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Abstract

The development of software has turned into one of the central activities for industrial
companies over the last decades. With almost every industrial product across all industry
sectors containing or entirely consisting of software, its secure and efficient development
became crucial in practice. In particular, the assessment of software products for security
shortcomings or vulnerabilities, plays a vital role during the secure software development
lifecycle in industry. Similar to these checks, the management of security findings result-
ing from them is equally indispensable and required by multiple standards, guidelines and
norms. With new trends and processes in the software engineering domain, including con-
cepts like Agile Software Development or DevOps, industrial software engineering evolved
from traditional concepts to modern software development approaches. However, this not
only affects the software engineering itself, but also all security activities performed as part
of the software development lifecycle. While areas like security testing already adapted to
this shift by applying, e.g., automated security checks during all lifecycle stages, the man-
agement of security findings still lacks the transformation to modern software development
principles. This is problematic for practitioners in industry, as it not only diminishes the
efficiency of the software development process but infringes the security of products as well.

This thesis addresses this gap by researching and designing a methodology for the
management of security findings in modern industrial software development projects. The
methodology is based on the requirements arising from the state-of-practice security find-
ings management and modern software development principles. Employing a three-step
approach, the data quality of security findings is improved, reactions to each finding de-
cided and the resulting information communicated to stakeholders. To measure the impact
of the methodology, it is implemented as platform for the management of security findings
and, in collaboration with our industry partner Siemens AG, evaluated in ongoing indus-
trial software development projects. The results indicate the importance of a modernized
security findings management process and confirm the relevance of our methodology for
industrial practice.

The main contribution of this thesis is the methodology for the management of security
findings in modern industrial software development projects. With its implementation as
platform and evaluation in real-world projects, it contributes to the software engineering
domain and industrial practice alike. Moreover, it yields several advancements in the areas
of Knowledge Engineering, Software Security, and Natural Language Processing.
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Zusammenfassung

In den letzten Jahrzehnten ist die Entwicklung von Software zu einer der zentralen Ak-
tivitäten von Industrieunternehmen geworden. Da fast jedes Produkt unabhängig vom
Industriezweig Software enthält oder vollständig aus Software besteht, ist eine sichere und
effiziente Entwicklung in der Praxis von entscheidender Bedeutung. Insbesondere die Anal-
yse von Softwareprodukten auf Sicherheitsmängel spielt für die Industrie eine zentrale
Rolle im Lebenszyklus der sicheren Softwareentwicklung. Ähnlich wie die Untersuchungen
selbst, ist auch die Handhabung und Lösung der daraus resultierenden Sicherheitsbefunde
unverzichtbar und durch zahlreiche Standards, Richtlinien und Normen vorgeschrieben.
Diese Weiterentwicklung betrifft nicht nur den Bereich der Softwaresicherheit, sondern
auch die Softwareentwicklungsansätze selbst. So spielen moderne Konzepte wie agile Soft-
wareentwicklung oder DevOps eine immer größere Rolle für die Industrie und beeinflussen
auch alle Sicherheitsaktivitäten im Projekt. Während sich Bereiche wie das Testen bereits
an diesen Wandel angepasst haben, z.B. durch automatisierte Sicherheitsprüfungen, fehlt
diese Adaptation beim Management von Sicherheitsbefunden weitgehend noch. Dies stellt
eine Herausforderung für die industrielle Praxis dar, nachdem es nicht nur die Effizienz der
Softwareentwicklungs mindert, sondern auch die Produktsicherheit beeinträchtigt.

Die vorliegende Arbeit adressiert diese Lücke, indem sie eine Methodik für das Man-
agement von Sicherheitsbefunden in modernen industriellen Softwareentwicklungsprojek-
ten erforscht und konzipiert. Basierend auf den Anforderungen aus dem Management von
Sicherheitsbefunden in der industriellen Praxis sowie den Prinzipien der modernen Soft-
wareentwicklung wird mithilfe eines dreistufigen Ansatzes die Datenqualität von Sicher-
heitsbefunden verbessert, über Konsequenzen für jeden Befund entschieden und die daraus
resultierenden Informationen an die Projektstakeholder weitergegeben. Um die Auswirkun-
gen der Methodik zu messen, wird sie als Plattform für das Management von Sicherheitsbe-
funden implementiert und in Zusammenarbeit mit unserem Industriepartner Siemens AG
in Softwareentwicklungsprojekten evaluiert. Die Ergebnisse weisen auf die Relevanz eines
modernisierten Prozesses für das Management von Sicherheitsbefunden hin und bestäti-
gen den Stellenwert unserer Methodik für die industrielle Praxis. Der wissenschaftliche
Hauptbeitrag dieser Arbeit ist die Methodik für das Management von Sicherheitsbefun-
den in modernen industriellen Softwareentwicklungsprojekten. Mit ihrer Implementierung
und Evaluierung wird gleichermaßen ein Beitrag zum Bereich des Software-Engineerings
sowie der industriellen Praxis geleistet. Darüber hinaus entstehen kleinere Beiträge zu den
Bereichen Knowledge Engineering, Software Security und Natural Language Processing.
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Chapter 1

Introduction

1.1 Motivation

With the recently proposed Cyber Resilience Act, the European Union introduced yet
another motivation for industrial enterprises and organizations to build products with a
high level of security [45]. This regulation enqueues amongst multiple other standards,
regulations, and norms that demand specific security properties from industrial products.
In contrast to other voluntary norms, the EU CRA prevents organizations from entering
the European market if they fail to fulfill the given cybersecurity demands. This approach
is not distinctive to the European market but has been applied worldwide, affecting spe-
cific industry sectors, contractual partners, or locations [81, 185]. Hence, the security of
industrial products evolved from being a quality criterion with limited business impact
to the decisive factor for the success of a product and its ability to be commercialized.
The continuously evolving threat landscape [169] and regular industrial security incidents
with global media coverage like the recent SolarWinds breach [31] further reinforces the
importance of security in industrial products.

The security properties of an industrial product are rooted in the activities conducted
during development and its subsequent operation. Therefore, demands apply to the result-
ing product and the process employed during its development and operation. Standards
like the IEC-62443-4-1 [70] state activities that must be conducted during the software
development process to achieve compliance. Typical demands across all process-oriented
standards include tests for specific security properties of the software product, including,
e.g., publicly known vulnerabilities or insecure coding patterns. The resulting test reports
are further required to prove compliance with the requirements of product-oriented stan-
dards like the EU CRA. However, the identification of these findings itself is insufficient
to improve the security of a product. Instead, they must be looped back to actors that
refine the respective aspect of the product [167] and treat the risk inherent to the issue.
This so-called Feedback Loop and the subsequent management of security findings are
process requirements similar to the security testing itself. Recommendations and demands
towards the activities conducted during the security findings management can be found in
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process-oriented standards, best practices, or industrial guidelines [26, 140, 158, 70, 134].
Not only has the status of security for industrial enterprises evolved over the last

decades, but also the models and methodologies employed to develop software in the in-
dustry have changed [28, 18]. With a continuously increasing number of organizations
and enterprises relying on modern software engineering models like DevOps or Agile, the
propositions of software engineering have matured. Cross-functional collaboration, com-
munication, and continuous delivery of results have become common principles in industrial
software development projects [104, 34, 145, 65, 202, 51, 16]. Amongst others, these prin-
ciples also affect the security activities conducted in each project. With test automation
being a central consequence of modern software engineering [152], the integration of auto-
mated security tests is a crucial step for industrial enterprises [121]. As a consequence, the
management of reports from automated security tests must also adhere to the fundamental
principles of modern software development and its constraints. This introduces another
layer of complexity to the existing challenge of managing security findings in industrial
practice.

We believe that security activities, particularly the management of security findings,
should be conducted with the same efficiency as other practices in modern industrial soft-
ware development. Traditional, manual approaches do not conform with these modern
software development principles, necessitating research in the domain of security findings
management to implement and close the Feedback Loop for security findings. We further
believe that solely a methodology minding the inter-discipline constraints of the software
development and security domain can address these challenges. Consequently, this thesis
explores how a methodology for managing security findings in modern industrial software
development projects should be realized.

1.2 Problem Statement
A methodology for managing security findings in modern industrial software development
projects has to cope with various challenges. Fundamentally, all challenges that apply
to security findings management in general also apply when conducted within a modern
software development setting. However, several additional problems are introduced by fol-
lowing modern software engineering principles. While the automation of repetitive tasks,
including tests in particular, has multiple advantages [152, 121], it also introduces chal-
lenges to the subsequent management of reported security findings. The frequent execution
of different tools results in large datasets with low data quality and various formats, claims,
and values. Since the reported information potentially reveals security risks to the software
product, they must be treated seriously, regardless of issues like False Positives, duplicates,
or a lack of semantically rich information. Another problem is integrating such a method-
ology into modern software development projects. Minding the shortening of release cycles
and work packages, not every security finding can be addressed. Moreover, the recipients
of information from this process are not exclusively developers. Cross-functional teams
necessitate a communication strategy that can be comprehended by security experts and
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novices alike while providing each role with the information relevant to complete tasks.
Finally, the methodology and its design must not only cope with the challenges introduced
by modern software development but must adhere to its principles itself. Otherwise, the
management of security findings infringes the efficiency of the overall software engineering
process. Therefore, security findings management processes focusing on traditional pro-
cesses like waterfall-oriented models can not support the demands of modern industrial
software development projects. Instead, only a methodology solving the abovementioned
challenges can bridge the gap between security and software engineering in this domain.

Dealing with the security shortcomings of a software product is a widely researched do-
main with various propositions ranging from methodologies and frameworks to tools and
applications. However, most of the academic literature focuses on particular aspects of the
software development lifecycle or a subset of all shortcomings that might affect the secu-
rity of a product. Examples include frameworks focusing explicitly on the management of
publicly known vulnerabilities [199, 48] or tools managing findings from static code anal-
ysis tools [170]. Consequently, methodologies that address security findings management,
particularly in modern industrial software development projects, represent a gap in the
current academic literature. In addition to literature, multiple tools and applications are
proposed in practice, addressing similar challenges [37, 47, 170]. However, all proposed
approaches lack one of three properties.

1. Security Findings are only considered from a fraction of the entire software develop-
ment lifecycle

2. The principles of modern software engineering are disregarded in its design

3. The target audience only includes a fraction of the project team

While the first property is an issue, also commonly applicable to academic proposals, the
second and third properties address the particularities of modern software development.
Either the approaches focus on a single aspect of the entire software engineering process,
hence lacking to interconnect the subsequent steps into a joint methodology that acknowl-
edges the big picture of the security findings management process, or it is deficient in
minding the surrounding development process and consequently failing to perform the se-
curity findings management with the same efficiency as other development practices. This
affects, in particular, the target audience of the security findings management process,
which is not restricted solely to developers or security experts. Consequently, we identified
a gap in the existing State-of-the-Art and, hence, the necessity to investigate this problem
to contribute a methodology for managing security findings in modern industrial software
development.

To achieve this goal, the scope of this problem must be defined. First, we focus on the
management of security findings in software development projects. This disregards, e.g.,
organizational-wide risk management or enterprise vulnerability management. Instead, the
methodology shall focus exclusively on the security findings reported within one project.
Aligned with the ISO standard on vulnerability analysis [73], we consider security findings
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as any weakness to the security of a software product. In contrast to security issues,
findings have been identified but are not yet confirmed or further processed. This implies
that our methodology addresses security findings reported throughout the entire lifecycle of
a software product. Moreover, we primarily consider projects employing modern software
development principles and models. While the resulting methodology may also be usable
for traditional development models like waterfall-oriented projects, its main focus is on
models and their principles commonly considered modern in the industry. Finally, our
methodology may not only consist of a theoretical concept but must be usable in industrial
practice. This implies that industrial development projects following the principles of
modern software development must be able to employ the methodology in practice to
manage security findings.

Based on this scope, we derive five research questions for this thesis. Each consists
of multiple sub-problems, discussed in their respective chapters. Fundamentally, the un-
derlying problem must first be conceptualized and described. Hence, the requirements of
security findings management in industrial software development projects must be identi-
fied and refined with the principles of modern software development projects. Based on
the results, we identified four additional research questions. Initially, the methodology
requires a platform that orchestrates and automates the security findings management
process. Second, issues with the data quality must be corrected. Next, the findings must
be managed by tracking, analyzing, and responding to them. Finally, the methodology
must be integrated into ongoing industrial software development projects to evaluate its
impact on industrial practice. In summary, the five research questions are:

• RQ1 - Which requirements exist for the management of security findings in modern
industrial software development projects?

• RQ2 - How does a platform for the management of security findings in modern
industrial software development projects look like?

• RQ3 - How can flaws in the data quality of security findings reports be resolved?

• RQ4 - How should security findings be tracked and analyzed in modern industrial
software development projects?

• RQ5 - How does the usage of the methodology impact modern industrial software
development projects?

1.3 Research Methodology
In this thesis, we follow the fundamental target of software engineering research: Improv-
ing real-world practice [154]. Consequently, we research solutions that can address the
challenges of security findings management in modern industrial software development,
considering the security domain and the software engineering domain alike. This method-
ology represents the core contribution of this thesis as a solution to a challenge existing
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Figure 1.1: Visualization of the Design Science Research Approach

in practice. Our research aims to improve the existing, human-made processes of secu-
rity findings management and seeks a solution to the current challenges in the problem
domain, indicating the necessity of Design Science Research [172, 154]. Following this
research strategy provides a framework for conducting empirical software development.
Since our challenge arose from an industrial domain, we collaborated with Siemens AG, a
multinational industrial enterprise, on this problem. With more than 300.000 employees
and software development activities in industrial sectors, including industry automation,
healthcare, mobility, and energy, this strategic partner provides insights into industrial
practice and its challenges.

This thesis follows the Design Science research described by Runeson et al. [154]. Fig-
ure 1.1 depicts an abstract version of their Design Science concept. Research following this
concept is motivated by Problem Instance existing in the industrial context. This instance
is abstracted by Problem Conceptualization as a collaboration between practitioners and
researchers. The resulting constructs describe the problem and the solution constraints.
These constructs represent the baseline of information used during the Solution Design
to transform the knowledge of the problem domain to the solution domain. This results
in a theoretical General Solution. To validate the feasibility of the solution for the prob-
lem instance, it is instantiated (Instantiation) into a Solution Instance. Using Empirical
Validation, this instance is evaluated against the original Problem Instance.

Following the Design Science approach by Runesone et al., we conceptualize the problem
of security findings management in modern industrial software development approaches to
identify problem constraints. Based on these problems, we design a general solution in
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Figure 1.2: Design Science Iterations

the form of a methodology and instantiate it in the environment of our industry partner.
Finally, we validate the feasibility of our solution for the problem instance. Due to the
amount of challenges and the complexity of problems in this domain, we perform these
stages iteratively for every problem constraint identified. This implies that the overall
thesis approach uses Design Science principles. At the same time, each identified problem
constraint is designed by a separate iteration, including a preliminary empirical evaluation
depending on the addressed problem constraint. The general solution of each problem
constraint is aggregated, and the resulting methodology is instantiated. Finally, this solu-
tion instance for the overall problem of security findings management in modern industrial
software development is empirically validated with our industry partner. This approach is
visualized in Figure 1.2.

The selected research approach necessitates a close collaboration with our industrial
partner. For each challenge, we collaborate with the respective practitioners on the industry
side to conceptualize the problems and evaluate our solution instance in their environment.
Therefore, a collaboration over three years is established, including access to the industry
partner’s resources, as Wohlin recommended for successful software engineering research
with industry [204].

In addition to the overall Design Science Research approach, we utilize different strate-
gies for each constituent of the Design Science paradigm [154]. The research methodology
used for each constituent is explained in the respective chapter of the thesis.

1.4 Contribution
This thesis contributes to two areas of research: the software engineering (SE) domain
and the security (SEC) domain. Its main contribution is a methodology for managing
security findings, minding the principles of modern industrial software engineering. The
relevance of this contribution is represented by its impact on industrial practice, shown
by an empirical evaluation. Each chapter of this thesis contains a separate contribution
to the current state-of-the-art research by analyzing and solving domain-specific problems
in the respective research area. The following paragraphs present this thesis’s four most
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significant contributions and summarize additional ones. If not explicitly stated, all au-
thors of the mentioned publications conceived the initial idea, discussed the results, and
contributed to the manuscript. However, the author of this thesis took care of the problem
statement, design, implementation, evaluation, and formulation of the manuscript for each
publication.

Semantic Knowledge Base for the Management of Industrial Security Findings
The first major contribution of this thesis is the design and implementation of a semantic

knowledge base intended as a platform for managing security findings in industrial projects.
Using the well-established concept of semantic knowledge bases and refining it to our use
case by considering information as belief instead of facts, this customizable platform has
proven to be a valid solution in our final evaluation. The fundamental concept of this
contribution has further been published in [195].

Semantic Similarity-Based Clustering of Industrial Security Findings
The second major contribution of this thesis is the design, implementation, and evalu-

ation of a semantic similarity-based clustering and aggregation approach to identify and
eliminate duplicate security findings. Multiple language-based similarity algorithms have
been assessed as part of this contribution, and Latent Semantic Indexing has been im-
plemented as part of the solution approach. Integrated into an overarching process of
data-quality improvement, this solution approach has proven to reduce the number of du-
plicate security findings and positively impact industrial software development projects.
The comparison of different similarity algorithms was published in [161]. The contribu-
tions of all authors for this publication can be found in the respective chapter (Section 4.4).
The evaluation in an industrial context as part of the overall solution approach has been
published in [194].

Automated Prioritization of Industrial Security Findings
The third major contribution is an automated prioritization process for industrial secu-

rity findings. Considering the importance of cross-functional collaboration, this solution
approach unifies severity ratings from multiple sources and calculates a priority score de-
pending on formalized inputs from stakeholders and environmental factors. This solution
approach extends traditional methods for vulnerability scoring or prioritization by consid-
ering security findings from the entire lifecycle and computing a priority on a universal
scale. Using expert interviews and industrial software development projects, the solution
approach was evaluated and showed its correctness and relevance for industrial practice.
This solution approach and its evaluation have also been published in [196].

Methodology for the Management of Security Findings in Modern Industrial
Software Development

The fourth and last major contribution of this thesis is the methodology for the manage-
ment of security findings in modern industrial software development projects, its implemen-
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tation and evaluation. The methodology is based on the combination of requirements for
the management of security findings and the principles of modern software development. It
consists of all previous contributions and is implemented as a platform for managing secu-
rity findings with a dedicated communication strategy towards the project. This instance
of the methodology has been evaluated in two industrial software development projects and
has indicated its usefulness and positive impact on industrial practice. The methodology
and the fundamental results of the evaluation have been published in [193].

Additional Contributions
In addition to the above-mentioned major contributions, several further ones have ad-

vanced the State-of-the-Art. These include a common data model for security findings, the
concept of Findings Prioritization Policies for formalizing actor input on the prioritization
of findings, a state model for the security finding lifecycle, and a risk-based guidance for
responding to security findings.

1.5 Thesis Structure
The format of Design Science Research is reflected in the outline of this thesis. Each chapter
deals with at least one constituent of the Design Science approach. Those chapters focusing
on the solution design depict the entire Design Science spectrum in a reduced format, by
conceptualizing the respective problems (Problem Description) of the chapter, presenting
related work and background in the domain (Related Work), designing a solution toward it,
instantiating the solution approach (Implementation), and present a preliminary validation
designed according to the problem domain. In the following paragraphs, each chapter of
the thesis is described briefly.

Chapter 2 Chapter 2 represents the problem conceptualization for the overall thesis.
This chapter contains the background and related work applicable to every chapter of
the thesis. Furthermore, it systematically conceptualizes the problems of security findings
management in modern industrial software development by studying the state of practice
for industrial security findings management and mapping it to principles of modern software
development. Finally, it formulates objectives for the remaining thesis following the Design
Science Research approach.

Chapter 3 The first chapter, focusing on the solution design, is Chapter 3. In this
chapter, we present the challenges and constraints for a platform, supporting the secu-
rity findings management in modern industrial software development projects. Based on
these challenges, we utilize the well-established concept of semantic knowledge bases and
customize it to the given constraints. This novel design is implemented into practice and
preliminarily evaluated using a dummy-project. The results of this evaluation indicate
that our solution approach provides a flexible, sound, and fast platform that fulfills our
requirements.
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Chapter 4 In Chapter 4, we present the problems necessitating the improvement of data
quality during the security findings management and the constraints affecting potential
solution approaches. A potential solution approach is designed, including the collection
of security report, their parsing to a common data model, the deduplication of security
findings, and the enrichment of information transported by the security findings. With
a focus on automating these procedures, the proposed approach is implemented into the
security findings management platform. Employing a preliminary evaluation, we conclude
that the solution approach covers all requirements while adhering to modern industrial
software development principles.

Chapter 5 Chapter 5 proposes solutions to the predominantly manually conducted ac-
tivities of tracking and analyzing security findings. Derived from the challenges in in-
dustrial practice, the approaches include a history and state tracking of findings, support
for the analysis and documentation of security findings, and a formalized prioritization
and response strategy aligned with common risk management standards. The solution
approaches are instantiated as part of the security findings management platform and pre-
liminarily evaluated. The results suggest that the proposed approaches support all initial
requirements while respecting most modern software development principles.

Chapter 6 The last iteration of the Design Science Research cycle is presented in Chap-
ter 6. The chapter categorizes and analyses the problems related to communicating security
findings data and proposes a visual and text-based strategy for presenting security findings
data. The strategy is implemented as a web interface for the security findings management
platform and integrated with the existing platform implementation of previous chapters. In
contrast to the other solution approaches, this chapter does not present a preliminary eval-
uation since the subsequent empirical evaluation covers all proposed solution approaches
equally.

Chapter 7 Finally, Chapter 7 presents the implementation of all preceding solution
approaches into one system and its evaluation in two software development projects. The
implementation of the system and the preconditions for its integration into projects are
described. Afterward, strategies for the evaluation are examined, and the final evaluation
protocol is presented. The results of evaluating the methodology in two ongoing software
development projects at our industry partner are shown and discussed. This empirical
evaluation concludes our Design Science Research approach.
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Chapter 2

Security Findings Management
Problem Conceptualization

In this chapter, we present the background and the problem conceptualization for the
remaining thesis. First, we present the related work for the entire thesis, providing an
overview of the topic and its necessary background. Second, we analyze requirements for
the management of security findings that currently exist in the industry. This represents the
first half of the problem instance impacting practitioners in industry. This list is mapped
in the next section with the principles for modern software engineering representing the
second half of the problem instance, resulting in the problem description. Based on this
problem description, the objectives of the thesis are constructed. The summary of the
chapter and its results are discussed in Subsection 2.4.3.

2.1 Background, Terminology, and Literature
This section presents the background and terminology used throughout the remaining
thesis. This excludes any background related exclusively to one particular chapter. The
background or domain-specific language necessary for individual chapters is elaborated in
the respective chapter. Furthermore, this section introduces literature relevant to security
findings management in modern industrial software development.

2.1.1 Software Engineering Practices
The advancements of software engineering practices throughout the last decades define
the fundamental knowledge necessary to understand the challenges of security findings
management when conducted in modern industrial software development.

The term ”Software Engineering” is disputed and can roughly be traced to the second
half of the 20th century [22, 203]. Even though the concept of writing programs existed
previously, the emergence of more powerful computers and their availability to institutions
made programming a practice for many [203]. Similar to the growth of computing capac-



12 2. Security Findings Management Problem Conceptualization

ity, the need for programmers and the complexity of tasks they intended to solve grew.
Amongst other developments, the principles suggested during this time resulted in the
construction of software development models. One of the first and most influential was the
waterfall-oriented model and its adaptions presented by Winston Royce [112]. This model
followed a sequential approach in which the development practices are ordered according to
their sequential execution in projects. A vital feature of this model states that one practice
can only be started if the previous one is finished. However, the major drawback of this
methodology is the complexity of grasping the complete problem at the beginning of the
development. Hence, new models emerged dealing with this challenge by applying itera-
tive approaches. Examples include the Prototype Model or the Spiral Model [112], both
following the underlying idea of iteratively building new versions of software. Combining
the incremental approach of the waterfall-oriented model in an iterative fashion introduced
various new models [7, 112] and represent the strategy most recent software development
models follow. Reaching the 21st century, software engineering models are often divided
into classical or traditional methods and modern or agile ones [89, 118].

Agile methodologies, especially, have received significant attention from academia and
industry alike. The fundamental propositions for Agile software development were pub-
lished in 2001 as a manifest [17]. The manifest comprises four propositions, each indicating
the relevance of one engineering aspect compared to another one. Moreover, 12 principles
exist, providing general guidance for conducting activities during software development
[16]. With a strong focus on a close collaboration between customers and developers, prac-
titioners try to overcome the shortcomings of traditional, plan-based approaches by using
Agile models [87]. Representatives for Agile methodologies include Scrum, Extreme Pro-
gramming (XP), Pair Programming, or Lean software development [87], which all follow
the same fundamental value propositions. Applying these practices to large-scale software
development organizations introduces challenges ranging from communication issues to
a lack of coordination [35]. Hence, many organizations turn to scaled versions of Agile
methodologies, such as the Scaled Agile Framework (SAFe), Nexus, Scrum at Scale, or
Large Scale Scrum (LeSS). However, Agile methods have one major drawback: they solely
address software development and lack practices for subsequent software operation.

An approach trying to bridge this gap between development and operations by con-
sidering the entire software development lifecycle is DevOps. DevOps is regarded as an
evolution of the agile movement [104], as a response to the challenges of large-scale software
platforms [34]. In contrast to the Agile methodologies, DevOps is an ambiguous term with
no universal definition [51, 145]. Instead, various suggestions exist in academia and indus-
trial practice on the principles of DevOps [68, 93, 80]. Common core elements of DevOps
include a culture of collaboration, automation of repetitive tasks, continuous measurement,
and information sharing [145]. However, DevOps does not represent an alternative to Agile
methodologies but complements it by suggesting solutions to known challenges [4]. The
critical aspect for this thesis originating from using DevOps, Agile, or both in combination
is the concept of Feedback Loops [174, 4]. The necessity for fast feedback emerging from
DevOps practices [117] and communication of feedback to team members from Agile prac-
tices [4] reinforces the importance of looping information from its source to the respective
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stakeholder. Both, the origin and target of the feedback, can be distributed across various
lifecycle stages, necessitating loops between stages as well as between development and
operations phases [93].

2.1.2 Threats to the Security of Software
When developing industrial software products, evading properties that might lead to a
breach of fundamental security principles is crucial. Security principles refer in this context
to the Confidentiality, Integrity and Availability [159] of software products and the data
processed by it. The terminology in this domain has precise wording for the lifecycle of
these security-critical properties and all implications around it. As different standards,
papers, and references use multiple definitions for specific terms, we see the necessity of
clarifying the terms for this thesis. In this subsection, we define each of these words to
establish a common understanding of terminology.

The first term to define is the Security Requirement. A security requirement or security
feature represents a requirement in the security domain. Similarly, it defines a specific
functionality that ensures the fulfillment of security properties in the software [141]. This
functionality can be entirely new or an extension to an existing feature. Security require-
ments are often derived from project external demands like standards, directives, or laws
[127]. Another strategy is engineering new security requirements from the existing threat
landscape surrounding the software product.

A Security Threat is any event or circumstance resulting in a negative effect on the
fulfillment of the security principles [126]. In most cases, these threats only represent
the potential cause of a damaging event [71]. Each threat is accompanied by an inherent
Security Risk. It measures the extent to which an entity is threatened by a damaging event
[126]. Typically, it is described as a combination of damage impact and the likelihood of
the damage occurring [24, 126, 83, 74].

The actual occurrence of a damaging principle infringement is defined by the term Se-
curity Incident. Such an incident consists of one or a series of events actually or imminently
threatening the security principles of a software product [126, 71]. A security incident is
clearly distinguishable from day-to-day disruptions in the operation of a software product
[24]. A term closely related to security incidents is the Risk Incident, which describes the
actual manifestation of a security risk. Even though the term risk incident emphasizes the
risk that accompanies it, both are interchangeable in practice.

These incidents mainly occur due to a malicious entity intentionally exploiting errors
in the software product. Depending on the type of error, its cause, and its context the
terminology is differentiated. The most prominent term for problems in the security of
software is Vulnerability. A vulnerability is a security-relevant flaw or weakness in an IT
system [24]. Whether the flaw can already be exploited or not depends on the source
of definition [71, 126]. In practice, however, there is a significant difference between an
error that exists in the software but has no effect on the security of the system and an
error that can be exploited. Consequently, we favored a more granular distinction between
vulnerabilities in these cases. We define the term Security Finding as any problem to the



14 2. Security Findings Management Problem Conceptualization

Finding
AnalysisSecurity Finding Security Issue

No Effect

Effect on 
Product

False Positive/
Not Applicable

Finding

Confirmed
Effect

(publicly known)
Vulnerability

Figure 2.1: Core Terminology

security of a software product that is reported to be in a product. A security finding might
be False Positive or Not Applicable to the product. If it indeed impacts a software product’s
security, we define it as a Security Issue [177]. Furthermore, we must distinguish between
publicly known vulnerabilities and undisclosed ones. A publicly known vulnerability is
accessible to the general public and typically has an identifier corresponding to it, in most
cases a CVE-ID [178]. This Common Vulnerability and Exposure identifier allows a unique
identification and precise communication about vulnerabilities. Known vulnerabilities are
mainly accessible to the public in database-like structures provided by various institutions
and organizations [125, 14, 149, 168]. On the other hand, undisclosed vulnerabilities are
not known to the public but solely to a distinct group. This is typically the case if an
organization identifies the vulnerability in any way (responsible disclosure, internal testing,
etc.) but decides to keep it undisclosed for a certain period (see 7.1.3 of [77]. The root cause
of a vulnerability can be any error, defect, or bug in the software, like implementation,
configuration, or operation [24]. In particular, this includes errors in sub-components of the
software product that separate teams or organizations develop. This circumstance results
in a transitivity of security errors where suppliers can introduce new vulnerabilities into
vendor products. Our explanation further introduces the terms Security Flaw, Security
Weakness, Security Bug, and Security Defect. As we will not use these terms in the thesis,
we are not defining them in this section.

In this thesis, we will be predominantly using the terms Security Finding for any error
not yet analyzed, Security Issue for a finding with confirmed impact on the product, and
False Positive / Not Applicable Finding for any finding with no impact on the software
product. Vulnerability will be used as an umbrella term for any security-related error.
These relations are depicted in Figure 2.1.
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2.1.3 Security Findings Management

The development of software in industrial organizations has to comply with a variety
of standards and guidelines. These do not only affect the product itself, like the re-
cently proposed Cyber Resilience Act for the European Union [45] but can also shape
the software development process itself. Multiple security standards, maturity models,
and best practices guide organizations in designing secure software development lifecycles
and include activities in their process that contribute to the security of the product itself
[26, 140, 158, 70, 134]. These activities are intended not only to improve the product’s
security directly but also to inspect the product for shortcomings. These activities test the
security-related properties of the product and report them. Minding that the automation
of repetitive tasks, including tests in particular, is one of the core principles of modern
software engineering [152], multiple tools exist that automate security tests.

Angermeir et al. identified five types of testing tools employed in enterprise-driven
Open Source Software [11], while Github notes almost 4000 repositories that are related
to the topic of ”security tools” [54]. As discussed in the last subsection, the focus of these
tools ranges from checks on the code of the software for poor coding patterns over publicly
known vulnerabilities to the malicious behavior of the software. To integrate these tools
with the existing development workflow, they are often automatically executed as part
of a CI/CD pipeline [108, 148, 146]. However, the initially mentioned security standards
not only require these testing activities to be conducted but also require management and
response to the shortcomings reported by these tools.

Academia and industrial practice provide a variety of strategies for dealing with find-
ings reported by security activities. In particular, the area of vulnerability manage-
ment has been well-researched and applied in practice for decades. Research ranges
from vulnerability management on an enterprise level to the scope of a single project
applied in various domains and supported by guidance, frameworks, and methodologies
[180, 136, 199, 48]. Concepts like vulnerability identifier [178], databases of known vulner-
abilities [125, 14, 149, 168], lists of weakness types [179] or common severity ratings for
vulnerabilities [135] support practitioners during their work. However, the management of
vulnerabilities and its supporting material mainly relates to publicly known vulnerabilities
or vulnerabilities that are found during operations phases instead of the entire lifecycle.
Hence, it covers only a fraction of all sources of security findings. Another commonly em-
ployed approach is the usage of bug, defect, or technical debt tracking. In these cases, the
reported security findings are treated as a bug, issue, defect, or technical debt and managed
as such during the regular process [151, 142, 183]. Since security findings still differentiate
from the traditional definition of these other artifacts, including their treatment [208] and
contain inherent challenges like False Positives that must be sorted out before being con-
sidered as actual bugs or defects, the management of security findings must be initialized
before any issue tracker can be employed.

Knowing this challenge, suggestions exist in practice on how to manage security findings
throughout their entire lifecycle. Following the principles of modern software development,
these are primarily automated and provide a visualization of the reported security find-
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ings. The most prominent tool in this domain is DefectDojo [37]. The tool is defined
by the OWASP foundation as an ”open source vulnerability management tool” and sup-
ports various types of security test reports. As part of their management activities, they
support the deduplication of findings and integrate them with downstream systems like
Jira. However, OWASP identifies that ”the top goal of DefectDojo is to reduce the amount
of time security professionals spend logging vulnerabilities” [139], also representing the
challenge of using this tool. Its primary user group consists of security professionals in-
stead of cross-functional project teams. Further challenges in the state of practice include
tools solely focusing on specific assets like networks or collecting findings exclusively from
particular stages like operations. An example would be Faraday, which identifies and col-
lects security vulnerabilities during operations phases and supports the management of all
reported findings [47]. Furthermore, many security tools already provide some interface
for managing all findings reported by the tool itself. Specific tools, like Sonarqube [170],
even support the management of findings that other tools or frameworks have identified.
However, the primary objective of these platforms is the management of security findings
identified by the tool itself, often resulting in reduced functionality for externally reported
security findings. Therefore, multiple approaches for managing security findings exist in
practice, which, however, either lack the coverage of the entire software development life-
cycle, disregard modern software development principles, or target an incorrect audience
for modern industrial software development.

2.2 Requirements Towards the Industrial Security Find-
ings Management Process

The management of security findings is a crucial stage in the secure development of soft-
ware products in the industry. Consequently, multiple security standards and industrial
best practices not only state the necessity of a security findings management process but
also elaborate on the different tasks it should cover. To develop a methodology for security
findings management in modern industrial software engineering, identifying the fundamen-
tal problems and challenges represents our first step. Consequently, we begin our research
by investigating common requirements for security findings management in industry. To
identify the industry demands, we perform a systematic document review on standards,
specifications, and best practices currently in use at the industry partner, as well as stan-
dards and similar regulatory documents commonly employed in the industry. Even though
we do not perform a traditional literature review, we follow recent publications for the
analysis protocol [98].

2.2.1 Document Collection Preparation
In advance to the actual review, we discuss its design and planning in this paragraph. The
primary goal of our research is to identify commonly accepted requirements for managing
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security findings in industrial software development projects. More precisely, we want to
focus on those requirements industrial practitioners would face when trying to implement
a security findings management process into their projects. Based on this research goal,
we derived the following research questions:

• RQ1: Which documents would be classified as relevant by an industrial practitioner
trying to find requirements for the security findings management in industrial prac-
tice?

• RQ2: Is there a category of documents more valuable for practitioners when identi-
fying requirements for security findings management in industrial practice?

• RQ3: Which requirements are contributed by the identified documents?

• RQ4: Which list of unique requirements can be aggregated over all identified docu-
ments?

To answer our research questions, we collect documents with a strategy similar to an
industrial practitioner and perform an in-depth analysis of all identified documents. A
strategy focusing on reviewing scientific publications would not be coherent with this goal
as the collected knowledge would not be in our area of interest. Consequently, we separate
our document collection into two streams. First, we request a list of relevant documents
from our industry partner, representing documents used in practice and, therefore, certainly
in the area of documents a practitioner would be confronted with. Second, we identified
documents considered substantial for security in industrial software engineering. This im-
plies that we do not rely on any particular search string or search engine for our document
collection. The term document refers, in this case, to any type of framework, model, stan-
dard, best practice, or guideline that comprises input on the security of industrial software
engineering. Since requirements towards the management of security findings could be part
of documents with various scopes, we did not limit the document selection solely to the
domain of secure software development but considered any up-to-date document related
to security or software development.

However, not all documents are considered relevant for our review. As we aim to achieve
a high relevance with our list of requirements (RQ4), any document solely applicable
to one specific domain is excluded. This covers, e.g., documents only relevant in one
country (South Africa, UK) or for products in a particular domain (Healthcare, Card
Payment). Moreover, this restriction eliminates any company internal documents from
our industry partner, as it only applies to our partner’s corporate environment. Further
exclusion criteria comprise any non-English document, documents that are not accessible
with reasonable effort, and documents already considered. To ensure all documents still
impact the industrial practice, we excluded all documents that do not impact practice yet
or anymore. Hence, we consider the latest stable version for each document. This excludes
draft versions or documents that have already been withdrawn.
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2.2.2 Document Analysis Protocol

To answer research questions three and four, the list of documents collected during the last
stage must be analyzed in-depth. For our analysis, we focus predominantly on requirements
for the management of findings arising during the software development lifecycle. Conse-
quently, organizational-wide guidelines or security program standards provide no input for
practitioners. In particular, this excludes requirements to develop policies for the secu-
rity findings management (”Security findings must be managed”) or the documentation of
the security findings management process (”The process how security findings should be
managed must be documented and accessible to the project team”) as this represents a
higher abstraction layer than the actual management process. Furthermore, requirements
towards an organisational-wide vulnerability and risk management are omitted as well.
While these requirements address findings management, they focus on investigating new
vulnerabilities and their applicability to the entire portfolio of an organization instead of
the findings management for a particular software product. Hence, they exceed our scope.

A requirement is considered relevant to the security findings management process when-
ever it demands specific actions after following the identification of a security findings. This
excludes the generation of findings by security tests, assessments, or similar as they are
considered requirements towards a preceding step. We focus on actionable process steps, as
we are interested in the security findings management process in practice. Hence, mainly
requirements for the process in terms of its design or its stages are considered relevant. This
excludes, e.g., all documents solely consisting of examples for security findings management
or definitions on the topic.

Whenever a relevant requirement is identified, its content, the identifier within the doc-
ument, and a reference to the document are recorded. Since multiple documents might
demand the same or similar requirements, our analysis will be challenged by duplicates
in the final list. The fourth research question demands a list of unique requirements,
excluding duplicates. Consequently, an aggregation and deduplication of every identified
requirement is necessary. To avoid these duplicates, we determine the differences between
each new requirement and the existing list. Whenever the difference between the content
of both requirements is not substantial, they are summarized. Our definition of a ”sub-
stantial” difference is driven by the scope of this review. We want to investigate the state
of practice for the security findings management in industry. Consequently, each require-
ment should represent a self-contained practice representing a single building block for the
overall process. Therefore, a substantial difference is present if the fundamental meaning
of the requirement would be changed or the action required by it altered. In cases where no
substantial difference can be identified, the respective requirements are summarized. This
summary concatenates the identifier within the document with the reference to the docu-
ment and unionizes the content of both requirements. This ensures that each requirement
can be traced to every occurrence in our list of investigated documents.

The entire protocol, starting from the document identification and resulting in the list
of aggregated requirements, can be found in Figure 2.2.
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Figure 2.2: Review Protocol

2.2.3 Document Collection
During the first stage of the document collection, we requested documents from our indus-
try partner using the following request:

Could you provide us with a list of all documents a practitioner would be accessing
when looking for requirements towards managing security findings in software
development projects in your company

The response included 28 documents or document series. In addition to the documents
provided by our partner, the demands arising from guidelines, standards, and best practices
commonly accepted in industry were acquired. Since security standards are a crucial
component of cybersecurity in industry, we considered them predominantly to establish
common practices across all domains of IT systems [175, 182]. The initial selection of
documents already confronts practitioners with the first challenge due to the vast number
of supporting documents and whitepapers with varying reliability and relevance for the use
case. Solely the United States recognizes 48 entire organizations developing standards [10].
Additionally, considering country-specific regulations or directives for projects in specific
industry sectors, like software for healthcare, challenges the creation of a comprehensive
list of all documents by practitioners. For this selection, we decided to follow two recent
publications, focusing on common standards, maturity models, and best practices related
to cybersecurity and software development [175, 147]. With this selection, we aim to
achieve a high relevance and reliability level while maintaining a manageable amount of
documents. Those publications provided us with 18 and 9 document/-series, respectively,
resulting in 55 documents or document series (A = 55 in Figure 2.2).

This list references several series of documents, instead of a single document. We
considered all documents in the series for our analysis in these cases. For instance, this
resulted in nine documents being added to the list as they are covered by IEC 62443.
Resolving all document series, we derived a list of 539 documents (B = 539 in Figure 2.2).
Following our exclusion criteria, we cleared 254 duplicate documents. From the remaining
entries, one document was removed, as it could not be accessed. Further 11 documents
were scoped to one particular domain, and one solely affected a single country, resulting in
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their removal. Our partner included one internal whitepaper and two internal wiki pages,
resulting in three additional documents to be removed (C = 270 in Figure 2.2). The final
list of collected documents consists of 269 entries (D = 269 in Figure 2.2). We decided to
replace the documents with their most recent successor at the time of the analysis instead
of the initially referenced and potentially outdated version. This ensures compliance with
the current State-of-the-Art. Exemplary for this update is the originally referenced FIPS
140-2, which was updated for our use case to the 2019 published FIPS 140-3. All considered
documents and their origin can be found in the Appendix Chapter A in Table A.

2.2.4 Document Analysis
Beginning with the analysis, we first eliminated all documents unrelated to our topic. This
step removed most documents from our initial list since their scope differentiated from
our use case. This step excluded, e.g., supplementary documents, like IEC 61508-4:2010,
presenting definitions and abbreviations for the IEC 61508 series, or guidelines intended
for the assessment of standard compliance like ISO/IEC TS 27008:2019.

The resulting list of documents potentially contributing to our goal was studied to iden-
tify requirements for the security findings management. However, this step already neces-
sitated an extension of the existing list of documents. Some documents cross-referenced
additional documents for a more detailed description of particular processes or require-
ments. Whenever this affected a requirement or process connected to the management
of security findings, a gap in the completeness of our analysis arose. Exemplary for this
circumstance is the regulation ”8.8 Management of technical vulnerabilities” of ISO 27002:

ISO/IEC 29147 provides detailed information on receiving vulnerability reports
and publishing vulnerability advisories. ISO/IEC 30111 provides detailed infor-
mation about handling and resolving reported vulnerabilities. [79]

This extended our list by ISO 29147, which covers the disclosure of vulnerabilities in
products and services, and ISO 30111, dealing with vulnerability handling. Any cross-
referenced document already in scope (e.g. BSI/COBIT to ISO 27001) was not added to
avoid the introduction of duplicates. This extension added four additional sources (E = 4
in Figure 2.2). Finally, we derived requirements for managing security findings from this
list. The results of this analysis can be found in the next paragraph.

2.2.5 Results
The results of our analysis are twofold. The first contribution is a list of 21 documents that
we found to contain requirements for the security findings management. These documents
are listed below with their contribution:

1. BSIMM 12 (15) [26]

2. OWASP SAMM (15) [140]

3. Safecode (14) [158]

4. IEC 62443-4-1 (13) [70]
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5. NIST SP800-218 (11) [134]

6. NIST SP800-53 (10) [131]

7. ISO 30111 (9) [77]

8. COBIT (8) [82]

9. NIST SP800-160 (7) [133]

10. ISO 15408-3 (6) [78]

11. NIST SP800-181 (6) [132]

12. ISO 27002 (5) [79]

13. NIST CSF (4) [128]

14. BSI Grundschutz (4) [24]

15. ISO 27005 (2) [74]

16. ISO 29147 (2) [75]

17. IEC 62443-2-4 (2) [70]

18. IEC 62443-3-2 (2) [70]

19. ISO 15026-4 (1) [72]

20. NIST SP800-37 (1) [129]

21. IEC 62443-2-1 (1) [70]

Even though Common Criteria also contained requirements, we disregarded it as a
source due to its similarity with ISO 15408. Since all documents listed above contain de-
mands to the security findings management, a practitioner would consider them as relevant
when searching for such requirements. Hence, the list of documents represents the result
for RQ1. The documents can be predominantly categorized into security standards, ma-
turity models, and guidelines. Considering the documents with the highest contribution,
we conclude that maturity models and software development-focused security standards
provide noticeably more input than other document types. Hence, documents of these
categories provide more value to practitioners trying to identify requirements towards the
security findings management in industrial practice, representing the answer to RQ2.

The second contribution is a list of requirements for the security findings management.
In summary, we identified 185 requirements aggregated into 35 distinct requirements (F
= 35 in Figure 2.2). The exhaustive list of all identified requirements can be found in
Table 2.1.
ID Title Description Lifecycle #M #R Standards
1 Response Decision

and Planning
The planning for a response includes:
1. Analyse all potential finding reac-
tions including avoid, modify, share,
mitigate, transfer and accept. 2. De-
cide for a response taking e.g. cost
effectiveness, schedule, performance,
and security risks into consideration
3. Plan the response to the finding 4.
Document the response

Finding
Response

19 11 COBIT: APO12.02, BSI:
IND.1.A12, NIST SP800-218:
RV.2.1, NIST SP800-218: RV.2.2,
NIST SP800-160: QA-5.4, NIST
SP800-181: T0264, NIST SP800-
181: T0466, NIST SP800-181:
T0579, NIST SP800-181: T0955,
NIST SP800-181: T0076, NIST
SP800-181: T0550, NIST SP800-
181: T1006, NIST CSF: ID.RA-6,
NIST CSF: RS.MI-3, IEC 62443-
4-1: DM-4, ISO 27002: 8.8, ISO
27005: 9, ISO 30111: 7.1.5, ISO
15408-3: ALC_FLR.1.3C
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2 Collection and
Management

Security findings must be gathered
from the respective sources identifying
them and [centrally] managed. The
sources include Development as well as
Operation, internal sources (testing) as
well as external (responsible disclosure,
Vulnerability Databases, users),

Collection/
Processing

16 10 NIST SP800-218: RV.1.1,
BSIMM 12: CR1.6, BSIMM 12:
CR3.2, BSIMM 12: CMVM1.2,
BSIMM 12: CMVM3.7, COBIT:
EDM03.02, COBIT: APO12.01,
COBIT: DSS05.07, NIST SP800-
218: PO.4.2, NIST SP800-160:
MS-2.2, IEC 62443-2-4: SP.03.03
BR, IEC 62443-4-1: DM-1, ISO
27002: 8.8, ISO 27005: 8.2.5, Safe-
code: Manage Security Findings,
OWASP SAMM: DM1

3 Documentation Security findings and their respective
outcomes must be documented and
stored. The data must be stored se-
curely, protected from alteration or
deletion and solely accessible by autho-
rized personal. This is also required
by multiple standards for security test-
ing, as the results from security testing
should be stored, regardless of whether
the tests passed or failed.

Collection/
Processing

19 9 COBIT: APO12.01, BSI:
APP.3.1.A22, BSI: APP.3.2.A16,
BSI: OPS.1.1.6.A14,
BSI: OPS.1.1.6.A5, BSI:
OPS.1.1.6.A12, NIST SP800-
218: PW.7.2, NIST SP800-218:
PO.4.2, NIST SP800-53: SA-10,
NIST SP800-218: PW.8.2, NIST
SP800-53: SA-15, NIST SP800-
160: MS-2.2, NIST SP800-160:
QA-4.2, NIST CSF: ID.RA-1,
IEC 62443-3-2: ZCR 5.2, IEC
62443-3-2: ZCR 5.13, Safe-
code: Manage Security Findings,
OWASP SAMM: SB3, OWASP
SAMM: DM1

4 Solution/Action Solve security findings in a timely mat-
ter. The solution does not cover miti-
gation, but risk acceptance for example
as well

Finding
Response

12 8 NIST SP800-181: T0485, NIST
SP800-181: T0954, NIST SP800-
181: T1007, NIST CSF: RS.MI-
3, IEC 62443-2-1: 4.3.4.5.10, IEC
62443-4-1: SM-11, IEC 62443-4-
1: DM-4, ISO 27002: 8.8, ISO
30111: 7.1.5, ISO 27002: 8.28, ISO
15408-3: ALC_FLR.2.6C, Safe-
code: Manage Security Findings

5 Process Tracking Track identified security findings
throughout the fix process, to ensure
the closure of the loop. Measure
performance indicators like time to
closure. Track and document beyond
mitigation.

Process 10 7 BSIMM 12: CMVM2.2, NIST
SP800-218: PO.4.1, NIST SP800-
53: SA-10, NIST SP800-53: SI-
2, NIST SP800-160: QA-5.7, IEC
62443-4-1: SM-11, IEC 62443-4-1:
SI-1, IEC 62443-4-1: DM-1, ISO
15408-3: ALC_FLR.1.2C, Safe-
code: Manage Security Findings

6 Verificaton & Vali-
dation

Verify and Validate findings and
security-related data for their applica-
bility. Invalid findings could include:
Duplicate, Obsolete Finding, No secu-
rity relation (e.g. Linter), Not applica-
ble (False Pos.)

Collection/
Processing

6 6 NIST SP800-160: MS-2.2, NIST
SP800-181: T0347, IEC 62443-4-1:
DM-2, ISO 27002: 8.8, ISO 30111:
7.1.4, OWASP SAMM: DM1

7 Analyze findings
for their risk

Analyze findings for their risk Collection/
Processing

6 6 COBIT: APO12.02, NIST SP800-
218: RV.2.1, NIST CSF: ID.RA-
5, IEC 62443-4-1: DM-3, Safe-
code: Manage Security Findings,
OWASP SAMM: DM3
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8 Feedback to
Management/
Overseer/Decision
Making

Ensure that information is looped
back to those responsible for deci-
sion making. This includes in par-
ticular ISOs/CISOs. Escalate find-
ings on demand. Ensure that the in-
formation contains at least: Conse-
quences/Impact of finding in practice,
Worst-Case/Average Case scenarios

Finding
Response

9 6 COBIT 2019: EDM01.02, COBIT:
APO12.04, BSI: APP.3.1.A22,
BSI: APP.3.2.A16, NIST SP800-
181: T1006, NIST SP800-37:
R-5, NIST SP800-37: M-5, Safe-
code: Manage Security Findings,
OWASP SAMM: DM2

9 Feedback to Stake-
holder

Report risks and findings securely to
the appropriate party/stakeholder

Side Effect 8 6 COBIT: EDM03.02, COBIT:
EDM05.02, COBIT: APO12.04,
NIST SP800-160: QA-5.6, NIST
SP800-181: T0545, IEC 62443-2-4:
SP.03.03 RE(1), IEC 62443-3-2:
ZCR 5.13, OWASP SAMM: DM2

10 Analyze for more
Occasions

Review the code for all in-
stances/related instances of an
identified software bug. Not just fix
the identified one, but review all code
for it, while not waiting for additional
external reports.

Side Effect 6 5 BSIMM 12: CMVM3.1, NIST
SP800-218: RV.1.2, NIST SP800-
218: RV.3.3, IEC 62443-4-1: DM-
3, ISO 30111: 7.1.4, OWASP
SAMM: DM2

11 Analyze Findings
in General

Analyze and classify findings Collection/
Processing

6 5 BSI: OPS.1.1.6.A14, NIST SP800-
53: RA-5, NIST SP800-160: MS-
2.2, NIST SP800-181: T0710,
NIST SP800-181: T1007, IEC
62443-4-1: SI-1

12 Vulnerability Dis-
closure

Loop the results to enable the disclo-
sure of vulnerabilities in software (in
operation/at customer): to users of the
system, to the public, other stakehold-
ers

Finding
Response

6 5 BSIMM 12: CMVM3.6, IEC
62443-4-1: DM-5, ISO 29147: 7,
ISO 15408-3: ALC_FLR.3.6.C,
Safecode: Manage Security Find-
ings, Safecode: Vulnerability Re-
sponse and Disclosure

13 Feedback to Find-
ing Response

Enable a correct findings response by
providing the necessary information to
the respective group. This typically in-
cludes development/engineering teams
to improve the state of security. This
covers security findings from opera-
tions as well as development.

Finding
Response

6 5 BSIMM 12: PT1.2, BSIMM
12: CMVM1.2, NIST SP800-218:
RV.2.2, NIST SP800-53: SA-11,
Safecode: Manage Security Find-
ings, OWASP SAMM: DM2

14 Aggregate and
Correlate

Aggregate and Correlate the data to
provide useful information to the de-
velopment team. This includes in par-
ticular deduplication. Furthermore,
identify how findings influence each
other organization wide.

Collection/
Processing

5 4 BSIMM 12: CMVM1.2, COBIT:
APO12.01, NIST SP800-53: RA-
5, OWASP SAMM: DM1, OWASP
SAMM: DM3

15 Prioritize Prioritize findings from security tests
and triage them

Collection/
Processing

5 4 NIST SP800-218: PW.7.2, NIST
SP800-218: PW.8.2, ISO 30111:
7.1.4, Safecode: Manage Security
Findings, OWASP SAMM: DM1

16 Root Cause Analy-
sis

Identify the root cause of vulnerabili-
ties

Collection/
Processing

4 4 NIST SP800-218:RV.3.1, IEC
62443-4-1: DM-3, ISO 30111:
7.1.4, Safecode: Vulnerability
Response and Disclosure

17 Feedback to other
Projects

Share the security findings with other
projects to eliminate similar vulnera-
bilities in other systems

Side Effect 4 4 NIST SP800-53: RA-5, IEC 62443-
4-1: DM-4, Safecode: Vulner-
ability Response and Disclosure,
OWASP SAMM: DM2

18 Feedback to Lifecy-
cle in General

Update elements of the software de-
velopment lifecycle gained during man-
agement

Side Effect 4 4 NIST SP800-218: RV.3.4, ISO
30111: 7.1.7, Safecode: Vulner-
ability Response and Disclosure,
OWASP SAMM: SR2

19 Verify finding clo-
sure

Check the finding has been solved us-
ing scanning tools

Process 3 3 ISO 27002: 8.8, ISO 30111: 7.1.5,
Safecode: Vulnerability Response
and Disclosure
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20 History Track-
ing of Finding
Occurrence

Track the history of all findings, allow-
ing analysis on historical trends and
shortcomings.

Collection/
Processing

3 3 BSIMM 12: CR1.6, NIST SP800-
53: SA-10, ISO 29147: 6.2.4

21 Feedback to
System Documen-
tation

Document leftover security findings
in a system documentation, notifying
personel about known vulnerabilities
in the system.

Finding
Response

4 3 NIST SP800-53: SA-5, ISO 15408-
3: ALC_FLR.1.1C, ISO 15408-3:
ALC_CMS.4.1C, Safecode: Man-
age Security Findings

22 Determine finding
circumstance

Determine the circumstances under
which findings have been identified

Collection/
Processing

2 2 COBIT: APO12.01, IEC 62443-4-
1: DM-3

23 Identify Correla-
tions over time

Analyze findings to identify correla-
tions between them, e.g. a coding
practice being not followed. Perform
lessons learned based on the correla-
tions. Try to identify trends in vul-
nerabilities and the existence of multi-
vulnerability exploits.

Process 2 2 NIST SP800-218: RV.3.2, NIST
SP800-53: RA-5

24 Review of Open
Findings

Review unsolved findings. Remaining
security and compliance risks must be
signed off and accepted, before ship-
ping the software.

Process 3 2 IEC 62443-4-1: DM-4, BSIMM 12:
SM2.6, BSIMM 12: CP2.2

25 Feedback to KPI Monitor the success of the process by
measuring e.g., speed, completeness
and effectiveness

Side Effect 2 2 ISO 30111: 7.2, OWASP SAMM:
DM2

26 Feedback to Train-
ing

Include the company history and a role
specific curriculum to the participants.
Includes e.g. data from pentests and
noteworthy vulnerabilities.

Side Effect 4 2 BSIMM 12: T2.8, BSIMM 12:
T2.9, BSIMM 12: CR1.6, OWASP
SAMM: DM2

27 Feedback to Design
Patters

Failures in TM, design review or anal-
ysis should be looped back to se-
curity and engineering teams to de-
velop improved design patterns. Ex-
ample: Findings on insecure infras-
tructure code can provide insights on
insecure design patterns and indicate
better ones

Side Effect 2 2 BSIMM 12: AA3.2, NIST SP800-
53: SA-15

28 Parsing Combine security assessment results
into one common format used along
the reporting. The consideration of
different terminologies in vulnerability
information is essential.

Collection/
Processing

1 1 BSIMM 12: CR3.2

29 Finding Enrich-
ment

Each finding must contain at least a
certain set of information, including:
Effect of Flaw, Nature of Flaw

Collection/
Processing

1 1 ISO 15408-3: ALC_FLR.1.2C

30 Feedback to Assur-
ance Cases

Feed statistics about vulnerabilities to
validate assurance cases

Side Effect 1 1 ISO 15026-4

31 Feedback to QA Share the results of security tests or
bugs in Operation with the Q&A team.
This provides an up-to-date overview
and allows security tests to be tailored
to the code/software

Side Effect 2 1 BSIMM 12: ST2.4, BSIMM 12:
CMVM3.2

32 Feedback to Pen-
testers

Loop the results from testing, code re-
view, analysis etc. to the pentesters,
so they have all information relevant
to analyse the application in depth

Side Effect 1 1 BSIMM 12: PT2.2

33 Feedback to
Hotspots

Identify Hotspots that require atten-
tion

Side Effect 1 1 OWASP SAMM: DM2

34 Feedback to Policy Create and refine policies from security
lifecycle information. This includes re-
occurring vulnerabilities, weak coding
patterns, ignored security defects etc.

Side Effect 1 1 BSIMM 12: CP3.3
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35 Feedback to Top N
Bugs

Maintain a list of the most important
bugs, that should be eliminated from
the company. This list should incorpo-
rate real data from the companies, re-
fined by additonal constraints as solely
the number of occurences is insuffi-
cient.

Side Effect 1 1 BSIMM 12: CR2.7

Table 2.1: Requirements towards the Industrial Security Findings Management

The table presents each finding with its title (Title) and description (Description),
containing information about what to do to fulfill the requirement. Furthermore, each
entry is assigned a requirement type, clustering them into classes (Lifecycle). The number
of appearances of the entry throughout all documents is listed (#M), as well as the number
of documents referencing the requirement (#R). The number of mentions (#M) is always
higher than the amount of referenced documents (#R) since one requirement might occur
multiple times in the same document. These cases occur when the difference between the
two requirements is not substantial. Exemplary are requirements that request a timely
reaction to a security risk originating from different sources (”React to findings from Static
Testing/Dynamic Testing”). According to our definition, both are considered findings, even
though the document differentiates between them. Finally, the table lists all occurrences
of each entry in the analyzed documents. This table further represents the result to RQ3
and RQ4 as it depicts the identified requirements as a list of unique entries.

2.2.6 Discussion
The results of our document review provide us with a list of requirements to be fulfilled in
an industrial security findings management process. In the following paragraphs, we will
discuss the results and their applicability.

The answers to research questions one and two did not show any anomalies. As ex-
pected, we primarily identified standards that contribute to the security findings manage-
ment in industry, which can be tracked to our initial selection of documents consisting
mainly of standards. Furthermore, those documents that contribute the most are also
those that focus on software development. Since most security findings will occur during
the development (low maturity of software security), their management is crucial in these
documents. This also indicates that these categories of documents present a beneficial
source if further information is required throughout the thesis. However, the answers to
the third and fourth research questions provided several insights. The first striking aspect
in our list of requirements is the frequency of requirements that request feedback to other
processes or entities. Fifteen of our requirements request that certain information about
the findings or the process status is provided to additional processes or entities within
the organization. Consequently, we conclude that information communication is a core
aspect of security findings management. Furthermore, our analysis showed that the re-
quirements in documents differ in terms of coverage and precision. While some documents
define specific actions (”Use findings to improve security trainings”), others employ vague
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formulations (”Update elements of the development lifecycle”). This low level of precision
in certain documents poses another challenge for less experienced practitioners. Another
result from the analysis is the identification of a security findings lifecycle. The concept of
feedback is not the only similarity between multiple requirements. Instead, we found that
requirements can be categorized into collection/processing of findings, finding response,
side-effects, and demands towards process execution. The core activities of this lifecycle
are represented in the most referenced requirements. Both the documentation of findings
and their collection and management describe the processing, while response planning and
execution refer to the direct finding response. Finally, the tracking of findings is aimed
towards the entire process. Solely, the side effects are not represented in this list. The
distinctive nature of their demands can explain their limited visibility, as they are often
just covered by a single standard. This mapping between requirements and their lifecycle
category is documented in the ”Lifecycle” column of Table 2.1.

A vital disclaimer to the outcome of this section is the different interpretations of com-
pliance assessing authorities. The requirements presented in this section mainly focus on
the fundamental demand, excluding interpretation by the assessing authority. Further-
more, the requirements contributed by certain documents are biased by the scope of the
respective standard. This means the responsibility to fulfill the requirements lies with
architects, developers, project managers/owners, or the organizations, depending on the
document it originates from. Another challenge during the analysis were document up-
dates. Multiple documents received a more recent version between the document review
and its documentation. Consequently, our conclusions represent a snapshot of the current
practice. Moreover, our results solely represent a fraction of all requirements that might
exist. As discussed in the planning phase, we focused on a collection strategy based on a
practitioner’s search pattern. This strongly limited the coverage of standards. However,
comparing this list of documents with the list provided by our industry partner, we can
only identify a marginal gap. Hence, we believe in the correctness of our initial selection.

Finally, we must determine the scope of our results for future research and the rest
of the thesis. Our requirements present a current snapshot of practices demanded by
documents commonly accepted in industry. Hence, they indicate the existing knowledge
in practice and its expectation on how security findings should be managed. This does
neither cover the practices that are most commonly performed in industrial software de-
velopment projects nor can conclusions on the impact on software security by following
these requirements be drawn. Therefore, no proof is given that adhering to the practices
benefits the security of a software product. Consequently, there might be other approaches
for managing security findings, producing more secure products compared to our require-
ments. Exemplary for this are thousands of open source projects not officially following
any standard or guideline while still producing secure software. However, the practices
established within these projects are often subsets of our list. OpenSSL, for example,
collects findings through multiple sources, investigates and prioritizes each finding, solves
them, and communicates the solution to the public [137]. All these practices are part of
our requirements list and can be mapped to our ”Lifecycle”. Hence, our list also seems
to cover the crucial management activities for projects outside of industrial development.
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Minding the scope of this thesis, the knowledge about requirements existing in practice
is sufficient to identify challenges when managing security findings in projects that em-
ploy modern software development approaches. As every project and industrial enterprise
sets different requirements for security findings management, no generalized list can be
established. Hence, we consider the requirements in Table 2.1 as the baseline of practices
to be fulfilled when managing security findings in industrial software development projects.

Key Takeaways from this Section:

1. Maturity Models and Secure Software Development Standards pose valuable research
objects if interested in the industrial security findings management

2. Communication of data is a core aspect of security findings management

3. The list of requirements in Table 2.1 presents a current snapshot of practices de-
manded by documents commonly accepted in industry

2.3 Problem Description
In this section, we develop the problem concept of applying modern software development
approaches to the practices necessary for security findings management in industry and
describe the underlying problem this thesis addresses. Using the requirements identified
in the last section, we retrieved a baseline of requirements that should be performed to
manage security findings in industry. In this section, we collect the principles of modern
software development methodologies representing the constraints applied to practices per-
formed in such projects. We systematically map these principles to our requirements to
identify the impact on the way these requirements are fulfilled. This mapping represents
the core problem of our thesis, indicating the necessity to customize the security findings
management to the applied software development methodology. Finally, we structure our
problem into clusters of requirements and dispatch them according to their importance for
industrial projects.

2.3.1 Principles in modern, industrial Software Development
The first step towards a systematic mapping of our identified requirements from the last
section to modern industrial software engineering is the identification of principles applica-
ble to the latter. This necessitates the definition of the phrase ”modern, industrial software
development”. Looking at recent literature of the last ten years, a clear trend towards agile
software development in industry can be recognized [111]. Publications claim that the
need to deliver software faster [51] and adapt to customer needs more flexibly [144] initi-
ated a transformation to incremental and agile software development methods. However,
the initial scope of agile software development restricted its benefit for industrial software
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development [51]. Multiple trends have emerged from this challenge, tackling the draw-
backs of applying Agile for industrial development. One trend was the refinement of Agile
principles to match its industrial setting [51]. The Scaled Agile Framework represents one
instance of this trend [103], originating from the necessity to scale the Agile methodology
to bigger teams [102] and map it to entire organizations. Another trend emerges from the
close coupling between industry software and the hardware it operates. The separation
of software development and its later operation induces several issues due to gaps in in-
tegration, collaboration, and communication [65]. Consequently, the entire lifecycle of a
software product must be considered during all stages. This introduces the challenge of
multi-disciplinary project teams. To foster productive collaboration between team mem-
bers with varying backgrounds, organizations turned towards DevOps to bridge the gap
between development and operations [65, 145] using cross-functional teams [202, 51]. These
trends were confirmed with first-hand experiences by our industry partner, and the hypoth-
esis of a parallel usage between DevOps and Agile practices was confirmed. Consequently,
we consider industrial Agile and DevOps as core approaches for modern industrial software
development.

The fundamental principles for Agile software development are published as a manifest
and publicly available. This manifest’s declarations are value propositions when developing
software [17]. These propositions indicate the importance of one engineering aspect above
another. To map the approaches for Agile development with our list of requirements,
we require general principles that can also be mapped. Behind the agile manifesto, 12
principles exist that provide general guidance on aspects to keep in mind when performing
agile software development [16]. Since these provide direct guidance for our mapping and
still represent the basis for all scaled versions of agile development, we consider them our
principles for Agile software development.

In contrast to the fundamental principles of Agile, no single source of truth has been
established for DevOps. Neither academia nor industry has a universal definition for
DevOps [51]. Humble and Molesky propose four core principles when bridging the gap
between development and operations: culture, automation, measurement, and sharing [68].
Similarly, Gene Kim describes the fundamental principles of DevOps as the ”three ways”
[93], covering parts of the concepts provided by Humble. Moreover, an ISO standard exists
describing the principles and application of DevOps. ISO/IEC/IEEE 32675 specifies the
practices for operations teams, development teams, and other stakeholders on collaboration
for successfully building and deploying systems [80]. Toward identifying DevOps principles,
we analyze the ISO standard, the article by Humble, and the three ways by Kim.

Each way Kim describes lays out a set of project characteristics under one umbrella
term. The first way describes the necessity of a fast flow from left to right, from the
planning phase to the actual product operation. In the second way, he describes the
need for a fast and constant flow of feedback from later lifecycle stages to earlier ones
to avoid the repetition of errors and the early identification of issues before they can
escalate. The third way deals with the culture of DevOps teams, which should promote
continuous experimentation and organization-wide learning. For the ISO standard, we
follow the descriptions associated with each principle. It defines four principles that must be
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minded in DevOps: ”Business/mission first”, ”Customer focus”, ”Left-shift and continuous
everything”, and ”Systems thinking”. Similarly, the principles defined by Humble are
analyzed based on their respective description. Our understanding of principles that we can
later map to our requirements is that we are interested in actionable properties, implying
how some practice is implemented or the demand that it is performed at all. This excludes,
e.g., the intended final state that should be achieved by following the principle (”Build
verifiable systems”).

During our analysis, we identified a clear distinction of principles between our different
sources. While ISO/IEC/IEEE 32675 has multiple principles addressing the customer as a
key decision maker, Gene Kim strongly emphasizes the role of feedback. Humble presents a
balanced mixture of both while highlighting the importance of measuring project progress.
Two key principles all sources agree on are the need for automation of repetitive process
work and cross-domain collaboration. The list of principles resulting from our analysis can
be found in Table B.1 in Chapter B of the Appendix. Comparing the list of principles for
DevOps and Agile, we found that multiple principles overlap. To reduce the complexity
in the upcoming sections for mapping and identifying tasks, we concluded that further
aggregation is necessary. Consequently, we compared the 12 agile principles [16] to our
constructed list of 17 DevOps principles to model topics. Summarizing the principles, we
derived 12 topics listed in Table 2.2 with their respective sources.

ID Topic Principles
I Measure the project performance ac-

cording to the business metrics and
make the progress visible

• DevOps: Make work visible
• DevOps: Measure the performance of the project against business met-
rics
• Agile: Working software is the primary measure of progress.

II Reduce the size of work packages per
delivery cycle to achieve short lead
times

• Agile: Simplicity–the art of maximizing the amount of work not done–
is essential.
• DevOps: Reduce size of work per deployment cycle
• Agile: Deliver working software frequently, from a couple of weeks to
a couple of months, with a preference to the shorter timescale.

III Maximize the work not done by au-
tomating process work and repetitive
practices

• DevOps: Reduce process work through automation
• Agile: Simplicity–the art of maximizing the amount of work not done–
is essential.

IV Encourage fast, precise, and direct
Feedback

• DevOps: Shorten and fasten Feedback Loops
• DevOps: Provide feedback to where it is needed
• DevOps: Amplify feedback

V Provide knowledge and support to
stakeholders, team members, and the
organization requiring it for their work

• DevOps: Work is done with the cumulative and collective experience
of everyone in the organization
• Agile: Build projects around motivated individuals. Give them the
environment and support they need, and trust them to get the job done.
• DevOps: Keep stakeholders informed about changes without overload-
ing them

VI Encourage self-organizing, multi-
disciplinary teams

• Agile: The best architectures, requirements, and designs emerge from
self-organizing teams.
• DevOps: Include cross-domain teams into established meetings

VII Continuously improve in all practices
of the project by experimentation

• Agile: At regular intervals, the team reflects on how to become more
effective, then tunes and adjusts its behavior accordingly.
• DevOps: Support structured experimentation and risk-taking

VIII Perform all practices continuously and
in a repeatable manner

• Agile: Our highest priority is to satisfy the customer through early and
continuous delivery of valuable software.
• DevOps: Create environments on demand
• DevOps: Continuous build, integration, test, and deployment processes
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IX Encourage cross-domain collaboration
by direct communication and sharing
project aspects between teams

• DevOps: Share project aspects between teams (success, responsibility,
tools, infrastructure)
• Agile: The most efficient and effective method of conveying information
to and within a development team is face-to-face conversation.
• Agile: Business people and developers must work together daily
throughout the project.

X Conduct decisions with a customer-
focused mindset

• DevOps: Balance concerns of risk against value for the customer
• Agile: Welcome changing requirements, even late in development. Agile
processes harness change for the customer’s competitive advantage.

XI Establish team culture of technical ex-
cellence, system thinking, and sustain-
ability

• Agile: Continuous attention to technical excellence and good design
enhances agility.
• DevOps: Establish a comprehensive, end-to-end view of the system for
all stakeholders
• Agile: Agile processes promote sustainable development. The spon-
sors, developers, and users should be able to maintain a constant pace
indefinitely.

XII Conduct Tests Early • DevOps: Prevent defects to reach later stages

Table 2.2: Topic List of Modern Software Development Principles

This final list of aggregated topics represents an artificial abstraction layer across all
principles from Agile and DevOps. Since this list was not empirically validated, its topics
condense the principles that should be followed. Consequently, any ambition to check the
adherence of a process to Agile and DevOps principles can be aided by this topic list but
has to utilize the original principles as a benchmark. In the next paragraph, this topic list
will be used to investigate the impact of modern software development approaches on the
requirements for security findings management in industry.

2.3.2 Mapping of Development Principles and Security Require-
ments

Next, we investigate how the usage of modern software development approaches affects the
security findings management in industry. Towards this goal, we map the list of principles
identified in Subsection 2.3.1 to the requirements aggregated in Section 2.2. This mapping
provides us with the knowledge how to do which practices to manage security findings in
modern, industrial software development projects. This supports our later-stage research
by providing insights into the design of security findings management practices necessary
to integrate with modern industrial software development.

To achieve this mapping, we iterate over all topics from Table 2.2 and analyze how they
apply to the requirements of Table 2.1. Whenever a principle affects a requirement by al-
tering the underlying process or specifying additional constraints for the implementation
of the requirement, we document this interconnection.
Topic I: The first topic addresses the visibility of the project’s progress and performance
according to business metrics. Consequently, this principle is closely coupled to any re-
quirement measuring the security findings management process. As it further addresses the
visibility of this progress, it also covers the communication of the progress to the project
team and stakeholders. Consequently, we identify the mapping between Topic I and re-
quirements 3, 5, 8, 9, 20, 23, 24, and 25.
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Topic II: The second topic requests a reduction of work packages per deployment cycle
to achieve shorter lead times. This implies that the overall planned work during each cycle
is diminished. This covers, in particular, the amount of potential work done to improve the
security status of the software product as well. Hence, this topic reinforces the necessity
of requirement 15 while influencing all requirements that address the reaction to security
findings, namely requirements 1, 4, and 19.
Topic III: With the third topic, the amount of repetitive and automatable work performed
manually by team members should be reduced. This topic addresses every requirement
in our list, as an investigation for automation capabilities throughout the entire security
findings management process is crucial.
Topic IV: In topic cluster four, the principles address the need for direct, fast, and precise
feedback in the project. Applied to the security findings management, this deals with feed-
back from the finding sources to the various stakeholders and processes. Each adjective
represents one quality criterion when implementing feedback loops for security findings.
Fast feedback implies that the data must be provided in a timely manner. Consequently,
the processing time between the identification of a finding and its communication must be
minimized to provide fast feedback. The demand for direct feedback requests that infor-
mation is directly provided to the entity that requires it. For our use case, this indicates
that multiple communication channels must be established depending on the stakeholders
and processes requiring information. Constraints for the feedback presentation are defined
more closely by the request for precise feedback. The actual information transported must
be tailored to the entity receiving it. Consequently, a one-size-fits-all approach does not
conform to modern development principles when communicating security findings data. In
summary, this impacted all requirements dealing with the processing or the communication
of information and only excludes requirements 4, 19, 23, and 24.
Topic V: The fifth topic addresses the necessity to share knowledge within an organization
so that every individual’s work is done with the comprised information of the organization.
In particular, this means to provide individuals with all means to perform their designated
tasks while avoiding an informational overload. Similar to topic four, these demands are
closely coupled to any feedback from the security findings management. Hence, this topic
impacts requirements 4, 8, 9, 12, 13, 17, 18, 21, 25, 26, 27, 30, 31, 32, 33, 34, and 35, while
also applying to any activity that is performed based on data from the security findings
management process.
Topic VI: In topic six, the team structure is addressed. Here, DevOps principles pro-
mote the importance of cross-domain team meetings, while Agile principles focus on self-
organized teams. However, we could not identify any mapping for this topic as the team
structure does not impose additional impact further than the requirements clusters four
and five already do.
Topic VII: The principles of topic seven state that all practices of the project shall be
continuously investigated for improvement by experimentation. In the context of security
findings management, this implies that this topic again affects the entire security findings
management process. By continuously improving the process, no final or optimal state of
the security findings management process can be achieved. Instead, it is continuously re-
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fined, improved, and adapted to the respective project team to improve the process. Hence,
each project might develop its own process practices independent from other projects re-
quiring a form of customization for all identified requirements. Therefore, we map this
topic to all requirements.
Topic VIII: The eighth topic requests the execution of practices in a repeatable and
continuous way. In software development projects, this reinforces the necessity for au-
tomation through continuous integration, deployment, and delivery. These practices can
be realized using pipelines, performing the repetitive tasks of building, integrating, testing,
and deploying software components in an automated fashion. Mapped to the management
of security findings, this affects the preceding step: identifying security findings by security
tests and checks. Consequently, this solely affects requirement 2, which deals with collect-
ing these results.
Topic IX: The principles in topic nine focus on the collaboration aspects within projects.
In contrast to topic six, it addresses the communication itself instead of how teams are
constructed. For our use case, we conclude that all findings that require some level of
collaboration must encourage the input of cross-disciplinary teams. This topic further
reinforces the need for a common communication interface shared within the team and
a tailored communication strategy for each recipient. Hence, it affects the same require-
ments as topic five and all processing requirements comprising some level of collaboration
for their action additionally.
Topic X: The tenth topic requires that decisions are taken with a customer-focused mind-
set. Consequently, whenever decisions are taken during the security findings management
process, the needs and goals of the customer should be considered. While this might affect
all requirements, we identified a particular impact on the finding reaction, as the effort
to address findings diminishes the available time for new improvements. Consequently, all
requirements that affect the response of the project team to findings and any with impact
on the customer are relevant to this topic, namely requirements 1, 4, 7, 10, 11, 12, 15, 16,
19, and 22.
Topic XI: Topic eleven comprises an organization’s mindset and culture, which are nec-
essary to develop software successfully. This includes attention to excellence in all domains
and a perspective of the system as a comprehensive product instead of distinct silos. As
these principles are rooted in each project team’s culture, no direct mapping to specific
principles can be established.
Topic XII: Finally, topic twelve requests earlier application testing to prevent defects
from reaching later stages and potentially becoming more complex to solve. Similar to
topic eight, this solely affects the preceding stages, as it changes the circumstances in
which the security tests are performed. Consequently, this solely affects requirement 2.

This mapping shows the necessity to investigate the security findings management
under the constraints of modern software development principles. Only the principles of
Topic XI were not mapped to any of the requirements. All the others matched at least one,
while most matched multiple requirements. Switching perspectives to the requirements, we
saw that every requirement is impacted by at least one principle. Therefore, this mapping
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not only reinforces the motivation of this thesis but also provides us with the knowledge
of how these requirements should be fulfilled to align with modern software development
principles.

2.3.3 Problem Structuring
Based on the last paragraph, we confirmed that managing security findings in modern,
industrial software development requires adaption of the traditional requirements existing
in industry. To approach the design of a solution, we see the necessity for structuring
the problem into manageable work packages. In Subsection 2.2.6, we identified a Findings
Lifecycle illustrating one approach to structure the requirements. However, the content of
the requirements indicates that several other types of categorization are possible. Even
though requirements differentiate from one another, a process view would categorize them
in the same process step. Treating the process of security findings management as a directed
graph, we can perceive security findings as data flowing through this graph. The highest
abstraction level is presented in Figure 2.3. Security Activities, like automated security
testing, provide data in the form of security findings to the Security Findings Process.
This process is a black box, where the data is processed somehow. Finally, the security
information produced by the process is forwarded to the Depending Entities that require
this information. In this abstraction the Security Activities represent the data source and
the Depending Entities represent the data sink. More details can only be added to this
diagram when analyzing the identified requirements of Section 2.2.

The first obvious categorization is the communication of security feedback. This repre-
sents the final step before data is provided to various Depending Entities. Each requirement
of this category describes a different entity to which feedback should be transferred. This
refines the original diagram by clarifying the list of relevant Depending Entities and neces-
sitating a separate process stage for feedback preparation. The next category deals with
the first actions after security findings have been reported. The requirements identify the
necessity to collect, parse, aggregate, and enrich the data provided by the sources. These
four requirements must be completed before the findings are further processed to ensure a
certain level of data quality. Therefore, they change the original diagram by adding a pro-
cess stage after the data sources generate the security findings. Based on this preprocessing,
multiple requirements refer to the analysis of each finding. This includes a general analysis
of each finding and specification on particular aspects where special attention shall be paid.
These aspects include the validity of each finding, its security risk, its root cause, and the
circumstances. Based on this data, each finding should be prioritized. This analysis of
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each finding provides insights into the finding processing and provides another processing
stage between pre-processing and communication. The entire knowledge accumulated by
this process must be documented and tracked according to our fourth cluster. The original
requirements list contains four requirements requesting that the process and the findings
it manages, is tracked, documented, and correlations or shortcomings of the procedure are
identified. Since this depends on the data the analysis provides, it is situated between the
analysis and the communication stage. Finally, the results of the finding analysis also fuel
multiple activities that rely on the resulting information. Primarily, this data enables the
team to respond to the identified findings, e.g., by solving the underlying issue. Moreover,
it allows further investigations utilizing the data. This cluster comprises four requirements,
demanding reactions based on the security feedback. This stage requires the same infor-
mation as some Depending Entities. Consequently, it is settled after the processing of the
feedback.

Clustername Requirements
Feedback Processing 8, 9, 12, 13, 17, 18, 21, 25, 26, 27, 30, 31, 32, 33, 34, 35
Preprocessing 2, 14, 28, 29
Finding Analysis 1, 6, 7, 11, 15, 16, 22
Process Tracking 3, 5, 20, 23
Process Response 4, 10, 19, 24

Table 2.3: Clusters of Requirements

These five clusters of requirements are listed in Table 2.3, showing the cluster’s name
and all requirements. They provide insight into how the data flow diagram of Figure 2.3 is
refined if the black box of the Security Findings Process is investigated more thoroughly.
The discussed changes transform the original diagram into the version depicted in Fig-
ure 2.4. This includes our five clusters as the security findings process and shows the data
flow between the clusters, the data sources, and the sinks. By considering the original 35
requirements as a process in a data flow graph, we could structure our problem into five



2.4 Objectives of the Methodology 35

topic clusters of manageable size. This presents the final problem description and the first
step towards the design of a solution.

2.4 Objectives of the Methodology
This section finalizes the problem conceptualization by combining the knowledge acquired
in former sections and constructs our objectives for the remaining thesis. This construc-
tion is performed by designing the objectives from the acquired list of requirements and
refining them according to our principles for modern software development. The final list
of objectives represents the structure for the remaining thesis chapters.

2.4.1 Designing Objectives
Toward a solution, we need to prioritize each topic cluster and its content identified in
Section 2.3 to build work packages. This order can be achieved by analyzing the existing
problem instance in industry and mapping it to the different activities of our topic clusters.
We performed this analysis by interviewing security practitioners at our industry partner
for challenges when managing findings.

As subjects, we solely selected practitioners from a security background who experi-
enced the management of security findings in either Agile or DevOps-oriented industrial
software development projects in the last year. The unstructured interview was based on
a single question, asking:

Which challenges regarding the security findings management did you experi-
ence in the last year in software development projects that follow either Agile or
DevOps principles?

After the interviews, all answers of the 17 subjects were analyzed, and similar responses
were clustered. Based on this simple interaction, four pain points perceived by security
practitioners were identified.

The first challenge states the significant influence of organizational preparedness on the
success of the security findings management process. This interconnects the security side
with the development principles in two ways. Suppose the maturity of the project is low.
In that case, there might be either no interest in managing security findings or no need,
as it does not fulfill fundamental principles like security automation. This reduces the
complexity of security findings management since it is not in place. If the demand exists in
a project with a low maturity, it can be challenging to reach the full potential of the process
as certain preceding activities are not in place. One example was the improvement of the
existing security tests by refining test cases based on solved findings as a standardized
process. However, no team member was able to write test cases, as a central organization
provided the testing tool with no customization opportunity. Our research also supports
this statement since specific requirements can only be fulfilled if the respective process it
depends on exists and is actively performed. From this challenge, we conclude that our
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solution design must be able to support project teams, regardless of the project maturity
and established practices. Hence, we must assume that processes may not exist or activities
are not performed.

For the second challenge, our subjects emphasized the necessity of implementing prac-
tices and changes in practice, as sole knowledge is insufficient. Industrial development
projects have a wide variety of information they can consider when building their security
findings management. Our research of Section 2.2 showed that at least 21 documents indi-
cate how security findings should be managed. Consequently, missing available knowledge
can not be considered a noteworthy challenge. Our practitioners further suggest that the
effort investment necessary for implementing practices could be the reason for this dis-
crepancy between available knowledge and implemented knowledge. Hence, we conclude
that the effort to integrate a methodology managing security findings into projects and
the effort to follow the methodology must be minimized. In particular, the security find-
ings management must be performed with the same efficiency as the software development
itself.

The third challenge addresses the need to manage security findings data continuously.
This challenge was exclusively identified by one subject, who highlighted the need to get
information on the currently existing findings within a system at all times. This challenge
originated from the circumstance that one project could not report all currently known
findings, as the reports were solely processed on a weekly basis. To follow the agreement
with our industrial partner, the circumstances are not disclosed in more detail. However,
this challenge shows that our methodology should be able to communicate data about
security findings at all times, regardless of the finding status (False Positive, Fixed).

The final and most referenced challenge is the type and frequency of the data pro-
vided by the security activities. Iterations in the development sprints and the automation
of security tasks lead to continuous security testing, resulting in new reports that must
be regularly investigated. Especially the system thinking of DevOps projects leads to a
combined management of development and operation findings. New findings are added
frequently and originate from all stages of the software development lifecycle. Hence, find-
ings from security activities during development stages like code analysis are managed by
the same process as security findings from operation security activities like monitoring.
This leads to the challenge that a common process has to support the highly differenti-
ating demands of different team members. Moreover, this leads to different perspectives
being necessary to cover all aspects of the software, ranging from code and configuration to
containerization and third-party dependencies. Consequently, the sources of the security
findings vary, with each source differing in the reliability of the data it provides. Hence,
not all information provided by our security tools is equally valuable. This also affects the
coverage of the software. Sometimes, security activities overlap in their testing coverage,
especially when trying to avoid whitespots. Duplicate findings are a logical consequence of
this circumstance. This challenge underlines the complexity of the data and confirms the
importance of preprocessing the data to achieve actionable security information. Moreover,
the necessity of a platform automating the security findings management process and a
target-oriented communication can be derived from this challenge.
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Based on the interview results, we designed the objectives of the thesis. First, we can
derive the necessity for a platform that orchestrates, automates, and documents the differ-
ent process steps. This represents the first objective of the thesis. Second, the challenges
around the source data indicate the importance of preprocessing the data, including the
collection and parsing of reports, the aggregation/deduplication, and the enrichment of
the resulting security findings. This preprocessing represents another objective. Next, the
interview results showed the importance of a customized communication of data at all
times. Even though this motivates the continuous processing of feedback, the first chal-
lenge showed the importance of maturity agnostic processing, dynamically adapting to the
maturity of each project and organization. Hence, we define a further objective as dynamic
security findings communication, which is not bound to specific process requirements but
has to support all information communication. To continuously communicate the current
state of the security findings management, the underlying data is needed before it can be
shared. This requires that all findings are at least tracked within the process by document-
ing their current state and history. However, the status of a finding can only be acquired
if it is analyzed. Consequently, we must consider the requirements on the finding analysis
as well. The tracking and finding analysis represent our next objective in this thesis. With
this objective, all requirement clusters are addressed except for the process response. The
requirements in this cluster demand certain actions from the practitioners trying to fulfill
them. Even though these actions belong to the security findings management process and
their success is tracked accordingly, we see a substantial impact on the fulfillment by the
challenge of project maturity. Similar to the topic of communication, we believe that the
completion of some requirements depends on the project’s maturity. Hence, we add them
as requirements to the communication objective, providing the necessary information to
perform the required actions and report the success.

This results in four objectives for this thesis to develop a methodology for the security
findings management process in modern, industrial software development projects. In addi-
tion, the final objective is to evaluate the entire methodology in ongoing industrial software
development projects. In the following paragraphs, we illustrate the precise problem each
objective has to address.

2.4.2 Construction of Objectives
This thesis aims to develop a methodology for managing security findings in modern in-
dustrial software development projects. By investigating the existing problem, we are able
to split this objective, achieving solution-oriented work packages. Based on the coarse-
grained objectives defined in the last paragraph, we utilize the overall problem description
of Section 2.3 to construct each objective. Each one represents the preliminary problem
description for the respective domain-specific problem, constrained by the overall goal of
developing a methodology for security findings management in modern industrial software
development.
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Objective 1 - Platform for Managing Security Findings:
The first objective targets researching and developing a platform that provides automa-
tion capabilities for the security findings management process. Consequently, its maturity
should surpass a theoretical concept and instead represent an actual implementation. Ac-
cording to our mapping of Subsection 2.3.2, the platform should not only automate the
process (Topic III) but further perform the processing of data fast (Topic IV) and in a re-
peatable, continuous fashion (Topic VIII). Moreover, the processing must be customizable
so that it can be tailored to each project, and continuously improving processes can be
reflected by the system (Topic VII). Finally, the design of this objective also showed that
the platform should be easily integrateable into projects.

Objective 2 - Improving Data Quality of Security Findings:
The second objective deals with the preparation of any data processed by the security find-
ings management by trying to mitigate the shortcomings of the source data. In particular,
it deals with the collection of data, its parsing to a common data model, the identification of
duplicates and aggregation of findings, and finally, the refinement of each finding’s content.
Similar to all other objectives covering requirements for the security findings management,
the solution of this objective must be automatable (Topic III) and provide results in a
timely manner (Topic IV). Furthermore, it represents the interface to any preceding stages
of the software development lifecycle, like testing, and consequently deals with the contin-
uous data collection (Topic VIII) and results from early stages of development (Topic XII).
The information provided by the solution approach this objective shall achieve defines the
source data for the next objective.

Objective 3 - Security Finding Analysis and Tracking:
The third objective is analyzing and tracking security findings and the surrounding process.
It relies on the quality-improved security data from the second objective as input. The
actual objective is twofold. According to our requirements, each finding should be analyzed
for various aspects, including its root cause, priority, validity, or circumstances. The first
aspect is how this can be realized as part of our process. Secondly, the objective demands
a solution to how each finding and the entire security findings management process can be
tracked. This objective is, similarly to the last one, constrained by the principles of automa-
tion (Topic III) and rapid data processing (Topic IV). Moreover, this objective comprises
several requirements with human interactions. Consequently, the principles of a customer-
focused and workpackage-reducing mindset during decision-making (Topic X, Topic II),
the fulfillment of actions with proper knowledge (Topic V), and the cross-disciplinary col-
laboration on tasks (Topic IX) affect this objective. Finally, the project’s progress must be
made visible according to business objectives (Topic I), necessitating tracking the security
findings management process.

Objective 4 - Security Findings Feedback Communication:
The final objective, contributing to the actual methodology, addresses the communication
of knowledge acquired while processing security findings. This covers the bi-directional
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communication to all stakeholders and the project team. It requires a tailored transport
of information to various entities and the collection of user feedback. This further cov-
ers the actions to respond to each security finding, like its resolution. This objective is
constrained by most principles, as it represents the interface to the actions and processes
after the security findings management. Similar to the previously defined objectives, the
communication should be conducted highly automated (Topic III) and deliver information
in a timely manner (Topic IV). Since this objective deals with the entire communication
and its subsequent actions, it is affected by the principles of a customer-oriented mindset
(Topic X), the presentation of data in the context of business objectives (Topic I), the
necessity of a common interface for cross-disciplinary collaboration (Topic IX) and the tai-
lored transport of information to selected entities (Topic V). Finally, the solution approach
for this objective must consider reducing work packages per deployment when designing
subsequent actions.

Objective 5 - Instantiation and Evaluation:
The last objective does not contribute to the actual methodology but represents the empir-
ical validation of the final solution instance. For this validation, all previous components
instantiated as a single methodology and evaluated in ongoing industrial software devel-
opment projects. Moreover, this implies that no principles affect this objective, as it is not
part of the solution design.

The objectives, including their references to the modern development principles and
the requirements, can be found in Table 2.4.

Objective Title Principles Requirements
Objective 1 Platform for Managing Security Find-

ings
• Topic III
• Topic IV
• Topic VII
• Topic VIII

• N/A

Objective 2 Improving Data Quality of Security
Findings

• Topic III
• Topic IV
• Topic VIII
• Topic XII

• 2
• 14
• 28 - 29

Objective 3 Security Finding Analysis and Tracking • Topic I
• Topic II
• Topic III
• Topic IV
• Topic V
• Topic IX
• Topic X

• 1
• 3
• 5 - 7
• 11
• 15 -16
• 20
• 22 - 23
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Objective 4 Security Findings Feedback Communi-
cation

• Topic I
• Topic III
• Topic IV
• Topic V
• Topic IX
• Topic X

• 4
• 8 - 10
• 12 - 13
• 17 - 19
• 21
• 24 - 27
• 30 - 35

Objective 5 Instantiation and Evaluation • N/A • N/A

Table 2.4: Thesis Objectives

2.4.3 Summary of the Objectives
In the introduction of this thesis, we assumed that a methodology that manages security
findings in industrial software development projects must follow the interdisciplinary con-
straints of modern software engineering. In Section 2.3, we confirmed this assumption by
mapping the naive requirements towards the security findings management process to the
principles of modern software development and identifying the principles’ influence on how
these requirements should be fulfilled.

Identifying this gap, we conceptualized the overall problem according to our research
methodology (Figure 1.2) and defined objectives for the thesis according to the research
process depicted in Figure 2.5. We started by collecting demands for industry security find-
ings management by accessing commonly accepted documents and aggregating them into a
unique list of requirements (Section 2.2). We further derived guidance for modern software
development from principles existing for DevOps and Agile projects (Subsection 2.3.1).
These development principles were mapped to the requirements list, resulting in a map-
ping (Subsection 2.3.2). Moreover, the requirements were structured according to their
overall topic (Subsection 2.3.3), and the resulting clusters transformed into the objectives
by applying the knowledge about challenges existing in practice (Subsection 2.4.1). Fi-
nally, we combined this coarse design of our objectives with the mapping to construct the
final objectives for the thesis (Subsection 2.4.2). This resulted in our five thesis objectives
shown in Table 2.4, representing the solution design for the thesis and the instantiation
and empirical validation according to Figure 1.2.

Each objective is investigated by following the Design Science Research methodology
and presented in separate chapters.
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Chapter 3

Platform for Security Findings
Management

To create a methodology for managing security findings in modern industrial software
development projects, a platform for the continuous and automated execution of the nec-
essary process stages is crucial. This chapter describes the problem behind this objective
and presents our solution approach. The solution approach was further published in [195].

3.1 Problem Description
In our preliminary problem analysis, we identified the need for a platform that orchestrates,
automates, and documents the management of security findings and related data process-
ing. Section 2.4.1 defines four principles that must be followed by our solution approach,
representing the starting point for the problem description. These principles are:

• Topic III: The platform must automate the processing steps

• Topic IV: The platform must provide fast feedback, necessitating short processing
times

• Topic VII: The platform must be modular to support changing methods of data
processing

• Topic VIII: All data processing must be implemented in a repeatable and continuous
way

These principles, combined with the functional demands, result in a list of requirements
presented in the following paragraphs.
Functionality The first problem that must be addressed is the platform’s core function-
ality. As defined in the objectives of the thesis, the platform has to orchestrate any data
processing identified later on automatically. Moreover, the data resulting from this process-
ing must be automatically documented. Consequently, the platform requires data storage
and orchestration capabilities.
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Automation Project teams should later use the platform in practice, making a theoretical
concept insufficient. Instead, automation and implementation of the entire platform are
crucial demands. This affects the automation of any data processing introduced later on,
the automation of the orchestration, and the automation of any interaction with the plat-
form. Automating data processing implies that we require clearly defined interfaces to all
platform components so that any processing approach can use the platform’s functionality.
Furthermore, any manual effort must be minimized, which affects, in particular, the effort
for integrating the platform into each project. Hence, the data interfaces must provide
reasonable automation capabilities to cope with adding, changing, or reading data.
Fast Feedback To conform with the principle of fast feedback, the time between data
entering our platform and its computation being finished to the degree that it can be
communicated must be minimized. We refer to the computation being finished instead
of the management process since the management itself depends on manual work accom-
plished outside the platform. The decrease in computational time affects the efficiency of
any data processing, efficient orchestration, and access to the resulting knowledge. As we
cannot influence the necessary processing later integrated according to the project’s need,
the platform has to provide the means for an efficient implementation of any introduced
processing. For an efficient orchestration, its overhead must be minimized. Finally, the
data stored in the platform must be easily accessible and the respective knowledge efficient
to acquire.
Modular Data Processing A considerable challenge for the platform is that the type
of data processing required by each project is unknown. Furthermore, the continuous
improvement of each project might necessitate new or changed data processing techniques.
Consequently, the platform must support changes to the data processing and a modular
approach for the orchestration to enable or disable processing steps.
Continuous Data Processing Similar to the security findings that are continuously
identified, our platform has to perform the processing and orchestration continuously. This
implies that any action orchestrated by the platform must be repeatable at any time.
Minding the requirement for fast feedback, the resulting data must be maintained sound
at all times, as a new security report might change the current security state of a product.
Maintenance for soundness refers, in this context, to any operation that ensures that the
information provided by the platform is based on evidence. Hence, the platform must
support continuous data processing while maintaining the results sound.

3.2 Related Work
Data processing and transformation represent one of the fundamental research fields of
computer science, rooted across multiple research areas.

The work related closest to our platform are existing tools for managing security find-
ings. One of the most prominent tools in this domain is DefectDojo [37]. This platform
provides the capabilities to automatically collect, document, and present security findings
occurring in projects. Moreover, it processes the data by tracking its occurrence and iden-
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tifying duplicates. Also, tools like Faraday [47] or OpenVAS [60] all provide the ability to
process data from security testing. While these vulnerability management tools fulfill most
of our requirements, they lack the crucial ability for modular data processing. Missing this
processing agnostic approach, they cannot be considered as a solution approach for our
problem instance.

Logical reasoning and its ability to derive new data from existing data according to
certain relations is one step toward this modular approach. An important representative
of logical programming is the declarative programming language Datalog. It comprises
Facts, which are used as ground truth to derive new Facts according to predefined Rules.
Using Queries, information about the Facts can be derived. In recent years, Datalog has
been used in various domains, mainly for logical reasoning [19, 207, 21]. However, several
limitations with consistent materialization [197, 120] and dealing with incomplete and po-
tentially incorrect data [44, 92] diminish the effectiveness of Datalog for our setup. Even
though promising approaches for overcoming these challenges exist [30, 201], no system
could address all identified concerns. The most promising approach was DDlog [156, 190],
a programming language for the incremental computation, enhancing Datalog with mul-
tiple non-traditional concepts. These additional concepts support further functionalities
like changes to the existing fact base. However, the development of this approach was
discontinued and still relies on the Datalog-typical Input-Output mapping, which may not
be able to support every processing type.

Considering the platform as something more generic, a database could support the
requirements for documentation and partial automation. Databases, however, lack the
ability for data processing. Therefore, semantic knowledge bases yield promising properties
for our platform. Solving challenges related to data processing with a semantic knowledge
base is a common approach [123, 85, 42, 200, 91, 187]. Various fields utilize knowledge
bases and inferences to address problems in their respective domain. Knowledge bases
constitute a key component in platforms where new information must be inferred based
on existing knowledge. For these inferences, rules or ontologies exist that allow reasoning
about the information stored in the knowledge base. This inference is critical, separating a
regular database from a knowledge base [95, 96]. Solutions utilizing knowledge bases cover
a broad range of topics such as managing sensor data [123], search engine optimization [42],
log data management [85, 86], and the elicitation of high-quality requirements [91]. In the
area of software security Wang and Guo created an ontology to represent vulnerabilities
with key concepts [200], like countermeasures. The ontology in their work, which comprises
data from common databases and knowledge like NVD [125], CVSS [135], or CWE [179],
intends to support inferences and decision-making in the area of vulnerability management.

These well-established concepts of logical reasoning and the versatility of knowledge
bases present the initial solution approach.
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3.3 Semantic Knowledge Base
Derived from the requirements for a platform that automatically orchestrates and docu-
ments the data processing steps of security findings management in modern software de-
velopment projects, we decided to use a semantic knowledge base. This section describes
the concept for the knowledge base and each component in detail.

3.3.1 Knowledge Base Concept
To use a knowledge base as our platform, we initially define its concept. As discussed in
the related work, semantic knowledge bases have a broad area of application for any task
related to data processing. However, each knowledge base must be tailored to the use
case. In our case, we mainly make use of two properties. The inherent documentation of
data and the continuous inference of new data from existing data, according to predefined
rules. As described by Krótkiewicz et al. [95, 96], our knowledge base is also roughly
characterized as database with automated inference capabilities.

Semantic Knowledge Base Concept

Rules

Belief

reads

Queries

requests
Inference

changes
beliefLogical Core

readsnew 
data

Inference Engine

Data Storage

Figure 3.1: Conceptualized Components of the Knowledge base

Merging the deductive reasoning approach from Datalog using Facts, Rules and Queries
with the fundamental knowledge base concepts of Krótkiewicz et al. [95, 96], we define our
knowledge base to consist of six components.

• Belief

• Rules

• Queries
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• Inference Engine

• Logical Core

• Data Storage

Belief represents any security data in the knowledge base that is either given by external
data input or logical inference. These logical inferences are formulated by Rules, describ-
ing how to derive new Belief from the Belief currently stored in the knowledge base. To
apply the Rules, the Inference Engine executes the respective Rule and provides the in-
terface to access the stored Belief for read operations. To ensure that new insights are
transformed to new Belief and changes in the existing dataset are properly corrected in
the data that is derived from it, the Logical Core orchestrates the Inference Engine and
maintains the soundness of data in the knowledge base. To provide external access to
the Belief stored in the knowledge base, Queries are employed. These Queries represent
formalized views on the knowledge base data. To ensure continuous documentation, all
Belief, Rules, and Queries are stored in the Data Storage. These three components further
enable the necessary customization to each project. The six components of our platform
and their relations are depicted in Figure 3.1. Five of these core concepts are described
in the following sections in detail. The Data Storage is excluded as it solely affects the
implementation.

3.3.2 Belief
The concept of belief comprises the actual informational content in our knowledge base,
often called fact in other knowledge base definitions [30, 201]. In contrast to traditional
facts, our definition of belief is adapted to match the requirements for our platform.

The naming convention of belief represents the first change to facts. Contrary to tradi-
tional knowledge bases, where this information is considered an immutable fact or knowl-
edge, such a view is prone to inconsistency when working with security findings. Security
findings comprise information gathered by a specific activity analyzing a product from a
certain perspective. Inherent to this perspective is the possibility of incorrect data, which
is invalidated or changed over time (e.g., False Positives). Therefore, we broaden the def-
inition and consider them as mutable belief, which is prone to change over time. The
new consideration of belief affects data provided by external activities and any information
derived from it by logical inference. This distinction between externally provided data and
inferred data represents another change in our definition. We consider belief that origi-
nates from knowledge base external sources as explicit belief, while any belief from logical
reasoning is named derived belief. Minding that the coverage of multiple security activities
in the same project might overlap, the resulting security findings could contain conflicting
information. This existence of contrary belief is allowed in our definition of the knowledge
base. Finally, each instance of belief must be unique. Therefore, no two instances of belief
with the exact same information may be included in the knowledge base.
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The abstract concept of belief is realized by belief classes representing real-world coun-
terparts. An exemplary belief class would be ”Security Report” or ”Security Finding”.
Each class is defined by the attributes inherent to the real-world counterpart. In addition
to the real-world attributes, each class contains the class name, a unique identifier of the
instance, a content hash over all real-world attributes, and the type of belief. These classes
are instantiated, and their attributes are declared to store data in operation. Below one
exemplary instance of the ”Security Report” class is depicted:

"Class Name": "Security Report",
"Identifier": "12345",
"Content Hash": "a1b2c3",
"Belief Type": "Explicit",

"Source": "Tool A",
"Source Version": "1.0",
"Timestamp": "YYYY-MM-DD HH:MM+Tz",
"Content": "Security Report in JSON Format..."

This example shows a security report being stored as explicit belief. As real-world at-
tributes, the source of the report, its version, the content of the report, and its creation
timestamp. Such a class could be implemented as a table in a database or document class
in search engines, where each instance would be a row or document, respectively. To ensure
the modular properties of the knowledge base, new classes of belief can be constructed at
any time. A visual representation of the relation between belief classes and their instances
is depicted in Figure 3.2.
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Class Name: Security Report

...

Instance 1

Class Name: Security Report
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Figure 3.2: Relation between Belief Classes and their Instances
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3.3.3 Rules
The concept of rules represents the relation between belief classes existing in reality. In
contrast to an ontology existing in common logical reasoning, the set of rules in our knowl-
edge base is not predefined and can be extended on demand. Toward this goal, we defined
a separate rule specification.

To ensure the modularity of our inference approach, we refrain in our definition from
Input-Output mappings between fields as common in logical reasoning languages like Dat-
alog. Instead, our rules support traditional programming constructs. Moreover, the com-
plexity of real-world relations necessitates inferences that utilize multiple classes of belief.
Therefore, each rule may utilize any number of belief instances in the knowledge base.

To ensure that rules can be used to infer new belief from the existing belief in the
knowledge base, we define them as a 4-tuple. The first element of any rule is the Trigger,
defining which classes of belief are used as input for the rule computation. The Trigger
is further essential to identify when a rule should be executed to derive new data. The
actual code that defines how new data is computed is contained by the Code. Multiple
assumptions apply to this code. First, the code must always infer the same information
under the same circumstances. Consequently, a random generation of information is not
acceptable for any rule. Next, each code has access to the belief instances used to trigger
it and read access to all other belief instances in the knowledge base. This is crucial
for complex inferences, as each rule might derive information from multiple belief classes.
Finally, each code must be able to trace the source elements used to infer a belief instance.
Otherwise, maintaining the knowledge base sound throughout changing data is impossible.
The type of belief resulting from the rule is represented by the Output element. The
Trigger and the Output are crucial for the orchestration of rules by the inference engine,
while the Code contains the actual inference. Each rule has a unique Name assigned to it
for identification. Continuing the example above, we consider a rule that parses security
reports into multiple security findings. This results in the following rule 4-tuple:

{"Trigger": "Security Report", "Code": <program code>,
"Output": "Security Finding", "Name": "Parser"}

The pseudo-code below is an example of such a parsing rule:

INPUT: element

report = element
result = list()
if report.source == "Tool A"

for entry in report.content
result = result + map(entry)

endif
return result

This example’s Code takes a belief element as input and ensures it is a security report.
Next, it checks the source of this report and parses all findings according to the respective
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mapping. Each mapped finding is stored in a list of results that is returned subsequently.
New rules can be added at any time during operation and will be considered by the inference
engine.

3.3.4 Inference Engine
The purpose of the inference engine is to orchestrate the inference of new data using the
belief and rules existent in the knowledge base. Traditional semantic knowledge bases
often refer to the mechanism that derives new data from existing one as data processing
methods. We, however, split this into the functional calculation of data, represented by
the inference engine, and the maintenance of data soundness, represented by the logical
core, as both serve distinct purposes in our knowledge base. The inference engine receives

Inference Engine

Execute 
Rules

return
Inferred Data

Logical Core

Belief References

Data Storage

Read all Rules
return 

Applicable Rules

Read Belief
return
Belief

return
Inferred Belief

Figure 3.3: Orchestration of the Inference Engine

a reference to belief instances stored in the knowledge base and tries to derive knowledge
from it by orchestrating the rules in the knowledge base. Based on the class name of the
belief references, it checks all knowledge base rules for applicable triggers. The respective
rules are executed, and the resulting data elements are transformed into the belief classes
they should represent as defined by the rule tuple. The so-derived belief is not stored in the
knowledge base yet but returned to the logical core, including references to all other belief
instances used as sources for the inference. The logical core decides on the subsequent
actions with the newly created belief instances. This process is depicted in Figure 3.3.

3.3.5 Logical Core
Our concept of a logical core ensures the decisive aspect for the correctness of information
in our knowledge base: its soundness. We define sound as the state of the knowledge
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base, where it solely contains explicit belief and all information that can be derived from
it using the currently available rules. A sound knowledge base state excludes, e.g., belief
that could have been inferred during an earlier state of the knowledge base but cannot be
inferred anymore as source data was deleted or is outdated. Any decision taken using the
knowledge of an unsound knowledge base can be incorrect, as the knowledge itself could be
flawed or outdated. If the knowledge base is in an unsound state, maintenance operations
must be performed to regain soundness.

Our logical core follows an inductive approach to ensure that all potential conclusions
are also drawn. This implies that any external information provided to the knowledge base,
like a new security testing report, is processed, and conclusions are drawn immediately.
Otherwise, the information requested by users of the knowledge base would be calculated
as when requested during runtime(deductive), slowing down the feedback provisioning.
Therefore, our knowledge base is built according to the Bottom-Up principle. This inductive
reasoning not only affects the data being added but also change or delete operations.
Since different sources might claim conflicting information, belief could be changed or
deleted over time. To ensure a continuous inference throughout new data being added
while maintaining soundness, our logical core has to handle delete and change operations
on belief instances. This necessitates a revisable inferences structure. These changes to
existing elements potentially invalidate all instances of belief derived from it, as they depend
on outdated information. To identify and correct these instances of belief, the relation
between elements must be tracked. However, these relations may not be stored within the
belief elements, as they do not represent data related to factual information but meta-
data. Therefore, the logical core must separately track the belief relation automatically.
In contrast to other maintenance approaches, e.g., in Datalog, our logical core does not
support incremental maintenance. With incremental maintenance, the changes to existing
belief instances would be minimized so that only a single field of a belief instance could
be changed without changing other fields. However, the necessity for uniquely identifying
belief instances by hashes and the modularity of rules possibly requiring arbitrary mappings
between fields prevent this feature.

The central functionality of the logical core is the maintenance of knowledge base
soundness. Solely external changes to the knowledge base may introduce unsoundness
comprising the addition of new data, the change of existing belief, or the deletion of
belief. Furthermore, changes to the rule set also infringe the knowledge base soundness.
These operations either invalidate belief stored in the knowledge base or allow additional
conclusions to be drawn. To identify unsoundness, the logical core is notified about any
external changes to the knowledge base. To reinstantiate soundness in the knowledge
base, the logical core can add new belief, change existing belief, or remove outdated belief.
Details on the maintenance operations and the overall inference structure is described in
Section 3.4.
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3.3.6 Queries
Our concept of queries serves the same purpose as the classical Datalog query. They
represent an abstraction layer for the elements of belief in the knowledge base intended to
be used by external entities accessing the data. These queries present a particular view of
the data customized to the knowledge intended to be acquired. Therefore, they can also
combine the data of multiple belief instances across any belief class, providing the means
for top-down knowledge calculation. Examples range from simple listing of all security
findings to more complex statistics on the occurrence of security reports.

3.4 Inference Logic
The inference logic employed by the logical core represents one of the most significant
contributions to our knowledge base. In this section, we present the Inference Structure
given by the relation between instances of belief in Subsection 3.4.1 and the strategies for
maintaining the soundness of the knowledge base in Subsection3.4.2.

3.4.1 Inference Structure
The inference structure of our knowledge base defines the possible relationship between
instances of belief. This relationship is inherently defined by rules deriving new data from
given data and consequently building a dependency graph. Crucial for understanding the
inference structure is the distinction between belief classes and instances of these classes
as depicted in Figure 3.2. One instance of derived belief might depend on an arbitrary
number of belief instances from different belief classes. For the tracking of soundness and
the overall structure, solely the belief instances are relevant. Consequently, the relations
presented in the following refer to the number of belief instances, regardless of the classes
they belong to.

Instances of belief can have a 0..* — is derived from — 0..* relationship between each
other. This means each belief instance is derived from an arbitrary number of belief in-
stances and can again be used to derive an arbitrary number of belief instances. Since each
relation has a different impact on the logical consequences when maintaining soundness,
they are discussed in the following paragraphs.

Belief Relation 1: 0—1..*, 1..*—0
The two most trivial relationships include the belief relations where instances of belief

are not derived from any other instance and where instances are not used to derive further
data. The first belief relation exclusively affects explicit belief, resulting in instances of
belief not relying on the validity of other belief instances. The explicit belief, however,
may still be used to derive further belief instances. The other belief relation affects belief
instances that are not used to derive any other belief instances. This happens either if
no rule exists that utilizes this class of belief as input or if the belief instance’s content
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is irrelevant to any rule (e.g., an empty security report that cannot be parsed into single
findings). This belief relation is visualized in the top left corner of Figure 3.4.

Belief Relation 2: 1—1..*
The second belief relation addresses inferences, where one instance of belief is used to

infer an arbitrary number of belief instances. This belief relation represents a simple de-
pendency with a linear approach for resolving unsoundness. The enrichment of security
findings gives an example of a one-to-one relationship. Here, one belief instance represent-
ing a security finding is processed and results in another, representing the enriched version
of the finding with a dependency solely on the original security finding. On the other hand,
parsing a security report is an example of a one-to-arbitrary relationship, as it is unknown
how many findings can be derived from a security report. In this example, the validity
of each security finding depends on the validity of the security report from which it was
derived. This belief relation is visualized in the top right corner of Figure 3.4.

Belief Relation 3: 1..*—1..*
The last and most challenging belief relation is the usage of multiple belief instances

to derive an arbitrary number of belief instances. Examples include the deduplication
of security findings, where multiple belief instances are analyzed for duplicates, and the
resulting cluster is stored as a single belief instance. Consequently, the validity of this
cluster element depends on multiple instances of belief. Maintaining soundness becomes
even more challenging when an arbitrary number of belief instances is used to derive an
arbitrary number of belief instances. This belief relation is visualized at the bottom of
Figure 3.4.

3.4.2 Soundness Maintenance

Maintaining the soundness of the knowledge base is crucial for the correctness of the
information provided by it. The strategies for maintaining soundness are explained based
on the inference structure described in the last subsection.

To develop a strategy for maintaining soundness, all events infringing soundness must
be identified. An empty knowledge base is sound by definition, as no conclusions can be
drawn and the contained data is not incorrect. As soon as operations that originate from
outside the knowledge base add the first belief instances, unsoundness is introduced, as
additional data can be inferred. Consequently, our maintenance strategy must consider the
ADD operation. With new reports added over time, formerly correct information might
be invalidated. For example, new security findings could falsify the current deduplication
clusters as they are not exhaustive. Therefore, existing belief must either be changed to
match the new information or even deleted if it shows to be incorrect. Therefore, the
additional DELETE and CHANGE operations must be minded. Finally, the information
processed by the knowledge base is queried by external actors. As these queries do not
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Figure 3.4: Relationship between Instances of Belief

affect the belief stored in the knowledge base, this operation may not be considered in the
strategy.

In contrast to well-established maintenance protocols, like those employed in Datalog,
our approach works on entire instances of information instead of single pieces. Since
our belief classes contain attributes with complex relations to attributes of other classes,
attribute-based maintenance (i.e., if one attribute changes, other attributes are changed
instead of the entire belief instance) is impossible. The reason for these complex relations
is the ability to use traditional programming constructs in inferences. With those, a precise
relation between attributes is impossible. However, the fundamental idea of correcting the
minimal amount of data that might be affected by a change in the data set is adopted from
the traditional approaches.

To rebuild the knowledge base’s soundness we start the maintenance at the instance
affected by the operation and resolve all conflicts of instances depending on it. Each
operation requires a different strategy for restoring soundness. These are described for
each operation below.

Maintenance of ADD Operation
After new belief instances are added to the knowledge base, regardless of whether this

is the result of an external operation or an internal inference of new data, all possible
conclusions must be drawn from this new information. Therefore, the new belief instance is
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provided to the inference engine, and the derived belief and references to all belief instances
used in the inference are also returned (See Belief Relation 3 of Figure 3.4: arbitrary number
of source instances). Suppose the inference engine could not derive information from the
given element. The knowledge base is sound in this case, as all possible conclusions have
been drawn (see Belief Relation 1 of Figure 3.4). Otherwise, we focus on the instances
used as source elements for the inference. If only one belief instance was used as source
(see Belief Relation 2 of Figure 3.4), we have to check whether the derived belief instance
is not yet in the knowledge base based on its content hash and store it if this is the case.
This triggers another iteration of the knowledge base maintenance, as another new belief
instance was added. Already stored belief instances are dropped, resulting in a sound
knowledge base. However, if more than one belief instance was used as source (see Belief
Relation 3 of Figure 3.4), the maintenance has to mind cross dependencies. Consider the
deduplication of security findings as an example of this circumstance. For each security
finding, duplicate findings are identified, and the resulting cluster is stored as belief in
the knowledge base. If a new security finding is processed, the cluster this new finding
belongs to might already exist in the knowledge base. Hence, the existing cluster must be
overwritten to maintain soundness. Otherwise, two clusters with conflicting information
would exist in the knowledge base, resulting in an unsound state. For our maintenance
strategy, this implies that all source belief instances are collected and all instances derived
from them are deleted. Afterward, these source instances are provided to the inference
engine to re-generate the currently valid belief instances. These are again checked for their
existence in the knowledge base and added if they do not exist. This process is depicted
in the left Flow Chart of Figure 3.5.

Maintenance of DELETE Operation
If existing belief in the knowledge base is deleted, this invalidates all information de-

pending on it. Consequently, the first step after a belief instance is deleted is identifying
all belief instances that were inferred by it. If no instances utilized the deleted knowledge
as source (see Belief Relation 1 of Figure 3.4), the maintenance is done, as the deletion in-
validated no information. If, instead, belief instances depended on it, the number of source
elements of each depending instance is determined. If the deleted element was used as the
only source for the inference (see Belief Relation 2 of Figure 3.4), all depending instances
can be deleted. If more than one belief instance was combined with the deleted element
(see Belief Relation 3 of Figure 3.4), the maintenance must mind the cross dependencies.
Utilizing the example of deduplication once again, this implies that the deletion of one
security finding would not result in the deletion of the entire cluster but must result in the
recomputation of the cluster, excluding the deleted element. Otherwise, the other security
findings that have formerly been clustered are incorrectly separated again. Therefore, we
follow the same approach employed during the ADD maintenance and delete all belief in-
stances derived from these sources. Afterwards, these source instances are provided to the
inference engine to re-generate the currently valid belief instances, avoiding the situation
described in the example. Any belief instance not existing in the knowledge base is added,
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and the maintenance continues with the newly added belief instances. This process is
depicted in the right Flow Chart of Figure 3.5.

Maintenance of CHANGE Operation
Whenever existing belief instances in the knowledge base are changed, this potentially

invalidates all information derived from the now outdated information. Consequently, its
maintenance effort is equal to the maintenance of a delete operation, with the difference
being that the re-generation of the currently valid belief happens regardless of the number
of source elements. Therefore, the right Flow Chart of Figure 3.5 correctly represents the
maintenance process, excluding the second conditional box, as the recalculation must be
conducted every time.

Maintenance of Rule Changes
The only other external change to the knowledge base that might infringe the soundness

are changes to the rules. This includes the addition, deletion, and changes to the existing
rules. Since the impact of rules cannot be quantified like belief changes can, the entire
knowledge base has to be rebuilt. Towards this goal, all derived belief instances are deleted,
and a maintenance operation for adding all explicit belief instances is started. This rebuilds
all derived belief instances and ensures a sound knowledge base after rule changes.

3.5 Implementation
Crucial for the usage of a semantic knowledge base as a platform for the continuous and
automated execution of security findings management process steps is its practical im-
plementation. Therefore, the knowledge base concept presented in the previous sections
was implemented as a framework. The framework itself does not contain rules, belief or
queries by default, as these depend on the process steps. In this section, we present the
implementation of the framework and introduce its functionality based on two examples.

3.5.1 Implementation
The implementation of the semantic knowledge base is a containerized Python application,
realizing the concept of Figure 3.1. Figure 3.6 depicts all components and their respec-
tive interfaces. The biggest challenge for the implementation were the constraints towards
belief instances and rules/queries. While belief instances are similar to database entries,
the rules and queries contain executable code. Therefore, the Data Storage consists of an
Elasticsearch search engine supporting the Belief Storage and a filesystem dealing with the
Rule/Query Storage. The Belief is implemented as Elasticsearch documents, where a sepa-
rate mapping represents each belief class. Since Elasticsearch allows the dynamic addition
of data without formal mapping, any new belief class can be added dynamically. Rules
and Queries are split into the executable code, which is stored as a file on the filesystem,
and the remaining meta-data, which is maintained as a dictionary. Consequently, the rules
are implemented as 4-tuple
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Figure 3.6: Component Diagram of the Semantic Knowledge Base

{"Trigger": "<Triggering Class of Belief>", "Code": "<Reference to the File>",
"Output": "<Class of Belief Ouitput>", "Name": "<Name of Rule>"}

while the queries are implemented as 2-tuple

{"Name": "<Name of Query>", "Code": "<Reference to the File>"}

To access the data storage including all instances of belief, rules, and queries, an abstraction
layer is implemented. This Data Storage Manager orchestrates all storage requests and
manages the separation between belief and rule/query storage. Furthermore, it offers
three interfaces for the belief, the rules, and the queries. The belief interface employs the
Elasticsearch Query DSL as the underlying mechanism, while the rule and query interfaces
are developed from scratch. They allow to search for queries based on the name, returning
the filesystem path, and the rules can be searched based on their Trigger or Output field,
returning the entire 4-tuple.

The Inference Engine is implemented in Python and offers an interface towards the
Logical Core, where a list of derived belief instances is returned, if provided by a list of
references to belief instances in the knowledge base. The crucial part of its functionality
is the search for rules that contain the provided list of belief instances as trigger. To
search for applicable rules, it utilizes the data storage abstraction layer. Based on the
returned filesystem path, each found rule is executed. If the rule contains belief queries
and, therefore, needs access to the knowledge base, the belief interface is used. Any data
generated by the rule execution is parsed to the respective format and stored temporarily.
After all applicable rules are executed, the list of derived belief instances is returned.

The interface offered by the Inference Engine is exclusively used by the Logical Core. For
the Logical Core to maintain the soundness of the knowledge base according to Section 3.4,
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it has full read and write access to the belief and rules in the data storage. It further
contains a mapping to track the relation between belief elements, where these relations are
documented and maintained. The mapping contains two entries for each belief instance,
stating all elements that have been used to derive it and all elements that have been
derived from it. This eases the effort for the maintenance of soundness. Moreover, it offers
an interface that manages all write operations on rule and belief elements in the data
storage.

Finally, the knowledge base contains the Knowledge Base I/O posing as a single point-
of-contact for all operations originating from external actors. Implementation-wise, this
component is based on the Flask Framework and exposes a RESTful API dealing with the
requests. As all operations with queries can not result in unsoundness of the knowledge
base, they are directly managed by this interface. This includes the addition or change
of queries and the execution of queries to access the belief instances. However, all write
operations on rules and belief may lead to unsoundness. Therefore, these operations are
forwarded to the Logical Core.

3.5.2 Example 1: Add Belief
With the first example, we present the functionality of the knowledge base if a new belief
instance is added to it. We assume that the knowledge base initially contains no belief
instances for this example. We further assume that it contains exactly one rule. This rule
is depicted below

{"Trigger": "Security Report", "Code": "<Reference to the File>",
"Output": "Security Finding", "Name": "Parser"}

The code of this rule parses a security report into the security findings it consists of. The
belief classes ”Security Report” and ”Security Findings” are also defined.

Our example, depicted in Figure 3.7, starts with an external actor adding a new security
report (1). This element is forwarded by the Knowledge Base I/O to the Logical Core for
processing (2). The Logical Core employs the data storage interface to store this belief
element (3) and starts with the maintenance of soundness. Following the process for
maintaining soundness after an add operation (see left diagram of Figure 3.5), it first calls
the Inference Engine with a reference to this newly added belief instance (4). Since the
referenced belief instance belongs to the class ”Security Report”, the Inference Engine
requests all rules with ”Security Report” as trigger (5). The data storage interface returns
the parser rule shown above since it is the only rule with an applicable trigger (6). By
executing this rule, the Inference Engine parses the newly added security report into single
findings (7). These are parsed into instances of the belief class ”Security Findings” and
returned to the Logical Core (8). The logical core follows the maintenance operation and
notices that although belief was inferred, the source elements are solely the one added
security report (9). Therefore, the Logical Core checks that the inferred belief does not
yet exist in the knowledge base and stores the new belief using the data storage interface
(10). This results in another maintenance operation as new belief instances were added.
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Figure 3.7: Example Process for Adding Belief

This time, the Inference Engine cannot derive belief as no rules have belief instances of
the ”Security Findings” class as trigger. Therefore, the Logical Core concludes that the
knowledge base is sound.

3.5.3 Example 2: Read and Delete Belief
In our second example, an external actor intends to acquire currently existing data in the
knowledge base and decides to delete the security report that was added during the first
example. Our second example starts with the knowledge base state reached after the first
example.
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2. Store Query

4. Get Query
Knowledge Base I/O

<Flask Framework>

Data Storage

Data Storage Manager
<Python>

1. Add new Query

3. Request Query
5. Execute Query

Figure 3.8: Example Process for Reading Belief

The read access to the knowledge base is depicted in Figure 3.8. To receive the necessary
view on the data, our external actor first adds a query aggregating the belief instances (1).
Since this new query does not affect the soundness of the knowledge base, the Knowledge
Base I/O directly adds it to the data storage using the interface (2). This newly added
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query is afterward requested by the external actor (3). To fulfill this request, the query is
searched (4), and the program code belonging to the query is executed by the Knowledge
Base I/O (5). In the end, the data resulting from the query execution is returned to the
external actor.
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5. Delete derived
Security Findings

Logical Core
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Figure 3.9: Example Process for Deleting Belief

In a second step, the external actor intends to delete the formerly added security re-
port, as shown in Figure 3.9. First, the request to delete the belief instance is sent to the
Knowledge Base I/O (1). As this deletion operation potentially infringes the soundness of
the knowledge base, it is forwarded to the Logical Core (2). The Logical Core deletes the
belief instance by using the data storage interface (3) and starts the maintenance of sound-
ness(see right diagram of Figure 3.5). According to the maintenance strategy, the Logical
Core identifies all belief instances derived from the deleted security report and checks the
number of source elements used during the inference. As all security findings have been
derived exclusively from the security report, they are also deleted (5). This results in an-
other maintenance operation, as belief instances were deleted. As these security findings
were not used to derive further belief instances, the maintenance operation terminates as
a sound knowledge base state is reached.

3.6 Preliminary Evaluation
To ensure our platform solves the initial problems, we conducted a preliminary evaluation
with the implemented version of the semantic knowledge base. This section describes how
this evaluation was conducted and presents the results. Finally, we discuss the evaluation
results and their impact on the rest of the thesis.

3.6.1 Evaluation Planning
The evaluation was planned following the initial problem description that the knowledge
base attempts to solve. Section 3.1 presents the five challenges for evaluating the instance
of our semantic knowledge base concept. For each of the five challenges, we defined a
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question that the evaluation should answer and a strategy to acquire an answer to each
question, documented in Table 3.1. To analyze every criterion, the knowledge base must
be tested for its functionality.

Challenge Question Evaluation Strategy
Functionality Does the platform orchestrate

and document the data process-
ing

Test the documentation for each
processing step

Automation Does the platform automate the
data processing

Measure manual effort for oper-
ating the knowledge base

Fast Feedback Is the feedback provided by the
platform fast

Measure the feedback time after
new data is added

Modular Data
Processing

Are arbitrary processing opera-
tions supported

Test operation success for each
category of inference structure

Continuous Data
Processing

Is the knowledge base main-
tained sound throughout chang-
ing operations

Manually evaluate soundness af-
ter a defined set of operations

Table 3.1: Knowledge Base Evaluation Question

To achieve a realistic setup, four rules were established representing the four inference
structures described in Subsection 3.4.1:

• Parser: One Security Report results in multiple Security Findings (1 - *)

• Duplicate Clustering: Multiple Security Findings result in one Cluster (* - 1)

• Aggregator: One Cluster results in one Aggregated Finding (1 - 1)

• Recommender: Multiple Aggregated Findings result in multiple Recommendations
(* - *)

These four rules further necessitate five belief classes. The Security Report stores the
explicit report data provided by external actors, which is parsed into multiple instances
of the Security Finding class. Duplicate instances are identified between them, and the
resulting clusters are stored as instances of the Cluster class, which is transformed to an
instance of the Aggregated Finding class by aggregating the data of all findings contained
in the cluster. Finally, the information provided by the aggregated findings is transformed
into instances of the Recommendation class by deriving actionable recommendations for
project teams from it. Furthermore, the data must also be accessible to external actors.
Towards this goal, we introduce five queries, each listing all instances of one belief class.

To analyze how far the knowledge base covers the identified problems, a real-world
simulation of its operation must occur. Therefore, a set of add, delete, and read operations
are executed, mimicking a software development project. Angermeir et al. suggest that
tools that can be directly integrated into pipelines are more likely used in modern software
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development than ones with higher integration effort [11]. Therefore, we consider the
standard tools integrated by default in Github and Gitlab. As only Gitlab1 informs about
the used secrets scanner and dynamic application security testing tools, we select the
respective tools Gitleaks and OWASP ZAP. To cover static application security testing and
third-party vulnerability scans, we decided for the Github2 tools CodeQL and Dependabot,
which have also been referenced by Angermeir et al.[11]. This results in four tools producing
data for our knowledge base. As a system under test, we use version 8.7.2 of JuiceShop3.
It is a vulnerable web application generally used for hacking challenges. However, it also
provides a variety of publicly known vulnerabilities common in software. This also solves
ethical considerations as, most likely, all findings identified by our analysis are intended.
Hence, it is a reasonable product for our evaluation. We tested the code base of this system
daily with our selected tools for two months until version 8.7.3 of JuiceShop was released,
resulting in 53 reports per tool. Each add operation consists of one report per tool for
a selected day. Hence, 53 add operations took place, each comprising four reports being
uploaded. Since delete operations are scarce in reality, each add operation is followed
by a delete operation with a 10% chance. Such deletions are limited to security report
instances since delete operations on derived belief instances might be revoked if new data
is added (e.g., deleted cluster instances would be re-inferred). Whenever a delete operation
is triggered, it selects a security report instance at random and requests the deletion.
Five read operations take place after every add or delete operation, requesting each query
once. Before any read operation is requested, the maintenance process of the previous
operation must be finished. Otherwise, the data would be constantly unsound. This sums
up to 53 add operations with four reports each, approximately 270 read operations, and
approximately five delete operations.

The data to evaluate the knowledge base is acquired by three measurements. First,
the time to complete each operation in the knowledge base is tracked and mapped to the
respective operation. This provides insights into the feedback time. Second, the results of
the read operations are stored and manually evaluated against a ground truth to analyze
the soundness and documentation properties of the knowledge base. This indicates whether
the information provided by the knowledge base is correct. Combining the first and second
measurements provides further insights into the success of each processing step. Finally,
the effort for initializing the knowledge base is measured. Even though the manual effort
during operation is limited to sending API requests, the initial overhead for the knowledge
base creation still impacts its automation capabilities. The results acquired by measuring
these aspects are presented in the next subsection.

3.6.2 Evaluation Results
The evaluation of the semantic knowledge base consisted of 53 add operations, 271 read
operations, and six delete operations. During the entire evaluation period, the knowledge

1https://docs.gitlab.com/ee/user/application_security/secret_detection/
2https://docs.github.com/en/code-security/getting-started/securing-your-repository
3https://owasp.org/www-project-juice-shop/
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base never reached an unstable state and could always respond to read operations after
the maintenance of soundness was completed.

The first measurement in advance to the actual evaluation protocol, was the measure-
ment of manual effort. The manual effort to create the belief classes varied between 19 and
35 minutes. The necessary time correlated with the size of the belief classes, implying that
belief classes with more attributes took longer to implement. The queries took approxi-
mately 15 minutes each without major differences between queries. The most significant
manual effort was required for the creation of the rules. While the Parser rule for the se-
lected four tools took 2:15hrs, the Aggregator rule required 3:45hrs. This time was almost
doubled for the Duplicate Clustering, requiring 6:20hrs for the implementation. The most
manual effort was required for the Recommender, which took 7:00hrs to implement. All
times are listed in Table 3.2. In summary, the initialization of the knowledge base took 22
hours and 53 minutes.

Category Implemented Component Effort in Hours
Belief Class Security Report 0:19
Belief Class Security Finding 0:34
Belief Class Cluster 0:23
Belief Class Aggregated Finding 0:35
Belief Class Recommendations 0:28
Query Security Report Query 0:16
Query Security Finding Query 0:15
Query Cluster Query 0:14
Query Aggregated Finding Query 0:16
Query Recommendations Query 0:13
Rule Parser 2:15
Rule Aggregator 3:45
Rule Duplicate Clustering 6:20
Rule Recommender 7:00
Summary Summary 22:53

Table 3.2: Manual Effort Times for the Initialization of the Knowledge Base

Next, the correctness of the information given by the knowledge base was analyzed. The
data of all 271 read operations matched the ground truth dataset that was constructed
according to the series of knowledge-base-changing operations that occurred before the
read operation. Hence, no unsound data was found during the evaluation.

Finally, the time required for each operation was collected. For read operations this
time increased with more belief instances stored in the knowledge base. However, this only
affected the queries if more belief instances were also returned, excluding, e.g., Cluster
instances, as they solely increased marginally with more reports being added over time.
The response time for read operations varied between 0.1 and 0.25 seconds. For delete
and add operations, the maintenance overhead outside of calls to the inference engine
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was under 1 second. However, all data storage calls, comprising addition and deletion of
belief elements, scaled with the request size, implying that, e.g., requests deleting several
elements took more time than deleting a single element. Moreover, calls to the inference
engine notably impacted the maintenance time. Rules with one source element, like the
Parser or the Aggregator, showed a static execution time, while rules with multiple source
elements, like the Duplicate Clustering or the Recommender, scaled with the number of
belief instances covered. In Table 3.3, the minimal and maximal encountered execution
times are listed for each rule.

Rule Min Execution Time Max Execution Time
Parser 0.2 seconds 0.4 seconds
Aggregator 0.1 seconds 1.3 seconds
Duplicate Clustering 0.8 seconds 12 seconds
Recommender 0.2 seconds 6.1 seconds

Table 3.3: Rule Execution Times

The maintenance of delete operations has shown to be at least as fast, but in most
cases faster than add operations. The worst-case scenario for maintenance was the last
addition of a security report. While the Parsing and Aggregation times stayed at 0.3 and
1.1 seconds, the Duplicate Clustering took 12 seconds, and the Recommender finished
after 6.1 seconds. This resulted in almost 40 seconds of processing time, as the duplicate
clustering and the recommendations had to be executed twice.

3.6.3 Discussion and Limitation
The evaluation results indicate that our semantic knowledge base is a promising platform
for the management of security findings, but it also discloses some limitations. In the
following, we discuss these results according to the problem description of this chapter.

First, the correctness of data produced by the inference rules and the ability to add
exemplary rules indicate that our knowledge base supports arbitrary data processing. The
correctness of data further showed that it maintains a sound state throughout multiple
operations. Moreover, each inference was traceable whenever the knowledge base reached
a sound state. Therefore, the platform also orchestrates and documents the data processing
correctly. Even though the platform automated all of the data processing, a considerable
manual effort is necessary to instantiate the knowledge base. Especially, the complexity
of Elasticsearch queries increased the development time, as seen by the effort required
in hours of the Recommender and Duplicate Clustering listed in Table 3.2. Both rules
contained additional Elasticsearch queries that have been mentioned as one of the reasons
for the increased effort. Hence, the knowledge base fulfills the automation requirement, but
the investment upfront for its setup must be considered when using it in practice. Finally,
the maintenance time between data being added to the knowledge base and results being
shown to external actors is substantial, so the fast feedback requirement is not entirely
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fulfilled. With up to 40 seconds of processing time for new data, the timeframe can only
be considered acceptable. However, the Bottom-Up principles followed by the logical core
ensures that feedback can be given instantaneously whenever a sound knowledge base
state is reached. Further, the evaluation reinforces the importance of well-constructed
Elasticsearch queries, which are key for efficiently handling belief instances. Consequently,
improving these queries might further enhance the knowledge base performance.

Several threats constrain the validity of our preliminary evaluation results. First, the
data collected on the manual effort can not be generalized, as it was set up by somebody
with knowledge of the platform and its interfaces. Hence, another developer implementing
rules will most likely perform worse. In a realistic setting, however, the knowledge base
would already contain several queries, belief classes, and rules, as certain inferences are
helpful for the management of security findings in general. Second, the degree of realism
achieved by this evaluation is limited as the overall setup solely mimics an actual project.
We still believe this threat is acceptable, as the evaluation is considered preliminary. The
third threat is the relation between our knowledge base performance and the underlying
hardware it runs on. The knowledge base received four Gigabytes of RAM and two virtual
cores for processing in our lab setup. Any other setup might increase or decrease the
performance and hence falsify the data shown in our evaluation. Finally, the modularity
of our platform is not proven by this evaluation. Even though we tested all possible
relations between belief instances, our evaluation setup cannot verify that the knowledge
base rule structure supports every type of rule. Whether the platform supports all necessary
inferences will, therefore, be identified in the upcoming chapters.

3.7 Conclusion
In this chapter, we presented our concept and implementation of a semantic knowledge base
as a solution for a platform that orchestrates, automates, and documents the management
of security findings and its related data processing. Our platform takes advantage of the
automated documentation and continuous inference properties of semantic knowledge bases
and combines them with the flexibility and transparency of logical reasoning. We presented
the concept and implementation of our semantic knowledge base and instantiated it with
four inference rules to evaluate it in a simulated project environment.

This chapter comprises three contributions. Our first contribution is the concept of
a modular semantic knowledge base supporting the flexible addition of data classes and
inference rules. The second contribution is the proof of applicability to real-world scenarios
by implementing and initializing it with an initial set of rules and data. Finally, we
preliminarily evaluated our implementation against the initial problem description and
concluded that our semantic knowledge base yields a satisfactory solution to the identified
problems.

Consequently, we conclude that our semantic knowledge base is a reasonable platform
for managing security findings in modern industrial software development projects. The
final conclusion for selecting a semantic knowledge base as our platform can only be drawn
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when the necessary inference functions are known, and the platform is evaluated in indus-
trial software development projects.



Chapter 4

Improving Data Quality of Security
Findings

One of the most significant challenges of managing security findings in modern indus-
trial software development is the quality of reports generated by automated and manual
security checks. Affected by challenges like duplicates, low semantic textual value, and
varying terminologies, the data quality must be improved before findings can be man-
aged efficiently. In this chapter, we present the problems necessitating the improvement of
the security findings data quality and describe our solution approaches for the collection,
parsing, deduplication, and data enrichment of security findings. The integration of these
solution approaches into our semantic knowledge base, and its preliminary evaluation con-
cludes this chapter. The research on security findings deduplication was further published
in [161], while the preliminary evaluation on the parsing and deduplication is published in
[194].

4.1 Problem Description
In our preliminary problem analysis, we identified the need to improve the data quality of
security findings. According to Subsection 2.3.3, four requirements affect the preprocessing
of security findings. These requirements include

1. The Collection of security findings data from the respective sources and its storage
at a central instance

2. The Parsing of security findings to a common data format

3. The Aggregation and Correlation of security findings to avoid duplicates and
identify dependencies

4. The Enrichment of security findings
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The research on these problems and their respective solution approaches contribute to our
second objective. However, any solution approach must additionally mind the principles
arising from modern software development:

• Topic III: The manual data quality improvement must be minimized

• Topic IV: The data quality improvement processing must provide fast results

• Topic VIII: The data quality improvement processing must be continuously exe-
cutable

• Topic XII: The data quality improvement must consider data from all development
stages

This results in four problems this chapter aims to solve. These four problems are described
in the following paragraphs.

Collection of Security Findings
The first problem is represented by the distribution of security checks in modern in-

dustrial software development projects. A single platform rarely covers the entire security
testing strategy of a project. In most cases, the security findings generating checks are
distributed across the entire software development lifecycle, ranging from tests in CI/CD
pipelines to monitoring in the operations environment. Furthermore, not all tests are
automated or orchestrated. A central activity in any software development project is a
Penetration Test. These tests are, by definition, primarily conducted manually and solely
supported by security tooling. However, these tests also contain security findings that must
be handled centrally. To fulfill the requirement of a central security findings management, a
collection of security findings must adhere to strategies customized to the different sources
of security findings.

Parsing of Security Findings
The second problem is the varying textual representation of security findings depending

on the data source. Similar to the collection of security findings, the variety of security
activities producing security findings results in different data formats and various termi-
nologies for the information transported by it. To ensure a common understanding of the
provided information by a human user and construct a reliable data structure for sub-
sequent process steps, the data provided by the security activities must be parsed to a
common data model. This covers the transformation of source data to security findings
and the development of a common data model supporting actors of the security findings
management process and subsequent processes.

Aggregation and Correlation of Security Findings
The third problem is the existence of duplicate security findings between multiple security

reports. To avoid gaps in the coverage of a software product, employing activities with
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overlapping coverage is common in industry. Identical test cases can result in duplicate
security findings from different sources, increasing the workload for practitioners. To avoid
this unnecessary effort, security findings must be correlated and duplicates eliminated.
This includes the identification of duplicates as well as their elimination by aggregation.

Enrichment of Security Findings
Finally, each source of security findings provides a different level of information quality

and knowledge density in its reports. While the information provided by manual activities
like Penetration Tests often provides detailed and reliable insights about the software, this
is not the case for less sophisticated tests like pattern matching. To construct actionable
information for actors of the security findings management, certain information must be
provided in every security finding. The identification of this information and a strategy
for the enrichment of security findings is our last problem in this chapter.

Each solution approach must also comply with modern industrial software development
principles. Consequently, they should be mostly automated within our platform, achieve
fast results, allow for continuous process execution, and ensure that data arises throughout
all software lifecycle phases.

4.2 Related Work
Processes to improve data quality is a research field spread across most computer science
domains. Whenever data is processed, its quality and soundness are assessed or improved,
affecting the domain of secure software development as well. This section presents the
work related to the collection, parsing, deduplication, and enrichment of security findings.

Data collection from various sources is a widespread problem in empirical research.
With increasing research on Social Media or investigation of publicly available data like
software repositories, the demand for continuous, automated, and reliable data collection
is reaching an all-time high. When collecting data from specific platforms like Social Media
providers, typical challenges include rate limitations or access to authentication keys. This
research type mainly uses APIs exposed by platform providers [105], resulting in collection
strategies dealing with the API employed or efficiently constructed requests [171, 166, 113].
When broadening the focus to generic web content, the challenges shift to the efficient col-
lection of data structured in website components [41, 64]. The work by Ullah et al. [186]
on automated security compliance checking for the cloud is particularly interesting for our
use case. Their data collection approach considers APIs, tool-specific interfaces, adminis-
trative protocols for machine access, and manual data upload. With these measures, they
collect data from security activities necessary for claims on security compliance of cloud
infrastructure. Similar to the research in the Social Media domain, our collection approach
has to keep authentication procedures in mind when data is collected. Since security tools
contain confidential information on the security shortcomings of software products, this
data is protected by authentication and authorization mechanisms. However, receiving
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access keys, rate limitations, or unstructured data should not be a problem in industrial
software engineering, as the project team desires the collection and data is supposed to be
mostly structured.

A typical subsequent action after data is collected is the parsing of information to a
format that can be processed later. In the work by Schäfer et al., they identify the necessity
to parse HTML data containing security intelligence data into a structured file solely con-
taining text [163]. They propose a system for collecting security intelligence information by
scraping the dark web and solving the challenge of processing different HTML site struc-
tures by employing a separate parser model for each forum they encounter. More closely
related to the security findings our methodology aims to manage is the work by Alqahtani
et al. [6]. They suggest a modeling approach to trace security vulnerabilities between soft-
ware repositories and vulnerability databases. Since their data originates from multiple
sources that employ different formats, they developed a unified ontological representation
and parsed all data to this format. Our approach will similarly rely on a homogeneous
structure for all security findings and a respective parsing operation.

The existence of duplicate findings across several security activities reporting about a
product is an existing challenge in industrial software development. However, the related
work on the deduplication of findings is seemingly scarce. By reducing the scope to vul-
nerability deduplication, Peng et al. proposed an approach for clustering Use-After-Free
(UAF) vulnerabilities [143]. Even though related to the deduplication of security findings,
their process uses UAF-specific properties for the deduplication, which is not given in every
finding. More closely related to our work is the procedure by Huang et al. [67]. In their
work, they classify vulnerabilities of the National Vulnerability Database (NVD) by clus-
tering them according to their textual properties. Even though this neither covers all types
of security findings, as NVD solely contains publicly known vulnerabilities nor does it iden-
tify duplicates, the idea of investigating textual properties for deduplication is promising.
Another related domain is the management of software bugs, which are often considered to
include security findings. Research in the domain of software bug deduplication is exploring
multiple techniques ranging from deep learning networks [153] to Natural Language Pro-
cessing (NLP) using Linear Discriminant Analysis (LDA) [101, 1]. Therefore, an approach
for deduplicating security findings by processing the natural language contained by them
seems reasonable. In multiple other domains of the software engineering field, the applica-
tion of NLP techniques has solved existing challenges [38, 107, 1]. Using Latent Semantic
Indexing, Kuhn et al. [97], for example, analyzed linguistic data in source code. Similarly,
Tan et al. assessed software quality by creating clusters of related problems in the source
code and reducing the effort to review code [176]. Even though their approach focuses on
all quality aspects of code, the concept of semantic clusters is promising for our use case.
The method of clustering semantically similar data is applied in various other publications,
including similar requirements [46] or app reviews [160]. However, our literature analysis
also showed that no publications related to NLP focusing on the deduplication of security
findings exist.

The enrichment of existing information about the shortcomings of software in the secu-
rity domain is also a topic that has been addressed in recent scientific literature. In 2019,
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Viertel et al. proposed an approach for detecting vulnerabilities in software code by clone
detection from publicly known vulnerabilities [188]. As part of their approach, they use
the metadata provided by CVE to enrich the vulnerability information. One step further
is Glanz et al.’s proposal, which suggests the enrichment of vulnerability entries in the
NVD database with the affected software versions and information on potential fixes [55].
Hence, their recommendation does not focus on reports provided by a tool or activity but
applies the enrichment at the origin of information used by many tools: the vulnerability
database. Also, Althebeiti and Mohaisen follow this idea by proposing a process that en-
riches vulnerability descriptions of publicly known vulnerabilities [8]. They leverage the
hyperlinks often given in the NVD database to collect more information about the vul-
nerability from third-party sources and construct a description from the found data. We
conclude from the existing work in this domain that the enrichment of security findings
using vulnerability databases is a commonly used approach. However, the proposals to
improve the data provided by the vulnerability databases indicate that the existing data
is not optimal.

4.3 Security Findings Collection and Parsing
The first step towards improving the data quality of security findings as part of the man-
agement process is the collection and parsing of security data to the desired format of
security findings. Most projects distribute their security analysis strategy across multiple
security activities, resulting in distributed data sources for the security findings. Moreover,
the format and terminology used to store the data in security reports differentiate between
sources. Therefore, this section presents the collection strategy for security reports and
the parsing process including the common data model every security finding is parsed to.

4.3.1 Collection
The first step to improve the data quality of security findings is the collection of security
data containing findings from their respective sources. In contrast to most of the related
work in this domain, we do not just consider the proactive collection of data from multiple
sources, but also the reactive acceptance of data. Especially tools that are orchestrated in
CI/CD pipelines as runners solely have short-lived data storage. Therefore, the data must
be sent in real-time after the tests have been conducted. Otherwise, the security data is
deleted shortly after. Consequently, we identify the need for two collection strategies.

For the first collection strategy, the security data is proactively collected at its sources.
This strategy is employed for any source activity that maintains a data storage for its
security data. The collection itself is agnostic of the activity type and its storage and
solely depends on the interface provided to the data. Following the strategy by Ullah et al.
[186], our strategy covers proactive data gathering at APIs, custom tool interfaces using
the HTTP/-s protocol, and accessing machines via administrative protocols. While the
primary use case for the proactive data collection is standalone activities outside of CI/CD
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pipelines like security monitoring tools, it can also apply to reports from manual activities
where reports are stored in a suitable storage like a database.

However, the proactive strategy can only be applied in scenarios with persistent data
storage. Most security tests orchestrated in CI/CD pipelines are deployed on temporary
”runners” that are deleted after completing their job, affecting the data stored on them
as well. Therefore, our strategy must be extended to include reactive collection, where
data can be sent to our methodology. This reactive collection is realized by an interface
supporting data uploads. Including the fourth data collection approach mentioned by
Ullah et al. [186], this interface must also be available for manual data uploads by human
users. A typical use case would be the manual upload of a security report by testers after
conducting a Penetration Test.

This results in a two-fold collection strategy depicted in Figure 4.1.

Reactive Collection

Collection Strategy

Proactive Collection

Source Dataset
Tool

Actor
API

Tool

OS

Figure 4.1: Proactive and Reactive Collection Strategies

Integration Process
To integrate our strategy of collecting security findings data into software development

projects, particular preceding steps must be fulfilled. First, all sources of security data
in the project must be identified. Next, the collection approach for each source must
be known. All sources using the reactive strategy must receive access to the interfaces
the reactive component provides. For those sources requiring the proactive collection of
data, access to the data must be ensured, including authentication and potential network
access. Moreover, the triggers for data collection must be defined and documented, as the
collection process must be able to trigger the proactive collection.

4.3.2 Security Findings Datamodel
Another fundamental requirement for the preliminary improvement of data quality is pars-
ing all security activity reports to a common data format. This necessitates a data format
suitable for all sources of security findings. This subsection presents the data model and
the underlying research to achieve it.

The data model has to fulfill two requirements. First, it must be able to comprise
and document all relevant information provided by security activities. Since these activi-
ties highly differentiate in the type of information they transport, depending, e.g., on the
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software aspect they analyze or the stage of the software engineering lifecycle they are in-
tegrated in, the data model must cope with various data fields and terminologies. Second,
the model has to contain all information necessary for the later stages of the security find-
ings management process. Otherwise, the parsing would inflict data loss with a disastrous
impact on any stage requiring this information.

The second requirement is especially challenging since not every inference in our knowl-
edge base is known upfront. Consequently, we cannot distinguish information that might
become relevant for the security findings management from irrelevant information. There-
fore, all data provided by security activities with potential impact on the security findings
management must be included in our data model. This automatically fulfills the first
requirements since the data model comprises all data fields. However, the varying termi-
nology between activities still represents a challenge. Towards a common terminology, the
content of all fields offered by security activities must be semantically understood, and a
field expressing its semantic meaning must be added to the data model.

Identification of Sources
To construct the data model, we first create a representative list of security activities

that generate security findings and use exemplary reports of these activities to identify
common data fields. However, no generally accepted list of security practices in mod-
ern software engineering exists. Angermeir et al. categorize security activities into five
types, namely ”3rd Party Vulnerability Scanning”, ”Static/Dynamic Application Secu-
rity Testing”, ”Secure Configuration/Hardening”, ”Compliance/Hardening Checks” and
”Secrets Management” [11]. The OWASP Guideline for DevSecOps and security automa-
tion extends this list with ”Scan git repositories for finding potential credentials leakage”,
”Software Composition Analysis”, ”Static Application Security Test”, ”Infrastructure as
Code Scanning”, ”Interactive Application Security Testing”, ”API Security”, ”Dynamic
Application Security Test”, ”Cloud Native Application Protection”, ”Infrastructure scan-
ning”, ”Continuous Scanning from other tools”, and ”Compliance Check” [206]. These two
sources already show substantial conflicts in the clustering and selection of activities. As
a source for the security findings management methodology, we solely consider activities
that inform about shortcomings. Therefore, the ”Secure Configuration/Hardening” section
mentioned by Angermeir et al. is, for example, not relevant to our data model. Combining
the security activities mentioned above with the three most influential documents for the
security findings management (BSIMM 12 [26], OWASP SAMM [140], Safecode [158]),
we define the activities in the ”Category” column of Table 4.1 as relevant sources for our
methodology.

Area Category Instances
SAST Secret Scanning • git-secrets

• Gitleaks
• truffleHog
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SAST 3rd Party Component Vulnerability
Scanning and SCA

• OWASP Dependency-check
• RetireJS
• Clair
• Anchore
• Trivy
• Dependabot
• Snyk

SAST Code Review (Application and In-
frastructure Code)

• SonarQube
• CodeQL
• Coverity
• Brakeman
• Bandit
• Checkov
• tfsec
• terrascan
• KICS
• Manual Code Review

SAST Configuration and Hardening
Checks

• conftest
• InSpec
• Kubebench
• Bane

SAST Security Requirements Testing • Unit Testing
DAST Security Functional Testing • Unit Testing
DAST Dynamic Interface, API and Black-

box Testing
• ZED Attack Proxy
• Acunetix
• Netsparker

DAST Interactive Application Security
Testing

• Contrast

DAST Penetration Testing • Customized Report
Operations Security Security Operations Monitoring

(Logs, Configuration, Hardening,
Patch State)

• Wiz
• Sysdig
• Crowdstrike
• Qualys

Operations Security Infrastructure and Network Testing • driftctl
• Kubediff
• NMap

Table 4.1: Security Activity Categories and their respective Tools

The reviewed documents solely mention an activity type while omitting specific tools or
reporting schemes that should be used. An exhaustive list of all potential report formats
would necessitate an in-depth review of all security tools and activities on the market.
Due to the ever-changing list of new tools joining the market and others reaching an end-
of-life status, such a list is connected to an unreasonable effort as it solely provides a
snapshot. Therefore, we solely consider the most prominent reporting schemes used by
our industry partner and mentioned by OWASP [206]. These exemplary instances of the
security activities are listed in the rightmost column of Table 4.1. Exemplary reports or
data formats are publicly available for most of these activities. Due to the confidential
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nature of Penetration tests, these are not publicly disclosed. Consequently, we requested
an exemplary test report from our industry partner.

Datamodel Construction
Our data model is constructed using this list of commonly used security reporting

schemes. For its construction, we follow a protocol that is applied to each reporting scheme
in the list.

1. Identify all data fields a single finding consists of

2. Eliminate any field from this list that has no impact on the security findings man-
agement

3. Map each field to the existing list of common data fields based on its semantic
meaning

4. For any field that cannot be mapped, determine the semantic context and add it to
the common data fields

Applying this protocol to the Pentest report retrieved from our industrial partner would
result in the following procedure. First, all data fields are identified. In our example
this results in ten data fields: ”ID”, ”Title”, ”Finding Number”, ”Cricitality”, ”Sum-
mary”, ”Background”, ”Approach”, ”Approach”, ”Prerequisites”, ”Impact” and ”Counter-
measures”. We eliminate the ”Finding Number” field, as this solely relates to the order of
each finding in the report without any relevance for the later management of these findings.
Since our list of common data fields is initially empty, each field is added with its respective
semantic context, resulting in the list depicted in Table 4.2.

Data Field Semantic Context
ID Unique identifier of the finding with respect to the activity
Title Describe the finding in one sentence
Criticality Criticality of the findings for the security of the software
Summary Brief description of the finding
Background Context of the finding; explains components/actors/aspects as

background information necessary to understand the finding
Approach Explanation on how the finding was identified by the activity
Prerequisites Circumstances or resources necessary for the exploitation of the

finding
Impact What are the consequences of an attacker exploiting the finding
Countermeasures Recommendations on how to resolve or mitigate the finding

Table 4.2: Initial List of Common Data Fields
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Resulting Datamodel
The list of common data fields resulting from applying the protocol to all reporting

schemes can be found in Table 4.3. During the analysis, several challenges arose. The
first challenge is the varying information provided for specific fields like location. While
code reviews pinpoint particular lines in the code, 3rd party component checkers mainly
mention the respective component. Furthermore, this information is sometimes spread
across multiple fields or summarized within one. To cover these different formats and
information types, the data remains remains under-specified and is addressed by the parsing
in a second step. The second challenge is activities that test using rulesets tailored towards
each project. In these cases, the report and its data field are closely coupled to the test
case written by the project team. To compensate for the unpredictable content of custom
rules, we included the JUnit-XML format in our analysis as it is a common reporting
format in CI/CD environments. Finally, some tools were extremely verbose, providing
detailed information regarding the type of activity. As this information was only provided
by one category of security activities, we added the ”Activity-Specific Information” field
to our data model. The additional fields ”Source” and ”Source Version” were introduced
to provide detailed information on the activity that generated the finding.

Moreover, multiple distinctive features in the reports were identified. First, the most
common data fields include the location of the finding (Location: 27), a summary of what
was found (Title: 20, Description: 19), and the impact of the finding on the software
security (Severity: 17). While almost every report informs about the finding location, the
title is sometimes replaced by an identifier or rule. Especially activities testing software
for publicly known vulnerabilities like the ”3rd Party Component Vulnerability Scanning
and SCA” provided the respective CVE-IDs with each finding. Another aspect is the
varying terminology for a multitude of fields. An example would be semantically similar
field names ”check_name” and ”test_name”, which contain either the title of a finding or
an alphanumeric identifier of the applied test case. Furthermore, the severity of a finding
was found in field names including ”risk”, ”criticality”, or ”impact” while not following the
commonly accepted definition discussed in Subsection 2.1.2. These inconsistencies in the
terminology reinforce the necessity of a common data format.

Data Field Semantic Context Terminology of Sources Frequ.
Location Data on where the finding

can be found in the software.
Either locator in the source
code, repository or running
software

location, filename, line_number,
commit, file, repository, filePath,
component, software, feature-
name, package, cpe, PkgName,
displayFile, displayComponent,
code_block

27

Title Describes the finding in one
sentence

Title, name, code, check_name,
query_name, shortname, Vulnera-
bility Name,

20

Description Brief description of the find-
ing

summary, description, info, mes-
sage, text, displayType, issue_text,
rule_description, desc, otherinfo,
DetailedInformation, test_info

19
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Severity Criticality of the findings for
the security of the software

criticality, severity, issue_severity,
riskdesc, riskcode, impact

17

Identification Type Rule that was tested to iden-
tify the finding or the ap-
proach for the check

policyId, test_id, Approach, De-
tector Type, evidence, detection,
user_input, test_name, check_id,
check_class, rule_id, pluginid, Rule
Name, test_number

15

ID Unique identifier of the find-
ing with respect to the activ-
ity

ID, issue, key, rule, cid, query_id,
Vulnerability ID,

11

Timestamp Timestamp, when the finding
was last identified

timestamp, reportDate,
last_evaluation, LastModified-
Date, creationTime, updateDate,
lastDetected, ScanTime, LastSeen-
Date

11

Countermeasures Recommendations on how to
resolve or mitigate the finding

Countermeasures, fix, fixedby, reso-
lution, fixedIn, action, guideline, so-
lution, Recommendation, test_desc

10

CWE Common Weakness Enumer-
ation identifier and descrip-
tions

cwe, CweIDs, cweid, CWEList 9

CVSS CVSS Score and Vector cvssScore, cvssvec, cvssVector,
cvss_v3, cvss_v2, cvss, CVSSv3

8

Certainty How certain is it, that the
finding is a True Positive

is_verified, confidence, is-
sue_confidence, Certainty

7

Finding Category Umbrella category this find-
ing belongs to

category, type, warning_type, Cat-
egory

7

CVE-ID Unique identifier in the Com-
mon Vulnerabilities and Ex-
posures program

cve, name, vulnerability, Vulnerabil-
ityID

5

Prerequisites Circumstances or resources
necessary for the exploitation
of the finding

Prerequisites, exploit, audit 3

Impact What are the consequences
of an attacker exploiting the
finding

impact 2

GHSA GHSA Identifier GHSA 1
Fixing Effort Time necessary to fix the

finding and consequently the
technical debt

debt, effort 1

Severity Source How was the severity calcu-
lated or defined

SeveritySource 1

Background Context of the find-
ing; explains compo-
nents/actors/aspects as
background information
necessary to understand the
finding

Background 1
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Activity-Specific
Information

Field for leftover data, only
relevant for the specific activ-
ity

N/A N/A

Source Activity name that provided
the finding

N/A N/A

Version Version of the activity that
provided the finding

N/A N/A

Table 4.3: Common Data Model derived from Security Activity Reports

The construction of the data model results in the fields listed in Table 4.3 with their
respective semantic meaning. This model covers any information provided by our represen-
tative list of security activities that might be relevant to the security findings management
process. Using the ”Activity-Specific Information” it is further possible to include cur-
rently not considered information. The following subsection describes the strategy for
parsing reports to the data model.

4.3.3 Parsing to Datamodel
In a second step, every security report collected previously is parsed to the common data
model described above. The constraints for the parsing procedure and its realization are
described in this subsection.

During the construction of the data model, several constraints arose that must be
addressed by the parsing procedure. The analysis of the exemplary security reports showed
that the parsing of the source data to the constructed data model has to support several
operations and cope with the particularities of some activities. The most obvious challenge
is the list of different data formats the parsing operation must handle. During our analysis,
we encountered JSON, XML, CSV, HTML, and PDF documents containing exclusively
textual data, at least in a semi-structured format. Hence, the parsing procedure must
be able to deal with textual data structured according to multiple formats. To map the
information produced by the security activities to the common data model, each report
has to be broken down into its unique findings and an instance of the data model filled
with the given information. However, reports differ in their structure, as some findings
are aggregated by location, title, or CWE-ID, resulting in clusters of findings in some
reports that must be split up. Therefore, the parsing operation must be able to iterate
through each received data set, depending on the structure of the security report. Moreover,
some reports comprise data fields containing information that must be mapped to multiple
fields in the data model. Examples include HTML reports, where the first line of the
description fulfills our semantic interpretation of a title while the remaining paragraph
maps to the description. In these cases, data fields may not be mapped one-to-one, but the
parsing operation must be able to split data fields based on regular expressions. Similarly,
some reports spread their information across multiple data fields, necessitating a summary
of field content. Typical for this occurrence is the location field. Especially activities
analyzing static properties of software can pin the exact locations of findings in the code.
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Consequently, this information is often split across fields informing about the location in
the repository, the exact line and column of the finding within the file, and a code snippet
of the finding. In contrast, dynamic activities are mostly limited to stating the general
area of a finding’s location, resulting in one data field informing, e.g., about the affected
machine’s server resource or IP address. Therefore, the parsing operation must be able to
merge multiple data fields according to predefined rules. Finally, some reports are missing
data that are inherently given by the activity itself (Severity Source) or the circumstances
during the parsing operation (Timestamp). In these cases, a preliminary enrichment of
each parsed finding is necessary. This enrichment process is described in Subsection 4.5.1.

Summarizing all challenges, the strategy for parsing security activity data to the data
model has to support the parsing of JSON, XML, CSV, HTML, and PDF documents with
the capability to freely iterate through each report and split or merge the data fields on
demand. Moreover, the differentiating formats and report structures require a separate
parsing strategy for each security report. Since activities might change the report format
over time, a new version of an activity might necessitate a new parsing strategy for this
activity. Hence, each activity has a distinct ”Parser Model” for each report format, resulting
in a mapping between activities with their respective version and ”Parser Models”:

Activity A:
Version < 1.1: Parser Model 1
1.1 <= Version < 2.3: Parser Model 2
2.3 <= Version: Parser Model 3

Each ”Parser Model” consists of a set of operations to be executed on the respective activ-
ity report, resulting in a list of security findings that can be derived from the report. The
resulting list of security findings is afterward semantically enriched, as described in Sub-
section 4.5.1, to improve the information’s maturity. To successfully complete the parsing
operation, each data model instance must contain at least the data fields ”Title”, ”Lo-
cation”, ”Timestamp”, ”Source” and ”Version”. These fields have been selected based on
their ability to provide the minimal insight necessary for an informed decision about the
identified finding. It informs about where the finding is located, what kind of finding oc-
curred, and when it was seen the last time. The preliminary enrichment of Subsection 4.5.1
ensures that these fields are given, if possible. An exemplary ”Parser Model” for JSON
reports of the Secret Scanner Gitleaks is depicted below in pseudo-code:

finding_list = List()
For object in JSON_Element:

finding = Datamodel()
finding.title = object.description.split(’\n’)[0]
finding.source = "Gitleaks"
finding.version = "1.0"
finding.description = object.description.split(’\n’)[1]
finding.location = "[" + object.file + "," + object.line + "," +

object.column + "]"
finding_list.add(finding)



80 4. Improving Data Quality of Security Findings

The example shows how the original report is iterated to access the findings data (for loop),
how one data field is split into two for our data model (the description field is divided at the
newline symbol), and how multiple fields are aggregated into one (construction of location
field). Moreover, the source data lacks any timestamp. Hence, the preliminary enrichment
would add this information after parsing.

Integration Process
To integrate the parsing strategy into ongoing projects, all activities producing security

reports must be identified. In most cases, this step is already covered by the preliminary
integration of the collection. Afterward, a separate ”Parser Model” must be written for
each activity and the mapping between model and activity versions must be established.
Due to the volatile nature of report formats, new versions of activities must be continuously
monitored and a new ”Parser Model” must be written if the source format changes.

4.4 Security Findings Aggregation and Correlation

A security testing strategy that avoids whitespots in the product coverage is crucial for
any industrial software development project. While this strategy ensures that all aspects
of the product are covered, it comes at the risk of duplicate coverage. This duplicate cov-
erage of aspects typically results in findings being identified multiple times. Consequently,
the occurrence of duplicate or almost identical findings is inevitable. Since these dupli-
cates falsify a project’s security overview, their identification and elimination are crucial
to developing software efficiently.

This section presents our research on the deduplication of industrial security findings us-
ing NLP-based techniques. In the first step, we identified promising NLP-based approaches
for the deduplication of security findings and put them into the context of industrial soft-
ware development. Selecting the best-performing technique, we integrated the selected
method into a more extensive process, including the aggregation of duplicate security find-
ings.

The initial research on industrial security findings deduplication was performed as a
master thesis by Abdullah Gulraiz in collaboration with the Technical University Munich,
represented by Phillip Schneider. For this initial research, the background regarding seman-
tic similarity algorithms and experimental design has been provided by Phillip Schneider.
The experiments and analysis of results have been performed by Abdullah Gulraiz. The
problem statement and evaluation dataset originate from the author of this thesis. In all
remaining aspects, all authors contributed equally.

The collaboration results are published in [161], while the extended research and eval-
uation are published in [194].
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4.4.1 Definition and Identification of duplicate Security Findings
The first step towards identifying and eliminating duplicate security findings in industrial
software development projects is to define the relation between two findings considered
duplicates. In the first paragraph, we develop our definition of a duplicate security finding,
while the second paragraph provides guidance on how to identify this relation in practice.

Definition of Duplicate Security Findings
A first hint on the different types of duplication relations can be found in Subsection 4.3.2.

Here, we investigated reports from various security activities and found that some activities
aggregate findings according to certain properties. In the following, we discuss four different
strategies for the deduplication of security findings.

Some investigated activities aggregated their findings according to their location. This
means that all findings at the same location were listed within one cluster. This strategy
was typically employed by 3rd Party Component Vulnerability Scanning activities, where
all publicly known vulnerabilities affecting the same component were listed under the same
location. We define this type of aggregation as ”location-based”. The advantage of this
strategy is that all findings at one location can be treated at once. Hence, a team member
working on solving issues at one spot in the software can address all problems at this
location at once. Moreover, it provides insights into the ”Security Hotspots” of the software,
as clusters with more duplicate findings indicate that multiple security shortcomings impact
the location.

Another strategy employed the title of a finding as characteristic for clustering findings.
All findings with the same content in its data fields were aggregated in these cases, and the
respective locations were appended as a list. Hence, all findings in these reports contained a
data field listing all applicable locations. We found this approach in Code Review activities
where the same insecure coding pattern can be found at multiple places in the software
code. We define this type of aggregation as ”problem-based”. The idea behind strategy is
that solving the same finding at one location will likely enable the team member to solve
this finding at all occasions since the same problem is presumably solved similarly.

The most straightforward approach for identifying duplicates is to consider identical
issues at the exact same location as duplicates. Since all investigated activities already
ensure this property, the deduplication would happen over time as new reports must be
integrated into the existing list of findings. In these cases, the same finding at the exact
same location might be identified again or potentially found by another activity considering
overlapping product coverage. We define this type of aggregation as ”issue-based”. The
advantage of this strategy is that each finding is unique and independent of other findings.
Moreover, this deduplication approach requires the least effort as activities already ensure
this property.

The last strategy for identifying duplicate findings is typically employed when deciding
on actions with the greatest impact on the security of a product. Since multiple findings
might be solved by the same action (e.g., selecting pre-hardened system images), this
deduplication approach focuses on clustering all findings with the same solution to mitigate
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or fix them. We define this type of aggregation as ”solution-based”. The fundamental
advantage of this approach is the opportunity to identify actions with the most significant
impact on software security, considering the findings aggregated under the same solution.
Especially if multiple findings are all bound to the same root cause, this approach reduces
the overall number of findings and enables meaningful decisions.

For our aggregation and correlation of security findings, only one strategy can be ap-
plied. Issue-based aggregation and location-based aggregation both share the challenge
that their deduplication approach has to cope with the location field. This is problematic,
as the location of a finding might change over time considering changes to the code base
(a new line of code where the finding is reported) or a modified architecture (the finding is
located at another resource of an API). Therefore, these strategies might give an incorrect
perception of reality as the findings that are not found anymore are unresolved but can be
found at another location. Additionally, different activities refer to the same location in
the software with varying terminology, making identifying duplicates a challenge. These
problems and foreseeable negative impacts on the security overview cannot be compensated
by the advantages of either of the two strategies. Neither the problem-based aggregation
nor the solution-based aggregation is affected by the challenges of including the findings’
location into the calculation of the duplicate relation between findings. However, identi-
fying duplicates for the solution-based aggregation is challenging in other aspects. Even
though it provides the most meaningful insights of all approaches, identifying a finding’s
root cause and its respective solution is highly complicated and error-prone. Preliminary
investigations showed that this stage has a major manual component, limiting the poten-
tial of automated processing. Especially dynamic software analysis often does not indicate
a finding’s root cause and cannot provide insights into potential solutions. Consequently,
the deduplication results are prone to a low recall, necessitating manual intervention for
this step. Hence, this aggregation cannot provide fast results with minimal user inter-
vention as required by our development principles, excluding it from the list of potential
deduplication strategies. Finally, the problem-based strategy has the challenge of different
terminologies being used by activities for the same problem. This means that the same
problem might be described with varying phrasing, depending, e.g., on the type of activity
identifying it. Therefore, the semantic content of each finding has to be considered during
deduplication. This strategy presents the best balance between benefits for the security
findings management process and the feasibility of including it in our security findings
management process.

In summary, we define two findings as duplicates if they relate to the same problem,
regardless of where this problem is located in the software product.

Identification of Duplicate Security Findings
Using the last paragraph’s definition, we can decide if two security findings are duplicates.

This decision is based on the semantic content of each finding, describing its underlying
problem. Consequently, all data fields contributing information to this description are
crucial for identifying duplicates. According to our data model and the semantic context
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of each field, we consider the fields ”Title”, ”Description”, ”Countermeasures”, ”CWE”,
”Finding Category”, ”CVE-ID”, ”Prerequisites”, ”Impact”, ”GHSA”, and ”Background”
as relevant. These fields all describe the underlying problem to some degree.

One straightforward approach to identify duplicates would be an exact match between
these fields. However, a direct matching between fields cannot compare semantic content.
The reason why this is problematic is shown in the following example. The 3rd Party
Component Vulnerability Scanning and SCA tool Trivy was able to identify the publicly
known vulnerability CVE-2022-43551 1 in 2022 when scanning for 3rd party dependencies.
In its initial reporting, the following description was used:

A vulnerability was found in curl. The issue can occur when curl’s HSTS
check is bypassed to trick it to keep using HTTP. Using its HSTS support,
curl can be instructed to use HTTPS instead of an insecure clear-text HTTP
step even when providing HTTP in the URL. [...]

At the beginning of 2023, this description was changed to:

A vulnerability exists in curl <7.87.0 HSTS check that could be bypassed
to trick it to keep using HTTP. Using its HSTS support, curl can be
instructed to use HTTPS instead of using an insecure clear-text HTTP step
even when HTTP is provided in the URL. [...]

Even though large parts of the description and its semantic meaning persisted, the syntactic
content is not equal. Another change happened at the end of January 2023, where an
additional CWE-ID and CVSS score were added. This suggests that the data provided by
our activities continuously changes, even if the same finding is referenced. When applying
an exact matching of data fields, our exemplary data set would consist of three findings
after deduplication, even though all refer to the same problem, resulting in three False
Negatives.

This problem is further reinforced, considering that not only intra-activity duplicates,
as presented in the example, exist in practice but also inter-activity duplicates. This term
describes duplicates occurring between reports from different source activities. In the case
of inter-activity duplicates, the same finding might be explained with two different termi-
nologies. An example of these differentiating terminologies can be found when comparing
the reports of KICS and tfsec, two security tools to analyze infrastructure code. The
example below shows two findings with different titles referring to the same problem:

KICS:
ALB Not Dropping Invalid Headers

tfsec:
Application load balancer is not set to drop invalid headers.

In these cases, the semantic meaning of both findings is equivalent, but the syntactic
format differs. Therefore, we conclude that any solution approach for the problem-based
deduplication of security findings must include the semantic meaning of data fields as
matching criteria.

1https://nvd.nist.gov/vuln/detail/CVE-2022-43551#VulnChangeHistorySection
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4.4.2 Evaluation of Natural Language Processing Techniques

The importance of semantically understanding the content of a security finding for its
correct deduplication indicates that processing the natural language employed in each
finding is crucial for our solution approach. Hence, the processing of finding data and
comparison of its semantic similarity to other findings is the foundation for our clustering
approach. As discussed in Section 4.2, our use case has no recommended technique in
scientific literature. Therefore, we decided to investigate commonly proposed semantic
similarity-based techniques, namely knowledge graph-based similarity with WordNet [116],
LSI [99], and SBERT [150]. Since these are mostly used as baseline models, their tailoring
to our specific use case is possible.

Dataset Construction and Description
The investigation of semantic similarity-based techniques requires a dataset of correctly

clustered security findings to measure the performance of each selected technique. Since the
semantic understanding of each finding is crucial for the construction of the dataset, two
domain experts employed at our industrial partner supported this research by clustering
and annotating the findings of given security reports. Due to the differences in semantic
content between static application security testing (SAST) and dynamic application secu-
rity testing (DAST) activities, we decided to split the dataset according to this criteria.
Consequently, this construction resulted in two datasets consisting of clustered SAST find-
ings and clustered DAST findings. We define these datasets as the ”golden dataset” for
the following paragraphs.

Dataset Activity Category Instance
Static 3rd Party Component Vulnerability Scan-

ning and SCA
• Anchore
• Trivy
• Dependency Check

Static Secret Scanning • Gitleaks
Static Code Review • CodeQL

• Semgrep
• HorusSec

Dynamic Dynamic Interface, API and Blackbox Test-
ing

• Arachni
• ZED Attack Proxy

Table 4.4: Selection of Activities for the Golden Dataset

The first challenge to construct the dataset was creating a realistic set of reports with
security findings containing semantic duplicates. On the one hand, this necessitates a
software product with shortcomings in the security domain so that security findings can
be identified. To ensure reproducibility and an ethically justifiable disclosure of the re-
sulting dataset, we decided for the open-source, intentionally vulnerable web application
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JuiceShop 2. This application is the target for our security activities and presents the root
cause of any identified security finding. On the other hand, a selection of security activities
used in practice is necessary. In particular, these activities require overlapping coverage of
JuiceShop to introduce duplicates into the dataset. For reproducibility reasons, all activi-
ties must be publicly available and free to use at the time of the experiment (2022). The
selected activities for both datasets are listed in Table 4.4. We chose seven commonly used
SAST tools from three categories and two DAST tools from one category. We disregarded
activities like infrastructure scanning on purpose, as this would necessitate the creation of
an artificial and vulnerable infrastructure, falsifying the dataset. Consequently, JuiceShop
was tested by all mentioned activities, and one report from each activity was added to the
dataset.

Figure 4.2: SeFiLa Webinterface

This introduced the first challenge for our experiment, as every activity utilized a
different reporting format and schema, as described in Section 4.3. Hence, identifying the
relevant information to comprehend the semantic content of each finding requires manual
effort from our security experts. This includes the parsing of security reports into single
findings as well as the identification of data fields with relevance to the semantic meaning
of each finding. To ease this part of the clustering process, the Security Findings Labeler
(SeFiLa) 3 was developed. This web application provides the capability to upload security
reports from the selected activity, splits these reports into security findings, and marks the
relevant semantic information in each finding. The decision on relevance was performed
in collaboration with the domain experts. Moreover, it enables domain experts to create,

2https://owasp.org/www-project-juice-shop/
3https://github.com/abdullahgulraiz/SeFiLa
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manage, and annotate groups of security findings. The visual interface employed by the
domain experts is depicted in Figure 4.2. The left side of the figure shows the current
collection containing one finding, while the right side shows one of the currently ungrouped
findings.

During the process of constructing the dataset, domain experts iterated through all
security findings in the respective area (SAST and DAST) and assigned them to groups
with the support of SeFiLa. The initial, unprocessed dataset consisted of 1351 security
findings for SAST and 36 security findings for DAST. Table 4.5 lists the distribution across
all activities.

Dataset Instance Findings Amount
Static Anchore 117
Static Dependency Check 26
Static Trivy 31
Static HorusSec 927
Static Semgrep 86
Static CodeQL 91
Static Gitleaks 73
Static Summary 1351
Dynamic Arachni 32
Dynamic ZED Attack Proxy 4
Dynamic Summary 36

Table 4.5: Distribution of the Original Dataset across Activities

The groups were created by collecting all findings belonging to the same problem and
summarizing its semantic content as the group’s title.

This manual clustering and annotation process resulted in our golden dataset: two
JSON documents comprising a list of deduplicated security findings for SAST and DAST
reports, respectively. The golden SAST dataset consists of 183 annotated clusters. 149
of these clusters solely comprise findings of one tool (intra-tool deduplication), while 31
contain findings of two or more tools (inter-tool deduplication). The size of clusters varied
between one and 408 findings, with a mean of seven findings. The golden DAST dataset
consisted of ten annotated, intra-tool clusters. The number of findings per cluster varied
between one and 25, averaging at three findings with a median value of one finding.

The construction of this dataset gave several vital insights for the remaining research.
First, our source data contained noticeably more SAST findings than DAST findings.
With 97.4% of all total findings being SAST findings, this is not explainable just by the
higher number of selected SAST activities. One reason for this discrepancy could be the
outlier activity HorusSec, which reported 927 findings and consequently contributed 68.6%
of all SAST findings. Moreover, the activity is also responsible for the largest cluster in
the golden dataset, consisting of 408 findings. This inequality between SAST and DAST
dataset is continued in the length of semantically relevant information. On average, the
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relevant information contains 169 more characters for DAST findings, resulting in a 55.9%
higher verbosity than SAST findings. This can be explained by the consistency in the
data scheme achieved by our selected DAST activities. The DAST reports consistently
contained information on the title, description, and a solution for the finding, while the
SAST reports mainly comprised a single feature describing the finding. Moreover, the
content of the data fields was sufficiently verbose for our domain experts to understand
the underlying problem reported by the DAST tool. Contrarily, the content of SAST
reports was perceived as relatively brief, making it challenging to comprehend each finding
just from the given features. This is problematic for our evaluation, as each finding is
represented by the semantic content of its features. Hence, data with low semantic value
limits the effectiveness of any applied technique, as it insufficiently represents the finding.
However, insights provided by our domain experts showed that unique identifiers like the
CVE-ID or CWE-ID provide additional guidance for identifying duplicate findings and can
make up for the low semantic value of information.

Based on this golden dataset, the evaluation of our selected semantic similarity-based
clustering techniques was performed.

Evaluation Planning
To evaluate our selected semantic similarity-based techniques WordNet [116], LSI [99],

and SBERT [150], we compared their suggestion of semantically similar findings to the
golden dataset developed in the last paragraph.

One requirement to identify similarity between findings for all techniques was the con-
struction of a problem-specific finding string. As discussed in Subsection 4.4.1, some fea-
tures describe the underlying problem of a finding better than others. Moreover, the
construction of the golden dataset showed that even with an optimal selection of features,
the finding string might be under-specified due to the data reported by the activity. To
counteract this problem and follow the advice given by our domain experts, we make use
of a finding’s CVE-ID. These unique identifiers are assigned to most publicly known vul-
nerability and provide the capability to identify duplicates in the dataset based on simple
text matching. Using this preliminary clustering mechanism, the finding string can be
constructed from the data of multiple findings, allowing for a longer and more verbose
representation. Consequently, we constructed two types of corpora for each dataset type
(SAST and DAST). For the less verbose SAST findings, we constructed one corpus with
solely the finding description as finding string and another corpus utilizing the preliminary
clustering approach based on CVE-ID and concatenated the descriptions of all findings in
one cluster as finding string. For the information-dense DAST findings, we also constructed
one corpus with solely the finding description as finding string. As the DAST findings also
consistently provided title, description, and solution texts, another corpus was constructed
where the finding string was made of a concatenation of these fields. These finding strings
represent the finding in the NLP-based similarity techniques to determine the similarity
between two findings.

This similarity between two findings is expressed as a numeric score between 0 and
1 and returned by each of our evaluated techniques. With 1 representing the highest
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possible similarity between two findings, a threshold defining the value, above which we
consider two findings as duplicates, is necessary. We define this threshold as similarity
theshold. Whenever the technique reported a similarity score between two findings higher
than the similarity theshold, they were grouped into one cluster. This grouping introduces
the special case of finding clusters that do not fulfill the transitive property. In practice,
this transitive property is crucial. If any security finding addresses the same problem as
two other findings, these findings consequently also address the same problem. Hence, all
three must be in the same cluster, representing this exact problem. However, this property
might be violated by applying the semantic similarity concept. Imagine a finding (Finding
1 ) being similar to two other findings (Finding 2, 3 ), implying that the similarity score
between Finding 1 and Finding 2 as well as Finding 1 and Finding 3 is above the similarity
threshold.

Finding 1 - [Finding 2, Finding 3]
Finding 2 - [Finding 1, Finding 4]
Finding 3 - [Finding 1]
Finding 4 - [Finding 2]

Consequently, these three findings would compose one cluster. However, the similarity
is also calculated for all other finding strings. For Finding 2, this could result in the
following cluster: Since Finding 1 is similar to Finding 2, this also applies vice-versa. In
addition, Finding 2 might also be similar to Finding 4 while having a similarity score lower
than the threshold when compared with Finding 3. This would result in 2 different clusters
that violate the transitive property of deduplication existing in practice. Due to the various
terminologies and verbosity of reports employed by the security activities, this threat could
affect the experiments. For the performance of the semantic similarity-based techniques,
this situation would indicate that either the relation between, e.g., Finding 2 and Finding
4 was not found or the similarity score between, e.g., Finding 1 and Finding 4 was wrongly
reported as higher than the threshold. To avoid these problems, we postprocess the results
by applying the transitive property and summarizing all similar results in one cluster. This
corrects the above-mentioned clusters to:

Finding 1 - [Finding 2, Finding 3, Finding 4]
Finding 2 - [Finding 1, Finding 3, Finding 4]
Finding 3 - [Finding 1, Finding 2, Finding 4]
Finding 4 - [Finding 1, Finding 2, Finding 3]

Since the selected techniques may vary in performance depending on the chosen threshold,
we decided to perform experiments for similarity threshold 0.1 ≤ and ≤ 0.95.

After the postprocessing, the results of each combination of technique, corpus, and
similarity threshold are compared to the golden dataset. This comparison measures the
False Positives, True Positives, and False Negatives. In this context, a False Positive is a
cluster existing in the predicted dataset but not in the golden dataset. This is based on
excess or missing findings in the cluster. Any cluster in the predicted dataset containing
the same findings as the golden dataset is counted as True Positive. If a cluster in the
golden dataset does not exist in the predicted dataset, it is counted as a False Negative. The
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collection of these values enables the calculation of the performance metrics precision, recall,
and F-score. In our experiment, the precision measures the ratio of correctly predicted
clusters to the overall number of predictions.

Precision = TruePositive

TruePositive + FalsePositive

The recall measures the ratio between correctly predicted clusters and all clusters existing
in the golden dataset.

Recall = TruePositive

TruePositive + FalseNegatives

Finally, the F-score balances both proceeding measurements and represents an overall
performance metric.

F − score = 2 ∗ TruePositive

2 ∗ TruePositive + FalsePositives + FalseNegatives

With these three measurements, we can quantify the performance of all techniques. A
high precision indicates that a technique produces fewer False Positives, while a high recall
informs that most of the clusters that should have been found were also found. Finally,
the harmonized F-score drives our conclusion on the performance of all techniques.

On top of this first level of quantitative evaluation, the incorrectly predicted data (False
Positives, False Negatives) was given to the domain experts for feedback. Since they con-
structed the golden dataset, their opinion and perception of the incorrect processing provide
valuable insights for reasons or improvement. To ensure the same level of information for
the domain experts and the NLP techniques, each finding was represented solely by its
finding string. Each incorrect cluster was provided to the domain experts, and possible
reasons for the poor performance of the duplicate identification were gathered from them.
This resulted in a dataset where each incorrect cluster was assigned at least one reason.

Evaluation Results
The quantitative evaluation provided us with the precision, recall, and F-score for each

combination of NLP technique, corpus, and similarity threshold.
Figure 4.3 presents the F-score of all techniques for both SAST corpora, in regards

to the selected similarity threshold. The figure indicates that with increasing similarity
threshold, the performance of all techniques, represented by the F-score, improves. Most
combinations reach their peak at a similarity threshold of 0.9. The only outliers are the
knowledge graph-based semantic similarity clustering techniques, which spike around 0.3
and decrease at higher thresholds. The best performance for the standard corpus is reached
with Latent Semantic Indexing, with an F-score of 0.739. The best overall performance is
shown by Latent Semantic Indexing with the preliminary CVE-ID-based clustering, with
an F-score of 0.816.

In Figure 4.4, the same information is presented for both DAST datasets. Similar to
the SAST results, the techniques’ performance with the DAST corpora initially improves
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Figure 4.3: Results of KG-Based, LSI, and SBERT Clustering of the SAST Dataset
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with increasing threshold. However, most techniques reached a plateau or even decreased
in performance after reaching their peak at 0.6. At this threshold, LSI and SBERT peaked
at the same F-score of 0.857 for both corpora. Moreover, neither corpus construction
approach impacted the performance of KG-based clustering, resulting in the same graph
for both corpora.

Corpus Technique Recall Precision F-score
SAST SBERT 0.825 0.621 0.709
SAST LSI 0.842 0.658 0.739
SAST KG 0.809 0.556 0.659
SAST concatenated SBERT 0.923 0.701 0.797
SAST concatenated LSI 0.918 0.734 0.816
SAST concatenated KG 0.913 0.676 0.777
DAST SBERT 0.900 0.818 0.857
DAST LSI 0.900 0.818 0.857
DAST KG 0.800 0.667 0.727
DAST concatenated SBERT 0.900 0.818 0.857
DAST concatenated LSI 0.900 0.818 0.857
DAST concatenated KG 0.800 0.667 0.727

Table 4.6: Performance Indicators of KG-Based, LSI, and SBERT Clustering

Table 4.6 lists the recall and precision for the highest F-score for each combination of
technique and corpus. The best-performing technique is marked for each corpus, showing
that LSI and SBERT performed best for the DAST corpora.

During the qualitative evaluation, the datasets with the highest F-score were given to
the domain experts for review. This included the dataset resulting from applying LSI to
the preliminary clustered SAST dataset and from applying SBERT to the concatenated
DAST datatset. Since our quantitative evaluation showed no difference between LSI and
SBERT for both DAST corpora, we selected the knowledge denser concatenated corpus
with SBERT, which was disregarded for the review of the SAST dataset. The domain
experts solely investigated the 72 incorrect SAST predictions and two incorrect DAST
predictions. Only one reason for both incorrect predictions was stated for DAST, while
nine different explanations have been identified for the incorrect SAST predictions. In
summary, 114 reasons have been assigned, so each reason was applied to multiple flawed
clusters, and sometimes multiple reasons have been assigned to the same cluster. Table 4.7
lists all given explanations, sorted by affected dataset and frequency.
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ID Dataset Frequency Explanation
1 DAST 2 In the context of the product, this result can only be

identified by somebody knowing the context of the ap-
plication.

2 SAST 1 Human annotation error and the suggested clustering by
the algorithm is correct.

3 SAST 3 One tool addresses the issue of using an eval function,
while the other one has the problem of user controlled
values in it. However, it would not be considered as a
major false positive.

4 SAST 3 The tool describes the finding precisely according to the
location of occurrence. Hence the finding text is over-
specified.

5 SAST 5 Different tools use a different phrasing to explain the
same issue.

6 SAST 5 Additional review necessary due to an unknown reason
for the decision.

7 SAST 19 Some tools provide more and some tools provide less
text in their description, which reduces the impact of
actual relevant features.

8 SAST 39 The sub-optimally constructed feature string could be
the reason for the incorrect clustering.

9 SAST 39 The tools sometimes provide no description of the find-
ing. Hence, the features could only rely on the title.

Table 4.7: Reasons for the Incorrect Clustering, given by the Domain Experts

Evaluation Discussion and Conclusions
The ultimate goal of this comparision between different NLP-based techniques was the

identification of a clustering technique for the deduplication of industrial security findings.
Considering the SAST dataset, we see that Latent Semantic Indexing combined with a
preliminary clustering of security findings based on the CVE-ID yields the best performance
in our experiment. Even though SBERT also showed a promising performance, considering
its F-score of 0.739, the lower precision compared to LSI makes it less applicable for
industrial projects. In practice, a False Positive leads to findings being incorrectly assigned
to the same cluster. If practitioners believe the cluster-specific problem has been solved, an
incorrectly clustered finding might be missed or actively classified as False Positive by the
activity. On the other hand, a False Negative only results in more work for practitioners
as further clustering would have been possible. Therefore, the first case might put the
security of a product at risk, while the second solely increases the workload. As seen in
Figure 4.3, the preliminary clustering supported all techniques in providing better results
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for the SAST dataset, which leads to the conclusion that this is an essential part of the
deduplication process.

This trend was not continued for the DAST corpora. While the inclusion of more
semantically relevant features into the finding string provided better results for most tech-
niques at lower thresholds, it had no impact when looking at the best performance of each
technique. As depicted in Table 4.6, each technique achieved the same recall, precision,
and F-score for both corpora. Moreover, SBERT and LSI showed the same performance
under the optimal threshold. However, for similarity thresholds ≥ 0.6, SBERT shows a
better or at least equal performance in comparison to LSI. Since a higher similarity thresh-
old reduces the number of potential False Positives in practice, we consider SBERT to be
preferable over LSI for this use case.

Even though the knowledge graph-based similarity clustering technique showed promis-
ing results for the concatenated SAST corpus, its performance compared to the other two
techniques has proven to be worse for all corpora. Regardless of the corpus, the knowledge
graph-based technique plateaus at a similarity threshold ≥ 0.3 with an F-score lower than
both other techniques. Consequently, the knowledge graph-based similarity clustering is
irrelevant for our use case.

Due to the qualitative evaluation, we identified the key challenges for clustering security
findings with NLP-techniques: the finding string. Since this string is constructed from the
available features each security finding contains, its quality is constrained by the content of
the source data. This problem is also indicated in the explanations provided by our domain
experts, as the two most mentioned reasons (reasons 8 and 9) refer to a sub-optimally
constructed finding string and a missing description of the security finding. The finding
string of any finding that just gives a brief title will consequently be represented by a finding
string of insufficient semantic context for similarity identification. This challenges both
algorithms and practitioners, as indicated by reason 2. However, not only the existence
of data but also its length bears a challenge. Since the similarity between two findings
depends on the similarity of features within the finding string, longer descriptions will
not always yield better results. As described in reason 7 by our domain experts, a finding
elaborating on the general category of problems it belongs to might introduce terms that are
not relevant to the actual finding problem. Therefore, it reduces the accuracy of similarity-
based clustering with semantically underspecified findings since the relevant terms are less
frequent.

Consequently, we conclude that SAST security findings are best clustered by LSI and
DAST findings by SBERT. Moreover, the different F-scores between the DAST dataset
and the less verbose SAST dataset indicate that a better performance can be achieved
by improving the semantic content of each finding string. A preliminary clustering based
on CVE-ID has proven promising, while a challenge for further research is constructing a
semantically rich and precise finding string.
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4.4.3 Semantic-Similarity based Clustering of Industrial Security
Findings

In order to eliminate duplicate security findings in industrial software development projects,
the knowledge acquired by our experiments must be transformed and adapted to industrial
practice. Consequently, we investigated how a process for semantic similarity-based clus-
tering in the industrial software engineering process could look based on previous learnings.

Analysis of Previous Results
The first step towards a process clustering duplicate security findings is to set the results

of the last section into the context of industrial practice. This ensures that our process
is designed according to evidence-based research while avoiding negative impact on the
process in the industrial practice.

One of the conclusions of our previous research is the importance of the finding string
that represents each finding for the semantic similarity-based technique. For this finding
string, we picked the relevant semantic content from each report by hand and developed a
parser for each activity report to derive the selected features. In practice, it is not feasible
to manually select features each time a new report is given to the deduplication. Instead,
an abstraction layer is needed so that the creation of the finding string is decoupled from
the identification of semantically relevant finding features.

Another conclusion from the previous research is the impact of preliminary clustering
based on the CVE-ID. Especially for the SAST dataset, this has proven to positively affect
the clustering results. However, relying solely on the CVE-ID to construct a semantically
rich finding string is insufficient. CVE-IDs are only consistently provided by security ac-
tivities that check for publicly known vulnerabilities. Insecure coding patterns, violations
of security principles, or missing system hardening rarely have such an identifier assigned.
Hence, only a fraction of all security findings contain a unique identifier in practice. Fur-
thermore, the same finding might be referenced by different unique ids depending on the
database (”NSWG-ECO-428” from nodejs/security-wg vs. ”GHSA-rvg8-pwq2-xj7q” from
Github Advisory Database). Consequently, the varying sources and structures for unique
identifiers further complicate a correct deduplication. Even if the CVE-ID is given, the
effect of preliminary clustering on the finding strings of those findings containing a CVE-
ID is limited. Since most activities with CVE-IDs rely on the same semantically rich
data provided by vulnerability databases, the content of their reported security findings
is already semantically rich or an exact copy of the vulnerability database entry. Hence,
using only the CVE-ID to ensure a context-rich finding string is insufficient for an optimal
construction approach.

The previous research instead emphasizes the importance of a well-designed finding
string construction approach. It mentions multiple pitfalls, including the length of the
finding string or the challenge of source data with low semantic context. These challenges
persist when applied to industrial practice and must be considered during finding string
construction.

However, even with a semantically rich finding string, an incorrect clustering of security
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findings might not be avoidable. While in the previous research, it was sufficient to iden-
tify faulty clusters and investigate reasons, these flaws impact later steps of the findings
management and, therefore, necessitate a correction in industrial practice. As stated in
the reasons for incorrect clustering given by the experts, knowledge about the context of a
security finding might be essential to understand and correctly identify duplicates. Hence,
even an optimal finding string used by an optimized NLP model might not be able to
identify all duplicate relations correctly due to the missing context. Moreover, we saw that
even the manually deduplicated security findings contained errors in the clustering that
were only identified after the domain experts were asked to explain the incorrect clustering.
Minding that the automated approach using semantic similarity-based techniques suppos-
edly yields a comparably lower precision and recall, the need for a cluster correction step is
further reinforced. However, the necessary context information to correct clusters can only
given by project-aware human entities after an analysis. An example of the importance
of context information would be a security finding identified by Dynamic Interface, API
and Blackbox Testing detecting an open port in an application’s attack surface. The un-
derlying problem of this open port could be that software running on the system image of
the application is not needed. This lack of hardening measures would also be detected by
Configuration and Hardening Checks but from the perspective of system hardening instead
of port scanning. Based on the different testing perspectives, the respective security find-
ing would either contain the context of open network ports or missing system hardening
measures. The context information that both findings are duplicates can only be provided
by a context-aware human with knowledge about the underlying problem and the relation
of both findings. Consequently, any process that aims to cluster duplicate findings has to
offer the capability for correcting operations by input from practitioners.

The fundamental result of the previous research is the applicability of semantic similarity-
based clustering approaches for identifying duplicate security findings. The results suggest
that security findings reported by security activities testing the software in a static state
are best performed by applying Latent Semantic Indexing. At the same time, SBERT
showed the best results for dynamically acquired security findings. However, this distinct
separation between datasets is not practicable in reality. Many security findings identified
by dynamic scanning or testing techniques have their root cause in aspects of the software
that are also covered by static methods. An example would be a publicly known vulnera-
bility in a web framework identified by static 3rd Party Component Vulnerability Scanning
as well as Dynamic Interface, API and Blackbox Testing. Therefore, duplicate security
findings can also occur across static and dynamic datasets, requiring a unified dataset for
industrial practice.

Security Findings Clustering Process
Our process for clustering duplicate security findings is based on previous research in

the context of industrial practice. This process depends on an arbitrary list of security
reports as an input and provides clusters of security findings, each representing one unique
problem as output.
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Figure 4.5: Clustering Process for Industrial Security Findings

The first stage of the process is a parser that unifies the format of all security findings.
This stage solves the challenge of identifying the data fields of each finding that are seman-
tically relevant and represent the underlying finding problem. Since each security activity
provides a different data format, report structure, and terminology in the field naming,
the parser must apply different strategies to transform the data into a data model that is
understandable for later stages. This stage creates a list of security findings following a
common data format.

In our second stage, the clustering process is started. Since security findings manage-
ment is a continuous process with new reports arising constantly, the source dataset might
contain multiple reports from the same source at different times. As the same activity
might report security findings with the same data in several reports, the most straightfor-
ward approach is an intra-activity clustering. This intra-activity clustering considers two
findings as duplicates if they contain the exact same information, excluding the ”Times-
tamp”, activity ”Version” and ”Location” fields. Otherwise, these fields would falsify the
duplicate identification since the same problem is still addressed, regardless of the activity’s
version, the problem’s location, or when it was found. Since this approach works on the
exact textual data of each finding, False Positives are almost non-existent. We define this
type of clustering as Level 1 Clustering. This stage results in clusters of security findings.

This clustering is further refined in the next stage. Based on the clusters formed by the
Level 1 Clustering, we follow the recommendations of the previous research and cluster all
findings with the same CVE-ID. Even though other unique identifiers exist, the CVE-ID
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is most widespread in practice. Consequently, this stage groups all findings cluster from
the last stage that contain the same CVE-ID. Since the previous stage ensured that all
clusters contained the same information for each finding, we can assume that each cluster
has one CVE-ID at max. With this stage, we can realize inter-activity deduplication, as
CVE-IDs are assigned by multiple activities. During this stage, any False Positive in the
clustering is caused by an incorrectly set CVE-ID by the source activity. We define this
type of clustering as Level 2 Clustering. Similar to the last stage, this stage again results
in clusters of security findings, where each finding of a cluster contains the same CVE-ID.

Based on these preliminary groups of security findings, the semantic similarity-based
clustering is applied. This fourth stage is three-fold, including creating the finding string,
applying the NLP-technique, and checking for the transitive property of clusters. With the
construction of the finding string, the goal is to create a semantically rich representation
of the security finding. Towards this goal, all features/data fields of every finding in
one group from the Level 2 Clustering are removed except for ”Title”, ”Description”,
”Countermeasures”, ”Finding Category”, ”Prerequisites”, ”Impact”, and ”Background”.
The fields containing unique identifiers are removed on purpose, as an equal identifier
indicates a duplicate finding, while a similar identifier gives no insights at all. The values
from all findings in one cluster for each selected feature are deduplicated and concatenated
to one text afterward. This step removes, e.g., duplicate titles or descriptions to avoid
adding repetitive information that supplies no additional semantic value. In contrast to
the recommendation of the initial research, this step does not further enrich each finding
string by the knowledge of vulnerability databases, as any unique identifier indicates that
the source activity already considered the knowledge of the respective database. Hence,
adding the information given by the vulnerability database does not improve the semantic
value of the finding string. Finally, the stopwords of each string are removed to eliminate
semantically irrelevant information from the string further. This procedure is applied to
every cluster of findings, resulting in one finding string per cluster.

During the second part of the stage, these finding strings are used to identify dupli-
cate clusters given by the Level 2 Clustering. Since all findings should be clustered and
deduplicated by the same process, only one technique can be applied. We selected LSI
as the technique to cluster similar finding strings. There are two reasons for this choice.
First, LSI showed better results for the SAST dataset and performed equally for the DAST
dataset when compared to SBERT. Second, industrial software development tools employ
a wide variety of static security testing activities, while the amount of dynamic tools is
limited [11]. Hence, better performance on the SAST dataset is preferable for industrial
practice. We define this type of clustering as Level 3 Clustering. This second part results
in a list of similarity values between all clusters.

The last part of the fourth stage ensures the transitive property of the clustering ap-
proach and constructs the respective clusters. As recommended by the previous research,
we consider two clusters as duplicates with a similarity ≥ 0.9. Identically to the post-
processing of the initial process, the transitive property is ensured by merging all clusters
where the similarity between two clusters is ≥ 0.9. This step finalizes the fourth stage and
results in a list of clusters that contain the initial security findings.
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The fifth and last stage realizes the experience-based correction of the clustering results
by user input. This external input has two potential options. If it identifies a False Positive,
two findings are suggested as duplicates but are distinct findings in practice. This results in
the removal of one finding from a cluster. If the external input identifies a False Negative,
two findings are presented as distinct but are duplicates. In this case, the two clusters are
merged. Each cluster identified by the Level 3 Clustering is investigated for applicable user
input, and potential actions based on the user input are executed. If conflicting user input
is present, e.g., informing that two findings are simultaneously duplicates and distinct, the
distinction is prioritized to avoid False Positives. This stage provides the same results as
the fourth stage but potentially changes the amount or size of clusters.

The entire process for clustering industrial security findings is depicted in Figure 4.5.
In summary, it constructs a list of clusters, each containing a list of security findings
considered problem-based duplicates.

4.4.4 Aggregation of Clusters
To deduplicate industrial security findings, the identification of duplicates is only the first
part of the process. Additionally, it is crucial to eliminate duplicate findings and solely
persist unique and distinct findings. Our security findings clustering process provides sev-
eral groups of findings, where each group addresses one security problem. The information
contained by each cluster must be aggregated into one security finding that represents all
findings of that cluster simultaneously.

An intuitive representation of all findings in a cluster is the finding string belonging to
this cluster. However, the string neither fits the format of a security finding nor does it
describe the finding in a way that subsequent processes or human actors can understand
it. Therefore, the finding string is not suitable for the aggregation of clusters. The main
requirement for the aggregation strategy is that subsequent processes can be performed
with the information contained in each security finding. Therefore, each finding should
follow the existing data model for security findings. Moreover, the data of each security
finding should be persisted to avoid data loss. As there are, e.g., also multiple approaches
on how to mitigate security findings, this information must be maintained.

Therefore, the aggregation of clusters must create a common representation of the
cluster while persisting the information of each cluster element. Since we can assume that
all security findings follow a common data model due to the preceding parsing operation,
our process iterates through every data field in Table 4.3. The content of each data
field from all findings of one cluster is collected, duplicate entries are eliminated, and the
remaining values are stored in a list. This list represents the content of the respective
data field for the aggregated security finding. After aggregating each data field, the newly
constructed security finding represents the entire cluster. Hence, the cluster aggregation
creates a new security finding for each cluster.

Integration Process
In contrast to the preceding processes to improve the quality of security findings data,
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this process has no requirements for its integration into projects. It solely relies on the
collection and parsing operation described in Section 4.3.

4.5 Finding Information Enrichment
The rising number of automated security checks supported by security tools reduces the
barrier of integrating new security activities into each project. However, the quality of
each security finding varies, depending on the characteristics of the activity that reports
it. Consequently, no reliable level of information can be expected across all security activ-
ities. However, a minimum level of information is necessary to manage security findings.
Moreover, the subsequent stages of the security findings management might benefit from
additional information about each finding not provided by the activity reporting the find-
ing. Therefore, the enrichment of information comprised by each security finding is essential
for managing security findings in industry.

In this section, we present the information enrichment process for security findings. We
distinguish between preliminary enrichment, ensuring a minimum level of information each
finding comprises, and internal/external information enrichment, refining each finding with
additional insights.

4.5.1 Preliminary Enrichment
The first type of enrichment addresses the problem that specific security findings lack fun-
damental information necessary for subsequent management actions. Subsection 4.3.3 iden-
tified the necessity to ensure each finding contains the fields ”Title”, ”Location”, ”Times-
tamp”, ”Source” and ”Version”. We define this process of supplying additional information
to security findings during parsing as Preliminary Enrichment.

Consequently, the preliminary enrichment is part of the parsing operations and supplies
each finding with data available during the parsing process. Depending on which fields are
missing, the remaining ones are derived from context information, given data fields, or
circumstances during the operation. The collection mechanism can supply the ”Source”
and ”Version” fields since the source and the version of the activity are provided during
the collection of security reports. The ”Timestamp” field is trivial to create, as it can
either be supplied during the collection mechanism or set to the current date and time of
the enrichment operation. Even though the latter one falsifies the timestamp, it represents
the closest timestamp possible if no other information is provided. Finally, ”Title” and
”Location” represent the only fields that can not be supplied by context information or
environmental circumstances but can be supplied solely from other data fields. These two
fields map to the original requirement for the enrichment of security findings, requesting
that each finding contains at least the impact of a finding on the software and its nature.
A missing title field can only be replaced by information that ”Describes the finding in one
sentence”. Consequently, the first 100 characters of one of the following fields are re-used,
ordered according to preference:
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• Description

• Background

• ID

• CVE-ID

• GHSA
If no of the fields mentioned above are available, the supplementary text ”Security Finding
by ” concatenated with the ”Source” is used. The location is more complex to supply, as
no other field indicates where the security finding is located in the software. Therefore, this
field is directly filled with the name of the project/product to suggest that the finding is
located somewhere in the software. This approach is used for all types of security activities
equally, implying that no additional, project-specific integration effort has to occur.

4.5.2 External Enrichment
After the security findings have been clustered and aggregated, the content of each finding
can be enriched with additional information. In contrast to the preliminary cluster, this
step does not focus on achieving a certain base level of information in each finding but
on providing the opportunity to refine the existing information of each security finding.
This enrichment utilizes data external to the security findings management process, as the
information is not provided by any of the activities as a report. Therefore, we consider
this type of enrichment as External Enrichment.

As the related work section identifies, enriching information by knowledge contained in
vulnerability databases is a common approach. However, not every project can benefit from
this type of enrichment. The reasoning against a general recommendation for enriching all
security information with data from vulnerability databases is similar to the explanation
in Section 4.4. Adding more details to each security finding does not inherently result in
more efficient or effective security findings management. Instead, more information might
confuse entities interacting with the data or even introduce semantic duplicates of what
each finding already contains.

Consequently, no general recommendations or sources are given for the external en-
richment of security findings. This implies that the relevance and content of the external
enrichment are solely determined by the project and organization following the security
findings management methodology. Hence, this part of the security findings management
process allows actors to enrich their findings on demand. This approach further separates
the information lifecycle of the security findings management from the external data, as
the most recent version of any external information is continuously gathered. Hence, no
maintenance operations for the external input are necessary during the security findings
management and are instead assumed to be performed by the parties responsible for the
external data. The enrichment strategy follows an if-then structure. If a security finding
fulfills certain criteria, an enrichment operation takes place during which new data might
be added to the security finding. This is formalized in pseudocode as follows:
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if <finding fulfills property x>
new_information = run <enrichment operation>
finding = finding + new_information

endif
return finding

The enrichment operation to collect additional knowledge is formally not defined closer, as
it highly depends on the use case and source of the information.

One example of a possible enrichment operation could be the information provided
by the GitHub Advisory Database4. This database contains known vulnerabilities and
malware from various sources. In particular, it includes community contributions, often
not found in another database. Hence, an enrichment based on this source can be beneficial
for projects with components of less public interest. In this case, any security finding
with a GHSA identifier would be considered for an enrichment operation. During the
procedure, the GitHub Advisory Database would be queried using the identifier and, e.g.,
the ”Details” field of the entry added to the description of the finding. Another example
more closely coupled to the organization would be domain-specific solutions for specific
findings. Software components like Identity and Access Management solutions are often in-
house developments in industry, resulting in an under-representation in public vulnerability
databases. However, the component supplier might be able to provide deeper insights into
the mitigation of findings. In this case, any finding in the particular component would be
considered for enrichment. During the operation, an operations manual might be queried
for the keywords, and a respective link to this manual could be added as a potential
solution, concluding the enrichment of the security finding.

Integration Process
To integrate external enrichment into projects, each enrichment operation and its respec-

tive condition for execution must be formalized. As this might further include ensuring
network or access requirements are met, the integration effort must be planned for.

4.5.3 Internal Enrichment
Another strategy for enriching security findings with additional information relies on in-
formation that does not originate from outside the security findings management process
but derives information from existing data. New knowledge can often be obtained from
combining the available security activity data with context information, providing new per-
spectives for a particular security finding. This type of enrichment considers information
of a security finding after the external enrichment and gives additional insights based on
this knowledge. We define this type of enrichment as Internal Enrichment.

In contrast to the external enrichment, the logical rules to derive information originate
from the process and are maintained during the process. Hence, no external platform
contains knowledge that is added to the security findings, but the existing data is leveraged

4https://github.com/advisories
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to gain further insights. Moreover, this affects the information lifecycle as no external party
maintains the enrichment data, but a periodic review of all internal enrichment strategies
is necessary to ensure a reliable, correct, and valuable enrichment.

Like external enrichment, internal enrichment is solely a capability of the data quality
improvement process, while the project team must provide the actual enrichment strategies.
With each project having different security activities in use and a distinct development
environment, a standard set of applicable enrichment rules cannot yield a universal positive
effect on the management process. Especially as their maintenance has to be performed
as part of the security findings management process, pre-defined rules for how to enrich
security findings must be decided on and understood in each project. The methodology
solely proposes the format for defining the internal enrichment rules. Similar to the external
enrichment, they are based on an if-then structure, where security findings are enriched
with data, if they fulfill a specific criteria.

An example of an internal enrichment rule would be adding context information if
findings originate from a specific security activity. With the rise of modern software de-
velopment, the automation of security checks is becoming extremely popular. As part of
this trend, the complexity of integrating security checks is reduced or guided by best prac-
tices, enabling non-security experts to interact with these checks. However, interpreting
the respective results in the context of software development is still challenging. Hence, an
internal enrichment could inform developers about the implications of certain security find-
ings that are obvious to domain experts but unclear to other groups. One example would
be that all findings from an activity checking third-party libraries can be found either in
the dependency manager or may also be sub-components of installed dependencies. While
this is obvious to domain experts, less experienced teams might be challenged by findings
not explicitly listed in the dependency manager. The respective rule in pseudocode could
look like the following:

if finding.source in [Activity A, Activity C, Activity X]
finding.location = finding.location +

"Guidance: Problem might be located in sub-dependencies as well"
endif
return finding

However, this information must be maintained by the project. If a new security activity is
employed, where this enrichment should be applied as well, the rule’s condition must be
adapted. As no external actor manages the rule, this is the project team’s responsibility.

Integration Process
Integrating the internal enrichment into a project is comparable to the external enrich-

ment. As each rule must be defined upfront, the definition and formalization process must
be considered for integration. As the internal enrichment relies entirely on the data given
by previous stages, no additional dependencies must be considered for integration.
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4.6 Implementation
The first step to ensure the relevance of our solution approaches to industrial practice and
evaluate them is their integration into the platform for managing security findings. This
ensures that the current theoretical concepts can be assessed in practice. Therefore, we
created separate rules and belief classes for each solution approach and integrated them
into the semantic knowledge base presented in Section 3.5. This section presents the
instantiation of each solution approach and its integration into the given knowledge base
framework. The overall process is depicted in Figure 4.6.
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Figure 4.6: Diagram of the Data Quality Improvement Process

4.6.1 Implementation of the Collection Approach

The first solution approach was the collection of security reports from all activities. In
contrast to all other approaches described in this chapter, the collection process extends
the knowledge base framework further instead of being exclusively represented by rules and
belief classes. The implementation of the collection approach has to address two features:
the reactive and the proactive collection of security reports. For the reactive collection, we
extend the existing knowledge base with a RESTful API that allows the upload of security
reports. The proactive collection is realized by an interface that is able to send requests
to external parties, like HTTP requests to other APIs. Both functions are implemented as
part of the ”KB Interface”, found in the top left corner of Figure 3.6.

The reactive collection is implemented by utilizing the existing Flask implementation
of the Knowledge Base I/O and extending it by the resource /data. To upload security
reports, this API supports an HTTP POST request. Each POST request must be sent
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with a JSON payload containing the information about the security report and its context.
Table 4.8 lists all keys that can or must be used when uploading a security report with
their respective explanation.

Key Type Required Description
Project String Compulsory Name of the project this report belongs to
Data String String Optional The report in its textual representation
Data File Optional The report in its representation as a file
Time String Optional Datetime of when the report was created
Source String Compulsory Activity that created this report
Version String Compulsory Version of the activity that created this report

Table 4.8: JSON Parameters in a Security Report Upload Operation

The keys ”Data” and ”Data String” represent a special case, as precisely one of them
has to be used. Any security report delivered to the semantic knowledge base must utilize
this API to upload the information.

However, not every activity can actively send security reports to our platform. There-
fore, a proactive collection is implemented that requests information from the respective
sources. To implement this collection mechanism, the existing KB Interface is extended to
include HTTP requests that the interface can send. A separate set of operations must be
defined for each source that collects the compulsory information, listed in Table 4.8. This
set of operations is implemented in Python and represents the collection function for the
source. This customization is crucial as some sources might host the most recent security
report at one API resource and the activity version at another. There are two approaches
to define when this collection function for a source is executed. If a web hook or a similar
notification technology is possible, the process is executed whenever the knowledge base is
notified about a new report. Otherwise, the function is run regularly, e.g., daily or weekly.
Since Python is employed as a programming language for the collection, other protocols
than HTTP for querying information are also possible.

Regardless of how the security report reaches the knowledge base, it must be stored as
belief. Therefore, we define the belief class ”Security Report” by the following structure:

"Class Name": "Security Report",
"Identifier": <>,
"Content Hash": <>,
"Belief Type": "Explicit",

"Source": <>,
"Version": <>,
"Timestamp": "YYYY-MM-DD HH:MM+Tz",
"Content": "Security Report in textual form"

In addition to the meta-structural information necessary in each belief class, it contains
all collected information, excluding project identification. Since each project has a separate
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instance of the knowledge base, the project is provided inherently by the data storage.
As security reports contain confidential information about software, the malicious up-

load of reports might infringe the project’s success. Therefore, an authentication and
authorization concept is in place that projects the knowledge base from malicious actors.
This is currently irrelevant to the methodology, so it is not presented in more detail.

4.6.2 Implementation of the Parsing Approach

In the second solution approach, the uploaded reports are parsed to a common data model.
This is implemented by one inference rule, defining the parsing operation, and another
belief class representing security findings.

The attributes of the belief class are directly derived from the data model described in
Subsection 4.3.2. In addition to the meta-structural information necessary in each belief
class, it contains all data fields listed in Table 4.3. Since this class is derived from the
security report by a parsing operation, the belief type is ”Derived” in this case. This
results in the following belief class with the placeholder ”<Data fields of the data model>”
being represented by the 22 data fields of the data model.

"Class Name": "Security Finding",
"Identifier": <>,
"Content Hash": <>,
"Belief Type": "Derived",

<Data fields of the data model>

The parsing operation itself is implemented by the parsing rule with the 4-tuple:

{"Trigger": "Security Report", "Code": "<Reference to the File>",
"Output": "Security Finding", "Name": "Parsing"}

This rule is triggered by an instance of the security report class and creates instances of
the above-defined belief class for security findings. Since each source requires a different
parsing approach, the Python code is structured into one parsing approach per combination
of source and version, resulting in the format for the code file.

if security_report.Source = "A" and security_report.Version < "1":
<Parse reports from source A with a version smaller 1>

elif security_report.Source = "A" and security_report.Version >= "1":
<Parse reports from source A with a version larger or equal 1>

elif security_report.Source = "B" and security_report.Version >= "0":
<Parse reports from source B with a version larger or equal 0>

<Preliminary Enrichment of Security Findings>

A pseudocode example for an actual parsing operation is given in Subsection 4.3.3. The
preliminary enrichment ensures a certain baseline of information is held by every secu-
rity finding. The resulting list of security findings is afterward enriched as described in
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Subsection 4.5.1, ensuring that each finding contains at least ”Title”, ”Location”, ”Times-
tamp”, ”Source” and ”Version”. The actual data model is communicated alongside with
the implementation to ensure a common understanding of the data fields.

4.6.3 Implementation of the Clustering and Aggregation Ap-
proach

To eliminate duplicates between security findings, the third solution approach clusters
and aggregates the security findings previously parsed. This is implemented by two belief
classes and one inference rule.

The first belief class represents a clustered and aggregated security finding, summarizing
all information the comprised security findings contain. Therefore, the belief class for an
”Aggregated Security Finding” consists of the meta-structural information necessary in
each belief class and a list of entries for each data field of the data model listed in Table 4.3.

"Class Name": "Aggregated Security Finding",
"Identifier": <>,
"Content Hash": <>,
"Belief Type": "Derived",

"Location List": [<>],
"Title List": [<>],
"Description List": [<>],
...

Each non-meta attribute of this class has a list as data type.
In addition to the belief class storing the aggregated security finding, practitioners might

provide input to correct or refine the clustering results. Therefore, we introduce a second
belief class dealing with this type of user input. Except for the meta-structural information,
the belief class for ”Cluster Input” contains information about the user providing the input
and the consequence of the input. Since this represents knowledge directly originating from
outside the knowledge base, it has an explicit belief type.

"Class Name": "Cluster Input",
"Identifier": <>,
"Content Hash": <>,
"Belief Type": "Explicit",

"User": <User Email>,
"Action": <Duplicate/Distinct>,
"Rule": <Content Hash A and Content Hash B>

The ”User” field contains a unique identifier of the user, which utilizes the user’s email
address. The ”Action” informs whether the user identified a False Positive or False Neg-
ative. The ”Rule” attribute contains the unique content hashes of both security findings
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that should be corrected. Since this information originates from outside the knowledge
base, the resource /userinput extends the RESTful API of the collection approach. This
allows upload, modify, or delete correction input from users.

The clustering and its subsequent aggregation is implemented by an inference rule with
the following 4-tuple:

{"Trigger": ["Security Finding", "Cluster Input"],
"Code": "<Reference to the File>",
"Output": "Aggregated Security Finding", "Name": "Deduplication"}

It is triggered by an instance of the security finding belief class and returns instances of
the aggregated security findings. Moreover, it can also be triggered by an instance of the
cluster input class, as a proposed correction by the user might introduce inconsistencies
that can only be remediated by correcting the clusters. The inference code clusters the
findings given as triggers with all other findings existing in the knowledge base by the three
levels described in Subsection4.4.3. First, all findings with the same content, excluding the
timestamp, version of the activity, and location, are clustered by utilizing a content hash.
For each cluster, all other findings with the same CVE-ID are queried and summarized.
Finally, the finding strings are constructed, and the LSI algorithm is applied using the
gensim library for Python, and all clusters with a similarity score of ≥ 0.9 are merged. As
part of this third clustering level, the transitive property between cluster entries is ensured.
For every finding in each cluster, the content hash is used to search for user corrections.
These corrections are afterward applied by either merging or splitting clusters accordingly.
Finally, each cluster is aggregated by listing all unique entries of each data field in the
respective list attribute of the belief class.

4.6.4 Implementation of the Enrichment Approach

The last solution approach is the enrichment of aggregated findings. To implement this
solution approach, the semantic knowledge base’s limitations must be considered. Our so-
lution approach relies on the assumption that internal and external enrichment is project-
dependent and will consequently be defined during the ongoing project. Therefore, new
strategies to enrich the information might be added continuously. Since these strategies
can be arbitrarily complex, using logical inference rules seems obvious. However, changes
to inference rules are not as easily maintained as belief changes. The maintenance effort is
substantial as changes to an inference rule invalidate all elements created from it and po-
tentially create new belief instances. Hence, we implement this solution approach with one
inference rule containing the actual inference and two belief classes. One belief class con-
tains the resulting additional information for security findings, while the other represents
the knowledge required during the enrichment process. Even though this still necessitates
changes to the inference rule, detaching the enrichment information from the actual rule
reduces the maintenance effort in case of changes to the enrichment strategy.
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Regardless of whether an aggregated security finding is internally or externally enriched,
it potentially supplies the knowledge base with additional information. This information
is stored in a separate belief class, containing all enrichment information belonging to one
finding. Since the feasibility of data enrichment depends on multiple factors, not every
security finding might have additional enrichment information. Moreover, we decided
against listing all contents of the aggregated security findings again in this class to avoid
duplicate information. Instead, we relied on queries to retrieve the necessary enrichment
data when querying for aggregated security findings. This results in the following belief
class:

"Class Name": "Enrichment Information",
"Identifier": <>,
"Content Hash": <>,
"Belief Type": "Derived",

"Finding Identifier": <>,
"Enrichment Type": [<internal, external>],
"Enrichment Information": {<Data Field 1> : <Enrichment Data>,

<Data Field 2> : <Enrichment Data>,...}

In addition to the meta-structural information, this class contains a list of all applied enrich-
ment types: internal enrichment, external enrichment, or both. The additional information
derived during the enrichment operation is stored in the ”Enrichment Information” field as
key-value pairs. Finally, it references the aggregated security finding to which it belongs.

The knowledge relevant during the enrichment operation is stored in instances of the
”Enrichment Input” class.

"Class Name": "Enrichment Input",
"Identifier": <>,
"Content Hash": <>,
"Belief Type": "Explicit",

"Enrichment Identifier": <>,
"Enrichment Content": {<ID 1> : <Input>,

<ID 2> : <Input>, ...}

Similar to the ”Cluster Input” class, it contains the explicit belief provided from knowl-
edge base external sources. Each instance includes an identifier that allows associating
them with the respective enrichment operation and key-value pairs holding the relevant
information. To add this information to the knowledge base, the /userinput resource of
the RESTful API is employed.

The internal and external enrichment is implemented by an inference rule that utilizes
instances of the ”Enrichment Input” class to enrich findings. In addition to the belief
interface available during all logical inferences, as shown in Figure 3.6, Internet-facing
access is crucial for all external enrichment operations. The inference rule consists of the
following 4-tuple:
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{"Trigger": ["Aggregated Security Finding", "Enrichment Input"],
"Code": "<Reference to the File>",
"Output": "Enrichment Information", "Name": "Enrichment"}

Since the inference code depends on the project, it is also constructed during its integration
into the project.

4.7 Preliminary Evaluation
Finally, the approaches presented in this chapter to improve the data quality of security
findings in modern industrial software development must be preliminarily evaluated against
their initial requirements. This section presents the integration of all approaches into our
semantic knowledge base, the evaluation, and the discussion of its results. The evaluation
focused on the success of the security findings clustering approach was published in [194].

4.7.1 Evaluation Planning
The data quality improvement process presented in this chapter was evaluated against the
problem description it aims to solve. The problem is split into the functional requirements
each solution approach has to fulfill and the principles of modern software development
that must be adhered to. In addition to evaluating each solution approach, the process
comprising all solution approaches must also be analyzed for its compliance with modern
software development principles. In contrast to the results presented in [194], the focus of
this evaluation is broadened to cover all aspects of the quality improvement process instead
of focusing on deduplication. However, both evaluations have been conducted under the
same circumstances.

The research questions to be answered by the preliminary evaluation are split between
fulfilling our process requirements, represented by the first four entries of Table 4.9 and the
adherence to the principles of modern software development assessed by the fifth research
question.

ID Challenge Question
RQ1 Collection Functionality Are security findings collected from the re-

spective sources and stored centrally
RQ2 Parsing Functionality Is data from various security tests and assess-

ments combined into a common format
RQ3 Deduplication Functionality Are all security findings aggregated and cor-

related, avoiding duplicates in the dataset
RQ4 Enrichment Functionality Does each security finding contain at least

contain fundamental information about it
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RQ5 Principle Fulfillment Are all solution approaches and the overall
process fulfilling the principles arising from
modern software development

Table 4.9: Research Questions for the Preliminary Quality Improvement process

To answer our research questions, a realistic setting is crucial. To test the functional
requirements, an actual project that manages security findings originating from security
activities is beneficial. To answer RQ1, the project should employ a realistic set of security
activities to test whether our solution approach can cover them. For the second research
question, the capability of the parsing methodology to parse any report to our data model
without data loss must be analyzed. Research question three is assessed by analyzing the
correctness of the clustering and aggregation approach. In particular, the False Positive
and False Negative rates are crucial indicators for this measurement. RQ4 is assessed by
checking whether each security finding contains at least fundamental data about its cause
and whether the enrichment can be applied within the project. Finally, for the fifth research
question, the potential for continuous execution, the speed of results being produced, the
potential data input from various development stages, and the amount of manual effort
must be analyzed.

To perform all of these measurements, we selected a traditional software development
project that uses the implementation of Section 4.6 as a system for managing security
findings for six months. Its security activities producing security findings cover one secret
scanner (Gitleaks), three Code Review tools (tfsec, Semgrep, and Bandit), and two tools
for 3rd Party Component Vulnerability Scanning and SCA (Trivy and NPM Audit). The
necessary customization of the knowledge base for its integration into projects is reported
as part of the evaluation results.

4.7.2 Evaluation Results
The results of the evaluation are reported in two steps. First, the integration success is doc-
umented, including all customization necessary to integrate the semantic knowledge base
into the project. Second, we report the data measured to answer the research questions.

As the first step of the solution approach, the API implemented the collection of all
security reports. Since all tools were either orchestrated in a CI environment or a dedicated
testbed, the upload was primarily performed automatically. Solely Bandit was network-
wise separated from the knowledge base, resulting in weekly manual uploads of the test
report. To parse these reports, one Parser Model was written per tool upfront. During the
evaluation period, the project changed the Trivy reporting format from JSON to JUnit
XML, necessitating one additional model. This resulted in two models for Trivy with
different version numbers. The clustering and aggregation required no further changes and
were directly functional. Initially, no enrichment rules were added. After two months, the
project requested an enrichment, where each tool category received additional information
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on the testing strategy of each tool so that practitioners could comprehend the context
inherent to their reports. This information was added to every security finding. Finally, the
access to all instances of the ”Aggregated Security Finding” was implemented by a query.
This query merged the information of the security finding with its respective instance of the
”Enrichment Information” class and returned a list of all security findings upon execution.

Over 6 months, the project comprised 309 security findings with 40 to 110 reports per
security activity. These 309 findings were reduced to 73 aggregated findings within 30
seconds. Even though no False Negatives were identified, two findings were incorrectly
clustered. These two False Positives were corrected by user input. Finally, every security
finding contained at least the attributes ”Title”, ”Location”, and ”Timestamp”.

4.7.3 Discussion
In the following, we want to discuss our preliminary evaluation results. Concerning the
first research questions, we can see that the reports from all encountered security activities
were successfully collected. Even though the subject project did not require the proactive
collection approach, its reactive counterpart using the API ensured that all security reports
were collected and stored centrally in the knowledge base. Towards the second research
question, we were able to parse all encountered security reports to the common data format
and further deal with changing report formats over time. A drawback of the evaluated
project was the limited selection of security activities that did not cover every type of
activity. However, this is inevitable when using realistic projects as a perfect test strategy
without gaps is rarely encountered in practice. The answer to research question three
can only be considered partially positive. Even though it was possible to aggregate and
correlate the reported security findings, two False Positives have been encountered. This is
sub-optimal, as it might lead to security findings being ignored, as discussed previously. We
still consider the clustering and aggregation of security findings as successful, considering a
reduction in the number of findings by more than 75%. Regarding research question four,
we found that every security finding contains at least the baseline information necessary
to understand the cause of it. Moreover, we validated the functionality of the internal
enrichment since each security finding had enrichment information associated with it after
introducing the enrichment rule in the project.

For the last research question, we investigated the fulfillment of modern development
principles when using the data quality improvement process. Since the implementation of
our solution approach was able to run continuously, we consider the continuous execution
of our process as successful. Even though a notable manual overhead while integrating the
knowledge base into the project was necessary, it is negligible when compared to manually
performing the data improvement actions. The manual effort for the quality improvement
was limited to the user input correcting the incorrectly clustered findings. Hence, we
consider the manual effort during the process execution as acceptable. Unfortunately, the
project solely provided input from the development and deployment stages, excluding, e.g.,
monitoring activities. Hence, not every software lifecycle stage contributed data. Time-
wise, the clustering was the only processing step that notably increased the processing
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time of security findings. During the evaluation period, the worst-case scenario resulted
in a 30-second processing time for the clustering. With less than one minute of processing
time overall, we still consider this a fast timeframe in the given context.

Threats to Validity
Even though the preliminary evaluation results indicated that our process and its im-

plementation cover the requirements, there are multiple threats to the validity of these
results. First, the selected project only covered some of the security activities employed
in industrial practice. Hence, the external validity is threatened, as another project might
utilize activities or necessitate collection strategies that this evaluation has not covered.
Second, we did not evaluate whether the process was perceived as beneficial by the project
team, even though this is the core indicator for the relevance of our methodology. How-
ever, this was partially covered by the previous evaluation [194], and the given results are
sufficient as a preliminary evaluation.

4.8 Conclusion
In this chapter, we presented our process for the data quality improvement of security
findings and its implementation into our platform for managing security findings. The
process collects security reports from their source, parses them to a common data format
for each finding, clusters and aggregates these findings to eliminate duplicates, and enriches
each finding with additional information.

This chapter comprises three contributions. Our first contribution is a data model
for security findings focusing on the semantic content of security findings across multiple
terminologies from security activities. The second contribution is a process for the clus-
tering and aggregation of industrial security findings using the semantic similarity-based
technique LSI. Finally, we presented a coherent process for the data quality improvement
of security findings and performed a preliminary evaluation of this process in a real-world
scenario.

Consequently, we conclude that our process for data quality improvement mostly fulfills
the demands originating from modern software development principles and the state-of-
practice for industrial security findings management. However, its benefit to practitioners
managing security findings in modern industrial software development projects can only
be measured if subsequent processes working with the improved data are also evaluated.



Chapter 5

Security Finding Analysis and
Tracking

One of the key goals to be achieved by the management of security findings is ensuring an
acceptable security status of a software product according to multiple criteria. To reach
an adequate security status, every security finding requires a response that contributes
to achieving this goal while balancing it with other stakeholder interests, like additional
software features. Each security finding must be analyzed and tracked throughout its
lifecycle to enable and support the decision-making process for security finding responses.

In this chapter, we present the problems necessitating the analysis and tracking of se-
curity findings and describe our solution approaches for multiple types of tracking, the
analysis of security findings according to various criteria, the prioritization of a finding re-
sponse, and the decision-making on the finding response. The integration of these solution
approaches into our semantic knowledge base, given the previous data quality improve-
ment and its preliminary evaluation, concludes this chapter. The prioritization process for
security findings and its evaluation was further published in [196].

5.1 Problem Description
In our preliminary problem analysis, we identified the need for two clusters of activities
that must be performed based on the quality improved security data: the analysis and
the tracking of security findings. According to Subsection 2.3.3, the tracking of security
findings comprises four requirements, including:

1. The secure Documentation of security findings and their data

2. The Status Tracking of security findings throughout and beyond the security find-
ings management process

3. The History Tracking of security findings about their appearance

4. The Correlation of security findings appearance
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Moreover, Subsection 2.3.3 also identified seven requirements for the analysis of security
findings, covering:

1. The Verification & Validation of every security finding’s applicability

2. The Classification of every security finding

3. The Root Cause Analysis of security findings

4. The Clarification of finding circumstances

5. The Risk Analysis of security findings

6. The Prioritization of security findings

7. The Decision on subsequent actions for each finding

Similar to all previous solution approaches, also the ones for the requirements above
must mind the principles arising from modern software development:

• Topic I: Any measuring or tracking activity must collect business relevant indicators

• Topic II: The decision-making on subsequent actions must try to minimize work
packages for security improvements

• Topic III: The manual effort for any analysis and tracking activity must be minimized

• Topic IV: The findings tracking and analysis must provide fast results

• Topic V: Any manual activity must be previously supplied by the information nec-
essary to perform the activity

• Topic IX: Any manual activity must mind the cross-disciplinary team structure and
enable collaboration

• Topic X: Any decision must be taken with the customer and its goals in focus

In contrast to previous chapters, some principles apply exclusively to specific requirements
instead of to every solution approach. The analysis of these problems from the perspective
of a security findings management methodology allows to cluster activities with similar
prerequisites and outcomes into the same requirement. Hence, the eleven requirements are
clustered into seven problems this chapter aims to solve.
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History Tracking and History Correlation of Security Findings
The first piece of information that is crucial to decide on subsequent actions for a security

finding is its occurrence in security reports. A finding frequently identified by multiple
activities has more likely an impact on the security of a software product than a finding that
has not been reported recently. Moreover, security findings that reappear after supposedly
being fixed can indicate an unsuccessful fix or provide strategies for resolving the newly
identified security finding. These conclusions can only be drawn by correlating the finding’s
occurrence and the type of finding over time. Hence, the history of security findings must
be tracked, and their appearance must be correlated over time.

Process Tracking of Security Findings
Each security finding reaches different stages throughout its lifecycle. From its first

identification, over the validation of its existence, to its potential mitigation, the status
of a security finding continuously changes. To manage security findings effectively, the
current status of a finding must be known at any time. Otherwise, security findings that
have already been verified as False Positive might be planned for mitigation, or findings that
are already solved are still contained in the risk portfolio of a software product. Therefore,
the status of security findings must be tracked throughout their lifecycle.

Documentation of Security Findings
Another problem is the information generated while managing security findings in mod-

ern industrial software development projects. The reports created by security activities
solely present a fraction of the data necessary to address security findings. The findings’
applicability, risk towards the software product, and logical consequences concerning other
security processes are all part of the information used during the findings management.
Moreover, the information is not only necessary for the process itself but might also be
crucial for subsequent compliance investigations or audits. Minding the confidential nature
of this information, the data must be protected from alteration or deletion, and access to it
must be carefully evaluated. Therefore, the documentation of security findings must com-
prise all information created during the security findings management process and protect
the information from malicious actors and inadequate access.

Verification of Security Findings
One of the biggest challenges when managing security findings in industrial software

development projects are findings that are either incorrectly identified (False Positives)
or have no impact on the software. All subsequent activities that manage security find-
ings without impacting the software product waste scarce development resources. Hence,
analyzing unverified security findings can diminish the efficiency of the security findings
management process and must, therefore, be avoided. Consequently, security findings must
be verified and their effect on software security must be assessed before advancing to later
analysis steps.
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Investigation of Security Findings
In advance to the mitigation of security findings in industry, details about the findings

must be gathered. Even though the security activity already provides information, the
data is frequently incorrect or lacks details to decide on subsequent actions. Due to a
static perspective of security activities on the product, reporting security findings with
an incorrect cause is a common problem in industry. To avoid subsequent process steps
working with this inaccurate data and potentially reaching falsified conclusions, the analysis
of each finding’s root cause is crucial. Whether a root cause analysis is sufficient or further
classifications and correlations are necessary to investigate a finding depends on various
factors within each project. Hence, the investigation and analysis of security findings must
support these particularities inherent to each project.

Risk Analysis and Prioritization of Security Findings
The limited work that can be done is another challenge in industrial software develop-

ment projects. In practice, security improvements often have to compete with functional
enhancements of the software, limiting the amount of effort that can be spent on security
findings management. The mitigation of security findings requires the involvement of devel-
opers, necessitating the dedication of resources for every security improvement. Therefore,
prioritizing security findings is essential to address the most relevant findings first. One
indication of the importance of a finding is the risk it poses to the security of the software.
However, not only the risk imposed by the security finding determines the significance of
the finding to be fixed. Other factors coming from project-specific constraints are often
equally relevant to the priority of a finding response. Especially findings that can be solved
with little effort are often preferred, as they allow an improvement of the software’s secu-
rity status while using only limited development resources. Therefore, prioritizing security
findings must consider the risk imposed by the finding and project-specific constraints.

Decision on Subsequent Actions
Ultimately, some decision has to be taken on how to respond to an identified security

finding. The most obvious conclusion is to fix the finding’s root cause. However, not every
finding can be fixed or is worth to be fixed from a business perspective. These informed
decisions on how to proceed with findings can, however, only be taken in collaboration
with project team members using evidence-based information. To fulfill this demand, our
solution approach must consider all potential responses to a security finding while enabling
the necessary collaboration.

5.2 Related Work
Current research proposes various strategies for the assessment and response to security
findings. Supporting these strategies, platforms for tracking and correlating security find-
ings have been proposed and often present the state of practice for industrial practitioners.
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This section presents research and work related to the three major domains of this chap-
ter: the tracking of security findings, the analysis of security findings, and finally, the
prioritization of security findings.

Presumably, the most prominent results related to the tracking of security findings are
vulnerability databases. Vulnerability databases uniquely identify and track vulnerabil-
ities throughout their lifecycle. By using vulnerability naming schemes like CVE [178]
or component naming schemes like CPE [124], these databases track the occurrence of
vulnerabilities in software components. Additional information like patching status pro-
vided by references gives further indications on the current status of each vulnerability.
An example of a well-known and commonly used vulnerability database is the National
Vulnerability Database (NVD) hosted by the U.S. government [125]. However, recent pub-
lications also address the tracking of security findings. Cadariu et al. proposed a system
for tracking vulnerabilities in proprietary software [29]. In their work, they map software
components in proprietary software to known vulnerabilities and raise an alert if a vulner-
ability is found. This strategy is typically applied in industry by 3rd Party Component
Vulnerability Scanning activities during development. A similar linking approach between
vulnerability databases and internal project knowledge was also proposed by Alqahtani et
al. in the form of an ontological representation [5]. Even though our problem description
is closely coupled to the concept of vulnerability occurrence in the software, a solution
approach, minding solely the binary identification of findings, is insufficient, as we focus
on the entire lifecycle of software instead of a single snapshot. Moreover, our perspec-
tive on the lifecycle of each finding necessitates a status tracking that extends the current
functionality of vulnerability databases or related platforms. Further research related to
the tracking of security findings addresses the lifecycle of vulnerabilities. Typically, the
lifecycle starts with identifying a vulnerability and imposes implications on the specific
vulnerability, depending on the stage in the vulnerability lifecycle. In their 2011 work, Joh
and Malaiya assess the quantitative security risks of vulnerabilities using the vulnerability
lifecycle and CVSS metrics [90]. In their work, they propose a simplified vulnerability
lifecycle model, where each vulnerability can be in one of six stages between ”not discov-
ered yet” and ”disclosed and already patched”. A similar lifecycle is proposed by Frei et
al. [52], which divide the lifecycle of a vulnerability into discovery-, disclosure-, exploit-,
and patch-time. Unfortunately, no lifecycle for security findings could be found in recent
literature. Therefore, our research will be based on the vulnerability lifecycle but must be
tailored to the use case of security findings management in software development projects.

Another prevalent issue when working with security findings is the existence of False
Positives. As reported by publications across various domains, False Positives challenge
the efficient processing of security findings [15, 122, 157, 3]. Several papers address the
potential identification of False Positives and their elimination by data mining [114, 62] or
machine learning [58]. Moreover, the current state of practice is acquired in recent research.
Alahmadi et al. analyzed the prevalence of False Positive alarms in Security Operations
Centers and interviewed practitioners on their subjective perception [3]. Even though they
find that a considerable number (99% stated by one subject) of alarms are False Positives,
most of them are related to benign triggers so that the terminology of a False Positve is
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used quite vaguely in practice. Moreover, they have shown that in the context of Security
Operations Centers, the validation of alarms is still commonly performed manually based
on information like system logs, the environment of the alarm, or known attack vectors.
Sacher presented a discussion on benign triggers resulting in False Positive alarms [157],
where such False Positives could be used to refine the company strategy instead of be-
ing suppressed. Even though both publications focus on reports from security operations
monitoring activities, the insights on alarm validation strategies are coupled to our work.
The importance of context information for identifying and eliminating False Positives is
also stated by Nadeem et al. [122]. In their work they propose adding contextual informa-
tion to static code analysis tools to reduce the number of False Positive detections. This
further reinforces the value of context information for identifying False Positives in the
security findings management process. Research from another perspective was conducted
by Choi et al., claiming that the response to certain vulnerabilities like integer overflows is
not impacted by whether a False Positive was reported or not [33]. Indications that False
Positives might even predict future weaknesses in the software were given by Dimastrogio-
vanni and Laranjeiro, who identified correlations between False Positives and subsequent
vulnerabilities at the same location [40].

One of the last steps in the management of security findings is the response to each
security finding. However, only a certain number of tasks can be solved in each iteration
due to limited possible progress restricted by available time and project team size. Hence,
not every security finding can and should be addressed in each iteration [13], introducing
the importance of prioritization when managing security findings. One common factor im-
pacting the relevance of a security finding is the risk inherent to every finding. A common
approach to calculate this risk is combining the finding’s impact with its probability of
getting exploited [129]. The impact of security findings is often represented as a severity
or criticality score. While most activities rely on the international Common Vulnerability
Scoring System (CVSS) standard [135], whether and how the score looks depends on the
reporting source. Calculating a precise and realistic severity score is an ongoing field of
research. Maidl et al., e.g., proposed to refine the CVSS base scores with system models
to achieve more precise scores [106]. Similarly, Amankwah et al. proposed an automated
framework to evaluate existing vulnerabilities in web applications for their severity [9].
These represent just two examples of various papers trying to generate a severity score
either by refining CVSS or creating a distinct strategy for prioritization [165, 53, 12, 100].
Even though CVSS is undoubtedly one of the most prevalent techniques, multiple other
strategies on how to rate security risks or vulnerabilities exist [66, 109]. In practice, solely
the severity of a security finding is not decisive for its priority but represents the basic in-
formation used in planning meetings [173] to determine its mitigation schedule. Traditional
strategies to prioritize tasks in software development include, e.g., Analytical Hierarchical
Processes like Planning Poker [27]. However, these approaches can not be directly applied
to all types of prioritization. In contrast to functional requirements, non-functional require-
ments like security are still prioritized mainly by hand using ’gut-feeling’ [173] in industrial
practice. This is due to the uncertain nature of non-functional requirements, which limits
the effectiveness of classical prioritization methods [69] and the expertise required from
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additional stakeholders like technical experts [88] for its calculation. Even though the area
of security findings prioritization in itself is underrepresented in literature, the domain of
software bug or defect prioritization contains closely related work. For instance, Ahmed
et al. developed a framework for the automated categorization and prioritization of bug
reports [2] using natural language processing. Another proposal by Gökçeoğlu and Sözer
is the usage of Machine Learning for the prioritization of software defects [63], which they
investigated as part of a long-term case study. One interesting finding of their research is
that the best accuracy can be achieved by using recent data for training, indicating that
the prioritization approach or defects evolve over time. This domain contains a variety
of publications [209, 181], employing different techniques to improve the prioritization of
bugs or defects. However, most of the research focuses on bugs and their reports instead
of structured security reports, which apply to the management of security findings.

However, not only the prioritization of a response must be considered, but also the
type of response itself. At this point in the management process of security findings, the
decision on how to react to a security finding can be reduced to traditional industrial
product security risk management. As each security finding potentially imposes a risk on
the product’s security, we can follow the traditional risk assessment process, resulting in
a risk treatment. Across various standards and guidelines, certain key activities can be
identified to manage risk, including the identification, analysis, evaluation, and treatment
of risk [76, 25, 74, 130]. In the context of security findings management, preconditions like
organizational preparedness or risk identification can be treated with reduced importance
since the security activities already report potential risk sources. Hence, each security
finding must be analyzed for its risk, the risk evaluated against risk criteria, and treated
accordingly to adhere to common process requirements in industry.

5.3 Documentation and Tracking of Security Findings
To enable subsequent analysis activities of each security finding, fundamental knowledge
of a finding’s occurrence and current state must be acquired. The solution approach to
collect knowledge about a finding’s occurrence history, the tracking of a finding’s state,
and the documentation and access to the data of security findings are presented in this
section.

5.3.1 History Tracking of Security Findings
The first step to track security findings throughout their entire lifecycle is tracking their
occurrence. In this context, the term occurrence defines whether a finding was reported by
any security activity. For each report, whether or not a finding is identified in a project is
binary. Either the finding is referenced by the respective report or not. However, minding
that the security finding management typically manages reports from multiple security
activities, this exclusively binary information is extended. This adds the source dimension,
as each source can report a finding separately. Hence, this changes the reporting format
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from a binary value to a list of binary values, where each field represents the respective
source. Moreover, the management of security findings is a continuous activity in the
software development lifecycle. Similarly, reports are also created continuously. Hence,
an additional temporal dimension must be minded, extending the list of binary values
to an array. These three states are depicted in Figure 5.1. As this solely represents the
occurrence of one finding in the project, the array can be constructed for each finding
separately.

0.Not Found
1. Found

0.Not Found
1. Found

0.Not Found
1. Found

0.Not Found
1. Found

Activity A Activity B Activity C

0.Not Found
1. Found

0.Not Found
1. Found

0.Not Found
1. Found

Activity A Activity B Activity C

0.Not Found
1. Found

0.Not Found
1. Found

0.Not Found
1. Found

Time 1

Time 2

Figure 5.1: Occurrence of Security Findings across multiple Dimensions

However, this introduces the first limitation of its usage in practice. In a real-world
scenario, security findings that are never reported by security activities are typically not
addressed by the security findings management, as they are unknown. Minding that the
National Vulnerability Database already contains more than 200.000 entries, tracking all
findings potentially affecting the product is not feasible. Therefore, only those findings
reported at least once in the project may be tracked. Another limitation arising from
practice is the reliability of data input. While security checks like automated static code
analysis present a low-effort activity that can be conducted daily or even more frequently,
an in-depth analysis like a Penetration Test typically takes weeks to complete. Therefore,
the frequency of reports originating from automated activities is generally higher than
from manual activities. Hence, a distribution of values as depicted on the right side of
Figure 5.1 is very unlikely. Instead, each timestamp might only inform about a fraction
of all activities. This implies that conclusions from tracking a finding’s history must be
aware of this constraint.

Our solution approach for the history tracking of each finding follows our capability
for collecting historical data about findings while minding the practical constraints. For
each security finding in a project, a tracking entry is established. The entry tracks all
activities that have identified this finding with all timestamps when the occurrences have
been reported. An example of these entries is shown below.

Finding A - Activity 1 Activity 2
01.01.2000 20.01.2000
05.01.2000
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07.01.2000
Finding B - Activity 1 Activity 3

01.01.2000 02.01.2000
05.01.2000

While Finding A was identified by Activities 1 and 2, Finding B was reported by
Activities 1 and 3. From the timestamps, we see that both findings have only been identified
by Activities 2 and 3 once, while Activity 1 reported them at least twice. Moreover, we can
see that Activity 1 reported Finding A a third time, where Finding B was not identified.
Hence, each tracking entry solely contains the activities and timestamps where a finding
has been reported.

Crucial for the relevance of this information are conclusions that can be drawn from
the tracking information. A first indication of what might be relevant is given by the
entries in vulnerability databases. Each vulnerability is reported with the date it has been
published, the date it was last changed, and a history of all changes to the vulnerability
information. Applied to the information available for the history tracking, this would
cover the timestamps when the finding was identified first, when anything in the data of
the finding was changed, and the entire history of changes to the finding’s data. However,
only the date it was found first can be derived from the tracking history. Information
on data changes necessitates a further investigation of the finding’s data. In addition to
the fields proposed by vulnerability databases, multiple other conclusions can be drawn
from the data. Analogous to the first identification of a finding, its last identification
can also give valuable insights. Moreover, the number and list of all activities that have
reported the finding can provide helpful information. The number of identifications per
activity can further refine this data. Finally, a finding that is fixed should not be reported
anymore. Therefore, whether a finding appeared in the most recent report of an activity is
also documented. These conclusions are listed with their respective description and data
types in Table 5.1. Even though these conclusions can be deducted manually from the
raw tracking data, its explicit documentation reduces the effort to access the information.
These conclusions extend the information of the tracking entry belonging to each reported
security finding.

Field Type Description
First Found Timestamp Timestamp, when the finding was identified first

by any activity
Last Change Timestamp Timestamp, when the finding data was changed

last
Change History List List of change descriptions with reference to their

respective activity and timestamp
Last Found Timestamp Timestamp, when the finding was identified last

by any activity
Activity Number Number Number of activities that reported the finding
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Activity Statistic List List of all activities that reported the finding with
their respective amount of identifications

Recently Reported List List of all activities that reported the finding with
a binary value stating whether the finding ap-
peared in the most recent report of the activity

Table 5.1: Conclusions based on Findings History

Continuing with Finding A from the example above as tracking history, the First Found
timestamp would be set to 01.01.2000. The Last Found timestamp would be set to
20.01.2000, while the Activity Number would be two. The Activity Statistics presents the
two activities with their respective timestamps by {Activity 1: 3 , Activity 2 : 1}.
The remaining three fields, the Last Change and Change History, and Recently Reported
cannot be derived solely from the data available in the initial example. However, realistic
assumption could lead to 20.01.2000 as date for the Last Change, {Activity 1: No ,
Activity 2 : Yes} as the Recently Reported data field, and list

{01.01.2000 : "Created Finding",
07.01.2000 : "Changed CVSS Score",
20.01.2000 : "Added Description"}

as Change History. Multiple other conclusions are imaginable in combination with further
information about other findings acquired during the security findings management process.

5.3.2 Status Tracking of Security Findings
When managing security findings in industrial software development projects, implications
apply to each finding. While these implications are quite limited at the beginning of the
management process, more are acquired by investigating and analyzing the findings. Typ-
ically, these are defined as states a security finding is currently in. Our solution approach
has to support the annotation of security findings with these implications and ensure their
persistence and lifecycle throughout the management of each security finding.

To design a solution approach that tracks the current status of each security finding,
a list of possible states a security finding may reach must be identified. We define these
possible states as Security Finding State. The trivial lifecycle includes exclusively the iden-
tification of a security finding and the solution of this finding. This lifecycle consists of
exactly two states, where each finding can be in either one of those two states. A common
strategy for the representation of the vulnerability lifecycle is the usage of state machines.
Likewise, these diagrams can also represent the state of security findings. Following the
definition for finite state machines, each security finding state is represented by a state in
the machine. These states are mutually exclusive, meaning a finding can only have one
active state at a time. The starting point of any security finding is its identification, re-
sulting in the status ”Open”. Therefore, our starting state is ”Open”. In contrast to other
state machines employed in the vulnerability lifecycle, we disregard all findings that have
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not been identified yet. As explained in the last subsection, these findings are irrelevant
for security findings management and, therefore, not considered a starting state. Based on
the trivial lifecycle mentioned previously, we can also identify a second state representing
a solved finding by the state ”Fixed”. This also symbolizes one of the possible final states a
security finding can reach. In the context of security findings management, the final state
should allow security findings to persist permanently, according to the goals and inten-
tions of the project team and stakeholders. Accordingly, this state represents a potential
conclusion of the management process for the respective security finding. Minding the low
reliability of information provided by security activities, final states may be switched again
to non-final states. Even if a finding fix is implemented and validated, any software change
might re-introduce the same finding, resulting in a status change. Therefore, security find-
ings may leave final states in case of certain events. Whether a state can be considered
final depends on the project and its goals. While some projects might consider the state
of a finding that is no longer identified by activities as final, others might consider only
findings with manually validated responses as final. Hence, the selection and interpretation
of a finding’s final state depends on the project.

However, the project not only interprets the implications that a finding state imposes
on the finding, but it might also define additional finding states. Consequently, our solution
approach must provide the capability to extend the finite state machine model by additional
states. Expanding the default two-state model before, additional security finding states
can be derived from our previous research. As identified in the last subsection, findings
may also disappear if they are not reported anymore. This adds an additional state to the
default machine model. Minding the challenge of False Positives or not applicable findings,
two further states are necessary to cover these cases. Information about potential patches
or exploits, as proposed in other literature on the vulnerability lifecycle, is disregarded.
Even though this information is valuable to decision-makers for subsequent activities like
prioritization, information about potential patches or exploits is not mutually exclusive to
other states.

Similar to the definition of possible states for findings, the alphabet defining events for
a state change must be specified. Since the project defines the respective states and impli-
cations of each state, any event resulting in a status change must also be determined by the
project. Considering the fix of a finding, the interpretation when its state can be switched
to fixed can highly differentiate. While one project could consider the implementation of a
fix as sufficient, others might see the necessity to have it verified under a four-eyes principle.
Hence, an exhaustive pre-defined alphabet is neither feasible nor desirable. Instead, we
propose a common alphabet to be refined depending on the project’s specifications. This
results in the following state machine definition:
Q : {Open, F ixed, Absent, FalsePositive, Invalid}
q0 : {Open}
F : {Fixed, Absent, FalsePositive, Invalid}∑ : {ImplementedF indingF ix, F indingnotreportedanymore,
DeterminedF indingasFalsePositive, DeterminedF indingasInvalid,
IdentifiedincorrectAnalysis, IdentifiedSecurityF inding}



124 5. Security Finding Analysis and Tracking

The resulting diagram is depicted in Figure 5.2. It shows that each state can be reached
from every other state with one exception. The ”Absent” state can only be reached from
the ”Open” state since a finding that is not reported anymore can nevertheless be a False
Positive or invalid.

Finding not
reported anymore Implemented

Finding Fix
Determined Finding

as Invalid
Determined Finding

as False Positive

Open

Identified incorrect 
Analysis

Implemented
Finding Fix

False
Positive

Implemented
Finding Fix

Invalid

Determined Finding
 as Invalid

Finding not
reported anymore

Determined Finding
as False Positive

FixedIdentified
Security Finding

Implemented Finding Fix

Determined Finding
as Invalid

Determined Finding
as False Positive

Absent

Determined Finding
as False Positive

Identified
Security Finding

Identified incorrect 
Analysis

Determined Finding
as Invalid

Finding not
reported anymore

Finding not
reported anymore

Figure 5.2: Deterministic State Diagram of the Security Findings Lifecycle

A security finding can reach several states throughout its lifecycle based on the occurring
events. This creates a history of states that must be tracked as part of our solution
approach. Moreover, findings might occur at multiple locations, depending on where they
have been reported. The status of a security finding can differ between locations, as one
location might be fixed while another has been reported as invalid. Therefore, each location
has an individual status with a respective history.

Integration Process
In contrast to the history tracking of security findings, integrating the status tracking into

a project requires preceding steps to tailor it to the project goals and scope. This includes
the potential introduction of additional states, an explanation of each state’s implications
on the finding, the definition of all final states, and criteria that define how one state can
be reached from others, summarized as state machine definition.
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5.3.3 Documentation of Security Findings
During the analysis and tracking of security findings, several pieces of information are
acquired. This information is crucial to decide on the response to a security finding,
prove compliance with certain norms, or conduct forensic investigations after an incident.
Therefore, information documentation is essential for all solution approaches presented in
this chapter.

However, its solution approach is straightforward. Any information identified and re-
ported during the management of a security finding must be documented and accessible to
the project team and stakeholders. The security findings management platform provides
the documentation capability and must be utilized by the respective solution approaches
in this chapter. In addition to the documentation, the information must be protected ac-
cordingly. This implies the maintenance of the traditional protection goals Confidentiality,
Integrity, and Availability.

In our context, maintaining Confidentiality ensures that unauthorized actors cannot ac-
cess the information documented during the security findings management process. Con-
sidering our platform, this affects two aspects: The protection of data at rest and the
protection of data in motion. The data is in motion whenever new reports or information
is sent to the knowledge base or data is retrieved from the knowledge base. To protect
against illegitimate data access in these cases, all communication channels with the plat-
form must be secured. Our solution approach uses the TLS protocol with a server certificate
that a commonly trusted Central Authority handed out. Most of the time, the data rests
on some data storage. This includes data access using interface queries and direct access
to the data storage itself. To avoid unauthorized reading access to the information via
the data storage, we suggest an encryption of the clear text information. To protect the
data from being illegitimately read via the interface, we propose integrating an identity
and access management system with a user and role concept.

Analogous, the Integrity of the data must be protected. In our context, this implies
that unauthorized actors cannot alter or delete the data. To maintain this protection goal,
we split the solution approach into the protection of data in motion and at rest. The first
solution approach inherently ensures the protection of data in motion. The TLS protocol,
combined with a server certificate, not only encrypts the data in motion but also protects
its integrity with a message authentication code. For the data at rest on its native storage,
we recommend data integrity algorithms traditionally available in any modern data storage.
For the integrity protection of the interface, the role concept must be extended, covering
the read access to data and any modifications. This ensures that only authenticated and
authorized actors may change data via the interface.

Finally, the Availability of data refers in our context to the ability to access information
whenever necessary. Therefore, teams and stakeholders must be able to read or modify the
data when managing security findings. This necessitates proper hardware specifications for
the system the platform is running on and protection against any denial-of-service attacks.
Since this highly depends on the implementation of the knowledge base and the number
of security findings processed on the same hardware, no general solution to the protection
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of availability can be given.

Integration Process
To integrate a platform that documents the information gathered during the security

findings management process and protect it accordingly, a role concept for accessing and
modifying the data must be created. This includes which person is allowed to perform
which actions on the dataset. Furthermore, any processes interacting with the data, like
uploading reports, should also be included in the role concept as functional accounts. Based
on this definition, data protection can be customized to the project’s demand.

5.4 Analysis of Security Findings
Analyzing the root cause and background of reported security findings represents one of
the fundamental activities in the security findings management process. The results of a
finding’s analysis provide insights into the relevance of the finding for the project and give
additional information on subsequent finding responses. This section presents the solution
approach to verifying and validating security findings and the proposal on how to support
the analysis of security findings in general.

5.4.1 Verification of Security Findings
To manage security findings effectively, any reported finding not affecting the software
must be eliminated from subsequent analysis or solution efforts. A typical example of
security findings without effect on the software is False Positives. This type of finding
is identified and reported by a security activity, but its existence cannot be verified in
practice. Suppose the following stages assume that the said finding affects the software
and conduct subsequent activities or responses. In this case, the effort related to these
activities has no positive impact on the overall security state of the product, diminishing
the efficiency of the overall security findings management process. Hence, the first step in
analyzing security findings is the verification of their existence and applicability.

As discussed in the work related to this section, identifying and eliminating False Pos-
itives is still a tedious manual task in practice. Every reported finding must be correlated
with context information like configuration files, dependent libraries, underlying platform,
and infrastructure [3] to judge whether it might be invalid. Considering several hundred
findings per security report are not uncommon, only those findings with the most sig-
nificant potential impact on the software can be manually investigated. This can result
in many unreported invalid findings, falsifying any overview of the security status of the
project. Minding the scenario of modern industrial software development, with new reports
arriving continuously, the effort to identify invalid findings is increased even further.

Therefore, the current state of practice is not desirable for efficiently managing security
findings in modern industrial software development projects. Instead, the manual effort
should be minimized, and repetitive work should be avoided to conform with modern
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development principles. An obvious solution would be the automation of False Positive
identification. Scientific literature proposes multiple automated solutions ranging from
machine learning to data mining. However, the drawback of all solutions in this domain
is the possibility of False Positives when trying to identify False Positives. Whenever a
security finding is denoted as invalid, it is considered irrelevant to the project. Typically,
this implies that the problem stated in the finding does not affect the software product
and is, therefore, not imposing a risk to the overall security state. Consequently, it is
disregarded in subsequent stages of the security findings management, regardless of how
severely the finding might impact the software. In particular, the finding will neither be
mitigated nor shown in the overall security status of the software. Imagining the initial
classification of the finding as False Positive is incorrect, a potentially critical security
shortcoming is affecting the software and intentionally ignored. Therefore, any security
finding incorrectly flagged as False Positive can have a devastating impact on the security
of any software product. Hence, preventing False Positives during the identification of
False Positives is essential.

Unfortunately, the techniques proposed in scientific literature still have a noteworthy
False Positive rate, considering experiments are performed under optimal conditions (e.g.,
3% for only one specific group of findings). Moreover, most techniques utilize historical
information about security findings. While this is beneficial since existing False Positives
will likely be identified again, it requires historical information about False Positives up-
front to be effective. To make these techniques usable within our methodology, a set of
historical data on False Positives must be known, and the results of the techniques must
be manually reviewed to validate each identified False Positive. Since a similar effort is
required during the traditional manual review, we decided against automating the security
findings verification and validation process. Instead, we divide the process into two steps.
During the first step, all security findings are validated and invalid findings are identified.
In the second step, the validity information is documented for each finding.

Security Finding Validation
Before any security finding can be classified as invalid, the definition for this property

must be specified. Following the underlying challenge, we define any security finding as
invalid if it does not negatively impact the product’s security. The most prominent case
of an invalid security finding is a False Positive. According to binary classification, a False
Positive (Type I Error) represents a test result that incorrectly indicates that a particular
condition is fulfilled. In the context of security activities, this implies that a check found
a security finding at a location containing no security finding. The root cause is always an
error in the activity that conducted the check. Exemplary would be a flawed test case that
checks for properties that are not correlated with the reported finding. Another case can
occur when a finding is reported and can be found, but does not affect the security of the
software. An example would be a finding in program code that is never executed. In this
case, the finding exists and was correctly identified, but it is irrelevant to the security of
the software and, therefore, invalid. Whenever the finding negatively impacts the security
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of the software, it is considered valid. This results in the following three validity results:
• False Positive: A finding that was reported, but can not be found

• Not Applicable: A finding that was confirmed, but does not affect the security of the
software

• Applicable: A finding that affects the security of the software
To investigate the validity of each finding, project team members have to collect evidence
that is contextually related to the security finding. The context information that should
be collected highly differentiates, based on factors like finding type, security activity that
identified it, or product [122, 3]. While investigating a security finding identified by a static
code analysis tool benefits from collecting configurations and code snippets, the analysis
of a Penetration Testing finding benefits from aspects like the infrastructure configuration.
Typical context information includes the software code, operation environment, configura-
tion files, underlying platforms, third-party components in general, like libraries, and the
intended system behavior. Since no clear guidance on the necessary context information
can be given, this decision depends on the investigating party. We define this party as
one or multiple project team members. Even though one team member is sufficient in
most cases, certain findings might necessitate additional domain expertise. Hence, the
project team conducts the investigation of security findings and is supported by context
information from the project.

Validity Documentation
After the security findings are validated, the results must be documented so that subse-

quent processes know about potentially invalid findings. Traditionally, all invalid security
findings are eliminated from reports so that only valid findings are processed and po-
tentially responded to. However, recent research indicates that False Positives also yield
knowledge that might be useful for the project and other stakeholders in the company
[40, 3, 157]. As confirmed by our preliminary research on the requirements of the security
findings management, the knowledge about False Positives can support the Q&A team in
tailoring the security testing strategy, potentially avoiding False Positives in the future.
Therefore, our solution approach solely documents the results of the previous investigation
instead of removing the findings entirely. This has another remarkable advantage to the
security findings management process, as security reports created later can be mapped to
the existing decisions. Consequently, a finding that has already been identified as invalid
persists in this state throughout newly collected security activity reports, drastically re-
ducing the effort for the validation and verification of security findings. Even though this
persistence has effort-wise advantages, it could also threaten security awareness. Findings
documented as invalid might only be correct for a limited time period. Even if a finding
was determined invalid at one point, this might not be permanent as new attack vectors
could expose the finding. Therefore, the results of the validity assessment must be re-
viewed periodically. The review period depends on the project and is consequently defined
upfront. Typical time frames would be a semi-annual or four-monthly review.
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The approach for documenting a finding’s validity must differentiate between both out-
comes. When a security finding is invalid, it has implications on its lifecycle. Since it
does not impact the security of the software, further analysis or even responses are not
required. Therefore, this represents the end of its lifecycle, indicating a final state in the
status tracking, presented in the last section. As ”False Positive” and ”Not Applicable” in-
dicate different properties of the finding, distinct states must represent them. In contrast,
any valid finding has subsequent stages in its lifecycle. The information that a security
finding is applicable solely shows that it has already been validated. Therefore, this knowl-
edge must also be documented with an additional finding status. In summary, all results
of the security findings validation are documented using individual finding statuses with
respective explanations.

Figure 5.3 depicts the entire security findings validation process.
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Figure 5.3: Flow Chart of the Security Findings Validation Process

Integration Process
Due to the manual effort of the security findings validation process, its integration into

the project benefits from guidance on how to conduct the validation. In particular, this
should explain the differences between False Positives and not applicable findings. More-
over, the review period for invalid findings must be defined upfront.

5.4.2 Investigation of Security Findings
During our preliminary assessment of requirements for managing the security findings,
several requirements stated the necessity to analyze each security finding. The scope
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of the analysis ranges from particular properties of a finding to the impact of a finding
response on the project and customer. Even though some factors are commonly analyzed in
industrial software development projects, like a root cause analysis, the selection of which
analysis is conducted depends on the project. However, not only the project circumstances
but also the finding itself impacts the selection of the analysis approach. A finding type
that is well known by the project members might not require an in-depth investigation for
its mitigation effort, while a yet unknown finding might receive a more detailed analysis.
Commonly applied investigation strategies include a root cause analysis, the determination
of finding circumstances, an effort estimation for the finding response, or the impact of a
finding’s mitigation on the product/customer.

As the investigation of security findings is a case-by-case decision, no common strategy
can be recommended as part of our solution approach. Instead, we propose that the
conclusions of previous stages of the security findings management must be available during
any analysis protocol, and the investigation results must be documented for subsequent
activities. An elaborate explanation of the presentation of results from previous stages is
avoided, as the topic is addressed in Chapter 6. The documentation of analysis results
follows the idea of sticky notes. As no exhaustive list of all possible investigations can be
collected and the results depend on the scope of each analysis, we solely collect each result
as 3-tuple Title, Analysis Description, and Analysis Result. The Title is a summary of the
conducted activity. This is more precisely elaborated on in Analysis Description. Since
not every team member might know the procedures inherent to an analysis approach, this
can be disclosed in more detail in this field. Finally, the analysis results are documented in
Analysis Result. This may include the knowledge acquired by the analysis or conclusions
that can be drawn from that. An example of this 3-tuple is depicted below:

{
"Title": "Effort Estimation",
"Analysis Description": "Check the effort to mitigate or fix the finding",
"Analysis Result": "Finding Fix requires 3 hours

of senior development time"
}

This structure ensures that arbitrary investigations can be conducted and documented.

5.5 Prioritizing and Deciding on Security Findings
With hundreds of findings commonly reported in industrial software development projects,
deciding how and when to respond to an identified security finding is essential to perform
impactful actions. This decision depends not exclusively on the severity of a finding but
includes multiple other factors. This section presents the solution approach to the pri-
oritization and decisions on subsequent actions for security findings. The prioritization
process for security findings is published in [196]. Since the decision-making process re-
quires all data previously constructed, this section is closely coupled with the information
communication presented in Chapter 6.
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5.5.1 Severity Scoring of Security Findings

The most commonly supplied indicator for the relevance of a security finding is its severity
or criticality. This score guides practitioners on how severe a finding impacts the security of
software that contains it. This severity score is the first indicator for a findings priority [53,
165]. Hence, it is a crucial aspect in the prioritization of security findings. A typical format
for this severity is the Common Vulnerability Scoring System, which utilizes a numeric score
between 0.0 and 10.0 to present the relevance of a vulnerability [135]. However, not every
security finding is a vulnerability. Therefore, other scoring systems also exist, changing
either the calculation approach, the representation of the final score, or both. Examples of
the first aspect can be found in the Related Work section of this chapter. Moreover, the
representation of the resulting severity score also differentiates between sources, ranging
from numeric values to qualitative severity ratings with diverse scales, phrases, and formats
(High, Medium, Low; Critical, Severe, Moderate; 1-100; 0.0-10.0).

Minding the scope of the security findings management, practitioners encounter the
severity of findings created by various sources. A standard scale or calculation approach
across activities cannot be assumed. However, practitioners must be able to compare the
severity of findings against each other and depend on reliable severity scores for an accurate
rating of the finding’s priority. Hence, the first part of our solution approach has to ensure
that each security finding contains a severity score on a scale commonly used across all
findings. We define this severity score as Base Score.

The first step towards this Base Score is creating a common scale with which all security
findings are aligned. Due to its broad acceptance, we utilized a modified CVSSv3 scale
with numeric values ranging between 0 and 100. This allows a granular ranking of each
severity while supposedly being more intuitive than floating point numbers used in CVSS.
To cope with the varying scoring approaches by different security activities, we suggest
using semantic models to comprehend the content of each security finding and derive a
score on the common scale. Since each activity reports data in a different format, these
models are tailored to the respective activity. Moreover, the same activity might report
different information categories depending on the type of finding. An example would be
the same activity reporting differentiating CVSS scores from distinct sources (CVE and
Debian Security Advisory). Hence, one model must be constructed for each activity. These
models must compensate for each source activity’s format, calculation approach, context
information, and potential incorrectness. Hence, they must be constructed manually by
practitioners with security expertise and experience with the respective source activity
to ensure the model can handle the source data appropriately and build a reliable score.
To disclose the model’s functionality to practitioners utilizing it, each model output is
accompanied by an explanation of how the score was calculated and based on which in-
formation. Consequently, the execution of a model outputs the Base Score for this model
and a corresponding explanation.

Due to the preceding clustering of findings, one security finding might contain severity
information from multiple, hardly predictable sources (two static code review tools report-
ing the same finding). Therefore, our solution approach must be able to aggregate the
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severity score from multiple models into one Base Score, representing the respective secu-
rity finding. Since domain experts manually create the models, we can assume that the
resulting scores inherently hold the same degree of accuracy. Hence, significant discrepan-
cies are unlikely. Therefore, the final Base Score is created as the mean value of all model
outputs and a list of all associated explanations.
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Figure 5.4: Base Score Calculation Process

In Figure 5.4, the entire process is shown. An example calculation of the Base Score
would begin with creating models for each source activity. Since the structure of each
model highly depends on the respective source and the data it reports, no general model-
ing approach exists. However, practitioners typically utilize an if-then design to identify
available information and map the existing information to the common scale. An example
of a simple model could check whether a CVSS score from CVE exists and linearly map the
numeric CVSS value to our scale by multiplying it by ten. Otherwise, the finding receives
a comparably high static score to avoid it being missed. As an explanation, either the
mapping from the CVSS score or the static assignment of a score is added. This model
would be connected to the respective source.

if exists(security_finding.CVSS_Score) and
security_finding.CVSS_Score.source == "CVE" then
base_score = security_finding.CVSS_Score.score * 10
return base_score, "Linear mapping of the CVSS Score from CVE"

else
return 80, "Static Score, due to a lack of reliable information"

endif

Starting with the exemplary calculation, the process must identify whether an applicable
model exists for the existing security findings based on the activity that reported each
finding. Afterward, the model is executed on the finding’s data, creating a score and an
explanation. With multiple models, the mean of all scores would be utilized as Base Score.
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Integration Process
To integrate the calculation of the Base Score into software development projects, each

employed activity requires a model that can be utilized to calculate the score. Similar
to the integration of the parsing strategy, a domain expert has to create one model per
security activity reporting findings in the project.

5.5.2 Prioritization of Security Findings
However, the severity calculated in the last step only indicates the relevance of security
findings compared to one another. Moreover, it disregards several factors impacting the
importance of a finding response, like vulnerability chains resulting in an attack vector.
Therefore, the priority of responding to a security finding by, for example, solving or
mitigating it exceeds its plain severity.

The traditional prioritization of tasks in software engineering involves various stake-
holders and factual aspects to determine the relevance of a task. When responding to a
security finding, the impact factors are not less plentiful. The complexity of solving the
issue, the resources available in the project, the project planning, and multiple others im-
pact whether, how, and when a security finding is responded to. However, these aspects
should not only be used to derive the priority of a security finding but must further be
formalized and documented to ensure the transparency of each decision. Therefore, the
prioritization of security findings must be a flexible but formalized process to include all
relevant factors, resulting in a single reliable prioritization score per security finding.

In practice, two types of entities providing input must be considered: human project
stakeholders and automated systems. An example of the latter is a list of critical vul-
nerabilities containing issues that must be mitigated at all costs, like log4j in 2021. Each
input factor further differentiates in their relevance to the project, necessitating a balanced
priority. We define this priority as Refined Score.

Following the scoring approach of the Base Score, the Refined Score is a numeric score
on a scale between 0 and 100. However, solely a numeric value might be interpreted
differently based on personal experience by project team members. Since a common un-
derstanding is essential [158], the resulting prioritization score must also explain what it
implies. Furthermore, humans and IT systems (e.g., ticketing) use the score afterward, so
it must be comprehensible and processable for both. Moreover, the Refined Score not only
represents the severity or risk of a finding but also its priority in a project. Hence, we
extended the result interpretation of the traditional CVSSv3 approach by the concepts of
urgency and consequence. Depending on the score, qualitative information on the urgency,
differentiating between five levels, and recommendations on the consequence for each level
are supplied. In contrast to CVSS, we extended the lowest category up to a priority score
of ten since CVSS lacks a score range for existing findings that are entirely negligible. The
resulting orientation scale is depicted in Table 5.2.

Our solution approach to formalize and document the influence factors on the priority
of security finding are Finding Prioritization Policies (FPP). Each FPP consists of five
components listed below:
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Score Urgency Consequence
0-10 None No consequence to be taken
11-39 Low To be solved on demand
40-69 Medium Deep analysis in the upcoming iterations.
70-89 High Deep analysis in this iteration.

Mitigation in upcoming iterations.
>=90 Critical To be mitigated in this/the next iteration.

Table 5.2: Orientation Scale for Prioritization Score

• Provider: Origin of the Policy

• Policy Explanation: Explanation of the Policy

• Rule: Findings affected by the Policy

• Action: Impact of the Policy on the Priority

• Relevance: Relevance of the Policy

The Provider and the Policy Explanation fields document who exerts influence on the pri-
oritization score of a security finding and why. This information clarifies the background
of each policy and aims to achieve transparency for each decision, as the source of each
influence factor is traceable. The Rule field defines which security findings are affected by
the policy. Specific influences may impact not only a single finding but entire groups, de-
pending on the properties of the findings. Examples include findings at particular locations
or that originate from specific sources. The Action field contains the impact of the policy
on the final score. Since the final score is defined on a scale of 0 to 100, this field contains
either an absolute value (0-100) or a mathematical operation to derive the Refined Score
from the Base Score. The second case allows adding, deleting, multiplying, or dividing the
Base Score by any given numeric value. It is intended for entire classes of findings if they
are, e.g., highly exposed and should consequently be treated with a higher priority. To
ensure the correct outcome, the information provided in the Action field must be derived
from the orientation scale (Table 5.2) and hence previously known to the entity providing
the input. The last component, the Relevance, represents the relevance of the FPPs Ac-
tion compared to other FPPs matching the same finding. This corresponds to the varying
influence weights between different entities providing the input. The combination of these
five components allows a formalized influence on the prioritization of security findings that
is flexible, traceable, and standardized. Process-wise, this input shall be provided by all
team members independent of each other.

To construct the Refined Score for a security finding, all influence factors, formalized
as FPPs, and the Base Score must be considered. Hence, the first step is the collection
of all FPPs affecting the respective finding, resulting in zero to N different applicable
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Figure 5.5: Refined Score Calculation Process

policies. If no FPP affects the selected finding, no factors except for the severity impact
the priority of this finding. Therefore, the Base Score equals the Refined Score. If FPPs
are found, the Action of each policy is applied to the Base Score, resulting in a list of
different intermediate scores, which must subsequently be summarized into the Refined
Score. This calculation must cope with various challenges. First, an equal distribution
of FPPs across security findings is unlikely. Findings with a higher Base Score will likely
attract more attention due to the higher potential impact on the software. Moreover, the
type of input from certain entities is predefined by its characteristics. Threat Modeling,
for example, will never reduce the score of a finding, as the activity focuses on identifying
risks and attack vectors instead of low-severity/probability attacks. To compensate for
these problems, we cluster all scores according to the orientation scale in Table 5.2 and
identify the cluster containing the most values. Depending on the relevance of an FPP,
the scores are respectively more often considered. Hence, an FFP with a Relevance of 2
will have the respective score added twice. In case of a tie, the cluster with the higher
urgency is chosen. The largest cluster and its adjacent ones are selected, and the upper
median of all scores comprised by them is calculated. This approach eliminates outliers
that falsify the prioritization score while respecting the input of each entity. To ensure the
trustworthiness of the Refined Score for all practitioners utilizing it, it is accompanied by
an explanation listing all FPPs considered for calculation. This solution approach can be
fully automated, excluding the creation of FPPs, which must be manually added.

Figure 5.5 shows the process for calculating the Refined Score. For an example calcula-
tion, let’s consider the following Base Score for a vulnerability in a third-party component:

(75, "Linear mapping of the CVSS Score from CVE")

Based on this Base Score, we further assume that the following three FPPs apply to
the findings:
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{
"Provider" : "Threat Model",
"Policy Explanation" : "Vulnerability in exposed component",
"Action" : "+10", "Relevance" : "1", "Rule": {...}},
{
"Provider" : "Developer",
"Policy Explanation" : "The component will not be addressed in this sprint",
"Action" : "60", "Relevance" : "2", "Rule": {...}},
{
"Provider" : "Stakeholder",
"Policy Explanation" : "Security is currently of no concern",
"Action" : "10", "Relevance" : "2", "Rule": {...}}

Applying the Action to the Base Score results in a list of values containing the elements
10, 10, 60, 60, 85. Only the last value is directly derived from the Base Score by adding ten
points to the score of 75. The values 10 and 60 are mentioned twice due to the relevance of
the respective FPPs. These values are clustered into the buckets [10, 10],[∅],[60,60],[85] and
[∅]. The two largest clusters are the ”None” and ”Medium” urgency clusters. As defined,
we select the cluster representing more urgent ratings in case of a tie. In combination with
the adjacent clusters ([60, 60, 85]), we derive the upper median value resulting in a Refined
Score of 60.

{
"Refined Score" : 60,
"Refined Explanation" : {

"Policy Scores": [60, 85],
"Considered Scores": [
(60, "Developer: The component will not be addressed in this sprint", 2),
(+10, "Threat Model: Vulnerability in exposed component", 1)]}

}

The Refined Score is accompanied by an explanation, ensuring transparency about the
construction of the score. Therefore, it lists all scores considered during the calculation of
the upper median with data from their respective FPPs. This data includes the Provider,
the Policy Explanation, the Action, and the Relevance as background information on the
validity of the generated score.

Integration Process
In contrast to the calculation of the Base Score, the Refined Score requires no additional

models for its integration into projects. However, creating FPPs upfront for known pro-
cesses or impact factors can be beneficial. Moreover, the orientation scale in Table 5.2 must
be distributed to all entities providing input to ensure that security findings are prioritized
on the same scale.
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5.5.3 Finding Response Planning
Ultimately, the information accumulated during the analysis of each security finding must
be summarized in a responding action. While some decisions seem obvious if previous
activities identified certain facts, others require further investigations and consultation
within the project team. The correct response to a security finding is essential for the
successful management of security findings, as otherwise, not managed security risk or an
overwhelming amount of security improvement tasks with little impact on the product’s
security infringe the success of product development.

Therefore, practitioners are challenged with selecting appropriate responses to security
findings based on the limited information available. Regardless of whether the project team
decides to respond to a finding or not, an inherent decision is taken as security findings
pose a risk to the security of the product and all its users. Hence, the planning of a finding
response in industry is closely related to the risk management for industrial products.
However, this introduces the challenge that risk management and its underlying strategy
and activities are industry-, sector-, and company-dependent. Therefore, we cannot assume
a particular strategy for our solution approach but must ensure customizability and process
independence.

Our solution approach utilizes all insights gained during previous activities of the secu-
rity findings management and guides the project team to appropriate decisions and finding
responses. Fueled by these insights, our strategy resembles a decision tree, proposing re-
sponse actions depending on the characteristics and circumstances of each finding. As part
of our proposed methodology, this approach must be employed for each security finding
identified. Figure 5.6 shows a visual representation of this strategy.

During the first stage, we utilize the knowledge acquired during the History Tracking
and check whether the finding is currently absent. If the finding has not been found
recently, we must assume that the underlying problem was either solved or cannot be
identified again by any security activity. Hence, we assume that the finding no longer
poses a security risk. To verify this assumption, we recommend to confirm the absence of
the finding. If its absence can be confirmed, the finding must be considered closed. If the
absence cannot be confirmed, it is regarded as a potential security threat.

In the second step, the knowledge acquired during the verification described in Subsec-
tion 5.4.1 is employed to analyze the applicability of the security finding. If the finding was
tagged as False Positive or Not Applicable, the finding has no impact on the software. Even
though the finding will be continuously reported, it either does not affect the software or
is incorrectly reported by the security activity. In these cases, no response to the security
finding is necessary, and both cases are documented with a respective finding state.

At this point in the decision process we have to assume that the finding exists and
impacts the security of the software to some degree. Hence, it poses a threat to the
product’s security and is, therefore, closely related to the security risk management process
for industrial products. To apply the risk assessment process to the decision-making of the
security finding response, we map the risk terminology proposed by ISO 27000 to our
context [71]. The result and applied examples can be found in Table 5.3.
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Figure 5.6: Finding Response Planning Strategy as Flow Chart
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Term Definition Context Example
Consequence Outcome of an Event, affecting

Objectives
Data is disclosed to the pub-
lic

Control Measure, modifying Risk Encrypt data storage
Control Objective Goal that should be achieved by

implementing a Control
Stored data can not be read

Event/Incident Occurrence of circumstances Malicious entity can access
confidential data

Level of Risk Magnitude of Risk expressed as a
combination of Consequence and
its Likelihood

Critical

Likelihood Chance of something happening Very likely
Objective Result to be achieved and typi-

cally set by the organization or
business

Data may not be disclosed
to the public

Residual Risk Remaining Risk after Risk Treat-
ment

It is unlikely that a limited
amount of data might be
disclosed to the public

Risk Effect of uncertainty on Objec-
tives

It is very likely that data
might be disclosed to the
public

Risk Acceptance Informed decision to take a Risk The residual risk is accept-
able to the organization

Risk Analysis Process to comprehend a Risks
nature and determine the Level of
Risk

Process

Risk Assessment Process of Risk Identification,
Risk Analysis, and Risk Evalua-
tion

Process

Risk Communica-
tion and Consulta-
tion

Process to provide, share or ob-
tain information

Process

Risk Criteria Terms of reference against which
the significance of Risk is evalu-
ated

Risk Appetite of Busi-
ness/Organization

Risk Evaluation Comparing the results of the Risk
Analysis with Risk Criteria to de-
termine whether the Risk and is
acceptable

Process
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Risk Identification Finding Risk Sources and their
Events, recognizing and describ-
ing Risks

Process

Risk Management
Process

Process to establish the context of
Risk, identifying, analysing, eval-
uating, treating, monitoring and
reviewing the Risk

Process

Risk Source Element that has the potential to
rise to a risk [76]

Weak Database Hardening
Measures

Risk Treatment Process to modify Risk Process

Table 5.3: Glossary of ISO 27000 Terms in the Security Findings Management Context

These terminologies and the proposed processes slightly differentiate between standards
and guidelines applicable in industry. However, the fundamental idea of how to manage
security risk and its activities in the context of security findings management persists.
Moreover, we assume that the organization or business developing a product already obeys
some sort of risk management process that our solution approach must follow. The solution
approach follows this constraint by adhering to the concepts proposed in industry standards
while respecting the need for customization.

The next step in our process is deciding whether the risk will be managed at all or pre-
liminarily discarded. The risk management process requires time, effort, and information
from various stakeholders to determine a reliable level of risk and decide on appropriate risk
treatments. Since the impact of some security findings on the product might be negligible,
the project team could choose to avoid the risk management process and the associated in-
vestments. Similar to most other activities, the conclusion to conduct the risk management
process depends on the input from the multidisciplinary project team. The discussions and
all subsequent activities for planning a finding response are supported by the insights iden-
tified during the Investigation of Security Findings. As the decision process depends on the
project and organization, our solution approach proposes no particular structure but solely
supports the documentation and continuous review of the decision. If the risk management
process is not justifiable, this decision is documented with a respective validity period.

Otherwise, the risk management process for security findings is started. General guid-
ance recommends to start by collecting information relevant to the risk management pro-
cess and the identification of risk [74, 25, 130]. However, as part of the security findings
management, we already know the risk source: the security finding itself. Therefore, solely
the risk and its respective event must be described to complete the Risk Identification.
Afterward, this newly found risk is analyzed by combining the impact or consequence of
the risk with its likelihood to determine the level of risk following the risk process of the
organization (Risk Analysis). Afterward, the Risk Evaluation takes place by comparing
the level of risk with the risk criteria to determine whether the risk is acceptable to the
business or organization. However, the exact procedures for assessing the security risk
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depend on the organization. How risks must be described, the metrics for consequence
and likelihood, and the representation of risk criteria all rely on the organizational risk
management process. Therefore, we consider this activity as a black box in our solution
approach, which is given all information from preceding activities and outputs the decision
of whether the current level of risk is acceptable.

After the risk has been assessed, the risk treatment must be conducted, depending on
whether the current level of risk is acceptable or not. If the risk is not acceptable, options
for the risk treatment must be reviewed. These options include the Risk Avoidance, by
avoiding the condition that gives rise to the risk, the Risk Transfer, by sharing the risk
with other parties, and the Risk Modification, by introducing or altering controls as defined
in ISO 27005. Applied to the management of security findings, this implies that either the
software use case or scope must be changed (Risk Avoidance), a third party like an insurance
company must take responsibility for the risk (Risk Transfer), or the finding itself must be
fixed or mitigated (Risk Modification). In the context of security findings management,
the third case differentiates between solving the root cause of a finding and introducing
additional controls to reduce the likelihood or consequence of the finding. Minding the
case of third-party components, the influence of the project team on certain findings might
be limited to an informed decision about replacing components instead of fixing the root
cause. Whenever the risk is not entirely eliminated, the remaining risk requires another
evaluation against the risk criteria, resulting in another iteration of the risk treatment.

However, if the risk is acceptable, we differentiate between two responses. The straight-
forward approach is to officially accept the risk and communicate the acceptance to achieve
risk transparency. Since this represents a final decision for security risk, it also closes the
associated security finding. Another response is to delay the decision for risk acceptance.
Even if the risk might be acceptable, treating the security finding by risk avoidance or
modification with controls might still be a viable subsequent treatment. Hence, delaying
the security finding response and retaining the risk is another outcome of the risk treat-
ment process. The risk is taken in both cases, and no immediate change to the risk source
is conducted.

Regardless of the selected finding response, the decision behind it must be communi-
cated, documented, and tracked. As part of the risk management process, the monitoring
and periodic review of risks is essential. This affects all risk treatments and both forms
of risk acceptance alike. Hence, each decision has a limited applicability that must be
reviewed. This validity period differentiates between finding responses, as the remaining
risk inherent to certain decisions necessitates a more thorough monitoring. Moreover, all
decisions must be communicated to various stakeholders to achieve risk transparency. The
communication is addressed in the next chapter.

Integration Process
Certain preconditions must be met to integrate this solution approach for decision-

making into modern industrial software development projects. First, the procedures for the
established risk assessment process within the organization must be identified to calculate
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the risk level in compliance with the guidelines of the company developing the product.
Moreover, the risk criteria must be defined by the organization or project to derive when
a risk can be accepted without additional measures or controls. Finally, the timeframe
for periodically reviewing the finding responses must be specified. This depends again on
the corporate risk management strategy and must be determined by the organization’s
representative in the project.

5.6 Implementation
To ensure that our solution approach can be integrated into actual projects, we must
instantiate them in our platform for the management of security findings. We added
additional rules and belief classes to the knowledge base presented in Section 3.5 for this
instantiation. The steps to implement the proposals of this chapter are described in this
section and structured according to the solution approaches.

5.6.1 Implementation of Tracking and Documentation
To track every security finding throughout its lifecycle and document the resulting infor-
mation, the first solution approach of this chapter tracks each finding’s history and current
state. This is implemented by two belief classes, one query, and one rule.

A new belief class storing this information is necessary to implement the tracking entry
suggested for history tracking. Apart from the regular metastructural details and the
reference to the aggregated finding it belongs to, this new belief class contains the entire
finding history and the explicit documentation of all conclusions listed in Table 5.1.

"Class Name": "Finding History",
"Identifier": <>,
"Content Hash": <>,
"Belief Type": "Derived",

"Finding Identifier": <>,
"First Found": <Date>,
"Last Found": <Date>,
"Last Change": <Date>,
"Change History": {

<Date 1>: (<Activity 1>, <ChangeText>),
<Date 2>: (<Activity 2>, <ChangeText>),
...},

"Activity Number": <Number>,
"Activity Statistic": {

<Activity 1>: <Number>,
<Activity 2>: <Number>,
...}

"Finding History": {
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<Activity 1>: [<Date 1>, <Date 2>],
<Activity 2>: [<Date 2>, <Date 3>],
...}

The only exclusion is the ”Recently Reported” field. The solution approach proposes that
this field contains a list of the last reports that each activity has uploaded. Implementation-
wise, this has multiple noteworthy drawbacks. First, having this field in each Finding
History instance would introduce duplicate data into the knowledge base since each finding
reported by the same activity would contain the same information. Second, adding this
field would drastically complicate the maintenance of soundness. With each new report
of an activity, the history element of all findings identified at some point by this activity
would be changed. Therefore, findings that have potentially been solved a long time ago
would be recomputed every time a new report is added, thus increasing the workload
for its maintenance. Consequently, no information about the latest report of an activity
may be stored in the findings history element. Instead, we implemented a new query,
named History Query, that returns the Finding History instance with the latest reports
of an activity. Moreover, any project-tailored tracking information is also implemented in
this query. This query returns the Finding History element for the identifier of a given
aggregated security finding and adds the ”Recently Reported” field by taking the most
recent report date for all activities that reported the finding.

The content of each Finding History belief instance is computed by an inference rule,
which takes one instance of the ”Aggregated Security Finding” class to derive its history.
The rule consists of the following 4-tuple:

{"Trigger": ["Aggregated Security Finding"],
"Code": "<Reference to the File>",
"Output": "Finding History", "Name": "History Tracking"}

The code itself iterates through the list fields of the aggregated security finding and con-
structs the ”Finding History” field. From this field, all other elements can be derived.

To implement the state machine model of the security finding lifecycle, we introduce a
new belief class, where project team members can upload a new status. This new belief
class is depicted below:

"Class Name": "Status Input",
"Identifier": <>,
"Content Hash": <>,
"Belief Type": "Explicit",

"Finding Identifier": <>,
"Location": <>,
"User": <User Email>,
"Added At": <Date>,
"Status": <Open/Fixed/False Positive/Invalid>,
"Valid Until": <Date>,
"Description": <String>
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In addition to the meta-structural information and the reference to the aggregated finding
it belongs to, this new belief class contains information about the user and timestamp
that added the status information. Moreover, it comprises the new status, a timeframe of
validity for the status, and a description of how it was achieved. This description maps to
the alphabet of the state machine. Since a security finding might be located at different
places in the product and the status could differentiate between locations, the affected
location is also documented. To add this information to the knowledge base, the /userinput
resource of the RESTful API is employed. In our implementation, we avoided the ”Absent”
status, as this is intrinsically given by the history tracking in combination with the status
history for the purpose of efficient maintenance. Both are again implemented by a query,
identifying the most recent and, hence, active status for an aggregated security finding.
This Status Query collects the aggregated security finding and all instances of the Status
Input belief class belonging to it. Afterward, it analyzes whether any finding location is
”Absent” by checking whether the most recent report of any activity found it and lists all
status changes that belong to each location to identify the currently active status. In the
following, we describe an exemplary answer to the query:

"Finding Identifier": <>,
"Active Status": {

"Location 1": "Absent",
"Location 2": "False Positive"},

"Status History": {
"Location 1": [

{"User": "system", "Status": "Open", "Added At": 01.01.2020,
"Valid Until": 01.01.3000,
"Description": "Findings are Open by default"},
{"User": "system", "Status": "Absent", "Added At": 07.01.2020,
"Valid Until": 01.01.3000,
"Description": "Findings are Absent when not found anymore"}],

"Location 2": [
{"User": "system", "Status": "Open", "Added At": 01.01.2020,
"Valid Until": 01.01.3000,
"Description": "Findings are Open by default"},
{"User": "user@team", "Status": "False Positive",
"Added At": 10.01.2020, "Valid Until": 10.06.2020,
"Description": "Investigation showed finding does not exist"}]

}

Therefore, the information on the currently applicable status of a finding is not stored in
a separate belief class but constructed by a query.

Finally, the maintenance of protection goals has already been implemented for the
evaluation during the previous chapter. Therefore, no implementation effort was necessary
for this solution approach.
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5.6.2 Implementation of the Analysis
To supplement and document the analysis of security findings, our solution approach pri-
marily focuses on documenting the analysis results. For our platform to support these
requirements, we adapted the existing Status Input belief class and added a belief class for
analysis input.

To support the documentation of each finding’s validity, we adapt the existing Status
Input class to reflect the conclusions of the solution approach. This implies that the
existing state types were extended by the ”Not Applicable” and ”Applicable” status, while
the ”Invalid” state was removed. Since the belief class already contained a description
field, the explanation of how it has been validated can already be documented. Moreover,
the review period is implemented by utilizing the ”Valid Until” field. Using this field, the
status will only be valid for a certain period until it returns to the ”Open” status. This
solution approach can be implemented into the security findings management platform by
changing the accepted status entries.

However, we require an additional belief class to document the results of any generic
security findings analysis. As discussed in the solution approach, the type of investigations
that must be supported is arbitrary. Therefore, the belief class to document them must be
similarly customizable.

"Class Name": "Analysis Input",
"Identifier": <>,
"Content Hash": <>,
"Belief Type": "Explicit",

"Finding Identifier": <>,
"Title":<>,
"Analysis Description": <>,
"Analysis Result": <>

In addition to the meta-structural information, the belief class contains a reference to
the investigated finding. Moreover, all three fields of the solution approach are added,
covering a short title, a detailed description of the performed investigation and the result
of the analysis. The /userinput resource of the RESTful API is again employed to upload
the analysis results.

5.6.3 Implementation of Prioritization and Decision Making
To finally prioritize each security finding and support the subsequent decision-making pro-
cess, our solution approach constructs the Base Score and Refined Score for every security
finding and documents the results of the decision-making process. This is implemented by
two new belief classes, one query, and one rule.

The first component of the implementation is an additional belief class, documenting
the Base Score and the Refined Score with their respective explanations. Apart from the
regular meta-structural information and the reference to the aggregated finding it belongs
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to, this new belief class contains the Base and Refined Score as numeric values and the
explanations for both.

"Class Name": "Prioritization Information",
"Identifier": <>,
"Content Hash": <>,
"Belief Type": "Derived",

"Finding Identifier": <>,
"Base Score": <Integer>,
"Base Score Explanation": <>,
"Refined Score": <Integer>,
"Refined Score Explanation": <>

To document and utilize the FPPs, a second new belief class must be established to
collect the prioritization input from knowledge base external entities. In addition to the
meta-structural information, each instance of this belief class contains the five components
of any FPP, including the Provider, Policy Explanation, Rule, and Action.

"Class Name": "Prioritization Input",
"Identifier": <>,
"Content Hash": <>,
"Belief Type": "Explicit",

"Provider": <>,
"Policy Explanation":<>,
"Rule": <>,
"Action": <>,
"Validity": <Date>

In our implementation, the Provider and Policy Explanation are both text fields. The
Action field can contain a numeric value between 1 and 100 or a mathematical operation
to add, delete, multiply, or divide a number from/to the Base Score. The validity can be
tested with the following regular expression:

^([\+\-\*\/]){0,1}[0-9][0-9]{0,2}(?:,[0-9]{0,3}){0,1}$

To define the findings affected by the policy, the Rule field defines the characteristics of all
affected findings. This is implemented as an Elasticsearch query that can be executed by
the rules calculating the Refined Score. Finally, the Validity field can contain a date until
which the FPP is valid. Influence factors that solely temporarily impact the priority of a
finding, like sprint planning, can be realized by using this field. To add this external input
to the knowledge base, the /userinput resource of the RESTful API is employed. As per
definition, each FPP additionally contains a Relevance field. Based on the insights of the
preliminary evaluation in this chapter, it was removed from the implementation.

In addition to the new belief classes, a new inference rule is required to derive the prior-
itization information from the aggregated security findings and the user input. Similar to
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the implementation of the enrichment operation, the rule 4-tuple consists of two different
belief classes, triggering the execution of the code. Its trigger is either an aggregated secu-
rity finding or external prioritization input and results in an instance of the Prioritization
Information class belonging to the respective aggregated security finding.

{"Trigger": ["Aggregated Security Finding", "Prioritization Input"],
"Code": "<Reference to the File>",
"Output": "Prioritization Information", "Name": "Prioritization"}

As the calculation of the Base Score may utilize a different semantic model for each combi-
nation of source and version, the code file follows a strategy similar to the parsing approach.

if aggregated_finding.Source = "A" and aggregated_finding.Version < "1":
<Apply Model 1>

elif aggregated_finding.Source = "A" and aggregated_finding.Version >= "1":
<Apply Model 2>

elif aggregated_finding.Source = "B" and aggregated_finding.Version >= "0":
<Apply Model 3>

<Calculate Refined Score>

Subsection 5.5.1 presents an example of such a model. After the Base Score and its
respective explanation are calculated, the Refined Score is constructed from the user input
and the Base Score value.

To support our methodology’s final decision-making process, the implementation must
be able to document the outcome. As discussed in Subsection 5.5.3, the decision-making
strongly depends on the processes established at the software engineering organization.
Hence, the implementation focuses on documenting and tracking the decided response.

To track the decisions taken, the belief class Status Input, described above, must be
extended to reflect the additional states. Currently, solely the states False Positive, Not
Applicable, Closed, and Open are implemented. Moreover, the Absent state is implemented
using a query. In addition, we define the states Risk Accepted, Risk Transferred, Risk
Avoided, Fixed, and Mitigated as new acceptable states. However, this still lacks the
opportunity to document that a finding has been analyzed, but the risk management is
either not justifiable or the risk is not accepted yet. Suppose the risk management cannot
be considered reasonable. In that case, this information is added as an instance of the
Analysis Input, presented earlier in this section, and the respective finding state is changed
to Closed. If the risk to the product is acceptable but not accepted yet, this is represented
by the state Open with a respective explanation. The review period defined during the
methodology integration is implemented using the Valid Until field of each instance of the
Status Input.

Finally, another query must be implemented, supporting the project team during the
decision process. This new Summary query summarizes all information available for a
particular security finding. Hence, for one instance of the Aggregated Security Finding it
collects all instances of Analysis Input, Enrichment Information, and Prioritization In-
formation belonging to it. Moreover, the existing History Query and Status Query are
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utilized to collect the state and history information. The response to this query from the
knowledge base consolidates this information.

5.7 Preliminary Evaluation
Following the research methodology of this thesis, the solution approaches in this chapter
must be preliminarily evaluated against their initial requirements. In this section, we
discuss the evaluation for each initial requirement and finally present the evaluation of the
prioritization approach, published in [196].

5.7.1 Evaluation Scope

The challenge this chapter aims to solve is the analysis and tracking of security findings
according to modern industrial software development principles to achieve a satisfactory
finding response. This challenge is again split into the activities that must be performed
during the security findings management and the principles that must be adhered to in
modern industrial software development projects.

We identified eleven functional requirements, summarized into seven clusters of similar
problems. The most significant contribution of this chapter is the security findings pri-
oritization approach. Therefore, we focus on this aspect of the solution approach in the
preliminary evaluation. For all other areas, we target a functional assessment of the imple-
mentation rather than measuring its impact on modern industrial software development
projects. Initially, we identified seven principles that the solution approach in this chapter
must adhere to. Four of these principles, namely the reduction of manual effort (Topic
III), a fast response time (Topic IV), the supply of necessary information (Topic V), and
the enablement of cross-disciplinary collaboration (Topic IX) affect all of our solution ap-
proaches. The remaining three principles affect particular solution approaches exclusively,
including the collection of business-relevant indicators (Topic I), the decision-making with
a customer-focused mindset (Topic X), and the minimization work packages by decisions
(Topic II). In addition to the functional constraints, the evaluation also aims to assess the
fulfillment of these principles.

The first solution approach for the documentation and tracking of security findings
utilizes the information from previous stages to document the history and state of each
security finding. It exclusively supports practitioners by providing information about the
security findings that must otherwise be manually derived and by documenting the results
of activities that practitioners conducted. Hence, the evaluation of the proposed solution
focuses on the fulfillment of the requirements and the adherence to the development prin-
ciples. To analyze these factors, data from modern industrial software development must
be supplied, and the ability to correctly track the status and history of each finding and its
documentation of data must be assessed. Moreover, the fulfillment of principles number I,
III, IV, V, and IX are analyzed, based on the supplied data.
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The second solution approach proposed in this chapter is the analysis of security find-
ings. As part of our proposed methodology, practitioners assess security findings for their
validity, identify the root cause, and classify them. The implementation of our method-
ology solely supports practitioners during these activities by supplying information about
the security findings and documenting the results. Since the investigation of security find-
ings is highly project-dependent and our methodology solely supports practitioners during
their work, we focus on the functional aspects of the solution approach once again. Hence,
we integrate the solution approach in a modern industrial software development project,
and the ability to analyze security findings according to the requirements is analyzed.
Moreover, the applicable principles III, IV, V, and IX are assessed for their fulfillment.

The last solution approach proposed in this chapter is the prioritization of and response
to security findings. Since the methodology for prioritizing security findings is this chapter’s
main contribution, the evaluation focuses on this aspect. In addition to assessing the
fulfillment of requirements and principles, the approach’s potential for industrial practice
must be analyzed. This implies that not only the objective fulfillment of requirements and
the principles II, III, IV, V, IX, and X must be assessed, but also the subjective perceptions
of practitioners must be collected and reviewed.

5.7.2 Evaluation Design
In the evaluation, we want to investigate three aspects: do our solution approaches fulfill
its process requirements, do they adhere to the principles of modern industrial software de-
velopment, and how is the potential of the prioritization approach perceived by industrial
practitioners? To conduct the evaluation, we decided in favor of a lightweight qualitative
study consisting of interviews and an integration of the solution approaches in modern
industrial development projects. To design and conduct this study, we follow the cur-
rent State-of-the-Art for empirical studies in the software security domain [164, 138, 184]
minding known challenges [204].

Based on the goals of the evaluation, we formulate the following research questions:
RQ1: Is each solution approach covering the respective requirement of the security find-
ings management process?
RQ2: Is each solution approach adhering to the applicable principles of modern industrial
software development?
RQ3: Does our solution approach for security findings prioritization represent the finding
prioritization process in industrial development projects correctly and completely?

We split our study into two separate phases to analyze the impact of our solution
approaches on industrial practice and receive additional input on the prioritization of
security findings in practice. In the first phase, interviews with professionals for security
findings management in modern industrial software development projects are conducted to
analyze the theoretical potential of the prioritization approach. During the second phase,
the solution approaches proposed in this chapter are integrated into two industrial software
development projects, and the findings prioritization is executed in parallel to the findings
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prioritization process existing in the project.
For the first phase, we collaborated with our industry partner to select ten practitioners

with expertise in software security and experience with modern industrial software develop-
ment projects. To fulfill these criteria, we solely contacted security professionals who have
worked in software development projects following Agile or DevOps principles as security
responsible. The one-hour-long interviews were conducted virtually in an isolated environ-
ment, with one subject and one interviewer as participants. Each interview consisted of
five stages listed below:

1. Introduction to the topic of security feedback management

2. Self-assessment of the subject

3. Preliminary question

4. Presentation of methodology

5. Questionnaire

It started with an introduction to the overall topic and a self-assessment of the subject’s
skills in Agile, DevOps, and security findings management on a scale from 1-Beginner to
5-Expert. The interview continued with warmup questions to ensure a correct understand-
ing of the subsequent topics and an introduction to the security findings prioritization
approach. Finally, feedback on this approach was requested in the last stage using a ques-
tionnaire. The interviewer documented and answered potential questions by the subject
during the interview. All stages were aided by a slide deck, questionnaire, and interview
guide, which can be found in the related material of the published paper [191], accompanied
by the documented questions.

In the second evaluation phase, we integrated the implementation of our solution ap-
proaches into two ongoing industrial software development projects at our partner. We
exclusively selected projects that follow modern software development principles, utilize
automated security checks, and have an established strategy for managing security find-
ings. This phase aims to compare the established strategy with our solution approach
for security findings management and analyze the functionality of all other solution ap-
proaches proposed in this chapter. Using the implementation of the security findings
management platform, the evaluation started by establishing the security report collec-
tion in each project. This included, in particular, the creation of parsers and semantic
models to customize the security findings management platform for each project. As the
next step, the development lead of the respective project is introduced to our proposed
approach by employing the same slide deck used in the first phase. Afterward, the study
protocol is started. Each week, a virtual interview with the development lead is conducted.
During these meetings, the development lead presented the results of the existing findings
prioritization process in the project and elaborated on all influence factors impacting the
findings’ priority. Next, the interviewer introduced the results of the automated prioritiza-
tion approach, and the differences between both processes were identified and explained.
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Concluding the interview, the current status, all differences and their root causes are doc-
umented by the interviewer in a template. Afterward, the interviewer developed findings
prioritization policies based on the influence factors presented by the development lead to
support the solution approach under evaluation in covering the current project influences.
Moreover, the results provided by each solution approach, including tracking and documen-
tation, analysis, and prioritization and response were analyzed, including the fulfillment of
the development principles. Whenever data was incorrect or an activity was not supported,
the shortcoming was documented. Whenever actions could not be evaluated due to a lack
of data, this circumstance was also noted. In one final interview, the development lead was
asked to rate the perceived usefulness of the approach, state identified shortcomings, and
inform about any final remarks. The documents and templates can again be found in the
related material of the published paper [191].

Between both subject groups, no overlap existed. Moreover, the subjects did not in-
teract with the actual implementation of the system to avoid a falsified response on the
findings prioritization process, as the user interface and implementation might introduce
bias. While the first two research questions are answered based on the number of short-
comings, the third is assessed based on the subjects’ responses.

5.7.3 Evaluation Results
After both phases of the study concluded, two researchers analyzed the results. These
results are presented below, structured according to the phases in which they have been
acquired.

During the first phase, our subjects provided 41 responses to the preliminary question.
These can be summarized into the following list of factors impacting the prioritization of
security findings:

• Threat Modeling and Risk Analysis

• Fixture Prerequisites

• Finding Severity

• User Input

• CVSS

• Low Hanging Fruits / Quick Wins

• Others

The responses to interview questions one, two, and three are categorized into positive,
neutral, or negative responses. The resulting statistics are depicted in Table 5.4.



152 5. Security Finding Analysis and Tracking

Question Negative Neutral Positive
Answers Answers Answers

Can all Aspects be covered and is Prioritiza-
tion correctly represented

0 2 8

Reduction in Work Effort 0 1 9
Understandable for Team 0 2 8

Table 5.4: Answers to the Interview Questions 1-3 of the Prioritization Evaluation

Moreover, the subjects mentioned that the answers are only valid under the assumption
that the project team actively uses the system by providing input and that a fundamental
security awareness exists in the project. As potential shortcomings and challenges of the
prioritization approach, the subjects mentioned the additional effort for adding input, the
complexity of the Base Score model, and the dependency on an intuitive user interface.

The study’s second phase concluded after seven meetings with the development lead
of both projects. During the study timeframe, each activity produced up to six reports
per week, containing mainly security findings with a low or informational severity level.
In both projects, the result of the prioritization in advance of the first interview iteration
partially differentiated from our proposed solution approach. Both projects contained a
list of unaddressed findings that were not planned for mitigation. This was due to the
release schedule in one project (vulnerability in dependencies) and the affected component
that was not used yet in the other. These discrepancies have been resolved in the second
meeting by respective findings prioritization policies. During the evaluation timeframe,
this phenomenon occurred three times in the first project and 12 times in the second
project and has consistently been resolved by additional findings prioritization policies.
An example was a new finding being prioritized lower by our approach compared to the
project’s priority. Based on the protocol, the team prioritized it higher, as it seemed like a
quick win and was contained in a component currently under construction. Consequently,
the effort to address it was low enough to become a top priority for the team. The
final interview results showed that both development leads perceived our prioritization
solution approach as useful and wanted to continue the usage beyond the evaluation period.
The reasons mentioned by both subjects were the documentation of the prioritization
reason and the common Base Score provided across sources. As a shortcoming, the effort
and knowledge necessary to create prioritization policies were commonly mentioned. The
results of this part of the evaluation can again be found in the related material of the
published paper [191].

Moreover, each solution approach has been tested for its functional correctness and prin-
ciple fulfillment. From a functional point of view, the history tracking, documentation, and
state tracking consistently delivered correct results. Moreover, the states suggested by the
development lead for specific security findings were covered by our methodology. In partic-
ular, the importance of temporary states was reinforced during the interviews. The ability
to add results from the analysis of security findings was also verified. It was impossible to
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confirm nor deny that this solution approach supports practitioners sufficiently due to the
design of the evaluation. Finally, the functionality of the prioritization and response ap-
proach has also shown correct functionality. Once again, the importance of time-restricted
states and prioritization policies have been identified. Since the risk management in both
projects has been conducted inherently by team members without explicit process, the risk
analysis could not be assessed. In addition to the functional constraints, the adherence to
the principles of modern software development has been assessed. The results of the analy-
sis can be found in Table 5.5, where an ”X” indicates verified principles, an ”F” stands for
an unfulfilled principle, a ”N/A” shows that a principle is not applicable and a ”I” informs,
that the assessment of the principle was insufficient. The description of each topic can be
found in Section 5.1.

Solution Approach I II III IV V IX X
Tracking and Documentation X N/A X X I X N/A
Analysis N/A N/A X X I X N/A
Prioritization and Response N/A X X X X X X

Table 5.5: Development Principles Fulfillment for the Analysis and Tracking

5.7.4 Discussion
Finally, we discuss the evaluation results and derive answers to our research questions. The
discussions are structured according to the research questions in the following paragraphs.

RQ1 - Requirements Fulfillment
The first research question addresses the fulfillment of the requirements for each solution

approach. During the study with data from industrial practice, all solution approaches
correctly functioned and supported the security findings management process as defined
by our research. Therefore, they fulfill the fundamental requirements. However, this result
cannot be generalized due to the study design. Since no project team members interacted
with the actual implementation, it cannot be assessed whether it supports all activities in
practice and is, therefore, beneficial to modern industrial software development. Hence,
the solution approaches cover our interpretation of the requirement, which might differ
from the process within a particular project or industrial practice in general.

RQ2 - Principle Compliance
The second research question aims to assess compliance with modern software devel-

opment principles. The results of our evaluation showed that the principles III and IV
are fulfilled for all solution approaches due to the automation of the methodology in a
semantic knowledge base. Even though certain tasks must still be conducted manually,
repetitive tasks like documentation are fully automated. Moreover, receiving information
about security findings can also be considered as fast, as queries to the knowledge base
are answered consistently in under one second, with the processing of new reports within
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2 minutes. As each manual activity has a set of preceding queries that supply all informa-
tion available about a particular finding, we further consider principle V as fulfilled. As
each solution approach requires input from project team members, the cross-disciplinary
team structure and need for collaboration must be minded, as mentioned in principle IX.
During the evaluation, particularly, the prioritization minded these principles. For both
other solution approaches, we can currently neither confirm nor deny that they encourage
cross-disciplinary collaboration, as this requires a cross-disciplinary project team working
with the solution approach to measure the impact. According to principle X, each decision
must be taken with the customer in mind, making it applicable to the solution approach ad-
dressing the finding response. Even though this strongly depends on the project team, the
adherence to common risk management standards ensures that the customer is considered
as a factor. Similarly, principle II, which requests that work packages for each iteration
should be minimized, is also included when following a risk management approach. Dur-
ing the assessment of risk treatment, the size of work packages for security can also be
considered, fulfilling this principle in practice. The last assessed principle that only affects
the tracking of security findings is principle I. In the context of security findings manage-
ment, it implies that to provide information to stakeholders from the business, relevant
information must be collected. As the solution approach documents each security finding
with all related information and tracks the occurrence and status history of each finding,
we consider this principle fulfilled.

RQ3 - Correct and Complete Security Findings Prioritization
Finally, we want to discuss the potential of the security findings prioritization process.

Based on the influence factors on the prioritization of security findings mentioned by our
subjects, we believe that all of them can be realized with findings prioritization poli-
cies, indicating that the overall strategy is valid. Moreover, most subjects in both phases
were optimistic about the correctness of the prioritization, the reduction of effort in the
project, and the transparency of the prioritization score. This applied in particular to the
approach’s usefulness for both projects in the study’s second phase. However, a major
drawback of the process mentioned in both phases is the additional effort necessary to
create findings prioritization policies. Subjects mentioned concerns about the acceptance
of this new approach in projects if it implies additional work. This acceptance is crucial
for the success of the process in industrial software development projects. Hence, the au-
tomated creation of findings prioritization policies, as recommended by the development
leads during the study, is a potential future work in this domain. Another lesson learned
from the implementation is the low importance of the Relevance field in findings priori-
tization policies. Neither project saw the necessity to adapt this to represent the team’s
influence distribution correctly. While expected to be important in practice, this proved in-
correct and is therefore removed from the implementation. We conclude that our modular
approach of adding formalized findings prioritization policies to prioritize security findings
covers the necessary input factors assuming that a project team contributes to the process.
The process is considered complete, correct, and beneficial by the interviewed subjects.
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Threats to Validity
Even though the results of this preliminary evaluation indicate the correctness of the so-

lution approaches and adherence to modern software development principles, their validity
is threatened by multiple concerns. The validity of the overall evaluation is constrained by
its circumstances. We cannot state any significant claims about its usefulness based on the
limited number of participants and the short timeframe of just seven weeks. Moreover, the
evaluation of the requirements and development principles only provides weak evidence for
the usefulness of most solution approaches. As the evaluation focused on the prioritiza-
tion process, the remaining solution approaches have only been covered superficially. In
particular, the evaluation criteria represent a threat to the construct validity, as the re-
searcher who designed the metric to measure the fulfillment of requirements also designed
the solution approach based on the same requirements. Hence, another researcher might
consider other criteria as relevant. However, this solely represents a preliminary evalua-
tion of the solution approaches. Minding that these are evaluated later in comprehensive
manner in combination with other solution approaches, we consider the current evaluation
as sufficient.

5.8 Conclusion
In this chapter, we presented our process for the analysis and tracking of security findings
and its integration into the existing security findings management platform. The proposed
approach tracks and documents security findings throughout the lifecycle, supports the
analysis of security findings, and prioritizes and guides the finding response. This chapter
comprises mostly manual activities of the security findings management process, which are
supported and guided by our methodology.

This chapter makes three contributions to the current state of the art. First, a state
model for the security findings lifecycle is presented as part of the status tracking. Second,
a guidance for responding to security findings aligned with common risk management stan-
dards has been developed. Finally, the main contribution of this chapter is the methodology
for prioritizing security findings in modern industrial software engineering. Moreover, mul-
tiple smaller contributions towards a security findings management methodology have been
made. All these contributions have been preliminarily evaluated and partially published.

We conclude that the solution approaches for the analysis and tracking of security
findings proposed in this chapter support the security findings management activities de-
manded by the current state of practice while conforming to modern industrial software
development principles. Due to the number of manual actions to be performed during
this part of our methodology, its usefulness and benefit to modern industrial software
development projects requires a subsequent evaluation with an adapted scope.



Chapter 6

Security Findings Feedback
Communication

The last objective of the methodology is the communication of knowledge acquired during
the management of security findings to all project stakeholders. The communication is
bi-directional, implying that stakeholders receive information from and supply information
to the methodology. Since all preceding solution approaches proposed in this thesis require
interfaces to retrieve or provide information, the strategy proposed in this chapter extends
across all preceding solution approaches. The communication itself has to supply data
to various stakeholders, differentiating in their demand for information, interest in the
project, and organizational hierarchies. Examples include project team members, externals
like Penetration Testers, or processes like a top N finding list maintained at an enterprise
level.

This chapter presents the challenges for communicating security findings data and de-
scribes our proposed communication strategy. Moreover, we demonstrate the implemen-
tation of this strategy and its integration with the remaining solution approaches. This
chapter contains no preliminary evaluation as the foreseeable threats to the internal valid-
ity by solely looking at the communication itself diminishes the impact of an evaluation.
Instead, the communication strategy is evaluated in the next chapter with the remaining
solution approaches as a comprehensive system.

6.1 Problem Description
Our preliminary problem analysis identified that multiple processes or activities rely on in-
formation provided by the security findings management process while not directly belong-
ing to it. Moreover, all preceding solution approaches require interfaces to communicate
and consume data from external entities. Subsection 2.3.3 defines that the requirements
on ”Feedback Processing” and ”Process Response” are comprised by our last objective and
hence addressed in this chapter. The processing of feedback from the security findings
management process comprises the following 16 requirements:
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1. Feedback Loop to the responsible for decision making (8)

2. Report risks and findings securely to the appropriate party/stakeholder (9)

3. Report the findings management results to enable the disclosure of vulnerabilities
(12)

4. Provide data to the finding response process (13)

5. Share the security findings with other projects (17)

6. Update elements of the software development lifecycle (18)

7. Report known security findings in the system documentation (21)

8. Monitor the success of the security findings management process (25)

9. Report the history of the finding to derive a training curriculum (26)

10. Report security findings to improve secure design patterns (27)

11. Loop security findings to validate assurance cases (30)

12. Share security findings from operations stages with the Q&A team (31)

13. Provide known security findings to the Pentesting team (32)

14. Identify hotspots in the security finding landscape (33)

15. Refine governance policies from security findings information (34)

16. Maintain a list of the most important findings for the company (35)

Moreover, some requirements affect the security findings management process after it has
concluded for one particular finding. These include:

1. Solve all findings in a timely manner (4)

2. Review code for instances of similar findings (10)

3. Verify the security finding fix (19)

4. Review all unsolved/unfixed findings (24)

The numbers depicted after each entry represent the identifier of the overall requirements
list in Table 2.1.

While all requirements mentioned above are related to or require the communication of
information acquired during the security findings management process, their goals, targets,
and required information differ. Moreover, any solution approach for the requirements
above must mind the principles arising from modern software development:
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• Topic I: Any measuring or tracking activity must collect business relevant indicators

• Topic III: The manual effort for the communication must be minimized

• Topic IV: The communication must provide fast results

• Topic V: The communication must supply the actionable information

• Topic IX: Any manual activity must mind the cross-disciplinary team structure and
enable collaboration

• Topic X: Any decision must be taken with the customer and its goals in focus

To address the requirements above, the target of this chapter is an aligned communication
strategy. This strategy must adhere to the abovementioned principles as a holistic concept
rather than have single components of the communication strategy adhering to certain
principles.

Organizational Improvement
The first cluster of requirements aims to improve aspects on an organizational level, in-

cluding the software development lifecycle, the training curriculum, other ongoing projects,
secure design patterns, governance policies, and the construction of a common list of the
most important findings for the enterprise. These improvement activities are de-coupled
from the security findings management process and conducted on a higher organizational
level than the original project.

Internal Subsequent Processes
Another cluster comprises all requirements that represent activities in the project, aim-

ing to contribute, improve, or refine elements of the development lifecycle that are not
directly related to the security findings management process. These requirements affect
the disclosure of security findings to customers, feedback to the Pentesting and Q&A team,
the documentation of known system issues, the creation of a security hotspot map for the
project, and the ability to answer assurance cases based on the outcome of the security
findings management. While these activities utilize the information provided by the secu-
rity findings management and are conducted on a project level, they are mostly disjoint
from one another.

Security Findings Management Processes
The last cluster comprises all requirements addressing activities in the security findings

management process and the communication of information to them. The requirements
of this cluster include the general demand to report findings and risks to all appropriate
stakeholders, including, in particular, decision-makers and the security finding response
process. Moreover, the success of the security findings management shall be monitored,
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covering the verification of fixed findings and the finding response time. Finally, the soft-
ware should be monitored for similar findings, and the currently open findings should be
reviewed regularly. The requirements in this cluster either request the reporting of in-
formation to activities in the security findings management process or propose additional
tasks for the respective project.

6.2 Related Work
The presentation of information by computer systems is a domain-independent challenge.
While each domain has its particularities related to underlying data transported or the
scope of the data usage, certain challenges persist. Isenberg et al. discussed the area of
collaborative visualization, in which the same presentation is interacted with by multiple
targets to achieve certain goals [84]. They present challenges and examples for collabo-
rative visualization approaches but lack specific principles that must be followed. Hence,
their relevance to our approach is limited. Some of these specific principles are presented
by Barth et al. in their publication on the aesthetics of visualization [23]. They discuss
the importance of carefully selected visual presentations, contribute fundamental design
principles, and present case studies on the key features of visualization. The extension
of visualization into the domain of the recipient is suggested by Ebert [43]. In the pa-
per, the author recommends the term perceptualization instead of visualization to ensure
the concise transportation of information by employing perceptual human inputs. Even
though both papers present valuable insights into the topic of data visualization, they lack
the particularities of the security domain to create a reliable communication of security
findings.

The importance of visualization in the security domain is not only mentioned in aca-
demic literature [56] but reinforced by a conference focusing exclusively on visualization
for Cybersecurity, called VizSec [189]. While earlier years of the conference have shown
a strong focus on visualizations in the network security domain, publications in recent
years have diversified their scope. Amongst others, this trend includes the areas of privacy
risks [20], incident reports [57], or Malware [32]. A closely related publication is presented
by Schreiber et al. [162], proposing a visualization dashboard for presenting results from
multiple static code analysis tools across several projects. They utilize three diagrams,
including a timeline of identified findings, a depiction of the severity, and a hierarchy of
all projects correlated with the location of findings. Their design provides suggestions for
the visual representation of security findings. However, their limited scope (static code
analysis) and lack of evaluation necessitate further investigation for our use case. A pro-
posal for the visualization of another security findings type is given by Dennig et al. [39].
They present a tool to audit software development organizations based on their exposure to
publicly known vulnerabilities in open-source software. They engineered one visualization
diagram of all applicable open-source vulnerabilities with the ability to switch between
a repository-centered, library-centered, and bug-centered view. Even though their work
seems valuable for exploring vulnerabilities, its scope strongly differs from our use case.
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6.3 Communication Strategy
The problem description of this chapter provided insights into the fundamental issue that
must be addressed when developing a strategy for communicating security findings: distinct
entities require differentiating information from the security findings management process
to achieve various goals.

6.3.1 Communication Concept
To develop a common strategy for the communication of security findings data, the dif-
ferent use cases and their particular demands must be identified and met. A common
strategy can be established based on their similarities and differences. Based on the appli-
cable requirements, we can deduce that each use case consists of three components using
the applicable requirements. The Data defines what information must be communicated,
ranging from specific information like the accepted security risk to all data available for a
particular finding. This is communicated in a second step to a specific Target and used to
achieve a certain Goal. Depending on the requirement, the definition of these components
ranges from being well-defined to quite ambiguous.

Starting our analysis with the Target, we can fundamentally differentiate between hu-
man entities and automated processes requiring information. This introduces the first
constraint to our communication strategy, as the information transported must be inter-
pretable by humans and systems alike. While automated systems typically require a well-
defined interface providing structured information, humans prefer a more visually oriented
approach to communication. Hence, our communication strategy must support efficient
communication with other systems and humans. Within these two categories, we can fur-
ther differentiate between the communication preferences of various recipients. The initial
list of requirements specifies 16 different human targets, covering:

• Customer

• Decision Maker

• Project Manager

• Project Team

• Peer Project Teams

• Project Stakeholders

• Documentation Responsible

• Security Architects

• Sales Team

• Quality Assurance Team

• Security Testing Responsible

• Operations Team

• Quality Assurance Responsible

• Software Development Process Re-
sponsible

• Education and Enablement Responsi-
ble

• Performance Measurement

Depending on the organizational structure and maturity of the project, these targets



160 6. Security Findings Feedback Communication

can either be part of the project team, an entity on the organizational level, or not existent
at all. Moreover, this list just represents a fraction of all stakeholders interacting with the
project.

Each of the Targets discussed previously requires the information to achieve a certain
Goal. This Goal indicates how each recipient utilizes the information from the security
findings management process. As presented in the Problem Description of this chapter,
the goals are related to organizational improvement, the management of security findings,
or other project-internal processes that are not part of the security findings management.
Each of these Goals has an inherent need for certain information. This implies the Data
communicated is coupled to the Goal that must be achieved. Our requirements indicate
that all information acquired during the security findings management process must be
communicated at some point. However, for certain goals, a subset of information suffices to
achieve it. Example data includes all open or applicable findings, the history of each finding,
or the currently accepted and applicable security risk imposed by the security findings. In
theory, this could be achieved by always presenting all information available. However, this
necessitates considerable effort from the target to derive the exact information necessary
to conduct the task, making it an inefficient communication strategy. Instead, we propose
tailored communication presenting solely the data necessary to complete a task. This
abstracts the concepts of Goals, Targets, and Data into Presentations. A Presentation
supports a Target in achieving a Goal by presenting the necessary Data in an efficient way
that simplifies the activity that is conducted for achieving the goal.

6.3.2 Text-Based Communication Interface
The first group of targets identified were automated processes and software-typed systems
that require data. Since these do not benefit from a visual representation of the data,
we utilize an API as the underlying solution. Using a RESTful approach for this inter-
face further ensures well-defined constraints for fetching data from the security findings
management process.

To fulfill our initial requirements for communicating security findings information, the
API must be able to retrieve and supply the information necessary for each target to achieve
its goals. Since human targets might also employ automated processes, offering any data
Presentation exclusively via the visual communication interface is insufficient. Instead,
the text-based communication interface must also supply each Presentation provided by
the visual communication. Table 6.1 lists all information that must be retrieved from the
security findings management process and its presentation in text-based and visual form.
These are derived from the requirements and structured according to their Presentation.

Requirement Data Text-Based Visual
Presentation Presentation

8, 9, 13, 17, 18,
32, 34

All Findings List of all Findings Common Listing
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4, 25, 26, 30 Status and Occur-
rence History of
each Finding

Statistics on the Sta-
tus and Occurrence
History of all Findings

Chart of Statistics

12, 24, 21 All un-
solved/accepted
open Findings

Filtered List of all
Findings

Common Listing with
Filter Function

26, 35 Most prevalent
Findings

Sorted List of all Find-
ings

Common Listing with
Sort Function

9 Existing Risk Statistics on Risk im-
posed by Findings

Chart of Findings
Risk

10 All verified Find-
ings

Filtered List of all
Findings

Common Listing with
Filter Function

19 All
solved/mitigated
Findings

Filtered List of all
Findings

Common Listing with
Filter Function

27 All Findings from
specific Activities

Filtered List of all
Findings

Common Listing with
Filter Function

31 All Findings from
Operations Phase

Filtered List of all
Findings

Common Listing with
Filter Function

33 Most prevalent af-
fected Locations

Sorted List of Loca-
tions and Prevalence

Location Heatmap

Table 6.1: List of Presentation in Visual and Text-based Form

From the ten presentations identified in Table 6.1, seven can be realized in a text-based
form by a list of all security findings that can be filtered and sorted. In addition, a list of
all currently imposed risks by all applicable findings, a list of the most prevalent locations,
and a presentation of all findings histories, including the common averages and min/max
values, are necessary to cover the Presentations. Especially in organizational improvement,
the requirements often lack precise definitions of what data exactly is required. In these
cases, they have been assigned to the presentation of all security findings. This shows the
necessity to customize the communication strategy over time, as introducing new processes
or specifying existing ones could refine how data must be presented. Furthermore, each
project might have different interpretations of what is considered relevant information for
particular tasks, necessitating requirements engineering for the sophisticated presentation
of information [39]. In summary, this results in four textual presentations.

6.3.3 Visual Communication Interface
In addition to the textual presentation of data, our second target group requires visualiza-
tion as a preferred communication channel. Hence, the previously identified presentations
must be transformed into an efficient visual presentation. As each visual presentation must
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also be available in a textual form, the visual communication interface utilizes the text-
based communication interface to retrieve data. This ensures that each visual presentation
is available in textual form and each presentation contains the same information, regardless
of whether it is presented visually or textually.

The first visual presentation is an interactive list of all security findings with the ability
to sort, filter, and search. With this presentation, the first seven requirements are covered.
In addition to the listing approach, we see the necessity for a visualization, just showing one
finding in particular to reduce the effort for providing user input on each security finding.
It presents all information of this finding in a structured form with the ability to supply
input. The second commonly requested presentation is the depiction of the statistics on
the history of findings. It is split into two diagrams to avoid an overly dense visualization
of this information. The first shows the currently active state of all security findings, while
the second provides insights into the recently changed and newly occurred states. The
second visualization further requires an interactive approach to select the timeframe of
what is perceived as ”recently” [162]. The fifth visual presentation is a bar chart of all
currently active findings, grouped by severity (Critical, High, Medium, Low, Info). This
presentation must also be interactive to switch between currently imposed risk and risk
that has not been addressed yet (Open vs. Accepted Security Findings vs. Both). The
last visual presentation shows the most prevalent locations as a heatmap, colored according
to the highest severity at each location, with the number of findings per location noted
on each element. Analogous to the text-based communication, these visual presentations
might be added or adapted based on each project.

Recommendation System
During the analysis of the problem space, we have further identified a potential for using a

recommendation system as part of the visual interface. The evidence-based identification of
a training curriculum for developers or recommendations for the next tasks gives examples
of its applicability. In an initial effort, a recommendation system was designed, and initial
recommendations were established. This system is depicted in Figure 6.1. The system
retrieves data from the security findings management platform daily and processes it in a
flat tabular format. Next, the recommendation engine utilizes policies that define how to
derive recommendations and generates a list of daily recommendations for each project. An
API can access these daily recommendations. Users of the system can employ the same
API to return feedback on the quality of the recommendations to, e.g., exclude certain
recommendations from being presented anymore. Our initial recommendations reported
potential improvements in the process (Secure Coding Practices, Hardening, etc. ) to the
project team and the recommendation of efficient next tasks based on what has already
been solved by the user.

Even though this initial investigation has shown potential, it also requires significant
additional research and multiple iterations of feedback with industrial practitioners to be
beneficial. Since this exceeds the initial scope of the thesis, we decided against further
investigation. Instead, we conclude that a recommendation system for communicating
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Figure 6.1: Recommendation System Design for Security Findings Management

security findings appears to be a valuable domain for future work.

6.4 Implementation
To employ the communication strategy in practice and utilize the information acquired
during the security findings management, the solution approach of this chapter must be
implemented and integrated into the existing platform. This implies that the implementa-
tion of this chapter builds upon the implementation of all previous chapters.

6.4.1 Restful API
The first part of the implementation focuses on the text-based communication interface.
Towards this goal, the existing implementation of the platform is re-used and extended to
support all demands. First, all suggested presentations can be implemented using Queries
of the knowledge base. This implies that six new queries are created. The presentation
of all security findings as a sort- and filter-able list is technically implemented by Elastic
query searching for all security findings fulfilling the constraints. The results are listed and
returned. For the presentation of a single security finding with all respective information,
the Summary query implemented in the last chapter is re-used. To present the prevalence
of locations, the amount of locations in each Aggregated Security Finding is counted, and a
sorted list is returned. The number of entries in this list is determined by the initial request
so that a Location Prevalence query with the result number set to two would respond:

[{"location": "file1", "prevalence": "10"},
{"location": "file2", "prevalence": "8"}]
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The statistics on the risk imposed by security findings are presented by another new query,
which takes the ”Base Score” of all security findings that are either in the ”Open”, ”De-
layed” or ”Risk Accepted” state. These scores are grouped according to the orientation
scale of Table 5.2 into ”Critical”, ”High”, ”Medium”, ”Low”, and ”Info” and the returned
as list:

[{"severity": "Critical", "number": "2"},
{"severity": "High", "number": "6"},
{"severity": "Medium", "number": "34"},
{"severity": "Low", "number": "27"},
{"severity": "Info", "number": "11"}]

Finally, the presentation of the occurrence and state history of findings is implemented
by multiple queries. Even though this could be implemented by one single query, it was
split across multiple ones to reduce the load on the knowledge base and adhere to the
concept of knowledge base queries in which each query answers one particular question
instead of combining multiple ones. The first query presents all statistics on the number of
findings in a specific state. The second query gives all state changes achieved in a particular
timeframe. This includes, e.g., all new findings or findings that have been fixed within a
specific time. Similar to the Location Prevalence query, this query allows to specify a
timeframe for the response. The last new query shows the amount of security findings that
have been reported. For this query, the timeframe of the presentation, as well as the bucket
size, can be defined. The bucket size determines the aggregation of finding occurrences,
e.g., daily, weekly, or monthly. A combination of a one-week timeframe with a daily bucket
size could result in the following response:

{"Day1": 0, "Day2": 34, "Day3": 35, "Day4": 39,
"Day5": 31, "Day6": 28, "Day7": 0}

In summary, the API comprises three endpoints to interact with the knowledge base.
The /data resource allows adding new belief or reading unprocessed belief instances. The
/userinput resource enables platform users to add belief instances related to external user
input. Finally, the newly introduced /query resource can execute all queries described
in this thesis. Moreover, multiple endpoints for authentication, authorization, logging, or
debugging exist, which are not related to the communication strategy and, therefore, are
not described in more detail.

6.4.2 Webinterface
During the second part of the implementation, the previously defined queries must be
interpreted and presented in visual form. Therefore, a webinterface that is decoupled from
the initial platform was developed. In Figure 6.2, the integration of the communication
strategy with the components of the security findings management platform (Figure 3.6) is
depicted. The webinterface itself is implemented in the NextJS framework. Since the visual
interface uses the RESTful API of the platform, any visual presentation is also available
in its text-based form.
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Figure 6.2: Implementation of the Communication Strategy

The fundamental pages of the webinterface itself are depicted in the Appendix (C). The
common starting point for each user of the webinterface is shown in Figure C.1. It consists
of five Presentations including the number of security findings currently in a particular
state, the list of most critical security findings, a list of all team members, the state
changes in the last week, and a bar chart on the severity of all currently applicable security
findings. The ”Overview” page solely provides all Presentations that are relevant to the
respective user. This implies that another role within the project would receive another
selection of Presentations. The navigation bar on the left allows users to access other
webinterface pages, including the list of all security findings (”Findings”), a list of all team
members (”Team”), or all Presentations that exist, regardless of the user role (”Diagrams”).
Listing all security findings is implemented as a table with the ability to utilize search-,
sort-, and filter- functionalities as depicted in Figure C.2. When one particular security
finding is selected, its data is presented, and the functionality of the /userinput resource
for this finding is supplied (Figure C.3). This implies that users can provide input on
priority, analysis, state, or response using this page. In addition, the webinterface has
several functionalities not related to the communication of security findings like account
management. These are not presented in more detail.

6.5 Conclusion
This chapter presented the communication strategy for the security findings management
process. We introduced an approach for communicating security findings and information
derived during their management to humans and systems. The developed presentations
in visual and text-based form are intended to support all targets of the communication
in achieving the related goals. This strategy was implemented as part of the security
findings management platform and integrated with all previous solution approaches. In
addition to contributing a security findings communication strategy, this chapter identified
recommender systems for security findings management as a promising domain for future
work. No preliminary evaluation has been conducted for this solution approach. Instead,
the communication strategy is evaluated as part of the final solution evaluation presented
in the next chapter.



166 6. Security Findings Feedback Communication



Chapter 7

Instantiation and Evaluation in the
Industry

The last chapters presented the problems and potential solution approaches for the man-
agement of security findings in modern industrial software engineering. Following the
iterative Design Science Research approach (Figure 1.2) selected for this thesis, the last
step is an empirical validation of all solution approaches to solve the overarching problem
instance. Reinforced by the conclusions of each previous chapter, all proposed solutions
must be evaluated as one methodology for the management of security findings in modern
industrial software development projects.

In this chapter, the instantiation of our methodology comprising all solution approaches
is presented and evaluated utilizing a case study at our industrial partner. First, the
instantiation of all solution approaches and their merging into one platform is described.
Second, this platform is used to evaluate the proposed methodology in ongoing software
development projects. The results of this evaluation are discussed and final conclusions
are drawn. The case study conducted in this chapter is further published in [193].

7.1 Implementation and Integration of the Method-
ology

In this section, we present the instantiation of our solution design to allow an evaluation
of our proposed methodology in practice. We present the implementation of the current
security findings management platform, show adjustments that improve its usability in
practice, and describe how the platform should be integrated into projects.

7.1.1 Implementation of the Knowledge Base
For the instantiation of the final solution approach, we utilize the platform for managing
security findings, described in Chapter 3 and include the implementation of Chapter 4 and
Chapter 5. Moreover, the interfaces to the platform have been adapted and extended as
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described in Chapter 6. This results in a semantic knowledge base with a web interface
containing eleven belief classes, five rules, and nine queries. These are depicted in Fig-
ure 7.1, structured according to the chapter they have been introduced in and containing
the relation between each other either through logical inference or usage within a query.
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Figure 7.1: Belief Classes, Rules and Queries implemented in the Platform

During Chapter 5, the lifecycle of a security finding was proposed as a state machine,
implemented as part of the Status Input belief class, and extended throughout the chapter.
In summary, each security finding can reach eleven different states. Nine states further
represent final states, where the security finding might persist permanently. This excludes
the states ”Open” and ”Applicable” as they require subsequent activities before the man-
agement of the respective finding is considered finished. Each state can be reached from
any other state with a respective transition. This implies that a respective transition ex-
ists for each of the eleven states. An example would be the ”Fixed” state, which can be
reached from any other state with the transition ”Implemented Finding Fix”. The only
exception is the ”Absent” state, as the finding state persists regardless of whether the find-
ing is still reported. The ”Absent” state can only be reached from the states ”Open” and
”Applicable”. In all other states, a no longer reported finding represented by the transition
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”Finding no longer Reported” is a self-transition. In addition to these eleven transitions,
each state has another self-transition if a review confirms the current state, expressed by
the transition ”Confirmed Current State”. The resulting state machine is defined below:
Q : {Open, F ixed, Absent, False Positive, Closed, Not Applicable, Applicable,
Risk Accepted, Risk Transferred, Risk Avoided, Mitigated}
q0 : {Open}
F : {Fixed, Absent, False Positive, Closed, Not Applicable, Risk Accepted,
Risk Transferred, Risk Avoided, Mitigated}∑ : {Re − /Identified Security F inding, Confirmed Current State
Implemented F inding F ix, Implemented F inding Mitigation,
Confirmed Applicability, Disproved Applicability,
Avoided Risk Treament, Determined False Positive,
Accepted F inding Risk, Transferred F inding Risk,
Avoided F inding Risk, F inding no longer Reported}
The visual representation of this state machine is avoided due to its complexity.

The knowledge base implementation is extended by a webinterface and RESTful API,
representing the communication strategy. Both utilize authentication and authorization
mechanisms to protect the confidentiality and integrity of the data. A PostgreSQL database
is used to store the respective user accounts and rights. The different components are
implemented as Docker containers and orchestrated by Docker Compose.

This implementation of the semantic knowledge base, including its interfaces is called
the Security Feedback Loop Analysis and Management Application (Security Flama).
This terminology is used in the remaining chapter when referring to the implementation
of the methodology. The implementation of the Security Flama was conducted in col-
laboration with multiple students over the course of three years. Colin Wilk and Florian
Angermeir collaborated in the development of the operational environment, while Philipp
Kamilli and Sandip Sah supported the implementation of the visual interface.

7.1.2 Tweaking the Knowledge Base
Following the secondary results of the preliminary evaluations presented in the previous
chapters and system tests, multiple changes to the implementation of the methodology
have been conducted. These changes aim to improve the existing platform’s functionality
or usability.

The first change to the implementation of the knowledge base is the summary of certain
inferences. The more belief classes and logical inferences are used in the semantic knowledge
base, the more maintenance cycles are required to retain the soundness of the knowledge
base. Hence, the first tweak to the knowledge base is summarizing the enrichment and
history tracking inference. Since these rules are executed on the same source data, namely
an instance of the aggregated security finding class, and experience showed that enrichment
input is seldom changed or added, summarizing these inferences saves one maintenance
cycle.

Another change to the knowledge base is outsourcing the logical core into temporary
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storage instead of utilizing a traditional database or file storage. Since the logical core
is continuously read and rewritten, the usage of volatile memory improved the knowledge
base’s performance by more than 30 percent. To cope with blackouts, the current logical
core is backed up after each finished maintenance operation.

This leads to the third change of the platform, which is the usage of versioning for main-
tenance operations. While the maintenance of soundness can theoretically be performed
in parallel, meaning that subsequent changes to the knowledge base can be maintained
alternatingly, we assigned each maintenance operation with a version number to execute it
consecutively. The parallel execution complicated the maintenance of soundness, as there
was no partially sound status of the knowledge base reached. By executing maintenance
operations consecutively, intermediate states representing a sound knowledge base at a
certain time are reached. Hence, answers to queries can be provided faster, even if they
report a currently outdated version of the knowledge base since they do not wait until
all maintenance operations are finished. Experience-wise, this is preferred in industrial
practice, especially during times with multiple changes to the knowledge base.

This demand for fast feedback also necessitated the fourth change to the implementa-
tion, as a caching system was required for the queries. Minding that multiple platform
users request the same query, a re-calculation of the query, regardless of whether changes
occurred or not, is inefficient. Hence, each query is cached and only re-calculated after
changing data.

The fifth change affected the list of security finding states. As the first change, the
”Absent” state was renamed to ”Disappeared” since the adjective absent was perceived as
if a test was successfully completed instead of a security finding that was identified but
has not been reported again. Another change was the new finding states ”In-Work” and
”Delayed”, which have been introduced based on preliminary feedback.

With these changes, the knowledge base is evaluated in this chapter.

7.1.3 Integration of the Methodology
Before evaluating the methodology, it must be integrated into the respective projects under
test. Some proposed solution approaches require preparation and customization before
being used in practice. The necessary steps and supplementary material are listed in this
paragraph. In addition to the steps below, the methodology should also be introduced to
the project team using hands-on training to educate them on using the methodology.

Before the methodology can be integrated into a project, information must be collected
from the project and its overarching organization. First, all security activities reporting
security findings must be identified. For each source, the collection strategy must be
derived based on the type of reporting provided by the activity and the project demand
on how and when to collect reports. Since most security findings arise from security tests
conducted in CI/CD pipeline, we supplied the Haystack, a containerized application to
upload findings to the Security Flama securely. A pipeline runner can execute this container
to collect all security report artifacts of the pipeline and upload them with the necessary
context information. Next, the demand for enrichment must be acquired from the project
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team and the security findings state model, including the validity period for the states
reviewed. Potentially necessary changes to the existing approach must be documented. All
known influence factors on the prioritization of security findings are collected to prepare
the prioritization of security findings. Similarly, the established risk management strategies
are acquired, and the risk acceptance criteria and the validity period for risk reviews are
collected. Finally, the users of the system and their respective rights are determined.

Based on the sources of security findings in the project, the preconditions for the col-
lection must be implemented, and one parser model and base score model must be written
for each source. In particular, this necessitated the development of a lightweight Docker
container that can be used as a pipeline runner to upload reports from CI/CD pipelines
securely. Next, additional rules for the internal and external enrichment of security find-
ings and any modifications to the state model are implemented. If influence factors on
the prioritization are known upfront, these are realized by writing findings prioritization
policies. The risk review period is defined for the respective states and the user and role
concept implemented.

In addition to the technical changes, further guidance to comprehend the security find-
ings management process is supplied, e.g., in the form of a wiki. This includes explanations
on the implications of each finding state, clarification for the security findings priority scale,
and guidance on the security findings response. Moreover, the previously acquired data on
conducting the risk assessment of security findings in the organizational context is docu-
mented. After finishing these integration steps, the methodology can be used in modern
industrial software development projects.

7.2 Evaluation Planning
This section discusses and presents our decision process on the evaluation design and the
research strategies we employed. We discuss the selected research strategy, the selection
of data collection and analysis, and finally present our decision.

The goal of the evaluation is to analyze the impact of our methodology on industrial
software development projects. Since our methodology is designed for industrial software
development projects, a meaningful evaluation can solely be performed with this scope.
As there is no greenfield approach for research and evaluation in empirical software engi-
neering [115, 172], we require a precisely defined evaluation approach customized to our
methodology and evaluation goals.

7.2.1 Evaluation Strategy in Industry
The first step towards evaluating our methodology is selecting an empirical research method.
However, there is no such thing as a silver bullet for software engineering research [172].
Consequently, the informed selection of an evaluation method based on our particular
setup is essential for solid claims. In contrast to the former chapters, which are based
upon solution-seeking research, we want to evaluate the impact of our methodology in
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this chapter utilizing knowledge-seeking research approaches [172]. This already limits the
commonly accepted research methodologies, which could be relevant for our evaluation.
According to the ABC Framework by Stol and Fitzgerald [172], we can cluster research
strategies into four quadrants, each impacting the generalization of results, control over
measurement/behavior, and the realism of the context. Figure 7.2 depicts a simplified
version of the framework, including solely the quadrants and their research strategies. In
the following, we discuss each quadrant with its respective research strategies.
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Figure 7.2: Simplified ABC Framework

For the purpose of our evaluation, we can instantly remove one quadrant from our
scope as it addresses non-empirical research settings. With our methodology targeting
actual software development projects, any claim resulting from computer simulations or
formal theory is of limited relevance to the initial challenge of this thesis.

The second quadrant that does not provide the necessary characteristics for our evalu-
ation addresses neutral research settings. These include, e.g., sample studies (surveys) or
judgment studies. While surveys might be helpful to identify the need for such a methodol-
ogy upfront or collect ideas for potential solutions, their usability for evaluating an artifact
is extremely limited. Judgment studies, on the other hand, might be beneficial for exactly
this case by presenting the methodology to systematically selected domain experts and
asking for their input. While this can provide valuable insights into potential benefits
or shortcomings, it cannot answer whether this it also applies to practice. Consequently,
it could instead be utilized as a preliminary evaluation to eliminate flaws upfront before
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evaluating it in a laborious and costly sophisticated evaluation. Furthermore, this entire
class of research strategies misses the concept of a particular research setting that we fun-
damentally require to evaluate a methodology intended to be used in industrial software
development projects.

The remaining two quadrants, covering contrived and natural research settings, could
be potentially used for our evaluation. Consequently, we will discuss the advantages and
disadvantages of all four research strategies comprised by the quadrants with respect to
our industrial setting. The first strategy we discuss is the laboratory experiment. Applied
to our use case, we could evaluate the methodology by, e.g., dividing our participants into
two groups and asking them to manage security findings. While one group would receive
the methodology, the other would be asked to complete the tasks without it. This strategy
might even include existing industrial data or teams of professionals as participants to
improve realism. But even these amplified properties cannot cope with this strategy’s
overall low level of realism. Since we are particularly interested in the impact on practice
and are willing to sacrifice measurement precision for a higher degree of reality, it is less
suitable for our use case than other research strategies. The second strategy we want
to address is the field study. Here, we would investigate industrial software development
projects and document their approaches and processes for managing security findings. The
main problem of the field study is the level of control we can impose on the project. As we
cannot manipulate any project parameter, it is impossible to introduce our methodology.
Furthermore, no projects actively use the methodology without us interacting with them
upfront. Consequently, we cannot evaluate it, and the strategy is not relevant to our use
case.

The third strategy we want to examine is experimental simulations. The most crucial
difference to more realistic strategies is that the research environment does not exist before
or after the study. This implies the creation of an artificial software development project
just for the evaluation procedure. Furthermore, the participants of experimental simula-
tions are recruited for the study. The selection of participants for the study is a crucial
aspect to the generalizability of any claims arising from it. The drawbacks of using non-
professionals are extensively discussed by Feldt et al. [50], including limitations towards
claims formulated when using students as participants and general threats to the research’s
internal, external, and construct validity. To avoid this controversy in our evaluation, we
decided against utilizing students as participants. However, encountering real-world profes-
sionals willing to provide their time and effort for a scientific evaluation while, in parallel,
trying to cope with their regular work effort is challenging. This challenge is further am-
plified if an interconnected group of subjects, like an entire software development team,
is needed for research instead of single team roles (Developer, Architect, etc.). Graziotin
et al. contacted randomly selected developers for a survey, achieving a response rate of
approximately 4% [59] (Wagner et al. in a similar setup only 2% [198]). Consequently,
we must balance the number of participants in our evaluation with the level of realism we
can achieve when recruiting them. Both sides affect the generalizability of the evaluation.
Using a professional software development team for the evaluation provides a high level
of realism, but finding them is complex and using their time is expensive. Hence, this
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might come with the drawback of having only a few development teams available during
a shorter period. With a team of mixed subjects, we might be able to form more artificial
development teams that could work with us for a more extended period of time. Even
though this allows us to receive more data from diverse groups, the relevance of the data
is questionable. While experimental simulation comes at the cost of a reduced level of
realism, the opportunity to introduce events or ask for specific tasks is a major advantage
when compared to more realistic strategies. Certain events like a security incident or a
high number of security findings are events that might occur once or potentially never
during a real-world development project. This capability allows us to test for such edge
cases without waiting for them to happen naturally. In summary, the usage of toy projects
in simulations is time and cost-effective but is solely helpful for illustrating the methodol-
ogy while, however, providing no insights into its practical relevance [119]. Furthermore,
we agree with de França and Ali that simulations and models do not represent an equal
alternative to field studies or experiments, especially for our industrial setting [36].

Finally, this leaves us with the last strategy: field experiments. Field experiments are
conducted in natural settings, but in contrast to field studies, they allow a certain degree
of manipulation. This already sets the scope for the evaluation, as we would be using
ongoing industrial software development projects with actual professionals as participants.
Working within the allowed degree of manipulation, we could introduce our methodology
and observe any changes. Therefore, this strategy provides the highest level of realism
while still being suitable for an evaluation. The disadvantages of this level of realism are
just as obvious. Similar to a simulation with a high-realism participants group, finding
subjects and performing an evaluation might result in low participation, high cost, and a
short evaluation period. This challenge is further reinforced since the research environment
is an actual project. Hence, recruiting subjects does not exclusively involve finding human
participants but rather finding ongoing software development projects with an existing
development team. Therefore, the focus during recruitment shifts towards locating project
leads or responsibles willing to support the evaluation, which manage a project team and
stakeholders that also agree to contribute to the evaluation. In this case, a higher commit-
ment to the research is necessary, as we tamper with potentially critical data in an integral
business-oriented project. The last statement especially initiates the question of realism
in industrial projects. Can we consider a project consisting of one developer already as
realistic? Or do we focus on the project’s customer, implying that any software written
for a customer outside the project team is realistic? Industrial software often consists
of multiple components, all written by different project teams. Can each sub-project be
considered a separate subject group, or can an evaluation only be grounded on the um-
brella project? To avoid an extension of this discussion, we defined our own constraints
for realistic industrial software development projects. We consider a project to achieve the
necessary level of realism if it is
(1) following State-of-the-Art project management practices,
(2) developing software for a customer in an industrial sector, and
(3) consisting of a project team including developers.
Unfortunately, the control advantages of experimental simulations do not apply to field
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experiments. We can, e.g., not control the amount of security findings the project has
to deal with. Consequently, we might be unable to state any claims if a project has no
applicable security findings during the evaluation. Another drawback of this approach is
introduced by the type of artifact that is evaluated. The demand for protecting this data
arises as we work with confidential data (security findings). Hence, a significant effort must
be put into securing the application and the respective infrastructure by the researchers
before the evaluation can be started.

7.2.2 Quantitative vs. Qualitative Evaluation
After the research strategy is selected, the next decision deals with the data collection
and analysis. This decision is often reduced to quantitative vs. qualitative data collection
processes. The respective quantitative or qualitative analysis methods used are based on
the collection approaches. In most cases, the selected research strategy is already closely
coupled to the research process. Field experiments and surveys are traditionally bound to
quantitative research, while interviews or observations are more associated with qualitative
approaches [49]. However, this distinction between quantitative and qualitative research
is not only connected to the type of data collected but also to the objectives [61]. In
the following, we discuss the advantages and disadvantages of quantitative and qualitative
research approaches for evaluating artifacts like our methodology in industrial settings.

Quantitative Research Approach
Quantitative Research Approaches are fundamentally data-driven approaches aiming

to identify relationships between different aspects of the research environment. This al-
lows researchers to identify phenomenons based on measurable variables and mathemat-
ical/statistical models for data analysis [61]. An example of a quantitative approach for
our use case would be the impact of using our methodology on the security of a software
product. The first variable, our methodology’s usage, can be true if it is employed in the
project or false if not. For the second aspect, the product’s security, we would need to
define a set of variables that capture this aspect of the product. This model would be
simple as the first variable can solely take binary values.

The first challenge arising from quantitative approaches is the variable selection for
meaningful claims. In our example, identifying variables that cover the ”security of a
product” is challenging. Is ”security” represented by the amount of post-release software
security issues? Or are there more aspects that influence the ”security”? Most likely, we
would need to specify the claims and check the impact of our methodology on the post-
release security issues, thus weakening our claim. Even with adequately defined variables,
we would encounter the challenge of internal validity. Since we measure the influence of
one set of variables on another, it must be ensured that there is no third group of vari-
ables falsifying our claims. Following our example, we would need to ensure that the usage
of our methodology causes a lower amount of post-release software security issues. How-
ever, software development teams might have improved their skills over time, resulting in
fewer security issues in the code before they could even be identified. This either results
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in threats to the research’s internal validity or substantial effort upfront for the creation
and testing of models that cover the phenomenon. However, even in the second case, a
potential threat to the internal validity can never be excluded. Finally, we can mathe-
matically measure particular phenomena and derive conclusions from them. This relies
on the assumption that the aspects we are interested in are mathematically measurable.
Software development projects, however, take place under complex conditions, often hardly
expressible by mathematical terms [115]. The usage of methodologies by project teams of-
ten depends on whether it is perceived as beneficial. This highly subjective perception can
hardly be captured in a variable. Consequently, we might not be able to capture all positive
and negative impacts of the methodology when solely relying on quantitative research ap-
proaches. Finally, the amount of data collected to derive representative claims is relatively
high. However, drawing these large sample sizes in software engineering is difficult [115].
Furthermore, identifying the necessary sample size to achieve representativeness underlies
the challenge of first identifying the entire population. However, there is no commonly
accepted number of all industrial software development teams employing modern software
development practices. Therefore, taking advantage of the representativeness provided by
quantitative research approaches is often not possible in industrial software development
projects.

Qualitative Research Approach
Qualitative Research Approaches, on the other hand, focus on understanding the reasons

behind a phenomenon [61]. It focuses less on mathematically measurable indicators to
identify a phenomenon and instead more on reasons and mechanisms that lead to the
phenomenon. An example of a qualitative approach for our use case could be understanding
our methodology’s positive or negative impact on the development team. This could be
realized by conducting interviews with the project teams using the methodology.

One challenge when using qualitative research approaches is the necessary interven-
tion in the project. The origins of relevant data are primarily human. Hence, the data
collection requires time and effort to retrieve this data, e.g., by using interviews with the
project team. Researchers and the project team alike invest this effort. Consequently, a
high commitment to the evaluation by the project team is required upfront. This type
of data acquisition further comes at the disadvantage of potentially influencing the re-
trieved information. This can include the introduction of a bias in the interaction with
the subjects (e.g., biased questions) or threats towards the construct validity if the inter-
action is differently interpreted between researcher and subject. Finally, whether to use
qualitative or quantitative research approaches is derived from the research question asked
[115]. However, the challenges arising from the selection accompany the remaining design
and implementation of the research approaches. Hence, it is to be considered during the
decision process.
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7.2.3 Evaluation Approach
The discussion in the last paragraphs showed that the evaluation must be precisely planned.
Furthermore, they indicate that a field experiment or an experimental simulation possesses
the characteristics to conduct our evaluation. We accepted that the high level of realism
could limit the statistical generalizability of our claims, as our sample size might be too
small to represent the entire population of all industrial software development projects
[172]. Regardless, we believe that only a realistic setting can provide valuable insights into
the impact of our methodology.

Moreover, we decided against an initial hypothesis claiming the usefulness of our
methodology. Instead, we want to explore the benefits and challenges of the methodol-
ogy, decreasing the risk of potential bias [155]. However, we assume that the usage of
our methodology impacts the software development project to some degree. Our target is
to understand how this impact manifests. Consequently, we want to explore the impact
instead of explaining how our methodology impacts the project, traditionally coupled to
qualitative research [205]. However, we utilize quantitative approaches to check for mathe-
matically measurable impact while employing qualitative techniques to identify subjective
influences. This approach allows us to use methodological triangulation [155], increases
the precision of our research, and avoids known challenges [204].

7.3 Evaluation Design
For the design of our study, we follow the state-of-the-art empirical software engineering
and case study research [155, 115, 110, 164] minding challenges and domain experience
[138]. In this section, we present the objectives of the evaluation and the outline for
conducting it.

Since the evaluation was performed in an industrial company, not all data can be
ethically and legally disclosed. It is marked in the respective section whenever data was
collected but not disclosed on purpose. Consent agreements with the respective industry
partner have been established upfront for information disclosure.

7.3.1 Evaluation Objectives and Research Questions
The objective of the evaluation is to identify the impact of using our methodology in indus-
trial software development projects that utilize modern software development approaches.
In the following, we define each aspect of the objective and associate them with the respec-
tive actions. First, the impact to be explored is quantified by the benefits and limitations
of applying our methodology in the project. Since the objective of the methodology im-
pacts the project, the data points to obtain relevant information from are the project team
and measurable properties of the development process. Finally, we limit the evaluation
to software development projects performed in the industry that utilize modern software
development approaches.

From these objectives, we derived our research questions:
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1. RQ1 How does the usage of the methodology affect the development process indica-
tors?

2. RQ2 Is the methodology perceived as useful by the project team for managing secu-
rity findings?

3. RQ3 Which benefits does the using the methodology bring?

4. RQ4 Which limitations exist when using the methodology?

The first question aims to collect non-subjective data to identify whether there are any
changes in project performance indicators. With the second question, we want to focus
on the personal perception of project team members working with the methodology. The
third research question focuses on the advantages of using the methodology, while the
fourth one addresses its shortcomings and potential disadvantages. Overall, we avoided
testing for a hypothesis with our research questions and instead solely assumed that there
is some degree of change when using our methodology, which we want to explore in our
evaluation.

Based on these research questions, a case study in real-world projects employing our
methodology seems to be the most promising research approach. In the following sections,
we discuss the characteristics of our case study.

7.3.2 Subjects and Cases
The first step towards our case study is the selection of cases and subjects. As discussed
in the planning, we want to achieve a high-realism evaluation. Consequently, we decided
against any simulation-based approach and instead conducted a case study with ongoing
software development projects. In the software engineering domain, the straightforward
selection for a case is a software development team. Following our evaluation scope, we
restrict this selection further to industrial software development projects that utilize mod-
ern software development approaches. To narrow the case selection to active and mature
software development projects, the project has to run for at least one year and follow estab-
lished security practices, including automation of security tests and processes for managing
security findings. Moreover, the project has to be developed actively, necessitating at least
one code change per week for the last month at the time of selection.

These restrictions result in a list of requirements depicted in Table 7.1. The project is
unsuitable for our evaluation unless all questions can be answered with yes.

Question Answer
Team develops software in an industrial setting
Team follows DevOps or Agile principles
Project runs for at least one year
Codebase is changed at least weekly for the last month
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Property Project A Project B
Project Domain Research Project Research Project
Development Approach Adapted Agile/DevOps DevOps
Author Involvement None None
Amount Developer 3 2
Project Team Size 4 3

Table 7.2: Subject Project Properties

Project has automated security tests
Project has a active process for managing security findings
The project is an actual software development project

Table 7.1: Recruitment Requirements for Projects

To ensure all projects originate from an industrial source, we contact the industry
partner of this thesis for potential evaluation projects. To follow the selection criteria, the
project owner or manager of each project proposed by our industry partner was contacted,
and the employed development principles and project duration were assessed. Moreover, we
determined the level of realism for each project in collaboration with the project lead based
on the principles presented in the evaluation planning. Due to the differences between
documented and applied processes in projects, we requested to witness the established
findings management approach upfront. Similarly, we asked to see the automated security
testing in practice. For the changes in software code, we requested access to the code
repository to ensure the fulfillment of this requirement.

Finally, we identified two projects for our evaluation, fulfilling all requirements defined
above. The properties of both projects are listed in Table 7.2. Both projects utilize the
Gitlab CI environment to automate security tests and manage the resulting findings as
artifacts in the Gitlab environment.

7.3.3 Data Collection and Storage
To answer our research questions in collaboration with the selected subjects, we collect
and analyze data from the project. In this subsection, we present the data collection
and storage strategy. The actual protocol conducted for data acquisition can be found in
Subsection 7.3.4.

As discussed in the evaluation planning, multiple strategies for data collection could be
applied in our case study setting. For our evaluation, we seek information in two distinct
areas of data points. The first area is the project team, where we want to collect first-degree
data by conducting interviews. The second area is process performance indicators, where
we obtain data by second-degree collection, using passive observation of project statistics
without any project interaction.
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Throughout the case study, any data acquired is stored electronically and, due to the
confidential nature of security findings, protected against illegitimate access.

7.3.4 Case Study Protocol
To conduct the study, our research follows a defined case study protocol. This protocol is
based on the data acquisition and storage strategy of Subsection 7.3.3 and is described in
this section. In advance to the actual case study, we decided to perform a preliminary pilot
evaluation to avoid confounding factors and improve our construct validity. The unit of
analysis for this pilot is the project team that develops the Security Flama itself. As most
project team members have a limited understanding of the scientific background of the
implemented artifact, it seems to be a promising piloting environment. However, we limit
the bi-weekly interviews to a single occurrence. Otherwise, we strictly follow the protocol
defined below. The results of this initial study are discussed with the subjects to ensure
that the questions were correctly understood.

After the pilot, the case study is executed in parallel on the different units of analysis.
We decided to follow a common procedure to collect data for each project. The six steps
of this protocol are listed below and will be discussed in the following paragraphs.

1. Integration of the Flama Haystack according to Subsection 7.1.3

2. Passive, continuous collection of statistics from the project

3. Introduction of the Security Flama to the project team

4. Data collection with multiple iterations of questionnaires

5. Conclusion of data collection with interview

6. Ramp-Down

(1) During the first phase of the procedure, Haystack is integrated into the projects. As
described in the implementation section of this chapter, this enables the collection of se-
curity reports from the security tools established in the project. At this point, the project
team is aware that data is gathered from the project, but the Security Flama has not been
introduced yet. Starting from this point, the researchers have to perform regular reviews
of the security activities employed by the projects. As tools might change their report for-
mat or content, aspects like report parsing or the severity calculation for the prioritization
must be adapted accordingly. However, this is solely a passive interaction with the project
without any active intervention, as the awareness about changes is sufficient to adapt the
implementation of the artifact.

(2) Based on the data provided by the integrated Flama Haystack, we collect the observa-
tional statistics from the Security Flama. This collection is performed weekly on Sunday
at midnight UTC throughout the entire timeframe of our evaluation. Details on which
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data is collected and how the collection is performed can be found in Subsection 7.3.5.

(3) After collecting data passively for four weeks, we introduce the Security Flama to the
project team. From a technical perspective, this includes creating user accounts for all
project members and ensuring access to the web interface since the collection of findings
data is already in place. On an explanatory level, we introduce the project team to the
functionality of the Security Flama and all potential user interactions. Towards this goal,
one researcher presents the Security Flama according to the guidance presented in Sub-
section 7.3.5. Furthermore, we introduce the case study and its scope of analyzing the
benefits and limitations of applying the methodology for industrial software development
projects.

(4) After introducing the Security Flama, we perform bi-weekly interviews with the project
team. Instead of performing just one interview, we are particularly interested in the change
over time, as the perception of the methodology might evolve [198]. These interviews are
conducted per the defined interview protocol, employing the same questionnaire each time.
The questionnaire and interview guide can be found in Subsection 7.3.5. During this time,
the researchers are not involved in the projects, excluding the bi-weekly interviews.

(5) After five iterations of the interviews, the case study is concluded by a final interview
with each participant, requesting a retrospective of the last weeks using the Security Flama.
The final interview is less structured than the predecessor, solely requesting information
on the perception of using our methodology and potential benefits and challenges. The
material for this final interview can be found in Subsection 7.3.5.

(6) After gathering all data, the study is ramped-down. This is performed by removing
the team member’s access to the web interface and removing Flama Haystack from the
project’s development environment. Furthermore, the project team is informed that the
study concluded. If requested, the data acquired and presented by the Security Flama is
handed over to the project team, and the remaining information is securely deleted.

Concluding the protocol, we acquired a dataset of passively observed statistics and the
questionnaires obtained during the interviews. Afterward, the data is analyzed according
to the approach defined in Subsection 7.3.6.

7.3.5 Case Study Instruments
The evaluation execution relies on multiple instruments to define the interaction with the
research environment and our subjects. Below, we list the material for introducing the Se-
curity Flama to subjects (Introduction of the Security Flama), the reoccurring interviews
with their questionnaire (Reoccurring Interview), the final questionnaire conducted during
the last part of the study (Final Interview), and the observation of project indicator values
(Observation Statistics).
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Property Reoccurring Interview Final Interview
Duration 1 hour 30 minutes
Frequency bi-weekly once
Subject One Team Member One Team Member
Conductor Single Researcher Single Researcher
Documentation Recording, Live Transcription Recording, Live Transcription
Environment Virtual with Screen Sharing Virtual with Screen Sharing
Interview Type (Semi-) Structured Semi-Structured
Interview Scope Since last interview (2 weeks) Entire study time
Language English English

Table 7.3: Interview Characteristics

Introduction of the Security Flama
During the evaluation, the Security Flama is introduced to the project team during a one-
hour presentation. During this meeting, one researcher presents the functionality of the
Security Flama while aided by a slide deck. The slide deck can be found in the supple-
mentary material [192]. The entire project team, excluding stakeholders, is present in this
meeting. Any questions by the audience aiming towards clarifying functionality or use of
the application are answered immediately. Deciding whether a question is answered dur-
ing the presentation is the researcher’s discretion. However, any question that can not be
directly linked to the system’s functionality is documented. During this stage, we further
identify the interview subjects, present the scope and targets of the evaluation, and align
regular appointments with them.

Reoccurring Interview
For the collection of qualitative data, we decided to conduct recurring interviews with the
members of every project. Due to the similarities of structured interviews with questionnaire-
based surveys [155], we additionally consider the work of Wagner et al. for the creation
of the questionnaire [198]. The interviews are conducted during a one-hour-long meeting
every two weeks. The researcher performing the interviews is assisted by an interview guide
and the list of questions to be answered by the subject. Concerning the questionnaire, we
decided to conduct semi-structured interviews with our project teams, mixing quantifiable
and open-ended questions. These properties are listed in Table 7.3.

The interviews are started by welcoming the subject and clarifying, that the interview
will be recorded. The interview environment is virtual appointments using the communi-
cation software Microsoft Teams. To avoid distractions, the interviewer ensures a proper
environment upfront using the subject’s camera. Afterward, both cameras are turned off
to avoid visual bias. Next, a short introduction to the evaluation is presented, reminding
the subjects of scopes and targets, followed by the actual questionnaire. This is initialized
by the researcher sharing the questions through the screen share feature. Even though all
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questions are written in English, subjects are allowed to answer in their preferred language
to avoid confusion [198]. These are translated on the spot and re-read to them, ensuring a
correct translation of their intention. The answers to all questions are digitally documented
by the researcher.

The questionnaire consists of 22 questions asked subsequently. It consists of three cate-
gories. It starts with organizational questions, proceeds with questions to answer research
questions RQ2, RQ3, and RQ4, and concludes with general feedback. The organizational
questions address the subject and its project environment to identify the answer context.
Since this information might change throughout our evaluation, we request this informa-
tion every time. Each closed question is formulated to be answered either binarily or on a
Likert Scale to state their agreement to the question. For the binary questions, the answers
”Yes” and ”No” are expected. The Likert scale is defined from 1 - ”Strong Disagree” to 6
- ”Strong Agree”, avoiding any neutral answer. Since all questions are about personal per-
ception, no default selection for rejecting a question is given. The remaining questions aim
towards answering our research questions RQ2, RQ3, and RQ4. For RQ2, we want to iden-
tify the usefulness of our methodology from the different project team members, realized
by various questions affecting the usefulness of the methodology in software development
projects. The research questions RQ3 and RQ4 are summarized in our questionnaire to
identify the benefits and limitations of using our methodology. Finally, we added two
questions allowing comments by the subject that are not directly related to any research
question. Since the interaction with the methodology likely changes over time, subjects
must answer according to their experience during the last two weeks. Hence, all questions
are formulated accordingly when this property is relevant. Table 7.4 depicts all questions
with their respective category, our expectations on the answer format, and the timeframe
they address. During the interview, the subject will solely see the question itself and be
informed about the Likert scale, if applicable, for the respective question.

Category Type Timeframe Question
Organizational Open Overall How would you call your role in the project?
Organizational Open Overall How many hours did you approximately spend

on the project in the last 2 weeks?
Organizational Binary Overall Did you interact with security findings and in

particular the Security Flama last week?
Organizational Open 2 weeks How frequently did you interact with the Se-

curity Flama in the last 2 weeks?
RQ2 Likert 2 weeks I perceived the methodology overall as useful

for my work in the last 2 weeks.
RQ2 Open 2 weeks What did you perceive as notably useful,

when using the methodology during the last
2 weeks?

RQ2 Likert Overall I think that the methodology covers all aspects
of the Security Findings Management.
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RQ2 Open Overall Which aspects of the management of secu-
rity findings are missing in/not covered by the
methodology?

RQ2 Likert Overall I currently feel able to manage security find-
ings.

RQ2 Open 2 weeks How was the Security Flama affecting your
ability to manage findings in the last 2 weeks?

RQ2 Likert Overall The methodology is simple to use.
RQ2 Likert Overall The methodology is transparent to me, hence

I know how data is computed.
RQ2 Likert Overall The methodology is effective, hence it provides

me with the desired and correct results.
RQ2 Likert Overall The methodology is efficient, hence it seems to

minimize the time and effort I have to invest.
RQ2 Likert Overall The methodology is flexible, hence it allows me

to perform necessary customization so that it
fits the project.

RQ3/RQ4 Likert 2 weeks Using the methodology was beneficial to my
work during the last 2 weeks within the
project.

RQ3/RQ4 Likert 2 weeks Using the methodology restricted me in my
work during the last 2 weeks within the
project.

RQ3/RQ4 Open 2 weeks Which benefits of the methodology did you en-
counter in the last 2 weeks?

RQ3/RQ4 Open 2 weeks Which limitations of the methodology did you
encounter in the last 2 weeks?

RQ3/RQ4 Open 2 weeks Which areas of the project did the usage of the
methodology affect in the last 2 weeks?

General Open Overall What could be improved within the method-
ology to support your work?

General Open Overall Do you have any further comments?

Table 7.4: Reoccurring Questionnaire

The interview guide, supporting the researcher during each meeting, is shown below.

1. Welcome the subject and thank for the collaboration. Explain that the recording is
started next

2. Start the recording

3. Check the subject’s interview environment and turn off both cameras
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4. Explain that we want to identify the benefits and limitations of using the methodology

5. Share the screen showing the questionnaire

6. Conduct the questionnaire

7. Thank the subject and conclude the interview

This guide was solely available to the interviewer for the meeting period. After the meeting,
the recording is compared to the interview documentation, and potential discrepancies are
corrected so that the recording can be deleted in accordance with data retention policies.
The data storage is described in Subsection 7.3.3.

Observation Statistics
For quantitative data collection, we collected values from development performance indica-
tors passively. This automated collection happens weekly during the evaluation period and
addresses our first research question by identifying our methodology’s impact on develop-
ment process indicators. Minding the primary target of assessing the impact on product
security, we focus on indicators related to the software’s security and the methodology’s
usage. The most valuable information to collect would be the methodology’s impact on the
product’s security. However, this induces the question of how to measure the security of a
product. Instead, we focus on measuring values that are associated with our methodology.
Hence, we look into the data consumed by our methodology, the data produced by it, and
the overall interaction of the project team with it. Table 7.5 lists all observed indicators.

Category Indicator
Data Input Amount of security activities producing findings in the project.
Data Input Amount of security tools providing data to our methodology.
Data Input Amount of reports created per week.
Data Input Amount of raw findings created per week.
Data Output Amount of correlated findings per week.
Data Output Amount of new findings per week.
Data Output Amount of findings with tag X (Open, False Positive, ...).
Data Output Amount of findings with severity X (Critical, High, ...)
Data Output Response time per finding.
Methodology Usage Amount user input per week (Tags, Prioritization).
Methodology Usage Amount of interface requests.

Table 7.5: Development Indicators

For each category, the collection is implemented passively by relying on the data ac-
quired or produced by the Security Flama. A finding is considered to be new, if the last
collection has not identified it. The interaction is monitored by accessing the logs written
by the Security Flama. The data from each week is stored separately and finally analyzed
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according to Subsection 7.3.6.

Final Interview
For the final interview, the guidance is equal to the reoccurring interviews. We restrict
the interview time to 30 minutes with our subject due to the drastically reduced number
of questions. In contrast to the reoccurring interview, we diminished the abstraction of
questions from our research questions and addressed them directly. Using this approach,
we expect an open discussion and a reflection across the entire study period. The properties
of the final interview are listed in Table 7.3. The three questions discussed are in Table 7.6.

Category Type Timeframe Question
Final Open Overall What do you think about the usefulness of the

methodology?
Final Open Overall What is your opinion on the benefits of the method-

ology?
Final Open Overall What is your opinion on the limitations of the

methodology?

Table 7.6: Final Questionnaire

7.3.6 Data Analysis
Finally, the results from the methodology evaluation are analyzed to derive conclusions
about the research questions. The analysis strategies differentiate between the two data
acquisition strategies. In this section, we describe the analysis approach for the quantitative
observation data and the qualitative interview data.

The data available from observing the development indicators provide the fields listed
in Table 7.5 for 16 data points in summary. The primary strategy for analyzing this data
set is the identification of outliers and correlations between the values. Moreover, the
relation between the reported observation data, the interview data, and activities in the
project might provide valuable insights or explanations for anomalies. This results in the
following four data analysis strategies for the quantitative data:

• Identify anomalies within the same reported indicator

• Identify anomalies between different indicators

• Identify correlations between indicators

• Identify correlations between indicators and other data points like interviews or
project information

In addition to the quantitative data, the interview results report additional qualitative
insights from project team members. This supposedly provides a data set of five interviews
with the reoccurring questionnaire and one final interview with each team member of both
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projects. Minding that the reoccurring questionnaire consists of 22 questions and the final
one of three, a substantial amount of data is accumulated during the interviews. The
analysis of this highly subjective information is closely coupled to the type of question.

All answers to the Organizational category of Table 7.4 represent the factual baseline
for interpreting all consecutive questions. Therefore, this context information is solely
reported. The analysis of the answers to the ten closed questions is treated similarly to
the quantitative data. Since the investigation’s key target is identifying the benefits and
limitations of the methodology, these quantifiable answers are used to derive the general
perception of the team members towards the methodology. In contrast to the quantitative
analysis, the design of the interviews adds the additional dimension of different team
members reporting the data instead of solely having data points being documented for
varying dates and projects. Therefore, not only outliers and correlations must be analyzed,
but descriptive statistics such as mean values or standard deviations must be acquired. In
summary, the following strategies for analyzing the closed questions are applied:

• Identify common answers for the same question

• Identify outliers for the same question across different subjects and dates

• Identify outliers between questions

• Identify correlations between questions

• Map outlier with quantitative results and organizational data

Finally, eleven questions did not restrict the format in which they should be answered.
Five of these closed questions give additional insights into previously answered closed
questions. The analysis of these questions supplies the discussion on the results of the closed
questions. In summary, three questions focus on the benefits of the methodology, four focus
on the limitations, and four are general questions to acquire additional insights. During
the analysis, each answer to an open question is assigned the tag ”benefit”, ”limitation”
or ”context” to summarize the results. The responses in each of the three groups are
summarized to identify the benefits and limitations of the methodology.

7.4 Evaluation Results
This section summarizes the evaluation results following the collaboration agreement with
our industry partner. Consequently, the results are partially anonymous. First, any par-
ticularities that occurred during the evaluation procedure itself are introduced. Next, the
data acquired through the quantitative analysis is presented. Finally, the results of both
interview types are documented.
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7.4.1 Evaluation Procedure
The initial step during the evaluation procedure was the piloting of the study. This pre-
liminary study resulted in two improvements to the subsequent case study with the actual
subjects. First, the infrastructure that hosted the Security Flama was adjusted. Previ-
ously, the machines were shut down overnight to reduce energy consumption. However, the
pilot subjects mentioned this as problematic since the results of nightly tests could not be
imported. Therefore, the shutdown mechanism was deactivated for the evaluation period.
The second change affected the slide deck used to introduce the Security Flama to the
project team. The subjects of the piloting phase had problems understanding the meaning
of the data fields presented for each security finding. Therefore, one slide describing each
field’s content was added to the slide deck. All other aspects of the evaluation, including
the protocol, structure, and study instruments, remained unchanged.

The study itself was conducted between January 9 and April 24, 2023. During the
first four weeks solely the quantitative data was collected. In the week of January 30th,
the Security Flama was introduced to both project teams. Due to the sickness of one
team member, another session in the same week solely for this subject was necessary. The
reoccurring interviews started on the week of February 13th and concluded with the final
interview on the week of April 24th. Since one developer left Project B in March, this
resulted in completing just two instead of six interviews for this subject. Moreover, one
subject hesitated to answer the final interview due to a lack of direct interaction with the
Security Flama.

Changes to the implementation of the Security Flama are part of its intended usage in
practice. Examples include a change in the list of security tools generating reports that
necessitated the addition of a new parser. Similarly, changes to the web interface, including
bug fixes or additional visual representations, are acceptable, as customization is a crucial
requirement for the communication strategy. However, all changes affecting the validity
of the evaluation were rejected, including, e.g., changes to the methodology or knowledge
base itself. Every shift in the implementation of the Security Flama was tracked and can
be found in Table D.1.

7.4.2 Quantitative Results
Eleven distinct development indicators were collected during the evaluation on 16 occa-
sions. In the following, the resulting data is presented for both projects. Since all security
activities reporting security findings have been automated in both projects, the number of
security activities equals the number of security tools. In Project A, the activities included
one Secret Scanning tool, one 3rd Party Component Vulnerability Scanning and SCA tool,
and one Code Review tool, summarizing to three security activities in the project. In
Project B, the same tools have been employed. However, an additional tool for 3rd Party
Component Vulnerability Scanning was added on February 15th after a gap in the testing
coverage was identified while reviewing existing security findings in the Security Flama.
Therefore, Project B initially utilized three and later four security activities during the
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evaluation period.
Regarding the amount of uploaded security reports, parsed security findings, and ag-

gregated security findings, Figure 7.3 depicts the distribution over time. In both projects,
the number of security reports added to the knowledge base summed up to 6082 in Project
A and 5508 in Project B. Both projects started with more than 1000 security findings ini-
tially. The security aggregation reduced this number during the data quality improvement
to approximately 32% and 36% of the original amount in both projects. This trend is
visible throughout the entire evaluation timeframe.
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Figure 7.3: Finding Statistics of both Projects

During the evaluation, the observed security findings reached different states in their
lifecycle, including ”Disappeared”, ”Open”, ”False Positive”, and ”Accepted”. The latter
two states have only been assigned to one project on a single occasion. Therefore, no
detailed reporting is reasonable. Figure 7.4 presents the total number of aggregated security
findings compared to findings with the ”Open” and ”Disappeared” states in Project A.
These statistics are shown throughout the evaluation period. The same information is
presented in Figure 7.5 for Project B.

Another measurement was the severity of security findings in both projects. In both
projects, only the severity of open findings is reported to list the currently applicable
findings instead of already resolved findings. Each finding is clustered into the severity
categories ”Critical”, ”High”, ”Medium”, ”Low”, and ”Info”. Figure 7.6 reports this infor-
mation for Project A and Figure 7.7 for Project B, including the overall number of open
findings.

In addition to all the diagrams above, the values collected each week are further reported
in the Appendix in Table E.1 for Project A and Table E.2 for Project B. For each date
in 2023, the tables contain the number of reports, findings, and aggregated findings in
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Figure 7.4: Findings Status of Project A

the knowledge base. Moreover, it lists the number of new findings that have not been
previously reported and the number of user inputs for the prioritization score. Finally, the
number for all findings with a specific severity (Critical, High, Medium, Low, Info) and
states (Open, Disappeared, False Positive, Accepted) are presented.

The summary of the finding statistics can also be found in Table 7.7, including the
minimal, maximal, and average value for each indicator in both projects. The presentation
of new findings in this table excluded the first data point, as every initial finding would be
considered new.

Finally, the response time per finding, the user input per week, and the number of
interface requests have been collected. However, none of these values provide representative

Table 7.7: Quantitative Statistics per Week

Indicator Project A Project B
Min Max Avg Min Max Avg

#Security Activities 3 3 3 3 4 4
#Security Tools 3 3 3 3 4 4
#Reports 0 1889 344 0 1026 380
#Raw Findings 0 1087 104 0 1112 143
#Aggregated Findings 0 354 34 0 408 40
#New Findings 0 36 12.8 0 61 17.2
#User Input 0 2 0.25 0 1 0.125
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Figure 7.5: Findings Status of Project B

insights into the project. The interface requests were impacted by sessions kept open over
a long time and frequent reloads of the interface when new test results were added. This
falsifies any conclusion that can be derived from this information. A similar issue affected
the recorded response time per finding. The response time did not provide any insights,
as the low user input gave no insights on whether a finding was purposefully ignored or
overlooked. Therefore, the response time provides no relevant information as well. As
depicted in Tables E.1 and E.2, the user input was limited to one priority input added to
Project B and two states added to Project A.

7.4.3 Qualitative Results
During the evaluation, five iterations of the reoccurring interview and one final interview
were conducted for every team member. Considering that one team member left during the
evaluation, the dataset of the qualitative analysis consisted of 38 answered questionnaires.
Especially during the first interview sessions, the subjects hesitated to respond to the
questionnaire based on the limited time they spent using the Security Flama.

The results of the organizational questions identified our subjects as two project man-
agers, five developers, and one product owner. One project manager simultaneously con-
tributed to the code base, resulting in this double role. The project contribution varied
between 70 hours and two hours. The contribution of two hours was only once reported
by the product owner, who solely participated in the weekly project team meetings. All
participants interacted with the Security Flama at least weekly. During the first week,
the interaction in both projects was limited to one access per subject. Afterward, most
subjects accessed the Security Flama twice a week in both projects, while one developer in
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Figure 7.6: Severity of Findings in Project A

each project accessed it more than five times per week. Only the subject with the prod-
uct owner role did not access the Security Flama weekly but interacted with it passively
through other colleagues during the weekly team meetings.

Most closed questions in the reoccurring questionnaire have been consistently answered
with ”5-Agree” or ”6-Strong Agree”. The only exceptions included the question referring to
the restriction imposed by the methodology and to the transparency of the methodology.
All subjects stated that they did not feel restricted by the methodology in their work by
responding consistently with ”1-Strong Disagree”. Initially, most subjects also stated that
the methodology and its data processing were not transparent and understandable, which
improved over time, resulting in general agreement during the last interview.

As part of the data analysis, each answer to an open question was assigned to one of the
groups ”benefit”, ”limitation” or ”context”. In this first paragraph, we present the results
of the recurring interview. The main benefit the subjects reported was the overview of the
currently existing findings in the software product provided by the web interface (mentioned
31 times). In particular, the simplicity of identifying new findings (mentioned 22 times),
the aggregation of findings from different locations (17 times), and the common severity
scale across various security activities (nine times) were mentioned. Those two developers
with the highest interactivity with the Security Flama exclusively gave the last answer.
Moreover, the subjects reported that they prepare for the weekly team meetings with the
data shown in the Security Flama or utilize it during team meetings to discuss the current
status of software security (mentioned 24 times). This was also perceived as notably useful.
However, our subjects also mentioned multiple limitations of the methodology. All of them
have been related to the current implementation of the methodology. This included 16
bug reports, which have been summarized into five bugs. Moreover, eight features were
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Figure 7.7: Severity of Findings in Project B

requested by our subjects to improve the existing implementation. Table D.1 lists these
changes. One feature has been rejected due to the necessary refactoring of the Security
Flama. One subject requested to change the state of all security findings with a severity
lower than ”High” to ”Delayed”.

Next, we report the final interview results with a focus on the usability, the benefits and
limitations of the methodology, and its instance. During the final interview, all subjects
claimed they perceived the Security Flama as useful. Various formulations have been
used, ranging from ”extremely useful” or ”highly beneficial” to ”essential for the current
management of security findings”. Similar to the results of the reoccurring interview, the
subjects predominantly mentioned the summary of the current security state based on the
security findings as the key aspect for its usability (mentioned five times). The stated
reasons include:

• ”It gives an up-to-date insight on the security state”

• ”Newly introduced findings can be easily identified after changes to the code base
have been made”

• ”I can check whether my measures fixed the security finding”

• ”Diagrams can be screenshotted into reports”

• ”You can get in insights [that are] otherwise impossible”

The second aspect mentioned in favor of the methodology’s usability was the simple access
to the system when compared to the previously existing approach (mentioned three times).
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Subjects noted the approach of a central web interface with straightforward navigation as
crucial for the system’s usability. No subject mentioned aspects with a negative impact on
the methodology’s usability.

The most commonly mentioned benefit was again the evidence-based overview of the
security status of the project given by the Security Flama (mentioned five times). An-
other aspect also mentioned by all subjects is the ability to impact the security findings
management process according to the project’s needs. This included integrating reports
from additional security activities on demand and adding feedback (user input) to secu-
rity findings. Moreover, certain procedures have been mentioned as particularly beneficial,
including the common data model, the aggregation of security findings, and a common
severity scale across all security findings regardless of the source. The various perspectives
on the data provided by the web interface were also mentioned as another benefit.

However, limitations about the Security Flama were also reported during the final in-
terviews. These can be clustered into three areas. The first cluster contains all potential
improvements to the implementation of the web interface given by the subjects. Six im-
provements have been suggested, including a dark mode, additional diagrams, a different
color scheme with higher contrast, and comfort functions when clicking on diagrams. In
addition to improvements to the web interface, subjects also mentioned limitations in the
methodology and procedural shortcomings, represented by our second cluster. The first
limitation in this cluster is the poor visibility of the data processing. The subjects claimed
that it is not immediately obvious how certain data is computed, infringing the trust in the
results. Even though this improved over time, subjects mentioned that it should be appar-
ent from the beginning. Another subject stated that communication about the long-term
success based on performance indicators was missing. According to the feedback, compar-
ing how many findings have been solved, the number of new findings, and the sum of all
still existing findings over the last month would be detrimental to the team’s motivation.
Another subject supposedly identified a bug in the finding state system, where findings
did not reach the ”Disappeared” state. This represented a limitation, as developers have
been using this function to identify the impact of their mitigation. However, the root
cause of this limitation was that no new report had been uploaded as no re-test had been
conducted, further confirming the poor transparency of the methodology’s functionality.
Two subjects also considered the approach of using numbers for adding priority scores as
too complex and, therefore, a limitation of the methodology. The last cluster deals with
limitations affecting the project when utilizing the Security Flama. One subject described
the effort to manage security findings as ”exhaustive”. The subject further mentioned that
the interaction and management of security findings were often forgotten and proposed
that a proactive communication strategy with emails for high-severity findings might be
beneficial. Finally, two subjects identified a problem with managing tasks related to mit-
igating security findings. Since this project managed the security findings in the backlog
to prioritize them against other tasks, one subject perceived the additional prioritization
as ”duplicate housekeeping”.
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7.5 Discussion

The evaluation aims to identify the impact of using the methodology on industrial software
development projects that utilize modern software development approaches. In this section,
the results of the evaluation are discussed. We start with general insights acquired during
the evaluation, continue by answering each research question, and derive conclusions in the
end.

7.5.1 General Insights

In addition to answering our research questions, the evaluation gave us multiple insights
into security findings management in industrial practice. In this subsection, we present the
additional insights and context information necessary to interpret the evaluation results.

Firstly, each project had one subject that accessed the Security Flama more frequently
than all other subjects combined, indicating that each project team had one member with
a particular security responsibility or interest. Another insight showed that not every
subject accessed the methodology using the web interface. Instead, one team member
utilized other subjects during appointments to discuss security findings and task planning.
This subject represents a currently unconsidered type of user, either missing the time or
interest to work with security findings directly in the web interface.

Moreover, the evaluation has shown that both projects validate security findings after
a preliminary prioritization. In contrast to the initially designed process, findings are
prioritized by severity before they are investigated for False Positives or not-applicable
findings. Hence, a manual process step currently not considered by our methodology exists
that could be implemented as part of the security finding analysis.

To provide context to the data presented in Tables E.1 and E.2, readers must be aware
of public holidays in Germany. Due to the Easter Holidays, neither team conducted code
changes between ”2023-04-10” and ”2023-04-24”. Therefore, the reported numbers persisted
during that timeframe since no code changes resulted in no additional or mitigated findings.
A lack of changes in the numbers can also be observed whenever code changes and tests
are exclusively performed on development branches, as only the main branch is regarded
as input for the Security Flama.

Figure 7.3 must be interpreted, minding the fact that the Security Flama solely collects
data but never deletes it proactively. Therefore, the number of reports and security findings
can only increase since the history of each finding is tracked, but findings that are not found
anymore are not eliminated from the statistics.

To understand the relation between a finding and its state, it is important to mention
that each location a finding is found at has its separate state. Due to the aggregation, each
finding can be located at multiple places and, therefore, may contain a different state at
each location. Thus, the sum of all status values is larger than the number of aggregated
security findings.
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7.5.2 RQ1: How does the usage of the methodology reflect in
development process indicators?

The evaluation results suggest different impacts of the methodology usage on the develop-
ment indicators.

First, the results of Figure 7.3 show that the aggregation and correlation of security
findings reduce the overall number of findings by approximately two-thirds in both projects.
Hence, the methodology successfully reduced the number of finding. Second, Figure 7.4
and Figure 7.5 both indicate that the overall number of open findings was reduced in both
projects. However, only the results of Project A showed a considerable reduction of security
findings. In the week of March 6, this team responded to multiple security findings based
on the insights provided by the Security Flama, resulting in a 78% reduction of security
findings. Moreover, the number of findings that disappeared increased in both projects over
time, indicating that security findings have either been consistently fixed or the location
of findings changed. Based on the input provided by the subjects, both factors impacted
the number of disappeared findings. Therefore, the increasing number of findings is due
to the refactoring of components, resulting in new finding locations and consistently new
findings being reported by the security activities.

Figure 7.6 and Figure 7.7 show that no impact on the severity distribution of findings
can be identified. Therefore, there was no apparent prioritization of exclusively critical
findings. However, in some instances, mitigating one finding affected multiple others as
well. An example could be an update of third-party components, where the same compo-
nent can be affected by various findings with different severities. Hence, we cannot derive
conclusions about the project prioritization approach.

Unfortunately, no conclusions can be drawn from the data reported about the security
findings state due to the low numbers of states assigned. Similarly, the response time,
the user input, and the number of interface requests did not provide reliable data for any
inferences. We conclude that the usage of the methodology positively correlates with the
number of security findings. This reduction was visible in Figure 7.4 for one of the projects.

7.5.3 RQ2: Is the methodology perceived as useful by the project
team for managing security findings?

For the second research question, we analyzed any response related to the methodology’s
usefulness to the project team. During the interviews, two aspects have been mentioned
in favor of our methodology’s usefulness. Subjects mentioned that the simple access to
information about security findings was perceived as useful. Considering that both projects
previously used the CI environment to analyze formatted reports, we can conclude that a
central and easy-to-access dashboard is preferred in practice. The second aspect perceived
as particularly useful was the overview provided by the Security Flama. However, the
reasons differentiated between roles. While developers mentioned the ability to identify new
and disappeared findings instantly, the project managers preferred the high-level overview.
Therefore, the role-tailored presentation of security findings has shown to be useful in
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practice.
Even though no subject reported any aspect negatively impacting the usefulness, the

quantitative data on the amount of user input indicates that there might be disrupting
factors. With three instances of user input being added in both projects, the amount of
user input is remarkably low. Explanations for this circumstance can be found in the re-
sults of the interview sessions. The absence of user input for prioritizing security findings
can be explained by the effort and complexity of adding input to the Security Flama using
numeric values and the strategy in both projects, in which only high and critical findings
are considered for a response. The second explanation made prioritizing security findings
unnecessary and is highly project-specific, as this binary decision is uncommon in most
projects. However, it also shows that the usability of the methodology in this domain
cannot be considered entirely beneficial for both projects. On the other hand, the low
number of user inputs for assigning security finding states was explained by the need to
confirm that a finding was not reported again. Whenever a finding reached the ”Disap-
peared” state, subjects did not see the necessity of adding a new state. Furthermore, the
assignment of finding states was affected by the manual effort to upload them using the
webinterface. One subject wished for a bulk-update feature of findings based on the sever-
ity. This wish is rooted in the binary prioritization strategy of the projects and would have
allowed the project to move all findings with medium or lower severity to the state ”Ac-
cepted”. As discussed previously, this change was rejected during the evaluation period but
would have affected 325 aggregated findings. Therefore, redesigning the implementation
of prioritization and status tracking seems beneficial to improve project acceptance.

We conclude that our subjects perceived the methodology as highly useful. However,
we believe that restrictions apply to the usefulness of all manual interactions with the
Security Flama. As mainly the automated aspects of the methodology were employed,
we assume that the perception of usefulness relies on the ability to avoid interaction with
inconvenient parts of the methodology like manual prioritization.

7.5.4 RQ3: Which benefits does the using the methodology bring?
To answer the third research question, we collected all benefits mentioned during the in-
terviews and correlated them with quantitatively collected data. The foremost benefit
identified by all subjects was the evidence-based visibility provided by the methodology.
However, details on what exactly was perceived as beneficial differentiated between roles
in each project. Especially those two subjects that accessed the Security Flama most re-
ported benefits, including the common severity scale, the identification of new findings,
and the aggregation of security findings. As part of this overview, one project identified
a coverage gap in their testing strategy, which was also perceived as beneficial and at-
tributed to the visibility of the current security status. However, the gap could only be
determined by combining the knowledge of one developer who knew that certain findings
existed with the overview supplied by Security Flama. Hence, one benefit is communicating
relevant information for its manual interpretation, combination with context information,
and collaboration between project team members.
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Another benefit stated during the interviews is the support for the entire security find-
ings management process. In both projects, all team members agreed that the Security
Flama covers all aspects of the security findings management process. However, this state-
ment is only valid under two constraints. First, the subjects could only identify whether
the methodology supports the process activities they were aware of. Hence, the claim can
not be generalized as subjects with another background might perceive different aspects as
relevant. Second, the relevant parts of the security findings management process are also
project-specific. For example, both projects did not require the prioritization of security
findings, as their binary strategy for selecting which findings should be addressed was suf-
ficient for their context. Hence, we can only claim that it addressed the aspects relevant
to the respective projects.

Even though almost no user input was given to the methodology due to the project-
specific constraints and the shortcomings in the implementation of the web interface, both
projects reduced their number of open findings. Therefore, the methodology impacts this
indicator, regardless of how mature the project or the implementation is. Hence, we con-
sider the ability to customize the methodology according to the project’s needs and still
conduct a successful security findings management as a benefit of the methodology. We
conclude that the key benefits of the methodology are the visibility of the current security
status of the software, the ability to customize the methodology according to the project’s
demand, and the enablement of the project team to collaborate on security findings.

7.5.5 RQ4: Which limitations exist when using the methodol-
ogy?

The fourth research question was answered identically to the third one by collecting all limi-
tations mentioned during interviews and combining them with quantitative data. The most
mentioned limitations of the methodology were related to the implementation of the web
interface. Especially in the final interview, most shortcomings have been associated with
the implementation of the methodology instead of the methodology itself. This includes
the design decision to use numerical values for the prioritization, the lack of proactive com-
munication, some visual and functional improvements for the web interface, and the ability
to bulk-assign finding states. Hence, the current implementation of the methodology must
be improved based on practitioner feedback to mitigate the current shortcomings.

Another frequently mentioned limitation is the transparency of how the methodology
and its implementation process the security reports. Even though our subjects reported
that their knowledge about how the Security Flama processes data improved over time,
the lack of transparency is not acceptable to achieve the goals of our methodology. This
absence of insight could manifest in users of the methodology as trust issues. Even though
no subject showed a lack of trust during the interviews, this could have materialized in
acceptance issues or supplementary activities, like analyzing the plain reports. A hint that
this might have been the case can be found in the low rates of user input due to a lack
of knowledge of how the user input is applied in practice. Therefore, the communication



7.5 Discussion 199

strategy of the methodology must be refined to present how information is processed, and
users may impact the processing.

Another limitation of the communication strategy is the lack of long-term success di-
agrams. During the final interview, one subject wished for a visual representation of the
long-term security findings management success, including all mitigated findings to moti-
vate team members. As we did not consider the importance of team member motivation
during the design of the solution approach, this represents a gap in the communication
strategy. Consequently, the motivation of team members must be considered when refin-
ing the communication approach.

One shortcoming mentioned by subjects of both projects was that the prioritization
was not beneficial to them, as their security strategy solely focused on high and critical
findings. Since this strategy is uncommon in industry, we acknowledge the feedback but
believe the limitation cannot be generalized. However, another limitation derived from the
feedback on the prioritization was the lack of backlog integration. The subjects mentioned
that they prioritize the finding response in their regular backlog against other functional
requirements and hence perceive the prioritization in the Security Flama as ”duplicate
housekeeping”. Thus, the methodology must integrate better with the backlog to close
the feedback loop for security findings. The subjects attributed the scarce usage of user
input during the evaluation period to the complexity of interacting with the user interface.
Moreover, the subjects mentioned the effort to regularly access the web interface as ex-
hausting and recommended a proactive strategy instead. Therefore, we see the potential
to further reduce the effort for managing security findings in practice. We conclude that
especially the communication strategy and its implementation are the limiting factors of
the methodology.

7.5.6 Threats to Validity
Similar to all case studies, our results are also constrained by threats to their validity [155].
In this subsection, we present and discuss all threats to the validity of the evaluation,
structured according to the type of infringed validity.

First, the case study was conducted with the Security Flama, representing an instance
of the methodology. Therefore, any implementation shortcomings might have been at-
tributed to the methodology itself. Even though this infringes the internal validity of
the results, automation is a central requirement for utilizing the methodology in modern
software development, making it impossible to evaluate it without instantiation. Another
threat to the internal validity is the previous knowledge of our subjects in security find-
ings management. During the interviews, some subjects indicated they were inexperienced
with managing security findings. One consequence this lack of knowledge might have in-
troduced is the incorrect attribution of benefits related to the source data being instead
associated with the methodology. An example would be that information originating from
high-quality security testing is being reported as a benefit of the Security Flama instead
of being attributed to the testing strategy. Conversely, limitations introduced by a sub-
optimal security testing strategy might be interpreted as limitations of the methodology.
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This threat affects not only the internal validity but the construct validity as well. Sub-
jects with different backgrounds might interpret the questions differently based on their
experience with security findings management in modern industrial software development.
Regardless, this represents industrial practice correctly, as not every project member can
be considered a security expert. Therefore, we accept this threat to achieve a realistic case
study. A similar threat related to the implementation of the methodology is the impact
of factors that are currently not considered. An example is the design of the web inter-
face. Whether the web interface follows the corporate design guidelines might impact the
perceived usefulness, especially during the initial onboarding when features are not known
yet. However, these aspects can only hardly be measured in practice.

In addition to threats to the internal and construct validity, the case study design
introduces additional threats to the external validity. Since we conducted the evaluation
in an industrial enterprise, the ability to transfer our results to other companies and projects
might be infringed. The first factor affecting the external validity is the number of projects
and subjects interviewed. By assessing only two projects with a limited number of project
team members, the results might not be transferable to other projects. This affects the
type and amount of findings in particular. Security findings in software development
projects located in different domains or markets could vary in amount, type, severity,
or relevance. Therefore, we cannot derive that the behavior reported in this case study
represents projects in other domains equally. However, this is a common threat when
conducting case studies in industrial practice. Moreover, the target of the evaluation was
an analysis of our methodology for industrial projects, which can be derived from the results
nevertheless. Another threat is the time frame of the evaluation. Long-term data on the
usage of the methodology and its impact on the project could provide further insights into
the benefits and limitations in the long run. However, this would complicate maintaining a
static case for the study, as the methodology is intended to be customized and continuously
improved based on ongoing research. Anyway, we believe that a long-term evaluation with
a less strict case study design can provide valuable insights in the future.

7.5.7 Summary of Conclusions
Finally, we present the summary of conclusions derived from the discussions in this section:

1. The impact of the Security Flama depends on the acceptance of the platform in the
team and the importance of security in the project in general

2. One project drastically reduced the number of findings based on insights provided
by the Security Flama

3. Projects conducted a preliminary prioritization of security findings based on severity
before analyzing them

4. Even though perceived as useful, the current effort for user input and methodology
interaction diminishes the usefulness of the methodology
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5. Evidence-based overview, collaboration encouragement, and project-specific customiza-
tion are key benefits of the methodology

6. The communication strategy and implementation are the biggest drawbacks of the
methodology

The validity of these conclusions is constrained by the threats discussed in Subsection 7.5.6.
Even though the evaluation has not shown that our methodology is the optimal so-

lution for security findings management in modern industrial software development, it
can be considered a feasible solution as it is field-tested and grounded [154]. The results
showed that it is perceived as useful and beneficial for managing security findings in the
analyzed modern industrial software development projects, with limitations affecting the
communication strategy and implementation.
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Chapter 8

Conclusion and Future Work

The importance of managing potential security shortcomings of software appears obvious
when building products in an industrial domain with high security demands. This circum-
stance is confirmed by various norms, standards, models, and best practices, requesting
that the management of security findings is an obligatory process in software development
projects. This process consists of multiple activities that must be conducted to manage
security findings and their inherent security risk successfully. The execution of these activ-
ities is constrained by the principles and strategies of the employed software development
methodology. With trends like DevOps or Agile software development being commonly
followed in modern industrial software engineering, the management of security findings
in such projects has to address the challenges of both domains: security and software
engineering.

Summary of the Thesis
This thesis explored the problems of and solutions to the security findings manage-

ment in modern industrial software development projects and presented a methodology
addressing the challenges of conducting traditional findings management procedures in
a modernized development setting. Following the principles of Design Science Research,
this thesis splits the problem of managing security findings in modern industrial software
development projects into multiple sub-problems by conceptualizing the overall problem
instance and structuring the identified challenges according to their occurrence in the secu-
rity findings management process. Initially, the fundamental problems are conceptualized
by collecting requirements for the security findings management from industrial norms,
standards, and models. From 269 analyzed documents, 21 contributed 35 distinct require-
ments clustered into four problem instance areas to be addressed. These problem instances
were constrained by 12 principles, derived from value propositions and principles of modern
software development.

The first problem instance area addressed the challenges of following modern software
development principles when performing security findings management. As a solution ap-
proach, a semantic knowledge base consisting of belief, rules, and queries was proposed to
serve as a platform for all consecutive solution approaches supporting automation, fast feed-
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back, and continuous modular data processing. The second problem instance area covered
the shortcomings of the source data provided by security activities during the development
lifecycle. To cope with multiple challenges in this area, the solution approach includes a
data model for security findings, a multi-staged deduplication and aggregation scheme, and
the project-dependent context enrichment of security findings. The third problem instance
area addresses the challenges related to analyzing security findings, their tracking, and
responses to them. The proposed solution approach includes history and state tracking,
documentation support for manually conducted analysis, prioritization using formalized
project input, and guidance for responding to security findings aligned with common risk
management standards. The fourth problem instance area includes the communication
between the security findings management process and the project’s stakeholders. The
solution approach to ensure an efficient communication of data arising from previously
proposed solution approaches relies on a communication strategy providing a text-based
and visual interface for project stakeholders. Each interface consists of multiple presenta-
tions customized to the goals of each stakeholder.

Finally, the solution approaches proposed in this thesis were implemented as overarching
solution instance. This solution instance was empirically evaluated in ongoing industrial
software development projects that follow modern software development principles. The
evaluation results indicated the positive impact of the proposed methodology and confirmed
it as a feasible solution instance for the underlying problem instance, thus concluding the
Design Science Research approach.

Directions for Future Work
Throughout the thesis, additional potential for future research has been discovered that

could not be explored as part of this thesis. Even though most topics sparked interest and
indicated their relevance for industrial practice, they could not be included in our research
due to the scope of the thesis or relevance to the investigated problem instance. In this
paragraph, we want to present the directions for potential future research.

The first potential future research is the automated identification of False Positives in
security reports. During our investigation, we found multiple proposals for determining
False Positives automatically. However, they have been discarded due to the unacceptable
False Positive rates. Therefore, individual research focusing on False Positive identification
by employing the data available throughout the security findings management process
might yield better results. The impact of an automated False Positive identification would
be tremendous on industrial practice, making this a worthwhile future research.

Another direction is the construction of a recommender system for the security findings
management process and subsequent activities. This area was preliminarily explored in
this thesis, but further research was discarded due to the presumably lower impact on
industrial practice than other areas. However, the evaluation has proven the importance of
an understandable and straightforward communication strategy, making this an interesting
topic for further exploration.

The structured investigation of security findings communication in academia and in-
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dustrial practice represents the third direction for future research. During the evaluation,
we discovered the importance of a distinguished security findings communication and chal-
lenges if an implementation lacks these attributes. Hence, further research on principles
for creating an appropriate presentation of security findings data could further improve the
methodology and its instantiation.

Finally, additional evaluations could provide insights into the impact of the method-
ology under distinct circumstances. First, the effect of the methodology on projects not
following modern software development principles could deliver information about the par-
ticularities of our design. Even though the results could infringe on our initial claim,
they could also broaden the area of application for our methodology. Other promising
evaluations would be stricter or less strict evaluation designs. By eliminating the regular
interviews with the project team and instead entirely focusing on quantitative data, we
could achieve a more realistic setting to observe the long-term impact of the methodology
on industrial practice. Switching directions, we could tighten the conditions for the secu-
rity findings management process for the evaluation subjects, necessitating, e.g., that each
finding must be reviewed and closed after disappearing. Using quantitative and qualitative
data collection approaches, we could derive whether the methodology’s customizability is
beneficial or damaging to the software product’s security.

Even though this thesis has contributed a feasible solution for the management of
security findings in modern industrial software development projects, thus fulfilling its
initial target, its domain yields further challenges worth exploring in the future.
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Appendix A

Analyzed Documents for State of
Industrial Practice

Table A list all documents considered during the document review of Section 2.2. It
presents the name of the document, whether it was included into our analysis, why it was
excluded, which of the three sources it originated from and at which point it was added to
the list of analyzed documents.

Document Name Incl. Excl. Criteria [147] [175] Partner Addition
OWASP SAMM v2 Yes N/A True True Initial
BSIMM 12 Yes N/A True True Initial
SAFECode 2018 Yes N/A True True Initial
IEC 62443-4-1 Yes N/A True True True Initial
NIST SP 800-218 Yes N/A True True Initial
NIST SP 800-53 Rev. 5 Yes N/A True True True Initial
COBIT 2019 Framework: Gov-
ernance and Management Objec-
tives

Yes N/A True Initial

NIST SP 800-160 Vol. 1 Rev. 1 Yes N/A True True Initial
ISO/IEC 15408-3:2008 Yes N/A True Initial
NIST SP 800-181 Rev. 1 Yes N/A True True Initial
ISO/IEC 27002:2013 Yes N/A True True True Initial
BSI IT Grundschutz Kom-
pendium 2022

Yes N/A True True Initial

NIST CSF v1.1 Yes N/A True True Initial
IEC 62443-2-4 Yes N/A True True Initial
IEC 62443-3-2 Yes N/A True True Initial
ISO/IEC 27005:2018 Yes N/A True True True Initial
IEC 62443-2-1 Yes N/A True True Initial
ISO/IEC 15026-4:2021 Yes N/A True Initial
NIST SP 800-37 Rev. 2 Yes N/A True True True Initial
IEC 62443-1-1 Yes N/A True True Initial
IEC 62443-2-3 Yes N/A True True Initial
IEC 62443-3-1 Yes N/A True True Initial
IEC 62443-3-3 Yes N/A True True Initial
IEC 62443-4-2 Yes N/A True True Initial
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FIPS 140-3 Yes N/A True Initial
OWASP Application Security
Verification Standard 4.0.3

Yes N/A True Initial

Common Criteria Part1 v3.1r5 Yes N/A True Initial
Common Criteria Part2 v3.1r5 Yes N/A True Initial
Common Criteria Part3 v3.1r5 Yes N/A True Initial
The TOGAF Standard, 10th
Edition (Part 0-5)

Yes N/A True Initial

COBIT 2019 Framework: Intro-
duction and Methodology

Yes N/A True Initial

COBIT 2019 Design Guide: De-
signing an Information and Tech-
nology Governance Solution

Yes N/A True Initial

COBIT 2019 Implementation
Guide: Implementing and Opti-
mizing an Information and Tech-
nology Governance Solution

Yes N/A True Initial

ISO/IEC 15026-1:2019 Yes N/A True Initial
ISO/IEC 15026-2:2011 Yes N/A True Initial
ISO/IEC 15026-3:2015 Yes N/A True Initial
ISO/IEC/IEEE 41062:2019 Yes N/A True Initial
ISO/IEC 15408-1:2009 Yes N/A True Initial
ISO/IEC 15408-2:2008 Yes N/A True Initial
SANS (Institute) Yes N/A True Initial
IEC/TR 61508-0:2005-10 Yes N/A True Initial
IEC 61508-1:2010 Yes N/A True Initial
IEC 61508-2:2010 Yes N/A True Initial
IEC 61508-3:2010 Yes N/A True Initial
IEC 61508-4:2010 Yes N/A True Initial
IEC 61508-5:2010 Yes N/A True Initial
IEC 61508-6:2010 Yes N/A True Initial
IEC 61508-7:2010 Yes N/A True Initial
ISO/IEC 27000:2018 Yes N/A True True Initial
ISO/IEC 27001:2013 Yes N/A True True True Initial
ISO/IEC 27003:2017 Yes N/A True True Initial
ISO/IEC 27004:2016 Yes N/A True True Initial
ISO/IEC 27006:2015 Yes N/A True True True Initial
ISO/IEC 27007:2020 Yes N/A True True True Initial
ISO/IEC TS 27008:2019 Yes N/A True True Initial
ISO/IEC 27009:2020 Yes N/A True True Initial
ISO/IEC 27010:2015 Yes N/A True True Initial
ISO/IEC 27013:2021 Yes N/A True True Initial
ISO/IEC 27014:2020 Yes N/A True True Initial
ISO/IEC TR 27016:2014 Yes N/A True True Initial
ISO/IEC 27017:2015 Yes N/A True True Initial
ISO/IEC 27018:2019 Yes N/A True True Initial
ISO/IEC 27021:2017 Yes N/A True True Initial
ISO/IEC TS 27022:2021 Yes N/A True True Initial
ISO/IEC 27031:2011 Yes N/A True True Initial
ISO/IEC 27032:2012 Yes N/A True True Initial
ISO/IEC 27033-1:2015 Yes N/A True True Initial
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ISO/IEC 27033-2:2012 Yes N/A True True Initial
ISO/IEC 27033-3:2010 Yes N/A True True Initial
ISO/IEC 27033-4:2014 Yes N/A True True Initial
ISO/IEC 27033-5:2013 Yes N/A True True Initial
ISO/IEC 27033-6:2016 Yes N/A True True Initial
ISO/IEC 27034-1:2011 Yes N/A True True Initial
ISO/IEC 27034-2:2015 Yes N/A True True Initial
ISO/IEC 27034-3:2018 Yes N/A True True Initial
ISO/IEC 27034-5:2017 Yes N/A True True Initial
ISO/IEC TS 27034-5-1:2018 Yes N/A True True Initial
ISO/IEC 27034-6:2016 Yes N/A True True Initial
ISO/IEC 27034-7:2018 Yes N/A True True Initial
ISO/IEC 27035-1:2016 Yes N/A True True Initial
ISO/IEC 27035-2:2016 Yes N/A True True Initial
ISO/IEC 27035-3:2020 Yes N/A True True Initial
ISO/IEC 27036-1:2021 Yes N/A True True Initial
ISO/IEC 27036-2:2014 Yes N/A True True Initial
ISO/IEC 27036-3:2013 Yes N/A True True Initial
ISO/IEC 27036-4:2016 Yes N/A True True Initial
ISO/IEC 27037:2012 Yes N/A True True Initial
ISO/IEC 27038:2014 Yes N/A True True Initial
ISO/IEC 27039:2015 Yes N/A True True Initial
ISO/IEC 27040:2015 Yes N/A True True Initial
ISO/IEC 27041:2015 Yes N/A True True Initial
ISO/IEC 27042:2015 Yes N/A True True Initial
ISO/IEC 27043:2015 Yes N/A True True Initial
ISO/IEC 27050-1:2019 Yes N/A True True Initial
ISO/IEC 27050-2:2018 Yes N/A True True Initial
ISO/IEC 27050-3:2020 Yes N/A True True Initial
ISO/IEC 27050-4:2021 Yes N/A True True Initial
ISO/IEC TS 27110:2021 Yes N/A True True Initial
ISO/IEC 27701:2019 Yes N/A True True Initial
NIST SP 800-12 Rev. 1 Yes N/A True True True Initial
NIST SP 800-16 Yes N/A True True Initial
NIST SP 800-18 Rev. 1 Yes N/A True True Initial
NIST SP 800-22 Rev. 1a Yes N/A True True Initial
NIST SP 800-28 Version 2 Yes N/A True True Initial
NIST SP 800-30 Rev. 1 Yes N/A True True True Initial
NIST SP 800-34 Rev. 1 Yes N/A True True Initial
NIST SP 800-35 Yes N/A True True Initial
NIST SP 800-38A Yes N/A True True Initial
NIST SP 800-38B Yes N/A True True Initial
NIST SP 800-38C Yes N/A True True Initial
NIST SP 800-38D Yes N/A True True Initial
NIST SP 800-38E Yes N/A True True Initial
NIST SP 800-38F Yes N/A True True Initial
NIST SP 800-38G Yes N/A True True Initial
NIST SP 800-39 Yes N/A True True True Initial
NIST SP 800-40 Rev. 4 Yes N/A True True Initial
NIST SP 800-41 Rev. 1 Yes N/A True True Initial
NIST SP 800-44 Version 2 Yes N/A True True Initial
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NIST SP 800-45 Version 2 Yes N/A True True Initial
NIST SP 800-46 Rev. 2 Yes N/A True True Initial
NIST SP 800-47 Rev. 1 Yes N/A True True Initial
NIST SP 800-49 Yes N/A True True Initial
NIST SP 800-50 Yes N/A True True Initial
NIST SP 800-51 Rev. 1 Yes N/A True True Initial
NIST SP 800-52 Rev. 2 Yes N/A True True Initial
NIST SP 800-53A Rev. 5 Yes N/A True True True Initial
NIST SP 800-53B Yes N/A True True True Initial
NIST SP 800-55 Rev. 1 Yes N/A True True Initial
NIST SP 800-56A Rev. 3 Yes N/A True True Initial
NIST SP 800-56B Rev. 2 Yes N/A True True Initial
NIST SP 800-56C Rev. 2 Yes N/A True True Initial
NIST SP 800-57 Part 1 Rev. 5 Yes N/A True True Initial
NIST SP 800-57 Part 2 Rev. 1 Yes N/A True True Initial
NIST SP 800-57 Part 3 Rev. 1 Yes N/A True True Initial
NIST SP 800-58 Yes N/A True True Initial
NIST SP 800-59 Yes N/A True True Initial
NIST SP 800-60 Vol. 1 Rev. 1 Yes N/A True True Initial
NIST SP 800-60 Vol. 2 Rev. 1 Yes N/A True True Initial
NIST SP 800-61 Rev. 2 Yes N/A True True Initial
NIST SP 800-63A Yes N/A True True Initial
NIST SP 800-63B Yes N/A True True Initial
NIST SP 800-63C Yes N/A True True Initial
NIST SP 800-63-3 Yes N/A True True Initial
NIST SP 800-66 Rev. 1 Yes N/A True True Initial
NIST SP 800-67 Rev. 2 Yes N/A True True Initial
NIST SP 800-70 Rev. 4 Yes N/A True True Initial
NIST SP 800-72 Yes N/A True True Initial
NIST SP 800-73-4 Yes N/A True True Initial
NIST SP 800-76-2 Yes N/A True True Initial
NIST SP 800-77 Rev. 1 Yes N/A True True Initial
NIST SP 800-78-4 Yes N/A True True Initial
NIST SP 800-79-2 Yes N/A True True Initial
NIST SP 800-81-2 Yes N/A True True Initial
NIST SP 800-82 Rev. 2 Yes N/A True True Initial
NIST SP 800-83 Rev. 1 Yes N/A True True Initial
NIST SP 800-84 Yes N/A True True Initial
NIST SP 800-85A-4 Yes N/A True True Initial
NIST SP 800-85B Yes N/A True True Initial
NIST SP 800-86 Yes N/A True True Initial
NIST SP 800-87 Rev. 2 Yes N/A True True Initial
NIST SP 800-88 Rev. 1 Yes N/A True True Initial
NIST SP 800-89 Yes N/A True True Initial
NIST SP 800-90A Rev. 1 Yes N/A True True Initial
NIST SP 800-90B Yes N/A True True Initial
NIST SP 800-92 Yes N/A True True Initial
NIST SP 800-94 Yes N/A True True Initial
NIST SP 800-95 Yes N/A True True Initial
NIST SP 800-96 Yes N/A True True Initial
NIST SP 800-97 Yes N/A True True Initial
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NIST SP 800-98 Yes N/A True True Initial
NIST SP 800-100 Yes N/A True True Initial
NIST SP 800-101 Rev. 1 Yes N/A True True Initial
NIST SP 800-102 Yes N/A True True Initial
NIST SP 800-107 Rev. 1 Yes N/A True True Initial
NIST SP 800-108 Rev. 1 Yes N/A True True Initial
NIST SP 800-111 Yes N/A True True Initial
NIST SP 800-113 Yes N/A True True Initial
NIST SP 800-114 Rev. 1 Yes N/A True True Initial
NIST SP 800-115 Yes N/A True True Initial
NIST SP 800-116 Rev. 1 Yes N/A True True Initial
NIST SP 800-119 Yes N/A True True Initial
NIST SP 800-121 Rev. 2 Yes N/A True True Initial
NIST SP 800-122 Yes N/A True True Initial
NIST SP 800-123 Yes N/A True True Initial
NIST SP 800-124 Rev. 1 Yes N/A True True Initial
NIST SP 800-125 Yes N/A True True Initial
NIST SP 800-125A Rev. 1 Yes N/A True True Initial
NIST SP 800-125B Yes N/A True True Initial
NIST SP 800-126 Rev. 1 Yes N/A True True Initial
NIST SP 800-126A Yes N/A True True Initial
NIST SP 800-126 Rev. 2 Yes N/A True True Initial
NIST SP 800-126 Rev. 3 Yes N/A True True Initial
NIST SP 800-128 Yes N/A True True Initial
NIST SP 800-130 Yes N/A True True Initial
NIST SP 800-131A Rev. 2 Yes N/A True True Initial
NIST SP 800-132 Yes N/A True True Initial
NIST SP 800-133 Rev. 2 Yes N/A True True Initial
NIST SP 800-135 Rev. 1 Yes N/A True True Initial
NIST SP 800-137 Yes N/A True True Initial
NIST SP 800-137A Yes N/A True True Initial
NIST SP 800-140 Yes N/A True True Initial
NIST SP 800-140A Yes N/A True True Initial
NIST SP 800-140B Yes N/A True True Initial
NIST SP 800-140C Rev. 1 Yes N/A True True Initial
NIST SP 800-140D Rev. 1 Yes N/A True True Initial
NIST SP 800-140E Yes N/A True True Initial
NIST SP 800-140F Yes N/A True True Initial
NIST SP 800-142 Yes N/A True True Initial
NIST SP 800-144 Yes N/A True True Initial
NIST SP 800-145 Yes N/A True True Initial
NIST SP 800-146 Yes N/A True True Initial
NIST SP 800-147 Yes N/A True True Initial
NIST SP 800-147B Yes N/A True True Initial
NIST SP 800-150 Yes N/A True True Initial
NIST SP 800-152 Yes N/A True True Initial
NIST SP 800-153 Yes N/A True True Initial
NIST SP 800-156 Yes N/A True True Initial
NIST SP 800-157 Yes N/A True True Initial
NIST SP 800-160 Vol. 2 Rev. 1 Yes N/A True True Initial
NIST SP 800-161 Rev. 1 Yes N/A True True Initial
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NIST SP 800-162 Yes N/A True True Initial
NIST SP 800-163 Rev. 1 Yes N/A True True Initial
NIST SP 800-166 Yes N/A True True Initial
NIST SP 800-167 Yes N/A True True Initial
NIST SP 800-168 Yes N/A True True Initial
NIST SP 800-171A Yes N/A True True Initial
NIST SP 800-171 Rev. 2 Yes N/A True True Initial
NIST SP 800-172 Yes N/A True True Initial
NIST SP 800-172A Yes N/A True True Initial
NIST SP 800-175A Yes N/A True True Initial
NIST SP 800-175B Rev. 1 Yes N/A True True Initial
NIST SP 800-177 Rev. 1 Yes N/A True True Initial
NIST SP 800-178 Yes N/A True True Initial
NIST SP 800-183 Yes N/A True True Initial
NIST SP 800-184 Yes N/A True True Initial
NIST SP 800-185 Yes N/A True True Initial
NIST SP 800-187 Yes N/A True True Initial
NIST SP 800-189 Yes N/A True True Initial
NIST SP 800-190 Yes N/A True True Initial
NIST SP 800-192 Yes N/A True True Initial
NIST SP 800-193 Yes N/A True True Initial
NIST SP 800-202 Yes N/A True True Initial
NIST SP 800-204 Yes N/A True True Initial
NIST SP 800-204A Yes N/A True True Initial
NIST SP 800-204B Yes N/A True True Initial
NIST SP 800-204C Yes N/A True True Initial
NIST SP 800-205 Yes N/A True True Initial
NIST SP 800-207 Yes N/A True True Initial
NIST SP 800-208 Yes N/A True True Initial
NIST SP 800-209 Yes N/A True True Initial
NIST SP 800-210 Yes N/A True True Initial
NIST SP 800-213 Yes N/A True True Initial
NIST SP 800-213A Yes N/A True True Initial
NIST SP 800-215 Yes N/A True True Initial
NIST SP 800-219 Yes N/A True True Initial
NIST SP 1800-10 Yes N/A True True Initial
Standard of good Practice for In-
formation Security 2020 (SOGP
2020)

No Access missing True True Initial

ISO 27799:2016 No Domain specific:
Health systems

True Initial

ISO/IEC 27019:2017 No Domain specific:
Energy Industry

True Initial

ISO/IEC 27011:2016 No Domain specific:
Telecommunication

True Initial

ETSI EN 303 645 No Domain specific:
Consumer IoT
security

True Initial



213

ISO/SAE 21434 No Domain specific:
Road vehicles
– Cybersecurity
engineering

True Initial

ISO 26262 No Domain specific:
Road vehicles —
Functional safety

True Initial

IEC 62304 No Domain specific:
Medical device
software

True Initial

MISRA C/C++ No Domain specific: C
coding standard

True Initial

PCI PA-DSS v3 No Domain specific:
Payment Applica-
tion Data Security
Standard

True Initial

NIST SP 800-203 Yes N/A True True Initial
NIST SP 800-214 Yes N/A True True Initial
NIST SP 800-220 Yes N/A True True Initial
NIST SP 800-211 Yes N/A True True Initial
NIST SP 800-206 Yes N/A True True Initial
NIST SP 800-195 Yes N/A True True Initial
NIST SP 800-182 Yes N/A True True Initial
NIST SP 800-176 Yes N/A True True Initial
NIST SP 800-170 Yes N/A True True Initial
NIST SP 800-165 Yes N/A True True Initial
NIST PRIVACY FRAME-
WORK v1

Yes N/A True True Initial

BS 7799 No Country specific:
United Kingdom

True Initial

Cloud Security Alliance Yes N/A True Initial
C2M2 Yes N/A True Initial
IEEE 1402 No Domain specific:

Electric Power
True Initial

IAEA No Domain specific:
Nuclear Energy

True Initial

Wiki 1 No Company-specific True Initial
Wiki 2 No Company-specific True Initial
Whitepaper: Vulnerability Man-
agement

No Company-specific True Initial

ISO 30111:2019 Yes N/A Cross-
Reference

ISO 29147:2018 Yes N/A Cross-
Reference

Framework for Improving Criti-
cal Infrastructure Cybersecurity
v1.1

Yes N/A Cross-
Reference

ISO 31000:2018 Yes N/A Cross-
Reference

Table A.1: Collected Documents
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Appendix B

List of DevOps Principles

Table B.1 presents the list of applicable DevOps principles derived from [94, 68, 80] in Sec-
tion 2.3.1. It presents the source of the principle in the leftmost column and its description
in the right one.

Source Principle
Gene Kim, 1st way Make work visible
Gene Kim, 1st way Reduce size of work per deployment cycle
Gene Kim, 1st way
ISO 32675, Left-shift

Prevent defects to reach later stages

Gene Kim, 1st way
Humble, Automation
ISO 32675, Left-shift

Reduce process work through automation

Gene Kim, 1st way
Humble, Automation
ISO 32675, Left-shift

Continuous build, integration, test, and deployment pro-
cesses

Gene Kim, 1st way
Humble, Automation

Create environments on demand

Gene Kim, 2nd way Shorten and fasten Feedback Loops
Gene Kim, 2nd way
Humble, Automation
ISO 32675, Left-shift

Amplify feedback

Gene Kim, 2nd way Provide feedback to where it is needed
Gene Kim, 3rd way Support structured experimentation and risk-taking
Gene Kim, 3rd way
ISO 32675, Customer Focus
Humble, Culture

Work is done with the cumulative and collective experience
of everyone in the organization

Humble, Measurement
ISO 32675, Mission first

Measure the performance of the project against business
metrics

Humble, Culture
ISO 32675, Systems thinking

Include cross-domain teams into established meetings
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Humble, Sharing
ISO 32675, Left-shift

Share project aspects between teams (success, responsibility,
tools, infrastructure)

ISO 32675, Systems thinking Establish a comprehensive, end-to-end view of the system
for all stakeholders

ISO 32675, Mission first
ISO 32675, Customer Focus

Balance concerns of risk against value for the customer

ISO 32675, Customer Focus Keep stakeholders informed about changes without over-
loading them

Table B.1: Aggregated DevOps Principles



Appendix C

Visual Communication Interface

The webinterface and its three central pages described in Section 6.4 are depicted in Fig-
ures C.1,C.2,C.3. Figure C.1 presents the overview page for team members like developers.
Figure C.2 shows the findings list with sorting and filtering mechanisms. Each of the
findings listed can also be accessed as depicted in Figure C.3.

Figure C.1: Webinterface Overview Page



218 C. Visual Communication Interface

Figure C.2: Webinterface Findings List Page

Figure C.3: Webinterface Finding Page



Appendix D

Changelog of the Security Flama
during Evaluation

Table D.1 lists all changes in the implementation of the Security Flama that have been
performed during the evaluation period. Each change is listed with its date, its type (Bug,
Feature), and a description of the change. This data is reported as part of the evaluation
results in Section 7.4.

Date Change Type Change Description
09.02.2023 Bug Fixed bug, preventing users from listing more than ten find-

ings on one page
15.02.2023 Feature Added parser for new tool
15.02.2023 Feature Added severity model for new tool
28.02.2023 Feature Changed color scheme in bar diagram, due to visibility issues

on projector
28.02.2023 Bug Fixed bug, when sorting findings with special characters
10.03.2023 Bug Fixed bug in network configuration for access from special

locations
13.03.2023 Bug Fixed bug, so that top priority diagram shows only open

findings
13.03.2023 Bug Fixed bug, so that top severity diagram shows only open

findings
15.03.2023 Feature Added HTML information tags to all diagrams and fields,

explaining the content
15.03.2023 Feature Added option to list more than 100 findings
04.04.2023 Feature Added finding status to the default information presented,

when listing findings
06.04.2023 Feature Added project name to the page, where a specific finding is

shown

Table D.1: List of Changes to the Security Flama during the Evaluation Period
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Appendix E

Quantitative Evaluation Results

The quantitative data collected during the evaluation in Section 7.4 are reported in Ta-
ble E.1 and Table E.2. Each row represents one data point collected weekly between
January 9th and April 24th. Each column title describes the collected value.

Date Reports Findings Aggr.
Findings

New
Findings

Open
Findings

Input
Prio

Sev.
Crit.

Sev.
High

Sev.
Med.

Sev.
Low

Sev.
Info

Status
Open

Status
Dis.

Status
FP

Status
Acc.

01-09 214 1087 354 354 354 0 8 62 101 181 2 1087 0 0 0
01-16 672 1126 381 27 381 0 9 66 112 191 3 1126 0 0 0
01-23 790 1142 393 12 393 0 9 69 117 195 3 1142 0 0 0
01-30 1192 1193 421 28 400 0 9 73 121 194 3 1153 40 0 0
02-06 1595 1226 436 15 403 0 10 75 125 190 3 1151 75 0 0
02-13 1985 1480 472 36 386 0 9 66 110 194 7 1124 356 0 0
02-20 3874 1596 508 36 399 0 9 65 124 199 2 1179 417 0 0
02-27 4360 1612 514 6 391 0 9 65 121 195 1 1145 467 0 0
03-06 4406 1620 514 0 391 0 9 65 121 195 1 1146 474 0 0
03-13 4582 1638 523 9 85 0 2 15 10 58 0 198 1440 0 0
03-20 4582 1638 523 0 85 0 2 15 10 58 0 198 1440 0 0
03-27 4825 1652 534 11 96 0 2 15 11 68 0 210 1440 1 1
04-03 5409 1658 537 3 98 0 2 15 11 68 2 214 1442 1 1
04-10 5508 1670 546 9 98 0 2 16 12 68 0 214 1454 1 1
04-17 5508 1670 546 0 98 0 2 16 12 68 0 214 1454 1 1
04-24 5508 1670 546 0 98 0 2 16 12 68 0 214 1454 1 1

Table E.1: Project A - Quantitative Data
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Date Reports Findings Aggr.
Findings

New
Findings

Open
Findings

Input
Prio

Sev.
Crit.

Sev.
High

Sev.
Med.

Sev.
Low

Sev.
Info

Status
Open

Status
Dis.

Status
FP

Status
Acc.

01-09 95 1112 408 408 408 0 10 80 121 190 7 1112 0 0 0
01-16 307 1143 409 1 409 0 10 80 121 191 7 1143 0 0 0
01-23 425 1156 412 3 412 0 10 80 124 191 7 1156 0 0 0
01-30 1266 1184 427 15 410 0 11 81 124 191 3 1155 29 0 0
02-06 1692 1217 442 15 413 0 12 83 128 187 3 1153 64 0 0
02-13 1692 1217 442 0 413 0 12 83 128 187 3 1153 64 0 0
02-20 2496 1574 502 60 424 0 12 78 129 203 2 1236 338 0 0
02-27 3316 1614 515 13 397 1 11 73 118 193 2 1142 472 0 0
03-06 3712 1643 518 3 393 0 11 73 114 193 2 1128 515 0 0
03-13 3856 1767 527 9 379 0 10 73 83 211 2 1085 682 0 0
03-20 4882 2034 588 61 371 0 10 72 76 211 2 1068 966 0 0
03-27 5150 2210 615 27 363 1 10 70 73 208 2 1075 1135 0 0
04-03 5309 2210 615 0 363 1 10 70 73 208 2 1075 1135 0 0
04-10 6082 2290 651 36 376 1 9 77 82 208 0 1100 1190 0 0
04-17 6082 2290 651 0 376 1 9 77 82 208 0 1100 1190 0 0
04-24 6082 2290 651 0 376 1 9 77 82 208 0 1100 1190 0 0

Table E.2: Project B - Quantitative Data
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