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Paper II  

 

Paper II, is the end-product of my extensive efforts and collaboration with Associate Professor 

Dr. med. univ. et scient. med. Pia Baldinger-Melich from the Medical University of Vienna. After 

defining a detailed plan, I took the lead in employing Support Vector Machines to analyse 

neuroimaging data previously obtained by Dr. Baldinger-Melich's workgroup on a sample of 

individuals with gender dysphoria. Specifically, I developed reliable support vector machine 

models utilizing grey matter volume to identify the best distinguishing patterns between male 

and female, both cis- and transgender, individuals. This included preparing the data, defining 

meaningful parameters to enter the algorithm, and running the analyses. Additionally, I 

employed a crossover approach by applying the cisgender model to the transgender group 

and vice versa. Furthermore, I conducted additional analyses by applying the developed 

models to an external dataset of individuals with a Major Depressive Disorder diagnosis. I led 

the manuscript drafting process including the conception and development of the introduction, 

methods, results, figures, discussion, and conclusions and finally, I was primarily responsible 

for integrating feedback from reviewers, addressing their comments, and rewriting the final 

version of the manuscript which was accepted for publication. 

Introduction 
 

Precision psychiatry is an emerging field that proposes a paradigm shift in the way 

psychiatric disorders are diagnosed and treated. Unlike traditional approaches that rely on a 

one-fits-all model, precision psychiatry emphasizes the need to consider individual differences 

in biology, environment, and lifestyle to create diagnostic and treatment procedures that are 

most effective for each individual.  

Although classical statistical methods have been instrumental in advancing the 

understanding of mental disorders, some pitfalls have been identified. These methods often 

rely on group-level analyses, use models that do not account for the relationship between 

variables and make an a priori selection of variables that perhaps are not the ones better 

explaining the studied phenomena (Dwyer et al., 2018). Machine learning (ML), a part of 

artificial intelligence that mimics principles of human pattern learning (Spicer & Sanborn, 2019), 

can address these limitations. Specifically Support Vector Machines (SVMs) can handle high-

dimensional data and capture complex, non-linear relationships between variables, providing 

a more nuanced understanding of psychiatric disorders. They excel in integrating diverse data 

sources, a critical requirement for precision psychiatry. 

Particularly in neuroimaging, information from diverse neurobiological data such as 

functional and structural MRI provide important information about psychiatric illness, such as 

schizophrenia and other psychoses (Porter et al., 2023; Schultz et al., 2012). However, 

integrating these diverse data modalities in a meaningful manner remains a significant 

challenge. 

Furthermore, precision psychiatry aims at finding the best-suited diagnostic and 

prognostic tools for each individual. Yet, biological sex as well as gender identity have been 

mostly treated as nuisance variables when creating mental health models. (Cahill, 2014, 2017; 

Kurth et al., 2021). Initiatives like the ‘Sex as a biological variable’ (SABV) policy (Clayton & 

Collins, 2014) and the Sex and Gender Equity in Research (SAGER) guidelines (De Castro et 
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al., 2016), have prompted the field to consider, collect, characterize, and communicate sex-

based data to improve applicability of scientific results.  

Considering these aspects, the main objective of this thesis is to evaluate, within the 

framework of precision psychiatry and neuroimaging, the advantage of applying ML, 

specifically SVMs when 1) integrating various data modalities versus the use of single 

neuroimaging data types in the search of psychoses biomarkers and 2) aiming for a 

sex/gender-based stratification in precision psychiatry. By focusing this thesis on the 

application of SVMs, we aim to highlight their pivotal role in advancing the field of precision 

psychiatry and improving healthcare strategies for individuals with mental disorders. 

 

General concepts of machine learning 

 

Machine learning can be defined as “a computational strategy that automatically 

determines (i.e., learns) methods and parameters to reach an optimal solution to a problem 

rather than being programmed by a human a priori to deliver a fixed solution” (Dwyer et al., 

2018). While the invention of such data-driven approaches dates to the 1930s, it is only in the 

past few decades that they have been integrated in the medical sciences. So far, mostly cancer 

research has succeeded to translate results into clinically usable tools (Esteva et al., 2017; Yu 

et al., 2016). In psychiatry, ML holds promise to improve differential diagnostic procedures, 

treatment response, relapse, and early recognition of mental illness (Rutledge et al., 2019) 

(Dwyer et al., 2018).  

 

Depending on the input provided to the algorithm, ML models can be categorized as 

supervised or unsupervised. Supervised ML algorithms, such as Support Vector Machines, 

work with a priori labelled datasets, for example male/female or patient/control) and identify 

the characteristics that best distinguishes between these labels. In contrast, unsupervised 

models, e.g. clustering, aim at finding the natural grouping of unlabelled information based on 

patterns of similarities of the data points (Jain, 2010). This thesis focuses on Support Vector 

Machines (SVM) as these are one of the most frequently utilized supervised techniques and 

were employed in the two research projects in this work.  

 

For ML-based models to be reliably in clinical practice, they must provide clinically 

meaningful predictions that are applicable to individuals that were not part in the model-building 

phase. However, most models published so far in psychiatry do not generalize well to new 

unseen data, i.e., they are overfitted to the original sample (Rosen et al., 2021). To guarantee 

an adequate level of generalizability, the current gold-standard strategy is cross-validation, 

consisting of a random splitting of the data into smaller groups, then using some data subsets 

for model training and the remaining parts for performance testing (Dwyer et al., 2018). The 

training data is used to optimize parameters such as feature selection strategies (meaning 

which feature combination is most informative and reliable) and the number of allowed 

misclassified cases (Dwyer et al., 2018). After several iterations of training and testing the 

models in different data subsets, model performance can be evaluated in terms of sensitivity, 

specificity, and accuracy. Sensitivity identifies true positives (individuals having disorder X 

correctly labelled by the algorithm as having disorder X), specificity identifies true negatives 

(individuals not having disorder X correctly labelled as not having disorder X), and accuracy 

represents the number of correct classifications with respect to all cases. Alternatively, a 
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refined version of accuracy, i.e. Balanced Accuracy (BAC), can be used. BAC deals with 

unbalanced samples and is obtained by adding the sensitivity and specificity and then dividing 

the result by two (Dwyer et al., 2018). Which model is finally selected as “winner” is determined, 

for instance, on the highest average BAC achieved (Koutsouleris et al., 2020; Schaffer, 1993).  

 

Robust ML approaches can help psychiatry overcome some obstacles faced by 

clinicians and researchers, as it promotes the search of individualized answers beyond group-

wise differences. It allows for the comprehensive analysis of large and complex datasets with 

many variables simultaneously, which can reveal previously unknown inter-variable 

relationships. And finally, ML promotes the translation of scientific results based on naturalistic 

data into real life settings (Mechelli & Vieira, 2020).  

 

Support Vector Machines (SVMs) 

SVMs are supervised machine learning techniques that learn to discriminate between 

predefined classes or groups based on different features (Cortes & Vapnik, 1995) such as 

variables from a questionnaire, voxels from MRI or single questions from a clinical 

questionnaire. For this learning process to occur, "support vectors" need to be identified. 

Support vectors are data points lying closest to an optimal separating boundary, known as the 

optimal separating hyperplane (Orru et al., 2012) (see figure 1). The optimal separating 

hyperplane is embedded into a margin which can allow for a degree of misclassification. In 

accordance with the Vapnik-Chervonenkis statistical learning theory (Vapnik, 1999), SVMs aim 

for robust performance by achieving high accuracy not only during the training phase but also 

in testing scenarios. The main objective is to develop models that are reproducible and 

generalizable to new data. Thus, robust SVMs models are created after testing different 

parameter combinations that are ideally optimized by the algorithm without human 

interference. Moreover, SVM models require enough features per case (i.e. variables per study 

subject) while also ensuring that the necessary variance/variability is available across cases 

(Pisner & Schnyer, 2020) 

 

Figure 1 Diagram of a Support Vector 

Machine 

SVMs have gained significant traction 

in neuroimaging research within psychiatry 

as they excel at handling high-dimensional 

datasets, making them particularly suited to 

handle the complex and multifactorial nature 

of psychiatric disorders and the brain.  

Compared to classical statistics, 

machine learning approaches provide results in terms of single subject characteristics (Dwyer 

et al., 2018). Moreover, it is suited to integrate diverse data modalities such as functional and 

structural MRI to obtain a fuller picture or the studied psychiatric illness (Chen et al., 2021; 

Porter et al., 2023; Schultz et al., 2012), and using machine learning can help to provide proof 

of the relevance of factors such as sex and gender in psychiatric models. This has been 

ignored in spite of the large evidence describing major sex-based differences in psychiatric 
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disorders such as schizophrenia (Egloff et al., 2018; Li et al., 2016; Riecher-Rossler et al., 

2018); depression and anxiety (Schuch et al., 2014) (Eid et al., 2019) and gender dysphoria 

(Feder et al., 2017; Gonzalez et al., 2017). 

 

Multimodal data integration 

 

Given that psychiatric disorders are highly complex and multifactorial, attempts to 

understand them require collecting, analysing and reporting data from different sources from 

each single person. Therefore, since it is usual during a clinical MRI scanning session to 

acquire information on more than one modality such as structural and resting state functional 

MRI, it is a logical step to take advantage of their complementarity beyond the radiological 

boundaries (Plitman et al., 2020). Merging neuroimaging modalities has been consistently 

shown to increase accuracy when characterizing diverse disorders such as autism (Mueller et 

al., 2013), anorexia (Cha et al., 2016) and Alzheimer’s disease (Weiler et al., 2015).  

Specifically, in the context of research on schizophrenia and other psychoses, 

multimodal data integration is particularly valuable, given that the illness has been associated 

to both structural and functional brain abnormalities (Calhoun & Sui, 2016; Porter et al., 2023; 

Schultz et al., 2012). Moreover, even though schizophrenia is a severe chronic mental health 

condition that affects more than 20 million individuals worldwide and has been associated with 

significant impairment of quality of life, no biomarker has been established yet. To date, 

diagnosis is established on the basis of the presence or central characteristics such as 

hallucinations, delusions, cognitive disorganization among others, (American Psychiatric 

Association, 2013), but the neurobiological underpinnings remain unclear.   

Structural MRI studies have identified alterations in brain volume and cortical thickness 

(Fusar‐Poli & Meyer‐Lindenberg, 2016), while resting-state functional MRI has revealed 

disruptions in brain connectivity patterns from early to chronical stages of the disease (Allebone 

et al., 2018; Argyelan et al., 2015; O’Neill et al., 2019). These neurobiological changes suggest 

that psychosis involves complex interactions between brain structure and function. Therefore, 

integrating data from both structural and functional MRI is crucial to comprehensively grasp 

the neural underpinnings of psychosis. Although this approach poses significant statistical 

challenges, it provides a more holistic view of an individual’s neurobiological state, thereby 

enhancing the understanding of psychopathological mechanisms and improving diagnostic 

and prognostic accuracy 

Our 2016 study marked a significant milestone in this journey. By demonstrating the 

benefits of integrating multimodal neuroimaging data, we paved the way for newer, more 

sophisticated approaches. Based on our findings, the field has moved towards finding a brain-

based predictome of mental illness, (Rashid & Calhoun, 2020). Moreover, similar approaches 

integrating multiple modalities have been applied to bipolar disorder (Li et al., 2020) and finally 

other classifiers (Ridge, Lasso, Random Forests, and Gradient boosting) have been tested in 

the schizophrenia research field (Salvador et al., 2019). Thus, as we continue to refine the 

integration of diverse data modalities and apply cutting-edge machine learning techniques in 

neuroimaging, we move closer to the goal of personalized mental health care. 
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Sex-Based differences in psychiatry 

 

Besides multimodal data integration, another strategy to better tailor individualized 

psychiatric care programs is sex-based stratification. In biological research, sex is recognized 

as the biological variable referring to biological systems which serve to assign individuals to 

either the male or female category at birth based on the appearance of the external genitalia 

(American Psychiatric Association (APA), 2015). It is inherent to humans and regarded as 

binary (female/male) although clinical conditions related to sex development exist in around 

0.018% of the population (García-Acero et al., 2020; Sax, 2002). 

Studies assessing neuroanatomical sex-based differences consistently hint at larger 

brains in male vs. female individuals (Ritchie et al., 2018; Ruigrok et al., 2014) but greater 

gyrification in female compared to male individuals in frontal and parietal regions (Luders et 

al., 2004), leading to an overall comparable cortical surface in both sexes. More fine-grained 

structures such as the hippocampus, amygdala, the hypothalamus, and the basal ganglia also 

appear to be volumetrically different between sexes (Lotze et al., 2019). However, most of 

these findings are surrounded by strong inconsistencies with respect to magnitude, exact 

location, and some studies even report opposite direction of effects (i.e., volume increase vs. 

decrease in certain areas for either sex). Some studies have claimed that the brain cannot be 

categorized as sexually dimorphic since the volume of most areas is largely overlapping 

between the two sexes, with only a few small parts found to be exclusively "male" or "female." 

(Joel et al., 2015). Nevertheless, by employing SVMs to search for whole brain patterns, 

accuracies larger than 80% have been reported when studying sexual dimorphism in healthy 

individuals (Chekroud et al., 2016) (Rosenblatt, 2016). These results indicate that sex is 

reflected in rather subtle and widespread across the brain instead of limited to particular 

features and that, given some methodological limitation of classical univariate statistics, ML 

methods might be a better strategy to characterize these differences. 

 

Sex stratification in gender dysphoria and major depressive disorder 

 

In contrast to sex, gender or gender identity refers to the sociocultural norms and 

expectations associated to having either male or female sex phenotypical traits, which entails 

a subjective position of alignment or mismatch with the own biological sex. Neither sex nor 

gender identity are to be confused with the concept of sexual orientation, which defines a 

persons’ sexual attraction to individuals of one or more genders such as hetero-, homo-, bi- or 

asexuality.   

When an individual's gender identity aligns with their biological sex, they are considered 

cisgender (Cx). Conversely, when there is a divergence, individuals may identify as 

transgender (Tx) or gender diverse (Bouman & Arcelus, 2017; Thorne et al., 2020). Cases 

where this misalignment leads to significant distress are classified under gender dysphoria in 

the DSM-5 and gender incongruence in the ICD-11. Although it is not clear which proportion of 

the world’s population is transgender or gender diverse the estimation ranges between 0.1 and 

2% (Zhang et al., 2020), showing an upward trend (Nolan et al., 2019). A larger ratio of 

individuals with male biological sex experiencing gender dysphoria has been consistently 

reported across studies (Zucker, 2017).  
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Neuroanatomical research on transgender individuals has highlighted alterations in 

brain structures typically associated with male or female sex compared to cisgender individuals 

of the same biological sex (Dekaban & Sadowsky, 1978; Luders et al., 2009; Savic et al., 2010). 

Specifically, regions commonly recognized as sexually dimorphic appear partially feminized in 

male-to-female transgender individuals and partially masculinized in female-to-male 

transgender individuals (Guillamon et al., 2016). However, these findings predominantly stem 

from animal models or post-mortem studies, which often focus on predefined brain regions and 

employ diverse statistical methods. This variability complicates comparisons and limits 

individual-level insights. Additionally, many studies fail to consider confounding factors such as 

hormone therapy status and sexual orientation. 

The second study in this dissertation was among the first to use SVMs to evaluate the 

effects of gender identity on brain structure while controlling for these confounding variables. 

Our findings have paved the way for further exploration of the neuroanatomical substrates of 

gender identity (Flint et al., 2020; Kurth et al., 2022) and has led researchers to advocate for 

innovative neuroradiological techniques for studying specifically the transgender brain (Stowell 

et al., 2022).  

In addition, we applied our cisgender and transgender biological sex classification 

models to a sample of patients with depression. This allowed us to investigate how biological 

sex and gender identity interact with depression. Despite the DSM-5 no longer classifying 

gender dysphoria as a disorder (Davy & Toze, 2018), it has been associated with an increased 

vulnerability towards the development of psychopathology (de Freitas et al., 2020; Garg et al., 

2018) in particular, mood disorders. This increased vulnerability can be attributed to a 

combination of psychosocial and biological factors. The distress and impairment associated 

with gender dysphoria, often exacerbated by societal stigma, discrimination, and lack of social 

support, significantly contribute to the elevated incidence of depression, reaching up to 62% in 

transgender women (Rotondi et al., 2012; Witcomb et al., 2018) .  

Neurobiological evidence suggests shared pathways between gender dysphoria and 

depression, including dysregulation in the hypothalamic-pituitary-adrenal (HPA) axis and 

alterations in neurochemical systems involving serotonin and dopamine (Healy, 2015; Müller 

& Holsboer, 2005). Brain regions such as the insula and anterior cingulate cortex, which play 

crucial roles in self-perception and emotional regulation, exhibit structural and functional 

differences in individuals with gender dysphoria compared to those without (Feusner et al., 

2017; Reed et al., 2023). These areas are also implicated in the pathophysiology of 

depression. Moreover, sex hormones like estrogen and testosterone influence mood regulation 

and neuroplasticity (Fernandez-Guasti et al., 2012), potentially exacerbating depressive states 

in individuals with gender dysphoria, especially under the unique social stressors faced by 

minority groups.  

The application of machine learning in studying sex differences and gender dysphoria 

can uncover complex interactions between brain structure, gender identity, and mental health, 

leading to more accurate diagnostics and personalized treatments. For the Tx population, such 

advancements promise improved mental health outcomes and better quality of life. Continued 

progress in this field is essential, as it not only enhances scientific knowledge but also 

promotes social equity and well-being for gender-diverse individuals. By leveraging advanced 

scientific methods, we can address the unique challenges faced by the transgender community 

and foster a more inclusive society. 
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Rationale and aim 
 

This thesis aims to investigate the potential benefits of using ML approaches to integrate 

multiple data modalities as well as stratify results based on sex/gender in psychiatric research. 

We hypothesized that: 

1) Classifying individuals with schizophrenia from healthy controls machine learning on brain 

volumetric data is feasible and integrating different data modalities increases accuracy 

compared to single modalities (paper I). 

2) The signature of biological sex neuroanatomical level is clear (model accuracy above 75%) 

but it relates to a pattern instead of single areas. This signature is stronger in cisgender 

compared to transgender individuals given a sex/gender interaction. This signature may 

interact significantly with psychiatric disorders such as MDD (paper II). 

 

Conclusion and outlook 
 

The current thesis presents compelling evidence for the positive value of implementing ML 

models in psychiatry. It demonstrates that considering persons in their entirety by integrating 

a manifold of data modalities per subject along with stratifying models according to both 

biological sex and gender are important steps contributing to the ultimate goal of precision 

psychiatry: personalized care.  

Further studies involving larger number of subjects and integrating data from different cohorts 

should be pursued aiming for robust and generalizable models in order to consolidate these 

results. Prospectively, we aim to extend the investigation on sexual dimorphism developing a 

multimodal integrative approach that combines neuroanatomical and phenotypical data in 

populations with psychotic and mood disorders leading to a better understanding of the 

etiopathology of these groups of psychiatric illnesses and therefore to an improvement of 

mental health care. 

Final note: we advocate for the importance of sex/gender as a variable of interest in medical, 

but particularly in psychiatric research aiming to achieve personalized medicine. By no means 

this aims to strengthen beliefs of disparities between sexes or genders. Enough data is 

available that sustains the notion of sex-based differences in biological systems such as the 

brain. Thus, gathering and integrating this information into models that aid medical treatment 

decisions will ultimately favour individuals while also facilitating the optimization of clinical 

processes.  
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Zusammenfassung  
 

Support Vector Machines (SVMs) spielen eine transformative Rolle bei der 

Weiterentwicklung der Präzisionspsychiatrie. Als eine leistungsstarke überwachte maschinelle 

Lerntechnik haben SVMs die diagnostische Genauigkeit und die Vorhersage von Ergebnissen 

auf individueller Ebene erheblich verbessert. In dieser Dissertation wurden zwei Ansätze 

untersucht. Erstens evaluieren wir das Potenzial von SVMs bei der Integration verschiedener 

Datenquellen, um ein umfassendes Verständnis von psychischen Gesundheitszuständen zu 

bieten. Darüber hinaus untersuchten wir, wie SVMs dabei helfen können, biologische und 

psychosoziale Unterschiede wie das biologische Geschlecht (sex) und das soziale Geschlecht 

(gender) einzubeziehen, was letztlich zu maßgeschneiderten und wirksameren Behandlungen 

führen kann. 

In der ersten Studie verwendeten wir SVMs, um die Vorteile der Integration 

multimodaler Neuroimaging-Daten bei der Unterscheidung zwischen gesunden Personen und 

solchen mit Schizophrenie aufzuzeigen. Unsere Hauptbefunde zeigten, dass die Kombination 

von strukturellen und funktionellen MRT-Daten im Ruhezustand die Klassifikationsgenauigkeit 

auf 75% Balanced Accuracy (BAC) verbesserte, verglichen mit etwa 70% BAC bei der 

Verwendung einzelner Modalitäten. 

Darüber hinaus untersuchten wir die Interaktionen zwischen geschlechtsbezogenen 

Gehirnstrukturen, Geschlechtsidentität und affektiven Störungen unter Verwendung eines 

maschinellen Lernrahmens. SVMs wurden angewendet, um das biologische Geschlecht 

(weiblich vs. männlich) anhand neuroanatomischer Daten von sowohl cis- als auch 

transgender Personen zu klassifizieren. Das Modell erreichte eine BAC von 82% für 

Cisgender-Proben, während es für Transgender-Proben eine BAC von 67% erzielte. Bei 

Anwendung auf Personen mit Major Depression sank die Leistung auf 75% bzw. 55% BAC. 
Diese Ergebnisse deuten darauf hin, dass es einen starken Einfluss des biologischen 

Geschlechts auf die Gehirnstruktur gibt, der in bedeutendem Maße mit der 

Geschlechtsidentität und psychiatrischen Phänotypen interagiert und so eine Diffusion der 

neuroanatomischen Signatur des biologischen Geschlechts verursacht. 

Diese Analysen unterstreichen das Potenzial des maschinellen Lernens, insbesondere 

von SVMs, in Kombination mit einer rigorosen Charakterisierung von Individuen basierend auf 

biologischem Geschlecht/Gender und multimodaler Datenintegration, um die 

Präzisionspsychiatrie voranzutreiben. Durch die Erleichterung effektiverer diagnostischer, 

präventiver und therapeutischer Strategien verspricht dieser Ansatz, die Ergebnisse bei 

Personen mit psychischen Störungen zu verbessern. 

 

Schlüsselwörter: maschinelles Lernen, SVM (Support Vector Machine), multimodale Datenanalyse, 

Neuroimaging, biologisches Geschlecht, Gender, soziale Geschlecht 
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Abstract 
 

Support Vector Machines (SVMs) have a transformative role in advancing precision 

psychiatry. As a powerful supervised machine learning technique, SVMs have significantly 

enhanced diagnostic accuracy and outcome prediction on an individual level. In this thesis, 

two approaches were studied. First, we evaluate the potential of SVMs when integrating 

diverse data sources to provide a comprehensive understanding of mental health conditions. 

Moreover, we evaluated how SVMs can aid in acknowledging biological and psychosocial 

differences such as a person’s sex and gender which ultimately help the tailoring of more 

effective treatments. 

In the first study, we employed SVMs to showcase the benefits of integrating multimodal 

neuroimaging data for distinguishing healthy individuals from those with schizophrenia. Our 

main findings demonstrated that combining structural and resting-state functional MRI data 

improved classification accuracy to 75% Balanced Accuracy (BAC), compared to 

approximately 70% BAC using single modalities. 

Furthermore, we investigated the interactions between sex-related brain structures, 

gender identity and mood disorders using a machine learning framework. SVMs were applied 

to classify biological sex (female vs. male) using neuroanatomical data from both cisgender 

and transgender individuals. The model achieved 82% BAC for cisgender samples, whereas 

for transgender samples, it achieved 67% BAC. When applied to individuals with major 

depression, performance decreased to 75% and 55% BAC, respectively. These results 

suggests that the existence of a strong imprint of sex on brain structure which interacts majorly 

with gender identity and psychiatric phenotypes, causing a blurring in the biological sex 

neuroanatomical signature. 

These analyses underscore the potential of machine learning, particularly SVMs, 

coupled with rigorous characterization of individuals based on sex/gender and multimodal data 

integration, to advance precision psychiatry. By facilitating more effective diagnostic, 

preventive, and treatment strategies, this approach holds promise for improving outcomes in 

individuals with mental disorders. 

Keywords: machine learning, SVM, multimodal data analysis, neuroimaging, sex, gender 
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