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Extended Summary  

Collaborative problem-solving has emerged as a critical skill in the 21st century, as it is es-

sential for addressing complex and multifaceted challenges inherent in modern work environ-

ments (Graesser et al., 2018). In this thesis collaborative problem-solving skills are defined as 

the capacity of an individual to effectively engage in a process, where two or more agents with 

different knowledge bases attempt to solve complex tasks. The process of collaborative prob-

lem-solving involves active interaction with the problem, decision-making under uncertainty, 

and the integration of knowledge and skills to create a shared problem representation needed to 

reach a solution. Medicine is domain where it is of critical importance to reduce diagnostic 

errors and thus ensure high quality patient care. Collaborative diagnostic reasoning, a form of 

collaborative problem-solving in knowledge-rich domains like medical diagnosing, describes 

the critical role of collaboration when solving diagnostic problems in order to achieve accurate, 

well-reasoned and efficient diagnoses. Building upon research on collaborative problem-solv-

ing and diagnostic reasoning the collaborative diagnostic reasoning model (CDR-M; Rad-

kowitsch et al., 2022) proposes a joint perspective in solving diagnostic problems in a collabo-

rative effort. While this thesis focuses primarily on medical contexts, the insights and methods 

developed are expected to be applicable across disciplines. 

To support the development of expertise in collaborative problem-solving and collaborative 

diagnostic reasoning, it is important to provide authentic situations allowing for knowledge 

application and schema acquisition. Through repeated exposure to diagnostic problems and ex-

perience with cases, knowledge gets encapsulated and a data-base of already seen cases is cre-

ated or updated. This leads to prototypical abstract case representations enabling greater accu-

racy and efficiency when solving diagnostic problems (Boshuizen et al., 2020). The educational 

implications are straightforward: For the restructuring and reorganization of biomedical 

knowledge, the early exposure to patient cases is considered essential. However, the oppor-

tunity to engage in real-life problem-solving is limited and relevant situation to learn may arise 

less often or are too critical to be approached by novices.  

One way to overcome this issue and also facilitate the assessment of collaborative problem-

solving skills, is the use of technology-based assessments and simulation-based learning envi-

ronments. Simulation-based learning environments offer authentic situations for learners to 

practice collaborative diagnostic reasoning without the risks associated with real patient cases 

(Chernikova et al., 2020). The use of computerized agents as collaboration partners allows to 

create a standardized and controlled setting that is hard to establish in collaborations among 

humans. However, although the use of simulation-based learning environments and the 
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integration of technology-based assessments presents opportunities it also entails challenges in 

assessing and supporting collaborative problem-solving skills. The development of technology-

based interactive tasks and simulation-based learning using computerized tasks enables a closer 

approximation of real-world scenarios. These tasks allow for monitoring the process through 

observable problem-solving behaviors, which are stored as computer-generated log-file data 

and can be accessed to provide valuable additional insights. Hence, process data can not only 

be used to examine what has been achieved, but also how it was achieved, and to make infer-

ences about the cognitive processes involved in collaborative problem-solving. These infer-

ences are implications for assessing performance differences, developing predictive models, 

and providing personalized support (Ulitzsch et al., 2023). However, there are also a number of 

challenges associated with its use: Starting with ethical considerations before and during data 

collection, through to the complexities of analyzing the data and the need for theory in inter-

preting the results. 

The goal of this thesis is to improve the use of process data for assessing and supporting 

collaborative problem-solving, specifically in the context of collaborative diagnostic reasoning 

in medical education. To do so, this thesis compromises three papers having different foci on 

the usage of process data. The first paper takes a meta-perspective and elaborates recent devel-

opments in leveraging process data through technology-based assessments for creating new 

knowledge, improving learning and instruction, and providing actionable advice to policy 

stakeholders. Building on these considerations, two empirical studies illustrate how process 

data can be used for theoretical advancements and to improve instruction. The second paper 

and first empirical study validates the CDR-M using process data. The third paper and second 

empirical study then demonstrates how the combination of process data and theory can be used 

to predict outcomes that can inform instruction in simulation-based learning of collaborative 

diagnostic reasoning. 

The first paper, a theoretical paper, analyzes the impact of process data from interactive tasks 

in large-scale assessments. The paper highlights necessary changes that need to be undertaken 

at the scientific level in how we analyze process data to foster sustainable changes at the prac-

tical and policy levels. Firstly, linking process data to educational theory is crucial for enhanc-

ing the generalizability of our findings and hence facilitate theoretical advancements. Secondly, 

the design of assessment should be aligned with instructional design to inform learning and 

instruction.  

Paper 2 employs process data to empirically test and refine the CDR-M and thus demon-

strates how process data can be harnessed to generate new insights and advance theoretical 
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frameworks in education. By analyzing data from three studies in a simulation-based environ-

ment the aim of the study was to better understand the collaborative diagnostic reasoning and 

the processes involved using a structural equation model including indirect effects. Results 

identified various stable relations between individual characteristics and collaborative diagnos-

tic activities, and between collaborative diagnostic activities and diagnostic outcome, highlight-

ing the multidimensional nature of collaborative diagnostic reasoning. In summary, the second 

paper found that for successful collaborative problem-solving in knowledge-rich domains, 

knowledge about the domain of the collaboration partner and collaborative diagnostic activities 

play a crucial role in addition to content knowledge, which is traditionally in the focus of ex-

pertise research.  

The third paper focuses on enhancing simulation-based learning by predicting diagnostic 

accuracy in collaborative diagnostic reasoning using process data. This study developed a ran-

dom forest classification model based on theoretically derived process indicators to predict suc-

cess in a simulated learning environment. Results showed a satisfactory prediction rate for col-

laborative diagnostic reasoning performance, indicated by diagnostic accuracy. The model pre-

dicted accurate and inaccurate diagnoses and was therefore suitable for making statements 

about the performance by only using process data of collaborative diagnostic reasoning. Hence, 

Paper 3 showed that using prediction models enables researchers to provide practical solutions 

such as identifying learners at risk to show inadequate performance in need of adaptive 

instructional support.  

In a nutshell, in terms of theoretical advancements, the papers presented indicate support for 

four assumptions proposed in the CDR-M, as well as adding two new assumptions to the CDR-

M. Firstly, unique contribution of collaborative diagnostic activities to collaborative diagnostic 

reasoning and secondly, the need to investigate complex non-linear interactions between col-

laborative diagnostic activities. With respect to supporting the development of collaborative 

diagnostic reasoning skills, practical implications are to focus on collaboration knowledge and 

collaborative diagnostic activities and turn the measurement of processes like collaborative di-

agnostic activities into a design factor. In addition, a strategy for providing adaptive instruc-

tional support is proposed. Lastly, the findings in this thesis also reveal several insights into 

how the usage of process data analyses can be enhanced when assessing and supporting collab-

orative problem-solving skills. Most importantly, by leveraging theory-based frameworks to 

describe collaborative problem-solving processes, we can create a common ground for as-

sessing and enhancing collaborative problem-solving skills across different domains and thus 

further improve the use of process data analyses. 
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Overall, findings of the three papers illustrate how process data can be used to advance the-

oretical models, as shown by the CDR-M, to support learning of collaborative diagnostic rea-

soning skills and, thus, ultimately enhance the usage of process data of collaborative problem 

solving. In conclusion, this thesis highlights the need of leveraging theory-based frameworks 

to describe collaborative problem-solving processes. This will lead to more proficient collabo-

rators in the future, not only in the medical domain. 
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Zusammenfassung 

Kollaboratives Problemlösen hat sich im 21. Jahrhundert als eine entscheidende Fähigkeit 

für die Bewältigung von komplexen und vielschichtigen Herausforderungen in modernen Ar-

beitsumgebungen herausgestellt (Graesser et al., 2018). In der vorliegenden Arbeit werden kol-

laborative Problemlösefähigkeit als die Fähigkeit einer Person definiert, sich effektiv an einem 

Prozess zu beteiligen, bei dem zwei oder mehr Agenten mit unterschiedlichen Wissensständen 

versuchen, komplexe Aufgaben zu lösen. Der Prozess des kollaborativen Problemlösens bein-

haltet die aktive Interaktion mit dem Problem, Entscheidungsfindung unter Unsicherheit und 

die Integration von Wissen und Fähigkeiten, um eine geteilte Problemrepräsentation zu schaf-

fen, die wiederum für die Lösung erforderlich ist. 

Ein Bereich, in dem es von entscheidender Bedeutung ist, diagnostische Fehler zu reduzieren 

und somit eine hochwertige Patientenversorgung zu gewährleisten, ist die Medizin. Kollabora-

tives diagnostisches Denken ist eine Form des kollaborativen Problemlösens im Kontext von 

Aufgaben, die einen hohen Wissensstand erfordern, wie es der Fall bei der medizinischen Di-

agnose ist. Es beschreibt die kritische Rolle der Zusammenarbeit beim Lösen diagnostischer 

Probleme, um genaue, gut begründete und effiziente Diagnosen zu erreichen. Aufbauend auf 

der Forschung zu kollaborativem Problemlösen und diagnostischen Denken, schlägt das Modell 

zum kollaborativen diagnostischen Denken (CDR-M; Radkowitsch et al., 2022) eine gemein-

same Perspektive beim Lösen diagnostischer Probleme in kollaborativer Zusammenarbeit vor. 

Obwohl sich diese Arbeit primär auf medizinische Kontexte konzentriert, wird davon ausge-

gangen, dass die gewonnenen Erkenntnisse und Methoden disziplinübergreifend gültig sind. 

Um die Entwicklung von Expertise in kollaborativem Problemlösen und kollaborativem di-

agnostischen Denken zu unterstützen, ist es wichtig, authentische Situationen bereitzustellen, 

die Wissensanwendung und den Schemata-Erwerb ermöglichen. Durch wiederholte Auseinan-

dersetzung mit diagnostischen Problemen und Erfahrung mit Fällen wird Wissen verkapselt 

und eine Datenbank bereits gesehener Fälle erstellt oder aktualisiert. Dies führt zu prototypi-

schen abstrakten Fallrepräsentationen, die eine größere Genauigkeit und Effizienz beim Lösen 

diagnostischer Probleme ermöglichen (Boshuizen et al., 2020). Die pädagogischen Implikatio-

nen, die man daraus ziehen kann, sind eindeutig: Für die Restrukturierung und Reorganisation 

von biomedizinischem Wissen ist es essentiell früh mit Patientenfällen konfrontiert zu sein. 

Allerdings sind Gelegenheiten, bei denen man, sich an realen Patientenfällen beteiligen kann, 

begrenzt und relevante Lernsituationen sind oft zu kritisch, dass es unverantwortlich wäre, An-

fänger damit zu betrauen. 
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Eine Möglichkeit, diesem Problem zu begegnen und zudem die Bewertung von kollaborati-

ven Problemlösefähigkeiten zu erleichtern, bietet die Nutzung von technologiegestützten As-

sessments und simulationsbasierten Lernumgebungen. Simulationsbasierte Lernumgebungen 

bieten Lernenden authentische Situationen, um kollaboratives diagnostisches Denken  zu üben, 

ohne die mit realen Patientenfällen verbundenen Risiken zu fürchten (Chernikova et al., 2020). 

Der Einsatz von computergestützten Agenten als Kollaborationspartner:innen ermöglicht es, 

ein standardisiertes und kontrolliertes Setting zu schaffen, das in der menschlichen Zusammen-

arbeit schwer umzusetzen ist. Allerdings bringt die Nutzung von simulationsbasierten Lernum-

gebungen und die Integration von technologiegestützten Assessments nicht nur Chancen mit 

sich, sondern auch Herausforderungen bei der Bewertung und Unterstützung von kollaborati-

ven Problemlösefähigkeiten. 

Die Entwicklung von technologiegestützten interaktiven Aufgaben und simulationsbasierten 

Lernumgebungen unter Verwendung computergestützter Aufgaben ermöglicht eine zuneh-

mende Annäherung an reale Szenarien. Diese computergestützten Aufgaben ermöglichen die 

Beobachtung des Problemlöseprozesses, repräsentiert durch beobachtbares Problemlöseverhal-

ten. Diese Daten werden als computergenerierte Logfiles gespeichert und können so zusätzliche 

wertvolle Einblicke liefern. Prozessdaten können daher nicht nur verwendet werden, um zu 

untersuchen, welches Ergebnis erreicht wurde, sondern auch, wie dieses Ergebnis erreicht 

wurde. Dies erlaubt Rückschlüsse auf die kognitiven Prozesse, die beim kollaborativen Prob-

lemlösen ablaufen. Diese Rückschlüsse haben Implikationen für die Bewertung von Leistungs-

unterschieden, die Entwicklung von prädiktiven Modellen und die Bereitstellung personalisier-

ter Unterstützung (Ulitzsch et al., 2023). Allerdings gibt es auch eine Reihe von Herausforde-

rungen bei der Verwendung von Prozessdaten: Beginnend mit ethischen Überlegungen vor und 

während der Datenerhebung, bis hin zu den Komplexitäten bei der Analyse der Daten und der 

Notwendigkeit von Theorien bei der Interpretation der Ergebnisse. 

Ziel dieser Arbeit ist es, die Nutzung von Prozessdaten zur Bewertung und Unterstützung 

des kollaborativen Problemlösens zu verbessern, insbesondere im Kontext des kollaborativen 

diagnostischen Denkens in der medizinischen Ausbildung. Dazu umfasst diese Arbeit drei Ar-

tikel mit unterschiedlichen Schwerpunkten auf der Nutzung von Prozessdaten. Der erste Artikel 

nimmt eine Meta-Perspektive ein und erläutert jüngste Entwicklungen bei der Nutzung von 

Prozessdaten durch technologiegestützte Assessments zur Schaffung neuen Wissens, zur Ver-

besserung von Lehren und Lernen und zur Bereitstellung umsetzbarer Ratschläge für politische 

Entscheidungsträger. Aufbauend auf diesen Überlegungen illustrieren zwei empirische Studien, 

wie Prozessdaten für theoretische Fortschritte und zu verbesserter Instruktion genutzt werden 
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können. Im zweiten Artikel wird eine empirische Studie zur Validierung des CDR-M vorge-

stellt. Der dritte Artikel und die dort berichtete zweite empirische Studie zeigen dann, wie die 

Kombination von Prozessdaten und Theorie genutzt werden kann, um Lernenden-Ergebnisse 

vorherzusagen, welche genutzt werden können um in simulationsbasierten Lernumgebungen 

des kollaborativen diagnostischen Denken instruktionale Anpassungen vorzunehmen. 

Im ersten theoretischen Artikel wird die Nutzung von Prozessdaten aus interaktiven Aufga-

ben in large-scale Assessments analysiert. Der Artikel hebt hervor, welche Änderungen hin-

sichtlich der Art und Weise, wie Prozessdaten analysiert werden auf der wissenschaftlichen 

Ebene unternommen werden müssen, um nachhaltige Veränderungen auf praktischer und poli-

tischer Ebene zu fördern. Zum einen ist die Verknüpfung von Prozessdaten und Bildungstheo-

rien entscheidend, um die Generalisierbarkeit unserer Ergebnisse zu verbessern und somit the-

oretische Fortschritte zu erleichtern. Zum anderen sollte die Gestaltung von Assessments mit 

der instruktionalen Gestaltung abgestimmt sein, um Lehren und Lernen zu verbessern. 

Der zweite Artikel testet und verfeinert das CDR-M empirisch mithilfe von Prozessdaten 

und zeigt somit, wie Prozessdaten genutzt werden können, um neue Erkenntnisse zu generieren 

und theoretische Modelle weiter zu entwickeln. Ziel der Studie war es die Daten aus drei simu-

lationsbasierten Studien zu analysieren um das kollaborative diagnostische Denken und die be-

teiligten Prozesse besser zu verstehen, indem ein Strukturgleichungsmodell mit indirekten Ef-

fekten verwendet wurde. Die Ergebnisse identifizierten verschiedene stabile Beziehungen zwi-

schen individuellen Merkmalen und kollaborativen diagnostischen Aktivitäten sowie zwischen 

kollaborativen diagnostischen Aktivitäten und diagnostischen Ergebnissen, was die multidi-

mensionale Natur des kollaborativen diagnostischen Denkens hervorhebt. Zusammenfassend 

zeigte der zweite Artikel, dass für erfolgreiches kollaboratives Problemlösen in wissensreichen 

Aufgaben neben dem Fachwissen, das traditionell im Fokus der Expertiseforschung steht, Wis-

sen über den Bereich der Kollaborationspartner:innen und kollaborative diagnostische Aktivi-

täten eine entscheidende Rolle spielen. 

Der dritte Artikel konzentriert sich auf die Verbesserung des simulationsbasierten Lernens 

durch die Vorhersage der diagnostischen Genauigkeit im kollaborativen diagnostischen Den-

ken unter Verwendung von Prozessdaten. Diese Studie entwickelte ein Random-Forest-Klassi-

fikationsmodell basierend auf theoretisch abgeleiteten Prozessindikatoren, um den Erfolg in 

einer simulierten Lernumgebung vorherzusagen. Die Ergebnisse zeigten, dass diagnostische 

Genauigkeit, als Indikator für Erfolg im kollaborativen diagnostischen Denken, zufriedenstel-

lend mithilfe von Prozessdaten vorhergesagt werden kann. Das Modell sagte sowohl genaue als 

auch ungenaue Diagnosen vorher und war daher dafür geeignet, Aussagen über die Leistung 
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ausschließlich unter Verwendung von Prozessdaten des kollaborativen diagnostischen Denken 

zu treffen. Daher zeigte der dritte Artikel, dass die Verwendung von Vorhersagemodellen es 

ermöglicht, praktische Lösungen bereitzustellen, wie z. B. die Identifizierung von Lernenden, 

die wahrscheinlich unzureichende Leistungen zeigen werden und daher instruktionale Unter-

stützung benötigen. 

Zusammenfassend lässt sich sagen, dass die vorgestellten Artikel in Bezug auf den theoreti-

schen Fortschritt Hinweise auf die Gültigkeit von vier im CDR-M vorgeschlagenen Annahmen 

sowie von zwei neuen Annahmen für das CDR-M liefern. Als neue Annahmen sollte erstens 

der einzigartige Beitrag kollaborativer diagnostischer Aktivitäten zum kollaborativen diagnos-

tischen Denken und zweitens die Notwendigkeit, komplexe nicht-lineare Interaktionen zwi-

schen kollaborativen diagnostischen Aktivitäten zu untersuchen berücksichtig werden. Hin-

sichtlich der Unterstützung der Entwicklung von Fähigkeiten im kollaborativen diagnostischen 

Denken bestehen praktische Implikationen darin, sich auf Kooperationswissen und kollabora-

tive diagnostische Aktivitäten zu konzentrieren und die Messung von Prozessen wie kollabora-

tiven diagnostischen Aktivitäten in einen Gestaltungsfaktor zu verwandeln. Darüber hinaus 

wird eine Strategie zur Bereitstellung adaptiver instruktionaler Unterstützung vorgeschlagen. 

Schließlich geben die Ergebnisse dieser Arbeit auch Einblicke in wie die Nutzung von Prozess-

datenanalysen bei der Bewertung und Unterstützung von kollaborativen Problemlösefähigkei-

ten verbessert werden kann. Am relevantesten ist jedoch, dass wir durch die Verwendung the-

oriegeleiteter Modelle zur Beschreibung von kollaborativen Problemlöseprozessen eine ge-

meinsame Sprache für die Bewertung und Verbesserung von kollaborativen Problemlösefähig-

keiten in verschiedenen Bereichen schaffen und somit die Nutzung von Prozessdatenanalysen 

weiter verbessern können. 

Insgesamt veranschaulichen die Ergebnisse der drei Artikel, wie Prozessdaten verwendet 

werden können, um theoretische Modelle, wie das CDR-M voranzutreiben und somit das Ler-

nen von Fähigkeiten im kollaborativen diagnostischen Denken zu unterstützen und somit letzt-

endlich die Nutzung von Prozessdaten des kollaborativen Problemlösens zu verbessern. Ab-

schließend ist anzumerken, dass diese Arbeit die Notwendigkeit der Nutzung eines theoriege-

stützten Modells zur Beschreibung kollaborativer Problemlöseprozesse hervorhebt. Dies wird 

nicht nur im medizinischen Bereich in Zukunft zu einer besseren Zusammenarbeit führen. 
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 General Introduction 17 

1.1 Aim and Structure of the Thesis  

Diagnostic errors are estimated to be the third leading cause of death in the US (Makary & 

Daniel, 2016). Furthermore, a study from the Netherlands found that almost all reported cases 

of such serious adverse events were associated with at least one human factor, such as errors in 

coordination or communication between healthcare teams (Hooftman et al., 2024). It is there-

fore crucial to improve collaborative diagnostic reasoning skills in medical contexts to ensure 

high-quality patient care. The concept of collaborative diagnostic reasoning emphasizes the 

pivotal role of collaboration in the process of solving diagnostic problems and achieving accu-

rate, well-reasoned and efficient diagnoses (Radkowitsch et al., 2022). This thesis primarily 

focuses on medical contexts. However, it can be expected that the insights and methods devel-

oped will be applicable across disciplines, given that collaborative diagnostic reasoning, or 

more broadly collaborative problem-solving, are critical skills in a variety of professional do-

mains due to the increasing complexity of the problems that professionals are required to solve 

(Fiore et al., 2018). Consequently, collaborative problem-solving skills have been identified as 

a pivotal 21st-century skill, fundamental for navigating complex challenges and integral to nu-

merous aspects of modern work, particularly in fields that necessitate the integration of diverse 

perspectives and expertise (Graesser et al., 2018). 

The utilization of technology-based assessments and simulation-based learning environ-

ments presents a promising basis for assessing and supporting the development of collaborative 

diagnostic reasoning skills. This is because such environments offer the potential to collect 

detailed process data, which can provide insights into the underlying cognitive processes and 

the complexities of the collaborative problem-solving process, which are not depicted in out-

come or self-report measures (OECD, 2010).  The aim of this thesis is to investigate the poten-

tial of process data derived from interactive collaborative problem-solving tasks, particularly 

within the context of collaborative diagnostic reasoning in agent-based simulations, to enhance 

both assessment and support in a way that is both sustainable and meaningful. This thesis 

demonstrates how process data can be practically applied to gain deeper insights, develop more 

robust theories and thereby support learning and instruction. 

The remainder of this thesis is structured in three main parts, the first of which is dedicated 

to the theoretical underpinning. First and foremost, collaborative problem-solving is defined, 

along with an explanation of how expertise is developed in this area and how simulations con-

tribute to the assessment and support of these skills. The subsequent section will focus on col-

laborative problem-solving in medical contexts, defining collaborative diagnostic reasoning 

and outlining how expertise development in this domain differs from that of general problem-
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solving expertise. This is followed by an introduction to agent-based simulations as a means of 

facilitating the acquisition of collaborative diagnostic reasoning skills. Subsequently, the con-

cept of process data analyses is introduced, along with an overview of the benefits and chal-

lenges associated with its implementation for the assessment and support of collaborative prob-

lem-solving skills. The first part concludes with a description of the general aim of the thesis, 

as well as brief outlines of the included papers and their research questions. 

The second part of the thesis presents three papers conducted to achieve the stated goals. 

The first paper is a theoretical paper that takes a meta-perspective on the sustainable utilization 

of process data in large-scale assessments. Although this paper focuses on large-scale assess-

ments, it is assumed that the recommendations regarding the use of process data are also appli-

cable to other contexts, such as simulation-based learning. The second paper presents the find-

ings of an empirical study which aims to investigate the extent to which process data can facil-

itate the creation of new knowledge, particularly in the context of validating theoretical models 

in educational research. In order to validate the collaborative diagnostic reasoning model  

(CDR-M), a multi-study structural equation model is analyzed. The third paper investigates the 

potential of process data to inform learning and instruction by predicting learners' needs for 

additional support. In particular, it investigates whether process data can be used to identify 

learners who may benefit from adaptive instructional interventions during collaborative prob-

lem-solving tasks in medical education. The third and final part of the thesis presents a synthesis 

of the findings in light of the initial theoretical assumptions. In conclusion, the thesis discusses 

the implications for research and practice, with focusing on leveraging process data for the 

assessment and support of collaborative problem-solving in the context of collaborative diag-

nostic reasoning within agent-based simulations. 

1.2 Collaborative Problem-Solving  

The ability to collaborate with others is a central skill in the 21st century, spanning a range 

of contexts, including computer-supported collaborative learning and collaborative problem-

solving in professional practice (Fiore et al., 2018; Griffin & Care, 2015; OECD, 2017a). The 

focus of this thesis will be on the topic of collaborative problem-solving. This is due to the fact 

that many of the key problems faced by modern societies are of a highly complex nature, and 

therefore require the input and collaboration of multiple individuals rather than single individ-

ual in order to be solved (Graesser et al., 2022). After defining the construct, the chapter elab-

orates on developing, assessing, and supporting expertise in these skills. 



 General Introduction 19 

1.2.1 Collaborative Problem-Solving Skills  

The integration of multiple perspectives and sources of knowledge and expertise through 

collaboration has been demonstrated to enhance the quality of solutions (Graesser et al., 2018). 

While collaboration offers certain advantages, such as the sharing of knowledge, the combina-

tion of specialist skills, and the distribution of work; it also presents challenges in the form of 

miscommunication, coordination issues, and potential conflicts in goal alignment (Funke et al., 

2018). When problems are solved collaboratively, the cognitive activities that are required for 

individual problem-solving are extended by collaborative activities1 that are needed to achieve 

the desired outcome. The construct of collaborative problem-solving comprises several compo-

nents, which highlight different aspects related to the collaborative problem-solving process. 

Accordingly, the relevant components and their conceptualization within the field of collabo-

rative problem-solving will be outlined, followed by a definition that incorporates a synthesis 

of these elements. 

Irrespective of whether a solution is reached individually or collaboratively, a problem is 

encountered when the desired goal state differs from the actual current state and there is no 

routine method of solution available (Mayer & Wittrock, 2006). The early research on problem-

solving concentrated on relatively simple, knowledge-lean, tasks that did not require a lot of 

knowledge, such as the Tower of Hanoi or other puzzle-like tasks. These tasks are distinguished 

by the provision of all necessary information within the task instructions, thereby necessitating 

minimal prior knowledge and relying primarily on general cognitive skills and reasoning abili-

ties. In knowledge-lean tasks, the problem space is typically well-defined, with clear initial 

states, operators, and goal states provided within the task instructions (van Lehn, 1989). The 

underlying assumption was that the cognitive processes used to solve these knowledge-lean 

problems were generalizable to more complex problems, suggesting that problem-solving skills 

were domain-general (Newell et al., 1959). Consequently, these problems are useful for the 

evaluation of general cognitive abilities, as they are not dependent on specific content 

knowledge.  

In contrast, knowledge-rich tasks that require a high level of domain-specific knowledge are 

relevant whenever it comes to learning. Examples of domains that are particularly knowledge-

rich include engineering, physics, medical diagnosing, and other specialized fields. In these 

domains, good problem solvers possess content knowledge that is well-organized, coherent, 

and chunked. This organization of knowledge enables the efficient representation of problems 

and the selection of appropriate strategies for solving knowledge-rich problems (Sugrue, 1995). 

                                                 
1 Also referred to as social activities  
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The presence or absence of solution-relevant knowledge is a critical factor in determining 

whether a situation is perceived as a problem. To provide an example, a simple arithmetic ques-

tion may be easily solved by the majority of adults, yet it could be unsolvable for a preschooler 

due to the lack of relevant knowledge. This illustrates that the problem-solving process is in-

herently linked to the knowledge base of the individual attempting to solve the problem, and 

that the perception of a problem can vary considerably due to the prior knowledge and experi-

ence of the individual (Funke et al., 2018). Consequently, there has been a shift in focus towards 

studying problem-solving within specific domains (Mayer & Wittrock, 1996). The problem-

solving process that occurs in the context of knowledge-rich tasks can be described as follows: 

Firstly, a mental representation of the problem is established; secondly, relevant schemas or 

scripts (see 1.2.2) are activated; and thirdly, this knowledge is applied in order to derive a so-

lution (Greiff et al., 2016). 

There are several different categories of problem-solving tasks, such as knowledge-lean, 

well-defined, complex, interactive, ill-defined, open-ended, knowledge-rich and much more 

with no obvious boundary between the different labels or the constructs they represent (Funke 

et al., 2018). This thesis will focus on complex problems, which are defined as dynamic systems 

that individuals must manage in conditions of uncertainty (Dörner, 1975), in knowledge-rich 

tasks. These problems typically comprise a number of interconnected elements that are capable 

of changing autonomously over time. Complex problems frequently lack transparency, neces-

sitating the retrieval and management of information. Furthermore, complex problems may en-

tail polytelic goals, which are competing or conflicting objectives that must be balanced (Dö-

rner, 1975; Funke et al., 2018). The complexity of a problem is frequently attributed to the 

structure of the external problem representation. The perceived complexity of a problem is sub-

ject to variation, depending on the level of expertise of the individuals engaged in problem-

solving. For example, a problem may be perceived as less complex by experts than by novices. 

This distinction is crucial, as it acknowledges that the complexity and difficulty of a problem 

are not inherent properties but are also dependent on the expertise of the problem solver (A. 

Fischer et al., 2011). 

In order to solve a problem, one or more individuals must engage in a problem-solving pro-

cess. This process involves searching for an operation or a series of operations with the aim of 

transferring the given actual state of the system to a goal state (Dunbar, 1998; Newell & Simon, 

1972). It requires a goal-oriented sequence of cognitive activities (Anderson, 1993; Funke et 

al., 2018). Individual problem-solving skills are defined as “an individual's capacity to engage 

in cognitive processing to understand and resolve problem situations where a method of 
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solution is not immediately obvious” (OECD, 2013, p. 122). Problem-solving requires the ap-

plication of problem-solving strategies, which can be classified as either domain-general or 

domain-specific. Domain-general strategies are employed in knowledge-lean task or tasks 

where domain-specific knowledge is lacking, whereas domain-specific strategies are employed 

in knowledge-rich tasks. Additionally, an accurate problem representation is essential, either 

through solely interacting with the problem or through the activation of domain-specific 

knowledge. Finally, self-regulation is necessary to monitor the execution of the problem-solv-

ing process (O'Neil, 1999). 

The problem-solving process can be divided into two distinct phases: knowledge acquisition 

and knowledge application. The process of knowledge acquisition entails the creation of a men-

tal representation of the problem, which encompasses an understanding of the problem's struc-

ture and the relevant information necessary for its solution (Klahr & Dunbar, 1988). This phase 

is of critical importance for the establishment of a clear and accurate problem representation, 

which subsequently serves as a foundation for decision-making and strategy development. The 

second phase, knowledge application, involves the implementation of the solution process 

based on the established problem representation (Novick & Bassok, 2005). The application of 

knowledge entails the selection and execution of appropriate actions that facilitate the transition 

from the current state to the desired goal state, based on the problem representation. This pro-

cess requires not only the retrieval of relevant knowledge but also the application of strategic 

thinking and problem-solving heuristics. A study by Nicolay et al. (2021) investigated both 

phases of individual problem-solving in 1151 students in 9th grade working on nine problems. 

The findings showed that despite the acquisition of all relevant information about the problem 

during the knowledge acquisition phase, two in five students were unable to fully solve the 

problem in the subsequent knowledge application phase. This emphasizes the importance of 

both phases for successful problem-solving. 

The Program for International Student Assessment (PISA) 2012 framework identifies four 

distinct cognitive processes that constitute the individual problem-solving process (OECD, 

2013): (1) exploration and understanding of the problem task; (2) creation of a problem repre-

sentation through integration of acquired information with relevant prior knowledge, leading to 

specific hypotheses about potential solutions. To reduce the uncertainty of these hypotheses, 

(3) a plan is created and executed, as well as (4) monitored and reflected on, in order to reach 

the solution. This is consistent with the hypothesis stated by Klahr and Dunbar (1988), which 

posits that problem-solving in the domain of scientific discovery involves searching through 

both a hypothesis generation space and a hypothesis testing space. To put it differently, the 
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understanding process or knowledge acquisition phase generates the person's internal represen-

tation of the problem, whereas the search process or knowledge application phase generates the 

person's solution (van Lehn, 1989).  

In the context of collaborative problem solving, in addition to individual cognitive activities, 

collaborative activities (e.g. exchanging ideas, negotiating ideas, regulating problem solving 

and maintaining communication) are crucial to the collaborative problem-solving process. The 

main goal of collaborative activities is to construct a shared problem representation (Rochelle 

& Teasley, 1995). Research indicates that collaborative problem-solving performance is en-

hanced when the initial problem representation of each individual is consistent across collabo-

ration partners (Hesse et al., 2015). A study by Mathieu et al. (2000) involving 26 student dyads 

working on a flight simulation found that concurrent problem representations between collab-

oration partners improved the quality of collaborative problem solving, leading to positive out-

comes. The construction of a shared problem representation requires the conscious and contin-

uous monitoring and coordination of individual cognitive activities and collaborative activities 

related to shared knowledge (Hesse et al., 2015; Liu et al., 2016; Rochelle & Teasley, 1995). A 

variety of models have been developed to describe the processes and required skills by which 

humans collaborate to solve problems. These models differ primarily in terms of their granu-

larity (see Table 1). 

The model proposed by Liu et al. (2016) identifies four key social skills, whereas Hesse et 

al. (2015) suggest three main skills with several sub-skills. In particular, the ability to recognize 

the information required by a collaborator to construct a shared problem representation is high-

lighted, as well as the identification of the specific information that needs to be shared (Rochelle 

& Teasley, 1995). The OECD (2017a) based their theoretical framework on the work of Hesse 

et al. (2015), but expressed it in the form of a 4x3 matrix, comprising four cognitive activities 

and three collaborative activities. Lastly, Sun et al. (2020) synthesize recent models of collab-

orative problem-solving into three overarching categories: constructing shared knowledge, ne-

gotiation/coordination, and maintaining team function. Each category is further divided into 

two subcategories and associated indicators. To illustrate, an indicator of the sub-facet estab-

lishing common ground for the facet constructing shared knowledge is defined as verifying the 

understanding of others' ideas through questioning or paraphrasing. Notwithstanding the dis-

crepancies in granularity, these models exhibit considerable overlap: The majority of these 

models align on several fundamental collaborative activities, although there are some discrep-

ancies in the terminology used to describe them. These collaborative activities include the ef-

fective sharing of information with collaboration partners, the elicitation of information from 
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collaboration partners to expand knowledge, the negotiation of conflicting ideas, and the regu-

lation of collaborative processes by setting goals and monitoring the process. The sharing and 

eliciting of information, which is often referred to as information pooling, is of particular im-

portance for collaborative information processing (F. Fischer et al., 2002; Hinsz et al., 1997). 

This sharing and eliciting of information facilitate the construction of a shared problem repre-

sentation and potential solutions, which is a crucial element of successful collaboration (Ro-

chelle & Teasley, 1995). The ability to negotiate conflicting ideas is of great importance when 

disagreements arise among collaboration partners (Hesse et al., 2015). Effective negotiation 

helps prevent groups from dismissing opposing viewpoints or prematurely ending discussions 

(Patel et al., 2002). It is also important to note that regulation is a crucial element in aligning 

the goals and strategies of a group in order to achieve those goals (Järvelä & Hadwin, 2013). 

Although collaborative problem-solving initially assigns a higher value to collaborative activi-

ties than to the cognitive activities involved in individual problem-solving (OECD, 2017a), both 

are essential for success. However, research lacks evidence on which factors are particularly 

relevant (Graesser et al., 2018). 

Table 1 

Overview of Three Collaborative Problem-Solving Frameworks  

 Liu et al., 2016 Hesse et al., 2015 OECD, 2017a 

individual  

cognitive  

activities 

conceptual  

understanding 
planning 

exploring &  

understanding 

inquiry skills in  

science: data  

collection, data  

analysis, prediction 

making, and evidence-

based reasoning 

executing & monitoring 
representing &  

formulating 

flexibility planning & executing 

learning 
monitoring &  

reflecting 

collaborative 

activities 

sharing ideas 

participation: action, 

interaction, task  

completion/  

perseverance 

establishing &  

maintaining shared  

understanding 

regulating problem-

solving activities 

perspective taking: 

adaptive  

responsiveness,  

audience awareness 

taking appropriate  

action to solve the 

problem 

negotiating ideas social regulation:  

negotiation,  

self-evaluation, trans-

active memory, re-

sponsibility initiative 

establishing and main-

taining team organiza-

tion 

maintaining 

communication 
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Summarizing the different aspects of collaborative problem-solving skills, a problem in the 

process of collaborative problem-solving is understood as a complex system that needs to be 

transformed into a goal state under conditions of uncertainty requiring knowledge. The 

knowledge required for these tasks can be either inherent to the task itself (i.e., knowledge-lean 

tasks) or necessitate the utilization of prior knowledge organized in scripts (i.e., knowledge-

rich tasks). Both types of tasks necessitate interaction with the problem to be solved. Conse-

quently, in thesis collaborative problem-solving skills is defined as the capacity of a single 

individual to engage effectively in a process involving two or more agents, each with a different 

knowledge base, in order to solve complex tasks (OECD, 2017a). Although being a collabora-

tive process, the skill is individual and therefore can be assessed and developed at the individual 

level, rather than at the group level. It entails active engagement with the problem at hand, 

decision-making in the presence of uncertainty, and the integration of knowledge and skills to 

construct a shared problem representation that is essential for reaching a solution. Further, col-

laborative problem-solving skills are understood to be a formative construct with varying de-

grees of its components' generalizability. These components are domain-specific knowledge 

and domain-general cognitive activities (e.g., creating a problem representation, generating hy-

potheses and a solution plan, monitoring the process) and collaborative activities (e.g., sharing 

and eliciting information, negotiating hypotheses, and regulating the process). 

1.2.2 Expertise in Collaborative Problem-Solving 

Both domain-specific knowledge and domain-general strategies are critical for problem-

solving. The balance between them may shift over time with increasing age (Schäfer et al., 

2024; cf. Geary et al., 2017), with domain-specific knowledge becoming more relevant for ex-

pert performance. Expert performance is understood as “consistently superior performance on 

a specified set of representative tasks for a domain” (Ericsson & Lehmann, 1996, p. 277). This 

means, for example, that experts can solve a problem faster and more accurately than novices 

and that they have better metacognitive abilities (van Lehn, 1989). In addition, experts seem to 

be able to store and recall more information and to select relevant strategies based on their 

previous experience with similar problems through the activation of schemas (Chase & Simon, 

1973). A schema is conceptualized as a cognitive structure that stores knowledge from experi-

ence in a concrete or abstract form (Sweller, 1988). Another difference between experts and 

novices is the categorization of problems: While novices tend to identify surface features, ex-

perts group problems according to their schemas (Sweller, 1988; van Lehn, 1989). One expla-

nation for the differences in expert performance compared to novices is that they can store a 

greater number of items in their working memory due to their organization of knowledge. This 
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leads to a reduced cognitive load and thus more capacity to engage in relevant problem-solving 

activities (A. Fischer et al., 2011). Hence, experts use knowledge when they need to search for 

the next step in the problem-solving process, which may be cognitively overwhelming for nov-

ices (Funke & Frensch, 2007; Mayer, 1992; Sweller, 1988). Vicente and Wang (1998) found 

that there are at least 51 studies in at least 19 different domains demonstrating the superior 

memory performance of experts. In summary, expertise is the development of cognitive struc-

tures necessary for effective problem-solving. Building on this, cognitive load theory offers 

crucial foundations for understanding the information processing demands inherent in (collab-

orative) problem-solving. 

Cognitive load theory describes cognitive structures that include a virtually limitless long-

term memory and a limited working memory (Atkinson & Shiffrin, 1968). The long-term 

memory acts as a storage for accumulated knowledge, while the working memory deals with 

the processing of information, either before it is encoded in the long-term memory or when it 

is retrieved for usage. The contents of working memory correspond to our conscious thoughts, 

whereas the vast contents of long-term memory are typically beyond our immediate awareness. 

Cognitive load theory is primarily concerned with how this extensive knowledge can be effec-

tively acquired, given that the capacity of working memory is limited in both duration and the 

amount of new information it can hold. However, these limitations do not apply to information 

that is already well established in long-term memory (Paas et al., 2010).  

Building on these assumptions, cognitive load is broadly understood as the amount of mental 

effort required by a task including intrinsic, extraneous, and germane cognitive load (Sweller 

et al., 2011). Intrinsic cognitive load is determined by the inherent complexity of the task (struc-

ture and interactivity) as a result of the individual's prior knowledge. Thus, a lack of prior 

knowledge can lead to cognitive overload, and expertise (a) helps to reduce intrinsic load given 

a certain interactivity between the elements of the task and (b) is assumed to moderate the use-

fulness of certain strategies and the effect of problem characteristics (expertise reversal effect, 

see Kalyuga, 2007). In addition, germane cognitive load is the mental effort required to cope 

with intrinsic load, whereas extraneous cognitive load is caused by poor instructional design 

that complicates the learning process (Paas et al., 2004).  

According to cognitive load theory, learning is described as the acquisition of cognitive 

schemata that enable the categorization of the problem, the selection of the correct strategies to 

apply and the regulation of problem-solving. The construction of such schemata is cognitively 

demanding. Consequently, the processing of the task itself will compete with the construction 

of cognitive schemata if the task is too demanding. In summary, cognitive load theory addresses 
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the challenges that individuals face when engaging in complex cognitive tasks, which often 

involve the simultaneous management of numerous interactive elements. Thus, an individual's 

ability to perform in a particular domain depends on the amount of relevant knowledge stored 

in their long-term memory. Given the importance of this knowledge, it is essential to consider 

schemata—the structured form in which information is organized and stored (Sweller et al., 

2011).  

Expert performance depends on the acquisition of specific schemas stored in long-term 

memory. Schema theory became increasingly important in the 1980s because it seemed that 

domain-specific knowledge, organized into schemas, distinguishes experts from novices in 

problem-solving performance (Sweller et al., 2011). A “schema is defined as a structure which 

allows problem solvers to recognize a problem state as belonging to a particular category of 

problem states that normally require particular moves”, allowing individuals to chunk infor-

mation effectively, making it easier to retrieve and apply relevant knowledge during problem-

solving tasks (Sweller, 1988, p. 259). Put differently, a problem schema consists of information 

about the class of problems to which the schema applies and information about their solutions 

(van Lehn, 1989). The development of schemata is crucial for overcoming the limitations of 

working memory, thus reducing cognitive load and errors (Anderson, 1985). According to the 

ACT* theory (Anderson, 1983), the key factor for expert performance is the ability to encode 

declarative (factual knowledge) and procedural knowledge (cognitive skills), which is basically 

reflected in the amount of experience. The transition from declarative to procedural knowledge, 

also known as knowledge compilation, is essential for the development of expertise in 

knowledge-rich domains (Anderson, 1985). In the initial stages of problem-solving in a new 

domain, individuals rely on declarative knowledge, which consists of isolated facts and infor-

mation without an understanding of their application. During knowledge compilation, this de-

clarative knowledge is first transformed into procedural knowledge (proceduralization), which 

involves knowing how to perform specific tasks. This procedural knowledge is subsequently 

compiled into larger networks of procedural knowledge (composition) through a gradual and 

laborious process known as knowledge compilation (Anderson, 1985). Knowledge compilation 

enables the creation of problem schemata that guide the selection, adaptation, and execution of 

solution procedures (Van Lehn, 1989). This transformation allows individuals to apply 

knowledge more efficiently, leading to improved problem-solving skills and distinguishing ex-

perts from novices. In summary, the construction of schemas in knowledge-rich domains is a 

critical mechanism for reducing cognitive load and errors. This process highlights the 
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importance of extensive experience and structured knowledge in the development of expertise, 

enabling more efficient and accurate problem-solving. 

As individuals repeatedly encounter similar problems, they store these experiences in long-

term memory, transforming declarative knowledge into procedural knowledge through proce-

duralization. As a result, experts can handle complex problems with greater ease and accuracy 

than novices, who lack such schemas and are prone to cognitive overload. They can quickly 

recognize familiar problems, retrieve appropriate schemas, and adapt them to specific situa-

tions. In contrast, novices must search for solutions without the benefit of pre-existing schemas, 

leading to trial-and-error approaches or weak methods (Perkins & Salomon, 1989; van Lehn, 

1989). There is a so-called "power-generality tradeoff": The more general the method (i.e., 

means-end analysis), the weaker the method (Perkins & Salomon, 1989). In contrast, expert 

problem-solving consists of three steps: Selecting a schema, adapting (instantiating) it to the 

problem, and executing its solution procedure (van Lehn, 1989). Once an initial schema is trig-

gered, it guides the interpretation of the rest of the problem. However, when more than one 

schema is applicable to the given problem, even experts must search for the appropriate one to 

reduce uncertainty in decision making. By enabling the recognition and application of relevant 

problem schemas, experience allows individuals to solve problems more accurately and effi-

ciently, underscoring the importance of extensive learning and practice in developing expertise.  

This interplay between knowledge and strategy application highlights that domain-specific 

and domain-general problem-solving are not distinct categories but rather two ends of a contin-

uum (Greiff et al., 2014). In knowledge-lean tasks or in the absence of structured domain 

knowledge, domain-general strategies play a critical role. Conversely, when tackling 

knowledge-rich tasks with well-structured domain knowledge, domain-specific strategies be-

come essential. Thus, domain-general problem-solving strategies can be seen as a tool needed 

to solve problems, but it takes domain-specific knowledge gained through experience to learn 

when and how to apply these strategies, leading to domain-specific strategies (Perkins & Salo-

mon, 1989). Someone who is a very skilled problem solver in one domain may not be able to 

transfer their problem-solving skills and strategies to another domain in which they lack exper-

tise. Both domain-specific and domain-general strategies are developed through experience, 

leading to an increase in the quality of the problem-solving process as individuals develop the 

ability to recognize and apply relevant problem schemas with less conscious processing 

(Sweller et al., 2011). 

In conclusion, by examining complex real-world problems, researchers have gained deeper 

insights into the cognitive processes underlying expertise, highlighting the importance of 
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domain-specific knowledge that is connected, integrated, coherent, and chunked through exten-

sive experience in effective problem-solving (Anderson, 1993; Funke et al., 2018; Sugrue, 

1995). Initially, problem solvers in knowledge-rich tasks experience high cognitive load due to 

limited working memory capacity, resulting in frequent errors. Over time, with increasing ex-

perience and exposure to domain-specific problems, individuals construct schema - organized 

knowledge structures - that increase working memory capacity and reduce cognitive load (An-

derson, 1985). Because expert performance is a product of knowledge (van Lehn, 1989), prob-

lem-solving expertise is a domain-specific skill that, unlike general intelligence, can be learned 

and supported (Funke et al., 2018).  

1.2.3 Simulations for Assessing & Supporting Collaborative Problem-Solving Skills 

In order to support the learning of collaborative problem-solving skills, we need to be able 

to assess them. Educational assessment is a systematic method of collecting information or 

artifacts about a learner and learning processes in order to make inferences about the individu-

al's skills (E. L. Baker et al., 2016).There are three main purposes: assessment to support learn-

ing (formative assessment), assessment of individual student performance (summative assess-

ment), and assessment to evaluate programs (evaluative assessment; Pellegrino et al., 2001). 

Many traditional educational assessments use multiple-choice and constructed-response items 

(Lee et al., 2019). However, this is not suitable for assessing collaborative problem-solving 

skills as such items require responsiveness to the test taker's input. This is necessary because, 

despite being an individual skill, an assessment of collaborative problem-solving skills would 

hardly be valid if there was no interaction between the test-takers and the collaboration partners 

(Stadler, Herborn, et al., 2020). However, this leads to the limitation of measuring collaborative 

problem-solving as an individual skill, since the difficulty of the task lies not only in the nature 

of the problem but also in the collaboration partner, making standardized assessments that con-

trol for the effect of collaboration challenging (Herborn et al., 2020). Furthermore, it is im-

portant to mention that, according to the definition of the OECD (2017a), problem-solving skills 

focus on the attempt and not only on the outcome of the process. 

To address these demands, technological advancements have enabled a shift from traditional 

paper-pencil assessments to technology-based assessments2. These approaches, including sim-

ulated and interactive tasks, provide a more dynamic and accurate approach of assessing col-

laborative problem-solving skills and other 21st-century competencies (Care et al., 2012). By 

reducing reliance on paper-pencil tasks, these innovations better capture the nuances of prob-

lem-solving processes, aligning with modern educational and assessment needs (OECD, 2010). 

                                                 
2 These assessments are also referred to as technology-enhanced assessments or computer-based assessments. 
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Technology-based assessments make it possible to implement tasks that are responsive to test-

takers' input to allow for appropriately complex and realistic tasks and provide new sources of 

evidence to assess test-takers' skills, such as their interactions with the virtual environment (Lee 

et al., 2019). By leveraging features like multimedia, simulations, interactive tasks, and virtual 

reality, these assessments offer innovative ways to evaluate skills more dynamically and com-

prehensively (Goldhammer et al., 2020). In addition to enabling the operationalization of pre-

viously unattainable skills, the use of technology-based assessments allows for the continuous 

measurement of the problem-solving process (i.e., process data), rather than just discrete states 

of problem-solving performance represented by answers to a task (i.e., product data; Thille et 

al., 2014). Thus, it is possible to measure underlying processes beyond the outcome of a task, 

which can be interpreted in terms of the cognitive and collaborative activities that occur during 

task completion, and to move from if a problem was solved to how it was solved (Goldhammer 

et al., 2013, Greiff et al., 2015; see 1.4.). 

All current assessments of collaborative problem-solving skills are technology-based and 

can be described by primarily two approaches (Li et al., 2024; for a review of assessments of 

collaborative problem-solving skills see Chai et al., 2024): human-to-human collaboration (e.g. 

ATC21S) and human-to-agent collaboration (e.g. PISA 2015). While human-to-human collab-

oration tasks involve a more authentic representation of natural collaboration, they lack con-

trollability, and the group composition could affect the validity of the individual assessment, as 

the weakest collaboration partner determines the capabilities in the collaborative problem-solv-

ing process (Herborn et al., 2020; OECD, 2017a; Swiecki et al., 2020). However, because col-

laborative problem-solving is understood as an individual skill, human-to-agent collaboration 

tasks ensure the independence of students' behavior during the assessment (Herborn et al., 

2020). This comes, in turn, with the limitation of a priori limited collaboration options and the 

risk of test takers pretending to know what the desired response or outcome is, rather than what 

they would do under the natural conditions (Graesser et al., 2017; Herborn et al., 2020; Oliveri 

et al., 2017). Nevertheless, there are benefits to using computerized agents as collaboration 

partners, allowing the creation of a standardized and controlled environment that is difficult to 

achieve with human-to-human collaboration (Rosen, 2015). Computerized agents allow for 

greater control over the collaboration process without deviating significantly from human-to-

human interaction (Graesser et al., 2018; Graesser et al., 2017; Herborn et al., 2020). In less 

controlled settings, it is difficult to ensure that a particular process is taking place during col-

laborative problem-solving. For example, in a human-to-human collaboration, it is possible that 

although we intend to measure a specific activity, it is not taking place. For example, Rosen 
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(2014) explored this with respect to the comparability of conflict opportunities in a human-to-

human and a human-to-agent assessment of collaborative problem-solving. One-hundred-

thirty-six 14-year-old students from the United States, Singapore, and Israel worked in a hu-

man-to-agent setting, while 43 participated in a human-to-human setting. Both conditions 

worked on the identical collaborative problem-solving task, and students knew whether their 

collaboration partner was a computer agent or a classmate. The results indicated that while 

collaboration in the human-to-agent setting strongly promotes opportunities for conflict situa-

tions (25.3%), these situations are rare in the human-to-human setting (6.1%). However, in 

order to measure high levels of collaboration (OECD, 2013), it is critical that students have 

opportunities to engage in conflict-related behaviors (e.g., negotiating conflicting ideas). When 

using agents in technology-based interactive tasks, it is possible to ensure that all necessary 

activities take place during collaborative problem-solving (Rosen, 2015). 

A prominent example of the use of human-to-agent collaboration is PISA, arguably the most 

comprehensive educational assessment program in the world, which in 2015 moved to technol-

ogy-based assessment and human-to-agent collaboration, using conversational agents as col-

laboration partners. This allowed for the development of a standardized assessment environ-

ment, as agents can generate their responses from the same pre-programmed set of responses 

for each test-taker to assess collaborative problem-solving skills (Davier et al., 2019; OECD, 

2017a). For instance, one of the tasks was to collaborate with two agents while taking part in a 

competition to answer questions about the fictional country of Xandar, this task can be consid-

ered as a knowledge-lean task (see OECD (2017b) for a detailed task description). Additional 

analyses of 483 German students within the PISA population found that self-rated collabora-

tion, teacher-rated collaboration, peer collaboration, and reasoning were moderately related to 

performance on the PISA 2015 collaborative problem-solving tasks, even after controlling for 

individual differences in reading achievement, making the human-to-agent collaboration ap-

proach a valid assessment task (Stadler, Herborn, et al., 2020). 

Results from PISA 2015 showed that only 8% of students worldwide performed at the high-

est level of proficiency, while 29% of students performed at the lowest level in PISA 2015 

collaborative problem-solving tasks (OECD, 2017b). That is, while only 8% were able to "bal-

ance the collaboration and problem-solving aspects of a presented task, identify efficient path-

ways to a solution, and take actions to solve the given problem" (OECD, 2017b, p. 74), nearly 

one third “tend to focus on their individual role within the group" (OECD, 2017b, p. 74) and 

required support from their collaboration partners to solve even simple problems. Furthermore, 

the results showed that collaborative problem-solving performance is positively related to 
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performance in the other domains assessed, but the relation is weaker than that observed be-

tween performance in these other domains (OECD, 2017b), despite the fact that collaborative 

problem-solving was assessed in knowledge-lean tasks (OECD, 2017a). Thus, it is crucial to 

support the development of collaborative problem-solving skills. 

To develop expertise in complex skills such as collaborative problem-solving, it is important 

to provide authentic situations that allow for knowledge application and schema acquisition 

(Kolodner, 1992). However, opportunities to engage in real-world problem-solving are limited, 

and relevant learning situations may occur infrequently or be too critical for novices to approach 

(Chernikova et al., 2020; Mislevy et al., 2017). Furthermore, it is not just a matter of having a 

lot of experience with collaborative problem-solving, but also of engaging in deliberate practice 

to reduce the risk of being cognitively overwhelmed and having the cognitive resources avail-

able for schema construction (Corbalan et al., 2006). This means that (1) some aspect of the 

process is focused on a well-defined problem with (2) immediate feedback on performance and 

(3) the opportunity to gradually improve by repeatedly performing the same or similar activities 

of the process (Ericsson, 2004). One way to address both aspects, the accessibility of relevant 

authentic problem situations and the consideration of cognitive resources, is to use simulation-

based tasks as approximations of practice (Grossman et al., 2009). 

Simulations are "a model or representation of reality (object, system, or situation) with cer-

tain parameters that can be controlled or manipulated" (Chernikova et al., 2022, p. 5), with an 

emphasis on interacting with authentic objects (Cook et al., 2013). The use of technology-based 

simulations spans tasks and domains as diverse as pilot training in flight simulators (L. Wong 

et al., 2012), decision making in business simulations (Siewiorek & Gegenfurtner, 2010), or 

medical diagnosis using simulated patients (Cook et al., 2010). Simulation-based learning is 

thought to produce more transferable skills than traditional learning because task similarity is a 

critical prerequisite for transfer (Cannon-Bowers & Bowers, 2010; Mayer & Wittrock, 2006). 

In addition, a meta-analysis by Chernikova et al. (2020) pooled the results of 145 empirical 

studies and found that simulations are among the most effective means of facilitating the learn-

ing of complex skills across domains compared to no intervention. The effect size is still very 

large when simulation-based learning is compared with different types of instruction. In addi-

tion, simulation-based learning can be particularly effective when additional adaptive instruc-

tional support is provided (Leutner, 1993). Adaptivity of instructional support is understood as 

the provision of support that is tailored to the specific needs of individuals (Plass & Pawar, 

2020). Much research has been conducted in the area of simulation-based learning in medical 

education (Cook, 2014; Cook et al., 2013; Hegland et al., 2017). 
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1.3 Collaborative Problem-Solving in Medicine: Collaborative Diagnostic Reasoning  

Diagnostic reasoning, i.e. accurately diagnosing a patient's illness is one of the physician's 

most important tasks, and often requires collaboration between physicians from different spe-

cialties. While problem-solving is generally understood as transferring the current state of a 

system to a goal state (Newell & Simon, 1972; see 1.2.1), diagnostic reasoning refers to identi-

fying the causes of the current, mostly undesired, state not only in medical diagnosing but also 

engineering and teacher education (Abele, 2018). Despite this difference in the goal of the pro-

cess, diagnostic reasoning is considered a form of problem-solving (Heitzmann et al., 2019).  

The medical literature (e.g., Bowen, 2006; Patel et al., 2002) describes the ideal diagnostic 

process as consisting of three steps: After data collection, in which elements of the patient's 

history, physical examination, and other information are gathered, an initial representation of 

the problem is created and compared to an illness script (see 1.3.2), which is tested and leads 

to the exclusion of alternative hypotheses (Charlin et al., 2012; Tschan et al., 2009). Therefore, 

it is crucial that physicians have sufficient prior medical knowledge to use effective reasoning 

strategies to solve diagnostic problems (Cutrer et al., 2013). A central goal of diagnostic rea-

soning is to reach an accurate diagnosis, referred to as diagnostic accuracy (Chernikova et al., 

2022; Simmons, 2010). In addition to achieving an accurate diagnosis, it is critical to adequately 

justify that diagnosis with evidence (e.g., key clinical findings), referred to as diagnostic justi-

fication (Daniel et al., 2019; Yudkowsky et al., 2015). Diagnostic justification makes the rea-

soning behind the decision transparent and understandable to others (Bauer et al., 2022). Diag-

nostic efficiency is related to the time and effort required to reach the accurate diagnosis, given 

that diagnosticians in practice are usually under time pressure (Braun et al., 2017). 

Like the collaborative problem-solving process, the collaborative diagnostic reasoning pro-

cess requires interaction with an agent (human or computerized) to find a solution to the diag-

nostic problem. This chapter first introduces the necessary components for effectively perform-

ing such processes, based on the collaborative diagnostic reasoning model (CDR-M). It then 

elaborates on how expertise in this domain is achieved, drawing on considerations of expertise 

development in collaborative problem-solving. Finally, the chapter focuses on how agent-based 

simulations support the development of collaborative diagnostic reasoning skills. 

1.3.1 Collaborative Diagnostic Reasoning Skills 

Diagnostic reasoning, whether performed individually or collaboratively, is the "goal-ori-

ented collection and interpretation of case-specific or problem-specific information to reduce 

uncertainty in order to make […] [professional] decisions" (Heitzmann et al., 2019, p. 4). How-

ever, most medical problems are too complex (i.e., increased intrinsic load; see 1.2.2) to be 
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solved individually and require the interaction of multiple disciplines (Kiesewetter et al., 2017; 

Patel et al., 2002). Therefore, diagnosticians need to engage in collaborative diagnostic reason-

ing, which is defined as solving a problem, such as diagnosing a patient, "by generating and 

evaluating evidences and hypotheses that can be shared with, elicited from, or negotiated 

among” collaboration partners based on their conceptual and strategic knowledge (Radkowitsch 

et al., 2020, p. 2). This makes it a context-dependent and domain-specific skill consisting of 

individual and collaborative activities (Simmons, 2010). 

Starting with the individual activities, the scientific discovery as dual search model (SDDS; 

Klahr & Dunbar, 1988) describes individual reasoning as a coordinated search through hypo-

thetical evidence and hypotheses spaces. The SDDS assumes that successful reasoning depends 

not only on performing high-quality cognitive activities within these spaces, but also on being 

able to coordinate between them by using a hierarchy of cognitive activities. These activities 

include specifying hypotheses, deriving predictions from hypotheses, and testing and evaluat-

ing hypotheses in the light of existing evidence (Klahr & Dunbar, 1988). On a more abstract 

level, reasoning processes have been further described by so-called dual-process theories 

(Croskerry, 2009), in which reasoning can occur through a fast, unconscious retrieval process 

(System 1) or a more analytical, slow, deliberate, and conscious logical process (System 2). In 

diagnostic reasoning, this means that if the problem representation is familiar and matches al-

ready known problems, System 1 processes will quickly and effortlessly lead to the diagnosis 

and nothing further may be required; if this is not the case, effortful System 2 processes will 

take place (Croskerry, 2009). Although such models may provide some insights into how easily 

and accurately diagnosticians make a diagnosis (see 1.3.3), they are less useful for explaining 

the processes of diagnostic reasoning. Thus, a non-hierarchical conceptualization of eight epis-

temic activities, including (a) identifying a problem, (b) asking questions, (c) generating hy-

potheses, (d) constructing artifacts, (e) generalizing evidence, (f) evaluating evidence, (g) draw-

ing conclusions, and (h) communicating process and results, seems promising (F. Fischer et al., 

2014). Diagnostic reasoning may not always require all eight epistemic activities, and no gen-

erally valid order is assumed for these eight activities, but rather depends on the diagnostic 

problem and the situation in which the problem is presented, as well as the expertise of the 

diagnostician. Thus, it is not only the order, but also the quality of these activities that deter-

mines diagnostic success (Heitzmann et al., 2019). 

In collaborative diagnostic reasoning, these individual diagnostic activities are extended by 

collaborative activities (see 1.2.1). When collaboration partners have roughly equally distrib-

uted knowledge, engaging in all proposed collaborative activities has shown to be beneficial 
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for team performance (Andrews-Todd & Forsyth, 2020), but when collaboration partners are 

dependent on each other's knowledge, research has emphasized the importance of sharing and 

eliciting information (e.g., Tschan et al., 2009). This is in line with the transactive memory 

theory emphasizing that when information is distributed among collaboration partners, it is im-

portant to know how the information is distributed among the collaboration partners (Wegner, 

1987). Building on these considerations, transactivity is understood as the extent to which col-

laborators operate on the reasoning of their collaboration partners (Teasley, 1997). Recently, 

two key aspects of transactivity have been highlighted for collaborative learning that are also 

relevant for collaborative problem-solving: Novelty allows contributions to be enriched with 

new ideas, laying the groundwork for the collaborative construction of a shared problem repre-

sentation, and reference keeps contributions connected (Vogel et al., 2023). In order to share 

and elicit novel but referenced information, it is crucial to know what collaboration partners 

know (or do not know). This is consistent with research on group awareness tools, which em-

phasizes the need for knowledge and information awareness, i.e., knowledge of others' 

knowledge and information (Engelmann & Hesse, 2010). A study by Noroozi et al. (2013) 

investigated the effect of providing participants with an external script that made them aware 

of the knowledge distribution in the group, in terms of building a transactive memory system 

and problem-solving performance. Sixty participants from two disciplinary backgrounds 

worked in pairs to promote sustainable behavior among farmers. Fifteen pairs received a trans-

active memory script, while the others did not. Results showed that the presence of the script, 

which makes participants aware of the knowledge distribution, facilitated the construction of a 

transactive memory system, improved the quality of problem-solving plans, and transferred 

knowledge from the group to the individual, but not vice versa. Another study found that when 

information is not shared within the team, this can lead to inaccurate diagnoses (Larson et al., 

1998). Thus, the ability to effectively pool information (i.e. elicit and share information) is 

crucial for successful collaborative diagnostic reasoning. In particular, in interdisciplinary col-

laboration, the pooling of information seems to be the most relevant for collaborative activities. 

Elicitation involves requesting information from a collaboration partner in order to access ad-

ditional knowledge resources (Weinberger & Fischer, 2006). Sharing involves identifying the 

information needed by the collaborator to build a shared problem representation (Rochelle & 

Teasley, 1995).  

Building on research on collaborative problem-solving and diagnostic reasoning, the CDR-

M (Radkowitsch et al., 2022) proposes a joint perspective in solving diagnostic problems 

(Abele, 2018) in a collaborative effort (see Figure 1). The CDR-M is based on the SDDS model 
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(Klahr & Dunbar, 1988) and its extension by van Joolingen and Jong (1997). In the extended 

SDDS model (van Joolingen & Jong, 1997), which focuses on learning in knowledge-rich do-

mains, a learner hypothesis space has been added that contains all hypotheses that can be 

searched for without additional knowledge. The CDR-M builds on these considerations and 

describes the relations between individual characteristics, diagnostic processes, and diagnostic 

outcomes. As in the SDDS model, collaborative diagnostic reasoning involves activities within 

an evidence and hypothesis space; however, unlike the SDDS, in the CDR-M these spaces are 

understood as cognitive storages of information. This is more in line with the extended dual 

search space model of scientific discovery learning (van Joolingen & Jong, 1997). 

Figure 1 

Collaborative Diagnostic Reasoning Model  

 

Note. This figure is used from Radkowitsch et al. (2022, p. 120) 

In summary, for successful collaborative diagnostic reasoning it is essential to coordinate 

between evidence (data) and hypothesis (theory) by engaging in individual and collaborative 

activities. More specifically, the CDR-M distinguishes between collaborative diagnostic activ-

ities, namely eliciting, sharing, negotiating, and coordinating evidence and hypotheses, and in-

dividual diagnostic activities, namely generating and evaluating evidence and hypotheses and 

drawing conclusions (Radkowitsch et al., 2022). For evidence and hypotheses to become part 

of a shared diagnostic space, and thus to construct and maintain a shared understanding of the 

problem (Rochelle & Teasley, 1995), diagnosticians need to enact the proposed individual and 

collaborative diagnostic activities with high quality (Radkowitsch et al., 2022). 

The collaborative diagnostic reasoning process is influenced by four factors, namely profes-

sional knowledge, collaboration knowledge, general cognitive skills, and general social skills 
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(Radkowitsch et al., 2022). Professional knowledge3 refers to knowledge about strategies, con-

cepts and procedures in a specific domain (see 1.3.2). A distinction can be made between con-

ceptual, strategic and conditional knowledge. Conceptual knowledge refers to declarative 

knowledge about pathophysiological relations underlying a disease, also known as biomedical 

knowledge (Boshuizen & Schmidt, 1992). Strategic knowledge entails knowledge about prob-

lem-solving (Schmidmaier et al., 2013), and conditional knowledge describes knowledge about 

when to successfully apply the other two parts (Stark et al., 2011). Previous research has shown 

that it is not the mere existence of knowledge that is important for accurately diagnosing a 

patient, but rather the goal-directed application (Kiesewetter et al., 2016; Kiesewetter et al., 

2020). To be able to apply this knowledge in a goal-directed way, collaboration knowledge is 

required, i.e. a combination of meta-knowledge about the collaboration partner (e.g. goals, typ-

ical requirements, Engelmann & Hesse, 2010) and internal collaboration scripts (Kollar et al., 

2006). Especially when professional or collaboration knowledge is low, general cognitive and 

general social skills are relevant (Radkowitsch et al., 2022). General cognitive skills refer to 

domain-general problem-solving skills (see 1.2.1), which are especially relevant if domain-spe-

cific schemata based on professional knowledge are missing to guide the collaborative diag-

nostic reasoning process (see 1.2.2). General social skills mainly influence the collaborative 

aspect of collaborative diagnostic reasoning and less the individual diagnostic reasoning aspect 

(Graesser et al., 2018). Social skills are considered particularly important when collaboration 

knowledge is low (F. Fischer et al., 2013) and are understood as the ability to share and nego-

tiate ideas, to coordinate, and to take the perspective of collaboration partners (Radkowitsch et 

al., 2022; see also Liu et al., 2016, and Hesse et al., 2015). In addition, the importance of a 

collaboration partner in the collaborative diagnostic reasoning process may be diminished if the 

diagnostician has a great deal of prior knowledge and is thus able to solve the diagnostic prob-

lem solely through individual diagnostic reasoning. In this case, the evidence that can be gen-

erated through collaboration may be less relevant to the diagnostic outcome than when the di-

agnostician has less knowledge. However, most clinical problems are too complex (i.e., require 

too much specialized knowledge to be known by one physician) to be solved individually and 

require collaborative diagnostic reasoning (Kiesewetter et al., 2017; Patel et al., 2002). In prac-

tice, this often functions insufficiently. For example, previous research has shown that inade-

quate information sharing has been identified as a major cause of errors in radiology (Brady, 

2017) and emergency medicine (Tschan et al., 2009). One explanation is that groups often fail 

to successfully pool the information held by different members (Stasser & Stewart, 1992). Thus, 

                                                 
3 Also known as domain knowledge (Hetmanek et al., 2018) or content knowledge (Förtsch et al., 2018) 
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it is crucial to develop domain-specific schemata based on professional and collaboration 

knowledge to effectively guide the collaborative diagnostic reasoning process. 

1.3.2 Expertise in Collaborative Diagnostic Reasoning  

To reach a diagnosis, diagnosticians often map similarities and differences among their cur-

rent and previous patients or prototypical examples with the aim to engage in System 1 pro-

cesses, which demand less cognitive resources than effortful System 2 processes, because like 

problem-solving, diagnostic reasoning is dependent on working memory capacity (Croskerry, 

2009; Dumas et al., 2018; Hruska et al., 2016; Sweller et al., 2011). Thus, diagnostic problem-

solving, whether performed individually or collaboratively, is a function of the domain-specific 

prior knowledge an individual possesses and, more specifically, the quality and organization of 

that knowledge (Patel et al., 1994). While the same considerations for expert performance pre-

sented in 1.2.2 apply to the medical domain, the key to expert performance in diagnostic rea-

soning is seen in the formation of so-called illness scripts (Bowen, 2006).  

Illness scripts serve as cognitive representations of an illness, encompassing typical symp-

toms and findings derived from these encapsulated biomedical and clinical knowledge struc-

tures (Schmidt & Rikers, 2007). Such scripts consist of problem representations constructed 

from previously solved problems, which include enabling conditions (i.e., patient and contex-

tual factors), fault (i.e., the underlying pathophysiological processes), and consequences (i.e., 

symptoms when the fault occurs; Custers, 2015). There are several important factors entailed 

in illness scripts (Charlin et al., 2007): (1) the knowledge stored in an illness script is not ex-

clusive, so it can be stored in multiple illness scripts; (2) when one illness script is activated, it 

can lead to the activation of other illness scripts, for example, for an illness that is often con-

fused; (3) illness scripts have slots that correspond to attributes associated with the specific 

illness they describe, with expectations about values that may or may not be found in a patient 

case for each attribute. For each slot, the attribute value with the highest probability of occur-

rence is the default value; and finally, (4) when confronted with a patient case, illness scripts 

are instantiated with information from that specific patient case, and these instantiated illness 

scripts are used to update existing illness scripts. Thus, instantiated illness scripts are problem 

representations constructed from information related to the diagnostic problem, but guided by 

a generic illness script (Bellezza & Bower, 1981; Graesser et al., 1980). In many problem situ-

ations (e.g., routine problems), illness scripts are activated and instantiated automatically, with-

out conscious awareness (System 1). Only when more than one illness script is activated sim-

ultaneously for a problem situation, or when some of the default values in the activated script 

contradict the information in the patient case that requires conscious reasoning (System 2; 
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Charlin et al., 2007). Because of this unconscious process of script activation, research has 

found that expert performance is impaired when information is not presented in the usual order 

(Coughlin & Patel, 1987). Summarizing these aspects, illness scripts “contain […] encapsulated 

pathophysiological knowledge of the disease and its consequences, in addition to clinical 

knowledge of the constraints under which a disease occurs” with default values guiding the 

diagnostic process (Schmidt & Boshuizen, 1993a, p. 214).  

Illness scripts are developed due to knowledge encapsulation through experience with diag-

nostic problems (Boshuizen et al., 1995; Schmidt & Boshuizen, 1993a). A process similar to 

knowledge compilation, transforming declarative knowledge into procedural knowledge (An-

derson, 1985; see 1.2.2), called encapsulation, is crucial: Through repeated exposure to diag-

nostic problems and thus the application of conceptual biomedical knowledge, these structures 

become procedural networks organized in illness scripts (Schmidt & Boshuizen, 1993a). Com-

piled knowledge is automatically and effortlessly activated by relevant cues in a case because 

repeated activation in response to the same cues has caused its compilation (Anderson, 1983). 

In the absence of illness scripts, novices must engage in System 2 reasoning processes that are 

considered deliberate, slow, and error-prone (Rikers et al., 2000). However, with repeated use, 

pathophysiological knowledge is encapsulated in simplified models that are more efficient but 

have the same explanatory power. With increasing expertise, diagnosticians use System 1 rea-

soning processes through activated illness scripts, but they still have access to their declarative 

knowledge and use it when necessary, for example during patient communication or when di-

agnosing particularly difficult patient cases (Charlin et al., 2007; Patel et al., 1990). The process 

of knowledge encapsulation is based on empirical findings from studies investigating how ex-

perts, intermediates, and novices recall clinical cases, i.e., what their problem representation 

looks like (Kintsch & Greeno, 1985). These experiments typically follow the same four-step 

approach (Patel & Groen, 1986): (1) reading a clinical case, (2) recalling the case, (3) explaining 

the signs and symptoms, and (4) providing a diagnosis. Boshuizen and Schmidt (1992) repli-

cated Patel and Groen's (1986) study with 20 participants (six novices, four lower and five 

higher intermediates, and five experts) in an online setting using think aloud protocols. The 

results show that most biomedical knowledge was recalled by lower intermediates. This phe-

nomenon has become known as the intermediate effect (Schmidt & Boshuizen, 1993b), which 

describes an inverted U-shaped relation instead of a monotonically increasing function with 

increasing expertise (Patel et al., 2005). Building on these findings, Schmidt et al. (1988) ma-

nipulated the amount of time available to process the clinical case. They studied 120 partici-

pants (24 each of novices, lower and upper intermediate, and experts) who were given either 
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the traditional three minutes and 30 seconds (Patel & Groen, 1986), one minute and 15 seconds, 

or only 30 seconds to study the patient case (step a). Instead of think aloud protocols, they used 

written text for steps one to three (without time constraints). The results showed that when 

processing time is restricted, the intermediate effect disappeared in both recall and pathophys-

iology. Instead, a weak positive linear relation with expertise level was found. Thus, it appears 

that experts and novices use different knowledge when representing a clinical case due to 

knowledge encapsulation (Schmidt & Boshuizen, 1993a). While novices recall the fewest as-

pects of a case, intermediates recall the most if given enough time, but only experts benefit from 

their superior knowledge structures (illness scripts) by being able to recall relevant information 

under time pressure, resulting in accurate diagnoses. In summary, knowledge encapsulation is 

the result of extensive practice and confrontation with actual patients, leading to illness scripts, 

which are schemas that restructure biomedical knowledge. This restructuring eventually leads 

to abbreviations in lines of reasoning (cf. Koedinger & Anderson, 1990).  

In order to develop expertise in (collaborative) diagnostic reasoning, it is therefore crucial 

to develop illness scripts by encapsulating knowledge through gaining experience (Boshuizen 

et al., 1995). The theory of knowledge restructuring through case processing (Boshuizen et al., 

2020) posits that repeated exposure to complex cases is fundamental to the development of 

illness scripts. As professionals encounter and process a variety of cases, they undergo signifi-

cant cognitive adaptations that allow them to refine their knowledge structures, integrating both 

theoretical understanding and practical experience. This restructuring enables professionals not 

only to perform routine tasks with increasing efficiency, but also to adapt to novel situations 

that may fall outside the scope of their initial training. The importance of case-based experience 

lies in its ability to foster the development of illness scripts that are critical to expert perfor-

mance. Furthermore, the theory of knowledge restructuring through case processing empha-

sizes that expertise is not simply the accumulation of knowledge, but the ongoing restructuring 

of that knowledge in response to new and diverse cases. This process is supported by empirical 

evidence from several domains, including medicine, counseling, business management, and 

law, where case processing is integral to professional practice (Boshuizen et al., 2020). The 

ability to draw on previous case experiences allows professionals to identify patterns, anticipate 

outcomes, and adjust their approaches as needed, which is essential for maintaining high levels 

of performance in dynamic and complex professional environments. 

Building on the theory of knowledge restructuring through case processing and case-based 

learning (Kolodner, 1992), Radkowitsch et al. (2023, September) recently proposed a concep-

tual model for the development of diagnostic reasoning competence. The model assumes that 



40 General Introduction 

through experience with cases, learners develop a database of previously seen cases in their 

long-term memory. When confronted with new cases, cues within these cases activate illness 

scripts and relevant cases from this database, both of which guide the subsequent diagnostic 

process. If the activated case helped to diagnose the patient's case (i.e., solved the problem at 

hand), this leads to a greater likelihood that this case from the database will be activated in the 

future when confronted with similar cases. 

In summary, experience with cases (1) encapsulates knowledge into illness scripts and (2) 

creates and updates a database of already seen cases, resulting in prototypical abstract case 

representations. Both lead to greater accuracy and efficiency in solving diagnostic problems, 

both individually and collaboratively. The pedagogical implications of the presented theoretical 

and empirical evidence are straightforward: Early exposure to patient cases is considered es-

sential for the restructuring and reorganization of biomedical knowledge (Eva, 2005; Lubarsky 

et al., 2015). Therefore, medical students should be exposed to a large number of patient cases 

with different diseases to develop expertise in (collaborative) diagnostic reasoning. 

1.3.3 Agent-Based Simulations to Support Collaborative Diagnostic Reasoning Skills 

Collaborative diagnostic reasoning skills are essential professional skills in the medical field. 

They must be developed through training that involves exposure to patient cases, allowing 

learners to construct illness scripts. Consequently, simulation-based learning is regarded as an 

effective approach in medical education, providing learners with authentic patient cases and 

preparing them for real patient contact (Issenberg et al., 2005). However, in many simulation-

based courses, only a limited number of students interact with the simulation, while the majority 

observe the ongoing process (Zottmann et al., 2018). Theories such as social learning theory, 

vicarious learning, and cognitive apprenticeship suggest that learning can occur through mere 

observation of others (Bandura, 1977; Bandura, 2008; Collins et al., 1991). However, models 

like the ICAP framework (Chi & Wylie, 2014) argue that acquiring complex skills, such as 

collaborative diagnostic reasoning, requires active engagement with the task, which cannot be 

achieved through observation alone (cf. Stegmann et al., 2012). This is consistent with the tran-

sition from paper-and-pencil assessment to technology-based assessment to facilitate interac-

tive tasks and collaborative problem-solving (see 1.2.4; Graesser et al., 2018; Herborn et al., 

2020). In order to overcome the limitations of assessing collaborative problem-solving skills 

on an individual basis and without the dependency of the collaboration partner, agent-based 

collaboration partners are incorporated into the assessment process. Adopting this approach 

from an assessment context to a learning context has the potential to facilitate the acquisition 

of collaborative diagnostic reasoning skills for a greater number of learners. This is achieved 
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by enabling them to interact in relevant simulated situations, rather than merely observing them, 

thereby enhancing their learning experience. With respect to collaborative diagnostic reasoning 

skills, empirical studies have demonstrated that physicians frequently exhibit deficiencies in 

information sharing skills, which represent a critical subskill of collaborative diagnostic rea-

soning skills (Kiesewetter et al., 2017; Tschan et al., 2009).  

Accordingly, the agent-based CoSiMed simulation was developed to foster these subskills 

and is used as a training and assessment instrument for collaborative diagnostic reasoning. The 

simulation was developed and validated by Radkowitsch et al. (2020). By conducting inter-

views with seven practitioners from the fields of internal medicine and radiology, the research-

ers were able to identify a specific scenario that highlighted the ongoing challenges associated 

with the sharing and elicitation of information with and from collaboration partners, as previ-

ously documented by Tschan et al. (2009): Requesting a radiologic examination during collab-

orative diagnostic reasoning of a patient case (see Appendix 8.1). This is because it necessitates 

the sharing and elicitation of evidence and hypotheses that inform the diagnostic process (Da-

vies et al., 2018). The CoSiMed simulation was developed through a joint effort involving med-

ical experts, psychologists, and software engineers. As the majority of actual collaborations 

between internal medicine and radiology are presumed to be document-based, and as simula-

tions are intended to represent actual practice, the CoSiMed simulation is also document-based. 

This implies that the required information is provided in written or video format, whereas in 

interaction-based simulations, it can only be accessed through active interaction with the pa-

tient. The advantage of document-based simulations is that learners have more opportunities to 

reflect on their processes due to the absence of time pressure (Heitzmann et al., 2019). 

In the CoSiMed simulation, learners are instructed to assume the role of an internist and are 

required to complete three steps (Radkowitsch et al., 2020): (1) reading the health record of the 

patient case, (2) collaborating with the agent-based radiologist, and (3) reaching a solution. In 

the initial phase, learners are required to engage in evidence generation, with the objective of 

developing an initial individual problem representation. By reading through the different parts 

(e.g., medical history, physical examination, and laboratory values) of the health record ideally 

the entailed cues activate one or more illness scripts which then lead to initial suspected diag-

noses, thereby structuring the following collaboration with the agent-based radiologist. During 

the collaboration, learners must enact the collaborative diagnostic activities of evidence elici-

tation and sharing, as well as hypotheses sharing with high quality, in order to obtain results 

from the agent-based radiologist. The learners are thus required to complete a radiological re-

quest form, selecting from a total of 42 different combinations of radiological methods and 



42 General Introduction 

body parts (evidence elicitation), sharing patient information from the health record (evidence 

sharing), and suspected diagnoses from 249 possible diagnoses (hypotheses sharing) that are 

considered relevant for the agent-based radiologist. The aforementioned request form can be 

considered the shared problem representation in this agent-based collaboration. Only if this 

request form is filled out sufficiently, learners receive the information they asked for from the 

agent-based radiologist, otherwise they get the opportunity to revise the request form (three 

times in assessment situations and up to ten times in learning situations). The final step in the 

process is for learners to draw conclusions based on the previous collaboration with the agent-

based radiologist. This entails indicating the final diagnosis and providing a justification for it. 

The CoSiMed simulation, comprising fictitious but authentic patient cases, was validated by 

investigating the differences between three levels of expertise (low (n = 45), advanced (n = 28), 

and high (n = 25) prior knowledge level) with respect to the participants' diagnostic accuracy, 

diagnostic efficiency, their information sharing skills, as well as their intrinsic cognitive load 

(see 1.2.3) and perceived authenticity (Radkowitsch et al., 2020). The results showed that, on 

average, practitioners with high levels of prior knowledge perceived the CoSiMed simulation 

as authentic and had significantly higher diagnostic accuracy, diagnostic efficiency, and infor-

mation sharing skills than the low prior knowledge group. However, there was no significant 

difference between the high and advanced prior knowledge groups, except for intrinsic cogni-

tive load. This finding is consistent with previous research on medical expertise conducted in 

the absence of time pressure (see 1.3.2). Moreover, as anticipated, the high prior knowledge 

group exhibited significantly lower intrinsic cognitive load, followed by the advanced and the 

low prior knowledge groups (Radkowitsch et al., 2020). In conclusion, the CoSiMed simulation 

can be considered a valid instrument for assessing and supporting the development of collabo-

rative diagnostic reasoning skills. 

Previous research has employed the CoSiMed simulation to examine the effects of different 

types of instructional support, such as collaboration scripts and reflection phases, on learning. 

The importance of such instructional support is underscored by evidence that simulation-based 

learning of problem-solving—such as collaborative diagnostic reasoning—is most effective 

when learners receive guidance (Leutner, 1993). Without instructional support, unguided prob-

lem-solving can place excessive demands on learners' working memory capacity, potentially 

impairing their ability to learn effectively (P. A. Kirschner et al., 2006). Radkowitsch et al. 

(2021) investigated whether learners benefit more from the provision of an adaptive collabora-

tion script than from a static collaboration script or no support at all (see 1.4.2). The study, 

which involved 160 intermediate medical students randomly assigned to one of three 
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conditions, revealed that the performance of evidence sharing was facilitated by an adaptive 

collaboration script, while the performance of evidence elicitation was also facilitated by the 

static collaboration script, with respect to collaborative diagnostic activities. Moreover, the re-

searchers discovered that the adaptive collaboration script enhanced the learners' perception of 

competence. Building on these results, Richters et al. (2022) investigated the effect of adaptive 

collaboration scripts and reflection on individual diagnostic activities, specifically with regard 

to the quality of evidence sharing, hypotheses sharing, and diagnostic accuracy. Additionally, 

the role of prior knowledge, including both professional and collaboration knowledge, was ex-

amined. The researchers employed a 2x2 design with 151 intermediate medical students. The 

findings indicated that adaptive collaboration scripts are more beneficial for learners with low 

prior knowledge, whereas reflection on individual diagnostic activities enhances outcomes for 

those with high prior knowledge. To gain deeper insights into the role of reflection in facilitat-

ing collaborative diagnostic reasoning, Richters, Stadler, Brandl, et al. (2023) investigated the 

effects of low and highly structured reflection phases on collaborative diagnostic activities re-

garding the quality of those collaborative diagnostic activities and diagnostic outcomes, with a 

particular focus on learners’ collaboration knowledge. The data set comprised 195 intermediate 

learners engaged in the CoSiMed simulation, with an equal distribution across the three exper-

imental conditions (low-structured, high-structured, and no reflection support). Results showed 

a moderating role of prior knowledge in the effectiveness of structured reflection: Learners with 

low collaboration knowledge benefit from low-structured reflection while both forms of reflec-

tions are not beneficial for learners with high collaboration knowledge. The findings indicate 

that different forms of instructional support facilitate the learning of collaborative diagnostic 

reasoning using an agent-based simulation.  

It is notable that the studies made use of data collected as a result of learners interacting with 

the simulation, such as how they filled out the request form. Such data are referred to as process 

data, which are stored immediately in log-files without the need of extra measurement (Gold-

hammer et al., 2017). The following chapter will examine the potential of process data to en-

hance the assessment and support of collaborative problem-solving skills. 

1.4 Improving Assessment & Support using Process Data  

The cognitive (and collaborative) activities that play a role in (collaborative) problem-solv-

ing have long been a subject of interest to researchers. Initially, however, it was only possible 

to infer the outcome, for example, through think-aloud protocols in expertise research (see 

1.3.2; Ericsson & Simon, 1980). The advent of technology-based interactive tasks and simula-

tion-based learning using computerized tasks has enabled a closer approximation to reality 
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through the monitoring of the process, as observable problem-solving behaviors, which are 

stored in computer-generated log-file data and can be accessed to provide additional infor-

mation (Bunderson et al., 1988; Goldhammer et al., 2020; Goldhammer et al., 2017). A signif-

icant benefit of utilizing process data is that it can be gathered without disrupting the natural 

flow of the task, thus avoiding any additional measurements that might increase the cognitive 

load on the participants (Matcha et al., 2019). Consequently, research can now examine the 

sequences of thinking and action that underpin the problem-solving performance, facilitating 

an analysis of the problem-solving process without the necessity of additional measurement 

(Csapó & Funke, 2017; He & Davier, 2015). For example, Stadler, Hofer, and Greiff (2020) 

employed process data from 1,491 9th graders working on five technology-based individual 

problem-solving tasks to demonstrate that participants exhibited significant differences in both 

the time required to solve the problem and the number of interactions performed, despite ex-

hibiting similar performance outcomes. This reinforces the notion that, with regard to problem-

solving skills, the solution itself is not the only relevant factor; the process by which the solution 

was reached is also of importance (Greiff et al., 2013). This is in accordance with the OECD 

(2017) definition highlighting that collaborative problem-solving is an attempt to solve a prob-

lem not only the solution to a problem. Therefore, different behaviors can actually represent 

differences in skills beyond product data (Stadler, Hofer, & Greiff, 2020). Building on the 

aforementioned line of reasoning, this chapter introduces process data analyses and presents a 

selection of relevant studies that employ it in the context of collaborative problem-solving. It 

then highlights the advantages of using process data as a valuable source of evidence for as-

sessing and supporting collaborative problem-solving skills. Finally, the chapter concludes with 

an in-depth examination of the key challenges associated with utilizing process data. 

1.4.1 Process Data Analyses 

Process data allows “a potentially fluid window into the minds” of individuals during the 

problem-solving process (Rupp et al., 2012, p. 73). Thus, process data allows researcher to give 

answers to the question “what particular [collaborative problem-solving] behaviors give rise to 

successful problem-solving outcomes?” (Sun et al., 2022, p. 1), which is needed to understand, 

assess, and support collaborative problem-solving skills.  

Traditionally, educational assessment has made a distinction between two types of data: 

product data and process data for performance measures. In this context, product data refers to 

the solution to a given task, while process data refers to the methodology employed to achieve 

this solution (Levy, 2020; Zumbo et al., 2023). Process data can be understood as “as any data 

automatically collected about test-takers’ response process” (Anghel et al., 2024, p. 2). 
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However, as Ercikan et al. (2020) noted, process data are merely traces of cognitive processes. 

Therefore, it is crucial to have a robust theoretical foundation to ensure the accurate matching 

of these traces to relevant psychological constructs (Knight & Buckingham Shum, 2017; J. 

Wong et al., 2019). In light of these considerations, a distinction must be drawn between log-

file data and process data (Provasnik, 2021). Log-file data refers to the information stored dur-

ing interactions with technology-based tasks, whether for assessment of or support for collab-

orative problem-solving. Process data, on the other hand, represent the psychological constructs 

to which the information in log-file data is matched. Thus, while log-file data are understood to 

exist as a byproduct of interactive and simulation-based tasks, process data must be extracted 

from log-file data in the presence of relevant theory (Goldhammer et al., 2020). Nevertheless, 

this clear differentiation between log-file and process data is not consistently observed in the 

literature. This is despite the fact that log-file data is high-dimensional and heterogeneous in-

formation that requires careful consideration to be transformed into meaningful process data 

(Anghel et al., 2024; Lindner & Greiff, 2023). Goldhammer et al. (2021) proposed an approach 

to move from seeing log-file data as by product of technology-based tasks but incorporate pro-

cess data into the design of such tasks. They also provided an approach how to transform log-

file data into process data: (1) information stored in log-file data is labelled with low-level fea-

tures, that is meaningful actions or states within the context of the specific task. (2) These low-

level features are aggregated to form high-level features (Mislevy, 2019), which represent 

meaningful process indicators of psychological constructs. Therefore, while low-level features 

can only be interpreted in light of the concrete task, high-level features, especially when in-

formed by theory, allow for more generalizable results from process data analyses (Tomasevic 

et al., 2020). 

An example of the utilization of low-level features can be observed in the study conducted 

by Ma et al. (2023), which employed data from 9,841 students in China who completed the 

Xandar task from PISA 2015. The researchers identified four distinct profiles of collaborative 

problem solvers based on their time on task, number of actions, and collaborative problem-

solving skill levels. The four profiles were identified as disengaged, struggling, adaptive, and 

excellent. The study found that the disengaged profile was characterized by minimal time and 

actions on task, resulting in poor collaborative problem-solving skills. While the struggling 

profile was characterized by more time and action on task, but also resulted in poor collabora-

tive problem-solving skills. Conversely, the excellent profile showed the highest performance 

in collaborative problem-solving skills with efficient use of time and actions. The adaptive pro-

file still has relatively high collaborative problem-solving skill performance, but is 
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characterized by the greatest number of actions. The findings suggest that collaborative prob-

lem-solving performance can vary considerably depending on individual behaviours, with effi-

ciency and skill level being pivotal factors in determining success. However, as the researchers 

employed low-level features, it is challenging to generalize the findings to other contexts. 

In contrast, the study by Andrews-Todd et al. (2023) examined the manifestation of collab-

orative problem-solving skills across different tasks. The researchers analyzed the interactions 

of 100 students aged 12-15, who were randomly assigned into pairs. The study comprised two 

separate tasks: The T-Shirt Math Task, which focused on linear functions and argumentation, 

and the Physics Playground, an educational game on Newtonian physics. The researchers em-

ployed an ontology-based competency model to code the collaboration skills exhibited during 

the tasks, thereby deriving high-level features. The video recordings were analyzed by trained 

raters who identified nine distinct collaborative problem-solving skills. The study revealed that 

specific skills, such as sharing information and negotiating, were frequently observed across 

both tasks, indicating their importance in collaborative problem-solving regardless of task char-

acteristics. However, the prevalence of other skills varied depending on the task, indicating that 

the effectiveness of specific collaborative problem-solving skills may be task-dependent. 

The analyses of collaborative problem-solving through the lens of process data can be ap-

proached in three distinct ways (Ulitzsch et al., 2023): theory-based, exploratory, and predic-

tive. Most of the studies analyzing process data of collaborative problem-solving utilize process 

data to explain performance differences or to gain deeper insights into the process.  

Theory-driven approaches are employed with the objective of enhancing comprehension of 

the construct and supporting the refinement of existing theories. Consequently, they seek to 

identify particular strategies that have been derived from the theory (Ulitzsch et al., 2023). Nev-

ertheless, purely theory-driven approaches are rare, particularly in the context of collaborative 

problem-solving. One illustrative example of such strategies in the context of individual prob-

lem-solving is the application of the strategy of varying one thing at a time (VOTAT). For 

instance, Greiff et al. (2015) employed log-file data from 16,219 students who participated in 

PISA 2012 to investigate whether the implementation of the VOTAT strategy in a problem-

solving task was associated with their performance in that task. Consequently, the researchers 

used log-file data to derive a dichotomous variable indicating whether or not VOTAT was ap-

plied. The results indicated a strong correlation between the application of VOTAT and item 

performance. Additionally, the difference in performance between students who applied VO-

TAT and those who did not was statistically significant. These findings support the hypothesis 

that the VOTAT strategy is a significant predictor of success in problem-solving tasks.  
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Exploratory approaches, like theory driven approaches, seek to enhance understanding of 

the information embedded within process data. However, while theory-driven approaches ex-

amine particular strategies with the objective of validating theories, exploratory approaches 

ideally use theory to construct process indicators and use them as features in prediction models 

and sequence mining with the goal to uncover key behavioral patterns that distinguish success 

from failure (Ulitzsch et al., 2023). Therefore, while Greiff et al. (2015) constructed a binary 

variable indicating the presence or absence of the VOTAT strategy, aggregating hundreds of 

clicks into a single binary variable in exploratory approaches, the focus is on the complete 

problem-solving process. One illustrative example of an exploratory approach combined with 

theory is the study conducted by Richters, Stadler, Radkowitsch, et al. (2023), who employed 

n-grams (Damashek, 1995) of collaborative diagnostic activities to predict diagnostic accuracy 

(see 1.3.1). The aforementioned process indicators have been constructed from log-file data and 

represent theory-based features. The coding of each click in the simulation as a diagnostic ac-

tivity was followed by the transformation of these data points into bigrams, which facilitated 

more effective interpretation. This approach allowed for the examination of specific aspects of 

the diagnostic process, such as the time spent on a single activity or the frequency of transition-

ing from one activity to another. Using data from 73 students working on the CoSiMed simu-

lation (see 1.3.3) they could show that a random forest (Breiman, 2001) prediction model is 

capable to predict diagnostic success using bigrams of diagnostic activities after approximately 

two thirds of the median time working on the task. Moreover, the researchers found that diag-

nosticians who spent more time with individual diagnostic activities were more likely to be 

successful, while those who spent more time with collaborative diagnostic activities were more 

likely to be unsuccessful (Richters, Stadler, Radkowitsch, et al., 2023). 

The use of predictive approaches in this research area is a comparatively recent phenomenon 

and primarily focused on improving predictive accuracy (Ulitzsch et al., 2023). In contrast to 

theory and exploratory approaches, predictive approaches alter the perspective. While theory 

and explanatory approaches are concerned with understanding the underlying processes, pre-

dictive approaches are focused on predicting future outcomes. Accordingly, the primary objec-

tive is to achieve the highest possible level of predictive accuracy, which can be attained by 

selecting the ratio of bias and variance that minimizes the occurrence of error. In order to 

achieve this, it is essential to leverage large data sets and metrics for evaluating the prediction, 

rather than the representation of internal structure. Furthermore, it is crucial to be open to al-

lowing for bias and nonlinearity in pursuit of superior prediction accuracy (Molnar et al., 2020; 

Yarkoni & Westfall, 2017). This allowance can result in the development of highly complex 
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prediction models. While these models may be accurate, their internal mechanisms may lack 

transparency, leading to less interpretable models, also known as black boxes (Molnar et al., 

2018; Yarkoni & Westfall, 2017). Such models have been applied in the field of learning ana-

lytics with the objective of identifying students who are at risk of failing and therefore require 

additional instructional support (Leitner et al., 2017). One illustrative example is the study con-

ducted by Costa et al. (2017), which employed a predictive model to ascertain the likelihood of 

a student failing a university course. The model was trained on data encompassing socio-demo-

graphic characteristics (e.g., age, gender, income) and log-file data (e.g., access frequency to 

the learning platform, participation in the discussion forum, and the amount of received and 

viewed files). The results showed that the model could identify students at risk of failing after 

10% of the course had been completed with at least 50% accuracy. However, while this offers 

a promising approach to prevent students from failing their course, it is important to note that, 

in contrast to the studies presented for the theory-driven and exploratory approaches, Costa et 

al. (2017) employed low-level and context-dependent features in the absence of a theoretical 

framework, which limits the generalizability of their findings. 

In summary, process data analyses facilitate a more profound comprehension of collabora-

tive problem-solving behaviors, as well as the construction of predictive models that can antic-

ipate future outcomes. By understanding the causes of performance differences through the 

analysis of behavioral patterns (Eichmann et al., 2020), educators can develop predictive mod-

els to tailor interventions, thereby enhancing personalized learning experiences (Tetzlaff et al., 

2021). 

1.4.2 Benefits of Process Data Analyses 

As discussed in the preceding section, technology-based, interactive and simulation-based 

tasks, which facilitate collaborative problem-solving skills, offer a promising approach to ana-

lyzing process data. While most theoretical and explanatory-based approaches are concerned 

with developing a deeper understanding of the collaborative problem-solving process, predic-

tive approaches aim to advance adaptive learning support. Taken together, the use of process 

data allows for enhancements of personalized learning experiences in the development of col-

laborative problem-solving skills.  

The incorporation of interactive and simulation-based tasks in technology-based assess-

ments enables the analysis of test-taking behaviors, thereby providing additional information 

beyond performance outcomes (Greiff et al., 2016; He & Davier, 2015). For example, Han et 

al. (2023) were able to identify different collaboration strategies and highlight the importance 

of establishing and maintaining a shared problem representation. Their findings suggested that 
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a structured approach to agreeing on a team strategy leads to better performance than the trial-

and-error approach. The study is based on process data (response times and number of actions 

taken during the Xandar task) from 2,520 students who participated in the PISA 2015 assess-

ment. Moreover, process data can be leveraged to support data quality control. For instance, it 

can be used to identify instances of rapid guessing behavior, which may indicate a lack of 

thoughtful engagement with the task. This can be achieved by setting a task-specific threshold 

requiring at least a brief period of reading and thinking about the task (S. L. Wise, 2017). While 

recent research indicates that rapid guessing, and thus a lack of engagement and cognitive pro-

cessing with multiple choice questions, represents a threat to the validity of individual re-

sponses, it has less impact on aggregate scores and country rankings, as seen in large-scale 

assessments like PISA (Michaelides et al., 2024). There is, however, consensus that it is bene-

ficial to be able to identify atypical behavior using clickstream data, thus enhancing data quality 

(Tang et al., 2023). This also permits an enhancement in measurement precision (Davier et al., 

2019), the validation of test score interpretations (Ercikan & Pellegrino, 2017), and the optimi-

zation of the test design (van der Linden, 2008). 

Furthermore, technology-based assessments facilitate the adaptation of tasks to different do-

mains and learners/test takers, or even the use of similar tasks for assessment and learning set-

tings. This is made possible by the opportunity of immediate analysis of the data, which in turn 

allows for the provision of feedback and reports to learners and stakeholders for decision-mak-

ing purposes (Ifenthaler & Greiff, 2021). These developments permit the integration of assess-

ment and learning due to the potential for continuous, feedback-oriented, and multifaceted data 

collection, thereby facilitating personalized support (Thille et al., 2014). 

Support of the learners by using process data can also be achieved by predicting learner 

performance, thus enabling researchers to identify individuals who are at risk of inadequate 

performance. This includes, for example, those learners who are unlikely to benefit from en-

gaging in a specific learning activity (Leitner et al., 2017). This enables a shift in the educational 

paradigm from a one-size-fits-all approach to personalized education, allowing for the system-

atic adaptation of instruction and learning materials to individual learners (Tetzlaff et al., 2021; 

Tsai et al., 2020). One potential approach is the implementation of a learner model, which em-

ploys assumptions regarding learning prerequisites, learning processes, and anticipated learning 

outcomes to optimize decisions regarding the adjustment of instructional support (Basu et al., 

2017). The use of learner models for personalization is of particular importance in contexts such 

as simulation-based learning, where research indicates that tasks can overwhelm learners by 

demanding excessive cognitive resources (Azevedo & Gašević, 2019). Moreover, simulation-
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based learning is most effective when additional instructional support, such as scaffolding, is 

provided in a timely and tailored manner to meet the specific needs of learners (Leutner, 1993; 

Plass & Pawar, 2020). 

Research on the fading effect (Puntambekar & Hubscher, 2005) and the expertise reversal 

effect (Kalyuga, 2007; see 1.2.2) underscores the significance of accounting for individual dif-

ferences, particularly in the context of expertise, when developing instructional support. Scaf-

folding, a well-established form of instructional support, plays a crucial role in this context. As 

defined by Tabak and Kyza, scaffolding is "support that enables learners to perform an action 

that would be outside their independent activity" (2018, p. 191). First introduced by Wood et 

al. (1976), the objective of scaffolding is to provide support for the learner's current activity 

while simultaneously facilitating future independent performance. Examples of scaffolds in-

clude worked-out examples and metacognitive prompts that encourage reflection or provide 

external collaboration scripts (Kollar et al., 2018). 

The concept of scaffolding is linked to Vygotsky's (1978) zone of proximal development, 

which describes the range of tasks a learner can perform with assistance but not independently. 

Given that the zone of proximal development is an individual phenomenon that evolves over 

time, scaffolds that are initially effective may impede learning as the learner's expertise in-

creases (Kalyuga, 2007). The available evidence suggests that adaptive scaffolding, which is 

designed to adapt to the evolving needs of the learner, can lead to significantly enhanced learn-

ing outcomes in comparison to fixed or no scaffolding. This improvement is observed not only 

in the acquisition of declarative knowledge but also in learning processes (Azevedo et al., 

2005). By ensuring that each learner receives tasks that are tailored to their specific needs and 

that demand an optimal level of cognitive resources, adaptive instructional support has been 

shown to maximize learning efficiency and effectiveness (Corbalan et al., 2006). 

In a study examining the efficacy of adaptive instructional support for collaborative diag-

nostic reasoning, Radkowitsch et al. (2021) investigated whether learners benefit more from 

the provision of an adaptive collaboration script compared to a static collaboration script or no 

support at all. The implementation of a technology-based simulated task with an agent as a 

collaboration partner enabled the provision of micro-adaptive support (Tetzlaff et al., 2021). 

This was achieved by analyzing the completed request form in real-time to identify any missing 

information (see 1.3.3). Based on these missing but relevant information for the agent-based 

radiologist further information on the needs and goals (collaboration knowledge, see 1.3.1) was 

provided for the learner in form of an external collaboration script (F. Fischer et al., 2013). The 

study, which included 160 intermediate medical students randomly assigned to one of three 



 General Introduction 51 

conditions, demonstrated that the performance of evidence sharing is enhanced by an adaptive 

collaboration script, while the performance of evidence elicitation is also facilitated by the static 

collaboration script. Furthermore, the researchers discovered that the adaptive collaboration 

script enhanced the learners' perceived competence, leading to the conclusion that the provision 

of adaptive collaboration scripts is an effective method for facilitating the learning of collabo-

rative diagnostic reasoning using an agent-based simulation. 

In summary, the integration of process data enables the transition towards a more adaptive 

and individualized instructional approach. This adaptivity ensures that learners receive the ap-

propriate level of support, thereby optimizing their cognitive engagement and promoting learn-

ing.  

The majority of process data analyses in the context of collaborative problem-solving em-

ploy theory-driven or explanatory approaches to explain performance (Ulitzsch et al., 2023). 

To illustrate, the study by Sun et al. (2022) examined the interplay between cognitive and social 

skills in collaborative problem-solving among 303 undergraduate students engaged in the Phys-

ics Playground task. Verbal communication occurring during the collaboratively played game 

was coded according to the framework established by Sun et al. (2020) in order to construct 

process indicators (see 1.2.1). Although the study did not employ log-file data, it nevertheless 

serves as an illustration of how process data analyses can facilitate a deeper understanding of 

collaborative problem-solving. This is achieved through the identification of critical interaction 

patterns that contribute to the success of the collaborative process. The findings indicated that 

conversations centered on the construction and negotiation of shared knowledge were associ-

ated with more successful outcomes, whereas discussions of inappropriate ideas were associ-

ated with less successful performance. The findings underscore the significance of regular turn-

taking and active involvement in attaining effective collaboration, underscoring the socio-cog-

nitive nature of collaborative problem-solving (Sun et al., 2022). In another study that employed 

process data from the PISA 2015 Assessment, De Boeck and Scalise (2019) examined the cor-

relation between students' activity levels and their performance in collaborative problem-solv-

ing tasks. The researchers analyzed data from 986 U.S. students and found that students who 

exhibited higher levels of activity tended to complete tasks more quickly but performed less 

well overall. Conversely, successful students took more time on tasks, suggesting that taking 

time to construct a shared problem representation may be beneficial for performance in collab-

orative contexts. The study underscores the importance of balancing speed and thoroughness in 

collaborative problem-solving to achieve better outcomes. 
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In this way, process data can be utilized to examine not only the outcomes achieved, but also 

the means by which they were achieved, and to draw inferences about the cognitive processes 

involved in problem-solving (Greiff et al., 2018; Stadler et al., 2019). The aforementioned ben-

efits for assessment, adaptive support, and theoretical advancements render process data a val-

uable source of evidence when assessing and supporting collaborative problem-solving skills 

through the use of interactive and simulation-based tasks. Nevertheless, in order to leverage the 

substantial advantages offered by process data analyses, it is essential to address and overcome 

a number of challenges. 

1.4.3 Challenges of Process Data Analyses 

Despite these benefits of using process data analyses for collaborative problem-solving and 

collaborative diagnostic reasoning in medical education, there are several challenges associated 

with its use: Beginning with ethical considerations before and during data collection, continuing 

with the complexities of data analyses, and the need for theory when interpreting the results.  

Ethical considerations need to be addressed when process data is collected, as process data 

has the potential to contain personal and sensitive details about an individual, such as repre-

senting effort or failure to solve problems, answer questions, or learning per se (Maddox, 2023). 

The main ethical considerations that need to be addressed are informed consent, transparency, 

privacy, responsibility, validity, minimizing adverse effects, and enabling interventions. These 

aspects are similar to those faced in the field of learning analytics (Cerratto Pargman & 

McGrath, 2021; Lindner & Greiff, 2023). Learning analytics are broadly understood as a “re-

search area that focuses on the development of methods for analyzing and detecting patterns 

within data collected from educational settings, and leverages those methods to support the 

learning experience” (Chatti et al., 2012, p. 319). Although research using data from learning 

management systems has some unique ethical considerations, most of the ethical concerns re-

lated to data collection are also relevant to process data in the context of collaborative problem-

solving. Therefore, as the field of learning analytics has recently focused on the ethics of using 

process data (e.g., Ferguson et al., 2016; Francis et al., 2023; Khalil et al., 2023a; Sclater, 2016), 

the research and findings presented are also extended to this area of study. In a review of papers 

on the use of learning analytics in higher education between 2012 and 2018, it was found that 

more than 80% of the studies did not mention ethical considerations at all. It is not necessarily 

the case that all of these studies were conducted unethically, but it does point to the need for 

more reflective reporting on these aspects. However, the review also found an increase after 

2017. Therefore, this change may already be taking place (Viberg et al., 2018). 
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A cornerstone of ethical data collection is to ensure that participants give informed consent 

and that the processes involved are transparent to the participants. This includes making learn-

ers fully aware of practices such as tracking and analyzing their data, which is often done with-

out their explicit knowledge. Transparency includes clarifying the purpose of the data collection 

and subsequent analyses, the metrics used, who has access to the data, the boundaries of its use, 

and how the results will be interpreted (Cerratto Pargman & McGrath, 2021). Without such 

transparency, participants may not fully understand the implications of data collection, which 

can lead to distrust or ethical breaches. Privacy concerns in process data analyses and learning 

analytics revolve around the “restriction of access to an individual’s personal information” 

(Francis et al., 2023, p. 104). Ensuring privacy involves addressing issues related to access and 

de-identification of learner data, which is critical to preventing misuse or unauthorized sharing 

of sensitive information (Cerratto Pargman & McGrath, 2021). Effective de-identification prac-

tices are essential to protecting learner privacy, but they must be balanced with the need for 

meaningful data analyses. Institutions have a responsibility to ensure that learning analytics are 

used legally, ethically, and effectively (Cerratto Pargman & McGrath, 2021). This responsibil-

ity extends to careful stewardship of data, ensuring that all practices comply with legal stand-

ards and ethical norms. In addition, institutions must consider the broader implications of their 

use of analytics, such as potential biases in data interpretation and the fair treatment of all learn-

ers. The validity of data collection and analysis is another critical ethical consideration. This 

includes the interpretation and location of learner data, the accuracy of the data, the validity of 

the algorithms, and the metrics used for predictive analytics or interventions based on learner 

data (Cerratto Pargman & McGrath, 2021). A major concern, as highlighted by Zumbo et al. 

(2023), is the impact of variability due to neurodiversity or potential disabilities, which can alter 

process data in unexpected ways. Such variability may lead to invalid inferences for individuals 

who deviate from normative patterns, particularly in measures such as time-on-task. Ethical 

data collection and analyses must also prioritize minimizing adverse effects on learners. This 

includes addressing issues of harm, nonmaleficence, and the risks associated with the manage-

ment of learner data (Cerratto Pargman & McGrath, 2021). Institutions must be vigilant in en-

suring that the use of data does not inadvertently harm learners or reinforce existing inequities. 

Finally, the use of process data analyses should focus not only on monitoring, but also on ena-

bling timely and effective interventions. Institutions need to consider the circumstances in 

which they should intervene based on the results, particularly when data suggests that a learner 

may benefit from additional support (Cerratto Pargman & McGrath, 2021). However, research 

shows that enabling interventions is one of the least addressed ethical areas, with limited 
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guidance on how institutions should act when analytics indicate that learners are struggling 

(Whitelock‐Wainwright et al., 2019). 

In summary, the ethical considerations in process data collection are extensive and closely 

aligned with those in learning analytics. Transparency, privacy, and informed consent are the 

most frequently addressed ethical issues in research to date, while enabling interventions remain 

underexplored (Cerratto Pargman & McGrath, 2021). As the field continues to evolve, it is 

critical that research and practice prioritize these ethical considerations to effectively protect 

and support learners (Drachsler & Greller, 2016; Ferguson et al., 2016). This has become par-

ticularly evident in recent years with the emergence of generative artificial intelligence and 

large language models in education in general (Bond et al., 2024; Yan et al., 2024), but also in 

medical education in particular (Lucas et al., 2024). As a consequence, various frameworks and 

guidelines have been proposed regarding ethical and transparency aspects (e.g. Chaudhry et al., 

2022; European Parliament, 2023; Simbeck, 2024). This is of crucial importance as a recent 

review indicated that 92% of generative artificial intelligence tools currently used for support-

ing learning practices are transparent only to artificial intelligence experts (Yan et al., 2023).  

Once data collection is complete, the next challenge is to analyze the process data, which 

requires dealing with complexity. This starts with the need for various steps to pre-process the 

raw data, as direct analyses would often be meaningless due to technically necessary but mean-

ingless noise in the raw data (Rupp et al., 2012). Another factor that adds to the complexity is 

that product data is usually stored in standard formats, such as multiple-choice questions, 

whereas process data has a different length for each individual (Zhan & Qiao, 2022) and is 

prone to situational bias (Lindner & Greiff, 2023). Chetverikov and Upravitelev (2016) inves-

tigated this in a simple visual search task with 284 participants, who used their personal com-

puters in an online setting to complete the task. The analyses show that CPU score affects the 

distribution parameters, while RAM and GPU score do not. Thus, especially in small samples, 

differences in data collection due to technical differences can negatively affect data quality and 

increase measurement error.  

Process data from collaborative problem-solving tend to be more complex in nature than 

traditional performance data: While there is only one a priori known correct outcome (or at least 

tasks are defined as such), there may be multiple correct strategies for solving the same problem 

in process data. Such heterogeneity and complexity thus require advanced statistical models 

beyond classical regression (Chen et al., 2019; Goldhammer et al., 2017; Lindner & Greiff, 

2023). For example, alternative approaches suggest the use of Bayesian networks and a combi-

nation of process and product data to measure performance (for a review of methods for 
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simulation-based assessments see Klerk et al., 2015). This introduces new complexities given 

the dependency structure of process (and product) indicators within and across tasks, and re-

search has suggested the use of computational psychometrics to account for this (Goldhammer 

et al., 2021). Given all these complexities, it is suggested to plan the desired analyses before 

collecting the data and to use process data not only as a by-product, but to actually pay attention 

to how specific process indicators can be measured and to incorporate this into the design of 

tasks (Goldhammer et al., 2021; Lindner & Greiff, 2023). This is consistent with the need to 

have a deep, contextualized understanding of the structure of process data that should be 

grounded in theory (R. Baker et al., 2020). 

After analyzing process data, the next challenge is interpreting the result. In order to inform 

theories and derive information, such as which strategies are most beneficial in collaborative 

problem-solving or which instructional supports might be beneficial, researchers have called 

for a more robust link from process data to learning theories to better understand and facilitate 

learning (Gašević et al., 2015). It is only when log-file data are linked to theory-based process 

indicators that reliable and valid conclusions can be drawn (Zumbo et al., 2023). This is in line 

with the call to use high-level features instead of low-level features, which can only be inter-

preted in the light of the concrete task, for more generalizable results from process data analyses 

(Tomasevic et al., 2020; see 1.4.1). Using high-level features in the light of theory allows re-

search to move beyond idiosyncratic results that are only valid for a specific assessment or 

learning task, and to compare and replicate findings that cannot be done directly with log-file 

data or only with low-level features (Goldhammer et al., 2021). This would also make it easier 

to overcome the challenge of task dependency when using process data (He et al., 2021). How-

ever, a recent review of the literature on the use of process data in large-scale assessments, 

which included 232 articles, found that only in one of the six major topics identified (digital 

writing) most studies did rely on a theoretical model. While all other topics (response time 

models, response time in general, aberrant test-taking behavior, action sequences, complex 

problem-solving) rarely mentioned a theoretical foundation. Although this review does not spe-

cifically focus on collaborative problem-solving, it illustrates the need to consider the use of 

theory when using process data (Khalil et al., 2023b). 

In order to obtain meaningful and actionable results when interpreting process data, it is 

critical to connect the data to established theory. Ideally, this is done not only when interpreting 

the results of process data analyses, but also from the beginning of task design. As mentioned 

earlier, the use of agent-based simulations and interactive tasks (see 1.2.3) allows for ensuring 

that all relevant behaviors are triggered appropriately by the learner. Thus, if the researchers 
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know from theory which behavior is relevant, such as collaborative diagnostic activities in col-

laborative diagnostic reasoning (see 1.3.1), they can design tasks that ensure that this behavior 

is shown and stored in log-file data, such as the request form in the CoSiMed simulation (see 

1.3.3), allowing for meaningful interpretation of results and actionable conclusions. 

In conclusion, while the use of process data may allow researchers to answer the question, 

“what particular [collaborative problem-solving] behaviors give rise to successful problem-

solving outcomes?” (Sun et al., 2022, p. 1), only theory-driven analyses allow to go further and 

ask why these behaviors are successful and what can be done now to facilitate the learning of 

collaborative problem-solving skills (A. F. Wise & Shaffer, 2015). 

1.5 Research Questions and Outline of the Papers 

Collaborative problem-solving involves multiple agents working together to solve complex 

tasks, with a focus on the process rather than just the outcome (OECD, 2017). Building on 

research on collaborative problem-solving and diagnostic reasoning, the CDR-M (Radkowitsch 

et al., 2022) proposes a shared perspective on solving diagnostic problems (Abele, 2018) in a 

collaborative effort. As individuals gain experience, they develop domain-specific knowledge 

that allows them to solve diagnostic problems more effectively in a collaborative effort. Simu-

lation-based learning, particularly through technology-based interactive tasks, has been shown 

to be effective in enhancing these skills by providing authentic situations for knowledge appli-

cation (Chernikova et al., 2020). 

Recent advances in process data analyses enable researchers to collect data unobtrusively, 

unlike think-aloud protocols, and without requiring additional measurements that could in-

crease cognitive load, making it easier to examine involved cognitive processes (Matcha et al., 

2019). Process data derived from log-file data during task interaction can be matched to psy-

chological constructs to gain insight into problem-solving behaviors. Three approaches - the-

ory-based, exploratory, and predictive - are used to analyze process data, with implications for 

the assessment of performance differences, the development of predictive models, and the pro-

vision of personalized support (Ulitzsch et al., 2023). However, ethical guidelines, standardized 

data collection and analysis methods, and robust theoretical frameworks are needed to fully 

realize their potential. Moving forward, the focus should shift to hypothesis-driven research 

that employs validated indicators and responsible data use, balancing innovation with rigorous 

scientific standards (Lindner & Greiff, 2023). Following this, the overarching goal of this thesis 

is to improve the use of process data to assess and support collaborative problem-solving in the 

context of collaborative diagnostic reasoning in agent-based simulations (see Figure 2).  
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Figure 2 

Aims of the Thesis and Corresponding Papers 

To this end, this thesis compromises three papers with different focuses on the use of process 

data. The first paper, a theoretical perspective paper, will take a meta-perspective and review 

recent developments in the use of process data through technology-based assessment to gener-

ate new knowledge, improve learning and instruction, and provide actionable advice to policy 

stakeholders. Building on these considerations, two empirical studies are presented to illustrate 

how process data can be used for theoretical advancements and instructional improvement. The 

first empirical paper validates the CDR-M using process data. The second empirical paper then 

demonstrates how the combination of process data and theory can be used to predict outcomes 

that can inform learning and instruction in simulation-based learning of collaborative diagnostic 

reasoning. By presenting these two empirical contributions, which build on the views presented 

in the first paper, this thesis aims to shed light on new developments in the assessment and 

support of collaborative problem-solving skills and how the full potential of process data can 

be used not only to gain deeper insights and better theories about these skills, but also to use 

these data sources to support learning and instruction, thus helping to close a research-practice-

policy gap. 

1.5.1 Research Question and Outline of Paper 1 

Over the past two decades, large-scale assessments in education have shifted from traditional 

paper-and-pencil formats to innovative technology-based assessments. This shift has enabled 

the collection and analysis of process data, which capture the steps and actions that lead to 

responses from participants. The first paper, a theoretical perspective paper, focuses on how 

process data can bridge a gap between research, practice, and policy. The paper is theoretically 



58 General Introduction 

grounded in the idea that interactive tasks and process data provide a richer understanding of 

learner behavior than traditional outcome-based assessments (see 1.2.3). By analyzing devel-

opments in large-scale assessment over the past two decades, the paper outlines the challenges 

and opportunities associated with leveraging process data to improve both educational research 

and policymaking. 

The paper aims at identifying the potentials and challenges of using process data in educa-

tional settings, especially in large-scale assessments. Therefore, the paper adopts a meta-per-

spective, analyzing the impact of interactive tasks in large-scale assessments and emphasizing 

the need to move beyond task-specific findings by linking process data to theoretical constructs, 

which can enhance the generalizability of research findings. 

According to the CRediT statement, my contribution to the first paper was along the con-

ceptualizing as well as writing parts of the original draft and reviewing and editing the entire 

paper. As this was not an empirical paper, most other aspects of the statement do not apply here. 

I contributed important theoretical ideas to the paper and was also involved in revisions during 

peer review and proofreading. 

1.5.2 Research Question and Outline of Paper 2 

The second paper aims at identifying how process data can facilitate theoretical advance-

ments, particularly in the context of validating theoretical models in educational research, by 

addressing the research question of the extent to which the relations in the CDR-M are appli-

cable across studies. Therefore, it tests the CDR-M (see 1.3.1), which posits that effective col-

laborative problem-solving in knowledge-rich domains, such as medical diagnosing, requires 

an interplay of individual characteristics, collaborative diagnostic activities enacted with high-

quality, and successful diagnostic outcomes. To this end, I have derived a model from the pos-

tulated relations of the CDR-M (see Figure 3).  

Figure 3 

Hypotheses of Paper 2 
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I expect individual characteristics to be positively related to collaborative diagnostic activi-

ties (hypotheses 1-3), and collaborative diagnostic activities to be positively related to diagnos-

tic outcome (hypotheses 4-6). In addition, I expect that the relations between individual char-

acteristics and diagnostic outcomes to be partially mediated by collaborative diagnostic activi-

ties (Hypotheses 7-15).  

A structural equation model is used to examine the relations between individual characteris-

tics (content knowledge, collaboration knowledge, and social skills; see Appendix 8.2), collab-

orative diagnostic activities (evidence elicitation, evidence sharing, and hypotheses sharing; see 

Appendix 8.3), and diagnostic outcomes (accuracy, justification, and efficiency; see Appendix 

8.4). Therefore, data from three studies involving 504 intermediate medical students working 

on the CoSiMed simulation (see 1.3.3) are analyzed. The use of agent-based simulations en-

sures controlled collaboration settings that simulate real-world diagnostic tasks. The study uses 

process data to empirically test and refine the CDR-M, demonstrating how process data can be 

used to generate new insights and advance theoretical frameworks in education.  

According to the CRediT statement, my contribution to the second paper was along its con-

ceptualization, methodology, validation, formal analysis, investigation, data curation, and writ-

ing the original draft. I was responsible for all major steps in the publication of this paper, from 

generating the research idea, performing the analyses, writing the paper, to revising during peer 

review and proofreading. 

1.5.3 Research Question and Outline of Paper 3 

The third paper explores how process data can inform learning and instruction by predicting 

learners' need for additional support. Specifically, it addresses the research question of the ex-

tent to which theoretically derived process indicators are suitable for predicting learners' di-

agnostic accuracy in the context of simulation-based learning of collaborative diagnostic rea-

soning. Thus, the third paper focuses on improving simulation-based learning by predicting 

diagnostic accuracy in collaborative diagnostic reasoning using process data. The study is the-

oretically grounded in the CDR-M (see 1.3.1), which integrates individual diagnostic processes 

and collaborative activities as described by Radkowitsch et al. (2020). Key collaborative diag-

nostic activities such as evidence elicitation, evidence sharing, and hypotheses sharing are iden-

tified as critical for accurate diagnostic outcomes. 

Methodologically, the study uses a random forest classification model to predict diagnostic 

accuracy using process indicators derived from the CDR-M. It analyzes log-file data from five 

patient cases in the CoSiMed simulation (see 1.3.3) depicting the collaboration between a 

learner in the role of an internist interaction with an agent-based radiologist. The performance 
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of the model is evaluated in terms of classification accuracy, sensitivity, and specificity, with 

the goal of developing a reliable predictive tool for adaptive learning interventions. 

According to the CRediT statement, my contribution to the paper was along its conceptual-

ization, methodology, validation, formal analysis, investigation, data curation, and writing the 

original draft. I was responsible for all major steps in the publication of this paper, from con-

ceiving the research idea, performing the analyses, writing the paper, to revising during peer 

review and proofreading. 
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The objective of this thesis was to facilitate the leveraging of process data for the assessment 

and support of collaborative problem-solving. Two sub-goals were addressed: This thesis ex-

amined the potential of process data analyses to (1) facilitate theoretical advancements and (2) 

inform learning and instruction of collaborative problem-solving in the context of collaborative 

diagnostic reasoning. To achieve these goals, three papers were presented, focusing on different 

but related aspects. This chapter provides a brief summary of the results of each paper, followed 

by a joint discussion of the theoretical and practical implications. The transferability of these 

implications is then reflected upon, before concluding with a discussion of the limitations of 

the presented papers and suggestions for future research. 

5.1 Summary of Results  

The first paper (Stadler et al., 2023), a theoretical perspective paper, adopted a meta-per-

spective to discuss recent and current developments in the use of process data in large-scale 

assessments, as well as the scientific, practical, and policy-level issues that impede sustainable 

use. From a scientific standpoint, the findings from process data analyses are currently not 

widely generalizable due to their task-specific nature. Furthermore, there is a lack of replication 

studies, which hinders the establishment of robust evidence. The utilization of higher-level fea-

tures (see 1.4.1) has the potential to yield robust evidence that is applicable across different 

studies, thereby facilitating the possibility of conceptual replication even when items differ be-

tween studies. From a practical standpoint, the utilization of process data has resulted in a tran-

sition from a purely summative assessment approach to a more formative one, with an emphasis 

on providing feedback (see 1.2.3; Pellegrino et al., 2001). For instance, with regard to the Co-

SiMed simulation (see 1.3.3), the way in which learners complete the radiological request form 

leads to a response by the agent-based radiologist, which can be perceived as a form of feed-

back. It can be argued that assessment tasks can provide opportunities for learning when feed-

back is provided. This has led to an emerging call to use process data as a measure of ability 

that goes beyond the ability to solve the problem. Additionally, it is argued that such process 

data can be used to provide individualized instructional support, e.g. adaptive scaffolding (e.g. 

Azevedo et al., 2004). This allows learners to benefit from the interaction with the assessment 

task. Nevertheless, in order to leverage interactive tasks for the purpose of identifying individ-

uals in need of instructional support and facilitating personalized learning and adaptive support 

(see 1.4.2), it is imperative to ensure a coherent alignment between the design of assessment 

and the instructional design. In addition, at the policy level, the leveraging of process data from 

large-scale assessments enables a shift in focus from product data to the processes that contrib-

ute to the generation of these products (see 1.4.1), thereby facilitating the formulation of 
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informed educational decisions. However, to ensure sustainable use, it is essential to consider 

the issues outlined at the scientific and practical levels, particularly when utilizing process data 

from large-scale assessments, and to take cultural differences in learning and teaching into ac-

count in educational decision-making. In summary, there are necessary changes to be under-

taken at the scientific level in how process data are analyzed to foster sustainable changes at 

the practical and policy levels. First and foremost, establishing a connection between process 

data and educational theory is vital for enhancing the generalizability of our findings and, con-

sequently, facilitating theoretical advancements. Secondly, there is a need to align the design 

of assessment with that of instructional design, with the aim of informing learning and instruc-

tion. 

Building on these considerations, the second paper (Brandl et al., 2024) aimed to investigate 

how process data analyses can facilitate theoretical advancements, particularly in the context of 

validating theoretical models in educational research using quality measures derived from high-

level features constructed from collaborative diagnostic activities. The objective of this empir-

ical study was to evaluate the CDR-M (Radkowitsch et al., 2022) in a simulation-based envi-

ronment by analyzing data from three studies in the medical domain. The CDR-M describes the 

relations between individual characteristics (i.e., content knowledge, collaboration knowledge, 

and social skills), collaborative diagnostic activities (i.e., evidence elicitation, evidence sharing, 

and hypotheses sharing), and diagnostic outcomes (i.e., diagnostic accuracy, diagnostic justifi-

cation, and diagnostic efficiency). The results indicate that the hypothesized relations in the 

CDR-M can be partially applied across studies. Content knowledge enables the diagnostician 

to formulate an initial suspected diagnosis, which is likely to be relevant information for the 

collaboration partner and to guide the subsequent collaborative diagnostic activities effectively. 

The observed relation between content knowledge and the quality of evidence elicitation, but 

not the other collaborative diagnostic activities, can be explained by the fact that evidence elic-

itation represents the least transactive collaborative diagnostic activity within the collaborative 

diagnostic reasoning process. In the process of evidence elicitation, the collaboration partner is 

utilized as an external knowledge resource, requiring minimal collaborative effort (Weinberger 

& Fischer, 2006). This perspective on the transactivity of collaborative diagnostic activities is 

further reinforced by the necessity to differentiate between primary (i.e., diagnostic accuracy) 

and secondary (i.e., diagnostic justification and diagnostic efficiency) outcomes of diagnostic 

reasoning (Daniel et al., 2019). Achieving diagnostic accuracy, which is related to evidence 

elicitation, the least transactive collaborative diagnostic activity, requires less collaboration and 

therefore less transactivity than secondary outcomes. The ability to justify and reach this 
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decision efficiently relies on evidence sharing and hypotheses sharing, which are more focused 

on transactivity within collaborative diagnostic reasoning (Weinberger & Fischer, 2006). Fur-

thermore, in contrast to traditional diagnostic contexts (Boshuizen et al., 2020), simulation-

based tasks reduce the relevance of content knowledge that can be obtained from various 

sources due to the iterative nature of collaborative diagnostic activities in simulations. The re-

sults provide further support for the differentiation of content and collaboration knowledge as 

outlined in the CDR-M (see 1.3.1; Radkowitsch et al., 2022). This underscores the importance 

of being aware of the knowledge distribution among collaboration partners and the relevance 

of a transactive memory (see 1.3.1; Wegner, 1987). While individual characteristics have been 

shown to influence the quality of collaborative diagnostic activities and the quality of collabo-

rative diagnostic activities affect diagnostic outcomes, the effect is not mediated by collabora-

tive diagnostic activities across studies. Therefore, in order to achieve effective collaborative 

problem-solving in knowledge-rich domains, such as collaborative diagnostic reasoning, it is 

not sufficient to possess sufficient content and collaboration knowledge; it is also necessary to 

enact collaborative diagnostic activities with high quality in order to achieve successful diag-

nostic outcomes. In summary, the second paper found that two factors, in addition to content 

knowledge, are crucial for successful collaborative problem solving in knowledge-rich do-

mains: (1) knowledge about the domain of the collaboration partner and (2) collaborative diag-

nostic activities.  

While the second paper focused at using process data to better understand collaborative di-

agnostic reasoning, the third paper focused on informing learning and instruction of collabora-

tive diagnostic reasoning. The objective of the third paper and second empirical study (Brandl 

et al., 2021) was to investigate the extent to which process data of collaborative diagnostic 

reasoning from simulation-based learning can be utilized to predict collaborative problem-solv-

ing performance. If differences in behavior are related to success in simulated learning envi-

ronments, they can be used to identify support needs at an early stage, thus enabling learners to 

progress in their learning more efficiently than with non-adaptive support (see 1.4.2; Plass & 

Pawar, 2020). The developed random forest classification model (Breiman, 2001) predicted a 

high percentage of accurate and inaccurate diagnoses with a classification accuracy of greater 

than 0.90, using high-level features constructed from log-file data. The nine high-level features 

were categorized as bigrams (n = 2; Damashek, 1995) of collaborative diagnostic activities. 

These represented either consistent behavior, with two instances of the same collaborative 

diagnostic activity, or transitions from one collaborative diagnostic activity to another, with two 

instances of different collaborative diagnostic activities. The results indicated that the consistent 
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features (e.g., time spent with evidence elicitation) and transitions from evidence elicitation to 

evidence sharing and from hypotheses sharing to evidence sharing are of less importance. In 

contrast, the transition from evidence sharing to hypotheses sharing is the most important 

feature. However, no notable distinction was observed in the feature with regard to accurate 

and inaccurate diagnoses. It can thus be assumed that a non-linear relation or complex interac-

tion with one or more other features is involved. Furthermore, additional analyses employing 

partial dependence plots (Friedman, 2001) facilitate a more comprehensive understanding of 

the prediction model (Brandl et al., 2022, August/September). The results for the most im-

portant feature indicated that the absence of a transition from evidence sharing to hypotheses 

sharing was associated with an increased likelihood of an inaccurate diagnosis, while the pres-

ence of at least one transition was associated with a decreased probability (see Appendix 8.5). 

Therefore, the absence of this transition may serve as an indicator of the necessity for adaptive 

instructional support. In conclusion, the findings of Paper 3 contribute to the development of 

more adaptive instructional support within simulation-based learning by enabling the prediction 

of individual learning outcomes at an early stage of the process. Moreover, the results can serve 

as a foundation for more generalizable insights by employing theoretical-derived process indi-

cators and high-level features. It is reasonable to hypothesize that the identified features are not 

exclusive to collaborative diagnostic reasoning in medical contexts. Instead, they are likely to 

be applicable to the development of collaborative problem-solving skills across various do-

mains (Mislevy, 2019).  

The three papers presented in this thesis aimed to improve the use of process data to assess 

and support collaborative problem-solving through the advancement of theoretical models and 

the provision of insights for learning and instruction. The two empirical contributions, which 

build on the views presented in the first paper, provide insights into how the full potential of 

process data analyses can be utilized not only to gain deeper insights into collaborative diag-

nostic reasoning, but also to predict performance of collaborative diagnostic reasoning to iden-

tify learners in need of additional instructional support. 

5.2 Implications for Understanding Collaborative Diagnostic Reasoning  

The first sub-goal of this thesis was to investigate how process data can facilitate theoretical 

advancements. More specifically, it examined how theoretical advancements in the context of 

collaborative diagnostic reasoning in agent-based simulations using process data can be facili-

tated. 

A first conclusion concerns the distinction between content and collaboration knowledge 

proposed in the CDR-M (Radkowitsch et al., 2022). As outlined in Paper 2, the relations 
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between content and collaboration knowledge and the different collaborative diagnostic activi-

ties vary. This can be attributed to the varying degrees of transactivity associated with the re-

spective collaborative diagnostic activities. Evidence elicitation represents the least transactive 

collaborative diagnostic activity within the context of the collaborative decision-making pro-

cess. In the process of evidence elicitation, the collaboration partner is utilized as an external 

knowledge resource, requiring minimal collaborative effort (Weinberger & Fischer, 2006). Ac-

cordingly, different relations of content and collaboration knowledge to collaborative diagnos-

tic activities in Paper 2 support the assumption from the CDR-M that content and collaboration 

knowledge are two distinct constructs. However, Paper 2 also raises questions about the role of 

content knowledge in simulation-based learning environments, where repeated attempts and 

revisions are possible. However, in a subsequent study (Vogel et al., 2023), we demonstrated 

that successful diagnosticians had more conceptual knowledge and spent less time with hypoth-

eses sharing than those who were unsuccessful. Therefore, the creation of a shared problem 

representation during collaborative diagnostic reasoning necessitates both content knowledge 

and the externalization of information. Accordingly, an adequate initial problem representation, 

such as activated illness scripts, appears to be pivotal for the success of collaborative diagnostic 

reasoning (Charlin et al., 2007). Finally, the multi-study structural equation model in Paper 2 

demonstrated that, alongside content knowledge—a traditional focus of expertise research—

collaboration knowledge plays a crucial role in effective collaborative diagnostic reasoning. 

The importance of collaboration knowledge has also been demonstrated in the study conducted 

by Radkowitsch et al. (2021). The researchers demonstrated that providing learners with exter-

nal collaboration scripts enhanced the performance of collaborative diagnostic activities. One 

potential explanation is that collaboration knowledge stored in internal collaboration scripts 

provides information about appropriate actions, which leads to enhanced information pro-

cessing and reduced coordination effort (Kollar et al., 2006). Consequently, a reduction in col-

laboration load is achieved, which is defined as the working memory capacity required to en-

gage in collaborative activities (F. Kirschner et al., 2009). These findings support the assump-

tion of the CDR-M that content and collaboration knowledge are two distinct factors that are 

positively associated with collaborative diagnostic reasoning. 

A further conclusion concerns the collaborative diagnostic activities proposed in the CDR-

M. As stated in the CDR-M, collaborative diagnostic activities need to be enacted with high 

quality for a successful collaborative diagnostic reasoning, as indicated by their predictive ac-

curacy to collaborative diagnostic reasoning performance in Paper 3. In addition, collaborative 

diagnostic activities account for additional variance beyond that explained by individual 
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characteristics as shown in Paper 2. This aligns with the findings of research on individual 

diagnostic reasoning (Fink et al., 2023), which investigated the extent to which individual di-

agnostic activities and content knowledge uniquely explain the variance in diagnostic success 

among 106 medical students. Moreover, Paper 3 illustrated that collaborative diagnostic activ-

ities derived from log-file data are effective in predicting collaborative diagnostic reasoning 

performance. These findings thus support the assumption of the CDR-M that collaborative di-

agnostic activities are of crucial importance for collaborative diagnostic reasoning. 

Along this assumption, another conclusion concerns the differentiation of collaborative di-

agnostic activities. As proposed by the CDR-M, sharing and elicitation of evidence represent 

two distinct collaborative diagnostic activities, each requiring a different set of underlying col-

laboration skills (F. Fischer et al., 2002). This is indicated by the differing relations between 

individual characteristics and diagnostic outcomes as presented in Paper 2. In considering the 

differentiation between the evidence sharing and hypotheses sharing, the findings of Paper 2 

indicated an absence of consistent support for a relation between any of the individual charac-

teristics and the quality of hypotheses sharing. Leading to the conclusion that this might be 

either to the operationalization of quality in hypotheses sharing or that there is no direct relation 

between the individual characteristics and hypotheses sharing, as this relation is mediated by 

evidence sharing. Supporting the second possibility, Paper 3 revealed that the transition from 

evidence sharing to hypotheses sharing is crucial for reaching diagnostic accuracy. Specifically, 

when participants make this transition at least once, they significantly reduce the likelihood of 

arriving at incorrect diagnoses. Subsequent transitions from evidence sharing to hypotheses 

sharing have a less substantial impact than the initial one. This suggests that some form of data-

driven reasoning, as opposed to hypotheses-driven reasoning, is a relevant factor in achieving 

an accurate diagnosis (Patel et al., 2005). 

In order to reach a final conclusion regarding the role of process data in facilitating the un-

derstanding of collaborative diagnostic reasoning, it is necessary to investigate the complex, 

non-linear interactions between collaborative diagnostic activities. This approach is more ap-

propriate than analyzing these interactions in an isolated or linear manner. The non-mediating 

relation of collaborative diagnostic activities between individual characteristics and diagnostic 

outcomes is in contradiction with the assumptions of the CDR-M. Along the effects of the col-

laborative diagnostic activities in Paper 2, an isolated analysis of these activities does not fully 

represent the complex interactions and relations among activities, individual characteristics, 

and diagnostic outcomes. In Paper 3, we used bigrams of the collaborative diagnostic activities, 

representing short sequences of either spending time with or transitioning between collaborative 
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diagnostic activities, as features in a random forest prediction model. This model allows for 

complex-nonlinear relations among the features. The results indicate that consistent features 

(e.g., two instances of evidence elicitation indicating time spent with evidence elicitation) are 

found to be less important. However, while the results indicated that the transition from evi-

dence sharing to hypotheses sharing is the most important feature for predicting diagnostic ac-

curacy, they are unable to produce actionable information such as the direction of the relation, 

beyond that this feature is important (see 1.4.3; Yarkoni & Westfall, 2017). Subsequent anal-

yses have revealed that when this transition is performed at least once, the likelihood of an 

inaccurate diagnosis is decreased. Therefore, the CDR-M will need to consider not only isolated 

collaborative diagnostic activities, but also the complex interactions between them. 

In summary, the results of the process data analyses presented in this thesis provide support 

for the assumptions proposed in the CDR-M (see Table 2).  

Table 2 

Assumptions of the CDR-M Based on Presented Empirical Evidence  

Assumptions … Empirical Evidence 

… from the CDR-M that are supported 

distinction between content and collaboration 

knowledge 
• different relations of content and collabo-

ration knowledge to collaborative diag-

nostic activities in Paper 2 

collaborative diagnostic activities are rele-

vant for successful collaborative diagnostic 

reasoning  

• collaborative diagnostic activities explain 

variance beyond individual characteris-

tics in Paper 2  

• collaborative diagnostic activities con-

structed from log-file data are suitable 

for predicting collaborative diagnostic 

reasoning performance in Paper 3 

sharing and elicitation of evidence are two 

distinct collaborative diagnostic activities 
• differential relations of the collaborative 

diagnostic activities from the individual 

characteristics and to the diagnostic out-

comes in Paper 2 

… added to the CDR-M 

isolated analysis of collaborative diagnostic 

activities does not fully represent the com-

plex interactions and relations among activi-

ties, individual characteristics, and diagnostic 

outcomes 

• non-mediating effect of collaborative di-

agnostic activities in Paper 2 

• different effects of the collaborative diag-

nostic activities in Paper 2 

• importance of features depicting transi-

tions between collaborative diagnostic 

activities in Paper 3 

complex non-linear interactions between col-

laborative diagnostic activities 
• predictive accuracy in Paper 3 

• partial dependence plot for transition 

from evidence sharing to hypotheses 

sharing in additional analyses of Paper 3 
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First, the results provide evidence in support of the distinction between content and collab-

oration knowledge. Furthermore, the results provide support for the concept of illness scripts 

and internal collaboration scripts, which are used to store content and collaboration knowledge. 

The findings also underscore the importance of collaboration knowledge, in addition to content 

knowledge, potentially through reduced collaboration load. Secondly, the results support the 

assumption that collaborative diagnostic activities are a key factor in the success of collabora-

tive diagnostic reasoning. Thirdly, the results support the differentiation between the processes 

of sharing and elicitation as two distinct collaborative diagnostic activities. However, the results 

also challenge assumptions made in the CDR-M, thereby introducing two new assumptions to 

the CDR-M. First, the results indicated that an isolated analysis of collaborative diagnostic ac-

tivities does not fully represent the complex interactions and relations among activities, indi-

vidual characteristics, and diagnostic outcomes. Second, the interpretation of the results high-

lights the need to investigate complex non-linear interactions between collaborative diagnostic 

activities. 

These assumptions were tested in the context of collaborative diagnostic reasoning, specifi-

cally in the process of joint evidence generation between internists and radiologists in medicine. 

It seems reasonable to assume that the aforementioned relations can be generalized to other 

contexts in which two or more diagnosticians collaborate to solve diagnostic problems. Never-

theless, a systematic investigation of the generalizability of these findings to other contexts has 

yet to be conducted. 

5.3 Implications for Supporting Collaborative Diagnostic Reasoning 

The second sub-goal of this thesis was to inform learning and instruction. Through the anal-

yses in papers 2 and 3, conclusions can be drawn about facilitating the development of collab-

orative diagnostic reasoning that can align assessment design with learning design and pave the 

way for adaptive instructional support (see 1.4.2).  

Based on the implications of the previous chapter, it seems important to support the devel-

opment of collaborative diagnostic reasoning skills in medical education by (1) facilitating the 

acquisition of collaboration knowledge and (2) facilitating the performance of collaborative 

diagnostic activities with high quality. This is indicated by the relation of collaboration 

knowledge to the quality of evidence sharing and the various, but not mediating, relations be-

tween the quality of collaborative diagnostic activities and diagnostic outcomes in Paper 2. 

Based on these findings and the study by Radkowitsch et al. (2021), which indicated that 

providing external collaboration scripts during simulation-based learning improves the quality 

of collaborative diagnostic activities, it seems beneficial to provide external collaboration 
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scripts. Incorporating collaboration scripts into simulation-based learning in medical education 

can enhance learners' experiences with authentic patient cases and collaborative settings, while 

providing additional instructional support to develop collaborative diagnostic reasoning skills. 

Such additional instructional support is ideally adapted to the learner's needs to ensure that 

a task is in the learner's zone of proximal development (Plass & Pawar, 2020; Vygotsky, 1978). 

One way to implement this in medical education could be, following the results of Paper 3, to 

use learners' process data while working on the CoSiMed simulation (see 1.3.3) to predict their 

performance while they are still working on the task (Richters, Stadler, Radkowitsch et al., 

2023). If the learner model predicts an inaccurate diagnosis and thus a failure to complete the 

task, the model could identify those learners who do not transition from evidence sharing to 

hypotheses sharing while filling out the radiological request form and provide them with addi-

tional instructional support (Basu et al., 2017). In particular, as a strong relation between col-

laboration knowledge and evidence sharing was found in Paper 2, the provision of external 

collaboration scripts could be an appropriate form of additional instructional support in this 

situation. This adaptive provision of instructional support could avoid an expertise-reversal ef-

fect, where scaffolds that are initially effective may hinder learning as the learner's expertise 

increases (Kalyuga, 2007). 

In line with these considerations for a learner model that provides adaptive instructional 

support, it is important to initially design learning environments with respect to collaborative 

diagnostic activities so that the measurement of these processes is a design factor, rather than 

using log-file data as a by-product of the product data collection process (Goldhammer et al., 

2021). It should be decided a priori how specific theory-based and thus high-level features will 

be constructed from log-file data. These considerations must then guide the design of the task. 

The use of high-level features not only allows generalization of findings to different tasks, but 

also provides actionable results. While the result “it is important to click first in section A and 

then section B” entails no relevant information for educational decisions, the result “transition-

ing from evidence sharing to hypotheses sharing should be performed at least once” is action-

able allowing to design instructional support fostering this behavior. 

Overall, the process data analyses presented in this thesis allow for three implications for 

supporting collaborative diagnostic reasoning. Firstly, the presented papers suggest that focus-

ing on the acquisition of collaboration knowledge and the performance of high-quality collab-

orative diagnostic activities facilitates the development of collaborative diagnostic reasoning. 

Secondly, providing collaboration scripts in the absence of a transition from evidence sharing 

to hypotheses sharing during collaborative diagnostic reasoning could be identified as a strategy 
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for adaptive instructional support. Finally, a case was made for making the measurement of 

processes such as collaborative diagnostic activities a design factor of learning environments to 

support the development of collaborative diagnostic reasoning and to inform learning and in-

struction using process data. 

5.4 Implications for Leveraging Process Data of Collaborative Problem-Solving 

The overall goal of this thesis was to improve the use of process data to assess and support 

collaborative problem-solving. Therefore, two sub-goals have been identified and already dis-

cussed in light of papers 2 and 3, namely theoretical advancements and informing learning and 

instruction. What has not yet been addressed in this discussion is what implications can be 

drawn for the leverage of process data for collaborative problem-solving based on the three 

papers presented, with a focus on the three challenges identified (see 1.4.3): ethical considera-

tions, dealing with complexity, and lack of theory. 

Some of the ethical challenges during data collection can be effectively addressed through 

the use of high-level features, as demonstrated in papers 2 and 3. By focusing on collecting only 

relevant data, incorporated by the design of the task (Goldhammer et al., 2021), this approach 

minimizes unnecessary information collection. It also helps learners understand why certain 

data are needed and the implications of omitting them. For example, excluding such data could 

hinder the system's ability to provide adaptive instructional support, potentially reducing the 

effectiveness of the learning experience. This gives learners, at least in a higher education con-

text, a choice about what they want to allow the researcher/educator to collect, and allows for 

informed consent based on why that data should be collected and what the consequences of not 

collecting the data might be. In addition, Paper 3 identifies learners in need of adaptive instruc-

tional support, which allows for enabling interventions, an ethical concern that is not currently 

systematically addressed in research (Cerratto Pargman & McGrath, 2021). By using partial 

dependence plots, the transparency issue could also be addressed to some extent, and additional 

insights into how the prediction is achieved could be gained (Yan et al., 2023). 

Turning to the challenge of complexity in process data analyses. Research has long been 

interested in the cognitive (and collaborative) activities involved in (collaborative) problem-

solving, but initially it was only possible to infer the outcome, for example through think aloud 

protocols (Ericsson & Simon, 1980). By using interactive tasks, process data can be collected 

unobtrusively without the need for additional measurements that could increase cognitive load, 

and thus the cognitive processes involved can be studied more easily (Matcha et al., 2019). 

Paper 3, meanwhile, showed that theory-based process indicators constructed from sequences 

of automatically coded log-file data corresponding to collaborative diagnostic activities 
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predicted task performance. Thus, it is possible to (partially) automate analyses using log-file 

data if learning environments are intentionally designed with theory-based indicators such as 

collaborative diagnostic activities in mind, making the measurement of these processes a design 

factor rather than using log-file data as a byproduct of the product data management process 

(Goldhammer et al., 2021). 

Regarding the interpretation of machine learning algorithms (as used in paper 3), they come 

with the complexity of not explaining how the predictions were achieved in order to allow for 

complex nonlinear interactions, leading to less transparent models, also known as black boxes 

(Molnar et al., 2018; Yarkoni & Westfall, 2017). While such a black box model was used in 

Paper 3, additional analyses using partial dependence plots provided some additional insights, 

such as that the most important feature for prediction needs to be present at least once to in-

crease the likelihood of successful performance. However, the use of machine learning algo-

rithms in education is still a young and evolving field of research, with new models and ap-

proaches being developed all the time (Hilbert et al., 2021; Rane et al., 2024). For example, 

while knowledge tracing, a method for monitoring learners' skill mastery and predicting their 

performance, was developed thirty years ago (Corbett & Anderson, 1995), the recently devel-

oped interpretable knowledge tracing model outperforms known knowledge tracing models 

while allowing for more causal interpretations of the prediction (Minn et al., 2022). Such mod-

els could be used, for example, to predict collaborative diagnostic reasoning performance based 

on collaborative diagnostic activities constructed from log-file data, with a particular focus on 

the transition between collaborative diagnostic activities following the results of Paper 3.  

Finally, the challenges of interpreting the results of machine learning on process data are 

addressed. While paper 1 argued for the need to link log-file data to theory-based constructs in 

process data analyses, papers 2 and 3 present two concrete examples of how this can facilitate 

theoretical advancements and derive actionable results from process data analyses to support 

collaborative diagnostic reasoning skills. Furthermore, theory-based constructs can go beyond 

idiosyncratic findings for one task and facilitate much-needed replication studies (Andres et al., 

2017; Renkewitz & Heene, 2019; Zwaan et al., 2017). In particular, Paper 2 demonstrates the 

importance of empirically testing theoretical models in more than one dataset, as some of the 

hypotheses presented were present in one dataset but were not stable across datasets. Only by 

analyzing three data sets, the relevance of collaboration knowledge for collaborative diagnostic 

reasoning and the contribution of collaborative diagnostic activities alone do not mediate the 

effect of individual characteristics on diagnostic outcomes. These findings demonstrate the 

need to improve medical students' collaboration knowledge and collaborative diagnostic 
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activities beyond content knowledge, and serve as a resource for policy stakeholders in shaping 

curriculum decisions. In turn, through theoretical advancements, as detailed in 5.2, it is possible 

to align assessment design with instructional design to inform learning and instruction, as done 

in Paper 3 and subsequent analyses that identified the transition of the most important feature 

in prediction as a starting point for adaptive instructional support (see 5.3). 

Collaborative diagnostic activities provide a promising foundation for the development of 

theory-based process indicators that enhance the generalizability and transferability of research 

findings across tasks and domains. A key advantage of collaborative diagnostic activities as 

theory-based process indicators is that they can be utilized as a common language in research, 

which is a prerequisite for research on generalizability and transfer of findings to other domains. 

In order to address the issue of the lack of generalizability of findings, given the strong task-

specificity of findings, we suggested in Paper 1 the use of high-level features (Mislevy, 2019) 

representing meaningful process indicators of psychological constructs based on theory. Two 

types of high-level features were utilized as indicators of collaborative diagnostic activities. In 

Paper 2, the quality of collaborative diagnostic activities was evaluated through the calculation 

of metrics, including the precision of evidence elicitation from log-file data, with expert solu-

tions serving as a reference point. In Paper 3, bi-grams of collaborative diagnostic activities per 

second were constructed from log-file data, incorporating the time stamps of clicks. In particu-

lar, Paper 3 illustrated that high-level features derived from log-file data based on theory are an 

effective means of predicting performance. In addition, Paper 2 revealed that the quality col-

laborative diagnostic activities offer a unique contribution to problem-solving performance, as 

indicated by the non-mediating effect of these activities. Therefore, collaborative diagnostic 

activities account for additional variance beyond that explained by individual characteristics, 

such as knowledge. One first analysis on generalizability and transfer of findings to other do-

mains in the context of collaborative diagnostic reasoning is done by Oezsoy et al. (2024, Au-

gust) where we applied parts of the CDR-M, specifically entailing evidence elicitation and shar-

ing as collaborative diagnostic activities, to teacher education and compared it to data from 

medical education. In light of these findings, it seems reasonable to argue that the collaborative 

diagnostic activities entailed in the CDR-M represent suitable theory-based process indicators, 

facilitating the generalizability of findings across tasks and potentially even across domains. 

This is due to their potential to serve as a suitable starting point for a shared language among 

researchers. 

In sum, the process data analyses presented in this thesis have six implications for the utili-

zation of process data in the assessment and support of collaborative problem-solving. First of 
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all, the theory-based approaches presented in this thesis illustrate how challenges with respect 

to ethical considerations, e.g., lack of informed consent or a lack of transparency, can be mini-

mized during the process of data collection. Furthermore, with regard to data analyses, the pre-

sent findings enable the identification of adaptive instructional support strategies based on high-

level features. Thirdly, the analyses of log-file data can be partially automated. Fourthly, with 

regard to the interpretation of process data analyses, this thesis demonstrates that learner mod-

els, such as knowledge tracing, are enhanced by a focus on the transitions between collaborative 

diagnostic activities. In addition, the findings demonstrate how high-level features facilitate 

theoretical advancements and enable the achievement of actionable results. Ultimately, the uti-

lization of high-level features, such as collaborative diagnostic activities, to establish a common 

language in research enables the generalizability of findings across tasks and, potentially, even 

across domains. 

5.5 Transferability: Domain Specificity of Collaborative Problem-Solving  

Collaborative problem-solving skills and collaborative diagnostic reasoning skills are fre-

quently regarded as domain-specific skills, as they rely on domain-specific schemata and scripts 

to be performed with expertise (Sweller, 1988; van Lehn, 1989). For example, an internist's 

capacity to diagnose a medical condition is grounded in the structured knowledge inherent to 

illness scripts (Charlin et al., 2007). Similarly, a teacher's capacity to diagnose learning diffi-

culties or identify potential misconceptions in students is rooted in their understanding of ped-

agogical frameworks (Heitzmann et al., 2019). However, the distinction between domain-spe-

cific and domain-general problem-solving is not a dichotomy; rather, it represents a continuum 

(Perkins & Salomon, 1989). 

At one end of the continuum, domain-general strategies such as vary-one-thing-at-a-time 

(VOTAT) are essential in knowledge-lean tasks or when specific domain knowledge is absent 

(Greiff et al., 2014). These strategies are universally applicable across various domains because 

they rely on fundamental problem-solving principles rather than domain-specific content. Con-

versely, knowledge-rich tasks that necessitate the utilization of well-structured, domain-specific 

scripts, such as the aforementioned medical or educational diagnoses, demand more specialized 

approaches that are substantially influenced by the expert's experience and domain knowledge. 

Despite these differences, collaborative diagnostic activities, such as those involved in collab-

orative diagnostic reasoning, indicate a form of cross-domain applicability. For example, an 

internist who is engaged in a collaboration with a radiologist with the objective of sharing in-

formation for the purpose of further evidence generation, or two teachers who are exchanging 

observations about a student, both engage in similar collaborative diagnostic activities from a 
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conceptual perspective. These scenarios require the elicitation and sharing of evidence, pro-

cesses that are applicable across domains. However, the domain-specific expertise determines 

which information is considered relevant and irrelevant, respectively. An internist would lack 

the pedagogical knowledge necessary to diagnose educational issues, and vice versa. 

To effectively support research on cross-domain transferability of collaborative problem-

solving processes, it is important to not only conceptualize them as done in several theoretical 

frameworks (e.g. Hesse et al., 2015; Radkowitsch et al., 2022; Sun et al., 2020), but also to 

measure these processes using high-level features. These frameworks offer a common language 

and structure for the description of collaborative activities, such as evidence sharing and plan-

ning, which can be applied across different domains. 

In conclusion, while collaborative problem-solving and collaborative diagnostic reasoning 

are dependent on domain-specific expertise, the conceptualization of collaborative problem-

solving activities demonstrates cross-domain applicability. By employing theory-based frame-

works to describe these activities, we can establish a common foundation across different do-

mains, thereby enhancing the utilization of process data for the assessment and support of col-

laborative problem-solving skills. 

5.6 Limitations  

This thesis is not without limitation that should be kept in mind and lower in some aspects 

the potential to generalize the findings.  

A limitation with respect to the collaborative diagnostic activities is the operationalization 

of quality in Paper 2. The quality indicators could always only shed light on one perspective of 

each activity, while possibly obscuring others. For instance, it is possible that content 

knowledge is not related to the precision of hypotheses sharing. However, this may be different 

when examining other quality indicators, such as sensitivity or specificity. Accordingly, a more 

detailed examination of the measurement of expert performance in the context of collaborative 

diagnostic activities seems to be warranted. Moreover, while collaborative problem-solving and 

collaborative diagnostic reasoning encompass a range of essential collaborative activities, the 

CoSiMed simulation concentrated on sharing-related skills and did not examine activities such 

as negotiation. This decision was made based on findings from prior research (e.g., Tschan et 

al., 2009), which indicated that diagnosticians face challenges in sharing information. Addi-

tionally, interviews with practitioners revealed that the primary obstacle in the collaboration 

between internists and radiologists (a common and complex situation requiring collaborative 

diagnostic reasoning) is the lack of precise justification for the test (e.g., the absence of relevant 

information) and the lack of patient information clustering (Radkowitsch et al., 2020). 
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Nevertheless, the findings and implications of Papers 2 and 3 are limited to sharing-related 

skills of collaborative diagnostic reasoning. Consequently, further research on additional as-

pects, such as negotiation skills, is required. 

Another limitation is the use of an agent-based simulation of collaborative diagnostic rea-

soning, which allows for a standardized and controlled setting that is difficult to establish in 

human collaborations while ensuring all necessary activities are performed (Rosen, 2015). Nev-

ertheless, the restricted nature of conversational interactions permitted by agent-based collabo-

ration has been identified as a potential limitation, with the extent to which natural collaboration 

can unfold being constrained as a result (Graesser et al., 2017). This may account for the limited 

impact of social skills in Paper 2, as the context may not necessitate the application of a broad 

range of social skills (Hesse et al., 2015; Radkowitsch et al., 2020). In a real-life collaboration, 

the effects of social skills might be more pronounced. Nevertheless, research demonstrated that 

the human-to-agent approach yielded comparable outcomes in collaborative problem-solving 

to the human-to-human approach in the PISA 2015 study, and correlations with other measures 

of collaborative skills have been identified (Herborn et al., 2020; Stadler et al., 2020). Moreo-

ver, the CoSiMed simulation has been thoroughly validated and is perceived as authentic, given 

that this specific collaborative situation also occurs in practice via distance communication 

(Radkowitsch et al., 2020). However, the advent of generative artificial intelligence and the 

utilization of large language models in educational settings has opened the possibility of devel-

oping a more flexible and authentic generative agent for collaboration. This agent could adapt 

its behavior in response to the learner's process and queries, facilitating a more natural and 

authentic interaction (Kasneci et al., 2023; Yan et al., 2024). 

A further potential limitation is the appropriateness of using diagnostic accuracy as a reliable 

and valid measure of (collaborative) diagnostic reasoning skills. In addition to diagnostic accu-

racy, which serves as an indicator of diagnostic quality, diagnostic reasoning skills also encom-

pass professional knowledge and diagnostic activities (Heitzmann et al., 2019). Nevertheless, 

achieving diagnostic accuracy represents the primary objective of diagnostic reasoning, not 

only within the medical domain (Pickal et al., 2023). The importance of accurate diagnoses 

cannot be overstated, given the potentially grave consequences for patients when a diagnosis is 

inaccurate (Balogh et al., 2015). Furthermore, a patient's diagnosis has a substantial impact on 

subsequent steps, including the formulation of treatment plans (Cook et al., 2019). 

A final limitation concerns the sample analyzed in Papers 2 and 3. It consisted exclusively 

of medical students with an intermediate level of expertise, which may have prevented the ob-

servation of behaviors characteristic of both experts and novices. In addition, results in Paper 2 
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showed that participants overall had on average a high level of collaboration knowledge. This 

could be an indicator that the collaboration knowledge tests might be too easy or to narrowly 

focusing on evidence sharing. Thus, in future studies, revising the measurement of collaboration 

knowledge is important. While the current assessment focuses on meta-knowledge about the 

collaboration partner, future operationalizations should aim to measure internal collaboration 

scripts, given the relevance of this construct found in this thesis. 

5.7 Directions for Future Research  

The overarching goal of this thesis was to enhance the use of process data for assessing and 

supporting collaborative problem-solving skills. This thesis examined the potential of process 

data analyses to (1) facilitate theoretical advancements and (2) inform learning and instruction 

of collaborative problem-solving in the context of collaborative diagnostic reasoning. In addi-

tion, the results also highlight several promising avenues for future research. 

A first direction for future research could be to investigate non-linear relations between the 

collaborative diagnostic activities. In light of the findings presented in Papers 2 and 3, it be-

comes evident that an isolated examination of collaborative diagnostic activities is insufficient 

to fully capture the complex interactions among these activities. The use of bigrams in Paper 3 

represented a preliminary investigation into this direction; however, further research is neces-

sary to examine longer sequences, such as sequence clustering (Piccarreta, 2017). As the ex-

ploratory use of longer sequences can rapidly increase the required sample size, it is recom-

mended that potentially relevant sequences be defined a priori based on theory or previous 

studies. Hypotheses about such strategic behavior in collaborative problem-solving tasks should 

then be explicitly tested. This would automatically account for the relevance of theory outlined 

before. For instance, in light of the findings presented in Paper 3, it may be reasonable to ex-

clude the analysis of time spent on collaborative diagnostic activities. Instead, it would be more 

fruitful to examine the actions undertaken directly before and after the first transition from ev-

idence sharing to hypotheses sharing. 

A second direction of future research is to investigate the extent to which the proposed adap-

tive instructional support is suitable for facilitating the learning of collaborative diagnostic rea-

soning skills. In light of the found relation between collaboration knowledge and evidence shar-

ing in Paper 2, as well as the finding from additional analyses in Paper 3 that transitioning from 

evidence sharing to hypotheses sharing at least once decreases the likelihood of concluding an 

inaccurate diagnosis, it is proposed that an adaptive instructional support strategy be imple-

mented, whereby learners who are not transitioning from evidence sharing to hypotheses shar-

ing are provided with a collaboration script. Prior research has already indicated that the 
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performance of evidence sharing is facilitated with an adaptive collaboration script (Rad-

kowitsch et al., 2021). However, in this study, adaptivity was realized according to the quality 

of the performed activities. It remains unclear whether adapting to the sequence of activities is 

more beneficial. 

A third direction of future research is the utilization of a generative AI-enhanced agent. Alt-

hough agent-based collaboration offers significant advantages (see 1.2.3), it also entails certain 

limitations (see 5.4). Consequently, it may be beneficial to investigate whether the findings of 

Papers 2 and 3 can be replicated in a human-to-human setting. However, as it would be more 

challenging to obtain comprehensive process data on the required activities in such a setting, a 

preliminary approach could be to utilize a generative AI-enhanced agent to bridge the gap be-

tween human-to-agent and human-to-human approaches while maintaining a controlled envi-

ronment, individual measurement, and the necessity of all required processes. 

A fourth direction for future research could be to examine the transferability of the CDR-M 

and the findings of the presented Papers 2 and 3 to other diagnostic situations and to other 

domains. While Papers 2 and 3 concentrated on information-sharing skills during collaborative 

problem-solving using the CoSiMed Simulation, the CDR-M also entailed other collaborative 

activities. This decision was made during the design of the simulation, as prior research has 

indicated difficulties in sharing and eliciting information with and from collaboration partners 

(Tschan et al., 2009) and interviews with medical doctors identified the task of requesting a 

radiologic examination as of crucial importance (Radkowitsch et al., 2020). Therefore, future 

research may examine the role of, for instance, negotiation skills in collaborative diagnostic 

reasoning. To enhance the generalizability of the current findings, it would be further interesting 

to investigate other tasks within the medical domain, as well as in other domains requiring 

collaborative diagnostic reasoning skills. These could include diagnosing learning difficulties 

or students' possible misconceptions in teacher education (Heitzmann et al., 2019). In compar-

ison to other domains, medicine is characterized by highly standardized procedures, which 

could have an impact on collaborative diagnostic activities and, as a result, limit the extent to 

which the findings can be transferred to other domains. Therefore, further research is required 

to investigate the transferability of the conceptualization of collaborative problem-solving pro-

cesses. 

On a more general note, future research is encouraged to challenge and advance existing 

theories with respect to the details they imply for relevant activities. While theories of collabo-

rative problem-solving describe an idealized representation of the problem-solving process 

through the coordination of externalized individual activities into a coherent sequence of events 
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(Hesse et al., 2015), research on this sequence of events during collaborative problem-solving 

using process data is still rare. Therefore, a promising direction for future research is the iden-

tification of beneficial sequences of processes and the examination of how these sequences are 

influenced by individual and task characteristics. For example, Paper 3 could identify the tran-

sition from evidence sharing to hypotheses sharing as a relevant process to be performed at least 

once, or the finding that transitions between collaborative diagnostic activities seem to be more 

important than the time spent on these activities. These findings can then be used to advance 

existing theories on collaborative problem-solving (e.g., Hesse et al., 2015; OECD, 2017; Rad-

kowitsch et al., 2022; Sun et al., 2020) in order to facilitate the sustainable use of process data, 

thereby enhancing the theory and practice of collaborative problem-solving. The use of a joint 

language in this line of research would also have the potential to facilitate the generalization of 

findings across domains. 

 



 

 

 
 

 
 

 
CONCLUSION 

6 

 

 

 

 
Laura Brandl  

 

 

  
  

 

 

 

 

 

 

 

 

  
  





 Conclusion 145 

The ability to engage in collaborative diagnostic reasoning is a fundamental skill for numer-

ous professionals on a daily basis (Graesser et al., 2018; Radkowitsch et al., 2022). A lack of 

skills and errors can have severe negative consequences, including serious adverse events and 

suboptimal patient care, particularly in the context of medicine (Hooftman et al., 2024). To gain 

a deeper understanding of collaborative diagnostic reasoning from a theoretical perspective and 

thereby inform learning and instruction, the present thesis focused on how process data derived 

from interactive collaborative problem-solving tasks, particularly within the context of collab-

orative diagnostic reasoning in agent-based simulations, can be utilized to enhance theoretical 

models and learning and instruction of collaborative problem-solving skills. The overarching 

goal of this thesis was to demonstrate how process data can be employed in a sustainable and 

meaningful manner to enhance theoretical models and instructional support for collaborative 

problem-solving skills. Recent advancements in the context of process data analyses permit 

researchers to collect process data in an unobtrusive manner, thereby facilitating the investiga-

tion of the cognitive processes involved in collaborative problem-solving and collaborative di-

agnostic reasoning (Matcha et al., 2019). However, the use of process data presents both op-

portunities and challenges. Process data analyses allow for more nuanced assessments of learn-

ers' problem-solving skills, thereby providing a basis for targeted interventions and a deeper 

theoretical understanding. To leverage the full potential of process data analyses of collabora-

tive problem-solving it is crucial to use standardized data collection, complex analyses meth-

ods, and robust theoretical frameworks.  

The findings of the presented papers demonstrated how process data can be utilized to ad-

vance theoretical models, as illustrated by the CDR-M, to facilitate the learning of collaborative 

diagnostic reasoning skills and, consequently, enhance the utilization of process data in collab-

orative problem-solving scenarios. This is exemplified by the application of collaborative diag-

nostic reasoning in agent-based simulations. With respect to theoretical advancements, the the-

sis provided support for four assumptions proposed in the CDR-M. In addition, two new as-

sumptions were added to the model: Firstly, the unique contribution of collaborative diagnostic 

activities to collaborative diagnostic reasoning and secondly, the need to investigate complex 

non-linear interactions between collaborative diagnostic activities. In terms of supporting the 

development of collaborative diagnostic reasoning skills, there are several practical implica-

tions: Firstly, it is important to focus on collaboration knowledge and collaborative diagnostic 

activities. Secondly, it is necessary to consider how to measure processes such as collaborative 

diagnostic activities and make this a key design factor. Moreover, a strategy for providing adap-

tive instructional support is presented. Lastly, the findings of this thesis also provide insights 
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into the potentials of enhancing the usage of process data analyses in the assessment and support 

of collaborative problem-solving. It is of crucial importance to employ theory-based frame-

works to describe collaborative problem-solving processes, such as collaborative diagnostic 

activities of collaborative diagnostic reasoning, in order to establish a common ground for the 

assessment and support of collaborative problem-solving skills across different domains. This 

will, in turn, facilitate further improvements in the use of process data analyses. Which will 

lead to more proficient collaborators in the future, not only in the medical domain. 
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8.1 Patient Cases Used in Paper 2 and 3 

For Paper 2 and 3, fictitious but authentic patient cases were developed with medical experts 

in the project team. Table 3 shows an overview of which patient cases were used in Paper 2 and 

3.  

Table 3 

Overview About all Patient Cases Used in Paper 2 and 3 

Patient Diagnosis 
Usage 

Paper 2 Paper 3 

Marianne  Freundorf Acute pancreatitis Study A  

Herma Goettlich Aspiration pneumonia 
Study B 

Study C 
Case 1 

Sabine Winkler Community acquired pneumonia (CAP)  Case 2 

Anton Fomin Acute tuberculosis  Case 3 

Mark Binder Pneumocystis jirovecii Pneumonia (PJP)  Case 4 

Maria Schenker Hospital acquired pneumonia  Case 5 

 

Afterwards, the health record of one patient case is presented exemplarily (Table 4) along a 

screenshot how the patient case is presented in the CoSiMed simulation (Figure 4).  

Table 4 

Example Case: Herma Goettlich 

Health     

Record  

Section 

Content 

Introduction 

You have been working in a medium-sized regional hospital for a few 

months and are currently working on a general internal medicine ward. To-

day you are also in charge of the emergency department. In the late hours of 

Monday morning, 78-year-old Herma Goettlich is brought in by the ambu-

lance, accompanied by her worried husband. Mrs Goettlich is suffering from 

severe shortness of breath, so her husband answers most of her questions. 

You have taken blood samples and ‘hastily’ sent them to the laboratory, Mrs 

Goettlich has her medical history taken and examined as far as possible. By 

the time you have finished, part of the lab is also ready and you can use the 

file to decide what the next diagnostic steps should be. 
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Ambulance 

Report 

78-year-old patient with fever since this morning and rapidly worsening 

shortness of breath. Improvement of symptoms with 2 liters of oxygen; de-

cision made to postpone intubation for now. Dysphagia with a history of 

stroke. Medication: Aspirin protect, ramipril, simvastatin, calcium/D3. 

Medical  

History 

Mr. Goettlich reports that his wife has been experiencing significant short-

ness of breath and a worsening fever since this morning. Everything was fine 

yesterday. They watched Tatort together and then went to bed. Normally, 

she has no lung issues and is generally in excellent internal health. Upon 

inquiry, Mr. Goettlich mentions that his wife has had swallowing difficulties 

since her stroke a few months ago and occasionally chokes. This happened 

last night as well, but he does not consider it worse than usual. There are no 

B symptoms. 

 

Pre-existing Conditions 

• History of media infarction (middle cerebral artery infarction) in 12/ 

2017 

• resulting in residual right hemiparesis  

• Osteoporosis 

• Early stage of dementia syndrome 

• History of tonsillectomy in 1962 

 

Medications 

• Aspirin protect, ramipril, simvastatin, calcium/D3 

 

Substance Use History 

• Approximately 10 pack-years of smoking, quit 40 years ago 

• Alcohol consumption is rare 

 

Social History 

• Retired, formerly worked as a butcher’s assistant 

 

Physical  

Examination 

 

 

 

 

78-year-old patient with decreased general condition and good general ap-

pearance (height: 1.75 m, weight: 72 kg, BMI: 23.5 kg/m²). 

  

Vital signs : Blood pressure 100/60 mmHg, heart rate 100/min regular, tem-

perature 37.9°C, respiratory rate 27/min, oxygen saturation 96% on 2 liters 
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Physical  

Examination 

of oxygen. Lymph nodes not enlarged, non-tender. Thyroid gland is unre-

markable. 

 

Cardiovascular system: No cyanosis. Heart sounds clear, regular, and tach-

ycardic, with no extra sounds or pathological heart murmurs. No jugular ve-

nous distention. Moderate bilateral leg edema, slightly more on the right than 

on the left. Peripheral pulses are palpable bilaterally. Mucous membranes are 

unremarkable.  

 

Respiratory system: Symmetrical chest expansion, no retractions, normal 

thoracic shape. No vocal fremitus, no stridor. Diaphragmatic excursion equal 

at 4 cm bilaterally, with no dullness to percussion. Lungs evenly ventilated, 

with coarse breath sounds throughout, cough with foul-smelling sputum, no 

pleural rub. 

 

Abdomen: Abdominal wall soft, non-tender, no masses, no guarding, bowel 

sounds normal in all quadrants. Kidneys not tender to palpation, spleen not 

palpably enlarged, liver 11 cm in the right midclavicular line, smooth sur-

face. No hernias. No visible surgical scars.  

 

Skin: Unremarkable skin findings. Extremities warm, no varicose veins. No 

nail abnormalities.  

 

Musculoskeletal system; Normal range of motion in all joints. No joint pain, 

swelling, or deformities. Spine non-tender to percussion.  

 

Neurological examination: Friendly, cooperative, oriented in all aspects, no 

evidence of formal thought disorder or suicidality. Pupillary light reflex di-

rect and consensual prompt and equal. Known right hemiparesis and facial 

paresis. No other weakness, no sensory deficit, no pathological reflexes, no 

drop in manual muscle testing. No signs of meningeal irritation. Vibration 

sensation intact 8/8 in all four extremities. 

Laboratory 
Parameter Value Reference range (f) 

Blood Count 

Erythrocytes 3.8 X 10^6 /µl 3.5 - 5 X 10^6 /µl 
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Hemoglobin (Hb) 13.6 g/dl 12 - 15 g/dl 

MCH 28 pg 27 - 34 pg 

MCV 84 fl 81 - 100 fl 

MCHC 33 g/dl 32 - 36 g/dl 

Hematocrit (Hkt) 38% 33 - 43 % 

Leukocytes 13.6 X 103 /µl 4 - 11 X 10^3 /µl 

Platelets 182,000 /µl 150,000 - 400,000 /µl 

Reticulocytes 1% 0.5 - 2 % 

Differential Blood Count 

Neutrophilic Granu-

locytes 

78% 45 - 78 % 

Stab Cells 4% 0 - 4 % 

Segmented Cells 74% 45 - 74 % 

Eosinophilic Granu-

locytes 

1% 0 - 7 % 

Basophilic Granulo-

cytes 

1% 0 - 2 % 

Lymphocytes 16% 16 - 45 % 

Monocytes 4% 4 - 10 % 

Coagulation 

Quick 100% 70 - 120% 

INR 1 1 

PTT 38 sec. 28 - 40 sec. 

Serum 

Sodium 142 mmol/l 136 - 148 mmol/l 

Potassium 4.7 mmol/l 3.6 - 5.2 mmol/l 

Calcium (total) 2.3 mmol/l 2.1 - 2.6 mmol/l 

Creatinine 0.9 mg/dl < 0.9 mg/dl 

eGFR >60 ml/min/1.73m^2 >60 ml/min/1.73 m^2 

Urea >60 ml/min/1.73 m^2 >60 ml/min/1.73 m^2 

Alkaline Phospha-

tase 

21 mg/dl 10 - 50 mg/dl 

Bilirubin (total) 45 U/l 40 - 190 U/l 

Bilirubin (direct) 1 mg/dl < 1.1 mg/dl 

CHE 0.6 mg/dl < 0.6 mg/dl 

GOT (AST) 4.6 kU/l 2.5 - 7.4 kU/l 

GPT (ALT) 13 U/l < 15 U/l 

y-GT 8 U/l < 17 U/l 

a-Amylase 14 U/l < 18 U/l 

Lipase 22 U/l 10 - 53 U/l 

Blood Sugar 89 U/l < 190 U/l 

HbA1c 89 mg/dl 55 - 100 mg/dl 

CK 5.40% 4 - 6 % 

CK-MB 34 U/l < 80 U/l 

CRP 4 U/l < 10 U/l 

Ferritin 53 mg/l < 6 mg/l 

TSH basal 83 µg/l 15 - 250 µg/l 

Erythrocyte Sedi-

mentation Rate 

1.8 µU/ml 0.2 - 3.1 µU/ml 

Urine-Stick 
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pH 5 5-7 

Protein - - 

Bilirubin - - 

Urobilinogen - - 

Nitrite - - 

Glucose - - 

Acetone - - 

Blood - - 
 

  

 

Figure 4 

Screenshot of the Introduction to the Health Record of Herma Goettlich 
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8.2 Measures for Individual Characteristics Used in Paper 2 

Content Knowledge 

Content knowledge was assessed in Paper 2 by conceptual (Boshuizen & Schmidt, 1992) 

and strategic knowledge (Stark et al., 2011) of radiology and internal medicine, respectively. 

The items in each construct were presented in a randomized way in each study. However, the 

items for study C were shortened due to the embedding of the data collection in the curriculum 

(Table 5).  

Table 5 

Overview of Number of Questions in the Content Knowledge Test 

Study 

Conceptual knowledge Strategic knowledge 

internal  

medicine 
radiology 

internal  

medicine 
radiology 

Study A 20 15 

24 

8 cases 

3 questions per 

case 

16 

8 cases 

2 questions per 

case 

Study B 20 15 

24 

8 cases 

3 questions per 

case 

16 

8 cases 

2 questions per 

case 

Study C 13 12 

24 

8 cases 

3 questions per 

case 

12 

6 cases 

2 questions per 

case 

Conceptual Knowledge  

Conceptual knowledge was measured using single-choice questions including 5 options 

adapted from a database of examination questions from the Medical Faculty of the LMU Mu-

nich, focusing pathophysiology, disease triggers, and radiologic interpretation of relevant and 

closely related diagnoses of the patient cases used in the simulation. A mean score of 0-1 was 

calculated, representing the percentage of correct answers and indicating the average conceptual 
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knowledge of the participant per medical knowledge domain. Below is an example item from 

internal medicine, the correct answer is in bold: 

The treatment of an acute, febrile respiratory infection is based on the pathogen spectrum 

(viral/bacterial). From this point of view, the use of antibiotics is indicated in approximately 

• less than 10% of cases 

• 10-20% of cases 

• 21-30% of cases 

• 31-50% of cases 

• over 50% of cases 

Strategic Knowledge 

Strategic content knowledge was measured contextually using key features questions 

(Fischer et al., 2005). Short cases were introduced followed by two to three follow up questions 

(e.g., What is your most likely suspected diagnosis?, What is your next examination?, What 

treatment do you choose?). Each question had eight possible answers, from which the learners 

were asked to choose one. A mean score of 0-1 was calculated, representing the percentage of 

correct responses, indicating the average strategic content knowledge of the participant per do-

main. This is an example item from radiology, correct answers to the question are written in 

bold:  

It's Monday morning in your radiology practice. 24-year-old Karin Ungenau comes to see 

you. She is referred by her neurologist with suspected multiple sclerosis.  

Which of the following imaging procedures do you carry out to confirm the diagnosis?  

• CT and MRI with cranial contrast agent  

• CT and MRI with spinal contrast agent  

• CT and MRI with spinal and cranial contrast agent  

• MRI with cranial contrast agent  

• MRI with contrast agent spinal  

• MRI native cranial  

• MRI native spinal  

• MRI native and with contrast agent spinal and cranial 

Assume that Mrs Ungenau has been deaf since birth and received cochlear implants (CI) on 

both sides as a child. What do you need to consider for the MRI that is now required? 

• The implant must be switched off while the examination is running 

• The implant must be reprogrammed before the examination  
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• The patient needs special headphones for the examination  

• The patient must be monitored for 24 hours after the examination 

• The examination must generally be refused  

• The examination must be performed under anaesthesia  

• No special precautions need to be taken  

• Before the examination, the exact fabric of the CI must be known and compatibil-

ity must be clarified   

Collaboration Knowledge 

Collaboration knowledge measured specific to the simulated task and consistent across the 

three studies used in Paper 2 as meta-cognitive knowledge about the collaboration partner 

(Engelmann & Hesse, 2011). Collaboration knowledge was measured with seven text-based 

patient cases with the leading symptoms of ascites, joint pain, impaired vigilance, B symptoms 

(fever, night sweats, and weight loss), back pain, dyspnea, and weakness, which combined re-

quired a radiological examination in the next step of the diagnostic process. Participants were 

asked to select all relevant information for seven different patient cases with the cardinal symp-

tom fever (internal medicine). The patient cases were presented in a randomized order and al-

ways included twelve pieces of information regarding the chief complaints, medical history and 

physical examination of the patient cases. We then assessed whether each piece of information 

was (not) shared correctly (i.e. whether relevant information was shared and irrelevant infor-

mation was not shared) and assigned one point and divided it by the maximum of 12 points to 

standardized the range of measure to 0-1. This is an example case:  

28-year-old Ulf Schäfer was found lying in front of a ladder. He had a contusion on his left 

forehead and abrasions on the left side of his body. Mr. Schäfer appears absent, does not respond 

appropriately to speech, and has vomited multiple times since being admitted to the emergency 

room. Only in response to a painful stimulus does he open his eyes and deliberately ward it off. 

Anisocoria is observed, with the left pupil reduced and the right pupil slim. The patient breathes 

shallowly, with a respiratory rate of 20/min, pulse 90/min, and blood pressure 100/65 mmHg. 

Lungs are ventilated on all sides, abdomen is soft, and extremities are unremarkable upon in-

spection.  

From the information provided below, please select the details that you would communicate to 

a radiologist for the Emergency CCT (correct answers are in bold):  

Condition after fall from ladder    Impaired vigilance  

Multiple episodes of vomiting    Reduced left eye aperture, right eye slim  

Shallow breathing Additional information   Contusion on the left forehead  
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Abrasions on the left side     Respiratory rate 20/min  

Pulse 90/min Physical examination   Blood pressure 100/65 mmHg  

Extremities inspection unremarkable   Anisocoria 

Social Skills 

Social skills were measured consistently across the three studies in paper 2 based on self-

report on a 6-point Likert scale ranging from total disagreement to total agreement. The con-

struct was measured using 23 questions divided into five subscales. Five questions aimed to 

measure the overall construct, the other four subscales were identified using the complex prob-

lem solving-frameworks of Liu et al. (2016) and Hesse et al. (2015): perspective taking (four 

questions), information sharing (five questions), negotiation (four questions) and coordination 

(five questions). For the final score, the mean of all subcategories is calculated, ranging from 1 

to 6, representing general social skills. Table 6 shows the example items per subscale.  

Table 6 

Example Items for Each Subscale for Measuring Social Skills 

Subscale Item 

Direct  

Measurement 
I enjoy working with others. 

Perspective Taking 
It is easy for me to put myself in the position of my collaboration 

partners. 

Information  

Sharing 

When I collaborate with others, I purposefully share relevant infor-

mation. 

Negotiating I can negotiate compromises when working with others. 

Coordination When I work with others, we have a clear common goal in mind. 

References: 

Boshuizen, H. P., & Schmidt, H. G. (1992). On the Role of Biomedical Knowledge in Clinical Reasoning by 

Experts, Intermediates and Novices. Cognitive Science, 16, 153–184. 

Engelmann, T., & Hesse, F. W. (2011). Fostering sharing of unshared knowledge by having access to the collab-

orators’ meta-knowledge structures. Computers in Human Behavior, 27(6), 2078–2087. 

10.1016/j.chb.2011.06.002 
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455. 10.1080/01421590500078471 
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Problem Solving Skills. In P. Griffin & E. Care (Eds.), Assessment and Teaching of 21st Century Skills (pp. 37–

56). Springer Netherlands. 
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of Research on Technology Tools for Real-World Skill Development (pp. 344–359). IGI Global. 
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8.3 Measures for Collaborative Diagnostic Activities Used in Paper 2 

After reading the health record, the learners’ task was to collaborate with an agent-based 

radiologist through requesting radiological examinations using a request form (Figure 5). For 

better readability the request form is translated into English in Figure 6 and the collaborative 

diagnostic activities derived from the CDR-M are mapped to the respective part of the request 

form.  

Figure 5 

Screenshot of the Radiological Request Form of Herma Goettlich 

 

 

Figure 6 

Collaborative Diagnostic Activities Mapped to the Request Form 
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Quality of Evidence Elicitation 

The quality of evidence elicitation was measured by assessing the appropriateness of the 

requested radiological examination for the indicated diagnosis. Therefor an expert solution 

showed which radiological examinations were appropriate for each of the possible diagnoses. 

If participants requested an appropriate radiological examination for the indicated diagnoses, 

they received 1 point for that request attempt. Finally, a mean score across all request attempts 

(maximum of 3) was calculated and scored. The final mean score was transformed into a binary 

indicator, due to the categorical nature of the original data and its skewed distribution, with a 

majority of responses concentrated in a single category. Thus, 1 indicates that all requested 

radiological examinations were appropriated and 0 indicates that also inappropriate radiological 

examinations were requested. For example, the appropriate radiological examination for diag-

nosing aspiration pneumonia, the accurate diagnosis of the example case Herma Goettlich are: 

X-ray thorax, CT thorax native, ultrasound abdomen. 

Quality of Evidence Sharing 

The quality of evidence sharing was measured using a precision indicator. This was calcu-

lated as the proportion of shared relevant evidence out of all shared evidence. Relevant evidence 

is defined per case and per diagnosis and indicated by the expert solution. The precision indi-

cator was first calculated per radiological request. We then calculated the mean score, summa-

rizing all attempts in that patient case. This resulted in a range from 0 points, indicating that 

only irrelevant evidence was shared, to 1 point, indicating that only relevant evidence was 

shared. For example, the relevant evidence for requesting a radiological exam for the accurate 

diagnosis of the example case Herma Goettlich are:  

• Shortness of breath 

• Rapid onset 

• Started this morning 

• History of nicotine abuse, 10 pack-years 

• Severe sweating 

• History of tonsillectomy, 1962 

• Fever since this morning 

• Sudden onset of shortness of breath 

• Dysphagia (difficulty swallowing) 

• Initial pO₂ 92% 

• Leukocytes 13.6 x 10³/µl 
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• CRP 53 mg/dl 

• Erythrocyte sedimentation rate 10/23 

• Reduced general condition (AZ) 

• Temperature 37.9°C 

• Respiratory rate 27/min 

• pO₂ 96% with 2 liters of O₂ 

• Lungs with coarse crackles on the right side 

• Cough with sputum 

• Foul-smelling sputum 

Quality of Hypotheses Sharing 

The quality of hypotheses sharing was measured using a precision score indicating how 

many of the diagnoses that the participants shared with the radiologist were actually relevant to 

the case. Therefore, the participant could choose out of a long menu of 249 diagnoses. For 

example, this are the 36 relevant diagnoses for the example case Herma Goettlich in the original 

German language along the English translation:  

• Alveolitis 

• Alveolitis, exogen allergisch (EAA) – Extrinsic Allergic Alveolitis (EAA) 

• Autoimmunes Geschehen – Autoimmune Disorder 

• Bronchitis – Bronchitis 

• Bronchitis, bakteriell akut – Acute Bacterial Bronchitis 

• Bronchitis, viral akut – Acute Viral Bronchitis 

• COPD – Chronic Obstructive Pulmonary Disease (COPD) 

• COPD, akut exazerbiert – Acute Exacerbation of COPD 

• COPD, chronisch – Chronic COPD 

• Degeneratives Geschehen – Degenerative Disorder 

• Entzündliches Geschehen – Inflammatory Disorder 

• Grippaler Infekt – Upper Respiratory Tract Infection (Common Cold) 

• Herzinsuffizienz – Heart Failure 

• Herzinsuffizienz, akut bei Myokardinfarkt/Herzinfarkt – Acute Heart Failure Due to 

Myocardial Infarction 

• Herzinsuffizienz, akut bei Myokarditis – Acute Heart Failure Due to Myocarditis 

• Herzinsuffizienz, chronisch, akut dekompensiert – Chronic Heart Failure, Acutely De-

compensated 
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• Infekt – Infection 

• Infekt, bakteriell – Bacterial Infection 

• Infekt, viral – Viral Infection 

• Influenza/Grippe – Influenza 

• Ischämie, Lungenarterienembolie, Lungenembolie – Ischemia, Pulmonary Artery Em-

bolism, Pulmonary Embolism 

• Mykobakteriose, atypisch – Atypical Mycobacteriosis 

• Pneumonie/Lungenentzündung – Pneumonia 

• Pneumonie/Lungenentzündung, Aspirationspneumonie – Aspiration Pneumonia 

• Pneumonie/Lungenentzündung, atypisch – Atypical Pneumonia 

• Pneumonie/Lungenentzündung, bakteriell – Bacterial Pneumonia 

• Pneumonie/Lungenentzündung, begleitend bei systemischem Wurmbefall – Pneumonia 

with Systemic Parasitic Infestation 

• Pneumonie/Lungenentzündung, CAP – Community-Acquired Pneumonia (CAP) 

• Pneumonie/Lungenentzündung, Pilzpneumonie – Fungal Pneumonia 

• Pneumonie/Lungenentzündung, Pneumocystis jirovecii Pneumonie (PCP) – Pneumo-

cystis jirovecii Pneumonia (PCP) 

• Pneumonie/Lungenentzündung, viral – Viral Pneumonia 

• Pneumothorax – Pneumothorax 

• Pneumothorax, spontan – Spontaneous Pneumothorax 

• Pneumothorax, traumatisch – Traumatic Pneumothorax 

• Rheumatisches Fieber – Rheumatic Fever 

• Sarkoidose – Sarcoidosis 

• Sepsis/Blutvergiftung – Sepsis 

• Thrombose, tiefe Beinvenenthrombose (TVT) – Deep Vein Thrombosis (DVT) 
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8.4 Measures for Diagnostic Outcomes Used in Paper 2 

In principle, the same coding schemes for the diagnostic outcomes (diagnostic accuracy and 

diagnostic justification) were used for across the studies used in paper 2. However, during the 

course of the studies, the coding schemes were revised in collaboration with the medical experts 

in the project. Therefore, the coding schemes for the same cases differ slightly between the 

studies. The most recent coding scheme is provided below. 

 

Diagnostic Accuracy 

A main diagnosis was assigned to each patient case as expert solution. Participants typed in 

the first three letters of their desired diagnosis and then received suggestions from a list of 249 

possible diagnoses. Diagnostic accuracy was then calculated by coding the agreement between 

the final diagnosis given and the expert solution. Accurate diagnoses (e.g., hospital-acquired 

pneumonia) were coded as 1, correct but inaccurate diagnoses (e.g., pneumonia) were coded as 

0.5, and incorrect diagnoses were coded as 0. A binary indicator was used for the final diagnos-

tic accuracy score, with 0 indicating an incorrect diagnosis and 1 indicating an at least inaccu-

rate diagnosis, due to the categorical nature of the original data and its skewed distribution, with 

a majority of responses concentrated in a single category. 

The exact coding instructions were as follows:  

• The learner receives 1 point for recognizing the accurate diagnosis.  

• If the accurate diagnosis is stated in the justification, this is scored as usual, but only if 

no diagnosis was previously stated in the diagnosis field.  

• If a diagnosis is first stated inaccurately (i.e. 0.5 points) or incorrectly (i.e. 0 points) and 

then specified more precisely in the justification, the score for diagnostic accuracy is 

not changed.  

• If the main diagnosis is missing, -99 is entered as the missing value (do not enter 0). 

Referring to the example case Herma Goettlich, the accurate diagnosis (1 point) was Aspi-

ration Pneumonia, however these diagnoses were still coded as correct but inaccurate (0.5 

points): Pneumonia, Bacterial Pneumonia, Community-Acquired Pneumonia (CAP), and Atyp-

ical Pneumonia. All other diagnoses were coded as incorrect (0 points) 

 

Diagnostic Justification 

A prerequisite for diagnostic justification is the provision of at least an inaccurate diagnosis 

(diagnostic accuracy coded with at least 0.5). If a participant provided an incorrect diagnosis 

(coded as 0), diagnostic justification was immediately scored as 0. After choosing a final 
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diagnosis, participants were asked to justify their decision in an open text field. Diagnostic 

justification was then calculated as the proportion of relevant reported information out of all 

relevant information that would have fully justified the final accurate diagnosis. Again, medical 

experts agreed on an expert solution that included all relevant information to justify the correct 

diagnosis. The participants’ solution was coded by two independent coders, each coding the 

full data, and differences in coding were discussed until the coders agreed. The exact coding 

instructions were as follows:  

• The learner receives 1 point for each aspect of justification mentioned by the learner 

that also appears in the expert solution (including synonyms).  

• The points are then divided by the maximum number of points that can be achieved, so 

that the learner can receive a score of between 0 and 1 point. Only the raw scores are 

entered into the coding table. The percentage score is then computed. 

• The justification is only coded if the diagnosis is correctly identified (diagnostic accu-

racy coded with at least 0.5). If the justification is not coded, -66 is entered. Important: 

But always check whether a diagnosis was given in the justification.  

• If the justification is missing when the diagnosis is correct (diagnostic accuracy coded 

with at least 0.5), -99 is entered. If the justification is missing when the diagnosis is 

incorrect (diagnostic accuracy coded with 0)., -66 is entered. If the diagnosis is missing, 

-66 is entered. 

• Expressions such as 'no high fever' count as 'fever' unless 'no fever' is specifically writ-

ten.  

• Where signs of infection are mentioned, the reference to the laboratory should be noted. 

Referring to the example case Herma Goettlich there were nine relevant aspects of justifica-

tion in the expert solution (without synonyms): (1) Dyspnea, (2) tachypnoea, (3) fever, (4) re-

duced SpO2, (5) cough with foul-smelling sputum, (6) dysphagia, (7) coarse-bubbling rales, (8) 

inflammation values increased/ infection parameters increased, (9) X-ray/CT chest: compres-

sions or consolidations or shadows 

 

Diagnostic Efficiency  

A prerequisite for diagnostic efficiency is the provision of at least an inaccurate diagnosis 

(diagnostic accuracy coded with at least 0.5). Diagnostic efficiency was then calculated by di-

viding the non-binary version of diagnostic accuracy by the minutes required to solve the pa-

tient case. If a participant provided an incorrect diagnosis (coded as 0), diagnostic efficiency 

was immediately scored as 0.  



178  Appendix 

8.5 Partial Dependence Plots Used in Additional Analyses of Paper 3 

Partial dependence plots were used in additionally analyses of Paper 3, Table 7 depicts them 

for each bigrams of collaborative diagnostic activities used as a feature to predict diagnostic 

accuracy. On the x-axis the discrete frequency of the feature can be seen, while the y-axis dis-

plays the likelihood of the model to predict 0, indicating an inaccurate diagnosis. For example, 

looking at the first feature, the time spent with evidence elicitation, the partial dependence plot 

indicates that the likelihood of the model to predict an inaccurate diagnosis is around 0.6 for no 

time spent with evidence elicitation. When the time increases also the likelihood of the model 

to predict an inaccurate diagnosis increases up to 0.8 when this feature occurred more than 200 

times in a process. The lines on the x-axis further indicate how often each value of the feature 

occurred across processes (i.e. learners working on a patient case). When looking, again on the 

first feature this indicates that most often learners had between 0 and 100 bigrams of evidence 

elicitation followed by evidence elicitation in their process per case.  

Table 7 

Partial Dependence Plots for Bigrams of Collaborative Diagnostic Activities Predicting  

Diagnostic Accuracy 

Feature Partial Dependence Plot 

Time spent with evidence elicitation 
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Time spent with evidence sharing 

 

Time spent with hypotheses sharing 

 

Transition from evidence elicitation to 

evidence sharing 
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Transition from evidence elicitation to 

hypotheses sharing 

 

Transition from evidence sharing to evi-

dence elicitation 

 

Transition from evidence sharing to hy-

potheses sharing 
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Transition from hypotheses sharing to ev-

idence elicitation 

 

Transition from hypotheses sharing to ev-

idence sharing 

 

 


