strengths and indicates a negligible effect for physics
conducted within the much smaller FOV of our high-resolution objective. This also justifies
the non-optimal Helmholtz configuration of the two main coils (𝑑 = 49.5mm ≠ 𝑅 = 50.1mm)
which was chosen as a compromise between Helmholtz field strength, anti-Helmholtz linearity
and geometric constraints.

We perform several measurements to confirm that our main MOT coils operate as expected
and conform to the requested specifications. We measure the magnetic field along the 𝑧-axis
using a Hall probe positioned at the center of the coil pair. After determining the zero-current
magnetic field to calibrate the measurement, we gradually increase the current applied to the
coil pair and measure the resulting magnetic field. From a linear fit of the data, we obtain a
Helmholtz field of 8.12(7) G∕A [Fig. 2.5(d)], with an error given by the standard deviation of
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Figure 2.6 | Magnetic properties of main MOT coils. (a) The calculated magnetic field of our main MOT

coils at 1 A of current, plotted along the radial (ρ) and axial (z) directions in Helmholtz (top two panels)

and anti-Helmholtz (bottom two panels) confiuguration. The field was calculated by approximating each

winding of our coils as a simple current-carrying loop and computing the relevant contribution to the

total field via the Biot-Savart law. From this calculation, we predict a field of 7.38 G∕ A in Helmholtz con-

figuration at the location of the atoms. This value is confirmed by a quadratic Zeeman shift measurement

(Section 3.4). (b) Magnetic field inhomogeneity in the xz-plane. The bottom panel is an enlarged version

of the central 10 mm × 10 mm region of the top panel. The red rectangles in the top panel indicate the

location of the main MOT coils. We find that the inhomogeneity over the FOV of our high resolution

objective is negligibly small (see main text for details).

the data. This is close to the actual 7.41(8) G∕Ameasured using the atoms’ quadratic Zeeman
shift (see Section 3.4 for details) as well as the theoretically predicted 7.38G∕A. Possible
reasons for the discrepancies in values include probe miscalibration and deviations from the
design geometry during the manufacturing process.

2.2.3 Electrical properties
The main MOT coils are powered by a 400A, 15 V programmable power supply13. We
use a set of MOSFETs14 in an H-bridge architecture to switch between Helmholtz and anti-
Helmholtz configurations Fig. 2.5(b). The switching is remote controlled from our sequence
via a custom interlock-connected logic board. We calculate the resistance of our coils to be
𝑅 = 𝜌Cu

𝑙
𝐴
= 21.5mΩ, where 𝑙 = 12.8m and 𝐴 ≈ 10mm2 are the length and cross-sectional

area of our copper hollow-core wire, and 𝜌Cu = 1.68 × 10−8Ωm is the resistivity of copper
at 20◦C. For the calculation of the self-inductance of the coils we make use of the following
empirical formula [175]:

𝐿 ≈ 39.37 × 0.8𝑁2𝑟2
6𝑟 + 9ℎ + 10𝑤 = 176 µH, (2.11)

where 𝑁 = 48 is the number of windings and 𝑟 = 50.1mm, ℎ = 25.4mm and 𝑤 = 50mm are
the mean radius, height and width of the coil respectively. Our calculations are confirmed

13Delta Elektronika SM15-400
14IXYS IXFN300
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by an inductance measurement using a bridge circuit15 where we measure self-inductances
of 219(5) µH and 220(5) µH for theses coils.

We use the same universal bridge to perform a 𝑄-factor measurement, which indicates
how close our coils are to an ideal inductor. In our coil circuit, the 𝑄-factor is given by the ratio
of an inductors reactance (i.e. its opposition to an alternating current) to its resistance [176]:

𝑄 = 𝜔𝐿
𝑅 , (2.12)

where 𝐿 is the inductance, 𝑅 the resistance and 𝜔 the frequency of alternating current driven
through the coils. From this we obtain coil resistances of 32.4(6)mΩ and 36.7(7)mΩ. These
values are in close agreement with the 35.4(4)mΩ obtained by simply reading out the power
supply current for a given set voltage [Fig. 2.5(e)]. Finally, we want to know how fast the
coils are able to switch between different current configurations and states. To determine the
switch-off time, we perform a ringdown measurement by suddenly quenching the applied
current from 100A to 0A and observing the magnetic field response using our Hall probe.
The behavior of the coil after the quench is described by:

𝑉(𝑡) = 𝑉0𝑒
− 𝜔
2𝑄
𝑡cos

⎛
⎜
⎝
𝜔𝑡
√
1 − 1

4𝑄2 + 𝜙
⎞
⎟
⎠
, (2.13)

where 𝑉0 is the initial voltage, 𝜙 is the phase of the voltage. The exponential envelope of this fit
yields a ringdown time of 𝜏 = 95 µs, leading to a total switch-off duration of 440 µs from 100A
including the power supply’s fall time. In the experiment, this switch-off time is significantly
increased by the presence of eddy currents to around 8ms. One strategy to mitigate this effect
would be to switch the polarity of one coil for a brief burst of time, as demonstrated in Ref. [177].

2.2.4 Thermal management

Water-cooling is provided by a 3.2 kW chiller specified to a maximum throughput of 7.2 L/min
at 17.2 bar16. We continuously monitor the flow rate, temperature and conductivity of water
entering and exiting each coil using a combination flowmeter17. Under normal operating
conditions, around 350mL/min of water running through each coil are enough to maintain
a surface temperature of 20◦C. The flowmeter pulse output is used as a monitor signal for
the coil interlock. The remaining sensor data is read out using a custom PCB designed to
handleMODBUS communication with the flowmeter. This same flowmeter scheme is repeated
everywhere in our labwherewater cooling is required. The temperature of each coil ismeasured
using one ormore E-type thermocouples, held in place by thermally conductive two-component
glue18 and read out by a data logger19. To ensure that the coil temperatures do not exceed

15HP4620A
16Van der Heijden Labortechnik GmbH
17Digmesa FHKU CombiSensor
18Fischer Elektronik - WLK10
19Keysight 34980A multichannel switch
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acceptable limits, an alarm setpoint is programmed in software which enables the remote
shutdown of the offending coil power supply.

We measure the temperature of our coils at various current values to test the thermal
repsonse of the coils [Fig. 2.5(f)]. During this measurement the coils were supplied with
≈ 250mL/min of 20◦C water. At each current setpoint we waited several minutes before
recording the final temperature. This is a quasi-DC regime, as one run of our experimental
sequence is on the order of 100’s of ms. While the coil surface heats to nearly 30◦C at 100A
during this test measurement, we find that in the experiment, repeatedly ramping to high
currents on the ms scale has no discernible effect on the surface temperature of the coils.

2.3 Laser systems
In our experiment amultitude of different lasers and optical setups are required for the trapping
and cooling of atoms. In this section we describe the design of each of these optical setups
and explain their purpose and functionality.

2.3.1 Blue laser
Our blue laser is a frequency-doubled Toptica DL-TA-SHG-Pro. This commerical laser consists
of an external-cavity diode laser (ECDL) optimized for a fundamental wavelength of 798nm
acting as a seed for a tapered amplifier (TA). The amplified fundamental light is frequency-
doubled by means of second-harmonic-generation (SHG) in a non-linear crystal enclosed in a
hermetically sealed optical cavity. The resulting emission at 399nm is processed in the adjoining
optical setup and sent to the experiment. The emission at the fundamental wavelength is used
to frequency stabilize the laser to an ultra-stable reference cavity (Section 2.4). Blue light is
required in our experiment for the Zeeman slower, the 2D MOT, absorption imaging of the
atoms and pre-slowing the atoms prior to trapping in our 3D MOT. The most commonly used
element for frequency shifting light is an acousto-optic modulator (AOM). These rely on the
variation of the refractive index of a crystal to diffract light into different orders, each with
a unique frequency. By varying the radio-frequency (RF) applied to the AOM, it is possible
to tune the frequency of the diffraction orders continuously within some specified frequency
range (usually ≈ 10 − 20MHz around the central frequency). While this allows for fast and
flexible control of the optical frequency, both the bandwidth and central frequency of the AOM
are limited to the MHz range. This means we must be careful to design an optical setup which
is able tomeet all the required optical frequencies for the different applications while remaining
within a frequency budget easily accessed by standard AOM RF frequencies. For our blue laser,
we find that operating the laser at a detuning of 𝜔laser − 𝜔0 = −390MHz from the 1S0 → 1P1
transition ensures that the furthest detuning required from a single AOM is −200MHz for our
Zeeman slower (see inset to Fig. 2.7). For the remaining beam paths, we first use an AOM in
double-pass configuration20 to impart a frequency shift of+210MHz on the light. The imaging
beam is brought to resonance by sending this light through two single-pass AOMs of the same

20Gooch&Housego I-M110
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Figure 2.7 | Blue laser optical setup. Our blue laser system outputs ≈ 1.1 W of light at 399 nm from a

frequency-doubled and amplified 798 nm seed laser. This light is split into several branches, each of

which is used for a different application in our experiment. The frequency of each branch is controlled by

at least one AOM, which we also use to intensity stabilize the light in that branch. A mechanical shutter

is included in each branch to prevent leakage light in the experiment when shuttering off the AOMs. A

number of different telescopes, lenses and polarization-sensitive optics are used to optimize the AOM

diffraction and fiber-coupling efficiencies. Some of the 798 nm fundamental light is used to frequency

stabilize our laser system to an ultrastable reference cavity by coupling into a fiber EOM. All focal lenghts

are in units of mm unless specified otherwise. Inset: The frequency budget for our blue laser system,

showing how we reach all relevant optical frequencies in our experiment.

kind, operating at+90MHz. The crossed slowing beam shares half of the imaging path, passing
through a single +90MHz AOM before being fiber-coupled. Finally, for the 2D MOT, a single
AOM at +150MHz21 is sufficient to generate the necessary detuning of −30MHz.

In addition to a frequency budget, we are also constrained by the total ouput power of the
laser. For our blue laser this is measured to be ≈ 1.1W and expected to degrade over time.
At lower wavelengths the power degradation is especially pronounced due to the reaction of
dielectric coatings with high energy light. Careful beam shaping using lenses and telescopes is
required to maximize the coupling efficiencies into our AOMs and optical fibers. The largest
fraction of the laser’s output power is consumed in the Zeeman slower path, which requires
≈ 300mW incident on the atoms. We achieve a diffraction efficiency of 84% through the
200MHz AOM22. The zeroth order is deflected into a beam dump using a D-shaped mirror
and the first order coupled into an optical fiber with custom end-caps23. A fiber end-cap is a
small amount of material spliced onto the end of a fiber to protect the fiber from high optical

21AAMQ150
22ASM-200B8, IntraAction Corp.
23Coastal Connections
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Figure 2.8 | Green laser optical setup. The main output of our green laser is fiber-coupled and routed to

a dedicated breadboard where ≈ 1 W of 556 nm light is used in four MOT arms and for a Raman beat-lock.

The frequency of each of our MOT beams is controlled using double-pass AOMs which preserve the fiber-

coupling efficiency in each branch at the cost of available optical power. As in the blue setup, each of

these AOMs is also used for intensity stabilization and control.

powers and reduce the ageing of the fiber at wavelengths close to the ultraviolet (UV) range.
Apart from the wavemeter fiber, all of the fibers used in our blue laser setup are of this type.
We also make use of the AOMs to intensity stabilize each beam in the setup. This is done by
measuring the out-coupled power in each beam close to the experiment using a photodetector
and feeding back to a custom intensity servo. This servo modulates the amplitude of the RF
signal sent to each AOM in order to maintain a pre-determined setpoint which we can program
from our experimental sequence. The set frequency for the majority of our AOMs is controlled
by an RF synthesizer24, the output of which is amplified in a custom AOM driver. By sending
trigger signals from our control software to our AOM drivers, we enable or disable the RF drive
as required. Even with the RF drive disabled, some amount of unwanted light is still able to
leak through an AOM and make its way to the experiment. To prevent this, we also equip
each beam with a homebuilt mechanical shutter based on the solenoid driven needle actuator
from a sowing machine. Due to its comparatively long shuttering time, we are careful to open
and close the shutter to match the shuttering of the corresponding AOM. Furthermore, we
have found that some AOMs require an additional thermalization period after enabling the RF
input. To circumvent this, the default state of our AOMs is to have the RF drive enabled.
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Figure 2.9 | Clock laser and repumping setup. (a) 578 nm light from a Toptica laser is fiber-coupled

onto a separate breadboard, where it is split into two spectroscopy beams and a wavemeter monitoring

arm. Which of the two spectroscopy beams is in use at a particular moment is governed by a flip mirror.

(b) A DFB fiber-coupled laser module is used to produce 1389 nm light which is split into two separate

branches for repumping atoms. Each branch sends≈ 10 mW of light to the atoms and is detuned from

the transition frequency by+71 MHz.

2.3.2 Green laser
We use another Toptica DL-TA-SHG-Pro to produce 556nm light for our 3D MOT and for
beat-locking a 556nm Toptica DL-TA-Pro laser, which we plan to use for Raman cooling (see
Section 2.5.4). As is the case for the blue laser, we use some of the infared light at 1112nm
to lock this laser to our ultrastable reference cavity. A schematic of the laser setup is shown
in Fig. 2.8. Unlike our blue laser, the main output of our green laser is directly fiber-coupled
using a Toptica FiberMon. This results in ≈ 1W of usable light on our setup. Due to our high-
resolution microscope objective, retro-reflection of the MOT in the vertical direction (𝑧-axis)
is not feasible. As such, our 3D MOT requires four independent beams: two retro-reflected
beams in the horizontal (𝑥𝑦) plane and two counterpropagating beams through the top and
the bottom of our glass cell. The frequency of each of these MOT beams is controlled by an
AOM in double-pass configuration25. Ideally, this configuration ensures that the fiber-coupling
efficiency remains independent of the AOM frequency at the cost of overall usable power in
each beam. As in the blue setup, we also use each of these AOMs for intensity stabilization and
use mechanical shutters to ensure no leakage light through the AOMs reaches the experiment.

2.3.3 Clock laser
The laser used for coherently addressing the ultra-narrow 1S0 →3P0 clock transition is of vital
importance to our experiment and its spectral properties are subject to the most stringent
requirements. In particular, a narrow linewidth is necessary to allow us to perform high-
resolution optical clock spectrosopy. This will be especially important for the measurements
of state-dependent wavelengths detailed in Chapter 4 of this thesis. Again, the basis for our

24Moglabs QRF
25Gooch&Housego 3080-120
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clock laser setup is a Toptica DL-TA-SHG Pro, this time equipped with the narrow-linewidth
option 1156nm seed laser. We use light from this seed laser to lock the system to our ultrastable
reference cavity (see Section 2.4 for details). As is the case for our green laser system, the main
output of our clock laser is fiber-coupled with an total usable output power of ≈ 650mW after
the fiber. Currently, our experiment utilizes two clock spectroscopy beams. The choice of which
beam to use is governed by a mechanical flip mirror [Fig. 2.9(a)]. Both paths share an AOM26

which we use to control the frequency of the light. For increased mechanical isolation, the laser
along with all the optics described in this section are placed on a 600mm× 900mm× 59mm
breadboard supported by rubber damping feet.27

2.3.4 Repumping laser
Wemake use of the 3P0 →3D1 transition to repump atoms from themetastable excited state back
into the 1S0 ground state. This has a number of advantages, not least of which is the ability to
separately image the ground and excited state populations (see Section 3.1.4 for details). Atom
number losses from the decay channel to the dark 3P2 state are limited to ∼ 1%. To address the
repumper transition, we use a distributed-feedback (DFB) laser module28. Current control is
afforded by a commercially available current control module29 while temperature control is
provided by a custom homebuilt temperature controller. The laser output is fiber-coupled with
a total of≈ 27mW at our disposal, of which we use≈ 500 µWmost of the time. This is split into
two branches, both of which are detuned by +71MHz from the transition frequency. Since our
wavemeter is limited to 1180nm, we initially use an optical spectrum analyzer to set the correct
output wavelength and then keep track of the optimal value using the repumped atom fraction
in our experiment. The wavelength is adjusted as needed by tuneing the laser temperature.

2.3.5 Lattice lasers
We use a set of three titanium:sapphire (ti:sapph) lasers30 to generate our 3D magic optical
lattice, with each individual axis of the lattice corresponding to one of the ti:sapphs. We opt for
ti:sapph lasers due to their ability to generate large amounts of power (7 − 9W) around the
desired wavelength of 759nm. The optical setup for one lattice axis is shown in Fig. 2.10(a).
An optical isolator31 with ≈ 40 dB of attentuation is used to prevent unwanted back-reflections
into the ti:sapph. We use an IntraAction AOM-402AF3 for frequency control, fast switching and
intensity stabilization. To cope with the high powers, the light is coupled into a photonic-crystal
fiber32. These types of fibers make use of a photonic bandgap to confine light to the core with
a high degree of isolation, thereby reducing stimulated Brillouin scattering in the fiber. An
important consideration is the effect of intensity fluctuations on the lifetime of atoms trapped
in our optical lattice. At a given trap frequency 𝜈tr, the heating rate of atoms is expected to be

26Gooch&Housego 3080-120
27Newport M-SG-23-2
28acalbfi/NTT NLK1E5GAAA
29Toptica DTC110
30Sirah Matisse CS with 25WMillennia pump
31Toptica SSR780
32NKT-LMA-PM-15
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Figure 2.10 | Lattice laser optical setup. (a) The output of a Matisse CS ti:sapph laser is used to generate

each of the axes of our 3D magic lattice. Light is coupled into a PCF fiber for power-handling and the

alignment of the lattice is monitored by observing the back-reflection through the optical setup at the

rejection port of the isolator using a homebuilt photodetector. (b) (Top panel) measured RIN curves of

our ti:sapph lasers featuring a prominent peak at≈ 40 kHz. (Lower panel) RIN curve of our vertical lattice

ti:sapph with and without intensity stabilization. We observe a servo bandwidth of≈ 6 kHz.

proportional to the one-sided power spectral density of the fractional intensity noise at twice
that frequency i.e. Γϵ = 𝜋2𝜈2tr𝑆ϵ(2𝜈tr) [178]. For this reason, we measure the relative intensity
noise (RIN) of each of our three ti:sapphs [top panel of Fig. 2.10(b)] using a Thorlabs PNA1
intensity noise analyzer. Notably, we observe a −120 dBc/Hz peak between 40 − 50 kHz in all
three lattice arms, which limits our trap lifetime at 20 kHz to around 250 s. This is is on the
same scale as our vacuum lifetime and is therefore not expected to be a limiting factor in our
experiment. In addition, we determine the efficacy of our intensity stabilization by comparing
the open and closed loop RIN of our ti:sapphs (an example dataset for this comparison is
shown in the lower panel of Fig. 2.10(b) for our vertical lattice ti:sapph). We observe RIN
supression up to a frequency of ≈ 6 kHz.

2.3.6 Tune-out lasers
To address the tuneout wavelengths for the ground and excited states of the clock transition,
we employ a set of vertical-external-cavity surface emitting lasers (VECSELs)33. These lasers
feature an optically pumped semiconductor gain chip, the output of which is frequency doubled
in an external cavity using a non-linear lithium triborate (LBO) crystal. Frequency selectivity
is achieved by combining a birefringent filter (BRF), thin etalon and piezo controlled cavity
mirror in the cavity. Unlike laser diodes, where the beam shape of the emitted light is elliptical
due to diffraction at the diode facets, emission from the gain chip occurs directly at the surface
of the semicondutor, resulting in an extremely circular mode shape.

To tune the laser frequency, we first adjust the LBO temperature to a value where the
emission operates in the vicinity of the desired wavelength (within ∼ 0.5nm - specified in look-
up table in the manual). We then tune the angle of the BRF for coarse wavelength selection.

33Vexlum VALO-SHG-SF
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Figure 2.11 | Ground state tuneout laser characteristics. (a) Tuning curve of the Vexlum output power

as a function of the frequency. The latter is tuned using the BRF angle and LBO temperature according

to the procedure described in the main text. (b) A Lorentzian fit of the beat signal between the Vexlum

laser and our green Toptica laser system yields an upper bound of 105(2) kHz on the Vexlum linewidth.

(c) A comparison of the Vexlum RIN in the frequency locked and unlocked mode. Suppression of intensity

noise by the lock is visible up to a frequency of≈ 2 kHz.

We observe the various BRF modes on our wavemeter and select the one closest to the desired
operating frequency. Once there, the output power is optimized by small changes in the LBO
temperature (on the single degree Celsius level). For finer wavelength selection, we tune the
temperature of the etalon itself and iterate with the LBO temperature to optimize the power.
As a final step, we scan the cavity length using the piezo. To maintain a constant output
frequency, we digitally lock our Vexlum lasers to the wavemeter. The digital feedback signal
is processed by a digital-to-analog converter (DAC)34 before it is amplified by a commercial
piezo controller35 and sent to the laser.

We extract an upper bound for the linewidth of the 552nm Vexlum laser by performing a
heterodyne beat measurement with our green Toptica laser system. The Toptica laser is locked
to our reference cavity during this measurement and presumed to exhibit a linewidth < 5 kHz.
We record the timetrace of the beat note signal using an amplified photodetector attached to a
fast mixed signal oscilloscope36. We then calculate a fast-fourier transform (FFT) of the data
and fit a lorentzian with a full width at half maximum (FWHM) of 105(2) kHz [Fig. 2.11(b)].
The intensity noise of the laser in the frequency locked and free running regime are evaluated
by performing a RIN measurement using an FFT spectrum analyzer37 [Fig. 2.11(c)]

2.4 Frequency stabilization
To perform laser spectroscopy and coherently address atoms, many of the lasers in our lab must
be highly stable in their output frequency. For this purpose, we use a sideband-locking variation
of the well-known Pound-Drever-Hall (PDH) frequency stabilization technique [179–181] to
lock our three Toptica DL-TA-SHG Pro lasers to an ultrastable reference cavity.

34National Instruments USB6002
35Scientific Instruments PS200
36Tektronix MSO54
37SRS SR760
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Figure 2.12 | Reference cavity. (a) An image of the complete Menlo ORS-cylindric cavity system (image

credit of Menlo Systems GmbH) to which we lock the blue, green and clock lasers. The entire system is

held at UHV by an ion pump and the cavity is temperature stabilized in vacuum. (b) A view of the cylindrical

cavity manufactured from an ultra-low expansion (ULE) spacer with IBS coated mirrors on either side.

The cavity is composed of one curved and one flat mirror on opposing ends of the cavity spacer. (c) Our

cavity supports longitudinal modes separated by a free spectral range of νFSR = 1.24 GHz. By carefully

tuning focusing lenses infront of the cavity we observe different transverse modes. We mode-match our

laser light to the TEM00 mode of the cavity.

2.4.1 Reference cavity
Our reference cavity consits of a plane mirror and a concave mirror (radius of curvature: 1m)
attached to either side of a single-bore, cylindrical, ultra-low-expansion glass cylinder38 of
length 𝐿 = 121mm and diameter ⌀60mm [Fig. 2.12(a)], yielding a free spectral range of
𝜈FSR = 1.24GHz. The mirrors are ion beam sputter (IBS) coated for 798nm, 1112nm and
1156nm. To reduce the impact of external temperature and pressure fluctuations on the
resonator stability, the cavity is contained within a vacuum chamber and actively temperature
stabilized to within ±1mK using a commerical temperature controller39. The entire system
was purchased from Menlo Systems GmbH.

2.4.2 Finesse
The ability of an optical resonator to act as a frequency discriminator relies on its capacity
to support only certain, very well-defined resonance frequencies (longitudinal modes of the
cavity). The spectral width of these resonance frequencies 𝛿𝜈 is determined by the length of
the cavity 𝐿 and the reflectivity 𝑅 of the mirrors in the following way [182]:

𝛿𝜈 = 𝑐
2𝑛𝐿

1 − 𝑅
𝜋
√
𝑅
=
𝜈FSR
F , (2.14)

where 𝑛 is the refractive index of the medium separating the cavity mirrors, and F is known
as the finesse. The latter quantity is a relative measure for the quality of our resonator and
determines the frequency resolution of the cavity. We measure the finesse of our cavity in two
separate ways for each of the three frequencies that we wish to stabilize. First, we perform a
ringdown measurement of the cavity photon storage time [Fig. 2.13(a)] [183]. This initially
requires the relevant laser to be locked to the cavity (a detailed explanation of our locking

38Corning Inc. ULE 7973
39SRS PTC10
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Figure 2.13 | Cavity finesse. (a) The finesse of our cavity for 1112 nm as determined by a cavity photon

storage ringdown measurement. The initially locked laser is suddenly turned off, giving rise to an ex-

ponential decay with a time constant related to the finesse of the cavity. We repeat this measurement

for our clock laser, giving rise to a finesse of F1156 = 484.2(3) × 10
3

. (b) By sweeping our 1112 nm laser

across the cavity resonance and measuring the time-domain response on a photodetector, we are able to

confirm our finesse value from the ringdown measurement performed in (a). This measurement has the

advantage allowing each laser to be free-running. We repeat this measurement at 798 nm and 1156 nm

(see main text for finesse values).

scheme is found in Section 2.4.6). We then abruptly turn off the light entering the cavity using
an AOM andmeasure the decay in transmitted intensity as a function of time, making sure that
the AOM switch-off occurs much faster than the expected ringdown. The observed exponential
decay has a time constant 𝜏 = F𝐿∕(𝑐𝜋), allowing us to extract a finesse ofF1156 = 484.2(3)×103
and F1112 = 269.2(6) × 103 for our yellow and green lasers respectively40. Second, we measure
the time-domain response in the cavity transmission as we sweep our lasers across a cavity
resonance. The response of the cavity field 𝐸(𝑡) to an external laser beam with amplitude 𝐸0,
incident on the cavity, is captured by the following differential equation [184]:

𝑑𝐸
𝑑𝑡 = − 1

2𝜏 [(1 − 𝑖𝜈𝑡)𝐸 + 𝑖𝜂] , (2.15)

where 𝜈 = 2F �̇�∕(𝜋𝑐) with �̇� the sweep rate of the laser and 𝜂 =
√
T F𝐸0∕𝜋, with T the

transmissivity of the first cavity mirror. The transmitted field closed-form solution for this
equation then takes the form [183]:

|||𝐸𝑇(𝑡)|||
2 =

𝛽2 |||𝐸0(𝑡)|||
𝜈

|||||||||

√
𝜋
2 𝑒

−𝑡′+𝑖𝜈𝑡′2∕2−𝑖∕(2𝜈) + 𝑖
√
2𝐷 ( 𝑖 + 𝑡′𝜈

√
2𝑖𝜈

)
|||||||||

2

, (2.16)

with 𝑡′ = 𝑡∕(2𝜏) and 𝜈 = 2𝜈𝜏. We use Eq. (2.16) to fit the data in Fig. 2.13(b), resulting in finesses
of F1156 = 4.6(4) × 105, F1112 = 2.4(2) × 105 and F798 = 2.6(2) × 104 for our yellow, green and
blue lasers respectively [185]. The expected finesse values as calculated from the cavity mirror
reflectivities measured by Menlo areF1156 = 3.1× 105, F1112 = 1.6× 105 andF798 = 2.2× 104.

40At the time of measuring these values, the blue 399nm laser had not yet been locked to the cavity and thus no
ringdown measurement of the finesse was performed.
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Figure 2.14 | Zero-crossing temperature. (a) We determine the zero-crossing temperature of our cavity

by measuring the drift of a beat signal between our locked clock laser and another frequency stabilized

clock laser from a neighboring lab at various cavity temperatures. A parabolic fit of the data gives a

value of T 0 = 25.435(4)◦C. (b) A histogram showing the frequency deviations in the beat signal between

our clock laser and the frequency stabilized clock laser from a neighboring lab over a period of fifteen

minutes.

2.4.3 Mode matching

In addition to resonance frequencies, the cavity also supports resonant field distributions.
The behavior of these transverse electromagnetic (TEM) modes is governed in large part by
the shape of the cavity mirrors. The lowest order mode (TEM00) simply takes the form of a
Gaussian beam and is therefore the most practically accessible. Mode-matching describes the
process of shaping the light coupled into the cavity in such a way as to match the form of the
TEM00 of the cavity. For this purpose, each of the beam paths coupled into the cavity is equiped
with a telescope and an additional lens on a translation stage just prior to the vacuum chamber
viewport. The 1112nm and 1156nm light are coupled into the cavity through the curved
mirror of the cavity, while the 798nm enters the cavity from the other side through the plane
mirror. When calculating the beam propagations of each beam, we were careful to include
the lensing effect of the curved cavity mirror on the beam shape. In addition, we pre-aligned
each path before installing it on the cavity. The shape of the cavity mode was observed on a a
beam profiler41 and the lens positions tuned in such a way as to optimize the transmission on
a nearby photodetector. Some of the observed transverse modes are shown in Fig. 2.12(c).

2.4.4 Zero-crossing temperature

Temperature fluctuations can lead to a change in the length of the reference cavity and corre-
spondingly, a change in the cavity resonace frequencies. This is an undesirable effect which
we wish to reduce as much as possible. For a given change in temperature ∆𝑇, the relative
change in the length of the cavity and resulting change in relative frequency are related in
the following fashion [186]:

∆𝜈
𝜈 = ∆𝐿

𝐿 = 𝛼CTE(𝑇)∆𝑇, (2.17)

41CINOGY CinCam CMOS 1201 Nano
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where 𝛼CTE is a temperature-dependent proportionality constant known as the temperature
coefficient of thermal expansion. Our goal is to find a temperature 𝑇0, for which 𝛼CTE is
minimized. Close to 𝑇0, the solution to the differential equation

𝑑𝐿
𝑑𝑇 = 𝛼CTE𝐿 (2.18)

can be approximated as

𝐿 ≈ 𝐿0(1 + 𝑎∆𝑇 + 𝑏∆𝑇2 +O(∆𝑇3)). (2.19)

The temperature 𝑇0 at which the coefficient 𝑎 vanishes is also known as the „zero-crossing“
temperature of the linear coefficient of thermal expansion. For ULE, the quadratic expansion
factor is found to be 𝑏 ≈ 1.8 × 10−9∕K2 [186]. To measure the zero-crossing temperature,
we perform a heterodyne beat measurement between our clock laser and a second frequency
stabilized clock laser from a neighboring lab. By keeping track of the drift of the beat frequency
as we vary the applied temperature of the cavity, we can deduce the zero-crossing from the
minimum drift range. We assume that the frequency drift of the second clock laser is negligibly
small compared to the drift of the clock laser locked to our own cavity. Using the parabolic
approximation as a fit for our data, we extract a zero-crossing temperature of 𝑇0 = 25.435(4)◦C
[Fig. 2.14(a)], with an error given by the standard deviation of the parameter estimate.

2.4.5 Cavity ageing
Over time, ageing of the ultra-low expansion (ULE) glass leads to a slow change in the cavity
mirror spacing. This in turn results in a continous and linear long term drift in the cavity
resonance frequencies. We compensate this effect by spectroscopically probing the atomic
resonance using our clock laser during several measurements over an extended period of time.
From this we extract a linear drift rate of 59(1)mHz∕𝑠 which we continously feed forward
onto our lock frequency Ω1 (see Section 2.4.6).

2.4.6 Sideband locking
The light entering the cavity is phase-modulated using electro-optical modulators (EOMs)42
driven at a modulation frequency Ω1 = 105MHz using a DDS43 and a set of amplifiers
[Fig. 2.15(f)]. This modulation frequency is then additionally phase modulated at a frequency
Ω2 by a frequency generator44. The resulting electric field takes the form:

𝐸(𝑡) =
√
𝑃0exp [𝑖𝜔𝑐𝑡 + 𝑖𝛽1sin (Ω1𝑡 + 𝛽2sin (Ω2𝑡))] , (2.20)

where 𝑃0 and 𝜔𝑐 are the power and frequency of the light entering the EOM and 𝛽1 and 𝛽2 are
the modulation depths of the respective modulation signals. These parameters quantify the
strength with which the light is modulated and are related to the half-wave voltage 𝑉𝜋 of the

42Jenoptik PM785, PM1064
43Wieserlabs WL-FlexDDS-NG
44Keysight 33600A. Ω798

2 = 35MHz, Ω1112
2 = 33MHz and Ω1156

2 = 14MHz
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Figure 2.15 | Frequency stabilization. (a) Diagramatic representation of our offset sideband locking

scheme. The fundamental frequeny of each of our Toptica DL-TA-SHG Pro lasers is stabilized to a sideband

located atωc + Ω1 (blue), generated by modulating an EOM at a frequencyΩ1 and modulation depth β1.

PDH sidebands (grey) are generated by additionally phase modulating this sideband with a frequencyΩ2

and depth β2. (b) An error signal is generated by demodulating the reflected cavity signal atΩ2 (data taken

from a measurement for 1112 nm). (c) The slope of the error signal is given by the frequency discriminant,

D, and allows us to determine the lock sensitivity according to eq. (2.21). For the 1156 nm lock, this is

measured to be 54.19(14)Hz∕mV. (d) The optimal value of β2 = 1.08 is found by maximizing the product

of the term J0(β2)J1(β2) (red line). Higher orders of n are shown as blue and black lines for context. (e)

The optimal value of β1 = 1.84 is confirmed by measuring the power residing in each sideband, given

by J 2

1
(β1). This is done by observing the response of the EOM to various applied voltages in the form

of the transmitted power in each sideband. Ideally, the optimal value of β1 maximizes J 2

1
(β1) while

keeping J 2

0
(β1) as small as possible. (f) Input locking electronics used in our lock scheme. Numbers key:

1. Wieserlabs DDS (105 MHz), 2. VAT-10W2+, 3. ZHL-1-2W-S+, 4. ZFSC-2-4-S+, 5. Jenoptik PM785/1064,

6. ZFSC-2-4-S+, 7. Keysight 33600A, 8. 50Ω termination. (g) Output locking electronics used in our lock

scheme. Numbers key: 1. Photodetector (BW: 62 MHz), 2. ZFBT-6GW+, 3. BLK-89-S+ 4. Kuhne KU0180A, 5.

ZFL-1000H+, 6. ZAD-6+, 7. Keithley 3390, 8. LPF-SLP-5+, 9. Toptica FALC, 10. Toptica DL-TA-SHG Pro DC

MOD IN.

EOM (the voltage at which the EOM induces a phase shift of 𝜋 on the light) via 𝛽 = 𝜋 𝑉
𝑉𝜋
, where

𝑉 is the voltage applied to the EOM. Themodulation generates sidebands at frequencies𝜔𝑐±Ω1
and an additional set of sidebands at 𝜔𝑐 ± Ω1 ± Ω2, as shown in Fig. 2.15(a). By resonantly
coupling the 𝜔𝑐 + Ω1 (or 𝜔𝑐 − Ω1) sideband into the cavity and demodulating the reflected
signal at Ω2 to generate an error signal in the standard PDH fashion [180], it is possible to
lock the laser to the 𝜔𝑐 + Ω1 sideband. In this way, we retain the ability to freely tune the
carrier frequency by tuning Ω1, while the laser remains locked. To optimize the frequency
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stability, we want to maximize the sensitivity of our feedback loop to changes in frequency.
This can be achieved by increasing the slope of the error signal, which in our locking scheme
can be shown to take the form [181]

𝐷(𝛽1, 𝛽2) =
8𝑃0
𝛿𝜈 J 2

1 (𝛽1)J0(𝛽2)J1(𝛽2), (2.21)

where J𝑛 are 𝑛𝑡ℎ-order Bessel functions of the first kind. Expression (2.21) is also known as the
frequency discriminant. From this expression it is clear that by finding the modulation depths
𝛽1 and 𝛽2 where the frequency discriminant is maximized, we optimize our lock sensitivity.
Evaluating Eq. (2.21) as a function of 𝛽, we find optimum values of 𝛽1 = 1.84 and 𝛽2 = 1.08
[Fig. 2.15(d)], which correspond to a measured lock sensitivity of 𝐷 = 54.19(14)Hz∕mV, as
shown in Fig. 2.15(c). To confirm these values, we measure the optical power in each sideband
as a function of the applied peak-to-peak voltage [Fig. 2.15(e)] . From this measurement,
we extract a half-wave voltage 𝑉𝜋 for each of the three EOMs, which we compare to the
manufacturer specifications. The sidebands are accessed by slowly scanning each laser’s
output frequency while applying a modulation frequency of Ω1 = 10MHz to the EOM using
an external signal generator45. We then vary the power of this modulation and measure the
response of the EOM on a photodetector. The locking electronics used to modulate, and
demodulate and feedback are shown in Figs. 2.15(e) and 2.15(f) respectively.

2.5 Main chamber optics

2.5.1 Zeeman slower and 2D MOT
Zeeman slower light is out-coupled close to the hot window of the atom source. We use a 1:2
telescope consisting of an 𝑓 = −100mm and a 𝑓 = 200mm lens to magnify the emergent
beam to a waist of ≈ 3mm. The second lens is slightly displaced from its ideal position to focus
the Zeeman slower beam into the atom source. A final 𝜆∕4 waveplate immediately infront
of the hot window ensures the correct polarization for the Zeeman slower. To pre-align the
Zeeman slower (without optimizing on an atomic signal), we overlapped the ingoing beam
with its back-reflection from the hot-window while at the same time observing and mimizing
the scattered light at the exit aperture of the Zeeman slower through the leftmost 2D MOT
viewport. Next, we mounted a camera below the oven spectroscopy viewport opposite the
getter pump and another close to the 2D MOT viewports and tried to observe and maximize a
fluoresence signal at the resonance frequency while tuning the angle of the 𝜆∕4 waveplate.

The 2D MOT requires two large, elliptically shaped beams to maximize the interaction
area with the atomic beam. To this end, the beam size is first increased using a 1:3 telescope
(𝑓 = −100mm, 𝑓 = 300mm), before being split into two branches, each of which is further
magnified using a 1:5 cylindrical telescope, resulting in a beam of 𝑤𝑥 × 𝑤𝑦 ≈ 33mm× 5mm.
To couple these beams into the 2DMOT, we use a set of rectangularly shaped mirrors, followed
by large 𝜆∕4 waveplates, situated just in front of the 2D MOT viewports for polarization

45Rohde & Schwarz SMB100B
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by passing 399 nm light first through a 1:3 telescope and then through a set of 1:5 cylindrical telescopes

(one for each branch). Each carries≈ 15 mW of power. For the Zeeman slower we use≈ 300 mW of blue

light, which is magnified to a beam waist of≈ 3 mm.

control. Pre-alignment is performed using using a card with a rectangular cut-out to overlap
the ingoing and reflected light.

2.5.2 High-NA objective
Objective design.—Installed below our glass cell is a custom high resolution microscope objec-
tive46 which is used to perform fluoresence imaging and to project optical tweezers onto the
atoms. Though only one objective is installed, we have a second spare objective, identical in
design specifications to the first and subject to all the same tests described in the following.
Fluoresence imaging is performed by gathering scattered imaging light from our atoms and
projecting this onto a low-noise CMOS camera47. An important measure for the ability of our
objective to gather light is the numerical aperture (NA), defined in the following fashion [187]:

NA = 𝑛 sin(𝜃), (2.22)

where 𝑛 is the refractive index of the relevant operating medium (𝑛 = 1 is assumed in the
following) and 𝜃 is the half-angle subtended by the arc formed by the final focusing lens
of the objective. This quantity has important consequences for the diffraction limit of the
objective which is defined as:

𝑑 = 1.22𝜆
2NA (2.23)

46Special Optics Inc.
47Hamamatsu OrcaQuest
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and determines the minimum distance between two objects within which they remain distin-
guishable as separate objects. In ourmagic lattice, the lattice spacing is given by 𝜆∕2 ≈ 379.5nm.
For an imaging wavelength of 399nm, this yields a minimum NA of 0.64. Our own objective
possesses an NA of 0.7 and is designed to be diffraction-limited at 399nm, 532nm, 552nm and
590nm. The point-source imaging response of an objective is characterized by the so-called
point spread function (PSF), which takes the form of an Airy pattern [188]:

𝐼(𝜌) ∝ (
2J1(𝜌)
𝜌 )

2

, (2.24)

where 𝜌 = 1.22𝜋(𝑧∕𝑑) and J1(𝜌) is the Bessel function of the first kind. The diffraction
limited performance of our objectives is tested at 399nm and 532nm bymeasuring the PSF and
comparing to the corresponding diffraction limit. For this purpose, we use our objectives to
image a 250nm pinhole contained on a resolution test chart48. The results of this measurement
are summarized in Figs. 2.17(a) and 2.17(b) for the objective installed in our experiment. For
further details on this measurement and the objectives used in our experiment we refer the
reader to Ref. [189]. Both objectives are confirmed to exhibit diffraction limited performance at
the two test wavelengths. The area within which diffraction limited performance is guaranteed
is known as the field of view (FOV) and in our case has been designed to a size of ≈ 100 µm×
100 µm. For a tweezer spacing of 2𝜆 ≈ 1.5 µm, this provides space for an array of 66 × 66
diffraction limited tweezers.

Mounting stage.—The distance between our objective and the surface of the stepped glass
cell viewport is 1mm for a total working distance of 14mm. For positioning, the objective
is mounted in a custom designed 5-axis stage. The objective is screwed into a titanium ring
attached to an aluminium block using a set of springs. The aluminium block itself is screwed
from below into the main breadboard surrounding the glass cell. Along any given translational
degree of freedom, the action of these springs is counteracted by a corresponding picomotor
which can be use to translate the titanium ring along the intended axis with nm resolution49.
Titaniumwas chosen for its low coefficient of thermal expansion and lowmagnetic permeability.
Similar reasoning led us to choose Ultem as the material from which to manufacture the
objectives. Integrated within the mounting structure is a lens mount for focusing the lower
MOT arm onto the back focal plane of the objective and a non-polarizing beam splitter (NPBS)
for combining this MOT arm with the tweezer and imaging light (see Section 2.5.4 for details).

Alignment.—To fix the horizontal (𝑥𝑦) degrees of freedom, we aligned the objective to a
guide beam which had previously been aligned onto the atoms through the bottom of the glass
cell by maximizing atom loss from the MOT. To aid in the alignment, the exit pupil of the
objective was equipped with an iris for the duration of the alignment procedure. Once the
objective had been fixed in the horizontal plane, we aligned the tip and tilt degrees of freedom
relative to the glass cell using 532nm light. This proved difficult since we had to carefully
distinguish between different back-reflections from the cell and overlap the relevant reflection

48Technologie Manufaktur TC-RT01
49Newport 8301NF for horizontal translation and Newport 8321 for vertical displacement
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Figure 2.17 | High-NA objective. (a) Render of the high resolution microscope objective used in our

experiment together with its 5-axis mount. (b) The measured PSF of our objective at 399 nm (blue

datapoints) is in close agreement with the expected PSF (purple line) calculated from the Airy pattern

[Eq. (2.24)] using the theoretical diffraction limit of 347.7 nm indicated by the grey line. The inset shows

the image of the pinhole used to measure the data displayed in the plot. (c) The same data as in (b)

but plotted on a logarithmic scale where the diffraction-limited performance is more clearly visible.

Subfigures (b) and (c) are adapted from Ref. [189].

with the incoming beam. This problem was solved by scanning the angle of the incoming beam
and observing the relative motion of the different back reflections.

2.5.3 Tweezer setup
Using our high resolution objective, it is possible to generate large arrays of tightly focused
optical tweezers. While we eventually want to generate tweezer arrays at the ground and
excited state tuneout wavelengths using our Vexlum lasers (see, for example, Section 5.3.1),
initial tests of tweezer loading and cooling are performed using a 532nm laser50. At this
wavelength, large amounts of power are readily available, making it practical for generating
large scalable arrays. In our experiment, we use a set of acusto-optic deflectors (AODs)51
aligned to be orthogonal to one another, to create a regular array of diffraction orders. We
control the relative spacing between these diffracted beams as well as the size and shape of the
array using an arbitrary-waveform generator (AWG)52. AODs have the benefit of a uniform
diffraction efficiency over a larger range of RF frequencies when compared to AOMs. We
use a 1:1 telescope53 placed between the AODs to image the first AOD onto the second and a
further 1:10 telescope54 to image the tweezer array onto the objective. The array is separately
imaged onto a camera55 by a 3:2 telescope, which we use for homogenization. Just before to the
objective, the tweezer beam has beenmagnified tenfold, requiring the use of 3" optics. Here, we
are extremely careful to ensure that the final set of mirrors is sufficiently flat to avoid optically
aberrated tweezers. To this end, we measure several mirrors56 interferometrically to ensure a
surface flatness of at least 𝜆∕10 using a Zygo interferometer. The selected mirrors are glued
into Polaris mounts to minimize deformations and increase stability. The tweezers also pass

50Coherent - Verdi V18
51AA OptoElektronic DTSX-400-532.556
52Spectrum Instrumentation Corp. M4i6631-x8
532 × 𝑓 = 100mm
54𝑓 = 100mm, 𝑓 = 1000mm ACT508-1000-A
55AlliedVision Alvium 1800 U-1240 mono C-Mount
56Thorlabs BB3-E02
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Figure 2.18 | Tweezer setup. The output of a 532 nm high-power laser is coupled through a PCF fiber

onto the main experiment. To generate tweezer arrays, this light subsequently passess through two

orthogonal AODs, separated by a 4f imaging system. Part of the tweezer light is further imaged on a

camera for monitoring and homogenization. The majority of the tweezer light, however, is magnified

tenfold before being reflected into our high resolution objective. This focuses the tweezer light at the

position of the atoms.

through a narrow band dichroic which acts to separate them from the imaging wavelengths
of 399nm and 556nm. Using the same Zygo interferometer as before, we find that by gluing
the dichroic into its mount at only one corner, the surface flatness is optimized.57 We bring
532nm light onto our experiment table using a 4m long PCF fiber58 and align our AODs for a
maximum diffraction efficiency of ≳ 90% using 5-axis stages59. The tweezer beam is intensity
stabilized in the fashion described in Section 2.3.1 and the individual tweezer intensities are
homogenized on the percent level by feeding back to the AODs on camera images of the
tweezer array. To generate a sensible feedback signal, we employ an algorithm which iterates
alternatingly between mean and random sampling methods to calculate a balancing error
at each tweezer site [66].

2.5.4 Glass cell optics
Around our glass cell optics of various kinds are needed to shape and manipulate each beam
path properly. In the following we provide an overview and rationale for each of these paths.
One note of general interest is that every beam path is intensity stabilized. This is accomplished
by feeding back the light picked off and collected on a photodector after each fiber, to an
intensity servo, which in turn is connected to the corresponding AOM for that path. Unless
stated otherwise, the photodetectors are custom built based on an existing design taken from
Ref. [190]. The entire set of optics is visualized schematically in Fig. 2.19.

MOT optics.—Our 3D MOT consists of two orthogonal retro-reflected 556nm beams in the
horizontal (𝑥𝑦) plane [Fig. 2.19] and two independent counter-popagating beams along the
vertical 𝑧-axis [Fig. 2.20(c)]. Each axis employs a 𝑓 = 75mm collimator60 to bring the diameter
of the beam to≈ 10mm. MOT arm 1 is required to propagate through our microscope objective.

57Using NOA61 UV curing glue from Thorlabs.
58NKT-LMA-PM-15
59Newport 9081-M
60Schäfter+Kirchhoff GmbH 60FC-L-4-M75-01
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To ensure the correct beam size at the location of the atoms, the light in this arm is focused
onto the back focal plane of the objective using a 3" 𝑓 = 150mm lens [Fig. 2.20(b) and 2.20(c)].

Horizontal lattice.—Each of the two horizontal lattices is generated by the light from one
of our 759nm ti:sapphs, focused down to a 1∕𝑒2 beam waist of 𝑤0 ≈ 35 µm and retroreflected
from a curved mirror. The curved mirrors act as lenses to re-focus the retro-reflection at the
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position of the initial focus. These two lattice axes intersect at right-angles to each other, but
are offset in their respective frequencies on the order of hundreds of MHz to avoid unwanted
interference (note that day-to-day, these lasers are not locked to the wavemeter). To align
the lattice arms, we use a set of motorized mirror mounts. The retro-reflected lattice light is
coupled back into its respective pcf fiber and this return signal is picked off on the in-coupling
side and the read-out by a photodetector [Fig. 2.10(a)]. By maximizing the signal on the
photodetector we ensure good alignment within each lattice arm. The translational degree
of freedom of each arm is fine-tuned by moving a 𝑓 = 200mm achromatic focusing lens
using a dedicated translation stage61.

Vertical lattice.—To complete our 3D lattice geometry, we implement a vertical lattice
to confine atoms in the direction of gravity. Ideally, this vertical lattice would propagate
orthogonally to both horizontal lattices. The placement of our high-NA objective prevents
this ideal configuration and so we pursue and alternative approach wherein a vertical lattice
is generated by interferring two running wave laser beams at a relative angle in the 𝑧𝑦-plane
[see figure Fig. 2.21(a)]. In our case, this angle is geomtrically constrained to ≤ 20◦ by the
small glass cell viewport through which both beams must pass. To reduce the influence of
noise on the differential path length of the running wave beams we use a Kösters prism62 to
split the lattice laser light into two parallel collimated beams [191]. These are then brought
to interference by a final 𝑓 = 50mm focusing lens just infront of the glass cell viewport. The
Kösters prism is amonolithic component and thus offers a high degree of passive phase stability.
It is also capable of handling large amounts of optical power, making it less susceptible to
thermal noise or distortion. The prism along with the final focusing lens is mounted on several

61Standa 7T67-6-9S35M-5
62B. Halle Nachfl. GmbH - IKP 040
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brought to interference, thus creating a lattice along z. (b) Camera image of the vertical lattice during

pre-alignment. We observe a layer spacing of 2.2µm, as intended. The maximum trap depth achieved in

this lattice is calculated at≈ 40 kHz.

translation stages to allow for accurate positioning and alignment of the beam foci. During
pre-alignment, we measured a lattice beam size at the focus of ≈ 18 µm× 54 µm with a layer
separation of ≈ 2.2 µm. At maximum power, our vertical lattice is calculated to possess a
harmonic oscillator frequency of around 40 kHz.

Spectroscopy.—Currently, two spectroscopy beams are employed in our experiment, both
running at 578nm. The first spectroscopy beam („Spectrocsopy 1“ in Fig. 2.19) is in some
sense a historical remnant, harking back to the time when we used a 1D optical lattice along
the 𝑦-axis.63 By contrast, our second spectroscopy beam („Spectroscopy 2“) is aligned to be
counterpropagating with horizontal lattice axis 1. Spectroscopy 1 uses a 𝑓 = 400mm lens to
focus light down to a waist of 𝑤0 ≈ 220 µm at the location of the atoms. For Spectroscopy 2,
we decided to combine an 𝑓 = 250mm lens with an additional weakly focusing 𝑓 = 1000mm
lens to further reduce the beam waist at the focus to 𝑤0 ≈ 130 µm. This was done to enhance
the Rabi frequency. Each spectroscopy path is equipped with a filter wheel that allows us to
selectively reduce the yellow laser power incident on the atoms and thus reduce the effect
of power broadening on the transition linewidth.

Repumping.—We co-align a set of repumping beams with our spectroscopy beams. This
ensures that during sideband cooling, the recoil imparted by the repumping beams occurs
along the same direction as the cooling (i.e. no heating occurs along directions that cannot
be cooled). For the purpose of overlapping the repumper beams with the spectroscopy light,
we make use of 1" longpass dichroic mirrors.64

Imaging.—Prior to entering the glass cell, our 399nm absorption imaging beam ismagnified
by a 1:2 telescope after exiting the fiber collimator, to ensure a homogeneous illumination across
the atomic sample (see Section 3.1.1 for details). Our imaging camera is a Mako G-234B with a
Sony IMX249 CMOS sensor, exhibting a monochrome quantum efficiency of ∼ 52% at 399nm.

Slowing.—We use two 399nm beams, crossing under an angle of 22.5◦, to slow atoms prior
to entering the 3D MOT, thereby increasing our MOT loading rate [192]. To prevent heating of
atoms in the MOT, the intersection of these two beams is offset from the MOT by ≈ 17.5mm.

63See, for example, our state-dependent wavelength measurements in Chapter 4.
64Thorlabs DMLP1000
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e-tuneout.—For measurements of the excited state tuneout wavelength, we create a shallow
1D lattice using 575nm light from one of our Vexlum lasers (see also Section 4.5).

Raman cooling.—The presence of a non-vanishing nuclear spin and the concomitant ap-
pearance of hyperfine states in the fermionic isotopes of Yb, permits Raman sideband cooling
to bring atoms into the motional ground state [66]. For this purpose, four separate 556nm
beams are required. These are necessary to address the correct 𝜎 and 𝜋 transitions in our 3D
lattice. The light for these beams is produced by a 556nm Toptica TA-Pro beat-locked to our
main green laser system (Section 2.3.2). As of the writing of this thesis, this setup is incomplete.



CHAPTER 3

Experimental methods

A typical run of our experiment proceeds according to a precisely determined sequence of
events. First, hot and fast ytterbium atoms are initially slowed, captured and cooled in a MOT.
Subsequently, the MOT is compressed and the atoms loaded into tweezer arrays or optical
lattices. To prepare some desired initial state, the atoms are further cooled in the optical lattice
using a variety of different techniques. Then, dynamical evolution of the system is allowed to
occur for some time, after which, the atoms are interrogated spectroscopically to observe their
final state. At this point, recourse is made to one of several imaging techniques. All of this takes
place in less than one second. It is the purpose of this chapter to break down that one second into
bite-sized chunks, each relating to a different stage in the above described sequence of events.

3.1 Imaging

Imaging techniques of various kinds are used in our experiment to extract relevant information
about the size, temperature, location and state populations of our atomic sample. In this
section we explain the principles involved in these imaging techniques and explain how they
are realized in our experiment.

3.1.1 Absorption imaging

To measure the density distribution of our atomic sample, we make use of absorption imaging.
The absorption of resonant light by our atomic ensemble attenuates the transmitted light
intensity, thus casting a shadow which can be captured on a camera and used to deduce the
density of the ensemble. This simple idea can be cast into the form of a differential equation

𝑑𝐼
𝑑𝑦 = −𝑛(𝑥, 𝑦, 𝑧)𝜎0𝐼, (3.1)

where 𝜎0 is the resonant scattering-cross section of our atoms and captures the probability
with which a scattering event will occur, and 𝑛(𝑥, 𝑦, 𝑧) is the local density of our atomic
sample. By integrating this equation, we find that the attenuation of the initial intensity 𝐼0

49
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Figure 3.1 | High-intensity imaging calibration. (a) By recording the variance in atom count data for

different imaging intensites incident on identical atomic samples, we are able to calibrate the count

rate saturation factor Csat = 169.37px
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−1
(see main text for details). (b) After calibration, the initially

intensity-correlated atom count data (grey) is independent of the imaging light power (blue).

increases exponentially along the direction of light propagation in a fashion described by
the Lambert-Beer law [193]:

𝐼(𝑥, 𝑧) = 𝐼0(𝑥, 𝑧)𝑒−𝜎0
∫
𝑑𝑦𝑛(𝑥,𝑦,𝑧), (3.2)

where 𝐼0 is the initial intensity incident on the atomic ensemble. The column density, i.e.,
the integrated local density, is then given by

𝑛(𝑥, 𝑧) = − 1
𝜎0
ln (

𝐼(𝑥, 𝑧)
𝐼0(𝑥, 𝑧)

) , (3.3)

such that, in principle, it is sufficient to capture two images: one of the imaging light with no
atoms (bright image) and one image with the atoms present (atom image). In practice, we
capture a third (dark) image without atoms and where the imaging light is turned off. This is
then subtracted from both the bright and atom images to calibrate out the dark counts. The
non-linear nature of expression (3.3) guarantees that this is a non-trivial offset.

3.1.2 High-intensity imaging calibration
So far we have assumed that the intensity of light incident on our atoms is much smaller than
the saturation intensity, 𝐼 ≪ 𝐼sat.1 This assumption was implicit in our use of the resonant
scattering-cross section in Eq. (3.1), but cannot be guaranteed in all measurements. We account
for this fact by working with a modified effective scattering cross section

𝜎ef f = 𝜎0
1

1 + 𝐼(𝑥,𝑦,𝑧)
𝛼𝐼sat

, (3.4)

1The saturation intensity is that intensity for which the absorption coefficient of a medium (i.e. the exponent of
the Lambert-Beer law) is halved. It is defined as 𝐼sat = 𝜋ℎ𝑐∕(3𝜆3𝜏), where 𝜏 is the lifetime of the excited state. For
the 1S0 ↔1P1 transition in Yb, 𝐼sat ≈ 60mW∕cm2.
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where 𝛼 is a numerical factor compensating for imperfect imaging beam polarization and
the multi-level atomic structure. In this way, we obtain a modified version of the column
density [194]:

𝑛(𝑥, 𝑧) = − 1
𝜎0

[ln (
𝐼(𝑥, 𝑧)
𝐼0(𝑥, 𝑧)

) +
𝐼(𝑥, 𝑧) − 𝐼0(𝑥, 𝑧)

𝛼𝐼sat
] . (3.5)

It is a simple matter to relate this expression to the counts detected by the camera 𝐶(𝑖, 𝑗) [195]:

𝑛(𝑖, 𝑗) = − 𝐴
𝜎0

[ln (
𝐶(𝑖, 𝑗)
𝐶0(𝑖, 𝑗)

) +
𝐶(𝑖, 𝑗) − 𝐶0(𝑖, 𝑗)

𝐶sat
] , (3.6)

where 𝐴 is the pixel area and (𝑖, 𝑗) its coordinates. 𝐶sat is an unknown calibration factor which
we determine experimentally. To this end, we make use of the fact that the atom number is
independent of the imaging intensity to repeatedly prepare the same atomic sample while
varying the imaging intensity and observing the results of each iteration on our camera. From
this data, 𝐶sat = 169.37px−1 µs−1 is determined as the minimum of the atom count variance
[Fig. 3.1(a)]. During this calibration measurement, we are careful to ensure that the imaging
light penetrates the atomic cloud even at the lowest imaging intensities. Using our calibrated
count rate, we observe that the atom number recorded by the camera is now independent
of the incident imaging light intensity [Fig. 3.1(b)]. This is in contrast to the correlated data
observed prior to the calibration. An alternate calibration scheme would be to use a second
camera to track the induced recoil from the imaging light on the atoms. By comparing the
point at which the velocity saturates to the amount of light incident on the camera to be
calibrated, it is possible to extract 𝐶sat [195].

For each of the three images we take during absorption imaging we restrict the region of
interest (ROI) to reduce unecessary overhead in the file size while still capturing the entire
cloud in the atom image. In the bright and atom images, we additionally record a background
region by sampling the edges of the ROI. This is done to compensate for changes in the imaging
beam intensity between the two images.

3.1.3 Time-of-flight imaging

The magnification of our imaging optics necessitates a calibration of the effective pixel size.
For this purpose, we employ time-of-flight (TOF) imaging and measure the free-falling accel-
eration of our atoms. In principle, this should match the acceleration due to gravity and any
discrepancies are attributed to the uncorrected pixel area. During TOF imaging an initally
trapped atomic sample is released and allowed to expand freely while absorption images of
the sample are taken at regular intervals [Fig. 3.2(a)]. The centroid of the atom cloud follows
a classical trajectory defined by:

𝑦(𝑡) = 𝑦0 −
1
2𝑔𝑡

2, (3.7)
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Figure 3.2 | Time-of-flight imaging. (a) Absorption images of the expanding atomic cloud after sudden

release from our MOT. By fitting a 2D Gaussian (red dashed circle) to our cloud we keep track of the cloud

size and center position as a function of time. (b) The cloud center as a function of time allows us to

measure the acceleration of the cloud. By comparing this to the acceleration due to gravity (the solid line

is a fit of Eq. (3.8)), we are able to calibrate our camera’s pixel size to be 5.0(2)µm. (c) The cloud widths

extracted from the Gaussian fits in (a) provide access to the temperature of the cloud. A fit of Eq. (3.7) to

this data (solid line) gives a value of T= 27.7(9)µK for the temperature of the atomic sample.

where 𝑦0 is the initial 𝑦-coordinate of the cloud center and 𝑔 is the acceleration due to gravity.
By fitting a 2D Gaussian to our atom cloud, we keep track of the cloud center. This in turn
allows us to calibrate our pixel size by comparing the acceleration of the cloud center with
the acceleration due to gravity [Fig. 3.2(b)].

We can further make use of TOF imaging to determine the temperature of our atomic
sample. We assume our atoms to be non-interacting and thermally distributed, giving rise
to ballistic expansion of the atomic cloud after quenching off the trap potential. The size of
the cloud as a function of time is then given by [196]:

𝜎(𝑡) =
√
𝜎20 +

𝑘𝐵𝑇
𝑚 𝑡2, (3.8)

with 𝜎0 the initial cloud size, 𝑘𝐵 Boltzmann’s constant, 𝑇 the temperature of the cloud and
𝑚 the atomic mass [Fig. 3.2(c)].

3.1.4 State-selective imaging
We extend the absorption imaging scheme described at the beginning of this chapter to encom-
pass the separate imaging of ground and excited state atoms of our clock transition. For this
purpose, we initially take an atom image as before, but now add a separate 399nm, 3.5mW
„blowout“ pulse lasting 50 µs to ensure that no atoms remain in the ground state before we
repump our excited state atoms. Importantly, our camera is triggered to read out this blowout
pulse as an image so as to ensure that it is „clean“ before taking the next image (the camera
continously accumulates photons until it is read out). This adds an additional 12ms wait time
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to our sequence. After this blowout pulse, we repump our atoms for 3ms from the excited
state and take another image, followed by the usual bright and dark images. In this way we
can directly determine the fraction of atoms in each state.

3.1.5 Fluoresence imaging
Fluoresence imaging makes use of our high resolution microscope objective to capture light
sacttered off our atoms and project it onto a low-noise CMOS camera2. The benefits of this
method compared to absorption imaging include a greater signal-to-noise (SNR) ratio and a
higher resolution, in principle allowing for single-site imaging of atoms in our optical lattices.
One significant drawback is the increased time required for this imagingmethod. This is usually
limited by the rate of scattered photons and the readout time of the camera. To counteract
these limitations, cooling the atoms during imaging may be employed to increase the photon
scattering rate. Another option is to increase the sensitivity of the camera and its readout
speed. Compared to the established electron multiplying charge-coupled device (EMCCD)
cameras used in many cold atom experiments for the purpose of fluoresence imaging, our
CMOS camera has the advantage of parallel sensor readout, thus significantly reducing its
readout time. Our camera has a quantum efficiency (QE) of ≈ 83% at 399nm with a pixel size
of 4.6 µm× 4.6 µm. The imaging system consists of our high-NA objective with a focal length
of 24.97mm and a f = 500mm achromatic lens yielding a magnification of × 20.

Our camera is operated in its „global shutter“ mode and a single exposure lasts 20ms,
during which time we illuminate the atoms using resonant 399nm light. We arm the camera
some 250ms prior to exposure, during which time, photons accumulate on the camera sensor
from other light sources in the sequence (e.g. MOT or lattice beams). This background must be
subtracted from the captured frames since the camera is not „self-cleaning“ prior to exposure.
We observe this background signal to be spatially homogeneous across the sensor, which allows
us to use the edge of the camera frame for background subtraction. State-selective imaging
is performed with the same basic pulse scheme as that described in Section 3.1.4, though in
this case the blowout pulse and the ground state imaging pulse are one and the same. We
also adjust the pulse durations to account for the differing specifications of the OrcaQuest
compared to the Alvium camera used for absorption imaging.

3.2 A MOT of bosonic ytterbium
A fundamental pre-requisite for performing any quantum simulation experiments with cold
neutral atoms is the creation of a MOT [197, 198]. The presence of narrow intercombination
transitions in the level structures of AELs provides the opportunity for MOTs with lower
Doppler temperatures when compared to their alkali counterparts. However, this advantage is
negated to some degree by the reduced capture efficiency of narrow-line MOTs. For this reason,
many AELs employ a two-stage MOT architecture, initially trapping a large fraction of atoms
using a broader line, such as the 1S0 ↔1P1 transition, before switching to the narrow-line MOT.

2Hamamatsu OrcaQuest
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This increases the technical difficulty of the MOT by having to take care of two transitions
while also guaranteeing an efficient handover between the MOT stages. In this regard, one of
the advantages of ytterbium over other elements with a similar level structure is the relatively
broad linewidth of the 1S0 →3P1 intercombination transition. This means that ytterbium
occupies a happy medium between efficient trapping and low achievable temperatures. In
fact, the scattering rate from the 182 kHz intercombination line is large enough to effectively
capture atoms without needing to resort to a two-stage MOT scheme at all. This is precisely
what we do in our own experiment. However, to enhance the MOT loading rate further, we
add an additional region of slowing using two blue beams crossing at 22.5◦ with respect to
one another based on a scheme first employed by Plotkin-Swing et al. [192]. Each slowing
beam operates at ≈ 8.4mW of power with a beam waist of 3mm. This crossed beam slowing
region is spatially separated from the 3D MOT by 17.5mm to avoid heating atoms out of the
trap due to scattering of blue light. At the location of the atoms, each MOT beam has a 1∕𝑒2
diameter of ≈ 10mm. In the horizontal plane our MOT beams are retro-reflected, while in
the vertical direction, we use two independent counterpropagating beams. This geometry is
necessitated by the presence of our high-NA microscope objective, mounted below the glass
cell, as detailed in Section 2.5.4. By using appropriate output couplers3, we circumvent the
need for large telescopes in our beam paths. To ensure the correct collimated beam size from
the MOT beam propagating through the objective, we focus the light in this arm onto the back
focal plane of the objective using a 3 inch, 𝑓 = 200mm lens. During MOT loading, the power
in each horizontal arm is stabilized to 30mW, while in the vertical direction, the effect of
gravity leads us to maintain the lower MOT arm at 22.5mW compared to only 7mW in the
top arm. We combine this with a magnetic field gradient of 𝜕𝐵∕𝜕𝑧 ≈ 5.5G∕ cm. With this
configuration we load ≈ 14 × 106atoms∕s of 174Yb under normal operating conditions.

3.2.1 MOT compression

The majority of our experiments require atoms to be loaded from our MOT into optical lattices
or tweezer arrays. However, after the inital loading stage, our MOT is much too dilute to
ensure an efficient transfer of atoms to lattices or tweezers. To solve this problem, we spatially
compress our MOT to a much smaller size, thereby drastically increasing its density.

A MOT relies on the interplay of dissipative and conservative forces to cool and trap
atoms [198]. In abstraction, a MOT can be treated in a similar fashion to a damped harmonic
oscillator where the total force experienced by the atoms along one dimension takes the form:

𝐹 = −𝛽𝑣 − 𝜅𝑧. (3.9)

Here, 𝛽 = 𝛽(𝐼, 𝛿) acts as a intensity and detuning dependent viscous damping coefficient
corresponding to dissipative dynamics, and 𝜅 is the spring constant of the trap responsible for

3Schäfter&Kirchhoff 60FC-L-4-M75-01
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the scaling of the conservative force component. The latter is related to the applied magnetic
field gradient 𝜕𝐵∕𝜕𝑧 in the following fashion [199, 200]:

𝜅 =
𝑔𝐽𝜇𝐵
ℏ𝑘

𝜕𝐵
𝜕𝑧 𝛽, (3.10)

where 𝑔𝐽 is the Landé 𝑔-factor of the relevant transition, 𝜇𝐵 is the Bohrmagneton and 𝑘 = 2𝜋∕𝜆
is the wavenumber. The force described by Eq. (3.9) slows down the motion of the atoms,
thereby reducing their average kinetic energy. Despite the absence of a thermal equilibrium in
this system, it is convenient to define a temperature for the atomic sample via the equipartition
theorem in the following fashion [198]:

1
2𝑘𝐵𝑇 = 1

2𝜅⟨𝑟
2⟩, (3.11)

where ⟨𝑟2⟩ is the root-mean-square (rms) cloud radius. Assuming a dilute and thermally
distributed cloud, this equation allows us to derive the following scaling behaviors for the
cloud size and velocity [201]:

𝑟 ∝
√
𝐼∕
√
𝜕𝐵∕𝜕𝑧 (3.12)

𝑣 ∝
√
𝐼∕
√
𝛿. (3.13)

Hence, to reduce the phase space density of our atomic sample, it is necessary to decrease the
intensity of the trap light while increasing the magnetic field gradient. In our own experiment,
this compression is performed by ramping the magnetic field gradient to ≈ 24G∕ cm within
100mswhile simultaneously reducing the power in theMOT beams by two orders ofmagnitude
and ramping our detuning closer to resonance. Currently, this means starting at a detuning
of 𝛿 = 𝜔𝐿 − 𝜔0 = −3.05MHz and ramping to 𝛿 = −1.45MHz for 3D MOT 2 through 4 and
𝛿 = −2.2MHz→ −1.28MHz for 3DMOT 1. Ramping the detuning is necessary to compensate
for a narrowing of the power-broadened transition linewidth with decreasing laser intensity.

3.3 Spectroscopy

Spectroscopy is a vital tool for atomic physicists, allowing us to detect the frequencies of atomic
transitions with a high degree of precision. In ytterbium, the ultra-narrow clock transition
presents an especially sensitive spectroscopic probe. Optical lattice clocks have exploited this
sensitivity to spectroscopically interrogate atoms on frequency scales approaching those where
certain theories predict temporal variations in the fundamental constants of nature [41, 202].
In the context of this thesis, several spectroscopic methods are employed, the majority of which
make use of optical lattices to confine atoms during spectroscopy, thus limiting motional effects
and allowing for a greater frequency precision.
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Figure 3.3 | Sideband spectroscopy and cooling. (a) Setup for sideband spectroscopy and cooling in

1D. Atoms are loaded into a magic lattice formed by a retro-reflected 759 nm laser beam. The atoms are

interrogated using a narrow clock line laser at 578 nm propagating along the axial (z) direction. Cooling

is faciliated by the same laser in combination with repumping light. (b) Schematic of one sideband

cooling cycle consisting of fourty alternating 400µs sideband and repumping pulses. (c) Illustration of the

different transitions adressed during sideband spectroscopy. The red sideband (RSB) is used to facilitate

cooling. (d) A plot of the blue sideband for different radial temperatures. Only for sufficiently low radial

temperatures is it possible to resolve individual axial lattice bands [203]. (e) Sideband spectrum before

(dashed lines) and after (solid lines) sideband cooling according to the sequence illustrated in (b). The

reduced temperature is visible from the reduced prominence of the red sideband compared to the blue

sideband.

3.3.1 Sideband spectroscopy

To probe the temperature of atoms in our optical lattice, we make use of sideband spectroscopy.
Atoms are initially loaded into a 1D lattice at the 759nm magic wavelength and light from
our ultra-narrow 578nm clock laser is aligned onto the tightly-confined axis of this lattice
[Fig. 3.3(a)]. By scanning the frequency of the clock laser around the 1S0 →3P0 resonance, we
address transitions to different motional states. Specifically, we are able to resolve a narrow
carrier transition which preserves the motional quantum number (|||𝑔, 𝑛⟩ → |𝑒, 𝑛⟩), as well
as a blue (|||𝑔, 𝑛⟩→ |𝑒, 𝑛 + 1⟩) and red sideband (|||𝑔, 𝑛⟩→ |𝑒, 𝑛 − 1⟩), corresponding to raising
and lowering by one motional quantum number [Fig. 3.3(c)]. We assume the atoms to be
thermally distributed so that the mean occupation 𝑛, is determined by the axial temperature
𝑇𝑧 of our sample according to:

𝑛 =

∑∞
𝑛𝑧=0 𝑛𝑒

−𝑛ℏ𝜔𝑧∕(𝑘𝐵𝑇𝑧)∑∞
𝑛𝑧=0 𝑒

−𝑛ℏ𝜔𝑧∕(𝑘𝐵𝑇𝑧)
. (3.14)

The colder the sample, the more atoms populate the lowest motional state. For these atoms,
no excitation on the red sideband is possible and hence, the fraction of atoms in this sideband
decreases. Ideally, if all atoms populate the motional ground state, we should see the red
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sideband disappear all together. This suggests a relation between the sideband areas and the
mean occupation, and indeed, it can be shown that [66, 204]

𝑛 =
𝐴rsb
𝐴bsb

1
1 − (𝐴rsb∕𝐴bsb)

, (3.15)

where 𝐴rsb and 𝐴bsb are the areas of the red and blue sideband respectively. It follows that the
axial temperature can be determined simply by comparing the size of the sidebands:

𝑇𝑧 =
ℏ𝜔𝑧
𝑘𝐵

1
ln (𝐴bsb∕𝐴rsb)

. (3.16)

This requires prior knowledge of the axial trap frequency 𝜔𝑧. In principle, this quantity can
also be determined from sideband spectroscopy since the trap frequency is directly related to
the location of the sidebands. However, in practice this is difficult since it requires knowledge
of the lineshape of the sidebands.

Probing our atoms in a 1D lattice, in the way described above, yields spectra of the type
shown in Fig. 3.3(e). Naively, we would expect each sideband to exhibit the same Lorentzian
lineshape as the carrier transition. In reality, for each sideband we observe an inhomogenously
broadened lineshape tending towards the carrier. This feature is explained by the varying
axial trap frequency along the radial dimension, which leads to a finite radial temperature
and subsequent dephasing of the sideband transitions, as shown in Fig. 3.3(d). To derive an
expression for this inhomogeneous lineshape, we consider an initial state ||||𝑛𝑥, 𝑛𝑦, 𝑛𝑧

⟩
with

associated energy [205]:

𝐸(𝑛𝑥, 𝑛𝑦, 𝑛𝑧) = ℏ𝜔𝑟(𝑛𝑥 + 𝑛𝑦 + 1) + ℏ𝜔𝑧(𝑛𝑧 +
1
2 ) +O(𝑛2𝑧, 𝑛𝑥𝑛𝑧,… ), (3.17)

where O(𝑛2𝑧, 𝑛𝑥𝑛𝑧,… ) subsumes higher order terms arising in the expansion of the lattice
potential [205]. The transition ||||𝑛𝑥, 𝑛𝑦, 𝑛𝑧

⟩
→ ||||𝑛𝑥, 𝑛𝑦, 𝑛𝑧 + 1

⟩
has a frequency:

𝜔(𝑛𝑥, 𝑛𝑦, 𝑛𝑧) = 𝜔𝑧 − 𝜔rec(𝑛𝑧 + 1) + 𝜔rec
𝜔𝑟
𝜔𝑧
(𝑛𝑥 + 𝑛𝑦 + 1), (3.18)

where ℏ𝜔rec = ℏ2𝑘2∕(2𝑚) is the recoil frequency. Each individual transition of this type takes
the form of a power broadened Lorentzian with linewidth Γ. Since our atomic sample is
thermally distributed, the complete lineshape is then consituted of the thermally averaged
individual Lorentzians:

𝑝(𝜔𝐿) =
1
𝑍

∞∑
𝑛𝑟 ,𝑛𝑧

𝑒−𝐸𝑧(𝑛𝑧)∕(𝑘𝐵𝑇𝑧)
(𝑛𝑟 + 1)𝑒−ℏ𝜔𝑟(𝑛𝑟+1)∕(𝑘𝐵𝑇𝑟)
(
1 + 4

Γ2
[𝜔𝐿 − 𝜔(𝑛𝑟, 𝑛𝑧)]

2) , (3.19)

where 𝜔𝐿 is the laser frequency, 𝑍 is the normalizing partition function and 𝑛𝑟 = 𝑛𝑥 + 𝑛𝑦 is a
radial quantum number. We use this expression to fit sideband spectra like those of Fig. 3.3(e)
and extract the relevant physical quantites described above.
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Figure 3.4 | Modulation spectroscopy and lattice calibration. (a) Modulation spectroscopy is performed

by modulating the amplitude of the lattice V0 using a sinusoidal signal of varying frequency fmod. At a

modulation frequency equivalent to twice the trap frequency, amplitude modulation leads to an excitation

by two motional quanta and subsequent heating of atoms from the lattice. (b) We measure the lattice

depth at various lattice intensity setpoints, using this method to calibrate the lattice depth in each arm.

(c) The effect of modulation is observed both in the atom count and in the cloud size.

3.3.2 Sideband cooling

The principles described above can be used, not merely for probing atoms in a lattice, but
also for cooling. By addressing the red sideband transition using our narrow clock laser, we
excite atoms from the |||𝑔, 𝑛⟩ to the |𝑒, 𝑛 − 1⟩ state. Subsequent repumping of the atoms from
this state back into the ground state preserves the motional quantum number so that the final
state is given by |||𝑔, 𝑛 − 1⟩. Ideally, this cycle repeats itself until all atoms find themselves
in the motional ground state.

In our experiment, we employ a pulsed cooling scheme wherein each cooling cycle consists
of fourty instances of a 800 µs red sideband clock pulse followed by a 200 µs repumping pulse
[Fig. 3.3(b)]. This is appended by a 40ms period of rethermalization before the cooling cycle is
repeated up to four times. The trap depth is maintained at ≈ 70𝐸rec throughout the sideband
cooling and spectroscopy.

3.3.3 Modulation spectroscopy

An alternative method to determing the trap frequencies of our lattice relies on modulation of
its amplitude𝑉0. As we briefly outlined in section 2.3.5, intensity modulation of the lattice laser
leads to parametric heating of the atoms at a rate that is proportional to twice the modulation
frequency. By scanning this frequency, we ought at some point, to reach a frequency that
coincides with a lattice transition corresponding to an excitation by two motional quanta
|𝑛⟩ → |𝑛 + 2⟩ [Fig. 3.4(a)]. The resulting atom loss can then be captured on a camera using
absorption imaging. An example of such a modulation spectrum is shown in the top panel of
Fig. 3.4(b). To capture this data we trigger a function generator to output a 30ms sinusoidal
burst at the desired frequency with a modulation depth of 0.3 V. The modulation frequency is
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Yb. The solid line is a fit of the data according to Eq. (3.20) (b) Rabi oscillations („flops“)

observed on the same transition for variable probe pulse durations. By adjusting the clock laser pointing

along the co-aligned magic lattice, we maximize the Rabi frequency and extract the correspondingπ-pulse

duration using an exponentially decaying sinusoid fit of the data (solid line).

sufficiently fast (∼ 100 kHz) compared to the intensity servo bandwidth (< 10 kHz) to prevent
unwanted signal distortion.

In addition to the atomic loss signal, we can observe the cloud size as a function of the
modulation frequency. This allows us to capture spectra like those shown in the lower panel of
Fig. 3.4(c), from which we extract the trap frequency from the maximum of a Gaussian. Using
these spectra, we calibrate our lattice depths along each dimension [Fig. 3.4(b)].

3.3.4 Rabi spectroscopy
The combination of optical lattices and a narrow linewidth clock laser allows us to perform
high-resolution spectroscopy on the clock transition of ytterbium. We coherently drive our
atoms on the clock transition using a light pulse of duration 𝜏 = 𝜋∕Ω, where Ω is the Rabi
frequency of the transition on resonance. As a function of laser detuning 𝛿 = 𝜔𝐿 −𝜔0 (with 𝜔𝐿
the laser frequency and 𝜔0 the frequency of the atomic transition), the probability of finding
the atom in the excited state is given by

𝑃𝑒(𝛿) =
𝜋2
4 sinc

2 (𝜋2
Ω̃
Ω) , (3.20)

where Ω̃ =
√
Ω2 + 𝛿2 is the generalized Rabi frequency. We measure this probability by

observing the excited state fraction of our atoms using the state-selective imaging techniques
described previously in Section 3.1.4. An example of the type of excitation spectra captured
using this method are shown in Fig. 3.5(a). The additional side peaks visible in this spectrum
stem from higher order Fourier components of our square pulse shape used to excite the atoms.
To minimize radial sideband excitations and Rabi frequency inhomogeneities, we align our
clock laser to be co-aligned with the lattice axis along which we interrogate the atoms [183]. For
bosonic isotopes of ytterbium, the coupling between ground and excited clock state vanishes at
zero magnetic field, due to the absence of a nuclear spin degree of freedom. To induce this
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Figure 3.6 | Shim coil calibration. (a) Resonance position for the two magnetically sensitive mJ = ±1

sublevels of
3

P1 as a function of the applied coil current. The data is fitted using the linear relationship

expressed in Eq. (3.21). (b) The same data as in (a), this time including the relevant atom number measured

using absorption imaging. The two red lines indicate a cut through the data which is visualized in subfigure

(c). (c) Two datasets used to generate the data shown in (a) and (b), taken at 0.1 G (lower panel) and 0.9 G

(upper panel). The resonance position is measured using a Gaussian fit (grey).

transiton, it is therefore necessary to admix a small fraction of the 3P1 state to the 3P0 state via
an applied external magnetic field [206, 207] (see also 1.1.2). By reducing the intensity of our
probe pulse as well as the strength of our applied magnetic field, we can reduce the linewidth
of our Rabi lineshape in a controlled manner to probe the transition with a greater degree
of precision. To optimize the Rabi frequency and determine the 𝜋-pulse time, we adjust the
pointing of our clock laser beam along the lattice axis and observe the induced Rabi oscillations
as a function of the probe pulse duration [Fig. 3.5(b)].

Many of the previously discussed methods rely on accurate knowledge of the magnetic
field being applied to the atoms. In the following section we discuss the corresponding mea-
surements performed to calibrate our magnetic fields.

3.4 Magnetic field calibration
To calibrate our magnetic fields, we want to know what coil current value corresponds to
what magnetic field in the experiment. To deduce this we make use of the previously de-
scribed spectroscopic methods to measure the linear and quadratic Zeeman shift of notable
atomic transitions. The linear Zeeman shift arises as a consequence of the interaction be-
tween the applied external magnetic field 𝐵, and the the magnetic dipole moment of the
atom 𝜇𝐵, taking the form [125]:

∆𝐸lin = 𝛼𝑚𝐵 = 𝜇𝐵𝑔𝐽∆𝑚𝐽𝐵, (3.21)

where 𝑔𝐽 is the Landé g-factor of the relevant transition and ∆𝑚𝐽 is the corresponding change
in the 𝑧 component of the total angular momentum. The linear Zeeman shift has previously
been measured as a function of the applied magnetic field for the broad 1S0 →1P1 transition
as well as the for narrower 1S0 →3P1 transition [208]. In the case of the clock transition,
where 𝐽 = 0 for both states, this effect vanishes. However, a small quadratic dependency on
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the magnetic field is retained due to the magnetic-field induced coupling of fine-structure
levels within the triplet manifold [209]:

∆𝐸quad = 𝛽𝑚𝐵2, (3.22)

where 𝛽𝑚 is a proportionality constant dependent on the frequency of the fine structure levels.

3.4.1 Measurements

To characterize the linear Zeeman shift of our coils, we perform spectroscopy on the mag-
netically sensitive 1S0 →3P1 transition. Here, we employ our 3D MOT arm 4 (oriented along
the 𝑧-axis) to track the resonance positions of the 𝑚𝐽 states over a range of magnetic fields
[shown for the example of the 𝑦-shim coils in Fig. 3.6(a)]. At each value of the magnetic
field, we scan the detuning of the MOT arm and observe the ground state atom number using
absorption spectroscopy [Figs. 3.6(b) and 3.6(c)]. We assume the magnetic field of any given
uncalibrated coil pair to take the form:

𝐵(𝐼) =

√

( 𝑎
𝛼𝑚

𝐼 − 𝐵∥)
2
+ 𝐵2⊥, (3.23)

where 𝐼 is the applied current, producing a field 𝑎𝐼∕𝛼𝑚. Here 𝑎, with units of Hz∕A, is an
unknown factor which we wish to determine. Toghether with the known value of the linear
Zeeman shift 𝛼𝑚, this gives the required calibration factor in G∕A. Additional magnetic fields
from other uncalibrated coils is split into components parallel

(
𝐵∥
)
and perpendicular (𝐵⊥) to

the coil axis being calibrated. We use Eq. (3.23) to fit data of the type obtained in Fig. 3.6(a). For
our main coils, this results in a calibration factor of 7.41(8) G∕A, which is in good agreement
with the expected value calculated in Section 2.2.2. During our measurements, we find that
the optical lattice used to initially confine the atoms causes an additional non-linear shift
in the resonance positions as a function of the magnetic field, likely due to a non-vanishing
tensor contribution to the polarizability. To prevent this, we turn off the lattice while the
green spectroscopy is performed.

Since our main MOT coils are able to generate large fields of up to 400G, we additionally
measure the quadratic Zeeman shift to confirm our calibration. For measuring the quadratic
shift, we perform Rabi spectroscopy at multiple different magnetic field values and track the
position of the clock resonance [Fig. 3.7(a)]. This yields a value of 58.4(12)mHz∕G2, close
to the 61.2(1)mHz∕G2 measured in Ref. [174]. At higher magnetic fields admixing of the
3P1 state causes a broadening of the transition linewidth, thereby introducting uncertainty
into the measurement. We observe deviations in the expected behavior for fields above 350G,
which are likely technical in nature.
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(b) Quadratic Zeeman shift measured using Rabi spectroscopy on the clock transition. Using the measured

shift, we calibrate our magnetic field to scale with current at a rate of 7.41(8)G∕ A.

3.5 Tweezer arrays
Tweezer arrays will form an integral part of our experimental platform, allowing us to dy-
namically re-arrange atoms in our optical lattice or implant them therein in a controlled
fashion [210]. Furthermore, our planned simulations of lattice gauge theories necessitate two
separate tweezer arrays, operating at the tune-out wavelengths for the ground and excited
state of the clock transition (see Section 5.3.1 for details). To test the loading and cooling of
individual Yb atoms in optical tweezers, we initially work with an array of 532nm tweezers.
This wavelengths is readily available from commercial laser sources and has been shown to
work well in tweezer arrays of Yb atoms [66]. In the following we describe the realization
of such an array in our experiment.

3.5.1 Initial alignment

Initial alignment of the tweezer array onto the atomswas performed using a single large tweezer.
For this purpose the 1:10 telescope was removed and the NA artifically restricted using an iris
(see Fig. 2.18 for reference). We then performed the standard MOT loading sequence with
compression, while keeping the tweezer light on throughout. A first signal was observed using
TOF imaging after 50ms time-of-flight. We then repositioned the compressed MOT using our
shim coils to optimize this signal. To increase the signal fidelity, we switched to fluoresence
imaging. A clear signal was obtained for longer imaging pulse lengths (100ms) and a deep
tweezer (≈ 210mW). We further improved the SNR of the initial signal by tuning the position
of the final 𝑓 = 500mm imaging lens infront of the OrcaQuest using a micrometer stage (from
subsequent fits of the tweezers, we calculated a magnification of ×20.2 in our imaging system).
We then began to generate arrays of various sizes (number of tweezers and power per tweezer)
to explore and calibrate the set of optimal tweezer parameters in each array configuration. An
example of such an array is shown in Fig. 3.8(a). Previous imaging of the tweezer setup outside
the experiment, during pre-alignment, determined a tweezer spacing of 2.05 µm∕MHz [189].
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Figure 3.8 | Tweezer Arrays. (a) An image of a 10 × 10 × 6µm tweezer array at 532 nm composed of fifty

averages. (b) Histogram of photon count occurences. The isolated peak centered around≈ 180 counts

and well-separated from the background peak is evidence of single atoms in individual tweezers. The

loading ratio is determined by the ratio of total occurences above a cut-off value (grey dashed line) to

those below. (c) The lifetime of atoms in tweezers as determined by measuring the probability of finding

an atom in a tweezer after a certain time interval. An exponential fit of the data yields a decay constant of

τ = 31(4)s.

3.5.2 Cooling and trapping of individual atoms
Our tweezers are initially loaded stochastically, leaving certain tweezers empty while other
are filled with atoms. In the latter case, occupied tweezers are likely to be loaded with more
than one atom per tweezer. To obtain unity filling, some form of photoassociation (PA) light is
required whereby two atoms are excited to an energetically higher-lying molecular state and
leave the tweezer trap [211]. In this way a parity projection is performed so that either one
or zero atoms remain in the tweezer depending on the initial tweezer occupancy. To detect
the remaining individual atoms residing in tweezers after PA, we require each atom to scatter
sufficient imaging light to be detectable on our camera. Since this heats the atoms in the
tweezer array, additional cooling of atoms is required during imaging. In our experiment, we
have found that PA and cooling can be combined into a single operation.

For this purpose we employ our top MOT beam, detuned by 2.65MHz from the 1S0 →3P1
free space resonance. We find that ≈ 9mW per tweezer are optimal in terms of SNR when
combined with our PA/cooling light. Assuming a perfectly diffraction-limited spot size of
𝑑 = 464nm, this corresponds to a trap depth of≈ 32MHz andharmonic confinement frequency
of 𝜔𝑟 ≈ 2𝜋 × 2.3MHz. The value of the ground state polarizability used to estimate these
quantities is taken from our empirical polarizability model of Section 4.4.

After cooling, we perform absorption imaging on the 1S0 →1P1 resonance with a 50ms
long, 15 µW imaging pulse. The OrcaQuest exposure time is set to 60ms. Recording the photon
count occurences during imaging as a histogram we verify single-occupancy in our tweezers
by observing clearly separated zero-atom and single-atom peaks [Fig. 3.8(b)]. We performed
several lifetimemeasurements on atoms trapped in our tweezer array by imaging the array after
various hold times. In theory, the atoms should follow a simple single-body decay exponential,
with a lifetime limited by off-resonant photon scattering from the tweezers. With the array
parameters described above, this yields a tweezer lifetime of 𝜏 = 31(4)s [Fig. 3.8(c)].



CHAPTER 4

State-dependent potentials in
neutral ytterbium atoms

As the neutral atom toolbox has expanded, so too has the role of state-dependent potentials.
These have been used, at varying times, to implement new cooling and state preparation
schemes [76–78], simulate out-of-equilibrium dynamics [80, 82, 83] and investigate strongly
coupled quantum emitters [84]. State-dependent potentials have also been a significant driving
force in the realization of neutral atom quantum computing protocols [51, 85–88, 153, 212].

Many of these applications have relied on alkali atoms such as Rb and Cs, where the
interplay between the D1 and D2 lines gives rise to state-dependent potentials located at
convenient laser wavelengths [142]. For example, in 87Rb, the tune-out condition for the
||||
2S1∕2, 𝐹 = 2

⟩
state is achieved for a laser wavelength of 𝜆 ≈ 790nm, that exactly balances the

contribution of the D1 and D2 transitions [148]. By varying the laser detuning with respect to
either transition, the polarizability of the desired state can be carefully controlled. However,
the wavelength splitting between the fine-structure states 2P1∕2 and 2P3∕2 is only on the order
of some 15nm. Thus, implementing state-dependent potentials in alkali atoms often relies on
using near-resonant laser light, which induces heating and limits the lifetime of the desired
state. AELs do not suffer this drawback. State-dependent control of the metastable electronic
states is possible even with light far detuned from any atomic resonance. This makes state-
dependent potentials in AELs ideal for investigating a wide variety of topics from impurity
physics [213] to transport dynamics [214] and quantum computing [51, 91, 153].

In this chapter, we describe our measurements of three new state-dependent wavelengths
for the 1S0 ground state and

3P0 metastable excited state in neutral ytterbium. We begin by
examining two magic wavelength measurements, performed using a Rabi spectroscopy-based
scheme. Subsequently, we employ parametric heating in an optical lattice to determine the
ground state tune-out wavelength. To conclude this chapter, we touch on some recent progess
towards a measurement of the excited state tune-out wavelength as well as the application
of these state-dependent potentials in the future. The results in this chapter are based, in
large part, on Ref. [93].
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4.1 Measuring magic wavelengths
As we discussed in Chapter 1, a wavelength at which the differential polarizability between two
states vanishes is known as a magic wavelength. For the states of the ytterbium clock transition,
multiple such wavelengths exist within a range readily accessible to lasers commonly used
in ultracold atom experiments (see Figs 1.2 and 4.4(b)). In our publication, we measure two
newmagic wavelengths for the 1S0 and 3P0 states in 174Yb, located at 𝜈m1 = 542.50205(19) THz
and 𝜈m2 = 652.281(21) THz.

4.1.1 Measurement principle
To measure the magic wavelengths mentioned above, we rely on the previously described tech-
nique of Rabi spectroscopy (Section 3.3.4). We use this technique to measure the wavelength-
dependent light shift induced on the clock transition by an optical potential (dipole beam) [135].
This light shift is measured for a number of different dipole beam frequencies around the
expected value of the magic wavelength. From these values it is possible to determine the
frequency at which the light shift is zero.

We prepare our system by directly loading ≈ 300 × 103 atoms from our compressed MOT
into a 1D, ≈ 730𝐸rec deep optical lattice operating at the magic wavelength of 𝜆lat = 759.3nm.
Using sideband spectroscopy, we determine the axial temperature of our atoms in the lattice to
be ≈ 12 µK. To generate the additional optical potential, we superimpose a frequency-tunable
laser beam with the optical lattice at an angle of ≈ 1◦. We choose this finite angle to avoid
unwanted back-reflections of the dipole beam light from the lattice mirror [Fig. 4.1(a)]. In the
case of the measurement near 652THz, this light is provided by an optical parametric oscillator
(OPO)1. This laser has the advantage of an almost continously tunable output frequency across
a large part of the visible spectrum, but only a small amount of available power (tens of mW).
This in turn has consequences for the systematic error on our measurement (see Section 4.1.2
for details). By contrast, the measurement performed at 542THz uses a VECSEL laser2 with a
high output power but relatively modest frequency tuning range when compared to the OPO
(see Section 2.3.6 for more details). Rabi spectroscopy is performed under the influence of a
≈ 100G external magnetic field applied along the vertical 𝑧-axis using our main MOT coils.
The resulting excitation fraction is determined using the state-selective absorption imaging
described in Section 3.1.4. To measure the induced AC stark shift at a given wavelength, we
perform spectroscopy with and without the addition of the dipole beam on the atoms for
various dipole beam powers [Fig. 4.1(a) and 4.1(b)]. The linear relationship between these two
quantities allows us to extract a value for the differential light shift at a particular wavelength.
Repeating this measurement at various wavelengths around the expected position of the magic
wavelength [Fig. 4.1(c)] allows us to extract the point where the differential light shift is
vanishing using a simple least-squares linear fit of the data [Fig. 4.1(d)]. In this way we obtain
the aforementioned values of 𝜈m1 = 542.50205(19) THz and 𝜈m2 = 652.281(21) THz. The 𝜈m2
value was independently confirmed using Ramsey spectroscopy by the authors of Ref. [139].

1HÜBNER Photonics C-WAVE VIS+IR Low Power
2Vexlum VALO-SHG-SF
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a b dc

B

Figure 4.1 | Magic wavelength measurement. (a) Schematic of the experimental setup. Atoms are loaded

from the MOT into a 1D magic wavelength lattice (blue). An additional dipole beam is superimposed on

the atoms (green) at an angle of≈ 1
◦

. We interrogate the atoms using Rabi spectroscopy with and without

the dipole beam using our narrow clock laser with a polarization (double arrow) parallel to the applied

external magnetic field (B). (b) Resonance spectra measured with (green) and without (grey) the dipole

trap. Data shown here is for the measurement of νm1. The fitted Rabi lineshapes allows us to extract the

difference in the resonance position for a given dipole beam power. (c) Resonance shifts for as a function

of the applied dipole beam power for different wavelengths. The results from (b) are indicated by a white

hexagon and each data point is an average of three Rabi spectroscopy measurements. The slope of each

dataset provides a value for the light shift at that wavelength (d) Measured light shifts as a function of the

detuning from the magic frequency ∆ = ωL − ωm. Data from (c) is shown as empty heaxgons. Figure is

taken from Ref. [93].

4.1.2 Error analysis
Differentiating between statistical and systematic errors, our measurement values may be
written as:

𝜈m1 =
[
542502.05 ± 0.08stat

(+0.01
−0.11

)
sys

]
GHz (4.1)

𝜈m2 =
[
652281 ± 10stat

(+11
−0

)
sys

]
GHz. (4.2)

The systematic component of the measurement error comprises several different effects, which
are analyzed in the following.

Drift errors.—Tomitigate the effect of slow drifts in the frequency of our clock laser over the
course of a measurement, we randomize the detuning 𝛿 = 𝜔𝐿 − 𝜔0 of the clock laser for each
new run of the experiment. In addition to a frequency drift of the clock laser, we also observe a
drift in the relative position between the optical lattice and the dipole beam. By keeping track
of the overlap using a camera, we estimate the effect of this drift to account for no more than a
7% reduction in intensity at the location of the atoms. From the camera data, we observe the
drift to be roughly linear in time. To ascertain the corresponding effect on the light shift, we
first calculate the atom cloud size in the lattice to be 𝜎𝑧 = 288(18) µm, 𝜎𝑟 = 16.52(4) µm by
fitting a 3D Gaussian to a set of representative atom cloud images. The weighted mean of the
intensity experienced by an atom at a given location is then obtained by integrating the cloud
over the dipole beam intensity distribution. In this way we estimate a −0.11GHz and 0.3GHz
contribution to the systematic error of the 𝜈m1 and 𝜈m2 measurement respectively.

Calibration errors.—Prior to the start of each measurement, we determine the intensity
of our dipole trap beam using a photodetector equipped with a bandpass filter. We observe a
wavelength dependent sinusoidal modulation of the otherwise linear light shift data which we
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believe to stem from étaloning between the filter and the photodiode facet. To calibrate out
this effect, we separately measure the intensity of our dipole trap using an integrating sphere3.
We discover the modulation to have a periodicity of 9.34(6) GHz with a relative amplitude
difference of ≈ 20%. The fitted sinusoid is used to rescale the light shift data accordingly. The
corrected dataset is shown in Fig. 4.1(d).

Scaling errors.—The lower output power of the OPO laser used in the measurement of
𝜈m2 as well as the reduced gradient of the polarizability curve around this frequency result in
a larger statistical uncertainty. To cope with this unfortunate reality, we increase the range
of detunings around the magic wavelength within which we perform our measurements.
However, given large enough detunings, the assumption of a linear light shift begins to break
down. To quantify the contribution of this effect on the systematic error of 𝜈m2, the theoretical
values of the polarizability for each detuning sampled in the experiment is calculated and then
compared to the value determined from the linear fit. In this way we determine the discrepancy
between the theoretically expected zero-crossing wavelength and the one determined in the
experiment. Within a range of ±1THz, this discrepancy amounts to a systematic error of
11GHz, significantly larger than any of the other systematic error sources described above. We
thus use this range to bound the detunings for which we perform our data analysis.

4.2 Measuring the ground state tune-out wavelength
In addition to the two magic wavelengths measured in the previous section, we also perform
the first measurement of the 1S0 tune-out wavelength in 174Yb. For this purpose we measure
the lifetime of a thermal sample of atoms in a magic optical lattice when exposed to amplitude
modulation by an additional shallow tune-out lattice potential [91]. The lifetime is measured at
various lattice wavelengths around the predicted tune-out wavelength and compared to the life-
time with no modulation. The tune-out wavelengths is determined from the minimum of this
dataset. We determine value of 𝜈to = 541.8325(5) THz for the ground state tune-out frequency.

4.2.1 Measurement principle
Similarly to the magic wavelength measurement, atoms are once again loaded into a 1D magic
lattice at 759.3nm. Here, we initially load at a lattice depth of ≈ 390𝐸rec before ramping to
≈ 730𝐸rec within 10ms. Instead of an additional dipole beam, we now superimpose a shallow
variable-wavelength perturbing lattice with our magic lattice [Fig. 4.2(a)], which we turn on
within 5ms after having ramped our magic lattice to the aforementioned ≈ 730𝐸rec. This
second shallow lattice is co-propagating with the magic lattice and its wavelength is tuned
around the expected position of the ground state tune-out wavelength. At each newwavelength
value, we modulate the amplitude of this lattice to induce parametric heating and measure
the resulting atom loss rate from the trap (in analogy to the measurements performed in
Ref. [91]). This is compared to the atom loss rate in the unmodulated case to determine the
differential loss rate Γexc ∶= 1∕𝜏 − 1∕𝜏0. Here 𝜏 and 𝜏0 are the lifetimes in the modulated

3Thorlabs S140C
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and unmodulated lattice respectively, as determined by an simple exponential fit of the atom
count data over the hold time [Fig. 4.2(d)] If the shallow lattice is running at the tune-out
wavelength, the scalar polarizability for the ground state vanishes and the shallow lattice has
no effect on the ground state. Therefore, at the tune-out wavelength, we expect a vanishing
differential atom loss rate [Fig. 4.2(c)].

Modulation spectroscopy.—To determine the parametric heating resonance, we perform
modulation spectroscopy in our combined lattice system (see Section 3.3.3). To this end, both
lattices are turned on and the amplitude of the shallow lattice is modulated over a range
of frequencies 𝜈mod using a square-wave with a modulation depth of 100% [Fig. 4.2(b)]. In
practice, this is executed by a function generator programmed to periodically turn on and off
the relevant AOM. We note that the intensity stabilization of the shallow lattice reliant on this
AOM is unaffected by the modulation which occurs on timescales several orders of magnitude
smaller than those corresponding to the servo bandwidth. Due to the incommensurability of
the lattices, two types of modulation are possible on any given lattice site. On the one hand we
have fluctuations in the trap frequency responsible for excitations separated by two motional
quanta and resulting in parametric heating. On the other hand, we also encounter fluctuations
in the position of the trap center, leading to exciations by only one motional quantum. Both
of these processes are visible as broad dips in the measured modulation spectrum centered
at 𝜈mod ≈ 89 kHz and 𝜈mod ≈ 178 kHz respectively. Due to the square-wave modulation,
we also observe smaller dips at lower frequency components which originate in the Fourier
components of the pulse. We use sideband spectroscopy to separately measure lattice trap
frequency. This yields a value close to 𝜈𝑧 ≈ 107 kHz. We speculate this discrepancy to originate
in the anharmonicity of higher motional states in the lattice. For the purposes of our tune-out
wavelength measurement we maintain the modulation frequency at 𝜈mod ≈ 178 kHz.

4.2.2 Data analysis

Fit functions.—Given our lattice parameters, we estimate our atomic sample to be dilute enough
for two and three-body losses to be of negligible concern. We thus expect a single exponential
fit of our lifetime data to be sufficient to capture the necessary decay dynamics. We confirm
this hypothesis by comparing the lifetime extracted from a single exponential fit of our datasets
with that of two and three-body super-exponential fits. As expected, the lifetime is found to
be unaffected (within error bars) by the higher order exponential fits.

Given our choice of modulation frequency, it is reasonable to assume that parametric
heating is the dominant mechanism responsible for atom loss from the lattice. Under this
assumption, the excess loss rate scales with the square of the intensity in a fashion already
briefly discussed in Section 2.3.5 [178, 215]:

Γexc = 𝜋2𝜈2mod𝑆𝜖(2𝜈mod) ∝ 𝛼2(∆)𝜈2mod𝐼
2, (4.3)

where 𝛼(∆) is the detuning-dependent polarizability of the ground state. For sufficiently
small detunings around tune-out wavelength the polarizability is linearly proportional to
the detuning. As such, the excess loss rate also scales quadratically with the detuning in
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a b c d

Figure 4.2 | Ground state tune-out wavelength measurement. (a) Schematic of the experimental setup.

Atoms (blue) are loaded into a 1D magic optical lattice (grey) onto which we superimpose a shallow

variable-wavelength tune-out lattice (green). (b) The modulation spectroscopy data with (green) and

without (grey) modulating the amplitude of the tune-out lattice. The incommensurability of the two

lattices leads us to observe two prominent dips in the atom count at 89 kHz and 178 kHz corresponding to

excitations by one and two motional quanta respectively. For the tune-out wavelength measurement, we

make use of the latter frequency. The plotted data is taken at a detuning of∆ = 327 GHz removed from the

tune-out wavelength for 40×10
3

modulation cycles and averaged over two measurements. (c) The excess

loss rate determined from lifetime measurements at various detunings around the tune-out wavelength.

At the tune-out wavelength, the shallow lattice is invisible to the ground state atoms and the excess loss

rate vanishes (see main text for more details). (d) Three examples of the lifetime measurements taken at

each wavelength value. Green data is with shallow lattice modulation and grey data without. The data

extracted from the three panels is indicated by white hexagons in (c). Figure is adpated from Ref. [93].

this range. It is this reasoning that leads us to fit the excess atom loss rate data presented
in [Fig. 4.2(c)] using a quadratic function. Errors arising from deviations in this quadratic
model are discussed in the following section.

4.2.3 Error analysis
As before, we divide our errors into those of a statistical and those of a systematic nature:

𝜈to =
[
541832.49 ± 0.23stat

(+0.05
−0.24

)
sys

]
GHz, (4.4)

and analyze the systematic component in the following.
Deviation fromquadraticmodel.—To probe the error arising fromdeviations of the quadratic

fit model of our excess atom loss rate data at large detunings, we pursue a number of dif-
ferent strategies.

Firstly, we find that by fitting an additional offset in the y-axis, the fit quality at large
detunings is improved. However, this leads to an unphysical offset in the excess atom loss rate
at the tune-out frequency 𝜈to. By fitting a series of increasingly truncated datasets, we discover
this offset to become significant only at detunings exceeding |∆| ≳ 21GHz [Fig. 4.3(a)]. To
gain further insight, we detune our tune-out lattice by 25GHz and measure the excess loss rate
dependency on the tune-out lattice intensity. Above lattice powers of ≈ 100mW, we begin to
observe a deviation from the expected quadratic behavior and instead find that introducing
an additional quartic correction to the intensity is necessary to describe the data accurately
[Fig. 4.3(b)]. In particular, the quartic model describes the saturation of the excess atom
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a b c

Figure 4.3 | Analysis of systematic errors. (a) Offset in the excess loss rate determined from quadratic

fits of truncated data sets of the excess loss rate. The detuning range indicated on the x-axis refers to the

range of detunings over which a given dataset has been truncated to determine the offset. We observe a

significant deviation from zero only for datasets including detunings larger than 21 GHz. (b) For detunings

beyond this range, we observe significant deviations from our quadratic fit model (dashed green), as is

the case here for a detuning of 25 GHz. Above tune-out lattice powers of≈ 100 mW, the excess loss rate

data is better described by a quartic fit (solid green). The inset shows the rescaling factor calulated using

the quartic correction and used to rescale the data. (c) Rescaled (green) vs. original (grey) excess loss rate

data. The two points in red are rejected since they feature loss rates in excess of 40 mHz (see main text for

more information). Figure is taken from Ref. [93].

loss rate at 40mHz for large tune-out lattice intensities. We speculate this correction to be a
consequence of the anharmonicity of the lattice potential [216] and use it to rescale the excess
atom loss rate data for the purposes of error analysis, as shown in [Fig. 4.3(c)]. For the two
datapoints which exhibit an excess loss rate above 40mHz no calibration data excists and as
such, these are rejected from the analysis. A renewed comparison of the quadratic fit of this
rescaled data with and without offset yields a frequency difference of 53MHz in the value of
𝜈to, which we interpret as a contribution to the systematic error of this measurement.

Secondly, we return to the truncated non-rescaled datasets and observe the difference in
the fitted value of the tune-out frequency in each trunctation 𝜈to, with that of the full dataset
𝜈to. For datasets with detunings exceeding |∆| ≳ 11.5GHz, we find only a small variance
from 𝜈to. Since we concluded that for detunings above |∆| ≈ 21GHz, the previously discussed
offset becomes significant, we further restrict our region of interest to lie below this value.
Within this range 11.5GHz ≲ |∆| ≲ 21GHz, the largest single deviation from 𝜈to is found
to be ∆𝜈to = −243MHz. We posit this value as the dominant contribution to the systematic
error of our tune-our measurement.

4.3 Excited state polarizability
We can make use of our new-found knowledge of the tune-out wavelength to measure the
excited state polarizability at 𝜈to. For this, we use an identical setup to the one described in
Section 4.1.1 and tune the dipole beamwavelength to the newly measured tune-out wavelength.
The induced AC Stark shift on the transition is now completely determined by the excited
state polarizability. Thus, by measuring the former, we are rewarded with the latter. To
avoid power broadening of the lineshape, we operate the dipole beam at a modest 35mW
and calculate resulting intensity at the location of the atoms in the same fashion as was done
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a b

Figure 4.4 | Empirical polarizability model. (a) Schematic representation of the various transitions

used to calculate the ground (blue) and excited (red) state polarizabilities. (b) A plot of the calculated

polarizabilities as a function of the wavelength, together with the data points measured in Refs. [93]

and [135]. The models for both states are empirically corroborated by ensuring that the fit passes through

the measured magic (white circles) and ground-state tune-out (blue square) wavelengths. Inset: measured

excited state polarizability (red square) at the ground state tune-out wavelength, νto (blue square). The

magic wavelength νm1 is indicated by the white circle. Figure is taken from Ref. [93].

for the magic wavelength measurement. Dividing the light shift 𝑉ac by this value allows us
to determine the polarizability to be:

𝑉ac∕𝐼 =
[
−3.8 ± 0.07stat

(+1.1
−1.6

)
sys

]
Hz∕ W

cm2 . (4.5)

Uncertainties relating to the beam waist, atom cloud size and relative angle between dipole
beamand lattice are calculated to contribute 0.85Hz∕ W

cm2 to the systematic error of thismeasure-
ment. In addition, we attribute some systematic error to the imperfect overlap of dipole beam
and lattice foci. For the most part, this overlap uncertainty is expected to be contained to the
axial direction, since the radial overlap is optimized prior to the measurement by maximizing
the light shift on the atoms. Having previously mapped out the beam profile of both the lattice
and the dipole beam, we estimate a maximum axial focus mismatch of 5mm, corresponding to
a systematic error contribution of −0.48Hz∕ W

cm2 . Furthermore, we consider the uncertainty
inherent in the calibration of our reference photodetector used for measuring the dipole beam
power. The photodetector values are compared to that of an integrating sphere for various
different powers and the fit uncertainty is used as an estimate for the calibration uncertainty.
Finally, we measure the transmission of the dipole beam through the glass cell. The combined
systematic error from these last two sources of uncertainty are estimated to be 0.24Hz∕ W

cm2 .
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4.4 Empirical polarizability model

Our measurements of the state-dependent wavelengths described above allow us to refine the
polarizability model discussed in Section 1.2.1. We recall that for bosonic ytterbium the absence
of a nuclear spin ensures that the polarizability of a state |𝑖⟩ reduces to its scalar component:

𝛼(𝑠)𝑖 (𝐽;𝜔) =
∑
𝐽′≠𝐽

2
3

𝜔𝐽𝐽′
ℏ(𝜔2𝐽𝐽′ − 𝜔2)

||||⟨𝐽‖𝒅‖𝐽
′⟩||||

2
, (4.6)

To relate the transition dipole matrix elements ||||⟨𝐽‖𝒅‖𝐽
′⟩|||| to other physically meaningful quan-

tities, we note its relation to a corresponding observable linewidth Γ𝐽𝐽′ according to [125]:

Γ𝐽𝐽′ =
𝜔3𝐽𝐽′

3𝜋𝜖0ℏ𝑐3
2𝐽 + 1
2𝐽′ + 1

||||⟨𝐽‖𝒅‖𝐽
′⟩||||

2
(4.7)

We can further express this linewidth in terms of the branching ratio 𝛽(𝐽, 𝐽′) of a final state
and its lifetime 𝜏(𝐽′) in the following way:

Γ𝐽𝐽′ = 𝛽(𝐽, 𝐽′)∕𝜏(𝐽′), (4.8)

so that even in the event where the linewidth is unkown, we have recourse to these two
quantities.

We use these relations to determine the contribution of various transitions to the 1S0 and
3P0 polarizabilities within a range of visible wavelengths, subject to the constraint that our
model must take account of the state-dependent wavelength values measured above. As was
briefly alluded to in Section 1.2.1, the ground state polarizability is chiefly affected by the
broad blue transition to the 1P1 state, the green intercombination transition to 3P1 and a
core-excited state transition to (7∕2, 5∕2)𝐽=1 at 347nm [104]. This notation is used in place
of the usual Russell-Saunders notation scheme to indicate that we are dealing with strong
spin-orbit coupling (𝑗𝑗-coupling) [217, 218]. Other higher-lying transitions are sufficiently
far detuned for their impact on the polarizability to be negligible when compared to these
three transitions and we find that adding a free offset parameter to the fitting function is
sufficient to capture their effect. When it comes to the excited state polarizability, the issue
is complicated by the increased number of relevant transitions that need to be taken into
account. Particularly the presence of numerous broad transitions to a series of 3D1 and 3S1
states in various shells has an outsized effect on the polarizability of the 3P0 state. The relevant
transitions are summarized in Table 4.1 and illustrated in Fig. 4.4(a). Again, a number of
higher-lying transitions outside the surveyed wavelength range play a role in the calculation of
the polarizability. However, due to their large detuning, these can be subsumed into a single
effective transition, characterized by a wavelength 𝜆ef f and linewidth Γef f . Fitting our model
to the measured tune-out and magic wavelength values, with (𝜆ef f ,Γef f ) as free parameters,
we find 𝜆ef f ≈ 376nm and Γef f ≈ 2𝜋 × 23MHz.
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|J⟩ |||J′
⟩

ωJJ′∕2π (THz) ΓJJ′∕2π (MHz) Ref.
1

S
0

(6s6p)3
P

1
539.386800 0.183 [104, 219]

(6s6p)1
P1 751.526389 29.127 [98]

(7∕2, 5∕2)J=1 865.111516 11.052 [104]
3

P
0

(6s5d)3
D1 215.870446 0.308 [219]

(6s7s)3
S1 461.867846 1.516 [220]

(6s6d)3
D1 675.141040 4.081 [220]

(6s8s)3
S1 729.293151 0.625 [220]

Empirical 797.204099 22.889 Fit

Table 4.1 | Overview of transition parameters used in empirical polarizability model. The initial state is

denoted as |J⟩ and the final state is denoted as
||||J
′⟩

. The entry labeled „Empirical“ is used to designate

an effective transition capturing a number of higher-lying transitions with minor contributions to the

polarizabilities (see main text for details).

4.5 Towards the excited state tune-out wavelength
In addition to the ground state tune-out wavelength, we also want to measure its excited state
counterpart, predicted to lie somewhere in the vicinity of 576nm. For initial measurements
on the excited state tune-out wavelength we make use of the same measurement scheme as
described in Section 4.2.1. However, we find that even in the unmodulated lattice, the loss
rate of atoms is large enough so as to render any sustained measurement of the atom lifetimes
very imprecise. One possible mechanism responsible for this fast decay in the excited state
lifetime is two-body loss from 𝑒-𝑒 scattering [221–224]. Supplementing the single-body decay
�̇� = −𝑎𝑁, by a two-body loss term of the form �̇� = −𝑏𝑁2 leads to a superexponential decay
of the atom number according to:

𝑁(𝑡) = 𝑁0
𝑎𝑒−𝑎𝑡

𝑎 +𝑁0𝑏 (1 − 𝑒−𝑎𝑡)
. (4.9)

We find that this process more closely describes our 𝑒-lifetime when compared to pure single-
body decay, as confirmed by a 𝜒2 test for the goodness-of-fit. To inhibt the effect of 𝑒𝑒 scattering,
we move from a 1D to a 3D lattice geometry. In 3D, the pinning of individual atoms to a particu-
lar lattice site is expected to significantly reduce density-dependent scattering effects [225, 226].

In addition to inelastic 𝑒𝑒 scattering, we also expect photon scattering from the lattice to
play a role in the fast decay of the 𝑒-lifetime. Here, lattice photons either cause a complete loss
from the trap or repumping to the ground state via some intermediate states [135, 227]. To
investigate this dependency, we havemeasured the 𝑒-lifetime at various lattice depths. However,
preliminary data has been inconclusive in the sense that it is difficult to separate density and
light dependent scattering effects in the system. All in all, further cooling the atomic sample
seems to be a necessary precondition for any sustained measurement of the excited state tune-
out wavelength. For this purpose we can extend the sideband cooling scheme described in
Section 3.3.2 to our 3D lattice. Additionally, the hyperfine manifolds of the fermionic isotopes
of ytterbium allow for Raman sideband cooling [66]. Work on both of these cooling ideas is
currently an ongoing task in our lab and will play an important role in preparing low-entropy
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initial states in future experiments on our platform. In the following chapter we will see how
the state-dependent wavelengths measured in our experiment can be applied to simulate some
of the most fundamental theories in physics.



CHAPTER 5

Simulating lattice gauge theories

Gauge theories have proven to be some of the most effective theories for our description of
physical phenomena. In particular, our understanding of the fundamental forces of nature
is intimately tied to these theories [228]. This is perhaps embodied most completely in the
success of the Standard Model of particle physics, combining the electromagnetic, weak and
strong forces [229]. Notably exempt from this model is the force of gravity, as described by
Einstein’s theory [230]. A gauge theory in its own right, it has been just as successful as the
Standard Model in its predictive power as relates to gravitational phenomena [231–233]. The
attempt to find a unified framework for these two paradigms is perhaps the most sought after
and consequential prize in all of modern physics. Apart from their obvious physical import,
gauge theories also raise conceptual questions regarding the importance of symmetry in our
description of reality, the extent towhich gauge degrees of freedom arise simply fromdescriptive
redundancy and the reason for their seeming ubiquity in modern physics [234–237].

For all the success of these theories, certain problems remain intractable. Quantum chro-
modynamics (the gauge-theoretic description of the strong force) is strongly interacting at low
energies due to its running coupling constant. This poses severe problems for the study of
low-energy phenomena such as quark confinement. Discretized versions of gauge theories on
a lattice offer a natural remedy by inherently encoding an energy scale cut-off via the lattice
spacing [4, 238–240]. This has been exploited to great effect by methods such as Monte Carlo
computation [241, 242] and tensor networks [243–245]. Beyond their role as a computational
tool, these lattice gauge theories (LGTs) are found to emerge as low-energy effective theories in
the context of strongly-correlated electron systems in condensed matter physics [246].

Despite the proliferation of numericalmethods tackling LGTs, significant challenges remain.
Monte Carlo methods are known to suffer from the sign problem, leading to an exponentially
increasing computation time with particle number [247]. Cold atom simulators do not suffer
from this pitfall and are in some sense a natural candidate for simulating LGTs due to their
discretized geometry and the degree of control afforded over a vast variety of different system
parameters. Spurred on by the success of pioneering work in ion trap experiments [248],
numerous proposals for the simulation of LGTs on these types of quantum simulators have
been proposed in recent years [5, 6, 92, 249–259]. In the following, we showhowour experiment
is ideally suited to realize many of these ideas. As part of this effort, we demonstrate how LGT
models can be mapped to internal degrees of freedom in our experiment and show how our
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hybrid lattice-tweezer architecture provides the potential for quantum simulations of gauge
theories beyond quantum electrodynamics.

5.1 Principles of lattice gauge theories
In this section, we familiarize ourselves with some of the basic building blocks of lattice gauge
theories. We begin with a few words on the notion of symmetry, as this is a concept that will
crop up several times during the course of this chapter.

5.1.1 A note on symmetries
In the context of modern physics, symmetries are thought of as transformations that leave an
object or a collection of objects unchanged. For example, the rotation of an equilateral triangle
about one-hundred twenty degrees recovers the same triangle, while a circle can be rotated
about an arbitrary angle without consequence. Mathematically, this notion is formalized in
the concept of groups, whereby each transformation constitutes part of a symmetry group
of transformations. The rotation of the square by ninety degrees represents the action of an
element of the dihedral group𝐷4, whereas continuous rotations on a circle are described by the
unitary group U(1) and so forth. We have already encountered one physical example of such a
symmetry group when examining the SU(𝑁) symmetric interactions of ytterbium in Chapter 1.
There, the nuclear spin is preserved under generalized rotations belonging to this group.

For the following discussion it will also be helpful to distinguish between global and local
symmetries. Global symmetries correspond to transformations affecting all parts of space
equally at the same time. These kinds of symmetries are related to conserved quantities via
Noether’s first theorem [260]. Prominent examples include the conservation of energy due
to the homogeneity of time and the conservation of angular momentum from the isotropy
of space. By contrast, local symmetries are those where the laws of physics are unaffected
by transformations at each individual point in time or space. This imposes a much more
rigorous standard on a physical theory than a global symmetry. In the following we will see
how certain types of local symmetries known as "gauge symmetries" play a crucial role in
accounting for interactions between matter and fields.

5.1.2 Fundamentals
Let us imagine space as subdivided into a regular grid of points 𝒓 = (𝑖, 𝑗).1 Charged matter
may move from point to point on this grid and its state at any instant in time can be described
by a set of fermionic creation and annihilation operators, 𝜓†𝒓 and 𝜓𝒓 [Fig. 5.1(a)]. This is the
case of free fermions moving on a 2D lattice and is described by the following Hamiltonian:

𝐻0 = −𝑤
∑
𝒓,𝒌

(𝜓†𝒓𝜓𝒓+𝒌 + ℎ.𝑐.) +
∑
𝒓
𝑚𝒓𝜓

†
𝒓𝜓𝒓, (5.1)

1Here we have implictily accorded the variable of time a privileged place since it remains a continous variable.
This need not be the case, and formulations of LGTs with discretized time as well as space exist [261]
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Figure 5.1 | Lattice gauge theory. (a) Basic ingredients of a lattice gauge theory in two spatial dimensions:

Charged matter, here in the form of positrons (orange circles) and electrons (blue circles), resides on

vertices of a lattice and is described by fermionic creation and annihilation operators ψ
†
𝒓 and ψ𝒓. These

fermionic degrees of freedom can hop from vertex to vertex with a hopping amplitude w. In electromag-

netism, charged matter acts as a source and sink for electric fields E𝒓,𝒌 (grey arrows), where 𝒌 = �̂�, �̂�
are unit vectors on the lattice. The sign of the electric field (i.e positive or negative) is indicated by the

direction of the grey arrows. Together, the matter and fields must obey Gauss’ law or, equivalently, local

gauge invariance. To ensure that this constraint is met, additional link operators, or gauge fields, U𝒓,𝒌 are

needed. By themselves, these gauge field operators can constitute a magnetic field term in the form of

a closed loop on the lattice. The smallest of these loops is a square of four links and is described by a

plaquette operator U□ (Eq. (5.12)) (b) Gauss’ law can be cast into the form of an operator G𝒓 (see Eq. (5.3)

for definition). Only those states |Ψ⟩ obeying the eigenvalue equation G𝒓|Ψ⟩= 0 are physically relevant.

Here, three examples of matter and field configurations that either obey (green check mark) or violate

(red cross) Gauss’ law are shown for a spin-1∕2 mapping of the electric field.

where 𝑤 is the nearest-neighbor hopping amplitude and 𝒌 = �̂�, �̂� indexes the unit vectors of
the lattice. The mass term is staggered, 𝑚𝒓 = 𝑚(−1)𝑖+𝑗, to account for fermion doubling.2
In addition to the fermionic matter degrees of freedom described by 𝐻0, a successful lattice
gauge theory must also take account of fields.

To provide some intuition here, let’s consider the particular case of quantum electrody-
namics (QED), where charged matter takes the form of electrons, and fields are electric and
magnetic in kind. We can think of charges as sources and sinks of electric fields. Thus an elec-
tron on a particular lattice site will give rise to an electric field 𝐸𝒓,𝒓+𝒌 on the links surrounding
it [Fig. 5.1(a)]. A fact which is captured by Gauss’ law:∑

𝒌
𝐸𝒓,𝒓+𝒌 − 𝐸𝒓−𝒌,𝒓 = 𝑞𝒓, (5.2)

where 𝑞𝒓 = −𝑒𝜓†𝒓𝜓𝒓 + (1 − (−1)𝑖+𝑗)∕2 is the (staggered) charge density of the electron. This is
simply a discretized version of the familiar Gauss’ law 𝛁 ⋅ 𝑬 = 𝑞(𝒓) from Maxwell’s equations,

2The fermion doubling problem describes the emergence of unwanted fermionic degrees of freedom in the
continuum limit of a naively discretized gauge theory. This problem has its roots in the concept of chiral symmetry,
and is captured by the Nielsen-Ninomiya no-go theorem, prohibiting theories with chiral fermions (such as the
Standard Model) on a lattice [262]. To navigate this issue, different kinds of fermion discretizations are possible,
including Wilson fermions [4] or the staggered fermions used here [238]. The topic of regularizing chiral gauge
theories is an ongoing area of research [263, 264].
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where we have replaced the divergence with finite differences. Gauss’ law defines an important
constraint on the states |Ψ⟩ of our system, since only those states that obey

𝐺𝒓 |Ψ⟩ ∶=
⎛
⎜
⎝

∑
𝑘

(
𝐸𝒓,𝒓+𝒌 − 𝐸𝒓−𝒌,𝒓

)
− 𝑞𝒓

⎞
⎟
⎠
|Ψ⟩ = 0 (5.3)

are physically relevant states.3 Fig. 5.1(b) illustrates some examples of this constraint. Crucially,
Eq. (5.3) acts as a local constraint at each lattice site and the absence of any explicit time-
dependence guarantees its validity not only for the initial state of the system, but also for all
future times. It follows that the physically relevant Hamiltonians obey the commutator relation:

[𝐻,𝐺𝒓] = 0, ∀𝒓. (5.4)

This in turn implies that our Hamiltonian is invariant under unitary transformations:

𝐻 = 𝑉†
𝒓𝐻𝑉𝒓, (5.5)

𝑉𝒓 =
∏

𝒓
𝑒−𝑖𝛼𝒓𝐺𝒓 ,

where𝛼𝒓 is a phase factor defined locally at a specific lattice site. The unitary transformations𝑉𝒓
are known as gauge transformations and constitute a symmetry group, the so-called gauge group
of our theory.4 In the case of QED, this group is the unitary group U(1). We emphasize that the
symmetry described here is a local symmetry, in the sense that the invariance of theHamiltonian
to a choice of the phase factor 𝛼𝒓 must be respected locally at each particular lattice site 𝒓.

Returning to our free fermion Hamiltonian𝐻0 [Eq. (5.1)], we discover, to our chagrin, that
this Hamiltonian is not gauge invariant in the sense described in Eq. (5.5), since 𝜓†𝒓𝜓𝒓+𝒌 ≠
𝜓†𝒓𝑉

†
𝒓𝑉𝒓+𝒌𝜓𝒓+𝒌. To restore local gauge invariance, we introduce additional link operators

𝑈𝒓,𝒓+𝒌, which transform as:

𝑈𝒓,𝒓+𝒌 → 𝑈′
𝒓,𝒓+𝒌 = 𝑉†

𝒓𝑈𝒓,𝒓+𝒌𝑉𝒓+𝒌. (5.6)

and which obey the following commutation relations:
[
𝑈𝒓,𝒌, 𝑈𝒓′,𝒌′

]
= 0 (5.7)

[
𝐸𝒓,𝒌, 𝑈𝒓′,𝒌′

]
= 𝑔𝛿𝒓𝒓′𝛿𝒌𝒌′𝑈𝒓,𝒌′ .

Here we defined 𝑈𝒓,𝒌 ∶= 𝑈𝒓,𝒓+𝒌 and 𝐸𝒓,𝒌 ∶= 𝐸𝒓,𝒓+𝒌 for notational simplicity. Colloquially,
these operators, also referred to as gauge fields, serve to compare a local change of phase on
site 𝒓 with its neighbor on site 𝒓 + 𝒌, and compensate accordingly. In fact, the second of the
two commutation relations from above tells us that 𝑈†

𝒓,𝒌 and 𝑈𝒓,𝒌 act as raising and lowering

3This version of Gauss’ law is a limited version of a more general Gauss’ law and corresponds to a particular
choice of eigenvalue or „static charge“, namely that of the zero eigenvalue. The set of eigenvalues of 𝐺𝒓 divide the
Hilbert space of the theory into separate, dynamically isolated superselection sectors.

4In the language of group theory, our gauge group is a Lie group, whose generators 𝐺𝒓 are elements within the
associated Lie algebra.
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operators for the electric field 𝐸𝒓,𝒌. Furthermore, we note that these link operators are also
elements of the group U(1) and can be written in a similar fashion to Eq. (5.5). With these
link operators, our Hamiltonian now becomes:

𝐻0 = −𝑤
∑
𝒓,𝒌

(𝜓†𝒓𝑈𝒓,𝒌𝜓𝒓+𝒌 + ℎ.𝑐.) +𝑚
∑
𝒓
𝜓†𝒓𝜓𝒓, (5.8)

which is known as the Kogut-Susskind Hamiltonian [238].

Let us briefly pause here and take stock of what this means. We started with Gauss’ law as
a constraint on our system and found that this generates gauge transformations. Consequently,
we discovered that our system must be invariant under these local gauge transformations
and that this requires us to introduce link operators in our Hamiltonian. Tellingly, these
link operators couple to the charged matter in our theory, providing us with the interactions
between matter and fields that have so far been missing from our theory. To complete the
picture, we consider the free electric and magnetic field contributions:

𝐻 = 𝐻0 +𝐻𝐸 +𝐻𝐵. (5.9)

In the continuum theory of QED, these contributions are quadratic [265]:

𝐻 = 1
2

∫
𝑑3𝑟

[
𝑬2(𝒓) + 𝑩2(𝒓)

]
, (5.10)

and thus we can reasonably expect 𝐻𝐸 and 𝐻𝐵 to be of a similarly quadratic nature in its
lattice counterpart. It is simple enough to discretize the free electric field while maintaining
local gauge invariance:

𝐻𝐸 =
𝑔2
2
∑
𝒓,𝒌

𝐸2𝒓,𝒌, (5.11)

where 𝑔 is a coupling constant that quantifies the strength of the interaction. But what about
the magnetic field contribution? Unlike their electric counterpart, magnetic fields are neither
sourced nor sunk by charges. If we think of magnetic field lines on our lattice, these must
propagate in closed loops. The smallest of these loops, which still obeys the constraints of local
gauge invariance, gives rise to a plaquette term of four link operators [Fig. 5.1(a)]:

𝑈□ = 𝑈𝒓,�̂�𝑈𝒓+�̂�,�̂�𝑈
†
𝒓+�̂�,�̂�𝑈

†
𝒓,�̂�, (5.12)

and therefore the magnetic part of our Hamiltonian is given by:

𝐻𝐵 =
1
4𝑔2

∑
□

(
𝑈□ +𝑈†

□

)
. (5.13)

The apperance of the coupling constant in the reciprocal is a consequence of the duality
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between electric and magnetic fields. Putting everything together, we finally arrive at the
lattice QED Hamiltonian:

𝐻𝑄𝐸𝐷 = −𝑤
∑
𝒓,𝒌

(𝜓†𝒓𝑈𝒓,𝒌𝜓𝒓+𝒌 + ℎ.𝑐.) +𝑚
∑
𝒓
𝜓†𝒓𝜓𝒓 +

𝑔2
2
∑
𝒓,𝒌

𝐸2𝒓,𝒌 −
1
4𝑔2

∑
□

(
𝑈□ +𝑈†

□

)
.

(5.14)

The nearest-neighbor vertex coupling and the plaquette terms call to mind the toric code,
which itself is an example of aℤ2 lattice gauge theory [266]. These plaquette terms are difficult
to implement experimentally as they require four-body interactions. However, a first proof-
of-principle cold atom simulation has been performed by suppressing all interactions up to
fourth order using an effective gradient field in an optical superlattice [83]. A non-perturbative
approach has been suggested in Ref. [256].

Reducing the lattice QED Hamiltonian to the bare minimum of one spatial dimension, and
doing away with the plaquette terms, results in a model known as the Schwinger model of
QED [267, 268]. This model is known to exhibit confinement in the presence of an electro-
static potential and to transition to a deconfined phase via a first-order phase transition [269].
Furthermore, it predicts and describes electron-positron pair production in the presence of
a sufficiently strong electric field (Schwinger effect) [270–272]. These properties, along with
its relative simplicity, makes it an enticing candidate for benchmarking quantum simulations
of LGTs [273]. How exactly this can be done will become clear in the following.

5.2 Mapping to a quantum simulator
From the previous discussion it is clear that any quantum simulation of lattice gauge theories
must ensure two main criteria are met, namely:

I The presence of both matter and gauge degrees of freedom

II A way to engineer the Gauss’ law constraint to ensure the correct gauge invariant inter-
actions between these degrees of freedom

For quantum simulators working with neutral atoms, the first of these criteria is already
difficult to enact. We might start, very naively, by placing fermionic atoms on our lattice sites
to represent the matter degrees of freedom in our theory. This is fine, as far as it goes. But
how to encode the gauge fields? Not only is this a bosonic degree of freedom, but the Hilbert
space of the operators 𝑈𝒓,𝑘 and 𝐸𝒓,𝑘 is, in principle, infinitely-dimensional.

5.2.1 Quantum link models
To deal with this issue, the matter and gauge degrees of freedom of our LGT can be mapped
to different internal spin states of an atom. Working in 1D, this mapping takes the following
form [6, 274]:
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𝑈𝑛,𝑛+1 →
𝑠+𝑛,𝑛+1

√
𝑆(𝑆 + 1)

𝐸𝑛,𝑛+1 → 𝑠𝑧𝑛,𝑛+1,

where 𝑠𝑧𝑛,𝑛+1 is the operator corresponding to the 𝑧 component of the spin and 𝑠
+
𝑛,𝑛+1 is the

raising operator for a spin statewith quantumnumber 𝑆 residing on the link between lattice sites
𝑛 and 𝑛+ 1. This is known as the quantum link model (QLM) of lattice gauge theory [274] and
reduces the local Hilbert space dimension of the gauge field operators to be finite-dimensional,
while keeping the commutation relations between 𝐸𝒓,𝒌 and𝑈𝒓,𝒌 intact (Eq. (5.7)). Additionally,
we can map our fermionic creation and annihilation operators to Pauli operators using a
Jordan-Wigner transform and obtain the QLM version of the lattice Schwinger model [250]:

𝐻𝑄𝐿𝑀 = − 𝑤
√
𝑆(𝑆 + 1)

𝑁−1∑
𝑛=1

(𝜎−𝑛 𝑠+𝑛,𝑛+1𝜎
−
𝑛+1 + ℎ.𝑐.) +𝑚

𝑁∑
𝑛=1

𝜎𝑧𝑛 +
𝑔2
2

𝑁−1∑
𝑛=1

(𝑠𝑧𝑛,𝑛+1)
2. (5.15)

One of the first experiments to realize this model in an experiment made use of trapped
ions [248]. In their simulation, Martinez et al. encoded the Schwinger QLM in an effective
spin model with long-range interactions by tracing over the gauge degrees of freedom. More
recently, the Schwinger QLM has been implemented on a quantum simulator of ultracold
rubidium atoms using optical superlattices [275]. Subsequent work on the same simulator
allowed the authors to probe the confining-deconfining transition in this model by tuning the
topological 𝜃-angle using a staggered optical potential of varying amplitude [276, 277]. This
angle determines the magnitude of the coupling constant of the electric field 𝑔2(𝜋 − 𝜃) and as
such the strength of confinement. The quantum link formulation has also been successfully
employed in cold atom simulators to realize other instances of LGTs. Making use of Floquet
engineering, Schweizer et al. were able to implement a ℤ2 LGTs in a quantum simulator of
bosonic rubidium atoms in a system of double well potentials [278].

5.3 Experimental realization

We now turn to the particular implementation of LGTs in our own experiment using the QLM
approach described in the previous section. The section is based in large part on a proposal
made by the author’s supervisor and described in some detail in Ref. [92]. Key to this proposal
is the use of the Yb clock states |||𝑔⟩ ≔ 1S0 and |𝑒⟩ ≔

3P0 as well as the combination of optical
lattices and tweezer arrays [Fig. 5.2(a)].

In our LGT simulation we distinguish between two kinds of lattice sites: those which
may be occupied by both |||𝑔⟩ and |𝑒⟩ atoms and those which are allowed to host only one of
these two states but not both. The former we call gauge sites and the latter, matter sites. In
our mapping, matter sites are assigned an integer valued index, 𝑛 ∈ ℤ, while gauge sites are
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Figure 5.2 | LGTs on a hybrid quantum simulator. (a) Schematic of hybrid system necessary for the

simulation of LGTs in our experiment. Atoms are loaded into a magic 759 nm lattice produced in our glass

cell and tweezer arrays operating at the
|||g⟩ and |e⟩ tune-out are superimposed onto this lattice through

our high resolution objective. (b) By projecting the
|||g⟩ (|e⟩) tune-out tweezers onto alternating shallow

sites of a 1D magic superlattice-type potential, a series of triple wells is produced for the
|||g⟩ (|e⟩) state.

(c) First order tunneling is inhibited by adding a detuning δg(δe) on the middle site of each triple well.

The dominant tunneling process is now given by correlated hopping of
|||g⟩ (blue circles) and |e⟩ (orange

circles). (d) A simplified representation of the alternating triple well potential landscape, together with

the correlated hopping processes described previously. (e) This system maps onto a chain of positive

and negative charges (circles) linked by gauge fields (triangles), where the sign of the field is given by

the direction of the triangle. Integer sites, where only
|||g⟩ or |e⟩ are allowed to reside, are interpreted

as matter sites. Half-integers sites, where both states are allowed, are referred to as gauge sites. The

distribution of charges and fields along the chain must obey Gauss’ law. Correlated hopping dynamics

results in the simulation of processes such as pair creation. This figure is adapted from Ref. [92].

assigned half-integer values, 𝑛 + 1∕2. Even (odd) gauge sites that host an atom in state |||𝑔⟩
represent a positive (negative) electric field and vice versa for atoms in |𝑒⟩:
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𝑈𝑛,𝑛+1 =
⎧

⎨
⎩

𝑎𝑛+1∕2𝑏
†
𝑛+1∕2, 𝑛 odd

𝑏𝑛+1∕2𝑎
†
𝑛+1∕2, 𝑛 even

(5.16)

𝐸𝑛,𝑛+1 =
(−1)𝑛
2

(
𝑎†𝑛+1∕2𝑎𝑛+1∕2 − 𝑏†𝑛+1∕2𝑏𝑛+1∕2

)
, (5.17)

where we have introduced the ladder operators 𝑎 and 𝑏 for |||𝑔⟩ and |𝑒⟩ atoms respectively.
Matter sites are arranged according to the staggered fermion description. Even matter sites
host either an |𝑒⟩ atom or a vacancy and odd matter sites either a |||𝑔⟩ atom or a vacancy:

𝜓 = {
𝑎𝑛, 𝑛 odd
𝑏𝑛, 𝑛 even.

(5.18)

The mapping so described is illustrated schematically in Figs. 5.2(c) and 5.2(d). To ensure
that |||𝑔⟩ and |𝑒⟩ obey the above described lattice site assignments, we will engineer a series
of alternating triple well potentials. Each triple well is designed to host one of the two states.
Alternating wells overlap on the first and third lattice sites, thus creating the gauge sites
described previously. To engineer the correct gauge-invariant dynamics in this system, first-
order tunneling processes of individual atoms must be suppressed. Rather, what is required is
second-order, correlated tunneling of atoms in the lattice. The movement of an atom from its
initial lattice site 𝑛 onto an already occupied lattice site 𝑛 + 1∕2 must be accompanied by a
correlated movement of the atom initially residing on site 𝑛 + 1∕2 to its neighboring site 𝑛 + 1
[see Figs. 5.2(c) and 5.2(d)]. Correlated processes of this kind can be engineered by introducing
a judiciously chosen detuning of the matter sites, 𝛿𝑒,𝑔, with respect to the neighboring gauge
sites. In a simulation of the Schwinger model, this correlated hopping would realize pair
production processes of electrons and positrons [Figs. 5.2(d) and 5.2(e)].

5.3.1 Engineering the potentials

To create this triple well landscape, we plan to exploit the hybrid tweezer-lattice architec-
ture of our experiment, along with the state-dependent control of the clock states presented
in Chapter 4. In the simplest case, we can think of projecting state-dependent tweezers in
an alternating fashion on matter sites of a square magic lattice. More concretely, a tweezer
operating at the |||𝑔⟩ tune-out wavelength on lattice site 𝑛 would be followed by a |𝑒⟩ tune-out
tweezer on site 𝑛 + 1, followed again by a |||𝑔⟩ tune-out tweezer on site 𝑛 + 2, and so forth. In
combination with the introduction of an additional small detuning between lattice sites, this
allows for correlated tunneling of the kind described previously. The advantages of this setup
are its relative simplicity and its robustness with respect to inhomogeneities or fluctuations in
the tweezer intensities. However, a distinct drawback of this approach is its failure to scale
properly to two spatial dimensions. In 2D the required potential landscape is constituted of
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alternating cross-shaped blocks, outside of which tunneling is prohibited [92]. These cannot
be efficiently created merely by regular arrays of tweezers projected onto a square lattice.

One way to attain the correct 2D landscape involves using an optical lattice consisting of
alternating shallow and deep lattice sites [Fig. 5.2(b)]. Commonly, these kinds of potentials
are realized in optical superlattices. A superlattice can be created by superposing a long and
short lattice of two separate wavelengths, 𝜆𝑙 and 𝜆𝑠, where 𝜆𝑙 = 2𝜆𝑠. To circumvent the need
for two wavelengths per lattice axis, a superlattice potential can also be produced by interfering
two running-wave beams of the same wavelength at an appropriate angle. In either case,
however, the demands on the relative phase stability of the lattices makes superlattices difficult
to engineer. An alternative approach is to use a chequerboard-type lattice which can be made
to be intrinsically phase-stable by a suitable path length geometry [279, 280]. To complete
the system, tune-out tweezers for |||𝑔⟩ and |𝑒⟩ are projected in an alternating fashion onto the
shallow lattice sites to offset the potential in a state-dependent fashion [Fig. 5.2(b)]. In this way,
tunneling of |||𝑔⟩ and |𝑒⟩ can be switched on and off in a local and state-dependent manner by
turning on or off the desired optical tweezer at a particular lattice site. Finally, we might think
of returning to our original square magic lattice and using a SLM or DMD to project tweezers
onto the correct lattice sites. This approach has the additional benefit of being able to create
arbitrary potential landscapes by programming the SLM or DMD in the appropriate fashion.

5.3.2 Preparing the initial state
Two prominent challenges exist when preparing the initial state for our quantum simulation
of LGTs. Firstly, the atoms must occupy the low-entropy motional ground state within the
triple well potentials so as to enable correct and controlled tunneling dynamics. Secondly, the
initial state must be prepared in a locally gauge-invariant fashion. This requires precise control
over the spatial and electronic degrees of freedom of each atom. To meet these challenges, one
possibility is to load |||𝑔⟩ atoms directly from aMOT into a single layer of our 3D optical lattice and
subsequently to arrange the atoms into the desired lattice sites using, for example, our 532nm
tweezers. The same tweezers can then be used to induce a local light shift so that, upon exposure
to a global clock pulse, these atoms remain in the |||𝑔⟩ state, while the remainder are excited into
the |𝑒⟩ state. Alternatively, atoms could be loaded from our MOT into a 532nm tweezer array,
as demonstrated in Section 3.5. From there, the atoms could then be cooled in the tweezers and
implanted directly into the optical lattice in a controlled fashion [210]. The required cooling
can be provided by sideband cooling (of the type discussed in Section 3.3.2) or, in the case of
fermionic ytterbium, by Raman sideband cooling. The latter has been demonstrated to work
quickly and effectively for ytterbium atoms trapped in magic optical tweezers [138] and is
expected to extend analogously to optical lattices of the same wavelength.

5.3.3 Challenges
One of the keys to the success of any LGT simulation hinges on its the ability to maintain
Gauss’ law over relevant dynamical timescales (e.g. tunneling). Inevitably, this is a losing
battle. Sooner or later, violations in the Gauss’ law constraint will emerge and lead to leakage
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into other gauge sectors i.e. into states designated as „unphysical“ under the rubric of Eq. (5.2).
To what degree these gauge-breaking errors prohibit a sensible simulation is an ongoing area
of research [281–283]. Violations of Gauss’ law can arise on different experimental timescales.
For time intervals significantly shorter than individual runs of the experiment, fluctuations in
the lattice and tweezer array intensities may lead to heating and dissipation. The same can be
said for variations in the relative positions between lattice sites and indiviudal tweezers. To
minimize these fast dissipative processes, sufficient intensity stabilization is required. This can
be achieved either in a passive way, by employing monolithic optical components, dispensing
with redunant degrees of freedom and reducing optical path lengths, or, in an active fashion,
by using appropiate intensity servos and feedback loops. On timescales approximating those of
individual runs, variations in laser intensity or inhomogeneities in the tweezer array can lead to
disordered potential landscapes, where, for example, every run of the experiment sees a different
set of staggered detunings 𝛿𝑒,𝑔 or tunneling energies,𝑤. On very long timescales, thermal drifts
and ambient pressure changes may cause gradual misalignment in various optical paths. This
can create additional disorder in the system, for example, via the misalignment of tweezers
relative to the optical lattice. This can be compensated by recalibrating each sub-system (e.g.
the optical lattice alignment) intermittently. Another problem is caused by entropy, introduced
into the system through an imperfect preparation of the inital state. More specifically, entropy
is caused by a misplaced atom on a particular lattice site or the absence of an atom from a site
which is meant to be occupied. To curtail this issue, atoms could initially be loaded into a very
deep optical lattice so that any and all tunneling processes are inhibited, before adiabatically
ramping up to a shallower initial state lattice. In addition, careful intensity balancing of optical
tweezers might also be helpful in this situation, though the requirements are stringent. Given
typical tunneling rates on the order of 10s-100s of Hz and tweezer depths on the order of
10s-100s of kHz, sub-percent level intensity homogenization is necessary [92, 284].

5.3.4 Outlook and perspectives
To conclude this chapter, we briefly touch on a number of prospective research directions
which our LGT quantum simulation platform might be suited to exploring. To benchmark our
LGT simulator, we will initially work in 1D systems to realize the pair production described by
the Schwinger model in Section 5.1.2. Here, we can use the architecture of our simulator to
our advantage, by parallelizing this simulation in many 1D chains within our 2D geometry.

Our experimental platform is naturally suited to the simulation of higher dimensional
non-abelian theories thanks to the presence of nuclear spin degrees of freedom in fermionic
Yb. Non-abelian theories are particularly interesting given the role they play in the Standard
Model of particle phyiscs. In this model, the strong nuclear force adheres to an SU(3) local
gauge symmetry, while the elektroweak force possesses a SU(2)⊗U(1) symmetry. As discussed
in Chapter 1, 171Yb has a nuclear spin of 𝐼 = 1∕2, and therefore features SU(2)-symmetric
interactions. In our experiment, we have already successfully demonstrated the loading and
trapping of this isotope in a MOT and an optical lattice. We have also shown that relevant
spectroscopic methods can be extended to this isotope as needed (see Appendix C). Further-
more, the isotope shift between 174Yb and 171Yb is small enough (∼ 1 − 2GHz) [285, 286]
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so that the state-dependent control outlined in this chapter is expected to be extendable to
171Yb with minimal effort. All of this indicates that the simulation of SU(2) LGTs represents
an experimentally feasible research direction in our experiment.

Maintaing the 1D architecture described in Section 5.3, a novel research direction concerns
the simulation of particle scattering experiments. Over the course of many decades, particle
collider experiments have proven enormously successful at furthering our understanding of
the StandardModel of particle physics [287, 288]. In these experiments, subatomic particles are
accelerated to relativistic speeds and caused to collide with one another. The products of these
high energy scattering events are recorded and their behavior used to infer something about the
underlying theories. Recently, several ideas for very elementary particle scattering experiments
of this type have been proposed for quantum computers and simulators [289–292]. By only
observing the end products of scattering events, particle colliders are in some sense bound
to the time 𝑡 →∞ limit. By contrast, cold atom simulators offer the tantalizing possibility of
resolving the entire time evolution of such scattering processes. While these experiments would
be extremely simplified and rudimentary approximations to the zoo of particles encountered
in high-ernergy accelerators, they nevertheless raise the possibility of new insights.

As described in Section 5.3.1, it is straightforward to extend our experiment to two spatial
dimensions. Here, initial experimental investigations might focus on basic unanswered ques-
tions regarding the nature of the ground state phase diagram of QED in (2+1)D [293–295].
Does (2+1)D QED on a lattice allow for both confined and deconfined states? If so, what kind
of phase transition can we expect and into what universality class does it fall?



Conclusions and outlook

In this thesis, we designed and built a new hybrid quantum simulation platform for cold
ytterbium atoms featuring both an optical lattice and a tweezer array. We used this platform
to perform measurements on three state-dependent wavelengths for the ground

(1S0
)
and

metastable excited
(3P0

)
states in 174Yb, and discussed our intentions of using thesewavelengths

in combination with our hybrid architecture to simulate LGTs in our experiment.
As part of the construction process, we designed and assembled a compact, yet accessible

ultra-high vacuum system, commanding vacuum lifetimes on the order of several tens of
seconds. We also incorporated a number of magnetic field coils into this system, designed for
fast and flexible current switching. Trapping and cooling of atoms is facilitated by numerous
laser setups of varying wavelengths, three of which have been frequency stabilized to a high-
finesse reference cavity using an offset locking scheme. Together with the remote controlled
infrastructure of the lab, these systems allow for sub-second cycle times and the concomitant
collection of large amounts of data on short timescales.

We used this platform to implement a number of standard experimental methods (Chap-
ter 3). Our experiment is capable of performing both absorption and fluoresence imaging,
and to state-selectively image ground and excited states using a dedicated repumping transi-
tion. We managed to load atoms from a MOT into a 759nmmagic optical lattice and therein
probe the atoms using either Rabi, sideband or modulation spectroscopy. We also realized
sideband cooling in a 1D lattice. Additionally, we managed to load, cool and image individ-
ual atoms in a 532nm tweezer arrays using orthogonal AODs in combination with our high
resolution microscope objective.

In Chapter 4, we applied these methods to measure state-dependent wavelengths for the
ground and excited states of the clock transition in 174Yb. In particular, we made use of high-
resolution, magnetically induced, optical clock (Rabi) spectroscopy to determine two magic
wavelengths at 459.6nm and 552.6nm. In addition, we made use of a method previously
developed in Ref. [91] to determine the ground state tune-out wavelength at 553.3nm. We
then used our knowledge of this wavelength to determine the excited state polarizability at
that value and benchmarked a numerical model for the polarizability of both states using
our experimental data. Finally, we briefly sketched the ongoing challenges in measuring the
excited state tune-out wavelength in our lab. The measurement of these wavelengths offers
novel perspectives for state-selective addressing and cooling, thus providing a valuable tool
for advanced quantum simulation [141, 296, 297] and computation schemes [51, 153, 298].
In our own experiment, we look to use tweezer arrays operating at tune-out wavelengths to
engineer a state-dependent triple well potential for the simulation of LGTs.

87



88 Conclusions and outlook

In its current state, the experiment is capable of loading and cooling atoms in either the
lattice or the tweezer array. The major outstanding challenge is to combine both of these
elements to function as a cohesive whole. Here, we envisage the ability to address individual
lattice sites in a targeted fashion using individiual tweezers, to dynamically re-arrange atoms
in the lattice and to hand over atoms from the tweezers to the lattice and vice versa [210,
299]. This will require the following steps:

• Isolating a single layer of our 3D lattice.

• Single-site resolved fluoresence imaging (quantum gas microscopy) in the lattice.

• Efficient cooling to the motional ground state in the lattice, either by extending the
sideband cooling scheme described in Section 3.3.2 to more than one dimension and/or
by implementing Raman sideband cooling.

• Implementing additional tweezer arrays at both the ground state and excited state tune-
out wavelengths [92].

In the introduction to this thesis, we discussed a number of research directions for which
a hybrid lattice-tweezer platform might be well-suited. We believe that with the additional
upgrades outlined above, our experiment is well positioned to investigate these outstanding
issues. Chiefly, we will pursue quantum simulations of QLMLGTs in (1+1)D and (2+1)D. Here,
the fermionic isotopes will enable us to explore non-abelian SU(𝑁) LGTs, while our hybrid
architecture will permit us to extend our simulations into two spatial dimensions. This in turn
will allow us to look at the role and character of confinement in two dimensions. Research is
also needed to develop a deeper understanding of thermalization dynamics in LGTs. This long-
standing problem has recently begun to gain traction after initial experimental investigations
on a cold atom quantum simulator [89, 90]. This is closely related to questions surrounding
the effect of constraints in LGTs on localization in quantum many-body systems [300].

In contrast to the analog quantum simulation perspectives outlined above, our apparatus
also provides the possibility for investigations into gate-based digital quantum computing
strategies. One could imagine collisional gates based on the spin-exchange interactions between
ground and excited states in fermionic Yb [298]. These would offer a complementary alternative
to the Rydberg-mediated, gate-based approach commonly pursued in neutral atom quantum
computing. Spin-exchange interaction could be quickly turned on and off using an optically
induced effective magnetic field and thus used to perform precisely controlled entangling
operations between nuclear spin qubits.

All in all, we believe our hybrid platform to be in an excellent position for navigating the
challenges and opportunities ahead and we look forward to new and exciting insights into
the physics of quantum many body systems.
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Appendix A Atomic beam system
In this appendix we document some of our experience with the AOSense beam source. Ours
was the first experiment to work with this atomic beam source for the Yb atom. Due to a
number of unforseen circumstances, we have had to replace the oven and subsequently re-bake
the system a total of three times. The first two iterations of our oven employed an old nozzle
design (stacked microcapillary array) and failed due to clogging. It was also found that the first
of these ovens had consumed Yb much faster than anticipated so that by the time of clogging,
hardly any Yb remained in the oven. Our current oven is using the newest nozzle design from
AOSense (solid block featuring an array of small holes), which is expected to be much less
prone to clogging and exhibt a longer lifetime.

A.1 Nozzle clogging
Under day-to-day operation, we turn on the oven in themorning, steadily ramp to a temperature
of 420◦C, maintain this temperature for≈ 10−12hrs and then ramp the oven back down to room
temperature at the end of the day. The Zeeman slower hot window is held at a constant 380◦C.

Symptoms of clogging.—The clogging of the oven was heralded by a number of differ-
ent signs including:

• A sustained period of decay in the MOT loading rate over several weeks [see Fig. A.1(a)].

• Coating of the spectroscopy viewports closest to the oven with Yb beyond what is antici-
pated by line-of-sight [see Fig. A.1(b)]. This prevented us from performing absorption
spectroscopy on the atomic beam to confirm our suspicions of nozzle clogging. The
smaller spectroscopy viewports after the 2D MOT were also coated.

• Pronounced oscillations in the oven temperature over a range of ±5◦C [see Fig. A.1(c)].

• Steadily increasing oven power consumption (this is somewhat speculative. The trend is
not well-correlated with the decay in MOT loading time, as it occurs on much longer
timescales)

Diagnosis and possible origin.—Having discussed these symptomswith AOSense and looked
at other possible culprits (e.g. drifts in optics), we reached the conclusion that the nozzle was
most likely clogging. A possible mechanism suggested by AOSense for this issue was the
presence of large amounts of hydrogen in the Yb used in the oven. This hydrogen reacts
with Yb above 400◦C to form YbH2. Inside the capillaries, this process is exacerbated by the
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Clogging

a b

c

Figure A.1 | Oven clogging. (a) Plot of the MOT loading rate over the course of several weeks. The steady

decay in the loading rate is a strong indicator of nozzle clogging. The legend label "Reoptimization"

corresponds to us scanning several experimental parameters (e.g. laser detuning and magnetic field

strengths) to try to find a new optimum loading rate. (b) Pictures of the CF16 viewports close the oven

before and during clogging, showing an increase in the coated area beyond what is expected from line-of-

sight. (c) Oven temperature fluctations were found to be more pronounced as the oven was clogging.

restricted gas flow. Once Yb has deposited on the walls of the capillaries and formed this
compound, it no longer evaporates away. The cycle is repeated until the capillaries clog.

Solution.—The only course of action was to swap the oven and run it at a lower temperature
(our current and newest oven runs at 380◦C). For this purpose, AOSense provides detailed
instructions on the swapping procedure, including the bake temperatures and the getter reacti-
vation. Here we only note down a few practical tips. Wrapping the beam source in aluminium
foil for baking can be tricky, especially around the large 2D MOT viewports. We have found it
sufficient to loosely place aluminium foil over this area of the beam source, making sure to leave
a small air gap so that the aluminium foil does not touch the viewports and is not crumpled. For
baking, we use heating tape and are careful to avoid placing the heating tape over the viewports.
The beam source also has numerous pins for electrical connections. These are very delicate
and we strongly suggest that aluminium foil be placed in between and around these pins and
not on top of them. During the oven swap, we used argon to flood the oven and maintained
a flow of argon throught the swap. The pressure was monitored using a pressure regulator.
The CF16 viewports used for spectroscopy come in two different thicknesses. The thicker
viewports require 8-32, 0.75" long bolts. When it comes to reactivating the oven, AOSense now
recommends not to cycle the oven several times. Rather a single ramp-up to 500◦C for a few
minutes maximum will suffice to burn off any surface-level contaminants.

A.2 Other issues
We typically observe a much larger flux from the oven during the ramp-up phase than expected
from the displayed oven temperature. For example, at 410◦C a flux value closer to the one
expected at 480◦C was observed. This likely means a much better thermal contact between the
heaters and the reservoir than between the reservoir and the temperature sensor. We therefore
reduce the ramp-up speed aswe approach the setpoint value, in order to prevent excessive fluxes.

During the installation of the atom source on the main vacuum chamber we accidentally
vented the oven to air by not fully closing the gate valve between the beam source and the rest
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of the vacuum system. Here, it is critical that the gate valve is closed until a full mechanical
stop is felt. This is often accompanied by a clicking sound, after which further rotation is
required to reach the mechanical stop.
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Appendix B First MOT signal
Our first MOT signal was obtained prior to the installing our microscope objective. Here,
we describe the initial steps to obtain a MOT in our system and compare it to the current
configuration with our objective.

The presence of two differential pumping stages in our vacuum system made it difficult to
channel the atomic beam from the oven into the glass cell. To overcome this challenge, we
aligned 399nm laser light to propagate vertically through the glass cell [i.e. along the 𝑧 axis
- see e.g. Fig. 2.3(b)], with which we looked for any fluoresence in the cell. The fluoresence
was capture on a Mako camera in real time. At the same time, we changed the 2D MOT and
Zeeman slower alignment to attempt to steer the atomic beam through all the differential
pumping stages. We found that changing the vertical alignment of the Zeeman slower and
the 2D MOT beam closest to the glass cell had the most significant effect on the strength
of the fluoresence. The quarter waveplates had already been tuned to the correct rotation
and the horizontal alignment of the Zeeman slower and 2D MOT beams made little to no
difference. Also, changing the detuning of the Zeeman slower by 5 MHz in either direction
was only found to worsen the visibility of the atomic fluoresence. Once the inital (very weak)
fluoresence signal had been detected on the camera, it was a matter of beam walking the 2D
MOT and iteratively optimizing the Zeeman slower pointing, to maximize the fluoresence
signal in the glass cell until it was observable by eye.

We also tried to play around with the alignment of the crossed slowing beams. Here we
observed some strange effects, including the appearance of mysterious fringes and holes in
the blue probe beam signal. We thus returned the crossed slowing alignment to the position
where the fluoresence signal was found to be most homogeneous.

Sure of the fact that we had atoms in the cell, we turned on the four MOT beams (two
retroreflected in the 𝑥𝑦-plane and two independent, counterpropagating beams along 𝑧). These
were set to operate at the maximum power of ≈ 80mW, while the slowing beams were each set
to≈ 10mW. The oven at this point was operated at 440◦C. The mainMOT coils were operating
in anti-Helmholtz configuration with a current of 3A, corresponding to a field gradient of
≈ 5.85G∕ cm. These conditions were maintained for 30 s a piece, within which we almost
immediately saw a diffuse green cloud appearing in the center of our glass cell. Our first MOT.

Having established our MOT in this way, we optimized the loading rate by scanning a
number of experimental parameters (detuning and power of the MOT and slowing beams,
the magnetic field strength etc.), while observing the atom number. In this way, we were
able to obtain a repeatable maximum loading rate of ≈ 30 × 106 s. After the installation of
our microscope objective, the optimal parameter set changed and the loading rate decreased
considerably so that we currently load, at most, ≈ 14 × 106 s.
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Appendix C Working with 𝟏𝟕𝟏Yb
In addition to the bosonic isotope 174Yb, we also worked with fermionic 171Yb. This was
done after taking data for the state-dependent potentials, but before installing our microscope
objective. To perform standard techniques such as MOT loading, cooling and spectroscopy,
the frequency of the all our lasers had to be adjusted by to match the corresponding isotope
shift (≈ 1.8GHz [99]). This involved re-optimizing the cavity lock at the new set frequencies
for the blue, green and yellow lasers. We also had to tune the ti:sapph frequency to the
171Yb magic frequency.

Due to its lower natural abundance (14% compared to 174Yb’s 32%), the MOT loading
rate was significantly reduced for 171Yb [see Fig. C.1(a)]. To perfom Rabi spectrosocpy, we
implement optical pumping on the 1S0 ↔

3P1 transition so that atoms which are excited in
the Rabi spectroscopy are not lost in the "dark" hyperfine state. Specifically, for Rabi spec-
troscopy on the 𝑚𝐹 = +1∕2 ↔ 𝑚𝐹 = −1∕2 transition, optical pumping is performed on
the 1S0

|||𝐹 = 1∕2, 𝑚𝐹 = −1∕2
⟩
↔ 3P1

|||𝐹 = 3∕2, 𝑚𝐹 = +1∕2
⟩
transition. The Rabi spectrum

obtained in this way in our 1D magic lattice for an optical pumping duration of 1ms and
applied external magnetic field of 30G is shown in Fig. C.1(b).

An attempt was also made to perform sideband spectroscopy and cooling. Though we
managed to obtain a sideband spectrum, we were hampedered by the presence of technical
noise, leading to a very noisy sideband spectrum. At the time we wanted to push our tweezer
array forward and install the microscope objective, so no further tests on 171Ybwere performed.
However, we hope to be able to return to this isotope in due course and improve on the work
shown in this short appendix.
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