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Abstract

In order to appropriately utilize visual signals from the environment, the brain needs to place this information

into a context. Contexts are multifaceted, and can refer to the overall nature of the visual landscape, as well as

the goals and behaviours of the animal. The behavioural context can determine the type of visual signals that

the animal is likely to encounter, and, simultaneously, the type of behaviours the animal is likely to perform

on a moment-to-moment basis. These behaviours may be used to explore the visual scene, and can themselves

generate certain types of visual signals. It is therefore unsurprising that visual systems in the brain account for

context at the earliest stages of sensory processing. One of these initial processing stages in the mammalian

brain is the visual thalamus. This dissertation presents the results of three investigations on the contextual

modulation of neural activity in the dorsal lateral geniculate nucleus (dLGN) of the thalamus. To conclude,

novel results involving the ventral lateral geniculate nucleus of the thalamus in setting a behavioural context

are synthesized. Taken together, it is hoped that these works will contribute to an acknowledgement of the

diversity of contextual modulations in vision, and lead to a better understanding of how the brain constructs

its own sensory world.

Until the last decade, investigations of sensory processing in the mammalian brain were typically carried out

in anaesthetized animals using simple artificial stimuli. However, brains have evolved process complex natural

environments while the animal is awake and behaving. These factors must therefore be taken into account when

investigating the function of a certain piece of neural circuitry. The research presented in Chapter 2 examines

the role of feedback from the visual cortex to the dLGN in awake animals viewing naturalistic video stimuli.

The work reveals a robust effect of this feedback on dLGN neurons in the presence of naturalistic stimulation.

Furthermore, it was found that cortical feedback produces effects that are similar to locomotion, but that the

two influences are statistically independent, suggesting that locomotion operates on dLGN neurons through a

different mechanism.

Researchers use behavioural signals like locomotion to infer that the animal is in a behavioural state

termed “arousal”. Another external marker for arousal is pupil dilation. Previous work examined the effects

of arousal on sensory systems by partitioning neural activity into two mutually exclusive groupings based on

the level of arousal. The work in Chapter 3, however, extends the notion of behavioural state by showing

relationships between dLGN activity and pupil dilation over multiple, nested temporal scales. Some of these

modulations, especially at faster timescales, were related to specific behaviours such as locomotion and eye

movement. Overall, despite the presence of a robust neural activity pattern characterizing these modulations

across temporal scales, there was a diversity in the strength with which individual neurons coupled to a certain

temporal component. This pattern of results indicates that, rather than operating in two distinct modes, dLGN

neurons are under the continuous influence of a multitude of arousal-related factors.

Modelling plays an important role in neuroscience, allowing the translation between conceptual and quan-

titative understanding. In Chapter 4, a descriptive model is introduced to assess the additive contributions of

locomotion, pupil size, and cortical feedback to the stimulus responses of individual dLGN neurons. This work



not only utilizes a novel efficient and robust method for assessing responses to naturalistic visual stimuli, but

also provides a unified quantitative account of the various modulatory influences acting on dLGN neurons.

The enclosed research primarily provides descriptive accounts of contextual modulation of activity in the

early visual system of mammals. Where it is limited is in the discussion of mechanisms and functional roles.

Chapter 5 reviews two findings from other research groups uncovering a novel mechanism, involving the ventral

lateral geniculate nucleus (vLGN) of the thalamus, by which mammals might control behavioural responses

to visual stimuli. These novel findings highlight the usefulness of asking “how” and “why” in neurobiological

research. Thus, in the final chapter, the potential mechanisms underlying dLGN modulations uncovered in

Chapters 2 through 4 are discussed, and various proposals for their teleological functions in vision are made.
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1 Introduction

1.1 The dynamic brain

Information coming from the environment is processed in the brain by sensory systems that are adaptive,

shaping sensory signal processing to meet the needs of the animal at any given moment. This sculpting of the

animal’s sensory world is a multifaceted process, involving active behaviours used to explore the environment,

and distinct patterns of neural activity used to meet cognitive demands. These factors are inextricably linked

through the conceptual framework of “internal states”, where latent processes simultaneously influence the

expression of exploratory behaviours and neuronal modes of operation, both of which result in measurable

modulations of neural activity in sensory systems.

Vision in action

Animals do not experience the visual world passively, but rather use behaviours such as locomotion and eye

movements to actively explore visual scenes. These behaviours, in turn, result in changes to sensory input

that need to be accounted for by the brain in order to distinguish self-generated changes in input from those

that originate in the environment (Von Holst and Mittelstaedt, 1950). Furthermore, through these exploratory

behaviours, animals will encounter diverse environmental statistics. As the animal begins to move, a largely

static world is transformed into one where the flow of objects from the centre of the visual field to the periphery

is expected (Gibson, 1950). Eye movements can transition the visual world of the animal from the relative

uniformity of the sky to the fine textures of landscapes below the horizon. Sensory input that does not fit the

patterns expected from the movements may be a sign of food or danger. The result is that the study of the

neural circuits involved in visual perception cannot only consider the effects of passive visual stimulation, but

needs to consider visual input in the context of active behaviours (Busse et al., 2017; Cullen, 2004). In addition

to this “active sensing”, the visual system needs to orchestrate other functions such as vigilance, attention,

learning, and memory consolidation. Vision is thus fundamentally multi-functional, and the integration of

this type of contextual information with visual signals leads to distinct regimes of operation and dynamic

input-output mapping at the earliest stages of visual processing in the brain.

The dorsal lateral geniculate nucleus (dLGN) of the thalamus is an integrative hub for all of the above

considerations. Although it is far from the only structure directly receiving input from the retina (Morin and

Studholme, 2014; Martersteck et al., 2017), it is the initial node for what is known as “image-forming vision”

– so called because the thalamocortical visual system extracts fine detail from visual scenes, contributing to

object recognition and conscious vision (Seabrook et al., 2017). Thus, the dLGN sits at the bottom of an

important hierarchy (Siegle et al., 2021), with the potential to influence much upstream visual processing in

the brain.

Neurons of the dLGN are embedded in a complex circuit, suggesting that their role in transmission of

visual signals is dynamic, although a precise functional description of this dynamism has proven difficult

to articulate. Beyond transmitting retinal signals to the visual cortex, the dLGN also receives re-entrant
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input from the visual cortex and is reciprocally connected to a sheet of inhibitory neurons known as the

thalamic reticular nucleus (TRN; Sherman and Guillery, 2004; Kerschensteiner and Guido, 2017), also known

as “guardian of the gateway to the cortex” Crick (1984) as it is thought to influence thalamocortical activity

based on cognitive states. Meanwhile, behavioural signals can reach the dLGN via projections from various

brainstem nuclei (McCormick, 1992; Sherman and Guillery, 2004; Kerschensteiner and Guido, 2017) involved

in coordinating behaviours and brain states (Steriade and McCarley, 1990; Mena-Segovia and Bolam, 2017).

Thus, while still being a relatively simple piece of brain circuitry – in the sense that the dLGN has one strong

driving input and one clear output – the integration of diverse modulatory inputs make the dLGN a key

structure in which to study dynamic sensing.

Behaviour and brain states

One of the most obvious distinctions between operating modes in the brain is the partitioning of sleep and

wakefulness. These two states can be distinguished using the collective electrical activity of large populations

of cortical neurons, which can even be measured using electrodes places outside the skull (Berger, 1929; Adrian

and Matthews, 1934). During certain stages of sleep, the electrical potentials generated by cortical activity

display large, slow oscillations (Steriade et al., 1993). This state is often referred to as synchronized (Harris

and Thiele, 2011) because these high-amplitude oscillations arise largely from coordinated, simultaneous in-

puts to a neuronal population (Buzsáki et al., 2012; Einevoll et al., 2013). In contrast, wakefulness is generally

characterized by smaller, faster oscillations. While some degree of transient synchronization can occur in this

state, it is generally characterized by the independent firing of cortical neurons, and therefore referred to as

desychronized or activated (Harris and Thiele, 2011). These two oscillatory states are thought to have func-

tional importance, with the synchronous state decoupling neural activity from external drive and supporting

the coordinated activity necessary for offline memory consolidation (Steriade, 2006), and the activated state

allowing for the more complex activity patterns required for stimulus encoding (Harris and Thiele, 2011; Zagha

and McCormick, 2014; Haider et al., 2013).

The transition from a synchronous to an activated cortex involves the coordinated activity of a group

of brainstem nuclei historically referred to as the ascending reticular activating system or midbrain reticular

formation (Moruzzi and Magoun, 1949; Munk et al., 1996). This system contains nuclei that convey a variety

modulatory neurotransmitters, including norepinepherine (NE) and acetylcholine (ACh), to the thalamus and

cortex (Steriade and McCarley, 1990). This control system has more recently been expanded to include other

nuclei, such as the basal forebrain (Buzsaki et al., 1988; Xu et al., 2015). Nonetheless, the activity of these

systems promotes wakefulness through their coordinated actions on the thalamocortical system (Lee and Dan,

2012; Scammell et al., 2017). The thalamus, while not the driver in transitions between brain states (Fuller

et al., 2011), plays an integral role in their expression (Hirata and Castro-Alamancos, 2010; Poulet et al.,

2012; Nestvogel and McCormick, 2022) and determines the representational content of sensory cortices during

wakefulness. Thalamic relay nuclei provide strong, driving input to both sensory and association regions of

the cortex (Sherman and Guillery, 2002; Bruno and Sakmann, 2006). Furthermore, the motif of recurrent
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connectivity between the thalamus and cortex, together with the intrinsic properties of thalamic and cortical

cells, is thought to cause and sustain state-related activity patterns (Steriade et al., 1993; Hill and Tononi,

2005; Crunelli and Hughes, 2010; McCormick et al., 2015; Neske, 2016).

Brain state transitions similar to those described above have also been observed during wakefulness, and

are often related to the ongoing behaviour of the animal. In the whisker-associated somatosensory cortex

of mice, it was observed that cortical states resembling those associated with sleep arose when the animal

stopped moving its whiskers, while whisker motion brought about an activated state (Crochet and Petersen,

2006; Poulet and Petersen, 2008). Subsequently, locomotion was also shown to modulate activity patterns in

a similar manner in the primary visual cortex (V1; Niell and Stryker, 2010). Later investigations revealed

a substantial impact of locomotion on thalamic activity as well (Erisken et al., 2014), and even uncovered a

driving role for the thalamus in promoting an activated cortical state during whisking (Poulet et al., 2012).

Movements such as whisking and locomotion are almost invariably accompanied by pupil dilation (Erisken

et al., 2014; Vinck et al., 2015; Petty et al., 2021). Historically, however, pupil dilation was measured in

response to the viewing of “interesting visual stimuli” (Hess and Polt, 1960), or while performing an effortful

task (Hess and Polt, 1964; Kahneman and Beatty, 1966). More recently, spontaneous pupil dilation – in

the absence of locomotion or “interesting” stimuli – has been linked to cortical activation (Reimer et al.,

2014), improved sensory processing (McGinley et al., 2015a), and to the activity of neuromodulatory systems

responsible for cortical activation such as the locus coeruleus norepinepherine system (LC-NE; Aston-Jones

and Cohen, 2005; Joshi et al., 2016; Reimer et al., 2014) and the basal forebrain cholinergic system (BF-ACh;

Nelson and Mooney, 2016; Reimer et al., 2016). For these reasons, modulations of thalamocortical activity

during pupil dilation in the awake animal, beyond the effects attributable to specific behaviours (Poulet and

Petersen, 2008; Vinck et al., 2015; Petty et al., 2021), are thought to reflect a unified internal state: arousal.

1.2 Thalamic circuits for vision

The dLGN as a relay for visual information

One of the initial nodes of visual information processing in the mammalian brain is the dorsal lateral geniculate

nucleus of the thalamus (dLGN). Here, incoming visual signals from retinal ganglion cells (RGCs) in the eye

are passed on to the primary visual cortex (V1; Sherman and Guillery, 2004). In early recordings from the

visual system of cats, Hubel (1960) observed that RGCs and dLGN neurons had similar response properties,

and concluded that “complex integrative [visual] function” must occur in the cortex. This observation con-

tinues to be made in more modern investigations (e.g. Rathbun et al., 2010), where receptive fields (RFs) of

monosynaptically connected RGC-dLGN cell pairs, measured under anaesthesia and using white noise stimu-

lation were found to be nearly identical. This type of observation has led to the textbook labelling of dLGN

thalamocortical (TC) neurons as “relays”, implying that no transformation of visual information occurs as it

passes through the dLGN (Casanova and Chalupa, 2023). While the evidence against this idea is substantial,

this simple description of the dLGN remains, perhaps due to the lack of a unifying framework for the mosaic
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of observations made in the dLGN (Casanova and Chalupa, 2023).

But what exactly is the nature of the visual information available to dLGN neurons? The apparent

simplicity of the RFs measured using noise stimuli tends to obscure the fact that the circuitry of the retina

does not generate pixel-like output, but decomposes the image into behaviourally-relevant feature channels

representing complex spatio-temporal visual features (Masland, 2012; Kerschensteiner, 2022). These response

types can be robustly detected with the use of a rich visual stimulus (i.e. one with a variety of spatial and

temporal patterns), together with a modern unsupervised clustering method, revealing the presence of >30

functional RGC sub-types (Baden et al., 2016). These included classes of RGCs representing simple pixel-like

spots of light and dark (ON and OFF types), but with diverse temporal response patterns, and representing

additional features of visual stimuli such as edge orientation, movement, and movement direction. This type

of investigation confirmed and expanded upon functional classes which had been previously discovered using

targeted visual stimuli and analyses (e.g. Barlow and Hill, 1963; Weng et al., 2005). Further investigations

uncovered that, in addition to linear stimulus filtering properties, RGS can have non-linear response properties

dependent on the illumination context (Pearson and Kerschensteiner, 2015) and, interestingly, also the context

provided by naturalistic visual stimuli (Goldin et al., 2022; Karamanlis et al., 2022). Indeed, the spatial

distribution of RGCs types reflects the statistics of natural visual scenes (Gupta et al., 2023). These results

strongly suggests that visual encoding functions of later processing stages such as the dLGN cannot be easily

inferred from investigations using a limited set of parametric stimuli, but rather should be studied under

naturalistic stimulation conditions.

The older, simplified understanding of RGC response types, combined with the observation that dLGN

neurons in cats and monkeys only require one retinal input spike to themselves spike (Bishop et al., 1958;

Cleland et al., 1971; Usrey et al., 1999; Sincich et al., 2007), has led to the idea that dLGN stimulus responses

should also be simple. Stimulus responses in the dLGN are thought to have a pixel-like center-surround

organization, and often descriptively modelled using a simple “difference of Gaussians” model (Rodieck, 1965;

Grubb and Thompson, 2003; Einevoll and Plesser, 2012). However, even under anaesthesia, it has been

reported mouse dLGN neurons represent more complex visual features such as orientation and direction of

movement (Piscopo et al., 2013). Indeed, taking an empirical modelling approach to quantifying dLGN

stimulus-responses, Rosón et al. (2019) revealed that multiple complex RGC response types are required to

capture dLGN stimulus responses to a rich visual stimulus. One of the differences separating studies measuring

simple dLGN receptive fields and those revealing complexities could be the use of anesthesia (e.g. Rathbun

et al., 2010), which may limit the degree to which top-down and behaviour-related modulatory inputs influence

the RFs of dLGN neurons. In addition, the use of naturalistic stimuli with higher-order structure could further

improve our understanding of how dLGN circuitry shapes its stimulus-responses. Studies that use stimulus-

response kernels derived from artificial stimuli to obtain a good prediction (∼25-60% of response variance

explained) of dLGN responses to naturalistic stimuli have only been performed in anaesthetized animals (Dan

et al., 1996; Lesica and Stanley, 2004; Mante et al., 2008). Interestingly, one particular situation in which

these models fail is for rapid transient increases in firing rate linked to burst firing (Lesica and Stanley, 2004;
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Mante et al., 2008), the occurrence of which has been linked to particular brain states in the awake animal

(Bezdudnaya et al., 2006).

Two firing modes in the dLGN

One of the most prominent features of dLGN activity was recorded by Hubel, who observed that, when cats

entered into periods of quiescence or sleep, dLGN neurons began to fire more sparsely, but in clusters of

several spikes at firing rates sometimes exceeding 500 Hz (Hubel, 1960). These bursts of spikes, a feature

of all thalamocortical relay neurons (Sherman, 2001), are generated by a cell-intrinsic mechanism: prolonged

hyperpolarization de-inactivates T-type calcium channels, which, together with a depolarizing input or intrinsic

depolarization driven by a hyperpolarization-activated cation current, produces a prolonged calcium-dependent

depolarization known as a low threshold spike and subsequent sodium action potentials at high rates (Jahnsen

and Llinás, 1984; Crunelli et al., 1989; Llinás and Steriade, 2006). Importantly, the presence of the intrinsic

hyperpolarization-activated cation current can lead to rhythmic bursting (McCormick and Pape, 1990; Llinás

and Steriade, 2006). As already noted by Hubel, these bursts preferentially occur during sleep (Livingstone and

Hubel, 1981; McCarley et al., 1983), but their occurrence in the dLGN during wakefulness was later emphasized

(Guido and Weyand, 1995), specifically during periods of visual inattention (Weyand et al., 2001) and with

a synchronized hippocampal LFP (Bezdudnaya et al., 2006). Indeed, thalamic bursting is thought to play a

crucial role in the expression of slow cortical rhythms during sleep (Steriade et al., 1993) as well as quiescent

wakefulness (Nestvogel and McCormick, 2022). However, the counter-intuitive observation that thalamic

bursting also occurs in conjunction with exploratory behaviours such as eye movements (Guido and Weyand,

1995; Ramcharan et al., 2000) and whisker twitches (Fanselow et al., 2001) led to the hypothesis that bursting

may also play a role in stimulus encoding. For example, because bursts strongly activate cortical neurons

(Swadlow and Gusev, 2001), stimulus-driven bursting may facilitate stimulus detection, while regular “tonic”

spiking is better suited to encode stimulus detail (Sherman, 2001; Nicolelis and Fanselow, 2002). However, it

has also been observed that bursts may carry more information per unit than tonic spikes (Reinagel et al.,

1999), and have the potential for multiplexed stimulus encoding, conveying distinct information through burst

timing, intra-burst spike rate, and intra-burst spike timing (Mease et al., 2017). Furthermore, naturalistic

stimulus sequences regularly elicit bursts from dLGN neurons (Lesica and Stanley, 2004), and may serve to

encode low-frequency information and transitions from non-preferred to preferred stimuli (Lesica and Stanley,

2004; Alitto et al., 2005). Thus, rhythmic bursting during periods of quiescence plays a role in driving brain

states that are de-coupled from the environment, while bursting during periods of arousal may play a role in

altering stimulus encoding.

Retinotectal and vLGN pathways

The thalamocortical pathway is, however, only one of the many visual pathways in the brain. The retina

projects to more than fifty brain areas, including a prominent projection to the superior colliculus (SC;

Martersteck et al., 2017). While the SC receives visual information from the retina, it has long been thought
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that the SC does not participate in “image-forming” vision, but rather coordinates “reflexive” behaviours

(Ramón Y Cajal et al., 1995). Some characteristics of the SC anatomy and stimulus responses would appear

to support this view. For example, the SC has two output pathways that respectively cause orienting or

avoidance behaviours (Dean et al., 1989; Isa et al., 2020), and contains neurons that respond to behaviourally

relevant visual features, such as small moving stimuli resembling potential prey (Hoy et al., 2019), or rapidly

expanding dark discs known as “looming” stimuli resembling potential predators (Shang et al., 2015). These

visual feature representations may even simply be inherited from retinal outputs representing looming (Kim

et al., 2020), rather than computed de novo in SC. However, it is clear that the SC is involved in multiple

visual functions beyond reflex orchestration, perhaps orchestrated by its wide-spread ascending projections

(Basso et al., 2021). Furthermore, the types of behaviours orchestrated by the SC are not invariably elicited

by visual stimulation, but are subject to contextual modulation (Evans et al., 2019). One potential substrate

for this could be gain control of SC visual responses by descending projections from the visual cortex (Zhao

et al., 2014).

While the cortex provides excitatory gain control, inhibitory control may be provided by a thalamic struc-

ture called the ventral lateral geniculate nucleus (vLGN). Unlike the dLGN, the vLGN is composed of predom-

inantly inhibitory neurons (Sabbagh et al., 2021), and appears to be involved in visuomotor transformation

and other non-image-forming visual functions such as circadian rhythms (Harrington, 1997). The vLGN is

highly integrative, with inputs from a wide variety of brain regions (Harrington, 1997). The vLGN may be

partitioned into two subdivisions; the inner portion receiving brainstem neuromodulatory input but lacking

visual responses, and the external portion receiving top-down input from visual cortex as well as direct retinal

input (Harrington, 1997; Kolmac and Mitrofanis, 2000). The visual stimulus responses of the rodent vLGN are

arranged retinotopically, and appear to be simple: predominantly sustained responses to light increments (ON

responses) with lower spatial specificity than dLGN neurons (Harrington, 1997). A subset of vLGN neurons

project to SC (Moore et al., 2000), and, interestingly, this SC-projecting population of neurons overlaps with

the visually responsive retinorecipient neurons (Hayashi and Nagata, 1981). Thus, the vLGN contains the

anatomical and functional prerequisites to exert inhibitory control of SC depending on visual context.

1.3 Modulation of dLGN activity

Modulation of the dLGN by behaviour

Although some studies have found that almost all dLGN spikes can be associated with a single retinal EPSP

in anaesthetized animals (Sincich et al., 2007), RGC axon terminals only account for around 10% of synapses

on dLGN neurons (Van Horn et al., 2000; Bickford et al., 2010). One additional major source of input

are neuromodulatory axons, which account for 30-35% of synapses (Erişir et al., 1997; Sherman and Guillery,

2002). The majority of these are cholinergic fibres arising from the pedunculopontine tegmental nucleus (PPN;

Hallanger et al., 1987; Huerta-Ocampo et al., 2020; Sokhadze et al., 2022), a part of the reticular activating

system, and the parabigeminal nucleus, a structure involved in the coordination of targeted eye movements
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(Cui and Malpeli, 2003; Ma et al., 2013). Acetylcholine may also influence the dLGN via projections from the

basal forebrain (BF) to the TRN (Hallanger et al., 1987; Sokhadze et al., 2022), which exerts tight inhibitory

control over thalamic relay nuclei (Pinault, 2004). Additional direct neuromodulatory inputs to the dLGN

transmit norepinephrine from the locus coeruleus (Lindvall et al., 1974; Mackay-Sim et al., 1983), and serotonin

from the dorsal raphe (Moore et al., 1978; Mackay-Sim et al., 1983). Thus, while RGCs represent “driver”

inputs to dLGN thalamocortical neurons, these other “modulator” inputs are prevalent (Sherman and Guillery,

1998), and provide a means by which information related to arousal and even specific behaviours can sculpt

dLGN stimulus-responses.

It is therefore not surprising that signatures of ongoing behaviour and brain state are reflected in the spiking

output of dLGN neurons. For example, during locomotion dLGN neurons decrease their bursting and increase

their baseline and evoked firing rates (Erisken et al., 2014; Aydın et al., 2018). Locomotion also influences

the spatial and temporal integration properties of the dLGN. During locomotion dLGN neurons tend to have

reduced surround suppression and prefer larger stimuli (Erisken et al., 2014), as well as particularly strong

enhancement of responses to high temporal frequency stimuli (Aydın et al., 2018; Reinhold et al., 2023), which

was also observed in state transitions demarcated by the hippocampal LFP (Bezdudnaya et al., 2006). This

running-related response enhancement in dLGN neurons could be mediated either by direct depolarization via

cholinergic signalling from the PPN, or by disinhibition via BF-GABA input to the TRN (McKenna et al.,

2013; Erisken et al., 2014). While locomotion is a behaviour that changes visual input, whisking does not. Yet,

Petty et al. (2021) found that whisking, like locomotion, increases activity in the lateral posterior nucleus (LP)

of the thalamus, a higher-order visual thalamic relay. Furthermore, even in somatosensory thalamic nuclei

this modulation was not related to specific whisker movements, and was unchanged after elimination of both

sensory reafference from the somatosensory cortex, as well movement-related input from motor cortex and SC

(Petty et al., 2021). These results would suggest that the modulated activity of thalamic relay nuclei during

behaviour is more related to the overall context or state than moment-to-moment changes in behaviour, and

that neuromodulatory nuclei are mediators, but both of these hypotheses remain to be confirmed for the dLGN.

However, these conjectures do not eliminate the possibility that different types of contextual modulation, or the

sculpting of modulation beyond a general increase in firing rate, may still be provided by diverse modulatory

input sources.

Modulation of the dLGN by corticothalamic feedback

Corticofugal inputs to the dLGN from layer 6 of the primary visual cortex (V1-L6) account for almost half of

all inputs to dLGN neurons (40-50%; Erişir et al., 1997; Van Horn et al., 2000; Sherman and Guillery, 2002).

This corticothalamic feedback (CT-FB) arises from a specific sub-population of V1-L6 excitatory pyramidal

neurons (Bourassa and Deschênes, 1995; Olsen et al., 2012; Whilden et al., 2021). The precise function of these

neurons has been difficult to discern due to their inaccessible location, their intermingling with other pyramidal

projection and inhibitory neurons, and their complex axonal arborization to other cortical layers (Thomson,

2010). In the cortex, CT neurons appear to exert a largely inhibitory role within their cortical column by
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recruiting local interneurons (Olsen et al., 2012; Bortone et al., 2014), while providing strong excitation to L5

pyramidal projection neurons (Kim et al., 2014). Similarly, these CT neurons also have a dual influence in

their thalamic projections. They provide direct modulatory excitation to thalamic neurons via their contacts

to the distal dentrites of thalamic relay neurons (Wilson et al., 1984; Erişir et al., 1997) and recruitment

of slow-acting NMDAR glutamate receptors (Scharfman et al., 1990; Jones et al., 1998; Alexander et al.,

2006; Augustinaite et al., 2014), with fast-acting AMPARs contributing mainly at hyperpolarized membrane

potentials (Crandall et al., 2015). The relatively prolonged depolarizations caused by NMDAR activation can

contribute to switching thalamic neurons from burst to tonic mode (Scharfman et al., 1990; McCormick and

von Krosigk, 1992). However, CT-FB also provides indirect inhibition through local interneurons and axon

collaterals in the TRN (Bourassa and Deschênes, 1995; Olsen et al., 2012), making its overall effects on the

dLGN difficult to discern.

The direct projection from V1-L6 to the dLGN is spatially localized and roughly topographical (Tsumoto

et al., 1978; Born et al., 2021), conferring a functional role for CT-FB in spatial integration in the dLGN.

Thalamic neurons with spatial RF centres matching those of the V1-L6 neurons providing feedback show

response enhancement, while those with displaced RF centres are suppressed (Tsumoto et al., 1978; Eyding

et al., 2003; Jones et al., 2012; Born et al., 2021). Thus, one function of CT-FB in vision is to sharpen spatial

responses in dLGN neurons (Alitto and Usrey, 2003; Andolina et al., 2013), though a combination of targeted

direct excitation and wide-spread inhibition through recruitment of the TRN (Born et al., 2021). Importantly,

uncovering this result required the use of spatially localized visual stimuli (c.f. Denman and Contreras, 2015),

but it is consistent with a primarily suppressive effect of CT-FB measured using full-field stimuli (Olsen et al.,

2012). Interestingly, the spatial sharpening effect of CT-FB was inconsistent when measured using white

noise stimulation (Denman and Contreras, 2015), which might be due to the specific orientation tuning of

corticothalamic V1-L6 neurons (Vélez-Fort et al., 2014; Stoelzel et al., 2017).

While CT-FB is not required for dLGN orientation tuning (Zhao et al., 2014), it is likely that oriented

stimuli – or, more generally, stimuli with a variety of visual features – are required in order to properly

drive CT-FB under control conditions. For this same reason, it is also likely that global activation of CT-FB

produces uninterpretable results, as it is functionally equivalent to presenting a visual stimulus with every

orientation present at all locations is space. Therefore suppression of CT-FB together with stimuli that

properly engage V1-L6 is more likely to produce interpretable results. Furthermore, it has been show that the

overall effect of CT-FB is dependent on stimulus contrast (Denman and Contreras, 2015) and the frequency

of optogenetic V1-L6 activation (Kirchgessner et al., 2020), due to the differential plasticity of L6-dLGN and

L6-TRN synapses (Crandall et al., 2015). Perhaps related to this, there is also evidence that CT-FB has

complex temporal effects, primarily affecting the sustained component of stimulus responses (Eyding et al.,

2003; De Labra et al., 2007), leading to better tracking of temporal modulations with CT-FB intact (Andolina

et al., 2007), and that CT-FB has temporally modulated – even biphasic – effects on thalamic relays (Mease

et al., 2014). Thus, while the overall function of CT-FB remains unclear, it is clear that the circuit is sensitive

to the fine-grained spatial and temporal characteristics of the visual stimulus.
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Beyond modulating dLGN activity depending on the context provided by the visual stimulus, there is also

substantial evidence that CT-FB modulates dLGN activity depending on contextual cues provided by brain

state and behaviour. Indeed, there is evidence that almost half of thalamic-projecting V1-L6 neurons may

not be visually responsive at all (Stoelzel et al., 2017; Augustinaite and Kuhn, 2020). This corticothalamic

population receives a large proportion of its inputs from higher-order visual and association areas of the cortex

(Vélez-Fort et al., 2014), such as vestibular inputs from the retrosplenial cortex, which allow encoding of head

rotations (Vélez-Fort et al., 2018). CT-FB may also convey a more generalized notion of behavioural state,

displaying a brain state-dependent increase in responses to drifting grating stimuli (Stoelzel et al., 2017).

Using behavioural arousal (pupil size and locomotion) as a measure of state, Augustinaite and Kuhn (2020)

found that visually activated V1-L6 CT-FB neurons increased their visual responses during arousal (while

maintaining a stable baseline), whereas visually suppressed V1-L6 CT-FB neurons decreased their baseline

activity (effectively reducing modulation depth during visual stimulation). These state-related signals may be

conveyed by acetylcholine: V1-L6 CT-FB neurons were found to increase their input resistance and firing rates

in response to ACh application via nicotinic and muscarinic receptors (as opposed to network effects; Sundberg

et al., 2018). This state-dependence of L6 activity could contribute to state-related switches between burst

and tonic mode in the thalamus (McCormick and von Krosigk, 1992; Wang et al., 2006; Augustinaite et al.,

2014; Mease et al., 2014). Furthermore, CT-FB has been implicated in attentional modulation of sensory

processing in the dLGN (Montero, 2000; Saalmann and Kastner, 2011), although emphasis has so far been

placed on cross-modal attention via the TRN (McAlonan et al., 2008; Wimmer et al., 2015). Nonetheless,

CT-FB from V1-L6 neurons has the potential to convey both generalized (cognitive or behavioural state) and

specific (feature-based attention) contextual information to the dLGN.

1.4 Objectives and key questions

The retino-geniculo-cortical pathway is the most thoroughly studied visual pathways in mammals, and yet

the apparent simplicity of visual processing through this circuit is challenged by observations collected in

the awake and behaving animal, and with the use of spatio-temporally complex naturalistic stimuli. The

convergence of many different modulatory inputs onto single dLGN neurons suggests that they are a hub for

diverse influences, and likely participate in multiple functions related to active vision during behaviour as well

as cognitive processes orchestrated by top-down signalling. Furthermore, the tuning of RGCs, dLGN neurons,

and V1-L6 neurons to complex visual features implies that these circuit elements are sensitive to multiple

dimensions of visual stimuli, and may be best probed with naturalistic stimuli.

One specific case that requires the use of naturalistic stimuli is during investigation of corticothalamic

feedback. The use of simple, artificial stimuli has yielded conflicting results in many respects, which might

result from the failure of these stimuli to appropriately drive activity in V1-L6. Related to this, the direction

of manipulation of V1-L6 is important. Because the activity of V1-L6 in response to naturalistic stimulation is

largely unknown, it is unclear how the CT-FB projection should be manipulated to probe its endogenous effects.

Consequently, a strategy for the suppression of V1-L6 should be employed, such that endogenous activity
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patterns remain intact, but can be selectively eliminated. Finally, because the dynamic regime of cortical

activity is strongly dependent on the behavioural state of the animal, the use of anaesthesia could eliminate

V1-L6 dynamics that are essential to CT-FB function in an awake and perceiving animal. Furthermore, V1-L6

activity is dependent on active behaviours, and this might be a channel through which behavioural signals

reach the dLGN that can only be revealed during awake recordings. Thus, Spacek et al. (2022, Chapter 2)

presents the first investigation of the functional effects of CT-FB in awake animals with all of these factors taken

into consideration. It was hypothesized that naturalistic stimuli would be particularly effective in revealing a

robust effect of CT-FB in dLGN neurons, and the interaction of these effects with a behavioural state defined

by locomotion was also investigated.

While locomotion provides a powerful index for the behavioural state-related activity in sensory systems,

dLGN neurons are, anatomically speaking, a hub for the convergence of many modulatory inputs. It is therefore

unlikely that one single factor can capture all of the modulation in dLGN neurons. Given the multifaceted links

between pupil size changes and behavioural and cognitive factors, Crombie et al. (2024, Chapter 3) departs

from the hypothesis that diverse aspects of pupil size dynamics can explain spiking modulations in the dLGN.

Specifically, it was observed that pupil size changes occur over a multitude of timescales, all of which were

hypothesized to be relevant for activity modulation in the dLGN. From previous results it was hypothesized

that pupil dilation should be linked to an increase in firing rate, while pupil contraction should be linked

to “offline” activity patterns such as thalamic bursting. Furthermore, because pupil size changes are linked

to behaviours with visual consequences, the contributions of locomotion and eye movements were separated

from those captured by pupil size dynamics. Finally, it was hypothesized that the modulations linked to pupil

dynamics should have consequences for how dLGN neurons encode naturalistic visual stimuli.

It should already be clear that a multitude of factors can influence the activity of dLGN neurons: visual

stimulation, feedback from the visual cortex, and behaviours such as locomotion and/or a generalized state of

arousal. Yet there is no unified modelling framework that captures all of these influences together. Schmors

et al. (2023, Chapter 4) introduces a generalized linear model including terms for spatio-temporally extended

effects of a visual stimulus, CT-FB, locomotion, and pupil size. Critically, the typical GLM was made more

efficient by fitting response kernels as a combination of spline basis functions rather than individual pixels or

time-points (Huang et al., 2021). This adjustment was also hypothesized to help the model fit sparse receptive

fields in the presence of the spatiotemporal correlations present in natural visual scenes, which were used in the

experiment to elicit visually-driven dLGN activity. Furthermore, CT-FB was manipulated using an optogenetic

suppression approach, rather than artificial activation, in order to assess its endogenous contributions. Once

the model has been fit to the spiking activity of a dLGN neuron, it can be used as an in silico version of the

neuron that can be used to probe how the neuron would respond in the presence of experimental manipulations,

such as the artificial elimination of cortical feedback.

Finally, despite decades of continuous interest in the visual pathway through the dLGN, it is still unclear

how dynamic visual feature extraction through this pathway contributes to guiding the behaviour of animals.

However, there are other visual pathways that have been more closely linked to behavioural consequences.
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One example is the pathway through the retino-recipient SC, which links relatively simple visual features

to stereotyped responses. Even this pathway is subject to modulation by cognitive factors, and two recent,

independent reports converge on a function for long-range inhibitory projections from the vLGN to the SC in

this modulation. Crombie and Busse (2021, Chapter 5) summarizes the findings of these reports, and places

their contribution in the broader literature of visually-guided behavioural responses.
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2 Exploring the effects of feedback and locomotion in the dLGN

The following chapter is reproduced from an article originally published in eLife:

Martin A Spacek, Davide Crombie, Yannik Bauer, Gregory Born, Xinyu Liu, Steffen Katzner, Laura Busse

(2022). Robust effects of corticothalamic feedback and behavioral state on movie responses in mouse dLGN.

Elife, 11, e70469. DOI: https://doi.org/10.7554/eLife.70469.
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Robust effects of corticothalamic 
feedback and behavioral state on movie 
responses in mouse dLGN
Martin A Spacek1*, Davide Crombie1,2†, Yannik Bauer1,2†, Gregory Born1,2†, 
Xinyu Liu1,2, Steffen Katzner1, Laura Busse1,3*

1Division of Neurobiology, Faculty of Biology, LMU Munich, Planegg-Martinsried, 
Germany; 2Graduate School of Systemic Neurosciences, LMU Munich, Munich, 
Germany; 3Bernstein Centre for Computational Neuroscience, Munich, Germany

Abstract Neurons in the dorsolateral geniculate nucleus (dLGN) of the thalamus receive a 
substantial proportion of modulatory inputs from corticothalamic (CT) feedback and brain stem 
nuclei. Hypothesizing that these modulatory influences might be differentially engaged depending 
on the visual stimulus and behavioral state, we performed in vivo extracellular recordings from 
mouse dLGN while optogenetically suppressing CT feedback and monitoring behavioral state by 
locomotion and pupil dilation. For naturalistic movie clips, we found CT feedback to consistently 
increase dLGN response gain and promote tonic firing. In contrast, for gratings, CT feedback effects 
on firing rates were mixed. For both stimulus types, the neural signatures of CT feedback closely 
resembled those of behavioral state, yet effects of behavioral state on responses to movies persisted 
even when CT feedback was suppressed. We conclude that CT feedback modulates visual informa-
tion on its way to cortex in a stimulus-dependent manner, but largely independently of behavioral 
state.

Editor's evaluation
This paper will be of interest to neuroscientists interested in understanding the role of corticotha-
lamic feedback in coding of sensory inputs. The authors show that feedback is stronger for natural 
stimuli compared to artificial stimuli. Surprisingly, the feedback from the cortex works in parallel 
with other modulatory influences reflecting changes in the arousal (measured here with pupil size) or 
changes in locomotion.

Introduction
Mammalian vision is based on a hierarchy of processing stages that are connected by feedforward 
circuits projecting from lower to higher levels, and by feedback circuits projecting from higher to 
lower levels. Feedforward processing is thought to create feature selectivity (Lien and Scanziani, 
2018; Hubel and Wiesel, 1962) and invariance to low-level stimulus features (Hubel and Wiesel, 
1962; Chance et al., 1999; Riesenhuber and Poggio, 1999; Riesenhuber and Poggio, 2000), to 
ultimately enable object recognition (DiCarlo et al., 2012). Hypotheses about the functional role of 
feedback circuits include top-down attention, working memory, prediction, and awareness (Squire 
et al., 2013; Roelfsema and de Lange, 2016; Bastos et al., 2012; Lamme and Roelfsema, 2000; 
Takahashi et al., 2016; Larkum, 2013). Compared to theories of feedforward processing, however, 
there is little consensus on the specific function of feedback connections (Heeger, 2017; Gilbert and 
Li, 2013).
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Feedback in the mammalian visual system targets brain areas as early as the dorsolateral genic-
ulate nucleus (dLGN) of the thalamus, where up to 30% of synaptic connections onto relay cells are 
established by corticothalamic (CT) feedback (Sherman and Guillery, 2002). Direct CT feedback is 
thought to arise from V1 layer 6 (L6) CT pyramidal cells (Briggs, 2010; Sillito and Jones, 2002), 
which are known for their notoriously low firing rates (Vélez-Fort et al., 2014; Stoelzel et al., 2017; 
Crandall et al., 2017; Oberlaender et al., 2012; Swadlow, 1989; Pauzin and Krieger, 2018), their 
sharp tuning for orientation (Vélez-Fort et al., 2014; Liang et al., 2021), and their diverse signaling 
of behavioral state (Augustinaite and Kuhn, 2020; Liang et al., 2021). The action of CT feedback on 
dLGN activity is generally considered modulatory rather than driving (Sherman and Guillery, 1998), 
as CT feedback inputs contact the distal dendrites of relay cells via NMDA glutamate (Augustinaite 
et al., 2014) or mGluR1 metabotropic receptors (Godwin et al., 1996), implying rather slow and 
long-lasting effects on dLGN activity. Similar to other depolarizing inputs to dLGN, such as neuromod-
ulatory brain stem inputs (McCormick, 1992), CT feedback has been linked to promoting switching 
from burst to tonic firing mode, and to facilitating transmission of retinal signals (Augustinaite et al., 
2014; de Labra et al., 2007; Wang et al., 2006; Dossi et al., 1992). However, since L6 CT pyramidal 
cells provide both direct excitation and indirect inhibition of dLGN via the thalamic reticular nucleus 
(TRN) and dLGN inhibitory interneurons (Sillito and Jones, 2002; Usrey and Sherman, 2019), the 
effects of CT feedback are expected to be complex and dependent on temporal and spatial aspects 
of the stimulus (Crandall et al., 2015; Born et al., 2021; Murphy and Sillito, 1987; McClurkin and 
Marrocco, 1984; Jones et al., 2012; Hasse and Briggs, 2017).

Most of the previous in vivo studies have probed the functional role of CT feedback with artifi-
cial stimuli, and often in anesthetized animals; CT feedback, however, might be most relevant for 
processing of dynamic naturalistic information and during wakefulness. From a conceptual perspec-
tive, if the role of feedback was to provide context based on an internal model built from the statistics 
of the world (Berkes et al., 2011; Lee and Mumford, 2003; Rao and Ballard, 1999; Clark, 2013), 
natural stimuli would be expected to best comply with this model, and hence better drive these feed-
back mechanisms. Indeed, it has previously been suggested that CT feedback might be more strongly 
engaged for moving compared to stationary stimuli (Sillito and Jones, 2002), and for complex 
dynamic noise textures than simple moving bars (Gulyás et al., 1990), consistent with a potential role 
in figure-ground processing (Poltoratski et al., 2019; Sillito et al., 1993; Cudeiro and Sillito, 1996). 
Furthermore, since the responsiveness of feedback projections (Makino and Komiyama, 2015; Keller 
et al., 2020), including those originating from V1 CT neurons (Briggs and Usrey, 2011), seem to be 
strongly reduced by anesthesia, it is critical to examine CT feedback effects in awake animals. Indeed, 
L6CT neurons have recently been found to have diverse response modulations according to pupil-
indexed behavioral state (Augustinaite and Kuhn, 2020).

Here, we recorded spiking activity in dLGN of awake mice and investigated how CT feedback 
affected dLGN responses to naturalistic movie clips. Suppressing CT feedback either via photostim-
ulation of V1 parvalbumin-positive (PV+) inhibitory interneurons or via direct photosuppression of 
L6CT neurons, we found that CT feedback had consistent modulatory effects on dLGN responses to 
movie clips, which could largely be captured by an increase in gain. Effects of CT feedback on dLGN 
responses to grating stimuli were more diverse, highlighting the stimulus-dependency of CT feedback 
effects. Finally, while geniculate responses to movies during V1 suppression resembled those during 
quiescence, we found effects of CT feedback and behavioral state to be largely independent. Overall, 
our results demonstrate that neural responses to naturalistic movies en route to cortex can be robustly 
modulated by extra-retinal influences such as cortical feedback and behavioral state, which seem to 
be largely conveyed via different modulatory pathways.

Results
CT feedback robustly modulates dLGN responses to naturalistic movie 
clips
To investigate the impact of CT feedback on visual processing of naturalistic stimuli, we presented to 
head-fixed mice full-screen movie clips and compared responses of dLGN neurons during optogenetic 
suppression of V1 activity to a control condition with CT feedback left intact (Figure 1 and -Supplement 
1). The responses of individual dLGN neurons to naturalistic movie clips were characterized by distinct 

14



 Research article﻿﻿﻿﻿﻿﻿ Neuroscience

Spacek et al. eLife 2022;11:e70469. DOI: https://doi.org/10.7554/eLife.70469 � 3 of 32

Figure 1. CT feedback modulates dLGN responses to full-screen naturalistic movie clips. (a) Left: Schematic of 
experimental setup. Head-fixed mice were placed on a floating Styrofoam ball and visual stimuli were presented 
on a screen located ∼25 cm away from the animal. Right: ChR2 was conditionally expressed in PV + inhibitory 
interneurons (green) in all layers of V1 using a viral approach. Extracellular silicon electrode recordings were 

Figure 1 continued on next page
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response events that were narrow in time and reliable across trials (Figure 1d, top, example neuron). 
Consistent with the notion that CT feedback has a modulatory rather than driving role (Sherman, 
2016), even during V1 suppression this temporal response pattern remained somewhat preserved 
(Pearson correlation ‍r = 0.54‍, ‍p < 10−6

‍, Figure 1d and e). Yet, as illustrated in the example neuron, 
with CT feedback intact, firing rates were higher and burst spikes were less frequent (Figure 1e, left). 
Accordingly, the distributions of instantaneous firing rates in the two conditions were significantly 
different (KS test, ‍p < 10−6

‍), and were more skewed during V1 suppression than with CT feedback 
intact (‍γ‍ = 2.02 vs 1.22; Figure 1e, right).

We observed similar effects in the recorded population of dLGN neurons, where CT feedback 
enhanced overall responses and promoted tonic firing mode. Indeed, while mean firing rates varied 
almost 4 orders of magnitude across the population (∼ 0.1–100 spikes/s), they were higher in control 
conditions with CT feedback intact than during V1 suppression (13.7 vs 10.5 spikes/s; linear multilevel-
model (LMM): ‍F1,63.2 = 17.1‍, ‍p = 0.0001‍; Figure 1f). In addition, CT feedback also influenced more 
fine-grained properties of geniculate responses. First, with CT feedback, the mean proportion of 
spikes occurring as part of a burst event was about half of what we observed during suppression (0.05 
vs 0.09; LMM: ‍F1,64.0 = 17.9‍, ‍p = 7.5 × 10−5

‍; Figure 1g). Second, consistent with the distributions of 
firing rate for the example neuron (Figure 1e, right), responses to the naturalistic movie clips with 
CT feedback intact were, on average, less sparse (0.35 vs 0.45; LMM: ‍F1,63.0 = 33.7‍, ‍p = 2.2 × 10−7

‍; 
Figure 1h), indicating that neurons fired less selectively across the frames of the movie. Finally, we also 
examined the effect of CT feedback on response reliability. To quantify reliability, we computed the 
Pearson correlation coefficient of a neuron’s responses between each pair of the 200 stimulus repeats 

performed in dLGN with and without optogenetic suppression of V1. (b) Coronal section close to the V1 injection 
site for an example PV-Cre mouse (blue: DAPI; green: eYFP; Bregma: -3.4 mm). (c) Coronal section at the dLGN 
(white outline) recording site, same animal as in (b). For post-mortem confirmation of the electrode position, the 
back of the probe was stained with DiI (magenta) for one of the recording sessions (blue: DAPI; Bregma: -1.82 mm). 
(d) Raster plots of an example neuron for 200 presentations of a 5 s naturalistic movie clip, with CT feedback intact 
(control condition, top) and during V1 suppression (bottom). Red: burst spikes; black bar: movie clip presentation; 
light blue bar: V1 suppression. (e) Left: PSTHs for both the control (dark blue) and V1 suppression (light blue) 
conditions. Superimposed are PSTHs of burst spikes only, separately for control (red) and V1 suppression (pink) 
conditions. Right: Corresponding instantaneous firing rate distributions. (f–i) Comparison of control vs. V1 
suppression conditions for mean firing rate (f), burst ratio (g), temporal sparseness (h), and response reliability 
(i), all calculated for the duration of the movie clip. Sparseness captures the activity fraction of a neuron, re-scaled 
between 0 and 1 (Vinje and Gallant, 2000). Response reliability is defined as the mean Pearson correlation of 
all single trial PSTH pairs (Goard and Dan, 2009). For sample sizes, see Table 1. Purple: example neuron. Black 
markers in (f,g,i) indicate neurons with individually significant effects (Welch’s t-test). See also Figure 1—figure 
supplement 1 to Figure 1—figure supplement 6.

The online version of this article includes the following video and figure supplement(s) for figure 1:

Figure supplement 1. Confirmation of optogenetic suppression of V1 responses and targeting dLGN for 
recordings.

Figure supplement 2. Effects of CT feedback on additional parameters of responses to naturalistic movies and 
their relationship with firing rate.

Figure supplement 3. Feedback effects during movie presentation are largely independent of functional cell type 
classification.

Figure supplement 4. Selective optogenetic suppression of L6 CT feedback in Ntsr1-Cre yielded similar results as 
global V1 suppression via PV + activation.

Figure supplement 5. Photostimulation in an Ntsr1- control mouse injected with cre-dependent stGtACR2 had no 
effect on neural responses.

Figure supplement 6. Effects of photostimulation on pupil size were unrelated to CT feedback effects on dLGN 
neuronal activity.

Figure 1—video 1. First example 5 s movie clip used for visual stimulation.

https://elifesciences.org/articles/70469/figures#fig1video1

Figure 1—video 2. Second example 5 s movie clip used for visual stimulation.

https://elifesciences.org/articles/70469/figures#fig1video2

Figure 1 continued
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per condition, and averaged the correlation coefficients over all pair-wise combinations (Goard and 
Dan, 2009). With CT feedback intact, mean response reliability was lower than without feedback (0.15 
vs 0.18; LMM: ‍F1,63.1 = 17.8, p = 8.1 × 10−5

‍; Figure 1i). Except for the effects on sparseness, the feed-
back effects on responses to naturalistic movies were unrelated to changes in firing rates (Figure 1—
figure supplement 2c-g). The increased trial-to-trial reliability during V1 suppression could not be 
explained by higher stability in eye positions, because variability in eye position was slightly larger 
with CT feedback intact vs. suppressed (Figure 1—figure supplement 2h), and effects of CT feed-
back on neural reliability were unrelated to changes in variability of eye position (Figure 1—figure 
supplement 2i). Splitting the dLGN population into putative cell types according to several func-
tional characteristics and location within dLGN revealed few differences in how global V1 suppression 
affected firing rates and bursting (Figure 1—figure supplement 3). As V1 suppression by PV +activa-
tion is robust, yet lacks selectivity (Wiegert et al., 2017), we repeated our experiments while directly 
photo-suppressing L6CT neurons. To this end, we expressed the inhibitory opsin stGtACR2 (Mahn 
et al., 2018) in V1 Ntsr1+ neurons, which correspond to ‍≥ 90%‍ to L6 CT neurons (Bortone et al., 
2014; Kim et al., 2014, Figure 1—figure supplement 4). These experiments with specific suppres-
sion of L6 CT neurons during viewing of naturalistic movies yielded identical conclusions (Figure 1—
figure supplement 4a-h).

Lastly, we performed two additional controls to rule out that photostimulation per se caused our 
findings. First, we repeated our experiments on an Ntsr1- control mouse, which was injected and 
underwent the same visual and photostimulation protocol. This negative control mouse did not show 
any effects of photostimulation on dLGN responses (Figure 1—figure supplement 5a-d). Second, 
we identified those experiments (14/31 for PV  + activation, 0/10 for Ntsr1  + suppression experi-
ments), where photostimulation decreased pupil size, indicative of light leakage into the retina. Even 
with these sessions removed, we found that our results remained qualitatively unchanged (Figure 1—
figure supplement 6a-f). Finally, considering again all recordings, the effects of CT feedback on 
neuronal activity were unrelated to light-induced changes in pupil size (Figure 1—figure supplement 
6g-j). Together, these results rule out that photostimulation per se led to the modulation of dLGN 
responses during naturalistic movie viewing.

Taken together, our results indicate that CT feedback can robustly modulate responses of dLGN 
neurons to naturalistic movie clips. The modulations are consistent with a net depolarizing effect, 
which supports higher firing rates and more linear, tonic firing mode with higher dynamic range, at the 
expense of sparseness, trial-to-trial reliability, and signal-to-noise.

V1 suppression decreases dLGN responses to naturalistic movies by 
reducing response gain
To better understand the effects of V1 suppression on dLGN firing rate, we next asked whether the 
observed reduction in responsiveness could be explained by a divisive and/or subtractive change 
(Figure  2). Using repeated random subsampling cross-validation, we fit a simple threshold linear 
model (Figure 2a, inset) to timepoint-by-timepoint responses in suppression vs. feedback conditions, 
and extracted the slope and threshold of the fit for each subsample (Figure 2b and d). In the two 
example neurons shown in Figure  2a–d, the fitted slope was significantly smaller than 1 (neuron 
2: median slope of 0.66, 95% CI: 0.63–0.69, Figure 2b; neuron 1: median slope of 0.37, 95% CI: 
0.32–0.41, Figure 2d), while the threshold (‍x‍-intercept) was either small or not significantly different 
from 0 (neuron 2: median of 1.58, 95% CI: 0.39–2.91; neuron 1: median of ‍−0.14‍, 95% CI: ‍−1.49‍–0.89). 
We obtained similar results for the population of recorded neurons, where V1 suppression decreased 
the neurons’ responses to naturalistic movie clips via a substantial change in response gain (slope of 
‍0.75 ± 0.1‍; LMM) without a significant shift in baseline (threshold of ‍−0.19 ± 1.15‍; LMM; Figure 2e). 
This demonstrates that V1 suppression influences responses in dLGN to naturalistic movie clips 
predominantly via a divisive effect.

We noticed that the threshold linear model could predict the effects of V1 suppression better 
for some neurons than for others. We therefore explored whether poor fits of the model might be 
related to our finding that V1 suppression can trigger non-linear, burst-mode firing. For instance, the 
threshold-linear model accurately captured the responses of example neuron 2 (median ‍R2 = 0.90‍, 
cross-validated; Figure 2a and b), which exhibited little bursting during V1 suppression (burst ratio: 
0.007). Neuron 1, in contrast, had a higher burst ratio during suppression (0.28) and the prediction 
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sometimes overestimated or underestimated peaks in the actual response, such that the percentage 
of explained variability was rather low (median ‍R2 = 0.29‍, cross-validated, Figure 2c and d).

Indeed, across the population of recorded neurons, the model goodness of fit (median ‍R2‍, cross-
validated) during V1 suppression was inversely related to the burst ratio (slope of ‍−1.29 ± 0.5‍; LMM; 
Figure 2f), consistent with the notion that the highly non-linear, all-or-none-like burst mode firing 
(Sherman, 2001) cannot be captured by the threshold-linear model (see also Lesica and Stanley, 
2004). To further investigate the impact of bursting on response transformations by CT feedback, 
we re-computed the PSTHs for each neuron during V1 suppression after removing all burst spikes. 
Removal of burst spikes allowed our model to capture the effects of V1 suppression even better (all 
spikes: mean ‍R2 = 0.58‍; non-burst spikes: mean ‍R2 = 0.61‍; LMM: ‍F1,160.8 = 4.8‍, ‍p = 0.03‍; Figure 2g). 
Importantly, this increase in model performance was not simply a consequence of removing a certain 
proportion of spikes that originally needed to be predicted: discarding an equivalent number of 
randomly selected tonic spikes did not yield improved fit quality (random tonic spikes removed: 
mean ‍R2 = 0.58‍; LMM: ‍F1,162 = 0.005‍, ‍p = 0.9‍; Figure 2h). While burst spikes cannot be captured by 
the threshold-linear model, removing burst spikes, however, did not change our conclusion that the 
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Figure 2. The effect of V1 suppression on dLGN responses to naturalistic movie clips is predominantly divisive. (a) PSTHs of an example neuron during 
control (dark blue) and V1 suppression (light blue) conditions, for a random subset of 50% of trials per condition not used for model fitting. Responses 
during the V1 suppression condition are approximated by the threshold linear model (dashed light blue) based on responses during the control 
condition. Pink: PSTH during V1 suppression for burst spikes only. Inset: cartoon of threshold linear model. (b) Timepoint-by-timepoint comparison of 
instantaneous firing rates of the PSTHs (derived from the 50% of trials not used for fitting) during the suppression vs. feedback conditions. PSTH data 
points are plotted at 0.01ms resolution. Dashed light blue line: threshold linear model fit. (c,d) Same as (a,b) for a second example neuron (same as in 
Figure 1d and e). (a,b) and (c,d) each contain data from 1 representative subsample. (e) Slope and threshold parameters for all neurons. Each point 
represents the median for each neuron across 1000 random subsamples of trials. Black points indicate neurons with slopes significantly different from 1 
(95% CI). (f) Cross-validated model prediction quality (median ‍R2‍) vs. burst ratio during V1 suppression. Red line: LMM fit. (g) Model prediction quality 
‍R2‍ with and without removal of burst spikes. (h) Model prediction quality with and without removal of an equivalent number of tonic spikes. (i) Same as 
(e) but with burst spikes removed. (e–h) Purple, green: example neurons; red triangle: LMM estimate of the mean.
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effect of V1 suppression on movie responses was predominantly divisive (slope: ‍0.74 ± 0.09‍; threshold: 
‍0.09 ± 1.3‍; LMM; Figure 2i), likely because burst events were much rarer than tonic spikes (see also 
Figure 1g). Indeed, firing mode (all spikes vs. non-burst spikes) had no effect on either slope (LMM: 

‍F1,162.7 = 0.6‍, ‍p = 0.4‍) or threshold estimates (LMM: ‍F1,157.3 = 0.2‍, ‍p = 0.7‍) of the simple linear model. 
Together, these results show that V1 suppression decreases dLGN responses to naturalistic movies 
mostly by reducing response gain.

CT feedback modulates dLGN responses evoked by drifting gratings
Previous studies have investigated the effects of CT feedback using artificial stimuli, such as grat-
ings and bars (Olsen et al., 2012; Denman and Contreras, 2015; Wang et al., 2006; Murphy and 
Sillito, 1987). To relate our findings to these studies, and to investigate the role of stimulus type, we 
next examined the effects of V1 suppression during the presentation of drifting gratings (Figure 3). 
To approximate the visual stimulus configuration used for naturalistic movie clips, we presented full-
screen gratings drifting in one of 12 different orientations, and selected a pseudo-random subset 
of trials for V1 suppression. As expected, we found that many single dLGN neurons in the control 
condition with CT feedback responded at the temporal frequency (TF, 4 cyc/s) of the drifting grating 
(Figure 3a and b). Similar to previous studies in mouse dLGN (Piscopo et al., 2013; Román Rosón 
et al., 2019; Marshel et al., 2012), we also encountered some dLGN neurons with tuning for grating 
orientation or direction (Figure 3, a2, b).

Contrary to the robust effects of CT feedback on movie responses, V1 suppression had mixed 
effects on dLGN responses to drifting gratings. Example neuron 1, for instance, had lower firing rates 
with CT feedback intact, both in the orientation tuning (Figure 3, a2) and the cycle-averaged response 
to the preferred orientation (Figure 3a3). In addition, in control conditions with CT feedback intact, 
there were markedly fewer burst spikes. In contrast, example neuron 3 responded more strongly 
with CT feedback intact (Figure 3, b2,3). Such diverse effects of CT feedback, as reported before for 
anesthetized mice (Denman and Contreras, 2015), were representative of the recorded population 
(Figure  3c): V1 suppression during grating presentation significantly reduced responses for some 
neurons, but significantly increased responses for others, such that the average firing rates in the two 
conditions were almost identical (control: 14.5 spikes/s, V1 suppression: 15.0 spikes/s) and statistically 
indistinguishable (LMM: ‍F1,43.0 = 0.15‍, ‍p = 0.70‍). In contrast to these diverse effects on firing rate, but 
similar to our findings for naturalistic movie clips, intact CT feedback was consistently associated with 
less bursting (burst ratios of 0.043 vs 0.15; LMM: ‍F1,43.0 = 25.3‍, ‍p = 9.2 × 10−6

‍; Figure 3d). Also similar 
to our findings for movies, there was no relationship between the strength of feedback effects on 
firing rate and on bursting (LMM: slope ‍0.029 ± 0.41‍, Figure 4—figure supplement 1a).

Beyond studying overall changes in responsiveness and firing mode, we next asked how CT 
feedback affected the tuning for grating orientation of dLGN neurons. It is known from previous 
studies (Piscopo et al., 2013; Cruz-Martín et al., 2014; Marshel et al., 2012; Zhao et al., 2013; 
Scholl et al., 2013) that mouse dLGN neurons show various degrees of orientation tuning, ranging 
from few strongly tuned neurons, potentially relaying tuned input from the retina (Cruz-Martín 
et al., 2014), to a larger group with orientation bias (Piscopo et al., 2013; Scholl et al., 2013). 
We computed orientation tuning curves separately for control conditions with CT feedback and 
V1 suppression conditions. For neuron 1, intact CT feedback was associated not only with lower 
average firing rates, but also poorer selectivity (OSIs of 0.14 vs 0.25; Figure 3, a2). In contrast, for 
neuron 3, orientation selectivity was similar during control and V1 suppression conditions (OSIs of 
0.1 vs 0.09; Figure 3, b2). These results were representative of the population, where CT feedback 
affected orientation selectivity in diverse ways, with virtually no difference in population means 
(control OSI: 0.13; V1 suppression: 0.12; LMM: ‍F1,88.7 = 0.31‍, ‍p = 0.58‍; Figure 3e; see also Scholl 
et  al., 2013; Li et  al., 2013; Lien and Scanziani, 2013; Denman and Contreras, 2015). For 
neurons with OSI > 0.02 and well-fit orientation tuning curves (‍R2 > 0.5‍), preferred orientation 
during feedback and suppression conditions was largely similar, except for some cases where 
it shifted (Figure  3f). As was the case for movies, splitting the dLGN population into putative 
cell types according to several functional characteristics and their location within dLGN revealed 
few consistent differences in how global V1 suppression during gratings affected firing rates and 
bursting (Figure 3—figure supplement 1). Taken together, although effects of V1 suppression on 
firing rate were more diverse in magnitude and sign for grating stimuli, the similarity of orientation 
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Figure 3. CT feedback modulates dLGN responses to drifting gratings. (a) Responses of example neuron 1 (same as in Figures 1d, e ,, 2c and d) 
to full-screen, drifting gratings. (a1) Raster plot in response to drifting gratings, with trials sorted by grating orientation (10 trials per orientation, 30° 
steps). Red: burst spikes; black bar: grating stimulation; light blue bar: V1 suppression. (a2) Corresponding orientation tuning curve. Dashed lines 
represent spontaneous firing rates in response to medium gray screen. Error bars: standard error of the mean. (a3) Cycle average response to preferred 
orientation. Dark blue, light blue: cycle average constructed from all spikes. Red, pink: cycle average constructed from burst spikes only. Dark blue, 
red: Control condition with CT feedback intact; light blue, pink: V1 suppression. (b) Same as (a), for another example neuron (example neuron 3). (c–h) 
Comparison of the control conditio with CT feedback intact vs. V1 suppression, for mean firing rate (c), burst ratio (d), orientation selectivity index 
(OSI) (e), preferred orientation ‍θ‍ (f), F1/F0 (g), and cycle average phase ‍ϕ‍ (h). Purple, blue: example neurons. Black markers in (c,d) indicate neurons 
with individually significant effects (Welch’s t-test). (i) Cumulative distribution of cycle average phase differences between control and V1 suppression 
conditions. Dark blue: neurons with little burst spiking (ratio of cycle average peak for burst spikes to cycle average peak for all spikes ‍< 0.1‍); red: 
neurons with substantial burst spiking (ratio of cycle average peak for burst spikes to cycle average peak for all spikes ‍≥ 0.1‍).

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. As for movies (Figure 1—figure supplement 3), feedback effects during grating presentation are largely independent of 
functional cell type classification.
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selectivity between CT feedback conditions suggests underlying changes in gain, in accordance 
with what we observed for naturalistic movies.

Inspecting the spike rasters at different orientations, we realized that dLGN neurons appeared 
to have a stronger response component at the grating’s temporal frequency during V1 suppression 
than when feedback was intact (Figure 3, a1). To test whether V1 suppression affected the ability of 
dLGN to respond at the gratings’ temporal frequency, for each neuron we computed the amplitude 
of the response at the stimulus frequency (F1 component) relative to the mean response (F0 compo-
nent) (Skottun et al., 1991; Carandini et al., 1997) and found that F1/F0 ratios were indeed lower 
when feedback was intact (1.08 vs 1.22; LMM: ‍F1,43.5 = 15.6‍, ‍p = 0.00028‍; Figure 3g). To explore the 
impact of CT feedback on the F1 response component in more detail, we examined the cycle average 
responses to the preferred orientation, and asked how CT feedback affected response phase. Similar 
to the results obtained for the example neurons (Figure 3, a3, b3), we found that V1 suppression could 
advance response phase (Figure 3h). This phase advance occurred more often for neurons whose 
responses during V1 suppression included a substantial proportion of burst spikes (Figure 3i, red; 25 
of 29 neurons showed phase advance, ‍p = 0.0001‍, binomial test) than for neurons which during V1 
suppression burst little or not all (Figure 3i, dark blue; 11 of 21 neurons advanced, ‍p = 1‍, binomial 
test). In agreement with earlier findings from intracellular recordings in anesthetized cats (Lu et al., 
1992), these analyses demonstrate that the phase advance is driven by the dynamics of burst spiking. 
Finally, as for our re-assessment of CT feedback effect on responses to naturalistic movies, our conclu-
sions regarding the effects of CT feedback on grating responses did not change when we repeated 
our experiments using a selective suppression of Ntsr1 + neurons with stGtACR2 (Mahn et al., 2018, 
Figure 1—figure supplement 4i-o). Also, during grating experiments, the Ntsr1- mouse controlling 
for effects of photostimulation per se showed no effects on neural responses to gratings (Figure 1—
figure supplement 5e-i).

Effects of CT feedback on dLGN firing rates are more consistent and 
stronger overall for full-screen movies than full-screen gratings
Our analyses suggest that the impact of CT feedback on firing rates might be stronger overall for natu-
ralistic movie stimuli than for gratings. To test this hypothesis, we focused on the subset of neurons 
recorded with both types of stimuli. Indeed, when we compared feedback modulation indices (FMIs, 
i.e. the difference between feedback conditions over their sum of firing rates), we found that FMI was 

Figure 4. Effects of CT feedback on dLGN firing rate depend on stimulus type. (a) Comparison of the strength 
of CT feedback effects on firing rate (feedback modulation index, FMI) during presentation of full-screen movie 
clips and gratings. (b) Comparison of the strength of CT feedback effect on firing rate for blank stimuli interleaved 
with movies or gratings. Red: mean (LMM), dark lines: changes in sign of feedback modulation effect with stimulus 
type from positive for movies to negative for gratings (solid) and vice versa (dashed). For (a) and (b), we randomly 
jittered the horizontal position of the points to avoid overlap; lines connecting the paired samples still end at the 
central position to represent change. See also Figure 4—figure supplement 1.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Control analyses assessing the difference in CT feedback effects for gratings and movies.
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on average more positive for movies than for gratings (0.15 vs 0.053; LMM: ‍F1,38 = 5.21‍, ‍p = 0.028‍; 
Figure 4a). Remarkably, in 10/39 neurons (Figure 4a, dark lines) V1 suppression decreased firing rates 
for movies (positive movie FMI), but increased firing rates for gratings (negative grating FMI). The 
opposite effect only occurred in 3/39 neurons (dark dashed lines). These findings were not a conse-
quence of differences in firing rates that might have already been present in control conditions with 
CT feedback intact (Figure  4—figure supplement 1b), and were also not a consequence of the 
longer duration of V1 suppression during movie clips (Figure 4—figure supplement 1c, d).

The differences in the effects of CT feedback on firing rates during full-screen gratings vs. movies 
might be related to feedback-induced changes in bursting, which might be stimulus-dependent (Lu 
et al., 1992; Grubb and Thompson, 2005) and can drive high-frequency firing. To test this hypothesis, 
we compared CT feedback modulation of burst ratio for gratings vs. movie clips, and found that V1 
suppression indeed induced stronger bursting for gratings than for movies (Figure 4—figure supple-
ment 1e). However, for both movies (Figure 1—figure supplement 2c) and gratings (Figure 4—
figure supplement 1a), CT feedback effects on firing rates were unrelated to those on bursting. Thus, 
while suppression of CT feedback engages bursting overall more strongly for gratings than movies, 
this differential recruitment does not seem to account for differences in CT feedback-related modula-
tions of firing rates for movies vs. grating stimuli.

Differences in CT feedback effects between firing rates to full-screen gratings and movies might 
instead be related to differences in longer-lasting, systematic changes in neural activity, which might 
occur due to differential adaptation or differences in behavioral state induced by the two stimulus types. 
To address this possibility, we focused on periods of blank screen, which were contained in both stim-
ulus types. These were short (∼0.3 s) periods directly preceding each full-screen movie and grating trial 
(see e.g., Figures 1d and 3a), as well as blank trials interleaved as one condition in the grating experi-
ments. Applying our analyses to these various blank stimuli (Figure 4b, Figure 4—figure supplement 
1g-i), we found that CT feedback enhanced mean firing rates regardless of blank type or blank period 
duration (positive firing rate FMIs, mean FMIs: 0.27 vs. 0.30 vs. 0.36; LMM: ‍F2,76 = 1.69‍, ‍p = 0.19‍; 
Figure 4b). This CT feedback-related average enhancement for blank stimuli was even stronger than 
the enhancement observed during movie presentation (LMM: ‍F1,116 = 15.1‍, ‍p = 0.0002‍), and stronger 
than the mixed effects during grating presentation (LMM: ‍F1,116 = 34.9‍, ‍p = 3.6 × 10−8

‍). Since the CT 
feedback effects on these various blank stimuli did not depend on blank period duration or whether 
blanks were embedded in grating or movie experiments (see also Figure 4—figure supplement 1f-l), 
we conclude that differences in longer lasting changes in neural activity or behavioral state did not 
underlie the differential effect of CT feedback for full screen movies vs. gratings. Instead, we interpret 
these findings to highlight that CT feedback modulates dLGN responses in a stimulus-dependent 
way. In particular, the strength and sign of CT feedback gain might be sensitive to features of the 
visual stimulus, such as the contrast, the dynamics, or the statistics of the center and the surround 
stimulation.

Effects of behavioral state on dLGN responses resemble effects of CT 
feedback, but are largely independent
Previous studies have reported that responses of mouse dLGN neurons to grating stimuli are modulated 
by behavioral state as inferred by locomotion (Erisken et al., 2014; Aydın et al., 2018; Williamson 
et al., 2015). To assess how these findings extend to more complex stimuli, we separated the trials 
with CT feedback intact according to the animals’ locomotion behavior. We considered trials as ‘run 
trials’ if the animal’s speed exceeded 1 cm/s for at least 50% of the stimulus presentation and as ‘sit 
trials’ if the animal’s speed fell below 0.25 cm/s for at least 50% of the stimulus presentation. When 
we examined the spike rasters and PSTHs of example neuron 1 in control conditions with CT feed-
back intact (Figure 5a and b), we found that, despite preserved temporal features of the responses 
(Pearson correlation ‍r = 0.72‍ between run and sit PSTHs, ‍p < 10−6

‍), firing rates were higher overall 
during locomotion than stationary periods. Additionally, during locomotion, the distribution of firing 
rates was less skewed (‍γ‍ = 1.15 vs 1.45 during stationary trials), with a decrease of low and an increase 
of medium firing rates (KS test, ‍p < 10−6

‍). This pattern was also observed in the population of dLGN 
neurons, where firing rates were consistently higher for trials with locomotion compared to trials when 
the animal was stationary (11.9 vs 8.9 spikes/s; LMM: ‍F1,63.9 = 94.1‍, ‍p = 3.5 × 10−14

‍; Figure 5c). Similar 
to previous reports using gratings (Niell and Stryker, 2010; Erisken et al., 2014), we found that 
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bursting was lower during locomotion than stationary periods (0.035 vs 0.063; LMM: ‍F1,66.7 = 20.2‍, 

‍p = 2.9 × 10−5
‍; Figure 5d). Beyond these established measures, using movie clips allowed us to test 

the effects of locomotion on additional response properties: trials with locomotion were associated 
with lower sparseness (0.40 vs 0.47; LMM: ‍F1,181.9 = 22.8‍, ‍p = 3.8 × 10−6

‍; Figure 5e) and lower trial-to-
trial reliability (0.13 vs 0.16; LMM: ‍F1,176.1 = 11.8‍; Figure 5f). This locomotion-related decrease of reli-
ability could be related to, but is likely not fully explained by, the increase in eye movements typically 

Figure 5. Effects of locomotion on dLGN responses resemble those of CT feedback, but persist even during V1 suppression. (a) Spike raster of example 
neuron 1 (same as Figure 1d) in response to a naturalistic movie clip during locomotion and stationary trials with CT feedback intact. Top: trials with 
run speed > 1 cm/s; bottom: trials with run speed <0.25 cm/s, both for at least ‍> 50%‍ of each trial. Red: burst spikes. (b) Corresponding PSTHs. Green: 
locomotion, orange: stationary; black bar: duration of movie clip. (c–f) Comparison of firing rates (c), burst ratio (d), sparseness (e), and trial-to-trial 
reliability (f) during locomotion and stationary trials. Black markers in (c,d,f) correspond to individually significant observations (Welch’s t-test). (g–l) Same 
as (a–f), for locomotion and stationary trials during V1 suppression. Light blue bar: V1 suppression. See also Figure 5—figure supplement 1.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Effects of locomotion on additional parameters of responses to naturalistic movie clips and relationship with firing rate.

Figure supplement 2. Effects of pupil-indexed arousal on dLGN responses to movies.
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associated with running (Figure 5—figure supplement 1h, i; Erisken et al., 2014; Bennett et al., 
2013). These analyses demonstrate that in dLGN, processing of naturalistic movie clips is robustly 
modulated by locomotion. Curiously, in all aspects tested, these modulations by locomotion had the 
same signatures as those of CT feedback: increased firing rates, reduced bursting, and decreased 
sparseness and trial-to-trial reliability.

Since the effects of CT feedback and locomotion closely resembled each other, and since L6CT 
neurons themselves are modulated by locomotion (Augustinaite and Kuhn, 2020), are the effects of 
locomotion on dLGN responses inherited via feedback from cortex? To test this hypothesis, we next 
focused on only those movie trials in which feedback was suppressed by V1 PV+ photostimulation 
and repeated the separation according to locomotion (Figure 5g–h). These analyses revealed that 
effects of locomotion on the responses to our movies persisted, even if CT feedback was suppressed 
(Figure 5i–l; firing rate: 9.7 vs 7.6 spikes/s; LMM: ‍F1,64.8 = 71.1‍, ‍p = 5.2 × 10−12

‍; burst ratio: 0.081 
vs 0.11 spikes/s; LMM: ‍F1,68.1 = 19.5‍, ‍p = 3.7 × 10−5

‍; sparseness: 0.47 vs 0.56; LMM: ‍F1,179.5 = 54.7‍, 

‍p = 5.1 × 10−12
‍; reliability: 0.14 vs 0.18; LMM: ‍F1,175.7 = 24.9‍, ‍p = 1.5 × 10−6

‍).
Besides running, another often-used indicator for behavioral state is pupil size (Reimer et  al., 

2014; Vinck et  al., 2015; Erisken et  al., 2014). Indexing arousal via pupil size, however, is chal-
lenging for movie stimuli, whose fluctuations in luminance will themselves drive changes in pupil size 
(Figure 5—figure supplement 2a). To test whether locomotion-independent, pupil-indexed arousal 
also modulates dLGN responses and whether this modulation depends on CT feedback, we exploited 
methods initially proposed by Reimer et al., 2014, focusing on periods within the movie when the 
animal was sitting and assuming that the average change in pupil size over multiple movie repetitions 
was due to luminance changes in the movie, while the variability around this average reflected trial-by-
trial differences in behavioral state (Figure 5—figure supplement 2b-g). Recapitulating our running-
related results, we found that both with CT feedback intact and during V1 suppression, response 
periods with faster than average pupil dilation (or slower than usual constriction; top quartile pupil 
change) were associated with higher firing rates, while periods with faster than usual pupil constriction 
(or slower than usual dilation; bottom quartile pupil change) were associated with lower firing rates 
(Figure 5—figure supplement 2b-c). In contrast, response reliability and SNR were not significantly 
different during periods of rapid dilation vs. rapid constriction, regardless of photostimulation condi-
tion (Figure 5—figure supplement 2d-g).

Finally, to further test the relationship between effects of behavioral state and CT feedback, we 
directly compared CT feedback and running-related modulations on a neuron-by-neuron basis. We 
focused on experiments with naturalistic movies, because this was the condition in which we observed 
robust effects of both CT feedback and behavioral state (for a related analysis with gratings and qual-
itatively similar results, see Figure 6—figure supplement 1a). First, we hypothesized that if effects of 
locomotion on dLGN responses were inherited from primary visual cortex, such effects should vanish 
during V1 suppression (Figure 6,a0). However, consistent with the observations shown in Figure 5i–l, 
even during V1 suppression, running-related modulations were significantly different from 0 (firing rate 
run modulation index (RMI): ‍0.18 ± 0.06‍; burst ratio: ‍−0.17 ± 0.1‍; sparseness: ‍−0.12 ± 0.04‍; reliability: 
‍−0.11 ± 0.09‍; Figure  6,a1-4-4, ). In fact, the degree of running modulation was correlated between 
control conditions with feedback intact and V1 suppressed (firing rate: slope of ‍0.51 ± 0.12‍; burst 
ratio: slope of ‍0.38 ± 0.2‍; sparseness: slope of ‍0.44 ± 0.14‍; reliability: slope of ‍0.50 ± 0.15‍; Figure 6,a1-

4). Interestingly, for firing rates and burst ratios, locomotion effects were slightly stronger, on average, 
with CT feedback intact compared to V1 suppression (firing rate RMI: 0.23 vs 0.20; LMM: ‍F1,168.3 = 4.3‍, 

‍p = 0.04‍, Figure 6, a1; burst ratio RMI: ‍−0.25‍ vs. ‍−0.17‍; LMM: ‍F1,154.7 = 6.3‍, ‍p = 0.013‍, Figure 6, a2), 
indicating that these two modulatory influences likely interact.

We next tested the hypothesis that CT feedback might have a stronger impact during active behav-
ioral states than during quiescence. Indeed, it has previously been shown that during brain states 
associated with anesthesia, the responsiveness of feedback circuits is particularly reduced (Briggs and 
Usrey, 2011; Makino and Komiyama, 2015; Keller et al., 2020). One might therefore predict that 
during quiescence, if feedback circuits were already completely disengaged, we should not be able 
to observe further effects of V1 suppression (Figure 6, b0). This was clearly not the case, because CT 
feedback effects were correlated across behavioral states (firing rate: slope of ‍0.72 ± 0.10‍; burst ratio: 
slope of ‍0.34 ± 0.15‍; sparseness: slope of ‍0.85 ± 0.12‍; reliability: slope of ‍0.43 ± 0.14‍; Figure 6, b1-4). In 
addition, and similar to the slightly stronger run modulation with feedback left intact, we discovered 

24



 Research article﻿﻿﻿﻿﻿﻿ Neuroscience

Spacek et al. eLife 2022;11:e70469. DOI: https://doi.org/10.7554/eLife.70469 � 13 of 32

a locomotion-dependent CT feedback effect for firing rates and burst ratios: CT feedback effects 
were slightly stronger, on average, during locomotion than during quiescence (firing rate FMI: 0.18 vs 
0.15; LMM: ‍F1,172.8 = 3.5‍, ‍p = 0.065‍; Figure 6, b1; burst ratio FMI: ‍−0.27‍ vs. ‍−0.19‍; LMM: ‍F1,166.9 = 6.8‍, 

‍p = 0.0097‍; Figure 6, b2). This subtle interaction between behavioral state and CT feedback effects 
might relate to a previous finding, where careful dissection of brain states by depth of anesthesia 
had already suggested that the effects of transient cortical inactivation on dLGN responses were 
more evident during lighter anesthesia, that is, during desynchronized cortical activity (Wörgötter 
et al., 2002). However, our ability to observe effects of V1 suppression in dLGN while the animal 
was stationary suggests that CT feedback circuits are engaged even under conditions of behavioral 
quiescence.

Finally, if modulations by CT feedback and behavioral state exploited the same circuitry, neurons 
experiencing strong modulation by V1 suppression should also be strongly affected by locomotion 
(Figure 6, c0). Contrary to this prediction, we found that effects of CT feedback (FMI) and behav-
ioral state (RMI) were uncorrelated (firing rate: slope of ‍0.054 ± 0.13‍; burst ratio: slope of ‍−0.1 ± 0.13‍; 
sparseness: slope of ‍0.005 ± 0.23‍; reliability: slope of ‍−0.095 ± 0.12‍; Figure 6c‍1−4‍). Together, these 
comparisons demonstrate that effects of behavioral state associated with locomotion and effects of 
CT feedback are largely independent.

Figure 6. The effects of CT feedback and locomotion on movie responses are largely independent. (a0–c0) Predicted relationships between modulation 
indices and response measures in different conditions, assuming dependence in the effects of CT feedback and locomotion. (a) Comparison of 
modulation by running (RMI) during CT feedback intact and V1 suppression for firing rates (a1), burst ratio (a2), sparseness (a3), and reliability (a4). Running 
effects were quantified with a run modulation index (RMI), where RMI = ‍(running − sitting)/(running + sitting)‍. (b) Comparison of modulation by 
CT feedback (FMI) during locomotion and stationary periods for firing rates (b1), burst ratio (b2), sparseness (b3), and reliability (b4). (c) Comparison 
of modulation by feedback (FMI) and modulation by running (RMI) for firing rates (c1), burst ratio (c2), sparseness (c3), and reliability (c4). Red: LMM fit. 
Green, purple: example neurons from Figure 2a and b.

The online version of this article includes the following figure supplement(s) for figure 6:

Figure supplement 1. The effects of CT feedback and locomotion on responses to gratings are also largely independent.
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Discussion
In this study, we used naturalistic movies to reveal that corticothalamic feedback and behavioral state 
can have robust effects on dLGN responses. We found that V1 suppression during movie presentation 
reduces the gain of time-varying dLGN firing rates, and leads to increases in bursting, sparseness and 
trial-to-trial reliability. The effects of CT feedback seem to be stimulus-specific, as V1 suppression led 
to more consistent and therefore stronger overall effects on firing rates for naturalistic movies than 
for gratings. Interestingly, the signatures of CT feedback closely resembled those of behavioral state. 
However, we found their effects during movie viewing to be largely independent, demonstrating that 
behavioral modulations of dLGN activity are not simply inherited from cortex. Overall, our findings 
highlight that dLGN responses to naturalistic movies can be reliably modulated by two extra-retinal 
sources – cortical feedback and behavioral state – which likely exert their influences via largely sepa-
rate neural circuits.

Manipulation of CT feedback
To manipulate CT feedback, we chose a potent, yet global, V1 suppression approach based on opto-
genetic activation of ChR2 expressed in local PV+ inhibitory interneurons (Lien and Scanziani, 2013; 
Li et  al., 2013; King et  al., 2016; Olsen et  al., 2012; Wiegert et  al., 2017). While silencing by 
excitation of inhibitory interneurons can exploit the robust effects of GABA-mediated inhibition in 
cortical circuits, it comes with a limitation in specificity. Hence, in addition to the direct L6 → thalamus 
circuit, indirect polysynaptic effects might be exerted via alternative routes. One example is L5 corti-
cofugal pyramidal cells projecting to the superior colliculus (SC), where tectogeniculate neurons in 
the superficial layers provide retinotopically organized, driving inputs to the dorsolateral shell region 
of the dLGN (Bickford et al., 2015). To address this lack of specificity, in control experiments, we 
replaced photoactivation of PV +neurons with direct, selective suppression of V1 Ntsr1 +neurons, 
encompassing the population of L6 CT pyramidal cells (Kim et  al., 2014; Bortone et  al., 2014). 
Since photosuppression via the light-gated chloride channel stGtACR2 (Mahn et al., 2018) did not 
alter any of our conclusions regarding the effects of CT feedback on dLGN responses, we assume 
that the effects of V1 suppression to a large degree reflect the specific impact of the L6 CT circuit. 
L6 CT neurons, however, have an intracortical axon collateral making privileged connections with a 
translaminar PV +interneuron subtype in L6 (Frandolig et al., 2019; Bortone et al., 2014), which in 
turn strongly regulates the gain of the entire V1 column (Olsen et al., 2012; Bortone et al., 2014; 
Frandolig et al., 2019), so that even with such specific suppression, polysynaptic effects cannot be 
excluded. However, since suppression of L6 CT neurons increases the gain in V1 (Olsen et al., 2012), 
and since this is the opposite of the global effects of V1 suppression via PV +activation, L6 CT gain 
modulation of V1 seems unlikely to drive our effects. Nevertheless, decisively ruling out alternative 
circuits would require the selective suppression of L6 CT axon terminals at the thalamic target.

Cortical layer 6 is well known for its particularly high diversity of neuronal cell types (Briggs, 2010). 
Even within the population of L6 CT pyramidal cells there is heterogeneity, with at least two subtypes 
defined by morphology (Frandolig et al., 2019; Tasic et al., 2016; Gouwens et al., 2019; Augusti-
naite and Kuhn, 2020), three subtypes defined by electrophysiology and morphology (Gouwens 
et  al., 2019), and four major subtypes defined by transcriptomics (Tasic et  al., 2016; Gouwens 
et al., 2019). Whether these subtypes mediate different aspects of feedback modulations is currently 
unknown. In the visual system of primates and carnivores, CT feedback circuits seem to be organized 
into distinct streams (Briggs et al., 2016; Hasse et al., 2019; Briggs and Usrey, 2009) whose func-
tional organization mimics that of the feedforward streams. Whether the known subtypes in mice 
can convey independent, stream-specific information is currently unknown, partly because already 
at the level of feedforward processing, the notion of streams in mouse dLGN is a matter of ongoing 
debate (Chen et al., 2016; Denman and Contreras, 2016; Morgan et al., 2016; Chen et al., 2016; 
Zhuang et al., 2019), and dLGN response properties are diverse (Piscopo et al., 2013; Román Rosón 
et al., 2019; Liang et al., 2018). Our own assessment of CT feedback effects revealed few system-
atic differences for various dLGN cell-type classifications. Such an absence of differences, however, 
is not surprising, because our optogenetic circuit manipulations non-specifically suppressed all L6 CT 
neuron subtypes. Once genetic targeting of L6 CT subtypes will become possible, it will be important 
to test the stream-specificity of CT feedback in the mouse.
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CT feedback effects on gain, reliability, and bursting
Our analyses of the time-varying firing rates in response to naturalistic movies revealed that V1 
suppression results in a robust decrease of geniculate response gain. Divisive effects of CT feedback 
suppression have also been previously reported for contrast response functions of parvocellular dLGN 
neurons in anesthetized macaques (Przybyszewski et al., 2000). A crucial element to produce gain 
modulations seems to be changes in the level of synaptically driven Vm fluctuations, often called 
‘synaptic noise’ (Hô and Destexhe, 2000; Shu et al., 2003; Chance et al., 2002). Indeed, in vivo 
V1 recordings suggest that the combined impact of changes in Vm fluctuations, input resistance, and 
depolarization is needed to produce gain changes (Cardin et al., 2008). These cellular properties are 
altered by both feedback (Chance et al., 2002) and neuromodulation (Disney et al., 2007), not only 
in cortex (Ferguson and Cardin, 2020) but also in the corticothalamic system (Béhuret et al., 2015; 
Augustinaite et al., 2014). Here, ‘synaptic noise’ together with varying degrees of T-type channel 
recruitment has been shown to change the slope of the input-output function and alter the temporal 
filtering characteristics of thalamic relay cells (Wolfart et  al., 2005; Béhuret et  al., 2015). Thus, 
by providing variable synaptic input and affecting membrane depolarization, for example, through 
NMDA plateau potentials (Augustinaite et al., 2014), CT feedback might be in a prime position to 
dynamically tune the gain of the thalamic relay.

In addition to potentially contributing to the observed gain modulations, ‘synaptic noise’ from CT 
feedback may also help explain the less precise and less reliable dLGN responses we observed when 
feedback was left intact. Specifically, V1 neurons are known to exhibit about double the trial-to-trial 
variability of simultaneously recorded dLGN neurons (Kara et  al., 2000), and eliminating variable 
cortical input might unmask the even greater reliability of feed-forward retinal inputs (Kara et al., 
2000).

Our analyses of movie and grating response characteristics showed that V1 suppression robustly 
and consistently biased geniculate activity toward burst firing mode. Burst firing mode occurs when 
dLGN neurons undergo sustained (‍≥ 100‍ ms) hyperpolarization (Sherman, 2001), which allows for the 
de-inactivation of low-threshold T-type calcium channels abundant in thalamus (Jahnsen and Llinás, 
1984). Such ‘calcium bursts’ can only be unequivocally separated from high-frequency firing in intra-
cellular recordings or calcium imaging, but can be inferred in extracellular recordings, such as ours, 
by imposing a minimum duration of 100 ms of silence preceding a high-frequency ( < 4 ms ISI) firing 
event (Lu et al., 1992). Previous in vivo intracellular recordings in cat dLGN have revealed that cortical 
ablation can hyperpolarize the resting membrane potential of dLGN relay cells by ∼9 mV, enough 
to push them into burst-firing mode (Dossi et al., 1992). Conversely, direct optogenetic activation 
of L6 CT neurons in primary somatosensory cortex has been shown to decrease burst mode firing 
(Mease et al., 2014), potentially mediated by NMDA plateau potentials as observed in slice record-
ings (Augustinaite et al., 2014). In burst firing mode, reminiscent of the effects we observed during 
V1 suppression, dLGN spontaneous activity is low (Sherman, 2001), stimulus-evoked responses show 
phase-advance (Lu et al., 1992; Alitto et al., 2005) and high trial-to-trial reliability (Alitto et al., 
2005). The increase in trial-to-trial response reliability we observed during V1 suppression might 
therefore be explained not only by the removal of a more variable input as mentioned above (Kara 
et al., 2000), but also by a shift towards burst mode, where retinogeniculate communication efficacy 
is elevated (Alitto et al., 2019).

Theories about the function of thalamic firing modes can provide a useful framework for inter-
preting the effects of CT feedback we observed here, in particular since the greater precision and trial-
to-trial reliability of responses during V1 suppression might be unexpected at first glance. Thalamic 
burst mode is often linked with ‘inattentive states’, where the sudden appearance or change of a 
visual stimulus from non-preferred to preferred RF contents (Lesica and Stanley, 2004; Lesica et al., 
2006; Wang et al., 2007) can reliably trigger a thalamic burst. Bursting is associated with high signal-
to-noise, well-suited for stimulus detection (Sherman, 2001; Whitmire et  al., 2016). In addition, 
thalamic burst mode is known to augment the efficacy of retinal input to drive spiking in dLGN (Alitto 
et  al., 2019), and increases the probability of relay between thalamus and cortex (Swadlow and 
Gusev, 2001). This in turn might lead to depolarizing CT feedback, switching the thalamus to tonic 
mode and allowing more faithful, linear relay of information with a higher dynamic range, better suited 
for encoding of more finely graded details (Sherman, 2001; Béhuret et al., 2015). Such a ‘wake-up-
call’ for cortex (Sherman, 2001; Lesica and Stanley, 2004) could represent a neural implementation 
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of bottom-up attention in dLGN (Hochstein and Ahissar, 2002). To understand if CT feedback is 
indeed recruited for detailed perceptual analyses, an essential next step would be to measure the 
activity of L6 CT neurons under behaviorally relevant conditions. Interestingly, in the auditory system, 
activation of L6 CT feedback has been shown to influence sound perception, with enhancements of 
sound detection or discrimination behavior, depending on the relative timing between CT spiking and 
stimulus onset (Guo et al., 2017). Beyond having a broad impact on coding regimes and transmis-
sion, bursting in thalamus is also known to have specific computational properties, such as efficiently 
encoding high- and low-frequency information in parallel (Mease et al., 2017).

Stimulus-dependence of CT feedback effects
So far, most studies using naturalistic stimuli to probe dLGN responses have been performed in anes-
thetized animals and have not considered CT feedback (Dan et al., 1996; Lesica and Stanley, 2004; 
Lesica et  al., 2006; Lesica et  al., 2007; Wang et al., 2007; Mante et  al., 2005). Similarly, most 
studies investigating the impact of CT feedback have relied on artificial stimuli (Olsen et al., 2012; 
Denman and Contreras, 2015; Wang et al., 2006; Murphy and Sillito, 1987). Comparing the effects 
of CT feedback during naturalistic movies and gratings, we found evidence that CT feedback modu-
lates firing rates at the geniculate level in a stimulus-dependent fashion. What could be the relevant 
difference? For artificial stimuli, such as gratings and bars, it has long been known that CT feed-
back can enhance dLGN surround suppression by increasing responses to small stimuli and reducing 
responses to large stimuli (Born et al., 2021; McClurkin and Marrocco, 1984; Murphy and Sillito, 
1987; Jones et  al., 2012; Wang et al., 2018; Cudeiro and Sillito, 1996; Andolina et  al., 2013; 
Hasse and Briggs, 2017; Webb et al., 2002). Such CT feedback-mediated enhancement of surround 
suppression might result from recruitment of a more narrow direct excitatory and a wider indirect 
inhibitory CT feedback component according to grating size (Born et al., 2021), with the balance 
shifting more towards direct excitation for small gratings and more towards indirect inhibition for 
large gratings. Size, however, is likely not the only determinant of relative recruitment of CT feedback 
circuits: for instance, V1 ablation or pharmacological suppression in anesthetized cats leads to more 
prominent reductions of dLGN surround suppression for iso- vs. cross-oriented gratings (Cudeiro and 
Sillito, 1996; Sillito et al., 1993), suggesting an additional role of stimulus context. For naturalistic 
stimuli with complex context, measurements in area V1 have already demonstrated that surround 
suppression is generally lower than for iso-oriented gratings, and is flexibly invoked depending on the 
specific statistics in the RF center and surround (Coen-Cagli et al., 2015). The differential effect of CT 
feedback on dLGN firing rates for full-screen naturalistic movies and iso-oriented gratings observed 
in our study might therefore be parsimoniously explained by differences in the relative strength of 
direct excitatory and indirect inhibitory CT feedback. It would be of prime interest to measure, in 
future experiments, size tuning curves with and without CT feedback using different stimuli, such as 
naturalistic movies, iso- and cross-oriented gratings. Given our results, we predict that CT feedback 
would affect firing rate responses to full-screen cross-oriented gratings more similarly to full-screen 
naturalistic movies than would iso-oriented gratings. Alternatively, CT feedback might change firing 
rates more consistently for lower contrast stimuli, such as our movies, where additional top-down 
inputs might be helpful for detection or discrimination.

Relationship between CT feedback and behavioral state
By measuring the effects of V1 suppression on movie responses during different behavioral states, and 
by measuring effects of behavioral state with and without CT feedback, we found that behavioral state 
and CT feedback had similar effects on dLGN responses, but seemed to operate via largely separate 
circuits. The lack of substantial dependence between effects of CT feedback and behavioral state on 
responses to our naturalistic movies is remarkable: neuromodulation accompanying changes in behav-
ioral state will affect cortical layer 6, which receives dense cholinergic afferents from basal forebrain 
(Radnikow and Feldmeyer, 2018). Accordingly, in slice recordings, upon bath application of ACh, 
mouse V1 L6 CT neurons increase action potential firing (Sundberg et al., 2018). Potentially related, 
many V1 L6 CT neurons themselves increase activity during locomotion or arousal (Augustinaite and 
Kuhn, 2020; Swadlow and Weyand, 1987). Together, these studies would predict that effects of 
behavioral state should be augmented during CT feedback. Indeed, two recent studies investigating 
the interactions between CT feedback and arousal reported, during suppression of CT feedback, 
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less correlation between dLGN firing and pupil size (Molnár et al., 2021), and a loss of effects of 
behavioral state on dLGN tuning curves for temporal and spatial frequency, but not for spontaneous 
activity (Reinhold et al., 2021). Together with other findings more consistent with our results (Murata 
and Colonnese, 2018; Nestvogel and McCormick, 2022; Schröder et al., 2020), this discrepancy 
suggests that the degree to which effects of behavioral state in dLGN might be dependent on cortex 
is not fully understood.

If not inherited from CT feedback, which alternative circuits could mediate the effects of behav-
ioral state in dLGN (Erisken et al., 2014; Aydın et al., 2018; Williamson et al., 2015)? Locomo-
tion is accompanied by arousal (Vinck et al., 2015), which in turn involves various neuromodulatory 
influences [reviewed in Zagha and McCormick, 2014]. For instance, norepinephrine from the locus 
coeruleus (LC) and acetylcholine (ACh) from the midbrain are known to act directly on the thalamus 
[reviewed in McCormick, 1992; Lee and Dan, 2012] and could drive some of the arousal-related 
depolarizing effects on firing rate independent of cortical feedback, for instance by blocking a long-
lasting Ca2+-dependent K+ current (Sherman and Koch, 1986). In addition, electrical stimulation 
of the LC (Holdefer and Jacobs, 1994) and the parabrachial region (PBR) (Lu et al., 1993) within 
the mesencephalic locomotor region (MLR), and direct application of noradrenergic (Funke et al., 
1993) and cholinergic (McCormick, 1992; Sillito et al., 1983) agonists within dLGN, are sufficient 
to reduce thalamic burst mode firing. Finally, at least part of the locomotion effects in dLGN might 
also be related to modulations of retinal output (Schröder et al., 2020; Liang et al., 2020). Indeed, 
two-photon calcium imaging of retinal ganglion cell boutons in dLGN (Liang et al., 2020) and SC 
(Schröder et al., 2020) revealed that their activity can be modulated by locomotion, albeit with an 
overall suppressive effect. In future studies, it will be key to further dissect the contributions of retinal, 
cortical and potentially collicular modulations, and the different neuromodulatory sources of behav-
ioral state-related modulations in thalamic targets.

Materials and methods

 Continued on next page

Key resources table 

Reagent type (species) or 
resource Designation Source or reference Identifiers Additional information

Recombinant DNA reagent
pAAV EF1a.DIO.hChR2(H134R)- eYFP.WPRE.
hGH Addgene #20298-AAV9

Recombinant DNA reagent pAAV hSyn1-SIO-stGtACR2- FusionRed Addgene #105,677

Strain, strain background (Mus 
musculus) B6;129P2-Pvalbtm1(cre)Arbr/J Jackson Laboratory #008069 PV-Cre, Pvalb-Cre

Strain, strain background (Mus 
musculus) B6.FVB(Cg)-Tg(Ntsr1-cre) GN220Gsat/Mmcd MMRRC #030648-UCD Ntsr1-Cre

Chemical compound, drug Metamizole MSD Animal Health Vetalgin 200 mg/kg

Chemical compound, drug Buprenorphine Bayer Buprenovet 0.1 mg/kg

Chemical compound, drug Lidocaine hydrochloride bela-pharm 2 %

Chemical compound, drug Meloxicam Böhringer Ingelheim Metacam 2 mg/kg

Chemical compound, drug Isoflurane CP Pharma in oxygen

Chemical compound, drug Bepanthen Bayer eye ointment

Chemical compound, drug DAPI-containing mounting medium Vector Laboratories Ltd

Chemical compound, drug Vectashield DAPI H-1000 Vector Laboratories Ltd

Chemical compound, drug DiI Invitrogen electrode stain

Software, algorithm Python 3.6 http://python.org RRID:SCR_008394

Software, algorithm R R Core Team, 2017 RRID:SCR_001905

Software, algorithm MATLAB R2019b Mathworks RRID:SCR_001622

Software, algorithm EXPO
https://sites.google.com/a/nyu.edu/​
expo/home visual stimulus display
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Reagent type (species) or 
resource Designation Source or reference Identifiers Additional information

Software, algorithm Kilosort Pachitariu et al., 2016 RRID:SCR_016422

Software, algorithm Spyke Spacek et al., 2009

Software, algorithm Fiji/ImageJ NIH RRID:SCR_003070

Software, algorithm DataJoint Yatsenko et al., 2018 RRID:SCR_014543

 Continued

Surgical procedures
Experiments were carried out in 6 adult PV-Cre mice (median age at first recording session: 
23.5 weeks; B6;129P2-Pvalbtm1(cre)Arbr/J; #008069, Jackson Laboratory) and 3 adult Ntsr1-Cre mice 
(median age: 29.4 weeks; B6.FVB(Cg)-Tg(Ntsr1-cre)GN220Gsat/Mmcd; #030648-UCD, MMRRC) of 
either sex. Thirty minutes prior to the surgical procedure, mice were injected with an analgesic 
(Metamizole, 200 mg/kg, sc, MSD Animal Health, Brussels, Belgium). To induce anesthesia, animals 
were placed in an induction chamber and exposed to isoflurane (5% in oxygen, CP-Pharma, Burg-
dorf, Germany). After induction of anesthesia, mice were fixated in a stereotaxic frame (Drill & 
Microinjection Robot, Neurostar, Tuebingen, Germany) and the isoflurane level was lowered (0.5–2% 
in oxygen), such that a stable level of anesthesia could be achieved as judged by the absence of 
a pedal reflex. Throughout the procedure, the eyes were covered with an eye ointment (Bepan-
then, Bayer, Leverkusen, Germany) and a closed loop temperature control system (ATC 1000, WPI 
Germany, Berlin, Germany) ensured that the animal’s body temperature was maintained at 37 ° C. At 
the beginning of the surgical procedure, an additional analgesic was administered (Buprenorphine, 
0.1  mg/kg, sc, Bayer, Leverkusen, Germany) and the animal’s head was shaved and thoroughly 
disinfected using idodine solution (Braun, Melsungen, Germany). Before performing a scalp incision 
along the midline, a local analgesic was delivered (Lidocaine hydrochloride, sc, bela-pharm, Vechta, 
Germany). The skin covering the skull was partially removed and cleaned from tissue residues with a 
drop of H2O2 (3%, AppliChem, Darmstadt, Germany). Using four reference points (bregma, lambda, 
and two points 2 mm to the left and to the right of the midline respectively), the animal’s head was 
positioned into a skull-flat configuration. The exposed skull was covered with OptiBond FL primer 
and adhesive (Kerr dental, Rastatt, Germany) omitting three locations: V1 (AP: -2.8 mm, ML: -2.5 
mm), dLGN (AP: -2.3 mm, ML: -2 mm), and a position roughly 1.5 mm anterior and 1 mm to the right 
of bregma, designated for a miniature reference screw (00–96 X 1/16 stainless steel screws, Bilaney) 
soldered to a custom-made connector pin. Two μL of the adeno-associated viral vector rAAV9/1.
EF1a.DIO.hChR2(H134R)-eYFP.WPRE.hGH (Addgene, #20298-AAV9) was dyed with 0.3 μL fast 
green (Sigma-Aldrich, St. Louis, USA). After performing a small craniotomy over V1, in PV-Cre mice a 
total of ∼ 0.5 μL of this mixture was injected across the entire depth of cortex (0.05 μL injected every 
100 μm, starting at 1000 μm and ending at 100 μm below the brain surface), using a glass pipette 
mounted on a Hamilton syringe (SYR 10 μL 1701 RN no NDL, Hamilton, Bonaduz, Switzerland). In 
V1 of Ntsr1-Cre mice, we injected 0.35 μL of stGtACR2 (pAAV_hSyn1-SIO-stGtACR2-FusionRed, 
Addgene, #105677; 0.05 μL injected every 100 μm, starting at 1000 μm and ending at 500 μm 
below the brain surface). A custom-made lightweight stainless steel head bar was positioned over 
the posterior part of the skull such that the round opening in the bar was centered on V1/dLGN. The 
head bar was attached with dental cement (Ivoclar Vivadent, Ellwangen, Germany) to the primer/
adhesive. The opening was later filled with the silicone elastomer sealant Kwik-Cast (WPI Germany, 
Berlin, Germany). At the end of the procedure, an antibiotic ointment (Imex, Merz Pharmaceu-
ticals, Frankfurt, Germany) or iodine-based ointment (Braunodivon, 10%, B. Braun, Melsungen, 
Germany) was applied to the edges of the wound and a long-term analgesic (Meloxicam, 2 mg/kg, 
sc, Böhringer Ingelheim, Ingelheim, Germany) was administered and for 3 consecutive days. For at 
least 5 days post-surgery, the animal’s health status was assessed via a score sheet. After at least 
1 week of recovery, animals were gradually habituated to the experimental setup by first handling 
them and then simulating the experimental procedure. To allow for virus expression, neural record-
ings started no sooner than 3 weeks after injection. On the day prior to the first day of recording, 
mice were fully anesthetized using the same procedures as described for the initial surgery, and 
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a craniotomy (ca. 1.5 mm2) was performed over dLGN and V1 and re-sealed with Kwik-Cast (WPI 
Germany, Berlin, Germany). As long as the animals did not show signs of discomfort, the long-term 
analgesic Metacam was administered only once at the end of surgery, to avoid any confounding 
effect on experimental results. Recordings were performed daily and continued for as long as the 
quality of the electrophysiological signals remained high.

Electrophysiological recordings, optogenetic suppression of V1, 
perfusion
Head-fixed mice were placed on an air-cushioned Styrofoam ball, which allowed the animal to freely 
move. Two optical computer mice interfaced with a microcontroller (Arduino Duemilanove) sampled 
ball movements at 90 Hz. To record eye position and pupil size, the animal’s eye was illuminated with 
infrared light and monitored using a zoom lens (Navitar Zoom 6000) coupled with a camera (Guppy 
AVT camera; frame rate 50 Hz, Allied Vision, Exton, USA). Extracellular signals were recorded at 30 kHz 
(Blackrock microsystems). For each recording session, the silicon plug sealing the craniotomy was 
removed. For V1 recordings, a 32- or 64 channel silicon probe (Neuronexus, A1 × 32-5 mm-25-177, A1 
× 32Edge-5mm-20–177 A32 or A1 × 64-Poly2-6mm-23s-160) was lowered into the brain to a median 
depth of 1025 μm. For dLGN recordings, a 32-channel linear silicon probe (Neuronexus A1 × 32Edge-
5mm-20–177 A32) was lowered to a depth of ∼2300–3611 μm below the brain surface. We judged 
recording sites to be located in dLGN based on the characteristic progression of RFs from upper to 
lower visual field along the electrode shank (Piscopo et al., 2013, Figure 1—figure supplement 1b), 
the presence of responses strongly modulated at the temporal frequency of the drifting gratings (F1 
response), and the preference of responses to high temporal frequencies (Grubb and Thompson, 
2003; Piscopo et al., 2013). For post hoc histological reconstruction of the recording site, the elec-
trode was stained with DiI (Invitrogen, Carlsbad, USA) for one of the final recording sessions.

For photostimulation of V1 PV +inhibitory interneurons or photosuppression of V1 L6CT neurons, 
an optic fiber (910 μm diameter, Thorlabs, Newton, USA) was coupled to a light-emitting diode 
(LED, center wavelength 470 nm, M470F1, Thorlabs, Newton, USA; or center wavelength 465 nm, 
LEDC2_465/635_SMA, Doric Lenses, Quebec, Canada) and positioned with a micromanipulator less 
than 1 mm above the exposed surface of V1. A black metal foil surrounding the tip of the head bar 
holder prevented most of the photostimulation light from reaching the animal’s eyes. To ensure that 
the photostimulation was effective, the first recording session for each mouse was carried out in V1. 
Only if the exposure to light reliably induced suppression of V1 activity was the animal used for subse-
quent dLGN recordings. For gratings, photostimulation started either 0.1 s before stimulus onset and 
ended 0.1 s after stimulus offset (2 experiments), or photostimulation started 0.3 s before stimulus 
onset and ended 0.2 s after stimulus offset (11 experiments), or photostimulation started 0.3 s before 
stimulus onset and ended 0.45 s after stimulus offset (12 experiments). For movie clips, photostimu-
lation started either 0.1 s before stimulus onset and ended 0.1 s after stimulus offset (2 experiments), 
or photostimulation started 0.3 s before stimulus onset and ended 0.45 s after stimulus offset (45 
experiments). LED light intensity was adjusted on a daily basis to evoke reliable effects (median inten-
sity: 13.66 mW/mm2 for activating ChR2 in PV-Cre mice, and 10.84 mW/mm2 for activating stGtACR2 
in Ntsr1-Cre mice, as measured at the tip of the optic fiber). Since the tip of the fiber never directly 
touched the surface of the brain, and since the clarity of the surface of the brain varied (generally 
decreasing every day following the craniotomy), the light intensity delivered even to superficial layers 
of V1 was inevitably lower. Importantly, changes in dLGN firing rates induced by V1 suppression 
(FMI, see below) did not differ, on average, from those induced by behavioral state (RMI, see below) 
(firing rate: FMI 0.20 vs. RMI 0.15, LMM: ‍F1,145.7 = 3.02‍, ‍p = 0.08‍; burst ratio: FMI ‍−0.27‍ vs. RMI ‍−0.28‍, 

‍F1,124.0 = 0.002‍, ‍p = 0.97‍; sparseness: FMI ‍−0.12‍ vs. RMI ‍−0.14‍, ‍F1,144.9 = 1.03‍, ‍p = 0.31‍; reliability: FMI 
‍−0.084‍ vs. ‍−0.037‍, ‍F1,183.0 = 1.96‍, ‍p = 0.16‍; Figure 6c), indicating that optogenetic stimulation effects 
were not outside the physiological range.

After the final recording session, mice were first administered an analgesic (Metamizole, 200 mg/
kg, sc, MSD Animal Health, Brussels, Belgium) and following a 30  min latency period were tran-
scardially perfused under deep anesthesia using a cocktail of Medetomidin (Domitor, 0.5  mg/kg, 
Vetoquinol, Ismaning, Germany), Midazolam (Climasol, 5  mg/kg, Ratiopharm, Ulm, Germany) and 
Fentanyl (Fentadon, 0.05 mg/kg, Dechra Veterinary Products Deutschland, Aulendorf, Germany) (ip). 
A few animals, which were treated according to a different license, were anesthetized with sodium 
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pentobarbital (Narcoren, 400 mg/kg, ip, Böhringer Ingelheim, Ingelheim, Germany). Perfusion was 
first done with Ringer’s lactate solution followed by 4% paraformaldehyde (PFA) in 0.2 M sodium 
phosphate buffer (PBS).

Histology
To verify recording site and virus expression, we performed histological analyses. Brains were removed, 
postfixed in PFA for 24 hr, and then rinsed with and stored in PBS at 4 °C. Slices (40 μm) were cut 
using a vibratome (Leica VT1200 S, Leica, Wetzlar, Germany), stained with DAPI solution before (DAPI, 
Thermo Fisher Scientific; Vectashield H-1000, Vector Laboratories) or after mounting on glass slides 
(Vectashield DAPI), and coverslipped. A fluorescent microscope (BX61, Olympus, Tokyo, Japan) was 
used to inspect slices for the presence of yellow fluorescent protein (eYFP) and DiI. Recorded images 
were processed using FIJI (Rueden et al., 2017; Schindelin et al., 2012).

Visual stimulation
Visual stimuli were presented on a liquid crystal display (LCD) monitor (Samsung SyncMaster 2233RZ, 
47 × 29 cm, 1680 × 1050 resolution at 60 Hz, mean luminance 50 cd/m2) positioned at a distance of 
25 cm from the animal’s right eye (spanning ∼ 108 × 66°, small angle approximation) using custom 
written software (EXPO, https://sites.google.com/a/nyu.edu/expo/home). The display was gamma-
corrected for the presentation of artificial stimuli, but not for movies (see below).

To measure receptive fields (RFs), we mapped the ON and OFF subfields with a sparse noise 
stimulus. The stimulus consisted of nonoverlapping white and black squares on a square grid, each 
flashed for 200ms. For dLGN recordings, the square grid spanned 60° on a side, while individual 
squares spanned 5° on a side. For a single experiment, the vertical extent was reduced to 50°. For 
subsequent choices of stimuli, RF positions and other tuning preferences were determined online 
after each experiment based on multiunit activity, that is high-pass filtered signals crossing a threshold 
of 4.5–6.5 SD.

We measured single unit orientation preference by presenting full-screen, full-contrast drifting 
sinusoidal gratings of either 12 (23 experiments) or 8 (2 experiments) different, pseudo-randomly 
interleaved orientations (30° or 45° steps). For dLGN recordings, spatial frequency was either 0.02 
cyc/° (17 experiments) or 0.04 cyc/° (8 experiments) and temporal frequency was either 2 Hz (2 exper-
iments) or 4 Hz (23 experiments). One blank condition (i.e. mean luminance gray screen) was included 
to allow measurements of spontaneous activity. The stimulus duration was either 2 s (23 experiments) 
or 5 s (2 experiments), with an interstimulus interval (ISI) of 2.4 s (21 experiments) or 1.25 s (2 experi-
ments). For two Ntsr1-Cre experiments, ISIs varied and were either 0.58 s or 1.09 s.

For laminar localization of neurons recorded in V1, we presented a full-screen, contrast-reversing 
checkerboard at 100% contrast, with a spatial frequency of either 0.01 cyc/° (2 experiments) or 0.02 
cyc/° (5 experiments) and a temporal frequency of 0.5 cyc/s.

Movies were acquired using a hand-held consumer-grade digital camera (Canon PowerShot SD200) 
at a resolution of 320 × 240 pixels and 60 frames/s. Movies were filmed close to the ground in a variety 
of wooded or grassy locations in Vancouver, BC, and contained little to no forward/backward optic 
flow, but did contain simulated gaze shifts (up to 275°/s), generated by manual camera movements 
(for example movies, see Figure 1—video 1 and Figure 1—video 2). Focus was kept within 2 m 
and exposure settings were set to automatic. The horizontal angle subtended by the camera lens 
was 51.6°. No display gamma correction was used while presenting movies, since consumer-grade 
digital cameras are already gamma corrected for consumer displays (Poynton, 1998). For presenta-
tion, movies were cut into 5 s clips and converted from color to grayscale. Movie clips were presented 
full-screen with an ISI of 1.25 s (43 experiments). For two Ntsr1-Cre experiments, ISIs varied and were 
either 0.58 s or 1.08 s.

Spike sorting
To obtain single unit activity from extracellular recordings, we used the open source, Matlab-based, 
automated spike sorting toolbox Kilosort (Pachitariu et al., 2016). Resulting clusters were manually 
refined using Spyke (Spacek et al., 2009), a Python application that allows the selection of channels 
and time ranges around clustered spikes for realignment, as well as representation in 3D space using 
dimension reduction (multichannel PCA, ICA, and/or spike time). In 3D, clusters were then further split 
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via a gradient-ascent based clustering algorithm (GAC) (Swindale and Spacek, 2014). Exhaustive 
pairwise comparisons of similar clusters allowed the merger of potentially over-clustered units. For 
subsequent analyses, we inspected autocorrelograms and mean voltage traces, and only considered 
units that displayed a clear refractory period and a distinct spike waveshape. All further analyses 
were carried out using the DataJoint framework (Yatsenko et al., 2018) with custom-written code in 
Python.

Response characterization
We used current source density (CSD) analysis for recordings in area V1 to determine the laminar 
position of electrode contacts. To obtain the LFP data we first down-sampled the signal to 1 kHz 
before applying a bandpass filter (4–90 Hz, 2nd-order Butterworth filter). We computed the CSD from 
the second spatial derivative of the local field potentials (Mitzdorf, 1985), and assigned the base of 
layer 4 to the contact that was closest to the earliest CSD polarity inversion. The remaining contacts 
were assigned to supragranular, granular and infragranular layers, assuming a thickness of ∼1 mm for 
mouse visual cortex (Heumann et al., 1977).

In recordings targeting dLGN, we used the envelope of multi-unit spiking activity (MUAe) (van der 
Togt et al., 2005) to determine RF progression (Figure 1—figure supplement 1b). Briefly, we full-wave 
rectified the high-pass filtered signals (cutoff frequency: 300 Hz, 4th-order non-causal Butterworth 
filter) before performing common average referencing by subtracting the median voltage across all 
channels in order to eliminate potential artifacts (e.g. movement artifacts). We then applied a low-pass 
filter (cutoff frequency: 500 Hz, Butterworth filter) and down-sampled the signal to 2 kHz. Recording 
sessions for which RFs did not show the retinotopic progression typical of dLGN (Figure 1—figure 
supplement 1b; Piscopo et al., 2013) were excluded from further analysis.

Each unit’s peristimulus time histogram (PSTH, i.e. the response averaged over trials) was calcu-
lated by convolving a Gaussian of width ‍2σ‍ = 20 ms with the spike train collapsed across all trials, 
separately for each condition.

We defined bursts according to Lu et al., 1992, which required a silent period of at least 100ms 
before the first spike in a burst, followed by a second spike with an interspike interval < 4 ms. Imposing 
the silent period was found to be crucial for separating dLGN ‘low threshold calcium bursts’ from 
high-frequency firing in extracellular recordings (Lu et al., 1992); note however, that ‘low-threshold 
calcium bursts’ can only be unequivocally detected in intracellular recordings or calcium imaging. Any 
subsequent spikes with preceding interspike intervals < 4ms were also considered to be part of the 
burst. All other spikes were regarded as tonic. We computed a burst ratio (the number of burst spikes 
divided by the total number of spikes) and compared this ratio in conditions with CT feedback intact 
vs. V1 suppression or during locomotion vs. stationary conditions. PSTHs for burst spikes were calcu-
lated by only considering spikes that were part of bursts before collapsing across trials and convolving 
with the Gaussian kernel (see above). PSTHs for non-burst spikes were calculated in an analogous way.

To quantify the effect of V1 suppression on various response properties, we defined the feedback 
modulation index (FMI) as

	﻿‍ FMI = feedback−suppression
feedback+suppression ‍� (1)

Characterization of responses to naturalistic movie clips
Signal to noise ratio (SNR) was calculated according to Baden et al., 2016 by

	﻿‍ SNR = Var[⟨Cr⟩]t
⟨Var[C]t⟩r ‍� (2)

where ‍C‍ is the ‍T ‍ by ‍R‍ response matrix (time samples by stimulus repetitions) and ‍⟨⟩x‍ and Var[]‍x‍ 
denote the mean and variance across the indicated dimension, respectively. If all trials were identical 
such that the mean response was a perfect representative of the response, SNR would equal 1.

The sparseness ‍S‍ of a PSTH was calculated according to Vinje and Gallant, 2000 by
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where ‍ri ≥ 0‍ is the signal value in the ‍ith‍ time bin, and ‍n‍ is the number of time bins. Sparseness 
ranges from 0 to 1, with 0 corresponding to a uniform signal, and 1 corresponding to a signal with all 
of its energy in a single time bin.

Response reliability was quantified according to Goard and Dan, 2009 as the mean pairwise 
correlation of all trial pairs of a unit’s single-trial responses. Single-trial responses were computed by 
counting spikes in 20ms, overlapping time bins at 1ms resolution. Pearson’s correlation was calculated 
between all possible pairs of trials, and then averaged across trials per condition.

To detect response peaks in trial raster plots and measure their widths, clustering of spike times 
collapsed across trials was performed using the gradient ascent clustering (GAC) algorithm (Swindale 
and Spacek, 2014), with a characteristic neighborhood size of 20ms. Spike time clusters containing 
less than 5 spikes were discarded. The center of each detected cluster of spike times was matched 
to the nearest peak in the PSTH. A threshold of ‍θ = b + 3‍ Hz was applied to the matching PSTH 
peak, where ‍b = 2 median(x)‍ is the baseline of each PSTH ‍x‍. Peaks in the PSTH that fell below ‍θ‍ were 
discarded, and all others were kept as valid peaks. Peak widths were measured as the temporal sepa-
ration of the middle 68% (16th to 84th percentile) of spike times within each cluster.

To determine whether V1 suppression changes dLGN responses in a divisive or subtractive manner, 
we fit a threshold-linear model using repeated random subsampling cross-validation. To this end, 
we first selected a random set of 50% of the trials for each condition for fitting to the timepoint-by-

timepoint responses a threshold linear model given by ‍Rsupp = s Rfb + b‍, where ‍Rsupp > 0‍, with ‍s‍ repre-

senting the slope and ‍b‍ the offset. Fitting was done using non-linear least squares (scipy.optimize.
curve_fit). Throughout Figure 2, we report the resulting ‍x‍-intercept as the threshold. We evaluated 
goodness of fit (‍R2‍) for the other 50% of trials not used for fitting. We repeated this procedure 1000 
times and considered threshold and slope as significant if the central 95% of their distribution did not 
include 0 and 1, respectively.

Characterization of responses to drifting gratings
For display of spike rasters (Figure  3), trials were sorted by condition. We computed orientation 
tuning curves by fitting a sum of two Gaussians of the same width with peaks 180° apart:

	﻿‍ R(θ) = R0 + Rpe−
(θ−θp)2

2σ2 + Rne−
(θ−θp+180)2

2σ2 ‍� (4)

In this expression, ‍θ‍ is stimulus orientation (0–360°). The function has five parameters: preferred 
orientation ‍θp‍, tuning width ‍σ‍, baseline response (offset independent of orientation) R0, response at 
the preferred orientation ‍Rp‍, and response at the null orientation ‍Rn‍.

Orientation selectivity was quantified according to Bonhoeffer et al., 1995; Olsen et al., 2012 as

	﻿‍ OSI =
√

(
∑

Rk sin(2θk))2+(
∑

Rk cos(2θk))2
∑

Rk ‍� (5)

where ‍Rk‍ is the response to the ‍k‍ th direction given by ‍θk‍. We determined OSI for each unit during 
both feedback and suppression conditions.

We computed the first harmonic of the response ‍R‍ from the spike trains according to Carandini 
et  al., 1997 to obtain the amplitude and phase of the best-fitting sinusoid, which has the same 
temporal frequency as the stimulus. For each trial, we calculated

	﻿‍
R = (1/D)

∑
k

cos(2πftk) + i sin(2πftk)
‍� (6)

where ‍D‍ is the stimulus duration, ‍f ‍ is the temporal frequency of the stimulus, and the tk are 
the times of the individual spikes. We excluded the first cycle to avoid contamination by the onset 
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response. For (Figure 3g), we calculated average amplitude F1 by obtaining the absolute value of 
the complex number ‍R‍ on each trial, before averaging across trials, to avoid potential confounds 
due to differences in response phase across conditions. For the comparison of response phase, we 
focused on the orientation which elicited the maximal cycle average response across both feedback 
and suppression conditions.

Cell typing
Units were classified as suppressed by contrast (SbC) or not suppressed by contrast (non-SbC) by 
comparing their mean firing rates during full-screen drifting grating presentation to their mean firing 
rates during blank-screen presentation. Units were classified as SbC if they were visually responsive 
to gratings (see below) and had a median z-scored response across orientation conditions of ‍≤ −3‍ 
during at least one grating experiment. Otherwise, units were classified as non-SbC. SbC units seem 
to constitute a sizeable fraction in our dataset, which is similar to our previous results (Román Rosón 
et al., 2019), where SbC was also found to be among the overrepresented retinal ganglion cell (RGC) 
types providing input to dLGN.

To identify electrode channels within the dLGN, and their relative depth, which could be useful to 
distinguish between shell and core, we concentrated on the RF progression as assessed with MUAe 
maps that were constructed using sparse noise experiments. Because RF progression is mainly along 
elevation, amplitudes of MUAe for each channel were collapsed across azimuth and then range normal-
ized. Channels with normalized amplitudes higher than an empirically set threshold (0.4) were consid-
ered part of dLGN. Non-detected channels located between detected channels were also included.

Direction selectivity index (DSI, Niell and Stryker, 2008) was calculated for each unit as

	﻿‍ DSI = Rp−Rn
Rp+Rn+2R0 ‍� (7)

where ‍Rp‍ and ‍Rn‍ are the firing rates in the preferred and null directions, respectively, extracted 
from tuning curves fit to drifting grating responses (see above), and R0 is baseline firing rate indepen-
dent of orientation.

The RF distance from the center of the screen was calculated for each unit by finding the position 
of the MUAe RF for the channel on which the unit’s mean spike waveform had the largest amplitude.

Exclusion criteria
Neurons with mean evoked firing rates < 0.01 spikes/s were excluded from further analysis. For movie 
clips, only neurons with SNR ‍≥ 0.015‍ in at least one of the conditions in an experiment were consid-
ered. Of this population, 2 neurons were excluded from the analysis of the parameters returned 
by the threshold linear model, because their ‍R2‍ was lt0. For gratings, we converted firing rates in 
response to each orientation to z-scores relative to responses to the mean luminance gray screen. We 
only considered visually responsive neurons, with an absolute z-scored response ‍≥ 2.5‍ to at least 1 
orientation. For the analysis of response phase, we only considered neurons with a peak of the cycle 
average response of at least 10 Hz in both feedback and suppression conditions, and an F1/F0 ratio of 
at least 0.25.

Locomotion
We used the Euclidean norm of three perpendicular components of ball velocity (roll, pitch, and yaw) 
to compute animal running speed. For the analysis of neural responses as a function of behavioral 
state, locomotion trials were defined as those for which speed exceeded 1 cm/s for at least 50% of 
the stimulus presentation, and stationary trials as those for which speed fell below 0.25 cm/s for at 
least 50% of the stimulus presentation. To quantify the effect of running vs. sitting on various response 
properties, the run modulation index (RMI) was defined as

	﻿‍ RMI = running−sitting
running+sitting ‍� (8)

Eye tracking
The stimulus viewing eye was filmed using an infrared camera under infrared LED illumination. Pupil 
position was extracted from the videos using a custom, semi-automated algorithm. Briefly, each video 
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frame was equalized using an adaptive bi-histo-
gram equalization procedure, and then smoothed 
using median and bilateral filters. The center of 
the pupil was detected by taking the darkest point 
in a convolution of the filtered image with a black 
square. Next, the peaks of the image gradient 
along lines extending radially from the center 
point were used to define the pupil contour. Lastly, 
an ellipse was fit to the contour, and the center of 
this ellipse was taken as the position of the pupil. 
A similar procedure was used to extract the posi-
tion of the corneal reflection (CR) of the LED illu-
mination. Eye blinks were automatically detected 
and the immediately adjacent data points were 
excluded. Adjustable algorithm parameters were 
set manually for each experiment. Output pupil 
position time-courses were lightly smoothed, and 
unreliable segments were automatically removed 
according to a priori criteria. Finally, the CR posi-
tion was subtracted from the pupil position to 
eliminate translational eye movements, and pupil 
displacement in degrees relative to the baseline 
(median) position was determined by

	
‍θ = 2 arcsin(d/2)

r ‍� (9)

where ‍d‍ is the distance between the pupil 
and the baseline position, and ‍r = 1.25‍ mm is the 
radius of the eye (Remtulla and Hallett, 1985). 
Angular displacement was computed separately 
for ‍x‍ and ‍y‍ directions.

Eye position standard deviation was computed 
by first taking the standard deviation of the hori-
zontal eye position at each time point across 
trials, and then averaging over the 5  s during 
which the visual stimulus was presented. We 
focused on horizontal eye position because hori-
zontal and vertical eye movements tend to occur 
in tandem under head-fixed conditions, and the 
horizontal position variance is larger (Sakatani 
and Isa, 2007), thus serving as a better proxy for 
variance in 2D. For each experiment, trials were 
sorted either by the presence of optogenetic 
suppression of CT feedback (Figure  1—figure 
supplement 2h), or by the behavioral state of 
the animal as described above (Figure 5—figure 
supplement 1h). The eye position standard devi-
ation FMI and RMI (Figure 1—figure supplement 
2i and Figure  5—figure supplement 1i) were 
calculated in the same manner as for the neural 
response properties.

Table 1. Breakdown of sample sizes (N) for the 
analyses of neural data.
See text for details.

Neurons Mice

Figure 1f–i 65 6

Figure 2e–i 63 6

Figure 3c–e and g 44 4

Figure 3f 28 4

Figure 3h–i 35 3

Figure 4a–b 39 4

Figure 5c–f,i–l 66 6

Figure 6, a1-3 64 6

Figure 6, a2 58 6

Figure 6, a4 63 6

Figure 6, b1 and b3 63 6

Figure 6, b2 58 6

Figure 6, b4 62 6

Figure 6, C1,3 and 4 59 6

Figure 6, c2 56 6

Figure 1—figure supplement 2a 65 6

Figure 1—figure supplement 2b,g 57 6

Figure 1—figure supplement 2c 63 6

Figure 1—figure supplement 2d-f, i 64 6

Figure 1—figure supplement 2h 6

Figure 1—figure supplement 3a,c 39 4

Figure 1—figure supplement 3b,j 63 6

Figure 1—figure supplement 3d 54 6

Figure 1—figure supplement 3e 64 6

Figure 1—figure supplement 3f, h 38 4

Figure 1—figure supplement 3g 62 6

Figure 1—figure supplement 3i 53 6

Figure 1—figure supplement 4e-h 62 3

Figure 1—figure supplement 4l-n 73 3

Figure 1—figure supplement 5c,d,h,i 19 1

Figure 1—figure supplement 6c-f 35 5

Figure 1—figure supplement 6g 65 6

Figure 1—figure supplement 6h 56 3

Figure 1—figure supplement 6i 64 6

Figure 1—figure supplement 6j 54 3

Figure 3—figure supplement 1a,c,e 44 4

Figure 3—figure supplement 1b,f,h,i 42 4

Figure 3—figure supplement 1d 36 4

Figure 3—figure supplement 1g 40 4

Table 1 continued on next page
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Analysis of pupil dilation during 
movies
Following (Reimer et al., 2014), changes in pupil 
area collected during movie clip presentation (e.g. 
Figure 5—figure supplement 2a) were measured 
at 20ms resolution. Spiking responses were 
binned to match the temporal resolution of the 
pupil change signal, masked to exclude periods 
of locomotion (> 0.25 cm/s), and then further 
masked to only include bins corresponding to the 
top or bottom quartiles (dilation or constriction) 
of the pupil area dynamics. Neural responses 
(firing rate, reliability, and SNR) were then calcu-
lated separately for the remaining unmasked 
top or bottom pupil quartile bins. To make our 
analyses comparable to those obtained for V1 by 
Reimer et al., 2014, we considered pupil-related 
response modulations as a function of instanta-
neous firing rate. For Figure  5—figure supple-
ment 2c, we therefore separated each time point 
of the PSTH, determined without taking pupil 
size into account, into firing rate quartiles. We 
then computed, for each neuron, the % change 
in median firing rates between top and bottom 
pupil quartiles in each of the four firing rate quar-
tiles. While Reimer et al., 2014 observed a multi-

plicative effect of pupil size change on V1 responses to movies, our results for dLGN rather resemble 
an inverted U-shape pattern.

Statistical methods
To assess statistical significance, we fitted and examined multilevel linear models (Gelman and Hill, 
2007). Such models take into account the hierarchical structure present in our data (i.e. neurons nested 
in experiments, experiments nested in recording sessions, recordings sessions nested in animals), and 
eliminate the detrimental effect of structural dependencies on the likelihood of Type I errors (false 
positive reports) (Aarts et  al., 2014). By considering the nested structure of the data, multilevel 
models also eliminate the need for ‘pre-selecting’ data sets, such as one out of several experiments 
repeatedly performed on the same neurons. Whenever we have several experiments per neuron, we 
include all of them, and also show them in the scatter plots (‘observations’). We provide the sample 
size for each analysis in Table 1. To account for repeated measurements, we fitted by-neuron random 
intercepts and random slopes over measurement conditions (V1 control vs V1 suppressed). By-neuron 
random intercepts model, the difference between neurons in overall firing rates, while by-neuron 
random slopes model between-neuron differences in how they responded to V1 suppression. Where 
possible, we included random intercepts for experiments nested in recording sessions, nested in 
mice, and random intercepts and slopes for neurons partially crossed in experiments. In cases where 
the model structure was too complex for a given data set (i.e. did not converge, or gave singular fits), 
we simplified the random effects structure by removing one or more terms. We fit these models in 
R (R Core Team, 2017), using the lme4 package (Bates et al., 2015). We estimated F-values, their 
degrees of freedom, and the corresponding p-values using the Satterthwaite approximation (Luke, 
2017) implemented by the lmertest package (Kuznetsova et al., 2017). For each analysis, we provide 
the exact model specification and the complete output of the model (see Data and code availability).

Throughout the manuscript, uncertainty in estimated regression slopes is represented as ‍slope ± x‍, 
where ‍x‍ is ‍2×‍ the estimated standard error of the slope.
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Abstract

AU : Pleaseconfirmthatallheadinglevelsarerepresentedcorrectly:The processing of sensory information, even at early stages, is influenced by the internal

state of the animal. Internal states, such as arousal, are often characterized by relating neu-

ral activity to a single “level” of arousal, defined by a behavioral indicator such as pupil size.

In this study, we expand the understanding of arousal-related modulations in sensory sys-

tems by uncovering multiple timescales of pupil dynamics and their relationship to neural

activity. Specifically, we observed a robust coupling between spiking activity in the mouse

dorsolateral geniculate nucleus (dLGN) of the thalamus and pupil dynamics across time-

scales spanning a few seconds to several minutes. Throughout all these timescales, 2 dis-

tinct spiking modes—individual tonic spikes and tightly clustered bursts of spikes—

preferred opposite phases of pupil dynamics. This multi-scale coupling reveals modulations

distinct from those captured by pupil size per seAU : PerPLOSstyle; italicsshouldnotbeusedforemphasis:Hence; allitalicizedwordshavebeenchangedtoregulartextthroughoutthearticle:, locomotion, and eye movements. Further-

more, coupling persisted even during viewing of a naturalistic movie, where it contributed to

differences in the encoding of visual information. We conclude that dLGN spiking activity is

under the simultaneous influence of multiple arousal-related processes associated with

pupil dynamics occurring over a broad range of timescales.

Introduction

Information processing, even at the earliest sensory stages, can be modulated by several influ-

ences. One prominent influence is that of arousal-related behavioral states, which have been

shown to change neural activity throughout the brain [1–4]. One classic indicator for arousal

is pupil size, a metric that is relatively simple to measure and analyze and that has provided

fundamental insights into neuromodulatory and cognitive influences on brain activity [2–8].

However, a multitude of factors converge to affect the pupil size signal, and how they are com-

bined into this single indicator of arousal is not known. Likewise, how the various influences

on the pupil signal relate to spontaneous and stimulus driven neural activity is not well

understood.
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An ideal system to investigate arousal-related modulations of neural activity and sensory

processing is the visual thalamus. The thalamic dorsal lateral geniculate nucleus (dLGN) is the

primary relay of visual signals from the retina to the visual cortex, and dLGN neurons, like

those in other thalamic nuclei, have long been known to display prominent patterns of activity

associated with arousal [9–12]. In particular, 2 state-related firing modes have been described:

burst firing, which is more prevalent during low-arousal states [9] and behavioral inactivity

[12,13], and tonic firing, which is observed during alertness. Burst firing in the thalamus is

characterized by a high frequency discharge of action potentials after sustained hyperpolariza-

tion, and it relies on the activation of low-threshold, transient (T-type) calcium channels

(reviewed in [14]). In contrast, tonic firing occurs when the membrane potential is relatively

depolarized, and T-type calcium channels are inactivated [14]. Since thalamorecipient circuits

in primary sensory cortices are highly sensitive to the temporal coordination of inputs [15–

17], the presence of bursts and tonic firing can have different effects on postsynaptic cortical

neurons [18]. This has led to the hypothesis that thalamic nuclei use burst and tonic firing

modes to gate or alter the flow of information to and between cortical areas according to the

arousal state of the animal [14].

While previous studies have often relied on a single variable to define the state of the ani-

mal, several lines of evidence suggest that arousal-related modulations of neuronal activity

cannot be adequately characterized by assigning mutually exclusive states to experimental

epochs. For example, studies simultaneously measuring locomotion and pupil-linked arousal

have revealed distinct effects of each in the visual cortex [6,8]. More generally, a substantial

fraction of shared variability in visual cortex activity can be explained by high-dimensional

sets of behaviors [19], suggesting that the state of sensory systems at any given moment results

from a combination of multiple processes [3]. One potential factor that may distinguish these

processes is the timescale over which they extend. For example, single arousal-related neuro-

modulators can have an impact across several timescales [20–23], and multiple neuromodula-

tory systems can influence neural activity over broadly different timescales [24].

To move beyond relating neural modulations to mutually exclusive states of arousal, we

characterized modulations of spiking activity in the dLGN with respect to pupil size dynamics,

taking into account that arousal-related processes occur across a wide range of temporal scales.

We discovered that both tonic and burst spiking in the dLGN were coupled to fluctuations in

pupil size over timescales ranging from seconds to minutes. Across these timescales, tonic

spikes preferred opposite phases of the pupil signal compared to bursts. These multi-scale

pupil dynamics captured modulations of dLGN activity beyond those explained by the pupil

size per se and could occur in the absence of changes in locomotion state or saccadic eye move-

ments. Furthermore, these modulations were also prevalent during presentation of naturalistic

movies, despite the presence of rich stimulus-driven neural activity. Finally, we found that

opposing phases of pupil dynamics across all timescales were associated with differences in the

encoding of naturalistic movies by the dLGN, indicating that pupil-linked neural activity mod-

ulations across various timescales contribute to state-dependent differences in the flow of sen-

sory information to the cortex. Our findings support the notion that arousal-related

modulation, rather than being a singular process, likely involves an interplay of changes occur-

ring over diverse timescales.

Results

To assess how dLGN spiking activity is influenced by internal state, we paired extracellular sili-

con probe recordings with video-based analysis of pupil size. During these recordings, mice

were head-fixed, but free to run on an air-cushioned styrofoam ball while viewing a static gray
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screen or a sparse noise stimulus (Fig 1A). We measured pupil size and locomotion speed as

indicators of the internal and behavioral states of the animal. Throughout these recordings

under largely isoluminant conditions, pupil size, a marker for internal states such as arousal,

was in continuous fluctuation (see example in Fig 1B, black trace and S1A1 Fig, gray and pink;

N = 15 recording sessions in 10 mice). Similarly, active and quiescent behavioral states, as mea-

sured by locomotion (Fig 1B, green trace), were observed in all experiments. The proportion

of time spent in locomotion varied across recordings, ranging from 0.11 to 0.47 (median = 0.27;

S1B1 Fig). Consistent with previous studies [8,12,25], bouts of locomotion were often accom-

panied by increases in pupil size (S1B4 Fig). However, we also noticed that the fluctuations in

pupil size were generally similar between active and quiescent behavioral states (S1B5 Fig). In

accordance with previous results [6,7], this suggests that diverse internal states may coexist

within a behavioral state.

We observed that fluctuations in pupil size during both locomotion and quiescence were

accompanied by changes in the spiking activity of dLGN neurons. For example, the neuron

shown in Fig 1B generally increased its firing rate when the pupil was large. To characterize

the relationship between pupil size and firing rates, we binned the spiking activity of individual

dLGN neurons in 250 ms windows and examined mean spike counts across pupil sizes. We

observed that the relationship between pupil size and dLGN firing rate varied between neu-

rons, and was often non-monotonic (Fig 1C1), reminiscent of previous observations in cortex

[7]. Indeed, among the 89.7% of recorded dLGN neurons showing significant modulation

across pupil sizes (140/156 neurons; one-way ANOVA, p� 0.05), the majority (78/140) had

their peak firing rate outside the top decile of pupil size. Indeed, peak firing rates were

observed across the entire range of pupil sizes (Fig 1C1). Similarly, bursts of spikes (see Fig 2A)

were also linked to pupil size in most dLGN neurons (Fig 1C2; 93/145), but, unlike overall fir-

ing rates, burst rates tended to be highest at the smallest pupil sizes (72/93; only 21/93 had

non-monotonic modulation profiles). To assess the degree to which the relationship between

pupil size and spiking activity originated from changes in retinal illumination, we repeated

these analyses for experiments conducted in darkness. We found that even in darkness, firing

rates and bursting were modulated across pupil sizes in the majority of dLGN neurons (firing

rate: 89/94 neurons; burst rate: 44/83 neurons), with many neurons showing high firing rates

when the pupil was large (S1C1 Fig) and bursting when the pupil was small (S1C2 Fig), suggest-

ing that under these stimulus conditions the overall relationship between pupil size and spik-

ing activity originates from nonvisual factors. We therefore conclude that firing rates and

bursting depend on pupil size in the majority of dLGN neurons.

Returning to Fig 1B, beyond the relationship to pupil size per se, we also found instances

where firing rate increases were coupled to dilating phases of the pupil dynamics (Fig 1B,

marked by 1). These dilation-related firing rate changes could occur while the pupil was rela-

tively constricted (Fig 1B, marked by 2) or dilated (Fig 1B, marked by 3). Indeed, even in dark-

ness, for a given pupil size the firing rate variability was often larger than the mean (median

Fano factor = 1.4; W = 4.4 × 103, p = 6.4 × 10−16, N = 94 neurons; S1C3 Fig), suggesting the

presence of additional modulatory processes not captured by pupil size. We thus sought to

develop a framework that could capture this breadth of modulations in dLGN spiking activity

by focusing on the multi-scale dynamics of pupil size.

To gain a better understanding of these modulations of dLGN firing rates, we explored the

multi-scale dynamics of the pupil signal, aiming to extract information about changes in inter-

nal state beyond the size of the pupil per se. Indeed, previous studies dating to the beginning of

pupillometry have suggested that pupil dynamics can be a relevant indicator of arousal [26–

28]. The relationship between pupil dynamics and internal states has also been explored in

mouse visual cortex [6], where associations between neuromodulatory signaling and pupil
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Fig 1. ExtracellularAU : AbbreviationlistshavebeencompiledforthoseusedinFigs1to5:Pleaseverifythatallentriesarecorrect:recordings from the dLGN reveal diverse arousal-related modulations of firing rate. (A) Schematic of the experimental

setup. (B) Pupil size (black) and locomotion speed (green) overlaid on the firing rate (blue, binned in 2.5 s windows) and spike bursts (red

asterisks) from an example dLGN neuron. (C1) Spike counts (min-max normalized) across pupil sizes (min-max normalized) for 140/156

dLGN neurons with significant modulation (top, one-way ANOVA p� 0.05 across 10 pupil size bins) and 16/156 dLGN neurons without

significant modulation (bottom). Neurons were sorted by the pupil size with the highest spike count (black dots). The example neuron from

(B) is shown in magenta. The dashed white line indicates the 90th percentile of pupil size. (C2) Same as (C1) but for bursts of spikes. Neurons

were sorted by the pupil size with the highest burst count. The dashed white line indicates the 10th percentile of pupil size. (D) The pupil size

trace in (B) (gray traces) separated into CPDs (colored traces) occurring over different timescales. The components are described by their

characteristic timescale (D1, left) and power (% total, D1, right), as illustrated for the trace indicated by the dashed box in (D2). (D2) Top: The

characteristic timescale (gray dashed line) is computed as the amplitude-weighted mean of the component’s instantaneous frequency. Middle:

The component’s power is defined as fraction of total power density, computed from the squared amplitudes of all CPDs derived from the
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dynamics were reported [24]. Building on these studies (see also [7]), we observed that pupil

size dynamics could be described over a variety of temporal scales: from minutes-long changes

to cycles of dilation and constriction lasting 10s of seconds, to quicker changes on the order of

seconds. We therefore employed a data-driven approach, called empirical mode decomposi-

tion (EMD, see Materials and methods; [29]), to split the pupil signal without prior assump-

tions into components capturing its underlying dynamics (Fig 1D). Each component of pupil

dynamics (henceforth, CPD) is described by its characteristic timescale (Fig 1D1, left) and its

relative power (Fig 1D1, right). The characteristic timescale describes the average period of the

pupil dilation-contraction cycles captured by the component (Fig 1D2; see Materials and meth-

ods). The extracted CPDs spanned several orders of magnitude in their characteristic time-

scale, capturing dilation-contraction cycles lasting from several minutes (10−3 = 0.001 Hz) to

just a second (100 = 1 Hz). Components with high power were found across this entire range,

underscoring the multi-component nature of pupil size dynamics (Fig 1D3). Additionally, the

broad distribution of the CPD timescale with the highest power from each recording (Fig 1D3,

top) illustrates the diversity of pupil dynamics across recording sessions. Importantly, the set

of CPDs extracted from a single pupil recording progress through dilation-contraction cycles

largely independently from each other (S1D Fig; see Materials and methods), indicating that

CPDs capture distinct aspects of pupil size dynamics.

Having captured pupil dynamics at multiple timescales, we went on to characterize their

relationship to arousal-related dLGN activity. We separated the spiking activity from each

dLGN neuron into tonic spiking and bursting (Fig 2A; bursts were defined as�2 spikes with

�4 ms ISI preceded by�100 ms without spikes [30]). Consistent with previous findings in

awake animals, we found that bursts were relatively rare, accounting for only 3% of spikes on

average (median burst ratio for the 93% of neurons with bursting; S2A2 Fig). Despite their

small contribution to the total spike count (S2A1 Fig), bursts provide an extracellular marker

for the membrane potential status of thalamic neurons (indicating prolonged hyperpolariza-

tion) and play a role in determining rhythmic cortical states ([13]; see also S2B and S2C Fig).

After separating burst and tonic spikes, we performed a phase coupling analysis for each neu-

ron and simultaneously recorded CPD, collecting the phase of the CPD at the time of tonic

spikes or bursts—considering all spikes in the burst as one single event (Fig 2B and 2C). The

preferred phase of each spike type indicates whether they mainly occur during pupil dilation

(-π to 0) or contraction (0 to π) as captured by the CPD. Meanwhile, the coupling strength

indicates the degree to which spikes and bursts adhere to the preferred phase and was com-

puted with a bias-corrected metric that allows comparison between neurons with different

rates of tonic spiking and bursting (see Materials and methods; S2A Fig). The statistical signifi-

cance of the coupling was assessed using a permutation test that accounts for short-timescale

spiking patterns that typically inflate coupling strength metrics (see Materials and methods;

S2B Fig).

We found that both tonic spiking and bursts in dLGN neurons were coupled to the

extracted components of pupil dynamics (CPDs) across a wide range of timescales (Fig 2C).

Significant coupling of to at least 1 component of pupil dynamics was measured in 98.1% of

dLGN neurons (153/156) for tonic spiking and 87.3% (110/126) for bursting. Examining the

phase coupling for all neurons and simultaneously recorded CPDs (Fig 2C), we found that this

same pupil signal. Bottom: The phase of the CPD describes if the pupil is undergoing dilation (−π to 0) or constriction (0 to π) at the timescale

defined by the component. (D3) Gray dots: The characteristic timescale of each CPD plotted against its power for CPDs extracted from all

recordings (N = 14). Colored dots: Components from the example recording in (B, D). The inset box plot (top) shows the range and IQR of the

components with the maximum power from each recording. CPD, components of pupil dynamics; dLGN, dorsal lateral geniculate nucleus.

https://doi.org/10.1371/journal.pbio.3002614.g001
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Fig 2. Tonic spikes and bursts in the dLGN are coupled to pupil dynamics across multiple timescales. (A) Bursts

(red) were defined as� 2 spikes occurring after> 100 ms of silence and with an inter-spike interval less than 4 ms

[30]; all remaining spikes were classified as tonic spikes (blue). For the phase coupling analysis below, all spikes in a

burst were treated as a single burst event. (B) Top: example component of pupil dynamics (CPD). Middle: the

corresponding phases of the example CPD. Bottom: simultaneously recorded tonic spiking (blue) and bursting (red)

from an example neuron. Right: the phase distributions for bursts and tonic spikes from the example neuron-CPD pair

(Rˆ2: coupling strength; colored dots: preferred phase). The statistical significance of coupling to a CPD was

determined using a permutation test by shuffling 300 ms bins of spiking activity (see Materials and methods; asterisks:

* for p� 0.05, ** for p� 0.01, *** for p� 0.001). (C) The preferred coupling phase of bursts and tonic spikes for all

neuron-CPD pairs with significant coupling. Significant tonic spike coupling was observed in 98.1% of neurons (153/

156) and burst coupling in 87.3% of neurons (110/126). (D) Left: Burst—tonic spike phase differences for each neuron-

CPD pair in (C) with significant coupling for both types of spiking (N = 284 neuron-CPD pairs), sorted by CPD

timescale. Right: distribution of burst—tonic spike phase differences (mean = 2.8, V-test for non-uniform distribution

with a mean of π: V = 140.7, p< 0.001; grid lines indicate proportion of 0.25). (E) Coupling strength distributions for

all significantly coupled neuron-CPD pairs, binned by CPD timescale (horizontal bars: median coupling strength;

Kruskal–Wallis one-way ANOVA across timescale bins for tonic spike coupling strengths: H = 66.4, p = 5.8 × 10−13,

N = 681 neuron-CPD pairs; burst coupling strengths: H = 32.1, p = 5.8 × 10−6, N = 320 neuron-CPD pairs; Wilcoxon

rank-sum test for burst versus tonic spike coupling strengths: W = 3.3 × 103, p = 2.0 × 10−33, N = 284 neuron-CPD

pairs). (F) Coupling strength decay across the multiple CPDs to which single neurons were coupled. Coupling

strengths were measured after removal of periods of phase coupling between CPDs (S3B Fig; see Materials and

methods) and normalized to the highest coupling strength for each unit (mean ± SEM; left: tonic spiking; right:

bursting). Only neuron-CPD pairs with significant coupling after removal of CPD phase coupling were included (blue

arrow: tonic spiking mean = 3.8 CPDs per neuron; red arrow: bursting mean = 2.1 CPDs per neuron). (G) Distribution

of the preferred coupling timescale (CPD with the strongest coupling) of neurons recorded in each recording session

for tonic spiking (left) and bursting (right). There is some variability in timescale preference between recording
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coupling was not limited to a single temporal scale, but rather occurred over time scales span-

ning seconds to several minutes (1 to 0.001 Hz). Across this wide range of time scales, tonic

spikes, and bursts consistently preferred opposite phases of pupil dynamics (Fig 2D; mean

tonic spike—burst preferred phase difference = 2.8; V-test for non-uniform distribution with a

mean of π: V = 140.0, p� 0.001, N = 284 neuron-CPD pairs with significant coupling of both

spike types). The coupling strengths for both tonic spiking and bursting differed across tempo-

ral scales (Fig 2E; Kruskal–Wallis one-way ANOVA for tonic spiking: H = 68.6, p = 2.0 × 10−13,

N = 681 neuron-CPD pairs; bursting: H = 34.7, p = 1.7 × 10−6, N = 320 neuron-CPD pairs),

although bursting consistently displayed stronger coupling than tonic spiking (Fig 2E; Wil-

coxon rank-sum test: W = 3.4 × 103, p = 7.1 × 10−34, N = 284 neuron-CPD pairs), possibly

because bursts are more exclusive to a certain membrane potential state of dLGN neurons.

The same analyses performed on data collected in darkness also revealed phase coupling

across temporal scales, with significant coupling observed in almost all neurons (S3A1 Fig;

tonic spiking: 96.8%, 91/94 neurons; bursting: 64.8%, 35/54 neurons). In darkness, the

opposing phase preference between bursting and tonic spiking was largely preserved (S3A2

Fig; mean tonic spike—burst preferred phase difference = 2.5; V = 25.8, p = 5.1 × 10−5,

N = 88 neuron-CPD pairs with significant coupling of both spike types), and coupling was

also consistently stronger for bursting than tonic spiking (S3A3 Fig; Wilcoxon rank-sum

test: W = 58.0, p = 2.7 × 10−15, N = 88 neuron-CPD pairs), together suggesting that coupling

to CPDs was likely driven by changes in internal state rather than the changes in retinal illu-

mination caused by pupil size fluctuation.

Next, we asked whether the coupling we observed across multiple temporal scales resulted

from different neurons being modulated at different time scales, or if modulation at multiple

temporal scales was present within the spiking of single neurons. Many neurons showed signif-

icant coupling to more than 1 CPD for both tonic spiking (mean = 4.4 CPDs with significant

coupling per neuron) and bursting (mean = 2.5 CPDs per neuron). To ensure that potential

phase relationships between the CPDs themselves (S1D Fig) did not underlie the observed

coupling to multiple temporal scales, we repeated the phase coupling analysis after removing

periods of time in which the components themselves are coupled (S3B Fig; see Materials and

methods). Neurons retained their coupling to more than 1 temporal scale (tonic spiking

mean = 3.8 CPDs per neuron; bursting mean = 2.1 CPDs per neuron), and coupling strengths

across timescales remained unchanged for both tonic spiking (S3B3 Fig; median = 0.0089,

N = 563 neuron-CPD pairs versus original median = 0.0081, N = 682 neuron-CPD pairs;

Mann–Whitney U test: U = 1.9 × 105, p = 0.34) and bursting (median = 0.0583, N = 250 neu-

ron-CPD pairs versus original median = 0.0528, N = 320 neuron-CPD pairs; U = 3.9 × 104,

p = 0.56). Among these neurons with multi-scale coupling, the gradual decay in coupling

strengths from the strongest to the weakest indicated that modulations at the non-preferred

timescales were not negligible (Fig 2F). Considering again the full dataset (Fig 2C–2E), the spe-

cific timescale to which a neuron was most strongly coupled was stable for individual neurons

across subsamples of the data (S3D Fig) but varied between neurons such that strong coupling

was observed across the entire range of timescales measured (Fig 2G). Notably, part of this var-

iability could be attributed to the mouse and/or recording session (one-way ANOVA for tonic

spiking timescale preferences across recordings: F = 3.2, p = 2.5 × 10−4; bursting: F = 2.6,

p = 2.5 × 10−3), specifically, to the frequency of switches between locomotion and quiescence

sessions (one-way ANOVA for tonic spiking: F = 3.2, p = 2.5 × 10−4; bursting: F = 2.6, p = 2.5 × 10−3), sessions are

sorted by the timescale to which most neurons had their strongest tuning. CPD, components of pupil dynamics;

dLGN, dorsal lateral geniculate nucleus.

https://doi.org/10.1371/journal.pbio.3002614.g002
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in a given session (Pearson’s R = 0.71, p = 4.3x10-3, N = 14 recording sessions; S3C1 Fig). How-

ever, in almost all recording sessions, we found the CPD associated with the strongest coupling

(preferred timescale) of neurons from the same recording was distributed across more than 1

component (tonic spiking: 15/15 sessions; bursting: 14/15 sessions), indicating that the time-

scale of strongest modulation was not only influenced by factors common to the recording ses-

sion, but also by neuron-specific factors. We thus conclude that the spiking activity of

individual dLGN neurons can be coupled to pupil dynamics across multiple independent tem-

poral scales, and that there is diversity in the timescale to which neurons are most strongly

coupled.

Our phase coupling framework introduced above (Fig 2) not only captures modulations

associated with aspects of pupil dynamics, but it is also capable of capturing modulations usu-

ally related to pupil size per se. For example, in Fig 1D, it is apparent that peaks and troughs of

certain components coincide with large and small pupil sizes. To disentangle the influence of

pupil size from CPD phase coupling, we used a subsampling approach to minimize differences

in the distribution of pupil size between the phases of each CPD (Fig 3A; see Materials and

methods). We then assessed phase coupling considering only the spikes that occurred in these

subsampled periods, noting that, especially for slower CPDs, sometimes only a small propor-

tion of the original data could be retained for analysis (median proportion retained (IQR) for

timescales <0.1 Hz: 52% (39, 61); timescales >0.1 Hz: 82% (82, 88)). Despite this reduction in

available data, we found that coupling to CPDs in most neurons was largely preserved for

tonic spiking (significant coupling observed in 93.9% of neurons, 139/148; mean = 3.3 CPDs

per neuron) and burst events, albeit in a smaller proportion (63.6% of neurons, 77/121;

mean = 1.0 CPD per neuron). For neurons that retained phase coupling, the characteristic

opposing phase preferences of bursts and tonic spikes within neurons was also preserved

(Fig 3B; mean = −2.9; V-test for non-uniformity and a mean of π: V = 20.4, p = 6.4 × 10−4,

N = 80 neuron-CPD pairs). Overall, coupling strengths decreased for both tonic spikes (Fig

3C; overall median = 0.0081, N = 681 neuron-CPD pairs versus size-matched median = 0.0046,

N = 489 neuron-CPD pairs; Mann–Whitney U test: U = 2.0 × 105, p = 4.4 × 10−7) and bursts

(overall median = 0.0528, N = 320 neuron-CPD pairs versus size-matched median = 0.0250,

N = 115; Mann–Whitney U test: U = 2.2 × 104, p = 1.0 × 10−3). This coupling strength

decrease, however, was only present for a middle-range of temporal scales, suggesting that

pupil size per se may not contribute to slow (timescale <0.03 Hz) or fast (>0.1 Hz) coupling in

dLGN neurons. We then examined how the preferred timescale of individual neurons was

affected after controlling for the influence of pupil size per se, finding that many neurons

shifted the timescale to which they were most strongly coupled (Fig 3D, faded slices; tonic

spikes: 55.9%; bursts: 30.2%). For bursting, such shifting of timescales was particularly promi-

nent among neurons whose activity was monotonically related to pupil size (S3E Fig; Chi-

squared test: χ2 = 9.5, p = 8.7 × 10−3; see also Fig 1C). Strikingly, however, we also found a size-

able proportion of neurons whose strongest coupling increased after controlling for pupil size

(Fig 3D, highlighted slices; tonic spikes: 25.5%; bursts: 15.1%), suggesting that for these neu-

rons effects related to pupil size per se were masking other firing rate modulations related to

pupil dynamics. We thus conclude that the majority of dLGN neurons undergo multi-scale

modulations of bursting and tonic spiking beyond those associated with pupil size per se.

We next investigated whether coupling between dLGN spiking and pupil size dynamics

could be attributed to modulations driven by transitions in behavioral states. Previous studies

have shown that changes in behavior, such as the transition from quiescence to locomotion,

are accompanied by firing rate changes in dLGN neurons [12,31,32]. Consistent with these

findings, we observed a decrease in tonic spiking in a 5 s window surrounding the offset of a

locomotion bout (S4A1 Fig; see also [8]), and a sharp increase in tonic spiking, preceded by a
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slight decrease in bursting, in a 4 s window surrounding the onset of a locomotion bout (S4A2

Fig). Periods of locomotion were also associated with an increased pupil size (S1B4 Fig).

Unsurprisingly then, 55.3% of CPDs (52/94) had a small positive correlation with locomotion

speed (S4B Fig; permutation test: p� 0.05, see Materials and methods). Given these findings,

we asked if the CPD-linked spiking modulations we observed might be driven by these loco-

motion-correlated components. As a first step, we compared phase coupling across compo-

nents, and observed that significant coupling for tonic spikes was equally likely regardless of

whether the component was correlated to locomotion or not (neuron-CPD pairs with signifi-

cant coupling: correlated = 73.5% (305/415) versus uncorrelated = 75.9% (341/449); Chi-

Fig 3. Coupling of dLGN spiking to pupil dynamics persists after controlling for pupil size. (A) Comparison of the

difference in pupil size (min-max normalized) between the phase bins from each CPD sorted by CPD timescale before

(gray) and after subsampling (black; see Materials and methods), illustrating the efficacy of the size matching procedure.

(B) Distribution of burst—tonic spike phase differences measured after the size-matching procedure (N = 80 neuron-

CPD pairs; mean = −2.94, V-test for non-uniform distribution with a mean of π: V = 20.4, p = 6.4 × 10−4; gray:

distribution from Fig 2D; grid lines indicate proportion of 0.25). (C) Coupling strengths (solid lines: median; dashed

lines: bootstrapped SE of the median) measured before (faded lines; Fig 2E) and after (bold lines) the size-matching

procedure for tonic spikes (blue; overall median = 0.0081, N = 681 neuron-CPD pairs vs. size-matched median = 0.0046,

N = 489 neuron-CPD pairs; Mann–Whitney U test: U = 1.96 × 105, p = 4.37 × 10−7) and bursts (red; overall

median = 0.0528, N = 320 neuron-CPD pairs vs. size-matched median = 0.0250, N = 115; Mann–Whitney U test:

U = 2.22 × 104, p = 1.04 × 10−3). (D) Proportion of neurons with significant phase coupling from Fig 2 that kept the

same preferred coupling timescale (bold slices; 38.6% for tonic spiking, 30.2% for bursting), shifted their preferred

coupling timescale (faded slices; 55.9% for tonic spiking, 30.2% for bursting), or lost their coupling (gray slices; 5.5% for

tonic spiking, 39.6% for bursting). The highlighted slices show the proportion of neurons that had an increase in

coupling strength after controlling for pupil size (25.5% for tonic spiking, 15.1% for bursting). CPD, components of

pupil dynamics; dLGN, dorsal lateral geniculate nucleus.

https://doi.org/10.1371/journal.pbio.3002614.g003
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squared test: χ2 = 0.56, p = 0.45). For bursting, locomotion-correlated components were even

less likely to have significant coupling (correlated = 38.2% (128/335) versus uncorre-

lated = 50.3% (186/370); Chi-squared test: χ2 = 9.9, p = 1.7 × 10−3). Thus, while locomotion

can drive changes in spiking activity, and locomotion speed is partially reflected in certain

CPDs, these relationships do not appear to be the sole cause of coupling to pupil dynamics.

To explicitly remove the influence of behavioral state changes on the coupling between

pupil dynamics and spiking activity, we computed the phase coupling taking into account only

the spiking activity that occurred within a given behavioral state. We also excluded spiking

activity in the transitional windows between behavioral states (S4A Fig; quiescence to locomo-

tion: −2 to 2 s; locomotion to quiescence: −1 to 4 s). We first focused on periods of quiescence

(Fig 4A1), which constituted on average 72% of the recordings (median proportion of time

outside of locomotion bouts; S1B1 Fig). During these quiescent periods, where variance in

locomotion speed was low (S1B3 Fig), we found that the coupling between spiking activity and

pupil dynamics was largely the same as when measured across the entire recording (Fig 4A2;

significant tonic spike coupling in 97.3% (143/147); burst coupling in 77.1% (84/109) of neu-

rons). Neurons retained the anti-phase relationship between tonic spiking and bursting (Fig

4A3; mean tonic spike—burst phase difference = 2.9, N = 221 neuron-CPD pairs; V-test for

non-uniform distribution with a mean of π: V = 111.1, p< 0.001), with coupling to multiple

timescales of pupil dynamics (tonic spiking mean = 4.2 CPDs per neuron; bursting mean = 2.3

CPDs per neuron), and similar coupling strengths across all timescales compared to the cou-

pling measured across the whole recording for tonic spiking (Fig 4A4; quiescence

median = 0.0100, N = 591 neuron-CPD pairs versus overall median = 0.0081, N = 681 neuron-

CPD pairs; Mann–Whitney U test: U = 1.9 × 105, p = 2.6 × 10−2) and bursting (quiescence

median = 0.0564, N = 256 versus overall median = 0.0528, N = 320 neuron-CPD pairs; Mann–

Whitney U test: U = 3.9 × 104, p = 0.28).

Having shown that phase coupling across timescales persisted when measured only during

periods of quiescence, we next repeated the same analyses focusing on periods with locomo-

tion bouts (Fig 4B1) and found similar coupling characteristics as for the other states (Fig 4B2;

significant tonic spike coupling in 85.3% (122/143), burst coupling in 77.9% (60/77) of neu-

rons). Tonic spikes and bursts showed preferences for opposing phases (Fig 4B3; mean tonic

spike—burst phase difference = 3.1, N = 87 neuron-CPD pairs; V-test for non-uniform distri-

bution with a mean of π: V = 56.7, p< 0.001). There was a notable increase in coupling

strengths for both tonic spikes (Fig 4B4; locomotion median = 0.0254, N = 359 neuron-CPD

pairs; Mann–Whitney U test: U = 7.2 × 104, p = 2.6 × 10−28) and bursts (locomotion

median = 0.0927, N = 133 neuron-CPD pairs; Mann–Whitney U test: U = 1.3 × 104, p = 6.2 ×
10−10). Given the higher locomotion speed variability during locomotion bouts (S1B3 Fig), we

hypothesized that particularly strong dLGN modulation in this state might be linked to these

changes in overt behavior. We therefore identified CPDs that were correlated to locomotion

speed only within bouts of locomotion (64.9% of CPDs, 61/94; S4C Fig). Consistent with this

hypothesis, we found that the locomotion-correlated components were more likely to drive

significant phase coupling for both tonic spikes (neuron-CPD pairs with significant coupling:

correlated = 77.2% (477/618), uncorrelated = 68.7% (169/246); Chi-squared test: χ2 = 6.3,

p = 0.01) and bursts (correlated = 49.6% (256/516), uncorrelated = 30.7% (58/189); Chi-

squared test: χ2 = 19.3, p = 1.1 × 10−5). Tonic spike coupling strengths were also higher for

locomotion-correlated components (correlated median = 0.0099, N = 477 versus uncorrelated

median = 0.0054, N = 169; Mann–Whitney U test: U = 4.6 × 104, p = 7.1 × 10−3). Thus, while

transitions between quiescence and locomotion bouts do not drive dLGN-pupil phase cou-

pling, movement-related modulations may underlie a particularly strong coupling between

dLGN spiking and pupil dynamics within periods of locomotion.

PLOS BIOLOGY Thalamic spiking activity and pupil dynamics across temporal scales

PLOS Biology | https://doi.org/10.1371/journal.pbio.3002614 May 14, 2024 10 / 36

55



Fig 4. The coupling between dLGN spiking and pupil dynamics is not driven by overt behaviors. (A) Locomotion speed

for an example period of quiescence (gray bar: period of quiescence). Dashed lines: period during which spikes were taken for

the subsequent phase coupling analysis; note that the 4 s after the offset of the first locomotion bout and 2 s prior to the next

locomotion bout were not included in this time window. (A2) Preferred coupling phase of tonic spikes (blue) and bursts (red)

for all neuron-CPD pairs with significant coupling during quiescence. Significant tonic spike coupling was observed in 97.3%

of neurons (143/147; mean = 4.2 CPDs per neuron) and burst coupling in 77.1% of neurons (84/109; mean = 2.3 CPDs per

neuron). (A3) Distribution of the preferred phase differences between tonic spiking and bursting for neuron-CPD pairs with

significant coupling of both spike types (mean = 2.9, N = 221 neuron-CPD pairs; V-test for non-uniform distribution with a

mean of π: V = 111.1, p< 0.001; grid lines indicate proportion of 0.25). (A4) Coupling strengths (median ± bootstrapped SE)

measured during quiescence (bold lines) or across the whole recording (faded lines) for tonic spikes (blue; quiescence

median = 0.0100, N = 591 neuron-CPD pairs vs. overall median = 0.0081, N = 681 neuron-CPD pairs; Mann–Whitney U test:

U = 1.9 × 105, p = 2.6 × 10−2) and bursts (red; quiescence median = 0.0564, N = 256 vs. overall median = 0.0528, N = 320

neuron-CPD pairs; Mann–Whitney U test: U = 3.9 × 104, p = 0.28). (B1) Locomotion speed for an example bout (green bar:

period of locomotion). Dashed lines: period during which spikes were taken for the subsequent phase coupling analysis; note

that the first and final 1 s of the bout were not included in this time window. (B2–5) Same as (A2–5) but for phase coupling

measured during locomotion bouts. Significant tonic spike coupling was observed in 85.3% of neurons (122/143; mean = 2.5

CPDs per neuron; median coupling strength during locomotion = 0.0254, N = 359 neuron-CPD pairs; Mann–Whitney U test:

U = 7.2 × 104, p = 2.6 × 10−28) and burst coupling in 77.9% of neurons (60/77; mean = 1.7 CPDs per neuron; median coupling

strength during locomotion = 0.0927, N = 133 neuron-CPD pairs; Mann–Whitney U test: U = 1.3 × 104, p = 6.2 × 10−10).

Tonic spiking and bursting in neuron-CPD pairs with significant coupling of both spike types tended to occur at opposing

phases (mean tonic spike—burst phase difference = 3.1, N = 87 neuron-CPD pairs; V-test for non-uniform distribution with a

mean of π: V = 56.7, p< 0.001). (C1) Eye position for an example recording period with saccadic eye movements (dark

purple: azimuth; light purple: elevation; gray bars: the time windows without saccades). Dashed lines: period during which

spikes were taken for the subsequent phase coupling analyses, note that the −2 to 2 s of activity surrounding each saccade was

excluded. (C2–5) Same as (A2–5) but for phase coupling measured during periods with no saccadic eye movements.

Significant tonic spike coupling was observed in 97.4% of neurons (151/155); mean = 4.1 CPDs per neuron; median coupling

strength without saccades = 0.0090, N = 634 neuron-CPD pairs; Mann–Whitney U test: U = 2.1 × 105, p = 0.11) and burst

coupling in 81.7% of neurons (94/115; mean = 2.5 CPDs per neuron; median coupling strength without saccades = 0.0545,

N = 284 neuron-CPD pairs; Mann–Whitney U test: U = 4.5 × 104, p = 0.99). Tonic spiking and bursting in neuron-CPD pairs

with significant coupling of both spike types tended to occur at opposing phases (mean tonic spike—burst phase

difference = 2.9, N = 203 neuron-CPD pairs; V-test for non-uniform distribution with a mean of π: V = 131.5, p< 0.001).

CPD, components of pupil dynamics; dLGN, dorsal lateral geniculate nucleus.

https://doi.org/10.1371/journal.pbio.3002614.g004
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Apart from locomotion, other behaviors, such as eye movements, may also be associated

with arousal [33] and can induce changes in spiking activity. Indeed, upon visual inspection of

eye position data, we noticed that saccades tended to occur during the dilation phase of large,

slow pupil fluctuations, but also appeared to be related to smaller, faster fluctuations (S5A Fig),

resembling the relationship between tonic spiking and pupil dynamics. To explore this further,

we performed the same phase coupling analysis for saccades as we did for spiking and found

that saccades had an almost identical phase coupling profile to that of tonic spikes: saccades

predominantly occurred during the dilating phases of multiple temporal scales of pupil

dynamics (S5B Fig; significant coupling of saccades to at least 1 CPD in 15/15 recording ses-

sions; mean = 3.7 CPDs per session). To further investigate this relationship, we next asked if

saccades could drive changes in spiking activity. Consistent with previous findings in primates

(reviewed in [34]), we observed that bursting and tonic spiking in dLGN neurons was modu-

lated in a short timescale window surrounding saccades. In a 4-s window surrounding sac-

cades, tonic spiking increased, and bursting decreased, with the exception of a brief increase at

the time of the saccade (S5C1 Fig; N = 118/121 neurons had significant peri-saccadic modula-

tion). With regards to tonic spiking, neurons displayed diverse peri-saccadic activity patterns,

among which we identified at least 2 distinct response types (S5C2 Fig). Despite this diversity

in profiles, the overall effect of this modulation was a consistent increase in tonic spiking in

89.0% of saccade-responsive neurons (S5C3 Fig; modulation strength median = 0.20; Wilcoxon

rank-sum test: W = 5.4 × 102, p = 1.6 × 10−15). In contrast, bursting activity tended to decrease

(modulation strength median = −0.06; Wilcoxon rank-sum test: W = 1.4 × 103, p = 6.2 × 10−3).

We conclude that saccades occur during dilating phases of pupil dynamics and have a marked

impact on dLGN spiking activity.

We therefore hypothesized that the changes in spiking activity during the peri-saccadic

period might contribute to the observed coupling between tonic spiking and pupil dynamics.

We reasoned that, if the peri-saccadic modulation was driving the coupling between tonic

spikes and pupil dynamics, then coupling strengths and saccadic modulation strengths should

be correlated. Indeed, we found that saccadic modulation strengths could correlate with cou-

pling strengths, but only for fast timescales of pupil dynamics, and only for tonic spiking (S5D

Fig). To eliminate the effect of saccade-driven changes in spiking activity, similar to our

approach for locomotion, we excluded spiking activity in a window from −2 s to 2 s surround-

ing saccades (Fig 4C1) and repeated the phase coupling analysis. We found that the main char-

acteristics of the coupling between spiking activity and pupil dynamics were preserved across

temporal scales, even without peri-saccadic activity. Significant coupling for tonic spiking was

observed in 97.4% of neurons (151/155; mean = 4.1 CPDs per neuron) and 81.7% of neurons

for bursting (94/115; mean = 2.5 CPDs per neuron; Fig 4C2). Tonic spiking and bursting

retained their anti-phase relationship within neurons (mean tonic spike = burst phase differ-

ence = 2.9; V-test for non-uniform distribution with a mean of π: V = 144.0, p = 0.0; Fig 4C3),

and coupling strengths were similar (median tonic spike coupling strength without sac-

cades = 0.0090, N = 634 neuron-CPD pairs; Mann–Whitney U test: U = 2.1 × 105, p = 0.11;

median burst coupling strength without saccades = 0.0545, N = 284 neuron-CPD pairs;

Mann–Whitney U test: U = 4.5 × 104, p = 0.99; Fig 4C4). We therefore conclude that, although

behaviors like locomotion and eye movements are reflected in some components of pupil size

dynamics, and can induce changes in spiking, the coupling between spiking activity and pupil

dynamics is not dominated by modulations related to these overt behaviors.

So far, we reported a multi-scale coupling of dLGN activity to pupil dynamics in the

absence of a patterned visual stimulus, but how stable is this coupling in the presence of a rich

visual stimulus? At least 2 factors could potentially disrupt this coupling. Firstly, naturalistic

stimuli have been shown to elicit repeated patterns of both tonic and burst firing in the dLGN
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[32,35], which may dominate internally driven activity fluctuations. Secondly, luminance

changes or other salient features of the stimulus could induce pupil size changes that might

interfere with those driven by internal state fluctuations. To investigate dLGN spike coupling

to pupil dynamics during stimulus viewing, we presented 5-s long naturalistic movie clips to

mice while recording pupil size and dLGN activity (Fig 5; data from [32]). We observed that

many neurons in the dLGN responded to the movies with repeated patterns of activity, as

exemplified by the neuron shown in Fig 5A1. However, the average response to the stimulus

(Fig 5A1, bottom) often appeared weaker than the trial-to-trial variability in the time-averaged

mean firing rates (Fig 5A1, right). We quantified this difference using the “response variability

ratio” (RVR; see Materials and methods) and discovered that 100% of neurons had an RVR

below 1 (N = 64 neurons; Fig 5A2). In fact, for 90.6% of neurons, the variability was more than

twice as strong as the signal (RVR< 0.5; Fig 5A2), indicating that dLGN neurons showed con-

siderable variability in their firing rates that could not be accounted for by the visual stimulus.

Similarly, when we repeated the same analysis for pupil size, we found that the movies did not

systematically drive pupil size changes (Fig 5B1), resulting in an overwhelming dominance of

trial-to-trial variance in pupil size (Fig 5B2). Thus, internally driven pupil dynamics remain

largely uninterrupted by the naturalistic movie we presented. The analyses above suggest that

factors unrelated to the stimulus, such as coupling to arousal-related variables, may be preva-

lent despite the spiking responses evoked by the movie stimulus.

To investigate the coupling of spiking activity to pupil dynamics during naturalistic stimu-

lus viewing, we decomposed the pupil size signal as before and characterized the phase cou-

pling of bursts and tonic spikes (N = 9 recording sessions in 6 mice). We found significant

tonic spike coupling in 98.4% of neurons (62/63; mean = 4.3 CPDs per neuron) and burst cou-

pling in 62.7% of neurons (32/51; mean = 1.3 CPDs per neuron; Fig 5C1), with opposite phase

preferences at slower CPDs (timescales < 0.1 Hz; Fig 5C2). Although stimulus presentation

appeared to disrupt the preferred phase relationship between bursts and tonic spikes for faster

CPDs (timescales > 0.1 Hz; Fig 5C2), the opposing-phase relationship was still present overall

(mean tonic spike—burst phase difference = 2.85, N = 56 neuron-CPD pairs with significant

coupling to both spike types; V-test for non-uniform distribution with a mean of π: V = 16.0,

p = 1.6 × 10−3; Fig 5C3). The disruption at faster timescales is likely due to the presence of stim-

ulus-driven bursts [35,36], and also demonstrates that the opposing phase relationship is not

guaranteed based on intrinsic biophysical properties of dLGN neurons, such as the burst gen-

eration mechanism. Coupling strengths tended to be lower for tonic spikes during movies

(median = 0.0050, N = 273 neuron-CPD pairs) compared to gray screen conditions

(median = 0.0081, N = 681 neuron-CPD pairs; Mann–Whitney U test: U = 1.1 × 105, p = 1.1 ×
10−3; Fig 5C4). In contrast, coupling strengths remained similar for bursts (movie

median = 0.0332, N = 68 versus gray screen median = 0.0528, N = 320 neuron-CPD pairs;

Mann–Whitney U test: U = 1.2 × 104, p = 0.16; Fig 5C4).

To examine the implications of these findings for the encoding of arousal-related variables

by dLGN spiking activity, we leveraged the repeating patterns of activity induced by the stimu-

lus and next asked if pupil dynamics could be decoded from patterns of spiking activity. We

first split each 5 s trial into 1 s segments, and, for each CPD, used the mean phase during each

segment to assign one of 2 phase labels. We then used spiking activity from each individual

neuron with significant phase coupling to decode the phase label. We found that the phase

labels could be decoded above chance level for every timescale of pupil dynamics, both when

using tonic spikes (S6A Fig) or bursts (S6B Fig). Together, these results show that dLGN neu-

rons also represent multi-scale aspects of pupil dynamics during encoding of a naturalistic

visual stimulus.
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Fig 5. Coupling of dLGN activity to pupil dynamics is related to differences in visual stimulus encoding. (A1) Raster plot showing the responses of an

example neuron to a movie (black: tonic spikes; red: burst spikes). Bottom: The mean response of the example neuron, centered on the mean across time.

Right: The mean firing rate on each trial, centered on the mean across trials. Note that the “Response” and “Variability” axes have the same scale. (A2) The

“response variability ratio” (RVR) compares the variance in the mean stimulus response to the mean variance for matching time points across trials

(median = 0.16, N = 64 neurons; see Materials and methods). An RVR less than 1 indicates that the trial-to-trial changes in stimulus responses are larger
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Given the different stimulus-response functions of bursts and tonic spikes [35–37], and

changes in feature selectivity that can occur with arousal [38–40], we next asked whether the

movie stimulus is differently represented by spiking activity during different phases of pupil

dynamics. To this end, we used spiking activity to decode which of the five 1-s stimulus seg-

ments was presented. For each neuron-CPD pair, we sorted the stimulus segments into 2

groups according to the phase of the component at the time when the segment was on screen

(Fig 5D1). These 2 phase groupings were designed such that one phase bin was centered on the

preferred phase of tonic spiking, while the other phase bin was centered 180˚ opposite. Criti-

cally, we used all spikes to decode the identity of the stimulus segment, regardless of whether

they were tonic spikes or part of a burst, to simulate the perspective of a downstream neuron

in the cortex that would be blind to this classification.

We observed that decoders trained and tested on data from the same phase group (Fig 5D2)

achieved nearly perfect performance (Fig 5D3; phase bin 1 decoding accuracy median = 99.6%,

phase bin 2 decoding accuracy median = 99.6%, N = 399 neuron-CPD pairs), indicating that

spiking activity during either phase was informative about the stimulus segment. However,

when we tested the decoder trained using spiking activity from one phase group with activity

occurring during the opposite phase grouping (Fig 5E1), we found a marked decrease in

decoding performance (Fig 5E3; median penalty for train 1! test 2 decoding = −33.6%, train

2! test 1 = −34.5%). Critically, this decoding penalty was only considered significant if it was

greater than the penalties obtained by performing the same cross-group decoding analysis on

random partitions of the data (Fig 5E2). The overall negative decoding penalty implies that

encoding of the stimulus into firing rates differs between the phases of pupil dynamics. Over-

all, high within-state decoding accuracy and prominent decoding penalties across states sug-

gest that the trial-to-trial variability in Fig 5A is not random but may stem from arousal-

related changes in the stimulus-response properties of dLGN neurons. Importantly, these

results were not limited to a specific temporal scale of pupil dynamics but were observed across

than the change induced by the stimulus. (B1) Trial-by-trial pupil size responses for the same experiment as in (A1). (B2) Distribution of pupil RVRs for all

recording sessions with naturalistic movie stimulus presentation (N = 9 recording sessions in 6 mice). An RVR of near zero indicates that stimulus induced

fluctuations in pupil size were negligible compared to across-trial fluctuations. (C1) Preferred coupling phase of tonic spikes (blue) and bursts (red) for all

neuron-CPD pairs with significant coupling during stimulus presentation. Significant tonic spike coupling was observed in 98.4% of neurons (62/63;

mean = 4.3 CPDs per neuron) and burst coupling in 62.7% of neurons (32/51; mean = 1.3 CPDs per neuron). (C2) Preferred phase distribution for tonic

spikes and bursts for slower timescales (left: timescale< 0.1 Hz; N = 183 neuron-CPD pairs with tonic spike coupling; N = 37 neuron-CPD pairs with burst

coupling; grid lines indicate proportion of 0.25) and faster timescales (right: timescale> 0.1 Hz; N = 90 neuron-CPD pairs with tonic spike coupling;

N = 31 neuron-CPD pairs with burst coupling). (C3) Distribution of the preferred phase differences between tonic spiking and bursting for neuron-CPD

pairs with significant coupling of both spike types (mean = 2.85, N = 56 neuron-CPD pairs, V-test for non-uniform distribution with a mean of π: V = 16.0,

p = 1.6 × 10−3). (C4) Coupling strengths (median ± bootstrapped SE) measured during stimulus presentation (bold lines) or without patterned visual

stimulation (faded lines, Fig 2E) for tonic spikes (movie median = 0.0050, N = 273 neuron-CPD pairs vs. gray median = 0.0081, N = 681 neuron-CPD pairs;

Mann–Whitney U test: U = 1.1 × 105, p = 1.1 × 10−3) and bursts (movie median = 0.0332, N = 68 vs. gray median = 0.0528, N = 320 neuron-CPD pairs;

Mann–Whitney U test: U = 1.2 × 104, p = 0.16). (D1) Schematic representation of how the data was partitioned in (D) and (E). Each trial of naturalistic

stimulus presentation was split into five 1-s segments and a decoder was trained to identify the stimulus segment using spiking activity. Two decoders were

trained for each neuron-CPD pair, one for each of 2 CPD phase groupings. Turquoise: Decoders trained on segments during which the CPD was in the

phase bin where tonic spiking preferentially occurred. Pink: Decoders trained on segments during which the CPD was in the opposing phase bin. (D2)

Schematic of the movie segment decoding, initially performed by training and testing within data partitions. (D3) Decoding accuracy distributions for the

2 phase-groupings for each CPD timescale (black lines: median decoding accuracy; gray line: chance-level performance). (E1) Schematic of the movie

segment decoding, now performed by training a decoder on one of the data partitions and testing it on data from the other. The decoding performance

across CPD phases was compared to the scores from (D3) to yield a “decoding penalty.” This penalty was compared to the penalty obtained by repeating

the same procedure on 10 random partitions of the data segments. A decoding penalty was considered significant if it was greater than the penalties

obtained from all 10 random partitions. (E2) Distribution of the ranks of decoding penalties obtained from partitions based on CPD phases among those

obtained from 10 random partitions (black lines: median rank). High ranks indicate that the penalty for training and testing across data partitions based on

CPD phases were greater than those obtained by random partitions. (E3) Distributions of decoding penalties, only for neuron-CPD pairs with significant

penalties (black lines: median decoding penalty). The penalty for training and testing across CPD phases can be as high as 50% across most timescales,

suggesting that all timescales of modulation contribute to substantial differences in how stimuli are encoded. CPD, components of pupil dynamics; dLGN,

dorsal lateral geniculate nucleus; RVR, response variability ratio.

https://doi.org/10.1371/journal.pbio.3002614.g005
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the entire range of timescales examined, indicating that multiple temporal scales of modula-

tion affect stimulus encoding.

Discussion

Our results establish that activity in dLGN, the primary visual thalamic nucleus, is coupled to

distinct CPDs that occur over multiple timescales, ranging from several seconds to several

minutes. Throughout these timescales, bursts and tonic spikes exhibited robust phase prefer-

ences, occurring during opposite phases of pupil dynamics across all timescales. Individual

neurons were coupled to multiple timescales and were diverse in the timescale that drove the

strongest modulation. The coupling between dLGN spiking and pupil dynamics extended

beyond effects related to differences in pupil size per se and could not be attributed to transi-

tions between quiescence and locomotion, or to saccadic eye movements. Furthermore, the

coupling persisted even during viewing of a rich naturalistic movie, where we observed differ-

ences in how visual stimuli were encoded across phases of pupil dynamics. Together, our find-

ings support the notion that arousal-related modulation of visual thalamus in the waking state

results from a combination of changes in dLGN spiking activity linked to diverse temporal

scales.

Our data-driven decomposition of the pupil signal moves beyond a binary classification of

behavioral state and reveals CPDs which together predict dLGN activity modulations across

multiple timescales. It is important to note that the components we recovered here do not nec-

essarily map directly onto the time-courses of independent internal processes or behavioral

sequences. Yet, our results support the idea that modulations of both the pupil signal and

dLGN neural activity result from a combination of multiple intrinsic and/or extrinsic influ-

ences, possibly separated by the temporal scale over which they occur. Multi-scale influences

have been described in other contexts, including the presence of diverse activity timescales

within and between neurons [41–43], the action of several behavioral state-related neuromo-

dulators with distinct timescales [24,44] or the largely non-overlapping activation dynamics of

different ensembles of neurons within the same neuromodulatory system [45]. Furthermore,

quantification of behavior in freely moving animals has revealed a multi-scale organization,

where long-lasting “idle” states can be punctuated by rapid “active” behaviors (and vice-versa;

[46]), mirroring the modulations we observed here, where slow and fast modulations were

superimposed in dLGN activity. Finally, in the context of task performance, cognitive pro-

cesses orchestrated by arousal-related neuromodulators can change on fast and slow timescales

[21], such as quick reorienting to surprising stimuli or the choice of specific behavioral strate-

gies over longer timescales. In humans, variations in stimulus detection ability have been

linked to the phase of slow components (0.01 to 0.1 Hz) of EEG signals [47]. Thus, the multi-

scale modulation we observed in the dLGN could reflect sensory processes adapting to the var-

ious timescales of behavioral organization of the organism.

While providing a quantitative account of dLGN modulations linked to multi-scale pupil

dynamics, locomotion, and saccades, a limitation of our study is that it has not addressed these

modulations on a mechanistic level. However, the relationship to pupil size strongly implicates

the neuromodulators norepinepherine (NE) [20,24,48] and acetylcholine (ACh) [11,24] in the

present findings. NE is provided to the thalamus by the locus coeruleus (LC) [49,50], while

ACh in the rodent thalamus comes from several brainstem nuclei (PPN/LDT and PBG) [51–

53] and the basal forebrain (BF) [51,54]. Consistent with a potential role for the LC-NE system

in the present findings, stimulation of the LC in vivo has been shown to suppress bursting in

the dLGN [55] and primary somatosensory thalamus (VPM) [56], while causing pupil dilation

[48]. Additionally, NE levels in the mouse thalamus during NREM sleep have been found to
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fluctuate with a frequency of 0.02 Hz and are linked to correlates of sensory arousability [57].

Given the prevalence of high power of CPDs around 0.02 Hz we observed, it also seems likely

that the LC-NE system drives some of the coupling between dLGN spiking and pupil dynamics

at such timescales during wakefulness. In addition, stimulation of the cholinergic PPT/LDT

increases firing rates in the VPM [58], and switches dLGN neurons from burst to tonic mode

[59], supporting the role of cholinergic nuclei in the modulations observed here. Although the

activity of the PPN/LDT and PBG have not been directly linked to pupil size fluctuations, they

are involved in coordinating locomotor patterns and eye movements [60,61], meaning they

could specifically drive the subset of modulations we observed linked to these behaviors. It is

important to note that neuromodulatory influences in the thalamocortical system extend

beyond direct effects on thalamic neurons, and also involve the thalamic reticular nucleus

[51,54,62–64], corticothalamic L6 neurons [65,66], and retinal boutons [40,67,68], all of which

could contribute to additional arousal-related influences on thalamic neurons. Furthermore,

although our analyses in darkness control for changes in retinal illumination linked to pupil

size per se, there are known effects of pupil size on feed-forward signaling. Changes in retinal

irradiation linked to pupil size can shift color selectivity in the visual system [39], and there is

evidence for interactions between luminance and behavioral modulation [69] that warrants

further exploration. Future studies directly tracking and manipulating the activity of these

modulatory systems in the thalamus promise to yield further insight into the relationship

between internal states and feed-forward sensory signals across diverse time scales.

The modulations in burst and tonic spiking we observed indicate that, throughout periods

of wakefulness, and even during stimulus viewing, the dLGN is in constant alternation

between 2 distinct information processing modes. One prominent view is that tonic spikes

encode information about a stimulus linearly, while stimulus-driven bursts provide an all-or-

none “wake-up call” to the cortex [14], by providing augmented retinogeniculate [37] and gen-

iculocortical [18] communication, and improved stimulus detectability [70] (for related work

in the somatosensory system, see e.g., [71,72]). Burst spikes, in comparison with tonic spikes,

also have different feature selectivity: they track low frequency stimulus content [9,73,74] with

an earlier response phase [32,36,75], integrate input over longer timescales with biphasic

response kernels [35,36,76–78], and prefer smaller stimuli [79] with a stronger suppressive sur-

round [36]. Such differences likely contribute to the decoding penalty we observed when train-

ing and testing decoders on spiking activity from opposing phases of the modulations we

observed. However, it is also possible that neuromodulatory mechanisms change the stimulus

response properties of dLGN neurons, without eliciting a switch in firing mode from tonic

spiking to bursting. It remains to be seen whether spatiotemporal receptive fields change

across phases of pupil dynamics, and whether these changes can be attributed to membrane

hyperpolarization and bursting.

Our results focused on the commonalities of multi-scale modulation across the recorded

population of dLGN neurons. However, we also observed a substantial diversity across neu-

rons in the strength of coupling within a timescale, the timescale with strongest coupling, and

the degree to which stimulus decoding was influenced. The mouse dLGN consists of various

cell types [80] and functional subtypes [81,82], some of which are known to be differentially

affected by arousal-linked variables [38,68]. Moving forward, considering the specific func-

tional role of a given neuron, along with its temporal structure of modulation, will lead to a

better understanding of dynamic stimulus processing in the visual system.

In this study, revealing the multi-scale nature of arousal-related activity modulations in

dLGN was possible by applying a decomposition approach to the pupil signal. This approach

builds on previous studies using raw pupil size as a marker for internal arousal processes in

sensory circuits [7,40,66,83–87] or the pupil’s dynamics within a restricted frequency range
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[6,24,43]. Importantly, however, our analysis of pupil components and phases in relation to

spiking activity is not intended to undermine the usefulness of pupil size itself, which remains

an accessible signal that offers a relevant index into internal state. Indeed, our analyses show

that modulations indexed by pupil size may be viewed as a specific case of phase coupling to

pupil dynamics: coupling to high amplitude peaks or troughs of a component. We therefore

view these approaches as complimentary and considering both allows for a more nuanced and

comprehensive account of the modulations of sensory processing.

While our study has expanded the use of the pupil signal to reveal arousal-related modula-

tions to multiple temporal scales, recent work has emphasized that a larger array of behaviors

may also help to better explain activity in sensory systems [19,88]. Individual behaviors, such

as locomotion onset [8,12], eye movements [89], head movements [69], or particular postures

in freely moving conditions [90], modulate activity in the rodent early visual system. In the

present study, locomotion and eye movements were shown to relate to a subset of pupil-linked

modulations. However, given that a larger set of behavioral components has been linked to

activity modulation in the visual cortex, this subset may expand as more behaviors are mea-

sured. These behavior-related modulations often occur in time-windows of seconds or less,

which may be explained by the need to account for their immediate influence on sensory

inputs [34,91]. Our present work shows that sensory neurons are modulated not only at these

faster timescales, but also at longer timescales. In the future, a more complete characterization

of the organization of spontaneous behaviors across temporal scales [46] promises to advance

our understanding of multi-scale modulations of sensory processing by behavioral states.

Materials and methods

Ethics statement

All procedures complied with the European Communities Council Directive 2010/63/EU and

the German Law for Protection of Animals, and were approved by local authorities (Regierung

von Oberbayern, license #: ROB-55.2-2532.Vet_02-17-40; Regierungspräsidium Tübingen,

license #: CIN 4/12), following appropriate ethics review.

Surgical procedure

Experiments were carried out in 6 adult transgenic PV-Cre mice (median age at first recording

session: 23.4 weeks; B6;129P2-Pvalbtm1(cre)Arbr/J; Jackson Laboratory), 4 adult Ntsr1-Cre mice

(median age: 24.7 weeks; B6.FVB(Cg)- Tg(Ntsr1-cre)GN220Gsat/Mmcd; MMRRC), and 1

wild-type BL6 mouse (age: 33.9 weeks), of either sex. Transgenic mice were used, as these mice

were also included in another study [32] which required selective viral expression of ChR2 in

area V1. For the present study, data mostly came from experiments where no optogenetic

manipulation was present, with the exception of the data in Figs 5 and S6. Here, only trials

without optogenetic stimulation were considered for the analyses.

The majority of experiments were performed under Licence ROB-55.2-2532.Vet_02-17-40.

Thirty minutes prior to surgical procedures, mice were injected with an analgesic (Metamizole,

200 mg/kg, sc, MSD Animal Health, Brussels, Belgium). To induce anesthesia, animals were

placed in an induction chamber and exposed to isoflurane (5% in oxygen, CP-Pharma, Burg-

dorf, Germany). After induction of anesthesia, mice were fixated in a stereotaxic frame (Drill

& Microinjection Robot, Neurostar, Tuebingen, Germany). At the beginning of the surgical

procedure, an additional analgesic was administered (Buprenorphine, 0.1 mg/kg, sc, Bayer,

Leverkusen, Germany) and the isoflurane level was lowered (0.5% to 2% in oxygen), such that

a stable level of anesthesia could be achieved as judged by the absence of a pedal reflex.

Throughout the procedure, the eyes were covered with an eye ointment (Bepanthen, Bayer,
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Leverkusen, Germany) and a closed loop temperature control system (ATC 1000, WPI Ger-

many, Berlin, Germany) ensured that the animal’s body temperature was maintained at

37˚C. The animal’s head was shaved and thoroughly disinfected using iodine solution

(Braun, Melsungen, Germany). Before performing a scalp incision along the midline, a local

analgesic was delivered (Lidocaine hydrochloride, sc, bela-pharm, Vechta, Germany). The

skin covering the skull was partially removed and cleaned from tissue residues with a drop

of H2O2 (3%, AppliChem, Darmstadt, Germany). Using 4 reference points (bregma,

lambda, and 2 points 2 mm to the left and to the right of the midline respectively), the ani-

mal’s head was positioned into a skull-flat configuration. The exposed skull was covered

with OptiBond FL primer and adhesive (Kerr dental, Rastatt, Germany) omitting 3 loca-

tions: V1 (AP: −2.8 mm, ML: −2.5 mm), dLGN (AP: −2.3 mm, ML: −2 mm), and a position

roughly 1.5 mm anterior and 1 mm to the right of bregma, designated for a miniature refer-

ence screw (00–96 X 1/16 stainless steel screws, Bilaney) soldered to a custom-made

connector pin. Unrelated to the purpose of this study, 2 μl of the adeno-associated viral vec-

tor rAAV9/1.EF1a.DIO.hChR2(H134R)-eYFP.WPRE.hGH (Addgene, #20298-AAV9) was

dyed with 0.3 μl fast green (Sigma-Aldrich, St. Louis, United States of America), and after

performing a small craniotomy over V1, a total of approximately 0.5 μl of this mixture was

injected across the entire depth of cortex (0.05 μl injected every 100 μm, starting at

1,000 μm and ending at 100 μm below the brain surface), using a glass pipette mounted on a

Hamilton syringe (SYR 10 μl 1701 RN no NDL, Hamilton, Bonaduz, Switzerland). A cus-

tom-made lightweight stainless steel head bar was positioned over the posterior part of the

skull such that the round opening contained in the bar was centered on V1/dLGN and

attached with dental cement (Ivoclar Vivadent, Ellwangen, Germany) to the primer/adhe-

sive. The opening was later filled with the silicone elastomer sealant Kwik-Cast (WPI Ger-

many, Berlin, Germany). At the end of the procedure, an antibiotic ointment (Imax, Merz

Pharmaceuticals, Frankfurt, Germany) was applied to the edges of the wound and a long-

term analgesic (Meloxicam, 2 mg/kg, sc, Böhringer Ingelheim, Ingelheim, Germany) was

administered and continued to be administered for 3 consecutive days. For at least 5 days

post-surgery, the animal’s health status was assessed via a score sheet.

One mouse was treated in accordance with Licence CIN 4/12, in which general surgical

procedures were identical to the foregoing with the following exceptions. After induction of

anesthesia, mice were additionally injected with atropine (atropine sulfate, 0.3 mg/kg, s.c.;

Braun). The head post consisted of a small S-shaped piece of aluminum, which was cemented

to the skull between lambda and bregma and to the right of the midline. Posterior to the head

post, overlying the cerebellum, 2 miniature screws serving as ground and reference were

implanted. At the end of the procedure, antibiotics (Baytril, 5 mg/kg, s.c.; Bayer) and a long-

term analgesic (Carprofen, 5 mg/kg, s.c.; Rimadyl, Zoetis) were administered and were given

for 3 days after surgery.

After at least 1 week of recovery, animals were gradually habituated to the experimental

setup by first handling them and then simulating the experimental procedure. To allow for

virus expression, neural recordings started no sooner than 3 weeks after injection. On the day

prior to the first day of recording, mice were fully anesthetized using the same procedures as

described for the initial surgery, and a craniotomy (ca. 1.5 mm2) was performed over dLGN

and V1 and re-sealed with Kwik-Cast (WPI Germany, Berlin, Germany). As long as the ani-

mals did not show signs of discomfort, the long-term analgesic Metacam was administered

only once at the end of surgery, to avoid any confounding effect on experimental results.

Recordings were performed daily and continued for as long as the quality of the electrophysio-

logical signals remained high.
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Electrophysiological recordings

Mice were head-fixed on a styrofoam ball and allowed to run freely. Extracellular signals were

recorded at 30 kHz (Blackrock Microsystems). For each recording session, the silicon plug

sealing the craniotomy was removed. To record from dLGN, a 32-channel linear silicon probe

(Neuronexus A1x32Edge-5mm-20-177-A32, Ann Arbor, USA) was lowered to a depth of

approximately 2,700–3,700 μm below the brain surface. We judged recording sites to be

located in dLGN based on the characteristic progression of RFs from upper to lower visual

field along the electrode shank [81] and the presence of responses strongly modulated at the

temporal frequency of the drifting gratings (F1 response). For post hoc histological reconstruc-

tion of the recording site, the electrode was stained with DiI (Invitrogen, Carlsbad, USA) for

one of the final recording sessions.

For the purposes of a different study [32], during recordings involving naturalistic movie

stimulation (Figs 5 and S6), V1 was optogenetically stimulated using 470 nm light on half of

the trials, which were randomly interleaved with control trials. Here, only electrophysiological

data from trials without optogenetic stimulation were considered.

Histology

After the final recording session under Licence ROB-55.2-2532.Vet_02-17-40, mice were first

administered an analgesic (Metamizole, 200 mg/kg, sc, MSD Animal Health, Brussels, Bel-

gium) and following a 30 min latency period were transcardially perfused under deep anesthe-

sia using a cocktail of Medetomidin (Domitor, 0.5 mg/kg, Vetoquinol, Ismaning, Germany),

Midazolam (Climasol, 5 mg/kg, Ratiopharm, Ulm, Germany), and Fentanyl (Fentadon, 0.05

mg/kg, Dechra Veterinary Products Deutschland, Aulendorf, Germany). Perfusion was first

done with Ringer’s lactate solution followed by 4% paraformaldehyde (PFA) in 0.2 M sodium

phosphate buffer (PBS).

To verify recording site and virus expression, we performed histological analyses. Brains

were removed, postfixed in PFA for 24 h, and then rinsed with and stored in PBS at 4˚C. Slices

(40 μm) were cut using a vibrotome (Leica VT1200 S, Leica, Wetzlar, Germany), mounted on

glass slides with Vectashield DAPI (Vector Laboratories, Burlingame, USA), and coverslipped.

A fluorescent microscope (BX61, Olympus, Tokyo, Japan) was used to inspect slices for the

presence of yellow fluorescent protein (eYFP) and DiI. Recorded images were processed using

FIJI [92,93].

For experiments under Licence CIN 4/12, general histological procedures were identical to

those described above, except that mice were injected with sodium pentobarbital (Narcoren, =

200 mg/kg intraperitoneally; Böhringer Ingelheim) before perfusion. Coronal brain slices

(50 μm) were obtained by using a vibratome (Microm HM 650V, Thermo Fisher Scientific)

and inspected with a Zeiss Imager.Z1m fluorescent microscope (Zeiss).

Visual stimulation

Visual stimulation was presented using custom written software (EXPO, https://sites.google.

com/a/nyu.edu/expo/home) on a liquid crystal display (LCD) monitor (Samsung SyncMaster

2233RZ, 47×29 cm, 1680×1050 resolution at 60 Hz, mean luminance 50 cd/m2) positioned at a

distance of 25 cm from the animal’s right eye. The data presented in all figures, with the excep-

tion of Figs 5 and S6, was recorded while animals were viewing either a static gray screen

(N = 5 experiments) or a sparse noise stimulus (N = 10 experiments). The sparse noise stimu-

lus consisted of a non-overlapping white and black square, simultaneously flashed for 200 ms

on a square grid spanning 60 deg, while individual squares spanned 5 deg. Data was collected

in darkness (S1 and S2 Figs) by switching off the display monitor and blocking smaller light
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sources produced by the recording equipment. The data presented in Figs 5 and S6 were

recorded while the animals were repeatedly presented with 5 s naturalistic movie clips (as

described in [32]).

Behavioral tracking

During electrophysiological recording, head-fixed mice were allowed to run on an air cush-

ioned Styrofoam ball. Ball movements were recorded by 2 optical computer mice which inter-

faced with a microcontroller (Arduino Duemilanove) and sampled ball movements at 90 Hz.

Locomotor activity was quantified by computing the Euclidean norm of 2 perpendicular com-

ponents of ball velocity (pitch and roll), and herein referred to as locomotion speed. Locomo-

tion bouts were defined as periods of time where the ball speed exceeded 1 cm/s for at least 2 s,

with a break of no more than 2 s, and during which the locomotion speed exceeded the thresh-

old for at least half of the bout duration. Quiescence was defined as any period of time outside

of a locomotion bout.

To track pupil size, the stimulus-viewing eye was illuminated with and infrared LED light

(850 nm), and the eye was filmed with a camera (Guppy AVT camera; frame rate 50 Hz, Allied

Vision, Exton, USA) equipped with a zoom lens (Navitar Zoom 6000). Pupil size was extracted

from the videos using a custom, semi-automated algorithm. Each video frame was equalized

using an adaptive bi-histogram equalization procedure, and then smoothed using median and

bilateral filters. The center of the pupil was initially estimated by taking the darkest point in a

convolution of the filtered image with a black square. Next, the peaks of the image gradient

along lines extending radially from the center point were used to define the pupil contour.

Lastly, an ellipse was fit to the contour, and the area of the ellipse was taken as pupil size, and

the center of the ellipse was taken as the pupil position. Frames in which the eye was obscured,

occurring during eye closure or grooming, were detected by applying a threshold to the mean

pixel-wise difference between each frame and a reference frame compiled by taking the

median of several manually selected frames during which the eye was open. Data points with

eye closure, as well as the 4 points immediately adjacent, were excluded. Because the pupil size

and eyelid closure are correlated, many periods when the pupil was at its smallest could not be

analyzed, including some periods of very low arousal and sleep-related states. Adjustable

parameters in the above algorithm were set manually for each experiment. After ellipse fitting,

data points at which the fitted pupil position, size, eccentricity, or rate of change, were outside

of a plausible range were removed from consideration. Unreliable segments, occurring due to

eye-closure, grooming, or unstable ellipse fitting, were automatically removed according to a

priori criteria. Cubic splines were used to interpolate over gaps of<5 s, and the remaining seg-

ments of continuous data were smoothed with a Gaussian kernel (σ = 250 ms). From each

recording session, we only included data from the single longest continuous segment of reli-

able pupil data (median = 1,159 s, min = 596 s, max = 2,507 s). Pupil size is reported as a per-

centage of the total area of the exposed eye visible in the recording, as we found this to be a

more stable normalization metric across recordings than the mean or maximum pupil size.

Pupil size signal decomposition

The pupil size signal was decomposed into intrinsic mode functions (herein referred to as

CPDs) by EMD (https://emd.readthedocs.io). In contrast to the original broad-band pupil size

signal, the CPDs are locally narrow-band and thus amenable to Hilbert spectral analysis [29].

In contrast to the Fourier or wavelet transforms, EMD extracts these components without pre-

defined filters and can capture nonstationarities present in biological signals with individual

frequency- and amplitude-modulated components [29]. To minimize edge effects during
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subsequent spectral analysis, each CPD was extrapolated from the beginning and end by mir-

roring the 3 closest peaks/troughs across the signal edge and interpolating between the mir-

rored extrema with third-order Bernstein polynomials restricted by the gradient at the signal

edge. CPDs with fewer than 3 extrema were extended using the first derivative at the signal

edges. The Hilbert transform was applied to the extended CPDs to obtain the complex-valued

analytic signal of each CPD, from which the instantaneous phase and amplitude at each time

point were computed as the angle and length of the signal vector, respectively. Instantaneous

frequency was given by the time derivative of the unwrapped phase. Only time points corre-

sponding to the un-extrapolated signal were used in further analysis. Pupil size power spectral

density was compiled by binning the instantaneous frequency and collecting power (squared

amplitude) for each frequency bin across CPDs and time (referred to as the “marginal spec-

trum” in [29]). This generally corresponded well with the PSD obtained via Fourier transform

(median Pearson’s R = 0.71, N = 15 recordings). Each CPD was assigned a “characteristic time-

scale” by taking the mean frequency across all time points weighted by the amplitudes. The rel-

ative power of each CPD was assigned by taking the power (squared amplitude density of each

CPD and expressing it as a fraction of the sum of the power densities from all CPDs extracted

from the recording segment). At this point, some of the lower frequency CPDs were elimi-

nated from further consideration if they did not complete at least 4 cycles within the recording

segment to ensure sufficient sampling of each phase.

The relationship between pairs of CPDs from the same recording segment was assessed

using a permutation test designed to find periods of phase coupling between CPDs. The CPDs

resulting from EMD, although broadly different in frequency content, are not guaranteed to

have independent phase progressions. Therefore, the same aspect of pupil dynamics can end

up being captured by multiple CPDs. To address this problem, we reasoned that, if this mixing

occurred, it would be reflected in transient periods of phase alignment between 2 CPDs. This

alignment would appear as peaks in the joint phase distribution of 2 CPDs, causing the distri-

bution to deviate from uniformity. However, because the phase distribution of each CPD itself

is not uniform, for each pair of simultaneously recorded CPDs we simulated the expected joint

distribution in the absence of phase coupling by shuffling the cycle order of each CPD inde-

pendently 1,000 times. The real and simulated joint distributions were then compared to a uni-

form distribution using the Kullbach–Leibler divergence (Δ KLD, S1D Fig). The CPDs were

considered significantly coupled if the Δ KLD of the true joint distribution exceeded the 95th

percentile of the Δ KLDs computed from the simulated distributions (p-value < = 0.05; S1D1

Fig, magenta outlines; S1D2 Fig, right). The specific combination of phases driving the cou-

pling was determined by asking which points in the joint phase space exceeded the 95th per-

centile of the simulated distributions at the same point (S1D1 Fig, white outlines). These phase

combinations were only considered significant if the Δ KLD also indicated overall coupling

between the 2 CPDs. For the analysis in Figs 2FAU : Pleasenotethatthefigurepart1FiscitedinthesentenceFortheanalysisinFigs1FandS3B:::butisnotincludedinthecaptionofFigure1:Pleasecheck:and S3B, the periods of time during which

coupled CPDs passed through these phase combinations were excluded.

Spike sorting

For recordings under protocol ROB-55.2-2532.Vet_02-17-40, the spiking activity of isolated

single units was initially extracted from extracellular recordings using the Kilosort spike-sort-

ing toolbox [94]. The resulting spike clusters were subject to manual curation in Spyke [95],

where spikes within a cluster were temporally aligned and plotted in a 3D space (multichannel

PCA, ICA, and/or spike time). In this space, clusters could be merged to account for drift in

spike shape over the recording session (for example, if the first 2 wave shape PCs changed

smoothly as a function of spike time), or further split using a gradient ascent-based clustering
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algorithm [96]. Clusters containing only spikes with no consistent and clearly discernible volt-

age deflection were eliminated from further consideration. Finally, cluster auto-correlograms

were examined to ensure that a clear refractory period was present; while the presence of a

refractory period was not an indicator of a well-isolated unit, the absence of a refractory period

was taken as an indicator that the cluster might need to be further split or contained a high

amount of noise. Remaining clusters were compared using empirical distance metrics to

ensure that they were well separated.

For the few sessions recorded under protocol CIN 4/12, single neurons in our linear array

recordings were isolated by grouping neighboring channels into 5 equally sized “virtual

octrodes” (8 channels per group with 2-channel overlap for 32 channel probes). Using an auto-

matic spike detection threshold [97] multiplied by a factor of 1.5, spikes were extracted from the

high-pass-filtered continuous signal for each group separately. The first 3 principal components

of each channel were used for semi-automatic isolation of single neurons with KlustaKwik [98],

and the resulting clusters were manually refined with Klusters [99]. Only clusters whose auto-

correlogram displayed a clear refractory period and whose mean voltage trace showed a charac-

teristic spike waveshape were further considered. To avoid duplication of neurons extracted

from linear probe recordings, we computed cross-correlograms (1-ms bins) between pairs of

neurons from neighboring groups. Pairs for which the cross-correlogram’s zero bin was 3 times

larger than the mean of nonzero bins were considered to be in conflict and only one was kept.

Bursts of action potentials are associated with a slow, hyperpolarization de-inactivated Ca2+

conductance present in thalamic neurons, which cannot be directly measured in extracellular

recordings. However, studies combining intra- and extracellular recordings have established

reliable empirical criteria for identification of these thalamic bursts [30], according to which

�2 spikes with a prior period without spiking of 100 ms and an ISI of<4 ms are part of a

burst (Fig 2A). Spikes satisfying these criteria were categorized as burst spikes, whereas all

other spikes were considered tonic spikes. Downstream analyses were performed separately on

tonic spikes and burst events, for which all spikes in a burst were treated as a single event.

Among our recorded dLGN units, the vast majority (89.5%) displayed bursting events, which

and accounted for 3% of dLGN spikes (burst ratio: the proportion of all spikes in the recording

that were part of a burst; S2A2 Fig).

Short timescale serial dependence of burst events and tonic spiking was assessed by com-

puting the auto-correlogram for each activity type in a −1 s to 1 s window. Taking the average

auto-correlation over all neurons, it was determined by visual inspection that both event types

had a primary peak lasting approximately 300 ms. In addition, we also note that the mean

burst auto-correlation had a secondary peak, indicating rhythmicity in the*5 Hz range [13].

Modulation of spiking by pupil size

To assess the modulation of spiking activity by arousal states, we began by collecting, for each

neuron, spike counts in 250 ms bins. We then sorted these spike counts into 10 bins according

to the min-max normalized pupil size. A neuron was considered to be significantly modulated

by pupil size if a one-way ANOVA across the pupil size bins was significant, regardless of

which pupil size bin had the highest firing rate.

Phase coupling

To assess the modulation of spiking activity by arousal states, we developed a phase coupling

analysis to relate events such as bursts and tonic spikes to the CPDs. We required that at least 8

bursts or tonic spikes occurred over the course of the recording segment for a neuron to be

considered in this analysis. Considering tonic spikes and burst events from each neuron
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separately, the Hilbert phase of each ongoing CPD was collected at times when bursts (the

time of the first spike of the burst) and tonic spikes occurred. Although coupling might be

directly assessed by compiling phase histograms and computing the circular mean of these

phases, we adopted various bias-corrections resulting in a more stringent assessment of phase

coupling.

Firstly, CPDs are not guaranteed to have a linear phase progression, which is beneficial in

that they can capture naturalistic asymmetric wave shapes but presents a difficulty when

assessing phase coupling as the underlying distribution of phases could itself be biased. These

biases could lead one to falsely infer phase coupling simply because more recording time may

be spent in a certain phase, and therefore more spikes attributed to this phase. We therefore

converted phases to circular ranks, yielding a uniform underlying distribution to which bursts

and tonic spikes could be related [100]. The angle of the circular mean rank was then con-

verted back to a phase using the original distribution, and this value was reported as the “pre-

ferred phase.” Next, as the circular mean resultant vector length is a biased statistic (its value is

inflated for small number of observations), we opted for an unbiased measure of phase cou-

pling strength to allow comparison of coupling strength across units with different firing rates,

between tonic spikes and bursts, and between conditions where spikes were subsampled from

the recording period. Rather than using mean resultant vector length (R), we used its squared

value, which can be easily bias-corrected [101]. We thus quantified coupling strength as fol-

lows:

R̂2 ¼
n

n � 1
R2 �

1

n

� �

;

where R is the mean resultant vector length computed using the circular phase ranks, and n is

the number of tonic spikes or bursts. Finally, we sought to assess the statistical significance of

phase coupling with a measure that was insensitive to the short-term serial dependence of

spike trains, which effectively reduces the degrees of freedom of the sample. We adopted the

null hypothesis that, if there were no relationship between spiking activity and CPD phase,

then the coupling strength of a neuron-CPD pair would be the same as that measured from a

spike train with the same short-term structure, but with no relationship to the CPD. We tested

coupling strengths against this null hypothesis by splitting burst and tonic spike trains into seg-

ments of 300 ms, which were shuffled in order to destroy the relationship between CPD phase

and spiking activity, and then phase coupling to the CPD was assessed as described above.

This procedure was repeated 1,000 times for each neuron-CPD pair to compile a null-distribu-

tion of coupling strengths. The true coupling strength was then compared to this distribution

and assigned an exact p-value (precise to 3 decimal places) based on how many elements of the

null set had a higher coupling strength value.

In general, we computed phase coupling using all recorded spikes. However, to account for

the influence of spiking activity surrounding behaviors such as locomotion and eye move-

ments (Figs 4, S4, and S5), we excluded spiking activity that occurred during these behaviors

from consideration. To measure coupling during periods of quiescence, spikes that occurred

during locomotion bouts were excluded, as well as spikes occurring 2 s before bout onset, and

4 s after bout offset. For coupling during locomotion, spikes occurring during quiescence were

excluded, as well as spikes occurring during the first and last 2 s of the bout, meaning that

bouts shorter than 4 s in length were not considered. To eliminate the influence of peri-sac-

cadic activity, we excluded spiking activity occurring in a time window from 1 s before to 2 s

after the saccade. Finally, because 2 simultaneously recorded CPDs could themselves have

phase coupling (S1D Fig), we assessed the coupling of single neurons to multiple CPDs after
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removing periods of time where significant coupling between a given CPD and any other CPD

in the set was observed according to the statistical procedure detailed above (Figs 2F and S3B).

In the case of the phase coupling comparison across data partitions (S3D Fig), for each neuron

and CPD, the spiking from adjacent CPD cycles was placed into one of the 2 partitions. Cou-

pling was assessed for each partition separately, then the difference in preferred phase across

partitions was compared for each neuron-CPD pair. For coupling strength ranking across

CPDs, the partition with data from odd CPD cycles was arbitrarily assigned to 1 group, and

even cycles to the other group. Coupling strength was then ranked within groups and the top

CPD was compared across groups for each neuron.

Pupil size distribution matching

We observed that pupil size could co-vary with CPD phase (Fig 3A), thus presenting a con-

found for genuine phase coupling. To control for effects of pupil size per se from the measure-

ment of CPD phase coupling, we adopted a histogram matching procedure [102,103] to

minimize the differences in the distribution of pupil sizes across the phase bins of each CPD.

For each CPD, the recording was split into segments based on 4 phase bins. For each visit to a

phase bin, the mean pupil size during the visit was collected and compiled into a histogram (10

bins). From these histograms (1 for each phase bin), we assembled a “minimum common dis-

tribution” of pupil sizes by selecting the phase bin with the smallest number of entries for each

pupil size. For each of these entries in the selected phase bin, we collected the entry from the

other 3 phase bins with the closest pupil size, thus obtaining an equal number of samples from

each phase bin, with pupil sizes matched as closely as possible. To assess the efficacy of this

procedure, we computed the pair-wise difference in mean pupil size (this time collecting the

full time-course of pupil size from each bin visit, rather than the mean) between each pair of

phase bins, and took the maximum difference. We compared this difference before and after

the subsampling procedure (Fig 3A). The phase coupling analysis in Fig 3 results from taking

only spikes that occurred during the time periods subsampled with the matching procedure.

Correlation analyses

Locomotion speed is known to be reflected in the pupil size signal (S1B4 Fig, [8]). To assess

the potential contributions of locomotion speed to the phase coupling we observed, we per-

formed correlation analyses relating each CPD to the animal’s locomotion speed. Because

serial dependence in signals can inflate correlation values and violates the independence

assumption required to directly calculate a p-value, we adopted a permutation-based approach

to assess the statistical significance of CPD-speed cross-correlations [104]. Each CPD was cor-

related with 1,000 locomotion speed traces collected from other experiments and compared

the peak value cross-correlation to the distribution of nonsense correlations in order to obtain

a p-value. To further reduce the detection of spurious correlations, we limited our search for

the peak to lags in the range of [−T, T], where T is the mean period of the CPD. For example,

for a CPD with a mean period of 5 s, the search window would be restricted to lags of [−10 s,

10 s], and maximum value of the absolute cross-correlation in this window would be com-

pared to the distribution of nonsense correlations. The cross-correlation was considered sig-

nificant only if the maximum value within the prescribed range had a p-value� 0.05.

Spiking responses

To compute spiking responses to behavioral events (locomotion onsets, locomotion offsets,

saccades) and experimental events (stimulus onsets), we first estimated the instantaneous fir-

ing rate surrounding each event via kernel density estimation ([105], implemented in the
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statistics.instantaneous_rate function from https://elephant.readthedocs.io). Instantaneous

rates were estimated using a Gaussian kernel with 100 ms bandwidth and sampled with a reso-

lution of 50 ms. Responses were considered significant if at any point the mean response was

outside the [2.5, 97.5] percentile range of responses computed using a shuffled version of the

spike train (300 ms bins, 1,000 shuffles). In the case of saccade responses (S5C Fig), K-means

clustering (sklearn.clustering.KMeans, with k = 3) was performed after taking the top principal

components (explaining 80% of the variance) of the mean responses of each neuron in a win-

dow of [−1 s, 1 s] surrounding the saccade. To quantify the trial-to-trial variability in stimulus

responses (Fig 5A2 and 5B2), we constructed a “response variance ratio” (RVR) comparing the

variance across time of the mean stimulus response to the mean across-trial variance for each

time point.

SNR ¼
VarlðEkðXÞÞ
ElðVarkðXÞÞ

;

where X = [x1,. . ., xk]T 2 RK,L is the response matrix compiled from K trials of duration L, and

Ed() and Vard() denote taking the mean or variance across the indicated dimension of the

matrix.

Decoding analyses

For each neuron-CPD combination, we trained support-vector classifiers (SVCs; sklearn.svm.

SVC) to decode CPD phase and visual stimulus identity from spiking activity during naturalis-

tic stimulus viewing (Figs 5 and S6). Spike times (tonic spike times, burst times, or all spikes)

from each trial were converted into instantaneous rates (see above), and each 5 s trial was split

into 1 s segments. To decode the CPD phase (S6 Fig), we assigned a label to each 1 s segment

of activity by taking the circular mean phase of the CPD during the segment and placing this

mean phase into one of 2 phase bins. We then trained an SVC (with a radial basis function ker-

nel) to decode the phase label using only burst rates or only tonic spike rates occurring during

the 1 s segment and assessed the decoding performance with 5-fold cross-validation. To

decode the visual stimulus (Fig 5D), we assigned each 1 s segment with a label (e.g., 1 for the

first second of the stimulus, 5 for the last second of the stimulus), and then split the segments

into 2 groups according to the mean CPD phase during the segment. We used the instanta-

neous rates (estimates using all spikes together regardless of their categorization as tonic or

burst) from one group to train an SVC (with a linear kernel) to perform “one-versus-rest”

decoding of the stimulus labels and tested the decoder using the same data as well as the data

from the other group. We took the difference in decoding scores between the 2 groups as the

“decoding penalty.” We compared the decoding penalty obtained when splitting the segments

by CPD phase to the decoding penalties obtained from 10 random splits of the data as a con-

trol. The decoding penalty for the neuron-CPD pair was considered significant if it was greater

than all 10 random splits. In both of the above decoding schemes, we determined the 2 CPD

phase bins based on the preferred coupling of each neuron: one bin was centered around the

preferred phase of tonic spiking of the neuron (preferred phase ± π/2), and the other bin was

centered around the opposing phase (preferred phase - π ± π/2).

Supporting information

S1 Fig. Characterizations of pupil and running behavior, relationship of spikes to pupil

size during darkness, and independence of CPDs. (A1) Pupil size distributions for all record-

ing sessions. Pupil size is expressed as a fraction of the total exposed eye area (see Materials

and methods). Data from the gray screen and sparse noise sessions are grouped together for

PLOS BIOLOGY Thalamic spiking activity and pupil dynamics across temporal scales

PLOS Biology | https://doi.org/10.1371/journal.pbio.3002614 May 14, 2024 26 / 36

71



the analyses in Figs 1, 2, 4, S2, S3B, S3C and S4. (A2) Pupil size power spectral density

(mean ± SEM, min-max normalized) for gray screen recordings (N = 5) and recordings in

darkness (N = 5). (B1) Distribution of proportion of time spent in a locomotion bout (green,

see Materials and methods) versus sitting (gray) for N = 14 sessions where locomotion speed

was recorded (Horizontal bars: median proportion). (B2) Distribution of locomotion bout

and inter-bout-interval lengths. (B3) Distribution of locomotion speed variance during loco-

motion bouts versus sitting. Whereas locomotion bouts were characterized by larger behav-

ioral variability, the inter-bout-intervals had very low variability in locomotion speed. (B4)

Pupil size (mean ± SEM, normalized to the pre-bout pupil area) surrounding locomotion bout

onsets (left) and offsets (right). (B5) Pupil size power spectral density (mean ± SEM) for peri-

ods of locomotion (green) and quiescence (gray). (C1) Spike counts (min-max normalized)

across pupil sizes (min-max normalized) for the dLGN neurons with significant modulation

by pupil size (top, one-way ANOVA across 10 pupil size bins, p� 0.05) and without significant

modulation (bottom) during recordings performed in darkness. Neurons are sorted by the

location of the maximum firing rate (black dots). The majority of significantly modulated neu-

rons (61.8%) had “non-monotonic” modulation profiles, with their maximum firing rates out-

side of the 90th percentile of pupil size (dashed white line). (C2) Same as (C1) but for bursts of

spikes. Neurons are sorted by the location of the maximum burst rate (black dots). The major-

ity of significantly modulate neurons had “monotonic” modulation profiles, with their maxi-

mum burst rates in the 10th percentile of pupil size. (C3) For each dLGN neuron in the light

(Fig 1C1) and dark (S1C1 Fig), the spike count Fano factor (spike count variance/mean) in

each pupil size bin was computed, and the mean across pupil size was taken. The Fano factor is

>1 in both the light (median Fano factor = 1.95, Wilcoxon rank-sum test for mean Fano factor

>1: W = 1.2×104, p = 5.2×10−26, N = 156 neurons) and dark (median Fano factor = 1.38, mean

Fano factor > 1: W = 4.4×103, p = 6.4×10−16, N = 94 neurons). (D1) Joint phase distributions

for the CPDs from the recording in Fig 1B, illustrating the results of our statistical test for

phase coupling between CPDs (see Materials and methods). Magenta outlines: CPD pairs

where the distribution as a whole showed that the CPDs were coupled (p� 0.05). White out-

lines: regions in the joint phase space where coupling might have occurred. (D2) Phase cou-

pling z-scores quantifying the amount of coupling occurring between 2 simultaneously

recorded CPDs from gray screen and sparse noise recordings. Top: CPD pairs without signifi-

cant coupling (77.0%, 354/460 CPD pairs). Bottom: CPD pairs with significant phase coupling

(23.0%, 106/460 CPD pairs). The majority of CPD pairs did not have coupling, suggesting that

they represent independent aspects of pupil dynamics. Those that had coupling tended to be

similar in temporal scale (i.e., were close to the diagonal).

(TIFF)

S2 Fig. Firing rate distributions, auto- and cross-correlograms of tonic spiking and burst-

ing. (A1) Distribution of firing rates (black) for all neurons recorded in spontaneous or sparse

noise sessions (mean = 4.49 spk/s, N = 156). Blue: The firing rate distribution considering only

tonic spikes (mean = 4.11 spk/s), showing that overall firing rates were primarily determined

by tonic spiking. Neurons with a firing rate <0.01 spk/s were excluded from all analyses. (A2)

Distribution of burst ratios (number of spikes assigned to a burst/total number of spikes,

median = 3.0%). Bursts were detected in 92.9% of neurons (145/156). (B1) Mean auto-correlo-

gram of tonic spiking (mean ± SEM). The dashed line at 300 ms indicates the bin-width used

to generate shuffled spike trains used to test phase coupling significance (see Materials and

methods). (B2) Mean auto-correlogram of bursting (mean ± SEM). Note that the peaks are

spaced apart by approximately 200 ms, indicating that approximately 5 Hz rhythmic bursting

was present (see also Nestvogel and colleagues). (C) Mean burst cross-correlogram
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(mean ± SEM) for all simultaneously recorded pairs of neurons (N = 1,185 pairs). The peaks at

zero and approximately 200 ms indicate that neurons tend to burst synchronously and rhyth-

mically.

(TIFF)

S3 Fig. Coupling of spikes to CPDs in darkness and detailed characterization of CPD pref-

erences. (A) Phase coupling analysis relating dLGN spiking to CPDs for recordings performed

in darkness. (A1) Preferred coupling phase of tonic spikes (blue) and bursts (red) for all neu-

ron-CPD pairs with significant coupling. Significant tonic spike coupling was observed in

96.8% of neurons (91/94; mean = 3.4 CPDs per neuron) and burst coupling in 64.8% of neu-

rons (35/54; mean = 1.9 CPDs per neuron). (A2) Distribution of the preferred phase differ-

ences between tonic spiking and bursting for neuron-CPD pairs with significant coupling of

both spike types (mean = 2.5; N = 88 neuron-CPD pairs; V-test for non-uniformity and a

mean of π: V = 25.8, p = 5.1×10−5; grid lines indicate proportion of 0.25). While the mean

phase difference is similar to Fig 2D (dashed gray line), we also note that in darkness a small

proportion of neurons appear to have a spiking pattern where tonic spikes immediately follow

bursts without a phase delay (Δ phase preference ~2π). (A3) Coupling strengths (solid lines:

median, dashed lines: bootstrapped SE of the median) measured in darkness (bold lines) or in

an illuminated environment (faded lines; Fig 2E) for tonic spiking (dark median = 0.0058,

N = 321 neuron-CPD pairs vs. illuminated median = 0.0081, N = 682 neuron-CPD pairs;

Mann–Whitney U test: U = 1.2×105, p = 2.9×10−3) and bursting (dark median = 0.0386,

N = 100 neuron-CPD pairs vs. illuminated median = 0.0528, N = 320 neuron-CPD pairs;

Mann–Whitney U test: U = 1.8×104, p = 0.05). (B) Phase coupling analysis performed on the

same recordings as in Fig 2, but excluding spikes that occurred during periods of phase cou-

pling between CPDs (S1D Fig; see Materials and methods). (B1) Preferred coupling phase of

tonic spikes (blue) and bursts (red) for all neuron-CPD pairs with significant coupling. Signifi-

cant tonic spike coupling was observed in 98.6% of neurons (146/148; mean = 3.8 CPDs per

neuron) and burst coupling in 74.2% of neurons (89/120; mean = 2.1 CPDs per neuron). (B2)

Distribution of the preferred phase differences between tonic spiking and bursting for neuron-

CPD pairs with significant coupling of both spike types (mean = 2.7; N = 203 neuron-CPD

pairs; V-test for non-uniformity and a mean of π: V = 109.1, p< 0.001; grid lines indicate pro-

portion of 0.25). (B3) Coupling strengths (median ± bootstrapped SE) measured after removal

of periods of phase coupling between CPDs (bold lines) or over the whole recording (faded

lines; Fig 2E) for tonic spiking (no coupling median = 0.0089, N = 563 neuron-CPD pairs vs.

overall median = 0.0081, N = 682 neuron-CPD pairs; Mann–Whitney U test: U = 1.9×105,

p = 0.34) and bursting (no coupling median = 0.0583, N = 250 neuron-CPD pairs vs. overall

median = 0.0528, N = 320 neuron-CPD pairs; Mann–Whitney U test: U = 3.9×104, p = 0.56).

(C1) For each recording session, the mean preferred timescale across neurons plotted against

the frequency of behavioral state switches (1/mean duration of locomotion and quiescence

periods). The correlation (Pearson’s R = 0.71, p = 4.3×10−3, N = 14 recording sessions) indi-

cates that part of variability in timescale preferences between recordings (Fig 3G) is related to

differences in behavior. (C2) Proximity of the CPDs with the strongest and second strongest

coupling for tonic spikes (blue) and bursts (red), a value of 1 indicates that the CPD with the

second strongest coupling is adjacent in characteristic timescale to the strongest. These results

suggest that although neurons may be modulated at multiple timescales, the range of temporal

scales with strong modulation is limited. (D) Preferred timescale and phase tend to be stable

across data sub-samples (blue: tonic spikes, red: bursts). The phase coupling of individual neu-

rons was compared across each of 2 interleaved partitions of the data (see Materials and meth-

ods). The change in the CPD to which a neuron is most strongly coupled is shown in (D1) for
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all neurons, 0 indicates that the strongest CPD remained unchanged, 1 indicates that the stron-

gest CPD shifted to a CPD adjacent in characteristic timescale. The overwhelming majority of

neurons either retain the same preferred CPD or switch to the next closest timescale. The

change in preferred phase for each neuron-CPD pair is shown in (D2) for pairs in which the

coupling was significant in both subsamples (colored distribution) and in which coupling did

not reach significance in one or both of the subsamples (gray distributions). For both tonic

spikes and bursts, the change in phase preference was 90˚ for >90% of neurons. (E) Propor-

tion of neurons that shift (faded sections) or maintain (bold sections) their preferred coupling

timescales after controlling for pupil size (Fig 3), split by the profile of modulation by pupil

size (Monotonic: neurons with peak rate in the top decile for tonic spiking, or bottom decile

for bursting vs. Other: all other neurons with significant modulation across pupil sizes vs.

None: neurons with no modulation across pupil sizes; see Fig 1C). For tonic spikes (top), there

was no significant difference between groups (mono = 37/63 vs. other = 43/65 vs. none = 6/11;

Chi-squared test: X2 = 1.0, p = 0.60). Meanwhile, neurons with monotonic burst modulation

by pupil size (in contrast to tonic spiking, this class constituted the majority of neurons for

bursting) were significantly more likely to switch preferred timescales (bottom; mono = 34/46

vs. other = 7/13 vs. none = 5/16; Chi-squared test: X2 = 9.5, p = 8.7×10−3).

(TIFF)

S4 Fig. Spiking activity and pupil dynamics are correlated with locomotion speed. (A1) Fir-

ing rate responses to the offset of locomotion bouts (mean ± SEM, relative to the baseline from

−5 to −3 s and min-max normalized for each neuron) for tonic spiking (blue; N = 111/121 neu-

rons with significant tonic spiking modulation) and bursting (red; N = 98/121 neurons with

significant bursting modulation). Vertical lines denote the period surrounding the offset of

locomotion bouts during which the mean firing rate deviates from baseline (−1 s to 4 s), and

therefore spiking activity during this transition period was excluded for the analysis in Fig 4A,

in addition to all activity during locomotion bouts. (A2) Same as (A1) but for the onset of a

locomotion bout (N = 108/121 neurons with significant tonic spiking modulation; N = 96/121

neurons with significant bursting modulation). Vertical lines denote the transition period (−2

s to 2 s) surrounding the onset of a bout from which spiking activity was excluded for the anal-

ysis in Fig 4B, in addition to all activity during quiescence. (A3) Median burst ratio (number

of burst spikes/total number of spikes, error bars: bootstrapped SE of the median) across quies-

cence (gray, excluding 2 s prior to and following locomotion bouts) and locomotion (green,

split for the first 2 s of bouts, the middle portion of bouts, and the final 2 s of bouts) showing

burst spikes are less prevalent, but not absent, during locomotion (Friedman chi-squared test:

Q = 22.0, p = 6.7×10−5). (B) Left: Mean cross-correlation between CPDs and locomotion

speed, grouped by the timescale of the CPD (black dots: location of the peak correlation for

each CPD with a significant correlation; gray dots: location of the peak correlation for each

component without a significant correlation). Correlation significance was determined by

comparing the maximum value of the cross-correlation to a null-distribution obtained by cor-

relating the CPD with locomotion speed traces taken from different recording sessions (see

Materials and methods). To eliminate nonsense correlations, we only considered the cross-

correlation significant if the peak was found at lags shorter than the mean period of each CPD.

Right: Proportion of CPDs in each timescale bin with a significant correlation to locomotion

speed (significant correlation in 55.3% of CPDs, 52/94). (C) Same as (B), but only considering

the CPD and locomotion speed within locomotion bouts (significant correlation in 64.9% of

CPDs, 61/94).

(TIFF)
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S5 Fig. Saccades are linked to pupil dynamics and trigger changes in dLGN activity. (A)

Example eye position (top) and pupil size (bottom) traces. Detected saccades are marked by

the dashed lines. (B) This coupling of saccades to pupil dynamics was verified using the same

phase coupling analysis as in Fig 2, relating saccades to each of the CPD. Shown here are the

preferred phases at which saccades occur, for CPDs across various timescales (significant sac-

cade coupling to at least 1 CPD was observed in 15/15 recording sessions). Across all time-

scales, saccades tend to occur during pupil dilations, similar to tonic spikes (Fig 2C). (C1)

Firing rate responses to saccades (mean ± SEM, relative to the baseline from −5 to −3 s and

min-max normalized for each neuron) for tonic spiking (blue; N = 118/121 neurons with sig-

nificant tonic spiking modulation) and bursting (red; N = 88/121 neurons with significant

bursting modulation). Vertical lines denote the period surrounding saccades during which the

mean firing rate deviates from baseline (−2 s to 2 s); therefore, spiking activity during this tran-

sition period was excluded for the analysis in Fig 4C. (C2) Neurons in the dLGN have diverse

saccade-triggered tonic spiking responses. Clustering the normalized peri-saccadic responses

(see Materials and methods) revealed at least 2 distinct response types, in addition to a mini-

mally responsive/mixed cluster (left). The first responsive cluster (middle) had a transient

increase in firing tightly locked to saccade onsets. The second responsive cluster (right) was

characterized by gradually increased firing rates prior to saccade onset, with a brief suppres-

sion immediately following saccade onset, before returning to a sustained facilitation. (C3)

Despite the diversity in responses, the peri-saccadic period (−2 to 2 s) was characterized by an

overall increase in tonic spiking rates. The modulation was quantified by taking the area under

the normalized saccadic response curve in a window spanning −2 to 2 s for tonic spiking

(median = 0.2; Wilcoxon rank-sum test: W = 5.4×102, p = 1.6×10−15, N = 118) and bursting

(median = −0.06; Wilcoxon rank-sum test: W = 1.4×103, p = 6.2×10−3, N = 88). (D) Pearson

correlation between CPD coupling strengths and saccadic modulation strengths for each time-

scale (p-value denoted by asterisks, * for p� 0.05, ** for p� 0.01, *** for p� 0.001). The corre-

lation was not significant for the majority of timescales, suggesting that the coupling between

tonic spiking and pupil dynamics was independent from the rapid peri-saccadic changes in fir-

ing rate observed in (C).

(TIFF)

S6 Fig. CPD phase can be decoded from spiking activity during stimulus viewing. (A) Dis-

tributions of CPD phase decoding accuracy using tonic spiking (N = 273 neuron-CPD pairs;

dashed line: chance-level performance). For each neuron with significant tonic spike-CPD

coupling, a support-vector classifier was trained to select between 2 phase bins, one of which

was centered around the preferred phase of tonic spike coupling, the other was centered 180˚

opposite. Decoding accuracy was cross-validated using 5 training-test splits. The distribution

of decoding accuracy was significantly greater than chance for all timescales (Wilcoxon rank-

sum test for each timescale, p-value denoted by asterisks, * for p� 0.05, ** for p� 0.01, *** for

p� 0.001). (B) Same as (A), but for CPD phase decoding using bursting. For each neuron

with significant burst-CPD coupling, a support-vector classifier was trained using bursting

activity, and the phase bins were centered around the preferred phase of bursting.

(TIFF)
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ABSTRACT

In the dorsolateral geniculate nucleus (dLGN) of the thalamus, stimulus-driven signals are combined with modulatory inputs
such as corticothalamic (CT) feedback and behavioural state. How these shape dLGN activity remains an open question.
We recorded extracellular responses in dLGN of awake mice to a movie stimulus, while photosuppressing CT feedback, and
tracking locomotion and pupil size. To assess the relative impact of stimulus and modulatory inputs, we fit single neuron
responses with generalized linear models. While including CT feedback and behavioural state as predictors significantly
improved the model’s overall performance, the improvement was especially pronounced for a subpopulation of neurons poorly
responsive to the movie stimulus. In addition, the observed impact of CT feedback was faster and more prevalent in the
absence of a patterned visual stimulus. Finally, for neurons that were sensitive to CT feedback, visual stimuli could be more
easily discriminated based on spiking activity when CT feedback was suppressed. Together, these results show that effects of
modulatory inputs in dLGN depend on visual responsiveness and stimulus type.

Introduction
Visual information is processed through a hierarchy of brain areas, which are connected by feedforward and feedback projections.
Early in this hierarchy is the dorsolateral geniculate nucleus (dLGN) of the thalamus, a central node for visual information en
route from the retina to the primary visual cortex (V1) (1,2). The dLGN has long been recognized as one of the first visual stages
that combines stimulus-driven inputs with additional modulatory inputs (3), such as signals arising from L6 cortico-thalamic
(CT) feedback (4, 5, 6, 7, 8), and signals from the brainstem carrying information related to behavioural state (9, 10, 11, 12) and
arousal (10, 13, 14, 3). Since these factors have often been investigated in separate studies, their combined effects on dLGN
responses remain poorly understood. Overall, we lack a quantitative understanding of the relative strengths of these modulatory
effects on dLGN responses during wakefulness and how they might interact and depend on stimulus-driven input.

On the one hand, it has been firmly established that, even during wakefulness, dLGN responses are modulated according
to the animal’s internal (15, 9) and overt behavioural state (16, 15, 17). For instance, in the mouse, locomotion- (11, 18) or
pupil-indexed arousal (10, 9, 14, 19, 13) are associated with overall enhancements of firing rates in dLGN, which seem to
preferentially affect specific neuronal populations depending on their spatio-temporal feature selectivity (18, 19). Similar to
related findings in the somatosensory system (20), the increase in dLGN firing rates seems to be a necessary condition for the
sustained depolarisation of primary visual cortex during active behaviours (9).

On the other hand, little consensus has been achieved for dLGN modulations by CT feedback, where a plethora of previous
studies have together highlighted its diverse and potentially stimulus-dependent effects. For instance, given that CT feedback can
sharpen spatial dLGN RFs and increase contextual effects (21, 22, 23, 6, 24, 7), CT feedback might enhance or suppress overall
firing rates, depending on the size, feature-selectivity and retinotopic position of dLGN neurons (6, 7, 22). The combination of
enhancing and suppressing effects of CT feedback are likely mediated by a differential engagement of both direct excitatory
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and indirect inhibitory pathways, whose balance will depend on the stimulus selectivity, connectivity and intrinsic properties of
corticothalamic neurons in L6 V1, neurons in the thalamic reticular nucleus (TRN) and dLGN (8, 25).

Generalized linear models (GLMs) provide an established framework for statistical analysis of neural responses, that
can help to disentangle the combined impact of multiple stimulus-driven and modulatory influences and investigate their
properties (26, 27, 28). While GLMs are relatively simple phenomenological models, they offer the advantage of being
interpretable: for instance, GLM kernels learned for the visual stimulus approximate the integration by the spatio-temporal
receptive field (RF), and kernels learned for any additional inputs represent spike-induced gain adjustments (29, 27). First
applied in the retina (30, 27), GLMs have since then been used in numerous studies to separate influences of the visual
stimulus and other variables, like spike history, interneuronal interaction effects, task-engagement, learning, reward prediction,
task-related motor action, locomotion, and arousal (31, 32, 33, 34, 35, 36, 37). One recent extension of classical GLMs is
to estimate RFs by choosing a set of cubic spline basis functions in order to encode smoothness, decrease the number of
parameters, and thus be more data efficient (38).

Here, we investigated how feedforward, stimulus-driven signals, feedback signals, and behavioural state jointly influence
dLGN activity in awake, head-fixed mice viewing a rich movie stimulus. We simultaneously recorded extracellular dLGN
activity, mouse run speed and pupil size, while photosuppressing CT feedback. We then fitted a spline-GLM model containing
kernels for the spatio-temporal RF, CT feedback and behaviour to predict responses of dLGN neurons. The learned kernels
were biologically plausible, including diverse spatio-temporal RFs, as well as kernels for behaviour and CT feedback. We
found that our model could successfully capture response components derived from the movie input, yielding RF kernels which
were generally aligned with response features obtained from simple luminance steps. Including modulatory inputs overall
improved the prediction of dLGN responses; the improvements, however, were most prominent for a subpopulation of neurons
that were poorly predicted by the movie stimulus. Focusing on effects of CT feedback, we found that these effects depended
on stimulus type in both the model and the data, being stronger, more prevalent and faster during the absence of a patterned
visual stimulus. Finally, we used the spline-GLM for in silico experiments isolating the impact of CT feedback suppression,
and demonstrate that stimulus discrimination for CT feedback-modulated neurons was enhanced. We conclude that effects of
modulatory inputs in dLGN depend on visual responsiveness and stimulus type.

Results
dLGN responses to movies are modulated by behavioural variables and CT feedback suppression
To investigate how CT feedback, locomotion and arousal modulate thalamic responses, we recorded in vivo extracellular
dLGN activity in response to a rich movie stimulus in four head-fixed mice together with running speed and pupil size, while
randomly photo-suppressing CT feedback (Figure 1a). For photo-suppression of CT feedback, we conditionally expressed the
soma-targeting, chloride-conducting channelrhodopsin stGtACR2-RFP (39) in L6 CT pyramidal cells, by injecting a small
volume of Cre-dependent AAV into V1 of Ntsr1-Cre mice (40). The localisation of stGtACR2 to L6 CT somata and the accurate
placement of electrodes were confirmed through post-mortem histological analyses (Figure 1b). During electrophysiological
recordings, the mouse viewed a rich movie stimulus that consisted of a sequence of black-and-white clips from various feature
films (‘movies’, Figure 1c, top). Here, photo-suppression occurred with 50% probability in each 1 second time bin. We also
measured the mouse’s run speed and pupil size to infer the animal’s changing behavioural state.

To develop initial insights into the modulations of dLGN responses by CT feedback and the other potentially modulating
inputs, we aligned movie responses to onsets of photo-suppression, running, and pupil dilation. We found that certain neurons
responded to the onset of CT feedback suppression with a substantial reduction in firing rate (Figure 1d,e, OFF-ON transitions
in blue), while others showed milder effects or no modulation at all (Figure 1f, left). Despite the relatively small effect size,
the overall reduction of dLGN firing rates during CT feedback suppression was genuine, as none of the recorded neurons
in a control mouse without opsin expression showed systematic modulations at light onset (Figure S1a, b). Furthermore,
neural responses aligned to time points in which the light was not switched on (i.e., OFF-OFF transitions in grey, Figure 1d,
e) did not show any systematic modulation (Figure S1c). Finally, neurons with stronger CT feedback effects were closer to
each other (Figure S2), as predicted by the topography of the corticothalamic system (41, 7, 42, 43). Consistent with previous
findings (11, 18, 10, 44), we also found that during our movie stimulus, firing rates could gradually increase around transitions
from sitting to running (Figure S3a), and during pupil dilation (Figure S3b).

These modulations of dLGN responses were also observed across the population of recorded neurons. Specifically, dLGN
firing rates during the time of CT feedback suppression compared to periods without CT feedback suppression were reduced
(control vs. CT FB supp. mean: 12.6 vs. 11.5 Hz, p = 1.24×10−2, paired Wilcoxon signed-rank test; Figure 1f, left), while
time windows with running and dilated pupil were associated with an overall increase in average firing rates (sit vs. run mean:
11.0 vs. 12.8 Hz, p = 8.31×10−16, Figure 1f, middle; small vs. large pupil mean: 11.0 vs. 13.0 Hz, p = 4.98×10−7, paired
Wilcoxon signed-rank test; Figure 1f, right). Although these modulations affected the recorded dLGN population on average,
we also noticed considerable neuron-to-neuron variability. Indeed, for all three modulatory inputs, we found neurons that
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Figure 1 | CT feedback and behaviour modulates dLGN responses to movies (a) Schematic of the recording setup and photo-
suppression of V1 L6 CT pyramidal neurons in Ntsr1-Cre mice with Cre-dependent AAV-stGtACR2-RFP. (b) Histology. Left: Coronal
section near the V1 injection site, with stGtACR2-RFP expression (red) in Ntsr1+ somata. Blue: DAPI; scale bar: 1 mm. Inset: Magnification
of area marked by dotted rectangle. Scale bar: 50 µm. Right: Coronal section of dLGN recording sites, with electrode tracks for two
consecutive recording sessions (arrows 1 and 2) marked with DiI (yellow). Scale bar: 1 mm. Dotted line: dLGN contour. Numbers on top:
position relative to Bregma in mm. (c) Snippet of an example dLGN recording. Top to bottom: example frames of the movie stimulus,
photo-suppression pulse train (blue), running speed (green), pupil area (yellow), and time-varying firing rate (sorted by first principal
component) of simultaneously recorded dLGN neurons. (d) Raster plot of responses of an example dLGN neuron, time locked to the onset of
CT feedback photo-suppression (blue, OFF-ON transition) and to control periods without photosuppression (grey, OFF-OFF transition). Note
that the example neuron illustrates the observed effect of CT feedback photo-suppression, but the size of the effect is not representative of that
observed in the population of recorded dLGN neurons. (e) Corresponding PSTHs (solid line: average across trials, shaded area: standard
error of the mean). (f) Effects of CT feedback photo-suppression (left), locomotion (middle), and pupil size (right) on dLGN mean firing rates.
Example neuron from (d, e) marked with ×. p values denote results of a Wilcoxon signed-rank test, n = 122 neurons. Insets: Histogram of
firing rate fold-change relative to control (∆ FR log2-ratio).

exhibited substantial variations in firing rates across the different conditions (Figure 1f, insets).
So far, it seems that our movie stimulus elicited various responses in dLGN, which were modulated by multiple additional

inputs, this simple analysis on the mean firing rates does not take into account potential correlations between the different
inputs. Consistent with previous studies that have shown that pupil size and running index partially overlapping behavioural
states (45, 46, 9), we found a positive correlation between pupil diameter and running speed (r = 0.18±0.17, mean ± SD;
p < 0.001 for 7/10 experiments, permutation test; Figure S3c). Moreover, we found pupil size to also be influenced by stimulus
brightness, where lower average intensity of movie frames was associated with larger pupil diameters (r = −0.41± 0.15,
mean ± SD; p < 0.001 for 10/10 experiments, permutation test; Figure S3c). Pupil diameter, in turn, is known, to influence
responses in the early visual system (47, 48).

A spline-based GLM captures dLGN spatio-temporal RFs and their modulation by CT feedback and be-
haviour
To disentangle how the various potential influences shape the responses of dLGN neurons, we used a generalized linear model
(GLM) (27) that predicted the neuron’s firing rate based on a combination of stimulus-driven and modulatory inputs (running
speed, pupil size, and CT feedback suppression) (Figure 2). The model consisted of one linear kernel for each input, followed
by a softplus function that accounted for response nonlinearities (Figure 2a). The shape of the stimulus kernel captured the
neuron’s spatio-temporal RF, while the shapes of the modulatory kernels captured modulations of the neuron’s firing. We
employed a GLM with a spline basis (38) in order to efficiently generate smooth kernels, rather than operating directly on
the pixels of the visual stimulus or the discrete time bins of the additional inputs (Figure S6a–d). The GLM allowed us
to effectively capture the temporal correlations between the inputs (see also above, Figure S3c), and the spatio-temporal
correlations in pixel intensities in naturalistic stimuli (49, 50) (Figure S4a).

We trained and evaluated the spline-GLM on the recorded data set as follows: Given the known diversity of mouse dLGN
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feature selectivity (51, 52), we performed a separate hyperparameter search for each neuron. Hyperparameters included the
number of spline bases for the stimulus and modulatory inputs and the weight for L1 regularisation (see Methods). All GLM
fits in this study were cross-validated. The models analysed here were configured with the selected optimal hyperparameters
and the reported performance is based on the held-out test set.

After model fitting, we assessed the predictive power of the learned kernel shapes using a session-based permutation test
(Figure 2b). To keep the temporal statistics of the time series data intact, we provided the model with input data recorded
on a different day (for the model inputs ‘stimulus’, ‘running’, ‘pupil size’) or with synthetic inputs generated with the same
statistics as the original (for the ‘CT feedback suppression’ input). Subsequently, we compared for each input the actual
model performance (Pearson’s r) against a distribution of model performances with that specific input permuted. Inputs were
considered significant if the actual performance differed from the permuted performance with p≤ 0.05.

We observed a rich diversity of learned GLM kernels for the dLGN neurons’ spatio-temporal RFs, the effects of CT feedback,
and the behavioural variables. To begin with, we considered three example neurons (Figure 2c). Of these, the first had a
negative spatial and a transient temporal stimulus response kernel, which contributed significantly to the model’s performance
(p = 3.51×10−2, permutation test; Figure 2c1, top, same neuron as in Figure 1d,e). In addition, it had a significant negative
kernel for CT feedback suppression (p = 2.67× 10−4, permutation test; Figure 2c2, c3, top). In contrast, the running and
pupil size kernels had minimal impact on this neuron’s model predictions (p > 0.05, permutation test). The second example
neuron exhibited a positive spatial RF with an antagonistic surround (p = 2.31×10−3, permutation test; Figure 2c1, middle).
While both behavioural kernels seemed to contribute (Figure 2c2, middle), only the kernel for pupil size reached significance
in the permutation test (p = 1.13× 10−2). This neuron was also not influenced by CT feedback suppression (p > 0.05;
Figure 2c3, middle). Finally, example neuron 3 was primarily visually driven, with a positive RF centre and a more sustained
temporal response kernel (p = 2.31×10−3, , permutation test; Figure 2c1, bottom). It also had a significant negative kernel
for CT feedback suppression (p = 2.67×10−4, permutation test; Figure 2c3, bottom). The other two modulatory kernels had
only negligible influences (permutation test, p > 0.05; Figure 2c3, bottom).

The diversity observed in the three example neurons was also evident in the model fits across the population of recorded
dLGN neurons, where we obtained a variety of spatio-temporal RFs, and combinations of modulatory influences. Assessing the
learned spatio-temporal kernels, we found that ∼ 70% of the recorded dLGN neurons were visually responsive to our movie
stimulus (85/122 neurons; permutation test visual stimulus, p≤ 0.05; Figure S6e). For many of these neurons (representative
examples in Figure 2d), the spline-GLM recovered spatial RF properties that were consistent with previous descriptions of
mouse dLGN RFs obtained using artificial stimuli (51, 54, 55) and in many cases resembled those obtained from conventional
sparse noise experiments (Figure S4b,c). These properties included various RF locations, RFs with either positive (66%, 56/85
neurons) or negative polarity kernels (34%, 29/85 neurons), a broad range of RF surround strengths (Figure S4d,f), and various
RF centre sizes (Figure S4e). Furthermore, the GLM captured the well-known diversity of temporal response properties of
dLGN neurons (56, 51), with some neurons showing more sustained, and others showing more transient temporal kernels
(Figure 2e). Importantly, both the spatial and temporal GLM kernels matched well with the expected polarity and the dynamics
obtained from clustering responses into sustained-OFF, Sustained-ON, and Transient groups during full-field luminance steps
(Figure S5). This correspondence further underscores our model’s capacity to capture meaningful spatio-temporal RF properties
and essential visual response characteristics of the recorded dLGN neurons.

We next assessed the learned kernels for the modulatory inputs. According to the permutation test, approximately 10%
(12/122 neurons) of the recorded dLGN neurons were affected by CT feedback suppression, 11% (13/122 neurons) by running,
and 19% (23/122 neurons) by pupil size (Figure 2f–h, Figure S6f–h). The overall direction of modulation for the significant
kernels aligned with the modulation indices obtained directly from the data (Figure 1f): for the significantly modulated neurons,
CT feedback suppression kernels were predominantly negative (Figure 2f), while running speed (Figure 2g) and pupil size
(Figure 2h) kernels were predominantly positive. These results indicate that both CT feedback and behavioural state variables
during natural movie viewing contribute to an overall increase of dLGN responses. Beyond the general sign of modulation,
the learned model kernels also offered insights into the temporal dynamics of the modulatory influences: consistent with the
well-known slow impact of pupil indexed arousal on responses in the visual system (46, 45), we found that kernels for pupil
size had a more sustained profile compared to kernels for running modulations (time to half max kernel running vs. pupil size:
106.3 ms vs. 146.3 ms, Wilcoxon signed-rank test: p = 7.51×10−3, Figure S6p). This ability to learn differential kernels and
a close correspondence between data-driven modulation indices and the impact of the modulatory inputs for model performance
(Figure S7d–g) demonstrates that our GLM model was successful in extracting the impact of the various modulatory inputs.

Despite the spline-GLM’s overall success in predicting dLGN responses and learning biologically plausible kernels, it
faced challenges in capturing fast modulations and response peaks, as typical also for traditional GLMs (26, 57). We also
observed increased variance at the left side of some kernels particularly evident for running modulated neurons (Figure 2e–h
and Figure S6i–l). This could potentially stem from typical boundary artefacts associated with splines (Figure S6a–d).
Nevertheless, despite these challenges, incorporating running information proved beneficial, as confirmed by the permutation
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Figure 2 | Spline-based GLM captured the RF, the influence of CT feedback and the impact of behaviour on responses
of dLGN neurons. (a) Schematics of the spline-GLM model architecture. Firing rate in dLGN was predicted as a combination of kernel
outputs summed at the linear stage and then passed through a softplus nonlinearity. Each modelled neuron had a kernel for the stimulus and
kernels for the three modulatory inputs: run speed (green), pupil size (orange), and CT feedback suppression (blue). (b) Schematics of the
permutation test (53) to evaluate the significance of the learned kernels. Model performance was evaluated by comparing the actual correlation
(Pearson r) between predicted and observed firing rates to correlations when one of the inputs was taken from an unrelated experimental
session (for movie, running, and pupil size) or randomly generated with the same statistics (for CT feedback suppression). (c) Three dLGN
example neurons, their learned kernels, firing rate predictions, and outcomes of the permutation test (neuron 1 is the same example neuron
as in Figure 1d-e). (c1) Spatial and temporal RF components separated by singular value decomposition (SVD, see Methods), along with
kernels for the modulatory inputs. (c2) Observed (gray) versus predicted (black) firing rates during 80 s of movie presentation. (c3) Actual
model performance (Pearson’s r, red dashed line) and performance for permuted stimulus (gray), CT feedback suppression (blue), running
(green), and pupil size (orange) inputs. Kernels that contribute significantly to the model’s performance are marked with←. (d) Spatial RFs
of example neurons with significant stimulus kernels. Gray: outline of common visual space (azimuth: -35–110 deg; elevation: -35–50 deg);
Solid lines: monitor border. (e) Temporal RFs (SVD component of the stimulus kernel) in the recorded dLGN population, sorted by their
area under the curve. (f–h) Modulatory kernels in the recorded dLGN population, sorted by their area under the curve, for CT feedback
suppression (f), running (g), and pupil size (h). Horizontal bars, side: Neurons with significant kernels based on the permutation test. Panels
(e–h) show data from all n = 122 neurons.

5/31

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted July 3, 2024. ; https://doi.org/10.1101/2023.10.18.562960doi: bioRxiv preprint 

87



test (Figure S6g). Reassuringly, these running modulated neurons showed reduced response reliability in repeated stimulus
trials (Figure S6m,n) as their activity was substantially influenced by locomotion state. In line with a previous study (58),
these neurons also had overall low firing rates (Figure S6o).

Is the contribution of modulatory inputs to dLGN neurons’ activity consistent and strong enough to improve the prediction
of dLGN responses? While dLGN has long been known to exhibit state-dependent changes in firing (15, 11, 59, 18) and to
receive extensive feedback from cortex (60, 61), the impact of these influences, in particular during viewing of naturalistic
stimuli, is not well understood. Thus, to quantitatively assess the contributions of CT feedback suppression and behavioural
variables, we compared the performance between our model including all inputs and reduced variants of the model with
only a subset of inputs (Figure 3a,b). Starting with the ‘Stimulus only’ model that only considered the stimulus as input,
we found that incorporating one or more modulatory inputs increased the correlation between observed and predicted dLGN
responses (ANOVA: p = 0.022; Figure 3a). In particular, adding pupil size or a combination of two or more predictors showed
a significantly better performance than the ‘Stimulus only’ model (‘Stimulus only’ vs. ‘Stimulus + Pupil size’: 0.186 vs. 0.235,
Wilcoxon signed-rank test: Bonferroni corrected p = 3.39×10−6; ‘Stimulus only’ vs. ‘Full model’: 0.186 vs. 0.249, Wilcoxon
signed-rank test: Bonferroni corrected p = 2.08×10−7; Figure 3a). Note that even in the full model we still observed neurons
with suboptimal predictions, maybe due to low response reliability (Figure S6m,n) and sparse firing (Figure S6o).

Indeed, when we compared the prediction performance of the ’Stimulus-only’ model with the ’Full model’ (Figure 3b),
we noticed that the inclusion of the modulatory inputs did not merely shift the distribution to higher performances. Instead,
a closer examination allowed us to identify a subgroup of neurons whose responses could be predicted only poorly by the
visual stimulus, but which showed substantial improvements in their response prediction with the inclusion of modulatory
factors (Figure 3c,d; we call them the ’Modulation-sensitive’ group; Figure S7a–f). In contrast, another subgroup showed no
improvement when we added the modulatory inputs (Figure 3c,d; ’Stimulus-explained’ group). To test the extent to which
this reflected a ceiling effect in explainable variance, we fitted models that had only the modulatory factor as inputs but not
the stimulus (’CT FB supp.’ + ’Running’ + ’Pupil size’; ’Modulation only’ models; Figure 3f). For these models, neurons
substantially affected by modulatory inputs still performed well (Figure 3f, ’Modulation-sensitive’, dark dots), whereas those
well-explained by the visual stimulus exhibited lower performance, although not zero (Figure 3f, ’Stimulus-explained’, light
grey dots). This indicates that even in the ’Stimulus-explained’ group, modulatory inputs might have some, albeit generally
weak effect that was obscured in the full model; alternatively, some modulatory factors might contain stimulus information, in
particular pupil size, which is known to be related not only to arousal, but also to stimulus brightness (Figure S3c). Taken
together, our analysis of model performance suggests that dLGN neurons are explained by the visual stimulus, behaviour and
CT feedback, albeit with considerable heterogeneity.

CT feedback is enhanced in the absence of a patterned visual stimulus
Our model showed only a relatively small subset of dLGN neurons with significant effects of CT feedback. Could the reason
for this be that the responses elicited by the rich naturalistic movie stimulus might have dominated dLGN activity relative to
the effects of CT feedback? We thus predicted that CT feedback effects might be stronger without patterned stimulus input
(Figure 4a).

To test this prediction, we expanded our analyses to the period of blank screen stimulation flanking the movie presentation,
and compared the effects of CT feedback suppression in the recorded data and in models fit separately to responses during movies
vs. blank periods (Figure 4b). Consistent with our prediction, we indeed observed that CT feedback suppression reduced the
firing rates of individual example neurons more strongly during blanks (MICT FB supp.: -0.65, Figure 4c1) compared to movies
(MICT FB supp.: -0.45, Figure 4c2). This observation held true across the recorded dLGN population (mean MICT FB supp. -0.09
vs. -0.03; p = 2.5×10−6, Wilcoxon signed-rank test; Figure 4d). Furthermore, during blank periods, more dLGN neurons
were affected by the suppression of CT feedback (45% vs. 18% with |MICT FB supp.| ≥ 0.1; Figure 4j). The stronger effect of
CT feedback suppression could not be explained by the difference in overall firing rate between the two stimulus conditions
(Figure S8a-b), nor was it related to the different number of optogenetic pulses (Figure S8c).

Is the stronger modulation by CT feedback suppression during blank periods vs. movies also captured by our spline-GLM
model? We indeed found that the model learned a more negative CT feedback suppression kernel for the blank condition
compared to the movie, both in the example neuron (peak amplitude -1.8 vs. -0.94; Figure 4f) as well as in the population
of neurons with a significant CT feedback suppression kernel (-0.86 vs. -0.46, p = 0.044, Mann-Whitney-U test, Figure 4g;
all neurons: -0.4 vs. -0.2, p = 5×10−8, Wilcoxon signed-rank test). To avoid potential confounds of firing rates on kernel
amplitudes (Figure S8d,e) and enable a more direct comparison to the recorded data, we used the model predictions in the two
stimulus conditions and calculated model-derived MICT FB supp., analogously to those based on the recorded data. Consistent
with our data-driven observations, we found that CT feedback suppression reduced modelled responses more strongly during the
blank periods (modelled MICT FB supp., -0.057) compared to movies (-0.017; p = 0.002, Wilcoxon signed-rank test, Figure 4h).

Inspecting the learned model kernels (Figure 4f,g) suggested that, besides amplitude, the dynamics of the CT feedback
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Figure 3 | Adding model predictors for modulatory inputs improves the performance for a subgroup of poorly visually
responsive dLGN neurons. (a) Comparison of model performance for models with different sets of inputs indicated in the table on the
left, sorted by performance. Bonferroni corrected p-values of paired Wilcoxon signed-rank test: ∗∗∗∗ p≤ 1.0×10−4; ‘ns’ non-significant.
Error bars: 95% confidence intervals. (b) Comparison of model performance on the test set (Pearson’s r) for the ‘Full model’ (black,
inputs: stimulus, CT feedback suppression, run speed, pupil size) and the ‘Stimulus only’ model (gray). Arrow heads: mean performance
(n = 122 neurons). (c) Improvement in model performance observed with adding predictors for modulatory inputs (‘Full model’−‘Stimulus
only’) for neurons grouped by the (low/medium/high) performance of the ‘Stimulus only’ model. Bonferroni corrected p-values of paired
Wilcoxon test: ∗p≤ 0.05; ∗∗∗∗ p≤ 1.0×10−4. (d) Comparison of model performances on the test set for all neurons in the ‘Stimulus
only’ model and the ‘Full model’. Darker colours indicate stronger joint modulation by CT feedback, running, and pupil size (MIJoint )
estimated directly from the data without model (see Methods). Arrows indicate the group of neurons that benefits from adding CT feedback,
running, and pupil size (’Modulation-explained’) and the group that does not improve (’Stimulus-explained’). (e) Improvement in model
performance observed with adding predictors for modulatory inputs (‘Full model’−‘Stimulus only’) and the joint modulation by CT feedback,
running, and pupil size estimated directly from the data without model (see Methods). (f) Performances of a model that considers only the
stimulus as input (‘Stimulus only’) and a model without the stimulus (’Modulation only’). Arrows indicate ’Modulation-explained’ and
’Stimulus-explained’ neurons. Darker colours indicate stronger joint modulation by CT feedback, running, and pupil size estimated directly
from the data without model. Panels (d–f) show data from all n = 122 neurons.
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Figure 4 | The effect of CT feedback is dependent on the presence or absence of the visual stimulus. (a) Schematics of
the hypothesis that the absence of a patterned visual stimulus elicits weaker stimulus-driven input to dLGN, which is in turn accompanied
by stronger CT feedback. Note that the schematics should not imply stronger L6 CT pyramidal neuron firing, but that the net effect of
CT feedback on dLGN firing is stronger in the absence of a patterned visual stimulus. (b) Schematics of fitting the spline-GLM model
separately during movies (top) vs. blank periods (bottom). (c) Effects of CT feedback suppression. (c1) Mean PSTHs time locked to onset
of photosuppression for one example dLGN neuron (same example neuron as in Figure 1d-e) during blank periods (gray screen) flanking
the movie presentation. The shaded area represents the SEM. (c2) Same as (c1), during movie presentation. Purple, blue: PSTH during
CT feedback suppression (OFF-ON transition), light grey, dark grey: PSTH during control condition (OFF-OFF transition). (d) Comparison
of MICT FB supp. during blanks vs. movies for the recorded dLGN population (number of neurons n = 122). (e) Percentage of recorded
dLGN neurons modulated by CT feedback during the two stimulus conditions. Three modulation metrics were separately considered to
count the modulated neurons. A neuron was considered modulated (1) based on data: |MICT FB supp.| from (d) ≥ 0.1, (2) based on model
predictions: |MICT FB supp.| from (h) ≥ 0.1, or (3) based on model performance: permutation test p≤ 0.05. Notably, all three modulation
metrics consistently revealed a higher proportion of neurons displaying CT feedback modulation during the blank condition compared to the
movie condition. (f) CT feedback suppression kernel for the example dLGN neuron in (c1). The model was either trained on the data from
movie presentation (dark blue) or blank periods (light blue). (g) Same for all significantly CT feedback modulated neurons (nmovie = 12,
nblank = 21). Solid lines represent the mean of the kernels and transparent surrounds represent the standard error of the mean (SEM).
(h) Comparison of MICT FB supp. for blanks vs. movies calculated from simulated data using the fitted model for the dLGN population to the
two stimuli. (i) Comparison of the Rate of Change (RoC) of model-predicted neurons’ responses to CT feedback suppression during movie
presentation vs. blank periods. (j) Same as (i), for the recorded data. Panels (h–j) show data from all 122 neurons.

suppression effects might also differ between visual stimulus conditions. Specifically, the spline-GLM learned a kernel
characterised by a faster and briefer time course for blank periods compared to movie stimulation. This observation could
be quantified by calculating the rate of change (RoC) of the neurons’ predicted and actual responses after photosuppression
(see Methods). Indeed, we found that the effect of CT feedback suppression was faster during blank periods (model-based
RoC: p = 0.004, Wilcoxon signed-rank test, Figure 4i; data-based: p = 9×10−12, Wilcoxon signed-rank test,Figure 4j). In
conclusion, the fitted spline-GLM models revealed that the observed impact of CT feedback suppression was weaker and slower
during the presence of a rich patterned visual stimulus in comparison to blank periods, suggesting that the observed effect of
CT feedback depends on the visual stimulus characteristics.

CT feedback affects stimulus decoding
Finally, we sought to better understand if and how the suppression of CT feedback affected how dLGN encoded visual
information (Figure 5). Specifically, we tested the degree to which suppression of CT feedback might affect the decoding of
movie information based on the responses of single dLGN neurons, compared to the control condition where feedback was
intact.

To address our question, we used the trained model (‘Full model’) to describe how individual dLGN neurons encode
stimulus information (Figure 5a). In this way, we were able to isolate the effects of CT feedback suppression in silico, by
keeping stimulus, running and pupil inputs intact, and only changing CT feedback suppression (setting the CT feedback
suppression either OFF (0) or ON (1)). We then performed a decoding experiment, using simulated model responses to
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Figure 5 | Two-alternative-forced-choice decoder shows
better stimulus discrimination for CT feedback modu-
lated neurons when feedback is suppressed. (a) Schemat-
ics of the decoder: the trained model was used to simulate re-
sponses with CT feedback being either on (blue) or off (black;
70 s example trace). Random 50 ms stimulus fragments (A and B)
were chosen, each with corresponding simulated responses. The
decoder’s task was to determine which stimulus was more likely
based on the observed responses. (b) Decision matrix for one
example neuron with 20 random stimulus fragments and their sim-
ulated responses. Green: correct pairing of stimulus and response;
yellow: incorrect pairing. Left: control condition; right: CT feed-
back suppressed condition. (c) Percentage of correct decisions in
the control and the CT feedback suppressed condition, same exam-
ple modelled neuron as in (b). Error bars indicate 95% confidence
intervals. (d) Decoder performance across all neurons (n = 122)
as a function of the amount of modulation by photosuppression
observed in the experiment. Dark blue: neurons with a significant
CT feedback kernel. (e) Relative decoder performance during
CT feedback suppression and control conditions, split according
to whether neurons were significantly modulated by CT feedback
suppression (dark blue) or not modulated (light blue).

discriminate between video clips in a two-alternative forced choice (2AFC) setting (30). We randomly selected 50 ms fragments
of stimulus-response-pairs from the test set that had not been used for model fitting. To discriminate between two movie clips,
we used the maximum-likelihood decoding rule from Pillow et al. (2005) (30). The decision of the 2AFC decoder was directly
derived from the model likelihood for the correct and incorrect pairing (see Methods and (30)). We considered the 2AFC
decoder to make a correct decision if the likelihood for the correct pairing was higher compared to the incorrect one. We found
that the decoder made more correct decisions in the FB suppressed condition compared to the control condition (Figure 5b,
20 representative stimulus-response pairs for one example neuron; Figure 5c, across all 100 stimulus pairs 68.34 % vs. 60.27 %,
p = 1.20×10−12, Wilcoxon rank sum test).

To quantify the discrimination performance for each neuron, we computed the log ratio of the percent of correct choices
in the FB suppressed condition and the control condition (Figure 5d), with positive log ratios indicating better decoding
performance in the CT feedback suppressed state. The observed log-ratios near zero for the majority of neurons suggest that
there was no difference in stimulus information between control conditions and CT feedback suppression (average 1.003±0.021,
mean±SD; Figure 5d). However, we found significantly higher log-ratios in neurons modulated by CT feedback compared to
non-modulated neurons (p = 5.84×10−14, skew test against null; Figure 5d, right and Figure 5e). Consequently, our model
predicts that with intact CT feedback, short duration activity of individual dLGN neurons can be less informative about the
visual stimulus.

Discussion
Here, we quantitatively characterised how dLGN responses during viewing of a naturalistic movie are influenced by the
combination of visual stimulus-related inputs, CT feedback and behavioural state. We modelled the responses of individual
dLGN neurons using a data-efficient GLM, which predicted the spatio-temporal RFs and response modulations by CT FB
suppression, the animal’s run speed, and pupil size. We found that overall model performance improved when including the
modulatory predictors, in particular for a subpopulation of dLGN neurons whose responses were poorly explained by the visual
stimulus. Guided by the model, we found that the effect of CT FB suppression depended on stimulus type, being relatively
stronger, more prevalent, and faster in the absence of a patterned visual stimulus. Finally, using Bayesian decoding, we found
that the responses of a subset of CT-feedback-sensitive dLGN neurons contained more visual information when CT feedback
was suppressed. Together, our results show that the activity of dLGN neurons is governed by a combination of stimulus-driven
and modulatory inputs and is mediated by their visual responsiveness and the stimulus type.
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Using a spline-GLM for modelling thalamic responses
Our work extends previous approaches that modelled thalamic processing of naturalistic visual stimuli (e.g., (62, 37, 36)).
In particular, our framework allowed us to test model variants with different combination of predictors, which revealed a
subpopulation of dLGN neurons whose responses were poorly predicted by the movie stimulus and more strongly affected by
the modulatory inputs. These might correspond to a previously reported set of neurons in mouse dLGN, amounting to 30–40%,
with poor or unclear visual feature selectivity (63, 56). Given that this subpopulation also contained an over-representation of
low-firing neurons, their relatively stronger modulation (see also (58)) might be indicative of a tight inhibitory / excitatory
coupling in the recorded network (64). Such tight coupling in the thalamo-cortico-thalamic network might be mechanistically
achieved through joint modulations of dLGN relay cells, and inhibitory neurons in dLGN and the thalamic reticular nucleus by
CT feedback and neuromodulation (1, 4, 7, 9).

The general success of our model is indicated by the close neuron-by-neuron correspondence between RF properties and
response types derived from the model and more traditional analyses and stimuli, and by the prominent relationship between
learned model kernels and data-driven modulation indices for CT feedback suppression, run speed and pupil size. Yet, while
our data-driven modulation indices generally matched well with the magnitudes of modulatory influences previously observed
in mouse dLGN (11, 18, 10, 7, 14), we were surprised to find only a relatively small fraction of dLGN neurons with significant
kernels for CT feedback suppression, running and pupil size. Reasons for the small fraction might be at least threefold: (1)
the conservative method for assessing significance in the model derived from session-based permutation tests (53), (2) the
continuous nature of inputs to the model rather than a split into extreme conditions for some of the modulation indices (e.g.,
locomotion slower than 0.25 cm/s was considered as sitting but only faster than 1 cm/s was considered as running (11, 18)), (3)
the direct suppression of L6 CT feedback through the light-gated chloride channel stGtACR2 (39), which might have yielded
comparatively weaker effects (see also (10, 65)) than alternative approaches recruiting powerful intracortical inhibition through
photostimulation of inhibitory V1 neurons (7, 6, 66, 10, 65, 9).

In the future, our spline-GLM could be extended by thalamic mechanisms, such as the fast adaptation of integration time
according to luminance and contrast (67, 62), accounting for the constant changes in spatial and temporal integration elicited by
dynamic natural stimuli (68). Further, by combining the model inputs, one could test for interactions, for instance to clarify the
dependence of CT feedback effects and behavioural state-related modulations as proposed by some studies (65). Incorporating
adaptive amplitudes of input and post-spike kernels (69) could differentiate tonic and burst spiking behaviours, characteristic of
thalamic neurons (70) and known to be affected by both stimulus-related (71) and modulatory inputs (72, 15, 11, 10). Finally,
alternative modelling approaches based on deep neural networks (DNNs) (73, 74, 75) promise to better capture non-linear
dynamics and provide faster computations, potentially enhancing our capabilities to emulate neuronal responses and complex
neural interactions, yet likely at the expense of interpretability and uncontrolled biases (76, 77). Some recent efforts have been
made to increase the interpretability and biological plausibility of such models (78, 79), at times, by crafting an integrative
model combining the advantageous non-linearity of DNNs with linear models like ours (80, 81).

Spatio-temporal RFs and modulatory inputs of mouse dLGN neurons
Through a combination of analysing receptive fields obtained from the model using a naturalistic movie stimulus, a noise
stimulus, and more traditional RF mapping techniques, we identified both expected and unexpected types of dLGN spatio-
temporal RFs. Indeed, consistent with previous studies quantifying RFs in mouse dLGN to simple stimuli (51, 56, 55, 54), our
model learned circular spatial RFs for the majority of neurons, which often consisted of a single domain resembling the well
known ON and OFF fields. Reminiscent of a study showing that retinal ganglion cells can reverse the polarity of their RFs in
response to different natural images (82), we found that some dLGN neurons had an opposite RF polarity when characterised
with simple luminance steps or the movie stimulus. Finally, some of the RFs obtained with our modelling approach had a
complex spatial structure, and might thus correspond to a subset of dLGN neurons that had been previously noted to lack
clearly localised RFs (56, 54). Future studies, for instanced based on the “maximally exciting image” approach initially applied
to mouse V1 (83), are needed to verify to which degree these complex RF structures indeed reflect complex feature selectivity
of dLGN neurons or might be potential consequences of the modelling approach.

Despite its frequent portrayal as a relay station, the dLGN of the thalamus has long been recognised as one of the earliest
stages in the visual system that integrates visual representations with additional information (3,15, 12, 4, 84). Corroborating
this, we found that the performance of our model generally improved with the inclusion of modulatory inputs, albeit with
considerable neuron-by-neuron diversity. Previous studies have already reported differential effects of behavioural state and
arousal, and could relate them to the neurons’ feature selectivity (85, 18, 19). In dLGN, the firing of neurons with nonlinear
responses to high spatial frequencies and with transient ON responses seem preferentially enhanced by locomotion (18). In
addition, retinal boutons preferring low spatial frequencies and luminance decrements seem preferentially suppressed by
arousal (19). The neuron-by-neuron diversity in the impact of the modulatory inputs might thus serve to enhance particular
visual inputs during active states.
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CT feedback effects on single dLGN neuron stimulus encoding and decoding
Our observation of faster and relatively stronger CT feedback effects during blank periods compared to movie viewing
contributes to the growing appreciation that CT feedback effects on dLGN firing rates seem to be stimulus-dependent, and
potentially overridden by strong visual stimulation (see also (86, 10)). Indeed, the effect of CT feedback seems to be most
potent in the absence of patterned stimulus input, both in mice (this study and (41, 10) for related findings with gratings) and
ferrets (86), which might point to a common mechanism across species. We propose that a greater influence of CT feedback
suppression during spontaneous activity than movie viewing could arise from a differential engagement of direct excitatory
and inhibitory feedback pathways during these visual stimulus types. Supplying thalamic relay neurons with different ratios
of excitatory and inhibitory conductances, mimicking the impact of modulatory inputs, can shift their input/output function,
such that the same somatic input can generate markedly different spiking responses (87, 88). Future studies will need to
use more subtle manipulations of stimulus type, including contrast and spatial structure, together with pathway-specific
CT feedback suppression, to test the hypothesis that CT feedback might be most effective under challenging sensory conditions.
In addition, future studies will profit from simultaneous recordings of V1 and dLGN to further disentangle the origin and
potential interaction of CT feedback and other modulatory influences.

We also observed that suppressing CT feedback enhanced the decoding of visual information in individual, feedback-
sensitive neurons. This was surprising given prior research associating cortico-cortical feedback with attention and enhancements
of stimulus encoding (e.g., (89, 90, 91, 92, 93)). What could be potential reasons why our model predicted improved decoding
during CT feedback suppression? Past research has proposed that one role of CT feedback could be to linearise the input-
output relationship of thalamic neurons through the injection of synaptic noise (87, 88). This linearisation would enhance the
excitability of thalamic neurons to weaker inputs, but would additionally push them into more unreliable firing regimes. This
could be one potential explanation why our decoder operating on single stimulus segments performed worse with CT feedback
intact. A shift towards more unreliable firing regimes by CT feedback would also be in line with results of a previous study (10),
showing that CT feedback during repeated movie segments increased the trial-by-trial variability of dLGN neurons’ responses.
Such increased variability in individual dLGN neurons could be offset and even exploited by the strong convergence in the
thalamocortical system (94, 95). Specifically, synaptic noise mediated by CT feedback might allow to extract from the pooled
afferent signal stimulus-related information with better resolution and with enhanced sensitivity to weaker inputs (87,88). Thus,
in the future, a more realistic decoder would consider local populations of thalamocortical neurons, to test the hypothesis that,
through CT feedback mediated synaptic noise, cortex regulates the trade-off between heightened sensitivity towards ambiguous
inputs and reliable representation of clear inputs.

In conclusion, our results add to the growing body of evidence that dLGN activity is influenced not only by visual inputs
but also by modulatory influences from CT feedback and behavioural state. Our work presents an important step towards a
quantitative understanding of how dLGN responses to complex, naturalistic stimuli are shaped by the simultaneous influences
of stimulus-related feedforward inputs, CT feedback and behaviour.
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Methods
All procedures complied with the European Communities Council Directive 2010/63/EU and the German Law for Protection of
Animals, and were approved by local authorities, following appropriate ethics review.

Surgical procedures
Experiments were carried out under under Licence ROB-55.2-2532.Vet_02-17-40 in 4 adult Ntsr1-Cre mice (median age:
15.5± 6.45 weeks; B6.FVB(Cg)-Tg(Ntsr1-cre)GN220Gsat/Mmcd; MMRRC) of either sex. Stereotactic surgeries were
performed to implant a head-post for head-fixation, implant a ground/reference screw for electrophysiology, inject a virus for
optogenetic feedback manipulation, and drill a craniotomy for acute electrode insertions.
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Stereotactic surgery preparation and initiation
Thirty minutes prior to the surgical procedure, mice were injected with an analgesic (Metamizole, 200 mg/kg, sc, MSD Animal
Health, Brussels, Belgium). To induce anesthesia, animals were placed in an induction chamber and exposed to isoflurane (5%
in oxygen, CP-Pharma, Burgdorf, Germany). After induction of anesthesia, mice were fixated in a stereotaxic frame (Drill &
Microinjection Robot, Neurostar, Tuebingen, Germany) and the isoflurane level was lowered (0.5 %–2 % in oxygen), such
that a stable level of anesthesia could be achieved as judged by the absence of an interstitial reflex. Throughout the procedure,
the eyes were covered with an eye ointment (Bepanthen, Bayer, Leverkusen, Germany) and a closed loop temperature control
system (ATC 1000, WPI Germany, Berlin, Germany) ensured that the animal’s body temperature was maintained at 37° C.
At the beginning of the surgical procedure, an additional analgesic was administered (Buprenorphine, 0.1 mg/kg, sc, Bayer,
Leverkusen, Germany) and the animal’s head was shaved and thoroughly disinfected using iodine solution (Braun, Melsungen,
Germany). Before performing a scalp incision along the midline, a local analgesic was delivered (Lidocaine hydrochloride, sc,
bela-pharm, Vechta, Germany). The skin covering the skull was partially removed and cleaned from tissue residues with a drop
of H2O2 (3 %, AppliChem, Darmstadt, Germany). Using four reference points (bregma, lambda, and two points 2 mm to the
left and to the right of the midline respectively), the animal’s head was positioned into a skull-flat configuration for the further
steps.

Virus injection
In order to suppress V1 L6 CT FB selectively and reversibly, we conditionally expressed the chloride-conducting chan-
nelrhodopsin stGtACR2 (39, 96, 97) in L6a CT pyramidal cells (84, 60, 61) by injecting AAV-stGtACR2-RFP into the left
hemisphere V1 of Ntsr1-Cre mice (40, 98, 99) (Figure 1a). Ntsr1+ neurons are known to correspond with > 90% specificity
to L6 CT pyramidal cells (6, 100,101). Furthermore, the opsin stGtACR2 restricts expression to somata and the axon-initial
segment which prevents possible accidental axonal depolarization due to a differential Cl- ion reversal potential across different
neuronal compartments (102, 103, 104). It also offers improved photocurrents and higher sensitivity, which are of particular
relevance to manipulating deeply located L6 CT neurons, while avoiding light artifacts and tissue damage arising from excessive
light intensities (104).

Before surgery, the Cre-dependent, stGtACR2-expressing adeno-associated virus (AAV) vector (pAAV_hSyn1-SIO-
stGtACR2-FusionRed, Addgene, #105677) stock solution was diluted to 5×1011 gc/ml titers, and aliquotted to 4 µL.

During surgery, aliquots were front-loaded into a glass pipette mounted on a Hamilton syringe (SYR 10 µL 1701 RN no
NDL, Hamilton, Bonaduz, Switzerland), controlled by the Injection Robot of the Neurostar Stereotax. After performing a small
craniotomy for injection (100 µm diameter), we injected 300 nl of virus solution into V1 (2×50 nl shots injected at a rate of
50 nl / 30 s at a respective depth of 900 µm, 800 µm and 700 µm below the brain surface.

Head-post and ground and reference screw implantation
For implant fixation, the exposed skull was covered with OptiBond FL primer and adhesive (Kerr Dental, Rastatt, Germany)
omitting three locations: V1 (AP: −3.28 mm, ML: −2.4 mm), dLGN (AP: −2.3 mm, ML: −2 mm), and a position roughly
1.5 mm anterior and 1 mm to the right of bregma, designated for a miniature ground and reference screw.

A custom-made lightweight stainless steel head bar was positioned over the posterior part of the skull such that the round
opening in the bar was centered on V1/dLGN. The head bar was attached with dental cement (Ivoclar Vivadent, Ellwangen,
Germany) to the primer/adhesive. The opening was later filled with the silicone elastomer sealant Kwik-Cast (WPI Germany,
Berlin, Germany). Then the miniature screw (00-96 X 1/16 stainless steel screws, Bilaney), which served both as ground and
reference that was soldered to a custom-made connector pin, was implanted.

Post-surgical treatment and animal setup habituation
At the end of the procedure, an iodine-based ointment (Braunodivon, 10%, B. Braun, Melsungen, Germany) was applied to
the edges of the wound and a long-term analgesic (Meloxicam, 2 mg/kg, sc, Böhringer Ingelheim, Ingelheim, Germany) was
administered and for 3 consecutive days. For at least 5 days post-surgery, the animal’s health status was assessed via a score
sheet.

After at least 1 week of recovery, animals were gradually habituated to the experimental setup by first handling them and
then simulating the experimental procedure. To allow for virus expression, neural recordings started after an incubation time of
2-4 weeks after injection.

Craniotomy
On the day prior to the first day of recording, mice were fully anesthetized using the same procedures as described for the initial
surgery, and a craniotomy (ca. 2×1 mm on the AP×BL axes) was performed over dLGN (ca. 2.5 mm posterior from bregma
and 2.3 mm lateral from midline) and V1 and re-sealed with Kwik-Cast (WPI Germany, Berlin, Germany). As long as the
animals did not show signs of discomfort, the long-term analgesic Metacam was administered only once at the end of surgery,
to avoid any confounding effect on experimental results. Recordings were performed daily and continued for as long as the
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quality of the electrophysiological signals remained high.

Extracellular multi-electrode array (MEA) recordings
After 2-4 weeks of incubation time, we performed in vivo extracellular multi-electrode array (MEA) recordings of dLGN neurons
in awake, head-fixed mice (Figure 1a). Extracellular signals were recorded at 30 kHz (Blackrock microsystems, Blackrock
Microsystems Europe GmbH, Hanover, Germany). For each recording session, the silicon plug sealing the craniotomy was
removed. For dLGN recordings, a 32 channel linear silicon probe (Neuronexus A1x32Edge-5mm-20-177-A32) was lowered
to a depth of ∼ 2500–3500 µm below the brain surface. We judged recording sites to be located in dLGN based on the
characteristic progression of RFs from upper to lower visual field along the electrode shank (51), the presence of responses
strongly modulated at the temporal frequency of the drifting gratings (F1 response), and the preference of responses to high
temporal frequencies (56, 51). For post hoc histological reconstruction of the recording site, the electrode was stained with DiI
(Invitrogen, Carlsbad, USA) for some (typically the last) recording sessions.

Locomotion
During the experiment, mice were free to run on an air-floating Styrofoam ball and the run speed was recorded via locomotion
sensors (Figure 1a). Two optical computer mice interfaced with a microcontroller (Arduino Duemilanove) sampled ball
movements at 90 Hz.

To compute animal run speed, we used the Euclidean norm of three perpendicular components of ball velocity (roll, pitch
and yaw) and smoothed traces with a Gaussian kernel (σ = 0.2 s). To quantify the effect of running vs. sitting on various
response properties, the run modulation index (MIRun) was defined based on the mean firing rates during running vs. sitting
periods as

MIRun =
running− sitting
running+ sitting

, (1)

where running periods were defined as those for which speed exceeded 1 cm/s, and sit periods as those for which speed fell
below 0.25 cm/s.

To test for a significant difference in mean FRs between the run vs. sit conditions matched for each neuron, we used the
Wilcoxon signed-rank test.

Eye tracking
To record eye position and pupil size, the animal’s eye that was viewing the stimulus was illuminated with infrared LED light
and monitored using a zoom lens (Navitar Zoom 6000) coupled with a camera (Guppy AVT camera; frame rate 50 Hz, Allied
Vision, Exton, USA).

Pupil position was extracted from the eye-tracking videos using a custom, semi-automated algorithm. Briefly, each video
frame was equalized using an adaptive bi-histogram equalization procedure, and then smoothed using median and bilateral
kernels. The center of the pupil was detected by taking the darkest point in a convolution of the kerneled image with a black
square. Next, the peaks of the image gradient along lines extending radially from the center point were used to define the pupil
contour. Lastly, an ellipse was fit to the contour, and the center and area of this ellipse was taken as the position and size of the
pupil, respectively. A similar procedure was used to extract the position of the corneal reflection (CR) of the LED illumination.
Eye-closure, grooming, or implausible ellipse fitting was automatically detected and the adjacent data points 0.15 s before and
after were excluded. Linear interpolation and a subsequent Gaussian smoothing (σ = 0.06 s) was applied to fill the removed
segments. Adjustable algorithm parameters, such as the threshold of the mean pixel-wise difference between each frame and a
reference frame to detect blinks, were set manually for each experiment.

To quantify the effect of large vs. small pupil sizes on various response properties, the eye modulation index (MIPupil) was
defined based on the mean firing rates during periods of large vs. small pupils as

MIPupil =
pupil large−pupil small
pupil large+pupil small

, (2)

where periods of large pupils were defined as those for which pupil size was above the 50th percentile of the median
normalized pupil trace, and periods of small pupils as those for which pupil size fell below the 25th percentile.

Optogenetic feedback suppression
To photosuppress V1 Ntsr1+ L6 CT pyramidal cells, an optic fiber (480 µm core diameter, MFP_480/500/1000-0.63_m_SMA,
Doric Lenses, Quebec, Canada) was coupled to a light-emitting diode (blue LED, center wavelength 465 nm, LEDC2_465/635_SMA,
Doric Lenses, Quebec, Canada) and positioned with a micromanipulator less than 1 mm above the exposed surface of V1. A
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black metal foil surrounding the tip of the head bar holder prevented the photostimulation light from reaching the animal’s eyes.
To ensure that the photostimulation was effective, the first recording session for each mouse was carried out in V1. Only if
the exposure to light reliably induced suppression of V1 activity was the animal used for subsequent dLGN recordings. LED
light intensity was adjusted on a daily basis to evoke reliable effects and account for variations in exact virus titer, volume,
incubation time, virus expression levels, and fiber position (0.85-9.5 mW at the fiber tip). Since the tip of the fiber never
directly touched the surface of the brain, and since the clarity of the surface of the brain varied (generally decreasing every day
following the craniotomy), the light intensity delivered even to superficial layers of V1 was inevitably lower. For the movie
stimulus, optogenetic pulses of 1 s duration were sent randomly each second with a 50 % chance.

To quantify the effect of CT feedback suppression on various response properties, we defined the optogenetic modulation
index (MICT FB supp.) based on the mean FRs during CT feedback suppression (’opto’) versus the control condition as

MICT FB supp. =
opto− control
opto+ control

(3)

Joint modulation by additional inputs
In order to quantify the joint effect of all the modulatory inputs, we calculated MIJoint as

MIJoint = 1− (1−MICT FB supp.)(1−MIRun)(1−MIPupil) (4)

Visual stimulation
During the experiment, the mice were passively viewing visual stimuli on an LCD monitor screen in their right visual
field. The visual stimuli were presented on a gamma-calibrated liquid crystal display (LCD) monitor (Samsung SyncMaster
2233RZ, 47×29 cm, 1680×1050 resolution at 60 Hz, mean luminance 50 cd/m2) positioned at a distance of 25 cm from the
animal’s right eye (spanning ∼ 108×66° visual angle by small angle approximation) using custom written software (EXPO,
https://sites.google.com/a/nyu.edu/expo/home). The display was gamma-corrected for the presentation of
artificial stimuli, but not for movies (see below).

Movie stimulus
For movie stimulus generation, we adopted a set of randomly picked clips from various movies. Briefly, source movie clips
were converted to grey scale, temporally downsampled to 30 frames per s, spatially resampled and cropped to 424×264 pixels,
to be presented on our 47×29 cm monitor screen at 25 cm distance at 106×66° (4 pixels/°) visual angle (by small angle
approximation, which preserves the desired pixel resolution at the screen center better than the arctangent). Movie frames
were not histogram-equalized and presented at 60 Hz (repeating each frame twice) without monitor gamma correction, since
cameras are already gamma corrected for consumer displays (105). To generate the movie sequence, we used a random set of
296 unique movie clips (5 s each) and split 188/296 clips into 8 parts of 36 unique clips (5 s×36 = 180 s per part). They were
interleaved with set of 8 clips (5 s×8 = 40 s) which was repeated 9 times. The repeated clips served to give an estimate of
response reliability to the same clips. The movie sequence was flanked by a period of blank grey screen presentation (1 min) at
the beginning and at the end, to record spontaneous activity. This resulted in a total stimulus duration of ∼ 32 mins. To rule
out sequence effects, we randomized the clip order for different stimulus presentations. To investigate the effects of L6 CT
FB suppression, we simultaneously presented a random optogenetic pulse train of 1 s pulses, occurring each second with a
probability of 50 %, throughout the entire stimulus duration, including blank grey screen periods.

Sparse noise stimulus
To measure RFs in a more standard manner, we also presented an (artificial) sparse noise stimulus. The stimulus consisted of a
rapid sequence of non-overlapping white and black squares appearing in succession within a 12x12 square grid presented on a
grey background of mean luminance (50 cd/m2). The square grid spanned 60° per side, while individual squares spanned 5° per
side. Each square flashed 20 times for 200 ms at random order. The stimulus triggered average (STA) for the sparse noise
stimulus was computed using the onset of each square and then computing the normalised mean spike rate triggered by each
position.

Histology
To verify virus expression and recording sites, we performed post-mortem histological analyses. After the final recording
session, mice were first administered an analgesic (Metamizole, 200 mg/kg, sc, MSD Animal Health, Brussels, Belgium)
and following a 30 min latency period were transcardially perfused under deep anesthesia using a cocktail of Medetomidin
(Domitor, 0.5 mg/kg, Vetoquinol, Ismaning, Germany), Midazolam (Climasol, 5 mg/kg, Ratiopharm, Ulm, Germany) and
Fentanyl (Fentadon, 0.05 mg/kg, Dechra Veterinary Products Deutschland, Aulendorf, Germany) (ip). Perfusion was first
done with Ringer’s lactate solution followed by 4% paraformaldehyde (PFA) in 0.2 M sodium phosphate buffer (PBS). Brains
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were removed, postfixed in PFA for 24 h, and then rinsed with and stored in PBS at 4° C. Slices (50 µm) were cut using a
vibrotome (Leica VT1200 S, Leica, Wetzlar, Germany), stained with DAPI-solution (DAPI, Thermo Fisher Scientific, Waltham,
Massachusetts, USA), mounted on glass slides with Vectashield mounting medium (Vectashield H-1000, Vector Laboratories,
Burlingame, USA), and coverslipped. A scanning fluorescent microscope (BX61, Olympus, Tokyo, Japan) was used to inspect
slices for the presence of red fluorescent protein (RFP/FusionRed) marking stGtACR2-channels, and DiI, marking electrode
tracks. Recorded images were processed off-line using FIJI (106, 107).

Control experiments with Ntsr-negative mouse
Additionally, same experimental procedures were followed for control (Ntsr-negative) mouse, in order to assess the efficiency of
optogenetic manipulations of CT feedback. Prior to experimentation, the genotype of the mice was confirmed via polymerase
chain reaction (PCR) analysis.

Spike sorting and unit extraction
Spike sorting was performed to obtain single unit activity from extracellular recordings. Electrophysiological signal recordings
were kerneled using a 4th-order Butterworth high-pass non-causal kernel with a low frequency cutoff of 300 Hz. We then used
the open source, MATLAB-based (The Mathworks, Natick, Massachusetts, USA), automated spike sorting toolbox Kilosort
and Kilosort2 (108). Resulting clusters were manually refined using Spyke (109), a Python application that allows for the
selection of channels and time ranges around clustered spikes for realignment, as well as representation in 3D space using
dimension reduction (multichannel PCA, ICA, and/or spike time). In 3D, clusters were then further split via a gradient-ascent
based clustering algorithm (GAC) (110). Exhaustive pairwise comparisons of similar clusters allowed the merger of potentially
over-clustered units. For subsequent analyses, we inspected autocorrelograms and mean voltage traces, and only considered
units that displayed a clear refractory period and a distinct spike waveshape.

Data analysis
Data analysis was performed using custom-written code that applies general tools such as Numpy, sklearn, matplotlib, seaborn,
pandas and carried out in a MySQL-based database using the DataJoint (111). We also used a customized version of RFEst
(https://github.com/berenslab/RFEst) to allow for multiple model inputs.

Firing rate calculations
To obtain units firing rates in spikes per second (Hz), each unit’s spike density function (SDF) was calculated by binning spikes
into a firing rate histogram (bin width = 20 ms) and convolving this with a Gaussian of width 2σ = 10 ms. Mean firing rates
(FRs) over a given condition were calculated as the mean of the time-varying firing rates for the defined periods.

Identification of putative neuronal types
In order to identify putative excitatory and inhibitory neurons in V1, we analysed the extracellular spike waveform. For each
neuron, the mean waveform of the maximally responsive electrode channel was obtained, and the time between trough and
peak (trough-to-peak time) and the full-width at half-height of the peak (peak width) were calculated. Using the waveforms of
all V1 neurons, a k-means algorithm was used to cluster the data into 2 populations.

Response reliability
To compute how reliable a neurons responded to the visual stimulus we used the set of 8 clips that where repeated 9 times
throughout the experiment. We computed reliability by correlating each repetition with the mean of all other repetitions and
averaging that over all splits.

Optogenetic significance
To compute the reliability of the optogenetic manipulation of L6 CT neurons, we developed a trial-based permutation test. In
response to drifting gratings, we calculated the average firing rate during each trial and separated the trial with optogenetic
CT feedback suppression (trialsCT FB supp.; n=90−−130) from those without (trialscontrol ; n=90−−130). We calculated
the observed statistics e f f ectCT FB supp. as the difference in the means between the trialsCT FB supp. and the trialscontrol . We
assessed significance by permuting trial labels 1000 times and considered the effect significant if it fell outside of the distribution
of permuted e f f ectCT FB supp.s. Finally, we compared the percentage of neurons that passes the significance test between the
included recording and a recording from a control mouse (Ntsr-negative).

Exclusion criteria
Neurons with mean evoked firing rates < 0.1 Hz were excluded from all further analysis. Further analysis-specific selection
criteria are stated in the appropriate subsections.
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Predictor correlations
To test for the correlations between the predictors stimulus, opto, run, and eye, we temporally aligned these traces, including
only time points for which we had data points in all traces (e.g. removing periods of eye blinks). We then explored their
cross-correlations in order to detect potential delays in their effects on each other. Such is the case, for instance in the pupil
light reflex, where increases in stimulus intensity are followed by a delayed decrease in pupil size. We then used the delay time
to shift the traces appropriately before computing their correlation value (Pearson’s r; Figure S3c).

In order to test for statistical significance of the obtained correlation values , we first needed to account for the fact that our
time-series inherently contain autocorrelations which would lead to an overestimation of correlations between them (except for
the random opto pulses) (53). We therefore used a permutation test in which we randomly permuted the stimulus traces for
k = 1000 iterations, and then computed the p-value of the observed correlation value as its percentile within the null distribution
of p-values for the permuted traces (53).

Spline-based generalized linear model
To estimate the spatio-temporal RFs (STRFs), we used the RFEst Python toolbox for spline-based spatio-temporal RF
estimation (38). Here, the spline-based GLM reduces the number of parameters compared to traditional approaches, which need
to estimate every pixel in the RF independently, while spline-based GLM only estimate the weight of the bases. RFEst is also
less data demanding and reduces the computation time significantly (38). The number of parameters are given by the number of
basis functions, also referred to the degrees of freedom. By using natural cubic splines as the basis (e.g., Figure S6a–d), the
estimates are automatically smooth, which is a desirable property for single STRFs. To impose sparsity on the weights (also a
desirable property of SRFs) we added L1 regularization, which pushed the weights for less relevant bases to zero. To compute
the spline-based STRFs, wSPL, the coefficients, bSPL, were obtained as

bSPL = (ST XT XS)−1ST XT y (5)

with X as the stimulus design matrix, y as the neural response vector, and S as the spline matrix. The spatio-temporal RF was
computed as

wSPL = SbSPL = S(ST XT XS)−1ST XT y (6)

To generate the natural cubic spline matrices (S) the package Patsy (0.5.1) is integrated into RFEst.
To approximate wSPL we used a generalized linear model (GLM) that predicts the instantaneous firing rate for one neuron

using the movie as a predictor. We extended this "Stimulus only" model by integrating also running speed and pupil size as
behavioral predictors of neuronal firing rate. To estimate the effect of cortico-thalamic (CT) feedback, an additional bimodal
input was used comprising the optogenetic light stimulation that could be either on (ot = 1) or off (ot = 0). All inputs where
parameterized with a set of spline basis and multiplied with an extra weight vector (also referred to as kernel):

f (s,o,r,e) = g(wT
s s[t : t−∆t]+wT

o o[t : t−∆t]+wT
r r[t : t−∆t]+wT

e e[t : t−∆t]) (7)

with s, o, r, and e denoting the additional model inputs of stimulus, optogenetics, running and eye, respectively, and [t : t−∆t]
defining the temporal integration window (250 ms for stimulus and 800 ms for the predictors for modulatory inputs).

We estimated the kernels by gradient descent with respect to the cost function with L1 regularization. As standard procedure
for time series data, we used 150 out of the 188 unique movie clips (80 %) for cross-validation to select optimal hyperparameters
and reserved the remaining 38 clips (20 %) as a held-out test set. To select optimal hyperparameters, we used five-fold cross-
validation grid search on the training data (120 training clips and 30 validation clips in each fold). Hyperparameters included
the number of spline basis (between 10 and 19) in temporal dimension (for stimulus, pupil size, locomotion, and feedback
input) and spatial dimension (only stimulus), as well as the strength of the L1 regularization (with weights varying from 5 to
15). The STRFs were initialized randomly and optimized using gradient decent for 2000 iterations. We stopped the fitting
early when the training cost changed less than 10−5 for 10 iterations. Finally, we selected the hyperparameters based on the
mean performance on the validation set across folds. After optimal hyperparameter selection, models were retrained on the
full training data (150 movie clips) and the final performance of the model was reported as the correlation coefficient between
predicted and observed neural responses on the held out test data (38 movie clips).

We further fitted spline GLMs with responses to a sparse noise stimulus. We conducted a separate hyperparameter search for
this stimulus, using a similar procedure as for the movie stimulus, involving cross-validation. For each neuron, we determined a
unique set of optimal hyperparameters and kernels for the sparse noise stimulus and the movie stimulus.

Session based permutation test
Following Harris (2020) (53), we performed a permutation test to evaluate if data from a different experimental session would
lead to the same or worse model performance, which indicated the significance of the input-output correlations captured by the
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model. To achieve this, we provided the model with input data from the validation set of an unrelated session (for the model
inputs ‘stimulus’, ‘running’, ‘pupil size’) or with synthetic inputs generated with the same statistics as the original (for the
‘CT feedback suppression’ input), one at a time. We repeated the process using all different data from all recording sessions.
Subsequently, we compared for each input the actual model performance (Pearson’s r) on the validation set across its folds
(n=5) against a distribution of model performances with that specific input permuted from the different recording sessions
across their folds (n=5 folds × 9 recording sessions). Inputs were considered significant if the actual performance differed from
the permuted performance with p≤ 0.05 using the non-paired Mann-Whitney-U test.

Spatio-temporal RF component extraction
To separate spatial and temporal components of the 3D STRFs, we performed singular value decomposition (SVD) on the norm
of the stimulus weight vector w. The temporal RF is extracted as the first left-singular vector of U , i.e. temporal dimension with
the highest variance, and the spatial RF as the first right-singular vector of V , reshaped into the height- and width-dimensions of
the input vector w. The extremes of the reshaped spatial RF vector are then used to quantify RF position and RF area. The
extracted temporal RF components were normalized and multiplied with the RF center value before computing the slope (-150
ms to peak).

Spatial RF contour estimation
Model spatial RFs were estimated by extracting the 2D spatial RF component from the model weights (see subsection ’Spatio-
temporal RF component extraction’), and then drawing a contour line around the largest absolute peak (assumed to be the
center of the spatial RF). The contour threshold gets gradually lowered until any further decrease would result in a second
contour around the second largest extremum (background irregularities considered as noise). To avoid overly large RFs in very
clean spatial components (without any major second extremum), the contour threshold had to be 2 standard deviations above or
below the mean. To improve estimate accuracy, the spatial RF component was upsampled 16-fold via cubic spline interpolation.

Spatial RF area
The spatial RF areas were estimated by using the spatial RF component and contour (see subsection ’Spatial RF contour
estimation’) and calculating the number of pixels of the spatial RF contour mask in relation to the total number of pixels in the
image frame, which was then scaled by the stimulus extent to obtain the value in squared degrees of visual angle. To improve
estimate accuracy, the spatial RF component was upsampled 16-fold via cubic spline interpolation.

Spatial RF center-surround
stRFs were collapsed across the azimuth axis, and accordingly defined as a function of elevation and time. Then, we identified
the time point with peak activity. Subsequently, centre regions were defined according to the spatial width of the peak activity,
and surround regions were defined as a ring encircling the centre and extending up to trice the diameter or 9◦. We then summed
pixel intensities within the centre region and the surround regions separately and calculated surround-to-centre ratio as:

surround-to-center =
2∗∑centre

∑surround1 +∑surround2
(8)

Functional cell types clustering
To categorize neurons into functional subtypes, we employed dimensionality reduction (PCA) on their PSTH responses to a
full-field light intensity step stimulus. Subsequently, we conducted clustering using a Gaussian mixture model on the principal
components, resulting in the identification of four primary groups (Sustained ON, Sustained OFF, Transient, and Mixed).
Nevertheless, we observed substantial response diversity even within these main groups. To address this, we further subdivided
neurons within each group through empirical selection of cluster numbers, aiming to optimize silhouette scores and reduce the
standard error of the PSTH mean response within the subclasses. This two-step clustering approach allowed capturing finer
distinctions of response patterns (Figure S5a, b).

Rate of change (RoC) to CT feedback suppression
To quantify the temporal dynamics of the effect of suppressing CT feedback with optogenetic pulses, we calculated rate of
change (RoC) in the neurons’ responses based on both data and model prediction. For each case, we first identified the time
point tmin where the slope of neurons response flipped its sign (e.g. after light onset, firing rates decreased, negative slope, and
then it either stays constant or fluctuates around its new value and the slope becomes zero or flips its sign to positive). Then, we
calculated the normalised change in responses MICT FB supp.; (see subsection ’Optogenetic feedback suppression’). Finally,
RoC was defined as:

RoC =
MICT FB supp.

tmin
(9)
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Decoding analysis
We used a two-alternative forced choice (2AFC) decoder (30) to analyze if stimulus discriminability is easier with or without
feedback. Given two spike trains {sA,sB} in response to two movie clips {A,B} we computed the model log-likelihood for
the correct ((sA,A), (sB,B)) and the incorrect pairing ((sA,B), (sB,A)). We used the ‘Full model’ to predict spike trains in the
two feedback conditions, (1) with the feedback component intact and (2) with the feedback component suppressed. In both
conditions, we used 100 randomly selected 50 ms movie clips from the test set and their corresponding responses. Using all
possible pairs, we computed the model log-likelihood for the correct and the incorrect pairing in both feedback conditions. The
log probability for the correct pairing of response sA and stimulus A is defined as follows:

log p(sA|A) = ∑
t

sA,t logλt(At)−λ (At) (10)

where λ is the instantaneous firing rate at time t predicted by the model. Analogously, we computed log p(sB|B), log p(sA|B),
and log p(sB|A). A correct choice was made if log p(sA|A)> log p(sA|B) or log p(sB|B)> log p(sB|A), respectively. We used
the percentage correct over all possible pairs to quantify decoding performance. Finally, we computed the ratio of percentage
correct for the feedback suppressed condition and the control condition. A ratio above one indicates better decoding performance
in the feedback suppressed condition and a ratio below one in the control condition.
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a b c

Figure S1 | Efficiency of optogenetic manipulation of CT feedback (a) Optogenetic modulation index (OMI) values for dLGN
neurons (n = 122), separately by mouse. The four included mice showed significantly higher modulation indices then the control mouse
M0 (p < 0.01, Mann-Whitney-U test). Opaque dots: Neurons that are significantly modulated by CT feedback suppression (p < 0.05,
trial-based permutation test). Transparent dots: Neurons that did not pass the significance test (p > 0.05). (b) Percentage of neurons that were
significantly modulated by CT feedback suppression per mouse (p < 0.05, trial-based permutation test). (c) Scatter of OMI values for the
four included mice (blue) and the control mouse (Gray) for the OFF-ON transitions (i.e., triggered to the onset of CT feedback suppressing
light pulses) vs. OFF-OFF transitions (i.e., triggered to times without onset of CT feedback suppressing light pulses).

a

b

c

Figure S2 | CT feedback modulated neurons are closer to each other in the mouse dLGN. We identified all simultaneously
recorded neuron pairs (n = 171), of which at least one neuron was positively or negatively modulated by CT feedback suppression
(|MICT FB supp.| ≥ 0.1), and calculated the distance in micrometer between each pair on the electrode. (a) Left, solid bars: Percentage of
neuron pairs (n = 41) at each distance from each other on the electrode, when both neurons were modulated by CT feedback suppression. Left,
hollow bars: Percentage of the same neuron-pairs with shuffled distances. Right: cumulative distributions of true and shuffled data(p = 0.0339,
Kolmogorov-Smirnov test). (b) Same as (a), when only one neuron was modulated by CT feedback suppression (n = 130). p = 0.312,
Kolmogorov-Smirnov test. (c) Left: Cumulative distributions of distances between neuron pairs(p = 0.0298, Kolmogorov-Smirnov test).
Right: cumulative distributions of shuffled data (p = 0.8255, Kolmogorov-Smirnov test), re-plotted from (a) and (b).
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Figure S3 | CT feedback and behaviour modulates dLGN responses to movie clips (a) Modulation of firing rate by running
speed for one dLGN example neuron: (a1) We considered periods as “running” if the animal’s speed was > 1 cm/s, and “sitting” if the speed
was < 0.25 cm/s (red). Transitions between periods are marked by green and grey arrows, respectively. (a2) Spike raster plot triggered
on transitions from running to sitting (top), and sitting to running (bottom). (a3) Corresponding PSTHs. Green: transitions from sitting to
running; grey: transitions from running to sitting. Only periods with durations > 2 s were considered. (b) Modulation of firing rate by pupil
size for one dLGN example neuron: (b1) We considered periods as “large pupil size” when pupil size exceeded the median pupil size during
the experiment (red), and “small pupil size” if it was smaller than the 25th percentile. Transitions between periods are marked by orange and
grey arrows, respectively. (b2) Same as in a2 but for transitions from large to small pupil (top) and from small to large pupil (bottom). (b3)
Same as in a3 but for pupil size transitions. (c) Correlation matrix of average stimulus intensity, optogenetic light pulses, running speed and
pupil size traces. Values denote average correlation values across experiments (n = 10).
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Figure S4 | Spatial RF estimation by the spline-GLM model. (a) Comparison of spatial RF (sRF) estimates during the movie
stimulus for one example dLGN neuron. (a1) Simple spike triggered average (STA). (a2) Pixel intensity averaged across all movie frames,
showing a gradient from top to bottom typical for naturalistic scenes. (a3) STA corrected for average intensity gradient. This yields a RF with
similar centre and polarity compared to the one learned by the spline-GLM (a4), but with larger and more diffuse area. (a4) Learned sRF by
the spline-GLM model. (b) To validate the sRF on a neuron-by-neuron basis, we compared the spline-GLM sRF learned from movies (first
column) with spline-GLM sRF learned from sparse noise experiments (second column; overlay of the two sRF centres and contours in the
third column; see Methods) and with the stimulus-triggered average response map for the sparse noise experiments computed independently
from the model (last column). The first three example neurons are the same as in Figure 2c. (c) Centre shift between movie and sparse noise
sRFs for all 10 experimental sessions (neurons with significant stimulus kernels, n = 85). Position around the origin indicates close to zero
shift. (d) Spatio-temporal RF (stRF) for three example neurons. Top: stRFs collapsed across the azimuth axis, and plotted as a function of
elevation and time. Vertical dashed line: time point with peak activity. Horizontal dashed lines: centre regions defined according to the
spatial width of the peak activity, and surround regions defined as a ring encircling the centre and extending up to trice the diameter or 9◦.
Bottom: stRF centre (solid) and surround (dashed) activity. Left: antagonistic surround neuron (surround-to-centre ratio = 0.32). Middle:
non-antagonistic surround neuron (surround-to-centre ratio = 0.02). right: bi-phasic response neuron. (e) Area of sRF centres, separately for
neurons with positive (red) and negative (blue) RF centre and significant stimulus kernels. Of these, ∼ 61%(52/85) had a positive centre,
∼ 29%(25/82) had a negative centre, and ∼ 9%(8/85) had a bimodal response where the detected RF changed its polarity across time.
Median RF radius: 5 deg; median centre area: 81 deg2 for positive RF centers and 77 deg2 for negative RF centers. (f) Surround-to-centre
ratios for the population of dLGN neurons with significant stimulus kernels, and antagonistic activity in the surround region (∼ 41%(35/85)
neurons). We defined a threshold at 0.1 surround-to-centre ratio (gray). Of the remaining neurons with pronounced antagonistic surround,
16 neurons had positive RF centre with a negative surround (red), 9 neurons had negative RF centre with a positive surround (blue), and 4
neurons showed a biphasic response together with an antagonistic surround. (g) Quantification of tRF properties: histogram of area under the
tRF, separately for neurons with positive (red) and negative (blue) RF centre. Neurons with small tRF AUC values 5 0.035 represent the
bimodal neurons (n = 8, purple). Neurons with the largest tRF AUC values ≥ 0.052 were defined as neurons with sustained responses, while
the remaining neurons were defined as neurons with transient responses. (h) Mean tRF split into sustained, transient, and biphasic.
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Figure S5 | Spline-based GLM captures spatio-temporal RFs of different functional cell types in dLGN. (a) Top, left: Light
intensity steps of the full field stimulus used for functional cell type classification. (b) Responses of all neurons assigned to the Sustained ON
group (b1, n = 25), along with their average sub-cluster responses (b2). Spatial (b3) and temporal RF kernels (b4) of example neurons with
significant movie stimulus kernel learned by the spline-GLM independently of the clustering. (c) Same as (b), for the Sustained OFF group
(n = 17). (d) Same as (b), for the Transient group (n = 36). (e) Same as (b), for the remaining neurons (mixed cluster, n = 44). (f) Left:
Correlation matrix of PCA features used for clustering. Neurons are sorted by groups. Right: Neuron counts per group. (g) Fraction of
neurons with significant stimulus kernel in the spline-GLM model per functional type based on clustering. (h) Spatial RF polarity (sign of the
spline-GLM fitted RF centre) for the ON and the OFF group based on clustering (p = 0.018, Mann-Whitney-U test). (h) Average temporal
RF of movie kernels learned from spline-GLM for the OFF, ON, and Transient groups. Horizontal bars: Significant differences between OFF
and Transient groups (blue) and between ON and Transient groups (red).
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Figure S6 | Spline-GLM model kernels for modulatory inputs. (a) Illustration of the natural cubic spline basis functions (n=10).
(b) Weighted bases of the natural cubic splines after fitting the CT feedback kernel to the data for one example neuron. CT feedback
kernel is shown in the inset. (c) Same as (b), for run speed kernel. (d) Same as (b), for pupil size kernel. (e) Model performance for
permuted visual stimulus input (mean over all permutations) vs. actual performance. Filled circles: significant neurons. (f) Same as (a),
for CT feedback suppression. (g) Same as (a), for running. (h) Same as (a), for pupil size. (i) Average temporal RF kernels, separately for
neurons with significant (black, n = 85) versus non-significant (grey, n = 37) spatio-temporal kernels. Shaded areas: SEM. (j) Same as
(e), for neurons with significant (blue, n = 12) versus non-significant (grey, n = 110) CT feedback kernels. (k) Same as (e), for neurons
with significant (green, n = 13) versus non-significant (grey, n = 109) run kernels. (l) Same as (e), for neurons with significant (orange,
n = 23) versus non-significant (grey, n = 99) pupil kernels. (m) Model performance versus response reliability across all neurons. Response
reliability was computed as the mean correlation of dLGN responses to each 40 s repeated movie clip with all other 8 repeats. (n) Response
reliability of dLGN neurons split into neurons with significant kernels to CT feedback suppression, running, pupil size, or non-modulated.
(o) Same as (j) but for firing rate of dLGN neurons. (p) Kernel time to half maximum peak for run and pupil size kernels.

29/31

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted July 3, 2024. ; https://doi.org/10.1101/2023.10.18.562960doi: bioRxiv preprint 

111



M
o
d

u
la

to
ry

 i
n
p

u
ts

Stimulus-driven

g h

a b

i

c

d e f

M
I C

T
 F

B
 s

u
p

p
.

M
I R

u
n

M
I P

u
p

il
Figure S7 | Model performance depends on various factors. (a) Comparison of model performances on the test set for all neurons
in the ‘Stimulus only’ model and the ‘Full model’. Darker colours indicate stronger modulation by CT feedback quantified by MICT FB supp.
(see Methods). (b) Same as in (a) but for by running quantified by the modulation index MIRun. (c) Same as in (a) but for pupil size quantified
by the modulation index MIPupil . (d) Correlation of modulation by CT feedback suppression (MICT FB supp.) and model performance
improvement. To measure improvement two models where compared: the ’Stimulus only’ model and a model with Stimulus and CT feedback
suppression as inputs. (e) Same as in h but for modulation by running (MIRun). The ’Stimulus only’ model was compared with a model
that integrated stimulus and running as inputs. (f) Same as in h but for modulation by pupil size (MIPupil). The ’Stimulus only’ model was
compared with a model that integrated stimulus and pupil size as inputs. (g) Modulation by additional factors (MIJoint ) versus improvement
of model performance when comparing the ’Stimulus only’ model and the ’Full model’. ∗ ∗ ∗p ≤ 0.001 (h) Model performance versus
response sparseness. Sparseness was computed according to (112). ∗p≤ 0.05 (i) The matrix illustrates the neuron counts categorised into 68
neurons significant only to feedforward stimulus-related predictor, 23 neurons significant only to one or more of the predictors for modulatory
inputs (CT feedback, run speed, and pupil dilation), 17 significant to all predictors, and 14 not exhibiting significance for any of the predictors.
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Figure S8 | Influences of visual stimulus on effects of CT FB suppression in dLGN. (a) Firing rate comparison between
conditions. Bonferroni corrected p-values of paired Wilcoxon signed-rank test: ∗ ∗ ∗p ≤ 1.0× 10−3; ‘ns’ non-significant. (b) Analysis
controlling potential influences of overall firing rate differences between conditions. MICT FB supp. for movies (blue) or blank periods (purple)
as a function of binned average firing rate during the control condition. We counted the neurons that fell within each firing rate bin for
the two stimulus conditions (top, coloured numbers). To ensure equal number of neurons per firing rate bin between the conditions, we
randomly sampled the minimum number of neurons for that bin for one of the stimulus conditions (black numbers). Black dots represent
the mean MICT FB supp. value per bin per condition after potential re-sampling. Even after approximating overall firing rates, MICT FB supp.
remained significantly higher for low firing rate bins, where most neurons were sampled (red numbers, Mann-Whitney-U test). (c) Scatters of
MICT FB supp. values recalculated based on re-sampled trials. Given that movie and blank conditions had different number of trials, and in
order to rule out that the number of trials might affect the MICT FB supp. values and accordingly the reported results, we performed 100 repeats
of a re-sampling procedure. During each repeat, we randomly sampled 24 trials for each neuron during movie condition and re-calculated
the MICT FB supp. values (light blue dots). We found that the original movie MICT FB supp. values (black dots) well represented the median
of the re-calculated values. We also found that our observation that the original Blank MICT FB supp. (purple) being stronger than movie
MICT FB supp. held true after re-sampling. (d) Scatter plot of average firing rate during the control condition vs. intercept fitted by the model
for the movie (left) and blank periods (right). Panels (a–d) show data from all 122 neurons. (e) Scatter plot of average firing rate vs. maximum
amplitude of the fitted CT feedback kernels for significantly modulated neurons for the movie (left) and blank (right) conditions.
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5 A transthalamic pathway for visual control of fear behaviour

The following chapter is reproduced from an article originally published in Neuron:

Davide Crombie, Laura Busse (2021). Should I stay or should I go? A thalamic circuit for modulating

behavioral responses to visual threat. Neuron, 109(23), 3717-3719. DOI: https://doi.org/10.1016/j.

neuron.2021.11.005.
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In this issue of Neuron and in Cell Reports, Fratzl et al. (2021) and Salay and Huberman (2021) identify the
ventral lateral geniculate nucleus (vLGN) of the thalamus as a key regulator for adjusting defensive behaviors
according to the level of perceived visual threat.

For many animals, vision is an essential

sense for detecting threats, such as ap-

proaching predators, and for initiating

behavioral responses that can decide be-

tween life and death. For instance, across

the animal kingdom, reductions in lumi-

nance caused by rapidly moving or ex-

panding shadows (Figure 1A) can signal

the approach of a potential threat and

trigger defensive behaviors (Branco and

Redgrave, 2020; Peek and Card, 2016).

In rodents, these behaviors typically

encompass freezing to minimize detec-

tion, flight to escape an attack by a pred-

ator, or tail rattling to display aggression

(De Franceschi et al., 2016; Yilmaz and

Meister, 2013; Salay and Huber-

man, 2021).

A central hub linking vision and defen-

sive behaviors is the optic tectum (OT),

known as the superior colliculus (SC) in

mammals. The SC is a retino-recipient,

multilayered structure located in the dor-

sal midbrain, with highly conserved cir-

cuitry and functions. It is known for inte-

grating visual input with information from

other sensory modalities and orches-

trating sensory-motor transformations

(Basso et al., 2021). In particular, the SC

is thought to be involved in computing

saliency, selecting relevant information,

and initiating short-latency orienting re-

sponses, which are necessary compo-

nents for directing behavior toward spe-

cific points in space. These functional

properties likely also support the SC in

coordinating visually evoked defensive

behaviors (Branco and Redgrave, 2020).

Indeed, neurons in SC can be strongly

and selectively driven by visual threats,

such as dark expanding stimuli from over-

head space (looming disks) mimicking

aerial predators (Yilmaz and Meister,

2013; Lee et al., 2020).

Defensive behaviors, while sometimes

being portrayed as deterministic and ste-

reotyped, can be remarkably flexible, de-

pending on the ethological context, phys-

iological state of the animal, or the

animal’s past experience. For instance,

looming disks initially elicit defensive re-

sponses with high reliability; repeated

exposure in the lab without negative con-

sequences, however, can lead to habitua-

tion, with reduced duration of freezing or

lower probability of escape (Yilmaz and

Meister, 2013). Until now, how neural

circuits and cell types integrate sensory

evidence with contextual and experi-

ence-related information to flexibly adjust

visually defensive behaviors has been

poorly understood.

In this issue of Neuron and in Cell

Reports, two studies address this gap in

knowledge by identifying the ventral

lateral geniculate nucleus (vLGN) of the

thalamus as a critical node in the circuit

conferring flexibility to visually triggered

defensive behaviors (Fratzl et al., 2021;

Salay and Huberman, 2021) (Figure 1).

The vLGN is a subdivision of the LGN, a

retinorecipient thalamic structure, whose

dorsal part (dLGN) is well studied

because of its role in image-forming vision

in mammals. The vLGN, which is compa-

rable in size to the dLGN in rodents, does

not contribute to cortical image-forming

vision but instead sends out long-range

inhibitory projections to several nuclei

with roles in sensorimotor behavior,

eye movements, and vestibular and circa-

dian function (Monavarfeshani et al.,

2017). Fratzl et al. (2021) describe how

activity of the inhibitory GABAergic pro-

jection of the vLGN to the medial SC

ðvLGNGABA /mSCÞ tracks perceived vi-

sual threat and thereby exerts visual

context-dependent control over escape

responses. Salay and Huberman (2021)

reveal distinct neuronal populations that

project from the vLGN either to the SC

or to the nucleus reuniens (Re) and have

opposing functions, potentially to balance

defensive actions and exploration de-

pending on perceived risk in uncertain

environments.

Using a wide array of state-of-the-

art circuit investigation approaches—

including viral circuit tracing, in vivo record-

ings of neural activitywith fiber photometry

and dense microelectrode arrays, and

circuit manipulations with optogenetics

and chemogenetics—as well as extensive

quantification of behavior, both groups

reveal that activity of vLGNGABA neurons

regulates defensive behaviors to imminent

visual threats (Figures 1B and 1C). In both

studies, when the experimenters sup-

pressed the activity of vLGNGABA neurons,

mice had reduced control over the execu-

tion of their defensive behavioral pro-

grams: upon encounter with a threatening

visual stimulus, they almost invariably fled

to shelter (Fratzl et al., 2021) or displayed

increased duration and probability of

freezing (Salay and Huberman, 2021)—a

behavioral signature of anxiety-like states.

Previews

Neuron 109, December 1, 2021 ª 2021 Elsevier Inc. 3717

ll

115



Conversely, when the authors activated

thevLGNGABA neurons, thesedefensive re-

sponses were mostly blocked, and mice

favored exploration of their environment.

While both studies uncover a so-far un-

known role for the vLGNGABA/SC pro-

jection in regulating defensive behaviors,

each study also offers unique insights

into the circuits and function of vLGN. In

particular, Fratzl et al. (2021) measured

activity of vLGNGABA/mSC axons during

escapes to shelter triggered from a

‘‘threat zone,’’ where the mice had previ-

ously experienced a looming stimulus.

The authors found that activity of vLGN

axons over mSC was particularly low

just before escapes, while it remained

higher in non-escape trials (Figure 1B,

top), occurring, for example, when the an-

imal was habituated. This pattern of re-

sults suggests that the vLGNGABA/mSC

projection plays a prominent role in

signaling the perceived level of threat. In

addition, Fratzl et al. (2021) demonstrate

that vLGN’s regulatory function is related

to visual, but not auditory, threats

(Figure 1D). When the authors presented

loud, high-frequency sounds from the

threat zone, mice often escaped to

shelter, similar to when facing a looming

visual stimulus. However, while optoge-

netic activation of vLGNGABA/SC axons

decreased the probability of escape

from visual threats, the same manipula-

tion did not alter the probability of

sound-evoked escapes. Consistent with

a role for the vLGN in modulating defen-

sive responses for visual threats specif-

ically, the authors further discovered that

the vLGNGABA/SC axons preferentially

target visually responsive neurons in the

mSC. Indeed, neuropixel recordings in

mSC revealed that photoactivation of the

vLGNGABA/SC projection specifically

reduced the activity of those SC neurons

that responded to visual, but not auditory,

stimuli.

The study by Salay and Huberman

(2021) elegantly complements and sub-

stantially extends these findings by

focusing on the diversity of vLGN neuron

types and projections and by providing ev-

idence for their functional specificity. For

instance, it was already known that, be-

sides the projection to the SC, the vLGN

also sends GABAergic projections to the

periaqueductal gray area (PAG) and the

Re of the ventral midline thalamus, which

both take part in the extensive network

mediating behavioral responses to visual

threats (Branco and Redgrave, 2020).

After establishing that the vLGN’s pro-

jections to Re and SC arise from two

distinct populations of GABAergic neu-

rons, Salay and Huberman (2021) used

chemogenetic manipulations to demon-

strate their opposing effects (Figure 1E):

while activating vLGNGABA/SC neurons

decreased freezing and promoted rapid

habituation, increasing the activity of

the vLGNGABA/ Re projection yielded

dramatically prolonged freezing re-

sponses. Salay and Huberman (2021)

additionally explored the impact of

vLGNGABA activity changes over longer

timescales and found that the vLGN also

plays a role in modulating autonomic

arousal. By expressing a stabilized step

function version of channelrhodopsin in

vLGNGABA neurons, which allows persis-

tent increases of neuronal firing with a

single pulse of blue light, Salay and

Huberman (2021) found a long-lasting

decrease of heart rate with delayed onset

A B C D

E

Figure 1. Key results of Fratzl et al. and Salay and Huberman
(A) Both studies used, among several other behavioral paradigms, looming disk stimuli mimicking aerial predators to study how circuits involving the ventral lateral
geniculate nucleus (vLGN) modulate defensive responses to perceived visual threats in mice.
(B) Fiber photometry recordings performed by Fratzl et al. (2021) show that activity in GABAergic projections from vLGN to medial superior colliculus (mSC)
around loom onset was particularly low during trials in which mice subsequently initiate an escape response. This pattern is consistent with the notion that the
vLGNGABA /mSC projection signals the level of perceived threat.
(C) Using chemogenetic and optogenetic circuit manipulation techniques, the authors of both studies discovered that bidirectional control of GABAergic neurons
in vLGN can shift the behavior of mice between defensive responses and exploration.
(D) Fratzl et al. (2021) also revealed that the modulation of defensive behaviors by vLGN is specific to visual threats; activating vLGN axons in themSC specifically
suppresses escape from visual, but not auditory, threats.
(E) Salay and Huberman (2021) focused on the diversity of neuronal cell types in vLGN. The authors propose a push-pull role of vLGN, demonstrating that activity
in the vLGN population projecting to the SC promotes exploratory behaviors, while activity in the vLGN population projecting to the nucleus reuniens (Re)
increases freezing and anxiety-like behaviors. The mice, along with the bird and neuron silhouettes in this figure, were sourced from https://scidraw.io/.
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over the course of tens of minutes. These

results suggest that vLGNGABA neurons

not only exert rapidmodulations of visually

triggered threat responses but also pro-

mote delayed changes in autonomic

arousal.

Both studies decisively demonstrate

how neuronal circuits involving the vLGN

can adjust visually evoked defensive be-

haviors, and in doing so they also raise

several exciting new questions. For

example, what exact role does the retinal

input to the vLGN play in modulating

behavioral responses according to the vi-

sual conditions? While it is known that the

vLGN and SC are targeted by broadly

different classes of retinal ganglion cells

(Monavarfeshani et al., 2017), further in-

sights into the specific retinal input and

the vLGN’s own visual representations

(see, e.g., Ciftcioglu et al., 2020) will pro-

vide a deeper understanding of how

the vLGN influences activity in down-

stream sensorimotor structures. Given

that the vLGN is also innervated by

numerous non-retinal afferents (Monavar-

feshani et al., 2017), another crucial next

step will be to gain insights into how the

vLGN integrates these input streams to

signal safety or danger based on past

experience. Finally, a comparison to other

inhibitory long-range projections in the

brain will likely generate novel insights

into canonical purposes of signaling with

this circuit motif.

In summary, the two studies by Fratzl

et al. (2021) and Salay and Huberman

(2021) provide a major leap forward in

our understanding of the neural circuits

that contribute to regulating innate

defensive behaviors depending on visual

context and experience. Such a mecha-

nistic understanding of how fear-related

behaviors and anxiety-like states are

adjusted promises to be invaluable in the

long term for the understanding and treat-

ment of anxiety disorders.
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6 Discussion

6.1 Summary

In the above chapters, four manuscripts exploring the influence of various contextual factors on thalamic

visual processing were presented. The first three manuscripts focused on the dorsal lateral geniculate nucleus

(dLGN). Each taking a different perspective on measuring contextual modulation, these manuscripts uniquely

contribute to our knowledge of how feedback signals, active behaviours, and arousal influence visual stimulus

processing. In the final manuscript – a mini-review commenting on two recent publications from other research

groups – the scope was broadened to ask the converse question: how do visual signals influence stereotyped

behaviours? Ultimately, both of these lines of investigation support the notion that vision and action are

intimately linked. Even at the earliest stages of processing, visual signals are formed by, and inform, ongoing

behaviours and behavioural states.

In the first manuscript (Spacek et al., 2022, Chapter 2), the experimentally-manipulated presence of cor-

ticothalamic feedback (CT-FB) and the spontaneous occurrence of locomotion were used to partition neural

activity recorded from the dLGN of awake mice in response to naturalistic movies. This was the first inves-

tigation to probe the effects of CT-FB in the dLGN using naturalistic stimuli and awake animals, which was

important as both of these contextual factors are thought to critical for the operation of the visual thalamocor-

tical circuit. Furthermore, CT-FB was suppressed, rather than activated, in order to preserve its endogenous

effects when intact. With the naturalistic visual stimulation, it was found that CT-FB consistently provided

multiplicative gain to the stimulus responses of dLGN neurons, while decreasing the propensity for stimulus-

triggered bursting. Meanwhile, during stimulation with artificial drifting gratings, there was no consistent

effect on overall firing rate across neurons. These results are interpreted to indicate that the strength of

CT-FB is determined by the spatiotemporal features of the visual stimulus. Interestingly, the overall effects

of locomotion on dLGN responses to naturalistic stimuli was, at a population level, qualitatively similar to

that of CT-FB. However, the effect of locomotion persisted in trials where CT-FB was suppressed, and the

effects of CT-FB and locomotion were independent on a single-neuron level. Altogether, this pattern of results

suggests that CT-FB and locomotion have similar effects on the dLGN as a whole, but that the measured

effects of locomotion in the dLGN are not primarily conferred via CT-FB.

In the second manuscript (Crombie et al., 2024, Chapter 3), rather than locomotion, modulation of dLGN

activity with behavioural states was captured using pupil size dynamics. Importantly, this manuscript moved

beyond describing behavioural state in terms of a dichotomy, and used the multi-scale dynamics of pupil size

as an index for modulations. In almost all dLGN neurons, both bursting and tonic spiking were linked to pupil

size dynamics across a broad range of temporal scales. There was diversity both between neurons from the

same recording, with neurons being most strongly modulated at different timescales, and within the activity

of single neurons, with single neurons coupling to multiple components of pupil dynamics. This pattern of

coupling supports the hypothesis that a single quantity, such as pupil size alone, is insufficient to provide a

complete picture of arousal-related dLGN activity modulations, and may be only one aspect of a larger set of
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modulations. Furthermore, although behaviours such as locomotion and eye movements were found to induce

changes in dLGN activity, and were themselves linked to pupil size dynamics, neither fully accounted for

the pupil-linked coupling, suggesting that, although internal states and active behaviours are linked, sensory

systems are modulated by internal states beyond the direct effects of overt behaviours. Finally, this work

showed that states defined by pupil dynamics across all temporal scales measured were linked to differences

in sensory encoding in the dLGN. Together, these results challenge the notion that modulations in sensory

processing are best described by mutually exclusive states, and support the interpretation that a multitude of

behaviour- and state-related factors simultaneously exert their influence on sensory neurons.

The last research article (Schmors et al., 2023, Chapter 4) explored the use of a unified spline-GLM

modelling framework to capture the effects of visual stimulation, CT-FB, and behavioural state on dLGN

activity. The spatiotemporal receptive fields (RFs) recovered by the model matched well with empirically-

determined stimulus responses in the dLGN, but the model also uncovered a large diversity in the amount of

neural activity that could be explained by the stimulus alone. Specifically, for those neurons where the model

performed poorly using the RF alone, allowing for additive contributions of CT-FB, locomotion, and pupil

size greatly improved how well the model captured spiking activity, with the polarity of the kernels for these

variables matching what was expected from the literature. With regards to CT-FB, it was found that the

magnitude and temporal profile of its effects was strongly dependent on the stimulus context, with a stronger,

but more temporally-restricted influence in the absence of a naturalistic stimulus. Counter-intuitively, the

model predicted that stimulus decoding from the activity of single neurons would be less accurate with CT-

FB left intact. These result nicely compliment those obtained in Spacek et al. (2022, Chapter 2), where the

strongest effect of CT-FB was measured in periods where visual stimulation was absent, and the presence of CT-

FB was associated with higher response variability which could underlie worse stimulus decoding performance.

Altogether, the model demonstrated good correspondence with results measured directly from the data, thus

advancing a conceptual framework for understanding visual processing in context, and further showed how

this class of model can generate predictions about dynamic dLGN circuit functions.

In the final enclosed manuscript (Crombie and Busse, 2021, Chapter 5), two recent studies were reviewed,

both converging on a novel role for the thalamic ventral lateral geniculate nucleus (vLGN) in the modulation

of behavioural responses to visual threat. While the responses themselves are thought to be orchestrated in the

superior colliculus (SC), these recent publications suggest that the vLGN in provides a contextual signal to the

SC – namely, safety signal that reduces the probability of performing defensive actions when confronted with

a potentially threatening stimulus. Interestingly, this modulation was limited to responses to visual threats,

raising many questions about the contributions of the retinorecipient vLGN to visual processing overall, and

its role in the coordination of other behaviours related to visual processing.
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6.2 Modulatory mechanisms

Visual signals

Arousal and active behaviours such as locomotion are often associated with relative pupil dilation (Erisken

et al., 2014; Vinck et al., 2015), and, while this provides a useful external marker for internal state, it also

provides a confound when working in the visual system. Indeed, the canonical purpose of pupil size changes is

to control the amount of light reaching the visual system, which could influence downstream activity and be

mistakenly attributed to internal factors. To what degree are the observed modulations caused by increased

light influx onto the retina versus internal signals? Spacek et al. (2022, Chapter 2) and Crombie et al. (2024,

Chapter 3) observed higher firing rates and less bursting (indicating relative membrane depolarization) in the

dLGN during arousal, and, likewise, Schmors et al. (2023, Chapter 4) found that pupil size and locomotion

had a positive impact on dLGN firing rates. A skeptical account could argue that when the pupil is larger

during arousal, more light hits the retina, providing more feed-forward excitatory drive to ON cells of the

dLGN. Although not all dLGN cells have ON responses, ON responses dominate output of the awake mouse

retina (only 20% of RGCs are OFF responding; Boissonnet et al., 2023), the majority of mouse dLGN neurons

with spatially restricted RFs are ON responding (67%; Grubb and Thompson, 2003), and up to 40% of mouse

dLGN neurons increase their firing rate in response to full-field light increments (Brown et al., 2010).

However, several arguments against a purely visual cause of state-related modulations arise. The presence

of similar modulations in the somatosensory system (Reimer et al., 2014; Petty et al., 2021) suggests that

such modulations are non-visual in origin. However, suppressive effects of arousal have been observed in the

auditory system (Zhou et al., 2014; McGinley et al., 2015a; Williamson et al., 2015; Shimaoka et al., 2018),

suggesting that arousal-related modulations are not uniformly excitatory, and thus the excitation observed in

the visual system could still be of retinal origin. While Spacek et al. (2022, Chapter 2) did not control for

increased feed-forward retinal drive due to dilated pupils during locomotion, an earlier publication did. By fully

dilating the pupils with atropine prior to measuring modulations, Erisken et al. (2014) revealed that dLGN

modulation related to locomotion are almost identical in the absence of the accompanying pupil size changes.

Furthermore, Crombie et al. (2024, Chapter 3) measured modulations related to pupil size dynamics that were

not accounted for by pupil size per se, and, critically, revealed that these pupil-linked dLGN modulations

had the same general characteristics even with sources of illumination removed from the recording chamber.

Together, these results support the interpretation that a significant component of arousal-related modulation

in the visual system is derived from internal, non-visual sources. But is it productive to try to exclude the

effects of feed-forward drive from measurements of modulation in the visual system?

A more complete perspective emphasizes the interactions between visual and non-visual components of

behavioural states, and even a functional role for the link between pupil size changes and behavioural states.

The visual system has exquisite sensitivity down to the single photon level (Rieke and Baylor, 1998; Tinsley

et al., 2016), and therefore the effect of light cannot be completely ruled out with typical experimental setups.

More importantly, light is ubiquitously present for most mammals, and is indeed a prerequisite for visual
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perception. Additionally, it has been hypothesized that pupil size changes may occur purposefully to change

the way light impinges on the retina in order to optimize certain visual-perceptual functions based on cognitive

demands (Ebitz and Moore, 2019; Mathôt, 2020). While it remains to be seen how such mechanisms are relevant

in afoveate mice, these considerations underscore a fundamental role for pupil-linked changes to feed-forward

visual signals in arousal. Thus, in studies concerned with visual stimulus encoding, such as those enclosed

in the above chapters, it is more productive to discuss the possible interactions between visual stimuli and

behavioural states.

For example, it has recently been shown that pupil-indexed arousal is linked to a shift in the spectral

sensitivity of mouse V1, with increased relative sensitivity to the UV channel of naturalistic dichromatic

stimuli (Franke et al., 2022). This relative shift in spectral sensitivity most likely depends on increased feed-

forward drive from the retina, and could be recapitulated by artificial pupil dilation or changes in ambient

illumination at fixed pupil sizes (Franke et al., 2022). Thus, the pupil size changes that co-occur with arousal

and locomotion may be adaptive, priming the visual system towards detection of aerial objects which are

best detected in the UV channel (Franke et al., 2022). Interactions between changes in feed-forward drive

and behavioural modulations have also been observed in relation to locomotion (Pakan et al., 2016), head

movements (Bouvier et al., 2020), and eye movements (Parker et al., 2023). Therefore, while pupil-linked

changes in retinal illumination are likely not the driving factor in broad modulations such as arousal-linked

changes in firing rate, there is a definite role for changes in luminance and feed-forward signalling in the

state-related modulation of the visual system.

Neuromodulatory signals

Although the interactions between visual factors like illumination and behavioural state are just starting to be

investigated, it has long been clear that neuromodulators play a large role in the determination of state-related

brain activity. Acetylcholine (ACh) and norepinepherine (NE) have historically been linked to the transition

from sleep to wakefulness in thalamocortical state (Moruzzi and Magoun, 1949; Steriade and McCarley, 1990),

and more recently to locomotion (Polack et al., 2013; Fu et al., 2014; Lee et al., 2014; Nelson and Mooney,

2016; Reimer et al., 2016) and pupil size increases during wakefulness (Rajkowski et al., 1994; Aston-Jones and

Cohen, 2005; Joshi et al., 2016; Reimer et al., 2016; Larsen and Waters, 2018). Application of ACh to dLGN

neurons in vitro results in both rapid depolarization via nicotinic ion channels, and prolonged depolarization via

muscarinic receptor-mediated block of potassium leak currents, capable of switching neurons from burst to tonic

mode (McCormick, 1992). Similarly, NE acts via α1 adrenergic receptors to blocks potassium leak currents

resulting in a slow depolarization, and also enhances the hyperpolarization-activated cation current, both of

which contribute to a reduction in bursting (McCormick, 1992). Both NE and ACh are therefore potential

mechanism underlying the locomotion-related increase of firing rates and reduction of bursting (Spacek et al.,

2022, Chapter 2), and switches from burst to tonic firing during pupil dilation (Crombie et al., 2024, Chapter 3)

in dLGN neurons.

However, the effects of these neuromodulators on dLGN neurons in vivo might be complicated due to
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simultaneous alterations in the activity of other circuit components such as V1-L6 or the TRN. As an illus-

trative example: NE has also been shown to depolarize TRN neurons (McCormick, 1992), which could lead

to an increased tonic inhibition on dLGN neurons, counteracting the direct effects of NE on these neurons.

Fortunately, activation of the LC-NE in vivo does indeed result in increased spontaneous firing rates and

decreased bursting in the dLGN (Holdefer and Jacobs, 1994). Similarly, activation of either the BF or PPN

causes depolarization and a burst-to-tonic switch in dLGN neurons (Hu et al., 1989; Lu et al., 1993; Goard

and Dan, 2009). These in vivo observations further underscore a role for the BF-ACh, PPN-ACh, and LC-NE

systems in the findings of Spacek et al. (2022, Chapter 2), Crombie et al. (2024, Chapter 3), and Schmors

et al. (2023, Chapter 4), but precise mechanisms at play during locomotion and pupil size changes remains

unclear. While the cortex and TRN are innervated by cholinergic fibers from the BF, the dLGN only directly

receives ACh from the PPN (Huerta-Ocampo et al., 2020; Sokhadze et al., 2022), which, unlike the BF, has not

been linked to the pupil size signal. Furthermore, in vivo, dLGN neurons are likely subject to combinations of

these modulatory chemicals, which can have non-linear interactions (Yang et al., 2015). These considerations

underscore the need for further investigation to achieve a mechanistic understanding of modulation in the

geniculocortical circuit.

Although the pupil size is a useful external signal because of its broad correlation to neuromodulatory

activity, making specific inferences about the mechanisms underlying pupil-linked modulation is difficult due

to the wide variety of factors can contribute to changes in pupil size (Joshi and Gold, 2020; Larsen and Waters,

2018). Due to prominent reports of the correlation between pupil size and LC-NE activity (Rajkowski et al.,

1994; Aston-Jones and Cohen, 2005), it is commonly assumed that pupil size provides a direct readout of

LC-NE activity, but this is likely an oversimplification. While pupil size is correlated to both LC-NE and

BF-ACh activity (Reimer et al., 2016; Collins et al., 2023), pupil linked LC-NE activity precedes pupil linked

BF-ACh activity (Reimer et al., 2016), and BF neurons are directly activated by LC-NE axons (Jones, 2004),

thus BF-pupil links could simply be a byproduct of LC-pupil coupling. However, LC-NE activity in the visual

cortex is only transiently linked to pupil dilation, and appears to track faster pupil size fluctuations, while BF-

ACh activity tracks sustained pupil dilation, especially during locomotion (Reimer et al., 2016). This suggests

that dLGN activity modulations from Crombie et al. (2024, Chapter 3) linked to fast pupil size dynamics

may be linked to LC-NE input, while those linked to slower pupil dynamics may be more driven by BF-ACh

activity. Similarly, activation of the serotonergic dorsal raphe (DR-5HT) causes pupil dilation (Cazettes et al.,

2021), but this could also involve the LC-NE system due to reciprocal connectivity between the DR and LC

(Kim et al., 2004), and, confusingly, it has been found that 5HT concentration in the dLGN is anti-correlated

to pupil size (Reggiani et al., 2022). In addition, at least two “non-modulatory” nuclei have been identified

that can control pupil size and receive top-down cognitive signals (Joshi and Gold, 2020). One of these is the

superior colliculus, which projects to a sub-section of the dLGN in mice (Kerschensteiner and Guido, 2017),

and could thus also simultaneously influence pupil size (Joshi et al., 2016) and dLGN activity. Thus, while

pupil size changes are a useful proxy for a certain set of internal signals, they do not provide a direct readout

of LC activity (Megemont et al., 2022), nor any other modulatory system.
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Behavioural signals

Certain behaviours, such as eye movements, can have direct effects on sensory neurons, often involving the

cancellation of inputs caused by self-motion (Crapse and Sommer, 2008). Mice use such saccadic eye movements

to explore visual scenes (Zahler et al., 2021; Meyer et al., 2020; Parker et al., 2023). In Crombie et al. (2024,

Chapter 3) it was found that saccades were linked to arousal, tending to occur during pupil dilation, but caused

a modulation of firing in dLGN neurons that was largely independent of the modulation linked to pupil size

dynamics, suggesting a different source. In contrast to arousal, which is often associated with increased neural

activity, saccade-related modulation in the visual system is typically described by a peri-saccadic suppression

that is thought to limit processing of the visual motion induced by saccades (Wurtz, 2008). Detection of visual

motion by circuits in the retina can suppress RGC output (Idrees et al., 2020, 2022), which could also result

in a reduction of dLGN activity. In the mouse dLGN, Crombie et al. (2024, Chapter 3) found a cluster of

neurons responding with a biphasic modulation – a brief period of suppression embedded within an overall

enhancement of activity – consistent with effects measured in the primate LGN (Reppas et al., 2002), and

suggesting the presence of a suppressive mechanism for some neurons on sub-second timescales.

However, Crombie et al. (2024, Chapter 3) also demonstrated that the dominant response to saccades in

dLGN neurons is a firing rate increase – what can account for this activation? It has been theorized that

saccades cause a release from adaptation that increases firing rates and helps decorrelate incoming visual

signals (Samonds et al., 2018). Consistent with this theory, Parker et al. (2023) recently found that the

rapid, often positive, responses of V1 neurons to eye movements were replaced by an overall suppression in

a dark environment where visual input is uniform across the visual field. This mechanism is consistent with

a facilitative effect of saccades on visual neurons that is independent of arousal, but it remains to be seen if

saccadic facilitation in the dLGN is eliminated in darkness as it is in V1. The mouse dLGN also receives input

from the parabigeminal nucleus (Sokhadze et al., 2022), which has been directly linked to eye movements in

cats (Cui and Malpeli, 2003; Ma et al., 2013). Although it is unclear whether this projection operates via

glutamate or ACh (Sokhadze et al., 2022), both excite dLGN neurons (McCormick, 1992), and are therefore

consistent with the peri-saccadic facilitation observed. Notably, either of these proposed mechanisms would

be independent of the modulatory inputs typically associated with generalized arousal.

Exploratory behaviours such as saccades often co-occur with other active behaviours like locomotion (Niell

and Stryker, 2010; Bennett et al., 2013), thus presenting a potential confound when interpreting modulations

linked to one or the other. This could be a factor for simple firing rate changes, but is especially relevant for

measures of visual responses such as response reliability across trials, as decreased response reliability during

locomotion could reflect changes in input caused by eye movement rather than changing responses to a consis-

tent input. In Spacek et al. (2022, Chapter 2) it was confirmed that trials with locomotion were accompanied

by more eye movement, and that the change in eye movement was predictive of the decrease in response

reliability during locomotion. However, the amount of variability explained by the change in eye movement

was relatively small, indicating that locomotion itself still contributes uniquely to the increase in response

variability. Similarly, locomotion and pupil size, are highly correlated – with pupil dilation almost invariably
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accompanying bouts of locomotion – but have differing effects on visual sensory areas. For example, neurons

in the visual cortex have more depolarized membrane potential and higher firing rates during locomotion, but

not pupil-indexed arousal in the absence of locomotion (Reimer et al., 2014; Vinck et al., 2015). In the dLGN,

Spacek et al. (2022, Chapter 2) observed a decrease in response reliability during locomotion, but not during

pupil dilation. This is consistent with results from Crombie et al. (2024, Chapter 3), where stimulus decoding

accuracy was similarly high between states defined by pupil size dynamics. Thus, while pupil-linked arousal

may be associated with increased tonic firing in the dLGN, locomotion may specifically induce an increase in

response variability.

Information about locomotion speed could be indirectly conveyed to the dLGN via the locomotion-related

activity of the BF-ACh system in the cortex (Lee et al., 2014; Nelson and Mooney, 2016; Reimer et al., 2016;

Lohani et al., 2022; Neyhart et al., 2023). Interestingly, however, increased response reliability in V1 was

observed both for sub-threshold responses during locomotion (Bennett et al., 2013) and spiking responses

during BF stimulation (Goard and Dan, 2009). This latter study in anaesthetized animals also related BF

stimulation to increased response reliability in the dLGN (Goard and Dan, 2009), but investigations in awake

animals have found the opposite during locomotion in both the auditory thalamus (MGN; McGinley et al.,

2015a) and dLGN (Spacek et al., 2022, Chapter 2). The differing results could thus reflect a more variable

behavioural drive in awake animals. Furthermore, the independence of decreased thalamic response reliability

from CT-FB (Spacek et al., 2022, Chapter 2) argues against an inheritance of this property from locomotion-

or BF-related cortical modulation of response reliability.

The pattern of results outlined above suggests that a modulatory mechanism explaining increased response

variability during locomotion should be independent of saccadic modulation and pupil-indexed arousal, and

act on the dLGN independently of the cortex. A further observation that dLGN neurons have a variety of

specific locomotion speed tuning profiles (Erisken et al., 2014; Roth et al., 2016) indicates that locomotion-

related modulation should encode fine-grained locomotion speed, rather than a binary “on” or “off” state-like

signal. This run speed tuning could also directly explain the increased response variability during locomotion,

as locomotion speed itself is highly variable within bouts of movement (Crombie et al., 2024, Chapter 3).

While the dLGN does not directly receive locomotion-related BF input (Sokhadze et al., 2022), it does receive

cholinergic input from the PPN (Sokhadze et al., 2022), which is found within the “midbrain locomotor

region” (MLR; Lee et al., 2014; Leiras et al., 2022). The MLR is upstream to the BF, and contains neurons

whose activity is very tightly correlated to locomotion speed (Lee et al., 2014; Caggiano et al., 2018; Josset

et al., 2018). Thus, the PPN-dLGN projection may provide a modulatory channel that specifically confers

locomotion speed tuning and increased response variability during locomotion bouts to the dLGN. One caveat

to this proposed mechanism, however, is that the work linking PPN activity to fine-grained locomotor control

targeted glutamatergic neurons of the PPN, and, while they are closely associated to cholinergic neurons, it

is currently unknown how much locomotion-related activity is conveyed in the ascending projections of PPN-

ACh neurons (Mena-Segovia and Bolam, 2017; Leiras et al., 2022). Nonetheless, the PPN-dLGN projection

may provide a modulatory channel that specifically confers increased response variability to the dLGN during
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locomotion, independently of saccades, pupil-indexed arousal, and the cortical actions of the BF-ACh system.

Outlook

If any one thing is clear from the discussion above, it is that, although pupil size, locomotion, and eye

movements may be correlated, several different mechanisms are consistent with the modulations in the dLGN

related to each. It is therefore essential for future research to disentangle the potential contributions of each

of the sources implicated above. These investigations should be carried out by manipulating modulatory

structures in vivo, so as to capture the contributions of the full thalamocortical circuit (e.g. Rodenkirch et al.,

2019). However, there is a lack of precise quantitative knowledge of the relationship between endogenous

neuromodulatory activity patterns and ongoing behaviours, which is starting to be addressed for the cortex

(Reimer et al., 2016; Lohani et al., 2022; Zhu et al., 2023; Collins et al., 2023), but remains unaddressed

in the dLGN. Therefore, direct imaging of modulatory projections to the dLGN (e.g. Reggiani et al., 2022)

is needed to relate the activity of distinct modulatory projections to behavioural variables. However, in

combination with this approach, care should be taken to extract the relevant components of these behavioural

variables. A decomposition of behavioural signals, as was done with with pupil size dynamics in Crombie et al.

(2024, Chapter 3), will help to disentangle independent events that could be linked to different mechanisms.

Furthermore, compensatory and gaze-shifting eye movements (Meyer et al., 2020) have been found to differently

effect the activity of visual neurons (Parker et al., 2023), as well as saccade direction (Miura and Scanziani,

2022). Similarly, there is the potential for different modulatory contributions from the PPN based on the

specific type of locomotion (Caggiano et al., 2018; Josset et al., 2018). Lastly, it will be necessary to account

for diverse effects of modulatory mechanisms across the population of dLGN neurons. In order to measure

how single dLGN neurons are affected by specific modulatory channels, the activity of functional clusters of

modulatory boutons could be used as predictors in the spline-GLM modelling framework of Schmors et al.

(2023, Chapter 4). Regardless of the mechanism, however, the presence of multiple influences on the activity

of dLGN neurons is already suggestive that multiple functions impinge on the dLGN, each of which may have

distinct effects on visual stimulus encoding.

6.3 Visual processing

Response gain and visual attention

Corticothalamic feedback (CT-FB) in the dLGN has been linked to functions such as attention via increased

gain of visual responses (McAlonan et al., 2008; Béhuret et al., 2015). Indeed, Spacek et al. (2022, Chapter 2)

robustly linked CT-FB during naturalistic stimulus viewing to multiplicative gain increases in dLGN neurons.

As discussed in Spacek et al. (2022, Chapter 2) and Schmors et al. (2023, Chapter 4), one explanation for gain

modulation with CT-FB intact could be the increased presence synaptic noise. Indeed, rapid stochastic changes

in background synaptic input can enhance the detection of small inputs (Hô and Destexhe, 2000; Stacey and

Durand, 2001; Shu et al., 2003), an effect which has been shown explicitly in dLGN neurons (Wolfart et al.,
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2005). However, the increased presence of synaptic noise has also been linked to decreased gain; reducing spike

probability (Wolfart et al., 2005) and response amplitudes (Chance et al., 2002) for above-threshold stimuli.

The confusion comes from two distinct notions of gain: the first refers to the slope of the spike probability

function, and the second refers to the slope of the spiking response amplitude. Altogether, the pattern of

effects linked to synaptic noise in these other studies would, in the context of Spacek et al. (2022, Chapter 2),

predict the emergence of novel peaks in the PSTH, while decreasing the amplitude of the larger response peaks.

However, CT-FB can confer gain increases to dLGN neurons via mechanisms other than stochastic membrane

potential fluctuations. Synaptic noise can cause stochastic activation of T-type calcium channels, resulting

in high frequency burst-like spiking (Wolfart et al., 2005; Béhuret et al., 2015), which is consistent with the

response gain measured in Spacek et al. (2022, Chapter 2). Cortical feedback can also produce longer-lasting

depolarization through recruitment of NMDAR-dependent “plateau potentials” (Augustinaite et al., 2014),

and such tonic depolarization has been suggested to be a requisite for gain increases elsewhere in the visual

system (Cardin et al., 2008). Thus CT-FB is still well positioned to control response gain in the dLGN in a

manner consistent with Spacek et al. (2022, Chapter 2); increasing the detection of sub-threshold stimuli via

synamptic noise, and, when combined with non-linear properties of thalamocortical cell membranes, increasing

responses to above-threshold stimuli.

It is likely that cortical feedback does not globally increase the gain for all stimulus channels passing

through the dLGN, but provides more targeted gain adjustments. Firstly, CT-FB is retinotopically organized,

such that V1-L6 neurons anatomically target areas of the dLGN aligned with their own spatial RFs (Tsumoto

et al., 1978; Born et al., 2021), conferring a spatially organized influence. In addition, the functional influence

of CT-FB has been related to the stimulus tuning properties of V1-L6 neurons, such that dLGN neurons

with spatial RFs aligned parallel or perpendicular to the orientation preference of the V1-L6 neuron are most

strongly affected (Wang et al., 2006, 2018). Evidence from the macaque also shows that V1-L6 neurons are

functionally organized into three distinct groups, following the organization of the monkey visual system into

three parallel streams roughly responsible for transmitting fast spatially-imprecise, spatially detailed, and

chromatic information respectively (Briggs and Usrey, 2009). However, the separation of visual processing

streams through the mouse dLGN as in monkeys and cats is unclear (Piscopo et al., 2013; Denman and

Contreras, 2016; Kerschensteiner and Guido, 2017; Seabrook et al., 2017). While it is likely that mouse V1-L6

neurons inherit tuning properties of dLGN neurons via thalamocortical axon collaterals terminating in L6

(Sherman and Guillery, 2004; Ji et al., 2016), but it is unknown if these L6 neurons preferentially project back

to dLGN cells with similar tuning properties. Finally, shifts in the balance of excitatory versus inhibitory

synaptic noise can shift neuronal response curves bidirectionally in a manner consistent with flexible gain

modulation of firing rates (Wolfart et al., 2005). This is interesting given that short-term plasticity in the

excitatory-inhibitory balance of the direct and indirect CT-FB pathways depends on the activation strength

of cortical L6 neurons (Crandall et al., 2015). The implication is that the activation level of a V1-L6 neuron

could determine whether the gain conferred by CT-FB is divisive or multiplicative for a given input (Results

released at the time of writing indicate this is indeed the case: Dimwamwa et al., 2023).
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Although flexible gain adjustment mediated by CT-FB is a strong candidate mechanism for visual attention

(Béhuret et al., 2015), attention is ultimately defined by improved behavioural performance in a task, and thus

the effects of CT-FB need to be linked to behaviour. Behavioural improvement associated with attention

has been thoroughly linked to feature-specific gain adjustment elsewhere in the visual system (Moran and

Desimone, 1985; Spitzer et al., 1988; Treue and Trujillo, 1999; Reynolds and Heeger, 2009), but there has been

little investigation of gain control in the dLGN via CT-FB in task performance. Behavioural improvements in a

cross-modal attention paradigm have been linked to gain changes in the dLGN-V1 circuit, with the involvement

of the TRN implicating CT-FB (McAlonan et al., 2006). While this kind of cross-modal attention was found

to involve cortical input to the TRN originating from the prefrontal cortex rather than V1 (Wimmer et al.,

2015), gain control in the dLGN and TRN has also been linked to spatial attention in a purely visual task

(McAlonan et al., 2008), which could involve to CT-FB from V1.

Consistent with this more targeted role for CT-FB from primary sensory cortices to the thalamus, Guo

et al. (2017) found that CT-FB manipulation could influence behaviour in an auditory go/no-go task where

mice had to discriminate between pure tone frequencies. Activation of L6 of primary auditory cortex (A1)

>100 ms prior to sound presentation improved hit rates, but also increased false alarms for foil stimuli that

were similar to the target (Guo et al., 2017). This effect was reversed for A1-L6 activation <100 ms prior to

sound presentation. The behavioural effects were accompanied by broad gain modulations influencing stimulus

selectivity in the MGN and auditory TRN (Guo et al., 2017). This study provides strong evidence that CT-

FB can modulate behaviour and thalamic gain in a manner consistent with a role in attention, but highlights

several open questions for future research. For example, what is the structure of L6 population activity during

directed attention? And would the suppression of endogenous L6 activity as in Spacek et al. (2022, Chapter 2)

result in more targeted effects? Lastly, frequency tuning in the auditory system can be considered analogous

to spatial tuning in visual system in that this property is inherited from the spatial organization of peripheral

sensory neurons, but it is known that V1-L6 neurons can have selectivity for more complex stimulus features

(Vélez-Fort et al., 2014; Augustinaite and Kuhn, 2020). So, is the recruitment of CT-FB even more specific

in tasks involving complex naturalistic stimuli?

Input selection and arousal

While the dLGN activity changes associated with CT-FB are thought to reflect targeted modulation, arousal-

related modulations are typically thought to reflect a global signal, although there are indications that the

neuromodultory systems involved in arousal can have functional specificity on stimulus processing. The global

view stems from observations that the neuromodulatory systems involved, such as the ACh system, have

coordinated brain-wide activity (Buzsaki et al., 1988; Lohani et al., 2022; Collins et al., 2023), and locomotion

and pupil size modulate activity globally (Stringer et al., 2019; Musall et al., 2019; Clancy et al., 2019; Shimaoka

et al., 2018). However, there are principled differences in how sensory neurons are influenced by these variables,

suggestive of targeted functional consequences for the encoding of visual features. While Crombie et al. (2024,

Chapter 3) and Schmors et al. (2023, Chapter 4) found variability in the degree to which dLGN neurons couple
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to variables like pupil size, other authors focused on stimulus-tuning properties that might help explain this

variability. Imaging the activity of RGC axon terminals in the dLGN, Liang et al. (2020) found that arousal

has diverse effects on RGC boutons in the dLGN depending on their stimulus tuning properties and the visual

stimulation context. Specifically, suppression during arousal was especially strong for all response types during

visual stimulation with low spatial frequency, whereas boutons with spatial RFs in the centre of the visual field

had enhanced responses to high spatial frequency stimuli (Liang et al., 2020). These input modulations could

be a factor in the preferential effects of locomotion on dLGN neurons preferring high spatial frequency spatial

stimuli (Aydın et al., 2018). More generally, the presence of arousal-related modulation at the pre-synaptic

level suggests that, unlike CT-FB, which may operate at the population level by manipulating the gain certain

of dLGN neurons over others(Béhuret et al., 2015), arousal-related neuromodulators may achieve specificity

by changing the RFs of individual dLGN neurons via input selection.

How would a supposedly global system achieve such fine-grained adjustment? Specificity could be conferred

anatomically, by neuromodulatory systems that form synapses in the dLGN (e.g. NE and 5HT: Papadopoulos

and Parnavelas, 1990) rather than volume transmission as observed in the cortex (c.f. Neyhart et al., 2023,

for BF-ACh transmission in cortex). Serotonin (5HT), has been implicated in pre-synaptic modulation of

retinogeniculate transmission (Chen and Regehr, 2003), but it was found to act on a different set of RGC

terminals than arousal, and dLGN 5TH levels in vivo were anti-correlated to pupil size (Reggiani et al.,

2022). Alternatively, ACh is particularly interesting in this respect due to its correlation with arousal, and

the formation of synapses participating in the “glomeruli” or “synaptic triads” surrounding retinal synapses

onto dLGN neurons (Sherman, 2004). In this position, ACh input could simultaneously depolarize the post-

synaptic membrane and reduce inhibition from interneurons in a localized dendritic region surrounding RGC

input synapses (McCormick and Pape, 1988; Sherman, 2004). Indeed, local interneurons – which are not found

in other sensory thalamic nuclei but comprise 6% of the neural population in the dLGN (Evangelio et al.,

2018) – have recently been proposed to play a role in dLGN input selectivity by regulating their inhibitory

contributions to synaptic triads (Djama et al., 2024). While this mechanism does not explain the pre-synaptic

modulation observed in Liang et al. (2020), it remains an under-explored fact that ACh receptors have been

found on mammalian retinal terminals (Prusky and Cynader, 1988), and ACh has been found to have inhibitory

pre-synaptic effects in other neural systems (e.g. Valentino and Dingledine, 1981). In combination with the

above, RGC input to dLGN principal cells is highly convergent (Morgan et al., 2016; Rompani et al., 2017),

but functionally organized (Liang et al., 2018), such that localized modulation could influence a targeted group

of input features. Furthermore, many RGC inputs make, on average, relatively small functional contributions

to dLGN activity (Rosón et al., 2019). This raises the question: why would neurons in the mouse dLGN would

retain seemingly non-functional connections (Litvina and Chen, 2017)? The answer might be: to provide a

reservoir of response modes that can be unmasked by certain behavioural states.
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Bursting and learning

Taking a broader perspective, it is also likely that modulations associated with behavioural state, such as the

prominence of thalamic bursting, have functions beyond online stimulus encoding. Signals having to do with

learning, memory consolidation, and retrieval may also be embedded in the activity patterns we observe, but

have yet to be studied from the perspective of the sensory thalamus. While plasticity in the visual system

was considered to be a predominantly cortical phenomenon, recent results have demonstrated substantial

experience-dependent plasticity of retinogeniculate transmission in the dLGN in adult animals (Moore et al.,

2011; Jaepel et al., 2017; Rose and Bonhoeffer, 2018).

Thalamocortical oscillatory states occurring during sleep such as delta waves and spindles are thought to

orchestrate the plasticity underlying memory consolidation (Steriade, 2001, 2006; Diekelmann and Born, 2010;

Rasch and Born, 2013; Girardeau and Lopes-Dos-Santos, 2021). The generation mechanism for these rhythms

involves low-threshold bursting in thalamic neurons (Steriade et al., 1993), which has also been hypothesized

to contribute to plasticity in these neurons (Crunelli et al., 2018). Thus, in addition to a potential role in

stimulus encoding and corticothalamic rhythm generation, bursting may also contribute to learning. Learning

during sleep has also been linked to a third oscillatory activity pattern: hippocampal sharp wave ripples,

which co-occur with delta waves and spindles (Diekelmann and Born, 2010; Rasch and Born, 2013; Girardeau

and Lopes-Dos-Santos, 2021). Sharp wave ripples are thought to promote consolidation of previously learned

stimuli by driving the reactivation of activity patterns in sensory cortex (Ji and Wilson, 2007; O’Neill et al.,

2010), but activity patterns in the sensory thalamus during these events have not been investigated.

These learning-related patterns of oscillatory activity and cortical reactivation also occur during wakeful-

ness. In humans, periods of task disengagement as short as a few seconds, during which the consolidation-

related oscillations described above were observed, are associated with facilitated learning and memory re-

tention (Wamsley, 2022). In other animals, periods of wakeful quiescence surrounding exploration, surprising

rewards, salient stimuli, and novel environments involve the occurrence of sharp wave ripples that are thought

to promote functions such as memory consolidation and retrieval (Carr et al., 2011). Sharp wave ripples

have also been directly associated with periods of low pupil-indexed arousal during wakefulness, and the co-

occurrence of low frequency oscillations in the thalamocortical system (McGinley et al., 2015b). Indeed, a

distinct low-frequency 4 Hz thalamocortical oscillation in mice that occurs during low arousal (Nestvogel and

McCormick, 2022) and disengagement from a task (Jacobs et al., 2020) is a putative homologue of the alpha

oscillation (another learning-related oscillatory pattern linked to quiet wakefulness; Crunelli et al., 2018). This

“alpha oscillation” has a global organization suggestive of system-level functions such as memory consolidation

(Ye et al., 2023), and is strongly linked to rhythmic bursting in the visual thalamus (Nestvogel and McCormick,

2022).

Although clearly not all bursting in the dLGN during wakefulness is rhythmic – stimulus-driven bursts were

prominent in Spacek et al. (2022, Chapter 2), for example – the clear presence of 4 Hz rhythmicity in awake

dLGN bursting during periods of low arousal (Nestvogel and McCormick, 2022; Crombie et al., 2024) strongly

suggests that it plays a role in the processes discussed above. It was recently reported that thalamic relay
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nuclei decrease their activity surrounding sharp wave ripples and reactivation of neural ensembles in sensory

cortices (Chambers et al., 2022; Jeong et al., 2023). This was interpreted as a decoupling of cortical ensembles

from feed-forward sensory inputs to allow for memory processing (Chambers et al., 2022; Jeong et al., 2023),

but such a view suggests a lack of coordination between cortical and thalamic plasticity. On the other hand,

while neither of these studies explicitly measured thalamic bursting, decreases in overall thalamic activity

strongly suggests that bursts are occurring. Thalamic bursting is driven by a whole-cell calcium signal with

the strong potential to influence plasticity mechanisms (Leresche and Lambert, 2017; Crunelli et al., 2018). In

conclusion, thalamic bursting during wakefulness is linked to periods where “online consolidation” is thought

to occur, and provides a strong intracellular signal for plasticity to occur.

Outlook

While the overall effect of behavioural and internal states on visual encoding remains unclear, changes to the

receptive fields in the dLGN should serve to meet the information processing requirements of the animal’s

behavioural context. Therefore, experimenter control of the behavioural context in the form of a task is

essential. Specifically, a task could be used in conjunction with CT-FB manipulation to probe the role feedback

in task-relevant stimulus encoding (e.g. Guo et al., 2017). The learning phase of a task could also be used to

assess the role of bursting during offline periods in learning. It could be predicted that dLGN bursting should

be more prevalent during early phases of learning, which are related to shifts in the neural representation of

the visual stimuli (Jurjut et al., 2017). Additionally, shifts in stimulus-reward contingencies could be linked to

subsequent bursting in dLGN neurons representing these stimulus features. Here, ethological factors need to be

considered. Because mice use vision in naturalistic behaviours (Yilmaz and Meister, 2013; Hoy et al., 2016), it

is likely that tasks involving these behaviours and stimuli will best engage the circuitry involved in modulating

dLGN stimulus representations. Naturalistic stimuli also differently engage retinal circuits (Karamanlis et al.,

2022; Goldin et al., 2022) and visual cortex (e.g. Vinje and Gallant, 2000), altering feed-forward and feedback

signalling compared to artificial stimuli, making naturalistic stimulation essential to probe modulations of

stimulus encoding (Simoncelli and Olshausen, 2001).

The use of non-parametric stimuli can pose a technical challenge for the analysis of stimulus tuning and

receptive fields. Schmors et al. (2023, Chapter 4) showed how the use of a spline-GLM can overcome some

of these challenges, and this model could be extended to assess RF changes as a function of task context and

behavioural state. For example, interaction terms between the stimulus and CT-FB could be introduced, such

that CT-FB has spatially extended stimulus-dependent effects (Schmors et al., 2023, Chapter 4). Similarly,

for behavioural state effects, the RF itself could be modelled as an interaction between the stimulus input and

a full spatiotemporal modulation kernel, such that effective changes in the RF as a function of behavioural

states can be captured. A different approach might be to model the RF as a combination of input modes

detected via spike-triggered stimulus clustering (Shah et al., 2020). This approach has been shown to improve

response prediction to naturalistic stimuli in the visual system (Shah et al., 2020), and mechanistically matches

the structure of RGC input to and neuromodulation of dLGN neurons discussed above. In conjunction with
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behavioural state monitoring, this approach would reveal potential differences in spike-eliciting stimulus char-

acteristics across behavioural states. These types of changes can be expected given that Crombie et al. (2024,

Chapter 3), by partitioning neural activity by pupil-defined states, found that stimulus decoding performance

is penalized across states, suggesting an arousal-dependent shift in the way dLGN neurons encode visual in-

formation. As in Liang et al. (2020), where it was found that retinal inputs representing nasotemporal motion

were suppressed during high arousal where locomotion is likely to occur, modelled RF differences should be

analyzed under the hypothesis that changes should be functionally relevant for the stimulus characteristics

induced by certain behaviours (Gibson, 1950; Von Holst and Mittelstaedt, 1950).

6.4 Partitioning neural activity and behaviour

The manuscripts enclosed in this dissertation uncovered a variety of relationships behavioural variables and the

activity of dLGN neurons, and the above sections above discussed potential mechanisms for these modulations,

as well as the roles that these modulations might play in sensory processing. However, the manuscripts also

demonstrate the limitations of trying to use single behavioural variables as proxies for internal states of the

brain. The following section leaves behind the mechanics of visual processing and modulations in the dLGN,

and instead concerns how these results should be interpreted on the level of the organism and its behaviour.

Internal states are not physical entities. Instead, they are concepts that serve to organize non-stationarity

in brain-derived observables, and are defined by finding statistical patterns among combinations of several

physiological variables (Flavell et al., 2022; McCormick et al., 2020). Importantly, the view is adopted that,

instead of reflecting a unified internal state (Robbins, 1997), different types of state-related factors overlap, and

simultaneously exert their influence on neural populations (McCormick et al., 2020; Flavell et al., 2022). The

result is that the spiking activity of a neural population, or even a single neurons, can contains a multiplexing

of several behaviour- and state-related influences (Crombie et al., 2024, Chapter 3), that needs to be parsed

and interpreted (Miller et al., 2022).

Differentiated modulatory systems

Supporting the notion that brain states are multifaceted, rather than unified, is the simple observation that

more than one neuromodulatory system contributes to modulations in the visual system (discussed above).

This notion is furthered by noting diversity in the activity patterns and cell ensembles within these systems.

Seminal findings provided a strong link between pupil size and the LC-NE modulatory system, but it was

already suggested at the time that LC neurons have two activity patterns with distinct timescales that may

also serve distinct functions (Aston-Jones and Cohen, 2005). In “phasic mode”, which typically occurs when

the animal is engaged in a task with high utility, baseline LC activity is low, and task events, such as reward-

predicting stimuli, elicit large, but transient, increases in LC spiking. When task utility wanes, animals tend to

engage in exploration, where task performance is low due to more variable behaviour, and LC neurons switch

to “tonic mode” where they display high levels of sustained activity. Thus, transient increases in NE signalling

in one state denote important within-task events, while sustained increases in NE signalling promote task
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disengagement and exploratory actions. For this reason, some researchers separate pre-trial baseline pupil size

from the change in pupil size elicited by in-trial events, finding that these quantities predict different aspects

of decision-making (Gilzenrat et al., 2010; Jepma and Nieuwenhuis, 2011; Nassar et al., 2012; van Kempen

et al., 2019; van den Brink et al., 2023). Similarly, authors have begun to distinguish the effects of cholinergic

signalling at diverse temporal scales (Parikh et al., 2007; Ruivo et al., 2017; Disney and Higley, 2020). Finally,

this reasoning extends to a full spectrum a temporal scales, not just a dichotomy, and the nesting of different

functions in different timescales of activity has been suggested as an efficient mechanism through which a small

group of modulatory neurons can play a role in multiple functions (Totah et al., 2019). To the degree to which

one can interpret pupil-linked changes to relate to LC-NE activity, it might be inferred that the modulations

observed at diverse temporal scales in Crombie et al. (2024, Chapter 3) reflect the sensory consequences of

this spectrum of different functions.

In addition to functional diversity conferred via activity timescales, recent results also emphasize the

division of the LC into functionally segregated ensembles (Poe et al., 2020). Observations of broadly global

projections and highly branching axons (Swanson and Hartman, 1975; Room et al., 1981; Nagai et al., 1981)

have informed discussion of the “homogeneous” LC-NE system exerting its effects via global arousal (Sara

and Bouret, 2012). Despite these conjectures, LC-NE neurons have been found to preferentially target certain

functional systems (Nagai et al., 1981; Simpson et al., 1997; Berridge and Waterhouse, 2003), and even different

structures within the visual system (Waterhouse et al., 1993). Furthermore, LC neurons have generally low

synchrony, and form distinct functional ensembles that can have diverse effects on cortical activity (Totah et al.,

2018; Noei et al., 2022) and underpin different types of learning (Uematsu et al., 2017). This differentiation

could contribute to reports of variable coupling between pupil size and LC activity (Yang et al., 2021; Megemont

et al., 2022): any LC activity might lead to an increase in pupil size, while not being reflected across all LC

neurons. Consequently, coupling between modulatory indices and activity of sensory systems is also expected

to be diverse (Crombie et al., 2024, Chapter 3), and the same goes for the functional consequences for sensory

processing. One of the limitations of Crombie et al. (2024, Chapter 3) is that the method used to assess

coupling cannot distinguish between uniform versus sporadic coupling. It may be that two dLGN neurons

strongly couple to the same component of pupil size dynamics, but intermittently such that they are not co-

modulated, suggesting that they are targeted by different modulatory ensembles. Cholinergic systems, such as

the PPN, also have roughly segregated projection patterns despite axonal branching (Martinez-Gonzalez et al.,

2011; Mena-Segovia and Bolam, 2017). In conjunction, the role of the PPN in the coordination of specific

behaviours (Caggiano et al., 2018; Josset et al., 2018; Inagaki et al., 2022) suggests that its ascending outputs

to structures like the visual thalamus can carry fine-grained behavioural signals. It is also worth noting the the

BF-ACh system, although it projects to the cortex and TRN rather than the dLGN, has targeted projections

(as opposed to branching) and fast effects (Sarter et al., 2009). BF-ACH axons also have distinct stimulus

tuning properties in sensory regions (Zhu et al., 2023), suggesting that they do not act in unison. Thus, it

is likely that a greater degree of functional specificity is conferred by arousal-related neuromodulators than is

accounted for in typical analyses of state-related influences.
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While the results of Crombie et al. (2024) measured during “spontaneous” activity are consistent with a

more nuanced view of state-related modulation, the above considerations point to the need for controlled exper-

iments, such that the effects on sensory can be parsed and interpreted based on known variables manipulated

by the experimenters. For example, if faster timescales of neuromodulator activity are linked to attentional re-

orientation (Hasselmo and Sarter, 2011; Totah et al., 2019), future work could investigate whether coupling of

spiking in the dLGN to rapid pupil dilation reflects selective modulation of neurons representing the attended

visual features (Wang and Krauzlis, 2018; McBride et al., 2019; Lehnert et al., 2023). At longer timescales,

neuromodulatory activity may reflect learning processes (Totah et al., 2019), with prolonged optogenetic LC

stimulation (lasting several minutes) driving enhanced plasticity in the visual system (Jordan and Keller,

2023). It could be that longer timescales of pupil-linked modulation in the dLGN, which does not appear to

directly reflect behavioural modulation (Crombie et al., 2024, Chapter 3), reflects processes related to sensory

learning. In this scenario, slow modulations in sensory systems would be linked to factors such as uncertainty

or shifts in stimulus-reward contingencies, and be preferentially reflected in dLGN neurons representing visual

features relevant to a task.

Structure of behavioural encoding in the visual system

It was discussed above how modulations related to changes in state and behaviour may contribute to changes

in stimulus encoding in the visual thalamus, but there is a growing body of evidence suggesting that the

early visual system of mice might encode actionable combinations of visual stimuli and behaviours (Miller

et al., 2022) rather than purely visual features. As an example, the increase in response variability associated

with intact CT-FB in (Spacek et al., 2022, Chapter 2) is considered. While Spacek et al. (2022, Chapter 2)

implicated synaptic noise conferred via CT-FB in the increased response variability, an alternative hypothesis

could be formed: response variability conferred by CT-FB is due to encoding of ongoing behaviour by V1-L6.

In contrast to Spacek et al. (2022, Chapter 2), a recent study found that activating CT-FB in vivo reduced

response variability in the dLGN (Murphy et al., 2021), consistent with earlier in vitro findings (Chance et al.,

2002). This apparent discrepancy can be explained by two related considerations. Firstly, the in vitro study

injected synaptic noise generated from a stationary process (Chance et al., 2002). Meanwhile, the in vivo study

employed optogenetic activation of CT-FB, and was performed using anaesthetized animals (Murphy et al.,

2021). This combination is likely to also produce a stationary input to the dLGN by artificially clamping the

activity of V1-L6 neurons at a constant high value, and eliminating the influence of active behaviours and states

that could influence V1-L6 activity. Meanwhile, in the awake and behaving animal, V1-L6 activity could have

increased dLGN response variability by explicitly encoding behavioural signals, which are inherently variable

and non-stationary during wakefulness. Thus, the increased response variability found in awake animals by

(Spacek et al., 2022, Chapter 2) in the presence of CT-FB is hypothesized to derive from representations

of behaviours in V1-L6. This hypothesis is consistent with reports that L6 neurons are sensitive to specific

behavioural variables such as head rotation direction, locomotion, whisking, and even preparatory motor

signals (Vélez-Fort et al., 2018; Augustinaite and Kuhn, 2020; Clayton et al., 2021; Dash et al., 2022).
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In fact, the direct encoding of behaviours is ubiquitous throughout the early visual system of mice. Neurons

in both V1 and the dLGN are not just broadly modulated by locomotion, but have specific and varied profiles

of locomotion speed tuning (Saleem et al., 2013). In addition to full-body locomotion, V1 neurons have been

found to represent head movements (Vélez-Fort et al., 2018; Bouvier et al., 2020; Guitchounts et al., 2020),

directional eye movements (Parker et al., 2023), combinations of eye and head positions (Parker et al., 2022),

and paw movements (Abdolrahmani et al., 2021). Even behaviours that are difficult to directly quantify, such

as those extracted via dimensionality reduction techniques, are widely represented across visual cortical areas

(Stringer et al., 2019; Mimica et al., 2023). Importantly, these movements were strongly represented even in

the presence of a task (Musall et al., 2019; Salkoff et al., 2020), indicating that movement representation is

not simply what the visual system does when idle, but is a fundamental part of its function. In all of these

cases, there was an interaction between the representation of movements and visual stimuli (Saleem et al.,

2013; Vélez-Fort et al., 2018; Stringer et al., 2019; Bouvier et al., 2020; Abdolrahmani et al., 2021; Parker

et al., 2022, 2023). Although these types of investigations have mainly been carried out in V1, there are

hints that the visual thalamus has similar specificity regarding behavioural encoding. In addition to the fact

that dLGN neurons receive inputs from V1-L6 neurons with behavioural tuning, experimenters have directly

measured tuning of dLGN neurons to specific locomotion speeds (Erisken et al., 2014; Roth et al., 2016) and

body postures (Orlowska-Feuer et al., 2022). Thus, right from the earliest stages of vision, “visual” neurons

also have detailed representations of behavioural variables.

So, to what degree are neural representations of state separable from the representation of behaviours that

are likely to occur in these states? In the introduction of this dissertation, evidence was given to support the

existence of an internal state, arousal, that is distinct from the representation of active behaviours. However,

in the investigations presented there (e.g. Vinck et al., 2015; Petty et al., 2021), the set of behaviours actually

measured by the experimenters was limited. Similarly, Crombie et al. (2024, Chapter 3) measured pupil-linked

modulations in dLGN neurons that appeared to be independent of locomotion and eye movements, but what

about other behaviours that were not directly quantified? The behavioural repertoire of rodents is much larger

than whisking, locomotion, and saccades; modern computational techniques have been used to extract 50-150

stereotyped motifs (Wiltschko et al., 2015; Marshall et al., 2021), but this number is likely to increase as

tracking resolution improves and non-stereotyped behaviours are accounted for (Berman, 2018; Datta et al.,

2019), and as the technology is applied to more diverse and ethological behavioural contexts. Is it possible

that all of the modulations linked to longer timescale pupil dynamics in (Crombie et al., 2024, Chapter 3) are

simply a reflection of behaviour representation in the dLGN together with patterns of behavioural organization

spanning longer timescales of seconds and minutes (Marshall et al., 2021)?

While this an extreme position, this type of reasoning could help explain seemingly conflicting results in

other parts of the visual system. In the ventral lateral geniculate nucleus (vLGN), Salay and Huberman (2021)

and Fratzl et al. (2021) provided convincing evidence that certain vLGN projections provide contextual signal

of “safety” to action-coordinating centres like the superior colliculus (SC). However, very recent work has shown

the vLGN-SC projection also conveys very specific information about behaviours with consequences for visual
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re-afference (Vega-Zuniga et al., 2023). Some of these findings might be reconciled by a behaviour-focused

definitions of states like fear/ anxiety and safety. For example, low vLGN activity prior to trials where the

animal escapes from a visual threat could reflect the absence of a safety signal (Fratzl et al., 2021), or the fact

than in an anxious state the animal is less likely to engage in the exploratory behaviours that seem to drive

vLGN activity (Vega-Zuniga et al., 2023). Similarly, decreased threat-induced freezing upon vLGN activation

could either result from the activation of a safety signal (Salay and Huberman, 2021), or from an increase

in compensatory movements to compensate for artificial corollary discharges induced by vLGN activation

(Vega-Zuniga et al., 2023). These examples are not meant to promote one explanation over the other, but are

meant to emphasize the point that taking into account the organization of behaviours into potential states

can generate hypotheses that bridge the gap between seemingly disparate accounts of visual function. An

alternative hypothesis is one of functional multiplexing and pluralistic explanations of neural activity (Miller

et al., 2022). In any case, it is clear that a better understanding of how animals organize their behaviour

across temporal scales will help in the interpretation of both behaviour-linked modulation of visual signals,

and vision-linked modulation of behaviours.
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