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1.  Contribution to the publications 

This PhD Thesis comprises two publications that have been published in Environmental 

Research, an internationally peer-reviewed scientific journal. It is noteworthy that Environmental 

Research has an Impact Factor of 8.3 and holds a place in the top 12 % of Environmental 

Sciences Journals and top 8 % in Public, Environmental & Occupational Health Journals, as 

indicated by the Journal Citations Reports
®

 2022 of Clarivate.   

I, Nikolaos Nikolaou, am the first author of both publications incorporated in this PhD Thesis. In 

addition to the specific contributions outlined below based on the CRediT author statement (1.1 

Contribution to paper I and 1.2 Contribution to paper II), I presented the findings in regular Thesis 

Advisory Committee (TAC) meetings, the Work-In-Progress seminars of the Research Group 

Environmental Risks (EnRi), the Monday seminars of the Institute of Epidemiology, Helmholtz 

Munich (EPI-HMGU), the PhD Journal Clubs of the Institute for Medical Information Processing, 

Biometry, and Epidemiology (IBE), Ludwig Maximilian University of Munich (LMU), and the 

seminars of the Helmholtz Initiative Climate Adaptation and Mitigation (HI-CAM) project as well 

as in multiple conferences such as the International Society for Environmental Epidemiology 

(ISEE) 2022 and the Helmholtz Artificial Intelligence Cooperation Unit (Helmholtz AI) 2022, 

among other forums. I also presented the generated datasets from the publications during an 

invited talk at the Medical Research Council (MRC) Health Collaborations Workshop 2024. I 

incorporated into the manuscripts the feedback from the TAC members and the multi-disciplinary 

audiences of these talks. I additionally drafted both manuscripts, facilitated communication among 

co-authors, incorporated co-authors' comments, and made decisions regarding journal 

submissions. Being the first and corresponding author, I managed the submission and publication 

processes for both papers. This involved incorporating feedback from the peer-review, revising 

the manuscripts accordingly, and overseeing proofreading and post-production responsibilities. 

1.1 Contribution to paper I 

In the first publication, entitled “High-resolution spatiotemporal modeling of daily near-surface air 

temperature in Germany over the period 2000-2020”, a multi-stage modeling approach was 

developed to enhance the spatiotemporal coverage of near-surface air temperature (Tair) data in 
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Germany after 2000, addressing limitations of data from conventional weather stations. The study 

successfully demonstrated the models' strong performance in estimating countrywide daily Tair at 

1 × 1 km resolution, revealing high Tair spatial variability, and consistent warming trends post-

2016, providing a critical tool for temperature-based epidemiological studies and broader 

research applications. I contributed to the conceptualization, data curation, methodology, formal 

analysis, visualization, writing - original draft, writing - review & editing of this publication. 

1.2 Contribution to paper II 

In the second publication, entitled “Improved daily estimates of relative humidity at high resolution 

across Germany: A random forest approach”, the challenge of estimating near-surface relative 

humidity (RH) in high resolution across Germany was addressed, given the limited available 

methods and the incapacity of weather stations to capture the spatiotemporal RH variability 

adequately, for the first time, by developing a machine learning (ML) modeling scheme. Through 

the implementation of a random forest (RF) model that incorporated various environmental 

features, the study successfully predicted countrywide daily mean RH at 1 × 1 km resolution after 

2000. The findings highlighted the substantial spatial variability in RH and suggest the dataset’s 

suitability for environmental and epidemiological research. I contributed to the conceptualization, 

data curation, methodology, analysis, visualization, writing - original draft, writing - review & 

editing of this publication. 
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2. Introductory summary  

2.1 Background 

Climate change stands as one of the paramount global challenges confronting humanity and the 

entirety of its living environment in the 21st century and beyond. In this context, meteorological 

exposures undergo transformation, altering patterns and intensities, thereby necessitating their 

thorough examination, which is vital for preparing and adapting to this new era. Among the crucial 

meteorological exposures, air temperature (Tair) and relative humidity (RH) stand out.  

Near-surface Tair, measured 2 m above the ground, serves as a critical meteorological parameter 

and it is the foremost indicator of climate change. Tair is steadily rising globally, especially after 

the millennium, with 2023 to be the warmest year on record1 and projections suggesting further 

increases by the century's end2. This applies to Germany as well, where the trend toward higher 

Tair persists3 and there have been greater increases compared to the global averages. In the 

period 2013-2022, Germany experienced a rise of 2.1°C in average Tair compared to the first 

recorded 30-year period 1881-1910, surpassing the global increase of merely 1.1°C during the 

same intervals, and being the hottest 10-year term in record for the country4.  

Non-optimal Tair (high and low ambient temperatures) has a significant impact on human health5, 

including morbidity6 and mortality7, especially affecting the cardiovascular8 and respiratory 

health9. Heat exacerbates adverse pregnancy outcomes10, mental health decline11, reduced 

physical capacity12 while both heat and cold are linked with impaired cognitive function13. 

Vulnerable populations, including the elderly14, people with chronic conditions15, and children16, 

are particularly susceptible to heat-related illnesses. Human health can be negatively impacted 

by Tair, whether over short-17 or long-term exposure18. The Tair-health association is projected to 

deteriorate in the coming decades due to climate change and population aging19. The research 

focus mainly lies on extreme Tair values and prolonged periods of very high Tair, i.e., heatwaves, 

but also variations within moderate Tair ranges pose significant threats to public health20-22, 

necessitating high resolution Tair exposure datasets for improved epidemiological assessments.  

Near-surface RH, also measured 2 m above the ground and assessing the degree of atmospheric 

saturation, is a key meteorological and climatological factor and holds significance across various 
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research fields. From agriculture23 and atmospheric science24,25 to hydrology and climatology26. 

RH is also vital for plant growth and animal life27. Germany, a country with notably high RH levels 

but also high spatial variability due to its unique landscape, offers a captivating setting for its 

detailed assessment and subsequent research projects.  

RH-health literature is still scarce but there are studies indicating RH impact on human health28, 

29. RH has been linked to elevated cause-specific mortality, especially cardiovascular, diabetes 

and chronic obstructive pulmonary disease mortality30 along with its morbidity effects31, 32, while 

elderly33 and children34, 35 are particularly vulnerable to its exposure. Additionally, RH influences 

the transmission of droplet-36 and vector-borne37 diseases, potentially also promoting the spread 

of COVID-1938. RH also plays an important role in heat-related health impacts39. Moreover, RH 

can contribute to health disorders through its connection with synoptic weather patterns40, 41. High-

pressure systems typically bring clear skies and dry conditions, lowering RH, while low-pressure 

ones are associated with rising air and cloud formation, leading to increased RH. Understanding 

these dynamics is crucial for public health planning, particularly in the context of climate change, 

which is expected to alter synoptic weather patterns42 and their associated RH levels. 

2.1.1 Problem statement 

In environmental epidemiology, Tair and RH data are typically assigned to health studies’ 

participants based on the proximity of weather stations according to the stations' availability within 

the study area. For instance, if only one station is available in a cohort's study area, all participants 

usually get assigned the data from that single station, resulting in the loss of spatial variation 

information. Even if multiple stations are present in the greater area, the assignment to 

participants may be based on proximity, averaging, or other criteria, yet spatial variability remains 

a challenge. Additionally, temporal variation poses a significant issue as weather stations may 

not consistently measure data over time, leading to gaps or discontinuity in the dataset. Despite 

the ideal scenario of multiple stations with continuous measurements, the limited number of 

weather monitors, along with their uneven distribution, particularly in rural areas, coupled with 

their frequent placement in park-like settings or at airports, hampers their ability to accurately 

capture the spatiotemporal fluctuations of Tair and RH in complex geo-climatic urban and rural 

landscapes as of Germany.   
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This deficiency potentially introduces errors in the exposure assessment of health studies’ 

participants. There are two primary types of exposure measurement error43: classical and 

Berkson, which often also act simultaneously44 in the context of Tair and RH, compounding the 

challenges of accurately assessing exposure levels. These errors in most cases lead to health 

effect estimates biased towards the null hypothesis of no association45 or imprecise estimates 

and, therefore, lead to an underestimation of risks or misinterpretation of effects. The extent of 

bias in exposure-response relationships is directly influenced by the volume of the measurement 

error, which can vary due to several factors including spatial differences, such as the proximity of 

a study participant's residential address to the exposure source46 or the magnitude of the 

variability of an environmental exposure in space.  

Numerous studies reporting null effects may be subject to these limitations, potentially masking 

significant associations between environmental factors like Tair and RH and health outcomes. This 

suggests a pressing need to re-evaluate and prioritize research efforts aimed at gaining a deeper 

understanding of the true impact of these exposures on human health. One primary and essential 

solution entails adopting high resolution modeling techniques to capture and analyze these 

exposures more accurately, and thus substantially reducing exposure measurement error. 

2.1.2 Previous modeling techniques 

In recent years, significant progress has been made in modeling meteorological variables and 

compiling spatiotemporal maps of these variables in gridded sets. However, there is still 

considerable room for improvement. Interpolation methods like inverse distance weighting, 

regression-kriging, and thin plate spline (TPS) among others, are commonly used for countrywide 

mapping47-50 but encounter challenges such as sensitivity to station locations and difficulty 

capturing between-station variability, as well as struggles with neighboring effects, obstructing 

accurate representation of intra-city variability and mostly of urban heat island (UHI). Linear 

regression, generalized additive models, mixed models, and ML techniques such as XGBoost 

and RF, along with other methods, as well as ensemble models, are increasingly employed51-53 

to address these issues, often in conjunction with multi-stage approaches54 to improve accuracy 

and coverage. Each method has its own strengths and limitations, necessitating adjustments 

based on country-specific settings and data availability. Notably, remote sensing data are gaining 
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prominence due to their widespread availability, accessibility without costs, high quality, and real-

time updates, playing an increasingly important role in meteorological estimations55-57.  

2.1.3  Additional gaps and challenges identified 

While mean air temperature (Tmean) is one of the most commonly used metrics in environmental 

epidemiology, emphasis to minimum and maximum air temperature (Tmin and Tmax) is critical but 

currently lacking focus. Climate change impacts Tmin and Tmax unequally, with Tmin, particularly in 

urban areas, showing a greater increase58, exacerbating nocturnal heat stress59. Modeling Tmin 

and Tmax aids in estimating the diurnal air temperature range (DTR), which also affects human 

health60 and is still underrepresented in the literature. The limited availability of high resolution 

daily Tmin, Tmax and DTR data constraints in-depth epidemiological investigations, especially at 

the national scale, necessary for informing future policies. 

To date, there exists an evident gap in research investigating the direct impact of RH exposure 

on human health, as well as the underlying mechanisms involved because RH is mostly used as 

a confounder, effect modifier or as an index component in studies focusing in Tair effects39, 61, 62. 

Detailed research in this area is needed, emphasizing the critical necessity for epidemiologists to 

have access to reliable RH datasets of high resolution. 

Moreover, while there are plenty of Tair modeling techniques, with their limitations and space for 

improvement, there is a clear methodological gap in RH modeling frameworks, particularly 

concerning the limited input data sources used, the prediction of high spatiotemporally-resolved 

RH, the accuracy of the past models and the timeframes spanning single seasons or years only.  

Satellite-based data present a viable alternative owing to its accessibility, high resolution and 

quality, and near real-time availability. However, relying solely on satellite-based data, such as 

land surface temperature (LST), is inadequate for comprehensive environmental health analyses. 

In the temperature-health studies, the focus is the 2 m above the ground Tair, while 

spectroradiometers in satellites provide surface temperature values, which may not fully represent 

Tair despite their high correlation, necessitating sophisticated calibration. Additionally, satellite 

datasets often encounter severe measurement gaps in their time series due to cloud cover. Lastly, 

it is noteworthy that there exists no suitable satellite-derived metric to serve as a proxy for RH. 
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Finally, it is important to note that there has been limited research conducted in Germany 

regarding the modeling of meteorological parameters. The existing weather data and maps 

primarily serve weather monitoring and forecasting or analyzing climate trends within the field of 

meteorology rather than being oriented to the needs of health research. Consequently, they often 

do not fit epidemiological analyses, either exhibiting limited spatial variability with coarse 

resolution or failing to cover the large temporal periods relevant to German health studies. This 

presents a significant gap in obtaining highly resolved meteorological data, particularly Tair and 

RH, which are crucial for the exposure assessment in German cohorts or other (nationwide) 

datasets for environmental health analyses (e.g., registries, administrative or insurance data). 

Addressing these issues and exploring German analyses are imperative. This PhD Thesis fills 

this gap by introducing the first study using an extensive input database for estimating Tair, 

employing a sophisticated multi-stage statistical scheme, and extending the temporal scope to 

also match the German National Cohort (NAKO) study, which lacks comparable data. 

Furthermore, this PhD Thesis presents a pioneering analysis estimating RH directly, rather than 

calculating it from other modeled data, and also extends the temporal scope to encompass 

multiple health studies. These novel methodologies can be adapted for use in other spatial 

settings as well.  

2.2 Objectives 

In light of the inadequacies associated with traditionally used weather station observations in 

capturing the intricate spatiotemporal variations of meteorological parameters like Tair and RH and 

resulting in exposure misclassification and challenges in assessing local health impacts, there is 

a critical need for high resolution environmental exposure datasets. This PhD Thesis aimed to 

address these limitations not only to meet the current demands of environmental epidemiology 

but also to extend its applicability to various research domains beyond the field. This PhD Thesis 

aimed to improve substantially the spatiotemporal coverage of Tair and RH data in Germany's 

complex topographic landscape from 2000 on, specifically tailored for epidemiological research, 

such as the local Cooperative Health Research in the Region of Augsburg (KORA) cohort63 and 

the countrywide NAKO study64, which involves over 200,000 participants. In the same context, 

one of the additional requirements was the Tair and RH models to be readily extendable to future 
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years, effectively fitting to new cohorts or the follow-up periods of existing ones as well as updated 

registries, administrative databases and insurance records. Another main objective of this PhD 

Thesis was to provide insights into the variability of Tair and RH over Germany for the past two 

decades amid a rapidly changing climate. 

The specific objectives (SOs) of this PhD Thesis are outlined as follows: 

(SO1) Enhance Tair data coverage in Germany through remote sensing and regression-based 

modeling. This involved generating a complete Tair dataset including daily 1 × 1 km German-wide 

maps of Tmin, Tmean, Tmax, and DTR.  

(SO2) Introduce a novel modeling scheme to enhance the spatiotemporal representation of RH 

data in 1 × 1 km resolution across Germany. This involved leveraging Tair data, alongside other 

observation, remote sensing, and modeled data, and employing a RF approach. The overarching 

aim was to not only contribute to the existing literature but also to offer a method that can be 

generalized for the creation of highly resolved RH datasets in other spatial settings/ countries with 

similar data availability. 

(SO3) Offer insights into Tair and RH variability and spatial distribution across Germany over the 

past two decades. Identify regions with higher temperatures or altered humidity patterns and 

analyze their trends in recent years. 

(SO4) Investigate and emphasize the improvement of exposure assessment on German health 

studies by spatiotemporal modeling, aiming for better capturing the high Tair and RH variability in 

space and time.  

2.3 Methods 

2.3.1 Study area 

Germany is located in central Europe, spans 357,595 km2 and is home to a population of 84.6 

million people65. The country showcases a heterogeneous topography, ranging from the southern 

mountain range of Alps to the North and Baltic Seas coastlines in the north, featuring major cities, 

mountainous areas, inland water bodies, forested areas, and a big proportion of arable land. With 

elevations varying from 3.54 m below sea to 2,962 m, Germany experiences a temperate to 
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continental climate66. For the statistical analysis of this PhD Thesis, the mainland of Germany 

was divided into 366,536 grid cells of 1 × 1 km using the European INSPIRE standard and 

Lambert Azimuthal Equal-Area projection (EPSG: 3035) (©GeoBasis-DE/BKG (2021)). 

2.3.2 Material 

A large amount of publicly available data was collected and integrated into the Tair and RH 

modeling frameworks, including meteorological observations by networks of weather stations, 

remote sensing information by satellites, and spatiotemporally resolved modeled data from 

various sources. Table 1 summarizes the data used for the Tair models, the RH model, or both, 

along with their key technical characteristics. Details can be found in the corresponding sections 

2.2 Materials and 2.2 Input data from the publications I and II of this PhD Thesis, respectively. 

Table 1. Input data for modeling air temperature (Tair) and relative humidity (RH) 

   Resolution  For model(s) 

 Variable Unit Abbreviation Temporal Spatial Source Tair RH 

W
e
a

th
e
r 

s
ta

ti
o

n
 

o
b
s
e
rv

a
ti
o
n
s
 

Air temperature 

(minimum, mean & 

maximum) 

°C 
Tair 

(Tmin, Tmean, Tmax) 
Daily - DWD67 ✓  

Relative humidity 

(mean) 
% RH Daily - DWD67  ✓ 

Wind speed (mean) m/s WS Daily - DWD67  ✓ 

R
e
m

o
te

 s
e
n
s
in

g
 i
n
fo

rm
a
ti
o

n
 

Normalized 

difference vegetation 

index 

- NDVI Monthly 1 × 1 km USGS68 ✓ ✓ 

Land surface 

temperature 

(day- & night-time) 

K LST Daily 1 × 1 km USGS69 ✓  

Digital elevation 

model 
m DEM - 

30-arc-

second 
USGS70 ✓ ✓ 

C
O

R
IN

E
 

la
n

d
 c

o
v
e
r 

Urban fabric % - ‘12 & ‘18 100 m Copernicus71, 72 ✓ 

 

Arable land % - ‘12 & ‘18 100 m Copernicus71, 72 ✓ 
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DWD = German meteorological service; USGS = United States geological survey; EPI-HMGU = Institute of Epidemiology, Helmholtz 

Munich, ’12 = 2012, ’18 = 2018. 

Data were collected at spatial and temporal resolutions optimized for the modeling objectives. 

Following data collection, homogenization procedures were implemented as required. The land 

cover and true color band composite data were aggregated to a resolution of 1 × 1 km and LST 

measurements were converted to Celsius degrees for instance.  

2.3.3 Modeling 

Multi-stage regression-based models were applied for estimating the three Tair metrics, namely 

Tmin, Tmean and Tmax, while a ML algorithm was employed for estimating RH.  

2.3.3.1 Air temperature models  

The Tair modeling process was divided in three stages. In the first stage, the focus was on the grid 

cells with available Tair observations from German Meteorological Service (DWD) weather 

stations and satellite-derived LST values to calibrate their established strong and positive 

relationship, tailoring the model to account for the distinctive spatial and geo-climate 

characteristics of Germany. Specifically, the country's surface and altitude variations were 

addressed by adjusting the model for elevation. Information on greenness, urbanization, water, 

forests, pastures and arable land was included as well. The model incorporated a daily random 

slope for LST to accommodate daily fluctuations in the relationship between Tair and LST (EQ1). 

Pastures % - ‘12 & ‘18 100 m Copernicus71, 72 ✓ 

Forests % - ‘12 & ‘18 100 m Copernicus71, 72 ✓ 

Inland 

waters 
% - ‘12 & ‘18 100 m Copernicus71, 72 ✓ 

T
ru

e
 c

o
lo

r 
b
a
n

d
 

c
o
m

p
o
s
it
e

 Red band - - Daily 500 m USGS73  ✓ 

Green band - - Daily 500 m USGS73  ✓ 

Blue band -  - Daily 500 m USGS73  ✓ 

M
o
d
e

le
d
 

d
a
ta

 

Air temperature 

(mean) 
°C Tmean Daily 1 × 1 km EPI-HMGU74  ✓ 

Precipitation mm - Daily 1 × 1 km DWD75  ✓ 
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In the second stage, Tair was predicted for grid cell-day combinations lacking Tair observations but 

having LST data available. This was achieved by using the regression coefficients obtained from 

(EQ1). In the third stage, Tair was estimated for grid cells and days lacking both Tair observations 

and LST data. A linear mixed model was employed, regressing second stage Tair predictions 

against daily 1 × 1 km interpolated Tair values through TPS, utilizing random grid-cell-specific 

intercepts and slopes (EQ2). For each Tair measure, i.e., Tmin, Tmean and Tmax, a separate 

regression was applied. Nighttime LST was utilized for Tmin and Tmean models, whereas daytime 

LST for the Tmax model. All models were developed on an annual basis. DTR was then calculated 

by subtracting Tmin from Tmax.  

(EQ1)   Tairij = bo + uj + (b1 + vj)∙ LSTij + b2∙DEMi + b3∙NDVIij + b4∙UrbanFabrici + 

      + b5∙ArableLandi + b6∙Pasturesi + b7∙Forestsi+ b8∙InlandWatersi + εij 

where, 

▪ i stands for grid cell; j stands for day. 

▪ bo and uj stand for the fixed and the random intercepts, respectively.  

▪ b1 and vj stand for the fixed and the random slopes, respectively.  

▪ εij is the error term at grid cell i on day j. 

(EQ2)  Second stage Tairij = ai + bi∙intTairij + εij 

where,  

▪ i stands for grid cell; j stands for day. 

▪ ai and bi stand for the i grid-cell-specific intercepts and slopes. 

▪ intTairij stands for the TPS interpolated Tair values at the grid cell i on day j.  

▪ εij is the error term at grid cell i on day j. 

2.3.3.2 Relative humidity model 

RH was predicted by using a RF model consisting of 500 trees and 8 randomly sampled variables 

as candidates at every split, trained per year to capture annual variations. Due to the inherent 

robustness of RF, extensive hyperparameter tuning was unnecessary. Instead of employing 

complex methods, the analysis was opted for trial and error, deviating from the default settings, 

and observed no significant differences in model performance across various hyperparameter 
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sets. Daily mean RH was modeled predicting measurements at DWD station locations, with 

predictors including Tmean, the true color band composite (bands 1 = red, 3 = blue and 4 = green), 

precipitation, wind speed (WS), elevation and NDVI. The geographical coordinates, i.e., longitude 

and latitude, and the day of the year were also incorporated into the model for capturing spatial 

and daily variations in the response-predictor relationship. The formula was the following: 

RHij ~ Tmeanij + RedBandij + GreenBandij + BlueBandij + Precipitationij + WSij + DEMi +  

    + NDVIij + Longitudei + Latitudei + DayofYearj 

where i stands for monitor location and j stands for day. 

In the prediction step, the RF model was applied to all grid cells and days without available RH 

measurements from DWD weather stations, generating a complete RH dataset all across 

Germany. Similar to Tair, models were developed year wise to enable easy extension to future 

years. 

2.3.4 Model performance 

Extensive performance testing of the Tair and RH models was conducted, both on local and 

countrywide scales. Additional validation using data from external, independent sources was 

performed. Various sensitivity analyses supplemented and strengthened the validation process, 

including comparisons by season, extreme values, and comparing urban and rural areas. 

2.3.4.1 Air temperature models 

The models' performances [R2, root mean square error (RMSE) and mean signed error] were 

assessed separately for the first and third stages through a ten-fold cross validation (CV). 

Temporal and spatial metrics were also computed for the first stage. In the third stage, validation 

involved a subset of DWD weather stations for days in grid cells where LST data were missing 

and had not yet been integrated into the modeling pipeline.  

Additionally, two validations were conducted with data from external sources: a small-scale 

validation using a dense and independent monitoring network in the region of Augsburg in South 

Germany76, and a large-scale validation using the DWD TRY project's dataset77 in a countrywide 

setting. The small-scale validation involved 4-minute Tair measurements from 82 devices during 
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2013-2018, aggregated to daily Tmin, Tmean, and Tmax values. For the large-scale validation, the 

Tmean model predictions generated in this PhD Thesis were also compared with the DWD TRY 

project's openly available daily Tmean predictions, for the overlapping period 2001-2012.  

2.3.4.2 Relative humidity model 

The model’s performance [R2, RMSE, mean absolute percentage error (MAPE) and mean 

percentage error (MPE)] was evaluated through a ten-fold CV.  

RH predictions also underwent validation using the monitoring network featuring 82 devices with 

4-minute temporal resolution located in Augsburg city and adjacent counties from 2015 to 2019. 

4-minute RH values were aggregated to daily means and 7-day averages.  

2.3.5 Uncovering spatiotemporal patterns 

The spatiotemporal Tair and RH patterns over the last two decades were investigated through 

extensive descriptive analysis (statistics and visualization included), considering both overall 

trends and seasonal variations. For Tair, variations were also studied in the NAKO study centers, 

strategically located to represent diverse areas, including rural and urban settings. The focus was 

on study regions with over 2000 inhabitants/ km2.  

2.3.6 Case studies 

Augsburg, a study center of both KORA and NAKO cohorts, and Regensburg, a study center of 

the NAKO cohort, were selected as case studies to analyze the spatiotemporal variability and 

distribution of modeled Tair and RH compared to the observed values at the available DWD sites 

and to quantify and illustrate the enhancements in exposure assessment of cohort studies 

participants by high resolution data. 

2.3.7 Code for the statistical analyses  

The analysis code was developed in R, versions 4.0.278 and 4.2.279 for the Tair models and the 

RH model, respectively. The "LM4" package80 was used for the linear mixed models in Tair 

modeling and the "ranger" package81 for the RF model in RH modeling. Parallel computing 

techniques were employed. QGIS, version 3.10.5-A Coruna82 was also used for analysis and 

visualization purposes.  
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2.4 Results 

The overarching aim of this PhD Thesis was to improve the available meteorological database 

for German health studies (SO4) and suggest novel and reliable modeling schemes for other 

countries and spatial settings with similar data availability (SO1 and SO2). In addition, a significant 

goal of this PhD Thesis was to assess the spatiotemporal patterns and trends of Tair and RH in 

Germany after 2000 (SO3). Here, the key findings are summarized for each publication. 

2.4.1 Air temperature models 

Key finding 1: All Tair models, i.e., Tmin, Tmean and Tmax, demonstrated very high accuracy (0.91 ≤ 

R² ≤ 0.98) and low errors (1.03°C ≤ RMSE ≤ 2.02°C) (Paper I - Tables 1, S1 and S2) while 

maintaining missing values close to 1% countrywide (Paper I - Table S5). External data validation 

confirmed the models’ excellent performance in the local setting of Augsburg, South Germany 

(0.74 ≤ R² ≤ 0.99, 0.87°C ≤ RMSE ≤ 2.05°C) (Paper I - Tables 2, S6 - S8, Fig. 2 and Figure S4). 

The Tmean model countrywide comparisons against DWD TRY Tmean model, demonstrated a high 

level of correspondence (0.71 ≤ R² ≤ 0.99, 0.79°C ≤ RMSE ≤ 1.19°C) (Paper I - Tables 3, S9 - 

S13 and Fig. 3). Nonetheless, the Tmean model predictions generated for this PhD Thesis 

successfully captured a broader Tmean distribution and better portrayed the spatial variations in a 

small-scale setting (Paper I - Figure S5). 

Key finding 2: Annual Tmean averages ranged from 8.56°C to 10.42°C, with post-2016 years 

consistently hotter than the 21-year average (Paper I - Fig. 7, plot 2), a finding that was particularly 

evident in the most densely populated NAKO study centers (Paper I - Figure S8). The German-

wide spatial variability of Tair exceeded even 15°C annually on average, influenced by features 

like mountains, rivers, coastlines and urbanization (Paper I - Fig. 7, plot 1). The Alps and the Harz 

area exhibited the lowest countrywide Tair values. In contrast, densely populated urban regions 

(e.g., from Stuttgart to Frankfurt) and major metropolitan areas (e.g., of Hamburg) recorded 

considerably higher temperatures, particularly for Tmin and Tmean, compared to the neighboring 

rural settings (Paper I - Fig. 7, plot 1). Eastern Germany, especially the North-Eastern region, 

witnessed greater variations in DTR, whereas cities, mountains, and large water bodies exhibited 

smaller DTR values (Paper I - Figure S7).  
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Key finding 3: High resolution spatiotemporal modeling enhanced the representation of Tair 

variability and reduced exposure misclassification for KORA cohort participants in Augsburg, 

South Germany. In long term, the city center was approximately 2°C warmer than the neighboring 

rural areas, and within these rural regions, there was also significant variation even among 

adjacent tiles (Paper I - Fig. 4). The two DWD weather stations in Augsburg region were found to 

provide values below the mean, and in some cases, even below the first quartile of the Tmean 

model's distribution (Paper I - Fig. 5 and 6), given that the residences of KORA participants 

averaged a distance of 10 km from the DWD closest station, and in some instances extended up 

to 20 km (Paper I - Figure S6).  

2.4.2 Relative humidity model 

Key finding 4: The RH model attained strong performance (R2 of 0.83, RMSE of 5.07%, MAPE 

of 5.19% , MPE of - 0.53%) (Paper II - Table 1). The model performed best in fall and in the upper 

10% of the dataset (Paper II - Fig. 1 and Figures S8 and S9). Comparing the RH predictions with 

measurements from Augsburg's dense monitoring network confirmed their accuracy and reliability 

(R2 ≥ 0.86, RMSE ≤ 5.45%, MAPE ≤ 5.59%, MPE ≤ 3.11%) (Paper II - Table 2 and Figure S10).  

Key finding 5: Germany was characterized by high RH values, i.e., 22y-average of 79% and 

significant spatial variability, exceeding 12% on annual averages (Paper II - Fig. 4). RH spatial 

patters and high heterogeneity were influenced by factors like urbanization, mountains, rivers, 

forests, and coastlines. Metropolitan areas, including Berlin, Hamburg, and Munich, showed 

significantly lower RH values than neighboring rural settings (Paper II - Fig. 4, plot 1). Winter and 

fall were the most humid seasons (Paper II - Figure S14). Despite yearly fluctuations, no clear 

increasing or decreasing trend was observed for RH over the past two decades. The most humid 

year was found to be 2001 (81.30%) while the most arid was 2003 (75.31%). It is noteworthy that 

three consecutive years out of the last five were considerably dry (2018: 75.52%, 2019: 76.83% 

and 2020: 75.53%) (Paper II - Fig. 4, plot 2).  

Key finding 6: In the case study of Regensburg, the city center exhibited 4.5% lower RH values 

than the surrounding rural county (Paper II - Fig. 2). Daily RH variability, crucial for epidemiological 

analysis, reaching up to 9% on specific days (Paper II - Figure S11). Even neighboring tiles in the 

rural region displayed variations. The average RH in Regensburg, as measured by the only DWD 
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weather station available, was notably lower than the first quartile of the RH predictions 

distribution from the RF model (Paper II - Fig. 3).  

2.5 Discussion 

2.5.1 Summary of key findings 

In this PhD Thesis, highly resolved (daily, 1 × 1 km) spatiotemporal datasets for Tair (Tmin, Tmean, 

Tmax, DTR) and RH (mean) were developed for Germany. Both traditional statistical 

methodologies and state-of-the-art ML algorithms were employed, and novel modeling schemes 

were introduced. Specifically, a three-stage approach encompassing two linear mixed models, 

and a RF model were integrated to model Tair and RH, respectively. These approaches went 

beyond the conventional interpolation of weather station data incorporating additional information 

from sources including ground monitoring networks and satellites. A variety of meteorological, 

remote sensing, geographical and land cover predictors were incorporated to the models. 

Consistently high explained variances (Tair: 0.91 ≤ R2 ≤ 0.98, RH: R2 = 0.83) and low errors (Tair: 

1.03°C ≤ RMSE ≤ 2.02°C, RH: RMSE = 5.07%) were observed. Extensive sensitivity analyses, 

e.g., seasonal comparisons or comparisons to extremes and the detailed external validation, both 

at small and large scales, further confirmed the robustness of the Tair and RH modeling 

frameworks.  

Annual Tmean averages ranged from 8.56°C to 10.42°C, with post-2016 years to be consistently 

hotter. Germany exhibited high RH values (22-year average of 79%) but without specific temporal 

trends over the last two decades, yet notably experiencing three of its driest years (2018-2020) 

within the last five. Spatial variability across the country was found to be very high for both Tair 

and RH, exceeding 15°C for Tair and 12% for RH on yearly averages, largely influenced by 

features such as water bodies, mountains and urbanization.  

The high importance of the spatiotemporal Tair and RH modeling for exposure assessment in local 

and countrywide epidemiological studies was clearly demonstrated, exemplified by two case 

studies, in Augsburg and Regensburg. The models effectively captured a broad range of spatial 

Tair and RH variability, surpassing the reliance solely on meteorological observations. While the 

DWD station values could not adequately reflect the high Tair values of the Augsburg city’s center 
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or the high RH values of Regensburg outskirts, partly due to the considerable distance of 

participants' residences from these stations, the methodologies used in the PhD Thesis exhibited 

significant added value. By incorporating additional data sources alongside meteorological 

observations, the Tair and RH prediction accuracy were substantially improved. This enhanced 

capability to capture Tair and RH spatial variability is crucial for assessing differences in individual 

human exposure in epidemiological studies.  

Overall, the results endorsed the proposed models as suitable for high resolution spatiotemporal 

and countrywide Tair and RH estimations for epidemiological use.  

2.5.2 Further important insights 

This PhD Thesis revealed significant increasing trends in Tair in Germany by the beginning of this 

century. Since 2014, the four hottest years of the last two decades have occurred, with the last 

three years consecutively being the warmest overall. This trend was more pronounced in large 

German cities. Additionally, the Tair models’ outputs can be leveraged for calculating various 

temperature metrics, including heat or cold days, as well as heat nights. Given the high-resolution 

of the Tair models, important temperature exposure insights that cannot be captured by crude 

countrywide Tair averages were detected, highlighting the impact on both local and countrywide 

levels over a short time frame. For example, in 2015, despite having a lower Tair average across 

Germany compared to 2014, a significant increase in heat days was observed, particularly in the 

southern and eastern parts of the country (Figure 1). These findings are crucial for guiding climate 

change adaptation strategies, initiating targeted research efforts, addressing potential masking 

effects resulting from hidden discrepancies highlighted in Figure 1, and informing risk reduction 

policies for German authorities. 
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Figure 1. Left plot: Difference between the Tmean of 2015 and 2014 (Tmean of 2015 minus Tmean of 

2014) across Germany in a gridded dataset of 1 × 1 km resolution. Right plot: Difference between 

the number of heat days (Tmax > 30°C) of 2015 and 2014 (number of heat days in 2015 minus 

number of heat days in 2014) across Germany in 3-digit zip code. 

2.5.3 Link between publications 

In this PhD thesis, Tair modeling predominantly relied on LST data due to their strong correlation, 

with additional predictors serving a complementary role. The robust linear association between 

Tair and LST facilitated the use of linear mixed models to calibrate their relationship effectively. 

However, modeling RH proved challenging due to the lack of a suitable proxy, contributing to the 

scarcity of literature in RH modeling and the limited success of previous efforts. Consequently, 

the Tmean dataset, developed for this PhD Thesis, played a pivotal role in RH modeling as a 

primary predictor, complemented by additional variables. Indeed, Tmean emerged as one of the 

most significant predictors for RH (Paper II - Figure S6). 
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2.5.4 Contributions to environmental epidemiology 

In environmental epidemiology, particularly in studies concerning the health effects of Tair and RH 

or their use as a confounder or effect modifier, it exists a clear need of valid exposure assessment. 

The case studies conducted in Augsburg and Regensburg for this PhD Thesis, underscore the 

significant relevance of highly resolved meteorological datasets for the exposure assessment of 

cohort participants. Current practices in studying Tair and RH health effects often rely on data from 

sparse ground-based monitoring networks, which are distributed unevenly throughout the country 

and inadequate for capturing their spatial variations, especially in areas of high urbanization. 

Typically, cohort and other health studies’ participants would be assigned Tair and RH 

observations from the nearest weather station or a weighted average of available stations that 

often have a long distance from the participants’ residences, as shown in the KORA case study 

of this PhD Thesis, leading to exposure values that may not well represent their actual location. 

This discrepancy can result in exposure errors and biased health effect estimates. This PhD 

Thesis, however, accounted for Tair and RH variability and trends, reducing exposure 

misclassification and providing a more accurate representation of Tair and RH exposure for 

epidemiological studies in Germany. 

Furthermore, particular attention was paid to capturing local disparities of Tair and RH. The 

modeling schemes employed in this PhD Thesis depicted more sufficiently the exposures of 

cohort participants after going beyond the use of location or city averages, or basic spatial 

interpolation. The importance of capturing local variations was particularly evident in the NAKO 

study locations, where the trends of increasing Tair over the years were more profound compared 

to the German averages. Such insights are vital not only for large-scale health studies but also 

for countrywide planning, enabling the identification of hotspots and informed decision-making.  

In addition, there are many studies of environmental epidemiology which require coarser spatial 

extents, depending on the health data they analyze. For instance, datasets of hospital admissions 

and mortality from the German Research Data Center (FDZ) necessitate aggregation at broader 

administrative levels rather than individual processing. Leveraging the datasets’ high resolution 

and comprehensive spatial coverage, it is ensured that the aggregated data remain highly 

representative and effectively capture variations, even at coarser administrative levels, as 

illustrated in Figure 2 for RH. 



 Introductory summary 

30 

 

 

Figure 2. Spatial pattern of the averaged RH in Germany during 2001-2021 in 1 × 1 km gridded 

set (original resolution of the RH dataset) and in 4 different German administrative levels as 

defined by the Database of Global Administrative Areas (GADM)83. Level 1 = States, Level 2 = 

Districts, Level 3 = Municipalities, Level 4 = Towns. 

The contribution of this PhD Thesis to the field of environmental epidemiology is also evidenced 

through the active utilization and analysis of the generated Tair and RH datasets. In particular, the 

usage of the Tair data, which were generated earlier and thus became available sooner, has 

revealed compelling findings, including lower short- and medium-term Tair to be associated with 

increases in biomarkers of subclinical inflammation84, a correlation between higher daily Tair and 

shorter leukocyte telomere length85, and the first evidence indicating that medium- and long-term 

exposures to high Tair contribute to increases in epigenetic age acceleration86. Additionally, in a 

German-specific analysis as part of a European study, heat was found to be linked with 

cardiovascular disease mortality with stronger effects among women and greater vulnerability in 

highly urbanized, densely populated areas with sparse green spaces, and elevated levels of 
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particulate matter87. Also, Tair was studied as one of the environmental exposures which 

collectively increase the risk of Distal Sensorimotor Polyneuropathy in the elderly, particularly 

individuals with obesity. Lower Tair in the warm season was identified as a contributing factor88. 

Moreover, temperature was considered as one of the environmental exposures investigated for 

potential increase in the risk of incident type 2 diabetes, without strong associations to be found89. 

Strengthened evidence for the adverse heat impact on respiratory mortality in Northern Europe, 

was discovered by using the Tair dataset90, also highlighting vulnerable subpopulations and 

regions. In a study of multiple environmental exposures, it was found that Tair was positively 

associated with prevalent diabetes in men91. The produced Tair data have additionally been 

employed in a nationwide German analysis of cause-specific cardiopulmonary mortality, where 

heat-related increases were identified92. In an analysis on heat mortality in Germany, 48,000 heat-

related deaths were estimated during 2014-2023, with most of the cases being attributable to 

heatwaves93 while another study in five European countries revealed heat-related mortality risk 

increases in higher PM and ozone levels, especially in urban and low-greenness areas94. 

2.5.5 Novelties 

To the best of our knowledge, this PhD Thesis represents the first comprehensive effort in 

Germany to provide highly resolved spatiotemporal datasets for both Tair and RH, spanning from 

2000 on, a critical asset for recent German cohorts, registries, administrative records, and 

insurance data where other sources are lacking. By prioritizing regression-based modeling for Tair 

over spatial interpolation methods that were already used in the German-specific analyses, issues 

such as neighborhood effects were effectively tackled, thereby portraying better intra-city 

variability where the majority of cohort participants live. The validation procedures applied in this 

PhD Thesis, being introduced for the first time in German-specific datasets to this extent, 

incorporating sophisticated techniques and independent data sources, ensured the reliability of 

the generated products at both local and countrywide scales. The introduction of a ML scheme 

for RH modeling for the first time in Germany, not only lowered previously reported errors but also 

achieved higher R² values, thus amplifying precision and reliability. Moreover, this innovative 

approach constitutes a strong contribution to the literature, potentially serving as a blueprint for 

similar spatial settings having analogous data availability. 
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2.5.6 Strengths and limitations 

A significant strength of this PhD thesis was that both generated datasets of Tair and RH 

underwent an extensive external validation. Local level validation through a ground-based 

network and countrywide validation with a different model approach for Tmean, showed strong 

performance and low errors. In addition, the datasets generated in this PhD Thesis boasted high 

spatial and temporal resolutions, covering Germany over 21 or 22 years at 1 × 1 km resolution, 

enabling detailed spatiotemporal analysis. Notably, the methods applied, and the structure of the 

code allow for the seamless update of both Tair and RH datasets, for every future year after 

downloading the needed data, and consequently the linkage to recent and follow-up health 

studies. This capability also allows the construction of extended time series in the future, such as 

of a 30-year period, enabling the calculation of a climate normal. This output is ideal for individual-

level epidemiological studies without geographical limitations. Additionally, our Tair and RH 

mapping supports environmental epidemiology research, while our dataset serves as a valuable 

resource beyond health studies, aiding in the development of high resolution models for predicting 

Tair and RH.  

This PhD Thesis was also subject to limitations. Potential resampling and interpolation errors may 

arise in satellite-derived and previously modeled data. However, all predictors included to the 

models underwent rigorous evaluation. The selected predictors are known for their high-quality 

standards and widespread use. Additionally, data gaps on these predictors resulted in missing 

Tair and RH values in the final products of this PhD Thesis. Nevertheless, these gaps were 

negligible, accounting for less than 1% of the Tair and RH datasets, and primarily occurred in areas 

adjacent to water with sparse to zero population densities, thus having minimal to no impact on 

missing participants’ exposures in epidemiological studies. Another limitation pertains to the 

availability of meteorological data. The validation with data from independent sources, i.e., 

external, was limited to the Augsburg region due to the absence of other German-wide monitoring 

networks, apart from DWD. While this limits the representation of Tair and RH variability across 

Germany, the Augsburg area exhibited substantial spatial variability for all metrics, encompassing 

both rural and urban zones. In addition, broader validation was ensured by excluding a 

percentage of countrywide DWD Tair observations from the modeling pipeline to serve as 

independent validation data for the Tair metrics. Moreover, countrywide comparison of Tmean was 
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conducted against another DWD spatiotemporal model. Additionally, for the RH model, the ten-

fold division was implemented by monitor location through Germany. Another limitation lies in the 

spatial resolution of 1 × 1 km, which may be deemed coarse for certain analyses. However, the 

highly resolved spatiotemporal models provide a significantly better representation of both Tair 

and RH variability compared to the commonly used weather stations, and they effectively 

captured spatial variations in the local regions of Augsburg and Regensburg, underscoring the 

sufficiency of their 1 × 1 km resolution. Finally, the 21- and 22-year timeframe used for analyzing 

the spatiotemporal Tair and RH patterns may be constrained for complete climate change 

investigations which typically use a 30-year period. This period was limited by the availability of 

the respective satellite data (most available after February 2000, e.g., LST), yet it provided 

valuable insights into climate trends in Germany for the first two decades of 21st century and can 

be extended over the coming years. 

2.5.7 Computational challenges 

Strong computational challenges are inherent in highly resolved environmental data modeling for 

a large country like Germany, particularly given the targeted spatial and temporal extents of this 

PhD Thesis. There was an emerging demand for high-end coding in order to mitigate associated 

costs. In this PhD Thesis, to streamline operations and decrease computational burdens, 

sophisticated code optimizations such as parallel processing (e.g., package “foreach”95) were 

implemented. The processing time for Tair models was substantially reduced from the initial 47 

days to 24 days for all models over the whole period, with further optimization enabling completion 

within a mere 1 day for each subsequent year. Similarly, the RH model underwent intricate 

optimization, resulting in a reduction to less than 1 day for annual runs. These optimizations were 

essential in managing the computational demands of handling vast datasets, ensuring efficient 

utilization of resources.  

2.6 Conclusion and outlook 

In this PhD Thesis, significant effort was devoted to tackling the crucial task of refining 

meteorological exposure assessment under a shifting climate. In this context, this PhD Thesis 

contributes substantially to mitigating exposure misclassification in epidemiological studies 
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exploring the impact of meteorological conditions in Germany. Specifically, this PhD Thesis 

achieved a more precise representation of Tair and RH variability, enhancing our understanding 

of their spatiotemporal patterns and evolution over recent decades across the country. Leveraging 

a multi-stage scheme of linear mixed models, daily Tmin, Tmean and Tmax were estimated and DTR 

was calculated across Germany from 2000 to 2020, providing a complete Tair dataset. 

Simultaneously, by integrating observation, modeled and remote sensing data under a RF 

modeling framework, RH was predicted across Germany from 2000 to 2021. The rigorous 

validation process, conducted at both local and nationwide levels for Tair and RH, provided 

compelling evidence for the high standards and reliability of these models. The datasets 

generated proved to be highly compatible with contemporary German health cohorts, ranging 

from local studies such as the KORA cohort to countrywide initiatives like NAKO study. The Tair 

and RH datasets not only serve as invaluable resources for environmental-epidemiological 

studies but also hold potential for other research applications. Last but not least, beyond its 

immediate context, this PhD thesis established a blueprint that can be applied to other countries 

and spatial settings sharing comparable data availability. 

Amidst a rapidly changing climate, such models stand as indispensable tools for advancing both 

scientific understanding and public health protection. Over the course of this PhD Thesis, the 

generated Tair and RH datasets was requested, transferred, and employed by a multitude of 

scientific teams in Germany for various health analyses (2.6.2 Data impact). These collaborations 

hold the promise of significantly advancing the field of environmental epidemiology in Germany 

by simply integrating better data in our research field.  

2.6.1 Data dissemination  

During the progression of this PhD Thesis, I had the opportunity to present my ongoing and 

completed work on multiple occasions, including scientific meetings, conferences, symposia, as 

well as various seminars, webinars, and workshops. Notable presentations included the 

discussion of the Tair modeling process and data at the ISEE Young 2021 Virtual Conference96, 

the PhD program - Medical Research in Epidemiology and Public Health (PhD-EPH) Annual 

Retreat 2021, and the RH modeling scheme and data at the European Geosciences Union (EGU) 

General Assembly 202297, the Helmholtz AI Conference 2022 and the 34th Annual Conference of 
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the ISEE98. Furthermore, a joint presentation on Tair and RH models and data took place at the 

German Society for Epidemiology (DGEpi) workshop entitled “Challenges and opportunities 

regarding exposure assessment in environmental epidemiology”. Additionally, I shared insights 

on the Tair and RH models and data at the seminar series of the EPI-HMGU Institute and the HI-

CAM project, the PhD-EPH journal clubs, as well as at the Robert Koch Institute (RKI) Symposium 

Artificial Intelligence in Public Health Research and the MRC Health Collaborations Workshop, 

where I was invited to speak. This engagement effectively contributed to the promotion of the Tair 

and RH datasets.  

2.6.2 Data impact  

The Tair and RH datasets produced in the context of this PhD Thesis have garnered significant 

interest and have been requested by scientific teams in Germany and abroad. We readily supplied 

our data to the inquiring scientists, who have since incorporated them into various German and 

European research projects or are presently employing them. For instance, the data have been 

transferred to scientists of EPI-HMGU, of the Climate Service Center Germany (GERICS), 

Hereon, of the Centre for Artificial Intelligence in Public Health Research (ZKI-PH), RKI, of the 

German Center for Neurodegenerative Diseases (DZNE), of the Federal Statistical Office of 

Germany (DESTATIS - Statistisches Bundesamt) and of the University of Eastern Finland. They 

are being used in multiple projects such as the HI-CAM99, Noise2NAKOAI100, EXHAUSTION101 

and AIR-LOCK102 and have been linked with health and individual data from cohorts such as the 

KORA63, NAKO64 and Rhineland study103. The data also align with insurance records and are 

being used in projects such as the DigiMed104 and KlimGesVor105, which utilize data from the AOK 

insurance company106. Additionally, they have been linked with hospital admission and mortality 

data from FDZ107.  

There are several of noteworthy publications already, demonstrating the considerable impact this 

PhD Thesis has already made in the field of epidemiology, particularly in environmental 

epidemiology. These published works have been described in section 2.5.4 Contributions to 

environmental epidemiology.  

Furthermore, there is a lot of ongoing research, many manuscripts under preparation, under 

review or to be submitted soon. For example, short-term exposure Tair impacts on self-rated health 
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status were investigated for participants in Augsburg, Germany, without strong evidence to be 

found108. Moreover, the RH dataset has been already used in a complementary role, as a possible 

confounder of the effects of air pollution reductions on mortality changes during the COVID-19 

lockdown period109
. Additionally, in a study I worked on during my PhD time, we built a ML pipeline 

to identify the driving environmental, socio-economic status (SES) and individual factors for 

cardiovascular health, employing both the Tair and RH datasets, and we identified non-optimal Tair 

as one of the main drivers for hypertension110 (Appendix - Further projects). EPI-HMGU presently 

investigates the relationship between short- and long-term heat exposure and cause-specific 

cardiopulmonary morbidity111, also trying to identify vulnerability factors, and the short-term heat 

effects on cardiovascular112 and respiratory113 morbidity and mortality in Germany. ZKI-PH, RKI 

aims to investigate outbreaks of Legion’s disease in Germany linked with RH and DESTATIS 

targets to offer insights about the viability of Eurostat’s suggested methodology for local climate 

regulation and explore improvements at the national level. GERICS aims to assess the utility of 

insurance data in evaluating morbidity impacts from heat extremes in Germany, beginning with 

highly detailed insurance data for the federal state of North Rhine-Westphalia. 

2.6.3 Future research 

Looking ahead and contemplating the near and distant future of the field, it is imperative for 

meteorological exposure assessment research to undergo significant advancements. The future 

of exposure assessment studies should target finer spatial resolutions, particularly on a city-

specific scale, with a dedicated emphasis on the UHI effect which is very difficult to be precisely 

captured with the current available datasets and modeling standards. Applications already exist 

utilizing micrometeorological simulations114 (e.g., Palm4U model115), although they are not 

suitable for epidemiological analysis due to their limited temporal extent of one to few days. In 

addition, finer temporal resolution, such as hourly values crucial for epidemiological research, can 

be achieved from our modeling schemes through appropriate restructuring and modifications. 

Despite the considerable computational and storage costs associated with these refinements, 

they can be feasibly implemented through high-performance computing, a tool we intend to use 

in the imminent future. Moreover, to accomplish a more nuanced comprehension of 

environmental exposures, estimating additional meteorological features and indices in Germany 
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becomes essential. This includes incorporating parameters like absolute and specific humidity, or 

the compilation of maps of indices such as wet-bulb globe temperature, heat index, apparent 

temperature, and humidex. 
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A B S T R A C T   

The commonly used weather stations cannot fully capture the spatiotemporal variability of near-surface air 
temperature (Tair), leading to exposure misclassification and biased health effect estimates. We aimed to improve 
the spatiotemporal coverage of Tair data in Germany by using multi-stage modeling to estimate daily 1 × 1 km 
minimum (Tmin), mean (Tmean), maximum (Tmax) Tair and diurnal Tair range during 2000–2020. We used weather 
station Tair observations, satellite-based land surface temperature (LST), elevation, vegetation and various land 
use predictors. In the first stage, we built a linear mixed model with daily random intercepts and slopes for LST 
adjusted for several spatial predictors to estimate Tair from cells with both Tair and LST available. In the second 
stage, we used this model to predict Tair for cells with only LST available. In the third stage, we regressed the 
second stage predictions against interpolated Tair values to obtain Tair countrywide. All models achieved high 
accuracy (0.91 ≤ R2 ≤ 0.98) and low errors (1.03 ◦C ≤ Root Mean Square Error (RMSE) ≤ 2.02 ◦C). Validation 
with external data confirmed the good performance, locally, i.e., in Augsburg for all models (0.74 ≤ R2 ≤ 0.99, 
0.87 ◦C ≤ RMSE ≤ 2.05 ◦C) and countrywide, for the Tmean model (0.71 ≤ R2 

≤ 0.99, 0.79 ◦C ≤ RMSE ≤ 1.19 ◦C). 
Annual Tmean averages ranged from 8.56 ◦C to 10.42 ◦C with the years beyond 2016 being constantly hotter than 
the 21-year average. The spatial variability within Germany exceeded 15 ◦C annually on average following 
patterns including mountains, rivers and urbanization. Using a case study, we showed that modeling leads to 
broader Tair variability representation for exposure assessment of participants in health cohorts. Our results 
indicate the proposed models as suitable for estimating nationwide Tair at high resolution. Our product is critical 
for temperature-based epidemiological studies and is also available for other research purposes.   

1. Introduction 

Climate change is one of the greatest global challenges for humans 
and their entire living environment in the 21st century. It has been at the 
center of various social and research disciplines, from economics (Hertel 
and Rosch, 2010) and animal welfare (Lacetera, 2019) to land man
agement and food security (Shukla et al., 2019), with a particular 
attention to the human health domain (Peters and Schneider, 2021; 
Vicedo-Cabrera et al., 2021; Watts et al., 2019). Near surface air tem
perature (Tair) is one of the most important meteorological parameters 

and a key indicator of climate change. Tair is observed to be steadily 
increasing globally since pre-industrial times, with the 10 warmest years 
on record to have occurred after 2000 (Lindsey and Dahlman, 2021). 
Further increases from 3 ◦C to 6.2 ◦C are expected by the end of 2100, if 
no action is taken (IPCC, 2022). In Germany, 32 of the last 34 years are 
characterized by annual Tair above the 1961–1990 average (DWD, 
2022). 

Many epidemiological studies have documented the adverse impact 
of Tair on mortality (Guo et al., 2016; Zanobetti and Schwartz, 2008) and 
morbidity (Ye et al., 2012), especially when exposure to extreme Tair 
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values occurs (Gronlund et al., 2018; Kovats and Kristie, 2006). Besides 
heat waves and cold spells, increases or decreases in more moderate Tair 
ranges to which people are exposed most of the time during their life, 
also contribute to the observed temperature-related mortality burden 
(Gasparrini et al., 2015). Human health can be adversely affected by Tair 
either after short (Breitner et al., 2014) or long-term (Zafeiratou et al., 
2021) exposure. Therefore, Tair extremes and variations pose a major 
threat for public health, especially with continuing global warming and 
the higher frequency and intensity of extreme events (Meehl and 
Tebaldi, 2004). In this regard, high spatiotemporally-resolved Tair 
exposure datasets are needed for improved exposure assessment in 
epidemiological studies. 

The vast majority of environmental epidemiological studies that 
investigate health effects of Tair or implement Tair in their analyses as a 
confounder or an effect modifier, use observational data from meteo
rological stations, often provided by a national monitoring network. 
These datasets are generally highly accurate, quality controlled and 
publicly available and consist of various meteorological parameters, 
including Tair 2 m above the ground. However, the monitoring locations 
are irregularly scattered, often placed in rural or park-like environ
ments, and their number is too limited to fully capture spatial temper
ature variations across urban and rural landscapes. Furthermore, in most 
cases airport stations are used, which, by definition, are located out of 
the cities. Therefore, the commonly used weather station observations 
are not capable to represent the full variability of Tair in space and in 
time, leading to exposure misclassification and bias of health effect es
timates towards the null hypothesis of no association (Armstrong, 
1998). Over the last years, researchers have developed methods to 
provide high-resolution spatiotemporally Tair exposure outputs on local, 
countrywide or even global scales. Several interpolation techniques 
have been suggested such as regression-kriging (Kilibarda et al., 2014; Li 
et al., 2020; Sekulić et al., 2020), modified inverse distance weighting 
(IDW) and thin plate spline (TPS) interpolation. For example, Sekulić 
et al. (2020) predicted daily mean Tair (Tmean) in 1 × 1 km across Croatia 
for 2008 using a regression kriging model with Tmean observations and 
geometrical temperature trend, digital elevation model (DEM) and 
topographic wetness index as covariates (R2 = 0.98, Root Mean Square 
Error (RMSE) = 1.2 ◦C). Jobst et al. (2017) introduced a multi-layer 
approach, including TPS and lapse rate models, to estimate daily 
maximum Tair (Tmax) and minimum Tair (Tmin) in 1 × 1 km from 1990 to 
2014, in the alpine Clutha catchment, New Zealand (Tmax RMSE =
2.38 ◦C, Tmin RMSE = 2.93 ◦C). Other studies compared multiple 
interpolation approaches in the same region. In middle Ebro Valley, 
Spain, Vicente-Serrano et al. (2003) compared the results of annual Tair 
models of global or local interpolators as well as geo-statistical and 
mixed methods. R2 ranged from 0.39 (co-kriging) to 0.75 (regression-
based) and RMSE from 0.80 ◦C (co-kriging) to 0.56 ◦C (IDW, r = 2). 
However, the traditional interpolation methods are subject to specific 
limitations. For instance, they are highly affected by the weather sta
tions locations, without fully accounting for between-station variability. 
This issue is more profound in complex geo-climatic areas and land
scapes characterized by high spatial heterogeneity. Interpolation also 
leads to neighbouring effects and cannot capture the Tair variations in 
city-level analysis and consequently the urban heat island (UHI) effects 
are not well represented. Finally, the weather stations are often poorly 
scattered across a country and fail to provide complete Tair time series. 

To improve the interpolation between locations, several studies have 
used satellite data for their main predictors (Benali et al., 2012; Fluck
iger et al., 2022; Vancutsem et al., 2010; Xu et al., 2014; Zhu et al., 
2013). For instance, Xu et al. (2014) applied a linear regression and a 
random forest (RF) model to predict Tmax across British-Columbia, 
Canada. The RF model achieved higher model’s accuracy (R2 = 0.74, 
mean absolute error (MAE) of 2.02 ◦C) in comparison with the linear 
regression model (R2 = 0.64, MAE = 2.41 ◦C). Recently, Jin et al. (2022) 
estimated high-resolution spatiotemporal Tmean from land surface tem
perature (LST) and a variety of spatial predictors using a three-stage 

ensemble model in Sweden over a long period. The ensemble model 
consisted of a generalized additive model, a generalized additive mixed 
model, a RF model and an extreme gradient boosting model (R2 = 0.98, 
RMSE = 1.38 ◦C). In recent years, several studies applied a multi-stage 
regression-based approach introduced by Kloog et al. (2014), and 
making use of the moderate resolution imaging spectroradiometer 
(MODIS) LST products to predict daily Tair in 1 × 1 km (Kloog et al., 
2017; Rosenfeld et al., 2017; Shi et al., 2016). This approach is 
straightforward to model, with high accuracy and small errors. 

Tmean is the most frequently modeled Tair measure and the most 
commonly used in studies of environmental epidemiology. However, we 
also need to focus on Tmin and Tmax. Climate change strongly affects Tmin 
and Tmax (Modala et al., 2017) and there is evidence that Tmin, which 
corresponds to the nighttime temperatures, has been increased more 
than Tmax during the 20th century (Gil-Alana, 2018). Due to this sub
stantial Tmin increase, especially the urban areas face extensive heat 
stress nights, a phenomenon that will be strengthened in the future 
(Chapman et al., 2017). Modeling Tmin and Tmax also facilitates the es
timates of the diurnal Tair range (DTR). There is already evidence that 
DTR affects, independently from Tmean, the human health (Cheng et al., 
2014; Davis et al., 2020). These effects are critically important for future 
policies implementation, but lack of broad epidemiological investiga
tion, especially at national scale due to the scarcity of fully spatially 
covered, high resolution, daily DTR data. 

In this study, we aimed to extend and improve the spatiotemporal 
coverage of Tair data in the complex terrain of Germany, using remote 
sensing and regression-based modeling. More specifically, we aimed to 
map daily Tmin, Tmean, Tmax and DTR in 1 × 1 km across Germany during 
the period 2000–2020 to provide harmonized Tair data for epidemio
logical research like the German National Cohort (NAKO) with more 
than 200,000 participants spread around the country. 

2. Methods 

2.1. Study area 

Germany is located in central Europe, covering 357,021 km2, with a 
population of 83.2 million people (Statistisches Bundesamt, 2022). The 
country consists of a diverse landscape, starting from the Alps in the 
south to the northern coast lines of the North and Baltic Seas, including 
big cities, small towns, mountains, various water bodies, forests and 
arable land. Elevation ranges from 3.54 m below sea level near 
Neuendorf-Sachsenbande to 2,962 m in the Alpine mountain Zugspitze. 
Climate is temperate to continental according to the Köppen climate 
classification. There is a warm summer humid continental climate in 
south-eastern regions and a temperate oceanic climate in north-western 
regions (Beck et al., 2018b). The lowest Tair ever recorded in Germany 
was − 37.8 ◦C measured on February 12th, 1929 in Wolznach-Hüll 
(DWD, 2017), while the highest was 41.2 ◦C measured on July 25th, 
2019 in Duisburg and in Tönisvorst of North Rhine-Westphalia (DWD, 
2020). We divided Germany’s mainland into 366,536 grid cells of 1 × 1 
km based on the European INSPIRE (Infrastructure for Spatial Infor
mation in the European Community) standard using the Lambert 
Azimuthal Equal-Area projection, EPSG: 3035 (©GeoBasis-DE/BKG 
(2021)). 

2.2. Materials 

We collected a large number of publicly available earth- and 
satellite-based data derived from multiple sources for the period 
2000–2020 across Germany, with the best fitting temporal and spatial 
resolution for our analysis. LST based on satellite data was the main 
predictor for Tair as they were strongly correlated. Moreover, we 
implemented in the modeling process various spatial predictors such as 
remote sensing elevation, vegetation, urban fabric, arable land, pas
tures, forests and inland waters to increase the percentage of explained 
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variance and enhance the model performance overall. 

2.2.1. Tair data 
We downloaded daily data of Tmin, Tmean and Tmax observations 2 m 

above the ground from 1080 sites, which are publicly available from the 
Deutscher Wetterdienst (DWD) - German Meteorological Service online 
database (DWD, 2021). All data were quality controlled by DWD and 
their metadata (e.g., station relocation or time zones) were provided as 
well. We did not find any unusual values such as temperatures lower or 
higher than the observed temperature extreme records in the country or 
any seasonal outliers. We excluded stations that stopped measuring 
before 2000 (N = 358), stations that weren’t operating continuously 
over the entire study period (N = 309, > 70% NAs) and stations located 
outside the German mainland (N = 7). Thus, we included Tair data from 
406 weather stations scattered across the country (Fig. 1), with each 
station located in a single grid cell of our gridded dataset. The DWD Tair 
dataset had only 1.4% of station-days with missing values during our 
study period. 

2.2.2. Remote sensing data 

2.2.2.1. TERRA MODIS data. We downloaded and preprocessed TERRA 
MODIS LST and normalized difference vegetation index (NDVI) data 
from the server (NASA, 2021) through the R package MODIStsp (Busetto 
and Ranghetti, 2016). Since TERRA MODIS started measuring on 
February 24th, 2000, our analysis also starts on that date. 

2.2.2.1.1. LST data. LST defines the radiative temperature of the 
earth’s surface, as derived from infrared radiation and measured in the 
direction of the remote sensor. We used the product MOD11A1v006 that 
provides LST (using the generalized split-window algorithm) data in a 

daily temporal resolution and a spatial resolution of 1 × 1 km, corrected 
for emissivity (Wan et al., 2015). We used daytime LST to model Tmax 
and nighttime LST to model Tmin and Tmean, as suggested by previous 
studies (Rosenfeld et al., 2017), regardless their quality assurance flag to 
avoid reducing the input sample size since for the most problematic cells 
affected by cloud effects, instrumental problems or other reasons, LST 
was not produced. For more insight into MODIS LST and its retrieval, we 
refer to the existing literature (Wan, 2014). 

2.2.2.1.2. NDVI data. NDVI is used as a proxy for greenness and 
quantifies the amount of vegetation by calculating the near-infrared and 
the red light difference. We used the product MOD13A3v006 that pro
vides monthly NDVI data, as greenness does not change considerably 
within a month, in a spatial resolution of 1 × 1 km (Didan, 2015). We 
also tested the enhanced vegetation index (EVI) as alternative. Since we 
observed strong positive correlations between NDVI and EVI (21-year 
average r = 0.81), negligible differences in the models’ validation results 
(after the 3rd or 4th decimal point) and extremely correlated Tair pre
dictions (r = 0.999988), we kept NDVI as model predictor. 

2.2.2.2. DEM data. We used the DEM (GTOPO30) developed by the US 
Geological Survey’s Earth Resources Observation Systems Data Center. 
Its spatial resolution was 30-arc-second and we aggregated it to 1 × 1 km 
grid cells over mainland Germany, borders and shorelines included 
(Fig. S1). 

2.2.2.3. Land use data. From Copernicus CORINE Land Cover 2012 
(CLC2012, 250 m resolution) https://land.copernicus.eu/pan-europe 
an/corine-land-cover/clc-2012 and 2018 (CLC2018, 100 m resolution) 
https://land.copernicus.eu/pan-european/corine-land-cover/clc2018, 
we extracted the variables urban fabric (classes: “continuous urban 

Fig. 1. Map of Germany showing the spatial distribution of the 406 Tair weather stations included in our analysis (2000–2020).  
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fabric” and “discontinuous urban fabric” from the subcategory urban 
fabric of the artificial surfaces category), arable land (classes: “non- 
irrigated arable land”, “permanently irrigated arable land” and “rice 
fields” from the subcategory arable land of the agricultural areas cate
gory), pastures (class: “pastures” from the subcategory arable land of the 
agricultural areas category), forests (classes: “broad-leaved forest”, the 
“coniferous forest” and the “mixed forest” from the subcategory forest of 
the forest and seminatural areas category) and inland waters (classes: 
“water courses” and the “water bodies” from the subcategory inland 
waters of the water bodies category). We then combined the classes of 
each variable and calculated each variable’s proportion of CORINE 
pixels to the INSPIRE 1 × 1 km grid cells over mainland Germany. 
CLC2012 was used for modeling until 2016 and CLC2018 from 2017 on. 

2.3. Statistical analysis and validation 

We applied a three-stage regression-based model, following the 
approach from Kloog et al. (2014). In previous studies following the 
same approach basis, the results were promising. Kloog et al. (2014) 
mapped Tmean in the northeast and mid-Atlantic USA (RMSE = 2.16 ◦C). 
Shi et al. (2016) predicted Tmean in southeastern USA (R2 = 0.97, RMSE 
= 1.38 ◦C). Rosenfeld et al. (2017) estimated Tmin, Tmean and Tmax in 
Israel using LST data from both TERRA and AQUA satellites (RMSE <
1.7 ◦C). Finally, Kloog et al. (2017) estimated Tmean in France (R2 > 0.93, 
RMSE < 1.7 ◦C). Given the method’s high accuracy, the small errors, its 
straightforward way of modeling and its successful application in 
different and geographically complex areas around the world, we also 
followed the basic concept of this approach, adjusting it to our needs 
with regard to Germany’s unique spatial and geo-climate features, 
differentiating the process where it was necessary and introducing a TPS 
technique implementation on the third stage of the model. More spe
cifically, due to Germany’s unique surface and altitude fluctuation, we 
first adjusted our model for elevation. We also added information on 
water bodies, forests and arable land which corresponded to a large 
proportion of the country, i.e., arable land covers around 34% of Ger
many (and 28.32% in stage 1 - calibration stage of our analysis). Addi
tionally, we implemented a TPS interpolation given the number and the 
distribution of the DWD weather stations and used grid-cell specific 
intercepts and slopes in the third stage to capture spatial differences in 
the relationship of interpolated observed Tair with predicted Tair. Our 
code was developed in R software, version 4.0.2 (R Core Team, 2020). 
The linear mixed models analyses were conducted with the R package 
“LM4” (Bates et al., 2014), while figures were produced either using the 
R package “ggplot2” (Wickham, 2009) or QGIS, version 3.10.5-A Coruña 
(QGIS Development Team, 2020). We applied the three-stage modeling 
process separately for each year and each Tair measure. 

2.3.1. First stage: Tair and LST available 
The first stage included grid cells where both Tair observations from 

DWD weather stations and satellite-derived LST values were available. 
We regressed Tair on LST and additional spatial information to under
stand and describe the Tair-LST relationship in the best way possible for 
Germany over the last two decades. A daily random slope for LST was 
implemented in the model to account for daily variations in the Tair-LST 
relationship. 

The general mathematical formula of the first stage linear mixed 
effects model was the following: 

Tairij = bo + uj +
(
b1 + vj

)
∗ LSTij + b2 ∗ DEMi + b3 ∗ NDVIij + b4

∗ UrbanFabrici + b5 ∗ ArableLandi + b6 ∗ Pasturesi + b7 ∗ Forestsi

+ b8 ∗ InlandWatersi + εij

(1)  

where,  

• Tairij stands for the Tair observation at the grid cell i on day j;  
• bo and uj stand for the fixed and the random intercepts, respectively;  
• LSTij stands for the daytime or nighttime LST measurement at the 

grid cell i on day j;  
• b1 and vj stand for the fixed and the random slopes, respectively;  
• DEMi stands for the elevation at grid cell i;  
• NDVIij stands for the monthly NDVI measurement at the grid cell i on 

the month that day j falls in;  
• UrbanFabrici, ArableLandi, Pasturesi, Forestsi and InlandWatersi 

stand for the percentages of the urbanism, the land under temporary 
agricultural crops, the pastures, the forests and the water bodies at 
the grid cell i.  

• εij is the error term at grid cell i on day j. 

For each Tair measure, we applied a separate regression. 

2.3.2. Second stage: Tair not available and LST available 
In the second stage, Tair was predicted for the combinations of grid 

cells and days without available Tair observations, but with available 
LST data by applying the regression coefficients derived from EQ. (1). 

2.3.3. Third stage: neither Tair nor LST available 
In the third stage, we predicted Tair for grid cells and days with 

neither Tair observations nor LST data. We regressed second stage Tair 
predictions against daily interpolated Tair values in 1 × 1 km across 
Germany via a linear mixed model with random grid-cell-specific in
tercepts and slopes. Since previous studies suggested that TPS out
performed alternative interpolation techniques such as kriging or IDW 
for Tair modeling (Wu et al., 2015), we applied it to interpolate the DWD 
Tair data. The smoothing parameter was chosen by a generalized cross 
validation (CV) method. We used the R package “fields” (Nychka et al., 
2017) for the TPS interpolation. 

The general mathematical formula of the third stage linear mixed 
effects model was the following: 

Second stage Tairij = ai + bi ∗ intTairij + εij (2)  

where,  

• Second stage Tairij stands for the Tair predictions given by the second 
stage at the grid cell i, on the day j;  

• ai and bi stand for the i grid-cell-specific intercepts and slopes;  
• intTairij stands for the interpolated Tair values at the grid cell i on day 

j;  
• εij is the error term at grid cell i on day j. 

For each Tair measure, we applied a separate regression. 
After predicting Tmin, Tmean and Tmax, we also calculated the DTR by 

taking the difference of Tmin from Tmax. All dates are represented in the 
standard time zone for Germany, i.e., UTC+1, without adjusting for 
daylight-saving time. 

2.3.4. Internal validation 
The models’ performance was evaluated through 10-fold CV sepa

rately for the first and third stage by randomly dividing the respective 
datasets into testing and training sets (10:90) ten times. The models 
were then re-fitted in each of the ten training sets and Tair predicted in 
the respective testing sets. 

For the first stage, we calculated the corresponding percent of 
explained Tair variability R2 and the RMSE between observed and pre
dicted Tair for each run for the cell-days with both Tair and LST available. 
The temporal and spatial performance (R2 and RMSE) were also 
computed (Shi et al., 2016). Briefly, the temporal statistics derived by 
regressing (a) against (b), where: (a) is the difference of the DWD 
observed Tairij of each j day with the annual DWD observed Tairi in 
weather station location i, and (b) is the difference of the predicted Tairij 
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of each j day with the annual predicted Tair at the same weather station 
location i. Spatial statistics derived by regressing (c) against (d), where: 
(c) is the annual DWD observed Tairi and (d) is the annual predicted Tairi 
in weather station location i. 

For the third stage, R2 and RMSE derived from linearly regressing the 
predicted Tair against DWD observed Tair for each run. Before the 
beginning of the modeling process, this specific sub-sample of DWD 
weather stations Tair observations in cell-days without LST available, 
was completely held-out from the modeling process. Thus, we used these 
cell-days to validate our third stage predictions and to quantify the 
respective errors also under conditions such as of cloudy days. We also 
compared the predicted Tair of the third stage against the second stage 
Tair, i.e., the dependent variable of the third stage model, for all grid cells 
across Germany. 

We additionally quantified the bias through measuring the mean 
signed error between the DWD observed Tair and our models’ Tair as 
predicted from all the modeling stages. 

2.3.5. Validation with external data 
We carried out two validations using external datasets and compared 

our predictions i) on the small scale with a monitoring network (HOBO- 
Logger) set up in the region of the city of Augsburg in 2012 in a coop
erative work of Helmholtz Munich (Institute of Epidemiology, Envi
ronmental Risks) and the University of Augsburg (Institute of 
Geography, Physical Geography and Quantitative Methods) (Beck et al., 
2018a) and ii) on the large scale with predictions from another 
German-wide model dataset developed by DWD within the “Testrefer
enzjahre” (TRY) project by using a completely different methodological 
approach (Krähenmann et al., 2018). 

For the small-scale validation, we considered Tair measurements of 4 
min resolution from 82 HOBO-Logger devices (ONSET, Type Pro v2) 
(2013–2018) with most of them to be located in the city of Augsburg 
where we did not have prior information from DWD on the first - cali
bration model’s stage (Fig. S2). For a detailed description of the moni
toring network and the measurements’ quality assurance we refer to the 
corresponding paper (Beck et al., 2018a). To proceed with our com
parison, we aggregated the 4-min data to daily Tmean values and we also 
considered the daily Tmin and Tmax values. We additionally investigated 
the intraseasonal models’ performance. 

For the large scale validation, we downloaded openly available daily 
Tmean predictions from the DWD TRY project on a 1 × 1 km spatial 
resolution (Krähenmann et al., 2016), generated by a 3-step interpola
tion method. A daily background field was constructed from a non-linear 
temperature gradient and it was estimated seven times a day. Then, two 
hourly background fields were calculated by weighting the three 
temporally closest background fields and they also conducted an hourly 
residual interpolation. For a detailed description of the modeling pro
cess, we refer to the corresponding paper (Krähenmann et al., 2018). 
Our comparison was restricted to mainland Germany and the over
lapping time period between the two datasets from 2001 to 2012. In 
addition to an overall comparison of both Tmean models’ predictions (all 
our model predictions against all DWD TRY model predictions across the 
country for every year), we also conducted several sensitivity analyses 
subsetting the predictions by season, without their extreme values, to 
their extreme values, and comparing the urban versus the rural Augs
burg area. 

For both 2.3.4 and 2.3.5, all stated R2 values correspond to the 
fraction of variance explained by the respective models. 

2.4. Case study - Augsburg 

We used Augsburg as a case study to examine the spatiotemporal 
variability as well as the distribution of the modeled daily Tmean in 
comparison with the observed daily Tmean at the DWD sites. Augsburg is 
the third largest city in Bavaria, Germany. The overall population of its 
urban district and its surrounding districts (Landkreis Augsburg in the 

west and Aichach-Friedberg in the east), is around 900,000 people, of 
which approx. 300,000 live in the city center. We chose Augsburg as it is 
the study region of the Cooperative Health Research in the Region of 
Augsburg (KORA) cohort (Holle et al., 2005) and one of the 18 study 
centers of the NAKO study (German National Cohort Consortium, 2014). 

2.5. Spatial and temporal patterns in Germany during 2000–2020 

We calculated the main descriptive statistics of the three Tair mea
sures and investigated the spatiotemporal patterns of Tair across entire 
Germany, but also for the 18 study centers of the NAKO study, which are 
scattered across the country and represent both rural and urban areas 
including the biggest German cities (Fig. S3), focusing on study regions 
that have more than 2000 inhabitants/km2 and cover a large population 
percentage (Mannheim, Leipzig, Kiel, Hannover, Hamburg, Essen, 
Düsseldorf, Berlin and Augsburg). 

3. Results 

3.1. Models’ accuracy 

Tair and LST were highly correlated, with an average R2 = 0.91, an 
intercept of 4.79 ◦C and a slope of 0.88 over the period 2000–2020, after 
regressing Tair against LST. Table 1 shows the prediction accuracy results 
for the first and the third stage model of each Tair measure for 
2000–2020 on average. The detailed results per year are in the Sup
plementary material (Tables S1 and S2). For the first stage, the 21-year 
average R2 equalled 0.91 (yearly range: 0.86–0.93), 0.96 (yearly range: 
0.95–0.97) and 0.96 (yearly range: 0.95–0.97) for the Tmin, Tmean and 
Tmax model in an average of 45,432, 48,925 and 42,155 cell-days, 
respectively. We additionally observed low values of RMSE for all the 
models. For the Tmin model, the 21-year average RMSE equalled 2.02 ◦C 
(yearly range: 1.91 oC–2.13 ◦C), while for the Tmean and Tmax equalled 
1.41 ◦C (yearly range: 1.32 oC–1.54 ◦C) and 1.77 ◦C (yearly range: 1.67 
oC–1.85 ◦C), respectively. The spatial and temporal R2 remained quite 
high, while the corresponding errors stayed low. In the case of Tmean, 
overall spatial R2 = 0.88 (yearly range: 0.84–0.93) and temporal R2 =

0.97 (yearly range: 0.95–0.98), while RMSEspatial = 0.49 ◦C (yearly 
range: 0.42 oC–0.59 ◦C) and RMSEtemporal = 1.32 ◦C (yearly range: 1.25 
oC–1.45 ◦C). 

For the third stage model (Table 1), the 21-year average R2 = 0.97 
(yearly range: 0.95–0.98), 0.98 (yearly range: 0.97–0.99) and 0.97 
(yearly range: 0.95–0.98), while the RMSE = 1.25 ◦C (yearly range: 
1.17 ◦C–1.38 ◦C), 1.03 ◦C (yearly range: 0.88 ◦C–1.12 ◦C) and 1.41 ◦C 
(yearly range: 1.22 ◦C–1.49 ◦C) for the Tmin, Tmean and Tmax model in a 
number of 81,166, 87,040 and 84,330 cell-days, respectively. Table S3 
shows the comparison results between the third and second stage Tair 
predictions. 

21-year average mean signed error was found to be 0.10 ◦C, 0.05 ◦C 
and − 0.16 ◦C, for Tmin, Tmean and Tmax model, respectively. We report it 
in a yearly basis, together with the intercepts and slopes of the linear 
regressions between our predictions and the DWD observations in 
Table S4. 

The percentage of Tair predictions that was provided by each stage of 
the modeling procedure can be found in Table S5 of the Supplementary 
material. On average, the first stage resulted in 0.04%, 0.04%, 0.03% of 
the final Tmin, Tmean and Tmax predictions, respectively, the second stage 
a 36.1%, 35.6% and 32.7%, while the third stage filled in the remaining 
approximately 62%, 62.5% and 65.4%. The missing values of our output 
Tair predictions’ dataset over the period 2000–2020 were close to 1% for 
all the models. 

3.2. Validation with external data 

The small-scale validation in the Augsburg area showed that all 
models achieved high correspondence (0.95 ≤ R2 ≤ 0.99) and low 
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errors, even below 1 ◦C (Table 2). By season comparison led to similar 
findings of high models’ performance. All Tair models, and especially the 
Tmin model, achieved slightly better performance during the winter 
rather than the summer period (Table 2). Detailed results are provided 
in Tables S6 and S7. Τhe linear regressions between the predicted Tair 
from our daily Tmin, Tmean and Tmax models and the HOBO-Logger 
observed daily Tmin, Tmean and Tmax during the comparison period, 
gave an intercept of 0.61, 0.28 and 0.41, and a slope of 1.04, 1.02 and 
0.98, respectively (Table S8). Fig. 2 and S4 also indicates the strong 
correspondence of our model predictions and the HOBO-Logger network 
observations. 

The large-scale comparison with the TRY dataset suggested a good 
correlation between the two models’ outputs (0.71 ≤ R2 ≤ 0.99) while 
most RMSE were below 1 ◦C (Table 3). For year by year results, please 
see Table S9-S13 in the Supplementary material. In Fig. 3, we visualized 
the model correspondence for a randomly selected example year (2010). 
Most of the two models’ predictions met in the slope of 1. 

Our model predictions captured a wider Tair distribution and repre
sentation of spatial Tair variations in small scale analysis as we observe in 
the example Fig. S5 for the years 2003, 2006, 2008 and 2012 (randomly 
chosen) in the Augsburg area. 

3.3. Case study - Augsburg 

We first calculated the distances between the geocoded residential 
addresses of the KORA study participants and the two available DWD 
stations across the Augsburg area (Fig. S6). Most of the participants lived 
5–15 km far from a station. Additionally, we found that Tmean varied 
substantially over space (Fig. 4). The city centre was way hotter that the 
surrounding rural areas (variation close to 2 ◦C) and in these rural re
gions there was also substantial variation even in neighbouring tiles. The 
actual difference in exposure assessment from the DWD observations 
and our model predictions could also be seen in the long-term 

assignment (Fig. 5). The DWD Tmean was only representative for the left- 
hand side distribution queue (cooler Augsburg areas). The higher tem
peratures are not captured by the DWD stations. 

Fig. 6 is a short-term Tmean exposure distribution example, using an 
average of 7 days, which is often used for exposure assessment in 
epidemiological studies. Our model’s predictions were close to the DWD 
observations at both stations. But, both stations values were below the 
distribution’s mean and especially the Tmean of DWD station 1 was lower 
than the first quartile (Q1) of the distribution. This was mainly affected 
by their location, which was outside the city centre as seen in Fig. 4. 

3.4. Descriptive statistics and spatiotemporal Tair patterns 

Table 4 shows a selection of descriptive statistics (mean, standard 
deviation (SD), Q1, median and third quartile (Q3)) regarding the Tmin, 
Tmean and Tmax in Germany for the period 2000–2020 resulting from the 
DWD weather stations observations and our model predictions. The 
observed 21-year average Tmin, Tmean and Tmax from the DWD stations 
were 5.15 ◦C (SD = 6.59 ◦C), 9.44 ◦C (SD = 7.39 ◦C) and 13.85 ◦C (SD =
8.77 ◦C), respectively, while our models gave predicted 21-year average 
Tmin, Tmean and Tmax of 5.24 ◦C (SD = 5.89 ◦C), 9.57 ◦C (SD = 7.36 ◦C) 
and 14 ◦C (SD = 8.75 ◦C), respectively. 

We also present the 21-year averaged predicted Tmin, Tmean and Tmax 
maps of Germany (Fig. 7, plot 1). The Tair spatial variability exceeded 
15 ◦C annually on average, depending on the measure. We saw specific 
spatial patterns for Tair, including mountainous regions, rivers, lakes, 
forests and coastlines. For instance, the Alps and the Harz highland area 
were characterized by the lowest Tair values nationwide, while the dense 
urban cores (e.g., from Stuttgart to Frankfurt) or big individual cities as 
Munich and Berlin had much higher values of Tair, especially for Tmin 
and Tmean, than the surrounding rural areas. We also observed the high 
contrasts our output provided even for small areas, due to its high res
olution of 1 × 1 km. We additionally present in Fig. S7, the German-wide 

Table 1 
Prediction accuracy for the first and the third stage predictions: 10-fold CV results for daily Tmin, Tmean and Tmax in Germany, averaged for 2000–2020.  

First stage predictions 

Measure R2 R2
spatial R2

temporal RMSE (oC) SD (oC) RMSEspatial (oC) RMSEtemporal (oC) Sample size (cell-days number) 

Tmin 0.91 0.68 0.92 2.02 6.76 0.87 1.83 45,432 
Tmean 0.96 0.88 0.97 1.41 7.56 0.49 1.32 48,925 
Tmax 0.96 0.84 0.97 1.77 9.12 0.77 1.60 42,155  

Third stage predictions 

Measure R2 RMSE (oC) SD (oC) Sample size (cell-days number) 

Tmin 0.97 1.25 6.44 81,166 
Tmean 0.98 1.03 7.22 87,040 
Tmax 0.97 1.41 8.02 84,330 

*SD: standard deviation of the DWD observed Tair. 

Table 2 
Accuracy results of the small-scale external validation with HOBO-Logger Tmin, Tmean and Tmax observations in the Augsburg area during 2013–2018, overall and by 
season.  

Overall 

Measure R2 RMSE (oC) SD (oC) 7-day average R2 7-day average RMSE (oC) SD (oC) 

Tmin 0.95 1.80 6.84 0.97 1.44 6.44 
Tmean 0.99 1.07 7.72 0.99 0.90 7.37 
Tmax 0.98 1.37 9.11 0.98 1.08 8.50  

By season 

Measure Winter Spring Summer Fall 

R2 RMSE (oC) SD (oC) R2 RMSE (oC) SD (oC) R2 RMSE (oC) SD (oC) R2 RMSE (oC) SD (oC) 

Tmin 0.83 1.53 4.10 0.89 1.78 4.74 0.74 2.05 3.13 0.87 1.72 4.51 
Tmean 0.93 1.00 3.94 0.97 1.06 5.15 0.92 1.24 3.49 0.97 1.02 5.10 
Tmax 0.92 1.30 4.68 0.96 1.29 6.26 0.91 1.43 4.81 0.96 1.36 6.59 

*SD: standard deviation of the dependent variable (HOBO-Logger Tair). 

N. Nikolaou et al.                                                                                                                                                                                                                               



 Paper I 

45 

 

 

  

Environmental Research 219 (2023) 115062

7

DTR maps for 2016–2019, i.e., the NAKO study baseline years. Eastern 
Germany and more intensely the North-Eastern part of the country 
experienced higher DTR variations, while cities or mountains and large 
water bodies were characterized by smaller DTR. 

Regarding the temporal Tair variability in Germany (and in NAKO 
study centers) over the first two decades of the 21st century, we report 
the differences between the predicted Tmean yearly averages and the 20- 
year average (Fig. 7, plot 2 and Fig. S8). The year 2000 was excluded as 
the model predictions started from late February. There was an obvious 
tendency of increased averaged Tmean for the last 5–7 years (continu
ously beyond 2016). The hottest years recorded during the studied 
period were 2018 (Tmean = 10.45 ◦C) and 2020 (Tmean = 10.42 ◦C). 
Additionally, we mapped the number of heat (Tmax > 30 ◦C) and cold 
(Tmin < 0 ◦C) days by 3-digit zip code through the years. Fig. 8 presents 
an example comparing the years 2001 (as a reference) and 2015, where 
the observed difference was pronounced. For 2015 the number of heat 
days increased dramatically since 2001 mainly in eastern and south- 
eastern Germany, whereas the cold days dropped, even if 2015 was 
not among the hottest years of the study period (Fig. 7, plot 2). 

4. Discussion 

In this paper, we developed reliable high spatiotemporally-resolved 
Tmin, Tmean, Tmax and DTR datasets for Germany during 2000–2020, 
following a regression-based method which consists of three stages. We 
combined meteorological and remote sensing data as well as multiple 
land cover predictors. All models attained very good performance, and 
consequently their predictive ability appears to have a strong founda
tion, with overall high explained variance (0.91 ≤ R2 ≤ 0.98) and low 
errors (1.03 ◦C ≤ RMSE ≤ 2.02 ◦C), calculated through CV. In addition, 
bias was found to be close to 0 (− 0.16 ◦C ≤ mean signed error ≤
0.10 ◦C). The external small (0.74 ≤ R2 ≤ 0.99, 0.87 ◦C ≤ RMSE ≤
2.05 ◦C) and large-scale validation (0.71 ≤ R2 ≤ 0.99, 0.79 ◦C ≤ RMSE ≤
1.19 ◦C) confirmed the high performance of the models. We additionally 
showed the benefits of our spatiotemporal Tair modeling in terms of 
exposure assessment for participants of epidemiological studies, con
ducting a case study in the Augsburg area. 

For Germany, except the datasets of a coarser resolution of 5 km or 
more (Brinckmann and Bissolli, 2015; Frick et al., 2014), there is the 1 ×
1 km hourly Tair dataset for 1995–2012, generated by Krähenmann et al. 
(2018), who applied a 3-step interpolation method (monthly RMSE ≈
1 ◦C). We used this product to externally compare our model findings 
with another model across the country. There was a good overall 

Fig. 2. Density scatterplots between the model daily Tmean predictions and the HOBO-Logger daily Tmean observations for 2018, daily average and 7-day average.  

Table 3 
Comparison between our model daily Tmean predictions and the DWD TRY model 
daily Tmean predictions in Germany during 2001–2012.   

R2 RMSE (oC) 

Overall 0.99 0.90 
Season 
Winter 0.94 0.98 
Spring 0.97 0.90 
Summer 0.94 0.88 
Fall 0.97 0.86 
Without extremes 
5th pctl. < Tmean < 95th pctl. 0.99 0.79 
To extremes   
Tmean < 5th pctl. 0.76 1.19 
Tmean > 95th pctl. 0.71 0.93 
District 
Augsburg Landkreis (rural) 0.99 0.84 
Stadt Augsburg (urban) 0.99 0.85  

Fig. 3. Density scatterplot between our model daily Tmean predictions and the 
project TRY model daily Tmean predictions for 2010. 
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correspondence. However, our model predictions captured broader Tair 
variations, especially in city level (Fig. S5), as the interpolation methods 
are highly affected by the weather stations locations with limitations to 
fully represent between-station variability. Especially in Germany, a 

complex geo-climate study domain with high spatial heterogeneity, 
interpolation leads to neighbouring motives, thus closer regions are 
assigned rather similar values, and cannot capture sufficiently either the 
small-scale Tair variability or its extreme values. Therefore, we also 

Fig. 4. Spatial pattern of the averaged predicted Tmean in the Augsburg area during 2000–2020.  

Fig. 5. Distribution of the predicted Tmean, assigned to KORA participants for 2000–2020 (in blue). The green and red lines show the exposure assignment based on 
the nearest monitoring station location. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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observed worse correspondence of our and TRY models to extremes, i.e., 
5th and 95th percentiles (Table 3). Krähenmann et al. (2018) also lack 
validation with completely independent Tair datasets while validating 
the interpolation-based predictions with input data could be biased due 
to their strong dependence. Finally, our output had a longer and more 
recent temporal extent and can be used in recent German cohorts. 

Aiming to produce a helpful dataset for scientists working in the field 
of environmental epidemiology and especially those who investigate the 
Tair health effects or implement Tair in their analysis as a confounder or 
an effect modifier, the case study example we demonstrate for Augsburg 
is of great importance. The prevailing way for studies exploring the Tair 
health effects is to collect their exposure data from monitoring networks 
consisting of a limited number of ground-based weather stations, un
evenly distributed across the country and insufficient to capture the 
spatial Tair variability, especially in city centers. Taking into consider
ation the Augsburg area, an epidemiological study would usually assign 
to all participants the Tair observations of the station which has the 
shortest distance from their residential address or a weighted average of 
the two available stations, again depending on distances or a simple 
interpolation technique. Hence, the participants would not be assigned 
with the exposure value of their actual location, but of the station’s 
location even 10 km away (Fig. S6), implying the need of finer resolu
tions. People living in the city centre, where there is no available station, 
would be assigned with a way lower Tair exposure than their represen
tative one, as we observed in Figs. 5 and 6. All the aforementioned issues 
lead to exposure error and consequently the health effects are biased 
towards the null (Zeger et al., 2000). On the other hand, our output 
captured the Tair variability and trends and reduced the exposure 
misclassification. Hence, we achieved a better representation of Tair 

variability and fulfilled one of our primary goals that was to provide 
more accurate Tair exposure assessment to German epidemiological 
studies. 

A key finding of our analysis were the observed changes in Tair, 
which are mainly attributed to climate change that is already noticeable 
in Germany (Rüth et al., 2019). We showed that the four hottest years, 
based on an area-weighted averaging of the temperature during last two 
decades across the country, all occurred after 2014, while the last three 
consecutive years found to be the hottest overall (Fig. 7, plot 2). This 
finding was consistent and even more pronounced for the big constantly 
growing German cities (Fig. S7). Additionally, due to the high spatio
temporal resolution of the models, we detected climate change effects 
that cannot be captured by crude German-wide Tair averages. For 
instance, for 2015, we observed a substantial increase in hot days since 
2001 even if this year’s average Tair was lower than the 20-year average. 
The results of this analysis showing the impact of climate change on Tair 
locally and countrywide, are large, even over this short temporal period. 
With this tool, impacts on human health could be detected which then 
might contribute to climate change adaptation and risk reduction pol
icies that German authorities need to enact in the following years. 

4.1. Strengths 

Best of our knowledge, this is the first study of Tair modeling which 
validates the models’ prediction so extensively using external data. First 
locally, via a ground-based dense monitoring network for 6 years and 
then nationwide with another model based on a different approach for 
12 years. The results indicated good performance and low errors in both 
cases, boosting our confidence in the quality of our product. An addi
tional strength is the models’ spatial resolution and spatial and temporal 
extent. They are German-wide and have a temporal extent of 21 years. 
Their national scale combined with the fine resolution of 1 × 1 km and 
the daily temporal resolution, provided us with the opportunity to study 
the spatiotemporal patterns of Tair all across Germany but also in specific 
places around the country, containing both urban and rural settings. 

Our output product is an excellent fit for many individual-level 
epidemiological studies in Germany, without limitations on the study 
area(s). Mapping four different Tair measures was also important for 
environmental epidemiology as many recent studies report health ef
fects of different temperature measures (Cheng et al., 2014; Guo et al., 
2016; Oberheim et al., 2020; Wong et al., 2020), and there is a special 

Fig. 6. Predicted 7-day average Tmean distribution (with blue) vs the 2 available DWD stations Tmean observations (with red) across the Augsburg area for 
31.08.2019. The green lines represent our model’s predictions at the stations locations. (For interpretation of the references to colour in this figure legend, the reader 
is referred to the Web version of this article.) 

Table 4 
Observed and predicted Tmin, Tmean and Tmax in Germany during 2000–2020.  

Source Measure Mean 
(oC) 

SD 
(oC) 

Q1 
(oC) 

Median 
(oC) 

Q3 
(oC) 

DWD observations 
(n = 406 stations) 

Tmin 5.15 6.59 0.34 5.33 10.33 
Tmean 9.44 7.39 3.71 9.59 15.27 
Tmax 13.85 8.77 6.81 13.91 20.68 

Models predictions 
(n = 366,536 grid 
cells) 

Tmin 5.24 5.89 0.24 5.24 10.29 
Tmean 9.57 7.36 3.76 9.71 15.19 
Tmax 14.00 8.75 6.90 14.05 20.67  

N. Nikolaou et al.                                                                                                                                                                                                                               



 Paper I 

48 

 

 

  

Environmental Research 219 (2023) 115062

10

need for further research with high spatiotemporally-resolved Tmin, 
Tmean, Tmax and DTR. Our final output can also be used for other research 
purposes outside the health field. For example, we are currently devel
oping a high-resolution hybrid spatiotemporal RF model in order to 
predict daily mean relative humidity (RH) in Germany. To accomplish it, 
we use our daily Tmean predictions dataset as the main predictor in the 
RF model, due to its strong association (negative) with RH (Nikolaou 
et al., 2022). 

4.2. Limitations 

On the other hand, there are some limitations. First of all, the main 
predictor for estimating Tair is LST either at its daily or nightly value. It is 
well known that LST datasets include a high percentage of missing 
values because of cloud coverage, atmosphere dust, snow or sensor 
failure (Ghafarian Malamiri et al., 2018). However, using the TPS 
interpolated Tair data in the third stage model, we observed high accu
racy for third stage predictions with quite low errors even when we 
compared them with independent observations from ground-based 

weather station networks. Moreover, we could not estimate the 
models performance, internally, in locations that have not been trained 
on. We tackled this issue by externally validating our Tair predictions 
with the HOBO-Logger Tair measurements for cells where the models 
were not trained on, and we observed high performance. Therefore, we 
are confident that even in the cell-days without available DWD Tair or 
LST data, our predictions are equally reliable. An additional factor that 
limits our product is its spatial resolution of 1 × 1 km, which is sufficient 
for country-wide analysis, but it might be a bit coarse for 
small-area/local analyses, especially for studies exploring the UHI ef
fect. However, even in small scale analysis, our 1 × 1 km resolution 
dataset provides a better representation of Tair variability in comparison 
with the existing weather stations, as we showed in the case study of 
Augsburg’s area. Higher spatiotemporal resolution, at least for the cities, 
might be a very good future upgrade in the framework of Tair modeling 
in Germany, given the example of previous studies in neighbouring 
countries (Hough et al., 2020). Finally, the 21-year extent we used to 
understand the spatiotemporal Tair patterns over Germany might be 
short to investigate climate change (usually a 30-year period). It is 

Fig. 7. Spatiotemporal Tair patterns in Germany for 2000–2020. Plot 1: Spatial patterns of the predicted Tmin, Tmean and Tmax in Germany, averaged for 2000-2020. 
Plot 2: Difference between the predicted Tmean yearly averages and the predicted Tmean 20-year average (2001-2020), German-wide. 
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nevertheless a good starting point to understand the Tair patterns and 
find useful climate change indications in Germany. 

5. Conclusion 

In this study, we applied a high-resolution hybrid spatiotemporal 
modeling approach to estimate daily Tmin, Tmean and Tmax as well as to 
calculate DTR across Germany over the period 2000–2020. We achieved 
excellent models’ performances, validated extensively both locally and 
nationwide. Our product contributes substantially to exposure misclas
sification decrease accomplishing a better representation of Tair vari
ability, and helps towards understanding the spatiotemporal Tair 
patterns and observing the impact of climate change during the last 
decades in Germany. Finally, our dataset is a great fit for recent German 

health cohorts and environmental epidemiology studies overall, but 
could also be used for other research purposes. 
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Oberheim, J., Höser, C., Lüchters, G., Kistemann, T., 2020. Small-scaled association 
between ambient temperature and campylobacteriosis incidence in Germany. Sci. 
Rep. 10 (1), 1–12. https://doi.org/10.1038/s41598-020-73865-9. 

Peters, A., Schneider, A., 2021. Cardiovascular risks of climate change. Nat. Rev. Cardiol. 
18 (1), 1–2. https://doi.org/10.1038/s41569-020-00473-5. 

QGIS Development Team, 2020. QGIS geographic information system. Open source 
geospatial foundation project. Available from: http://qgis.osgeo.org. 

R Core Team, 2020. R: A Language and Environment for Statistical Computing. R 
Foundation for Statistical Computing, Vienna, Austria. Available from: https://www. 
R-project.org/.  

Rosenfeld, A., Dorman, M., Schwartz, J., Novack, V., Just, A.C., Kloog, I., 2017. 
Estimating daily minimum, maximum, and mean near surface air temperature using 
hybrid satellite models across Israel. Environ. Res. 159, 297–312. https://doi.org/ 
10.1016/j.envres.2017.08.017. 

Rüth, P.V., Schönthaler, K., Andrian-Werburg, S.V., Buth, M., 2019. Monitoringbericht 
2019 zur Deutschen Anpassungsstrategie an den Klimawandel Bericht der 
Interministeriellen Arbeitsgruppe Anpassungsstrategie der Bundesregierung. 
Umweltbundesamt (UBA), Dessau-Roßlau. Available from: https://www.umweltbu 
ndesamt.de/publikationen/umweltbundesamt-2019-monitoringbericht-2019-zur. 
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Figure S1. Map of DEM in 1×1 km spatial resolution across Germany’s mainland. 
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Figure S2. Map of the Augsburg study area and the sites of the HOBO-Logger 

monitoring network during the period 2013-2018. 
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Figure S3. Map of the NAKO study sites across Germany. 
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Figure S4. Density scatterplots between the model daily Tmin and Tmax predictions and the HOBO-Logger daily Tmin 

and Tmax observations for 2018, daily minimum and maximum and 7-day average minimum and maximum 
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Figure S5. Distribution of our model (EnRi) Tmean predictions and the DWD TRY model Tmean predictions, 

averaged for the randomly selected years 2003, 2006, 2008 and 2012 in the Augsburg area. 
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Figure S6. Distribution of distances (km) between the geocoded residential addresses of the 

KORA study participants and the nearest DWD weather stations. 
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Figure S7. German-wide annual DTR maps during 2016-2019. 
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Figure S8. Difference between the predicted Tmean yearly averages and the predicted Tmean 20-year average 

(2001-2020) for 9 NAKO study sites. 
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Table S1. Prediction accuracy for the first stage predictions: 10-fold CV results for daily Tmin, Tmean and Tmax in Germany 

during 2000-2020. 

Year Measure R2 R2
spatial R2

temporal 
RMSE 

(oC) 

SD 

(oC) 

RMSEspatial 

(oC) 

RMSEtemporal 

(oC) 

Sample size  

(cell-days number) 

2000 

Tmin 0.86 0.77 0.87 1.92 5.19 0.69 1.80 34,823 

Tmean 0.95 0.86 0.95 1.40 6.16 0.55 1.29 35,984 

Tmax 0.95 0.85 0.96 1.85 7.91 0.88 1.63 30,090 

2001 

Tmin 0.93 0.80 0.93 1.94 7.25 0.70 1.82 37,116 

Tmean 0.97 0.90 0.97 1.48 8.21 0.49 1.40 40,458 

Tmax 0.96 0.87 0.97 1.86 9.91 0.81 1.67 32,741 

2002 

Tmin 0.92 0.85 0.93 2.05 7.41 0.76 1.91 37,471 

Tmean 0.96 0.92 0.97 1.54 8.04 0.53 1.45 40,695 

Tmax 0.96 0.90 0.97 1.81 9.35 0.73 1.65 35,992 

2003 

Tmin 0.93 0.75 0.94 2.18 8.02 0.90 1.93 47,608 

Tmean 0.97 0.88 0.98 1.50 8.91 0.59 1.34 51,694 

Tmax 0.97 0.88 0.97 1.83 10.29 0.86 1.62 47,675 

2004 

Tmin 0.90 0.74 0.91 2.05 6.53 0.84 1.87 40,580 

Tmean 0.96 0.91 0.96 1.45 7.30 0.53 1.35 44,252 

Tmax 0.96 0.91 0.97 1.80 8.88 0.77 1.61 36,361 

2005 

Tmin 0.91 0.70 0.92 2.06 6.88 0.93 1.84 46,572 

Tmean 0.97 0.90 0.97 1.38 7.60 0.49 1.23 50,380 

Tmax 0.96 0.88 0.97 1.76 9.26 0.75 1.59 44,389 

2006 

Tmin 0.93 0.76 0.94 2.12 7.95 0.94 1.91 45,894 

Tmean 0.97 0.92 0.97 1.47 8.87 0.48 1.39 49,758 

Tmax 0.97 0.89 0.97 1.75 10.11 0.72 1.60 43,673 

2007 

Tmin 0.88 0.65 0.90 2.01 5.74 0.94 1.78 48,611 

Tmean 0.95 0.88 0.96 1.37 6.37 0.49 1.29 52,456 

Tmax 0.95 0.88 0.96 1.71 7.94 0.72 1.54 45,147 

2008 

Tmin 0.90 0.73 0.91 1.95 6.21 0.86 1.76 44,545 

Tmean 0.97 0.93 0.97 1.32 7.08 0.43 1.25 48,245 

Tmax 0.96 0.89 0.97 1.71 8.74 0.73 1.55 41,010 
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2009 

Tmin 0.92 0.65 0.93 2.04 7.06 0.89 1.85 48,389 

Tmean 0.97 0.86 0.97 1.40 7.71 0.52 1.30 52,302 

Tmax 0.96 0.86 0.97 1.80 9.26 0.77 1.62 43,237 

2010 

Tmin 0.92 0.68 0.93 2.12 7.68 0.89 1.94 41,812 

Tmean 0.97 0.90 0.97 1.45 8.40 0.50 1.36 45,108 

Tmax 0.97 0.91 0.97 1.78 10.10 0.81 1.58 38,930 

2011 

Tmin 0.90 0.63 0.92 2.02 6.37 0.89 1.82 53,263 

Tmean 0.96 0.86 0.96 1.41 6.99 0.48 1.33 57,317 

Tmax 0.96 0.89 0.96 1.75 8.35 0.72 1.59 50,829 

2012 

Tmin 0.93 0.64 0.94 1.99 7.66 0.87 1.80 48,365 

Tmean 0.97 0.84 0.97 1.41 8.38 0.48 1.33 52,085 

Tmax 0.97 0.88 0.97 1.77 10.14 0.74 1.61 43,802 

2013 

Tmin 0.92 0.70 0.93 2.04 7.08 0.81 1.88 42,103 

Tmean 0.97 0.91 0.97 1.37 8.07 0.44 1.30 45,370 

Tmax 0.97 0.89 0.97 1.80 9.66 0.77 1.62 37,730 

2014 

Tmin 0.88 0.64 0.90 1.91 5.56 0.84 1.72 44,965 

Tmean 0.95 0.86 0.95 1.36 6.05 0.46 1.27 48,284 

Tmax 0.95 0.85 0.96 1.67 7.43 0.76 1.49 42,330 

2015 

Tmin 0.89 0.61 0.91 1.90 6.13 0.87 1.80 49,495 

Tmean 0.96 0.87 0.96 1.44 7.04 0.47 1.36 53,030 

Tmax 0.96 0.89 0.96 1.81 8.79 0.75 1.63 45,086 

2016 

Tmin 0.92 0.65 0.93 1.96 6.94 0.84 1.78 46,982 

Tmean 0.97 0.90 0.97 1.39 7.89 0.42 1.33 50,514 

Tmax 0.97 0.89 0.97 1.70 9.49 0.69 1.55 42,318 

2017 

Tmin 0.91 0.64 0.92 2.03 6.84 0.86 1.85 46,011 

Tmean 0.96 0.87 0.97 1.42 7.47 0.46 1.34 49,429 

Tmax 0.96 0.89 0.97 1.78 8.94 0.77 1.60 42,026 

2018 

Tmin 0.92 0.58 0.93 2.04 7.22 0.91 1.84 53,784 

Tmean 0.97 0.87 0.98 1.39 8.40 0.51 1.29 57,588 

Tmax 0.97 0.87 0.97 1.77 9.89 0.84 1.55 52,838 

2019 
Tmin 0.90 0.56 0.92 2.00 6.39 0.93 1.78 51,125 

Tmean 0.97 0.86 0.97 1.37 7.30 0.48 1.29 54,620 
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Tmax 0.96 0.87 0.97 1.75 8.81 0.76 1.58 47,012 

2020 

Tmin 0.88 0.54 0.90 2.03 5.78 1.01 1.82 44,556 

Tmean 0.96 0.83 0.96 1.34 6.59 0.51 1.30 47,865 

Tmax 0.95 0.84 0.96 1.75 8.18 0.73 1.65 42,045 

Overall 

Tmin 0.91 0.68 0.92 2.02 6.76 0.87 1.83 45,432 

Tmean 0.96 0.88 0.97 1.41 7.56 0.49 1.32 48,925 

Tmax 0.96 0.84 0.97 1.77 9.12 0.77 1.60 42,155 

*SD: standard deviation of the DWD observed Tair 
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Table S2. Prediction accuracy for the third stage predictions against held-out DWD observations (in 

grid cells with monitoring stations data available but without LST): 10-fold CV results for daily Tmin, 

Tmean and Tmax in Germany during 2000-2020. 

Year Measure R2 RMSE (oC) SD (oC) 
Sample size  

(cell-days number) 

2000 

Tmin 0.95 1.27 5.30 65,403 

Tmean 0.97 1.12 5.86 67,698 

Tmax 0.95 1.49 6.51 70,136 

2001 

Tmin 0.97 1.24 6.53 75,724 

Tmean 0.98 1.11 7.04 81,900 

Tmax 0.97 1.48 7.72 82,095 

2002 

Tmin 0.96 1.24 6.25 78,458 

Tmean 0.98 1.10 6.83 84,934 

Tmax 0.97 1.45 7.60 79,574 

2003 

Tmin 0.97 1.38 7.24 67,766 

Tmean 0.98 1.11 8.14 73,190 

Tmax 0.97 1.49 8.91 67,348 

2004 

Tmin 0.96 1.31 6.43 77,368 

Tmean 0.98 1.12 7.14 83,716 

Tmax 0.97 1.50 7.97 81,229 

2005 

Tmin 0.97 1.29 7.04 78,804 

Tmean 0.98 1.06 7.74 84,737 

Tmax 0.97 1.45 8.39 80,259 

2006 

Tmin 0.97 1.30 7.10 81,781 

Tmean 0.98 1.05 7.75 87,996 

Tmax 0.97 1.41 8.52 84,013 

2007 

Tmin 0.96 1.24 5.97 82,125 

Tmean 0.98 1.04 6.75 88,337 

Tmax 0.97 1.41 7.47 84,494 

2008 
Tmin 0.96 1.22 6.02 86,894 

Tmean 0.98 1.03 6.80 93,298 
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Tmax 0.97 1.39 7.61 90,431 

2009 

Tmin 0.97 1.22 6.87 85,118 

Tmean 0.98 0.99 7.63 91,288 

Tmax 0.98 1.38 8.48 90,270 

2010 

Tmin 0.98 1.23 7.78 92,174 

Tmean 0.99 0.98 8.52 98,991 

Tmax 0.98 1.36 9.20 95,056 

2011 

Tmin 0.96 1.26 6.19 80,560 

Tmean 0.98 0.99 7.07 86,531 

Tmax 0.97 1.38 8.07 82,994 

2012 

Tmin 0.97 1.20 6.67 85,584 

Tmean 0.98 0.98 7.37 91,717 

Tmax 0.97 1.33 8.12 90,147 

2013 

Tmin 0.97 1.17 6.72 91,852 

Tmean 0.98 0.99 7.61 98,008 

Tmax 0.98 1.38 8.47 96,226 

2014 

Tmin 0.96 1.20 5.88 89,646 

Tmean 0.98 0.97 6.61 95,750 

Tmax 0.97 1.40 7.53 92,651 

2015 

Tmin 0.96 1.25 6.04 84,677 

Tmean 0.98 1.00 6.89 90,420 

Tmax 0.97 1.39 7.68 87,262 

2016 

Tmin 0.97 1.18 6.30 84,146 

Tmean 0.98 1.01 7.01 89,842 

Tmax 0.97 1.41 7.84 88,811 

2017 

Tmin 0.97 1.20 6.37 88,818 

Tmean 0.98 1.01 7.22 94,839 

Tmax 0.97 1.40 8.04 92,803 

2018 

Tmin 0.97 1.25 6.64 80,956 

Tmean 0.98 1.00 7.85 86,076 

Tmax 0.98 1.38 8.81 81,902 

2019 Tmin 0.96 1.27 6.14 81,733 
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Tmean 0.98 1.02 7.09 86,975 

Tmax 0.97 1.41 7.89 85,853 

2020 

Tmin 0.96 1.23 5.76 64,902 

Tmean 0.98 0.88 6.65 71,594 

Tmax 0.98 1.22 7.65 67,373 

Overall 

Tmin 0.97 1.25 6.44 81,166 

Tmean 0.98 1.03 7.22 87,040 

Tmax 0.97 1.41 8.02 84,330 

*SD: standard deviation of the DWD Tair variable 
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Table S3. Comparison between third and second stage predictions: Results for daily Tmin, Tmean and Tmax 

during 2000-2020 for all grid cells across Germany. 

Year Measure R2 RMSE (oC) SD (oC) 
Sample size  

(cell-days number) 

2000 

Tmin 0.93 1.27 5.09 69,584,386 

Tmean 0.97 0.96 5.68 69,584,386 

Tmax 0.97 1.23 6.26 75,246,789 

2001 

Tmin 0.97 1.27 6.31 82,252,879 

Tmean 0.98 1.01 6.86 82,252,879 

Tmax 0.98 1.24 7.52 89,856,424 

2002 

Tmin 0.96 1.34 6.07 85,825,240 

Tmean 0.98 1.06 6.69 85,825,240 

Tmax 0.98 1.20 7.42 88,489,932 

2003 

Tmin 0.97 1.33 7.00 74,648,228 

Tmean 0.99 1.03 7.98 74,648,228 

Tmax 0.98 1.27 8.72 76,032,730 

2004 

Tmin 0.96 1.25 6.20 85,567,540 

Tmean 0.98 0.95 6.97 85,567,540 

Tmax 0.98 1.17 7.73 91,325,391 

2005 

Tmin 0.96 1.31 6.83 81,702,456 

Tmean 0.98 0.98 7.58 81,702,456 

Tmax 0.98 1.22 8.18 84,804,319 

2006 

Tmin 0.97 1.34 6.92 83,184,222 

Tmean 0.99 1.05 7.63 83,184,222 

Tmax 0.99 1.19 8.37 86,769,379 

2007 

Tmin 0.95 1.24 5.78 81,751,441 

Tmean 0.98 1.04 6.59 81,751,441 

Tmax 0.98 1.17 7.25 86,083,062 

2008 

Tmin 0.95 1.25 5.81 85,109,087 

Tmean 0.98 0.94 6.65 85,109,087 

Tmax 0.98 1.17 7.39 89,787,577 
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2009 

Tmin 0.96 1.35 6.65 82,484,112 

Tmean 0.98 1.01 7.49 82,484,112 

Tmax 0.98 1.25 8.35 88,905,862 

2010 

Tmin 0.97 1.37 7.68 89,742,514 

Tmean 0.98 1.04 8.47 89,742,514 

Tmax 0.98 1.22 9.10 93,543,768 

2011 

Tmin 0.95 1.28 6.02 78,420,415 

Tmean 0.98 1.02 6.96 78,420,415 

Tmax 0.98 1.27 7.88 82,140,829 

2012 

Tmin 0.97 1.30 6.49 83,147,071 

Tmean 0.98 1.03 7.23 83,147,071 

Tmax 0.98 1.27 7.93 89,049,787 

2013 

Tmin 0.96 1.34 6.56 88,759,293 

Tmean 0.98 0.97 7.50 88,759,293 

Tmax 0.98 1.22 8.35 94,386,787 

2014 

Tmin 0.95 1.16 5.74 86,292,259 

Tmean 0.97 0.94 6.52 86,292,259 

Tmax 0.97 1.14 7.38 90,320,155 

2015 

Tmin 0.95 1.30 5.81 81,972,324 

Tmean 0.98 1.03 6.71 81,972,324 

Tmax 0.98 1.29 7.43 86,962,223 

2016 

Tmin 0.96 1.27 6.16 81,491,380 

Tmean 0.98 1.02 6.91 81,491,380 

Tmax 0.98 1.17 7.69 87,032,964 

2017 

Tmin 0.96 1.31 6.16 85,740,094 

Tmean 0.98 1.01 7.06 85,740,094 

Tmax 0.98 1.22 7.84 90,879,244 

2018 

Tmin 0.96 1.32 6.41 77,371,038 

Tmean 0.98 1.02 7.71 77,371,038 

Tmax 0.98 1.26 8.67 79,839,923 

2019 
Tmin 0.96 1.25 5.93 79,914,991 

Tmean 0.98 1.00 6.96 79,914,991 
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Tmax 0.98 1.24 7.70 84,909,897 

2020 

Tmin 0.94 1.28 5.54 75,815,644 

Tmean 0.98 1.00 6.49 75,815,644 

Tmax 0.97 1.27 7.44 79,967,372 

Overall 

Tmin 0.96 1.29 6.52 81,941,744 

Tmean 0.98 1.01 7.08 81,941,744 

Tmax 0.98 1.22 7.83 86,492,115 

*SD: standard deviation of the dependent variable (second stage Tair predictions) 
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Table S4. Bias calculation results for the daily Tmin, Tmean and Tmax predictions in Germany during 2000-

2020. 

Year Measure Intercept Slope Mean signed error (oC) 

2000 

Tmin -0.35 1.06 0.05 

Tmean -0.21 1.02 0.06 

Tmax -0.73 1.04 -0.19 

2001 

Tmin -0.10 1.03 0.04 

Tmean -0.08 1.02 0.05 

Tmax -0.44 1.02 -0.16 

2002 

Tmin -0.09 1.03 0.08 

Tmean -0.11 1.02 0.07 

Tmax -0.45 1.02 -0.13 

2003 

Tmin -0.03 1.02 0.07 

Tmean -0.06 1.01 0.07 

Tmax -0.37 1.02 -0.12 

2004 

Tmin -0.09 1.04 0.08 

Tmean -0.11 1.02 0.05 

Tmax -0.52 1.03 -0.17 

2005 

Tmin -0.05 1.03 0.10 

Tmean -0.09 1.02 0.04 

Tmax -0.47 1.02 -0.16 

2006 

Tmin -0.01 1.03 0.12 

Tmean -0.11 1.02 0.04 

Tmax -0.46 1.02 -0.15 

2007 

Tmin -0.08 1.05 0.11 

Tmean -0.20 1.02 0.03 

Tmax -0.65 1.03 -0.18 

2008 

Tmin -0.14 1.04 0.12 

Tmean -0.14 1.02 0.06 

Tmax -0.51 1.03 -0.13 

2009 Tmin -0.04 1.03 0.10 
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Tmean -0.11 1.02 0.04 

Tmax -0.48 1.02 -0.14 

2010 

Tmin -0.01 1.03 0.09 

Tmean -0.09 1.02 0.03 

Tmax -0.43 1.02 -0.17 

2011 

Tmin -0.05 1.04 0.13 

Tmean -0.16 1.02 0.05 

Tmax -0.60 1.03 -0.16 

2012 

Tmin 0.00 1.03 0.12 

Tmean -0.08 1.01 0.06 

Tmax -0.36 1.02 -0.10 

2013 

Tmin -0.07 1.03 0.07 

Tmean -0.23 1.01 0.04 

Tmax -0.53 1.03 -0.19 

2014 

Tmin -0.18 1.05 0.09 

Tmean -0.15 1.03 0.03 

Tmax -0.67 1.03 -0.17 

2015 

Tmin -0.09 1.04 0.11 

Tmean -0.06 1.02 0.05 

Tmax -0.66 1.03 -0.18 

2016 

Tmin -0.08 1.03 0.08 

Tmean -0.12 1.02 0.04 

Tmax -0.49 1.03 -0.17 

2017 

Tmin -0.07 1.04 0.11 

Tmean -0.13 1.02 0.06 

Tmax -0.50 1.03 -0.16 

2018 

Tmin -0.09 1.03 0.07 

Tmean -0.13 1.01 0.03 

Tmax -0.58 1.02 -0.16 

2019 

Tmin -0.10 1.04 0.09 

Tmean -0.14 1.02 0.04 

Tmax -0.40 1.03 -0.17 
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2020 

Tmin -0.07 1.05 0.19 

Tmean -0.14 1.02 0.08 

Tmax -0.52 1.03 -0.14 

Overall 

Tmin -0.09 1.04 0.10 

Tmean -0.13 1.02 0.05 

Tmax -0.51 1.03 -0.16 

 

 

Table S5. Contribution (%) of each stage of the modeling process for the daily Tmin, Tmean 

and Tmax predictions in Germany, averaged for 2000-2020. 

Measure Stage 1 Stage 2 Stage 3 

Tmin 0.04 36.1 62.0 

Tmean 0.04 35.6 62.5 

Tmax 0.03 32.7 65.4 
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Table S6. Accuracy results of the small-scale external validation with HOBO-Logger Tmin, Tmean and Tmax observations 

in the Augsburg area during 2013-2018. 

Year Measure R2 RMSE (oC) SD (oC) 
7-day 

average R2 

7-day average 

RMSE (oC) 
SD (oC) 

2013 

Tmin 0.95 1.75 7.02 0.97 1.41 6.62 

Tmean 0.99 1.07 8.06 0.99 0.92 7.70 

Tmax 0.98 1.26 9.55 0.98 0.93 8.95 

2014 

Tmin 0.92 1.89 6.07 0.96 1.45 5.58 

Tmean 0.98 1.08 6.62 0.99 0.97 6.21 

Tmax 0.97 1.35 7.97 0.98 1.16 7.21 

2015 

Tmin 0.95 1.81 6.92 0.96 1.49 6.56 

Tmean 0.98 1.07 7.67 0.99 0.87 7.38 

Tmax 0.98 1.45 8.97 0.98 1.08 8.44 

2016 

Tmin 0.95 1.69 6.61 0.97 1.36 6.21 

Tmean 0.99 1.00 7.44 0.99 0.81 7.02 

Tmax 0.98 1.30 8.65 0.99 0.98 8.01 

2017 

Tmin 0.95 1.88 7.34 0.97 1.53 7.02 

Tmean 0.99 1.21 8.23 0.99 1.03 7.95 

Tmax 0.98 1.40 9.59 0.99 0.95 9.01 

2018 

Tmin 0.96 1.78 7.06 0.98 1.40 6.67 

Tmean 0.99 0.99 8.28 0.99 0.77 7.94 

Tmax 0.98 1.44 9.96 0.98 1.40 9.39 

Overall 

Tmin 0.95 1.80 6.84 0.97 1.44 6.44 

Tmean 0.99 1.07 7.72 0.99 0.90 7.37 

Tmax 0.98 1.37 9.11 0.98 1.08 8.50 

*SD: standard deviation of the dependent variable (HOBO-Logger Tair) 
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Table S7. Seasonal accuracy results of the small-scale external validation with HOBO-Logger daily Tmin, Tmean and Tmax 

observations in the Augsburg area during 2013-2018. 

 
 Winter    Spring                Summer      Fall 

Year Measure R2 
RMSE 

(oC) 

SD 

(oC) 
R2 

RMSE 

(oC) 

SD 

(oC) 
R2 

RMSE 

(oC) 

SD 

(oC) 
R2 

RMSE 

(oC) 

SD 

(oC) 

2013 

Tmin 0.84 1.80 5.10 0.93 1.56 5.28 0.79 2.05 3.44 0.91 1.54 4.74 

Tmean 0.94 1.07 4.70 0.98 0.88 5.89 0.95 1.27 4.24 0.97 1.00 5.33 

Tmax 0.95 0.95 5.07 0.98 1.13 7.07 0.93 1.51 5.84 0.98 1.22 6.77 

2014 

Tmin 0.60 1.39 2.23 0.79 1.81 3.41 0.71 2.11 3.02 0.84 1.80 4.19 

Tmean 0.83 1.06 2.36 0.93 1.21 3.60 0.90 1.26 2.81 0.96 0.99 4.74 

Tmax 0.90 1.28 3.85 0.92 1.42 4.82 0.90 1.26 3.95 0.96 1.32 6.24 

2015 

Tmin 0.82 1.43 3.36 0.89 1.93 5.03 0.81 2.02 3.39 0.83 1.83 4.10 

Tmean 0.91 0.98 3.14 0.96 1.06 4.74 0.94 1.19 4.16 0.95 1.05 4.40 

Tmax 0.85 1.58 4.13 0.95 1.24 5.48 0.93 1.56 5.70 0.93 1.47 5.63 

2016 

Tmin 0.87 1.56 3.92 0.91 1.63 4.38 0.72 1.80 2.69 0.92 1.71 5.41 

Tmean 0.96 0.91 3.88 0.98 0.93 4.94 0.91 1.07 3.09 0.98 1.04 6.09 

Tmax 0.94 1.21 4.52 0.96 1.33 5.99 0.90 1.35 4.25 0.98 1.16 7.28 

2017 

Tmin 0.91 1.64 5.47 0.88 1.83 4.39 0.65 2.33 3.11 0.83 1.66 3.79 

Tmean 0.95 1.12 5.14 0.97 1.24 5.02 0.92 1.51 3.34 0.96 1.03 4.37 

Tmax 0.94 1.45 5.75 0.95 1.25 6.24 0.91 1.43 4.57 0.95 1.25 6.02 

2018 

Tmin 0.93 1.34 4.49 0.94 1.90 5.92 0.78 1.98 3.13 0.90 1.77 4.84 

Tmean 0.97 0.88 4.39 0.99 1.01 6.73 0.92 1.12 3.30 0.97 0.98 5.69 

Tmax 0.94 1.31 4.78 0.97 1.36 7.97 0.90 1.47 4.55 0.95 1.73 7.59 

Overall 

Tmin 0.83 1.53 4.10 0.89 1.78 4.74 0.74 2.05 3.13 0.87 1.72 4.51 

Tmean 0.93 1.00 3.94 0.97 1.06 5.15 0.92 1.24 3.49 0.97 1.02 5.10 

Tmax 0.92 1.30 4.68 0.96 1.29 6.26 0.91 1.43 4.81 0.96 1.36 6.59 

*SD: standard deviation of the dependent variable (HOBO-Logger Tair) 
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Table S8. Linear regression between the models’ predictions and the HOBO-Logger 

daily Tmin, Tmean and Tmax observations in the Augsburg area during 2013-2018. 

Year Measure Intercept Slope 

2013 

Tmin 0.69 1.02 

Tmean 0.30 1.01 

Tmax 0.48 0.97 

2014 

Tmin 0.52 1.05 

Tmean 0.27 1.03 

Tmax 0.47 0.98 

2015 

Tmin 0.43 1.06 

Tmean 0.13 1.02 

Tmax 0.43 0.98 

2016 

Tmin 0.66 1.03 

Tmean 0.41 1.00 

Tmax 0.56 0.97 

2017 

Tmin 0.54 1.06 

Tmean 0.19 1.05 

Tmax 0.22 0.99 

2018 

Tmin 0.79 1.03 

Tmean 0.40 1.01 

Tmax 0.29 0.98 

Overall 

Tmin 0.61 1.04 

Tmean 0.28 1.02 

Tmax 0.41 0.98 
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Table S9. Comparison between our model daily Tmean predictions and the DWD TRY model 

daily Tmean predictions in Germany during 2001-2012. 

Year R2 RMSE (oC) Intercept Slope 

2001 0.98 0.94 -0.08 1.01 

2002 0.98 0.92 -0.06 1.01 

2003 0.99 1.04 -0.01 1.01 

2004 0.99 0.88 -0.06 1.02 

2005 0.99 0.89 -0.03 1.02 

2006 0.99 0.92 -0.09 1.02 

2007 0.98 0.88 -0.15 1.02 

2008 0.99 0.82 -0.08 1.02 

2009 0.99 0.90 -0.04 1.02 

2010 0.99 0.86 -0.03 1.01 

2011 0.98 0.92 -0.08 1.02 

2012 0.99 0.88 -0.08 1.01 

Overall 0.99 0.90 -0.07 1.02 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 Paper I 

77 

 

Table S10. Comparison by season between our model daily Tmean predictions and the DWD TRY model daily 

Tmean predictions in Germany during 2001-2012. 

      Year Winter      Spring      Summer        Fall 

 R2 RMSE (oC) R2 RMSE (oC) R2 RMSE (oC) R2 RMSE (oC) 

2001 0.93 1.04 0.97 0.94 0.95 0.90 0.97 0.85 

2002 0.96 1.07 0.96 0.87 0.93 0.81 0.97 0.88 

2003 0.94 1.15 0.97 1.01 0.96 1.07 0.97 0.96 

2004 0.96 0.88 0.97 0.87 0.93 0.90 0.98 0.81 

2005 0.96 0.89 0.98 0.91 0.94 0.88 0.98 0.89 

2006 0.91 1.13 0.98 0.88 0.96 0.91 0.98 0.85 

2007 0.96 0.75 0.96 0.97 0.93 0.85 0.97 0.87 

2008 0.94 0.83 0.94 0.80 0.93 0.88 0.97 0.77 

2009 0.92 1.08 0.97 0.88 0.94 0.86 0.97 0.82 

2010 0.95 0.96 0.98 0.86 0.96 0.81 0.97 0.76 

2011 0.95 1.01 0.97 0.96 0.94 0.81 0.97 0.96 

2012 0.94 0.95 0.97 0.89 0.94 0.87 0.97 0.84 

Overall 0.94 0.98 0.97 0.90 0.94 0.88 0.97 0.86 
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Table S11. Comparison without extremes between our model daily Tmean predictions and the 

DWD TRY model daily Tmean predictions in Germany during 2001-2012. 

Year             5th percentile < Tmean < 95th percentile 

 R2 RMSE (oC) 

2001 0.98 0.80 

2002 0.98 0.78 

2003 0.98 0.77 

2004 0.99 0.82 

2005 0.99 0.78 

2006 0.99 0.77 

2007 0.99 0.83 

2008 0.99 0.84 

2009 0.99 0.74 

2010 0.98 0.78 

2011 0.99 0.77 

2012 0.99 0.77 

Overall 0.99 0.79 
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Table S12. Comparison to extremes between our model daily Tmean predictions and the DWD 

TRY model daily Tmean predictions in Germany during 2001-2012. 

Year      Tmean < 5th percentile      Tmean > 95th percentile 

 R2 RMSE (oC) R2 RMSE (oC) 

2001 0.68 1.58 0.58 0.82 

2002 0.83 1.13 0.88 0.56 

2003 0.77 1.28 0.61 1.10 

2004 0.75 1.06 0.54 1.08 

2005 0.76 1.24 0.75 0.73 

2006 0.63 1.21 0.70 0.85 

2007 0.81 1.01 0.85 1.34 

2008 0.74 0.91 0.52 0.95 

2009 0.81 1.38 0.66 0.94 

2010 0.65 1.14 0.84 0.84 

2011 0.74 1.03 0.89 0.89 

2012 0.90 1.34 0.73 1.00 

Overall 0.76 1.19 0.71 0.93 
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Table S13. Comparison in rural versus urban areas (Augsburg region) between our model daily 

Tmean predictions and the DWD TRY model daily Tmean predictions in Germany during 2001-

2012. 

Year Rural - Augsburg Landkreis Urban - Stadt Augsburg 

 R2 RMSE (oC) R2 RMSE (oC) 

2001 0.99 0.89 0.99 0.89 

2002 0.99 0.81 0.99 0.87 

2003 0.99 1.01 0.99 0.94 

2004 0.99 0.87 0.99 0.84 

2005 0.99 0.81 0.99 0.82 

2006 0.99 0.84 0.99 0.84 

2007 0.99 0.90 0.99 0.82 

2008 0.99 0.86 0.99 0.86 

2009 0.99 0.81 0.99 0.85 

2010 0.99 0.73 0.99 0.72 

2011 0.99 0.80 0.99 0.84 

2012 0.99 0.79 0.99 0.87 

Overall 0.99 0.84 0.99 0.85 
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A B S T R A C T   

The lack of readily available methods for estimating high-resolution near-surface relative humidity (RH) and the 
incapability of weather stations to fully capture the spatiotemporal variability can lead to exposure misclassi
fication in studies of environmental epidemiology. We therefore aimed to predict German-wide 1 × 1 km daily 
mean RH during 2000–2021. RH observations, longitude and latitude, modelled air temperature, precipitation 
and wind speed as well as remote sensing information on topographic elevation, vegetation, and the true color 
band composite were incorporated in a Random Forest (RF) model, in addition to date for capturing the temporal 
variations of the response-explanatory variables relationship. The model achieved high accuracy (R2 = 0.83) and 
low errors (Root Mean Square Error (RMSE) of 5.07%, Mean Absolute Percentage Error (MAPE) of 5.19% and 
Mean Percentage Error (MPE) of - 0.53%), calculated via ten-fold cross-validation. A comparison of our RH 
predictions with measurements from a dense monitoring network in the city of Augsburg, South Germany 
confirmed the good performance (R2 ≥ 0.86, RMSE ≤ 5.45%, MAPE ≤ 5.59%, MPE ≤ 3.11%). The model dis
played high German-wide RH (22y-average of 79.00%) and high spatial variability across the country, exceeding 
12% on yearly averages. Our findings indicate that the proposed RF model is suitable for estimating RH for a 
whole country in high-resolution and provide a reliable RH dataset for epidemiological analyses and other 
environmental research purposes.   

1. Introduction 

Relative humidity (RH) refers to the water vapor content of air and 
quantifies how far the atmosphere is from its saturation point. RH is a 
key parameter for many fields such as agriculture (Zhang et al., 2015), 
hydrology (Forootan, 2019) and climatology (Sherwood et al., 2010) as 
it contributes among others to the soil moisture, the hydrological cycle 
and the weather and climate conditions. Thus, RH plays an important 
role in plant and animal life (Xiong et al., 2017) as well as in human 
comfort and well-being (Davis et al., 2016; Yang et al., 2018). 

RH has mostly been used as a confounder or effect modifier in studies 

focusing on air temperature (Tair) (Armstrong, 2006; Zeng et al., 2017), 
or as part of an index, e.g., apparent temperature (Analitis et al., 2008). 
Nevertheless, there is evidence that RH is potentially an independent 
risk factor for mortality (Ou et al., 2014) and morbidity (Luo et al., 
2020). In epidemiology, RH data are usually retrieved from weather 
monitors. But their locations are irregularly distributed over space, 
usually in rural areas, and their number is limited. Hence, weather 
stations are inadequate to fully represent the spatiotemporal RH varia
tions in complex geo-climatic urban and rural landscapes, and by using 
their observations, error is introduced in the exposure assessment of 
study participants leading to estimates biased towards the null (Zeger 
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et al., 2000). Climate reanalysis data could be an alternative source for 
environmental health research (Mistry et al., 2022), but the resolution is 
usually coarser than 9 km and the data fail to capture the city-level 
exposure variability effectively. We therefore suggest to extend the 
methods and datasets in order to improve the predictions of RH exposure 
for people participating in epidemiological studies, such as prospective 
cohorts with data on the residential addresses of the participants. 

There is a clear methodological gap in RH modeling, especially for 
high spatiotemporally-resolved RH predictions and for timespans up to 
multiple years. Li et al. (2014) mapped RH every 3 h at 1 km by using a 
two-step interpolation procedure of re-analysis data based on a partial 
thin-plate spline (TPS) and simple kriging (Root Mean Square Error 
(RMSE) = 11.06%). The traditional interpolation techniques have 
limited efficiency when mapping meteorological exposures in spatially 
highly heterogeneous areas, and are characterized by neighbouring ef
fects on exposures predictions, without being capable of capturing 
small-scale and intra-city variations. Li and Zha (2018) used a Random 
Forest (RF) model and satellite data, to estimate RH during the summer 
of 2009 (R2 = 0.70, RMSE = 7.4%). Spatiotemporal predictors which 
could explain a large amount of the remaining RH variance, e.g., Tair, 
were not included. Longer periods and more predictors need to be tested 
to capture the full annual and inter-annual RH variability. For China, the 
RF model had better results than TPS and kriging, but improvements are 
needed for better RH variability representation, higher prediction ac
curacy and further temporal extension to the annual level. 

Remote sensing data are progressively used in environmental expo
sures modeling (Rosenfeld et al., 2017; Yao et al., 2022) being publicly 
available in high spatiotemporal resolution. There is also a growing 
body of machine learning (ML) methods applied in the field (Jin et al., 
2022; Silibello et al., 2021; Stafoggia et al., 2019). 

The specific objectives of this study were (a) to estimate highly 
spatiotemporal resolved RH for Germany based on Tair and other 
observation, remote sensing and modelled data by using a RF model, (b) 
to evaluate the model’s performance and (c) to produce a reliable 
German-wide RH dataset for subsequent epidemiological analyses and 
various research purposes. Thereby, we aimed to extend the current 
literature and provide a generalizable method for other countries to 
produce highly resolved RH datasets. 

2. Materials and methods 

2.1. Study domain 

Germany extends in an area of 357,021 km2, having a strongly 
diverse landscape and a high elevation range (− 3.54 to 2962 m). In the 
south-eastern regions, the climate is classified as warm summer humid 
continental, while in north-western regions it is characterized as 
temperate oceanic (Beck et al., 2018b). We divided Germany’s land area 
into 366,536 grid cells of 1 × 1 km resolution, following the European 
INSPIRE (Infrastructure for Spatial Information in the European Com
munity) standard for gridded datasets and using the Lambert Azimuthal 
Equal-Area (LAEA) projection, EPSG: 3035 (©GeoBasis-DE/BKG 
(2021)). 

2.2. Input data 

Large amounts of input data were incorporated in the RF modeling 
process. We used meteorological observations, remote sensing and 
spatiotemporally resolved modelled data, all retrieved from 2000 to 
2021 across the study area. 

2.2.1. RH data 
We used daily mean RH observations (DWD, 2022a) from 406 

weather stations of the German Meteorological Service (DWD) https://o 
pendata.dwd.de/climate_environment/CDC/observations_germany/ 
climate/daily/kl/historical/ (Figure S1). The RH data has been quality 

controlled by the DWD and all the needed information such as station 
location as well as relocations was included in their metadata files. 

2.2.2. Tair data 
In our previous work (Nikolaou et al., 2022), we estimated daily 

mean Tair in high-resolution (1 × 1 km) across Germany using a 
regression-based method incorporating two linear mixed models. In 
brief, we predicted Tair by calibrating the strong relationship between 
the weather stations’ Tair observations and the satellite-based land sur
face temperature (LST) also adjusting for various spatial predictors. We 
also applied a TPS interpolation in Tair data in order to achieve a full 
German-wide coverage. Extensive validation showed high performance 
(R2 ≥ 0.96) and low errors (RMSE ≤ 1.41 ◦C). 

2.2.3. Elevation data 
We downloaded elevation data at 30-arc-second spatial resolution 

https://www.usgs.gov/centers/eros/science/usgs-eros-archive-digital- 
elevation-global-30-arc-second-elevation-gtopo30, provided by the U.S. 
Geological Survey’s Earth Resources Observation Systems (EROS) Data 
Center (Gesch et al., 1999). We aggregated these data to a 1 × 1 km grid, 
including the land borders and the shorelines in the North and Baltic 
Seas to match our intended spatial resolution (Figure S2). 

2.2.4. Greenness data 
The normalized difference vegetation index (NDVI) is a proxy of 

vegetation greenness on the Earth surface, quantifying the vegetation 
cover and quality over space. We retrieved NDVI data of 1 × 1 km from 
the TERRA MODIS product MOD13A3v006 https://lpdaac.usgs.gov/pr 
oducts/mod13a3v006/ (Didan, 2015). These are monthly data - 
weighted temporal average values through the month, which is suffi
cient, as vegetation does not change considerably during a month. 

2.2.5. True color band composite data 
The visible red, green and blue light bands demonstrate how we see 

Earth’s surface from space. We retrieved the daily true color band 
composite, i.e. the surface spectral reflectance for the red (band 1), blue 
(band 3) and green (band 4) bands at 500 m spatial resolution from the 
TERRA MODIS product MOD09Gav006 https://lpdaac.usgs.gov/produ 
cts/mod09gav006/, corrected for atmospheric conditions (Vermote, 
2015). We aggregated the data to a 1 × 1 km grid, to suit the output’s 
spatial resolution. 

2.2.6. Precipitation data 
We used daily precipitation data of 1 × 1 km developed by the 

REGNIE (Regionalisierte Niederschlagshöhen) method which are pub
licly available from the DWD Climate Data Center https://opendata. 
dwd.de/climate_environment/CDC/grids_germany/daily/regnie/ 
(DWD, 2022b). REGNIE is based on the interpolated DWD weather 
station precipitation measurements, using a combination of multiple 
linear regressions and Inverse Distance Weighting (IDW), with 
orographic conditions considered (Rauthe et al., 2013). In a recent up
date, the REGNIE dataset has been substituted with HYRAS-DE-PRE 
(DWD, 2023), which shares the same methodology and references the 
identical paper by Rauthe et al. (2013). 

2.2.7. Wind speed data 
We retrieved daily mean wind speed (DWD, 2022a) of the same 406 

weather stations as for the RH data https://opendata.dwd.de/clim 
ate_environment/CDC/observations_germany/climate/daily/kl/histori 
cal/ (Figure S1). We interpolated this dataset to 1 × 1 km spatial reso
lution using TPS, since studies have suggested that TPS outperformed 
other interpolation methods such as kriging or IDW for mapping climate 
variables (Wu et al., 2013, 2015). Details regarding the spatiotemporal 
distribution and the assessment of wind speed interpolation are avail
able in the Supplementary material (Figure S3 and Table S1). 
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2.3. Modeling 

RF (Breiman, 2001) is a well-known and powerful supervised 
ensemble ML algorithm, utilized for solving both classification and 
regression tasks - based on the bagging principle. For regression, random 
sub-samples of the given dataset (i.e., the training set in most applica
tions) are selected (with replacement). Then, the algorithm constructs 
decision trees - one for every sub-sample, also including a subset of the 
specified features (i.e., the model predictors). Each decision tree will 
generate an output/prediction of the target variable. The main model’s 
output is calculated by averaging all the outputs of the individual de
cision trees. 

The RF algorithm copes greatly with big data, with potentially 
correlated predictors and their non-linearity, and with overfitting. RF is 
also considered as a robust method against outliers. 

In our study, we trained the RF model, trying to evaluate its effi
ciency in reproducing the observed RH values measured by the weather 
stations, i.e., the ground-based truth. As RF inherent robustness allevi
ates the need for complex hyperparameter tuning, we did not proceed 
with highly sophisticated methodologies for hyperparameters tuning 
but rather some trial and error by deviating from the default settings. We 
did not observe any strong differences to the model performance by 
testing different sets of hyperparameters. Eventually, we used 500 trees 
and 8 randomly sampled variables as candidates at every split (num. 
trees = 500, mtry = 8), training the model for each year separately to 
capture annual variations. The daily observed mean RH (%) at the DWD 
stations was the response variable. The predictors were our previously 
modelled daily mean Tair (Celsius), the daily red, green and blue bands 
(dimensionless), the daily mean precipitation height (mm) and the daily 
mean wind speed (m/s) as well as elevation (meters) and monthly NDVI 
(dimensionless). We also integrated the geographical coding informa
tion [i.e., longitude (◦) and latitude (◦)] to account for spatial variations 
that might not be fully represented by other spatial features in the 
model, and we included the day of the year (1–365|366) in order to 
capture daily variations in the response-predictor variables relationship. 

2.3.1. Model performance 
Ten-fold cross-validation (CV) was used to assess the model perfor

mance by randomly dividing the set of the DWD weather monitors to a 
training and a testing set (90:10) ten times. Each time, the model was re- 
fitted using the training set and then the RH was predicted in the 
respective testing set. Our aim was to estimate a full time series of RH in 
locations without weather stations and therefore in grid cells where the 
RF model was not previously trained, and consequently to simulate the 
prediction step of the modeling procedure. Regressing the observed 
mean RH vs. the predicted mean RH by the RF model’s testing set, we 
calculated the corresponding R2, RMSE, Mean Absolute Percentage 
Error (MAPE) and Mean Percentage Error (MPE) (formulations are 
written in the Supplementary), each of them ten times and then we took 
their average to represent each year’s CV-R2, CV-RMSE, CV-MAPE and 
CV-MPE. 

In the prediction step, we applied the RF model to all grid cells and 
days combinations without available RH measurements of DWD 
weather stations in order to obtain a complete RH dataset for entire 
Germany. 

2.3.2. Validation with external data 
An additional validation was conducted by comparing our daily 

mean RH predictions with measurements of an independent dense 
monitoring network during 2015–2019. The network included RH 
measurements of 4 min temporal resolution from 82 HOBO-Logger de
vices (ONSET, Type Pro v2), which were located in the city of Augsburg 
and in two adjacent counties (Augsburg county and Aichach-Friedberg) 
(Figure S4). Detailed information for the monitoring network and the 
measurements’ quality assurance can be found in the corresponding 
paper (Beck et al., 2018a). For our comparison, we aggregated the 4-min 

RH values to daily means and then 7-day averages. We generated the 
corresponding R2, RMSE, MAPE and MPE as derived from linearly 
regressing the predicted RH from the model against the observed RH 
from the HOBO-Logger monitors. 

The majority of the HOBO-Logger stations were located in the city 
center of Augsburg or close to it, where no DWD measurements were 
available in the training step of the RF model (closest stations were 
approx. 10 and 18 km apart from the city center, see Figure S4). Thus, 
we investigated the performance of the model in an area without prior 
information but of great epidemiological interest since highly populated 
implicating that more people are exposed here. 

2.4. Descriptive analyses and case study 

Descriptive statistics [mean, standard deviation (SD), minimum 
(min), first quartile (Q1), median, third quartile (Q3) and maximum 
(max)] were calculated from our German-wide RH predictions and from 
the DWD observations. We also investigated the spatiotemporal RH 
patterns over the last 2 decades, overall and by season. 

To demonstrate the improvement in our exposure assessment, we 
compared the spatial distributions of the daily mean RH predictions 
from the RF model and the daily mean RH measurements from the DWD 
stations in an urban location for the two last decades. The city of 
Regensburg covers an area of 80.76 km2 with about 150,000 in
habitants, and, as one of the study sites of the German National Cohort 
(NAKO) (German National Cohort Consortium, 2014), has also an 
epidemiological research interest. 

We performed our analysis in R, v. 4.2.2 (R Core Team, 2022). The 
RF model was developed with the R package “ranger” (Wright and 
Ziegler, 2017). 

3. Results 

Figure S5 shows the Spearman correlation coefficients for the 
models’ variables. Briefly, RH was found to be highly and positively 
associated with the true color band composite (r ≈ 0.5) while there was a 
strong negative correlation with Tair (r ≈ - 0.5). In Figure S6, we 
demonstrate the variable importance plot findings. Date played a very 
important role. We also observed that Tair and the blue band were the 
most important spatiotemporal predictors of the RF model for esti
mating RH. They were followed by precipitation, green band, wind 
speed and longitude, and then elevation, latitude, NDVI and red band. 
The order of the predictors was slightly different through the years, but 
there were main trends as described. 

3.1. Model performance 

The model achieved high accuracy [22-year average R2 = 0.83 
(range: 0.77–0.88)] and small errors [22-year average RMSE = 5.07% 
(range: 4.44%–6.27%), MAPE = 5.19% (range: 4.45%–6.93%) and MPE 
= - 0.53% (range: - 0.35% - - 0.89%), Table 1]. We observed an increase 
of the model performance (increase of R2 and decrease of errors), 
together with an increase of the total number of available weather sta
tion data over the years. Scatterplots depicting the example years with 
the lowest and highest fitting scores, specifically 2001 and 2020, have 
been included in the Supplementary material (Figure S7). Autumn 
months (September–November) had the lowest RMSE = 4.65% (range: 
3.89%–5.83%) while spring months (March–May) had the highest 
RMSE = 5.32% (range: 4.60%–6.44%) (Fig. 1). We also observed that 
predictions belonging to the lower 10% of the dataset gave higher errors 
[RMSE = 7.85% (range: 6.86%–9.28%)] compared to the predictions of 
the upper 10% of the dataset [RMSE = 5.38% (range: 4.47%–6.79%] 
(Fig. 1). The corresponding results for MAPE and MPE are available in 
the Supplementary (Figure S8 and S9). 
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3.2. Validation with external data 

We found a strong correspondence between our RH model pre
dictions and the external HOBO-Logger network measurements with a 5- 
year average R2 of 0.86 (range: 0.82–0.89) and a 5-year average RMSE 
of 5.45% (range: 5.14%–6.16%), MAPE of 5.59% (range: 5.19%–6.42%) 
and MPE of 2.98% (range: 1.82%–4.47%) for the daily average RH 

exposure (Table 2). For the 7-day average RH exposure, as expected, the 
accuracy was even higher [R2 = 0.87 (range: 0.84–0.92)] and the errors 
lower [RMSE = 4.49% (range: 4.06%–5.29%), MAPE = 4.59% (range: 
4.08%–5.51%), MPE = 3.11% (range: 1.77%–4.81%)]. Density scatter
plots confirmed the good correlation (Figure S10). 

3.3. Case study - Regensburg 

In Fig. 2, we display the average spatial RH patterns for the region of 
Regensburg for the period 2000–2021. The city area showed up to 4.5% 
lower RH values than the surrounding rather rural county area. How
ever, the variability of the daily values which will be also considered in 
subsequent epidemiological analysis is much larger than the 22-year 
average - e.g., up to 9% (randomly selected example day in 
Figure S11). Yet, the rural region was characterized by variations even 
in neighbouring tiles. The average RH exposure in Regensburg measured 
by the available DWD weather station of the region was far below the Q1 
of the RH predictions of the RF model for the region (Fig. 3). 

3.4. Spatiotemporal RH patterns 

Table 3 shows descriptive statistics of measured and modelled RH 
across Germany for 2000–2021. Germany was characterized by high RH 
values with Q1 of both DWD stations’ and model’s RH distribution to be 
71% and 71.91%, respectively. The observed and predicted 22-year 
average RH derived by the DWD stations and the RF model were 
79.05% (SD = 12.38%) and 79.00% (SD = 10.46%), respectively. 

Fig. 4 displays the 22-year averaged predicted RH output map of 
Germany (plot 1) which indicates spatial RH patterns, including ur
banization, mountainous regions, rivers, forests and coastlines. Metro
politan areas such as those of Berlin, Hamburg and Munich and the 
extended and other dense urban cores (e.g., from Karlsruhe to Frankfurt) 
had much lower RH values compared to the neighbouring rural settings. 

Table 1 
Prediction accuracy for the RF model: 10-fold CV results for the daily mean RH 
predictions over Germany during 2000–2021.  

Year R2 RMSE 
(%) 

MAPE 
(%) 

MPE 
(%) 

Sample size (number of 
cell-days) 

2000 0.78 5.71 5.88 − 0.64 100,699 
2001 0.78 5.53 5.50 − 0.52 121,225 
2002 0.77 5.69 5.77 − 0.59 123,946 
2003 0.81 6.27 6.93 − 0.89 123,364 
2004 0.78 5.64 5.74 − 0.61 126,604 
2005 0.81 5.21 5.26 − 0.51 134,386 
2006 0.82 5.28 5.37 − 0.65 135,600 
2007 0.84 4.81 4.89 − 0.48 139,482 
2008 0.83 5.00 5.14 − 0.52 140,135 
2009 0.82 5.06 5.15 − 0.49 142,295 
2010 0.86 4.72 4.73 − 0.39 142,629 
2011 0.86 4.91 5.04 − 0.56 141,781 
2012 0.84 4.74 4.81 − 0.48 141,820 
2013 0.84 4.80 4.72 − 0.44 140,928 
2014 0.85 4.55 4.47 − 0.38 142,641 
2015 0.85 4.91 5.03 − 0.52 142,908 
2016 0.83 4.72 4.65 − 0.41 139,491 
2017 0.83 4.69 4.64 − 0.41 143,206 
2018 0.87 4.94 5.32 − 0.57 143,026 
2019 0.85 5.09 5.37 − 0.62 140,866 
2020 0.88 4.87 5.26 − 0.53 116,670 
2021 0.85 4.44 4.45 − 0.35 116,544 
Overall 0.83 5.07 5.19 ¡0.53 133,648  

Fig. 1. Seasonal RMSE and RMSE to extremes for the model’s RH predictions in Germany during 2000–2021.  
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In Figure S12, we zoomed in the Augsburg region, which consists of the 
city center and two adjacent counties, to give an example of the high 
spatial difference between a city center and its neighbouring but less 
urbanized areas. Additionally, dense mountainous regions such as the 
Alps and Harz, coastlines as the North Sea coast and rivers as Elbe in a 
large part of it, had the highest RH values country-wide (Fig. 4). 
Furthermore, we included the spatial distribution map exhibiting the 
interannual change of RH (Figure S13) to ensure comprehensive 

coverage. Significant interannual spatial variations were not discernible 
and the spatial variability which remained mostly constant through the 
years, aligned with the patterns observed and described in the averaged 
map (Fig. 4, plot 1). Also, the temporal RH variability in Germany is 
presented for 2001–2021, by exhibiting the differences between the 
predicted RH yearly averages and the 21-year average (Fig. 4, plot 2). 
We excluded the year 2000 because the model predictions are only 
available from late February of that year due to the missing Tair values 

Table 2 
Accuracy results from the validation with external data using the HOBO-Logger daily mean RH observations and 7-day averages over the Augsburg region during 
2015–2019.   

7-day average 

Year R2 RMSE (%) MAPE (%) MPE (%) R2 RMSE (%) MAPE (%) MPE (%) 

2015 0.87 5.14 5.22 2.07 0.89 4.06 4.08 2.15 
2016 0.82 5.23 5.19 2.48 0.84 4.14 4.10 2.58 
2017 0.84 5.15 5.43 1.82 0.84 4.30 4.34 1.77 
2018 0.89 5.58 5.67 4.07 0.92 4.68 4.93 4.25 
2019 0.86 6.16 6.42 4.47 0.87 5.29 5.51 4.81 
Overall 0.86 5.45 5.59 2.98 0.87 4.49 4.59 3.11  

Fig. 2. Spatial pattern of the averaged predicted RH in Regensburg during 2000–2021.  
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until then. There were some fluctuations over the years but without 
indication of an increasing or decreasing trend. The most humid years 
were 2001 (81.30%), 2014 (81.20%) and 2013 (80.94%) while the most 
arid were 2003 (75.31%), 2020 (75.53%) and 2018 (75.52%), which are 
known hot and dry years from the recent climatological record. 

Mapping the 22-year average RH by season (Figure S14) identified 
winter and fall as the most humid seasons. High spatial RH variability 
was also observed within each season. 

4. Discussion 

In this paper, we introduced an approach for spatial and temporal 
modeling of RH using RF, a popular ML method for prediction tasks. The 
approach goes beyond the conventional interpolation of meteorological 
observations and uses several other data sources. We produced a reliable 
spatiotemporally-resolved RH dataset at 1 × 1 km spatial resolution 
across Germany for the period 2000–2021. The RF model achieved good 
performance with high predictive accuracy and low errors, validated 
with both internal data using cross-validation (R2 = 0.83, RMSE =
5.07%, MAPE = 5.19%, MPE = - 0.53%), and with independent obser
vational data (0.86 ≤ R2 ≤ 0.87, 4.49% ≤ RMSE ≤ 5.45%, 4.59% ≤
MAPE ≤ 5.59%, 2.98% ≤ MPE ≤ 3.11%). A case study for the city of 
Regensburg shows that our dataset is capable of capturing the full range 
of spatial variability of RH compared to the standard use of meteoro
logical observations. These DWD station observations could not repre
sent the high RH values of the peripheral areas in Regensburg, but also 
not the very low RH values of the city center. This clearly demonstrates 
the added value of our approach and how the use of additional data 
sources supplementing the conventional use of meteorological obser
vations improved the RH prediction. It is especially important to capture 
the RH spatial variability for assessing differences in human’s individual 
exposure in epidemiological studies. We also presented an analysis of 
the spatiotemporal RH patterns in Germany during 2000–2021. 

The RH-health relevance has not been clarified adequately (Bind 
et al., 2014). RH adverse effects on human health could be partially 
explained by its interplay with the excessive heat stress and the body 
dehydration, as described in Davis et al. (2016). During extended and 
excessive heat events such as heatwaves, the human body struggles 
against heat-driven physiological responses and a key mechanism for its 
temperature regulation is evaporation. However, when RH is high and 
therefore air contains a lot of moisture, it is difficult for the sweat to be 
relieved and thus cooling becomes insufficient. Hence, the body core 
temperature increases while this increase is associated with a variety of 
detrimental health effects (Schneider et al., 2017). Additionally, low RH 
can affect the human skin sensitivity to mechanical stress (Engebretsen 
et al., 2016). RH is also associated with the transition of vector-borne 
diseases e.g., from mosquitos and ticks (Davis et al., 2016) as well as 
with the development and stability of microorganisms in aerosols, 
facilitating airborne diseases (Božič and Kanduč, 2021). 

So far there is a literature gap in the investigation of the RH expo
sure’s direct effects on human health and the accompanying underlying 
mechanisms. Further and more detailed research is needed. Hence, it is 
critically important for epidemiologists to have access to high-resolution 
and reliable RH datasets. 

Most epidemiological studies retrieve the participants’ exposure in
formation, in this case RH, from available meteorological stations that 
do not capture the full variability of RH, especially at the city scale. In 
the Regensburg area, an epidemiological study would usually assign RH 
measurements from the station most closely located to each partici
pant’s residential address but fails to account for the spatial variability 
of RH that is actually occurring. Therefore, some measurement error 
would be introduced and the variability would be lost. Focusing on the 
city area, participants who live there would be assigned with a higher 
RH value than their actual one. At the same time, those living outside the 
city center would be assigned with RH values that are too low. This 
clearly demonstrates the urgent need for high spatiotemporal RH data
sets for health studies for less biased exposure estimates. 

Compared to other studies that use interpolation techniques such as 
TPS or kriging, our RF model is capable of reducing errors by half. Li 
et al. (2014) introduced a two-step procedure to map RH every 3 h at 1 
km resolution over China during 1958–2010. They fitted a partial TPS 
interpolation to reanalysis data, location and elevation as predictors, to 
estimate a trend surface, and then a simple kriging was applied to the 
residuals for trend surface correction. They reported a RMSE of 11.06% 
whereas our model showed a RMSE of 5.07%. More recently, Li and Zha 
(2018) also used an RF model, combining station and satellite data, to 

Fig. 3. Distribution of predicted RH in the Regensburg region for 2000–2021 (histogram in blue and corresponding boxplot above).  

Table 3 
Observed and predicted mean RH (%) over Germany during 2000–2021.  

Source Mean SD Min Q1 Median Q3 Max 

DWD stations 
(n = 406) 

79.05 12.38 3.00 71.00 81.00 88.75 100.00 

RF model (n 
= 366,536 
cells) 

79.00 10.46 13.70 71.91 80.56 87.44 100.00  
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Fig. 4. Spatiotemporal RH patterns in Germany during 2000–2021. Plot 1: Spatial patterns of the predicted RH in Germany, averaged for 2000–2021. Plot 2: 
Difference between the predicted RH yearly averages and the predicted RH 21-year average (2001–2021), German-wide. 
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estimate RH during the hot summer of 2009 over China. Elevation and 
vegetation were found to be the most important predictors for RH. 
Comparing our model with their work, it seems that our additional in
clusion of Tair, date information, precipitation and wind speed data in 
the modeling process, significantly improved the model’s performance. 
Li and Zha (2018) reported a R2 = 0.70 and RMSE = 7.4%, whereas our 
model could improve the R2 to 0.83 and lower the errors to RMSE =
5.07%. In addition, our RF model allowed us to model RH for entire 
years and not only for one season. Lately, Kloub (2022) used an 
auto-encoder residual neural network, incorporating monitor, 
re-analysis and satellite data, to estimate various meteorological factors 
including RH for China in 2015. The accuracy of their RH model 
considerably improved from 0.77 to 0.86 upon including the monthly 
index, highlighting the importance of diverse temporal variables for RH 
models (we also incorporated the day of the year index). Kloub (2022) 
achieved a fairly good model performance of R2 = 0.86, Mean Absolute 
Error (MAE) = 5.58% and RMSE = 7.41%, whereas our model yielded 
an R2 of 0.83, MAPE of 5.19%, and notably lower RMSE of 5.07%. It is 
important to consider that Kloub (2022) predicted RH only for a single 
year, while our model covered a 22-year period. For instance, we also 
reported an R2 of 0.88 for the year 2020. Significantly, the confidence 
for our model’s performance benefited from the conducted external 
validation using a dense and independent monitoring network in 
Augsburg, a distinctive advantage not present in other studies. 

This study was also subject to limitations. Satellite-derived pre
dictors like NDVI and the true color band composite may encounter 
resampling errors, whereas precipitation and wind speed data involve 
spatial interpolation errors. Nevertheless, these datasets maintain a high 
standard of quality and are extensively employed in existing literature. 
Furthermore, the external validation set was not representative of the 
whole Germany. The HOBO-Logger monitoring network was placed in 
Augsburg, South Germany. However, we used the Augsburg’s greater 
region which consists of a dense city center and two adjacent rural 
settings and therefore the validation area was characterized by high 
spatial RH variability. Additionally, we were already able to measure the 
model’s predictive accuracy country-wide due to our monitor-based 
split in the applied CV scheme (2.3.1 Model performance). The 1 × 1 
km spatial resolution could be too coarse for some studies, especially for 
local and small-scale analyses. However, as we demonstrated in the case 
study of the city of Regensburg, the RF model of 1 × 1 km provided a 
valid representation of the RH spatiotemporal variation at the city scale. 
For future analyses, we could consider downscaling methods especially 
for cities (Hough et al., 2020). 

For future applications, there is a potential to enhance the predictive 
capabilities of a RH model by augmenting its array of predictors to 
include re-analysis data or wind direction for instance, which were ab
sent in our study due to the lack of appropriate data for Germany. This 
could be advantageous if these variables achieve higher spatial resolu
tions in upcoming developments. However, we do not expect consider
able improvements as humidity is predominantly governed by 
temperature and by the vertical/horizontal mixing of wind which have 
already been integrated into our model. Additionally, other ML meth
odologies, such as eXtreme Gradient Boosting (XGBoost) or Neural 
Networks, could be explored if they align more effectively with distinct 
spatial contexts and the datasets at hand. These methodologies have 
been examined in the literature for various exposure scenarios (Ma et al., 
2020; Tian et al., 2022). 

5. Conclusion 

We showed how observation, remote sensing and modelled data can 
be combined under a RF modeling scheme to reliably estimate RH in 
high temporal and spatial resolution across a country. Our product 
contributes substantially to reduce exposure errors for subsequent 
epidemiological studies, by better representing the spatiotemporal RH 
variability. For cohort studies using geocoded participant address 

information for exposure assessment, the investigation of changes over 
time and space is considerably improved by such a spatiotemporal 
model compared to relying solely on data from measurement stations. 
We provide a reliable RH dataset for Germany and a well-founded and 
generalizable approach for RH prediction for other study domains and 
countries. 
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Figure S1. Spatial distribution of the 406 DWD weather stations we used 

for our analysis in Germany. 
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Figure S2. Elevation map of Germany in 1 × 1 km spatial resolution. 
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Figure S3. Spatiotemporal distribution map of wind speed interpolated data in Germany 

during 2001-2021.  
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Figure S4. Map of the Augsburg region (Augsburg city and 2 adjacent counties), 

the sites of the HOBO-Logger monitoring network during the period 2015-2019 

and the 2 available DWD weather stations. 
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Figure S5. Correlation matrix for the RF model’s variables (spearman correlation 

coefficient), randomly selected year 2004 
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Figure S6. Variable importance of the RF model for the randomly selected years 2001, 2006, 2009 and 2018. 
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Figure S7. Density scatterplots between the model’s RH predictions and the DWD RH observations for the example 

years with the lowest and highest fit, i.e., 2001 and 2020, respectively. Dark grey line = fitting line. Dark blue line = 

1:1 diagonal line. 
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Figure S8. Seasonal MAPE and MAPE to extremes for the model’s RH predictions in Germany during 2000-2021. 
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Figure S9. Seasonal MPE and MPE to extremes for the model’s RH predictions in Germany during 2000-2021. 
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Figure S10. Density scatterplots between the model’s RH predictions and the HOBO-Logger RH observations for 

2015-2019, daily average and 7-day average. Dark grey line = fitting line. Dark blue line = 1:1 diagonal line. 
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Figure S11. Spatial pattern of the predicted daily mean RH in Regensburg, 

04.03.2021. 
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Figure S12. Spatial pattern of the averaged predicted RH in Augsburg during 

2000-2021.  
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Figure S13. Spatial distribution map of interannual change of RH in Germany from 2001 to 2021. 
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 Figure S14. Maps of predicted RH by season in Germany, averaged for 2000-2021. 
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Table S1. Prediction accuracy for the wind speed interpolation: 10-fold cross-validation 

results for the daily mean wind speed interpolation over Germany during 2000-2021. 

Year R2 RMSE (m/s) 

2000 0.60 1.50 

2001 0.56    1.47     

2002 0.59                  1.55 

2003 0.54  1.47 

2004 0.55   1.50 

2005 0.56  1.47 

2006 0.52      1.49 

2007 0.59          1.52         

2008 0.56   1.51   

2009 0.50   1.44  

2010 0.55   1.38   

2011 0.58   1.40   

2012 0.58   1.33 

2013 0.58         1.32         

2014 0.62      1.25           

2015 0.62   1.36 

2016 0.58 1.30 

2017 0.58 1.39            

2018 0.59   1.30 

2019 0.58  1.36             

2020 0.64                    1.27 

2021 0.59   1.27        

Overall 0.58 1.40 
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Random Forest model definition 

We applied the following random forest model, separately for each year: 

RelativeHumidityi,j ~ AirTemperaturei,j + RedBandi,j + GreenBandi,j + BlueBandi,j + Precipitationi,j +  

+ WindSpeedi,j + Elevationi + NDVIi,j + Longitudei + Latitudei + DayofYearj 

where: 

- RelativeHumidityi,j = mean relative humidity (%) at monitor location i on day j 

- AirTemperaturei,j = mean air temperature (°C) at monitor location i on day j 

- RedBandi,j = red band (dimensionless) at monitor location i on day j 

- GreenBandi,j = green band (dimensionless) at monitor location i on day j 

- BlueBandi,j = blue band (dimensionless) at monitor location i on day j 

- Precipitationi,j = mean precipitation height (mm) at monitor location i on day j 

- WindSpeedi,j = mean wind speed (m/s) at monitor location i on day j 

- Elevationi = elevation (meters) at monitor location i 

- NDVIi,j = mean normalized difference vegetation index (dimensionless) at monitor 

location i on month of day j 

- Longitudei = longitude (°) at monitor location i 

- Latitudei = latitude (°) at monitor location i 

- DayofYearj = day j of the year 

Hyperparameters: num.trees = 500 and mtry = 8   
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Statistical parameters - formula sheet 

• R2 = 1 – 
𝑆𝑆𝑅

𝑆𝑆𝑇
 

where: 

- SSR (Sum of Squared Residuals) = sum of the squared differences of the predicted 

values ŷ and the observed values y of the response variable (relative humidity), 

i.e., SSR = ∑ (y𝑖 −  ŷ𝑖)
2𝑛

𝑖=1  

- SST (Total Sum of Squares) = sum of the squared differences of the observed values 

y of the response variable (relative humidity) and its average value ȳ,  

i.e., SST = ∑ (y𝑖 − ȳ)2 𝑛
𝑖=1  

- i = ith grid cell and day combination 

- n = total number of grid cell and day combinations  

• RMSE = √
∑ (y𝑖− ŷ𝑖)2𝑛

𝑖=1

𝑛
 

where: 

- yi = observed value of the response variable (relative humidity) for the ith grid cell 

and day combination 

- ŷi = predicted value of the response variable (relative humidity) for the ith grid cell 

and day combination 

- n = total number of grid cell and day combinations 

• MPE = 
∑

y𝑖− ŷ𝑖
y𝑖

𝑛
𝑖=1

𝑛
 ∙ 100   

where: 

yi = observed value of the response variable (relative humidity) for the ith grid cell and day 

combination 

ŷi = predicted value of the response variable (relative humidity) for the ith grid cell and day 

combination 

n = total number of grid cell and day combinations 

• MAPE = 
∑ |

y𝑖− ŷ𝑖
y𝑖

|𝑛
𝑖=1

𝑛
 ∙ 100   

where: 
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yi = observed value of the response variable (relative humidity) for the ith grid cell and day 

combination 

ŷi = predicted value of the response variable (relative humidity) for the ith grid cell and day 

combination 

n = total number of grid cell and day combinations
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Appendix  

Further projects 

In addition to the two publications included in this PhD Thesis, my involvement extended to 

several projects during my PhD studies. Notably, I worked extensively for the HI-CAM99 project, 

for which I generated the aforementioned Tair and RH datasets. Currently, our focus is on 

investigating the relationship between short-term exposure to Tair and cognitive function, along 

with cardio-metabolic health among NAKO64 participants. This analysis was initially intended to 

be part of this PhD Thesis. However, due to significant delays in receiving the NAKO data, almost 

three years, we are currently pursuing this work in collaboration with our Max Delbrück Center 

(MDC) project partners.  

In addition, I actively worked to the Noise2NAKOAI100 project where we developed a 

comprehensive ML framework capable of identifying the driving contextual factors to various 

health outcomes, using hypertension as a case study110. Our overarching aim was to provide a 

tool accessible to environmental epidemiologists unfamiliar with AI. Therefore, the code will be 

publicly available. We employed both the Tair and RH datasets generated in this PhD Thesis to a 

large input database of environmental exposures, neighborhood and SES factors as well as 

health and individual-level characteristics of NAKO study participants. We compared traditional 

regression approaches (e.g., linear regression) with various ML algorithms, including neighbor-

based (e.g., k-nearest neighbor), statistical learning (e.g., support vector machine), ensemble 

learning (e.g., RF and XGBoost) and neural networks. In a sample with approximately 45% 

hypertensive participants (out of around 100,000), all models demonstrated robust performance, 

achieving comparable accuracies around 0.70. They highlighted key factors for hypertension, with 

individual characteristics (age, body mass index and sex) being the most influential, followed by 

environmental exposures (non-optimal temperature and air pollution) and individual SES features 

(income and education) factors. This work allowed me to expand my expertise in AI applications, 

explore various ML approaches, and network within the AI-health field.  

Furthermore, during my PhD time I also started working on air pollution and Tair effects on odor 

identification in the KORA cohort, an early indicator of various neurodegenerative conditions. 
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Originally intended as an alternative due to prolonged delays in receiving NAKO data, this work 

faced setbacks of its own, including technical difficulties that resulted in further delays, preventing 

its inclusion in this PhD Thesis. 

PhD experience - further insights 

I conducted this PhD Thesis under the scope of the HI-CAM project, a Helmholtz Association’s 

project in which 15 of the 18 Helmholtz centers across Germany were involved. The objective of 

the EPI-HMGU sub-project was to explore the physiological responses, particularly in cardio-

metabolic and cognitive function, to better inform climate change adaptation strategies in the 

health sector. High resolution meteorological data were crucial for achieving this goal. Working 

on exposure modeling and assessment aligned perfectly with my background in mathematics and 

biostatistics and greatly enhanced my academic growth and career prospects. 

With the guidance and support of my supervisors, I seized the invaluable opportunity to further 

expand my expertise in employing AI methodologies within the realm of health research, an area 

of significant pertinence and fascination for a biostatistician. This enriching experience has not 

only broadened my horizons but has also equipped me with multifaceted approaches to exposure 

assessment, epidemiological analysis and advanced statistical inference techniques. Such 

initiatives are not only indicative of contemporary trends but also underscore the dynamic 

evolution of our field. 

I also gained substantial experience through active involvement in the Tair and RH data sharing. 

This participation provided me with valuable insights into various aspects of data management, 

including storage, transfer tools, and the compilation of corresponding data transfer agreements. 

In addition, I engaged in paper reviews for Environment International116. Serving as a reviewer is 

a crucial and responsible role that significantly contributes to the advancement and scrutiny of 

scientific knowledge. 

I also had the exceptional opportunity to expand my network within the Environmental 

Epidemiology and AI communities. This growth was nurtured through active participation in 

conferences, meetings, workshops, and the dissemination of research papers, fostering 

meaningful connections and collaborations with peers and experts in the field.  
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A notable highlight was my research visit in GERICS, Hamburg, financially supported by the 

Helmholtz Information & Data Science Academy Trainee Network. I deepened my understanding 

of ML techniques for meteorological exposure modeling and their applications in health research.  

Two of the most memorable moments during my PhD journey was receiving two prestigious 

poster awards at AI events in Hamburg and Paris, for the project Noise2NAKOAI, serving as a 

recognition of my hard work and efforts. 

Last but not least, I co-wrote a project proposal with colleagues from EPI-HMGU and GERICS, 

focusing on AI-health research. This experience enriched my academic career, regardless of its 

acceptance status.
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