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2. Introductory summary

2.1 Congenital obstructive uropathies 

Congenital obstructive uropathy, a significant contributor to chronic renal disease, 

refers to renal system injury, including the ureters and bladder resulting from urinary 

tract blockage [1]. Congenital obstructive uropathy is a urinary outflow obstruction 

that, without adequate therapy, limits renal developmental potential and leads to pro-

gressive deterioration of renal function [2, 3]. Congenital urinary tract obstructions 

are a frequent contributor to chronic kidney failure in pediatric patients [1, 4, 5]. The 

progression of uropathy in the developing kidney depends on the timing, intensity, 

and length of the obstruction [6]. Congenital obstructive uropathies are a diverse 

group of malformations affecting the upper and lower urinary tract, either unilaterally 

or bilaterally. These conditions frequently present as prenatal hydronephrosis and 

vary in severity. They can range from self-limiting pyelectasis and/or megaureter to 

a persistent physical blockage at the ureteropelvic/-vesical junction, or urethra, lead-

ing to kidney damage [1]. Urinary tract disorders detected through imaging are 

among the most common congenital defects, occurring in approximately 1 out of 

every 250 to 1,000 pregnancies [7]. Within these cases, congenital obstructive urop-

athies constitute the majority, accounting for around 1 out of every 2,000 pregnancies 

[8]. Renal malformations occur at an average rate of 1.6 per 1,000 births. With over 

80% of cases identified before birth, hydronephrosis is a prevalent diagnosis [8]. Re-

ported incidences of hydronephrosis attributed to ureteropelvic junction obstruction 

(UPJO) range from 39% to 64%, making UPJO the most frequent cause [9]. UPJO 

is generally seen as a functional issue caused by abnormalities in the smooth muscle 

of the pelvis and ureter [10]. UPJO is defined by a blockage at the proximal ureter 

where it narrows near the pelvis. This obstruction can be categorized as extramural, 

mural, and also as intramural, which are extremely rare in children. The most com-

mon type, mural obstruction, results from a dysfunctional ureteral segment with an 

irregular arrangement of smooth muscle cells and connective tissue. Mural UPJO 

development is primarily attributed to mechanisms such as inadequate development 

of the renal pelvis, irregular innervation of the pyeloureteral region, and impaired dif-

ferentiation of smooth muscle cells [1, 11]. While surgery effectively prevents short-

term renal lesions, growing evidence from both experimental and human studies 

suggests that UPJO leads to permanent changes in the renal parenchyma. 
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2.2 UUO in neonatal mice 

In the study of obstructive uropathies, the model of unilateral ureteral obstruction 

(UUO) in neonatal mice and rats has proven successful, as the timing, duration and 

severity of the obstruction can be specifically varied as decisive factors in obstructive 

uropathy [1, 12, 13]. Depending on the intended severity, in adult mice, a partial or 

complete ligation of the ureter is performed surgically [14]. Partial ligation tends to 

reflect better the clinical reality of obstructive uropathies [10]. The neonatal mouse 

model has its limitations here, as the reproducibility of partial ligation in neonatal mice 

weighing 1-2 g represents a technical challenge [15]. However, the neonatal model 

reflects the effect of an obstruction on the still ongoing kidney development. In hu-

mans, nephrogenesis starts at the fourth or fifth week of gestation and finishes 

around 34–36 weeks of gestation. After this point, no additional nephrons will be 

formed for the individual's lifetime [16]. Conversely, in mice and rats, only one-tenth 

of fully developed glomeruli are present initially at birth, with the majority of kidney 

units maturing over the subsequent 10-14 days [17, 18]. Postnatal unilateral ureteral 

obstruction in rodents and congenital obstructive uropathy in humans therefore occur 

in the same vulnerable phase of nephrogenesis. Considering the timeline of nephro-

genesis, the neonatal mouse or rat aligns with the human fetus during the middle 

trimester [2]. During this period, obstructive uropathies often initiate in the developing 

human fetus. Furthermore, since the histologic changes of experimental UUO-kid-

neys and human kidney biopsies of patients with ureteropelvic junction obstruction 

are comparable, direct conclusions can be drawn from the neonatal mouse model to 

the pathophysiology and effects of obstructive uropathies in the human developing 

kidney [10, 19, 20]. 

2.3 Pathophysiology of UUO 

Ureteral obstruction significantly impacts renal physiology by modifying hemodynam-

ics, altering glomerular filtration and renal metabolism, and prompting structural ab-

normalities in the kidney parenchyma, particularly renal fibrosis [21]. The massive 

dilatation of the tubules, exposed to acutely increased hydrostatic pressure following 

UUO, leads to mechanical stretching of the tubular epithelial cells [2, 20]. These 

damaged epithelial cells, together with inflammatory cells migrating into the interstit-

ium, promote tubulointerstitial inflammation [22, 23]. Proximal tubules react early to 

the injury by cell death [24, 25]. This results in dysfunctional atubular glomeruli [26]. 
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Chronic tubulointerstitial inflammation leads to the progressive development of inter-

stitial fibrosis. Fibrosis is characterized by excessive buildup of extracellular matrix 

(ECM) components, such as collagens and fibronectin, primarily facilitated by acti-

vated myofibroblasts [12, 23]. Regardless of the underlying cause, fibrosis ultimately 

leads to the deterioration of organ structure and function. 

2.3.1 Inflammation 

Sterile inflammation is a result of UUO. Sterile inflammation occurs in reaction to 

acute or chronic tissue damage in the absence of any involvement of pathogens [22]. 

Following UUO, leukocytes migrate chemokine-mediated (e.g. IP-10, MIP-2α) into 

the interstitium [27-29]. Together with the damaged cells, the inflammatory cells se-

crete cytokines, which further promote inflammation and fibrosis, like IL-1 alpha, IL-

6, IL-17A, and TNF, resulting in the kidney being in an inflammatory state [23, 28, 

30, 31]. This inflammatory condition contributes to tubular atrophy and interstitial fi-

brosis, that is typical of obstructive nephropathy [2, 23]. The recruitment and prolif-

eration of leukocytes in the renal interstitium is closely linked to the advancement of 

renal injury. The activation of JAK2/STAT3 facilitates the recruitment of white blood 

cells to neonatal kidneys following UUO. When inhibited it leads to a significant re-

duction of inflammation, as shown by our lab [29]. Different leukocyte subtypes, like 

monocytes/macrophages, T-cells, dendritic cells and neutrophils are involved in this 

inflammatory state of the neonatal kidney after UUO [23]. Activated macrophages 

can have different impacts on the renal injury [32]. Upon activation, they can undergo 

differentiation at the site into pro-inflammatory M1 macrophages, triggering Th1-type 

adaptive immune responses and harming healthy tissues. Conversely, anti-inflam-

matory M2 macrophages elicit Th2-type immune responses, suppress immune re-

sponses, and foster wound healing and tissue fibrosis [33]. Macrophage accumula-

tion and polarization play a pivotal function in the progression of a number of kidney 

diseases encompassing neonatal obstructive nephropathy. 

2.3.2 Cell death mechanisms 

One of the key characteristics of UUO is the occurrence of various forms of cell death 

mechanisms. Apoptosis, a type of regulated cell death, is markedly increased in the 

obstructed kidney during nephrogenesis [24, 34]. Apoptosis is governed by intracel-

lular gene regulation and usually relies on the activity of non-inflammatory caspases 

[35]. The cleavage of PARP-1 by caspases is recognized as a distinctive feature of 
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apoptosis [36]. Bcl-2 was the initial gene identified to play a distinct role in natural 

cell death processes. It has the ability to hinder apoptosis. Bax, sharing structural 

similarities with Bcl-2, can counteract the protective effects provided by Bcl-2 [37]. 

Apoptotic characteristics encompass cytoplasmic condensation, along with phos-

phatidylserine exposure, membrane blebbing, and the formation of apoptotic bodies 

[38]. It has been shown recently that apoptosis is also regulated by endoplasmic 

reticulum (ER) stress, as evidenced by the enhancement of its indicators such as 

GRP78 [39, 40]. Apart from apoptosis, alternative types of controlled cell death also 

contribute to neonatal UUO. Our lab was able to demonstrate that the necrotic cell 

death form necroptosis is activated and contributes to inflammation following UUO 

in neonatal mice [24]. The necrotic cell death pathway, necroptosis, in contrast to 

apoptosis, induces inflammation. It is driven by receptor-interacting serine/threonine-

protein kinase-3. Necroptosis is triggered by the interaction of tumor necrosis factor 

α with its receptor [24]. Necroptosis is characterized by the expansion of organelles, 

rupture of the plasma membrane, cellular breakdown, and release of intracellular 

contents [41]. Pyroptosis, a form of programmed necrosis, is initiated by the activa-

tion of inflammasomes [42, 43]. Inflammasomes, acting as intracellular sensors, can 

be triggered by extracellular DAMPs, like HMGB1 [22, 44]. Pyroptosis is defined by 

the gasdermin protein family's role in causing membrane perforation, leading to cell 

rupture, and the subsequent release of inflammatory factors such as IL-1β and IL-18 

[43]. Our lab was able to show that pyroptosis is activated in neonatal kidneys fol-

lowing UUO [45]. 

2.3.3 Interstitial fibrosis 

Progressive renal disease is typified by renal fibrosis, marked by both glomerular 

sclerosis and interstitial fibrosis [12]. The development of interstitial fibrosis is viewed 

as an inadequate response to tissue injury. UUO performed in 2-day old neonatal 

mice leads to renal interstitial fibrosis [3, 12]. This is due to an imbalance between 

collagen synthesizing and degrading, reparative and destructive processes. It in-

volves the proliferation of interstitial fibroblasts, their transition into myofibroblasts, 

and the accumulation of ECM components [46]. Following UUO, activated myofibro-

blasts, which major morphological characteristics is α-smooth muscle actin expres-

sion, are the main producers of ECM [47, 48]. The initial activation of myofibroblasts 

occurs via profibrotic cytokines such as TGF-β, which is secreted by damaged tubu-

lar epithelial cells and infiltrating macrophages [49]. Matrix metalloproteinase-2 is 

one of many factors that stimulate ECM production and accelerates the development 
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of renal fibrosis [50]. Many signaling pathways are associated with interstitial fibrosis. 

Wnt/β-catenin signaling is of importance in wound healing and its sustained activa-

tion leads to fibrogenesis [51, 52]. Our lab was able to highlight the role of RAGE and 

its pathway, which through increased autophagy contributes to renal fibrosis [3]. As 

fibrosis advances, the intricate renal microarchitecture deteriorates. The gap be-

tween tubules and peritubular capillaries expands progressively as collagen accu-

mulates. Prolonged diffusion pathways result in insufficient blood supply to the tu-

bules. The hypoxia-induced tubular atrophy ultimately leads to irreversible loss of 

kidney function [47, 53].  

2.4 Interleukin-10 

Interleukin-10 (IL-10) is a cytokine with immune-inhibitory properties. Originally iden-

tified as a cytokine produced by T helper 2 cells, it is now known to be generated by 

a variety of cell types [54]. IL-10 is known to be produced mainly by Th-cells, mono-

cytes, macrophages, and dendritic cells [55]. IL-10 helps to regulate both natural and 

acquired immune responses, shielding the organism from damage to tissues caused 

by immune activity by primarily suppressing inflammatory signaling [56-58]. Although 

IL-10 is primarily recognized for its anti-inflammatory properties, it can also exhibit 

pro-inflammatory functions under certain conditions [59]. Notably, IL-10 can induce 

pro-inflammatory effects, such as induction of cytotoxic proteins, or stimulating inter-

feron-γ production by cytotoxic T lymphocytes [60]. Moreover, administering potent 

doses of IL-10 to individuals with inflammatory conditions may lead to unintended 

pro-inflammatory effects [61, 62]. Additionally, IL-10 is associated with ureteral ob-

structions. Elevated concentrations of IL-10 were observed in urinary samples of hu-

man fetuses diagnosed with urethral valves [63]. In UUO experiments with adult mice 

it has been shown that a deficiency in IL-10 results in heightened infiltration of both 

T lymphocytes and macrophages into the renal tissue, consequently intensifying the 

inflammatory reaction [64]. Therefore, IL-10 appears to alleviate immune reactions 

and decrease the infiltration of white blood cells into the kidney. In the UUO model 

in 7-8 week old adult mice, IL-10 has been demonstrated to mitigate regulated cell 

death by modulating ER stress, as evidenced by the increased expression of GRP78, 

a known ER marker [40]. Ultimately, IL-10 has been demonstrated to hinder tissue 

fibrosis in different experimental settings, including UUO studies involving adult mice 

[40, 64-66]. In the context of UUO, the stimulation of fibroblasts and the release of 
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additional extracellular matrix proteins contribute to the progression of renal tubu-

lointerstitial fibrosis, a process that is mitigated by IL-10.[40, 64]. All this evidence for 

a beneficial function of IL-10 following UUO, makes it a fitting candidate to evaluate 

its function in the neonatal model of UUO. 

2.5 Toll-like receptor 2 

Toll-like receptor (TLR) 2 is a member of the TLR family, a group of conserved pat-

tern recognition receptors found on leukocytes, myofibroblasts, and renal cells. They 

have the ability to detect pathogen motifs, triggering both innate and adaptive im-

mune responses [67]. Additionally, TLR2 can be activated by DAMPs and thus gen-

erate a sterile inflammation response [68]. During acute inflammation following UUO, 

TLRs frequently act as major contributors of pro-inflammatory cytokines and chem-

okines [69, 70]. TLRs have been associated with various renal diseases. In ischemia-

reperfusion injury (IRI), it is believed that internal ligands for TLR2 and TLR4 are 

emitted from the renal epithelium [71, 72]. Following UUO in adult mice the expres-

sion of TLR2 markedly increases [67]. Additionally, TLR2 has been shown to influ-

ence renal fibrosis, a characteristic feature of UUO [68]. TLR2 might play a role in 

the progression of renal fibrosis by promoting a shift towards a TH2/M2-biased phe-

notype [73]. In the case of a bacterial disease, TLR2 triggers through MyD88 the 

apoptotic cell death pathway [74]. TLR2 was shown to activate apoptosis in adult 

mice following UUO [67]. Additionally, HMGB1, an activator of pyroptosis, has been 

shown to interact with TLR2 under certain conditions [75]. The involvement of TLR2 

in inflammatory cell death and renal fibrosis following UUO is currently subject to 

debate. Nevertheless, it is an interesting candidate for detailed analysis in the neo-

natal model of UUO. 

2.6 The importance of neonatal UUO research 

The chapters discussed above present an overview of the pathophysiology and con-

sequences of obstructive uropathies. Congenital obstructive uropathy, along with re-

nal hypoplasia and dysplasia, is a major factor in renal failure and contributes to 

nearly half of all chronic kidney disease cases in infants and children [1]. Currently, 

30-40% of patients require surgical correction. Infants with UPJO are incorrectly 

stratified conservatively in about 20-30% of cases [76]. For functional assessment of 

obstructive uropathies like UPJO, repeated nuclear renal scans in infants and tod-

dlers are essential [77, 78]. Ultrasound and nuclear scan determine the need for 
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surgical removal of UPJO. Yet, these nuclear scans involve radiation exposure, re-

quiring careful consideration in young patients. This problem underlines the im-

portance for the search for suitable biomarkers for the severity of UPJO and renal 

injury in order to reduce nuclear scans and radiation in infants. In most cases, UPJO 

will resolve without intervention [77]. Hence, the decision to wait and further observe 

or to proceed with surgery must be carefully weighed. Urinary biomarkers could help 

to better identify patients with UPJO at risk. In the search for prognostic markers for 

obstructive uropathies, numerous components of fetal urine have been investigated, 

including electrolytes, IGF-1, creatinine, EGF, CA 19-9, NGAL, TGF-ß, MCP-1. Also 

mass spectrometric analysis of urine proteomes appears promising [1, 79-83]. It has 

been shown that conservatively treated patients with UPJO, in contrast to patients 

who had undergone surgery, showed a pathologic urine proteome pattern after 5 

years, which indicates persistent pathological remodeling processes in the kidney 

[84]. Newest metabolome analyses can predict the need for surgery in UPJO infants 

even before the age of 4 months. 26 operated UPJO infants already showed a dif-

ferent urine metabolome in the first 4 months of life compared to the infants with 

spontaneously regressed hydronephrosis [85]. It is important to find possibilities to 

reduce or even inhibit the irreversible injury done to the kidney, to improve diagnos-

tics and identify UPJO-kidneys at risk that would profit from early intervention (sur-

gery). Numerous signaling pathways are activated following ureteral obstruction, with 

numerous target proteins for research, like in the case of IL-10 and TLR2. In human 

fetuses diagnosed with urethral valves, a severe condition causing lower urinary tract 

obstruction, elevated levels of IL-10 in the urine were observed, suggesting its po-

tential as a biomarker for obstructive nephropathies [63]. TLRs have been associated 

with several renal diseases and could provide insights into the severity of kidney 

injury [68, 69, 72, 86]. Uncovering the exact impact IL-10 and TLR2 have on neonatal 

UUO-kidneys may help in understanding of the highly diverse and severe pathophys-

iology of obstructive uropathies. Thought out and well executed research on such 

target proteins and biomarkers is key. It may help to determine if a surgery is needed 

and when it would be best to conduct it. Only if the search and research continue it 

will be possible to reduce renal failure in children significantly.   
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Interleukin‑10 enhances 
recruitment of immune cells 
in the neonatal mouse model 
of obstructive nephropathy
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Xingqi Ji 2, Barbara U. Schraml 2, Lou M. Wackerbarth 2 & Bärbel Lange‑Sperandio 1*

Urinary tract obstruction during renal development leads to inflammation, leukocyte infiltration, 
tubular cell death, and interstitial fibrosis. Interleukin-10 (IL-10) is an anti-inflammatory cytokine, 
produced mainly by monocytes/macrophages and regulatory T-cells. IL-10 inhibits innate and adaptive 
immune responses. IL-10 has a protective role in the adult model of obstructive uropathy. However, its 
role in neonatal obstructive uropathy is still unclear which led us to study the role of IL-10 in neonatal 
mice with unilateral ureteral obstruction (UUO). UUO serves as a model for congenital obstructive 
nephropathies, a leading cause of kidney failure in children. Newborn Il-10−/− and C57BL/6 wildtype-
mice (WT) were subjected to complete UUO or sham-operation on the 2nd day of life. Neonatal 
kidneys were harvested at day 3, 7, and 14 of life and analyzed for different leukocyte subpopulations 
by FACS, for cytokines and chemokines by Luminex assay and ELISA, and for inflammation, 
programmed cell death, and fibrosis by immunohistochemistry and western blot. Compared to 
WT mice, Il-10−/− mice showed reduced infiltration of neutrophils, CD11bhi cells, conventional type 
1 dendritic cells, and T-cells following UUO. Il-10−/− mice with UUO also showed a reduction in pro-
inflammatory cytokine and chemokine release compared to WT with UUO, mainly of IP-10, IL-1α, 
MIP-2α and IL-17A. In addition, Il-10−/− mice showed less necroptosis after UUO while the rate of 
apoptosis was not different. Finally, α-SMA and collagen abundance as readout for fibrosis were 
similar in Il-10−/− and WT with UUO. Surprisingly and in contrast to adult Il-10−/− mice undergoing UUO, 
neonatal Il-10−/− mice with UUO showed a reduced inflammatory response compared to respective 
WT control mice with UUO. Notably, long term changes such as renal fibrosis were not different 
between neonatal Il-10−/− and neonatal WT mice with UUO suggesting that IL-10 signaling is different 
in neonates and adults with UUO.

Congenital obstructive nephropathy is the main cause of kidney failure in infants and children, impairs fetal 
nephrogenesis and induces severe disruption of nephron maturation leading to nephron loss1–5. Unilateral ure-
teral obstruction (UUO) performed in neonatal mice serves as a model for congenital obstructive nephropathy. 
UUO induces sterile inflammation, kidney injury, cell death, and renal fibrosis, leading to loss of nephron mass 
in the developing kidney with obstruction4,6,7.

Interleukin-10 (IL-10) is an immunosuppressive cytokine, initially described as a T helper 2 derived cytokine 
and now known to be produced by various cell types8,9. Major sources of IL-10 include T helper cells, mono-
cytes, macrophages, and dendritic cells. IL-10 limits innate as well as adaptive immune responses and protects 
the host from immune-related tissue damage10,11. IL-10 dampens immune responses mainly through block-
ing activation of inflammatory pathways12,13. IL-10 is mostly known for its anti-inflammatory functions, but 
under certain circumstances it exhibits pro-inflammatory functions as well14–16. IL-10 has the capacity to elicit 
pro-inflammatory effects, including stimulation of granzyme B and interferon-γ production by CD8+ T cells17. 
Additionally, high-dose IL-10 treatment in patients with inflammatory disorders can be associated with undesired 
pro-inflammatory effects16,18.
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IL-10 has been shown to play an important part in several renal diseases, one example being renal 
ischemia–reperfusion injury19,20. An association between IL-10 polymorphisms and the risk of developing dia-
betic nephropathy has been shown21. In human fetuses with urethral valves, a severe form of lower urinary tract 
obstruction, increased urinary levels of IL-10 were measured22.

Recently it has been shown that IL-10 deficiency leads to an increase of macrophage and T-cell infiltration 
into kidneys following UUO in adult mice, thereby increasing the inflammatory response23. Thus, IL-10 seems 
to reduce immune responses and leukocyte infiltration into the kidney. IL-10 suppresses inflammatory processes 
by inhibiting the secretion of a broad variety of pro-inflammatory chemokines and cytokines, like interperito-
neally-10 (IP-10/CXCL10), macrophage inflammatory protein (MIP-2α/CXCL2), and IL-1α24,25. Additionally, 
cytokines released by macrophages, like IL-6 and IL-18 are also inhibited by IL-1026,27. Vice versa the knock-out 
of IL-10 leads to an increased expression of T cell produced cytokines IL-17 and IL-2228.

A central player in obstructive nephropathy is tumor necrosis factor-α (TNF-α), which mediates the inflam-
matory response by promoting the activation and recruitment of immune cells29. The balance of TNF-α and 
IL-10 is important for the maintenance of immune homeostasis30. To counteract exuberant production of TNF-α 
following injury, IL-10 is able to suppress TNF-α secretion through different mechanisms31.

One of the hallmarks of UUO is cell death in various forms. Apoptosis is increased in the neonatal obstructed 
kidney4. For IL-10, a blocking effect in inducing apoptosis has been reported in several disorders32–34. Most 
importantly, in the adult model of UUO, IL-10 has been shown to attenuate apoptosis through regulating endo-
plasmic reticulum (ER) stress as demonstrated by the upregulation of ER markers including 78-kDa glucose-
regulated protein (GRP78)23. Besides apoptosis there are other forms of regulated cell death that play a role 
in neonatal UUO4. Necroptosis, a necrotic form of cell death, is mediated by the receptor interacting serine/
threonine-protein-kinase-3 (RIPK3) and unlike apoptosis triggers inflammation35. Until now, IL-10 has not 
been investigated in relation to necroptosis, but it has been shown that IL-10 can prevent necrosis in murine 
experimental acute pancreatitis implying a potential protective role of IL-10 in necroptosis36.

Finally, IL-10 has been shown to inhibit organ fibrosis in several animal models including UUO in adult 
mice37–40. In UUO, activation of fibroblasts and secretion of additional extracellular matrix components induce 
development of renal tubulointerstitial fibrosis41, a process which is attenuated in the presence of IL-1023,42.

Because of striking differences in the pathogenesis of UUO in adults and neonates, we set out to investigate 
the role of IL-10 in the neonatal mouse model of congenital obstructive nephropathy. Our results surprisingly 
reveal a pro-inflammatory role of IL-10 inducing immune cell recruitment into the obstructed kidney in neonatal 
mice with UUO without altering the course of renal fibrosis development following UUO.

Materials and methods
Experimental protocol
Il-10−/− mice and WT mice (C57BL/6J) were subjected to complete left ureteral obstruction or sham opera-
tion under general anesthesia with isoflurane (3–5% v/v) and oxygen (0.8 L/min) on the second day of life, as 
described before43. The animals received carprofen (5 mg/kg) to alleviate possible pain after the surgery. The sex 
distribution was equal in both groups. All mice were raised in the same environmental condition, group-housed 
in the same room, under the same controlled temperature (20–22 °C) and photoperiods (12:12-h light–dark 
cycle) and fed with the same chow and water. After recovery, neonatal mice were returned to their mothers until 
sacrifice on day 3, 7 and 14 of life. The animals were sacrificed by cervical dislocation. The weight of the kid-
neys harvested was on average between 15 mg (d3) and 65 mg (d14). Il-10−/− mice with a C57BL/6 background 
(B6.129P2-Il10tm1Cgn/J) were obtained from Charles River Laboratories (Sulzfeld, Germany). All experiments 
were performed according to national animal protection laws and the guidelines of animal experimentation 
established and approved by governmental committee (Regierungspräsidium von Oberbayern) (Az ROB-55.2-
2532.Vet_02-19-109). This study is reported in accordance with ARRIVE guidelines.

IL‑10 ELISA assay
WT mice were either subjected to UUO or not operated. At day 7 mice were sacrificed by decapitation to collect 
blood samples into serum-separating tubes; additionally, blood samples from adult mice were collected (neonatal 
UUO n = 4, neonatal mice non-operated n = 5, adult mice n = 3). The tubes were inverted 5 times, left standing 
for 30 min and centrifugated at 8000g for 90 s. The serum was collected and used for an IL-10 ELISA assay (R&D 
Systems M1000B-1, Minneapolis, MN) as per manufacturer’s instructions.

Cell isolation
Kidneys were isolated from neonatal Il-10−/− and WT mice without perfusion at day 3, 7, and 14 (n = 3 for each 
group) and cut into small pieces. The samples were processed as described previously44. In brief, kidneys were 
digested in 2 ml of RPMI (Thermo Fisher Scientific, MA) with 200 U/ml collagenase IV (Worthington Biochemi-
cal, NJ) and 0.2 mg/ml DNAse I (Roche, Switzerland) for 1 h at 37 °C while shaking (120 rpm). After digestion, 
cells were passed through a 70-mm strainer and washed once with FACS buffer. Leukocytes were enriched using 
a 70%–37%–30% Percoll gradient by centrifugation (2000 rpm for 30 min at room temperature). Cells were col-
lected at the 70%–37% interface. Percoll (100%) was prepared by adding nine parts of Percoll (GE Healthcare, 
IL) to one part of 10× concentrated PBS. After Percoll enrichment, cells were washed once and resuspended in 
FACS buffer (PBS with 1% FBS, 2.5 mM EDTA (Invitrogen, CA), 0.02% sodium azide (Sigma-Aldrich, MO)) 
for analysis.
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Flow cytometry
For surface staining, cells were incubated with 50 µl purified anti-mouse CD16/32/FcBlock for 10 min at 4 °C, as 
described previously45. Additional antibodies were then added in FACS buffer to a final volume of 100 µl at 4 °C 
for 20 min. After staining, cells were washed twice and resuspended in FACS buffer for analysis. Dead cells were 
excluded from analysis by fixable viability dye eFluor™ 780 (Thermo Fisher Scientific, MA). Flow cytometry was 
performed on an LSR Fortessa (BD Biosciences, NJ) with subsequent data analysis using FlowJo software (Tree 
Star). Cells were quantified by using CountBright Absolute Counting Beads (Thermo Fisher Scientific, MA). The 
following antibodies were purchased from Biolegend: anti-CD45.2-R-phycoerythrin-cyanine 7 (PECy7) (clone: 
104), anti-MHCII I-A/I-E-AF700 (clone: M5/114.15.2), anti-CD11c-BV786 (clone: N418), anti–CD3e-PECy5 
(clone: 145-2C11), anti-CD19-BV650 (clone: 6D5), anti-Ly6G-Peridinin-chlorophyll (PerCP)-Cy5.5 (clone: 
1A8), anti-F4/80-AF647 (clone: BM8), anti-CD24-BUV395 (clone: M1/69), anti-CD64-PE (clone: X54-5/7.1), 
anti-Ly6C-BV605 (clone: HK1.5). The following antibodies were purchased from BD Biosciences: anti-CD11b-
Brilliant UltraViolet (BUV) 737 (clone: M1/70).

Identification of infiltrating macrophages and T‑lymphocytes
The abundance of infiltrating macrophages and T-lymphocytes in the neonatal kidney was examined by immu-
nohistochemical staining. Formalin-fixed, paraffin-embedded kidney sections were subjected to antigen retrieval 
and incubated with either rat anti-mouse F4/80 antibody (Cell Signaling Technology #70076, MA, 1:200) or 
anti-human CD3 antibody (Serotec MCA 1477, Bio-Rad, UK) (n = 10 for each group). Specificity was assessed 
through simultaneous staining of control sections with an unspecific, species-controlled primary antibody. 
Biotinylated mouse anti-rabbit IgG (Santa Cruz Biotechnology sc2491, TX) and goat anti-rat IgG (Southern 
Biotech 3050-8, AL) were used as secondary antibodies. Sections were incubated with ABC reagent (Vectastain 
PK6100, Vector Laboratories, CA), detected with DAB (CD3: Dako, Agilent Technologies, CA, #K3468) (F4/80: 
Vectastain, Vector Laboratories, CA) and counterstained with methylene blue or hematoxylin. Images were taken 
using the LEICA DM1000 microscope and the digital camera (LEICA ICC50HD, Germany). Macrophages and 
CD3-positive lymphocytes in cortex and medulla were counted in twenty nonoverlapping high-power fields at 
400× magnification and were analyzed in a blinded manner. Data were expressed as the mean score ± SEM per 
20 high-power fields.

Cytokine and chemokine protein expression
Kidneys of UUO and control mice were harvested on 3, 7 and 14 days of life (n = 3 in each group) as described 
previously4. In brief, kidneys were homogenized in protein lysis buffer (Tris 50 mM, Na2VO2 1 mM, 2% SDS) 
containing protease inhibitor cocktail (Roche, Switzerland, #1836153). The protein content of the superna-
tants was measured using the BCA Protein Assay Kit (ThermoFisher, MA, Pierce #23225). The supernatants 
were diluted to contain the same protein concentration. Expression of 36 cytokines and chemokines (i.a. IP-10, 
MIP-2α, IL-1α, IL-17A, IL-4, eotaxin, ENA-78) was determined by Luminex multiplex assay (ThermoFisher, 
MA, cat. No. EPX360-26092-901) as per manufacturer’s instructions.

Detection of apoptosis
Apoptotic cells were detected by the terminal deoxynucleotidyl transferase (TdT)-mediated dUTP-biotin nick 
end labeling (TUNEL) assay, as described before4. Briefly, 4% formalin-fixed tissue sections were deparaffinized 
and rehydrated in ethanol, followed by incubation with proteinase K. After quenching, equilibration buffer and 
working strength enzyme (ApopTag Peroxidase In Situ Apoptosis Detection Kit, Millipore, MA) were applied. If 
the nuclei were stained black and displayed typical apoptotic morphology cells were regarded as TUNEL-positive. 
Apoptosis in each kidney was calculated by counting the number of TUNEL-positive tubular and interstitial 
cells in 20 sequentially selected fields at 400× magnification and expressed as the mean number ± SEM per 20 
high-power fields using the LEICA DM1000 microscope and the digital camera (LEICA ICC50HD, Germany) 
(n = 10 for each group).

Measurement of interstitial fibrosis
Interstitial collagen deposition was measured in Masson’s trichrome-stained sections as described before6. Digital 
images of the sections were superimposed on a grid, and the number of grid points overlapping interstitial blue-
staining collagen was recorded for each field. In addition, formalin-fixed and paraffin embedded sections were 
subjected to antigen retrieval and incubated with mouse anti-mouse α-smooth muscle actin antibody (Sigma 
Aldrich, Germany, A2547, 1:400) as shown before6. Biotinylated horse anti-mouse IgG (Santa Cruz, Germany) 
was used as a secondary antibody. Sections were incubated with ABC reagent (Vectastain PK 6100, Vector 
Laboratories, CA), detected with AEC-Mix Romulin (Biocare 901-RAEC810-082117, CA) and counterstained 
with hematoxylin. Digital images of the sections (n = 10 in each group) were superimposed on a grid, and the 
number of grid points overlapping collagen I fibers or α-smooth muscle actin fibers was recorded for each field. 
Twenty non-overlapping high-power fields at 400× magnification were analyzed in a blinded fashion. Data were 
expressed as the mean score ± SEM per 20 high power fields.

Western immunoblotting
Il-10−/− and WT male and female neonatal mice underwent UUO surgery or sham operation at the second 
day of life for Western blot analysis. Kidneys were harvested on 3, 7 and 14 days of life (n = 3 in each group), 
homogenized in protein lysis buffer (Tris 50 mM, Na2VO2 1 mM, 2% SDS) containing protease inhibitor cocktail 
(Roche, Switzerland, #1836153). The protein content of the supernatants was measured using the BCA Protein 
Assay Kit (ThermoFisher, MA, Pierce #23225). 20 μg of protein were separated on polyacrylamide gels at 160 V 
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for 45 min and blotted onto nitrocellulose membranes (100 mA per gel, 120 min). After blocking antibody-
specific for 2 h in Tris-buffered saline with Tween-20 containing 5% nonfat dry milk and/or BSA, blots were 
incubated with primary antibodies 2 h at room temperature or at 4 °C overnight. PARP antibody (Cell Signaling 
Technology #9542, MA, 1:500), RIPK3/RIP3 antibody (Novus Biologicals #77299, Germany, 1:2000), GRP78/BiP 
antibody (Cell Signaling Technology #3183, MA, 1:1000), α-SMA antibody (Sigma Aldrich A2547, Germany, 
1:5000), β-catenin antibody (Upstate Biotechnology 05-665, Fisher Specific, NY, 1:200), and TGF-β antibody 
(Cell Signaling Technology #3711, MA, 1:2000) were used for western blot analysis. GAPDH (Biodesign Merid-
ian LifeScience H86540M, Memphis, TN, 1:40,000) was used as an internal loading control and to normalize 
samples. Blots were washed with Tris-buffered saline with Tween-20 and incubated with horseradish peroxidase-
conjugated secondary antibody for 1 h at room temperature. Immune complexes were detected using enhanced 
chemiluminescence method. Blots were exposed to x-ray films (Kodak, Germany), the films were scanned, 
and protein bands were quantified using the densitometry program Image J. Each band represents one single 
neonatal mouse kidney.

Statistical analysis
Data are presented as x-fold increase after UUO. For this the results obtained from analysis of UUO kidneys are 
divided by the average of sham results. This form of presentation allows us to show the actual impact of UUO 
with the sham-measurements as basis. Data are presented as mean ± standard error. Comparisons between 
groups were made using one-way analysis of variance followed by the Student–Newman–Keuls test. Comparisons 
between left and right kidneys were performed using the Students t-test for paired data. Statistical significance 
was defined as p < 0.05.

Results
Neonatal UUO induces upregulation of IL‑10 serum concentrations in neonatal WT mice
We performed unilateral ureteral obstruction (UUO) in neonatal mice at day 2 of life and measured concen-
trations of serum IL-10 at day 7 of life by ELISA. IL-10 concentrations in UUO mice increased significantly in 
comparison to neonatal non-operated control mice (Fig. 1a) confirming earlier reports in adult mice with UUO23. 
We also measured IL-10 concentrations in serum of adult non-operated mice; notably, the IL-10 concentrations 
were too low to detect compared to IL-10 concentrations in neonatal mice.

Leukocyte infiltration into obstructed kidneys of neonatal mice is reduced in the absence of 
IL‑10
Because IL-10 deficiency led to an increase in recruited leukocytes into kidneys from adult mice subjected to 
UUO23, we profiled leukocyte infiltration in neonatal Il-10−/− and WT mouse kidneys with UUO using FACS 
analysis. Surprisingly, neonatal Il-10−/− mice showed less leukocyte infiltration in both sham-operated and UUO-
kidneys compared to respective WT mice (Fig. 1b–d). We also performed a steady state analysis; no differences 
were found between sham-operated and non-operated kidneys in both lines (Supplementary Material Fig. S1) 
indicating that there is no induction of leukocyte recruitment in sham-operated neonatal Il-10−/− and WT mice. 
Next, we analyzed leukocyte subpopulations including Ly6G+ neutrophils, CD11bhi cells, CD3+ T-cells, and type 1 
and type 2 conventional dendritic cells, including CD11bhiCD64+ DC like cell type and F4/80 macrophages (here 
called cDCs). The gating strategy is shown in Supplementary Fig. S2, as recently reported46. UUO induced an 
increase in the infiltration of all leukocyte subtypes investigated (Fig. 2). This was true for the frequency, which 
is defined as the percentage of subtype number to total leukocyte number. We then studied the influence of IL-10 
on the infiltration of leukocyte subsets. Compared to UUO in neonatal WT mice, infiltration of neutrophils was 
most prominently reduced in d14 Il-10−/− mice with UUO (Fig. 2a). We also found some reduction in the infil-
tration of CD11bhi, cDCs, and T-cells in neonatal Il-10−/− compared to WT mice with UUO (Fig. 2b–d). These 
findings on leukocyte subset infiltration were confirmed for CD3+ and F4/80+ cells by immunohistochemistry 
(Fig. 3), suggesting that loss of IL-10 attenuated leukocyte infiltration into obstructed kidneys of neonatal mice 
which is the opposite to findings in adult mice with UUO23. Results of these analyzes in sham-operated kidneys 
only are displayed in Supplementary Fig. S3.

Release of cytokines and chemokines after UUO is reduced in neonatal Il‑10−/− mice
To assess released cytokines and chemokines in the kidney after neonatal UUO in the presence and absence 
of IL-10, a Luminex analysis of 36 chemokines and cytokines was performed in Il-10−/− and WT mice at day 7 
and 14 of life (Fig. 4a–f). At day 7, UUO provoked a marked increase in IP-10 release in both Il-10−/− and WT 
mice, while we observed no substantial release of MIP-2α, IL-1α, IL-17A, eotaxin, and ENA-78 in Il-10−/− and 
WT mice at day 7 of life (Fig. 4a–f). All here investigated cytokines were released at much higher quantities in 
WT mice with UUO at day 14 of life compared to respective Il-10−/− mice with UUO at day 14 of life (Fig. 4a–f), 
suggesting a potential pro-inflammatory role of IL-10 in obstructed kidneys of neonatal mice. Expression of 
these chemokines and cytokines in sham-operated kidneys only are displayed in Supplementary Fig. S4. We 
also measured interleukin-4 (IL-4) in obstructed kidneys (Supplementary Fig. S5), however it did show neither 
a response to UUO nor a difference between Il-10−/− and WT kidneys.

Necroptosis but not apoptosis is reduced in neonatal Il‑10−/− mice following UUO
Next, we assessed the rate of apoptosis and necroptosis in neonatal mice following UUO. Tubular apoptosis in 
neonatal Il-10−/− and WT sham-operated and UUO kidneys was measured by TUNEL staining for apoptotic 
nuclei (Fig. 5a,b). The number of tubular apoptotic cells in neonatal kidneys following UUO increased in a 
similar fashion in both Il-10−/− and WT mice (Fig. 5a,b). Additionally, full length expression of PARP as a read 
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out for apoptosis and measured by western blot (Fig. 5c) (uncropped western blot image: Supplementary Fig. S6) 
showed no differences between obstructed kidneys from neonatal Il-10−/− and WT mice. Furthermore, ER stress, 
a possible source for apoptosis, was measured by western blot using the marker GRP78/BiP. UUO induced ER 
stress in neonatal kidneys with a small but significant increase of GRP78/BiP expression in Il-10−/− compared 
to WT mice at d7 of life, while no difference could be found for d3 and d14 (Fig. 5d) (uncropped western blot 
image: Supplementary Fig. S7).

Necroptosis, another form of cell death, was measured by expression of RIPK3/RIP3 using western blot 
(Fig. 5e) (uncropped western blot image: Supplementary Fig. S8). We found a significant decrease in RIPK3 
expression in obstructed kidneys of neonatal Il-10−/− compared to WT mice only for day 14 of life but not at 
earlier time points. Finally, expression of TGF-β, which is involved in both apoptotic and necroptotic cell death 
pathways, did not show any significant differences, but a decreasing trend in obstructed kidneys of neonatal Il-
10−/− compared to WT mice (Fig. 5f) (uncropped western blot image: Supplementary Fig. S9). Expression of these 
cell death markers in sham-operated kidneys only is displayed in Supplementary Fig. S10. From these results 
we conclude that IL-10 has only a minor influence on cell death following UUO in neonatal mouse kidneys.

Renal fibrosis increased after neonatal UUO with no substantial differences between Il‑10−/− 
and WT mice
To study interstitial fibrosis in Il-10−/− and WT mice after neonatal UUO, α-SMA staining of kidney sections 
as well as its overall expression were measured. The abundance and expression of α-SMA increased continu-
ously in neonatal Il-10−/− and neonatal WT mice with obstruction. We observed a lower expression of α-SMA 
in neonatal Il-10−/− kidneys on d14 in the immunohistochemical staining, however, this result could not be 
confirmed by western blot analysis. (Fig. 6a–c) (uncropped western blot image: Supplementary Fig. S11). Next, 
we assessed interstitial collagen deposition measured by the Masson’s Trichrome staining. Again, we found no 
significant differences between obstructed kidneys of neonatal Il-10−/− and neonatal WT mice (Fig. 6d,e). Finally, 
we investigated UUO-induced β-catenin expression in the neonatal kidneys of Il-10−/− and WT mice which was 

Figure 1.   Reduced numbers of leukocytes in Il-10−/− mice with unilateral ureteral obstruction. Neonatal WT 
mice were subjected to UUO on the 2nd day of life and blood serum samples for an ELISA assay were collected 
at d7 of life. Serum samples of non-operated mice were used as control. IL-10 concentration was significantly 
higher in UUO samples compared to non-operated controls (a). n = 4 for UUO; n = 5 for non-operated controls. 
Whole kidneys were harvested for the FACS analysis on day 3, 7, and 14. Cells were gated on live CD45.2+ cells 
for WT and Il-10−/− sham-operated and UUO kidneys on d14 (b). Leukocyte count was lower in the Il-10−/− 
sham-operated kidneys at all time points (c) and for the UUO kidneys on d7 (d) in comparison to WT. n = 3; 
*p < 0.05. Data are presented as individual points with mean ± SEM.
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significantly different only at day 7 of life (Fig. 6f) (uncropped western blot image: Supplementary Fig. S12). 
Expression of these fibrosis markers in sham-operated kidneys only is displayed in Supplementary Fig. S13. 
From these findings we conclude that IL-10 does not play a major role in the development of renal fibrosis in 
neonatal kidneys with UUO.

Discussion
Interleukin 10 is an anti-inflammatory and antifibrotic cytokine produced by a broad variety of cells11,18. Hence, 
we investigated a potential anti-inflammatory role of IL-10 in neonatal kidneys with obstructive nephropathy. 
Obstructive nephropathies belong to the congenital anomalies of kidneys and urinary tract (CAKUT) and are one 
of the leading causes for kidney failure in children47,48. Using Il-10−/− mice, we demonstrate that IL-10 stimulates 
the recruitment of immune cells into the obstructed neonatal kidney. In addition, we show IL-10 dependent 
release of pro-inflammatory cytokines and chemokines within the obstructed neonatal kidney. This is in contrast 
to findings in adult mice with UUO where IL-10 was reported to exert anti-inflammatory effects in obstructed 
kidneys23. However, our study has its limitations, as the usage of Il-10−/− and WT littermates was not possible 
due to the low age required for the UUO surgery. This may lead to a potential bias.

We also found that IL-10 is upregulated after UUO in serum samples of neonatal WT mice, which provides 
additional support of a potential role of this cytokine in modulating immune responses in obstructive nephropa-
thy. Immune cells are important mediators of the inflammatory response after UUO49–52. Following obstruction, 
neonatal kidneys of Il-10−/− mice displayed a reduced number of infiltrating leukocytes, especially neutrophils, 
CD11bhi cells, F4/80+ cells, cDC1, and T-cells. By contrast, in adult mice with UUO the absence of IL-10 led 
to an increase in the number of infiltrated T-cells and F4/80+ cells in the obstructed kidneys23. This differential 
regulation in neonatal and adult mice suggests that IL-10 may have an influence on the overall development 
and/or recruitment of immune cells in the neonatal period, thus inducing a different immune response to UUO 

Figure 2.   IL-10 induces the infiltration of neutrophiles, macrophages, dendritic cells and T-cells after neonatal 
UUO. Neonatal mice were subjected to UUO or sham operation. Frequency of renal Ly6G+ neutrophils (a), 
CD11bhi cells (b), cDC1 dendritic cells (c), and CD3+ T-cells (d) at the indicated ages are shown. Neutrophils 
infiltrated the obstructed kidney; the infiltration was lower in the Il-10−/− than in the WT (a). UUO induced 
infiltration of CD11bhi cells (b) and dendritic cells (c); the infiltration was lower in the Il-10−/− compared to 
the WT on d3. T-cells infiltrated the kidney following UUO; T-cell infiltration was lower in the Il-10−/− in 
comparison to WT on d14 (d). Results are indicated as x-fold increase above sham operated control; n = 3; 
*p < 0.05. Data are presented as individual points with mean ± SEM. Standalone * represents significant 
differences between Sham and UUO results.
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compared to adult mice. In Il-10−/− mice cDC1 and CD11bhi cells show a delayed infiltration into the obstructed 
kidney in comparison to WT, which emphasizes the possibility of a still unknown function of IL-10 in the 
development of the immune system during the neonatal period. In neonatal UUO, nephrogenesis is still ongoing 
with constant changes in gene regulation and composition of the immune system in the kidney46,53. Even under 
basal conditions several of our markers already show diminished expression in Il-10−/− mice compared to WT.

IL-10 is known as an anti-inflammatory cytokine that limits innate immune responses mainly by inhibition 
of pro-inflammatory cytokines11. Since the markers we used to assess infiltration of leukocytes don’t assess their 
degree of activation, we also analyzed the chemokine and cytokine profiles in the neonatal kidneys of Il-10−/− and 
WT mice following UUO. Surprisingly, neonatal Il-10−/− mice with UUO showed a reduction in pro-inflam-
matory cytokine and chemokine content in obstructed kidneys when compared to WT with UUO, mainly of 
IP-10, IL-1α, MIP-2α,IL-17A, eotaxin, and ENA-78. These results are congruent with the reduction of infiltrating 
leukocytes into the neonatal kidney and demonstrate again the differential regulation of immune responses by 
IL-10 in the neonatal versus adult organism. Under inflammatory conditions a variety of cells can express the 
chemokines IP-10 and MIP-2α, which attracts inflammatory cells in different renal diseases54–56. Here, we show 
an increase in levels of IP-10 and MIP-2α following neonatal UUO, which was markedly reduced in neonatal Il-
10−/− mice in comparison to neonatal WT mice. Contrary to our findings, in the model of cisplatin nephrotoxicity 
IL-10 deficiency in adult mice has been shown to induce an increase of IP-10 levels in the kidney24. Additionally, 
IL-10 has been shown to decrease MIP-2α after infection57,58. In the adult UUO model, MIP-2α mRNA expression 
increased greatly in the obstructed kidney59. Low concentration of MIP-2α after neonatal obstruction may be 
also due to low concentration of IL-17A, an activator of MIP-2α production. IL17A induces cytokine produc-
tion in renal epithelial cells60. Deficiency of IL-17A attenuated injury in a renal ischemia reperfusion model61. 
Following UUO in adult mice, IL-17A increased and induced renal fibrosis62. IL-10 has been shown to suppress 
IL-17A production in various models58,63. In the neonatal setting, we observed a significant reduction in IL-17A 
levels in obstructed kidneys of neonatal Il-10−/− mice compared to neonatal WT mice. This could be related to 
the fact that IL-17A is mostly produced by T-cells which are reduced in number in obstructed neonatal kidneys 

Figure 3.   Immune cell infiltration of CD3+ and F4/80+ cells. Immunohistological staining for CD3 (positive 
cells marked with arrows), a marker for T-cells and F4/80, a macrophage and dendritic cells marker, of WT 
sham and UUO, and Il-10−/− sham and UUO mice on d14 (a,c). Neonatal UUO induced infiltration of CD3+ 
T-cells in the kidney; the infiltration was lower for Il-10−/− compared to WT on d14 (b). Following UUO F4/80+ 
cells infiltrated the kidney, with more cells infiltrating Il-10−/− on d7 and fewer cells on d14 (d). The gating 
strategy for these leukocyte subpopulations can be found in Supplementary Fig. S2. Results are indicated as 
x-fold increase above sham operated control in 20 hpfs (×400); n = 10; *p < 0.05. Data are presented as individual 
points with mean ± SEM. Bar = 100 µm. Standalone * represents significant differences between Sham and UUO 
results.
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of Il-10−/− mice. We also investigated IL-1α, a cytokine which is a key mediator of sterile inflammation4,64,65. 
Neonatal UUO induced IL-1α release in WT, but not in Il-10−/− kidneys. The observed increase of IL-1α in 
neonatal WT UUO kidneys is in line with our previous findings4. However, IL-10 has been shown to suppress 
IL-1α production by resident peritoneal macrophages in vitro66. This contrasts with our finding suggesting a 
differentially regulated interplay between IL-1α and IL-10 in neonatal and adult mice with UUO. The increased 
concentration of chemokines following UUO in WT in comparison to Il-10−/− shows a possible mechanism driv-
ing the pro-inflammatory role of IL-10 in neonatal UUO. IP-10 is mostly known for its role in recruiting T cells67. 
MIP-2α, MIP-1β, and GM-CSF play a role in macrophage recruitment68–70. Eotaxin, although mostly associated 
with eosinophil recruitment, was shown to be critical in mammary gland development and also takes part in 
the inflammatory response in diabetic nephropathy71,72. Overall, the cytokines and chemokines we investigated 
here are also involved in neutrophil recruitment, especially ENA-78 being the epithelial neutrophil-activating 
protein64,73–76. The reduction of these chemokines in the obstructed kidneys of Il-10−/− mice is in line with the 
observed reduction of the infiltration of neutrophils, macrophages, and T cells into the obstructed kidneys of 
neonatal Il-10−/− mice. IL-10 promotes proliferation and activation of CD8+ T cells and thus release of cytokines 
and chemokines by these cells16. In a model of human endotoxemia an upregulation of interferon-γ and the 
chemokine IP-10 associated with it was observed after administration of recombinant human IL-1077. This may 
indicate that IL-10 is regulated differently in neonatal and adult mice with a pro-inflammatory function in the 
neonatal kidney via recruitment of immune cells through increased secretion of chemokines.

Our findings propose a differential regulation of IL-10 in the neonatal period. In fact, the neonatal immune 
system differs significantly from the adult one with marked suppression of pro-inflammatory canonical NF-κB 
signaling and activation of anti-inflammatory non canonical NF-κB signaling, as recently demonstrated77. This 
shifted balance reflects a fine-tuned adaption during the transition from fetal life in a protected environment to 
postnatal life with the sudden exposition of the neonate to a microbial-rich outside world78. Interestingly, in a 
sepsis model it has been shown that infants have a diminished response to IL-10 and the expression of the IL-10 
receptor is strongly reduced in neonatal T-cells79,80. Recently it has been shown that IL-4 enhances IL-10 produc-
tion, and the lack of its receptor inhibits IL-10 production in Th1 cells81. The concentration of IL-4 we measured 

Figure 4.   IL-10 influences cytokine and chemokine release after neonatal UUO. Whole sham-operated and 
UUO kidneys of neonatal mice were harvested and analyzed for cytokine and chemokine concentration. IP-10/
CXCL10 concentration increased markedly after UUO, with a lower increase in Il-10−/− kidneys compared to 
WT (a). UUO induced IL-1α release in WT kidneys, but not in Il-10−/− on d14 (b). MIP-2α/CXCL2 increased 
following UUO, the increase was lower in the Il-10−/− kidneys in comparison to WT (c). Neonatal UUO induced 
IL-17A release, the concentration of IL-17A was lower in Il-10−/− compared to WT on d14 (d). Following 
UUO concentrations of the chemokines eotaxin/CCL11 (e) and ENA-78/CXCL5 (f) increased in WT mice, 
while no increase was observed in Il-10−/− mice on d14. Concentration is indicated as x-fold increase above 
sham operated control; n = 3; *p < 0.05. Data are presented as individual points with mean ± SEM. Standalone * 
represents significant differences between Sham and UUO results.
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in neonatal obstructed kidneys did show neither a response to UUO nor a difference between Il-10−/− and WT. 
IL-4 is also a product of the IL-10 pathway, the fact that it’s not upregulated after UUO in our model indicates that 
the mechanism of IL-10 production and its effects in response to injury are differentially regulated in neonates 
and adults. Future studies are warranted to uncover the molecular mechanisms of IL-10 driven pro-inflammatory 
response to injury in neonatal development.

Cell death is an important hallmark of UUO. UUO induces apoptosis in the developing kidney with obstruc-
tion. However, we did not observe a difference in full length PARP expression following UUO in both neonatal 
Il-10−/− and WT kidneys indicating that IL-10 has no impact on the induction of apoptosis in neonatal UUO. 
TUNEL staining of tubular apoptotic nuclei further confirmed our findings regarding apoptosis. Recently it has 
been shown that ER stress induced by UUO in adult mice is a major source for apoptosis in this model and IL-10 
protects the kidney by suppressing ER stress in adult mice42. In our study we show that neonatal UUO induces 
ER stress in the kidney through GRP78/BiP expression and we also observed for one time point (day 7) more ER 
stress in Il-10−/− in comparison to WT. However, for the other time points we found no differences suggesting 
that IL-10 has no impact on ER stress in neonatal UUO. Apoptosis is highly upregulated during nephrogenesis82, 
given this slight differences between the transgenic lines may not be detectable in our model.

Besides apoptosis we also measured necroptosis, a pro-inflammatory form of regulated necrosis, in which 
RIPK3 is involved83,84. Following UUO, the protein expression of RIPK3 increased in neonatal WT kidneys. 
However, Il-10−/− did not show this increase which then also became significant at day 14. Whether TGF-β is 
involved here is not clear at the moment. TGF-β has been described to activate RIPK3-dependent cell death 
pathways leading to necroptosis85. Our results did not find a significant difference, but a decreasing trend in 
TGF-β expression in obstructed kidneys of Il-10−/− versus WT mice.

End-stage outcome of the UUO model is severe interstitial fibrosis in the obstructed kidney. The basis for 
fibrotic diseases consists of expansion of connective tissue and abnormal deposition of fibrotic collagen fibers. 
The main source of extracellular matrix in renal fibrosis are myofibroblasts86. We measured the quantity of fibrotic 
collagen fibers, as well as evaluated myofibroblasts in neonatal Il-10−/− and WT kidneys. The results show an 
overall increase in fibrotic fibers and α-SMA expression (a myofibroblast marker after UUO) with no significant 

Figure 5.   Cell death in neonatal Il-10−/− mice in comparison to the WT. Apoptotic cells in sham-operated 
and UUO kidneys were detected by TUNEL staining in sections. TUNEL-positive cells (marked with arrow) 
in WT sham and UUO, and in Il-10−/− sham and UUO appeared in distal tubules (a). Number of tubular 
apoptotic nuclei increased following UUO, without significant differences between neonatal Il-10−/− and WT 
kidneys (b). Whole kidneys were processed for western blot analysis at day 3, 7 and 14. Expression of PARP, 
a marker for apoptosis, which is cleaved in the process of cell death, decreased following UUO, but was not 
significantly different between Il-10−/− and WT mice (c). ER stress, measured by the expression of GRP78/
BiP, increased following UUO and was increased in Il-10−/− kidneys on d7 compared to WT (d). Expression 
of RIPK3, a marker for necroptosis, increased after UUO, but with a weaker increase in the Il-10−/− compared 
to WT (e). UUO induced TGF-β expression with a decreasing trend for Il-10−/− in comparison to WT (f). The 
shown western blot images are cropped, for uncropped western blots see Supplementary Figs. S4–S7 online. 
Expression is indicated as x-fold increase above sham operated control; n = 3 for western blot analysis and 
n = 10 for immunohistochemical staining; *p < 0.05. Data are presented as individual points with mean ± SEM. 
Bar = 100 µm. Standalone * represents significant differences between Sham and UUO results.
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differences between Il-10−/− and WT mice. β-catenin, which is highly involved in nephrogenesis and kidney 
fibrosis, was reduced at one point in Il-10−/− mice, suggesting an amelioration, however the significant difference 
vanished over time87. Deletion of IL-10 in adult UUO mice had promoted α-SMA accumulation, as well as col-
lagen deposition in the adult mouse kidney after obstruction42. Overall, we did not find considerable differences 
in renal fibrosis development between obstructed kidneys in neonatal Il-10−/− versus WT mice suggesting that 
IL-10 does not play a major role in modulating renal fibrosis in neonatal obstruction, which is contrasting the 
functional role of IL-10 in adult mice with UUO. Renal fibrosis following ureteral obstruction is more severe in 
neonatal compared to adult mice6,88,89. The amount of extracellular matrix deposition in the neonatal kidneys 
may be too strong to detect slight differences coming from a differentially regulated immune response by the 
loss of IL-10. In addition, the effect of the IL-10 deletion with less immune cell infiltration in the kidney could 
be only transient and overall too weak to reduce interstitial fibrosis in neonatal UUO.

Conclusion
We show that IL-10 plays a critical role in the recruitment of immune cells and concomitant cytokine release in 
obstructed neonatal kidneys. However, and in contrast to adult mice with obstruction, deficiency of IL-10 seems 
to have an anti-inflammatory and recruitment inhibitory effect in neonatal kidneys after obstruction accompa-
nied with diminished release of pro-inflammatory cytokines. Notably, IL-10 does not have a substantial effect on 
cell death and interstitial fibrosis in the neonatal UUO model highlighting the differential and in part opposing 
role IL-10 plays in obstructed kidneys of neonatal and adult mice. Further investigations are now warranted to 
clarify the functional role of IL-10 and the mechanism behind its pro-inflammatory function in neonatal versus 
adult UUO and beyond.

Data availability
The datasets generated during and/or analyzed during the current study are available from the corresponding 
author on reasonable request.

Received: 1 September 2023; Accepted: 23 February 2024

Figure 6.   Interstitial fibrosis in neonatal UUO kidneys. Renal sections of UUO- and sham-operated neonatal 
kidneys were stained for α-SMA and Masson’s Trichrome (MT). UUO induced α-SMA expression in neonatal 
kidneys in WT and Il-10−/− (a). α-SMA positive area was slightly reduced in Il-10−/− on d14 (b). α-SMA protein 
expression, measured via western blot, also increased following UUO, but without significant differences 
between WT and Il-10−/− (c). UUO induced collagen deposition in WT and IL-10−/− kidneys (d,e). MT positive 
did not differ significantly between WT and Il-10−/− (d,e). β-Catenin expression increased after UUO, Il-10−/− 
showed less fibrosis on d7 than WT (f). The shown western blot images are cropped, for uncropped western 
blots see Supplementary Figs. S8, S9 online. Expression is indicated as x-fold increase above sham operated 
control; n = 3 for western blot analysis and n = 10 for immunohistochemical staining; *p < 0.05. Data are 
presented as individual points with mean ± SEM. Bar = 100 µm. Standalone * represents significant differences 
between Sham and UUO results.
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Abstract

Urinary tract obstruction during renal development leads to inflammation, tubular apoptosis,

and interstitial fibrosis. Toll like receptors (TLRs) expressed on leukocytes, myofibroblasts

and renal cells play a central role in acute inflammation. TLR2 is activated by endogenous

danger signals in the kidney; its contribution to renal injury in early life is still a controversial

topic. We analyzed TLR2 for a potential role in the neonatal mouse model of congenital

obstructive nephropathy. Inborn obstructive nephropathies are a leading cause of end-

stage kidney disease in children. Thus, newborn Tlr2-/- and wild type (WT) C57BL/6 mice

were subjected to complete unilateral ureteral obstruction (UUO) or sham-operation on the

2nd day of life. The neonatal kidneys were harvested and analyzed at days 7 and 14 of life.

Relative expression levels of TLR2, caspase-8, Bcl-2, Bax, GSDMD, GSDME, HMGB1,

TNF, galectin-3, α-SMA, MMP-2, and TGF-β proteins were quantified semi-quantitatively by

immunoblot analyses. Tubular apoptosis, proliferation, macrophage- and T-cell infiltration,

tubular atrophy, and interstitial fibrosis were analyzed immunohistochemically. Neonatal

Tlr2-/- mice kidneys exhibited less tubular and interstitial apoptosis as compared to those of

WT C57BL/6 mice after UUO. UUO induced neonatally did trigger pyroptosis in kidneys,

however to similar degrees in Tlr2-/- and WT mice. Also, tubular atrophy, interstitial fibrosis,

tubular proliferation, as well as macrophage and T-cell infiltration were unremarkable. We

conclude that while TLR2 mediates apoptosis in the kidneys of neonatal mice subjected to

UUO, leukocyte recruitment, interstitial fibrosis, and consequent neonatal obstructive

nephropathy might lack a TLR2 involvement.

Introduction

Congenital obstructive nephropathy is a frequent cause of chronic kidney disease in infants

and children [1, 2]. Inborn obstruction of the urinary tract impairs renal growth and develop-

ment and leads to reduced nephron numbers. The reduction of nephrons corresponds with a
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lifelong risk of end stage kidney disease [3]. Unilateral ureteral obstruction (UUO) in neonatal

mice at the second day of life serves as a model for congenital obstructive nephropathy. It stud-

ies the effects of urinary tract obstruction on renal development, as nephrogenesis in mice fin-

ishes postnatally 2–3 weeks after birth [4]. Contrary, in humans nephrogenesis finishes in

utero at 34–36 weeks of gestation. Neonatal UUO elicits tubular apoptosis, renal inflammation,

and interstitial fibrosis, which contribute to a loss of nephron mass in the kidney [5]. Inflam-

matory macrophages, which produce pro-inflammatory cytokines like tumor necrosis factor

(TNF), are key players in this process [6]. Toll like receptors (TLRs) are a family of innate pat-

tern recognition receptors. E.g. TLR2 and TLR4 are expressed on leukocytes, myofibroblasts

and renal cells which often play a central role in acute inflammation as major sources of pro-

inflammatory chemokines and cytokines [7–9]. Besides being implicated as cellular pathogen-

associated molecular pattern sensors, TLR might also bind danger-associated molecular pat-

terns (DAMPs) released upon sterile damage of tissue and thus being of endogenous origin

[10]. Cognate ligand activated TLRs initiate intracellular signaling cascades such as through

myeloid differentiation primary response gene (MyD88)-dependent phosphorylation of

MAPK towards activation of nuclear factors such as activating protein-1 (AP-1) and NF-κB

[11]. TLRs have been implicated in various renal diseases, including ischemia-reperfusion

injury (IRI), wherein endogenous TLR2 and TLR4 ligands are thought to be released from the

renal epithelium [8, 12]. For instance, adult Tlr2-/- mice displayed in the IRI model ameliorated

kidney inflammation and injury [13]. TLR2 also influenced renal fibrosis, a hallmark of UUO

[14].

TLR2 forms heterodimers with TLR1 or TLR6, as well as a variety of further receptors for

recognition of diverse ligands [15]. It plays a central role in the innate immune signaling in

renal disease [8, 16–18]. During a bacterial infection, TLR2 signals for apoptosis through

MyD88 via a pathway involving caspase-8 [19]. High mobility group box 1 (HMGB1) might

carry DAMPs that might activate TLR2 [20]. HMGB1 is mostly associated with TLR4 [20, 21].

However, the release of HMGB1 into extracellular fluid also initiates immune responses

through TLR2 [22]. Various reports implicate HMGB1 as an important role holder in the path-

ogenesis of kidney diseases by affecting renal epithelial cell apoptosis, kidney tissue fibrosis,

and inflammation [22]. HMGB1 can also trigger pyroptosis, a regulated necrotic cell death,

which involves inflammasome activities [23]. Inflammasomes can be activated by DAMPs

towards cleavage of gasdermin (GSDM) D or E and consequent cell rupture and release of

pro-inflammatory alarmins [23, 24]. The role of TLR2 in the UUO model, inflammatory cell

death and fibrosis is being discussed controversially. Renal function of adult Tlr2-/- mice is

enhanced as compared to WT controls while TH2 cytokine production and renal fibrosis fol-

lowing UUO are reduced [25]. Here, we comparatively analyzed Tlr2-/- mice for the first time

in a neonatal mouse model of congenital obstructive nephropathy.

Materials and methods

Experimental protocol

The Tlr2-/- mouse strain used (and crossed with other Tlr ko strains) has been generated by

Deltagen, Cal, USA, and provided to CK through Tularik (merged into Amgen in the after-

math) [26]. Tlr2-/- mice and WT mice (C57BL/6) were subjected to complete left ureteral

obstruction or sham operation under general anesthesia with isoflurane (3–5% v/v) and oxy-

gen (0.8 L/min) on the second day of life, as described before [27]. The animals received car-

profen to alleviate possible pain after the surgery. The sex distribution was equal in both

groups. After recovery, neonatal mice were returned to their mothers until sacrifice on day 7

and 14 of life. The animals were sacrificed by cervical dislocation. All experiments were
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performed according to national animal protection laws and the guidelines of animal experi-

mentation established and approved by the Regierungspräsidium von Oberbayern (Az 55.2-1-

54-2531-136-06).

Identification of infiltrating macrophages and T-lymphocytes

The abundance of infiltrating macrophages and T-lymphocytes in the neonatal kidney was

examined by immunohistochemistry. Formalin-fixed, paraffin-embedded kidney sections

were subjected to antigen retrieval and incubated with either rat anti-mouse MAC-2 (galectin-

3) antibody against macrophages (Cedarlane Laboratories, Canada, CL8942AP, 1:500) or anti-

CD3 antibody against T-lymphocytes (Bio-Rad AbD Serotec GmbH, Germany, MCA1477,

1:50). Specificity was assessed through simultaneous staining of control sections with an

unspecific, species-controlled primary antibody. Biotinylated horse anti-mouse IgG (Vector

Laboratories, CA) was used as secondary antibody. Sections were incubated with ABC reagent,

detected with DAB (Vectastain, Vector Laboratories, CA) and counterstained with methylene

blue or hematoxylin. Images were taken using the LEICA DM1000 microscope and the digital

camera (LEICA ICC50HD, Germany). Macrophages and CD3-positive lymphocytes in cortex

and medulla were counted in twenty non-overlapping high-power fields at x400 magnification

and were analyzed in a blinded manner (n = 8 in each group). Data were expressed as the

mean score ± SEM per 20 high-power fields.

Detection of apoptosis and proliferation

Apoptotic cells were detected by the terminal deoxynucleotidyl transferase (TdT)- mediated

dUTP-biotin nick end labeling (TUNEL) assay, as described before [5]. Briefly, 4% formalin-

fixed tissue sections were deparaffinized and rehydrated in ethanol, followed by incubation

with proteinase K. After quenching, equilibration buffer and working strength enzyme (Apop-

Tag Peroxidase In Situ Apoptosis Detection Kit, Millipore, MA) were applied. Cells were

regarded as TUNEL-positive if their nuclei were stained black and displayed typical apoptotic

morphology. Apoptosis in each kidney was calculated by counting the number of TUNEL-pos-

itive tubular and interstitial cells in 20 sequentially selected fields at x400 magnification in a

blinded fashion and expressed as the mean number ± SEM per 20 high-power fields using the

LEICA DM1000 microscope and the digital camera (LEICA ICC50HD, Germany). For detec-

tion of proliferation formalin-fixed, paraffin-embedded kidney sections were subjected to anti-

gen retrieval and incubated with mouse anti-rat Ki67 antibody (Dako, # M7248, Agilent

Technologies, CA) at 1:50). Sections were incubated with ABC reagent, detected with DAB

(Vectastain, Vector Laboratories, CA) and counterstained with hematoxylin. Digital images of

the sections (n = 8 in each group) were superimposed on a grid, and the number of dark

brown Ki67 positive nuclei was recorded for each field. Proliferating tubular and interstitial

cells in cortex and medulla were counted in twenty non-overlapping high-power fields at x400

magnification and were analyzed in a blinded manner using the LEICA DM1000 microscope

and the digital camera (LEICA ICC50HD, Germany). Data were expressed as the mean score

+ SEM per 20 high-power fields.

Measurement of tubular atrophy

Kidney sections were stained with periodic acid Schiff for assessment of tubular basement

membranes, and tubular atrophy was determined as described previously [5]. Atrophic tubules

were identified by their thickened and sometimes duplicated or wrinkled basement mem-

branes. Digital images of the sections (n = 8 in each group) were superimposed on a grid, and

the number of atrophic tubules was recorded for each field. Twenty non-overlapping high-
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power fields at x400 magnification were analyzed in a blinded fashion. Data were expressed as

the mean score ± SEM per 20 high power fields.

Measurement of interstitial fibrosis

Interstitial collagen deposition was measured in Masson’s trichrome-stained sections. Digital

images of the sections were superimposed on a grid, and the number of grid points overlapping

interstitial blue-staining collagen was recorded for each field in a blinded manner. In addition, for-

malin-fixed and paraffin embedded sections were subjected to antigen retrieval and incubated with

mouse anti-mouse α-smooth muscle actin antibody (Sigma Aldrich MO851, Germany, A2547,

1:5000) as shown before [28]. Biotinylated donkey anti goat IgG and horse anti-mouse IgG (Santa

Cruz, Germany) were used as secondary antibodies. Sections were incubated with ABC reagent,

detected with DAB (Vectastain, Vector Laboratories, CA) and counterstained with hematoxylin.

Digital images of the sections (n = 8 in each group) were superimposed on a grid, and the number

of grid points overlapping collagen I fibers or α-smooth muscle actin fibers was recorded for each

field. Twenty non-overlapping high-power fields at x400 magnification were analyzed in a blinded

fashion. Data were expressed as the mean score ± SEM per 20 high power fields.

Western immunoblotting

Kidneys of UUO and control mice were harvested on 7 and 14 days of life (n = 3 in each

group) as described previously [5]. Neonatal kidneys were homogenized in protein lysis buffer

(Tris 50 mM, Na4P2O3 1 mM, 2% SDS) containing protease inhibitor cocktail (Roche, Swit-

zerland, #1836153). The protein content of the supernatants was measured using the BCA Pro-

tein Assay Kit (Pierce Biotechnology, MA, #23225). 20 μg of protein were separated on

polyacrylamide gels at 160 V for 45 min and blotted onto nitrocellulose membranes (0,1 A per

gel, 120 min). After blocking antibody-specific for 2 h in Tris-buffered saline with Tween-20

containing 5% nonfat dry milk and/or BSA, blots were incubated with primary antibodies 2 h

at room temperature or at 4˚C overnight. TLR2 antibody (ThermoFisher Scientific, MA,

#MA5-32787, 1:1000), Caspase-8 antibody (Cell Signaling Technology, MA, #4927, 1:1000),

Bcl-2 antibody (Santa Cruz, Germany, sc7382, 1:200), Bax antibody (Cell Signaling Technol-

ogy, MA, #27725, 1:1000), GSDMD antibody (Cell Signaling Technology, MA, #39754,

1:1000), GSDME antibody (Abcam, UK, ab215191, 1:500), HMGB1 antibody (Abcam, UK,

ab18256, 1:1000), TNF antibody (Cell Signaling Technology, MA, #3707, 1:500), Galectin-3

antibody (Santa Cruz, Germany, sc19283, 1:500), α-SMA antibody (Sigma Aldrich, Germany,

A2547, 1:5000), MMP-2 antibody (Santa Cruz, Germany, sc10736, 1:1000), TGF-β (Cell Sig-

naling Technology, MA, #3711, 1:1000) were used for western blot analysis. GAPDH (DUNN

Labortechnik, Germany, H86540M, 1:40000) was used as an internal loading control and to

normalize samples. Blots were washed with Tris-buffered saline with Tween-20 and incubated

with horseradish peroxidase-conjugated secondary antibody for 1 h at room temperature.

Immune complexes were detected using enhanced chemiluminescence method. Blots were

exposed to x-ray films (Kodak, Germany), the films were scanned, and protein bands were

quantified using the densitometry program Image J. Each band represents one single neonatal

mouse kidney. The uncropped gel images can be found in S1 Raw images.

Statistical analysis

Data are presented as mean ± standard error. Comparisons between groups were made using

one-way analysis of variance followed by the Student-Newman-Keuls test. Comparisons

between left and right kidneys were performed using the Students t-test for paired data. Statis-

tical significance was defined as p< 0.05.
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Results

Neonatal UUO induces protein expression of TLR2

To measure the protein expression of TLR2 after UUO, we performed a western blot analysis

of UUO and sham-operated kidneys of neonatal WT mice. Following UUO renal TLR2 pro-

tein expression increased significantly on day 14 of life in comparison to sham-operated con-

trols (Fig 1A). We observed that as a response to the injury. TLR2 expression levels in neonatal

Fig 1. Neonatal unilateral ureteral obstruction induces the expression of TLR2. Neonatal WT mice were subjected

to UUO or sham operation and their kidneys were harvested on d7 and d14. Lysates of whole kidneys were applied to

SDS PAGE and consequent western blot analyses. The TLR2 expression level was significantly higher in UUO kidneys

as compared to sham-operated controls on d14 (A). Tlr2-/- mice did not express TLR2 (B). n = 4; *p<0,05. Data are

presented as mean +/- SEM.

https://doi.org/10.1371/journal.pone.0294142.g001
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WT-kidneys were increased. This analysis was also used to confirm that Tlr2-/- mice indeed

did not express TLR2 (Fig 1B).

TLR2 mediates tubular and interstitial apoptosis in neonatal kidneys with

UUO

We next investigated tubular and interstitial apoptosis in neonatal kidneys from Tlr2-/- and

WT mice having undergone UUO using TUNEL staining. Tubular apoptosis increased signifi-

cantly in the obstructed kidneys at day 7 and 14 of life (Fig 2A–2C). TUNEL positive cells were

mainly present in dilated distal tubules of the neonatal kidney. Tlr2-/- mice showed less tubular

apoptosis compared to WT (Fig 2A–2C). Tubular apoptosis in Tlr2-/- mice was reduced on day

7 and day 14 of life by 41% and 30%, respectively (Fig 2C). Interstitial apoptosis increased fol-

lowing UUO and Tlr2-/- mice showed less interstitial apoptosis compared to WT (Fig 2D).

Interstitial apoptosis in Tlr2-/- kidneys after UUO was reduced on day 7 and day 14 by 41%

Fig 2. Tubular and interstitial apoptosis in Tlr2-/- mice with UUO. UUO was performed on the second day of life. Apoptotic cells were detected by TUNEL

staining in sections. TUNEL-positive cells in WT (A) and Tlr2-/- (B) neonatal mouse kidneys appeared predominantly in distal tubules and in the interstitium.

Arrows indicate tubular apoptotic cells. Quantification indicates significant decreases of numbers of TUNEL-positive tubular (C) and interstitial (D) cells in

Tlr2-/- as compared to WT UUO kidneys. The number of apoptotic nuclei in glomeruli did not differ between Tlr2-/- and WT specimen (E); n = 8. Whole

kidneys were lysed for western blot analyses (F). Caspase-8 expression was reduced in UUO-kidneys indicating apoptosis following ureteral obstruction.

Significant differences between WT and Tlr2-/- were not observed (F). Results are indicated as x-fold relative to sham-operated controls. n = 3 (Western Blot);

*p<0,05. Data are presented as mean +/- SEM. Bar = 100μm. Standalone * represents significant differences between Sham and UUO results.

https://doi.org/10.1371/journal.pone.0294142.g002
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and 16%, respectively (Fig 2D). Glomerular apoptosis increased following UUO, but without

significant differences between Tlr2-/- and WT kidneys (Fig 2E). Apoptosis was also measured

by caspase-8 protein expression using western blot (Fig 2F). Cleavage of caspase-8 indicates

apoptosis [29]. Both WT and Tlr2-/- mice showed reduced caspase-8 expression indicating

apoptotic cell death after UUO (Fig 2F). However, caspase-8 expression was not significantly

different between WT and Tlr2-/- mice (Fig 2F), which may be explained by the lack of com-

partment-specific analysis of the neonatal kidney. For further analysis of cell death in our

model we analyzed the anti-apoptotic marker Bcl-2 and the pro-apoptotic marker Bax using

western blot (Fig 3). Neonatal Tlr2-/- mice showed a higher expression of Bcl-2 at day 14 in

comparison to WT (Fig 3A), confirming that TLR2 mediates apoptosis in the neonatal model

of obstructive nephropathy. Bax expression increased following UUO at day 14, without signif-

icant differences between Tlr2-/- and WT kidneys.

Pyroptosis generally increased after neonatal UUO, yet its grades in WT

are indistinguishable from those of Tlr2-/- murine specimen

To measure the potential impact of TLR2 expression on pyroptosis upon UUO versus samples

from sham-operated mice, abundance of cleaved GSDMD and full-length GSDME expression

in respective kidneys at day 7 and 14 of life were measured by immunoblotting (Fig 4A and

4B). While the abundance of cleaved GSDMD increased due to the obstruction in samples of

both phenotypes at d14 (Fig 4A), that of full-length GSDME decreased after UUO (Fig 4B) as

if pyroptosis became operative upon UUO. However, WT and Tlr2-/- mice borne specimen

were undistinguishable in this regard (Fig 4A and 4B). Thus, TLR2 is not involved in pyropto-

sis after ureteral obstruction in the neonatal kidney. Additionally, we analyzed the expression

of the pyroptosis markers HMGB1 and TNF in UUO- and sham-operated neonatal kidneys at

Fig 3. Tlr2-/- mice show increased renal Bcl-2 expression in comparison to WT following UUO. Neonatal mice were subjected to UUO or sham operation.

Western blot analysis was performed at day 7 and 14 of life. UUO induced the expression of Bcl-2 in Tlr2-/-, but not in WT kidneys at day 14 (A). UUO induced

expression of Bax in the neonatal kidney without significant differences between WT and Tlr2-/- (B). Results are indicated as x-fold relative to sham-operated

controls. n = 3; *p<0,05. Data are presented as mean +/- SEM. Standalone * represents significant differences between Sham and UUO results.

https://doi.org/10.1371/journal.pone.0294142.g003
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day 7 and 14 of life (Fig 4C and 4D). Expression levels of both proteins remained constant

throughout the analysis period and were indistinguishable in specimen of both genotypes (Fig

4C and 4D). We conclude that TLR2 has no impact on pyroptosis, HMGB1 and TNF expres-

sion in the neonatal kidney having been subjected to UUO.

Proliferation decreased and tubular atrophy increased in neonatal kidneys

after UUO, without significant differences between Tlr2-/- and WT mice

Proliferation in neonatal Tlr2-/- and WT mouse kidneys was measured using Ki67 staining in

obstructed and sham-operated kidneys at day 7 and 14 of life (Fig 5A–5C). Following obstruc-

tion, proliferation decreased significantly, but without a significant difference between WT

Fig 4. Pyroptosis increases after UUO. Neonatal mice were subjected to UUO or sham operation. Whole kidneys were processed for western blot analysis at

day 7 and 14 of life. UUO induced cleaved GSDMD expression (A) and full-length GSDME cleavage (B), but with no significant differences between WT and

Tlr2-/-. Pyroptosis markers HMGB1 (C) and TNF-α (D) did not show significant differences between WT and Tlr2-/-. Results are indicated as x-fold relative to

sham-operated controls. n = 3; *p<0,05. Data are presented as mean +/- SEM. Standalone * represents significant differences between Sham and UUO results.

https://doi.org/10.1371/journal.pone.0294142.g004
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and Tlr2-/- mice (Fig 5C). To measure tubular atrophy, a Periodic Acid Schiff (PAS) staining of

neonatal WT and Tlr2-/- kidneys was performed after UUO at day 7 and 14 of life (Fig 5D–5F).

Tubular atrophy increased at d7 and d14 in UUO kidneys and was more prominent in proxi-

mal than distal tubules following UUO. Between WT and Tlr2-/- mice no significant differ-

ences in tubular atrophy could be observed (Fig 5F). We conclude that TLR2 does not

influence proliferation or tubular atrophy in the neonatal kidney with UUO.

M2 macrophage infiltration, T-lymphocyte infiltration and fibrosis

increased after UUO but were not different between Tlr2-/- and WT mice

Influence of TLR2 on M2 macrophage infiltration in neonatal Tlr2-/- and WT mouse kidneys

with UUO was measured using galectin-3 staining (Fig 6A–6C) and galectin-3 protein expres-

sion using western blot (Fig 7A). Increased expression of interstitial galectin-3 is a feature of

the regenerative anti-inflammatory alternative (M2) macrophage phenotype. UUO induced a

vast M2 macrophage infiltration in the interstitium of neonatal Tlr2-/- and WT kidneys,

10-fold at d14, but without significant differences between the two lines (Fig 6A–6C). UUO

induced a marked galectin-3 expression in the neonatal kidneys but was not different between

Tlr2-/- and WT mice (Fig 7A). T-lymphocyte infiltration was assessed by CD3 staining (Fig

6D–6F). UUO induced CD3 positive T-cell-infiltration in neonatal kidneys of WT and Tlr2-/-

mice, at d7 and d14 (Fig 6D–6F). No significant differences between WT and Tlr2-/- kidneys

Fig 5. Analysis of tubular proliferation and atrophy in neonatal mice following UUO. Immunohistochemical staining of Ki67 (A and B) and proximal

(prox) and distal (dist) atrophic tubules (D and E) in neonatal UUO WT (A and D) and Tlr2-/- (B and E) mice at day 7. Quantification of Ki67-positive tubular

cells in UUO-kidneys (C) shows a decrease following UUO without significant differences between WT and Tlr2-/-. Quantitative analysis of tubular atrophy in

UUO-kidneys on day 7 and day 14 (F) shows an increase of tubular atrophy in proximal and distal tubules following UUO, but no significant differences

between WT and Tlr2-/- mice in neither compartment. Results are indicated as x-fold increase above sham operated control in 20 hpfs; n = 8. Data are

presented as mean +/- SEM. Bar = 100μm. Standalone * represents significant differences between Sham and UUO results.

https://doi.org/10.1371/journal.pone.0294142.g005
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Fig 6. Immune cell infiltration and fibrosis in neonatal UUO kidneys. Immunohistological staining for galectin-3, a M2 macrophage marker, of WT (A) and

Tlr2-/- (B) mice on day 14. Quantitative analysis shows that UUO induced interstitial galectin-3 positive macrophage infiltration (arrow) in neonatal kidneys

(C), but without significant differences between WT and Tlr2-/- mice. Immunohistological staining for CD3 (arrow), a T-lymphocyte marker, of WT (D) and

Tlr2-/- (E) mice on day 14. Quantitative analysis shows CD3 positive T-cell infiltration in neonatal kidneys following UUO (F) without significant differences

between WT and Tlr2-/- mice. Renal sections of UUO- and sham-operated were stained for Masson’s Trichrome (MT) at 7 and 14 days of life. UUO induced

collagen deposition in neonatal kidneys of WT (G) and Tlr2-/- mice (H) on day 14. Renal sections of UUO- and sham-operated mice were stained for α-SMA at
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could be observed (Fig 6F). We conclude that TLR2 does not have an impact on the M2 mac-

rophage and T-lymphocyte infiltration in the neonatal kidney with UUO. To study interstitial

fibrosis in WT and Tlr2-/- mice after neonatal UUO, Masson’s Trichrome and α-smooth mus-

cle actin (α-SMA) staining of kidney sections were performed (Fig 6G–6L). Additionally, pro-

tein expression of α-SMA, matrix metalloproteinase-2 (MMP-2), and transforming growth

factor (TGF)-β was measured by western blot (Fig 7B–7D). Interstitial collagen deposition

7 and 14 days of life. UUO induced α-SMA expression in neonatal kidneys of WT (J) and Tlr2-/- mice (K) on day 14. Analysis of α-SMA positive myofibroblasts

in UUO-kidneys on day 7 and 14 (L) showed no significant differences between the two groups. Results are indicated as x-fold increase above sham operated

control in 20 hpfs (x400); n = 8. Data are presented as mean +/- SEM. Bar = 100μm. Standalone * represents significant differences between Sham and UUO

results.

https://doi.org/10.1371/journal.pone.0294142.g006

Fig 7. Protein expression of macrophage and fibrosis markers after UUO. Neonatal mice were subjected to UUO or sham operation. Whole kidneys were

processed for western blot analysis at day 7 and 14. UUO induced galectin-3 expression in neonatal UUO kidneys, without significant differences between WT

and Tlr2-/- kidneys (A). UUO induced the expression of the fibrotic markers α-SMA (B), MMP-2 (C) and TGF-β (D), but without significant differences

between Tlr2-/- and WT mice at day 7 and 14 of life. Expression is indicated as x-fold increase above sham operated control, n = 3. Data are presented as mean

+/- SEM. Standalone * represents significant differences between Sham and UUO results.

https://doi.org/10.1371/journal.pone.0294142.g007
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measured by the Masson’s Trichrome staining, increased after UUO in both WT and Tlr2-/-

mice (Fig 6G–6I). The abundance of α-SMA increased at d7 and d14 after UUO but was not

different in Tlr2-/- mice in comparison to WT mice (Fig 6J–6L). Following neonatal UUO, α-

SMA expression increased significantly at d7 and d14 (Fig 7B), but without significant differ-

ences between WT and Tlr2-/- kidneys. MMP-2 expression increased significantly after ureteral

obstruction at d7 and d14 in WT and Tlr2-/- mice (Fig 7D), with a slightly increasing trend for

Tlr2-/- kidneys, but without significant differences between the two lines. UUO induced

increased TGF-β-expression (Fig 7D) in the neonatal kidneys, but Tlr2-/- mice were not signifi-

cantly different from WT mice. We therefore conclude that TLR2 does not attenuate renal

fibrosis in the neonatal kidney with UUO.

Discussion

Our study indicates involvement of TLR2 in the mediation of apoptosis in the early life devel-

oping murine kidney suffering from ureteral obstruction. This result is of potential relevance

because the pattern recognition receptor TLR2 is an element of innate immunity, which drives

various kidney diseases elicited experimentally in animal models [8, 30]. Exemplarily, TRL2

induces inflammation and renal injury in the adult model of ischemia/reperfusion injury and

in streptozotocin-induced diabetic mice [13, 17, 31].

Here, we investigated a potential pro-apoptotic role of TLR2 using neonatal Tlr2-/- mice we

subjected to UUO. Firstly, we show that TLR2 expression is upregulated after UUO in neona-

tal mouse kidneys, which indicates a potential role of this receptor in obstructive nephropathy.

This is in line with studies in adult mice, where TLR2 expression is markedly upregulated after

UUO [32].

Secondly, by using neonatal Tlr2-/- mice we demonstrate that TLR2 mediates tubular and

interstitial apoptosis in the obstructed neonatal kidney. Following UUO, neonatal kidneys of

Tlr2-/- mice displayed markedly reduced abundance of tubular apoptotic nuclei, measured by a

TUNEL assay. These apoptotic nuclei were predominantly present in distal tubular cells,

which is in line with our published data on programmed cell death in the neonatal kidney [5].

In addition, interstitial apoptosis was also markedly reduced in neonatal Tlr2-/- mouse kidneys,

suggesting their carriage of either less apoptotic infiltrating leukocytes or less apoptotic myofi-

broblasts and fibroblasts as compared to controls. In contrast, glomerular apoptosis did not

differ between Tlr2-/- and WT kidneys. To potentially reinforce differences in tubular and

interstitial apoptosis in WT and Tlr2-/- mice borne kidneys, caspase 8 expression was mea-

sured, but showed no difference between the lines in the neonatal kidneys of newborn mice

undergoing UUO. Caspase-8 expression has limitations as an apoptotic marker, as it is a

marker of the early phase of apoptosis [33]. In contrast, TUNEL staining has been designed to

detect apoptotic cells that undergo extensive DNA degradation during the late stages of apo-

ptosis [34]. Therefore, the differences between Tlr2-/- and WT kidneys may not be detectable

during the initiation phase of apoptosis but become apparent in the late apoptotic stages of

DNA degradation. In addition, as caspase-8 protein expression is measured for all compart-

ments of the kidney by using whole neonatal kidney lysates for western blot analysis, a com-

partment-restricted expression of caspase 8 might have indicated differences we missed by our

global approach. As our results were conflicting, we decided to include Bcl-2 as an anti-apo-

ptotic marker [35, 36]. The increase of Bcl-2 expression in Tlr2-/- kidneys further confirms our

findings that TLR2 mediates apoptosis in neonatal UUO. Our result “apoptosis reduction in

Tlr2-/- mice” is in line with Leemans et al., who showed that TLR2 activates the apoptotic path-

way in UUO-kidneys of adult mice [32]. The authors measured apoptosis through staining of

active caspase-3 in cells, which was significantly reduced in Tlr2-/- mice after 7 days of ureteral
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obstruction. Unfortunately, we were not able to measure caspase-3 in neonatal kidneys most

certainly as the abundance of this antigen was below the detection limit. In the neonatal model

of unilateral ureteral obstruction, it is currently unknown how this Tlr2-/- associated apoptotic

pathway is activated, caspase-3 might not be involved at all. TLR2, as a part of the innate

immune system is activated by bacterial lipoproteins and signals for apoptosis through MyD88

via a pathway involving Fas-associated death domain protein and caspase-8 [37, 38]. Inflam-

mation following UUO is not mediated by bacteria. UUO induces sterile inflammation, which

is mediated by DAMPs, of which a variety might be able to activate the TLR2 mediated apopto-

tic pathway [23, 39]. High levels of apoptosis are associated with nephron loss in the develop-

ing kidney and thus the loss of renal function [40].

Besides apoptosis, necrosis and regulated necrosis are cell death mechanisms that are opera-

tive during UUO [41]. Previously we demonstrated necroptosis, a form of regulated necrosis,

to be increased in the neonatal kidney undergoing UUO [5]. Here we demonstrate for the first

time, that pyroptosis is also upregulated in the neonatal kidney with UUO. Pyroptosis is a gas-

dermin-mediated programmed cell death that involves the activation of inflammasomes by

DAMPs [42]. Pyroptosis plays an important role in the progression of kidney disease and is

involved in various kidney disease models [43]. Here we analyzed pyroptosis in neonatal

Tlr2-/- and WT mice with UUO by the analyzing cleaved GSDMD and full-length GSDME

abundances. The cleavage of GSDMD, or alternatively GSDME is a crucial step in the initia-

tion of pyroptosis and pore formation [24]. In our study we show that UUO in neonatal kid-

neys induces. This observation is in accordance with findings in adult mice and rats subjected

to UUO [44, 45]. However, pyroptosis was not different in Tlr2-/- mice as compared to WT

controls suggesting that TLR2 is not involved in pyroptotic cell death following neonatal

UUO.

TLR2 borne intracellular signal transduction is induced by sterile insult and triggers inflam-

mation [46]. Inflammation is a major driver of UUO pathology associated with release of

DAMPs and pro-inflammatory cytokines initiating it [23, 39]. It is currently unknown what

DAMP induces apoptosis through TLR2. Numerous DAMPs are putative ligands of TLR2 [23,

47]. HMGB1 is involved in inflammasome activation as well as regulation of apoptosis [48,

49]. To investigate if HMGB1 mediates sterile inflammation in neonatal kidneys after UUO,

we measured kidney borne HMGB1 expression levels. We show here for the first time that

HMGB1 expression in neonatal kidneys did not increase after UUO. This contrasts with find-

ings in kidneys of adult mice, where UUO caused a marked upregulation of kidney inherent

HMGB1 [50] and may be explainable by differential expression in the course of kidney devel-

opment. Nephrogenesis in mice starts at embryonic day 8 and is completed 2–3 weeks after

birth. In contrast to adult UUO, neonatal UUO impairs kidney development and reduces

nephron mass, as nephrogenesis is still going on. Thus, HMGB1 signaling may be differentially

regulated in neonatal and adult mice with UUO. TNF, a pro-inflammatory cytokine, is another

mediator of sterile inflammation following UUO. The activation of TLR2 principally leads to

production of TNF [13, 51]. TNF is highly upregulated in kidneys of adult mice with UUO

[52]. Contrary to our expectations, Tlr2-/- and WT mice did not upregulate TNF expression

after UUO. Additionally, there were no differences between kidneys of the genotypes. Thus,

sterile inflammation in neonatal kidneys after UUO seems to be mediated by neither HMGB1

nor TNF. Identification of DAMPs and mediators eliciting apoptosis in neonatal kidneys

through TLR2 still is to be investigated.

In order to examine if TLR2 has an influence on proliferation in the neonatal UUO model,

we analyzed relative abundances of KI67 positive tubular cells. We show that the number of

proliferating tubules decreased following UUO. Whereas in adult UUO a decrease of prolifera-

tion was observed in Tlr2-/- kidneys in comparison to WT [32], in neonatal UUO lacked such
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dichotomy. Since neonatal kidney cells highly proliferate in general, slight differences between

the two lines could have been overshadowed by the impact UUO has on nephrogenesis.

Morphological alterations in the tubular compartment play an important role in the patho-

genesis of neonatal obstructive uropathy. Tubular atrophy is mainly a concern in proximal

tubules, which is in line with previous results [5]. We were not able to observe differences

between Tlr2-/- and WT neonatal kidneys regarding tubular atrophy. TLR2 does not influence

tubular atrophy after neonatal UUO.

Renal interstitial fibrosis develops parallel to renal injury and sterile inflammation after

neonatal UUO. Fibroblast density increases due to local proliferation of resident fibroblasts,

the recruitment of fibrocytes and possibly epithelial-mesenchymal transition (EMT) [53]. T-

lymphocytes and M2 macrophages are crucial in the development of renal fibrosis [54, 55]. It

has been shown that in the adult UUO model M2 macrophages facilitate renal fibrosis [56].

Several studies have shown that depletion of T-cells after UUO in adult mice results in a reduc-

tion of renal fibrosis [57, 58]. Here, we observed a marked infiltration of M2-macrophages and

T-cells after neonatal UUO. However, for all measured parameters there were no significant

differences between Tlr2-/- and WT neonatal mice. This is in line with published data showing

that a TLR2 knockout does not influence macrophage infiltration in adult UUO [32]. Expan-

sion of fibrous connective tissue and abnormal deposition of extracellular matrix produced by

myofibroblasts build the basis for fibrotic diseases. We measured the quantity of fibrotic colla-

gen fibers in neonatal UUO kidneys, evaluated myofibroblasts by α-SMA staining and protein

expression, and investigated the fibrotic marker TGF-β. The results show a significant increase

of renal fibrosis in neonatal kidneys after UUO. We were not able to observe differences

between Tlr2-/- and WT mice. Matrix metalloproteinases are involved in EMT following UUO.

MMP-2 aggravates the expression of EMT-associated molecules and renal fibrosis in adult

UUO [59]. In our study, MMP-2 increased noticeably after neonatal UUO, but without differ-

ences between Tlr2-/- and WT mice. By contrast, adult UUO kidneys showed a diminished

expression of MMP-2 in Tlr2-/- mice. Thus, expression of MMP-2 after UUO may be differ-

ently regulated in neonatal and adult kidneys. Overall, TLR2 does not influence interstitial

fibrosis in neonatal mouse kidneys with UUO.

Numerous studies showed involvement of TLR2 in acute kidney injury [13, 60]. Inhibition

of TLR2 reduced the recruitment of NK cells, as well as neutrophil infiltration and renal dam-

age to the kidney after IRI [60, 61]. TLR2 and its endogenous stress ligands are markedly upre-

gulated in obstructed kidneys in adult mice [32, 62]. Our results demonstrate that TLR2 does

play an essential role neither in kidney inflammation nor in the development of renal fibrosis

following neonatal UUO. Recently, it has been shown that inhibition of both RAS and TLR2

has an additive ameliorative effect on UUO injury of the kidney [63]. Given this information it

may be more effective to target additional pathways besides TLR2 in the obstructed kidney to

ameliorate inflammation and fibrosis.

Conclusion

TLR2 plays an important role in mediating tubular and interstitial apoptosis in the neonatal

kidney with obstruction. Inhibition of TLR2 in obstructive nephropathy could prevent apopto-

sis and save nephron mass, which would be otherwise irreversibly lost. Blocking TLR2 may be

beneficial in the developing kidney with obstruction until the obstruction resolves or a surgical

correction is performed. However, TLR2 does not influence inflammatory responses or devel-

opment of renal fibrosis after UUO. Thus, a combination with other inhibitors may be of

advantage.
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Supporting information

S1 Raw images. Western blot raw images. Uncropped western blot gel images for TLR2 and

GAPDH in neonatal WT kidneys (on day 7 and 14 of life). *marks the section used in Fig 1.

TLR2 and GAPDH were visualized separately, but they represent the same gel. Uncropped

western blot gel images for TLR2 and GAPDH in neonatal WT kidneys (on day 7 and 14 of

life). *marks the section used in Fig 1. For Bax Gel 2 was used. Uncropped western blot gel

images for Caspase-8 and GAPDH in neonatal WT and TLR2-/- kidneys (on day 7 and 14 of

life). *marks the section used in Fig 2. Caspase-8 and GAPDH were visualized separately, but

they represent the same gel. Uncropped western blot gel images for GSDMD and GAPDH in

neonatal WT and TLR2-/- kidneys (on day 7 and 14 of life). *marks the section used in Fig 3.

GSDMD and GAPDH were visualized separately, but they represent the same gel. Uncropped

western blot gel images for GSDME and GAPDH in neonatal WT and TLR2-/- kidneys (on

day 7 and 14 of life). *marks the section used in Fig 3. GSDME and GAPDH were visualized

separately, but they represent the same gel. Uncropped western blot gel images for HMGB1

and GAPDH in neonatal WT and TLR2-/- kidneys (on day 7 and 14 of life). *marks the sec-

tion used in Fig 3. Uncropped western blot gel images for TNF-α and GAPDH in neonatal

WT and TLR2-/- kidneys (on day 7 and 14 of life). *marks the section used in Fig 3. TNF-α
and GAPDH were visualized separately (different exposer times), but they represent the same

gel. Uncropped western blot gel images for Galectin-3, TGF-β, and GAPDH in neonatal WT

and TLR2-/- kidneys (on day 7 and 14 of life). *marks the section used in Fig 6. Uncropped

western blot gel images for α-SMA and GAPDH in neonatal WT and TLR2-/- kidneys (on day

7 and 14 of life). *marks the section used in Fig 6. Uncropped western blot gel images for

MMP-2 and GAPDH in neonatal WT and TLR2-/- kidneys (on day 7 and 14 of life). *marks

the section used in Fig 6. MMP-2 and GAPDH were visualized separately, but they represent

the same gel.
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