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Extended Summary

Collaborative problem-solving has emerged as a critical skill in the 21% century, as it is es-
sential for addressing complex and multifaceted challenges inherent in modern work environ-
ments (Graesser et al., 2018). In this thesis collaborative problem-solving skills are defined as
the capacity of an individual to effectively engage in a process, where two or more agents with
different knowledge bases attempt to solve complex tasks. The process of collaborative prob-
lem-solving involves active interaction with the problem, decision-making under uncertainty,
and the integration of knowledge and skills to create a shared problem representation needed to
reach a solution. Medicine is domain where it is of critical importance to reduce diagnostic
errors and thus ensure high quality patient care. Collaborative diagnostic reasoning, a form of
collaborative problem-solving in knowledge-rich domains like medical diagnosing, describes
the critical role of collaboration when solving diagnostic problems in order to achieve accurate,
well-reasoned and efficient diagnoses. Building upon research on collaborative problem-solv-
ing and diagnostic reasoning the collaborative diagnostic reasoning model (CDR-M; Rad-
kowitsch et al., 2022) proposes a joint perspective in solving diagnostic problems in a collabo-
rative effort. While this thesis focuses primarily on medical contexts, the insights and methods
developed are expected to be applicable across disciplines.

To support the development of expertise in collaborative problem-solving and collaborative
diagnostic reasoning, it is important to provide authentic situations allowing for knowledge
application and schema acquisition. Through repeated exposure to diagnostic problems and ex-
perience with cases, knowledge gets encapsulated and a data-base of already seen cases is cre-
ated or updated. This leads to prototypical abstract case representations enabling greater accu-
racy and efficiency when solving diagnostic problems (Boshuizen et al., 2020). The educational
implications are straightforward: For the restructuring and reorganization of biomedical
knowledge, the early exposure to patient cases is considered essential. However, the oppor-
tunity to engage in real-life problem-solving is limited and relevant situation to learn may arise
less often or are too critical to be approached by novices.

One way to overcome this issue and also facilitate the assessment of collaborative problem-
solving skills, is the use of technology-based assessments and simulation-based learning envi-
ronments. Simulation-based learning environments offer authentic situations for learners to
practice collaborative diagnostic reasoning without the risks associated with real patient cases
(Chernikova et al., 2020). The use of computerized agents as collaboration partners allows to
create a standardized and controlled setting that is hard to establish in collaborations among

humans. However, although the use of simulation-based learning environments and the
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integration of technology-based assessments presents opportunities it also entails challenges in
assessing and supporting collaborative problem-solving skills. The development of technology-
based interactive tasks and simulation-based learning using computerized tasks enables a closer
approximation of real-world scenarios. These tasks allow for monitoring the process through
observable problem-solving behaviors, which are stored as computer-generated log-file data
and can be accessed to provide valuable additional insights. Hence, process data can not only
be used to examine what has been achieved, but also how it was achieved, and to make infer-
ences about the cognitive processes involved in collaborative problem-solving. These infer-
ences are implications for assessing performance differences, developing predictive models,
and providing personalized support (Ulitzsch et al., 2023). However, there are also a number of
challenges associated with its use: Starting with ethical considerations before and during data
collection, through to the complexities of analyzing the data and the need for theory in inter-
preting the results.

The goal of this thesis is to improve the use of process data for assessing and supporting
collaborative problem-solving, specifically in the context of collaborative diagnostic reasoning
in medical education. To do so, this thesis compromises three papers having different foci on
the usage of process data. The first paper takes a meta-perspective and elaborates recent devel-
opments in leveraging process data through technology-based assessments for creating new
knowledge, improving learning and instruction, and providing actionable advice to policy
stakeholders. Building on these considerations, two empirical studies illustrate how process
data can be used for theoretical advancements and to improve instruction. The second paper
and first empirical study validates the CDR-M using process data. The third paper and second
empirical study then demonstrates how the combination of process data and theory can be used
to predict outcomes that can inform instruction in simulation-based learning of collaborative
diagnostic reasoning.

The first paper, a theoretical paper, analyzes the impact of process data from interactive tasks
in large-scale assessments. The paper highlights necessary changes that need to be undertaken
at the scientific level in how we analyze process data to foster sustainable changes at the prac-
tical and policy levels. Firstly, linking process data to educational theory is crucial for enhanc-
ing the generalizability of our findings and hence facilitate theoretical advancements. Secondly,
the design of assessment should be aligned with instructional design to inform learning and
instruction.

Paper 2 employs process data to empirically test and refine the CDR-M and thus demon-

strates how process data can be harnessed to generate new insights and advance theoretical
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frameworks in education. By analyzing data from three studies in a simulation-based environ-
ment the aim of the study was to better understand the collaborative diagnostic reasoning and
the processes involved using a structural equation model including indirect effects. Results
identified various stable relations between individual characteristics and collaborative diagnos-
tic activities, and between collaborative diagnostic activities and diagnostic outcome, highlight-
ing the multidimensional nature of collaborative diagnostic reasoning. In summary, the second
paper found that for successful collaborative problem-solving in knowledge-rich domains,
knowledge about the domain of the collaboration partner and collaborative diagnostic activities
play a crucial role in addition to content knowledge, which is traditionally in the focus of ex-
pertise research.

The third paper focuses on enhancing simulation-based learning by predicting diagnostic
accuracy in collaborative diagnostic reasoning using process data. This study developed a ran-
dom forest classification model based on theoretically derived process indicators to predict suc-
cess in a simulated learning environment. Results showed a satisfactory prediction rate for col-
laborative diagnostic reasoning performance, indicated by diagnostic accuracy. The model pre-
dicted accurate and inaccurate diagnoses and was therefore suitable for making statements
about the performance by only using process data of collaborative diagnostic reasoning. Hence,
Paper 3 showed that using prediction models enables researchers to provide practical solutions
such as identifying learners at risk to show inadequate performance in need of adaptive
instructional support.

In a nutshell, in terms of theoretical advancements, the papers presented indicate support for
four assumptions proposed in the CDR-M, as well as adding two new assumptions to the CDR-
M. Firstly, unique contribution of collaborative diagnostic activities to collaborative diagnostic
reasoning and secondly, the need to investigate complex non-linear interactions between col-
laborative diagnostic activities. With respect to supporting the development of collaborative
diagnostic reasoning skills, practical implications are to focus on collaboration knowledge and
collaborative diagnostic activities and turn the measurement of processes like collaborative di-
agnostic activities into a design factor. In addition, a strategy for providing adaptive instruc-
tional support is proposed. Lastly, the findings in this thesis also reveal several insights into
how the usage of process data analyses can be enhanced when assessing and supporting collab-
orative problem-solving skills. Most importantly, by leveraging theory-based frameworks to
describe collaborative problem-solving processes, we can create a common ground for as-
sessing and enhancing collaborative problem-solving skills across different domains and thus

further improve the use of process data analyses.
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Overall, findings of the three papers illustrate how process data can be used to advance the-
oretical models, as shown by the CDR-M, to support learning of collaborative diagnostic rea-
soning skills and, thus, ultimately enhance the usage of process data of collaborative problem
solving. In conclusion, this thesis highlights the need of leveraging theory-based frameworks
to describe collaborative problem-solving processes. This will lead to more proficient collabo-

rators in the future, not only in the medical domain.



Zusammenfassung

Kollaboratives Problemldsen hat sich im 21. Jahrhundert als eine entscheidende Féahigkeit
fir die Bewadltigung von komplexen und vielschichtigen Herausforderungen in modernen Ar-
beitsumgebungen herausgestellt (Graesser et al., 2018). In der vorliegenden Arbeit werden kol-
laborative Problemldsefahigkeit als die Fahigkeit einer Person definiert, sich effektiv an einem
Prozess zu beteiligen, bei dem zwei oder mehr Agenten mit unterschiedlichen Wissensstanden
versuchen, komplexe Aufgaben zu l6sen. Der Prozess des kollaborativen Problemlésens bein-
haltet die aktive Interaktion mit dem Problem, Entscheidungsfindung unter Unsicherheit und
die Integration von Wissen und Fahigkeiten, um eine geteilte Problemreprésentation zu schaf-
fen, die wiederum fur die Losung erforderlich ist.

Ein Bereich, in dem es von entscheidender Bedeutung ist, diagnostische Fehler zu reduzieren
und somit eine hochwertige Patientenversorgung zu gewahrleisten, ist die Medizin. Kollabora-
tives diagnostisches Denken ist eine Form des kollaborativen Problemldsens im Kontext von
Aufgaben, die einen hohen Wissensstand erfordern, wie es der Fall bei der medizinischen Di-
agnose ist. Es beschreibt die kritische Rolle der Zusammenarbeit beim Lésen diagnostischer
Probleme, um genaue, gut begriindete und effiziente Diagnosen zu erreichen. Aufbauend auf
der Forschung zu kollaborativem Problemlésen und diagnostischen Denken, schldgt das Modell
zum kollaborativen diagnostischen Denken (CDR-M; Radkowitsch et al., 2022) eine gemein-
same Perspektive beim Losen diagnostischer Probleme in kollaborativer Zusammenarbeit vor.
Obwohl sich diese Arbeit priméar auf medizinische Kontexte konzentriert, wird davon ausge-
gangen, dass die gewonnenen Erkenntnisse und Methoden disziplinubergreifend giltig sind.

Um die Entwicklung von Expertise in kollaborativem Problemldsen und kollaborativem di-
agnostischen Denken zu unterstiitzen, ist es wichtig, authentische Situationen bereitzustellen,
die Wissensanwendung und den Schemata-Erwerb ermdglichen. Durch wiederholte Auseinan-
dersetzung mit diagnostischen Problemen und Erfahrung mit Féllen wird Wissen verkapselt
und eine Datenbank bereits gesehener Falle erstellt oder aktualisiert. Dies fuhrt zu prototypi-
schen abstrakten Fallreprasentationen, die eine grofRere Genauigkeit und Effizienz beim Losen
diagnostischer Probleme ermdglichen (Boshuizen et al., 2020). Die padagogischen Implikatio-
nen, die man daraus ziehen kann, sind eindeutig: Fur die Restrukturierung und Reorganisation
von biomedizinischem Wissen ist es essentiell frih mit Patientenfallen konfrontiert zu sein.
Allerdings sind Gelegenheiten, bei denen man, sich an realen Patientenfallen beteiligen kann,
begrenzt und relevante Lernsituationen sind oft zu kritisch, dass es unverantwortlich wére, An-

fanger damit zu betrauen.



Eine Moglichkeit, diesem Problem zu begegnen und zudem die Bewertung von kollaborati-
ven Problemldsefahigkeiten zu erleichtern, bietet die Nutzung von technologiegestitzten As-
sessments und simulationsbasierten Lernumgebungen. Simulationsbasierte Lernumgebungen
bieten Lernenden authentische Situationen, um kollaboratives diagnostisches Denken zu tiben,
ohne die mit realen Patientenfallen verbundenen Risiken zu firchten (Chernikova et al., 2020).
Der Einsatz von computergestitzten Agenten als Kollaborationspartner:innen ermdglicht es,
ein standardisiertes und kontrolliertes Setting zu schaffen, das in der menschlichen Zusammen-
arbeit schwer umzusetzen ist. Allerdings bringt die Nutzung von simulationsbasierten Lernum-
gebungen und die Integration von technologiegestutzten Assessments nicht nur Chancen mit
sich, sondern auch Herausforderungen bei der Bewertung und Unterstltzung von kollaborati-
ven Problemldsefahigkeiten.

Die Entwicklung von technologiegestiitzten interaktiven Aufgaben und simulationsbasierten
Lernumgebungen unter Verwendung computergestutzter Aufgaben ermdglicht eine zuneh-
mende Anndherung an reale Szenarien. Diese computergestiitzten Aufgaben ermdglichen die
Beobachtung des Problemldseprozesses, reprasentiert durch beobachtbares Problemldseverhal-
ten. Diese Daten werden als computergenerierte Logfiles gespeichert und kénnen so zusatzliche
wertvolle Einblicke liefern. Prozessdaten kénnen daher nicht nur verwendet werden, um zu
untersuchen, welches Ergebnis erreicht wurde, sondern auch, wie dieses Ergebnis erreicht
wurde. Dies erlaubt Rickschlisse auf die kognitiven Prozesse, die beim kollaborativen Prob-
lemldsen ablaufen. Diese Riickschlisse haben Implikationen fir die Bewertung von Leistungs-
unterschieden, die Entwicklung von pradiktiven Modellen und die Bereitstellung personalisier-
ter Unterstiitzung (Ulitzsch et al., 2023). Allerdings gibt es auch eine Reihe von Herausforde-
rungen bei der Verwendung von Prozessdaten: Beginnend mit ethischen Uberlegungen vor und
wahrend der Datenerhebung, bis hin zu den Komplexitaten bei der Analyse der Daten und der
Notwendigkeit von Theorien bei der Interpretation der Ergebnisse.

Ziel dieser Arbeit ist es, die Nutzung von Prozessdaten zur Bewertung und Unterstiitzung
des kollaborativen Problemltsens zu verbessern, insbesondere im Kontext des kollaborativen
diagnostischen Denkens in der medizinischen Ausbildung. Dazu umfasst diese Arbeit drei Ar-
tikel mit unterschiedlichen Schwerpunkten auf der Nutzung von Prozessdaten. Der erste Artikel
nimmt eine Meta-Perspektive ein und erlautert jiingste Entwicklungen bei der Nutzung von
Prozessdaten durch technologiegestiitzte Assessments zur Schaffung neuen Wissens, zur Ver-
besserung von Lehren und Lernen und zur Bereitstellung umsetzbarer Ratschlége fur politische
Entscheidungstrager. Aufbauend auf diesen Uberlegungen illustrieren zwei empirische Studien,

wie Prozessdaten fir theoretische Fortschritte und zu verbesserter Instruktion genutzt werden
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konnen. Im zweiten Artikel wird eine empirische Studie zur Validierung des CDR-M vorge-
stellt. Der dritte Artikel und die dort berichtete zweite empirische Studie zeigen dann, wie die
Kombination von Prozessdaten und Theorie genutzt werden kann, um Lernenden-Ergebnisse
vorherzusagen, welche genutzt werden kénnen um in simulationsbasierten Lernumgebungen
des kollaborativen diagnostischen Denken instruktionale Anpassungen vorzunehmen.

Im ersten theoretischen Artikel wird die Nutzung von Prozessdaten aus interaktiven Aufga-
ben in large-scale Assessments analysiert. Der Artikel hebt hervor, welche Anderungen hin-
sichtlich der Art und Weise, wie Prozessdaten analysiert werden auf der wissenschaftlichen
Ebene unternommen werden miissen, um nachhaltige Verdnderungen auf praktischer und poli-
tischer Ebene zu fordern. Zum einen ist die Verknlpfung von Prozessdaten und Bildungstheo-
rien entscheidend, um die Generalisierbarkeit unserer Ergebnisse zu verbessern und somit the-
oretische Fortschritte zu erleichtern. Zum anderen sollte die Gestaltung von Assessments mit
der instruktionalen Gestaltung abgestimmt sein, um Lehren und Lernen zu verbessern.

Der zweite Artikel testet und verfeinert das CDR-M empirisch mithilfe von Prozessdaten
und zeigt somit, wie Prozessdaten genutzt werden kénnen, um neue Erkenntnisse zu generieren
und theoretische Modelle weiter zu entwickeln. Ziel der Studie war es die Daten aus drei simu-
lationsbasierten Studien zu analysieren um das kollaborative diagnostische Denken und die be-
teiligten Prozesse besser zu verstehen, indem ein Strukturgleichungsmodell mit indirekten Ef-
fekten verwendet wurde. Die Ergebnisse identifizierten verschiedene stabile Beziehungen zwi-
schen individuellen Merkmalen und kollaborativen diagnostischen Aktivitaten sowie zwischen
kollaborativen diagnostischen Aktivitdten und diagnostischen Ergebnissen, was die multidi-
mensionale Natur des kollaborativen diagnostischen Denkens hervorhebt. Zusammenfassend
zeigte der zweite Artikel, dass flr erfolgreiches kollaboratives Problemldsen in wissensreichen
Aufgaben neben dem Fachwissen, das traditionell im Fokus der Expertiseforschung steht, Wis-
sen Uber den Bereich der Kollaborationspartner:innen und kollaborative diagnostische Aktivi-
taten eine entscheidende Rolle spielen.

Der dritte Artikel konzentriert sich auf die Verbesserung des simulationsbasierten Lernens
durch die Vorhersage der diagnostischen Genauigkeit im kollaborativen diagnostischen Den-
ken unter Verwendung von Prozessdaten. Diese Studie entwickelte ein Random-Forest-Klassi-
fikationsmodell basierend auf theoretisch abgeleiteten Prozessindikatoren, um den Erfolg in
einer simulierten Lernumgebung vorherzusagen. Die Ergebnisse zeigten, dass diagnostische
Genauigkeit, als Indikator fir Erfolg im kollaborativen diagnostischen Denken, zufriedenstel-
lend mithilfe von Prozessdaten vorhergesagt werden kann. Das Modell sagte sowohl genaue als

auch ungenaue Diagnosen vorher und war daher daflir geeignet, Aussagen uber die Leistung
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ausschlieBlich unter Verwendung von Prozessdaten des kollaborativen diagnostischen Denken
zu treffen. Daher zeigte der dritte Artikel, dass die Verwendung von Vorhersagemodellen es
ermoglicht, praktische Lésungen bereitzustellen, wie z. B. die Identifizierung von Lernenden,
die wahrscheinlich unzureichende Leistungen zeigen werden und daher instruktionale Unter-
stitzung benétigen.

Zusammenfassend lasst sich sagen, dass die vorgestellten Artikel in Bezug auf den theoreti-
schen Fortschritt Hinweise auf die Gltigkeit von vier im CDR-M vorgeschlagenen Annahmen
sowie von zwei neuen Annahmen flir das CDR-M liefern. Als neue Annahmen sollte erstens
der einzigartige Beitrag kollaborativer diagnostischer Aktivitaten zum kollaborativen diagnos-
tischen Denken und zweitens die Notwendigkeit, komplexe nicht-lineare Interaktionen zwi-
schen kollaborativen diagnostischen Aktivitaten zu untersuchen berlcksichtig werden. Hin-
sichtlich der Unterstiitzung der Entwicklung von Fahigkeiten im kollaborativen diagnostischen
Denken bestehen praktische Implikationen darin, sich auf Kooperationswissen und kollabora-
tive diagnostische Aktivitaten zu konzentrieren und die Messung von Prozessen wie kollabora-
tiven diagnostischen Aktivitaten in einen Gestaltungsfaktor zu verwandeln. Darlber hinaus
wird eine Strategie zur Bereitstellung adaptiver instruktionaler Unterstiitzung vorgeschlagen.
SchlieRlich geben die Ergebnisse dieser Arbeit auch Einblicke in wie die Nutzung von Prozess-
datenanalysen bei der Bewertung und Unterstlitzung von kollaborativen Problemldseféhigkei-
ten verbessert werden kann. Am relevantesten ist jedoch, dass wir durch die Verwendung the-
oriegeleiteter Modelle zur Beschreibung von kollaborativen Problemldseprozessen eine ge-
meinsame Sprache fir die Bewertung und Verbesserung von kollaborativen Problemldseféhig-
keiten in verschiedenen Bereichen schaffen und somit die Nutzung von Prozessdatenanalysen
weiter verbessern kénnen.

Insgesamt veranschaulichen die Ergebnisse der drei Artikel, wie Prozessdaten verwendet
werden konnen, um theoretische Modelle, wie das CDR-M voranzutreiben und somit das Ler-
nen von F&higkeiten im kollaborativen diagnostischen Denken zu unterstitzen und somit letzt-
endlich die Nutzung von Prozessdaten des kollaborativen Problemltsens zu verbessern. Ab-
schlieend ist anzumerken, dass diese Arbeit die Notwendigkeit der Nutzung eines theoriege-
stutzten Modells zur Beschreibung kollaborativer Problemléseprozesse hervorhebt. Dies wird

nicht nur im medizinischen Bereich in Zukunft zu einer besseren Zusammenarbeit fiihren.
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1.1 Aim and Structure of the Thesis

Diagnostic errors are estimated to be the third leading cause of death in the US (Makary &
Daniel, 2016). Furthermore, a study from the Netherlands found that almost all reported cases
of such serious adverse events were associated with at least one human factor, such as errors in
coordination or communication between healthcare teams (Hooftman et al., 2024). It is there-
fore crucial to improve collaborative diagnostic reasoning skills in medical contexts to ensure
high-quality patient care. The concept of collaborative diagnostic reasoning emphasizes the
pivotal role of collaboration in the process of solving diagnostic problems and achieving accu-
rate, well-reasoned and efficient diagnoses (Radkowitsch et al., 2022). This thesis primarily
focuses on medical contexts. However, it can be expected that the insights and methods devel-
oped will be applicable across disciplines, given that collaborative diagnostic reasoning, or
more broadly collaborative problem-solving, are critical skills in a variety of professional do-
mains due to the increasing complexity of the problems that professionals are required to solve
(Fiore et al., 2018). Consequently, collaborative problem-solving skills have been identified as
a pivotal 21st-century skill, fundamental for navigating complex challenges and integral to nu-
merous aspects of modern work, particularly in fields that necessitate the integration of diverse
perspectives and expertise (Graesser et al., 2018).

The utilization of technology-based assessments and simulation-based learning environ-
ments presents a promising basis for assessing and supporting the development of collaborative
diagnostic reasoning skills. This is because such environments offer the potential to collect
detailed process data, which can provide insights into the underlying cognitive processes and
the complexities of the collaborative problem-solving process, which are not depicted in out-
come or self-report measures (OECD, 2010). The aim of this thesis is to investigate the poten-
tial of process data derived from interactive collaborative problem-solving tasks, particularly
within the context of collaborative diagnostic reasoning in agent-based simulations, to enhance
both assessment and support in a way that is both sustainable and meaningful. This thesis
demonstrates how process data can be practically applied to gain deeper insights, develop more
robust theories and thereby support learning and instruction.

The remainder of this thesis is structured in three main parts, the first of which is dedicated
to the theoretical underpinning. First and foremost, collaborative problem-solving is defined,
along with an explanation of how expertise is developed in this area and how simulations con-
tribute to the assessment and support of these skills. The subsequent section will focus on col-
laborative problem-solving in medical contexts, defining collaborative diagnostic reasoning

and outlining how expertise development in this domain differs from that of general problem-
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solving expertise. This is followed by an introduction to agent-based simulations as a means of
facilitating the acquisition of collaborative diagnostic reasoning skills. Subsequently, the con-
cept of process data analyses is introduced, along with an overview of the benefits and chal-
lenges associated with its implementation for the assessment and support of collaborative prob-
lem-solving skills. The first part concludes with a description of the general aim of the thesis,
as well as brief outlines of the included papers and their research questions.

The second part of the thesis presents three papers conducted to achieve the stated goals.
The first paper is a theoretical paper that takes a meta-perspective on the sustainable utilization
of process data in large-scale assessments. Although this paper focuses on large-scale assess-
ments, it is assumed that the recommendations regarding the use of process data are also appli-
cable to other contexts, such as simulation-based learning. The second paper presents the find-
ings of an empirical study which aims to investigate the extent to which process data can facil-
itate the creation of new knowledge, particularly in the context of validating theoretical models
in educational research. In order to validate the collaborative diagnostic reasoning model
(CDR-M), a multi-study structural equation model is analyzed. The third paper investigates the
potential of process data to inform learning and instruction by predicting learners' needs for
additional support. In particular, it investigates whether process data can be used to identify
learners who may benefit from adaptive instructional interventions during collaborative prob-
lem-solving tasks in medical education. The third and final part of the thesis presents a synthesis
of the findings in light of the initial theoretical assumptions. In conclusion, the thesis discusses
the implications for research and practice, with focusing on leveraging process data for the
assessment and support of collaborative problem-solving in the context of collaborative diag-
nostic reasoning within agent-based simulations.

1.2 Collaborative Problem-Solving

The ability to collaborate with others is a central skill in the 21st century, spanning a range
of contexts, including computer-supported collaborative learning and collaborative problem-
solving in professional practice (Fiore et al., 2018; Griffin & Care, 2015; OECD, 2017a). The
focus of this thesis will be on the topic of collaborative problem-solving. This is due to the fact
that many of the key problems faced by modern societies are of a highly complex nature, and
therefore require the input and collaboration of multiple individuals rather than single individ-
ual in order to be solved (Graesser et al., 2022). After defining the construct, the chapter elab-

orates on developing, assessing, and supporting expertise in these skills.
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1.2.1 Collaborative Problem-Solving Skills

The integration of multiple perspectives and sources of knowledge and expertise through
collaboration has been demonstrated to enhance the quality of solutions (Graesser et al., 2018).
While collaboration offers certain advantages, such as the sharing of knowledge, the combina-
tion of specialist skills, and the distribution of work; it also presents challenges in the form of
miscommunication, coordination issues, and potential conflicts in goal alignment (Funke et al.,
2018). When problems are solved collaboratively, the cognitive activities that are required for
individual problem-solving are extended by collaborative activities® that are needed to achieve
the desired outcome. The construct of collaborative problem-solving comprises several compo-
nents, which highlight different aspects related to the collaborative problem-solving process.
Accordingly, the relevant components and their conceptualization within the field of collabo-
rative problem-solving will be outlined, followed by a definition that incorporates a synthesis
of these elements.

Irrespective of whether a solution is reached individually or collaboratively, a problem is
encountered when the desired goal state differs from the actual current state and there is no
routine method of solution available (Mayer & Wittrock, 2006). The early research on problem-
solving concentrated on relatively simple, knowledge-lean, tasks that did not require a lot of
knowledge, such as the Tower of Hanoi or other puzzle-like tasks. These tasks are distinguished
by the provision of all necessary information within the task instructions, thereby necessitating
minimal prior knowledge and relying primarily on general cognitive skills and reasoning abili-
ties. In knowledge-lean tasks, the problem space is typically well-defined, with clear initial
states, operators, and goal states provided within the task instructions (van Lehn, 1989). The
underlying assumption was that the cognitive processes used to solve these knowledge-lean
problems were generalizable to more complex problems, suggesting that problem-solving skills
were domain-general (Newell et al., 1959). Consequently, these problems are useful for the
evaluation of general cognitive abilities, as they are not dependent on specific content
knowledge.

In contrast, knowledge-rich tasks that require a high level of domain-specific knowledge are
relevant whenever it comes to learning. Examples of domains that are particularly knowledge-
rich include engineering, physics, medical diagnosing, and other specialized fields. In these
domains, good problem solvers possess content knowledge that is well-organized, coherent,
and chunked. This organization of knowledge enables the efficient representation of problems

and the selection of appropriate strategies for solving knowledge-rich problems (Sugrue, 1995).

1 Also referred to as social activities
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The presence or absence of solution-relevant knowledge is a critical factor in determining
whether a situation is perceived as a problem. To provide an example, a simple arithmetic ques-
tion may be easily solved by the majority of adults, yet it could be unsolvable for a preschooler
due to the lack of relevant knowledge. This illustrates that the problem-solving process is in-
herently linked to the knowledge base of the individual attempting to solve the problem, and
that the perception of a problem can vary considerably due to the prior knowledge and experi-
ence of the individual (Funke et al., 2018). Consequently, there has been a shift in focus towards
studying problem-solving within specific domains (Mayer & Wittrock, 1996). The problem-
solving process that occurs in the context of knowledge-rich tasks can be described as follows:
Firstly, a mental representation of the problem is established; secondly, relevant schemas or
scripts (see 1.2.2) are activated; and thirdly, this knowledge is applied in order to derive a so-
lution (Greiff et al., 2016).

There are several different categories of problem-solving tasks, such as knowledge-lean,
well-defined, complex, interactive, ill-defined, open-ended, knowledge-rich and much more
with no obvious boundary between the different labels or the constructs they represent (Funke
etal., 2018). This thesis will focus on complex problems, which are defined as dynamic systems
that individuals must manage in conditions of uncertainty (Ddrner, 1975), in knowledge-rich
tasks. These problems typically comprise a number of interconnected elements that are capable
of changing autonomously over time. Complex problems frequently lack transparency, neces-
sitating the retrieval and management of information. Furthermore, complex problems may en-
tail polytelic goals, which are competing or conflicting objectives that must be balanced (D6-
rner, 1975; Funke et al., 2018). The complexity of a problem is frequently attributed to the
structure of the external problem representation. The perceived complexity of a problem is sub-
ject to variation, depending on the level of expertise of the individuals engaged in problem-
solving. For example, a problem may be perceived as less complex by experts than by novices.
This distinction is crucial, as it acknowledges that the complexity and difficulty of a problem
are not inherent properties but are also dependent on the expertise of the problem solver (A.
Fischer et al., 2011).

In order to solve a problem, one or more individuals must engage in a problem-solving pro-
cess. This process involves searching for an operation or a series of operations with the aim of
transferring the given actual state of the system to a goal state (Dunbar, 1998; Newell & Simon,
1972). It requires a goal-oriented sequence of cognitive activities (Anderson, 1993; Funke et
al., 2018). Individual problem-solving skills are defined as “an individual's capacity to engage

in cognitive processing to understand and resolve problem situations where a method of
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solution is not immediately obvious” (OECD, 2013, p. 122). Problem-solving requires the ap-
plication of problem-solving strategies, which can be classified as either domain-general or
domain-specific. Domain-general strategies are employed in knowledge-lean task or tasks
where domain-specific knowledge is lacking, whereas domain-specific strategies are employed
in knowledge-rich tasks. Additionally, an accurate problem representation is essential, either
through solely interacting with the problem or through the activation of domain-specific
knowledge. Finally, self-regulation is necessary to monitor the execution of the problem-solv-
ing process (O'Neil, 1999).

The problem-solving process can be divided into two distinct phases: knowledge acquisition
and knowledge application. The process of knowledge acquisition entails the creation of a men-
tal representation of the problem, which encompasses an understanding of the problem's struc-
ture and the relevant information necessary for its solution (Klahr & Dunbar, 1988). This phase
is of critical importance for the establishment of a clear and accurate problem representation,
which subsequently serves as a foundation for decision-making and strategy development. The
second phase, knowledge application, involves the implementation of the solution process
based on the established problem representation (Novick & Bassok, 2005). The application of
knowledge entails the selection and execution of appropriate actions that facilitate the transition
from the current state to the desired goal state, based on the problem representation. This pro-
cess requires not only the retrieval of relevant knowledge but also the application of strategic
thinking and problem-solving heuristics. A study by Nicolay et al. (2021) investigated both
phases of individual problem-solving in 1151 students in 9th grade working on nine problems.
The findings showed that despite the acquisition of all relevant information about the problem
during the knowledge acquisition phase, two in five students were unable to fully solve the
problem in the subsequent knowledge application phase. This emphasizes the importance of
both phases for successful problem-solving.

The Program for International Student Assessment (PISA) 2012 framework identifies four
distinct cognitive processes that constitute the individual problem-solving process (OECD,
2013): (1) exploration and understanding of the problem task; (2) creation of a problem repre-
sentation through integration of acquired information with relevant prior knowledge, leading to
specific hypotheses about potential solutions. To reduce the uncertainty of these hypotheses,
(3) a plan is created and executed, as well as (4) monitored and reflected on, in order to reach
the solution. This is consistent with the hypothesis stated by Klahr and Dunbar (1988), which
posits that problem-solving in the domain of scientific discovery involves searching through

both a hypothesis generation space and a hypothesis testing space. To put it differently, the
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understanding process or knowledge acquisition phase generates the person's internal represen-
tation of the problem, whereas the search process or knowledge application phase generates the
person's solution (van Lehn, 1989).

In the context of collaborative problem solving, in addition to individual cognitive activities,
collaborative activities (e.g. exchanging ideas, negotiating ideas, regulating problem solving
and maintaining communication) are crucial to the collaborative problem-solving process. The
main goal of collaborative activities is to construct a shared problem representation (Rochelle
& Teasley, 1995). Research indicates that collaborative problem-solving performance is en-
hanced when the initial problem representation of each individual is consistent across collabo-
ration partners (Hesse et al., 2015). A study by Mathieu et al. (2000) involving 26 student dyads
working on a flight simulation found that concurrent problem representations between collab-
oration partners improved the quality of collaborative problem solving, leading to positive out-
comes. The construction of a shared problem representation requires the conscious and contin-
uous monitoring and coordination of individual cognitive activities and collaborative activities
related to shared knowledge (Hesse et al., 2015; Liu et al., 2016; Rochelle & Teasley, 1995). A
variety of models have been developed to describe the processes and required skills by which
humans collaborate to solve problems. These models differ primarily in terms of their granu-
larity (see Table 1).

The model proposed by Liu et al. (2016) identifies four key social skills, whereas Hesse et
al. (2015) suggest three main skills with several sub-skills. In particular, the ability to recognize
the information required by a collaborator to construct a shared problem representation is high-
lighted, as well as the identification of the specific information that needs to be shared (Rochelle
& Teasley, 1995). The OECD (2017a) based their theoretical framework on the work of Hesse
et al. (2015), but expressed it in the form of a 4x3 matrix, comprising four cognitive activities
and three collaborative activities. Lastly, Sun et al. (2020) synthesize recent models of collab-
orative problem-solving into three overarching categories: constructing shared knowledge, ne-
gotiation/coordination, and maintaining team function. Each category is further divided into
two subcategories and associated indicators. To illustrate, an indicator of the sub-facet estab-
lishing common ground for the facet constructing shared knowledge is defined as verifying the
understanding of others' ideas through questioning or paraphrasing. Notwithstanding the dis-
crepancies in granularity, these models exhibit considerable overlap: The majority of these
models align on several fundamental collaborative activities, although there are some discrep-
ancies in the terminology used to describe them. These collaborative activities include the ef-

fective sharing of information with collaboration partners, the elicitation of information from
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collaboration partners to expand knowledge, the negotiation of conflicting ideas, and the regu-
lation of collaborative processes by setting goals and monitoring the process. The sharing and
eliciting of information, which is often referred to as information pooling, is of particular im-
portance for collaborative information processing (F. Fischer et al., 2002; Hinsz et al., 1997).
This sharing and eliciting of information facilitate the construction of a shared problem repre-
sentation and potential solutions, which is a crucial element of successful collaboration (Ro-
chelle & Teasley, 1995). The ability to negotiate conflicting ideas is of great importance when
disagreements arise among collaboration partners (Hesse et al., 2015). Effective negotiation
helps prevent groups from dismissing opposing viewpoints or prematurely ending discussions
(Patel et al., 2002). It is also important to note that regulation is a crucial element in aligning
the goals and strategies of a group in order to achieve those goals (Jarvela & Hadwin, 2013).
Although collaborative problem-solving initially assigns a higher value to collaborative activi-
ties than to the cognitive activities involved in individual problem-solving (OECD, 2017a), both
are essential for success. However, research lacks evidence on which factors are particularly
relevant (Graesser et al., 2018).

Table 1

Overview of Three Collaborative Problem-Solving Frameworks
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Summarizing the different aspects of collaborative problem-solving skills, a problem in the
process of collaborative problem-solving is understood as a complex system that needs to be
transformed into a goal state under conditions of uncertainty requiring knowledge. The
knowledge required for these tasks can be either inherent to the task itself (i.e., knowledge-lean
tasks) or necessitate the utilization of prior knowledge organized in scripts (i.e., knowledge-
rich tasks). Both types of tasks necessitate interaction with the problem to be solved. Conse-
quently, in thesis collaborative problem-solving skills is defined as the capacity of a single
individual to engage effectively in a process involving two or more agents, each with a different
knowledge base, in order to solve complex tasks (OECD, 2017a). Although being a collabora-
tive process, the skill is individual and therefore can be assessed and developed at the individual
level, rather than at the group level. It entails active engagement with the problem at hand,
decision-making in the presence of uncertainty, and the integration of knowledge and skills to
construct a shared problem representation that is essential for reaching a solution. Further, col-
laborative problem-solving skills are understood to be a formative construct with varying de-
grees of its components' generalizability. These components are domain-specific knowledge
and domain-general cognitive activities (e.g., creating a problem representation, generating hy-
potheses and a solution plan, monitoring the process) and collaborative activities (e.g., sharing
and eliciting information, negotiating hypotheses, and regulating the process).

1.2.2 Expertise in Collaborative Problem-Solving

Both domain-specific knowledge and domain-general strategies are critical for problem-
solving. The balance between them may shift over time with increasing age (Schafer et al.,
2024; cf. Geary et al., 2017), with domain-specific knowledge becoming more relevant for ex-
pert performance. Expert performance is understood as “consistently superior performance on
a specified set of representative tasks for a domain” (Ericsson & Lehmann, 1996, p. 277). This
means, for example, that experts can solve a problem faster and more accurately than novices
and that they have better metacognitive abilities (van Lehn, 1989). In addition, experts seem to
be able to store and recall more information and to select relevant strategies based on their
previous experience with similar problems through the activation of schemas (Chase & Simon,
1973). A schema is conceptualized as a cognitive structure that stores knowledge from experi-
ence in a concrete or abstract form (Sweller, 1988). Another difference between experts and
novices is the categorization of problems: While novices tend to identify surface features, ex-
perts group problems according to their schemas (Sweller, 1988; van Lehn, 1989). One expla-
nation for the differences in expert performance compared to novices is that they can store a

greater number of items in their working memory due to their organization of knowledge. This
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leads to a reduced cognitive load and thus more capacity to engage in relevant problem-solving
activities (A. Fischer et al., 2011). Hence, experts use knowledge when they need to search for
the next step in the problem-solving process, which may be cognitively overwhelming for nov-
ices (Funke & Frensch, 2007; Mayer, 1992; Sweller, 1988). Vicente and Wang (1998) found
that there are at least 51 studies in at least 19 different domains demonstrating the superior
memory performance of experts. In summary, expertise is the development of cognitive struc-
tures necessary for effective problem-solving. Building on this, cognitive load theory offers
crucial foundations for understanding the information processing demands inherent in (collab-
orative) problem-solving.

Cognitive load theory describes cognitive structures that include a virtually limitless long-
term memory and a limited working memory (Atkinson & Shiffrin, 1968). The long-term
memory acts as a storage for accumulated knowledge, while the working memory deals with
the processing of information, either before it is encoded in the long-term memory or when it
is retrieved for usage. The contents of working memory correspond to our conscious thoughts,
whereas the vast contents of long-term memory are typically beyond our immediate awareness.
Cognitive load theory is primarily concerned with how this extensive knowledge can be effec-
tively acquired, given that the capacity of working memory is limited in both duration and the
amount of new information it can hold. However, these limitations do not apply to information
that is already well established in long-term memory (Paas et al., 2010).

Building on these assumptions, cognitive load is broadly understood as the amount of mental
effort required by a task including intrinsic, extraneous, and germane cognitive load (Sweller
etal., 2011). Intrinsic cognitive load is determined by the inherent complexity of the task (struc-
ture and interactivity) as a result of the individual's prior knowledge. Thus, a lack of prior
knowledge can lead to cognitive overload, and expertise (a) helps to reduce intrinsic load given
a certain interactivity between the elements of the task and (b) is assumed to moderate the use-
fulness of certain strategies and the effect of problem characteristics (expertise reversal effect,
see Kalyuga, 2007). In addition, germane cognitive load is the mental effort required to cope
with intrinsic load, whereas extraneous cognitive load is caused by poor instructional design
that complicates the learning process (Paas et al., 2004).

According to cognitive load theory, learning is described as the acquisition of cognitive
schemata that enable the categorization of the problem, the selection of the correct strategies to
apply and the regulation of problem-solving. The construction of such schemata is cognitively
demanding. Consequently, the processing of the task itself will compete with the construction

of cognitive schemata if the task is too demanding. In summary, cognitive load theory addresses
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the challenges that individuals face when engaging in complex cognitive tasks, which often
involve the simultaneous management of numerous interactive elements. Thus, an individual's
ability to perform in a particular domain depends on the amount of relevant knowledge stored
in their long-term memory. Given the importance of this knowledge, it is essential to consider
schemata—the structured form in which information is organized and stored (Sweller et al.,
2011).

Expert performance depends on the acquisition of specific schemas stored in long-term
memory. Schema theory became increasingly important in the 1980s because it seemed that
domain-specific knowledge, organized into schemas, distinguishes experts from novices in
problem-solving performance (Sweller et al., 2011). A “schema is defined as a structure which
allows problem solvers to recognize a problem state as belonging to a particular category of
problem states that normally require particular moves”, allowing individuals to chunk infor-
mation effectively, making it easier to retrieve and apply relevant knowledge during problem-
solving tasks (Sweller, 1988, p. 259). Put differently, a problem schema consists of information
about the class of problems to which the schema applies and information about their solutions
(van Lehn, 1989). The development of schemata is crucial for overcoming the limitations of
working memory, thus reducing cognitive load and errors (Anderson, 1985). According to the
ACT™* theory (Anderson, 1983), the key factor for expert performance is the ability to encode
declarative (factual knowledge) and procedural knowledge (cognitive skills), which is basically
reflected in the amount of experience. The transition from declarative to procedural knowledge,
also known as knowledge compilation, is essential for the development of expertise in
knowledge-rich domains (Anderson, 1985). In the initial stages of problem-solving in a new
domain, individuals rely on declarative knowledge, which consists of isolated facts and infor-
mation without an understanding of their application. During knowledge compilation, this de-
clarative knowledge is first transformed into procedural knowledge (proceduralization), which
involves knowing how to perform specific tasks. This procedural knowledge is subsequently
compiled into larger networks of procedural knowledge (composition) through a gradual and
laborious process known as knowledge compilation (Anderson, 1985). Knowledge compilation
enables the creation of problem schemata that guide the selection, adaptation, and execution of
solution procedures (Van Lehn, 1989). This transformation allows individuals to apply
knowledge more efficiently, leading to improved problem-solving skills and distinguishing ex-
perts from novices. In summary, the construction of schemas in knowledge-rich domains is a

critical mechanism for reducing cognitive load and errors. This process highlights the



General Introduction 27

importance of extensive experience and structured knowledge in the development of expertise,
enabling more efficient and accurate problem-solving.

As individuals repeatedly encounter similar problems, they store these experiences in long-
term memory, transforming declarative knowledge into procedural knowledge through proce-
duralization. As a result, experts can handle complex problems with greater ease and accuracy
than novices, who lack such schemas and are prone to cognitive overload. They can quickly
recognize familiar problems, retrieve appropriate schemas, and adapt them to specific situa-
tions. In contrast, novices must search for solutions without the benefit of pre-existing schemas,
leading to trial-and-error approaches or weak methods (Perkins & Salomon, 1989; van Lehn,
1989). There is a so-called "power-generality tradeoff": The more general the method (i.e.,
means-end analysis), the weaker the method (Perkins & Salomon, 1989). In contrast, expert
problem-solving consists of three steps: Selecting a schema, adapting (instantiating) it to the
problem, and executing its solution procedure (van Lehn, 1989). Once an initial schema is trig-
gered, it guides the interpretation of the rest of the problem. However, when more than one
schema is applicable to the given problem, even experts must search for the appropriate one to
reduce uncertainty in decision making. By enabling the recognition and application of relevant
problem schemas, experience allows individuals to solve problems more accurately and effi-
ciently, underscoring the importance of extensive learning and practice in developing expertise.

This interplay between knowledge and strategy application highlights that domain-specific
and domain-general problem-solving are not distinct categories but rather two ends of a contin-
uum (Greiff et al., 2014). In knowledge-lean tasks or in the absence of structured domain
knowledge, domain-general strategies play a critical role. Conversely, when tackling
knowledge-rich tasks with well-structured domain knowledge, domain-specific strategies be-
come essential. Thus, domain-general problem-solving strategies can be seen as a tool needed
to solve problems, but it takes domain-specific knowledge gained through experience to learn
when and how to apply these strategies, leading to domain-specific strategies (Perkins & Salo-
mon, 1989). Someone who is a very skilled problem solver in one domain may not be able to
transfer their problem-solving skills and strategies to another domain in which they lack exper-
tise. Both domain-specific and domain-general strategies are developed through experience,
leading to an increase in the quality of the problem-solving process as individuals develop the
ability to recognize and apply relevant problem schemas with less conscious processing
(Sweller et al., 2011).

In conclusion, by examining complex real-world problems, researchers have gained deeper

insights into the cognitive processes underlying expertise, highlighting the importance of
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domain-specific knowledge that is connected, integrated, coherent, and chunked through exten-
sive experience in effective problem-solving (Anderson, 1993; Funke et al., 2018; Sugrue,
1995). Initially, problem solvers in knowledge-rich tasks experience high cognitive load due to
limited working memory capacity, resulting in frequent errors. Over time, with increasing ex-
perience and exposure to domain-specific problems, individuals construct schema - organized
knowledge structures - that increase working memory capacity and reduce cognitive load (An-
derson, 1985). Because expert performance is a product of knowledge (van Lehn, 1989), prob-
lem-solving expertise is a domain-specific skill that, unlike general intelligence, can be learned
and supported (Funke et al., 2018).

1.2.3 Simulations for Assessing & Supporting Collaborative Problem-Solving Skills

In order to support the learning of collaborative problem-solving skills, we need to be able
to assess them. Educational assessment is a systematic method of collecting information or
artifacts about a learner and learning processes in order to make inferences about the individu-
al's skills (E. L. Baker et al., 2016).There are three main purposes: assessment to support learn-
ing (formative assessment), assessment of individual student performance (summative assess-
ment), and assessment to evaluate programs (evaluative assessment; Pellegrino et al., 2001).
Many traditional educational assessments use multiple-choice and constructed-response items
(Lee et al., 2019). However, this is not suitable for assessing collaborative problem-solving
skills as such items require responsiveness to the test taker's input. This is necessary because,
despite being an individual skill, an assessment of collaborative problem-solving skills would
hardly be valid if there was no interaction between the test-takers and the collaboration partners
(Stadler, Herborn, et al., 2020). However, this leads to the limitation of measuring collaborative
problem-solving as an individual skill, since the difficulty of the task lies not only in the nature
of the problem but also in the collaboration partner, making standardized assessments that con-
trol for the effect of collaboration challenging (Herborn et al., 2020). Furthermore, it is im-
portant to mention that, according to the definition of the OECD (2017a), problem-solving skills
focus on the attempt and not only on the outcome of the process.

To address these demands, technological advancements have enabled a shift from traditional
paper-pencil assessments to technology-based assessments?. These approaches, including sim-
ulated and interactive tasks, provide a more dynamic and accurate approach of assessing col-
laborative problem-solving skills and other 21st-century competencies (Care et al., 2012). By
reducing reliance on paper-pencil tasks, these innovations better capture the nuances of prob-
lem-solving processes, aligning with modern educational and assessment needs (OECD, 2010).

2 These assessments are also referred to as technology-enhanced assessments or computer-based assessments.
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Technology-based assessments make it possible to implement tasks that are responsive to test-
takers' input to allow for appropriately complex and realistic tasks and provide new sources of
evidence to assess test-takers' skills, such as their interactions with the virtual environment (Lee
et al., 2019). By leveraging features like multimedia, simulations, interactive tasks, and virtual
reality, these assessments offer innovative ways to evaluate skills more dynamically and com-
prehensively (Goldhammer et al., 2020). In addition to enabling the operationalization of pre-
viously unattainable skills, the use of technology-based assessments allows for the continuous
measurement of the problem-solving process (i.e., process data), rather than just discrete states
of problem-solving performance represented by answers to a task (i.e., product data; Thille et
al., 2014). Thus, it is possible to measure underlying processes beyond the outcome of a task,
which can be interpreted in terms of the cognitive and collaborative activities that occur during
task completion, and to move from if a problem was solved to how it was solved (Goldhammer
et al., 2013, Greiff et al., 2015; see 1.4.).

All current assessments of collaborative problem-solving skills are technology-based and
can be described by primarily two approaches (Li et al., 2024; for a review of assessments of
collaborative problem-solving skills see Chai et al., 2024): human-to-human collaboration (e.g.
ATC21S) and human-to-agent collaboration (e.g. PISA 2015). While human-to-human collab-
oration tasks involve a more authentic representation of natural collaboration, they lack con-
trollability, and the group composition could affect the validity of the individual assessment, as
the weakest collaboration partner determines the capabilities in the collaborative problem-solv-
ing process (Herborn et al., 2020; OECD, 2017a; Swiecki et al., 2020). However, because col-
laborative problem-solving is understood as an individual skill, human-to-agent collaboration
tasks ensure the independence of students' behavior during the assessment (Herborn et al.,
2020). This comes, in turn, with the limitation of a priori limited collaboration options and the
risk of test takers pretending to know what the desired response or outcome is, rather than what
they would do under the natural conditions (Graesser et al., 2017; Herborn et al., 2020; Oliveri
et al., 2017). Nevertheless, there are benefits to using computerized agents as collaboration
partners, allowing the creation of a standardized and controlled environment that is difficult to
achieve with human-to-human collaboration (Rosen, 2015). Computerized agents allow for
greater control over the collaboration process without deviating significantly from human-to-
human interaction (Graesser et al., 2018; Graesser et al., 2017; Herborn et al., 2020). In less
controlled settings, it is difficult to ensure that a particular process is taking place during col-
laborative problem-solving. For example, in a human-to-human collaboration, it is possible that

although we intend to measure a specific activity, it is not taking place. For example, Rosen
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(2014) explored this with respect to the comparability of conflict opportunities in a human-to-
human and a human-to-agent assessment of collaborative problem-solving. One-hundred-
thirty-six 14-year-old students from the United States, Singapore, and Israel worked in a hu-
man-to-agent setting, while 43 participated in a human-to-human setting. Both conditions
worked on the identical collaborative problem-solving task, and students knew whether their
collaboration partner was a computer agent or a classmate. The results indicated that while
collaboration in the human-to-agent setting strongly promotes opportunities for conflict situa-
tions (25.3%), these situations are rare in the human-to-human setting (6.1%). However, in
order to measure high levels of collaboration (OECD, 2013), it is critical that students have
opportunities to engage in conflict-related behaviors (e.g., negotiating conflicting ideas). When
using agents in technology-based interactive tasks, it is possible to ensure that all necessary
activities take place during collaborative problem-solving (Rosen, 2015).

A prominent example of the use of human-to-agent collaboration is PISA, arguably the most
comprehensive educational assessment program in the world, which in 2015 moved to technol-
ogy-based assessment and human-to-agent collaboration, using conversational agents as col-
laboration partners. This allowed for the development of a standardized assessment environ-
ment, as agents can generate their responses from the same pre-programmed set of responses
for each test-taker to assess collaborative problem-solving skills (Davier et al., 2019; OECD,
2017a). For instance, one of the tasks was to collaborate with two agents while taking part in a
competition to answer questions about the fictional country of Xandar, this task can be consid-
ered as a knowledge-lean task (see OECD (2017b) for a detailed task description). Additional
analyses of 483 German students within the PISA population found that self-rated collabora-
tion, teacher-rated collaboration, peer collaboration, and reasoning were moderately related to
performance on the PISA 2015 collaborative problem-solving tasks, even after controlling for
individual differences in reading achievement, making the human-to-agent collaboration ap-
proach a valid assessment task (Stadler, Herborn, et al., 2020).

Results from PISA 2015 showed that only 8% of students worldwide performed at the high-
est level of proficiency, while 29% of students performed at the lowest level in PISA 2015
collaborative problem-solving tasks (OECD, 2017b). That is, while only 8% were able to "bal-
ance the collaboration and problem-solving aspects of a presented task, identify efficient path-
ways to a solution, and take actions to solve the given problem™ (OECD, 2017b, p. 74), nearly
one third “tend to focus on their individual role within the group™ (OECD, 2017b, p. 74) and
required support from their collaboration partners to solve even simple problems. Furthermore,

the results showed that collaborative problem-solving performance is positively related to
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performance in the other domains assessed, but the relation is weaker than that observed be-
tween performance in these other domains (OECD, 2017b), despite the fact that collaborative
problem-solving was assessed in knowledge-lean tasks (OECD, 2017a). Thus, it is crucial to
support the development of collaborative problem-solving skills.

To develop expertise in complex skills such as collaborative problem-solving, it is important
to provide authentic situations that allow for knowledge application and schema acquisition
(Kolodner, 1992). However, opportunities to engage in real-world problem-solving are limited,
and relevant learning situations may occur infrequently or be too critical for novices to approach
(Chernikova et al., 2020; Mislevy et al., 2017). Furthermore, it is not just a matter of having a
lot of experience with collaborative problem-solving, but also of engaging in deliberate practice
to reduce the risk of being cognitively overwhelmed and having the cognitive resources avail-
able for schema construction (Corbalan et al., 2006). This means that (1) some aspect of the
process is focused on a well-defined problem with (2) immediate feedback on performance and
(3) the opportunity to gradually improve by repeatedly performing the same or similar activities
of the process (Ericsson, 2004). One way to address both aspects, the accessibility of relevant
authentic problem situations and the consideration of cognitive resources, is to use simulation-
based tasks as approximations of practice (Grossman et al., 2009).

Simulations are "a model or representation of reality (object, system, or situation) with cer-
tain parameters that can be controlled or manipulated” (Chernikova et al., 2022, p. 5), with an
emphasis on interacting with authentic objects (Cook et al., 2013). The use of technology-based
simulations spans tasks and domains as diverse as pilot training in flight simulators (L. Wong
et al., 2012), decision making in business simulations (Siewiorek & Gegenfurtner, 2010), or
medical diagnosis using simulated patients (Cook et al., 2010). Simulation-based learning is
thought to produce more transferable skills than traditional learning because task similarity is a
critical prerequisite for transfer (Cannon-Bowers & Bowers, 2010; Mayer & Wittrock, 2006).
In addition, a meta-analysis by Chernikova et al. (2020) pooled the results of 145 empirical
studies and found that simulations are among the most effective means of facilitating the learn-
ing of complex skills across domains compared to no intervention. The effect size is still very
large when simulation-based learning is compared with different types of instruction. In addi-
tion, simulation-based learning can be particularly effective when additional adaptive instruc-
tional support is provided (Leutner, 1993). Adaptivity of instructional support is understood as
the provision of support that is tailored to the specific needs of individuals (Plass & Pawar,
2020). Much research has been conducted in the area of simulation-based learning in medical
education (Cook, 2014; Cook et al., 2013; Hegland et al., 2017).
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1.3 Collaborative Problem-Solving in Medicine: Collaborative Diagnostic Reasoning

Diagnostic reasoning, i.e. accurately diagnosing a patient's illness is one of the physician's
most important tasks, and often requires collaboration between physicians from different spe-
cialties. While problem-solving is generally understood as transferring the current state of a
system to a goal state (Newell & Simon, 1972; see 1.2.1), diagnostic reasoning refers to identi-
fying the causes of the current, mostly undesired, state not only in medical diagnosing but also
engineering and teacher education (Abele, 2018). Despite this difference in the goal of the pro-
cess, diagnostic reasoning is considered a form of problem-solving (Heitzmann et al., 2019).

The medical literature (e.g., Bowen, 2006; Patel et al., 2002) describes the ideal diagnostic
process as consisting of three steps: After data collection, in which elements of the patient's
history, physical examination, and other information are gathered, an initial representation of
the problem is created and compared to an illness script (see 1.3.2), which is tested and leads
to the exclusion of alternative hypotheses (Charlin et al., 2012; Tschan et al., 2009). Therefore,
it is crucial that physicians have sufficient prior medical knowledge to use effective reasoning
strategies to solve diagnostic problems (Cutrer et al., 2013). A central goal of diagnostic rea-
soning is to reach an accurate diagnosis, referred to as diagnostic accuracy (Chernikova et al.,
2022; Simmons, 2010). In addition to achieving an accurate diagnosis, it is critical to adequately
justify that diagnosis with evidence (e.g., key clinical findings), referred to as diagnostic justi-
fication (Daniel et al., 2019; Yudkowsky et al., 2015). Diagnostic justification makes the rea-
soning behind the decision transparent and understandable to others (Bauer et al., 2022). Diag-
nostic efficiency is related to the time and effort required to reach the accurate diagnosis, given
that diagnosticians in practice are usually under time pressure (Braun et al., 2017).

Like the collaborative problem-solving process, the collaborative diagnostic reasoning pro-
cess requires interaction with an agent (human or computerized) to find a solution to the diag-
nostic problem. This chapter first introduces the necessary components for effectively perform-
ing such processes, based on the collaborative diagnostic reasoning model (CDR-M). It then
elaborates on how expertise in this domain is achieved, drawing on considerations of expertise
development in collaborative problem-solving. Finally, the chapter focuses on how agent-based

simulations support the development of collaborative diagnostic reasoning skills.

1.3.1 Collaborative Diagnostic Reasoning Skills

Diagnostic reasoning, whether performed individually or collaboratively, is the "goal-ori-
ented collection and interpretation of case-specific or problem-specific information to reduce
uncertainty in order to make [...] [professional] decisions" (Heitzmann et al., 2019, p. 4). How-

ever, most medical problems are too complex (i.e., increased intrinsic load; see 1.2.2) to be
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solved individually and require the interaction of multiple disciplines (Kiesewetter et al., 2017;
Patel et al., 2002). Therefore, diagnosticians need to engage in collaborative diagnostic reason-
ing, which is defined as solving a problem, such as diagnosing a patient, "by generating and
evaluating evidences and hypotheses that can be shared with, elicited from, or negotiated
among” collaboration partners based on their conceptual and strategic knowledge (Radkowitsch
et al., 2020, p. 2). This makes it a context-dependent and domain-specific skill consisting of
individual and collaborative activities (Simmons, 2010).

Starting with the individual activities, the scientific discovery as dual search model (SDDS;
Klahr & Dunbar, 1988) describes individual reasoning as a coordinated search through hypo-
thetical evidence and hypotheses spaces. The SDDS assumes that successful reasoning depends
not only on performing high-quality cognitive activities within these spaces, but also on being
able to coordinate between them by using a hierarchy of cognitive activities. These activities
include specifying hypotheses, deriving predictions from hypotheses, and testing and evaluat-
ing hypotheses in the light of existing evidence (Klahr & Dunbar, 1988). On a more abstract
level, reasoning processes have been further described by so-called dual-process theories
(Croskerry, 2009), in which reasoning can occur through a fast, unconscious retrieval process
(System 1) or a more analytical, slow, deliberate, and conscious logical process (System 2). In
diagnostic reasoning, this means that if the problem representation is familiar and matches al-
ready known problems, System 1 processes will quickly and effortlessly lead to the diagnosis
and nothing further may be required; if this is not the case, effortful System 2 processes will
take place (Croskerry, 2009). Although such models may provide some insights into how easily
and accurately diagnosticians make a diagnosis (see 1.3.3), they are less useful for explaining
the processes of diagnostic reasoning. Thus, a non-hierarchical conceptualization of eight epis-
temic activities, including (a) identifying a problem, (b) asking questions, (c) generating hy-
potheses, (d) constructing artifacts, (e) generalizing evidence, (f) evaluating evidence, (g) draw-
ing conclusions, and (h) communicating process and results, seems promising (F. Fischer et al.,
2014). Diagnostic reasoning may not always require all eight epistemic activities, and no gen-
erally valid order is assumed for these eight activities, but rather depends on the diagnostic
problem and the situation in which the problem is presented, as well as the expertise of the
diagnostician. Thus, it is not only the order, but also the quality of these activities that deter-
mines diagnostic success (Heitzmann et al., 2019).

In collaborative diagnostic reasoning, these individual diagnostic activities are extended by
collaborative activities (see 1.2.1). When collaboration partners have roughly equally distrib-

uted knowledge, engaging in all proposed collaborative activities has shown to be beneficial



34 General Introduction

for team performance (Andrews-Todd & Forsyth, 2020), but when collaboration partners are
dependent on each other's knowledge, research has emphasized the importance of sharing and
eliciting information (e.g., Tschan et al., 2009). This is in line with the transactive memory
theory emphasizing that when information is distributed among collaboration partners, it is im-
portant to know how the information is distributed among the collaboration partners (Wegner,
1987). Building on these considerations, transactivity is understood as the extent to which col-
laborators operate on the reasoning of their collaboration partners (Teasley, 1997). Recently,
two key aspects of transactivity have been highlighted for collaborative learning that are also
relevant for collaborative problem-solving: Novelty allows contributions to be enriched with
new ideas, laying the groundwork for the collaborative construction of a shared problem repre-
sentation, and reference keeps contributions connected (Vogel et al., 2023). In order to share
and elicit novel but referenced information, it is crucial to know what collaboration partners
know (or do not know). This is consistent with research on group awareness tools, which em-
phasizes the need for knowledge and information awareness, i.e., knowledge of others'
knowledge and information (Engelmann & Hesse, 2010). A study by Noroozi et al. (2013)
investigated the effect of providing participants with an external script that made them aware
of the knowledge distribution in the group, in terms of building a transactive memory system
and problem-solving performance. Sixty participants from two disciplinary backgrounds
worked in pairs to promote sustainable behavior among farmers. Fifteen pairs received a trans-
active memory script, while the others did not. Results showed that the presence of the script,
which makes participants aware of the knowledge distribution, facilitated the construction of a
transactive memory system, improved the quality of problem-solving plans, and transferred
knowledge from the group to the individual, but not vice versa. Another study found that when
information is not shared within the team, this can lead to inaccurate diagnoses (Larson et al.,
1998). Thus, the ability to effectively pool information (i.e. elicit and share information) is
crucial for successful collaborative diagnostic reasoning. In particular, in interdisciplinary col-
laboration, the pooling of information seems to be the most relevant for collaborative activities.
Elicitation involves requesting information from a collaboration partner in order to access ad-
ditional knowledge resources (Weinberger & Fischer, 2006). Sharing involves identifying the
information needed by the collaborator to build a shared problem representation (Rochelle &
Teasley, 1995).

Building on research on collaborative problem-solving and diagnostic reasoning, the CDR-
M (Radkowitsch et al., 2022) proposes a joint perspective in solving diagnostic problems
(Abele, 2018) in a collaborative effort (see Figure 1). The CDR-M is based on the SDDS model
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(Klahr & Dunbar, 1988) and its extension by van Joolingen and Jong (1997). In the extended
SDDS model (van Joolingen & Jong, 1997), which focuses on learning in knowledge-rich do-
mains, a learner hypothesis space has been added that contains all hypotheses that can be
searched for without additional knowledge. The CDR-M builds on these considerations and
describes the relations between individual characteristics, diagnostic processes, and diagnostic
outcomes. As in the SDDS model, collaborative diagnostic reasoning involves activities within
an evidence and hypothesis space; however, unlike the SDDS, in the CDR-M these spaces are
understood as cognitive storages of information. This is more in line with the extended dual
search space model of scientific discovery learning (van Joolingen & Jong, 1997).

Figure 1

Collaborative Diagnostic Reasoning Model
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Note. This figure is used from Radkowitsch et al. (2022, p. 120)

In summary, for successful collaborative diagnostic reasoning it is essential to coordinate
between evidence (data) and hypothesis (theory) by engaging in individual and collaborative
activities. More specifically, the CDR-M distinguishes between collaborative diagnostic activ-
ities, namely eliciting, sharing, negotiating, and coordinating evidence and hypotheses, and in-
dividual diagnostic activities, namely generating and evaluating evidence and hypotheses and
drawing conclusions (Radkowitsch et al., 2022). For evidence and hypotheses to become part
of a shared diagnostic space, and thus to construct and maintain a shared understanding of the
problem (Rochelle & Teasley, 1995), diagnosticians need to enact the proposed individual and
collaborative diagnostic activities with high quality (Radkowitsch et al., 2022).

The collaborative diagnostic reasoning process is influenced by four factors, namely profes-

sional knowledge, collaboration knowledge, general cognitive skills, and general social skills
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(Radkowitsch et al., 2022). Professional knowledge® refers to knowledge about strategies, con-
cepts and procedures in a specific domain (see 1.3.2). A distinction can be made between con-
ceptual, strategic and conditional knowledge. Conceptual knowledge refers to declarative
knowledge about pathophysiological relations underlying a disease, also known as biomedical
knowledge (Boshuizen & Schmidt, 1992). Strategic knowledge entails knowledge about prob-
lem-solving (Schmidmaier et al., 2013), and conditional knowledge describes knowledge about
when to successfully apply the other two parts (Stark et al., 2011). Previous research has shown
that it is not the mere existence of knowledge that is important for accurately diagnosing a
patient, but rather the goal-directed application (Kiesewetter et al., 2016; Kiesewetter et al.,
2020). To be able to apply this knowledge in a goal-directed way, collaboration knowledge is
required, i.e. a combination of meta-knowledge about the collaboration partner (e.g. goals, typ-
ical requirements, Engelmann & Hesse, 2010) and internal collaboration scripts (Kollar et al.,
2006). Especially when professional or collaboration knowledge is low, general cognitive and
general social skills are relevant (Radkowitsch et al., 2022). General cognitive skills refer to
domain-general problem-solving skills (see 1.2.1), which are especially relevant if domain-spe-
cific schemata based on professional knowledge are missing to guide the collaborative diag-
nostic reasoning process (see 1.2.2). General social skills mainly influence the collaborative
aspect of collaborative diagnostic reasoning and less the individual diagnostic reasoning aspect
(Graesser et al., 2018). Social skills are considered particularly important when collaboration
knowledge is low (F. Fischer et al., 2013) and are understood as the ability to share and nego-
tiate ideas, to coordinate, and to take the perspective of collaboration partners (Radkowitsch et
al., 2022; see also Liu et al., 2016, and Hesse et al., 2015). In addition, the importance of a
collaboration partner in the collaborative diagnostic reasoning process may be diminished if the
diagnostician has a great deal of prior knowledge and is thus able to solve the diagnostic prob-
lem solely through individual diagnostic reasoning. In this case, the evidence that can be gen-
erated through collaboration may be less relevant to the diagnostic outcome than when the di-
agnostician has less knowledge. However, most clinical problems are too complex (i.e., require
too much specialized knowledge to be known by one physician) to be solved individually and
require collaborative diagnostic reasoning (Kiesewetter et al., 2017; Patel et al., 2002). In prac-
tice, this often functions insufficiently. For example, previous research has shown that inade-
quate information sharing has been identified as a major cause of errors in radiology (Brady,
2017) and emergency medicine (Tschan et al., 2009). One explanation is that groups often fail

to successfully pool the information held by different members (Stasser & Stewart, 1992). Thus,

3 Also known as domain knowledge (Hetmanek et al., 2018) or content knowledge (Fortsch et al., 2018)
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it is crucial to develop domain-specific schemata based on professional and collaboration
knowledge to effectively guide the collaborative diagnostic reasoning process.

1.3.2 Expertise in Collaborative Diagnostic Reasoning

To reach a diagnosis, diagnosticians often map similarities and differences among their cur-
rent and previous patients or prototypical examples with the aim to engage in System 1 pro-
cesses, which demand less cognitive resources than effortful System 2 processes, because like
problem-solving, diagnostic reasoning is dependent on working memory capacity (Croskerry,
2009; Dumas et al., 2018; Hruska et al., 2016; Sweller et al., 2011). Thus, diagnostic problem-
solving, whether performed individually or collaboratively, is a function of the domain-specific
prior knowledge an individual possesses and, more specifically, the quality and organization of
that knowledge (Patel et al., 1994). While the same considerations for expert performance pre-
sented in 1.2.2 apply to the medical domain, the key to expert performance in diagnostic rea-
soning is seen in the formation of so-called illness scripts (Bowen, 2006).

Iliness scripts serve as cognitive representations of an illness, encompassing typical symp-
toms and findings derived from these encapsulated biomedical and clinical knowledge struc-
tures (Schmidt & Rikers, 2007). Such scripts consist of problem representations constructed
from previously solved problems, which include enabling conditions (i.e., patient and contex-
tual factors), fault (i.e., the underlying pathophysiological processes), and consequences (i.e.,
symptoms when the fault occurs; Custers, 2015). There are several important factors entailed
in illness scripts (Charlin et al., 2007): (1) the knowledge stored in an illness script is not ex-
clusive, so it can be stored in multiple illness scripts; (2) when one illness script is activated, it
can lead to the activation of other illness scripts, for example, for an illness that is often con-
fused; (3) illness scripts have slots that correspond to attributes associated with the specific
iliness they describe, with expectations about values that may or may not be found in a patient
case for each attribute. For each slot, the attribute value with the highest probability of occur-
rence is the default value; and finally, (4) when confronted with a patient case, illness scripts
are instantiated with information from that specific patient case, and these instantiated illness
scripts are used to update existing illness scripts. Thus, instantiated illness scripts are problem
representations constructed from information related to the diagnostic problem, but guided by
a generic illness script (Bellezza & Bower, 1981; Graesser et al., 1980). In many problem situ-
ations (e.g., routine problems), illness scripts are activated and instantiated automatically, with-
out conscious awareness (System 1). Only when more than one illness script is activated sim-
ultaneously for a problem situation, or when some of the default values in the activated script

contradict the information in the patient case that requires conscious reasoning (System 2;
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Charlin et al., 2007). Because of this unconscious process of script activation, research has
found that expert performance is impaired when information is not presented in the usual order
(Coughlin & Patel, 1987). Summarizing these aspects, illness scripts “contain [...] encapsulated
pathophysiological knowledge of the disease and its consequences, in addition to clinical
knowledge of the constraints under which a disease occurs” with default values guiding the
diagnostic process (Schmidt & Boshuizen, 19933, p. 214).

Iliness scripts are developed due to knowledge encapsulation through experience with diag-
nostic problems (Boshuizen et al., 1995; Schmidt & Boshuizen, 1993a). A process similar to
knowledge compilation, transforming declarative knowledge into procedural knowledge (An-
derson, 1985; see 1.2.2), called encapsulation, is crucial: Through repeated exposure to diag-
nostic problems and thus the application of conceptual biomedical knowledge, these structures
become procedural networks organized in illness scripts (Schmidt & Boshuizen, 1993a). Com-
piled knowledge is automatically and effortlessly activated by relevant cues in a case because
repeated activation in response to the same cues has caused its compilation (Anderson, 1983).
In the absence of illness scripts, novices must engage in System 2 reasoning processes that are
considered deliberate, slow, and error-prone (Rikers et al., 2000). However, with repeated use,
pathophysiological knowledge is encapsulated in simplified models that are more efficient but
have the same explanatory power. With increasing expertise, diagnosticians use System 1 rea-
soning processes through activated illness scripts, but they still have access to their declarative
knowledge and use it when necessary, for example during patient communication or when di-
agnosing particularly difficult patient cases (Charlin et al., 2007; Patel et al., 1990). The process
of knowledge encapsulation is based on empirical findings from studies investigating how ex-
perts, intermediates, and novices recall clinical cases, i.e., what their problem representation
looks like (Kintsch & Greeno, 1985). These experiments typically follow the same four-step
approach (Patel & Groen, 1986): (1) reading a clinical case, (2) recalling the case, (3) explaining
the signs and symptoms, and (4) providing a diagnosis. Boshuizen and Schmidt (1992) repli-
cated Patel and Groen's (1986) study with 20 participants (six novices, four lower and five
higher intermediates, and five experts) in an online setting using think aloud protocols. The
results show that most biomedical knowledge was recalled by lower intermediates. This phe-
nomenon has become known as the intermediate effect (Schmidt & Boshuizen, 1993b), which
describes an inverted U-shaped relation instead of a monotonically increasing function with
increasing expertise (Patel et al., 2005). Building on these findings, Schmidt et al. (1988) ma-
nipulated the amount of time available to process the clinical case. They studied 120 partici-

pants (24 each of novices, lower and upper intermediate, and experts) who were given either
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the traditional three minutes and 30 seconds (Patel & Groen, 1986), one minute and 15 seconds,
or only 30 seconds to study the patient case (step a). Instead of think aloud protocols, they used
written text for steps one to three (without time constraints). The results showed that when
processing time is restricted, the intermediate effect disappeared in both recall and pathophys-
iology. Instead, a weak positive linear relation with expertise level was found. Thus, it appears
that experts and novices use different knowledge when representing a clinical case due to
knowledge encapsulation (Schmidt & Boshuizen, 1993a). While novices recall the fewest as-
pects of a case, intermediates recall the most if given enough time, but only experts benefit from
their superior knowledge structures (illness scripts) by being able to recall relevant information
under time pressure, resulting in accurate diagnoses. In summary, knowledge encapsulation is
the result of extensive practice and confrontation with actual patients, leading to illness scripts,
which are schemas that restructure biomedical knowledge. This restructuring eventually leads
to abbreviations in lines of reasoning (cf. Koedinger & Anderson, 1990).

In order to develop expertise in (collaborative) diagnostic reasoning, it is therefore crucial
to develop illness scripts by encapsulating knowledge through gaining experience (Boshuizen
et al., 1995). The theory of knowledge restructuring through case processing (Boshuizen et al.,
2020) posits that repeated exposure to complex cases is fundamental to the development of
illness scripts. As professionals encounter and process a variety of cases, they undergo signifi-
cant cognitive adaptations that allow them to refine their knowledge structures, integrating both
theoretical understanding and practical experience. This restructuring enables professionals not
only to perform routine tasks with increasing efficiency, but also to adapt to novel situations
that may fall outside the scope of their initial training. The importance of case-based experience
lies in its ability to foster the development of illness scripts that are critical to expert perfor-
mance. Furthermore, the theory of knowledge restructuring through case processing empha-
sizes that expertise is not simply the accumulation of knowledge, but the ongoing restructuring
of that knowledge in response to new and diverse cases. This process is supported by empirical
evidence from several domains, including medicine, counseling, business management, and
law, where case processing is integral to professional practice (Boshuizen et al., 2020). The
ability to draw on previous case experiences allows professionals to identify patterns, anticipate
outcomes, and adjust their approaches as needed, which is essential for maintaining high levels
of performance in dynamic and complex professional environments.

Building on the theory of knowledge restructuring through case processing and case-based
learning (Kolodner, 1992), Radkowitsch et al. (2023, September) recently proposed a concep-

tual model for the development of diagnostic reasoning competence. The model assumes that
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through experience with cases, learners develop a database of previously seen cases in their
long-term memory. When confronted with new cases, cues within these cases activate illness
scripts and relevant cases from this database, both of which guide the subsequent diagnostic
process. If the activated case helped to diagnose the patient's case (i.e., solved the problem at
hand), this leads to a greater likelihood that this case from the database will be activated in the
future when confronted with similar cases.

In summary, experience with cases (1) encapsulates knowledge into illness scripts and (2)
creates and updates a database of already seen cases, resulting in prototypical abstract case
representations. Both lead to greater accuracy and efficiency in solving diagnostic problems,
both individually and collaboratively. The pedagogical implications of the presented theoretical
and empirical evidence are straightforward: Early exposure to patient cases is considered es-
sential for the restructuring and reorganization of biomedical knowledge (Eva, 2005; Lubarsky
et al., 2015). Therefore, medical students should be exposed to a large number of patient cases
with different diseases to develop expertise in (collaborative) diagnostic reasoning.

1.3.3 Agent-Based Simulations to Support Collaborative Diagnostic Reasoning Skills
Collaborative diagnostic reasoning skills are essential professional skills in the medical field.
They must be developed through training that involves exposure to patient cases, allowing
learners to construct illness scripts. Consequently, simulation-based learning is regarded as an
effective approach in medical education, providing learners with authentic patient cases and
preparing them for real patient contact (Issenberg et al., 2005). However, in many simulation-
based courses, only a limited number of students interact with the simulation, while the majority
observe the ongoing process (Zottmann et al., 2018). Theories such as social learning theory,
vicarious learning, and cognitive apprenticeship suggest that learning can occur through mere
observation of others (Bandura, 1977; Bandura, 2008; Collins et al., 1991). However, models
like the ICAP framework (Chi & Wylie, 2014) argue that acquiring complex skills, such as
collaborative diagnostic reasoning, requires active engagement with the task, which cannot be
achieved through observation alone (cf. Stegmann et al., 2012). This is consistent with the tran-
sition from paper-and-pencil assessment to technology-based assessment to facilitate interac-
tive tasks and collaborative problem-solving (see 1.2.4; Graesser et al., 2018; Herborn et al.,
2020). In order to overcome the limitations of assessing collaborative problem-solving skills
on an individual basis and without the dependency of the collaboration partner, agent-based
collaboration partners are incorporated into the assessment process. Adopting this approach
from an assessment context to a learning context has the potential to facilitate the acquisition

of collaborative diagnostic reasoning skills for a greater number of learners. This is achieved
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by enabling them to interact in relevant simulated situations, rather than merely observing them,
thereby enhancing their learning experience. With respect to collaborative diagnostic reasoning
skills, empirical studies have demonstrated that physicians frequently exhibit deficiencies in
information sharing skills, which represent a critical subskill of collaborative diagnostic rea-
soning skills (Kiesewetter et al., 2017; Tschan et al., 2009).

Accordingly, the agent-based CoSiMed simulation was developed to foster these subskills
and is used as a training and assessment instrument for collaborative diagnostic reasoning. The
simulation was developed and validated by Radkowitsch et al. (2020). By conducting inter-
views with seven practitioners from the fields of internal medicine and radiology, the research-
ers were able to identify a specific scenario that highlighted the ongoing challenges associated
with the sharing and elicitation of information with and from collaboration partners, as previ-
ously documented by Tschan et al. (2009): Requesting a radiologic examination during collab-
orative diagnostic reasoning of a patient case (see Appendix 8.1). This is because it necessitates
the sharing and elicitation of evidence and hypotheses that inform the diagnostic process (Da-
vies et al., 2018). The CoSiMed simulation was developed through a joint effort involving med-
ical experts, psychologists, and software engineers. As the majority of actual collaborations
between internal medicine and radiology are presumed to be document-based, and as simula-
tions are intended to represent actual practice, the CoSiMed simulation is also document-based.
This implies that the required information is provided in written or video format, whereas in
interaction-based simulations, it can only be accessed through active interaction with the pa-
tient. The advantage of document-based simulations is that learners have more opportunities to
reflect on their processes due to the absence of time pressure (Heitzmann et al., 2019).

In the CoSiMed simulation, learners are instructed to assume the role of an internist and are
required to complete three steps (Radkowitsch et al., 2020): (1) reading the health record of the
patient case, (2) collaborating with the agent-based radiologist, and (3) reaching a solution. In
the initial phase, learners are required to engage in evidence generation, with the objective of
developing an initial individual problem representation. By reading through the different parts
(e.g., medical history, physical examination, and laboratory values) of the health record ideally
the entailed cues activate one or more illness scripts which then lead to initial suspected diag-
noses, thereby structuring the following collaboration with the agent-based radiologist. During
the collaboration, learners must enact the collaborative diagnostic activities of evidence elici-
tation and sharing, as well as hypotheses sharing with high quality, in order to obtain results
from the agent-based radiologist. The learners are thus required to complete a radiological re-

quest form, selecting from a total of 42 different combinations of radiological methods and
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body parts (evidence elicitation), sharing patient information from the health record (evidence
sharing), and suspected diagnoses from 249 possible diagnoses (hypotheses sharing) that are
considered relevant for the agent-based radiologist. The aforementioned request form can be
considered the shared problem representation in this agent-based collaboration. Only if this
request form is filled out sufficiently, learners receive the information they asked for from the
agent-based radiologist, otherwise they get the opportunity to revise the request form (three
times in assessment situations and up to ten times in learning situations). The final step in the
process is for learners to draw conclusions based on the previous collaboration with the agent-
based radiologist. This entails indicating the final diagnosis and providing a justification for it.

The CoSiMed simulation, comprising fictitious but authentic patient cases, was validated by
investigating the differences between three levels of expertise (low (n = 45), advanced (n = 28),
and high (n = 25) prior knowledge level) with respect to the participants' diagnostic accuracy,
diagnostic efficiency, their information sharing skills, as well as their intrinsic cognitive load
(see 1.2.3) and perceived authenticity (Radkowitsch et al., 2020). The results showed that, on
average, practitioners with high levels of prior knowledge perceived the CoSiMed simulation
as authentic and had significantly higher diagnostic accuracy, diagnostic efficiency, and infor-
mation sharing skills than the low prior knowledge group. However, there was no significant
difference between the high and advanced prior knowledge groups, except for intrinsic cogni-
tive load. This finding is consistent with previous research on medical expertise conducted in
the absence of time pressure (see 1.3.2). Moreover, as anticipated, the high prior knowledge
group exhibited significantly lower intrinsic cognitive load, followed by the advanced and the
low prior knowledge groups (Radkowitsch et al., 2020). In conclusion, the CoSiMed simulation
can be considered a valid instrument for assessing and supporting the development of collabo-
rative diagnostic reasoning skills.

Previous research has employed the CoSiMed simulation to examine the effects of different
types of instructional support, such as collaboration scripts and reflection phases, on learning.
The importance of such instructional support is underscored by evidence that simulation-based
learning of problem-solving—such as collaborative diagnostic reasoning—is most effective
when learners receive guidance (Leutner, 1993). Without instructional support, unguided prob-
lem-solving can place excessive demands on learners' working memory capacity, potentially
impairing their ability to learn effectively (P. A. Kirschner et al., 2006). Radkowitsch et al.
(2021) investigated whether learners benefit more from the provision of an adaptive collabora-
tion script than from a static collaboration script or no support at all (see 1.4.2). The study,

which involved 160 intermediate medical students randomly assigned to one of three
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conditions, revealed that the performance of evidence sharing was facilitated by an adaptive
collaboration script, while the performance of evidence elicitation was also facilitated by the
static collaboration script, with respect to collaborative diagnostic activities. Moreover, the re-
searchers discovered that the adaptive collaboration script enhanced the learners' perception of
competence. Building on these results, Richters et al. (2022) investigated the effect of adaptive
collaboration scripts and reflection on individual diagnostic activities, specifically with regard
to the quality of evidence sharing, hypotheses sharing, and diagnostic accuracy. Additionally,
the role of prior knowledge, including both professional and collaboration knowledge, was ex-
amined. The researchers employed a 2x2 design with 151 intermediate medical students. The
findings indicated that adaptive collaboration scripts are more beneficial for learners with low
prior knowledge, whereas reflection on individual diagnostic activities enhances outcomes for
those with high prior knowledge. To gain deeper insights into the role of reflection in facilitat-
ing collaborative diagnostic reasoning, Richters, Stadler, Brandl, et al. (2023) investigated the
effects of low and highly structured reflection phases on collaborative diagnostic activities re-
garding the quality of those collaborative diagnostic activities and diagnostic outcomes, with a
particular focus on learners’ collaboration knowledge. The data set comprised 195 intermediate
learners engaged in the CoSiMed simulation, with an equal distribution across the three exper-
imental conditions (low-structured, high-structured, and no reflection support). Results showed
a moderating role of prior knowledge in the effectiveness of structured reflection: Learners with
low collaboration knowledge benefit from low-structured reflection while both forms of reflec-
tions are not beneficial for learners with high collaboration knowledge. The findings indicate
that different forms of instructional support facilitate the learning of collaborative diagnostic
reasoning using an agent-based simulation.

It is notable that the studies made use of data collected as a result of learners interacting with
the simulation, such as how they filled out the request form. Such data are referred to as process
data, which are stored immediately in log-files without the need of extra measurement (Gold-
hammer et al., 2017). The following chapter will examine the potential of process data to en-
hance the assessment and support of collaborative problem-solving skills.

1.4 Improving Assessment & Support using Process Data

The cognitive (and collaborative) activities that play a role in (collaborative) problem-solv-
ing have long been a subject of interest to researchers. Initially, however, it was only possible
to infer the outcome, for example, through think-aloud protocols in expertise research (see
1.3.2; Ericsson & Simon, 1980). The advent of technology-based interactive tasks and simula-

tion-based learning using computerized tasks has enabled a closer approximation to reality
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through the monitoring of the process, as observable problem-solving behaviors, which are
stored in computer-generated log-file data and can be accessed to provide additional infor-
mation (Bunderson et al., 1988; Goldhammer et al., 2020; Goldhammer et al., 2017). A signif-
icant benefit of utilizing process data is that it can be gathered without disrupting the natural
flow of the task, thus avoiding any additional measurements that might increase the cognitive
load on the participants (Matcha et al., 2019). Consequently, research can now examine the
sequences of thinking and action that underpin the problem-solving performance, facilitating
an analysis of the problem-solving process without the necessity of additional measurement
(Csapd & Funke, 2017; He & Davier, 2015). For example, Stadler, Hofer, and Greiff (2020)
employed process data from 1,491 9th graders working on five technology-based individual
problem-solving tasks to demonstrate that participants exhibited significant differences in both
the time required to solve the problem and the number of interactions performed, despite ex-
hibiting similar performance outcomes. This reinforces the notion that, with regard to problem-
solving skills, the solution itself is not the only relevant factor; the process by which the solution
was reached is also of importance (Greiff et al., 2013). This is in accordance with the OECD
(2017) definition highlighting that collaborative problem-solving is an attempt to solve a prob-
lem not only the solution to a problem. Therefore, different behaviors can actually represent
differences in skills beyond product data (Stadler, Hofer, & Greiff, 2020). Building on the
aforementioned line of reasoning, this chapter introduces process data analyses and presents a
selection of relevant studies that employ it in the context of collaborative problem-solving. It
then highlights the advantages of using process data as a valuable source of evidence for as-
sessing and supporting collaborative problem-solving skills. Finally, the chapter concludes with

an in-depth examination of the key challenges associated with utilizing process data.

1.4.1 Process Data Analyses

Process data allows “a potentially fluid window into the minds” of individuals during the
problem-solving process (Rupp et al., 2012, p. 73). Thus, process data allows researcher to give
answers to the question “what particular [collaborative problem-solving] behaviors give rise to
successful problem-solving outcomes?” (Sun et al., 2022, p. 1), which is needed to understand,
assess, and support collaborative problem-solving skills.

Traditionally, educational assessment has made a distinction between two types of data:
product data and process data for performance measures. In this context, product data refers to
the solution to a given task, while process data refers to the methodology employed to achieve
this solution (Levy, 2020; Zumbo et al., 2023). Process data can be understood as “as any data

automatically collected about test-takers’ response process” (Anghel et al., 2024, p. 2).
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However, as Ercikan et al. (2020) noted, process data are merely traces of cognitive processes.
Therefore, it is crucial to have a robust theoretical foundation to ensure the accurate matching
of these traces to relevant psychological constructs (Knight & Buckingham Shum, 2017; J.
Wong et al., 2019). In light of these considerations, a distinction must be drawn between log-
file data and process data (Provasnik, 2021). Log-file data refers to the information stored dur-
ing interactions with technology-based tasks, whether for assessment of or support for collab-
orative problem-solving. Process data, on the other hand, represent the psychological constructs
to which the information in log-file data is matched. Thus, while log-file data are understood to
exist as a byproduct of interactive and simulation-based tasks, process data must be extracted
from log-file data in the presence of relevant theory (Goldhammer et al., 2020). Nevertheless,
this clear differentiation between log-file and process data is not consistently observed in the
literature. This is despite the fact that log-file data is high-dimensional and heterogeneous in-
formation that requires careful consideration to be transformed into meaningful process data
(Anghel et al., 2024; Lindner & Greiff, 2023). Goldhammer et al. (2021) proposed an approach
to move from seeing log-file data as by product of technology-based tasks but incorporate pro-
cess data into the design of such tasks. They also provided an approach how to transform log-
file data into process data: (1) information stored in log-file data is labelled with low-level fea-
tures, that is meaningful actions or states within the context of the specific task. (2) These low-
level features are aggregated to form high-level features (Mislevy, 2019), which represent
meaningful process indicators of psychological constructs. Therefore, while low-level features
can only be interpreted in light of the concrete task, high-level features, especially when in-
formed by theory, allow for more generalizable results from process data analyses (Tomasevic
et al., 2020).

An example of the utilization of low-level features can be observed in the study conducted
by Ma et al. (2023), which employed data from 9,841 students in China who completed the
Xandar task from PISA 2015. The researchers identified four distinct profiles of collaborative
problem solvers based on their time on task, number of actions, and collaborative problem-
solving skill levels. The four profiles were identified as disengaged, struggling, adaptive, and
excellent. The study found that the disengaged profile was characterized by minimal time and
actions on task, resulting in poor collaborative problem-solving skills. While the struggling
profile was characterized by more time and action on task, but also resulted in poor collabora-
tive problem-solving skills. Conversely, the excellent profile showed the highest performance
in collaborative problem-solving skills with efficient use of time and actions. The adaptive pro-

file still has relatively high collaborative problem-solving skill performance, but is
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characterized by the greatest number of actions. The findings suggest that collaborative prob-
lem-solving performance can vary considerably depending on individual behaviours, with effi-
ciency and skill level being pivotal factors in determining success. However, as the researchers
employed low-level features, it is challenging to generalize the findings to other contexts.

In contrast, the study by Andrews-Todd et al. (2023) examined the manifestation of collab-
orative problem-solving skills across different tasks. The researchers analyzed the interactions
of 100 students aged 12-15, who were randomly assigned into pairs. The study comprised two
separate tasks: The T-Shirt Math Task, which focused on linear functions and argumentation,
and the Physics Playground, an educational game on Newtonian physics. The researchers em-
ployed an ontology-based competency model to code the collaboration skills exhibited during
the tasks, thereby deriving high-level features. The video recordings were analyzed by trained
raters who identified nine distinct collaborative problem-solving skills. The study revealed that
specific skills, such as sharing information and negotiating, were frequently observed across
both tasks, indicating their importance in collaborative problem-solving regardless of task char-
acteristics. However, the prevalence of other skills varied depending on the task, indicating that
the effectiveness of specific collaborative problem-solving skills may be task-dependent.

The analyses of collaborative problem-solving through the lens of process data can be ap-
proached in three distinct ways (Ulitzsch et al., 2023): theory-based, exploratory, and predic-
tive. Most of the studies analyzing process data of collaborative problem-solving utilize process
data to explain performance differences or to gain deeper insights into the process.

Theory-driven approaches are employed with the objective of enhancing comprehension of
the construct and supporting the refinement of existing theories. Consequently, they seek to
identify particular strategies that have been derived from the theory (Ulitzsch et al., 2023). Nev-
ertheless, purely theory-driven approaches are rare, particularly in the context of collaborative
problem-solving. One illustrative example of such strategies in the context of individual prob-
lem-solving is the application of the strategy of varying one thing at a time (VOTAT). For
instance, Greiff et al. (2015) employed log-file data from 16,219 students who participated in
PISA 2012 to investigate whether the implementation of the VOTAT strategy in a problem-
solving task was associated with their performance in that task. Consequently, the researchers
used log-file data to derive a dichotomous variable indicating whether or not VOTAT was ap-
plied. The results indicated a strong correlation between the application of VOTAT and item
performance. Additionally, the difference in performance between students who applied VO-
TAT and those who did not was statistically significant. These findings support the hypothesis
that the VOTAT strategy is a significant predictor of success in problem-solving tasks.
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Exploratory approaches, like theory driven approaches, seek to enhance understanding of
the information embedded within process data. However, while theory-driven approaches ex-
amine particular strategies with the objective of validating theories, exploratory approaches
ideally use theory to construct process indicators and use them as features in prediction models
and sequence mining with the goal to uncover key behavioral patterns that distinguish success
from failure (Ulitzsch et al., 2023). Therefore, while Greiff et al. (2015) constructed a binary
variable indicating the presence or absence of the VOTAT strategy, aggregating hundreds of
clicks into a single binary variable in exploratory approaches, the focus is on the complete
problem-solving process. One illustrative example of an exploratory approach combined with
theory is the study conducted by Richters, Stadler, Radkowitsch, et al. (2023), who employed
n-grams (Damashek, 1995) of collaborative diagnostic activities to predict diagnostic accuracy
(see 1.3.1). The aforementioned process indicators have been constructed from log-file data and
represent theory-based features. The coding of each click in the simulation as a diagnostic ac-
tivity was followed by the transformation of these data points into bigrams, which facilitated
more effective interpretation. This approach allowed for the examination of specific aspects of
the diagnostic process, such as the time spent on a single activity or the frequency of transition-
ing from one activity to another. Using data from 73 students working on the CoSiMed simu-
lation (see 1.3.3) they could show that a random forest (Breiman, 2001) prediction model is
capable to predict diagnostic success using bigrams of diagnostic activities after approximately
two thirds of the median time working on the task. Moreover, the researchers found that diag-
nosticians who spent more time with individual diagnostic activities were more likely to be
successful, while those who spent more time with collaborative diagnostic activities were more
likely to be unsuccessful (Richters, Stadler, Radkowitsch, et al., 2023).

The use of predictive approaches in this research area is a comparatively recent phenomenon
and primarily focused on improving predictive accuracy (Ulitzsch et al., 2023). In contrast to
theory and exploratory approaches, predictive approaches alter the perspective. While theory
and explanatory approaches are concerned with understanding the underlying processes, pre-
dictive approaches are focused on predicting future outcomes. Accordingly, the primary objec-
tive is to achieve the highest possible level of predictive accuracy, which can be attained by
selecting the ratio of bias and variance that minimizes the occurrence of error. In order to
achieve this, it is essential to leverage large data sets and metrics for evaluating the prediction,
rather than the representation of internal structure. Furthermore, it is crucial to be open to al-
lowing for bias and nonlinearity in pursuit of superior prediction accuracy (Molnar et al., 2020;

Yarkoni & Westfall, 2017). This allowance can result in the development of highly complex
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prediction models. While these models may be accurate, their internal mechanisms may lack
transparency, leading to less interpretable models, also known as black boxes (Molnar et al.,
2018; Yarkoni & Westfall, 2017). Such models have been applied in the field of learning ana-
Iytics with the objective of identifying students who are at risk of failing and therefore require
additional instructional support (Leitner et al., 2017). One illustrative example is the study con-
ducted by Costa et al. (2017), which employed a predictive model to ascertain the likelihood of
a student failing a university course. The model was trained on data encompassing socio-demo-
graphic characteristics (e.g., age, gender, income) and log-file data (e.g., access frequency to
the learning platform, participation in the discussion forum, and the amount of received and
viewed files). The results showed that the model could identify students at risk of failing after
10% of the course had been completed with at least 50% accuracy. However, while this offers
a promising approach to prevent students from failing their course, it is important to note that,
in contrast to the studies presented for the theory-driven and exploratory approaches, Costa et
al. (2017) employed low-level and context-dependent features in the absence of a theoretical
framework, which limits the generalizability of their findings.

In summary, process data analyses facilitate a more profound comprehension of collabora-
tive problem-solving behaviors, as well as the construction of predictive models that can antic-
ipate future outcomes. By understanding the causes of performance differences through the
analysis of behavioral patterns (Eichmann et al., 2020), educators can develop predictive mod-
els to tailor interventions, thereby enhancing personalized learning experiences (Tetzlaff et al.,
2021).

1.4.2 Benefits of Process Data Analyses

As discussed in the preceding section, technology-based, interactive and simulation-based
tasks, which facilitate collaborative problem-solving skills, offer a promising approach to ana-
lyzing process data. While most theoretical and explanatory-based approaches are concerned
with developing a deeper understanding of the collaborative problem-solving process, predic-
tive approaches aim to advance adaptive learning support. Taken together, the use of process
data allows for enhancements of personalized learning experiences in the development of col-
laborative problem-solving skills.

The incorporation of interactive and simulation-based tasks in technology-based assess-
ments enables the analysis of test-taking behaviors, thereby providing additional information
beyond performance outcomes (Greiff et al., 2016; He & Davier, 2015). For example, Han et
al. (2023) were able to identify different collaboration strategies and highlight the importance

of establishing and maintaining a shared problem representation. Their findings suggested that
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a structured approach to agreeing on a team strategy leads to better performance than the trial-
and-error approach. The study is based on process data (response times and number of actions
taken during the Xandar task) from 2,520 students who participated in the PISA 2015 assess-
ment. Moreover, process data can be leveraged to support data quality control. For instance, it
can be used to identify instances of rapid guessing behavior, which may indicate a lack of
thoughtful engagement with the task. This can be achieved by setting a task-specific threshold
requiring at least a brief period of reading and thinking about the task (S. L. Wise, 2017). While
recent research indicates that rapid guessing, and thus a lack of engagement and cognitive pro-
cessing with multiple choice questions, represents a threat to the validity of individual re-
sponses, it has less impact on aggregate scores and country rankings, as seen in large-scale
assessments like PISA (Michaelides et al., 2024). There is, however, consensus that it is bene-
ficial to be able to identify atypical behavior using clickstream data, thus enhancing data quality
(Tang et al., 2023). This also permits an enhancement in measurement precision (Davier et al.,
2019), the validation of test score interpretations (Ercikan & Pellegrino, 2017), and the optimi-
zation of the test design (van der Linden, 2008).

Furthermore, technology-based assessments facilitate the adaptation of tasks to different do-
mains and learners/test takers, or even the use of similar tasks for assessment and learning set-
tings. This is made possible by the opportunity of immediate analysis of the data, which in turn
allows for the provision of feedback and reports to learners and stakeholders for decision-mak-
ing purposes (Ifenthaler & Greiff, 2021). These developments permit the integration of assess-
ment and learning due to the potential for continuous, feedback-oriented, and multifaceted data
collection, thereby facilitating personalized support (Thille et al., 2014).

Support of the learners by using process data can also be achieved by predicting learner
performance, thus enabling researchers to identify individuals who are at risk of inadequate
performance. This includes, for example, those learners who are unlikely to benefit from en-
gaging in a specific learning activity (Leitner et al., 2017). This enables a shift in the educational
paradigm from a one-size-fits-all approach to personalized education, allowing for the system-
atic adaptation of instruction and learning materials to individual learners (Tetzlaff et al., 2021,
Tsai et al., 2020). One potential approach is the implementation of a learner model, which em-
ploys assumptions regarding learning prerequisites, learning processes, and anticipated learning
outcomes to optimize decisions regarding the adjustment of instructional support (Basu et al.,
2017). The use of learner models for personalization is of particular importance in contexts such
as simulation-based learning, where research indicates that tasks can overwhelm learners by

demanding excessive cognitive resources (Azevedo & Gasevi¢, 2019). Moreover, simulation-
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based learning is most effective when additional instructional support, such as scaffolding, is
provided in a timely and tailored manner to meet the specific needs of learners (Leutner, 1993;
Plass & Pawar, 2020).

Research on the fading effect (Puntambekar & Hubscher, 2005) and the expertise reversal
effect (Kalyuga, 2007; see 1.2.2) underscores the significance of accounting for individual dif-
ferences, particularly in the context of expertise, when developing instructional support. Scaf-
folding, a well-established form of instructional support, plays a crucial role in this context. As
defined by Tabak and Kyza, scaffolding is "support that enables learners to perform an action
that would be outside their independent activity” (2018, p. 191). First introduced by Wood et
al. (1976), the objective of scaffolding is to provide support for the learner's current activity
while simultaneously facilitating future independent performance. Examples of scaffolds in-
clude worked-out examples and metacognitive prompts that encourage reflection or provide
external collaboration scripts (Kollar et al., 2018).

The concept of scaffolding is linked to Vygotsky's (1978) zone of proximal development,
which describes the range of tasks a learner can perform with assistance but not independently.
Given that the zone of proximal development is an individual phenomenon that evolves over
time, scaffolds that are initially effective may impede learning as the learner's expertise in-
creases (Kalyuga, 2007). The available evidence suggests that adaptive scaffolding, which is
designed to adapt to the evolving needs of the learner, can lead to significantly enhanced learn-
ing outcomes in comparison to fixed or no scaffolding. This improvement is observed not only
in the acquisition of declarative knowledge but also in learning processes (Azevedo et al.,
2005). By ensuring that each learner receives tasks that are tailored to their specific needs and
that demand an optimal level of cognitive resources, adaptive instructional support has been
shown to maximize learning efficiency and effectiveness (Corbalan et al., 2006).

In a study examining the efficacy of adaptive instructional support for collaborative diag-
nostic reasoning, Radkowitsch et al. (2021) investigated whether learners benefit more from
the provision of an adaptive collaboration script compared to a static collaboration script or no
support at all. The implementation of a technology-based simulated task with an agent as a
collaboration partner enabled the provision of micro-adaptive support (Tetzlaff et al., 2021).
This was achieved by analyzing the completed request form in real-time to identify any missing
information (see 1.3.3). Based on these missing but relevant information for the agent-based
radiologist further information on the needs and goals (collaboration knowledge, see 1.3.1) was
provided for the learner in form of an external collaboration script (F. Fischer et al., 2013). The

study, which included 160 intermediate medical students randomly assigned to one of three
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conditions, demonstrated that the performance of evidence sharing is enhanced by an adaptive
collaboration script, while the performance of evidence elicitation is also facilitated by the static
collaboration script. Furthermore, the researchers discovered that the adaptive collaboration
script enhanced the learners' perceived competence, leading to the conclusion that the provision
of adaptive collaboration scripts is an effective method for facilitating the learning of collabo-
rative diagnostic reasoning using an agent-based simulation.

In summary, the integration of process data enables the transition towards a more adaptive
and individualized instructional approach. This adaptivity ensures that learners receive the ap-
propriate level of support, thereby optimizing their cognitive engagement and promoting learn-
ing.

The majority of process data analyses in the context of collaborative problem-solving em-
ploy theory-driven or explanatory approaches to explain performance (Ulitzsch et al., 2023).
To illustrate, the study by Sun et al. (2022) examined the interplay between cognitive and social
skills in collaborative problem-solving among 303 undergraduate students engaged in the Phys-
ics Playground task. Verbal communication occurring during the collaboratively played game
was coded according to the framework established by Sun et al. (2020) in order to construct
process indicators (see 1.2.1). Although the study did not employ log-file data, it nevertheless
serves as an illustration of how process data analyses can facilitate a deeper understanding of
collaborative problem-solving. This is achieved through the identification of critical interaction
patterns that contribute to the success of the collaborative process. The findings indicated that
conversations centered on the construction and negotiation of shared knowledge were associ-
ated with more successful outcomes, whereas discussions of inappropriate ideas were associ-
ated with less successful performance. The findings underscore the significance of regular turn-
taking and active involvement in attaining effective collaboration, underscoring the socio-cog-
nitive nature of collaborative problem-solving (Sun et al., 2022). In another study that employed
process data from the PISA 2015 Assessment, De Boeck and Scalise (2019) examined the cor-
relation between students' activity levels and their performance in collaborative problem-solv-
ing tasks. The researchers analyzed data from 986 U.S. students and found that students who
exhibited higher levels of activity tended to complete tasks more quickly but performed less
well overall. Conversely, successful students took more time on tasks, suggesting that taking
time to construct a shared problem representation may be beneficial for performance in collab-
orative contexts. The study underscores the importance of balancing speed and thoroughness in

collaborative problem-solving to achieve better outcomes.
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In this way, process data can be utilized to examine not only the outcomes achieved, but also
the means by which they were achieved, and to draw inferences about the cognitive processes
involved in problem-solving (Greiff et al., 2018; Stadler et al., 2019). The aforementioned ben-
efits for assessment, adaptive support, and theoretical advancements render process data a val-
uable source of evidence when assessing and supporting collaborative problem-solving skills
through the use of interactive and simulation-based tasks. Nevertheless, in order to leverage the
substantial advantages offered by process data analyses, it is essential to address and overcome

a number of challenges.

1.4.3 Challenges of Process Data Analyses

Despite these benefits of using process data analyses for collaborative problem-solving and
collaborative diagnostic reasoning in medical education, there are several challenges associated
with its use: Beginning with ethical considerations before and during data collection, continuing
with the complexities of data analyses, and the need for theory when interpreting the results.

Ethical considerations need to be addressed when process data is collected, as process data
has the potential to contain personal and sensitive details about an individual, such as repre-
senting effort or failure to solve problems, answer questions, or learning per se (Maddox, 2023).
The main ethical considerations that need to be addressed are informed consent, transparency,
privacy, responsibility, validity, minimizing adverse effects, and enabling interventions. These
aspects are similar to those faced in the field of learning analytics (Cerratto Pargman &
McGrath, 2021; Lindner & Greiff, 2023). Learning analytics are broadly understood as a “re-
search area that focuses on the development of methods for analyzing and detecting patterns
within data collected from educational settings, and leverages those methods to support the
learning experience” (Chatti et al., 2012, p. 319). Although research using data from learning
management systems has some unique ethical considerations, most of the ethical concerns re-
lated to data collection are also relevant to process data in the context of collaborative problem-
solving. Therefore, as the field of learning analytics has recently focused on the ethics of using
process data (e.g., Ferguson et al., 2016; Francis et al., 2023; Khalil et al., 2023a; Sclater, 2016),
the research and findings presented are also extended to this area of study. In a review of papers
on the use of learning analytics in higher education between 2012 and 2018, it was found that
more than 80% of the studies did not mention ethical considerations at all. It is not necessarily
the case that all of these studies were conducted unethically, but it does point to the need for
more reflective reporting on these aspects. However, the review also found an increase after

2017. Therefore, this change may already be taking place (Viberg et al., 2018).
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A cornerstone of ethical data collection is to ensure that participants give informed consent
and that the processes involved are transparent to the participants. This includes making learn-
ers fully aware of practices such as tracking and analyzing their data, which is often done with-
out their explicit knowledge. Transparency includes clarifying the purpose of the data collection
and subsequent analyses, the metrics used, who has access to the data, the boundaries of its use,
and how the results will be interpreted (Cerratto Pargman & McGrath, 2021). Without such
transparency, participants may not fully understand the implications of data collection, which
can lead to distrust or ethical breaches. Privacy concerns in process data analyses and learning
analytics revolve around the “restriction of access to an individual’s personal information”
(Francis et al., 2023, p. 104). Ensuring privacy involves addressing issues related to access and
de-identification of learner data, which is critical to preventing misuse or unauthorized sharing
of sensitive information (Cerratto Pargman & McGrath, 2021). Effective de-identification prac-
tices are essential to protecting learner privacy, but they must be balanced with the need for
meaningful data analyses. Institutions have a responsibility to ensure that learning analytics are
used legally, ethically, and effectively (Cerratto Pargman & McGrath, 2021). This responsibil-
ity extends to careful stewardship of data, ensuring that all practices comply with legal stand-
ards and ethical norms. In addition, institutions must consider the broader implications of their
use of analytics, such as potential biases in data interpretation and the fair treatment of all learn-
ers. The validity of data collection and analysis is another critical ethical consideration. This
includes the interpretation and location of learner data, the accuracy of the data, the validity of
the algorithms, and the metrics used for predictive analytics or interventions based on learner
data (Cerratto Pargman & McGrath, 2021). A major concern, as highlighted by Zumbo et al.
(2023), is the impact of variability due to neurodiversity or potential disabilities, which can alter
process data in unexpected ways. Such variability may lead to invalid inferences for individuals
who deviate from normative patterns, particularly in measures such as time-on-task. Ethical
data collection and analyses must also prioritize minimizing adverse effects on learners. This
includes addressing issues of harm, nonmaleficence, and the risks associated with the manage-
ment of learner data (Cerratto Pargman & McGrath, 2021). Institutions must be vigilant in en-
suring that the use of data does not inadvertently harm learners or reinforce existing inequities.
Finally, the use of process data analyses should focus not only on monitoring, but also on ena-
bling timely and effective interventions. Institutions need to consider the circumstances in
which they should intervene based on the results, particularly when data suggests that a learner
may benefit from additional support (Cerratto Pargman & McGrath, 2021). However, research

shows that enabling interventions is one of the least addressed ethical areas, with limited
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guidance on how institutions should act when analytics indicate that learners are struggling
(Whitelock-Wainwright et al., 2019).

In summary, the ethical considerations in process data collection are extensive and closely
aligned with those in learning analytics. Transparency, privacy, and informed consent are the
most frequently addressed ethical issues in research to date, while enabling interventions remain
underexplored (Cerratto Pargman & McGrath, 2021). As the field continues to evolve, it is
critical that research and practice prioritize these ethical considerations to effectively protect
and support learners (Drachsler & Greller, 2016; Ferguson et al., 2016). This has become par-
ticularly evident in recent years with the emergence of generative artificial intelligence and
large language models in education in general (Bond et al., 2024; Yan et al., 2024), but also in
medical education in particular (Lucas et al., 2024). As a consequence, various frameworks and
guidelines have been proposed regarding ethical and transparency aspects (e.g. Chaudhry et al.,
2022; European Parliament, 2023; Simbeck, 2024). This is of crucial importance as a recent
review indicated that 92% of generative artificial intelligence tools currently used for support-
ing learning practices are transparent only to artificial intelligence experts (Yan et al., 2023).

Once data collection is complete, the next challenge is to analyze the process data, which
requires dealing with complexity. This starts with the need for various steps to pre-process the
raw data, as direct analyses would often be meaningless due to technically necessary but mean-
ingless noise in the raw data (Rupp et al., 2012). Another factor that adds to the complexity is
that product data is usually stored in standard formats, such as multiple-choice questions,
whereas process data has a different length for each individual (Zhan & Qiao, 2022) and is
prone to situational bias (Lindner & Greiff, 2023). Chetverikov and Upravitelev (2016) inves-
tigated this in a simple visual search task with 284 participants, who used their personal com-
puters in an online setting to complete the task. The analyses show that CPU score affects the
distribution parameters, while RAM and GPU score do not. Thus, especially in small samples,
differences in data collection due to technical differences can negatively affect data quality and
increase measurement error.

Process data from collaborative problem-solving tend to be more complex in nature than
traditional performance data: While there is only one a priori known correct outcome (or at least
tasks are defined as such), there may be multiple correct strategies for solving the same problem
in process data. Such heterogeneity and complexity thus require advanced statistical models
beyond classical regression (Chen et al., 2019; Goldhammer et al., 2017; Lindner & Greiff,
2023). For example, alternative approaches suggest the use of Bayesian networks and a combi-

nation of process and product data to measure performance (for a review of methods for
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simulation-based assessments see Klerk et al., 2015). This introduces new complexities given
the dependency structure of process (and product) indicators within and across tasks, and re-
search has suggested the use of computational psychometrics to account for this (Goldhammer
et al., 2021). Given all these complexities, it is suggested to plan the desired analyses before
collecting the data and to use process data not only as a by-product, but to actually pay attention
to how specific process indicators can be measured and to incorporate this into the design of
tasks (Goldhammer et al., 2021; Lindner & Greiff, 2023). This is consistent with the need to
have a deep, contextualized understanding of the structure of process data that should be
grounded in theory (R. Baker et al., 2020).

After analyzing process data, the next challenge is interpreting the result. In order to inform
theories and derive information, such as which strategies are most beneficial in collaborative
problem-solving or which instructional supports might be beneficial, researchers have called
for a more robust link from process data to learning theories to better understand and facilitate
learning (Gasevi¢ et al., 2015). It is only when log-file data are linked to theory-based process
indicators that reliable and valid conclusions can be drawn (Zumbo et al., 2023). This is in line
with the call to use high-level features instead of low-level features, which can only be inter-
preted in the light of the concrete task, for more generalizable results from process data analyses
(Tomasevic et al., 2020; see 1.4.1). Using high-level features in the light of theory allows re-
search to move beyond idiosyncratic results that are only valid for a specific assessment or
learning task, and to compare and replicate findings that cannot be done directly with log-file
data or only with low-level features (Goldhammer et al., 2021). This would also make it easier
to overcome the challenge of task dependency when using process data (He et al., 2021). How-
ever, a recent review of the literature on the use of process data in large-scale assessments,
which included 232 articles, found that only in one of the six major topics identified (digital
writing) most studies did rely on a theoretical model. While all other topics (response time
models, response time in general, aberrant test-taking behavior, action sequences, complex
problem-solving) rarely mentioned a theoretical foundation. Although this review does not spe-
cifically focus on collaborative problem-solving, it illustrates the need to consider the use of
theory when using process data (Khalil et al., 2023Db).

In order to obtain meaningful and actionable results when interpreting process data, it is
critical to connect the data to established theory. Ideally, this is done not only when interpreting
the results of process data analyses, but also from the beginning of task design. As mentioned
earlier, the use of agent-based simulations and interactive tasks (see 1.2.3) allows for ensuring

that all relevant behaviors are triggered appropriately by the learner. Thus, if the researchers
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know from theory which behavior is relevant, such as collaborative diagnostic activities in col-
laborative diagnostic reasoning (see 1.3.1), they can design tasks that ensure that this behavior
is shown and stored in log-file data, such as the request form in the CoSiMed simulation (see
1.3.3), allowing for meaningful interpretation of results and actionable conclusions.

In conclusion, while the use of process data may allow researchers to answer the question,
“what particular [collaborative problem-solving] behaviors give rise to successful problem-
solving outcomes?” (Sun et al., 2022, p. 1), only theory-driven analyses allow to go further and
ask why these behaviors are successful and what can be done now to facilitate the learning of
collaborative problem-solving skills (A. F. Wise & Shaffer, 2015).

1.5 Research Questions and Outline of the Papers

Collaborative problem-solving involves multiple agents working together to solve complex
tasks, with a focus on the process rather than just the outcome (OECD, 2017). Building on
research on collaborative problem-solving and diagnostic reasoning, the CDR-M (Radkowitsch
et al., 2022) proposes a shared perspective on solving diagnostic problems (Abele, 2018) in a
collaborative effort. As individuals gain experience, they develop domain-specific knowledge
that allows them to solve diagnostic problems more effectively in a collaborative effort. Simu-
lation-based learning, particularly through technology-based interactive tasks, has been shown
to be effective in enhancing these skills by providing authentic situations for knowledge appli-
cation (Chernikova et al., 2020).

Recent advances in process data analyses enable researchers to collect data unobtrusively,
unlike think-aloud protocols, and without requiring additional measurements that could in-
crease cognitive load, making it easier to examine involved cognitive processes (Matcha et al.,
2019). Process data derived from log-file data during task interaction can be matched to psy-
chological constructs to gain insight into problem-solving behaviors. Three approaches - the-
ory-based, exploratory, and predictive - are used to analyze process data, with implications for
the assessment of performance differences, the development of predictive models, and the pro-
vision of personalized support (Ulitzsch et al., 2023). However, ethical guidelines, standardized
data collection and analysis methods, and robust theoretical frameworks are needed to fully
realize their potential. Moving forward, the focus should shift to hypothesis-driven research
that employs validated indicators and responsible data use, balancing innovation with rigorous
scientific standards (Lindner & Greiff, 2023). Following this, the overarching goal of this thesis
is to improve the use of process data to assess and support collaborative problem-solving in the

context of collaborative diagnostic reasoning in agent-based simulations (see Figure 2).
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Figure 2

Aims of the Thesis and Corresponding Papers

Paper 1: Identifying Potentials and
Challenges of Process Data Analysis

Process Data Analyses

T~

Improving the use of }

... to Facilitate Theoretical ... to Inform Learning and
Advancements Instruction
Paper 2: Validating a Theoretical Model Paper 3: Identifying Learners in
on Collaborative Problem-Solving Skills Need of Instructional Support

To this end, this thesis compromises three papers with different focuses on the use of process
data. The first paper, a theoretical perspective paper, will take a meta-perspective and review
recent developments in the use of process data through technology-based assessment to gener-
ate new knowledge, improve learning and instruction, and provide actionable advice to policy
stakeholders. Building on these considerations, two empirical studies are presented to illustrate
how process data can be used for theoretical advancements and instructional improvement. The
first empirical paper validates the CDR-M using process data. The second empirical paper then
demonstrates how the combination of process data and theory can be used to predict outcomes
that can inform learning and instruction in simulation-based learning of collaborative diagnostic
reasoning. By presenting these two empirical contributions, which build on the views presented
in the first paper, this thesis aims to shed light on new developments in the assessment and
support of collaborative problem-solving skills and how the full potential of process data can
be used not only to gain deeper insights and better theories about these skills, but also to use
these data sources to support learning and instruction, thus helping to close a research-practice-
policy gap.

1.5.1 Research Question and Outline of Paper 1

Over the past two decades, large-scale assessments in education have shifted from traditional
paper-and-pencil formats to innovative technology-based assessments. This shift has enabled
the collection and analysis of process data, which capture the steps and actions that lead to
responses from participants. The first paper, a theoretical perspective paper, focuses on how

process data can bridge a gap between research, practice, and policy. The paper is theoretically
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grounded in the idea that interactive tasks and process data provide a richer understanding of
learner behavior than traditional outcome-based assessments (see 1.2.3). By analyzing devel-
opments in large-scale assessment over the past two decades, the paper outlines the challenges
and opportunities associated with leveraging process data to improve both educational research
and policymaking.

The paper aims at identifying the potentials and challenges of using process data in educa-
tional settings, especially in large-scale assessments. Therefore, the paper adopts a meta-per-
spective, analyzing the impact of interactive tasks in large-scale assessments and emphasizing
the need to move beyond task-specific findings by linking process data to theoretical constructs,
which can enhance the generalizability of research findings.

According to the CRediT statement, my contribution to the first paper was along the con-
ceptualizing as well as writing parts of the original draft and reviewing and editing the entire
paper. As this was not an empirical paper, most other aspects of the statement do not apply here.
| contributed important theoretical ideas to the paper and was also involved in revisions during

peer review and proofreading.

1.5.2 Research Question and Outline of Paper 2

The second paper aims at identifying how process data can facilitate theoretical advance-
ments, particularly in the context of validating theoretical models in educational research, by
addressing the research question of the extent to which the relations in the CDR-M are appli-
cable across studies. Therefore, it tests the CDR-M (see 1.3.1), which posits that effective col-
laborative problem-solving in knowledge-rich domains, such as medical diagnosing, requires
an interplay of individual characteristics, collaborative diagnostic activities enacted with high-
quality, and successful diagnostic outcomes. To this end, | have derived a model from the pos-
tulated relations of the CDR-M (see Figure 3).

Figure 3
Hypotheses of Paper 2
Individual Characteristics Collaborative Diagnostic Activities Diagnostic Outcome
.‘"// Content ™ Hia Evidence Hia Diagnostic | &7
. Knowledge Hib Elicitation b Accuracy | s
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(_ Social Skills
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Sharing Efficiency HIS
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I expect individual characteristics to be positively related to collaborative diagnostic activi-
ties (hypotheses 1-3), and collaborative diagnostic activities to be positively related to diagnos-
tic outcome (hypotheses 4-6). In addition, I expect that the relations between individual char-
acteristics and diagnostic outcomes to be partially mediated by collaborative diagnostic activi-
ties (Hypotheses 7-15).

A structural equation model is used to examine the relations between individual characteris-
tics (content knowledge, collaboration knowledge, and social skills; see Appendix 8.2), collab-
orative diagnostic activities (evidence elicitation, evidence sharing, and hypotheses sharing; see
Appendix 8.3), and diagnostic outcomes (accuracy, justification, and efficiency; see Appendix
8.4). Therefore, data from three studies involving 504 intermediate medical students working
on the CoSiMed simulation (see 1.3.3) are analyzed. The use of agent-based simulations en-
sures controlled collaboration settings that simulate real-world diagnostic tasks. The study uses
process data to empirically test and refine the CDR-M, demonstrating how process data can be
used to generate new insights and advance theoretical frameworks in education.

According to the CRediT statement, my contribution to the second paper was along its con-
ceptualization, methodology, validation, formal analysis, investigation, data curation, and writ-
ing the original draft. | was responsible for all major steps in the publication of this paper, from
generating the research idea, performing the analyses, writing the paper, to revising during peer

review and proofreading.

1.5.3 Research Question and Outline of Paper 3

The third paper explores how process data can inform learning and instruction by predicting
learners' need for additional support. Specifically, it addresses the research question of the ex-
tent to which theoretically derived process indicators are suitable for predicting learners' di-
agnostic accuracy in the context of simulation-based learning of collaborative diagnostic rea-
soning. Thus, the third paper focuses on improving simulation-based learning by predicting
diagnostic accuracy in collaborative diagnostic reasoning using process data. The study is the-
oretically grounded in the CDR-M (see 1.3.1), which integrates individual diagnostic processes
and collaborative activities as described by Radkowitsch et al. (2020). Key collaborative diag-
nostic activities such as evidence elicitation, evidence sharing, and hypotheses sharing are iden-
tified as critical for accurate diagnostic outcomes.

Methodologically, the study uses a random forest classification model to predict diagnostic
accuracy using process indicators derived from the CDR-M. It analyzes log-file data from five
patient cases in the CoSiMed simulation (see 1.3.3) depicting the collaboration between a

learner in the role of an internist interaction with an agent-based radiologist. The performance
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of the model is evaluated in terms of classification accuracy, sensitivity, and specificity, with
the goal of developing a reliable predictive tool for adaptive learning interventions.

According to the CRediT statement, my contribution to the paper was along its conceptual-
ization, methodology, validation, formal analysis, investigation, data curation, and writing the
original draft. 1 was responsible for all major steps in the publication of this paper, from con-
ceiving the research idea, performing the analyses, writing the paper, to revising during peer

review and proofreading.
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Abstract

Background: Over the last 20 years, educational large-scale assessments have under-
gone dramatic changes moving away from simple paper-pencil assessments to inno-
vative, technology-based assessments. This comprehensive switch has led to some
rather technical improvements such as identifying early guessing or improving
standardization.

Objectives: At the same time, process data on student interaction with items has
been shown to carry value for obtaining, reporting, and interpreting additional results
on student skills in international comparisons. In fact, on the basis of innovative simu-
lated assessment environments, news about student rankings, under- and overper-
forming countries, and novel ideas on how to improve educational systems are
prominently featured in the media. At the same time, few of these efforts have been
used in a sustainable way to create new knowledge (i.e., on a scientific level), to
improve learning and instruction (i.e., on a practical level), and to provide actionable
advice to political stakeholders (i.e., on a policy level).

Methods: This paper will adopt a meta-perspective and discuss recent and current
developments with a focus on these three perspectives. There will be a particular
emphasis on new assessment environments that have been recently employed in
large-scale assessments.

Results and Conclusions: Most findings remain very task specific. We propose a nec-
essary steps that need to be taken in order to yield sustainable change from analysing
process data on all three levels.

Implications: New technologies might be capable of contributing to the research-
policy-practitioner gap when it comes to utilizing the results from large-scale assess-
ments to increase the quality of education around the globe but this will require a
more systematic approach towards researching them.

KEYWORDS
large-scale assessments, process data, replication, research-policy-practitioner gap,
technology-based education
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1 | INTRODUCTION

Over the last 20 years, educational large-scale assessments have
undergone dramatic changes moving away from simple paper-pencil
assessments to innovative, technology-based assessments (von Davier
et al, 2019). One example of the emergence of technology-based
large-scale assessments is the Programme for International Student
Assessment (PISA). This program, arguably the most extensive inter-
national educational assessment program, started to partially collect
their data through technology-based assessment of science literacy
back in 2006 (OECD, 2010). In 2009 PISA already administered
another core competence using technology (digital reading assess-
ment; OECD, 2012). This was extended in 2012 for the third core
competence (mathematical literacy) plus adding a technology-
based problem-solving assessment (OECD, 2013). In 2015,
technology-based assessment was the primary mode of assess-
ment in PISA (OECD, 2017). One reason was the inability to design
authentic, interactive, and dynamic tasks for 21st-century skills
with traditional paper-pencil formats (OECD, 2010). Technology-
based assessments make the use of multimedia, simulations, inter-
active tasks, and virtual reality possible (Goldhammer et al., 2020).
In addition to allowing for the operationalization of previously
unobtainable competencies, using technology-based assessments
allows for continuous measurement of the response process
(i.e., process data), instead of only discrete states of responses
depicted through the answers given to a task (i.e., product data;
Thille et al., 2014).

This comprehensive switch from paper-pencil assessments to
technology-based assessments has led to some rather technical
improvements such as identifying early guessing (e.g, Kong
et al., 2007) or improving standardization of assessment and scoring
(e.g., Goldhammer et al., 2020). At the same time, process data on stu-
dent interaction with items have been shown to carry value for
obtaining, reporting, and interpreting additional results on student
skills in international comparisons (e.g., Reis Costa et al., 2021; Xiao
et al., 2021). Process data was used to relate behaviour to cognitive
processes (Greiff et al, 2016), to validate score interpretations
(Kane & Mislevy, 2017), and led to a better theoretical understanding
of the construct under investigation (Goldhammer et al., 2017;
Goldhammer & Zehner, 2017).

However, few of these efforts have been used sustainably to
decrease global inequalities, and realize universal quality education
(United Nations Educational, Scientific and Cultural Organization
[UNESCO], 2015) by creating new knowledge, improving learning and
instruction, and providing actionable advice to political stakeholders
(Dawson et al., 2019). This paper will adopt a meta-perspective and
discuss recent and current developments focusing on these three per-
spectives. There will be a particular emphasis on new assessment
environments that have been recently employed in large-scale assess-
ments and how they might contribute to the research-
policy-practitioner gap when it comes to utilizing the results from
large-scale assessments to increase the quality of education around
the globe.

STADLER T AL

2 | INTERACTIVE TASKS IN LARGE-SCALE
ASSESSMENT

21 | New types of assessment

One of the driving forces behind the fast and comprehensive switch
from paper-pencil assessments to technology-based assessments in
international large-scale assessments has been the need to assess so-
called 21st-century skills (Care et al., 2012). These 21st-century skills
encompass a set of skills deemed critically important to student suc-
cess in today's world, particularly as students move on to college, the
workforce, and adult life, such as solving complex problems individu-
ally and collaboratively or possessing the media literacy to utilize and
critically evaluate digital sources of information. Assessing these com-
petencies requires assessment tools that respond to the test-taskers'
inputs to allow for adequately complex and realistic tasks. Unlike con-
ventional tasks (such as multiple-choice questions), these interactive
tasks change, while the test-taker is trying to solve them, providing
feedback to interventions or new information (Stadler et al., 2015).
For instance, collaborative problem-solving tasks would hardly be
valid if there was no interaction between the test-takers and the col-
laboration partners (Stadler, Herborn, et al., 2020). Likewise, assess-
ments of hyper-text reading (reading and understanding digital text
organized in a non-linear hypertext format) need to allow the test-
takers to choose what information they want to read actively and in
what order (Hahnel et al., 2023).

All of these new forms of assessment share that the interaction
between test-takers and the assessment are expressed in observable
actions (e.g, mouse clicks, eye-movements, keyboard inserts).
Researchers are, thus, no longer limited to measuring the final outcome
of an assessment (i.e., product data) but can also investigate the steps
and actions resulting in the specific outcome through analyzes of test-
taking behaviours (i.e., process data; Greiff et al., 2016; He et al., 2021).

22 | Process data and sequence data

In contrast to product data, process data and sequence data is seen as
empirical information depicting behaviour that leads to the measured
outcome (Goldhammer & Zehner, 2017). Typical process data are
response times or the number of actions taken, whereas sequence
data, as a special form of process data, describes the qualitative action
sequences that lead to a specific result (Pohl et al., 2021; von Davier
et al,, 2019). Sequence data hence includes timing data, adding a
quantitative dimension. Analysing process data and sequence data
instead of only product data allows insights into the process leading
to the eventual outcome. Researchers have already used process data
to answer research questions as diverse as the detection of early
guessing behaviour (e.g., Kong et al,, 2007), validation of product data
(e.g., Kane & Mislevy, 2017), early identification of students at risk to
show inadequate performance (e.g., Wolff et al., 2013), analyses of
incorrect responses and reasons (e.g., Ulitzsch et al., 2021) and a bet-
ter theoretical understanding of the construct under investigation

3 21w SA[OTIT YO TN J0 $a[I 107 ATRIqI] SUEQ AS[1AY UO (SUOTIPUOD-pUR-suL) /Moo o[- Areiqrauruo:sdiy) suonmpuasy pue swia L, o 938 [£202/20/60] 1o Amaqr surug i “Auvauong auwigpon £q LpEZ TP 1 1170 1/10p/mos Ka[m: Areiqrouruoy-sdyy wory popro[umoq ‘0 ‘67, ZS9ET

asu2ar] suomer) aanEaiy ajqeondde oy £q pausao



Paper 1

65

STADLER ET AL

(Goldhammer et al., 2017; Goldhammer & Zehner, 2017). Accordingly
Pohl et al. (2021) argue that test-taking behaviour is not a nuisance
factor that may confound measurement, but an aspect that provides
important information on how examinees approach tasks, which is rel-
evant for real-life outcomes.

Regarding the use of sequence data, Greiff et al. (2018) reported
that students might show similar overall performance and yet can be
distinguished according to their strategic behaviours in the tasks.
These results indicate that process indicators depict individual differ-
ences in the ability that are not necessarily depicted in product data.
This interpretation was further corroborated on laboratory data by
Stadler, Hofer, and Greiff (2020), who found that participants solving
a set of complex problem-solving tasks systematically differed in both
time-on-task and number of clicks despite having reached the same
outcome. This difference in behaviour was systematic and repre-
sented differences in ability as indicated by significant relations to an
external criterion (participants' GPA). Moreover, the differences in
behaviour could be explained by adjusting their effects on partici-
pants' GPA for individual differences in general problem-solving abil-
ity, which reduced them to negligible levels. He and von Davier (2016)
used sequence data from the Programme for the International
Assessment of Adult Competencies (PIAAC) studying how action
sequences from problem-solving tasks are related to task performance
finding several distinct action sequences that were related to correct
responses (such as actions related to using software-tools).

While there is a surge of interest among researchers in harnessing
process data, this rich resource's full utilization through dedicated
analyses remains in its embryonic stages (Stadler et al., 2019). Signifi-
cant improvements have been made in employing process data to
enhance scoring accuracy and reporting in educational large-scale
assessments (Pohl et al., 2021). However, the real value of integrating
interactive tasks into these programs lies in their unigue ability to cap-
ture action sequences that facilitate an exploration of the underlying
reasons for students' success and failure (von Davier et al., 2019).

These interactive tasks provide a distinctive opportunity to contrib-
ute to the development of more sophisticated models of student cogni-
tion. By yielding detailed sequence data, we gain a more granular
understanding of how students approach and navigate through different
tasks. This allows us to observe the evolution of their problem-solving
strategies over time, providing empirical evidence that can validate or
challenge existing cognitive theories. Such insights can then directly
inform the design of more nuanced, targeted instructional methods and
learning materials, thus enriching the teaching-learning process.

Despite the evident value, comprehensive analyses employing
this resource are scarce, often restricted to single or a few selected
items with little common theoretical underpinning and minimal
attempts at replicating findings. In the second part of this paper, we
will discuss how these missed opportunities have resulted in a lack of
sustainable change in education at the scientific, practical, and political
levels. As we move forward, it is essential to shift our focus from
merely improving scoring and extending reporting, towards fully
exploiting the potential of interactive tasks in generating refined cog-
nitive models that can transform educational practices and theories.

Journal of Computer Assisted Le:»zam'“amg_wlLE\)(J_3

3 | ISSUES LIMITING SUSTAINABLE
CHANGE

3.1 | Scientific level

A substantial obstacle preventing sustainable change, brought about
by the use of interactive tasks in large-scale assessments at the scien-
tific level, is the strong task-specificity of findings. Replications,
already a rarity in educational research (Makel & Plucker, 2014), are
virtually non-existent when it comes to sequence data from interac-
tive tasks (c.f., Brooks et al., 2015 for a positive example). Several rea-
sons may account for this, such as the relative infancy of the field.
However, we contend that the lack of generalizability of findings and
a missing relation between data and theory strongly limit the replica-
bility of research on sequence data from interactive tasks in educa-
tional large-scale assessments, and thus, its scientific value.

Interactive tasks are often highly complex, involving multiple
interrelated variables, usually embedded in a certain semantic context.
These contexts only permit specific interactions between them and
the test-takers. Thus, directly relating specific interactions with one
item to interactions with other items becomes a challenging task,
especially if these items do not even allow for these particular interac-
tions. Many studies interested in comparing processes across items
are therefore forced to rely on relatively low-level metric analyses
(Ihantola et al., 2015), such as relating time-on-task or the number of
interactions to the latent construct being assessed (e.g., Greiff
etal, 2016).

Drawing on Mislevy's (2019) view, we suggest an explicit
differentiation between low-level features and higher-level features.
Low-level features, such as time-on-task or the number of
interactions, can be more idiosyncratic and may not convey the same
meaning across different tasks (Stadler, Radkowitsch, et al., 2020).
On the other hand, higher-level features, derived from low-level
ones, can present robust evidence that is pertinent across different
tasks, thereby providing the possibility of conceptual replication
even when items differ between studies.

An inventive solution to this predicament was offered by He et al.
(2021), who related the performance on several PIAAC tasks to the
distance of the observed behaviour sequence from an ex-ante defined
ideal sequence. This approach allows for generalizing findings across
various tasks that do not need to be similar as long as it is possible to
determine an ideal sequence of actions. However, these findings
would still exist within a theoretical vacuum as long as the ideal
sequence is not linked to a theory-based definition of the construct.

As an application of the approach of distinguishing low-level and
higher-level features, (Brandl et al, 2021) coded the interactions
between learners and a training simulation for medical diagnoses
based on theoretically defined diagnostic activities (Fischer
et al., 2014). This focus on higher-level features allowed the study to
move beyond task-specificity, thereby enabling the generalization of
findings across various diagnostic tasks. Aggregating the process data
in this way allows to train machine-learning algorithms to predict suc-
cessful diagnoses in various diagnostic tasks. This study makes it
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apparent how relating process data to established theoretical con-
cepts can make the findings generalizable. The diagnostic activities
used to code the interactions are not specific to any individual task,
and the same method could be applied to any diagnostic training sim-
ulation regardless of context. Lotz et al. (2017) demonstrated how
intelligence relates to individual differences in interaction frequency
and quality changes in a computer-based problem-solving task. The
authors find that, while all test-takers improve their test-taking hehav-
iour across tasks on average, individual differences in intelligence pre-
dict the speed and range of this improvement. This example illustrates
how rather basic process information can still be related to theoreti-
cally defined latent constructs.

In conclusion, to truly advance scientific knowledge through pro-
cess data analyses, it's essential to generalize findings from specific
items and link them to established constructs (see also Kroehne &
Goldhammer, 2018). This requires the capacity for replication, system-
atic testing of theories, and the understanding of the difference
between low-level and higher-level features. Recognizing this differ-
entiation sets a crucial theoretical consideration for the level of
abstraction in analysing process data, paving the way for more sub-
stantial scientific progress. Additionally, as underscored by
(Goldhammer et al., 2021), there is a pressing need to validate the
interpretation of measures based on process data. Even when a theo-
retical link between data and theory is postulated, this link necessi-
tates substantiation with theoretical and empirical arguments to
ensure its validity. Therefore, the integration of theoretical consider-
ations, the differentiation of low-level and higher-level features, and
the validation of interpretations collectively form the pillars of more
rigorous and impactful research in this domain.

3.2 | Practical level
Despite the scientific challenges described above, there are many
high-quality studies on the use of process data in educational large-
scale assessments, demonstrating the benefit of modelling new data
sources and incorporating process data in the statistical modelling of
multiple possible assessment data (He & von Davier, 2016; Jiang
et al., 2021; Pohl et al., 2021; von Davier et al., 2019). Process data
can help validate and facilitate measuring response accuracy and pro-
vide supplementary information in understanding test-takers' behav-
iours, the reasons for missing data, and links with motivation studies.
However, with the evolution of educational large-scale assess-
ment from a paper-based technology to an electronic one, the focus
of these assessments has evolved, too (Bennett, 2015). Over the past
several decades, the most common use of educational assessment has
been for institutional purposes such as state school accountability.
Accordingly, lots of research on the use of process data has concen-
trated on this use of assessment. However, in recent years, the
value of assessment as a feedback tool informing individual learning
(formative assessment) has been realized (e.g., Chudowsky &
Pellegrino, 2003; van der Kleij et al., 2015). Whereas testing to serve
institutional purposes may not diminish in absolute terms, there is

STADLER ET AL

reason to believe it will diminish in relative terms as assessment to
serve individual learning purposes becomes more frequent. The
increasing prominence of formative assessment is being driven by
many factors, including advances in measurement and data science
and the emergence of electronic learning environments.

Obviously, international large-scale assessments are primarily
designed to facilitate group-based assessments and comparisons
across large populations, not individuals (von Davier et al., 2019).
Nonetheless, they can and should support learning (Chudowsky &
Pellegrino, 2003). Especially interactive tasks inherently offer a type
of feedback to the test-takers through the evolution of the task in
response to their interactions (Greiff et al., 2016). This feedback, as
we conceive it here, does not correspond to traditional, evaluative
feedback, but instead refers to the changing state of the task accord-
ing to the decisions made by the test-takers. Essentially, the task envi-
ronment responds and adapts based on the actions of the test-takers,
thus providing them with an implicit form of feedback about the con-
sequences of their actions within the task scenario. This results in
learning opportunities that can be used more or less efficiently, which
needs to be considered when using these tasks as a means of stan-
dardized testing. Rather than trying to reduce these learning opportu-
nities by limiting the tasks responsiveness, it may be beneficial to
assess individual learning rather than the mere ability to solve the
task. To benefit individually from an assessment situation, especially
from a complex interactive task, learners require individualized scaf-
folding (e.g., Azevedo et al., 2004), For example, educators could use
process-data from computer-based assessments to differentiate spe-
cific behaviours in students and use this information to provide indi-
vidualized support (e.g., Li et al, 2020). Accordingly, process data
analyses have long been considered a promising tool to detect a need
for scaffolding and provide individualized support, yet most of this
potential remains essentially untapped in day-to-day teaching practice
(Bakharia et al., 2016). Most previous studies have drawn on historical
data to identify patterns in students' process data and related these
patterns to academic performance, retention, or other institutional
outcomes. Utilizing process data for individual learning purposes
requires understanding the pedagogical context that influences stu-
dent activities and how identifying patterns in students' learning
behaviours can help influence and contribute to more positive learn-
ing experiences (Gasevic et al., 2016; Lockyer et al., 2013). An essen-
tial next step in advancing the practical relevance of new assessment
technologies in educational large-scale assessments will, therefore, be
to align the design of assessment with learning design to use assess-
ments not only for institutional information but also as a source of
individual learning.

3.3 | Policylevel

Finally, modern educational large-scale assessments are an increas-
ingly important part of the educational research and policy landscape
internationally (Rutkowski et al., 2013). For instance, PISA claims to
have become “the world's premier yardstick for evaluating the quality,
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Scientific level

Aims:

- Relate processes to educational theory
- Increase generalizability of processes

Methods:
- Theoretical considerations on the processes causing test-taking behavior
- Replications of findings across specific tasks

\J

Practical level

Aims:

- Assessment as a feedback tool informing individual learning
- Identify disadvantageous behavior and provide individual support

Methods:
- Align the design of assessment with learning design
- Determine ,points of scaffolding” in process data

\/

Policy level

Aims:
- Relate differences in achievement to differences in behavior

- Identify educational policy influencing behavior

Methods:
- Cross country comparisons of process data

- Analyses of the impact of educational policies on student behavior

FIGURE 1 The use of process data in educational large-scale assessment for sustainable change.

equity and efficiency of school systems” (OECD, 2016, p. 2). In fact,
despite many criticisms and potential issues with comparability
across countries (see e.g., Winthrop & Simons, 2013) as well as
methodological constraints (e.g., Rutkowski & Rutkowski, 2016),
there are several examples of how results from educational large-
scale assessments have been converted into educational policy
such as the formation, expansion and improvements to national
assessment and evaluation systems, the revision of curriculum
standards, often to include and emphasize PISA-like competencies,
or promoting equity through school financing (Breakspear, 2012;
Wagemaker, 2014).

However, in international large-scale assessments, the focus lies
mainly on achievement test scores as a measure of competence,
which makes sense when discussing performance on an aggregated
level for quality monitoring (Skedsmo & Huber, 2017). Unfortunately,
the idea that the criterion of competence is what someone can do
often downplays the importance of how the person arrives at this
competence (Havnes & Prgitz, 2016; Oliveri & Davier, 2014). In other
words, merely relating aggregated sum scores to differences in educa-
tional systems such as the number of all-day schools or integrative
schools without a very good understanding of the behaviour on which
the test values are based seems problematic (e.g., Giir et al,, 2012;
Kuhlmann & Tillmann, 2009) and is unlikely to yield sustainable
changes (Pohl et al., 2021).

Analyses of process data can help provide this understanding. For
instance, Greiff et al. (2016), analysed log-file data of a complex
problem-solving tasks for students from 44 countries and economies.
The authors find that there were different levels of non-mastery that
ranged from applying no systematic strategic behaviour to actually
applying the appropriate strategy but still failing to solve the task. On
the backdrop of these results, they discuss implications and future
potentials of log-file analyses in educational large-scale assessments
for researchers, teachers, and policy makers. This study demonstrates
how for policy makers, interesting comparisons between educational
systems might emerge from the relation between actual behaviour
and overall proficiency. In the PISA 2012 cycle, for instance, Polish
students performed reasonably well in mathematics (518 points in the
international comparison of the PISA scale), science (526 points), and
reading (518 points) but performed considerably worse in complex
problem-solving compared with other countries or economies
(481 points). Log-file analyses revealed how this performance drop
could be explained by (a lack of) specific actions, for instance, because
Polish students never learned the principle of isolated variation or
because they were too reluctant to explore a problem situation com-
prehensively. This provides interesting starting points for policy deci-
sions and educational priorities (see Greiff et al,, 2015),

Questions such as what exactly it is that students do better in one
country compared with another may provide insights into how teaching
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practices foster or neglect certain behaviours but need to consider cul-
tural differences in learning and teaching (Huang et al,, 2016).

4 | CONCLUSION

In summary, we posit that educational large-scale assessments, particu-
larly through their evolution from simple paper-pencil tests to innova-
tive technology-based and simulated environments, hold tremendous
potential to advance research, educational practice, and policy-making.
Despite this potential, the sustainable utilization of the rich information
these assessments provide has been hindered, impacting their potential
to enhance global education quality. As illustrated in Figure 1, there are
necessary changes to be undertaken at the scientific level in how we
analyse process data to foster sustainable changes at the practical and
policy levels. Primarily, linking process data to educational theory is cru-
cial for enhancing the generalizability of our findings. This link not only
enables the utilization of assessment results as individual learning feed-
back tools but also allows the identification of disadvantageous behav-
iours, paving the way for targeted individual support.

To achieve this, the alignment of assessment design with learn-
ing theories is paramount. The process data emanating from such
theoretically grounded and practically meaningful assessments can
then elucidate achievement disparities across countries or educa-
tional systems. Palicy predicated on such robust data can have a last-
ing, sustainable impact on students' education. This exploration
underscores a fundamental need for further research dedicated to
the sustainable, theory-driven utilization of process data from inter-
active tasks in large-scale assessments. Our aspiration is that this
research will lead to systemic changes that bridge the gap between
research, practice, and policy in education, ultimately contributing to
the quality of education worldwide.
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Abstract

Collaborative skills are crucial in knowledge-rich domains, such as medical diagnos-
ing. The Collaborative Diagnostic Reasoning (CDR) model emphasizes the importance
of high-quality collaborative diagnostic activities (CDAs; e.g., evidence elicitation and
sharing), influenced by content and collaboration knowledge as well as more general
social skills, to achieve accurate, justified, and efficient diagnostic outcomes (Radkow-
itsch et al., 2022). However, it has not yet been empirically tested, and the relationships
between individual characteristics, CDAs, and diagnostic outcomes remain largely unex-
plored. The aim of this study was to test the CDR model by analyzing data from three
studies in a simulation-based environment and to better understand the construct and the
processes involved (N = 504 intermediate medical students) using a structural equation
model including indirect effects. We found various stable relationships between individ-
ual characteristics and CDAs, and between CDAs and diagnostic outcome, highlighting
the multidimensional nature of CDR. While both content and collaboration knowledge
were important for CDAs, none of the individual characteristics directly related to diag-
nostic outcome. The study suggests that CDAs are important factors in achieving success-
ful diagnoses in collaborative contexts, particularly in simulation-based settings. CDAs
are influenced by content and collaboration knowledge, highlighting the importance of
understanding collaboration partners’ knowledge. We propose revising the CDR model
by assigning higher priority to collaboration knowledge compared with social skills, and
dividing the CDAs into information elicitation and sharing, with sharing being more
transactive. Training should focus on the development of CDAs to improve CDR skills.

Keywords Collaborative Problem-solving - Simulation-based Learning Environment -
Diagnostic Activities - Diagnostic Reasoning - Medical Education

Introduction

Collaborative skills are highly relevant in many situations, ranging from computer-sup-

ported collaborative learning to collaborative problem-solving in professional practice
(Fiore et al., 2018). While several broad collaborative problem-solving frameworks exist

Extended author information available on the last page of the article

@ Springer



74

Paper 2

342 L. Brandl et al.

(OECD, 2017), most of them are situated in knowledge-lean settings. However, one exam-
ple of collaborative problem-solving of knowledge-rich domains is collaborative diagnostic
reasoning (CDR; Radkowitsch et al., 2022)—which aligns closely with medical practice—
as this is a prototypical knowledge-rich domain requiring high collaboration skills in daily
practice. In daily professional practice, physicians from different specialties often need to
collaborate with different subdisciplines to solve complex problems, such as diagnosing,
that is, determining the causes of a patient’s problem. Moreover, research in medical edu-
cation and computer-supported collaborative learning suggests that the acquisition of medi-
cal knowledge and skills is significantly enhanced by collaborative problem-solving (Hautz
et al., 2015; Koschmann et al., 1992). For problem-solving and learning, it is crucial that all
relevant information (e.g., evidence and hypotheses) is elicited from and shared with the col-
laboration partner (Schmidt & Mamede, 2015). However, CDR is not unique to the medical
field but also relevant in other domains, such as teacher education (Heitzmann et al., 2019).

The CDR model has been the basis of empirical studies and describes how individual
characteristics and the diagnostic process are related to the diagnostic outcome. However,
it has not yet been empirically tested, and the relationships between individual character-
istics, diagnostic process, and diagnostic outcome remain mostly unexplored (Fink et al.,
2023). The aim of this study is to test the CDR model by analyzing data from three studies
with similar samples and tasks investigating CDR in a simulation-based environment. By
undertaking these conceptual replications, we aspire to better understand the construct and
the processes involved. As prior research has shown, collaboration needs to be performed
at a high quality to achieve accurate problem solutions respectively learning outcomes
(Pickal et al., 2023).

Collaborative Diagnostic Reasoning (CDR) Model

Diagnosing can be understood as the process of solving complex diagnostic problems
through “goal-oriented collection and interpretation of case-specific or problem-specific
information to reduce uncertainty” in decision-making through performing diagnostic
activities at a high quality (Heitzmann et al., 2019, p. 4). To solve diagnostic problems, that
is, to identity the causes of an undesired state, it is increasingly important to collaborate
with experts from different fields, as these problems become too complex to be solved indi-
vidually (Abele, 2018; Fiore et al., 2018). Collaboration provides advantages such as the
division of labor, access to diverse perspectives and expertise, and enhanced solution qual-
ity through collaborative sharing of knowledge and skills (Graesser et al., 2018).

The CDR model is a theoretical model focusing on the diagnostic process in collab-
orative settings within knowledge-rich domains (Radkowitsch et al., 2022). The CDR
model is based on scientific discovery as a dual-search model (SDDS; Klahr & Dunbar,
1988) and its further development by van Joolingen and Jong (1997). The SDDS model
describes individual reasoning as the coordinated search through hypothetical evidence
and hypotheses spaces and indicates that for successful reasoning it is important not
only that high-quality cognitive activities within these spaces are performed but also that
one is able to coordinate between them (Klahr & Dunbar, 1988). In the extended SDDS
model (van Joolingen & Jong, 1997) focusing on learning in knowledge-rich domains, a
learner hypothesis space was added including all the hypotheses one can search for with-
out additional knowledge. Although Dunbar (1995) found that conceptual change occurs
more often in groups than in individual work, emphasizing the importance of collaborative
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processes in scientific thinking and knowledge construction, the SDDS model has hardly
been systematically applied in computer-supported collaborative learning and collaborative
problem-solving.

Thus, the CDR model builds upon these considerations and describes the relationship
between individual characteristics, the diagnostic process, and the diagnostic outcome.
As in the SDDS model we assume that CDR involves activities within an evidence and
hypotheses space; however, unlike the SDDS in the CDR model, these spaces are under-
stood as cognitive storages of information. Which aligns more to the extended dual search
space model of scientific discovery learning (van Joolingen & Jong, 1997). In summary
we assume that coordinating between evidence (data) and hypothesis (theory) is essential
for successful diagnosing. Further, the CDR model is extended to not only individual but
also collaborative cognitive activities and describes the interaction of epistemic activities
(F. Fischer et al., 2014) and collaborative activities (Liu et al., 2016) to construct a shared
problem representation (Rochelle & Teasley, 1995) and effectively collaborate. Thus, we
define CDR as a set of skills for solving a complex problem collaboratively “by generating
and evaluating evidence and hypotheses that can be shared with, elicited from, or negoti-
ated among collaborators” (Radkowitsch et al., 2020, p. 2). The CDR model also makes
assumptions about the factors necessary for successful CDR. First, we look at what suc-
cessful CDR means, why people differ, and what the mediating processes are.

Diagnostic Outcome: Accuracy, Justification, and Efficiency

The primary outcome of diagnostic processes, such as CDR, is the accuracy of the given
diagnosis, which indicates problem-solving performance or expertise (Boshuizen et al.,
2020). However, competence in diagnostic reasoning, whether it is done individually or
collaboratively, also includes justifying the diagnosis and reaching it effectively. This is
why, in addition to diagnostic accuracy, diagnostic justification and diagnostic efficiency
should also be considered as secondary outcomes of the diagnostic reasoning process
(Chernikova et al., 2022; Daniel et al., 2019). Diagnostic justification makes the reasoning
behind the decision transparent and understandable for others (Bauer et al., 2022). Good
reasoning entails a justification including evidence, which supports the reasoning (Hitch-
cock, 2005). Diagnostic efficiency is related to how much time and effort is needed to reach
the correct diagnosis; this is important for CDR, as diagnosticians in practice are usually
under time pressure (Braun et al., 2017). Both diagnostic justification and diagnostic effi-
ciency are thus indicators of a structured and high-quality reasoning process. So, while in
many studies, the focus of assessments regarding diagnostic reasoning is on the accuracy
of the given diagnosis (Daniel et al., 2019), the CDR model considers all three facets of the
diagnostic outcome as relevant factors.

Individual Characteristics: Knowledge and Social Skills

Research has shown that content knowledge, social skills, and, in particular, collaboration
knowledge are important prerequisites for, and outcomes of, computer-supported collabo-
rative learning (Jeong et al., 2019; Vogel et al., 2017). CDR has integrated these dependen-
cies into its model structure. Thus, the CDR model assumes that people engaging in CDR
differ with respect to their content knowledge, collaboration knowledge, and domain gen-
eral social skills.
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Content knowledge refers to conceptual and strategic knowledge in a specific domain
(Fortsch et al., 2018). Conceptual knowledge encompasses factual understanding of
domain-specific concepts and their interrelations. Strategic knowledge entails contextu-
alized knowledge regarding problem-solving during the diagnostic process (Stark et al.,
2011). During expertise development, large amounts of content knowledge are acquired
and restructured through experience with problem-solving procedures and routines (Boshu-
izen et al., 2020). Research has repeatedly shown that having high conceptual and strategic
knowledge is associated with the diagnostic outcome (e.g., Kiesewetter et al., 2020; cf.
Fink et al., 2023).

In addition to content knowledge, the CDR model assumes that collaborators need
collaboration knowledge. A key aspect of collaboration knowledge (i.e., being aware of
knowledge distribution in the group; Noroozi et al., 2013) is the pooling and processing
of non-shared information, as research shows that a lack of collaboration knowledge has
a negative impact on information sharing, which in turn has a negative impact on perfor-
mance (Stasser & Titus, 1985).

Finally, general social skills influence the CDR process. These skills mainly influence
the collaborative aspect of collaborative problem-solving and less the problem-solving
aspect (Graesser et al., 2018). Social skills are considered particularly important when col-
laboration knowledge is low (F. Fischer et al., 2013). CDR assumes that in particular the
abilities to share and negotiate ideas, to coordinate, and to take the perspective are relevant
for the diagnostic process and the diagnostic outcome (Radkowitsch et al., 2022; see also
Liu et al., 2016, and Hesse et al., 2015).

Diagnostic Process: Collaborative Diagnostic Activities

The diagnostic process is thought to mediate the effect of the individual characteristics on
the diagnostic outcome and is described in the CDR model using collaborative diagnostic
activities (CDAs), such as evidence elicitation, evidence sharing, and hypotheses sharing
(Heitzmann et al., 2019; Radkowitsch et al., 2022). One of the main functions of CDAs is
to construct a shared problem representation (Rochelle & Teasley, 1995) by sharing and
eliciting relevant information, as information may not be equally distributed among all col-
laborators initially. To perform these CDAs at a high quality, each collaborator needs to
identify information relevant to be shared with the collaboration partner as well as infor-
mation they need from the collaboration partner (OECD, 2017).

Evidence elicitation involves requesting information from a collaboration partner to
access additional knowledge resources (Weinberger & Fischer, 20006). Evidence sharing
and hypothesis sharing involve identifying the information needed by the collaborator to
build a shared problem representation. This externalization of relevant information can be
understood as the novelty aspect of transactivity (Vogel et al., 2023). However, challenges
arise from a lack of relevant information due to deficient sharing, which can result from
imprecise justification and insufficient clustering of information. In particular, research has
shown that collaborators often lack essential information-sharing skills, such as identify-
ing information relevant for others from available data, especially in the medical domain
(Kiesewetter et al., 2017; Tschan et al., 2009).
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It is crucial for the diagnostic outcome that all relevant evidence and hypotheses are
elicited and shared for the specific collaborators (Tschan et al., 2009). However, diagnostic
outcomes seem to be influenced more by the relevance and quality of the shared informa-
tion than by their quantity (Kiesewetter et al., 2017; Tschan et al., 2009). In addition, recent
research has shown that the diagnostic process is not only an embodiment of individual
characteristics but also adds a unique contribution to diagnostic outcome (Fink et al.,
2023). However, it remains difficult to assess and foster CDAs.

Collaboration in Knowledge-Rich Domains: Agent-Based Simulations

There are several challenges when it comes to modelling collaborative settings in knowl-
edge-rich domains for both learning and research endeavors. First. many situations are
not easily accessible, as they may be scarce (e.g., natural disasters) or too critical or over-
whelming to be approached by novices (e.g., some medical procedures). In these cases, the
use of simulation-based environments allows authentic situations approximating real-life
diagnostic problems to be provided (Cook et al., 2013; Heitzmann et al., 2019). Further,
the use of technology-enhanced simulations allows data from the ongoing CDR process
to be collected in log files. This enables researchers to analyze process data without the
need for additional assessments with dedicated tests. Analyzing process data instead of
only product data (the assessment’s outcome) permits insights into the problem-solving
processes leading to the eventual outcome (e.g., Goldhammer et al., 2017). Second, when
using human-to-human collaboration, the results of one individual are typically influenced
by factors such as group composition or motivation of the collaboration partner (Radkow-
itsch et al., 2022). However, we understand CDR as an individual set of skills enabling col-
laboration, as indicated by the broader definition of collaborative problem-solving (OECD,
2017). Thus, the use of simulated agents as collaboration partners allows a standardized
and controlled setting to be created that would otherwise be hard to establish in collabora-
tions among humans (Rosen, 2015). There is initial research showing that performance in
simulations using computerized agents is moderately related to collaborative skills in other
operationalizations (Stadler & Herborn et al., 2020). Thus, computerized agents allow
for enhanced control over the collaborative process without significantly diverging from
human-to-human interaction (Graesser et al., 2018; Herborn et al., 2020). Third, in less
controlled settings it is hard to ensure a specific process is taking place during collabora-
tive problem-solving. For example, when using a human-to-human setting, it is possible
that, even though we envision measuring or fostering a specific activity (i.e. hypotheses
sharing), it is not performed by the student. Through using an agent-based simulated col-
laboration partner, we can ensure that all required processes are taking place while solving
the problem (Rosen, 2015).

Summarizing, by fostering a consistent and controlled setting, simulated agents facilitate
the accurate measurement and enhancement of collaborative problem-solving. Evidential
support for the application of simulated agents spans a variety of contexts, including tutor-
ing, collaborative learning, knowledge co-construction, and collaborative problem-solving
itself, emphasizing their versatility and effectiveness in educational settings (Graesser
et al., 2018; Rosen, 2015).
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Fig. 1 Visualization of hypothesized relationships between individual characteristics, collaborative diagnos-
tic activities, and diagnostic outcome

Research Question and Current Study

In computer-supported collaborative learning there has been the distinction between
approaches addressing collaboration to learn and approaches focusing on learning to
collaborate. Our study is best understood as addressing the second approach, learn-
ing to collaborate. We want to better understand CDR to be able to facilitate collabora-
tive problem-solving skills in learners. Thus, in this paper, we examine what it takes to be
able to collaborate in professional practice of knowledge-rich domains, such as medical
diagnosing.

When solving diagnostic problems, such as diagnosing a patient, it is often necessary to
collaborate with experts from different fields (Radkowitsch et al., 2022). In CDR, the diag-
nostic outcome depends on effectively eliciting and sharing relevant evidence and hypoth-
eses among collaborators, who often lack information-sharing skills (Tschan et al., 2009).
Thus, the CDR model emphasizes the importance of high-quality CDAs influenced by con-
tent and collaboration knowledge as well as social skills to achieve accurate, justified, and
efficient diagnostic outcomes (Radkowitsch et al., 2022).

This study reviews the relationships postulated in CDR model across three studies to
test them empirically and investigate the extent to which the relationships in the CDR
model are applicable across studies. By addressing this research question, the current
study contributes to a better understanding of the underlying processes in collaborative
problem-solving.

We derived a model (Fig. 1) from the postulated relationships made by the CDR
model. We assume that the individual characteristics are positively related to the CDAs
(Hypotheses 1-3), as well as that the CDAs are positively related to the diagnostic outcome
(Hypotheses 4-6). Further, we expect that the relationship between the individual charac-
teristics and the diagnostic outcome is partially mediated by the CDAs (Hypotheses 7-15).

We used data from three studies with similar samples and tasks investigating CDR in
an agent-based simulation in the medical domain. The studies can therefore be considered
conceptual replication studies. Furthermore, we decided to use an agent-based simulation
of a typical collaboration setting in diagnostic reasoning, namely the interdisciplinary col-
laboration between an internist and a radiologist (Radkowitsch et al., 2022).
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Table 1 Sample description per Study N Gender Age Year of study
study
Study A 157 Male =49 M=251 M=53
Female = 108 SD =31 SD=0.9
Study B 155 Male = 44 M=253 M=54
Female =111 SD=30 SD =038
Study C 192 Male = 62 M=233 M=32

Female = 130 SD=34 SD=04

N = sample size. M = mean, SD = standard deviation

Methods
Sample

To test the hypotheses, three studies were analyzed.'Study A was carried out in a labora-
tory setting in 2019 and included medical students in their third to sixth years. Study B
included medical students in their fifth to sixth years. Data collection for this study was
online due to the pandemic situation in 2020 and 2021. In both studies, participation was
voluntary, and participants were paid 10 per hour. Study C was embedded as an online
session in the curriculum of the third year of medical school in 2022. Participation was
mandatory, but permission to use the data for research purposes was given voluntarily. All
participants took part in only one of the three studies. All three studies received ethical
approval from LMU Munich (approval numbers 18-261, 18-262 & 22-0436). For a sam-
ple description of each study, see Table 1. We would like to emphasize that none of the
students were specializing in internal medicine, ensuring that the study results reflect the
competencies of regular medical students without specialized expertise.

Procedure

Each of the three studies was organized in the same way, with participants first complet-
ing a pretest that included a prior knowledge test, socio-demographic questions, and ques-
tions about individual motivational-affective characteristics (e.g., social skills, interest, and
motivation). Participants then moved on to the CDR simulation and worked on the patient
case. The patient case was the same for studies B and C, but was different for study A. The
complexity and difficulty of the patient case did not vary systematically between the patient
cases.

Simulation and Task

In the CDR simulation, which is also used as a learning environment, the task was to take
over the role of an internist and to collaborate with an agent-based radiologist to obtain
further information by performing radiological examinations to diagnose fictitious patient

! Please note that the data employed in this study have been used in previous publications (e.g., Brandl
et al., 2021; Radkowitsch, et al., 2021; Richters et al., 2022). However, the research question and the results
reported in this study are completely unique to this study.
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Table 2 Overview of the number of questions in the content knowledge test

Study Conceptual knowl- Conceptual Strategic knowledge Strategic knowledge in
edge in internal knowledge in in internal medicine  radiology
medicine radiology
Study A 20 15 24 16
8 cases 8 cases
3 questions per case 2 questions per case
Study B 20 15 24 16
8 cases 8 cases
3 questions per case 2 questions per case
Study C 13 12 24 12
8 cases 6 cases

3 questions per case

2 questions per case

Table 3 Example items for each subscale for measuring social skills

Subscale Ttem

Direct Measurement I enjoy working with others.

Perspective taking It is easy for me to put myself in the position of my collaboration partners.
Information sharing When I collaborate with others, 1 purposefully share relevant information.
Negotiating I can negotiate compromises when working with others.

Coordination When I work with others, we have a clear common goal in mind.

cases with the chief symptom of fever. Medical experts from internal medicine, radiology,
and general medicine constructed the patient cases. Each case was structured in the same
way: by studying the medical record individually, then collaborating with an agent-based
radiologist, and finally reporting the final diagnosis and its justification again individually.
For a detailed description on the development and validation of the simulation, see Rad-
kowitsch and colleagues (2020).

Before working within the simulation, participants were presented with an instruction
for the simulated scenario and informed what they were to do with it. Then, we instructed
participants how to access further information in the medical record by clicking on hyper-
links, as well as how they could use the toolbar to make notes for the later in the process.
Furthermore, we acquainted the students with how they could request further information
through collaborating with a radiologist.

During the collaboration with an agent-based radiologist, participants were asked to fill
out request forms to obtain further evidence from radiological examinations needed to diag-
nose the patient case. To effectively collaborate with radiologists, it is crucial for internists
to clearly communicate the type of evidence required to reduce uncertainty (referred to as
“evidence elicitation”) and share any relevant patient information such as signs, symptoms,
and medical history (referred to as “evidence sharing”) as well as suspected diagnoses
under investigation (referred to as “hypotheses sharing”) that may impact the radiologists’
diagnostic process. Only when participants shared evidence and hypotheses appropriately
for their requested examination did they receive a description and evaluation of the radi-
ologist’s radiologic findings. What was considered appropriate was determined by medical
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Table 4 Means, standard deviations, and internal consistency for individual characteristics, collaborative
diagnostic activities, and diagnostic outcome per study

Variable Study A Study B Study C

M SD ® M SD o M SD o

Conceptual knowledge in internal medicine® 0.61 0.12 37 065 0.13 .53 049 0.18 .49

Conceptual knowledge in radiology® 0.67 015 55 068 0.16 .62 052 0.18 .39
Strategic knowledge in internal medicine® 0.58 0.12 53 061 0.13 .54 048 0.14 40
Strategic knowledge in radiology® 042 012 38 047 0.14 45 044 016 44
Collaboration knowledge® 070 009 83 072 009 .83 065 0.10 .82
Direct measurement? 445 063 79 436 064 74 459 0.67 .81
Perspective takingLl 436 057 70 435 057 .62 450 058 .62
Information sharing? 455 052 59 449 055 .62 456 051 .66
Negotiatingd 476 057 46 471 057 51 471 049 28
Coordination? 451 058 72 451 060 .71 458 059 .76
Evidence elicitation™* 049 050 - 070 046 -° 067 047 -
Evidence sharing® 055 019 -" 060 022 - 053 024 -
Hypotheses sharing™® 061 049 -° 062 049 -° 051 050 -®
Diagnostic accuracy™ 082 038 -* 09 030 -* 092 027 -t
Diagnostic justification® 034 023 -® 043 022 -®> 041 020 -
Diagnostic efficiency® 0.07 002 -° 0.07 004 -b 0.05 002 -’

*Binary indicator

PSingle measure item
“Ranging from 0 to 1
dRanging from 1 to 6

experts for each case and examination in preparation of the cases. Therefore, this scenario
involves more than a simple division of tasks, as the quality of one person’s activity (i.e.,
description and evaluation of the radiologic findings) depends on the collaborative efforts
(i.e., CDAs) of the other person (OECD, 2017)

Measures—Individual Characteristics

The individual characteristics were measured in the pretest. The internal consistencies of
each measure per study are displayed in Table 4 in the Results section. We want to point
out that the internal consistency of knowledge as a construct—determined by the inter-
correlations among knowledge pieces—typically exhibits a moderate level. Importantly,
recent research argues that a moderate level of internal consistency does not undermine
the constructs’ capacity to explain a significant amount of variance (Edelsbrunner, 2024;
Stadler et al., 2021 ; Taber, 2018).

Content knowledge was separated into radiology and internal medicine knowledge, as
these two disciplines play a major role in the diagnosis of the simulated patient cases. For
each discipline, conceptual and strategic knowledge was assessed (Kiesewetter et al., 2020;
Stark et al., 2011). The items in each construct were presented in a randomized way in each
study. However, the items for study C were shortened due to the embedding of the data
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collection in the curriculum. Therefore, items with a very high or low item difficulty in
previous studies were excluded (Table 2).

Conceptual knowledge was measured using single-choice questions including five
options adapted from a database of examination questions from the Medical Faculty of the
LMU Munich, focusing on relevant and closely related diagnoses of the patient cases used
in the simulation. A mean score of 0—1 was calculated, representing the percentage of cor-
rect answers and indicating the average conceptual knowledge of the participant per medi-
cal knowledge domain.

Strategic content knowledge was measured contextually using key features questions
(M. R. Fischer et al., 2005). Short cases were introduced followed by two to three follow up
questions (e.g., What is your most likely suspected diagnosis?, What is your next examina-
tion?, What treatment do you choose?). Each question had eight possible answers, from
which the learners were asked to choose one. Again, a mean score of 0-1 was calculated,
representing the percentage of correct responses, indicating the average strategic content
knowledge of the participant per domain.

The measure of collaboration knowledge was consistent across the three studies and
specific to the simulated task. Participants were asked to select all relevant information
for seven different patient cases with the cardinal symptom of fever (internal medicine).
The patient cases were presented in a randomized order and always included 12 pieces of
information regarding the chief complaints, medical history, and physical examination of
the patient cases. We then assessed whether each piece of information was shared correctly
(i.e. whether relevant information was shared and irrelevant information was not shared)
and assigned 1 point and divided it by the maximum of 12 points to standardized the range
of measure to 0—1. Then we calculated a mean score for each case and then across all cases,
resulting in a range of 0—1 indicating the participants’ collaboration knowledge

The construct of social skills was consistent across the three data collections and was
measured on the basis of self-report on a 6-point Likert scale ranging from total disagree-
ment to total agreement. The construct was measured using 23 questions divided into five
subscales; for example items, see Table 3. Five questions aimed to measure the overall
construct, and the other four subscales were identified using the complex problem-solving
frameworks of Liu et al. (2016) and Hesse et al. (2015): perspective taking (four ques-
tions), information sharing (five questions), negotiation (four questions), and coordination
(five questions). For the final score, the mean of all subcategories was calculated, ranging
from 1 to 6, representing general social skills.

Measures—Collaborative Diagnostic Activities (CDA)

We operationalize CDAs in the pretest case in terms of quality of evidence elicitation,
evidence sharing, and hypotheses sharing. The internal consistencies of each measure per
study are displayed in Table 4 in the Results section.

The quality of evidence elicitation was measured by assessing the appropriateness of
the requested radiological examination for the indicated diagnosis. An expert solution was
developed to indicate which radiological examinations were appropriate for each of the
possible diagnoses. If participants requested an appropriate radiological examination for
the indicated diagnoses, they received 1 point for that request attempt. Finally, a mean score
across all request attempts (maximum of 3) was calculated and scored. The final mean
score was transformed into a binary indicator, with 1 indicating that all requested radio-
logical examinations were appropriated and O indicating that inappropriate radiological
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examinations were also requested, due to the categorical nature of the original data and its
skewed distribution, with a majority of responses concentrated in a single category.

The quality of evidence sharing was measured using a precision indicator. This was cal-
culated as the proportion of shared relevant evidence out of all shared evidence. Relevant
evidence is defined per case and per diagnosis and indicated by the expert solution. The
precision indicator was first calculated per radiological request. We then calculated the
mean score, summarizing all attempts in that patient case. This resulted in a range from 0
points, indicating that only irrelevant evidence was shared, to 1 point, indicating that only
relevant evidence was shared.

The quality of hypotheses sharing was also measured using a precision indicator. For
each patient case, the proportion of diagnoses relevant for the respective patient case to
all shared diagnoses was calculated. Which diagnoses were considered relevant for a spe-
cific case was determined by an expert solution. As with evidence elicitation, this score
was evaluated and converted into a binary variable, where 1 indicated that only relevant
diagnoses were shared and 0 indicated that also irrelevant diagnoses were shared, due to
the categorical nature of the original data and its skewed distribution, with a majority of
responses concentrated in a single category.

Measures—Diagnostic Outcome

We operationalize diagnostic outcome in the pretest case in terms of diagnostic accuracy,
diagnostic justification, and diagnostic efficiency.

For diagnostic accuracy, a main diagnosis was assigned to each patient case as expert
solution. After working on the patient case and requesting the radiological examination,
participants indicated their final diagnosis. To do this, they typed in the first three letters
of their desired diagnosis and then received suggestions from a list of 249 possible diag-
noses. Diagnostic accuracy was then calculated by coding the agreement between the final
diagnosis given and the expert solution. Accurate diagnoses (e.g., hospital-acquired pneu-
monia) were coded as 1, correct but inaccurate diagnoses (e.g., pneumonia) were coded
as (.5, and incorrect diagnoses were coded as (). A binary indicator was used for the final
diagnostic accuracy score, with () indicating an incorrect diagnosis and 1 indicating an at
least inaccurate diagnosis, due to the categorical nature of the original data and its skewed
distribution, with a majority of responses concentrated in a single category.

A prerequisite for diagnostic justification and diagnostic efficiency is the provision of at
least an inaccurate diagnosis. If a participant provided an incorrect diagnosis (coded as 0),
diagnostic justification and diagnostic efficiency were immediately scored as 0.

After choosing a final diagnosis, participants were asked to justify their decision in an
open text field. Diagnostic justification was then calculated as the proportion of relevant
reported information out of all relevant information that would have fully justified the final
accurate diagnosis. Again, medical experts agreed on an expert solution that included all
relevant information to justify the correct diagnosis. The participants’ solution was coded
by two independent coders, each coding the full data, and differences in coding were
discussed until the coders agreed. We obtained a range from 0 points, indicating a com-
pletely inadequate justification, to 1 point, indicating a completely adequately justified final
diagnosis.

Diagnostic efficiency was defined as diagnostic accuracy (non-binary version) divided
by the minutes required to solve the case.
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Statistical Analyses

To answer the research question, a structural equation model (SEM) was estimated using
MPlus Editor, version 8 (Muthén & Muthén, 2017). We decided to use a SEM, as it is
a comprehensive statistical approach widely used in psychology and educational sciences
for its ability to model complex relationships among observed and latent variables while
accounting for measurement error (Hilbert & Stadler, 2017). SEM support the develop-
ment and verification of theoretical models, enabling scholars to refine theories and inter-
ventions in psychology and education based on empirical evidence, as not only can one
relationship be investigated but a system of regressions is also considered simultaneously
(Nachtigall et al., 2003).

We included all links between the variables and applied a two-step approach, using
mean-adjusted and variance-adjusted unweighted least squares (ULSMYV, Savalei & Rhem-
tulla, 2013) as the estimator and THETA for parametrization, first examining the measure-
ment model and then the structural model. The assessment of model fit was based on chi-
square (x2), root mean square error of approximation (RMSEA), and comparative fit index
(CFI). Model fit is generally indicated by small chi-squared values; RMSEA values of <
0.08 (acceptable) and < 0.06 (excellent), and CFI values > (.90. We do not consider stand-
ardized root mean squared residual (SRMR), because, according to the definition used in
MPlus, this index is not appropriate when the sample size is 200 or less, as natural vari-
ation in such small samples contributes to larger SRMR values (Asparouhov & Muthén,
2018). For hypotheses 1-6, we excluded path coefficients < 0.1 from our interpretation, as
they are relatively small. In addition, at least two interpretable path coefficients, of which
at least one is statistically significant, are required to find support for the hypothesis. For
hypotheses 7—15, specific indirect effects (effect of an individual characteristic on diagnos-
tic outcome through a specific CDA) and total indirect effects (mediation of the effect of
an individual characteristic on diagnostic outcome through all mediators) were estimated.

We reported all measures in the study and outlined differences between the three sam-
ples. All data and analysis code have been made publicly available at the Open Science
Framework (OSF) and can be accessed at https://osf.io/u8t62. Materials for this study are
available by email through the corresponding author. This study’s design and its analysis
were not pre-registered.

Results

The descriptive statistics of each measure per study are displayed in Table 4. The intercor-
relations between the measures per study can be found in Appendix Table 7.

Overall Results of the SEM

All loadings were in the expected directions and statistically significant, except for concep-
tual knowledge in internal medicine in study C (A = 0.241, p = .120), conceptual knowl-
edge in radiology in study A (A = 0.398, p = .018), and strategic knowledge in internal
medicine (A = 0.387, p = .206) and radiology (A = -0.166, p = .302) in study B. Standard-
ized factor loadings of the measurement model are shown in Appendix Table 5.
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Only coefficients > 0.10 are displayed. The full thick line represents a positive statistically
significant relationship in three studies; the full line represents a positive relationship in three
studies, of which two are statistically significant; the dashed line represents a positive
statistically significant relationship in two studies; and the dotted line represents a positive
statistically significant relationship in two studies, of which one is statistically significant.

p < .05 *%*¥p < 01. ***p < .001

Fig.2 Evidence on supported relationships between individual characteristics, collaborative diagnostic
activities, and diagnostic outcome

The SEM has a good fit for study A [X3(75) = 74.086, p = .508, RMSEA = 0.00,
CFI = 1.00], study B [X*(75) = 68.309, p = .695, RMSEA = 0.000, CFI = 1.00], and study
C [X%(75) = 93.816, p = .070, RMSEA = 0.036, CFI = 1.00].

Paths between Individual Characteristics, CDAs, and Diagnostic Qutcome

The standardized path coefficients and hypotheses tests for the theoretical model are
reported in Table 5. An overview of the paths supported by the data is shown in Fig. 2.

Overall, the R? for the CDAs ranged from medium to high for evidence elicitation
and evidence sharing, depending on the study, and were consistently low for hypotheses
sharing across all three studies. Looking at diagnostic outcome, R* is consistently large
for diagnostic accuracy and medium to large for diagnostic justification and diagnostic
efficiency (Table 6).

Table6 R’ for collaborative

diagnostic activities and Variable Study A Study B Study €

diagnostic outcome per study R? SE R? SE R? SE
EE*® 051 005 .166 0.09 289 0.11
ES? 077 0.04 234%**  0.07 .061 0.04
HS* 023 0.03 .035 0.04 .027 0.03
Diagnostic accuracy *  .286  0.13 .343 0.20 .332 0.17
Diagnostic justification .165  0.08 .246 0.19 .146 0.07
Diagnostic efficiency 141 0.07 422 022 .143 0.10

EE evidence elicitation, ES evidence sharing, HS hypotheses sharing.
*p < .05, **p < .01, and ***¥p < .001

For dichotomous criterions, MPlus computes a pseudo-R®
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The path from content knowledge to evidence elicitation was positive and > 0.1 in all
three studies, as well as statistically significant in two of them; therefore, we consider
Hypothesis la supported. The path from content knowledge to evidence sharing was
positive and > 0.1 in two studies, as well as statistically significant in one of them;
therefore, Hypothesis 1b is also supported. In contrast, the path from content knowledge
to hypotheses sharing was indeed also positive in two studies, but as neither was
statistically significant, we conclude that Hypothesis 1c was not supported. The path from
collaboration knowledge to evidence elicitation was positive and > 0.1 in only one study,
but also not statistically significant. Thus, we found that Hypothesis 2a was not supported.
For the path from collaboration knowledge to evidence sharing, we found relevant positive
and statistically significant coefficients in all three studies. Hypothesis 2b is therefore
fully supported by the data. This is not the case for Hypothesis 2c, for which we found
no coefficient > 0.1 for the path from collaboration knowledge to hypotheses sharing. For
the path from social skills to evidence elicitation, we found positive coefficients > 0.1 in
two out of three studies, of which one was also statistically significant. Thus, we consider
Hypothesis 3a to be supported. For the path from social skills to evidence sharing, we
again found one statistically significant positive coefficient, but in the other two studies it
was < 0.1. Therefore, we do not consider Hypothesis 3b to be supported by the data. The
same applies to the path from social skills to hypotheses sharing, where the coefficient is
< 0.1 in two studies. We therefore do not consider Hypothesis 3c to be supported.

The path from evidence elicitation to diagnostic accuracy was statistically significant and large
in magnitude in two out of three studies. Hypothesis 4a is therefore supported. The path from evi-
dence elicitation to diagnostic justification was only positive and > 0.1 in one study, which was
also not statistically significant. Therefore, we find no support for Hypothesis 4b. In contrast, the
path from evidence elicitation to diagnostic efficiency was positive and statistically significant
in two out of three studies, with one large effect. Hypothesis 4c is therefore supported. The path
from evidence sharing to diagnostic accuracy was only positive and reasonably large in one
study. Therefore, we do not find support for Hypothesis 5a. The path from evidence sharing to
diagnostic justification was positive and > 0.1 in two studies as well as statistically significant in
one of them, so Hypothesis 5b is supported. In contrast, we did not find a positive coefficient >
0.1 for the path from evidence sharing to diagnostic efficiency. Therefore, Hypothesis Sc is not
supported by the data. Although we found coefficients > 0.1 in two studies for the path from
hypotheses sharing to diagnostic accuracy, we found no support for Hypothesis 6a, as none of
these was statistically significant. This is different for Hypothesis 6b, as we found two positive
paths from hypotheses sharing to diagnostic justification, one of which was statistically significant
and large. Finally, we found two positive paths from evidence sharing to diagnostic efficiency in
three studies, one of which was statistically significant. Hypothesis 6c is therefore supported.

Indirect Effects between Individual Characteristics, CDA, and Diagnostic Outcome

Indirect effects of CDAs on the effect of individual characteristics on the diagnostic out-
come in CDR were estimated to test hypotheses 7-15. Although we found a mediating
effect of all CDAs (p = .31, p = .008), and specifically for evidence elicitation (p = .27, p
= .021) from content knowledge on diagnostic accuracy in study C, and some significant
overall and direct effects for other relationships (Appendix Table 9), none of these were
consistent across all of the studies. Thus, we conclude no consistent support for any of the
Hypotheses 7-15.
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Discussion

The aim of the current study was to investigate the extent to which the relationships speci-
fied in the CDR model (Radkowitsch et al., 2022) are applicable across studies, to bet-
ter understand the processes underlying CDR in knowledge-rich domains. Not only is this
exploration crucial for the medical field or collaborative problem-solving in knowledge-
rich domains, but it also offers valuable insights for computer-supported collaborative
learning research. Despite CDR’s specific focus, the principles and findings have relevant
implications for understanding and enhancing collaborative processes in various educa-
tional and professional settings.

Specifically, we investigated how individual learner characteristics, the CDAs, and the
diagnostic outcome are related. We therefore analyzed data from three independent stud-
ies, all from the same context, a simulation-based environment in the medical domain. Qur
study found positive relationships between content knowledge and the quality of evidence
elicitation as well as the quality of evidence sharing, but not for the quality of hypoth-
eses sharing. Furthermore, collaboration knowledge is positively related to the quality of
evidence sharing, but not to the quality of evidence elicitation and the quality of hypoth-
eses sharing. Social skills are only positively related to the quality of evidence elicitation.
This underscores the multifaceted nature of collaborative problem-solving situations. Thus,
effective CDR, a form of collaborative problem-solving, necessitates a nuanced under-
standing of the interplay between individual characteristics and CDAs.

The relevance of content knowledge for diagnostic competence is well established in
research (Chernikova et al., 2020). To develop any diagnostic skills in knowledge-rich
domains, learners need to acquire large amounts of knowledge and to restructure it through
experience with problem-solving procedures and routines (Boshuizen et al., 2020). In the
case of CDR this enables the diagnostician to come up with an initial suspected diagnosis,
which is likely to be relevant information for the collaboration partner and to guide the
further CDAs effectively. The finding that content knowledge only has a relation to the
quality of evidence elicitation but none of the other CDAs can be explained by the fact that
evidence elicitation is the least transactive CDA within the collaborative decision-making
process. When eliciting evidence, the collaboration partner is used as an external knowl-
edge resource (Weinberger & Fischer, 2006). So, despite being a collaborative activity, evi-
dence elicitation is about what information from the collaboration partner is needed rather
than what the collaboration partner needs. Thus, elicitation is less transactive than sharing,
which is focused at what the collaboration partner needs.

Not only content knowledge but also collaboration knowledge is related to the quality
of evidence sharing. This finding implies that collaboration knowledge may influence the
CDR above and beyond individual content knowledge. It also supports the differentiation
of knowledge types made in the CDR model (Radkowitsch et al., 2022). Thus, it is impor-
tant to learn not only the conceptual and strategic medical knowledge that is required for
diagnosing but also knowledge about what information is relevant for specific collabora-
tion partners when diagnosing collaboratively. This finding underpins the importance of
being aware of the knowledge distribution among collaboration partners and the relevance
of the transactive memory (Wegner, 1987). Thus, for collaborative problem-solving in
knowledge-rich domains—as for computer-supported collaborative learning more gener-
ally—knowledge and information awareness is crucial (Engelmann & Hesse, 2010).

Thus, the relevance of collaboration knowledge in collaborative problem-solving is
an important finding of our study, highlighting that it is critical in facilitating effective
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collaborative processes and outcomes. The current findings emphasize the need for edu-
cational strategies that explicitly target the development of collaborative knowledge to
ensure that learners have the knowledge and skills necessary to participate in productive
collaborative problem-solving and computer-supported collaborative learning processes. In
doing so, the CDR model emphasizes the need for learners to master collaborative skills
and build shared problem representations to take full advantage of collaborative learning
opportunities.

As CDR is conceptualized to be an interplay of cognitive and social skills (Hesse et al.,
2015), we also assumed that social skills are related to CDAs. However, we only found
evidence of the expected relationship between social skills and CDAs for the quality of
evidence elicitation. One explanation could be that collaboration knowledge was relatively
high in all three samples, outweighing the influences of general skills. This is consistent
with the assumption of the CDR model that the influence of more general social skills
is reduced with an increasing level of professional collaboration knowledge (Radkowitsch
et al., 2022). When collaboration knowledge is available to the diagnosticians, it becomes
more important than social skills. This finding again underlines the importance of collabo-
ration knowledge, which can be seen as a domain- and profession-specific development
of social skills. However, another explanation could be that, when collaborating with an
agent, the effect of social skills decreases, as the agent was not programmed to respond to
social nuances. The design of the simulation would thus buffer against the effect of social
skills. Although the study by Herborn et al. (2020) found no differences between human-
to-human and human-to-agent collaboration, this does not necessarily invalidate the poten-
tial variability in outcomes associated with the social skills incorporated into the agent.
For a thorough investigation into the impact of social skills, the agent would need variable
social abilities, enabling the variation of the importance of basic social skills for successful
collaboration.

Further, we need to conclude that there is no support for a relationship between the
individual characteristics and hypotheses sharing, as we found no stable support for the
relationship between any of the individual characteristics and the quality of hypotheses
sharing. One possible explanation could be that the binary precision measure used to
operationalize quality in hypotheses sharing is not sensitive enough or is not capturing the
relevant aspect of quality in that activity. Another explanation could be that there is no
direct relationship between the individual characteristics and hypotheses sharing, as this
relationship is mediated by evidence sharing and thus influenced by the activated knowl-
edge scripts (Schmidt & Rikers, 2007).

Looking at the relationships between CDAs and the diagnostic outcome, the current
results highlight the need to distinguish between primary (diagnostic accuracy) and sec-
ondary (diagnostic justification and efficiency) outcomes of diagnostic reasoning (Daniel
et al., 2019). Achieving diagnostic accuracy, a purely quantitative outcome measure, is less
transactive than other aspects of the diagnostic outcome. This is also where we find the link
to evidence elicitation, as we consider this to be the least transactive CDA within the col-
laborative decision-making process. However, the ability to justify and reach this decision
efficiently is then highly dependent on evidence sharing and hypotheses sharing, activities
that are more focused on transactivity within CDR (Weinberger & Fischer, 20006).

Although individual learner characteristics are found to have an effect on CDAs, and
CDAs impact the diagnostic outcome, the effect is not mediated by CDAs across stud-
ies. Thus, we assume that, for effective collaborative problem-solving in knowledge-
rich domains, such as CDR, it is not enough to have sufficient content and collaboration
knowledge; it is also necessary to be able to engage in high quality CDAs to achieve a

@ Springer



90

Paper 2

358 L. Brandl et al.

high-quality diagnostic outcome. This is consistent with research on individual diagnostic
reasoning, which shows that diagnostic activities have a unique contribution to the diag-
nostic outcome after controlling for content knowledge (Fink et al., 2023).

In summary, we explored evidence elicitation, evidence sharing, and hypotheses sharing
as crucial CDAs. The findings revealed diverse associations of these CDAs with individual
characteristics and facets of the diagnostic outcome, supporting the notion that the CDR-
process involves a variety of different skills (instead of being one overarching skill). On
the basis of these results, we propose categorizing CDAs into activities primarily focused
on individual goals and needs (e.g., elicitation) and more transactive activities directly tar-
geted at the collaborator (e.g., sharing). To enhance quality in CDAs, instructional sup-
port should be considered. For instance, providing learners with an adaptive collaboration
script has been shown to improve evidence sharing quality and promote the internalization
of collaboration scripts, fostering the development of collaboration knowledge (Radkow-
itsch et al., 2021). Further, group awareness tools, such as shared concept maps, should
be considered to compensate for deficits in one’s collaboration knowledge (Engelmann
& Hesse, 2010). However, what is required to engage in high-quality CDAs remains an
open question. One starting point is domain-general cognitive skills. These could influence
CDAs, particularly in the early stages of skill development (Hetmanek et al., 2018). Previ-
ous research showed that, in diagnostic reasoning, instructional support is more beneficial
when being domain-specific than domain-general (Schons et al., 2022). Thus, there is still
a need for further research on how such instructional support might look like.

Future Research

Although we used data from three studies, all of them were in the same domain; thus, it
remains an open question whether these findings are applicable across domains. The CDR
model claims that the described relationships are not limited to the medical domain, but
rather are valid across domains for collaboratively solving complex problems in knowl-
edge-rich domains. Future research should explore generalizability, for example, for
teacher education, which is a distinct field that also requires diagnosing and complex prob-
lem-solving (Heitzmann et al., 2019).

Regardless of domain, the non-mediating relationship of CDAs between individual
characteristics and diagnostic outcomes, as well as the found effects of the CDAs in the
current study, suggests that an isolated analysis of CDAs does not fully represent the com-
plex interactions and relationships among activities, individual characteristics, and diag-
nostic outcomes. Future studies might assess CDAs as a bundle of necessary activities,
including a focus on their possible non-linear interactions. We propose to use process data
analysis to account for the inherent complexity of the data, as different activities in dif-
ferent sequences can lead to the same outcome (Y. Chen et al., 2019). More exploratory
analyses of fine-grained, theory-based sequence data are needed to provide insights into
more general and more specific processes involved in successful solving complex problems
collaboratively (Stadler et al., 2020).

As our results have shown, collaboration knowledge and thus awareness of the knowl-
edge distribution among collaboration partners is highly relevant. While a recent meta-
analyses showed a moderate effect of group awareness of students’ performance in
computer-supported collaborative learning (D. Chen et al., 2024), it has so far not been
systematically investigated in collaborative problem-solving. Thus, more research on the
influence collaboration knowledge in collaborative problem-solving is needed.
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Further, additional factors associated with success in collaborative problem-solving—
not yet incorporated into the model and thus not yet investigated systematically—include
communication skills (OECD, 2017), the self-concept of problem-solving ability (Scalise
et al.,, 2016), and positive activating emotions during problem-solving tasks (Camacho-
Morles et al., 2019).

Limitations

There are, however, some limitations to be considered. One is that we have only considered
CDAs and how they relate to individual characteristics and outcomes. However, the CDR
model also introduces individual diagnostic activities, such as the generation of evidence
and the drawing of conclusions. These occur before and after the CDAs and may therefore
also have an impact on the described relationships. However, we decided to focus on the
CDAs within the CDR process because they are particularly relevant for constructing a
shared problem representation, being central to CDR. Future research might consider these
individual diagnostic activities, as they could, for example, further explain the how content
knowledge is related to the diagnostic outcome.

Another limitation of the current analyses is the operationalization of quality for the
CDAs. We chose the appropriateness of radiological examination for the indicated diagnosis
for quality of evidence elicitation and precision for quality of evidence sharing and hypoth-
eses sharing. However, all of these only shed light on one perspective of each activity, while
possibly obscuring others. For example, it may be that content knowledge is not related to
the precision of hypotheses sharing, but this may be different when looking at other quality
indicators, such as sensitivity or specificity. However, we decided to use the precision aspect
of activities, as research shows that collaborators often fail to identify relevant information,
and the amount of information is not related to performance (Tschan et al., 2009). Future
research may explore a broader variety of quality indicators to be able to assess the quality
of CDAs as comprehensively as possible. It should also be noted that in study B a sup-
pression effect (Horst, 1941) between hypothesis sharing and evidence elicitation artificially
inflated the observed effect size. This is to be expected with process data that can be highly
correlated and needs to be considered when interpreting the effect sizes.

In addition, it should be noted that the omega values obtained for the conceptual and
strategic knowledge measures were below the commonly accepted threshold of 0.7.
While we chose to use omega values as a more appropriate measure of reliability in our
context, given the complex and multifaceted nature of the knowledge constructs, these
lower-than-expected values raise important questions about the quality of the data and
the robustness of the findings. Thus, it is important to understand that knowledge con-
structs, by their very nature, may not always exhibit high levels of internal consistency
due to the diverse and interrelated components they encompass (Edelsbrunner, 2024;
Stadler et al., 2021; Taber, 2018). This complexity may be reflected in the moderate
omega values observed, which, while seemingly counterintuitive, does not invalidate
the potential of the constructs to account for substantial variance in related outcomes.
However, findings related to these constructs should be interpreted with caution, and
the results presented should be considered tentative. Future research should further
explore the implications of using different reliability coefficients in assessing complex
constructs within the learning sciences, potentially providing deeper insights into the
nuanced nature of knowledge and its measurement.
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Another limitation of this study is related to the agent-based collaboration, as a
predictive validation of collaborative problem-solving for later human-to-human col-
laboration in comparable contexts has not yet been systematically conducted. Although
the agent-based collaboration situation used has been validated in terms of perceived
authenticity, it still does not fully correspond to a real collaboration situation (Rosen,
2015). This could be an explanation for the low influence of social skills, as the set-
ting might not require the application of a broad set of social skills (Hesse et al., 2015;
Radkowitsch et al., 2020). In a real-life collaboration, the effects of social skills might
be more pronounced. However, research showed that the human-to-agent approach did
not lead to different results in collaborative problem-solving than the human-to-human
approach in the 2015 PISA study, and correlations with other measures of collabora-
tive skills have been found (Herborn et al., 2020; Stadler, Herborn et al., 2020). Future
studies should specifically test the relevance of social skills for CDR in a human-to-
human setting to strengthen the generalizability of our findings.

Conclusion

In conclusion, the current study highlights the importance of individual characteristics and
CDAs as independent predictors for achieving good diagnoses in collaborative contexts, at
least in the simulation-based settings we used in the studies included in our analysis. Col-
laboration knowledge emerged as a critical factor, demonstrating its importance over early
acquired, general social skills. Therefore, it is imperative to revise the CDR approach by
giving higher priority to the proficiency of collaboration knowledge compared with social
skills. Furthermore, we conclude that, in simulation-based CDR, content knowledge does
not play such a crucial role in predicting diagnostic success compared with many other
educational settings, most probably because of the endless opportunities for retrying and
revising in simulation-based learning environments.

With respect to CDAs, we suggest refining the perspective on the quality of CDAs and
consider revising the CDR model by summarizing CDAs as information elicitation and
information sharing, with the former being less transactive, and thus, less demanding than
the latter. Adequate performance in both types of CDA is presumed to result in a high-
quality shared problem representation, resulting in good diagnostic outcome. Collabora-
tive problem-solving skills are highly relevant in professional practice of knowledge-rich
domains, highlighting the need to strengthen these skills in students engaged in CDR and
to provide learning opportunities accordingly. Further, the ability to effectively collaborate
and construct shared problem representations is important, not only in CDR but also in col-
laborative problem-solving and computer-supported collaborative learning more in general,
highlighting the need for integrating such skills into curricula and instructional design.

By emphasizing these aspects, we can improve the diagnostic skills of individuals in
collaborative settings. Through advancing our understanding of CDR, we are taking a key
step forward in optimizing collaborative problem-solving and ultimately contributing to
improved diagnostic outcomes in various professional domains beyond CDR in medical
education. In particular, integrating collaboration knowledge and skills into computer-sup-
ported collaborative learning environments can enrich learning experiences and outcomes
in various knowledge-rich domains.
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Appendix
Table 7 Intercorrelations (Pearson), for the latent and manifest variables
Study A
Variable 1 2 3 4 5 6 8 9
1 Content Knowledge -
2 Collaboration Knowledge 0.21*%% —
3 Social Skills 0.13 -0.03 -
4 EE 0.12 -0.03 004 -
5 ES 0.14 0.26%*%*  0.01 0.04 -
6 HS 0.06 0.05 -0.08 -0.12 -0.05 -
7 Diagnostic Accuracy 0.23**  0.02 0.02 -009 0.00 0.13 -
8 Diagnostic Justification = 0.21* 0.05 0.15 04 -0.15 0.14 = -
9 Diagnostic Efficiency -0.11 0.10 -0.16 0.10 0.11 0.11 - —0.00 -
Study B
Variable 1 2 3 4 5 6 8 9
1 Content Knowledge -
2 Collaboration Knowledge 0.16* -
3 Social Skills —0.04 0.06 -
4 EE 0.26%% (.14 0.16% —
5 ES 0.25%%  ().34%%% () 19% (.46%*FF —
6 HS -0.03  0.09 =0.07 029%** -0.01 -
7 Diagnostic Accuracy 0.05 0.12 —0.06 0.25%*  0.11 0.07
8 Diagnostic Justification  0.10 0.05 004 -0.11 -0.02 0.12 =
9 Diagnostic Efficiency 0.10 0.14 -0.17 0.22% 0.20%  0.07 o —0.26%F —
Study C
Variable 1 2 3 4 5 6 8 9
1 Content Knowledge -
2 Collaboration Knowledge 0.09 -
3 Social Skills 0.17* 0.16* -
4 EE 0.29%%%  —0.03  0.15% -
5 ES 0.09 0.19**%  0.02 003 -
6 HS 0.07 0.00 0.08  025%** -0.06 -
7 Diagnostic Accuracy 0.05 -0.03 001 025* 0.09 0.14
8 Diagnostic Justification  0.16 0.15 0.05 0.14 0.24%%  —0.08 -
9 Diagnostic Efficiency 0.12 0.03 -0.01 0.16% 0.07 0.26%** 2 —0.08 -

EFE evidence elicitation, ES evidence sharing, HS hypotheses sharing. *p < .05, **p < .01, and ***p < .001

“These correlations cannot be calculated as if diagnostic accuracy were 0; diagnostic justification and effi-
ciency are coded as NA
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Table 9 Mediation between individual characteristics and diagnostic outcomes by collaborative diagnostic

activities

Mediation Study A Study B Study C
Name Type p SE [ SE B SE
Content knowledge—diagnostic Total A5FFE 0111 .26 0.151 .13 0.134
accuracy Total indirect -.04 0.063 .18 0.145  31**  (.118
Via EE -.06 0.05 22 0.148  27* 0.117
Via ES 0 0.01 -08 0076 .03 0.033
Via HS .01 0.023 .03 0.052 .01 0.022
Direct A9k (0122 .09 0.173  -.18 0.166
Content knowledge—diagnostic Total .26% 0.109 .16 0.101 .19 0.104
Justification Total indirect .01 0.043 -22 0149 .13 0.086
Via EE .01 0.027 -22 0.147 .12 0.085
Via ES -.01 0.021 .07 0.061 .03 0.02
Via HS .02 0.021 -07 0079 -.02 0.025
Direct 26% 0.119 .38% 0.182 .06 0.139
Content knowledge—diagnostic Total -.13 0.102 .09 0.11 17 0.104
efficiency Total indirect .09 005 28 017 08 0093
Via EE .05 0.039 .28 0.187 .04 0.089
Via ES .01 0.012 -05 0.065 .01 0.011
Via HS .03 0.029 .06 0.062 .03 0.037
Direct -21% 0104 -2 0.198 .09 0.143
Collaboration knowledge—diagnostic ~ Total .04 0.119 .18 0.146 -.08 0.241
accuracy Total Indirect .01 0.047 0 0.096 .02 0.071
Via EE .01 0.025 .12 0.092  -.02 0.046
Via ES 0 0.033 -09 0089 .04 0.045
Via HS .01 0016 -02 0.038 0 0.011
Direct .03 0.127 .18 0.152 -1 0.241
Collaboration knowledge—diagnostic ~ Total .05 0.095 .05 0.08 .16 0.086
justification Total indirect -04  0.037 .02 009 .03 0031
Via EE 0 0.005 -.11 0.09 -.01 0.021
Via ES -.05 0.031 .08 0.076 .04 0.024
Via HS .01 0.017 .05 0.057 0 0.016
Direct .1 0.1 .03 0.122 .14 0.091
Collaboration knowledge—diagnostic  Total 12 0.1 A3 0.11 .04 0.092
efficiency Total indirect .03 0.04 .05 01 01 0.035
Via EE -.01 0.024 .14 0113 0 0.01
Via ES .03 0.026 -06 0.077 .01 0.016
Via HS .01 0.023  -.04 0.047 0 0.028
Direct .09 0.103 .09 0.141 .04 0.089
Social skills—diagnostic accuracy Total -.05 0.128 -1 0.125 .05 0.142
Total indirect -.02 0.035 .14 0.112 .07 0.061
Via EE 0 0.027 .18 0.123 .06 0.054
Via ES 0 0.001  -.06 0.059 -.01 0.018
Via HS -.01 0.022 .02 0.041 .01 0.023
Direct -.03 0.131 -23  0.164 -.02 0.141
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Table 9 (continued)

Mediation Study A Study B Study C

Name Type p SE p SE p SE

Social Skills—Diagnostic Justification Total 14 0.104 .03 0.1 -.03 0.089
Total indirect -.02 0.027  -17 0.109 0 0.037
Via EE 0 0.004 -.17 0.114 .03 0.03
Via ES 0 0.016 .05 0.049 0 0.016
Via HS -.01 0.021 -.06 0.069 -.02 0.022
Direct 15 0.101 2 0.125 -.04 0.086

Social Skills—Diagnostic Efficency Total -.14 0.094 -2% 0.082 -.06 0.096
Total indirect -.02 0.032 .22 0.13 .04 0.04
Via EE 0 0.026 .22 0.143 .01 0.022
Via ES 0 0.008 -04 0051 O 0.004
Via HS -.02 0.025 .04 0.057 .03 0.036
Direct =12 0.097 -42% 0.136 -.1 0.089

EFE evidence elicitation, ES evidence sharing, HS hypotheses sharing. *p < .05, ¥*p < .01, and ***p < .001
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Abstract

Simulation-based learning is often used to facilitate complex problem-solving skills, such as
collaborative diagnostic reasoning (CDR). Simulations can be especially effective if additional
instructional support is provided. However, adapting instructional support to the learners’ needs
remains a challenge when performance is only assessed as the outcome after using the simula-
tion. Researchers are, therefore, increasingly interested in whether process data analyses can
predict outcomes of simulated learning tasks and whether such analyses allow early identifica-
tion of the need for support. This study developed a random forest classification model based
on theoretically derived process indicators to predict success in a simulated learning environ-
ment. The context of the simulated learning environment was medicine. Internists interacted
with a simulated radiologist to identify possible causes of an illness. Participants” CDR was
conceptualized via log-data, coded on a broad, domain-general level for better generalizability.
Results showed a satisfactory prediction rate for CDR performance, indicated by diagnostic
accuracy. The model predicted accurate and inaccurate diagnoses and was therefore suitable for
making statements about the performance by only using process data of CDR. The findings
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contribute to the development of more adaptive instructional support within simulation-based
learning through being able to predict the individuals’ learning outcomes already during the
process.

Keywords: simulation-based learning, complex problem solving, learning analytics, process-based
performance prediction, adaptive instructional support

Simulation-based learning is thought to facilitate complex problem-solving skills
(Chernikova, Heitzmann, Fink, et al., 2020). Simulations represent relevant aspects of
real-life problems (Grossman, 2021) and can be especially effective if they provide
adaptive instructional support (Leutner, 1993). Adaptivity of instructional support is
understood as the provision of support adjusted to individuals’ specific needs. The
aim of adaptive instructional support is twofold: Enhancing learning outcomes and
enhancing self-regulation skills concerning learning processes. When a simulation can
identify the needs of learners to better self-regulate their learning process and provide
adaptive instructional support accordingly, this can allow learners to progress in their
learning more efficiently than with non-adaptive support (Plass & Pawar, 2020).

Methods from the field of Learning Analytics seem to be helpful to enable adaptive
instructional support because they focus on predicting future outcomes based on be-
havioral data during the assessment or training process, rather than solely observing
the outcome of assessments (Baker & Siemens, 2014). One application of Learning
Analytics is the prediction of learning performance using process data, thereby iden-
tifying learners at risk of showing inadequate performance (e.g., Gasevic¢, Jovanovic,
Pardo, & Dawson, 2017). The present study aims to apply Learning Analytics to the
context of collaborative diagnostic reasoning (CDR) in simulation-based learning en-
vironments. CDR is an example of a complex problem-solving skill (Fiore et al., 2018)
and refers to individual and collaborative skills that enable diagnosticians to diagnose
problem states of specific systems (e.g., patients) while working together in teams,
based on their conceptual and strategic knowledge (Radkowitsch, M.-R. Fischer,
Schmidmaier, & F. Fischer, 2020).

Particularly, we predict CDR performance, indicated by diagnostic accuracy, based
on the collaborative diagnostic process derived from existing theoretical models. In
addressing this goal, the study serves as preparatory research for developing more
adaptive instructional support within simulation-based learning.

Simulation-Based Learning of Complex Skills

Although most complex tasks require intensive training to be performed expertly,
many are not easily accessible as training situations as they may be scarce (e.g., natu-
ral disasters) or too critical to be approached by novices (e.g., some medical proce-
dures). Simulation-based learning enables the deliberate practice of complex tasks that
learners cannot solve (Ericsson, 2004), with the opportunity to provide additional
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instructional support. It represents a promising instructional approach to facilitate the
development of complex skills by providing authentic situations approximating real-
life diagnostic problems (Cook, Brydges, Zendejas, Hamstra, & Hatala, 2013; Heit-
zmann et al., 2019). As Chernikova, Heitzmann, Stadler, et al. (2020) report in a recent
meta-analysis, simulation-based learning significantly fosters complex problem-solv-
ing skills.

Complex problem solving is a multidimensional set of skills needed to solve complex
problems (Dorner & Funke, 2017). Complex problems require active knowledge ac-
quisition to create a mental representation of the problem (Stadler, Niepel & Greiff,
2019). If complex problems are solved with another person or simulated agent, this
process is called collaborative problem solving (Fiore et al., 2018; Stadler, Herborn,
Mustafi¢ & Greiff, 2020). One example is CDR, which can be conceptualized as the
set of skills to solve a problem, such as diagnosing a patient, “by generating and eval-
uating evidences and hypotheses that can be shared with, elicited from, or negotiated
among collaborators” based on their conceptual and strategic knowledge (Rad-
kowitsch et al., 2020, p. 2). The first entails declarative knowledge about constructs
(e.g., diagnoses and symptoms) and their relation, the second is about knowledge of
how to apply strategic knowledge through problem-solving (Stark, Kopp & M.-R.
Fischer, 2011). The goal of CDR is to reduce the uncertainty of decision-making by
diagnosing a phenomenon, such as a patient's symptoms, in a collaborative effort. As
such, CDR requires individual diagnostic as well as collaborative processes. To suc-
cessfully solve a diagnostic problem, diagnosticians draw inferences from latent or
hidden patterns of a phenomenon based on their current knowledge (Heitzmann et al.,
2019). Heitzmann et al. (2019) described the process of individual diagnosing using
the scientific reasoning and argumentation framework by F. Fischer et al. (2014), stat-
ing that, similar to scientific reasoning, diagnosing can be described with eight epis-
temic activities (e.g., evidence evaluation, evidence generation, hypothesis genera-
tion). In an attempt to extend these considerations to collaborative diagnostic pro-
cesses, Radkowitsch et al. (2020) proposed the CDR model. The CDR model is based
on the scientific discovery as dual search model by Klahr and Dunbar (1988) and its
further development by Van Joolingen and De Jong (1997) and describes how indi-
vidual diagnostic processes (F. Fischer et al. 2014) and collaborative activities (Liu et
al., 2015) interact with each other. Liu and colleagues (2015) suggest four social skills
(sharing ideas, negotiating ideas, regulating problem-solving, and maintaining com-
munication) to describe collaborative activities. One of the main functions of the col-
laborative activities is to construct a shared problem representation (Roschelle & Tea-
sley, 1995) through sharing and eliciting relevant information, as information might
not be distributed equally between all collaborators. Hence, it is crucial to accurately
share all relevant information to diagnose the patient‘s illness. These activities seem
particularly relevant in a field such as medicine in which physicians from different
fields of expertise collaborate frequently. In such situations, it is crucial for an accu-
rate diagnosis of the patient’s problem that all relevant evidence and hypotheses for
the specific collaborators are shared (Kiesewetter, F. Fischer , & M.-R. Fischer, 2017).
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The CDR model specifies such collaborative diagnostic processes by suggesting col-
laborative diagnostic activities (CDAs). CDAs combine individual and collaborative
diagnostic activities such as evidence elicitation, evidence sharing, and hypotheses
sharing. Evidence and hypotheses, which are results of individual diagnostic pro-
cesses and stored in an individual’s cognitive storage (see Klahr & Dunbahr, 1988),
can become part of collaborative cognitive processes by, for instance, sharing or elic-
iting them. In the medical context, evidence is, for example, patient information about
symptoms and other parameters which are identified as relevant for a diagnosis. A
hypothesis is a suspected diagnosis that refers to an underlying illness that could ex-
plain the patient’s symptoms. Evidence elicitation is, then, the activity of collabora-
tively generating new information, for example, by conducting medical examinations
like radiological tests (Radkowitsch et al., 2020). Adequate performance of CDR in
the context of medicine is defined as performing those activities with high quality
resulting in an accurate diagnosis (Tschan et al., 2009). However, there is currently
no assumption about the linearity and sequence of the performance of CDAs required
to reach an accurate diagnosis, and not all CDAs might be necessary for all collabo-
rative diagnostic scenarios.

In summary, simulation-based learning offers a promising approach for the training
of complex problem-solving skills, such as CDR, by providing authentic diagnostic
situations for learners to engage in (Chernikova, Heitzmann, Stadler, et al., 2020; H.
G. Schmidt & Rikers, 2007) while allowing to provide adequate instructional support.
However, adapting these support measures (such as prompts or worked-out examples;
Belland, 2017) to the learners’ needs remains a challenge because it requires assessing
the learner’s current knowledge during the simulation rather than after using the sim-
ulation. Analyzing data stemming from the CDR process to inform a learner model
(Ding, Zhu, & Guo, 2018) while the learner is still working on the simulation might
lead to more timely support when necessary.

Learning Analytics and Process Data in Simulation-Based Learning

Using technologically-enhanced simulations that store data on the learning process
immediately in log-files allows analyzing process data without the need for additional
assessments with dedicated tests. Analyzing process data instead of only product data
(the assessment’s outcome) allows insights into the process leading to the eventual
outcome (e.g., Goldhammer, Naumann, Roélke, Stelter, & Téth, 2017). Widely used
process data is often not at all straightforward to interpret. For example, more time
spent on a task may indicate cognitive factors (i.e., the tasks are challenging) or mo-
tivational factors (i.e., tedious tasks). Nevertheless, process data analyses can increase
understanding of the analyzed process (Greiff, Niepel, Scherer, & Martin, 2016). The
results can be used to improve the theoretical understanding of the processes involved
and approaches to assessing and facilitating them (Goldhammer, Naumann, Stelter,
Tath, Rolke & Klieme, 2014).
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Using process data allows for the prediction of performance, enabling researchers to
identify learners at risk to show inadequate performance, such as to benefit little from
engaging in a learning activity (e.g., Leitner, Khalil, & Ebner, 2017), and to provide
them with additional instructional support (e.g., scaffolding, Tabak & Kyza, 2018).
Such support is ideally timed and adapted to the learners' needs (Plass & Pawar,
2020). Previous research has shown that the number of clicks and the time on task can
be predictive for task success (Goldhammer et al., 2017). Stadler, Hofer, and Greiff
(2020) analyzed differences between the time-on-task and the number of clicks of
participants having the same outcome in a simulation of complex problem-solving.
Despite having equal scores, participants differed in both time-on-task and number of
clicks. The results indicate that process indicators depict individual differences in the
ability not depicted in product data. This illustrates the need to take process data into
account to assess learners’ abilities. This is also in line with the assumption that
complex problem-solving is not only about a task’s outcome but also about the process
to get there (Dorner & Funke, 2017).

However, it is difficult to deduct information on specific problems a learner might
have with a task or what instructional support might be beneficial using process data.
Therefore, researchers have called for a more robust link from process data to learning
theories to understand better and facilitate learning (Ga8evi¢, Dawson, & Siemens,
2015). The identification of suitable features for the prediction of learning outcomes
within process data should always be supported with theoretical models (Tomasevic,
Gvozdenovic, & Vranes, 2020) in order to make findings replicable and generalizable
beyond idiosyncratic learning environments.

Goal and Research Question

The current study uses activities theoretical derived from the CDR model (Rad-
kowitsch et al., 2020) and constructed from process data to predict the performance
of complex problem-solving skills, such as CDR, in simulation-based learning. It ad-
dresses the research question to what extent theoretically derived process indicators
are suitable to predict learners’ diagnostic accuracy in the context of simulation-based
learning of CDR. Since CDR frequently occurs in medical settings and has been iden-
tified to be a significant challenge for physicians (e.g., Tschan et al., 2009; Brady et
al., 2012), the simulation was embedded in the context of medical education and de-
veloped based on the CDR model. Three CDAs proposed in the CDR model are par-
ticularly relevant in the simulated situation: evidence elicitation, evidence sharing,
and hypotheses sharing. Hence, the current study investigates to what extent diagnos-
tic accuracy can be predicted using the CDAs constructed from process data of a sim-
ulated learning environment in medical education. In addressing this research ques-
tion, the current study contributes to developing more adaptive instructional support
within simulation-based learning through showing the possibilities of learning analyt-
ics methods, being able to predict the outcome already in the process.
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Method
Simulation and Learner Task

The simulation was integrated into CASUS (https://www.instruct.eu/,; M. R. Fischer,
Aulinger, & Baehring, 1999), a case-based learning platform, where learners worked
on five different patient cases within the simulation. Medical experts from internal
medicine, radiology, and general medicine constructed the patient cases. In the simu-
lation, the learners' task was to interact with an agent-based (i.e., simulated) radiolo-
gist to diagnose fictitious patient cases suffering from unknown fever. To that end,
learners requested further information about the patient from the radiologist who con-
ducted radiological examinations. This required learners to engage in the CDA evi-
dence elicitation, evidence sharing, and hypotheses sharing. Medical experts who sup-
ported the development of the situation considered these CDAs as particularly im-
portant for the specific collaborative diagnostic situation. The collaboration took place
after the learners studied a health record (containing all current information about the
patient). The collaboration consisted of filling out a radiological request form and re-
ceiving the requested results from the simulated radiologist only if the request form
contained sufficient evidence and hypotheses relevant for the radiologist to conduct
and interpret the radiologic test. Specifically, learners needed to elicit evidence by
choosing an exam method to be performed by the radiologist, sharing evidence by
choosing information from the health record relevant for the radiologist, and sharing
suspected diagnoses as hypotheses. After the collaboration, learners were asked to
indicate their final diagnosis individually. For a detailed description of the simula-
tion's development and validation, see Radkowitsch et al. (2020).

Sample and Design

Data for this study was taken from a more extensive experimental study conducted
within the COSIMA Project. The study's design was an experimental setting with four
groups investigating the effect of different kinds of instructional support. One group
received an adaptive collaboration script; one was encouraged to have reflection
phases, one both kinds of support, and the control group received none of them. In
order to avoid confounding effects of the experimental conditions for the current
study, only the control condition was used for the current analyses. Data was collected
online from 9 male and 26 female intermediate learners from the 4™ — 6™ year of
medical studies. In total, the study program includes six years of studying. Learners
had an average age of M =25.43 years (SD =2.54 years) and studied medicine on
average in their M = 5" year (SD = (.76 years). Learners were recruited through an
email distribution list and flyers. For full participation, learners received 10€ compen-
sation per hour of testing. In line with the university’s ethics requirements, participa-
tion was voluntary, and learners could terminate participation at any time. Given the
focus of the study on the CDR process, the unit of analysis was the patient case and
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not the participant. As learners worked on five patient cases, this led to a total of
n = 167 after excluding missing data on diagnostic accuracy. The ethics committee of
the medical faculty of LMU Munich declared ethical clearance prior to data collection
(approval number 18-262).

Measures
Diagnostic Accuracy

Each patient case is assigned to one primary diagnosis, consented by experts. After
working on the patient case and requesting a radiological examination, the learners
indicated their final diagnosis using a free text field with suggested options out of a
list of 249 diagnoses, based on the first letters entered, to shorten and standardize the
input. Diagnostic accuracy was calculated by coding the final diagnosis's compliance
with the expert solution. To that end, two independent coders each coded the complete
data. Differences in the coding were discussed until all codes were identical. Accurate
diagnoses were coded with 1, while inaccurate diagnoses were coded with 0. For ex-
ample, when the patient suffers from hospital-acquired pneumonia, this diagnosis
would be coded with 1, while only pneumonia or any other diagnosis would be coded
with 0.

Process Data

Every click in the simulation leading to an interaction with the system was stored with
the corresponding timestamp in log file data allowing for analyzing process data.
Based on the CDR model, the CDAs were coded depending on the learners’ entries to
a radiological request form during the collaboration with the simulated radiologist.
Every activity where the learners selected a radiological examination by choosing a
method and the body part to examine was coded as evidence elicitation. Every activity
where the learners shared information from the health record to justify the radiological
examination was coded as evidence sharing. Every activity where the learners indi-
cated a potential diagnosis was coded as hypotheses sharing. Diagnoses were entered
using a free text field with suggested options out of a list of 249 diagnoses, based on
the first letters entered, to shorten and standardize the input. To illustrate this process,
we will give an example of how a learner could have filled out the request form: The
learner started to fill out the request form by choosing an x-ray of the chest as a radi-
ological examination (evidence elicitation). This requires the learner to make two
clicks in the simulation, one for selecting a method and another for selecting the re-
spective body part. Next, the learner justified the decision for the examination method
by ticking information presented in the health record (evidence sharing). In this ex-
ample, the learner shared that the patient has decreased breathing sound, fever, is
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male, and is a smoker. The learner identified and ticked the respective box to share
that evidence, including this information. Lastly, the learner typed ‘pneu’ into the free
text field on the bottom of the form. The system offered possible diagnoses starting
with ‘pneu’ (e.g., pneumonia; community-acquired pneumonia; hospital-acquired
pneumonia), the learner chose the share ‘pneumonia’ as a hypothesis with the simu-
lated radiologist. Before sending the form, the learner decided to additionally share
the evidence that the patient has an increased lymphocyte value.

First, the clicks in the simulation were coded automatically according to the CDAs
using spreadsheet software. Then, each coded activity was decomposed into the num-
ber of seconds a participant spent on the activity. The activities coded in units of sec-
onds were then summarized into behavioral strings that indicated, per learner and case,
which CDA was performed, how long, and what activity followed. This information
was stored in a string variable.

Analyses

The proper selection of features is essential in prediction models. When process data
depicts long sequences, exploratory approaches such as the n-gram method proposed
by Damashek (1995) can be helpful. Here the process of activities is summarized as a
sequence of n consecutive elements. This allows representing the sequence of activi-
ties as well as their frequency. For this study, we chose bigrams (n = 2) to ensure there
are not too many different features in our prediction models. The bigrams represented
cither consistent activity (two instances of the same activity) or transitions from one
behavior to another (two different activities). To apply the n-gram method, the string
variable representing an individual’s sequence of activities was separated in bigrams
using the n-gram package in R (3.0.4; D. Schmidt & Heckendorf, 2017), leading to
nine features constructed from the three theoretical derived activities, each summariz-
ing how often this specific bigram occurred in the string variable.

Referring back to the previous example, the learner spent 60 seconds on evidence
elicitation, which resulted in 59 instances of the EE.EE bigram. Further, the learner
spent 200 seconds at the beginning and 6 seconds with evidence sharing when they
returned to that activity after sharing the hypothesis resulting in 204 instances of the
ES.ES bigram. Spending 150 seconds with hypotheses sharing results in 149 instances
of the HS.HS bigram. Those three bigrams indicate consistent activity. Looking at
transitions, the learner had a value of one on the bigrams EE.ES, ES.HS, HS.ES indi-
cating changes between evidence elicitation and evidence sharing, evidence sharing
and hypotheses sharing, as well as hypotheses sharing and evidence sharing, respec-
tively.

For predicting diagnostic accuracy using bigrams of CDAs, the statistical software R
(RStudio Team, 2020) was used. The essential packages were ranger (0.12.1; Wright
& Ziegler, 2017) and caret (6.0-86; Kuhn, 2008). A random forest classification
model (ranger algorithm; Wright & Ziegler, 2017) was developed to answer the re-
search question. This model was chosen as it is highly accurate and able to deal with
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relatively large numbers of features and few data points while considering complex
interactions among the features. In contrast to more interpretable logistic regression
models, random forest classification models are also less affected by multicollinearity
issues (Breiman, 2001; Ferndndez-Delgado, Cernadas, Barro, & Amorim, 2014).

First, the data set was split into a training set (including 75 % of the data) and a testing
set (including 25 % of the data). The training set was then used to fit the prediction
model. To increase the model fit, hyperparameters were tuned automatically. A 10x3
cross-validation was applied to identify the hyperparameters to decrease the risk of
overfitting. For the ranger algorithm, only the number of randomly selected predictors
(mtry), the split rule (gini or extra trees), and the minimum node size needed to be
determined (Kuhn, 2008). The prediction model was evaluated in the testing set and
the training set using a confusion matrix (Buskirk, Kirchner, Eck, & Signorino, 2018).
To assess classification quality of the prediction model classification accuracy (the
total percentage of correct classifications), sensitivity (true positive classification rel-
ative to all positive classifications), and specificity (true negative classification rela-
tive to all negative specification), no-information rate (always predicting the most
common class), and a one-sided significance test to see whether the developed model
outperforms the no-information rate was evaluated (Alpaydin, 2010; Kuhn, 2008).
Kappa, the agreement between predicted values and the actual data in relation to ex-
pected values by chance, is assessed, with a value of greater than .61 indicating suffi-
cient strength of agreement (Landis & Koch, 1977).

Finally, a closer look into how each feature influenced the classification was done
using feature importance. Due to complex interactions among different features, the
interpretation of importance is not always straightforward and can only be done in
relation to other features in the model, not by applying standardized cut off values
(Kuhn, 2008; Liaw & Wiener, 2002; Strobl, Boulesteix, Zeileis, & Hothorn, 2007).
The dataset and the code for the analyses are uploaded to the open science framework
(OSF) repository and can be retrieved from https://osf.io/y6b{x/

Results

Before looking at the predictability of diagnostic accuracy using process data, the used
features are presented descriptively in Table 1. The bivariate correlation between the
features and diagnostic accuracy is only minor, ranging from -.06 to .11.
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Table 1
Descriptive Results of the Features used for Prediction Diagnostic Accuracy
Accurate Diagnoses Inaccurate Diagnoses
Feature r,
Median Range Median Range
EE.EE 25.5 6-342 36.0 2-429 -.05
ES.ES 146.0 0-587 135.5 0-3581 A1
HS.HS 79.0 0-568 67.5 0-520 -.02
EE.ES 1.0 0-6 1.0 0-6 01
EE.HS 0.0 0-5 0.0 0-4 .03
ES EE 0.0 0-3 0.0 0-4 -.04
ES.HS 0.0 0-4 0.0 0-5 .05
HS.EE 0.0 0-4 1.0 0-4 -.02
HS.ES 0.0 0-2 0.0 0-3 .06

Note. EE = evidence elicitation, ES = evidence sharing, HS = hypotheses sharing

r, = Pearson correlation between feature and diagnostic accuracy

Investigating the predictability of diagnostic accuracy using process indicators, de-
picted through bigrams of CDAs, the identified random forest classification model
(mtry =2, splitrule = extra trees, min node size = 1) performed well. Classification
accuracy of .98 (95 % CI[.93; 1.00]) was found for the training set, indicating strong
predictive power. The results of the one-sided hypothesis test indicated that the devel-
oped model was significantly better than the no-information rate model (accuracy of
54, p <.001). The kappa for the model was .95, implying high agreement between
the predicted values by the model and the actual data (Landis & Koch, 1977). Further
evaluation revealed a sensitivity of .95 and a specificity of 1.00, indicating that the
model could correctly predict accurate and inaccurate diagnoses in most cases.

When using the testing set, the results supported the good ability of the model to pre-
dict diagnostic accuracy, with a predictive accuracy of .95 (95 % CI [.84;.99]) and a
no-information rate of .73. The classification was also significantly better than the no-
information model (p <.001) for the testing set. Results implied, again, a high agree-
ment between the predicted values by the model that was trained based on the training
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sample and the data of the testing sample with a kappa of .88. The additional evalua-
tion metrics further indicated a sensitivity of .91 and specificity of .97, slightly worse
than in the training set. Nevertheless, both measures indicated a high capacity of the
model to predict accurate and inaccurate diagnoses in both the training and the testing
data set.

Looking at the importance of the different features (see Figure 1), the most important
one was the transition from evidence sharing to hypothesis sharing. This is followed
by the transition from evidence sharing to evidence elicitation and the transition from
evidence elicitation to hypotheses sharing. The fourth most important feature is the
transition from hypothesis sharing to evidence elicitation. All those transitions are
entailed in the process of CDR.

Figure 1

Importance of Features Predicting Diagnostic Accuracy Using Process Data

ES.HS. .

ES.EE. -
EE.HS. *

HS.EE »
ESES. —

EE.EE. —

HS.HS ]

EE.ES ]

HS ES. ]

T T T T
-0.002 0.000 0.002 0.004 0.006

Importance

Note. EE = evidence elicitation, ES = evidence sharing, HS = hypotheses sharing

Discussion

The current study aimed at investigating to what extent theoretically derived process
indicators are suitable to predict learners’ diagnostic accuracy (performance measure)
in the context of simulation-based learning of CDR. A random forest algorithm
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classified accurate and inaccurate diagnoses correctly based on bigrams of CDAs. The
model predicted a large percentage of accurate and inaccurate diagnoses and is, there-
fore, suitable to support statements about the performance only using process data.
This is in line with former research (e.g., Mahboob, Irfan, & Karamat, 2016), indicat-
ing that algorithms from the field of Learning Analytics are suitable for performance
prediction.

Learning performance and its enhancement are widely investigated in Learning Ana-
Iytics (Leitner et al., 2017). However, most of the studies lacked a theoretical ground-
ing of their approach (GasSevi¢ et al., 2015). The present study used features for the
prediction of diagnostic accuracy that were derived from the CDR model by
Radkowitsch et al. (2020), which is theoretically rooted in well established theoretical
frameworks (e.g., Klahr & Dunbahr, 1988; F. Fischer et al., 2014; Liu et al., 2015).
The current results underline the relevance of epistemic activities, such as CDAs, and
their sequences for diagnostic processes. However, so far, the CDR model does not
consider predictions about the relation between the CDAs and diagnostic accuracy. It
is only conceptualizing CDAs as part of the CDR process, which needs to be per-
formed with high quality to draw an accurate final decision. Using Learning Analyt-
ics, we showed that the CDAs are relevant for diagnostic accuracy, being a perfor-
mance indicator of CDR, even though the bivariate correlations between the bigrams
and diagnostic accuracy were only minor.

The clear benefit of using machine-learning prediction models instead of traditional
statistical models is the change of perspective. While the latter is concerned about
explaining causal relationships and therefore has a retrospective view on the data, the
former has the goal of predicting future data and therefore has a prospective view
(Yarkoni & Westfall, 2017). Accordingly, predictive accuracy is the primary goal,
and the ratio of bias and variance, which minimize the occurring error the best, should
be chosen. In order to achieve this, one must be willing to allow for bias and nonline-
arity for the sake of accurate prediction (Molnar et al., 2020; Yarkoni & Westfall,
2017). This focus on predictive accuracy can make prediction models, especially en-
semble methods such as random forests, highly complex, resulting in accurate predic-
tions but lacking an explanation of how they were achieved, leading to less transparent
models, also known as black boxes (Molnar et al., 2018; Yarkoni & Westfall, 2017).
There is a need to investigate non-linear relations between process indicators to en-
hance theoretical models. The current results highlight the relevance of theoretically
derived process indicators for the performance of CDR in simulation-based learning
and can be used to predict the performance of complex problem-solving skills in sim-
ulation-based learning already in the process. Such predictions may help provide
learners with inadequate performance with additional (adaptive) instructional support.
From the feature importance plot, we can see that the consistent features (e.g., time
spent with evidence elicitation) and transitions from evidence elicitation to evidence
sharing and from hypotheses sharing to evidence sharing are relatively unimportant.
Future analyses should therefore focus less on these processes and more on the tran-
sitions from evidence sharing to hypotheses sharing, from evidence sharing to evi-
dence elicitation and from evidence elicitation to hypotheses sharing and hypotheses
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sharing to evidence elicitation. The most important feature is the transition from evi-
dence sharing to hypotheses sharing. However, the feature did not differ considerably
regarding accurate and inaccurate diagnoses. Therefore, a non-linear relationship or a
complex interaction with one or more other features is assumed, which needs to be
further investigated. However, we currently do not know precisely what indicates in-
adequate performance and how to foster it accordingly, as the interpretation of black-
box models and feature importance is not straightforward, and the prediction is not
linear but a result of complex interactions.

Nevertheless, the current study was able to show that predicting the performance in
complex simulation-based learning environments based on theoretically derived indi-
cators of behavior is possible, even if there are no linear correlations between behavior
and performance. Since we were able to demonstrate a relation between the theoreti-
cally derived process indicators and the performance of CDR in simulation-based
learning, the next step should be to investigate sequences of activities in depth, e.g.,

with sequence clustering (Piccarreta, 2017), allowing not only to identify learners who
need additional instructional support but also to provide this support.

The current results are not limited to learning of CDR in the medical context but likely
generalize to related fields such as teacher education (Heitzmann et al., 2019) and
complex problem-solving skills in different domains as the indicators of behavior
were coded on a domain-general level.

Limitations and Future Research

The current study is not without limitations, which must be kept in mind when inter-
preting the results. First, it must be considered that all patient cases were analyzed
independently, regardless of the order in which they appeared in the simulation, thus
ignoring potential learning effects between the cases. Statistically speaking, this ap-
proach risks ignoring non-negligible random effects due to the clustered nature of the
data. Extensions of the random forest algorithm have been proposed that consider
clustered data (Hajjem, Bellavance, & Larocque, 2014). However, since our model
performed exceptionally well, the intra-class correlation among participants is likely
very low even without this extension. Another limitation is that only data from learn-
ers with an intermediate level of expertise was collected, limiting the observation of
full expert and novice behavior. However, data showed a balanced frequency of ac-
curate and inaccurate diagnoses. Future research might investigate whether partici-
pants of different expertise levels employ different strategies for their collaborative
diagnosing, which would likely require an algorithm capable of including this infor-
mation as an additional level of data.

Another potential limitation lies in the decision to observe only bigrams rather than
n-grams that are more complex. N-grams that are more complex might provide further
insights into more advanced strategies and might be more interpretable towards nec-
essary support. However, the number of features increases exponentially with the
length of observed n-grams. Even trigrams might have resulted in too many (3° = 27)
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features for our limited sample. Future research might investigate longer n-grams us-
ing larger samples. An alternative would be the theoretical definition of specific se-
quences as predictors to explicitly test hypotheses on strategic behavior in a simula-
tion. In line with the current results, the focus should be on the transitions between
activities rather than on consistent behavior.

To help learners who potentially show inadequate performance as early as possible,
future research will also need to investigate how early it is possible to predict the
performance of complex problem-solving skills using process data. In addition, future
research may also investigate how additional instructional support could look like.
For example, Azevedo, Moos, Cromley, and Greene (2011) demonstrated that a com-
bination of content and process-oriented adaptive scaffolding is suitable to facilitate
self-regulated learning.

Currently, there is only little known about sequences of CDAs and their relation with
diagnostic accuracy. However, we could show in this study that there are non-linear
relations between those process indicators and learning performance. Future research
should deepen this by investigating the transitions between activities to make further
claims on refining existing theoretical process models. This is in line with the call for
explanatory learner models that focus on optimal predictions using black-box models
but use more interpretable methods to gain deeper insights into learning (Rosé et al.,
2019). One approach in this context is the use of different kinds of data, such as pro-
cess (e.g., log-file data), product (e.g., the outcome of a task), and learner data (e.g.,
self-report measures) using dispositional learning analytics (Buckingham Shum &
Crick, 2021). This combination of data sources allows improving the design of adap-
tive scaffolding and interventions as it provides more profound insights into the ori-
gins of underperforming (GaSevic et al., 2017). For example, Tempelaar, Rienties,
and Nguyen (2021) combined this approach with a person-oriented type of research
(instead of the traditional variable-oriented type) to identify five different learning
profiles based on only learner data at the beginning and then by including more pro-
cess data in a stepwise manner. This allows providing instructional support not only
for a group of learners or an average learner but also for a specific individual learner,
that is, personalized learning support.

Conclusion

This study aimed to predict CDR performance using process data, indicated by diag-
nostic accuracy. Results show that using a Learning Analytics approach, a random
forest prediction model, is suitable for predicting performance using process indica-
tors theoretically derived and constructed from process data. Using Learning Analyt-
ics enables researchers to provide practical solutions such as identifying learners at
risk to show inadequate performance in need of adaptive instructional support. The
findings contribute to the development of more adaptive instructional support within
simulation-based learning through being able to predict the individuals’ learning out-
comes already during the process.
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The objective of this thesis was to facilitate the leveraging of process data for the assessment
and support of collaborative problem-solving. Two sub-goals were addressed: This thesis ex-
amined the potential of process data analyses to (1) facilitate theoretical advancements and (2)
inform learning and instruction of collaborative problem-solving in the context of collaborative
diagnostic reasoning. To achieve these goals, three papers were presented, focusing on different
but related aspects. This chapter provides a brief summary of the results of each paper, followed
by a joint discussion of the theoretical and practical implications. The transferability of these
implications is then reflected upon, before concluding with a discussion of the limitations of
the presented papers and suggestions for future research.

5.1 Summary of Results

The first paper (Stadler et al., 2023), a theoretical perspective paper, adopted a meta-per-
spective to discuss recent and current developments in the use of process data in large-scale
assessments, as well as the scientific, practical, and policy-level issues that impede sustainable
use. From a scientific standpoint, the findings from process data analyses are currently not
widely generalizable due to their task-specific nature. Furthermore, there is a lack of replication
studies, which hinders the establishment of robust evidence. The utilization of higher-level fea-
tures (see 1.4.1) has the potential to yield robust evidence that is applicable across different
studies, thereby facilitating the possibility of conceptual replication even when items differ be-
tween studies. From a practical standpoint, the utilization of process data has resulted in a tran-
sition from a purely summative assessment approach to a more formative one, with an emphasis
on providing feedback (see 1.2.3; Pellegrino et al., 2001). For instance, with regard to the Co-
SiMed simulation (see 1.3.3), the way in which learners complete the radiological request form
leads to a response by the agent-based radiologist, which can be perceived as a form of feed-
back. It can be argued that assessment tasks can provide opportunities for learning when feed-
back is provided. This has led to an emerging call to use process data as a measure of ability
that goes beyond the ability to solve the problem. Additionally, it is argued that such process
data can be used to provide individualized instructional support, e.g. adaptive scaffolding (e.g.
Azevedo et al., 2004). This allows learners to benefit from the interaction with the assessment
task. Nevertheless, in order to leverage interactive tasks for the purpose of identifying individ-
uals in need of instructional support and facilitating personalized learning and adaptive support
(see 1.4.2), it is imperative to ensure a coherent alignment between the design of assessment
and the instructional design. In addition, at the policy level, the leveraging of process data from
large-scale assessments enables a shift in focus from product data to the processes that contrib-

ute to the generation of these products (see 1.4.1), thereby facilitating the formulation of
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informed educational decisions. However, to ensure sustainable use, it is essential to consider
the issues outlined at the scientific and practical levels, particularly when utilizing process data
from large-scale assessments, and to take cultural differences in learning and teaching into ac-
count in educational decision-making. In summary, there are necessary changes to be under-
taken at the scientific level in how process data are analyzed to foster sustainable changes at
the practical and policy levels. First and foremost, establishing a connection between process
data and educational theory is vital for enhancing the generalizability of our findings and, con-
sequently, facilitating theoretical advancements. Secondly, there is a need to align the design
of assessment with that of instructional design, with the aim of informing learning and instruc-
tion.

Building on these considerations, the second paper (Brandl et al., 2024) aimed to investigate
how process data analyses can facilitate theoretical advancements, particularly in the context of
validating theoretical models in educational research using quality measures derived from high-
level features constructed from collaborative diagnostic activities. The objective of this empir-
ical study was to evaluate the CDR-M (Radkowitsch et al., 2022) in a simulation-based envi-
ronment by analyzing data from three studies in the medical domain. The CDR-M describes the
relations between individual characteristics (i.e., content knowledge, collaboration knowledge,
and social skills), collaborative diagnostic activities (i.e., evidence elicitation, evidence sharing,
and hypotheses sharing), and diagnostic outcomes (i.e., diagnostic accuracy, diagnostic justifi-
cation, and diagnostic efficiency). The results indicate that the hypothesized relations in the
CDR-M can be partially applied across studies. Content knowledge enables the diagnostician
to formulate an initial suspected diagnosis, which is likely to be relevant information for the
collaboration partner and to guide the subsequent collaborative diagnostic activities effectively.
The observed relation between content knowledge and the quality of evidence elicitation, but
not the other collaborative diagnostic activities, can be explained by the fact that evidence elic-
itation represents the least transactive collaborative diagnostic activity within the collaborative
diagnostic reasoning process. In the process of evidence elicitation, the collaboration partner is
utilized as an external knowledge resource, requiring minimal collaborative effort (Weinberger
& Fischer, 2006). This perspective on the transactivity of collaborative diagnostic activities is
further reinforced by the necessity to differentiate between primary (i.e., diagnostic accuracy)
and secondary (i.e., diagnostic justification and diagnostic efficiency) outcomes of diagnostic
reasoning (Daniel et al., 2019). Achieving diagnostic accuracy, which is related to evidence
elicitation, the least transactive collaborative diagnostic activity, requires less collaboration and

therefore less transactivity than secondary outcomes. The ability to justify and reach this
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decision efficiently relies on evidence sharing and hypotheses sharing, which are more focused
on transactivity within collaborative diagnostic reasoning (Weinberger & Fischer, 2006). Fur-
thermore, in contrast to traditional diagnostic contexts (Boshuizen et al., 2020), simulation-
based tasks reduce the relevance of content knowledge that can be obtained from various
sources due to the iterative nature of collaborative diagnostic activities in simulations. The re-
sults provide further support for the differentiation of content and collaboration knowledge as
outlined in the CDR-M (see 1.3.1; Radkowitsch et al., 2022). This underscores the importance
of being aware of the knowledge distribution among collaboration partners and the relevance
of a transactive memory (see 1.3.1; Wegner, 1987). While individual characteristics have been
shown to influence the quality of collaborative diagnostic activities and the quality of collabo-
rative diagnostic activities affect diagnostic outcomes, the effect is not mediated by collabora-
tive diagnostic activities across studies. Therefore, in order to achieve effective collaborative
problem-solving in knowledge-rich domains, such as collaborative diagnostic reasoning, it is
not sufficient to possess sufficient content and collaboration knowledge; it is also necessary to
enact collaborative diagnostic activities with high quality in order to achieve successful diag-
nostic outcomes. In summary, the second paper found that two factors, in addition to content
knowledge, are crucial for successful collaborative problem solving in knowledge-rich do-
mains: (1) knowledge about the domain of the collaboration partner and (2) collaborative diag-
nostic activities.

While the second paper focused at using process data to better understand collaborative di-
agnostic reasoning, the third paper focused on informing learning and instruction of collabora-
tive diagnostic reasoning. The objective of the third paper and second empirical study (Brandl
et al., 2021) was to investigate the extent to which process data of collaborative diagnostic
reasoning from simulation-based learning can be utilized to predict collaborative problem-solv-
ing performance. If differences in behavior are related to success in simulated learning envi-
ronments, they can be used to identify support needs at an early stage, thus enabling learners to
progress in their learning more efficiently than with non-adaptive support (see 1.4.2; Plass &
Pawar, 2020). The developed random forest classification model (Breiman, 2001) predicted a
high percentage of accurate and inaccurate diagnoses with a classification accuracy of greater
than 0.90, using high-level features constructed from log-file data. The nine high-level features
were categorized as bigrams (n = 2; Damashek, 1995) of collaborative diagnostic activities.
These represented either consistent behavior, with two instances of the same collaborative
diagnostic activity, or transitions from one collaborative diagnostic activity to another, with two

instances of different collaborative diagnostic activities. The results indicated that the consistent
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features (e.g., time spent with evidence elicitation) and transitions from evidence elicitation to
evidence sharing and from hypotheses sharing to evidence sharing are of less importance. In
contrast, the transition from evidence sharing to hypotheses sharing is the most important
feature. However, no notable distinction was observed in the feature with regard to accurate
and inaccurate diagnoses. It can thus be assumed that a non-linear relation or complex interac-
tion with one or more other features is involved. Furthermore, additional analyses employing
partial dependence plots (Friedman, 2001) facilitate a more comprehensive understanding of
the prediction model (Brandl et al., 2022, August/September). The results for the most im-
portant feature indicated that the absence of a transition from evidence sharing to hypotheses
sharing was associated with an increased likelihood of an inaccurate diagnosis, while the pres-
ence of at least one transition was associated with a decreased probability (see Appendix 8.5).
Therefore, the absence of this transition may serve as an indicator of the necessity for adaptive
instructional support. In conclusion, the findings of Paper 3 contribute to the development of
more adaptive instructional support within simulation-based learning by enabling the prediction
of individual learning outcomes at an early stage of the process. Moreover, the results can serve
as a foundation for more generalizable insights by employing theoretical-derived process indi-
cators and high-level features. It is reasonable to hypothesize that the identified features are not
exclusive to collaborative diagnostic reasoning in medical contexts. Instead, they are likely to
be applicable to the development of collaborative problem-solving skills across various do-
mains (Mislevy, 2019).

The three papers presented in this thesis aimed to improve the use of process data to assess
and support collaborative problem-solving through the advancement of theoretical models and
the provision of insights for learning and instruction. The two empirical contributions, which
build on the views presented in the first paper, provide insights into how the full potential of
process data analyses can be utilized not only to gain deeper insights into collaborative diag-
nostic reasoning, but also to predict performance of collaborative diagnostic reasoning to iden-
tify learners in need of additional instructional support.

5.2 Implications for Understanding Collaborative Diagnostic Reasoning

The first sub-goal of this thesis was to investigate how process data can facilitate theoretical
advancements. More specifically, it examined how theoretical advancements in the context of
collaborative diagnostic reasoning in agent-based simulations using process data can be facili-
tated.

A first conclusion concerns the distinction between content and collaboration knowledge
proposed in the CDR-M (Radkowitsch et al., 2022). As outlined in Paper 2, the relations
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between content and collaboration knowledge and the different collaborative diagnostic activi-
ties vary. This can be attributed to the varying degrees of transactivity associated with the re-
spective collaborative diagnostic activities. Evidence elicitation represents the least transactive
collaborative diagnostic activity within the context of the collaborative decision-making pro-
cess. In the process of evidence elicitation, the collaboration partner is utilized as an external
knowledge resource, requiring minimal collaborative effort (Weinberger & Fischer, 2006). Ac-
cordingly, different relations of content and collaboration knowledge to collaborative diagnos-
tic activities in Paper 2 support the assumption from the CDR-M that content and collaboration
knowledge are two distinct constructs. However, Paper 2 also raises questions about the role of
content knowledge in simulation-based learning environments, where repeated attempts and
revisions are possible. However, in a subsequent study (Vogel et al., 2023), we demonstrated
that successful diagnosticians had more conceptual knowledge and spent less time with hypoth-
eses sharing than those who were unsuccessful. Therefore, the creation of a shared problem
representation during collaborative diagnostic reasoning necessitates both content knowledge
and the externalization of information. Accordingly, an adequate initial problem representation,
such as activated illness scripts, appears to be pivotal for the success of collaborative diagnostic
reasoning (Charlin et al., 2007). Finally, the multi-study structural equation model in Paper 2
demonstrated that, alongside content knowledge—a traditional focus of expertise research—
collaboration knowledge plays a crucial role in effective collaborative diagnostic reasoning.
The importance of collaboration knowledge has also been demonstrated in the study conducted
by Radkowitsch et al. (2021). The researchers demonstrated that providing learners with exter-
nal collaboration scripts enhanced the performance of collaborative diagnostic activities. One
potential explanation is that collaboration knowledge stored in internal collaboration scripts
provides information about appropriate actions, which leads to enhanced information pro-
cessing and reduced coordination effort (Kollar et al., 2006). Consequently, a reduction in col-
laboration load is achieved, which is defined as the working memory capacity required to en-
gage in collaborative activities (F. Kirschner et al., 2009). These findings support the assump-
tion of the CDR-M that content and collaboration knowledge are two distinct factors that are
positively associated with collaborative diagnostic reasoning.

A further conclusion concerns the collaborative diagnostic activities proposed in the CDR-
M. As stated in the CDR-M, collaborative diagnostic activities need to be enacted with high
quality for a successful collaborative diagnostic reasoning, as indicated by their predictive ac-
curacy to collaborative diagnostic reasoning performance in Paper 3. In addition, collaborative

diagnostic activities account for additional variance beyond that explained by individual
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characteristics as shown in Paper 2. This aligns with the findings of research on individual
diagnostic reasoning (Fink et al., 2023), which investigated the extent to which individual di-
agnostic activities and content knowledge uniquely explain the variance in diagnostic success
among 106 medical students. Moreover, Paper 3 illustrated that collaborative diagnostic activ-
ities derived from log-file data are effective in predicting collaborative diagnostic reasoning
performance. These findings thus support the assumption of the CDR-M that collaborative di-
agnostic activities are of crucial importance for collaborative diagnostic reasoning.

Along this assumption, another conclusion concerns the differentiation of collaborative di-
agnostic activities. As proposed by the CDR-M, sharing and elicitation of evidence represent
two distinct collaborative diagnostic activities, each requiring a different set of underlying col-
laboration skills (F. Fischer et al., 2002). This is indicated by the differing relations between
individual characteristics and diagnostic outcomes as presented in Paper 2. In considering the
differentiation between the evidence sharing and hypotheses sharing, the findings of Paper 2
indicated an absence of consistent support for a relation between any of the individual charac-
teristics and the quality of hypotheses sharing. Leading to the conclusion that this might be
either to the operationalization of quality in hypotheses sharing or that there is no direct relation
between the individual characteristics and hypotheses sharing, as this relation is mediated by
evidence sharing. Supporting the second possibility, Paper 3 revealed that the transition from
evidence sharing to hypotheses sharing is crucial for reaching diagnostic accuracy. Specifically,
when participants make this transition at least once, they significantly reduce the likelihood of
arriving at incorrect diagnoses. Subsequent transitions from evidence sharing to hypotheses
sharing have a less substantial impact than the initial one. This suggests that some form of data-
driven reasoning, as opposed to hypotheses-driven reasoning, is a relevant factor in achieving
an accurate diagnosis (Patel et al., 2005).

In order to reach a final conclusion regarding the role of process data in facilitating the un-
derstanding of collaborative diagnostic reasoning, it is necessary to investigate the complex,
non-linear interactions between collaborative diagnostic activities. This approach is more ap-
propriate than analyzing these interactions in an isolated or linear manner. The non-mediating
relation of collaborative diagnostic activities between individual characteristics and diagnostic
outcomes is in contradiction with the assumptions of the CDR-M. Along the effects of the col-
laborative diagnostic activities in Paper 2, an isolated analysis of these activities does not fully
represent the complex interactions and relations among activities, individual characteristics,
and diagnostic outcomes. In Paper 3, we used bigrams of the collaborative diagnostic activities,

representing short sequences of either spending time with or transitioning between collaborative
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diagnostic activities, as features in a random forest prediction model. This model allows for
complex-nonlinear relations among the features. The results indicate that consistent features
(e.g., two instances of evidence elicitation indicating time spent with evidence elicitation) are
found to be less important. However, while the results indicated that the transition from evi-
dence sharing to hypotheses sharing is the most important feature for predicting diagnostic ac-
curacy, they are unable to produce actionable information such as the direction of the relation,
beyond that this feature is important (see 1.4.3; Yarkoni & Westfall, 2017). Subsequent anal-
yses have revealed that when this transition is performed at least once, the likelihood of an
inaccurate diagnosis is decreased. Therefore, the CDR-M will need to consider not only isolated
collaborative diagnostic activities, but also the complex interactions between them.

In summary, the results of the process data analyses presented in this thesis provide support
for the assumptions proposed in the CDR-M (see Table 2).
Table 2
Assumptions of the CDR-M Based on Presented Empirical Evidence

Assumptions ... Empirical Evidence
... from the CDR-M that are supported
distinction between content and collaboration e different relations of content and collabo-
knowledge ration knowledge to collaborative diag-
nostic activities in Paper 2
collaborative diagnostic activities are rele- e collaborative diagnostic activities explain
vant for successful collaborative diagnostic variance beyond individual characteris-
reasoning tics in Paper 2
e collaborative diagnostic activities con-
structed from log-file data are suitable
for predicting collaborative diagnostic
reasoning performance in Paper 3
sharing and elicitation of evidence are two e differential relations of the collaborative
distinct collaborative diagnostic activities diagnostic activities from the individual
characteristics and to the diagnostic out-
comes in Paper 2
... added to the CDR-M
isolated analysis of collaborative diagnostic e non-mediating effect of collaborative di-
activities does not fully represent the com- agnostic activities in Paper 2
plex interactions and relations among activi- e different effects of the collaborative diag-
ties, individual characteristics, and diagnostic nostic activities in Paper 2
outcomes e importance of features depicting transi-
tions between collaborative diagnostic
activities in Paper 3
complex non-linear interactions between col- e predictive accuracy in Paper 3
laborative diagnostic activities e partial dependence plot for transition
from evidence sharing to hypotheses
sharing in additional analyses of Paper 3
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First, the results provide evidence in support of the distinction between content and collab-
oration knowledge. Furthermore, the results provide support for the concept of illness scripts
and internal collaboration scripts, which are used to store content and collaboration knowledge.
The findings also underscore the importance of collaboration knowledge, in addition to content
knowledge, potentially through reduced collaboration load. Secondly, the results support the
assumption that collaborative diagnostic activities are a key factor in the success of collabora-
tive diagnostic reasoning. Thirdly, the results support the differentiation between the processes
of sharing and elicitation as two distinct collaborative diagnostic activities. However, the results
also challenge assumptions made in the CDR-M, thereby introducing two new assumptions to
the CDR-M. First, the results indicated that an isolated analysis of collaborative diagnostic ac-
tivities does not fully represent the complex interactions and relations among activities, indi-
vidual characteristics, and diagnostic outcomes. Second, the interpretation of the results high-
lights the need to investigate complex non-linear interactions between collaborative diagnostic
activities.

These assumptions were tested in the context of collaborative diagnostic reasoning, specifi-
cally in the process of joint evidence generation between internists and radiologists in medicine.
It seems reasonable to assume that the aforementioned relations can be generalized to other
contexts in which two or more diagnosticians collaborate to solve diagnostic problems. Never-
theless, a systematic investigation of the generalizability of these findings to other contexts has
yet to be conducted.

5.3 Implications for Supporting Collaborative Diagnostic Reasoning

The second sub-goal of this thesis was to inform learning and instruction. Through the anal-
yses in papers 2 and 3, conclusions can be drawn about facilitating the development of collab-
orative diagnostic reasoning that can align assessment design with learning design and pave the
way for adaptive instructional support (see 1.4.2).

Based on the implications of the previous chapter, it seems important to support the devel-
opment of collaborative diagnostic reasoning skills in medical education by (1) facilitating the
acquisition of collaboration knowledge and (2) facilitating the performance of collaborative
diagnostic activities with high quality. This is indicated by the relation of collaboration
knowledge to the quality of evidence sharing and the various, but not mediating, relations be-
tween the quality of collaborative diagnostic activities and diagnostic outcomes in Paper 2.
Based on these findings and the study by Radkowitsch et al. (2021), which indicated that
providing external collaboration scripts during simulation-based learning improves the quality

of collaborative diagnostic activities, it seems beneficial to provide external collaboration
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scripts. Incorporating collaboration scripts into simulation-based learning in medical education
can enhance learners' experiences with authentic patient cases and collaborative settings, while
providing additional instructional support to develop collaborative diagnostic reasoning skills.

Such additional instructional support is ideally adapted to the learner's needs to ensure that
a task is in the learner's zone of proximal development (Plass & Pawar, 2020; VVygotsky, 1978).
One way to implement this in medical education could be, following the results of Paper 3, to
use learners' process data while working on the CoSiMed simulation (see 1.3.3) to predict their
performance while they are still working on the task (Richters, Stadler, Radkowitsch et al.,
2023). If the learner model predicts an inaccurate diagnosis and thus a failure to complete the
task, the model could identify those learners who do not transition from evidence sharing to
hypotheses sharing while filling out the radiological request form and provide them with addi-
tional instructional support (Basu et al., 2017). In particular, as a strong relation between col-
laboration knowledge and evidence sharing was found in Paper 2, the provision of external
collaboration scripts could be an appropriate form of additional instructional support in this
situation. This adaptive provision of instructional support could avoid an expertise-reversal ef-
fect, where scaffolds that are initially effective may hinder learning as the learner's expertise
increases (Kalyuga, 2007).

In line with these considerations for a learner model that provides adaptive instructional
support, it is important to initially design learning environments with respect to collaborative
diagnostic activities so that the measurement of these processes is a design factor, rather than
using log-file data as a by-product of the product data collection process (Goldhammer et al.,
2021). It should be decided a priori how specific theory-based and thus high-level features will
be constructed from log-file data. These considerations must then guide the design of the task.
The use of high-level features not only allows generalization of findings to different tasks, but
also provides actionable results. While the result “it is important to click first in section A and
then section B” entails no relevant information for educational decisions, the result “transition-
ing from evidence sharing to hypotheses sharing should be performed at least once” IS action-
able allowing to design instructional support fostering this behavior.

Overall, the process data analyses presented in this thesis allow for three implications for
supporting collaborative diagnostic reasoning. Firstly, the presented papers suggest that focus-
ing on the acquisition of collaboration knowledge and the performance of high-quality collab-
orative diagnostic activities facilitates the development of collaborative diagnostic reasoning.
Secondly, providing collaboration scripts in the absence of a transition from evidence sharing

to hypotheses sharing during collaborative diagnostic reasoning could be identified as a strategy
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for adaptive instructional support. Finally, a case was made for making the measurement of
processes such as collaborative diagnostic activities a design factor of learning environments to
support the development of collaborative diagnostic reasoning and to inform learning and in-
struction using process data.

5.4 Implications for Leveraging Process Data of Collaborative Problem-Solving

The overall goal of this thesis was to improve the use of process data to assess and support
collaborative problem-solving. Therefore, two sub-goals have been identified and already dis-
cussed in light of papers 2 and 3, namely theoretical advancements and informing learning and
instruction. What has not yet been addressed in this discussion is what implications can be
drawn for the leverage of process data for collaborative problem-solving based on the three
papers presented, with a focus on the three challenges identified (see 1.4.3): ethical considera-
tions, dealing with complexity, and lack of theory.

Some of the ethical challenges during data collection can be effectively addressed through
the use of high-level features, as demonstrated in papers 2 and 3. By focusing on collecting only
relevant data, incorporated by the design of the task (Goldhammer et al., 2021), this approach
minimizes unnecessary information collection. It also helps learners understand why certain
data are needed and the implications of omitting them. For example, excluding such data could
hinder the system's ability to provide adaptive instructional support, potentially reducing the
effectiveness of the learning experience. This gives learners, at least in a higher education con-
text, a choice about what they want to allow the researcher/educator to collect, and allows for
informed consent based on why that data should be collected and what the consequences of not
collecting the data might be. In addition, Paper 3 identifies learners in need of adaptive instruc-
tional support, which allows for enabling interventions, an ethical concern that is not currently
systematically addressed in research (Cerratto Pargman & McGrath, 2021). By using partial
dependence plots, the transparency issue could also be addressed to some extent, and additional
insights into how the prediction is achieved could be gained (Yan et al., 2023).

Turning to the challenge of complexity in process data analyses. Research has long been
interested in the cognitive (and collaborative) activities involved in (collaborative) problem-
solving, but initially it was only possible to infer the outcome, for example through think aloud
protocols (Ericsson & Simon, 1980). By using interactive tasks, process data can be collected
unobtrusively without the need for additional measurements that could increase cognitive load,
and thus the cognitive processes involved can be studied more easily (Matcha et al., 2019).
Paper 3, meanwhile, showed that theory-based process indicators constructed from sequences

of automatically coded log-file data corresponding to collaborative diagnostic activities
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predicted task performance. Thus, it is possible to (partially) automate analyses using log-file
data if learning environments are intentionally designed with theory-based indicators such as
collaborative diagnostic activities in mind, making the measurement of these processes a design
factor rather than using log-file data as a byproduct of the product data management process
(Goldhammer et al., 2021).

Regarding the interpretation of machine learning algorithms (as used in paper 3), they come
with the complexity of not explaining how the predictions were achieved in order to allow for
complex nonlinear interactions, leading to less transparent models, also known as black boxes
(Molnar et al., 2018; Yarkoni & Westfall, 2017). While such a black box model was used in
Paper 3, additional analyses using partial dependence plots provided some additional insights,
such as that the most important feature for prediction needs to be present at least once to in-
crease the likelihood of successful performance. However, the use of machine learning algo-
rithms in education is still a young and evolving field of research, with new models and ap-
proaches being developed all the time (Hilbert et al., 2021; Rane et al., 2024). For example,
while knowledge tracing, a method for monitoring learners' skill mastery and predicting their
performance, was developed thirty years ago (Corbett & Anderson, 1995), the recently devel-
oped interpretable knowledge tracing model outperforms known knowledge tracing models
while allowing for more causal interpretations of the prediction (Minn et al., 2022). Such mod-
els could be used, for example, to predict collaborative diagnostic reasoning performance based
on collaborative diagnostic activities constructed from log-file data, with a particular focus on
the transition between collaborative diagnostic activities following the results of Paper 3.

Finally, the challenges of interpreting the results of machine learning on process data are
addressed. While paper 1 argued for the need to link log-file data to theory-based constructs in
process data analyses, papers 2 and 3 present two concrete examples of how this can facilitate
theoretical advancements and derive actionable results from process data analyses to support
collaborative diagnostic reasoning skills. Furthermore, theory-based constructs can go beyond
idiosyncratic findings for one task and facilitate much-needed replication studies (Andres et al.,
2017; Renkewitz & Heene, 2019; Zwaan et al., 2017). In particular, Paper 2 demonstrates the
importance of empirically testing theoretical models in more than one dataset, as some of the
hypotheses presented were present in one dataset but were not stable across datasets. Only by
analyzing three data sets, the relevance of collaboration knowledge for collaborative diagnostic
reasoning and the contribution of collaborative diagnostic activities alone do not mediate the
effect of individual characteristics on diagnostic outcomes. These findings demonstrate the

need to improve medical students' collaboration knowledge and collaborative diagnostic
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activities beyond content knowledge, and serve as a resource for policy stakeholders in shaping
curriculum decisions. In turn, through theoretical advancements, as detailed in 5.2, it is possible
to align assessment design with instructional design to inform learning and instruction, as done
in Paper 3 and subsequent analyses that identified the transition of the most important feature
in prediction as a starting point for adaptive instructional support (see 5.3).

Collaborative diagnostic activities provide a promising foundation for the development of
theory-based process indicators that enhance the generalizability and transferability of research
findings across tasks and domains. A key advantage of collaborative diagnostic activities as
theory-based process indicators is that they can be utilized as a common language in research,
which is a prerequisite for research on generalizability and transfer of findings to other domains.
In order to address the issue of the lack of generalizability of findings, given the strong task-
specificity of findings, we suggested in Paper 1 the use of high-level features (Mislevy, 2019)
representing meaningful process indicators of psychological constructs based on theory. Two
types of high-level features were utilized as indicators of collaborative diagnostic activities. In
Paper 2, the quality of collaborative diagnostic activities was evaluated through the calculation
of metrics, including the precision of evidence elicitation from log-file data, with expert solu-
tions serving as a reference point. In Paper 3, bi-grams of collaborative diagnostic activities per
second were constructed from log-file data, incorporating the time stamps of clicks. In particu-
lar, Paper 3 illustrated that high-level features derived from log-file data based on theory are an
effective means of predicting performance. In addition, Paper 2 revealed that the quality col-
laborative diagnostic activities offer a unique contribution to problem-solving performance, as
indicated by the non-mediating effect of these activities. Therefore, collaborative diagnostic
activities account for additional variance beyond that explained by individual characteristics,
such as knowledge. One first analysis on generalizability and transfer of findings to other do-
mains in the context of collaborative diagnostic reasoning is done by Oezsoy et al. (2024, Au-
gust) where we applied parts of the CDR-M, specifically entailing evidence elicitation and shar-
ing as collaborative diagnostic activities, to teacher education and compared it to data from
medical education. In light of these findings, it seems reasonable to argue that the collaborative
diagnostic activities entailed in the CDR-M represent suitable theory-based process indicators,
facilitating the generalizability of findings across tasks and potentially even across domains.
This is due to their potential to serve as a suitable starting point for a shared language among
researchers.

In sum, the process data analyses presented in this thesis have six implications for the utili-

zation of process data in the assessment and support of collaborative problem-solving. First of
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all, the theory-based approaches presented in this thesis illustrate how challenges with respect
to ethical considerations, e.g., lack of informed consent or a lack of transparency, can be mini-
mized during the process of data collection. Furthermore, with regard to data analyses, the pre-
sent findings enable the identification of adaptive instructional support strategies based on high-
level features. Thirdly, the analyses of log-file data can be partially automated. Fourthly, with
regard to the interpretation of process data analyses, this thesis demonstrates that learner mod-
els, such as knowledge tracing, are enhanced by a focus on the transitions between collaborative
diagnostic activities. In addition, the findings demonstrate how high-level features facilitate
theoretical advancements and enable the achievement of actionable results. Ultimately, the uti-
lization of high-level features, such as collaborative diagnostic activities, to establish a common
language in research enables the generalizability of findings across tasks and, potentially, even
across domains.

5.5 Transferability: Domain Specificity of Collaborative Problem-Solving

Collaborative problem-solving skills and collaborative diagnostic reasoning skills are fre-
quently regarded as domain-specific skills, as they rely on domain-specific schemata and scripts
to be performed with expertise (Sweller, 1988; van Lehn, 1989). For example, an internist's
capacity to diagnose a medical condition is grounded in the structured knowledge inherent to
illness scripts (Charlin et al., 2007). Similarly, a teacher's capacity to diagnose learning diffi-
culties or identify potential misconceptions in students is rooted in their understanding of ped-
agogical frameworks (Heitzmann et al., 2019). However, the distinction between domain-spe-
cific and domain-general problem-solving is not a dichotomy; rather, it represents a continuum
(Perkins & Salomon, 1989).

At one end of the continuum, domain-general strategies such as vary-one-thing-at-a-time
(VOTAT) are essential in knowledge-lean tasks or when specific domain knowledge is absent
(Greiff et al., 2014). These strategies are universally applicable across various domains because
they rely on fundamental problem-solving principles rather than domain-specific content. Con-
versely, knowledge-rich tasks that necessitate the utilization of well-structured, domain-specific
scripts, such as the aforementioned medical or educational diagnoses, demand more specialized
approaches that are substantially influenced by the expert's experience and domain knowledge.
Despite these differences, collaborative diagnostic activities, such as those involved in collab-
orative diagnostic reasoning, indicate a form of cross-domain applicability. For example, an
internist who is engaged in a collaboration with a radiologist with the objective of sharing in-
formation for the purpose of further evidence generation, or two teachers who are exchanging

observations about a student, both engage in similar collaborative diagnostic activities from a
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conceptual perspective. These scenarios require the elicitation and sharing of evidence, pro-
cesses that are applicable across domains. However, the domain-specific expertise determines
which information is considered relevant and irrelevant, respectively. An internist would lack
the pedagogical knowledge necessary to diagnose educational issues, and vice versa.

To effectively support research on cross-domain transferability of collaborative problem-
solving processes, it is important to not only conceptualize them as done in several theoretical
frameworks (e.g. Hesse et al., 2015; Radkowitsch et al., 2022; Sun et al., 2020), but also to
measure these processes using high-level features. These frameworks offer a common language
and structure for the description of collaborative activities, such as evidence sharing and plan-
ning, which can be applied across different domains.

In conclusion, while collaborative problem-solving and collaborative diagnostic reasoning
are dependent on domain-specific expertise, the conceptualization of collaborative problem-
solving activities demonstrates cross-domain applicability. By employing theory-based frame-
works to describe these activities, we can establish a common foundation across different do-
mains, thereby enhancing the utilization of process data for the assessment and support of col-
laborative problem-solving skills.

5.6 Limitations

This thesis is not without limitation that should be kept in mind and lower in some aspects
the potential to generalize the findings.

A limitation with respect to the collaborative diagnostic activities is the operationalization
of quality in Paper 2. The quality indicators could always only shed light on one perspective of
each activity, while possibly obscuring others. For instance, it is possible that content
knowledge is not related to the precision of hypotheses sharing. However, this may be different
when examining other quality indicators, such as sensitivity or specificity. Accordingly, a more
detailed examination of the measurement of expert performance in the context of collaborative
diagnostic activities seems to be warranted. Moreover, while collaborative problem-solving and
collaborative diagnostic reasoning encompass a range of essential collaborative activities, the
CoSiMed simulation concentrated on sharing-related skills and did not examine activities such
as negotiation. This decision was made based on findings from prior research (e.g., Tschan et
al., 2009), which indicated that diagnosticians face challenges in sharing information. Addi-
tionally, interviews with practitioners revealed that the primary obstacle in the collaboration
between internists and radiologists (a common and complex situation requiring collaborative
diagnostic reasoning) is the lack of precise justification for the test (e.g., the absence of relevant

information) and the lack of patient information clustering (Radkowitsch et al., 2020).
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Nevertheless, the findings and implications of Papers 2 and 3 are limited to sharing-related
skills of collaborative diagnostic reasoning. Consequently, further research on additional as-
pects, such as negotiation skills, is required.

Another limitation is the use of an agent-based simulation of collaborative diagnostic rea-
soning, which allows for a standardized and controlled setting that is difficult to establish in
human collaborations while ensuring all necessary activities are performed (Rosen, 2015). Nev-
ertheless, the restricted nature of conversational interactions permitted by agent-based collabo-
ration has been identified as a potential limitation, with the extent to which natural collaboration
can unfold being constrained as a result (Graesser et al., 2017). This may account for the limited
impact of social skills in Paper 2, as the context may not necessitate the application of a broad
range of social skills (Hesse et al., 2015; Radkowitsch et al., 2020). In a real-life collaboration,
the effects of social skills might be more pronounced. Nevertheless, research demonstrated that
the human-to-agent approach yielded comparable outcomes in collaborative problem-solving
to the human-to-human approach in the PISA 2015 study, and correlations with other measures
of collaborative skills have been identified (Herborn et al., 2020; Stadler et al., 2020). Moreo-
ver, the CoSiMed simulation has been thoroughly validated and is perceived as authentic, given
that this specific collaborative situation also occurs in practice via distance communication
(Radkowitsch et al., 2020). However, the advent of generative artificial intelligence and the
utilization of large language models in educational settings has opened the possibility of devel-
oping a more flexible and authentic generative agent for collaboration. This agent could adapt
its behavior in response to the learner's process and queries, facilitating a more natural and
authentic interaction (Kasneci et al., 2023; Yan et al., 2024).

A further potential limitation is the appropriateness of using diagnostic accuracy as a reliable
and valid measure of (collaborative) diagnostic reasoning skills. In addition to diagnostic accu-
racy, which serves as an indicator of diagnostic quality, diagnostic reasoning skills also encom-
pass professional knowledge and diagnostic activities (Heitzmann et al., 2019). Nevertheless,
achieving diagnostic accuracy represents the primary objective of diagnostic reasoning, not
only within the medical domain (Pickal et al., 2023). The importance of accurate diagnoses
cannot be overstated, given the potentially grave consequences for patients when a diagnosis is
inaccurate (Balogh et al., 2015). Furthermore, a patient's diagnosis has a substantial impact on
subsequent steps, including the formulation of treatment plans (Cook et al., 2019).

A final limitation concerns the sample analyzed in Papers 2 and 3. It consisted exclusively
of medical students with an intermediate level of expertise, which may have prevented the ob-

servation of behaviors characteristic of both experts and novices. In addition, results in Paper 2
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showed that participants overall had on average a high level of collaboration knowledge. This
could be an indicator that the collaboration knowledge tests might be too easy or to narrowly
focusing on evidence sharing. Thus, in future studies, revising the measurement of collaboration
knowledge is important. While the current assessment focuses on meta-knowledge about the
collaboration partner, future operationalizations should aim to measure internal collaboration
scripts, given the relevance of this construct found in this thesis.

5.7 Directions for Future Research

The overarching goal of this thesis was to enhance the use of process data for assessing and
supporting collaborative problem-solving skills. This thesis examined the potential of process
data analyses to (1) facilitate theoretical advancements and (2) inform learning and instruction
of collaborative problem-solving in the context of collaborative diagnostic reasoning. In addi-
tion, the results also highlight several promising avenues for future research.

A first direction for future research could be to investigate non-linear relations between the
collaborative diagnostic activities. In light of the findings presented in Papers 2 and 3, it be-
comes evident that an isolated examination of collaborative diagnostic activities is insufficient
to fully capture the complex interactions among these activities. The use of bigrams in Paper 3
represented a preliminary investigation into this direction; however, further research is neces-
sary to examine longer sequences, such as sequence clustering (Piccarreta, 2017). As the ex-
ploratory use of longer sequences can rapidly increase the required sample size, it is recom-
mended that potentially relevant sequences be defined a priori based on theory or previous
studies. Hypotheses about such strategic behavior in collaborative problem-solving tasks should
then be explicitly tested. This would automatically account for the relevance of theory outlined
before. For instance, in light of the findings presented in Paper 3, it may be reasonable to ex-
clude the analysis of time spent on collaborative diagnostic activities. Instead, it would be more
fruitful to examine the actions undertaken directly before and after the first transition from ev-
idence sharing to hypotheses sharing.

A second direction of future research is to investigate the extent to which the proposed adap-
tive instructional support is suitable for facilitating the learning of collaborative diagnostic rea-
soning skills. In light of the found relation between collaboration knowledge and evidence shar-
ing in Paper 2, as well as the finding from additional analyses in Paper 3 that transitioning from
evidence sharing to hypotheses sharing at least once decreases the likelihood of concluding an
inaccurate diagnosis, it is proposed that an adaptive instructional support strategy be imple-
mented, whereby learners who are not transitioning from evidence sharing to hypotheses shar-

ing are provided with a collaboration script. Prior research has already indicated that the
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performance of evidence sharing is facilitated with an adaptive collaboration script (Rad-
kowitsch et al., 2021). However, in this study, adaptivity was realized according to the quality
of the performed activities. It remains unclear whether adapting to the sequence of activities is
more beneficial.

A third direction of future research is the utilization of a generative Al-enhanced agent. Alt-
hough agent-based collaboration offers significant advantages (see 1.2.3), it also entails certain
limitations (see 5.4). Consequently, it may be beneficial to investigate whether the findings of
Papers 2 and 3 can be replicated in a human-to-human setting. However, as it would be more
challenging to obtain comprehensive process data on the required activities in such a setting, a
preliminary approach could be to utilize a generative Al-enhanced agent to bridge the gap be-
tween human-to-agent and human-to-human approaches while maintaining a controlled envi-
ronment, individual measurement, and the necessity of all required processes.

A fourth direction for future research could be to examine the transferability of the CDR-M
and the findings of the presented Papers 2 and 3 to other diagnostic situations and to other
domains. While Papers 2 and 3 concentrated on information-sharing skills during collaborative
problem-solving using the CoSiMed Simulation, the CDR-M also entailed other collaborative
activities. This decision was made during the design of the simulation, as prior research has
indicated difficulties in sharing and eliciting information with and from collaboration partners
(Tschan et al., 2009) and interviews with medical doctors identified the task of requesting a
radiologic examination as of crucial importance (Radkowitsch et al., 2020). Therefore, future
research may examine the role of, for instance, negotiation skills in collaborative diagnostic
reasoning. To enhance the generalizability of the current findings, it would be further interesting
to investigate other tasks within the medical domain, as well as in other domains requiring
collaborative diagnostic reasoning skills. These could include diagnosing learning difficulties
or students' possible misconceptions in teacher education (Heitzmann et al., 2019). In compar-
ison to other domains, medicine is characterized by highly standardized procedures, which
could have an impact on collaborative diagnostic activities and, as a result, limit the extent to
which the findings can be transferred to other domains. Therefore, further research is required
to investigate the transferability of the conceptualization of collaborative problem-solving pro-
cesses.

On a more general note, future research is encouraged to challenge and advance existing
theories with respect to the details they imply for relevant activities. While theories of collabo-
rative problem-solving describe an idealized representation of the problem-solving process

through the coordination of externalized individual activities into a coherent sequence of events
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(Hesse et al., 2015), research on this sequence of events during collaborative problem-solving
using process data is still rare. Therefore, a promising direction for future research is the iden-
tification of beneficial sequences of processes and the examination of how these sequences are
influenced by individual and task characteristics. For example, Paper 3 could identify the tran-
sition from evidence sharing to hypotheses sharing as a relevant process to be performed at least
once, or the finding that transitions between collaborative diagnostic activities seem to be more
important than the time spent on these activities. These findings can then be used to advance
existing theories on collaborative problem-solving (e.g., Hesse et al., 2015; OECD, 2017; Rad-
kowitsch et al., 2022; Sun et al., 2020) in order to facilitate the sustainable use of process data,
thereby enhancing the theory and practice of collaborative problem-solving. The use of a joint
language in this line of research would also have the potential to facilitate the generalization of

findings across domains.
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The ability to engage in collaborative diagnostic reasoning is a fundamental skill for numer-
ous professionals on a daily basis (Graesser et al., 2018; Radkowitsch et al., 2022). A lack of
skills and errors can have severe negative consequences, including serious adverse events and
suboptimal patient care, particularly in the context of medicine (Hooftman et al., 2024). To gain
a deeper understanding of collaborative diagnostic reasoning from a theoretical perspective and
thereby inform learning and instruction, the present thesis focused on how process data derived
from interactive collaborative problem-solving tasks, particularly within the context of collab-
orative diagnostic reasoning in agent-based simulations, can be utilized to enhance theoretical
models and learning and instruction of collaborative problem-solving skills. The overarching
goal of this thesis was to demonstrate how process data can be employed in a sustainable and
meaningful manner to enhance theoretical models and instructional support for collaborative
problem-solving skills. Recent advancements in the context of process data analyses permit
researchers to collect process data in an unobtrusive manner, thereby facilitating the investiga-
tion of the cognitive processes involved in collaborative problem-solving and collaborative di-
agnostic reasoning (Matcha et al., 2019). However, the use of process data presents both op-
portunities and challenges. Process data analyses allow for more nuanced assessments of learn-
ers' problem-solving skills, thereby providing a basis for targeted interventions and a deeper
theoretical understanding. To leverage the full potential of process data analyses of collabora-
tive problem-solving it is crucial to use standardized data collection, complex analyses meth-
ods, and robust theoretical frameworks.

The findings of the presented papers demonstrated how process data can be utilized to ad-
vance theoretical models, as illustrated by the CDR-M, to facilitate the learning of collaborative
diagnostic reasoning skills and, consequently, enhance the utilization of process data in collab-
orative problem-solving scenarios. This is exemplified by the application of collaborative diag-
nostic reasoning in agent-based simulations. With respect to theoretical advancements, the the-
sis provided support for four assumptions proposed in the CDR-M. In addition, two new as-
sumptions were added to the model: Firstly, the unique contribution of collaborative diagnostic
activities to collaborative diagnostic reasoning and secondly, the need to investigate complex
non-linear interactions between collaborative diagnostic activities. In terms of supporting the
development of collaborative diagnostic reasoning skills, there are several practical implica-
tions: Firstly, it is important to focus on collaboration knowledge and collaborative diagnostic
activities. Secondly, it is necessary to consider how to measure processes such as collaborative
diagnostic activities and make this a key design factor. Moreover, a strategy for providing adap-

tive instructional support is presented. Lastly, the findings of this thesis also provide insights
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into the potentials of enhancing the usage of process data analyses in the assessment and support
of collaborative problem-solving. It is of crucial importance to employ theory-based frame-
works to describe collaborative problem-solving processes, such as collaborative diagnostic
activities of collaborative diagnostic reasoning, in order to establish a common ground for the
assessment and support of collaborative problem-solving skills across different domains. This
will, in turn, facilitate further improvements in the use of process data analyses. Which will

lead to more proficient collaborators in the future, not only in the medical domain.
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8.1 Patient Cases Used in Paper 2 and 3

For Paper 2 and 3, fictitious but authentic patient cases were developed with medical experts
in the project team. Table 3 shows an overview of which patient cases were used in Paper 2 and
3.
Table 3
Overview About all Patient Cases Used in Paper 2 and 3

) ) ) Usage
Patient Diagnosis

Paper 2 Paper 3

Marianne Freundorf Acute pancreatitis Study A

_ o ) Study B
Herma Goettlich Aspiration pneumonia Case 1

Study C
Sabine Winkler Community acquired pneumonia (CAP) Case 2
Anton Fomin Acute tuberculosis Case 3
Mark Binder Pneumocystis jirovecii Pneumonia (PJP) Case 4
Maria Schenker Hospital acquired pneumonia Case 5

Afterwards, the health record of one patient case is presented exemplarily (Table 4) along a
screenshot how the patient case is presented in the CoSiMed simulation (Figure 4).
Table 4
Example Case: Herma Goettlich

Health
Record Content

Section

You have been working in a medium-sized regional hospital for a few
months and are currently working on a general internal medicine ward. To-
day you are also in charge of the emergency department. In the late hours of
Monday morning, 78-year-old Herma Goettlich is brought in by the ambu-
lance, accompanied by her worried husband. Mrs Goettlich is suffering from
Introduction  gevere shortness of breath, so her husband answers most of her questions.
You have taken blood samples and ‘hastily’ sent them to the laboratory, Mrs
Goettlich has her medical history taken and examined as far as possible. By
the time you have finished, part of the lab is also ready and you can use the

file to decide what the next diagnostic steps should be.




164 Appendix
78-year-old patient with fever since this morning and rapidly worsening
Ambulance shortness of breath. Improvement of symptoms with 2 liters of oxygen; de-
Report cision made to postpone intubation for now. Dysphagia with a history of
stroke. Medication: Aspirin protect, ramipril, simvastatin, calcium/D3.
Mr. Goettlich reports that his wife has been experiencing significant short-
ness of breath and a worsening fever since this morning. Everything was fine
yesterday. They watched Tatort together and then went to bed. Normally,
she has no lung issues and is generally in excellent internal health. Upon
inquiry, Mr. Goettlich mentions that his wife has had swallowing difficulties
since her stroke a few months ago and occasionally chokes. This happened
last night as well, but he does not consider it worse than usual. There are no
B symptoms.
Pre-existing Conditions
e History of media infarction (middle cerebral artery infarction) in 12/
Medical 2017
History e resulting in residual right hemiparesis
e Osteoporosis
e Early stage of dementia syndrome
e History of tonsillectomy in 1962
Medications
e Aspirin protect, ramipril, simvastatin, calcium/D3
Substance Use History
e Approximately 10 pack-years of smoking, quit 40 years ago
e Alcohol consumption is rare
Social History
e Retired, formerly worked as a butcher’s assistant
Physical _ _ o
o 78-year-old patient with decreased general condition and good general ap-
Examination

pearance (height: 1.75 m, weight: 72 kg, BMI: 23.5 kg/m?).

Vital signs : Blood pressure 100/60 mmHg, heart rate 100/min regular, tem-
perature 37.9°C, respiratory rate 27/min, oxygen saturation 96% on 2 liters
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of oxygen. Lymph nodes not enlarged, non-tender. Thyroid gland is unre-
markable.

Cardiovascular system: No cyanosis. Heart sounds clear, regular, and tach-
ycardic, with no extra sounds or pathological heart murmurs. No jugular ve-
nous distention. Moderate bilateral leg edema, slightly more on the right than
on the left. Peripheral pulses are palpable bilaterally. Mucous membranes are

unremarkable.

Respiratory system: Symmetrical chest expansion, no retractions, normal
thoracic shape. No vocal fremitus, no stridor. Diaphragmatic excursion equal
at 4 cm bilaterally, with no dullness to percussion. Lungs evenly ventilated,
with coarse breath sounds throughout, cough with foul-smelling sputum, no
pleural rub.

Physical

Examination ~ Abdomen: Abdominal wall soft, non-tender, no masses, no guarding, bowel
sounds normal in all quadrants. Kidneys not tender to palpation, spleen not
palpably enlarged, liver 11 cm in the right midclavicular line, smooth sur-

face. No hernias. No visible surgical scars.

Skin: Unremarkable skin findings. Extremities warm, no varicose veins. No

nail abnormalities.

Musculoskeletal system; Normal range of motion in all joints. No joint pain,

swelling, or deformities. Spine non-tender to percussion.

Neurological examination: Friendly, cooperative, oriented in all aspects, no
evidence of formal thought disorder or suicidality. Pupillary light reflex di-
rect and consensual prompt and equal. Known right hemiparesis and facial
paresis. No other weakness, no sensory deficit, no pathological reflexes, no
drop in manual muscle testing. No signs of meningeal irritation. Vibration

sensation intact 8/8 in all four extremities.

Parameter | Value | Reference range (f)
Laboratory Blood Count
Erythrocytes | 3.8 X 1076 /l | 3.5-5X10M6 /ul
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Hemoglobin (Hb) 13.6 g/dl 12 - 15 g/dI
MCH 28 pg 27 - 34 pg
MCV 84 fl 81 - 100 fl
MCHC 33 g/dl 32 - 36 g/l
Hematocrit (HKt) 38% 33-43%
Leukocytes 13.6 X 103 /ul 4-11X10"3/ul
Platelets 182,000 /ul 150,000 - 400,000 /ul
Reticulocytes 1% 05-2%
Differential Blood Count
Neutrophilic Granu- 78% 45 -78 %
locytes
Stab Cells 4% 0-4%
Segmented Cells 74% 45-74 %
Eosinophilic Granu- 1% 0-7%
locytes
Basophilic Granulo- 1% 0-2%
cytes
Lymphocytes 16% 16-45%
Monocytes 4% 4-10%
Coagulation
Quick 100% 70 - 120%
INR 1 1
PTT 38 sec. 28 - 40 sec.
Serum
Sodium 142 mmol/l 136 - 148 mmol/l
Potassium 4.7 mmol/I 3.6 - 5.2 mmol/l
Calcium (total) 2.3 mmol/| 2.1-2.6 mmol/l
Creatinine 0.9 mg/di < 0.9 mg/di
eGFR >60 ml/min/1.73m"2 >60 ml/min/1.73 m"2
Urea >60 ml/min/1.73 m"2 >60 ml/min/1.73 m"2
Alkaline  Phospha- 21 mg/dl 10 - 50 mg/dl
tase
Bilirubin (total) 45 U/ 40 - 190 U/
Bilirubin (direct) 1 mg/dl < 1.1 mg/dl
CHE 0.6 mg/di < 0.6 mg/dl
GOT (AST) 4.6 kU/I 2.5-7.4 kUl
GPT (ALT) 13 U/ <15 U/l
y-GT g U/l <17 U/l
a-Amylase 14 U/l <18 U/l
Lipase 22 U/l 10 - 53 U/l
Blood Sugar 89 U/l <190 U/l
HbAlc 89 mg/dl 55 - 100 mg/dI
CK 5.40% 4-6%
CK-MB 34 U/ <80 U/
CRP 4 U/l <10 U/l
Ferritin 53 mg/l <6 mg/l
TSH basal 83 g/l 15 - 250 pg/l
Erythrocyte  Sedi- 1.8 pU/ml 0.2 -3.1 pU/mi

mentation Rate

Urine-Stick
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pH 5 o5-7
Protein - -
Bilirubin - -
Urobilinogen - -
Nitrite - -
Glucose - -
Acetone - -
Blood - -

Figure 4

Screenshot of the Introduction to the Health Record of Herma Goettlich

Rettungsdienstprotokoll Vorerkrankungen Kérperliche Untersuchung

Vorstellung der Patientin:

Sie arbeiten seit einigen Monaten in einem mittelgroBen Kreiskrankenhaus und sind derzeit auf einer allgemeininternistischen Station eingesetzt.
Heute betreuen Sie zusatzlich die Notaufnahme.

Am spaten Montagvormittag wird die 78-jahrige Herma Gottlich vom Notarzt gebracht, der besorgte Enemann begleitet sie. Frau Géttlich leidet
unter heftiger Atemnot, so dass der Ehemann einen GroBteil Ihrer Fragen beantwortet. Sie haben Blut abgenommen und ..eilig” ins Labor geschickt,
Frau Gottlich so weit méglich anamnestiziert und untersucht. Als Sie damit fertig sind. ist auch das Labor schon fertig und Sie kdnnen sich mit der
Akte (berlegen, was die nachsten diagnostischen Schritte sein sollten.

Radiologische Untersuchung anfordern
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8.2 Measures for Individual Characteristics Used in Paper 2

Content Knowledge

Content knowledge was assessed in Paper 2 by conceptual (Boshuizen & Schmidt, 1992)
and strategic knowledge (Stark et al., 2011) of radiology and internal medicine, respectively.
The items in each construct were presented in a randomized way in each study. However, the
items for study C were shortened due to the embedding of the data collection in the curriculum
(Table 5).
Table 5
Overview of Number of Questions in the Content Knowledge Test

Conceptual knowledge Strategic knowledge
internal radiolo internal radiolo
Study medicine gy medicine gy
24 16
Study A 20 15 8 cases 8 cases
3 questions per 2 questions per
case case
24 16
Study B 20 15 8 cases 8 cases
3 questions per 2 questions per
case case
24 12
Study C 13 12 8 cases 6 cases
3 questions per 2 questions per
case case

Conceptual Knowledge

Conceptual knowledge was measured using single-choice questions including 5 options
adapted from a database of examination questions from the Medical Faculty of the LMU Mu-
nich, focusing pathophysiology, disease triggers, and radiologic interpretation of relevant and
closely related diagnoses of the patient cases used in the simulation. A mean score of 0-1 was

calculated, representing the percentage of correct answers and indicating the average conceptual
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knowledge of the participant per medical knowledge domain. Below is an example item from
internal medicine, the correct answer is in bold:

The treatment of an acute, febrile respiratory infection is based on the pathogen spectrum
(viral/bacterial). From this point of view, the use of antibiotics is indicated in approximately

e less than 10% of cases

e 10-20% of cases

e 21-30% of cases

e 31-50% of cases

e over 50% of cases

Strategic Knowledge

Strategic content knowledge was measured contextually using key features questions
(Fischer et al., 2005). Short cases were introduced followed by two to three follow up questions
(e.g., What is your most likely suspected diagnosis?, What is your next examination?, What
treatment do you choose?). Each question had eight possible answers, from which the learners
were asked to choose one. A mean score of 0-1 was calculated, representing the percentage of
correct responses, indicating the average strategic content knowledge of the participant per do-
main. This is an example item from radiology, correct answers to the question are written in
bold:

It's Monday morning in your radiology practice. 24-year-old Karin Ungenau comes to see
you. She is referred by her neurologist with suspected multiple sclerosis.
Which of the following imaging procedures do you carry out to confirm the diagnosis?

e CT and MRI with cranial contrast agent

e CT and MRI with spinal contrast agent

e CT and MRI with spinal and cranial contrast agent

e MRI with cranial contrast agent

¢ MRI with contrast agent spinal

e MRI native cranial

¢ MRI native spinal

¢ MRI native and with contrast agent spinal and cranial
Assume that Mrs Ungenau has been deaf since birth and received cochlear implants (CI) on
both sides as a child. What do you need to consider for the MRI that is now required?

e The implant must be switched off while the examination is running

e The implant must be reprogrammed before the examination
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e The patient needs special headphones for the examination

e The patient must be monitored for 24 hours after the examination

e The examination must generally be refused

e The examination must be performed under anaesthesia

e No special precautions need to be taken

e Before the examination, the exact fabric of the Cl must be known and compatibil-

ity must be clarified

Collaboration Knowledge

Collaboration knowledge measured specific to the simulated task and consistent across the
three studies used in Paper 2 as meta-cognitive knowledge about the collaboration partner
(Engelmann & Hesse, 2011). Collaboration knowledge was measured with seven text-based
patient cases with the leading symptoms of ascites, joint pain, impaired vigilance, B symptoms
(fever, night sweats, and weight loss), back pain, dyspnea, and weakness, which combined re-
quired a radiological examination in the next step of the diagnostic process. Participants were
asked to select all relevant information for seven different patient cases with the cardinal symp-
tom fever (internal medicine). The patient cases were presented in a randomized order and al-
ways included twelve pieces of information regarding the chief complaints, medical history and
physical examination of the patient cases. We then assessed whether each piece of information
was (not) shared correctly (i.e. whether relevant information was shared and irrelevant infor-
mation was not shared) and assigned one point and divided it by the maximum of 12 points to
standardized the range of measure to 0-1. This is an example case:

28-year-old UIf Schafer was found lying in front of a ladder. He had a contusion on his left

forehead and abrasions on the left side of his body. Mr. Schéfer appears absent, does not respond

appropriately to speech, and has vomited multiple times since being admitted to the emergency

room. Only in response to a painful stimulus does he open his eyes and deliberately ward it off.

Anisocoria is observed, with the left pupil reduced and the right pupil slim. The patient breathes

shallowly, with a respiratory rate of 20/min, pulse 90/min, and blood pressure 100/65 mmHg.

Lungs are ventilated on all sides, abdomen is soft, and extremities are unremarkable upon in-

spection.
From the information provided below, please select the details that you would communicate to
a radiologist for the Emergency CCT (correct answers are in bold):

Condition after fall from ladder Impaired vigilance

Multiple episodes of vomiting Reduced left eye aperture, right eye slim

Shallow breathing Additional information Contusion on the left forehead
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Abrasions on the left side Respiratory rate 20/min
Pulse 90/min Physical examination Blood pressure 100/65 mmHg
Extremities inspection unremarkable Anisocoria

Social Skills

Social skills were measured consistently across the three studies in paper 2 based on self-
report on a 6-point Likert scale ranging from total disagreement to total agreement. The con-
struct was measured using 23 questions divided into five subscales. Five questions aimed to
measure the overall construct, the other four subscales were identified using the complex prob-
lem solving-frameworks of Liu et al. (2016) and Hesse et al. (2015): perspective taking (four
questions), information sharing (five questions), negotiation (four questions) and coordination
(five questions). For the final score, the mean of all subcategories is calculated, ranging from 1
to 6, representing general social skills. Table 6 shows the example items per subscale.

Table 6

Example Items for Each Subscale for Measuring Social Skills

Subscale Item

Direct

Measurement I enjoy working with others.

Perspective Taking It is easy for me to put myself in the position of my collaboration

partners.
Information When | collaborate with others, | purposefully share relevant infor-
Sharing mation.
Negotiating I can negotiate compromises when working with others.
Coordination When | work with others, we have a clear common goal in mind.
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8.3 Measures for Collaborative Diagnostic Activities Used in Paper 2

After reading the health record, the learners’ task was to collaborate with an agent-based
radiologist through requesting radiological examinations using a request form (Figure 5). For
better readability the request form is translated into English in Figure 6 and the collaborative

diagnostic activities derived from the CDR-M are mapped to the respective part of the request

form.

Figure 5

Screenshot of the Radiological Request Form of Herma Goettlich
Patient
Vorname: Herma
Nachname: Gottlich

Geburtsdatum: 27.01.1940

Untersuchung
Methode: Korperteil: Kontrastmittel:
cT
Rontgen
MRT
Uttraschall

Fragestellung und Angaben an den Radiologen
=Bisherige Befunde:
=+ Anamnese
+ Vorerkrankungen
+ Labor
+ Korperliche Untersuchung allgemein
+ Vitalparameter
+ Lymphknoten
+ kardiovaskuldr
+ respiratorisch
+ Abdomen
+ Haut
+ Bewegungsapparat
+ neurologisch
= Verdacht aut:

b w wb b @b @b wb w6 w6

Figure 6

Collaborative Diagnostic Activities Mapped to the Request Form

Examination

Method: Body Party:
O Catscan Head
X-Ray Thorax Evidence Elicitation
MRI Abdomen
- Ultra sonic Shoulder r.
Leg

Questions and information to the radiology

= Previous findings:
4 History Taking
4+ Prior Conditions
+ Laboratory
+ General physical Examination

Evidence Sharing

— Suspected:

(]

Hypotheses Sharing
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Quiality of Evidence Elicitation

The quality of evidence elicitation was measured by assessing the appropriateness of the
requested radiological examination for the indicated diagnosis. Therefor an expert solution
showed which radiological examinations were appropriate for each of the possible diagnoses.
If participants requested an appropriate radiological examination for the indicated diagnoses,
they received 1 point for that request attempt. Finally, a mean score across all request attempts
(maximum of 3) was calculated and scored. The final mean score was transformed into a binary
indicator, due to the categorical nature of the original data and its skewed distribution, with a
majority of responses concentrated in a single category. Thus, 1 indicates that all requested
radiological examinations were appropriated and O indicates that also inappropriate radiological
examinations were requested. For example, the appropriate radiological examination for diag-
nosing aspiration pneumonia, the accurate diagnosis of the example case Herma Goettlich are:

X-ray thorax, CT thorax native, ultrasound abdomen.

Quality of Evidence Sharing

The quality of evidence sharing was measured using a precision indicator. This was calcu-
lated as the proportion of shared relevant evidence out of all shared evidence. Relevant evidence
is defined per case and per diagnosis and indicated by the expert solution. The precision indi-
cator was first calculated per radiological request. We then calculated the mean score, summa-
rizing all attempts in that patient case. This resulted in a range from 0 points, indicating that
only irrelevant evidence was shared, to 1 point, indicating that only relevant evidence was
shared. For example, the relevant evidence for requesting a radiological exam for the accurate
diagnosis of the example case Herma Goettlich are:

e Shortness of breath

e Rapid onset

e Started this morning

e History of nicotine abuse, 10 pack-years

e Severe sweating

e History of tonsillectomy, 1962

e Fever since this morning

e Sudden onset of shortness of breath

e Dysphagia (difficulty swallowing)

e Initial pO2 92%

e Leukocytes 13.6 x 103/l
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CRP 53 mg/di

Erythrocyte sedimentation rate 10/23
Reduced general condition (AZ)
Temperature 37.9°C

Respiratory rate 27/min

pO2 96% with 2 liters of O:

Lungs with coarse crackles on the right side
Cough with sputum

Foul-smelling sputum

Quiality of Hypotheses Sharing

The quality of hypotheses sharing was measured using a precision score indicating how

many of the diagnoses that the participants shared with the radiologist were actually relevant to

the case. Therefore, the participant could choose out of a long menu of 249 diagnoses. For

example, this are the 36 relevant diagnoses for the example case Herma Goettlich in the original

German language along the English translation:

Alveolitis

Alveolitis, exogen allergisch (EAA) — Extrinsic Allergic Alveolitis (EAA)
Autoimmunes Geschehen — Autoimmune Disorder

Bronchitis — Bronchitis

Bronchitis, bakteriell akut — Acute Bacterial Bronchitis

Bronchitis, viral akut — Acute Viral Bronchitis

COPD — Chronic Obstructive Pulmonary Disease (COPD)

COPD, akut exazerbiert — Acute Exacerbation of COPD

COPD, chronisch — Chronic COPD

Degeneratives Geschehen — Degenerative Disorder

Entzundliches Geschehen — Inflammatory Disorder

Grippaler Infekt — Upper Respiratory Tract Infection (Common Cold)
Herzinsuffizienz — Heart Failure

Herzinsuffizienz, akut bei Myokardinfarkt/Herzinfarkt — Acute Heart Failure Due to
Myocardial Infarction

Herzinsuffizienz, akut bei Myokarditis — Acute Heart Failure Due to Myocarditis
Herzinsuffizienz, chronisch, akut dekompensiert — Chronic Heart Failure, Acutely De-

compensated
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Infekt — Infection

Infekt, bakteriell — Bacterial Infection

Infekt, viral — Viral Infection

Influenza/Grippe — Influenza

Isch&mie, Lungenarterienembolie, Lungenembolie — Ischemia, Pulmonary Artery Em-
bolism, Pulmonary Embolism

Mykobakteriose, atypisch — Atypical Mycobacteriosis

Pneumonie/Lungenentziindung — Pneumonia

Pneumonie/Lungenentziindung, Aspirationspneumonie — Aspiration Pneumonia
Pneumonie/Lungenentziindung, atypisch — Atypical Pneumonia
Pneumonie/Lungenentziindung, bakteriell — Bacterial Pneumonia
Pneumonie/Lungenentziindung, begleitend bei systemischem Wurmbefall — Pneumonia
with Systemic Parasitic Infestation

Pneumonie/Lungenentziindung, CAP — Community-Acquired Pneumonia (CAP)
Pneumonie/Lungenentziindung, Pilzpneumonie — Fungal Pneumonia
Pneumonie/Lungenentziindung, Pneumocystis jirovecii Pneumonie (PCP) — Pneumo-
cystis jirovecii Pneumonia (PCP)

Pneumonie/Lungenentziindung, viral — Viral Pneumonia

Pneumothorax — Pneumothorax

Pneumothorax, spontan — Spontaneous Pneumothorax

Pneumothorax, traumatisch — Traumatic Pneumothorax

Rheumatisches Fieber — Rheumatic Fever

Sarkoidose — Sarcoidosis

Sepsis/Blutvergiftung — Sepsis

Thrombose, tiefe Beinvenenthrombose (TVT) — Deep Vein Thrombosis (DVT)
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8.4 Measures for Diagnostic Outcomes Used in Paper 2

In principle, the same coding schemes for the diagnostic outcomes (diagnostic accuracy and
diagnostic justification) were used for across the studies used in paper 2. However, during the
course of the studies, the coding schemes were revised in collaboration with the medical experts
in the project. Therefore, the coding schemes for the same cases differ slightly between the
studies. The most recent coding scheme is provided below.

Diagnostic Accuracy

A main diagnosis was assigned to each patient case as expert solution. Participants typed in
the first three letters of their desired diagnosis and then received suggestions from a list of 249
possible diagnoses. Diagnostic accuracy was then calculated by coding the agreement between
the final diagnosis given and the expert solution. Accurate diagnoses (e.g., hospital-acquired
pneumonia) were coded as 1, correct but inaccurate diagnoses (e.g., pneumonia) were coded as
0.5, and incorrect diagnoses were coded as 0. A binary indicator was used for the final diagnos-
tic accuracy score, with 0 indicating an incorrect diagnosis and 1 indicating an at least inaccu-
rate diagnosis, due to the categorical nature of the original data and its skewed distribution, with
a majority of responses concentrated in a single category.
The exact coding instructions were as follows:

e The learner receives 1 point for recognizing the accurate diagnosis.

e If the accurate diagnosis is stated in the justification, this is scored as usual, but only if
no diagnosis was previously stated in the diagnosis field.

e Ifadiagnosis is first stated inaccurately (i.e. 0.5 points) or incorrectly (i.e. 0 points) and
then specified more precisely in the justification, the score for diagnostic accuracy is
not changed.

e |If the main diagnosis is missing, -99 is entered as the missing value (do not enter 0).

Referring to the example case Herma Goettlich, the accurate diagnosis (1 point) was Aspi-

ration Pneumonia, however these diagnoses were still coded as correct but inaccurate (0.5
points): Pneumonia, Bacterial Pneumonia, Community-Acquired Pneumonia (CAP), and Atyp-
ical Pneumonia. All other diagnoses were coded as incorrect (0 points)

Diagnostic Justification
A prerequisite for diagnostic justification is the provision of at least an inaccurate diagnosis
(diagnostic accuracy coded with at least 0.5). If a participant provided an incorrect diagnosis

(coded as 0), diagnostic justification was immediately scored as 0. After choosing a final
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diagnosis, participants were asked to justify their decision in an open text field. Diagnostic
justification was then calculated as the proportion of relevant reported information out of all
relevant information that would have fully justified the final accurate diagnosis. Again, medical
experts agreed on an expert solution that included all relevant information to justify the correct
diagnosis. The participants’ solution was coded by two independent coders, each coding the
full data, and differences in coding were discussed until the coders agreed. The exact coding
instructions were as follows:

e The learner receives 1 point for each aspect of justification mentioned by the learner
that also appears in the expert solution (including synonyms).

e The points are then divided by the maximum number of points that can be achieved, so
that the learner can receive a score of between 0 and 1 point. Only the raw scores are
entered into the coding table. The percentage score is then computed.

e The justification is only coded if the diagnosis is correctly identified (diagnostic accu-
racy coded with at least 0.5). If the justification is not coded, -66 is entered. Important:
But always check whether a diagnosis was given in the justification.

o If the justification is missing when the diagnosis is correct (diagnostic accuracy coded
with at least 0.5), -99 is entered. If the justification is missing when the diagnosis is
incorrect (diagnostic accuracy coded with 0)., -66 is entered. If the diagnosis is missing,
-66 is entered.

e Expressions such as 'no high fever' count as 'fever' unless 'no fever' is specifically writ-
ten.

e Where signs of infection are mentioned, the reference to the laboratory should be noted.

Referring to the example case Herma Goettlich there were nine relevant aspects of justifica-
tion in the expert solution (without synonyms): (1) Dyspnea, (2) tachypnoea, (3) fever, (4) re-
duced SpO2, (5) cough with foul-smelling sputum, (6) dysphagia, (7) coarse-bubbling rales, (8)
inflammation values increased/ infection parameters increased, (9) X-ray/CT chest: compres-

sions or consolidations or shadows

Diagnostic Efficiency

A prerequisite for diagnostic efficiency is the provision of at least an inaccurate diagnosis
(diagnostic accuracy coded with at least 0.5). Diagnostic efficiency was then calculated by di-
viding the non-binary version of diagnostic accuracy by the minutes required to solve the pa-
tient case. If a participant provided an incorrect diagnosis (coded as 0), diagnostic efficiency

was immediately scored as 0.



178 Appendix

8.5 Partial Dependence Plots Used in Additional Analyses of Paper 3

Partial dependence plots were used in additionally analyses of Paper 3, Table 7 depicts them
for each bigrams of collaborative diagnostic activities used as a feature to predict diagnostic
accuracy. On the x-axis the discrete frequency of the feature can be seen, while the y-axis dis-
plays the likelihood of the model to predict O, indicating an inaccurate diagnosis. For example,
looking at the first feature, the time spent with evidence elicitation, the partial dependence plot
indicates that the likelihood of the model to predict an inaccurate diagnosis is around 0.6 for no
time spent with evidence elicitation. When the time increases also the likelihood of the model
to predict an inaccurate diagnosis increases up to 0.8 when this feature occurred more than 200
times in a process. The lines on the x-axis further indicate how often each value of the feature
occurred across processes (i.e. learners working on a patient case). When looking, again on the
first feature this indicates that most often learners had between 0 and 100 bigrams of evidence
elicitation followed by evidence elicitation in their process per case.
Table 7
Partial Dependence Plots for Bigrams of Collaborative Diagnostic Activities Predicting

Diagnostic Accuracy

Feature Partial Dependence Plot
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