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Summary

One of the primary goals in quantum chemistry is to develop efficient and accu-
rate methods for the computation of energetic parameters and molecular properties
across a broad range of system sizes and complexities, enabling reliable predictions of
experimental data. In this regard, the random phase approximation (RPA), a post-
Kohn–Sham method derived from the adiabatic-connection fluctuation-dissipation
theorem, has emerged as a highly promising method.

This thesis comprises a collection of novel methods for the computation of RPA
energies as well as properties, derived from first- and second-order derivatives of the
energy. The memory limitation problem, a common problem for electronic structure
methods, is alleviated for the calculation of RPA energies by introducing a mini-
mal overhead batching method based on a Lagrangian formalism, thereby extending
RPA’s applicability to very large systems that were out of reach before on a single
compute node. This method facilitates efficient balancing between memory demands
and resource utilization. Moreover, it is widely applicable and can be adapted for
related electronic structure methods.

For RPA nuclear gradients—the first derivative of the RPA energy with respect to
nuclear coordinates—an efficient method for incorporating the frozen-core approx-
imation is introduced. This approach not only yields performance improvements
but also ensures accurate results using atomic and auxiliary basis sets specifically
designed to correlate valence electrons only, as is the case for most basis sets.

Furthermore, in previous work it has been shown, using numerical derivatives,
that nuclear magnetic resonance (NMR) shieldings—the second mixed derivative of
the energy with respect to the nuclear magnetic moment and the magnetic field—
based on RPA yield accuracies comparable to coupled cluster singles and doubles.
Motivated by this good performance, the thesis introduces, for the first time, the
derivation and implementation of analytical NMR shieldings within RPA. Further-
more, to increase the efficiency of the method, a local resolution-of-the-identity (RI)
metric is employed to introduce sparsity in the RI tensors, which is efficiently ex-
ploited using sparse matrix algebra techniques. Additionally, Cholesky decomposed
density type matrices and an efficient batching scheme for memory intensive inter-
mediates are utilized, thereby extending the applicability of the method to even
larger systems.

Another promising method that improves upon many of the shortcomings of
RPA, are σ-functionals. While they have been shown to achieve high accuracies for
energetic data, nuclear gradients, and vibrational frequencies, NMR shieldings have
not been comprehensively studied so far. This work closes that gap by carrying out
an extensive benchmark study to investigate the accuracy of σ-functionals for NMR
shieldings.
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Chapter 1

Introduction

The field of quantum chemistry has emerged as an important area for scientific
explorations within chemistry, biochemistry, solid-state and molecular physics, as
well as material science. Its central equation is the Schrödinger equation [1] provid-
ing an exact description of a non-relativistic system of interacting particles. How-
ever, the exact analytical solution to the time-independent Schrödinger equation
for multi-electron systems within the Born–Oppenheimer approximation [2] requires
the solution of differential equations describing interacting electrons, which cannot
be solved with the methods and computational means available today. [3,4] While
numerically exact solutions [3] employing the full-configuration interaction approach
have been known for a long time, its huge computational effort prohibits to treat
systems beyond a few atoms. Thus, for practical applications approximate solutions
to the Schrödinger equation are necessary. In this context, one of the fundamental
objectives in quantum chemistry is the development of accurate and efficient meth-
ods for the computation of observable quantities such as energetic or spectroscopic
parameters to accurately predict experimental data.

Approximate methods for solving the Schrödinger equation can generally be
categorized into wave function based approaches and density functional theory
(DFT). Wave-function-based methods expand upon the Hartree-Fock (HF) approx-
imation, [5–7] which typically lacks sufficient accuracy on its own. In this regard,
Møller–Plesset perturbation theory of second order [8] (MP2) provides moderate ac-
curacy, while coupled cluster variants, such as coupled cluster singles and doubles
(CCSD) and CCSD with additional perturbative triples (CCSD(T)), are among the
most accurate methods for energetic data as well as molecular properties. An ad-
vantage of wave-function-based correlation methods is that their accuracy can be
systematically improved, which, however, comes with a comparably high computa-
tional cost.

On the other hand, DFT methods within the Kohn–Sham [9] (KS) framework
provide reasonable accuracy at moderate computational cost, thus, making it the
method of choice for computational applications in quantum chemistry. Within KS-
DFT, the only unknown quantity is the exchange-correlation energy, which has to
be approximated. Approximations for the exchange-correlation functional are based
on mathematical functions containing a number of parameters, leading to nonempir-
ical functionals if the parameters are chosen by considering the constraints derived
for the exact KS functional, or empirical functionals by fitting the parameters to
selected experimental or ab initio data. [10] As there are many different approaches
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1. Introduction

for modeling both nonempirical and empirical functionals, a very large number of
functionals exist today, which may differ in performance based on the system and
property being investigated. This necessitates benchmarking the performance of
different exchange-correlation functionals with respect to classes of molecular sys-
tems as well as molecular properties. [11] Therefore, a functional that exhibits a high
degree of transferability across various types of chemical systems and properties is
highly desirable.

One class of methods that shows high potential in this regard and has regained
popularity in recent years constitutes methods based on the adiabatic-connection
fluctuation-dissipation theorem [12–14] (ACFDT). Within this framework, the phys-
ically exact exchange-correlation energy is expressed through the response func-
tion of the non-interacting Kohn–Sham system as well as the response function of
fully-interacting (correlated) particles. However, the latter quantity contains the
exchange-correlation kernel—the functional derivative of the exchange-correlation
potential with respect to the density—which is not known. Thus, rather than
approximating the exchange-correlation energy, the kernel must be approximated,
which shifts the problem and creates a framework of equations for the exchange-
correlation energy. The simplest approximation for the kernel is to neglect it en-
tirely, resulting in the (direct) random phase approximation (RPA). RPA, as derived
in the context of DFT from the ACFDT, can be classified as a fifth-rung functional
on Jacob’s ladder of density functional approximations. [15] It does not have any em-
pirical parameters and is usually implemented as a post-KS method. Nonetheless,
RPA can be derived from several different approaches, [16] such as coupled cluster
theory, [17] many-body Green’s function theory, [18] or, as originally introduced, in
the framework of solid-state physics. [19–21] While all these avenues lead to the same
final quantity, the different equations and intermediates provide valuable physical
insights to different aspects of the underlying theory.

RPA was originally introduced within solid-state physics by D. Bohm and
D. Pines in a series of papers [19–21] between 1951 and 1953. In these works, the
homogeneous electron gas was investigated using the Hamiltonian of the coupled
harmonic oscillator to describe the long-ranged collective motion of all electrons,
termed plasma oscillations, along with a short-range correction term arising from
random thermal motions of the electrons. [20] The plasma oscillations could be ac-
curately described by neglecting the coupling of oscillations in different plasmon
phases. [20] As the coupling term depends on the coordinates of the particles, which
are randomly distributed throughout the system, their contributions can be assumed
to average out to zero in the high-density limit. [22] In this case, the method—termed
the ‘random phase approximation’—provides an accurate description.

Years later, D. C. Langreth and J. P. Perdew derived RPA in the framework
of the ACFDT, which has become the most well-established formulation in today’s
research. However, the corresponding formulation in a molecular-orbital (MO) ba-
sis showed an O(M6) scaling of the computational cost with the system size M , [23]
limiting its applicability to only small systems and basis sets. By introducing the
resolution-of-the-identity (RI) approximation and a numerical quadrature for the
imaginary frequency integration, Furche and co-workers [24] were able to reduce the
scaling to O(M4), thus making RPA one of the formally lowest scaling correlation
methods. An effective linear scaling RPA energy implementation was obtained by
recasting the RPA correlation energy expression in the atomic-orbital basis and
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1. Introduction

utilizing a local RI metric to exploit the introduced sparsity using sparse matrix
algebra techniques. [25] Further efficiency improvements, that is, pivoted Cholesky
decomposition [26] of density matrices [27] and optimized minimax grids [27,28] for the
numerical frequency integration, extended the applicability of RPA to even larger
systems. However, for very large system sizes and/or basis sets the memory require-
ments of the method exceed the available system memory and, thus, become the
limiting factor. Here, the three-center integral tensors have to be stored in mem-
ory during the calculation of the response function together with other memory
demanding intermediates arising during the calculation. To overcome these memory
limitation problems, Publication I presents a minimal overhead batching scheme
for the computation of the response function by batching over the atomic-orbital and
auxiliary-function index as well as the numerical quadrature points. A Lagrangian
formalism is employed to minimize floating point operations within the given system
memory. This provides the best trade-off between memory demand and program
runtime, thus alleviating the memory limitation problem. Since electron correlation
methods generally suffer from memory limitation issues, the method introduced in
Publication I can also be applied outside of RPA, specifically to related methods
such as MP2 or coupled cluster variants. [29]

Electron correlation methods are usually implemented within the frozen-core ap-
proximation, where the correlation of core electrons—which occupy, by definition,
the lowest lying MOs—is neglected, and only the correlation of valence electrons is
considered. This aligns with the intuitive view in chemistry where core electrons are
generally seen as inert in chemical reactions, which are primarily governed by the
behavior of valence electrons. For relative RPA energies the error has been reported
to be minimal, [30] while the computational gain is considerable. The frozen-core
approximation has further advantages considering the choice of atomic and auxil-
iary basis sets, since many basis sets are designed to correlate the valence electrons
only and do not describe the core region sufficiently. Implementing the frozen-core
approximation for energies is straightforward, involving only the consideration of
valence orbitals within the coefficient matrix, such as for constructing the density
matrix. For properties, however, the implementation is very involved. [31,32]

While the description of energetic data is crucial in quantum chemistry, practical
applications also require accurate and efficient methods to predict molecular prop-
erties. Many important properties can be obtained from the derivative of the total
energy of the system. For example, molecular forces, which are crucial for describing
dynamics, are determined by the negative derivative of the energy with respect to the
nuclear coordinates. Much progress has been made in this regard for RPA, where ef-
ficient implementations have been introduced. [33–40] However, RPA gradients within
the frozen-core approximation had not been considered prior to Publication II.
Here, the frozen-core approximation was introduced within the low-scaling gradient
implementation of Ref. [36] based on a formulation in the atomic-orbital basis with
an attenuated Coulomb RI metric and Cholesky decomposed densities. The diffi-
culty lies in evaluating derivatives of the occupied and frozen-core density matrices,
where the latter is only present when applying the frozen-core approximation. An
efficient method for the evaluation of both density matrix responses is introduced in
Publication II, leading to performance gains of 20-30%, depending on the basis set,
and an accurate description when utilizing basis sets that were optimized within the
frozen-core approximation. Given that the description of core electrons does not sig-
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nificantly affect the accuracy of nuclear gradients, the utilization of the frozen-core
approximation is justified and employing basis sets that were optimized within the
frozen-core approximation—thus not containing additional core functions—results
in further performance gains due to the smaller size of the basis sets.

Another property of high importance is the nuclear magnetic resonance (NMR)
shielding tensor. NMR spectroscopy has emerged as an important tool in the struc-
ture determination in the fields of chemistry and biochemistry. Since interpreting
experimental spectra to determine molecular or solid-state structures can be chal-
lenging, computational methods can be very helpful for predicting spectra and as-
sisting in the interpretation of experimental data. Methods for the computation
of the NMR shielding tensor—the second mixed derivative of the energy with re-
spect to the nuclear magnetic moment and the magnetic field—range from HF [41–45]

and DFT [46–48] to wave-function-based methods, such as MP2, [49,50] coupled cluster
variants, [51–53] and multiconfigurational self-consistent field [54] (MCSCF) methods.
Here, HF and DFT offer moderate accuracy with generally low computational cost,
while CC methods such as CCSD and CCSD(T) are among the most accurate meth-
ods for predicting NMR data but are also the most computationally expensive. MP2
has demonstrated higher accuracy than HF and DFT, however, it is more compu-
tationally demanding than both methods.

In a benchmark study employing numerical second derivatives, [55] RPA based
on a HF reference has been shown to achieve high accuracy comparable to CCSD,
but with significantly lower computational cost. Moreover, it has been found to
outperform MP2 and achieve higher computational efficiency. Due to this good per-
formance of RPA NMR, analytical NMR shieldings were derived and implemented
in Publication III. This is the first account of analytical second derivatives for
the computation of NMR shieldings for RPA defined as a post-KS method derived
from the ACFDT. The formulation of Publication III employs an atomic-orbital
formalism and the Coulomb RI metric. This implementation serves as an optimal
foundation for further improvements in efficiency. In fact, Publication IV makes
use of a local RI metric and Cholesky decomposed density type matrices together
with sparse matrix algebra techniques to increase the computational efficiency and
lower the scaling of RPA NMR calculations, and, furthermore a batching scheme
for the memory efficient computation of intermediates to extend the applicability of
RPA NMR calculations to even larger systems and basis sets.

RPA not only performs well for NMR data, [55] it also yields accurate interaction
energies, [56] barrier heights, [56] isogyric and isodesmic reaction energies, [16,56,57] and it
is able to capture static correlation to some degree. [56,58,59] Further, RPA seamlessly
incorporates the description of dispersion interactions, which are based on the long-
range interactions between spontaneous dipole moment fluctuations and is also able
to treat small gap systems. Thus, RPA is applicable to a wide range of systems, such
as metallic systems, surfaces, crystals, as well as molecular systems. However, RPA
is not free of limitations, which can be traced back to the non-self consistent nature
of RPA and/or the lacking description of the exchange-correlation kernel. The latter
point leads to self-interaction in RPA, causing it to fail for cases such as H+

2 and
He+2 . [56] For short interaction distances RPA leads to overcorrelation of electrons,
which explains its poor performance for atomization energies and spin-flip processes,
i.e., processes that separate electron pairs, resulting in substantial changes in the
short-range correlation energy. [16] While there are many beyond-RPA methods, e.g.,
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Refs. [56, 60–80], aiming to correct the shortcomings, the introduced accuracy comes
with an increased computational cost.

A method that significantly improves upon the mentioned limitations of RPA
while maintaining the same computational cost are the σ-functionals, which were
recently introduced by A. Görling and co-workers. [81,82] A σ-functional implemen-
tation builds upon an RPA implementation but contains an additional term that
depends on the eigenvalues of the frequency dependent KS-response function. This
term is modeled by cubic splines containing parameters that are fitted to ener-
getic data. Here, the different possibilities in the fitting approach lead to different
parametrizations for σ-functionals. [80–84] It was found that σ-functionals perform
very well for energetic data, [81,82] nuclear gradients, and vibrational frequencies. [85]
First results on the accuracy for NMR shieldings have been promising. [55] Thus, in
Publication V, an extensive benchmark study using numerical second derivatives
was carried out to study the accuracy of σ-functionals using different parametriza-
tions as well as various reference functionals. It was found that σ-functionals based
on the S1 parametrization [83] yield isotropic NMR shielding constants comparable
in accuracy to CCSD(T) and outperforming all tested density functionals. Thus,
the results of Publication V indicate that analytical NMR shieldings based on
σ-functionals would be highly desirable, as it revealed itself to be a cost-efficient
and highly accurate NMR method. As with σ-functional energies, the NMR imple-
mentation could be implemented with reasonable programming effort based on an
existing RPA NMR implementation.

This thesis is structured as follows: in Chapter 2, the theoretical framework of
the work is established. Chapter 3 is the main part of this cumulative dissertation
where Publications I-V are reproduced in their entirety. Finally, in Chapter 4, a
conclusion is presented.
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Chapter 2

Theoretical Background

2.1 The Schrödinger Equation
The non-relativistic time-independent electronic Schrödinger equation [1] within the
Born-Oppenheimer [2] approximation is given by

ĤΨ = EΨ (2.1)

with the electronic energy E and the wave function Ψ. The Hamiltonian is defined
as

Ĥ = T̂ + V̂en + V̂ee (2.2)

with the kinetic energy operator T̂ , the operator for the Coulombic attraction be-
tween electrons and nuclei V̂en, and the electron-electron interaction operator V̂ee,
all defined in atomic units according to

T̂ = −
Nel∑
i

1

2
∇2
i (2.3)

V̂en = −
Nel∑
i

Nat∑
A

ZA
riA

(2.4)

V̂ee =

Nel∑
i<j

1

rij
(2.5)

where Nel denotes the number of electrons of the system and Nat the number of
atoms. Further, riA specifies the distance between electron i and nucleus A, rij the
distance between electrons i and j, and ZA is the charge of nucleus A. The exact
wave function of the system can be expanded in a complete set of Nel-electron wave
functions {Φα} according to

Ψ(x1,x2, ...,xNel) =
∞∑
α

aαΦα(x1,x2, ...,xNel) (2.6)

where Ψ and {Φα} depend on the electronic coordinates xi = (ri, σi) (i ∈ [1, Nel])
containing both space coordinates ri and spin coordinates σi. For an accurate de-
scription of the fermionic system, the many-electron wave function Φ has to comply
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2. Theoretical Background

with the antisymmetry principle, [86,87] which is a generalization of the Pauli exclu-
sion principle. [88,89] It states that the wave function has to be antisymmetric with
respect to the interchange of two electronic coordinates. This is captured by the
Slater determinant of one-electron molecular orbitals (spin orbitals) {φi} defined as

Φ =
1√
Nel!

∣∣∣∣∣∣∣∣∣
φ1(x1) φ2(x1) · · · φNel(x1)
φ1(x2) φ2(x2) · · · φNel(x2)

...
... . . . ...

φ1(xNel) φ2(xNel) · · · φNel(xNel)

∣∣∣∣∣∣∣∣∣ (2.7)

Thus, the exact wave function can be obtained by a linear combination of Slater
determinants {Φα}, where each Φα defines a specific configuration of spin-orbitals,
therefore, the method is termed full configuration interaction (FCI), or, simply CI
for an incomplete expansion in Eq. (2.6). While the FCI method is highly accurate,
its application is limited to systems with a small number of electrons due to its
huge computational cost.

2.2 The Hartree–Fock Approximation
The simplest antisymmetrized wave function suitable to describe the ground state
of a many-electron system is a single Slater determinant (Eq. (2.7)). This approxi-
mation to the wave function constitutes the basis of the Hartree–Fock approxima-
tion, [5–7] providing typically moderate accuracy and serving as the starting point for
more accurate wave function methods.

The Hartree–Fock energy EHF can be expressed as the expectation value of the
Hamiltonian according to [90]

EHF[Φ] = 〈Φ| Ĥ |Φ〉 =

Nel∑
i

hi +
1

2

Nel∑
ij

(Jij −Kij); 〈Φ|Φ〉 = 1 (2.8)

where the wave function Φ is chosen to be orthonormal and the bra-ket notation is
employed. Further, hi denotes the MO representation of the one-electron Hamilto-
nian ĥ, and Jij as well as Kij the MO representations of the Coulomb operator Ĵ
and exchange operator K̂, respectively. The introduced quantities are defined as

hi :=

∫
dx1 φi(x1)

[
− 1

2
∇2

1 −
Nat∑
A

ZA
r1A

]
φi(x1) =: (φi|ĥ|φi) (2.9)

Jij :=

∫∫
dx1dx2 φ

∗
i (x1)φi(x1)

1

r12
φ∗j(x2)φj(x2) =: (φiφi|φjφj) (2.10)

Kij :=

∫∫
dx1dx2 φ

∗
i (x1)φj(x1)

1

r12
φ∗j(x2)φi(x2) =: (φiφj|φjφi) (2.11)

where the Mulliken notation was employed. According to the variational principle,
the energy obtained from an approximate wave function constitutes an upper bound
to the exact energy of the system. Thus, it follows for the Hartree–Fock energy that
EHF[Φ[{φi}]] ≥ E and the optimal molecular orbitals can be obtained by Lagrangian
minimization of Eq. (2.8) with respect to the set of molecular orbitals {φi} subject
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2. Theoretical Background

to the orthonormality constraint 〈φi|φj〉 = δij. This leads to the canonical Hartree–
Fock equations [90]

F̂ φi(x1) = εiφi(x1) (2.12)

where εi denotes the HF orbital energy for the molecular orbital φi and the Fock
operator F̂ is given by

F̂ = ĥ+

Nel∑
j

(Ĵj − K̂j) (2.13)

Ĵj :=

∫
dx2 φ

∗
j(x2)

1

r12
φj(x2) (2.14)

K̂j :=

∫
dx2 φ

∗
j(x2)

P̂12

r12
φj(x2) (2.15)

with the permutation operator P̂12, which interchanges the coordinates of electron
one and two.

For practical implementations, the molecular orbital basis functions can be
expanded in an atomic orbital basis set—a procedure termed linear combina-
tion of atomic orbitals (LCAO)—thereby transforming the HF equations into the
Roothaan–Hall [91,92] matrix eigenvalue equations, which can be solved by diagonal-
ization within a self-consistent-field (SCF) procedure. As a result, the optimal HF
orbitals comprising the single determinant wave function are obtained together with
the corresponding HF energy. However, while electrons with parallel spin are corre-
lated through the exchange operator, the interaction of electrons with opposite spin
is only accounted for in an average way. Thus, the HF approximation is referred
to as an uncorrelated wave function method. In the next section, an approach is
introduced with the aim of capturing electron correlation effects—density functional
theory—which utilizes the electron density, rather than wave function, to describe
the state of the electronic system.

2.3 Density Functional Theory
Density functional theory (DFT) is based on a formulation of the energy in terms
of the one-electron density

ρ(r1) = Nel

∫
...

∫
dσ1 dx2 ... dxNel |Ψ(x1,x2, ...,xNel)|2 (2.16)

which is normalized to the number of electrons
∫
dr ρ(r) = Nel. This is validated by

the first Hohenberg–Kohn theorem. [93] It states that the external potential vext(r),
which is usually the potential generated by the nuclei, is uniquely determined, within
an additive constant, by the electron density. Thus, the electron density determines
the ground-state wave function as well as all other properties of the electronic sys-
tem. [94] Specifically, the ground-state energy can be expressed as a functional of the
density according to

E[ρ] = T [ρ] + Vee[ρ] +

∫
dr vext(r)ρ(r) (2.17)

9
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with the kinetic energy functional T [ρ] = 〈Ψ[ρ]| T̂ |Ψ[ρ]〉 and the electron-electron
interaction energy functional Vee[ρ] = 〈Ψ[ρ]| V̂ee |Ψ[ρ]〉. The optimal density can be
obtained by variational minimization of the energy functional with respect to the
density, which is validated by the second Hohenberg–Kohn theorem. [93]

The expression of the energy in terms of the three-dimensional density, rather
than 4Nel-dimensional wave function, is a substantial simplification and it is still in
the realm of the exact theory. However, the explicit form of (T [ρ] + Vee[ρ]) is not
known and accurate approximations are necessary, which have shown to be chal-
lenging especially for the approximation of the kinetic energy term. In light thereof,
W. Kohn and L. J. Sham [9] proposed the reintroduction of single-particle spin-
orbitals {φi}, the KS orbitals, which describe a reference system of non-interacting
electrons in a potential, the KS potential vKS, that insures that the electron density
defined by the KS-orbitals

ρ(r) =

Nel∑
i

|φi(r)|2 (2.18)

reproduces the exact ground-state density, that is the density of a system with
interacting electrons. The Hamiltonian describing the non-interacting system is
given by [95]

ĤKS = T̂ + V̂KS (2.19)

V̂KS =

Nel∑
i

vKS(ri) (2.20)

This KS system can then be described by a single determinant wave function Φ[ρ],
the KS wave function, that is fully determined by the electron density. This allows
to express the ground-state energy according to [94]

E[ρ] = 〈Φ[ρ]| ĤKS |Φ[ρ]〉 = Ts[ρ] + VKS[ρ] (2.21)

where the following quantities are introduced:

Ts[ρ] = 〈Φ[ρ]| T̂ |Φ[ρ]〉 = −1

2

Nel∑
i

〈φi| ∇2
1 |φi〉 (2.22)

VKS[ρ] = 〈Φ[ρ]| V̂KS |Φ[ρ]〉 = Vext[ρ] + EH[ρ] + Exc[ρ] (2.23)

EH[ρ] =
1

2

∫∫
dr1dr2

ρ(r1)ρ(r2)

r12
(2.24)

Exc[ρ] =
(
T [ρ]− Ts[ρ]

)
+
(
Vee[ρ]− EH[ρ]

)
(2.25)

thereby building the foundation of KS-DFT. This formulation is still in the realm of
the exact theory: the non-interacting kinetic energy is expressed by Ts[ρ], which is
defined in terms of non-interacting orbitals, while its correction (T [ρ]−Ts[ρ]) to the
physically exact kinetic energy T [ρ] is contained in the exchange-correlation energy
Exc[ρ]. The Hartree energy contribution EH[ρ] describes the classical electrostatic
Coulomb repulsion of the density ρ, and the remaining electron-electron interaction
energy is contained in Exc[ρ]. Variational minimization of the energy functional
given by Eq. (2.21) leads to the KS equations [94]

ĥKSφi = εiφi (2.26)

10
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where εi defines the KS orbital energy of the molecular orbital φi and the KS Hamil-
tonian ĥKS is defined according to

ĥKS = −1

2
∇2 + vKS(r) (2.27)

vKS(r) = vext(r) + vH(r) + vxc(r) (2.28)

vH(r) =
∂EH[ρ]

∂ρ(r)
=

∫
dr2

ρ(r2)

r12
(2.29)

vxc(r) =
∂Exc[ρ]

∂ρ(r)
(2.30)

Within KS-DFT all terms except for the exchange-correlation energy and potential
are known. Hence, the central challenge constitutes the determination of accurate
and efficient approximations for Exc and vxc. One possible way to address this
challenge is described in the next section.

2.4 Adiabatic-Connection Fluctuation-Dissipation
Approach

An exact expression for the exchange-correlation energy of ground-state density
functional theory can be derived employing the adiabatic-connection fluctuation-
dissipation theorem, [12–14] as will be demonstrated in this section. This opens the
way for another class of electron correlation methods—that is, methods based on
the ACFDT theorem—which will be described following this section.

From this point onward, all equations will be derived for the general case of
complex-valued orbitals. This is crucial to this work as computing second-order
derivatives for NMR parameters, a central aspect of this work, requires the use of
complex-valued orbitals. This derivation is novel, as existing literature commonly
assumes real-valued orbitals.

2.4.1 Adiabatic-Connection

The adiabatic-connection method, introduced by D. C. Langreth and
J. P. Perdew, [12,13] is based on the following premise: a continuous connec-
tion is created between a system with non-interacting electrons and the physical
system with fully interacting electrons, while the density is kept constant at the
exact (physical) ground-state density. This is accomplished by introducing a
modified Hamiltonian Ĥλ dependent on a coupling parameter λ according to [13]

Ĥλ = T̂ + V̂ λ + λV̂ee; λ ∈ [0, 1] (2.31)

Ĥλ =

{
Ĥ = T̂ + V̂ext + V̂ee | λ = 1

ĤKS = T̂ + V̂KS | λ = 0
(2.32)

where V̂ λ is an external potential operator keeping the density constant at the phys-
ical value, thereby reducing to the external potential for λ = 1, while for λ = 0 it
takes the value of the KS potential. Thus, for λ = 1 the physical Hamiltonian is
recovered, where the electron-electron interaction is described by V̂ee, while λ = 0

11
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corresponds to the KS Hamiltonian, where the electron-electron interaction is con-
tained within the KS potential operator V̂KS.

By increasing the coupling parameter λ adiabatically slowly, the electron-electron
interaction is gradually increased connecting the non-interacting system to the phys-
ical system, while the density is kept constant along the adiabatic path.

To derive an expression for the correlation energy, first, the energy difference of
the physical to the KS system is evaluated by integration along the adiabatic path
according to [13]

0 = Eλ=1 − Eλ=0 =

∫ 1

0

dλ
∂Eλ

∂λ
(2.33)

where Eλ = 〈Ψλ| Ĥλ |Ψλ〉; inserting this expression into the above equation and uti-
lizing the Hellman-Feynman theorem, [96] that is valid for a full set of eigenfunctions,
yields [95]

0 = Eλ=1 − Eλ=0 =

∫ 1

0

dλ 〈Ψλ| ∂Ĥ
λ

∂λ
|Ψλ〉 (2.34)

=

∫ 1

0

dλ 〈Ψλ| V̂ee +
∂V̂ λ

∂λ
|Ψλ〉 (2.35)

Since V̂ λ describes a local multiplicative potential and the density is kept constant
along the path, the above equation simplifies to

0 = Eλ=1 − Eλ=0 =

∫ 1

0

dλ 〈Ψλ| V̂ee |Ψλ〉+

∫ 1

0

dV λ (2.36)

=

∫ 1

0

dλ 〈Ψλ| V̂ee |Ψλ〉+ Vext − VKS (2.37)

By inserting Eq. (2.23) for VKS, an expression for the exchange-correlation energy
can be obtained according to

Exc =

∫ 1

0

dλ 〈Ψλ| V̂ee |Ψλ〉 − EH (2.38)

Next, the exchange energy Ex = 〈Φ| K̂ |Φ〉 can be subtracted from the above equa-
tion leading to

Ec =

∫ 1

0

dλ 〈Ψλ| V̂ee |Ψλ〉 − EH − Ex (2.39)

The term (EH +Ex) is known in terms of one-electron orbitals from HF theory and
can be further expressed using the KS wave function Φ according to

EH + Ex = 〈Φ| V̂ee |Φ〉 (2.40)

Inserting the above expression into Eq. (2.39) yields [56]

Ec =

∫ 1

0

dλ 〈Ψλ| V̂ee |Ψλ〉 − 〈Φ| V̂ee |Φ〉 (2.41)

The above equation provides an exact expression for the correlation energy, however,
while the second term on the right-hand side, i.e. 〈Φ| V̂ee |Φ〉, is known exactly, the
first term is not known and remains to be evaluated. This is the subject of the next
section.

12
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2.4.2 Density Fluctuations

To derive an expression for the term 〈Ψλ| V̂ee |Ψλ〉 in Eq (2.41), first, the electron-
electron interaction operator is expressed in terms of the density operator

ρ̂(x) =

Nel∑
i

δ(x− xi); 〈Ψ| ρ̂(x) |Ψ〉 = ρ(x) (2.42)

resulting in [95]

V̂ee =
1

2

∫∫
dx1dx2

ρ̂(x1)ρ̂(x2)− ρ̂(x1)δ(x1 − x2)

r12
(2.43)

Next, by introducing the density fluctuation operator ∆ρ̂(x) defined as

∆ρ̂(x) := ρ̂(x)− ρ(x) (2.44)

V̂ee can be formulated as

V̂ee =
1

2

∫∫
dx1dx2

1

r12

[
∆ρ̂(x1)∆ρ̂(x2) + ρ̂(x1)ρ(x2) + ρ(x1)ρ̂(x2)

− ρ(x1)ρ(x2)− δ(x1 − x2)ρ̂(x1)

]
(2.45)

Inserting this expression into Eq. (2.41) results in an expression for the correlation
energy in terms of density fluctuations according to [56]

Ec =
1

2

∫ 1

0

dλ
∫∫

dx1dx2
〈Ψλ|∆ρ̂(x1)∆ρ̂(x2) |Ψλ〉 − 〈Φ|∆ρ̂(x1)∆ρ̂(x2) |Φ〉

r12
(2.46)

According to this equation, density fluctuations at a position r1 are correlated with
fluctuations at r2 and these density fluctuations are associated with the correlation
energy. [97]

2.4.3 Adiabatic-Connection Fluctuation-Dissipation Theo-
rem

In this section, the correlation energy expression within the adiabatic-connection
approach given by Eq. (2.46) is further reformulated utilizing response theory to
introduce the fluctuation-dissipation theorem leading to the adiabatic-connection
fluctuation-dissipation formalism.

Electron Correlation Energy in Terms of Transition Densities

The correlation energy expression in Eq. (2.46) can be further rewritten using the
completeness relation of the electronic states {Ψλ

n}∑
n

|Ψλ
n〉 〈Ψλ

n| = 1; ∀ λ ∈ [0, 1] (2.47)
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where n = 0 denotes the ground-state wave function. In the following, the subscript
‘0’ will be added to highlight ground-state quantities for clarity, i.e. Ψλ

0 = Ψλ,Φ0 =
Φ, and E0 = E. Inserting Eq. (2.47) into Eq. (2.46) yields [56]

Ec =
1

2

∫ 1

0

dλ
∫∫

dx1dx2

∑
n6=0 ρ

λ
0n(x1)ρ

λ
n0(x2)−

∑
n 6=0 ρ

λ=0
0n (x1)ρ

λ=0
n0 (x2)

r12
(2.48)

where the transition densities ρλ0n(x) and ρλn0(x) are defined according to [56]

ρλ0n(x) = 〈Ψλ
0 |∆ρ̂(x) |Ψλ

n〉 (2.49)
= 〈Ψλ

0 | ρ̂(x) |Ψλ
n〉 ; ∀ n 6= 0 (2.50)

ρλn0(x) = 〈Ψλ
n|∆ρ̂(x) |Ψλ

0〉 (2.51)
= 〈Ψλ

n| ρ̂(x) |Ψλ
0〉 ; ∀ n 6= 0 (2.52)

For complex-valued wave functions it follows that ρλ0n(x) =
(
ρλn0(x)

)∗, which simpli-
fies for real-valued wave functions to ρλ0n(x) = ρλn0(x). Further, in the summations
of Eq. (2.48) the case n = 0 is excluded since ρλ00(x) = 0 due to the consistency of
the ground-state density along the adiabatic path.

Linear Density-Density Response Function

In previous sections, it was established that electron correlation arises as a result of
random density fluctuations within an electronic system. An alternative perspective
on electron correlation lies in response theory. Within this framework, the behavior
of the fully interacting system can be elucidated by comparing it to a reference
system that is subjected to a small external perturbation giving rise to density
fluctuations. The reaction of the electronic density to this perturbation is then
captured by the linear density–density response function. Specifically, it describes
the density response at a position r1 caused by the perturbations at a position r2
due to a small external potential oscillating at a certain frequency. [95]

As will be shown in the following, density fluctuations of a system—also captured
in the transition densities—can be related to the integral of the linear density–
density response function over the frequency, [56] which is given within the Lehmann
representation, [98] also called spectral decomposition, by

χλ(ω,x1,x2) = lim
η→0+

∑
n6=0

(
ρλ0n(x1)ρ

λ
n0(x2)

ω − Ωλ
0n − iη

− ρλ0n(x2)ρ
λ
n0(x1)

ω + Ωλ
0n + iη

)
(2.53)

with the frequency ω and the excitation energies Ωλ
0n = Eλ

n −Eλ
0 . The positive real

number η shifts the poles at ω = ±Ωλ
0n infinitesimally away from the real axis making

the response function analytical in the upper right and lower left complex frequency
plane (see Fig. 2.1). Nevertheless, the pole structure of the response function poses
challenges for the integration along the real frequency axis∫ +∞

−∞
dω χλ(ω,x1,x2) =

∫ 0

−∞
dω χλ(ω,x1,x2) +

∫ +∞

0

dω χλ(ω,x1,x2) (2.54)

To avoid that, each integral along the real frequency axis in Eq. (2.54) may be
expressed by an integral along the imaginary frequency axis, as the response function
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does not have any poles in the imaginary frequency domain. Thus, a relation between
the real and imaginary frequency integral is necessary, which can be best rationalized
by considering the respective integration on the complex ω-plane. First, the integral
in the interval [0,+∞] is considered, i.e. the second term on the right-hand side of
Eq. (2.54). As can be seen in Fig. 2.1, a closed contour can be created from 0→ +∞
along the real frequency axis (path I), from the real to the imaginary axis (path II),
and finally from +∞ → 0 on the imaginary axis (path III). According to Cauchy’s
residue theorem, [99] which states that the integral over a closed contour containing
no poles evaluates to zero, it follows that

∫
path I dω χλ =

∫
path III dω χλ. This gives

the following relation∫ +∞

0

dω χλ(ω,x1,x2) =

∫ 0

+∞
dω χλ(iω,x1,x2) = −

∫ +∞

0

dω χλ(iω,x1,x2) (2.55)

The same reasoning can be applied for the first term in Eq. (2.54) resulting in the
relation∫ 0

−∞
dω χλ(ω,x1,x2) =

∫ −∞
0

dω χλ(iω,x1,x2) = −
∫ +∞

0

dω χλ(−iω,x1,x2)

(2.56)

Combining the results of Eq. (2.55) and Eq. (2.56) allows to express the integral∫ +∞
−∞ dω χλ(ω,x1,x2) using the response function in the imaginary frequency domain
as ∫ +∞

−∞
dω χλ(ω,x1,x2) = −

∫ +∞

−∞
dω χλ(iω,x1,x2) (2.57)

= −
∫ +∞

0

dω
[
χλ(iω,x1,x2) + χλ(−iω,x1,x2)

]
(2.58)

Inserting Eq. (2.53) in terms of imaginary frequencies into Eq. (2.58) results in

−
∫ +∞

0

dω
[
χλ(iω,x1,x2) + χλ(−iω,x1,x2)

]
=

∫ +∞

0

dω
2Ωλ

0n

ω2 +
(
Ωλ

0n

)2(∑
n6=0

ρλ0n(x1)ρ
λ
n0(x2) + ρλ0n(x2)ρ

λ
n0(x1)

)
(2.59)

The frequency integration can be carried out using the relation
∫ +∞
0

dω R
R2+ω2 =

π
2
(∀ R > 0) to yield

−
∫ +∞

0

dω
[
χλ(iω,x1,x2) + χλ(−iω,x1,x2)

]
= π

(∑
n6=0

ρλ0n(x1)ρ
λ
n0(x2) + ρλ0n(x2)ρ

λ
n0(x1)

)
(2.60)

= π

(∑
n6=0

ρλ0n(x1)ρ
λ
n0(x2) +

(
ρλ0n(x1)

)∗(
ρλn0(x2)

)∗) (2.61)

= 2π
∑
n6=0

Re
(
ρλ0n(x1)ρ

λ
n0(x2)

)
(2.62)
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In Eq. (2.62), the term Re
(
ρλ0n(x1)ρ

λ
n0(x2)

)
denotes the real part of the product of

two transition densities. It should be noted that for complex-valued orbitals the
real part of this product also contains contributions from the imaginary part of each
transition density.

Re(ω)

Im(ω)

I

II

III

I: (0, 0) → (∞, 0)

II: (∞, 0) → (0,∞)

III: (0,∞) → (0, 0)

Figure 2.1: Graphical representation of the pole structure of the response function
χλ(ω,x1,x2) given by Eq. (2.53) in the complex frequency plane. The poles are
denoted by ‘×’ and a closed contour is given by the path I→II→III.

Fluctuation-Dissipation Theorem

Combining Eq. (2.62) with Eq. (2.49) and Eq. (2.51) yields the following relation

− 1

2π

∫ +∞

−∞
dω χλ(iω,x1,x2) =

∑
n6=0

Re
(
ρλ0n(x1)ρ

λ
n0(x2)

)
= 〈Ψλ

0 |∆ρ̂(x1)∆ρ̂(x2) |Ψλ
0〉

(2.63)

which is known as the zero temperature fluctuation-dissipation theorem. [14] Thus,
the response function in the imaginary frequency domain, which describes energy
absorption, i.e., dissipation, [97] of the system subject to an external perturbation
oscillating with a certain frequency ω, is tied to density fluctuations.

Electron Correlation Energy within the Adiabatic-Connection
Fluctuation-Dissipation Formalism

The fluctuation-dissipation theorem (Eq. (2.63)) allows to reformulate the corre-
lation energy expression given by Eq. (2.48) in terms of the response function by
recognizing that only the real component of the product of transition densities in
Eq. (2.48) is relevant since the correlation energy is a real-valued quantity. Thus,
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combining Eq. (2.62) with Eq. (2.48) yields

Ec = − 1

4π

∫ 1

0

dλ
∫∫

dx1dx2
1

r12

∫ +∞

−∞
dω
[
χλ(iω,x1,x2)− χλ=0(iω,x1,x2)

]
(2.64)

In the above equation, the response function at coupling strength λ = 0, i.e., the
KS response function χKS = χλ=0 = χ0, is known in terms of the KS orbitals,
while the interacting response function χλ is accessible from time-dependent density
functional theory (TDDFT) as will be shown in the next section.

2.4.4 Density Response from Time-Dependent Density Func-
tional Theory

Within the framework of time-dependent density functional theory, the electronic
system starts in its ground-state and an external perturbation in form of a potential
oscillating with a given frequency ω is applied according to [97]

vext(ω,x) = vext(x) + v
(1)
ext(ω,x) (2.65)

The corresponding density response can be expanded in a Taylor series with respect
to v(1)ext(ω,x) as [97]

ρ(ω,x) = ρ0(x) + ρ1(ω,x) + ρ2(ω,x) + ... (2.66)

The linear response is given by [97]

ρ1(ω,x1) =

∫
dx2χ(ω,x1,x2)v

(1)
ext(x2, ω) (2.67)

where the linear response function can be expressed by the Fourier transform of [95]

χ(x1, t1,x2, t2) =
∂ρ(x1, t1)

∂vext(x2, t2)

∣∣∣∣
vext(x2,t2)=vext(x2)

(2.68)

Since the external potential of the ground-state, vext(x), is a functional of the ground-
state density ρ0(x), the above equation implies that the linear response function is
a functional of the ground-state density only. [95]

The linear response can be equivalently expressed within the KS system with
the KS potential

vKS(ω,x) = vKS(x) + v
(1)
KS(ω,x) (2.69)

according to [97]

ρ1(ω,x1) =

∫
dx2χ

0(ω,x1,x2)v
(1)
KS(x, ω) (2.70)

The first-order change in the time-dependent KS potential is given by [97]

v
(1)
KS(ω,x) = v

(1)
ext(ω,x) + v

(1)
H (ω,x) + v(1)xc (ω,x1) (2.71)

v
(1)
H (ω,x1) =

∫
dx2

ρ(1)(ω,x2)

r12
=

∫
dx2 fH(x1,x2)ρ

(1)(ω,x2) (2.72)

v(1)xc (ω,x1) =

∫
dx2fxc(ω,x1,x2)ρ

(1)(ω,x2) (2.73)
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where fH(x1,x2) := 1
r12

is the Hartree kernel and fxc(ω,x1,x2) is the exchange-
correlation kernel, which can be expressed by the Fourier transform of

fxc(x1, t1,x2, t2) =
∂vxc(x1, t1)

∂ρ(x2, t2)

∣∣∣∣
ρ(x2,t2)=ρ0(x2)

(2.74)

Using Eq. (2.67) with Eq. (2.70) and Eq. (2.71) leads to the Dyson-like equation for
the interacting response function [100]

χ(ω,x1,x2)

= χ0(ω,x1,x2)

+

∫∫
dx3dx4 χ

0(ω,x1,x3)
[
fH(x3,x4) + fxc(ω,x3,x4)

]
χ(ω,x4,x2) (2.75)

This allows to express the interacting response function in terms of the KS re-
sponse function, which is known, and the exchange-correlation kernel, which, like
the exchange-correlation potential, is unknown.

The findings from this section can now be applied to the electron correlation en-
ergy expression within the ACFDT as given by Eq. (2.64). The interacting response
function in the imaginary time domain can be expressed using Eq. (2.75) as

χλ(iω,x1,x2)

= χ0(iω,x1,x2)

+

∫∫
dx3dx4 χ

0(iω,x1,x3)

(
λfH(x3,x4) + fλxc(iω,x3,x4)

)
χλ(iω,x4,x2) (2.76)

where the Hartree kernel is linear in λ. The KS response function can be expressed
using Eq. (2.53) as

χ0(iω,x1,x2) =
Nocc∑
i

Nvirt∑
a

(
φ∗i (x1)φa(x1)φ

∗
a(x2)φi(x2)

iω − (εa − εi)
− φ∗a(x1)φi(x1)φ

∗
i (x2)φa(x2)

iω + (εa − εi)

)
(2.77)

where the summations run over all occupied MOs i up to the total number of
occupied orbitals Nocc as well as over all virtual orbitals a up to the total number
of virtual orbitals Nvirt.

2.5 The Random Phase Approximation

2.5.1 Real-Space Representation

The simplest approximation to the exchange-correlation kernel constitutes the (di-
rect) random phase approximation where

fλxc(iω,x3,x4) = 0 (2.78)

Thus, only the Hartree kernel is considered for the computation of the RPA response
function, which takes the form

χλRPA(iω,x1,x2) = χ0(iω,x1,x2)

+

∫∫
dx3dx4 χ

0(iω,x1,x3)λfH(x3,x4)χ
λ
RPA(iω,x4,x2) (2.79)
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To obtain an expression for the RPA correlation energy, first, the above equation is
rewritten to obtain an expression for χλRPA(iω,x1,x2) according to [97]

χλRPA(iω) = χ0(iω) + χ0(iω)⊗ λfH ⊗ χλRPA(iω) (2.80)

where the dependence on the space and spin coordinates was omitted and the mul-
tiplication of two functions in the real-space representation is given by

χ0(iω)⊗ fH =

∫
dx3χ

0(iω,x1,x3)fH(x3,x4) (2.81)

By rearranging the terms, the RPA response function can be expressed according to

χλRPA(iω) =
(
1̂− χ0(iω)⊗ λfH

)−1 ⊗ χKS(iω) (2.82)

where 1̂ denotes the identity function. Using the above expression for the RPA
response function with the ACFDT correlation energy expression given by Eq. (2.64)
yields the RPA correlation energy

ERPA
c = − 1

4π

∫ 1

0

dλ
∫ +∞

−∞
dω Tr

[
fH ⊗

{(
1̂− χ0(iω)⊗ λfH

)−1 ⊗ χ0(iω)− χ0(iω)
}]

(2.83)

where the trace of a product of two functions f(x1,x2) and g(x1,x2) in the real-space
representation is defined as

Tr(f ⊗ g) =

∫∫
dx1dx2 f(x1,x2)g(x1,x2) (2.84)

After analytical coupling strength integration, the RPA correlation energy reads

ERPA
c =

1

4π

∫ +∞

−∞
dω Tr

[
ln
{

1̂− χ0(iω)⊗ fH
}

+ χ0(iω)⊗ fH
]

(2.85)

2.5.2 Molecular-Orbital Representation

For computational implementations within quantum chemistry it is more common
to work within the molecular orbital space, rather than the real-space. Therefore,
Eq. (2.85) can be reformulated for the general case of complex-valued orbitals ac-
cording to [55]

ERPA
c =

1

4π

∫ +∞

−∞
dω

Nocc∑
i

Nvirt∑
a

[
ln
{

1−
(
Π0,−
ia,ia(iω)Via,ai − Π0,+

ia,ia(iω)V ∗ia,ai
)}

+
(
Π0,−
ia,ia(iω)Via,ai − Π0,+

ia,ia(iω)V ∗ia,ai
)]

(2.86)

=
1

4π

∫ +∞

−∞
dω Tr

[
ln
{
1−

(
Π0,−(iω)V −Π0,+(iω)V∗

)}
+
(
Π0,−(iω)V −Π0,+(iω)V∗

)]
(2.87)

with the polarization propagator Π0(iω) given by [55]

Π0(iω) = Π0,−(iω)−Π0,+(iω) (2.88)

Π0,−
ia,ia(iω) =

1

iω − (εa − εi)
(2.89)

Π0,+
ia,ia(iω) =

1

iω + (εa − εi)
(2.90)
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and the MO representation of the Hartree kernel V:

Via,ai =

∫∫
dx1dx2

φ∗i (x1)φa(x1)φ
∗
a(x2)φi(x2)

r12
(2.91)

V ∗ia,ai =

∫∫
dx1dx2

φ∗a(x1)φi(x1)φ
∗
i (x2)φa(x2)

r12
(2.92)

For real-valued wave functions it follows that V = V∗ and the polarization propa-
gator is an even function in the iω-space. Thus, the RPA correlation energy given
by Eq. (2.87) reduces to [75]

ERPA
c =

1

2π

∫ +∞

0

dω Tr
[
ln
{
1−Π0(iω)V

}
+ Π0(iω)V

]
(2.93)

and the polarization propagator for real-valued orbitals reduces to [75]

Π0
ia,ia(iω) =

−2(εa − εi)
ω2 + (εa − εi)2

(2.94)

2.5.3 Molecular-Orbital Resolution-of-the-Identity RPA

Calculating the RPA correlation energy within the molecular orbital basis
(Eq. (2.87)) requires storing the four-dimensional electron repulsion integral (ERI)
tensor, which restricts its applicability to small systems. Thus, in the next section,
the resolution-of-the-identity (RI) approach—which provides one possible avenue to
factorize the four center integrals into lower rank tensors—is introduced and sub-
sequently applied to the computation of the MO-RPA energy expression, thereby
reducing the computational cost.

Resolution-of-the-Identity

The RI approach [101–106] allows to factorize the four-center ERI tensor into tensors
of second- and third-order. The RI approach is frequently used interchangeably with
the density fitting (DF) method. Although both approaches yield the same results,
they are not identical, as they are based on different conceptual frameworks. [107]
The following derivation is based on the DF formalism.

The four-center two-electron integral tensor in the atomic orbital basis {ϕµ} is
given by

(µν|λσ) =

∫∫
dx1dx2 ϕ

∗
µ(x1)ϕν(x1)

1

r12
ϕ∗λ(x2)ϕσ(x2) (2.95)

where the indices µ, ν, λ, and σ denote atomic orbital indices, with a total of Nbasis

AO basis functions. The charge densities |λσ) are now approximated by expanding
them in an auxiliary basis set {P} according to

|λσ) ≈ |λ̃σ) =
Naux∑
M

C̃P
λσ|P ) (2.96)

whereNaux denotes the total number of auxiliary functions and the fitting coefficients
C̃P
λσ can be determined by minimizing the error

0
!

=
∂

∂C̃P
λσ

(λσ − λ̃σ|m12|λσ − λ̃σ) (2.97)
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within a metric m12 leading to

C̃P
λσ =

Naux∑
Q

(λσ|m12|Q)(Q|m12|P )−1 (2.98)

where matrix operations are performed prior to indexing. Using this result allows
to factorize the ERI tensor according to

(µν|λσ) ≈
Naux∑
PQ

C̃P
µν(P |Q)C̃Q

λσ (2.99)

=
Naux∑
PQRS

(µν|m12|P )(P |m12|Q)−1(Q|R)(R|m12S)−1(S|m12|λσ) (2.100)

=
Naux∑
PS

BPµνṼPSBSλσ (2.101)

where the following second- and third-order tensors have been introduced

BPµν := (µν|m12|P ) (2.102)

ṼPS :=
Naux∑
QR

(P |m12|Q)−1(Q|R)(R|m12S)−1 (2.103)

The choice of the metric m12 is important for the accuracy of the approximation.
The Coulomb metric m12 = 1

r12
has been shown to be well suited for fitting density-

like repulsions. [106] Other choices include the overlap metric as well as the Coulomb
metric attenuated by the complementary error function. [26,108,109] While those met-
rics are less accurate than the Coulomb metric, they introduce sparsity into the
respective matrices which can be exploited for efficiency, which will be discussed
further in section 2.5.5.

MO-RI-RPA Energy

For the general case of complex-valued orbitals, V (Eq. (2.91)) and V∗ (Eq. (2.92))
can be factorized according to Eq. (2.101) to yield

Via,ai =
Naux∑
PQ

BPiaṼPQB
Q
ai (2.104)

V ∗ia,ai =
Naux∑
PQ

(
BPia
)∗
ṼPQ

(
BQai
)∗ (2.105)

this allows to rewrite Π0,−(iω)V −Π0,+(iω)V∗ according to

Nocc∑
i

Nvirt∑
a

Π0,−
ia,ia(iω)Via,ai − Π0,+

ia,ia(iω)V ∗ia,ai =
Naux∑
PQ

[
X̃−0,PQ(iω)− X̃+

0,PQ(iω)
]
ṼPQ

(2.106)
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with the polarization propagator in the auxiliary basis

X̃0(iω) = X̃−0 (iω)− X̃+
0 (iω) (2.107)

X̃−0,PQ(iω) =
Nocc∑
i

Nvirt∑
a

BPiaΠ
0,−
ia,ia(iω)BQai (2.108)

X̃+
0,PQ(iω) =

Nocc∑
i

Nvirt∑
a

(
BPia
)∗

Π0,+
ia,ia(iω)

(
BQai
)∗ (2.109)

Combining these results with Eq. (2.87) yields

ERPA
c =

1

4π

∫ +∞

−∞
dω Tr

[
ln
{
1− X̃0(iω)Ṽ

}
+ X̃0(iω)Ṽ

]
(2.110)

It should be noted that for real-valued orbitals X̃0(iω) reduces to

X̃0,PQ(iω) =
Nocc∑
i

Nvirt∑
a

BPia
−2(εa − εi)

ω2 + (εa − εi)2
BQia (2.111)

and the corresponding energy expression reads [24]

ERPA
c =

1

2π

∫ +∞

0

dω Tr
[
ln
{
1− X̃0(iω)Ṽ

}
+ X̃0(iω)Ṽ

]
(2.112)

Introducing the RI approximation and a numerical frequency integration for the
MO-RPA correlation energy computation—which was accomplished by Furche and
co-workers [24]—reduces the formal scaling of the method from O(M6) to O(M4),
thereby making RPA one of the formally lowest-scaling electron correlation methods.

2.5.4 Atomic-Orbital Resolution-of-the-Identity RPA

The computationally most intensive step within RPA is the computation of the
response function in the auxiliary basis as given by Eqs. (2.107)–(2.109) formally
scaling as O(N2

auxNvirtNocc ∝ M4). Thus, an atomic orbital formulation will be
derived for this step to benefit from locality in the electronic structure.

In a first step, the response function in the imaginary frequency domain is ex-
pressed by its Fourier transform according to [28]

X̃0(iω) =

∫ +∞

−∞
dτX0(iτ)exp(iτω) (2.113)

For real-valued orbitals, X̃0(iω) is an even function in the iω-space and the Fourier
transform reduces to a cosine transform, [27,28] or, equivalently a double Laplace
transform. [25] To obtain an expression for X0(iτ), the inverse Fourier transform
given by

X0(iτ) =
1

2π

∫ +∞

−∞
dωX̃0(iω)exp(−iτω) (2.114)

=

∫ +∞

0

dω
[
exp(iτω)X̃0(−iω) + exp(−iτω)X̃0(iω)

]
(2.115)
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can be evaluated. For this, X̃0(iω) can be rewritten according to

X̃0,PQ(iω)

=
Nocc∑
i

Nvirt∑
a

−
[
BPiaB

Q
ai − (BPiaB

Q
ai)
∗]iω

ω2 + (εa − εi)2
−
[
BPiaB

Q
ai + (BPiaB

Q
ai)
∗](εa − εi)

ω2 + (εa − εi)2
(2.116)

and inserted into Eq. (2.115). Further, using Euler’s formula to express the expo-
nential function, exp(ix) = cos(x) + isin(x) (x ∈ R), yields

X0,PQ(iτ) =
Nocc∑
i

Nvirt∑
a

− 1

π

[ ∫ +∞

0

dω cos(ωτ)

[
BPiaB

Q
ai + (BPiaB

Q
ai)
∗](εa − εi)

ω2 + (εa − εi)2

+

∫ +∞

0

dω isin(ωτ)

[
BPiaB

Q
ai − (BPiaB

Q
ai)
∗]iω

ω2 + (εa − εi)2
]

(2.117)

The cosine and sine transforms can be evaluated according to [110]∫ +∞

0

dω cos(ωτ)
(εa − εi)

ω2 + (εa − εi)2
=
π

2
exp(−ωτ); ∀ τ ≥ 0 (2.118)∫ +∞

0

dω sin(ωτ)
ω

ω2 + (εa − εi)2
=
π

2
exp(−ωτ); ∀ τ ≥ 0 (2.119)

yielding

X0,PQ(iτ) =
Nocc∑
i

Nvirt∑
a

exp(−(εa − εi)τ)(BPiaB
Q
ai); ∀ τ ≥ 0 (2.120)

Since the response function in the imaginary time domain is a Hermitian function,
it has the following property [111]

X0(−iτ) = X0(iτ)∗ (2.121)

which provides an expression for X0(iτ) for negative imaginary times. Thus, it can
be summarized as

X0,PQ(iτ) =

{∑Nocc
i

∑Nvirt
a exp(−(εa − εi)τ)(BPiaB

Q
ai) | t ≥ 0∑Nocc

i

∑Nvirt
a exp(−(εa − εi)τ)(BPiaB

Q
ai)
∗ | t < 0

(2.122)

Compared to Eq. (2.116) where a straightforward AO formulation is not possible
due to the squared orbital energy denominator, the above equation has decoupled
orbital energies which allows a transformation into the atomic orbital space. For
positive imaginary times it follows that

X0,PQ(iτ) =

Nbasis∑
µνλσ

Nocc∑
i

Nvirt∑
a

exp(−(εa − εi)τ)C∗µiCνaC
∗
λaCσiBPµνB

Q
λσ; ∀ τ ≥ 0 (2.123)

=

Nbasis∑
µνλσ

G0,µσ(−iτ)BPµνG0,νλ(iτ)BQλσ; ∀ τ ≥ 0 (2.124)
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where {Cµi} and {Cνa} denote occupied and virtual MO coefficients, respectively,
and the non-interacting one-particle Green’s function is defined as

G0(iτ) = Θ(−τ)G0(iτ) + Θ(τ)G0(iτ) (2.125)

G0,µν(iτ) =
Nocc∑
i

C∗µiCνiexp(−τεi) =
[
Pexp(−τHKSP)

]
µν

(2.126)

G0,µν(iτ) = −
Nvirt∑
a

C∗µaCνaexp(−τεa) =
[
Pvirtexp(−τHKSPvirt)

]
µν

(2.127)

with the Heaviside step-function Θ, as well as the occupied and virtual one-particle
density matrix given by P and Pvirt, respectively. Accordingly, an expression for the
response function in the negative imaginary time domain can be derived leading to
the final expression

X0,PQ(iτ) =

{∑Nbasis
µνλσ G0,µσ(−iτ)BPµνG0,νλ(iτ)BQλσ|τ ≥ 0∑Nbasis
µνλσ G0,νλ(−iτ)BPµνG0,µσ(iτ)BQλσ|τ < 0

(2.128)

Again, for real-valued orbitals the response function is an even function in the iτ -
domain, that is X0(iτ) = X0(−iτ).

The general RPA energy expression in terms of complex-valued orbitals given
by Eq. (2.87) with the evaluation of the response function in the imaginary time
domain was employed in Publication III as the starting point for the derivation of
analytical second-order derivatives for the computation of NMR shielding tensors.
Then, in Publication IV, further improvements were made for the computational
efficiency using a low-scaling RPA energy formulation. In the next section, strate-
gies for low-scaling RPA methods are introduced and subsequently applied to the
computation of RPA correlation energies.

2.5.5 Strategies for Low-Scaling

In the following, two strategies for an efficient and low-scaling implementation will
be described, specifically the utilization of a local RI metric and pivoted Cholesky
decomposition (CD) of density type matrices.

As mentioned in the previous section, the choice of the RI metric constitutes a
crucial factor for increasing the computational efficiency and lower the scaling of the
method. While the Coulomb metric m12 = 1

r12
has shown to be very accurate, [106] no

sparsity can be gained from the corresponding matrix representations. Considering,
for instance, the three-center integrals (µν|r−112 |P ) it becomes apparent, that the
charge distribution (µν) is coupled to the auxiliary function P over effectively infinite
distances due to the very slow decay of the metric. By comparison, the overlap metric
m12 = δ(r12) is very local due to the exponential decay of Gaussian basis functions,
and, thus, its matrix representations are very sparse. However, this metric has been
shown to be rather inaccurate. [106] A metric that encompasses both accuracy and
sparsity is the Coulomb metric attenuated by the complementary error function
(erfc) [26,108,109] given by

m12 =
erfc(ωattr12)

r12
(2.129)
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where the attenuation parameter ωatt determines the attenuation strength, thereby
varying the sparsity and accuracy. In the limiting cases, the Coulomb metric is
recovered as ωatt → 0, and the overlap metric is recovered as ωatt →∞. Specifically,
for RPA it has been shown that the parameter ωatt = 0.1 a.u. provides a good
compromise between accuracy and sparsity. [26,36]

Another strategy that can be employed to increase computational efficiency is
pivoted Cholesky decomposition of density type matrices. While the computational
scaling can be reduced significantly within the AO framework, the scaling with the
basis set size (for a fixed system size) increases. This introduces an overhead for
systems that are not sparse. To remedy this, pivoted Cholesky decomposition of
density type matrices has shown to be very useful. In this context, the pivoted
Cholesky decomposition of a positive semi-definite matrix R is given by

R = LLT (2.130)

where L is a lower triangular matrix, having the same number of rows as R, while
the number of columns corresponds to rank(R). Here, the CD of the occupied
one-particle density matrix P according to

P = LLT (2.131)

is very beneficial since its rank corresponds to the number of occupied orbitals
Nocc, which is significantly less than the number of basis functions. Further, the
Cholesky matrices usually retain the sparsity of the original matrix. To apply this
to the framework of AO-RI-RPA, it can be considered that the Green’s function in
the negative imaginary time domain is invariant to projections onto the occupied
subspace, which gives rise to the CD of the occupied density matrix according to [27]

G0(−iτ) = PSG0(−iτ)SP (2.132)
= LLTSG0(−iτ)SLLT (2.133)

Next, the Cholesky decomposition of the Green’s function in the positive imaginary
time domain can be considered directly

−G0(iτ) = Lvirt(iτ)LT
virt(iτ) (2.134)

Since this Green’s function is negative semi-definite, CD is applied to −G0(iτ),
which is positive semi-definite. The number of columns of Lvirt(iτ), and, thus, the
rank of G0(iτ), is dependent on the τ -quadrature point. It follows that the rank
decreases with increasing τ , thus, capturing the decay of the exponential function
within the Green’s function. This decomposition is somewhat more beneficial than
projecting the Green’s function onto the virtual subspace and using the CD of the
virtual density, whose rank always corresponds to the number of virtual orbitals.

In Publications I-II, Eq. (2.133) was used together with the attenuated
Coulomb metric, while Publication IV employs both, Eqs. (2.133) and (2.134).

2.5.6 Low-Scaling Atomic-Orbital Resolution-of-the-Identity
RPA

To derive a low-scaling formulation for the response function in the imaginary time
domain—the time-determining step within RI-RPA—it can be first expressed as a
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trace over the AO-indices according to

X0,PQ(iτ) = Tr
(
G0(−iτ)BPG0(iτ)BQ

)
(2.135)

Next, employing the attenuated Coulomb metric for the two- and three-center inte-
grals as well as the CD given by Eq. (2.124) yields [27]

X0,PQ(iτ) = Tr
(
LLTSG0(−iτ)SLLTBPG0(iτ)BQ

)
(2.136)

= Tr
(
[LTSG0(−iτ)SL][LTBP ]G0(iτ)[BQLT]

)
(2.137)

=
Nocc∑
ij

Nbasis∑
µν

G̃0,ij(−iτ)B̃PµjG0,µν(iτ)B̃Qνi (2.138)

In Eq. (2.137) the invariance of the trace under cyclic permutation was utilized and
in Eq. (2.138), the following quantities have been introduced

G̃0,ij(−iτ) =
(
LTSG0(−iτ)SL

)
ij

(2.139)

B̃Pµj =
(
BPLT)

µj
(2.140)

which are represented (partially) in the Cholesky MO basis with the occupied
Cholesky indices denoted by i and j.

For molecular systems with a local electronic structure all matrices become
sparse allowing an asymptotically linear scaling computation of the response
function in the imaginary time domain, which constitutes the time determining
step. [25–27]

Further, the memory requirements of the method—which are dominated by the
memory requirements of the three-center integral tensor—were reduced significantly
by utilizing CD from NauxN

2
basis to NauxNbasisNocc. However, for larger molecular

systems and/or basis sets, the memory requirements of the method, comprising
the memory of the three-center integrals as well as intermediate quantities arising
during the calculation, quickly exceed the available system memory on a single
compute node. This problem was solved in Publication I, where the low-scaling
RPA energy expression derived in this section was used within a real-valued atomic
orbital basis to introduce an optimized batching scheme for the computation of
X0(iτ). Using a Lagrangian formalism, the number of batches was computed by
minimizing the batching overhead while not exceeding the available system memory,
thus providing the optimal compromise between program runtime and memory
demand.

2.6 σ-Functionals
Another approach based on the ACFD theorem that is closely related to RPA are
σ-functionals, which were recently introduced by Görling and co-workers. [81,82] To
derive the corresponding correlation energy expression, first, the RPA correlation
energy is considered as given by Eq. (2.87). To obtain a symmetric expression for
the term X̃0(iω)Ṽ, the matrix Ṽ can be decomposed as Ṽ = Ṽ

1
2 Ṽ

1
2 (alternatively

the Cholesky matrix of Ṽ may be employed). Next, the first trace in Eq. (2.87) is
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considered, where the series representation of the matrix logarithm is used together
with the invariance of the trace with respect to cyclic permutation yielding

Tr
[
ln
(
1− X̃0(iω)Ṽ

)]
= Tr

[ ∞∑
n=1

(
X̃0(iω)Ṽ

1
2 Ṽ

1
2

)]
(2.141)

= Tr
[ ∞∑
n=1

(
Ṽ

1
2 X̃0(iω)Ṽ

1
2

)]
(2.142)

= Tr
[
ln
(
1− Ṽ

1
2 X̃0(iω)Ṽ

1
2

)]
(2.143)

Accordingly, the second trace in Eq. (2.87) can be expressed as Tr
[
X̃0(iω)Ṽ

]
=

Tr
[
Ṽ

1
2 X̃0(iω)Ṽ

1
2

)]
. Next, the positive semi-definite matrix −Ṽ

1
2 X̃0(iω)Ṽ

1
2 is ex-

pressed in the spectral representation as

−Ṽ
1
2 X̃0(iω)Ṽ

1
2 = Vσ(iω)σ(iω)V†σ(iω) (2.144)

where σ(iω) denotes the eigenvalue matrix of the expression on the left-hand side
and Vσ(iω) the corresponding eigenvector matrix. Thus, the RPA correlation energy
can now be expressed in terms of the eigenvalues σ(iω) according to

ERPA
c =

1

4π

∫ +∞

−∞
dω Tr

[
ln
{
1 + σ(iω)

}
− σ(iω)

]
(2.145)

The σ-functional correlation energy is obtained by using the RPA correlation energy
and adding an additional term [81,82]

Eσ
c =

1

4π

∫ +∞

−∞
dω
{
Tr
[
ln
{
1 + σ(iω)

}
− σ(iω)

]
− Tr

[
H
(
σ(iω)

)]}
(2.146)

where H
(
σ(iω)

)
is defined by cubic splines which are optimized using a set of

benchmark datasets. A number of parametrizations exist for σ-functionals which
are characterized by the setting of the optimization as well as the chosen benchmark
sets. [80–82]

In Publication V, the σ-functional correlation energy expression was used as
the starting point for the computation of NMR shielding tensors using numerical
second-order derivatives within a finite-field approach.

2.7 Molecular Properties from Derivatives of the
Energy

The computation of energy derivatives is of central importance in quantum chem-
istry as many molecular properties can be obtained directly from these derivatives.
In this context, many properties can be defined as the response of the energy to
a perturbation. The energy of a system subjected to a weak perturbation, charac-
terized by the perturbation strength α, can be expanded in a Taylor series around
α = 0 according to [112]

E(α) = E(0) +
∂E

∂α

∣∣∣∣
α=0

λ+
1

2

∂2E

∂α2

∣∣∣∣
α=0

α2 +
1

6

∂3E

∂α3

∣∣∣∣
α=0

α3 + ... (2.147)
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where the nth-order property is defined by the nth-order derivative of the energy
∂nE
∂αn . Furthermore, a system can also be subject to multiple perturbations, e.g., for
two perturbations α and β, the Taylor expansion around α = 0 and β = 0 of the
multivariable function E(α, β) leads to [113]

E(α, β) = E(0, 0) +

[
∂E

∂α
α +

∂E

∂β
β

]
α=0,β=0

+
1

2

[
∂2E

∂α2
α2 + 2

∂2E

∂α∂β
αβ +

∂2E

∂β2
β2

]
α=0,β=0

+ ... (2.148)

thus, giving rise to mixed derivatives.
Examples for such properties are the derivative of the energy with respect to the

positions of the nuclei (nuclear gradients) and the mixed second derivative of the
energy with respect to the nuclear magnetic moment and magnetic field yielding
the NMR shielding tensor. Both properties are of central importance in quantum
chemistry, and will be described in the next sections.

2.7.1 Analytical and Numerical Derivatives

Derivatives of the energy can be obtained either analytically, by differentiating the
corresponding energy expression with respect to the perturbation(s), or by employ-
ing numerical techniques, where the energy is perturbed by an infinitesimal amount
and the corresponding difference quotient is computed from this data. However,
in practice, a finite difference has to be employed to avoid numerical instabilities,
thus, decreasing the accuracy. Further, numerical derivatives are usually computa-
tionally much more demanding than analytical derivatives as it requires a number
of energy calculations in the presence of the perturbation(s). Therefore, analytical
derivatives are generally preferred. [114,115] However, in the absence of an analytical
implementation, numerical approaches can be useful for benchmark studies since
the computational implementation is usually straightforward. [114,115] An exception
is perturbations of the magnetic field, which require the use of complex algebra
due to the nature of the perturbation. [115] In Publication V, the accuracy of σ-
functionals for the computation of NMR shielding parameters was investigated in
detail using numerical second derivatives. The results of this investigation are cru-
cial for determining the viability of implementing analytical second-order derivatives
for σ-functionals.

2.7.2 Analytical Derivative Techniques

For the evaluation of the analytical derivative of a quantum chemical energy ex-
pression, there is a distinct difference between methods with variationally optimized
wavefunctions, such as HF or multi-configurational self-consistent field (MCSCF),
and nonvariational wavefunctions, e.g., MP2 or RPA. Thus, different techniques
are required for their computation. In this context, the energy of a system can be
expressed as [115]

E = E(R, C) (2.149)

depending on an external parameter R representing a coordinate of the perturba-
tion and the internal parameters summarized in the variable C, which may also
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implicitly depend on R, i.e., C(R). The parameters C are determined within a
quantum chemical approach for fixed R, which are contained in the Hamiltonian of
the corresponding method. E.g., in case of nuclear gradients within HF theory, R
corresponds to a nuclear coordinate and C to the orbital coefficients. For the general
case of Eq. (2.149) the derivative of the energy with respect to R can be expressed
as

dE(R, C(R))

dR =
∂E

∂R +
∂E

∂C
∂C

∂R (2.150)

If the wavefunction is variationally optimized with respect to the internal parameters
C, the last term in the above equation vanishes. In this context it can further be
shown that the nth-order wavefunction response is required for the energy derivative
of order 2n + 1. [116] This concept is commonly referred to as the Wigner 2n + 1
rule. [116] For methods with nonvariational wavefunctions, the first-order response
with respect to C is required for the first-order derivative. However, by employing
the Z-vector technique [117] only one response equation has to be solved as opposed
to one response equation for each component of the perturbation. E.g., for a nuclear
gradient, instead of 3Nat equations, only one response equation has to be solved.
This is usually combined with the Lagrangian formulation, [118] where a Lagrange
function is constructed which is fully variational in all parameters and leads to the
same energy as the nonvariational energy expression. This formalism also requires
the solution of only one response equation. The Lagrangian formalism has been
employed in Ref. [34] for the computation of RPA nuclear gradients within the
molecular orbital basis. For the RPA nuclear gradient expression within the atomic-
orbital basis, [36] that forms the basis of Publication II, a different approach has
been employed, as discussed in the next section.

2.8 Nuclear Gradients within the Random Phase
Approximation

To compute the first-order derivative of the RPA energy with respect to a perturba-
tion, the total RPA energy given by the sum of the Hartree–Fock energy functional
evaluated with KS orbitals and the RPA correlation according to

ERPA
total [P] = EHF[P] + ERPA

c [P] (2.151)

has to be differentiated. Since the electronic one-particle density matrix P that
enters the energy expression stems from a preceding KS-DFT calculation, neither
the HF functional nor the RPA correlation energy functional is stationary with
respect to the KS orbitals. Thus, the first-order derivative requires the first-order
response of the density matrix to the perturbation. As explained in the previous
section, in this case the Z-vector technique can be applied for an efficient evaluation
of the derivative. Differentiating the total RPA energy with respect to one nuclear
coordinate denoted by x yields

∂ERPA
total

∂x
=
∂EHF

∂x
+
∂ERPA

c

∂x
(2.152)
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The derivative can be evaluated by employing partial derivatives of ERPA
c with re-

spect to X̃0(iω), Ṽ,B, and G0(iτ) and considering the trace according to [36]

∂ERPA
c

∂x
= Tr

(∫ +∞

0

dω
∂ERPA

c (iω)

∂X̃0(iω)

∂X̃0(iω)

∂Ṽ

∂Ṽ

∂x

)
+ Tr

(∫ +∞

0

dω
∂ERPA

c (iω)

∂X̃0(iω)

∂X̃0(iω)

∂B
∂B
∂x

)
+ Tr

(∫ +∞

−∞
dω

∂ERPA
c (iω)

∂X̃0(iω)

∂X̃0(iω)

∂G0(iτ)

∂G0(iτ)

∂x

)
(2.153)

Here, the RPA correlation energy expression for one imaginary frequency is de-
noted as ERPA

c (iω). Further, the AO-RI-RPA expression is considered in terms of
real-valued orbitals. From the above equation, intermediate quantities can now be
identified:

∂ERPA
c (iω)

∂X̃0(iω)
= − 1

4π
W̃c(iω) (2.154)∫ +∞

−∞
dω

∂ERPA
c (iω)

∂X̃0(iω)

∂X̃0(iω)

∂G0(iτ)
=

∫ +∞

−∞
dτ Σ(iτ) (2.155)

with the correlated screened Coulomb interaction in the auxiliary basis W̃c(iω) and
the correlated self-energy in the imaginary time domain Σ(iτ) defined as

W̃c(iω) = Ṽ
[(

1− X̃0(iω)Ṽ
)−1 − 1

]
(2.156)

Σνλ(iτ) = −
Naux∑
PQ

Nbasis∑
µσ

W̃c,PQ(iτ)BPµνG0,µσ(iτ)BQλσ; ∀ τ ∈ [−∞,+∞] (2.157)

The correlated screened Coulomb interaction in the imaginary time domain is defined
by the Fourier transform

W̃c(iτ) =
1

2π

∫ +∞

−∞
dω exp(−iωτ)W̃c(iω) (2.158)

Since only real-valued basis functions are considered in this section, the Fourier
transform simplifies to a cosine transform as W̃c(iω) is an even function in the
iω-domain [36]

W̃c(iτ) =
1

2π

∫ +∞

0

dω cos(ωτ)W̃c(iω) (2.159)

The evaluation of the first two terms on the right-hand side of Eq. (2.153) is
not as involved, since it only requires integral derivatives. In contrast, the last term
contains the derivative of the density matrix, which is more involved. It can be
further expressed according to∫ +∞

−∞
dτ Σ(iτ)

∂G0(iτ)

∂x
=

∫ +∞

−∞
dτ Σ(iτ)

(
∂G0(iτ)

∂hKS

∂hKS

∂x
+
∂G0(iτ)

∂P

∂P

∂x

)
(2.160)

The partial derivatives of the Green’s functions can be obtained by expanding the
exponential function in its series representation and subsequently differentiating the
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corresponding expression. [36,119–121] Further, in the above expression the derivative
of the occupied density matrix could be identified and isolated. It should be noted
that the Green’s function in the imaginary time domain can be expressed in terms
of the occupied density for both, positive and negative imaginary times. For posi-
tive imaginary times, the Green’s function depends on the virtual density matrix.
However, the virtual density matrix can be expressed by the occupied density using
the following identity

1 = PS + PvirtS (2.161)
Pvirt =

(
1−PS

)
S−1 (2.162)

Thus, only the derivative of the occupied density matrix is required. [119] Eq. (2.160)
can be further summarized as∫ +∞

−∞
dτ Σ(iτ)

(
∂G0(iτ)

∂hKS

∂hKS

∂x
+
∂G0(iτ)

∂P

∂P

∂x

)
= PRPA

∂hKS

∂x
+ VRPA

∂P

∂x
(2.163)

The derivative of the HF functional in Eq. (2.151) can be obtain by tracing over
the partial derivatives in an analogous manner, yielding

∂EHF

∂x
= E

(x)
HF + Ex

HF (2.164)

where a shorthand notation for derivatives was introduced: the derivative of a quan-
tity O with respect to a perturbation ξ is denoted by Oξ. Further, to highlight that
a derivative contains only integral derivatives and not the derivative of the density
matrix the following notation is adopted O(ξ). The last term in the above equation
can be expressed according to

Ex
HF = Tr

(
HHFPx

)
(2.165)

HHF = h + J[P] + K[P] (2.166)

Summarizing the derivative of the density matrix stemming from the derivative of
the HF functional (Eq. (2.165)) and the RPA correlation energy part (Eq. (2.163))
yields [36]

Tr
(
[HHF + VRPA]Px

)
(2.167)

This is now amendable to the Z-vector technique, where an AO-based formalism
for the Z-vector approach is adopted. [119] In this context, the density matrix based
Laplace transformed (DL) coupled-perturbed Kohn–Sham (CPKS) approach is uti-
lized. [122] Further, for a low-scaling RPA gradient implementation the techniques
introduced in section 2.5.5 can be applied, thus, reducing the formal O(M4) scaling
to an asymptotic O(M2) scaling. [36]

The results from this section constitute the foundation of Publication II, where
a formalism was derived for RPA gradients within the frozen-core approximation.
Within the AO formalism, the frozen-core approximation is introduced through the
density matrix used for the RPA correlation contribution. Thus, the total RPA
energy is given within the frozen-core approximation according to

ERPA
total [P] = EHF[P] + ERPA

c [Pfc] (2.168)
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Here, the density matrix within the frozen-core approximation Pfc does not contain
contributions from core electrons and is defined according to

Pfc,µν =
Nocc∑

i=Ncore

CµiCνi (2.169)

where Ncore denotes the number of core electrons. That is, the correlation of core
electrons is neglected and only the contribution of valence electrons is considered.
While the implementation of the frozen-core RPA energy expression is rather simple,
the corresponding gradient implementation is very involved. In this context, the
contribution of the response of the occupied and frozen-core density matrix has to
be considered:

Tr
(
HHFPx + VRPAPx

fc

)
(2.170)

An efficient method for the evaluation of the above equation is derived in Publica-
tion II.

2.9 Nuclear Magnetic Resonance Shielding Tensor
within the Random Phase Approximation and
σ-Functionals

The description of nuclear magnetic resonance phenomena with computational
methods is accomplished by employing a phenomenological Hamiltonian [11,123]

ĤNMR = −
∑
A

mA(1− σ̃A)B +
1

2

∑
A 6=B

mA(DAB + JAB)mB (2.171)

that describes the effect of a perturbation of the nuclear magnetic moment of nucleus
A, mA, and magnetic field, B, on an electronic system, thus, reproducing the relevant
interactions present in most NMR spectra. [123] In Eq. (2.171), σ̃A represents the
NMR shielding tensor, DAB and JAB are the dipolar and indirect nuclear spin-spin
coupling tensors, respectively. [123] In the context of NMR spectra, DAB and JAB

determine the magnitude of peak splitting that arise from the coupling of pairs of
nuclei, while σ̃A determines the shape and shift of the peak. From a physical point of
view, σ̃A describes how the applied field is altered by the electronic environment as
perceived by the nuclear magnetic moment. [11,123] The focus in this work lies in the
computation of the NMR shielding tensor, which will be described in the following.

The NMR shielding tensor can be obtained from the second mixed derivative of
the energy E with respect to the nuclear magnetic moment mA, and the magnetic
field B, both evaluated at zero. Thus, one component of the NMR shielding tensor
is given by

σ̃Ars =
∂2

∂Bs∂mA
r

E

∣∣∣∣
mA=0,B=0

∀ r, s ∈ {x, y, z} (2.172)

However, for theoretical benchmark studies instead of the NMR shielding tensor,
often the isotropic NMR shielding constants are studied, given by

σ̃Aiso =
1

3

(
σ̃Axx + σ̃Ayy + σ̃Azz

)
(2.173)
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as they can be observed (relative to some reference compound) by experiment in
liquids. Isotropic NMR shielding constants were also employed for the benchmark
studies in Publication V.

To insure gauge origin independence, gauge-including atomic orbitals
(GIAOs) [42,43,124,125] are employed, defined as

ϕµ(r,B) = ϕµ(r,B = 0)exp
(
− i

2

[
B(Rµ −R0)

]
r

)
(2.174)

where ϕµ(r,B = 0) is the field-independent atomic-orbital basis function centered at
Rµ, and R0 is the gauge origin. For the implementation of analytical derivatives all
intermediates are either purely real or purely imaginary. Thus, the implementation
does not require the utilization of complex matrix algebra routines. Instead, real
valued matrices can be used; however, it should be considered that the matrix
product of two imaginary matrices yields the square of the imaginary unit, thus
leading to a prefactor of −1.

In the following, two approaches for the computation of the NMR shielding
tensor at the RPA level of theory are presented: numerical derivatives, [55] employed
for Publication V, and analytical derivatives subject of Publication III and IV.

2.9.1 Numerical Second-Order Derivatives

In Publication V an extensive benchmark study was conducted to investigate the
accuracy of σ-functionals for the computation of isotropic NMR shielding constants
using numerical second-order derivatives employing the approach of Ref. [55]. In
this section the underlying equations are briefly summarized.

The computation of the NMR shielding tensor using a finite-field method requires
various computations of the energy in the presence of perturbations of the magnetic
field and nuclear magnetic moment, E(B,m). One component of the NMR shielding
tensor, e.g. σ̃Axy, can be computed according to [55,126]

σ̃Axy ≈
1

2mA
yBx

[
E
(
(Bx, 0, 0)T, (0,mA

y , 0)T
)
− E

(
(Bx, 0, 0)T, (0,−mA

y , 0)T
]

(2.175)

Next, both Bx and mA
y can be set to a constant value of δ yielding

σ̃Axy ≈
1

2δ2
[
E
(
(δ, 0, 0)T, (0, δ, 0)T

)
− E

(
(δ, 0, 0)T, (0,−δ, 0)T

]
(2.176)

Using the above equations allows to compute the perturbed total RPA energy or
σ-functional energy using GIAOs, which requires complex matrix algebra routines.
Since this is usually not part of a quantum chemical program package, considerable
implementation effort has to be spend for the implementation of numerical NMR
shieldings. The implementation of Ref. [55] employs the MO-RI-RPA correlation en-
ergy expression in terms of complex-valued orbitals given by Eq. (2.87). This allowed
the first extensive benchmark study on the accuracy of RPA for NMR shieldings;
furthermore first results for σ-functionals were presented as well. In Publication V
a more comprehensive benchmark study is conducted to investigate the accuracy of
σ-functionals for the computation of NMR shielding tensors.

For RPA NMR shieldings, the good accuracy determined by the results of
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Ref. [55] motivated the implementation of analytical NMR shielding tensors of Pub-
lications III and IV, thus extending the applicability of RPA NMR to larger sys-
tems. The next section presents the key concepts that contributed to the develop-
ment of analytical second-order derivatives for RPA.

2.9.2 Analytical Second-Order Derivatives

The NMR shielding tensor within RPA can be obtained by taking the second mixed
derivative of the total RPA energy given by Eq. (2.168) with respect to mA and
B. The first derivative of the AO-RI-RPA correlation energy in terms of complex
valued orbitals with respect to mA reads

∂ERPA
c

∂mA
= Tr

(∫ +∞

−∞
dω

∂ERPA
c (iω)

∂X̃0(iω)

∂X̃0(iω)

∂G0(iτ)

G0(iτ)

∂mA

)
(2.177)

As shown for the derivative with respect to a nuclear coordinate in Eq. (2.163), the
above equation can be expressed in terms of the derivative of the KS-Hamiltonian
and the density matrix according to

∂ERPA
c

∂mA
= Tr

(
PRPA

∂h

∂mA

)
+ Tr

(
VRPA

∂P

∂mA

)
(2.178)

Here, the derivative of the KS-Hamiltonian with respect to mA reduces to the deriva-
tive of the core Hamiltonian h, since the derivatives of the remaining terms evaluate
to zero. Next, differentiating with respect to the magnetic field results in

∂2ERPA
c

∂B∂mA
= Tr

(
∂PRPA

∂B

∂h

∂mA

)
+ Tr

(
PRPA

∂2h

∂B∂mA

)
+ Tr

(
∂VRPA

∂B

∂P

∂mA

)
+ Tr

(
VRPA

∂2P

∂B∂mA

)
(2.179)

At this point, the similarities between Laplace-transformed atomic-orbital MP2
NMR shieldings [127,128] can be leveraged. The general form of the second mixed
derivative of Laplace-transformed atomic-orbital MP2 energy EMP2

c can be expressed
as [128]

∂2EMP2
c

∂B∂mA
= Tr

(
∂PMP2

∂B

∂h

∂mA

)
+ Tr

(
PMP2

∂2h

∂B∂mA

)
+ Tr

(
∂VMP2

∂B

∂P

∂mA

)
+ Tr

(
VMP2

∂2P

∂B∂mA

)
(2.180)

with the mixed second derivatives of h and P as well as intermediate quantities
PMP2 and VMP2 and their magnetic field derivatives. Thus, for the computation of
PBmA and hBmA the same strategies as used for MP2 can also be applied for RPA.
Specifically, the nested Z-vector equations [127,128] for the efficient computation of the
second derivative of the density matrix.

The quantities that remain to be evaluated are the magnetic field derivatives of
the intermediates PRPA and VRPA. Alongside this, the efficient evaluation of the
second mixed derivative of the HF-energy together with the RPA correlation energy
part to form the NMR shielding tensor at the RPA level of theory is subject of
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Publication III. Further, in Publication IV an efficient and low-scaling RPA
NMR implementation is presented, combining the results of Publication III with
the techniques introduced in section 2.5.5. This extends the applicability of RPA
NMR to even larger systems and allows an efficient and low-scaling computation.
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Publications

3.1 Publication I:
Lagrangian-Based Minimal-Overhead Batching
Scheme for the Efficient Integral-Direct
Evaluation of the RPA Correlation Energy

V. Drontschenko, D. Graf, H. Laqua, C. Ochsenfeld
J. Chem. Theory Comput., 17, 5623 (2021).

Abstract

A highly memory-efficient integral-direct random phase approximation (RPA)
method based on our ω-CDGD-RI-RPA method [Graf, D. et al. J. Chem. Theory
Comput. 2018, 14, 2505] is presented that completely alleviates the memory bot-
tleneck of storing the multidimensional three-center integral tensor, which severely
limited the tractable system sizes. Based on a Lagrangian formulation, we intro-
duce an optimized batching scheme over the auxiliary and basis-function indices,
which allows to compute the optimal number of batches for a given amount of sys-
tem memory, while minimizing the batching overhead. Thus, our optimized batching
constitutes the best tradeoff between program runtime and memory demand. Within
this batching scheme, the half-transformed three-center integral tensor BM

iµ is recom-
puted for each batch of auxiliary and basis functions. This allows the computation of
systems that were out of reach before. The largest system within this work consists
of a DNA fragment comprising 1052 atoms and 11 230 basis functions calculated
on a single node, which emphasizes the new possibilities of our integral-direct RPA
method.

Reprinted with permission from:

V. Drontschenko, D. Graf, H. Laqua, C. Ochsenfeld
"Lagrangian-Based Minimal-Overhead Batching Scheme for the Efficient
Integral-Direct Evaluation of the RPA Correlation Energy"
J. Chem. Theory Comput., 17, 5623 (2021).

Copyright 2021 American Chemical Society.
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ABSTRACT: A highly memory-efficient integral-direct random
phase approximation (RPA) method based on our ω-CDGD-RI-
RPA method [Graf, D. et al. J. Chem. Theory Comput. 2018, 14,
2505] is presented that completely alleviates the memory
bottleneck of storing the multidimensional three-center integral
tensor, which severely limited the tractable system sizes. Based on a
Lagrangian formulation, we introduce an optimized batching
scheme over the auxiliary and basis-function indices, which allows
to compute the optimal number of batches for a given amount of
system memory, while minimizing the batching overhead. Thus,
our optimized batching constitutes the best tradeoff between
program runtime and memory demand. Within this batching scheme, the half-transformed three-center integral tensor Biμ

M is
recomputed for each batch of auxiliary and basis functions. This allows the computation of systems that were out of reach before.
The largest system within this work consists of a DNA fragment comprising 1052 atoms and 11 230 basis functions calculated on a
single node, which emphasizes the new possibilities of our integral-direct RPA method.

1. INTRODUCTION
Density-functional theory (DFT) has become one of the most
applied theoretical techniques for electronic structure calcu-
lations of molecules,1−3 surfaces,4−6 and crystals7−9 in the
fields of solid-state physics, computational chemistry, and
materials science.10 Its remarkable success can be largely
attributed to the excellent cost performance ratios and good
accuracies for various properties and compounds, which make
DFT applicable to systems containing up to several thousand
atoms.11,12 However, despite the vast benefits of DFT, it is
subject to several well-known deficiencies. The accurate
description of long-range electron correlation, particularly
including van der Waals (vdW) interactions, represents a
challenging task in the modeling of molecules and materi-
als.11,13−18 This makes the development of more broadly
applicable correlation models a necessity.
The random phase approximation (RPA) is one of the most

promising methods to obtain accurate correlation energies,19,20

which is reflected by the increased interest over the last
decades.13,21−34 It yields a good description of bonding types,
including covalent, ionic, and metallic bonding.19 Additionally,
due to its nonlocality, RPA correlation is able to describe vdW
interactions exceptionally well.35

RPA is usually implemented as a post-Kohn−Sham
method36 and was first introduced by Bohm and Pines in
1953.37 It was later formulated within the framework of DFT
using the adiabatic-connection fluctuation-dissipation theo-
rem.20,38,39 However, in its original formulation, the calculation

of RPA correlation energies scales as M( )6 with the system
size M, limiting its applicability to systems comprising only
tens of atoms. In 2010, Furche and co-workers introduced the
resolution-of-the-identity (RI) approximation to RPA, reduc-
ing the scaling to M( )4 .27,40,41 This opened the way for
applications beyond the few atoms scale. In 2016, Schurkus
and Ochsenfeld32 reformulated the RPA correlation energy in
the atomic orbital (AO) space, thus extending the applicability
of the RPA to molecules comprising thousands of atoms.
Further improvements were introduced by Luenser et al.33 and
later by Graf et al.34 by employing an attenuated Coulomb
metric, Cholesky decomposition of the ground-state density
matrix, and an improved quadrature for the cosine transform in
the framework of the ω-CDGD-RI-RPA method.
Within the ω-CDGD-RI-RPA method, the most demanding

step regarding the computational effort and memory require-
ments constitutes the calculation of the response function in
the auxiliary basis. For this step, the half-transformed three-
center integral tensor Biμ

M, whose storage requirements formally
scale as N N N( )aux basis occ with the number of auxiliary
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functions Naux, AO basis functions Nbasis, and occupied
molecular orbitals (MOs) Nocc, has to be stored in memory.
Consequently, when approaching large systems, the memory
requirement of the three-center integral tensor easily exceeds
the available system memory on a single computing node,
thereby severely limiting the tractable system sizes. This
memory bottleneck was previously addressed by Graf et al.34

utilizing a hybrid parallelization scheme, thus reducing the
memory requirements of the three-center integral tensor per
node. However, depending on the targeted system size, this
requires medium to large computing clusters. To avoid these
demanding computing requirements, a method utilizing a
single server or workstation, which is readily available in
research groups, is desirable.
In this work, we introduce a Lagrange formulation for a

minimal batching overhead and an optimal exploitation of
computing resources. The memory-efficient integral-direct
RPA method completely eliminates the storage bottleneck of
the three-center integral tensor by computing the response
function within an optimized batching scheme over both the
auxiliary and AO basis-function index at the same time. The
available system memory is utilized in the most efficient way
and with minimal overhead. The three-center integral tensor is
recomputed and transformed “on the fly” for only the
respective batch (integral-direct), thereby reducing its memory
requirement by a factor of bauxbAO, where baux denotes the
number of auxiliary function batches and bAO the number of
AO basis-function batches. This redundant on the fly
recomputation comes, however, at the cost of an increased
program runtime. Hence, a compromise between memory
demand and program runtime has to be made. In this context,
the here presented optimized batching represents, by design,
the optimal compromise requiring the smallest amount of
recomputation, and consequently the lowest runtime, for any
given amount of available system memory. In this way, our
integral-direct RPA implementation extends the applicability of
RPA to considerably larger systems.
This work is structured as follows: We begin with a brief

review of the ω-CDGD-RI-RPA method in Section 2. Next, we
derive a batching method for the calculation of the response
function in Section 3. In this regard, we begin with the trivial
approach of batching with respect to auxiliary functions in
Section 3.1 and subsequently extend this batching scheme by
additionally including batching over the AO basis functions
and Laplace quadrature points in Section 3.2, where we arrive
at the optimal batching formalism. We proceed to compare
both batching methods in Section 3.3 and present calculations
to support our considerations. In Section 4, we first establish
why integral-direct RPA is best suited to reach very large
systems by addressing two approaches typically used for the
assessment of large integral tensors such as the three-center
integrals, namely, the integral-direct approach and retrieving
the three-center integrals from disk in Section 4.1. In Section
4.2, the scaling for integral-direct RPA is analyzed and
systematically improved using shell pair and integral screening
methods, sparse matrix algebra as well as switching from the
Coulomb metric to the Coulomb metric attenuated by a
complementary error function. Furthermore, calculations are
presented to support our theoretical considerations. Computa-
tional details are given in Section 5 and the performance of our
integral-direct RPA implementation is evaluated for chemically
relevant systems in Section 6. Finally, the conclusion and
outlook are presented in Section 7.

2. ω-CDGD-RI-RPA THEORY
In this section, we intend to give a brief overview of the theory
underlying the ω-CDGD-RI-RPA method.34 For a more
detailed derivation, we refer the reader to previous
publications.27,32−34,40,41

Throughout, the following notation has been adopted: μ, ν,
λ, and σ denote atomic orbitals (AOs); i and j refer to
occupied molecular orbitals (MOs); a and b refer to virtual
MOs; i and j denote Cholesky orbitals, and M, N, P, and Q
denote auxiliary functions. The number of auxiliary functions is
represented by Naux, the number of AO basis functions by
Nbasis, the number of Laplace quadrature points by Nτ, and the
numbers of occupied and virtual MOs by Nocc and Nvirt,
respectively. For two-, three-, and four-center integrals, the
Mulliken notation is used. Furthermore, Einstein’s sum
convention42 is employed. The spin index is dropped for
convenience and matrix operations are to be taken before
indexing in this work.
The total energy of the electronic ground state can be

expressed within the adiabatic-connection formalism39 as20,38

E E E E Eh KS J KS X KS Cϕ ϕ ϕ= [{ }] + [{ }] + [{ }] + (1)

where Eh, EJ, and EX denote the one-electron, Coulomb, and
exact exchange energies, respectively. An expression for the
correlation energy24 EC can be derived by applying the zero-
temperature fluctuation-dissipation theorem and the RPA34 as
well as the RI approximation27,40,41

E 1 X V X V
1

2
d Tr ln( (i ) ) (i )C

0
0 0∫π

ω ω ω= [ − + ]+∞
(2)

with the electron−electron interaction operator in the auxiliary
basis

V M m P P r Q Q m N( ) ( )( )MN 12
1

12
1

12
1= | | | | | |− − −

(3)

where m12 denotes the RI metric and r12 the interelectronic
distance. X0 represents the noninteracting density−density
response function in the auxiliary basis in the zero-temperature
case.43 For efficiency reasons, the response function is
calculated in the imaginary time domain according to29,34

X G B G B(i ) Tr ( i ) (i )MN
M N

0, 0 0τ τ τ= [ ̲ − ̅ ] (4)

X G B G B(i ) ( i ) (i )MN
M N

0, 0, 0,τ τ τ= ̲ − ̅μν νλ λσ σμ (5)

with the one-particle Green’s function in the imaginary time
domain

G G G(i ) ( i ) (i ) (i ) (i )0 0 0τ τ τ τ τ= Θ − ̲ + Θ ̅ (6)

C CG (i ) exp( ( ) )i i i F0, τ τ̲ = − ϵ − ϵμν μ ν (7)

C CG (i ) exp( ( ) )a a a F0, τ τ̅ = − − ϵ − ϵμν μ ν (8)

where Cμi and Cμa denote the occupied and unoccupied MO
coefficients, respectively, and ϵF the Fermi level. The three-
center integral matrix BM is given by

B m M( )M
12νλ= | |νλ (9)

A drawback of AO compared to MO formulations is the
increased scaling with the size of the atom-centered basis.
However, this drawback can be addressed by utilizing pivoted
Cholesky decomposition of density-type matrices, thereby
reintroducing the occupied index.33 Furthermore, a memory-
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efficient expression for X0(iτ) can be obtained using the
idempotency relation of the ground-state density matrix P

P PSP= (10)

with the two-center overlap matrix S, and the analogous
expression for the one-particle Green’s function in the negative
imaginary time domain

G G SP( i ) ( i )0 0τ τ̲ − = ̲ − (11)

leading to34

X L SG SLL B G B L(i ) Tr ( i ) (i )MN
M N

0,
T

0
T

0τ τ τ= [ ̲ − ̅ ] (12)

X G B G B(i ) ( i ) (i )MN j i i
M

j
N

0, 0, 0,τ τ τ= ̲ − ̅ν νμ μ̲ ̲ ̲ ̲ (13)

where the pivoted Cholesky factorization of a matrix A is
abbreviated by A = LLT. Each BM is precontracted with the
Cholesky factor L of the occupied one-particle density P,
which is independent of the Laplace points. This reduces the
memory requirement for storing the three-center integrals
from (NauxNbasis

2 ) to (NauxNbasisNocc). The final expression for
X0(iτ) reads

X B B(i ) (i )MN j
M

j
N

0, τ τ= μ μ̲ ̲ (14)

with

B G B G(i ) ( i ) (i )j
M

j i i
M

0, 0,τ τ τ= ̲ − ̅μ ν νμ̲ ̲ ̲ ̲ (15)

and the transformed three-center integrals32−34

B B Lj
N N

j=μ μν ν̲ ̲ (16)

From here on, we will refer to the transformed three-center
integrals Bμj

N (eq 16) also as the three-center integrals.
After obtaining the response function in the imaginary time

domain, it is transformed into the imaginary frequency domain
with a contracted double-Laplace32,34 or cosine transform44

according to

X X(i ) d cos( ) (i )0 0∫ω τ ωτ τ=
−∞

+∞
(17)

The ω-CDGD-RI-RPA method scales formally as
N N N M( )aux

2
basis occ

4∝ ; it can, however, be implemented in
an asymptotically linear scaling fashion.34

3. MINIMAL-OVERHEAD BATCHING
Within the calculation of the RPA correlation energy, the most
demanding step in terms of memory requirements is the
calculation of the response function in the imaginary time
domain. The response function X0(iτ) is calculated within the
standard algorithm according to eq 14 for one Laplace point at
a time. Therefore, the Laplace point-dependent three-center
integrals Bjμ

M(iτ) as well as the three-center integrals Bμj
N have to

be stored in memory, which requires (2NauxNbasisNocc)
memory. Further, taking into account the memory require-
ments of the response function with dimensions (Naux × Naux ×
Nτ), it becomes apparent that for large systems the memory
requirements easily exceed the available system memory on a
workstation or server. Thus, to overcome the limiting storage
requirements within the calculation of the response function, a
batching algorithm is necessary.
In this section, we first derive a simple batching method

where only batching over the auxiliary function index is
employed. Subsequently, we increase the complexity of our

batching method by additionally batching over the AO basis-
function index as well as the Laplace quadrature points. For the
latter method, we derive an expression for the optimal number
of batches using a Lagrange formalism. Finally, we compare
both algorithms in terms of their scaling behavior and present
computational results supporting our theoretical studies. Please
note that we use the def2-SVP basis set for the calculations in
this and the subsequent section (Sections 3 and 4) for
illustration purposes only. Since our objective is to, first,
demonstrate the scaling with the system size, the completeness
of the basis set is not relevant in this context. However, for
practical applications, where the objective is to obtain high-
quality results, larger basis sets are typically required, which are
presented in Section 6.

3.1. Trivial Batching. In the following, we introduce the
approach of batching over the auxiliary function index, which
we will refer to as trivial batching. The pseudocode for this
implementation is shown in Algorithm 1.

In the context of index batching, reading from disk or
recomputing from scratch are analogous. That is, both variants
yield a given set of tensor elements at a cost that is
proportional to the amount of requested elements. Thus, the
two possible variants for accessing the three-center integrals,
namely, reading or recalculating (lines 3 and 10) both require
the same batching and can therefore be discussed separately in
Section 4.
In Algorithm 1, first, the tensor elements of the three-center

integrals Bjν
M are accessed for one auxiliary function within the

respective auxiliary batch (aux-batch) (line 3) and sub-
sequently used to compute Biμ

M(iτ) (line 5). Next, within the
second aux-batch loop (line 8), the tensor elements of the
three-center integrals Biμ

N are accessed for a second time (line
10) and subsequently contracted with Biμ

M(iτ) for each Laplace
point τ to form X0,MN(iτ) (line 15). Please note that, due to the

symmetry of the response function, only b 1
2

aux′ + aux-batches are

considered for the second aux-batch loop (line 8), where baux′
denotes the number of aux-batches. Further, for performance
reasons, the operations in line 5 as well as lines 13−17 are
implemented as matrix multiplications to utilize the high
performance of dense matrix algebra routines provided by
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basic linear algebra subroutine (BLAS) libraries. To further
reduce the memory requirements of the algorithm, the
response function is written on disk (line 22) by batching
over the first auxiliary function index. However, the storage of
the response function only becomes problematic for extremely
large systems, since the memory demand scales as M( )2

compared to the M( )3 scaling of the three-center integral
tensor.
3.2. Optimized Batching. In this section, we extend the

trivial batching algorithm: First, in addition to batching with
respect to auxiliary functions, we also incorporate batching
with respect to basis functions as well as Laplace points.
Second, we use the method of Lagrange multipliers to
minimize the number of three-center integral tensor accesses
for a given amount of available memory. This allows the
optimal utilization of the available memory with minimal
overhead. Thus, we refer to this batching algorithm as
optimized batching. The pseudocode for the optimized
batching algorithm is shown in Algorithm 2.

In this work, the following abbreviations are introduced: The
number of aux-batches is denoted by baux, the number of AO-
batches by bAO, and the number of τ-batches by bτ. Please note

that baux denotes the number of aux-batches within the
optimized batching, while baux′ represents the number of aux-
batches within the trivial batching algorithm. Further, the
following approximations are used for simplicity: The number
of auxiliary functions in an aux-batch is given by N

b
aux

aux
, the

number of basis functions in an AO-batch by N
b

basis

AO
, and the

number of Laplace points in a τ-batch is given by N
b

τ

τ
. Please

note that within this approximation, the number of functions in
the respective batches constitutes a rational number; therefore,
it needs to be rounded down to an integer for practical
applications. For large systems, however, this rounding makes
little difference.
In Algorithm 2, the most prominent changes compared to

the trivial batching in Algorithm 1 include the loop over the
basis-function batches ranging from lines 2 to 23. Accordingly,
Biμ′
M (iτ) (line 7) and Biμ′

N (line 12) show decreased memory
requirements, considering the batched aux- and basis-function
index. Further, Biμ′

M (iτ) (line 7) as well as X0,MN(iτ) (line 17)
are evaluated for one τ-batch.
In Table 1, the memory requirements for an implementation

without any batching, the trivial batching, as well as the
optimized batching scheme are compared. It follows that the
memory requirements of the largest quantities within the
response function calculation can be significantly reduced by
employing either of the batching schemes. However, the
optimized batching scheme provides a larger range of batching
configurations for the same ratio, while for the trivial batching
there is only one possibility to achieve a specific ratio.
As seen in Algorithm 1 (lines 3 and 10) and Algorithm 2

(lines 5 and 12), each element Biμ
M needs to be read/

recalculated redundantly. Therefore, the reduced memory
requirements come at the cost of a batching overhead, which is
proportional to the number of batches. Consequently, a
minimal amount of batches is required to minimize the
batching overhead for a fixed amount of the available system
memory. This can be achieved by employing the method of
Lagrange multipliers. Please note that for the rest of this
section we will refer to the amount of redundant integral reads
or recalculations more generally as redundant integral tensor
accesses.
Therefore, the rest of this section is structured as follows: At

first, an expression for the number of redundant integral tensor
element accesses is derived, followed by an expression for the
constraint function. Subsequently, the number of redundant
tensor accesses is minimized with respect to the number of

Table 1. Largest Quantities within the Response Function Calculation with Their Respective Memory Requirements for an
Implementation without Any Batching, the Trivial Batching Algorithm (Algorithm 1), and the Optimized Batching Algorithm
(Algorithm 2)a

quantity memory ratio

not batchedb trivialc optimizedd trivial optimized

Biμ
M(iτ) NoccNauxNbasis N N NN

b basis occ
aux

aux τ′ NN
b

N
b

N
b occ

aux

aux

basis

AO

τ
τ

N
baux′

τ N
b b baux AO

τ
τ

Biμ
N NauxNbasisNocc N NN

b basis occ
aux

aux′ NN
b

N
b occ

aux

aux

basis

AO b
1

aux′ b b
1

aux AO

X0,M N(iτ) NauxNauxNτ N NN
b aux

aux

aux τ′ N NN
b aux

aux

aux τ b
1

aux′ b
1

aux

aThe ratio of the memory for the trivial batching and optimized batching algorithm to an algorithm without any batching is given for each quantity.
For illustrative purposes, all tensors are represented by their tensor elements. bEvaluated according to eq 14 per Laplace point. cEvaluated
according to Algorithm 1. dEvaluated according to Algorithm 2.
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aux-, AO-, and τ-batches using the method of Lagrange
multipliers to comply with the constraint.
3.2.1. Number of Integral Tensor Accesses. According to

Algorithm 2, the number of integral tensor accesses Nacc′ (baux,
bAO, bτ) for the elements of Bjν

M (line 5) is given by

N b b b b b N N N( , , )acc aux AO AO aux basis occ′ =τ τ (18)

and the number of integral tensor accesses Nacc″ for Biμ′
N

(line 12) is given by

N b b b
b

b N N N( , , )
1

2acc aux AO
aux

aux basis occ″ = +
τ τ (19)

where the term b 1
2

aux + stems from exploiting the symmetry of

the response function in line 10. The total number of integral
tensor accesses Nacc

total(baux, bAO, bτ) can be obtained by adding
eqs 18 and 19, which leads to

i
k
jjjj

y
{
zzzzN b b b Nb

b
b( , , )

1
2acc

total
aux AO

aux
AO= ̅ + +τ τ

(20)

with

N N N Naux basis occ̅ = (21)

3.2.2. Constraint Function. The constraint function C(baux,
bAO, bτ) can be expressed as

C b b b b b b( , , ) mem mem ( , , ) 0aux AO avail req aux AO= − =τ τ
(22)

where memavail denotes the available system memory and
memreq(baux, bAO, bτ) the memory required for the algorithm.
For the latter, the relevant quantities that have to be stored in
memory during the algorithm are shown along with their
memory requirements in Table 2. Please note that the memory

requirements of the batched response function are not
considered in Table 2 since its size is not significant as
explained in Section 3.1. Using Table 2, memreq(baux, bAO, bτ)
can be written as

i
k
jjjjj

y
{
zzzzz

b b b

N
b

N
b

N
N

N N N

mem ( , , )

b
1 2

req aux AO

aux

aux

basis

AO
occ aux

2
basis
2= + + +

τ

τ

τ
τ

(23)

i
k
jjjjj

y
{
zzzzzb b b

N
b b

N
b

Nmem ( , , ) 1req aux AO
aux AO

= ̅ + +τ
τ

τ (24)

with

N N N N2aux
2

basis
2= + τ (25)

By inserting eq 24 into eq 22, the constraint function can be
expressed as

i
k
jjjjj

y
{
zzzzzC b b b

N
b b

N
b

( , , ) mem 1 0aux AO avail
aux AO

= − ̅ + =τ
τ

τ
(26)

where

Nmem memavail avail= − (27)

3.2.3. Minimizing the Number of Integral Tensor Accesses
using the Method of Lagrange Multipliers. To obtain the
optimal number of batches, the total number of integral tensor
accesses Nacc

total (eq 20) has to be minimized with respect to the
number of aux-, AO-, and τ-batches, while not exceeding the
available memory. The Lagrange function hence reads

b b b

N b b b C b b b

( , , , )

( , , ) ( , , )
aux AO

acc
total

aux AO aux AO

λ

λ= −
τ

τ τ (28)

where λ denotes the Lagrange multiplier. Inserting the
expression for Nacc

total according to eq 20 and C(baux, bAO, bτ)
according to eq 26 yields

i
k
jjjj

y
{
zzzz

i

k
jjjjj

i
k
jjjjj

y
{
zzzzz
y

{
zzzzz

b b b

Nb
b

b
N

b b

N
b

( , , , )

1
2

mem

1

aux AO

aux
AO avail

aux AO

λ

λ= ̅ + + − − ̅

+

τ

τ

τ

τ (29)

Partial differentiation of eq 29 with respect to baux, bAO, and λ
gives the first-order conditions for the minimization

i

k
jjjjj

i
k
jjjjj

y
{
zzzzz
y

{
zzzzzb

N
b

N
b b

N
b2

1 0
aux aux

2
AO

λ∂
∂ = ̅ − ̅ + =τ

τ

τ

!
(30)

i
k
jjjjj

y
{
zzzzzb

Nb
N

b b
N
b

1 0
AO aux AO

2λ∂
∂ = ̅ − ̅ + =τ

τ

τ

!
(31)

i
k
jjjjj

y
{
zzzzz

N
b b

N
b

N
b

N
b

mem 1 0avail
aux AO

aux
2

auxλ
∂
∂ = − + ̅ + + =τ

τ

τ

τ

!

(32)

To obtain a relation between baux and bAO, eq 31 can be
rewritten as

i
k
jjjjj

y
{
zzzzzNb

N
b b

N
b

1
aux AO

2λ̅ = ̅ +τ
τ

τ (33)

and inserted into eq 30, which leads to the following relation

b b
1
2AO aux=

(34)

An expression for baux can be obtained by inserting eq 34 into
eq 32 according to

i
k
jjjjj

y
{
zzzzz

N
b

N
b

mem
2

1 0avail
aux
2− ̅ + =τ

τ (35)

leading to

Table 2. Quantities That have to be Stored in Memory
during the Calculation of the Response Function with Their
Respective Memory Requirementsa

quantity memory

Biμ′
M (iτ) NN

b
N
b

N
b occ

aux

aux

basis

AO

τ
τ

Biμ′
N NN

b
N
b occ

aux

aux

basis

AO

G0,μν(−iτ) Nbasis
2 Nτ

G0,μν(iτ) Nbasis
2 Nτ

VMN Naux
2

aFor illustrative purposes, all tensors are represented by their tensor
elements. Note that Biμ′

M (iτ) and Biμ′
N are evaluated within Algorithm 2,

lines 7 and 12, respectively.
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i
k
jjjjj

y
{
zzzzzb N

N
b

2 1
1

memaux
avail

= ± ̅ +τ

τ (36)

However, eq 36 is still dependent on bτ. To derive an
expression for bτ, eq 34 can be inserted into eq 29

i
k
jjj

y
{
zzz

i

k
jjjjj

i
k
jjjjj

y
{
zzzzz
y

{
zzzzz

b b Nb b

N
b

N
b

( , , )
1
2

mem
2

1

aux aux

avail
aux
2

λ

λ

= ̅ +

− − ̅ +

τ τ

τ

τ (37)

and using eq 36 leads to

b N
N

b N b Nb( ) 2
mem

( )
1
2avail

= ̅ ̅ + + ̅τ τ τ τ τ
(38)

Equation 38 is minimized if bτ is minimal. Therefore, it follows
that

b 1=τ (39)

Inserting eq 39 into eq 36, the final expression for baux reads

b
N

N2
mem

( 1)aux
avail

= ̅ +τ
(40)

b
N N N

N M2
mem

( 1) ( )aux
aux basis occ

avail

3/2= + ∝τ
(41)

and bAO can be written using the relation in eq 34 as

b
N

N
1
2 mem

( 1)AO
avail

= ̅ +τ
(42)

b
N N N

N M
1
2 mem

( 1) ( )AO
aux basis occ

avail

3/2= + ∝τ
(43)

It follows from eqs 41 and 43 that the number of batches scales
as M( )3/2 or, equivalently, M( )1.5 with the system size and

(mem )avail
0.5− with respect to the available system memory,

since the number of Laplace points Nτ is independent of the
system size.
To summarize the results of the optimization, the optimal

setting employs one τ-batch containing all Laplace points
(eq 39), there are twice as many aux-batches as AO-batches
(eq 34), and the number of batches scales as (mem )avail

0.5− with

respect to the available system memory and M( )1.5 with
respect to the system size (eqs 41 and 43).

3.3. Comparing the Optimized Batching and the
Trivial Batching. In the following, the scaling behavior for the
number of batches as well as the number of integral tensor
accesses is analyzed for the trivial and the optimized batching.

3.3.1. Number of Batches. In the context of optimizing the
batch sizes, the previously introduced trivial batching scheme
can be regarded as a nonoptimal variant, where bAO and bτ
were set equal to 1. Thus, for the trivial batching, the number
of aux-batches baux′ can be obtained using the constraint
function in eq 26. Setting bAO and bτ equal to 1 leads to

C b
N

b
N( ) mem ( 1) 0aux avail

aux
′ = − ̅

′ + =τ
(44)

Rewriting eq 44 gives the optimal number of aux-batches baux′

b
N

N
mem

( 1)aux
avail

′ = ̅ +τ
(45)

For the trivial batching, the optimal number of batches grows
as M( )3.0 , while the optimized batching shows a more
favorable scaling of M( )1.5 (eqs 41 and 43).
To verify these theoretical considerations, we first carried

out calculations on simple linear n-alkanes of increasing size
using the def2-SVP basis set.45−47 In Figure 1, a log−log plot
of the numbers of aux- and AO-batches against the number of

Figure 1. Log−log plot of the number of aux-batches baux and AO-batches bAO for the optimized batching and number of aux-batches baux′ for the
trivial batching against the number of basis functions. In addition, the scaling fits are given. Note that for illustrative purposes, memavail = 10 GB as
well as N 0= (eq 25) was used.
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AO basis functions is shown. The obtained scaling behavior is
in very good agreement with the theoretical scaling. The
fluctuations around the optimized batching arise solely from
the rounding of the batch dimension to the nearest lower
integer.
3.3.2. Number of Integral Tensor Accesses. The scaling

behavior for both batching algorithms can be obtained using
the expression for the number of integral tensor accesses in
eq 20 and inserting the expression for the optimized number of
batches.
For the optimized batching, we insert the expressions for baux

(eq 41), bAO (eq 43), and bτ (eq 39) leading to

N b b b N
N

N
N

( , , ) 2
mem

( 1)
2acc

opt
aux AO

avail
= ̅ ̅ + + ̅

τ τ

(46)

It follows that the number of integral tensor accesses grows as
M( )4.5 .
Analogously, for the trivial batching, the number of integral

tensor accesses Nacc′ can be obtained by inserting baux′ (eq 45)
into eq 20 as well as setting bAO and bτ equal to 1, resulting in

N
N

N N
mem

( 1)
3
2acc

triv
2

avail
= ̅ + + ̅τ

(47)

For the trivial batching, the number of integral tensor accesses
thus grows as M( )6.0 .
In Figure 2, the corresponding log−log plot of the number

of integral tensor accesses against the number of AO basis

functions is shown for the trivial and the optimized batching,
which confirms the theoretical scaling of M( )4.5 for the
optimized batching (eq 46) and M( )6.0 for the trivial
batching (eq 47).

In conclusion, the optimized batching shows a more
favorable scaling with respect to the number of batches as
well as the number of integral tensor accesses compared to the
trivial batching. Since the number of integral tensor accesses is
proportional to the batching overhead, we can also conclude
that our optimized batching is more effective in reducing the
batching overhead than the trivial batching. Especially when
aiming for very large systems requiring a high number of
batches, the advantages of our optimized batching become
apparent. In essence, the optimized batching represents the
best compromise between program runtime and demand for
system memory.

4. INTEGRAL-DIRECT RPA

As mentioned in Section 3.1, there are two approaches for
accessing the elements of the three-center integral tensor Biμ

M,
namely, reading and recomputing (Algorithm 1, lines 3 and 10
and Algorithm 2, lines 5 and 12). In this section, we will first
compare both approaches and establish why integral-direct
RPA (recomputation) is best suited for the computation of
very large systems. We will then analyze the scaling behavior
for integral-direct RPA and systematically improve upon it.

4.1. Hard-Disk IO vs On the Fly Computation of the
three-center Integrals. For the first approach to access the
elements of the three-center integrals, the integrals are stored
on disk and the tensor elements Biμ

M are read into memory in
batches. Thus, the batching overhead is determined by the
amount of input/output operations on a physical disk (disk
I/O). However, since the three-center integrals with
dimensions (Naux × Nbasis × Nocc) have to be stored on disk,
the algorithm is limited by the available disk space. The storage
limitation problem can be overcome entirely using an integral-
direct scheme for the three-center integrals, which we will refer
to as integral-direct RPA.
In Table 3, both approaches as well as an implementation

without any batching are compared with regard to the feasible
system size. To this end, the memory and disk space
requirements for all methods are shown for different system
sizes using the def2-SVP basis set.45−47 Please note again that
we use this basis set for illustration purposes only. Further, to
demonstrate the scope of the methods from a practical
viewpoint, it is noted whether the respective system is
accessible on a computing node using 200 GB of memory
space and 2500 GB of disk space. As expected, when reading
the three-center integrals from disk, we are able to access much
larger system sizes than without utilizing any batching, since
this approach is not limited by the available system memory.
However, this shifts the bottleneck to the disk space
requirements such that storing the three-center integrals
becomes the limiting factor and, therefore, larger systems are
not accessible. In contrast to that, integral-direct RPA opens
the way to access all listed systems, since this method is not
limited by the disk space requirements of the three-center
integral tensor. Within integral-direct RPA, only the response
function has to be stored on disk. However, the response
function with dimensions (Naux × Naux × Nτ) is orders of
magnitude smaller than the three-center integral tensor with
dimensions (Naux × Nbasis × Nocc). Thus, it does not constitute
the limiting factor for the systems shown in Table 3.

4.2. Scaling. The calculation of the response function
comprises four major steps: The computation of the three-
center integrals in the AO basis Bμν

M and its subsequent

Figure 2. Log−log plot of the number of integral tensor accesses Nacc
for the optimized batching and the trivial batching against the number
of basis functions. In addition, the scaling fits are given. Note that for
illustrative purposes, memavail = 10 GB as well as N 0= (eq 25) was
uesd.
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transformation (eq 16) as well as the matrix multiplications to
obtain Biμ

M(iτ) (eq 15) and X0,MN(iτ) (eq 14).
4.2.1. Without Batching. When no batching is employed,

the calculation of the three-center integrals Bμν
M formally scales

as N N M( )aux basis
2 3.0∝ , while the transformation shows an

N N N M( )aux basis
2

occ
4.0∝ scaling. The matrix multiplications

both scale as M( )4.0 . As mentioned in Section 2, the
calculation of the response function can also be implemented
in an asymptotically linear scaling fashion,34 which, however,
will not be discussed further in this work.
4.2.2. Dense. When there is not enough available system

memory, batching has to be employed (integral-direct RPA).
Please note that for our integral-direct RPA implementation,
we use dense matrix algebra and hence presently do not aim
for linear scaling. Our method could also be implemented
using sparse matrix algebra; however, this would significantly
complicate the determination of optimal batch sizes since the

exact memory demand is not known a priori in case of sparse
matrices.
Within integral-direct RPA, the response function is

calculated in the batching routine (Algorithm 2), where the
three-center integral tensor is recomputed on the fly. The
recomputation (lines 5 and 12) is comprised of the
computation of the three-center integrals in the AO basis Bμν

M

and the subsequent transformation with the Cholesky factor of
the occupied one-particle density matrix (eq 16) for each batch
only. It follows that the formal scaling for the computation of
Bμν
M as well as the transformation is increased by a factor of

M( )1.5 , which accounts for the scaling with respect to the
numbers of batches (eqs 41 and 43). The scaling for the matrix
multiplications in lines 7 and 17, however, remains unchanged
since it is independent of the batching as can be deduced from
Algorithm 2. Thus, within integral-direct RPA, the integral
calculation formally scales as M( )4.5 and the transformation
as M( )5.5 . To confirm these considerations, we carried out

Table 3. Required Memory and Disk Space for Various Systems Utilizing an Implementation without any Batching (NB) and
the Reading Variant of the RPA Batching Routine (Read) as well as the Integral-Direct RPA (Int-Dir)a

memory (GB) disk space (GB) accessibilityf

system NBb,c Read/Int-Dirc Readd,e Int-Dird NB Read Int-Dir

C100H202 96.3 1.6 50.3 6.1 √ √ √
C110H222 127.1 2.0 66.2 7.3 √ √ √
C120H242 163.8 2.4 85.1 8.7 √ √ √
C130H262 207.0 2.8 107.2 10.2 × √ √
C300H602 1177.9 15.0 608.6 54.2 × √ √
C400H802 2373.3 26.6 1221.5 96.3 × √ √
C500H1002 4145.3 41.6 2127.1 150.4 × √ √
C600H1202 9123.7 59.8 4640.2 216.5 × × √
C1000H2002 62 189.4 166.1 31 312.2 601.1 × × √
(DNA)4 183.4 2.5 95.5 9.9 √ √ √
(DNA)8 1488.3 10.2 759.6 41.0 × √ √
(DNA)16 11 987.0 41.4 6056.1 166.5 × × √

aNote that the disk space requirements for an implementation without batching are not shown, since no quantities are stored on disk. Further, it is
assessed whether the respective system is accessible, employing either method on a computing node using 200 GB of memory space and 2500 GB
of disk space. bFor storing Biμ

M(iτ) per Laplace point (eq 14). cFor storing G0,μν(−iτ), G0,μν(iτ), and VMN (Table 2). dFor storing the response
function. eFor storing the three-center integrals. fMemory: 200 GB; disk space: 2500 GB.

Figure 3. Log−log plots of the number of calculated primitive integrals Nintegrals against the number of basis functions (a) and the number of FLOPs
needed for the transformation of the three-center integrals (b). In addition, the scaling fits are given. Note that for illustrative purposes,
memavail = 10 GB as well as N 0= (eq 25) was used.
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calculations on linear n-alkanes of increasing size using the
def2-SVP basis set.45−47 The results are summarized in Figure
3 in the blue graphs (denoted by “Dense”), where a log−log
plot of the number of primitive integral calculations against the
number of basis functions (a) as well as a log−log plot of the
numbers of floating point operations (FLOPs) needed for the
transformation of the three-center integrals against the number
of basis functions (b) are shown.
4.2.3. Sparse I. Due to the exponential decay of the

overlapping Gaussian-type basis functions of the charge
distribution (μν), the number of significant three-center
integrals Bμν

M scales asymptotically only as M( )3.5 with a
relatively early onset of the reduced scaling (only a few
Ångström coupling distance between the AO basis functions μ
and ν). Furthermore, the sparsity of (μν) can also be exploited
in the transformation of the three-center integrals using block-
sparse matrix multiplication. This reduces the scaling for the
calculation and transformation by a factor of M, leading to an
asymptotic scaling of M( )3.5 for the calculation and M( )4.5

for the transformation. To verify this, we edited the code of our
implementation by incorporating shell pair screening for the
integral calculation and using sparse matrix algebra for the
transformation, where we only exploit the sparsity of the
charge distribution (μν). The results are summarized in the red
graphs (denoted by “Sparse I”) in Figure 3. It can be observed
that the obtained scaling for the calculation (Figure 3a) and
the transformation (Figure 3b) are in good agreement with the
theoretical scaling.
4.2.4. Sparse II. The scaling for the calculation can be

further reduced by employing the Coulomb metric attenuated
by the complementary error function (see eq 9 with

m r
r12

erfc( )att 12

12
= ω

), which decreases the range of coupling

between the charge distribution (μν) and the auxiliary
functions. This reduces the asymptotic scaling for the
calculation of the three-center integrals Bμν

M to M( )2.5 .
Furthermore, the scaling for the transformation of the three-
center integrals can be reduced by additionally exploiting the
sparsity of the Cholesky factor, leading to an asymptotic

M( )2.5 scaling. For our implementation, we switched to the
Coulomb metric attenuated by the complementary error

function with the attenuation parameter watt = 0.1 a.u.33 and
used the approximate integral partition bounds (aIPBs)48

developed by our group for screening the three-center integral
computation. The results are shown in the black graphs
(denoted by “Sparse II”) in Figure 3.
To summarize, within integral-direct RPA, the computation

of Bμν
M scales formally as M( )4.5 , the subsequent trans-

formation as M( )5.5 , albeit with a small prefactor depending
on the available system memory, and the matrix multiplications
for obtaining Biμ

M(iτ) (line 7) and X0,MN(iτ) (line 17) scale
formally as M( )4.0 . However, the scaling for the calculation
and transformation of the three-center integral tensor can be
reduced to M( )2.5 by employing shell pair screening, a local
metric for the three-center integral tensor, and integral
screening, as well as using sparse matrix algebra for the
transformation of the three-center integrals. As a result, these
redundant on the fly recomputations of the three-center
integrals do not represent a significant bottleneck compared to
the computation of Biμ

M(iτ) (line 7) and X0,MN(iτ) (line 17) in
practice.

5. COMPUTATIONAL DETAILS
Our new integral-direct RPA method was implemented in the
FermiONs++ program package.49−51 The Kohn−Sham
orbitals used for the RPA energy calculations were obtained
by preceding DFT calculations employing the generalized
gradient approximation of Perdew, Burke, and Ernzerhof
(PBE).52,53 The atomic basis sets def2-SVP and def2-QZVP
are used.45,46 The RI approximation, which is applied to the
four-center integrals in the correlation part of the RPA energy,
employs the corresponding auxiliary basis sets47,54 with the
attenuated Coulomb metric and the attenuation parameter
ωatt = 0.1 a.u.33 For the Laplace expansion, 13−15 quadrature
points were used.34 All calculations were carried out on an
Intel Xeon E5-2667 processor using 16 threads.

6. PERFORMANCE
In the following, we investigate the performance of our
integral-direct RPA method by considering the contribution of
the batching overhead to the total computation time. In
respect thereof, we calculated DNA fragments of increasing

Figure 4. Contributions to the total time for the integral-direct calculation of the RPA correlation energy for DNA fragments using the def2-SVP
basis set. Specifically, timings for the following operations are shown: three-center integral calculation (Algorithm 2, lines 5 and 12), three-center
integral transformation (Algorithm 2, lines 5 and 12), calculation of Biμ

M(iτ) (Algorithm 2, line 7), and calculation of XMN(iτ) (Algorithm 2, line 17).
Systems that are marked with an asterisk (*) can only be computed using our integral-direct RPA method since the memory requirements for the
unbatched variant would exceed the available system memory.
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size. To obtain physically meaningful energies, we carried out
calculations using the def2-QZVP basis set, which has shown
to yield very accurate results within RPA.13,27,32−34,55−58

Furthermore, for illustration purposes, we carried out
calculations using the def2-SVP basis set to compute large
systems in a reasonable amount of time.
In Figure 4, the contributions of the most time-consuming

operations to the overall time are shown for DNA fragments
using the def2-SVP basis set. The timings for the integral
calculation and transformation as well as its contribution to the
total time are considerably lower and grow less rapidly with
increased system size as compared to the calculation of Biμ

M(iτ)
(line 7) and XMN(iτ) (line 17). It follows that the timings for
the calculation and transformation observed for the largest
systems in Figure 4 are a direct consequence of exploiting the
sparsity of the system as explained in Section 4. Thus, the
contribution of the batching overhead is relatively low and the
total computation time is dominated by the calculation of
Biμ
M(iτ) (Algorithm 2, line 7) and XMN(iτ) (Algorithm 2 line

17).
In Figure 5, the corresponding results for DNA fragments

using the def2-QZVP basis set are shown. Without batching

(integral-direct RPA), we would only be able to compute
(DNA)1, since for larger systems the memory demand for the
unbatched variant already exceeds the available system
memory. In contrast, using the def2-SVP basis (Figure 4),
systems up to (DNA)4 were accessible without batching.
Consequently, our integral-direct RPA method is of even
higher relevance for large basis set calculations (which are
required to obtain high-quality results in practice), where the
memory limitation problem (which our proposed batching
solves in an optimized fashion) already emerges for much
smaller molecules. The timings shown in Figure 5 indicate that

the calculation of the three-center integrals is considerably
more demanding compared to the def2-SVP basis set results
(Figure 4). For larger basis sets, the three-center integrals Bμν

M

show less sparsity and thus the computational cost increases
since shell pair screening and integral screening methods
cannot significantly decrease the number of significant
elements for the present systems.

7. CONCLUSIONS AND OUTLOOK

We presented a memory-efficient integral-direct RPA algo-
rithm based on our ω-CDGD-RI-RPA method by employing
an optimized batching scheme, which, by construction via a
Lagrangian formalism, allows for the most effective utilization
of the available system memory, while minimizing the number
of three-center integral tensor calculations.
We showed that our optimized batching scheme over the

auxiliary and basis functions is able to minimize the batching
overhead for a given amount of memory considerably better
than an implementation where only batching with respect to
auxiliary functions is employed by considering their scaling
behavior with the system size M. For our optimized batching,
the number of batches, which are proportional to the batching
overhead, scale only as M( )1.5 , which is a considerable
improvement compared to the M( )3.0 scaling for a simple
batching implementation over the auxiliary functions only.
Furthermore, we have shown that the utilization of an integral-
direct scheme for the three-center integral tensor, as opposed
to reading the three-center integrals from disk, completely
alleviates the storage bottleneck of the three-center integral
tensor, thereby allowing the calculation of large systems, which
were previously intractable. For the performance assessment of
our integral-direct RPA method, we calculated DNA fragments
of increasing size, showing that the batching overhead has a
relatively small contribution on the total time. In this regard,
we calculated the DNA fragment (DNA)16 comprised of 1052
atoms and 11 230 basis functions.
In the future, our method could in principle be extended to

asymptotically linear scaling schemes using sparse matrix
algebra. However, for the computation of the optimized
number of batches, the precise sparsity of the relevant matrices
has to be known beforehand, which is only determined at
program runtime, so that efficient estimates will be required.
Moreover, it has been shown that significant performance

gains can be obtained by porting computer-intensive code to
the graphics processing unit (GPU). However, special
algorithms are necessary for the optimal exploitation of the
scarce memory resources of GPUs as well as to reduce the
high-cost data transfer between the GPU and the central
processing unit (CPU). Our integral-direct RPA method is
able to address both challenges: We compute the optimal
amount of batches for a given amount of GPU memory.
Further, all quantities needed for the computation of the
response function could be computed directly on the GPU,
thereby minimizing the data transfer between the GPU and
CPU. Since the computation of the response function is the
computationally most expensive part of the total calculation,
significant performance gains are expected by porting our
integral-direct RPA algorithm to the GPU.
Lastly, we would like to emphasize the applicability of the

underlying concepts of our integral-direct RPA method (such
as the derivation of the optimized batching method using the

Figure 5. Contributions to the total time for the integral-direct
calculation of the RPA correlation energy for DNA fragments using
the def2-QZVP basis set. Specifically, timings for the following
operations are shown: three-center integral calculation (Algorithm 2,
lines 5 and 12), three-center integral transformation (Algorithm 2,
lines 5 and 12), calculation of Biμ

M(iτ) (Algorithm 2, line 7), and
calculation of XMN(iτ) (Algorithm 2, line 17). Systems that are
marked with an asterisk (*) can only be computed using our integral-
direct RPA method, since the memory requirements for the
unbatched variant would exceed the available system memory.

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://doi.org/10.1021/acs.jctc.1c00494
J. Chem. Theory Comput. 2021, 17, 5623−5634

5632



method of Lagrange multipliers) to related correlation
methods such as SOS-MP2 and Coupled-Cluster variants.
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ABSTRACT: A method for the evaluation of analytical frozen-
core gradients within the random phase approximation is
presented. We outline an efficient way to evaluate the response
of the density of active electrons arising only when introducing the
frozen-core approximation and constituting the main difficulty,
together with the response of the standard Kohn−Sham density.
The general framework allows to extend the outlined procedure to
related electron correlation methods in the atomic orbital basis that
require the evaluation of density responses, such as second-order
Møller−Plesset perturbation theory or coupled cluster variants. By
using Cholesky decomposed densities�which reintroduce the
occupied index in the time-determining steps�we are able to achieve speedups of 20−30% (depending on the size of the basis set)
by using the frozen-core approximation, which is of similar magnitude as for molecular orbital formulations. We further show that
the errors introduced by the frozen-core approximation are practically insignificant for molecular geometries.

1. INTRODUCTION
The accurate and efficient calculation of the electron
correlation energy is one of the most challenging tasks in
quantum chemistry for approaching the Schrödinger equation.
One of the most widely applied approaches to solve the
Schrödinger equation is density functional theory (DFT)1,2

due to its excellent cost performance ratios and good
accuracies for various compounds and properties. However,
the vast number of available functionals makes the choice for a
specific application difficult and severely limits the predictive
power of density functionals.3−5 Other methods to describe
electron correlation include wave function-based methods such
as second-order Møller−Plesset (MP2) perturbation theory,6

coupled cluster (CC) theory,7,8 or configuration interaction
(CI) methods,9,10 which, however, come with a much higher
computational effort.
A very promising method, that has gained increased

popularity in the last decades, is the random phase
approximation (RPA)5,11−42 as a post-Kohn−Sham method.
It does not contain any empirical parameters and in
connection with DFT can be assigned to the fifth rung on
Jacob’s ladder of density functional approximations.43 Most
notably, RPA is able to describe noncovalent interactions
exceptionally well44 without the need to introduce semi-
empirical corrections, which makes it stand out from empirical
dispersion correction methods.45−55 Furthermore, it is able to
describe systems with vanishing electronic gaps,56 where
methods such as MP2 fail. In addition, the recently developed
RPA-like σ-functionals60−63 introduced by the Görling group

look especially promising in that regard. Much progress has
been made in terms of the computational efficiency of RPA
since it was first proposed by Bohm and Pines in 1953.57 By
introducing the resolution-of-the-identity (RI) approximation
to RPA, Furche and coworkers16,18,20 were able to reduce the
scaling from M( )6 to M( )4 with the system size M, which
opened the way for practical applications beyond a few atoms.
Further improvements in the efficiency of RPA fol-
lowed,31,32,34,39,58,59 extending the applicability of RPA to
systems with more than 1000 atoms.31,32,34,39,59 Furthermore,
for practical applications, the computation of electronic
properties beyond ground-state energies is necessary, such as
the determination of equilibrium geometries, which requires
the analytical evaluation of nuclear gradients. Much progress
has been made in the development of efficient methods for the
computation of molecular gradients within RPA in recent years
as well:22,40,41,64−69 for example, the molecular orbital (MO)
RI-RPA implementation of Burow et al.,22 the work of Kresse
and coworkers,67 as well as the work in our group by Beuerle
and Ochsenfeld,68 the latter presenting an atomic orbital (AO)
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implementation with Cholesky-decomposed ground-state
densities.
A very widely applied approximation for electron correlation

methods (including RPA) is the frozen-core approximation,
whereby the lowest lying MOs are “frozen”, prohibiting
excitations from these orbitals and only including excitations
from valence or “active” orbitals. This approximation also
coincides with an intuitive chemist’s picture where the core
electrons are considered to be less sensitive to changes in the
environment and chemical reactions are determined by valence
electrons. In fact, it has been found that the error introduced
by the frozen-core approximation is minimal in terms of
relative energies for RPA16 and additionally for geometries of
related methods.70,71 Furthermore, for practical applications,
the use of the frozen-core approximation is preferred since
most of the commonly used basis sets are designed to correlate
the valence electrons only. Specifically, most AO and auxiliary
basis sets are not equipped to describe the core region
sufficiently and special basis functions, that is, Gaussians with
large exponents, would have to be added to the basis sets in
order to describe the correlation between core electrons as well
as core and active electrons,72 such as, for example, in
Dunning’s cc-pCVXZ73 and cc-pwCVXZ74 basis sets (where X
= D, T, Q, 5, ...). The problem with auxiliary basis sets is even
more obvious since they are often developed within the frozen-
core approximation and, thus, do not contain any core
functions. One possible solution is the use of automatically
generated auxiliary basis sets, for example, developed by Neese
and coworkers.75 However, these basis sets are usually about
twice the size of optimized basis sets, which makes the
computation much more expensive. Another possible solution
lies in the utilization of optimized auxiliary basis sets in
combination with the frozen-core approximation for the
underlying electron correlation method, which allows to
overcome the restrictions on the basis set selection. A further
advantage when using the frozen-core approximation comes
with the increased computational efficiency since the active
occupied space excludes the core electrons. Thus, the limited
availability of all-electron basis sets together with the higher
computational cost for larger basis sets makes the use of the
frozen-core approximation preferable within electron correla-
tion methods. In addition, the frozen-core approximation
entails no significant loss of accuracy for quantities such as
structural parameters or relative energies.
While the implementation of the frozen-core approximation

for ground-state energies is a trivial matter, the corresponding
implementation for analytical gradients is far from trivial. In
the literature, the frozen-core approximation has been derived
and implemented within an MO formalism for MP2
gradients,70,71,76,77 CC gradients,71,78−80 as well as CI
gradients.76,81,82 However, there are no accounts for RPA
gradients within the frozen-core approximation (to the best of
our knowledge).
In this work, we give a detailed derivation of the frozen-core

approximation within our RPA gradient implementation.68

Since the main difficulty lies in the evaluation of the response
of the density stemming from active electrons, we will show
how to do this in the most efficient way. The proposed
approach could further be used for the implementation of σ-
functional gradients and, furthermore, applied for related AO-
based electron correlation methods that require the evaluation
of density responses (which is done most efficiently using the
Z-vector method),83,84 such as MP2 gradients.84 As will be

shown, the loss in accuracy in structures resulting from the
introduction of the frozen-core approximation is minimal,
while the gain in performance is 20−30%, depending on the
size of the chosen basis set.

2. NOTATION
We adopt the Mulliken notation for two- and three-center
integrals. Furthermore, we use a generalized notation for the
trace: coordinates that appear twice within a trace are
implicitly integrated over. The notation and abbreviations
used in this work are summarized in Table 1. Additionally, the
following definitions are used for various densities

P C C
i

N

i i

occ

=
(1)

P C C
a

N

a avirt,

virt

=
(2)

P C C
i

N

i iact,

act

=
(3)

3. THEORY
We will start by reviewing the expressions for the RPA total
energy within the AO basis. We will first present the equations
within the all-electron formalism and subsequently derive the
expressions for the frozen-core approximation. Next, we will
continue with a review of RPA gradients in the AO basis: we
will begin by briefly summarizing RPA gradients in the original
all-electron formalism68 and then derive the incorporation of
the frozen-core approximation in detail. Since the difficulty lies

Table 1. Notation and Abbreviations Adopted in This Work

orbital indices scalars

μ, ν, λ, σ atomic orbitals Nbasis number of AO basis
functions

M, N, P, Q auxiliary functions Naux number of auxiliary
functions

i, j occupied MOs Nocc number of occupied MOs
a, b virtual MOs Nvirt number of virtual MOs
i, j Cholesky orbitals

I, J frozen-core orbitals Ncore number of frozen-
core orbitals

i′, j′ active orbitals Nact number of active, occupied
orbitals

p, q any orbitals (occupied
or virtual)

Nall number of occupied and
virtual orbitals

Natoms number of atoms
Nτ number of Laplace

quadrature points
density matrices subscripts

P all-electron, KS density (eq 1) oo occupied−occupied subspace
Pvirt virtual density (eq 2) ov occupied−virtual subspace
Pact active density (eq 3) cc core−core subspace
Px derivative of the KS density aa active−active subspace
Pact
x derivative of the active density ac active−core subspace
Pvirt
x derivative of the virtual density av active−virtual subspace

derivatives

O(x) derivatives of a quantity O
with respect to a
perturbation x containing
only integral derivatives

Ox derivatives of a quantity O with
respect to a perturbation x with a
functional dependence on the
perturbed density
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in the additional evaluation of the active perturbed density, we
will derive and explain how to obtain the corresponding
expressions. And lastly, we will use pivoted Cholesky
decomposition (CD) of the (active) ground-state density
within the energy and force calculation to reintroduce the
occupied (active) orbital index, which is an important step to
achieve increased performance when using the frozen-core
approximation within an AO formalism.
Please note that in Sections 3.1.1 and 3.2.1, we will only give

a brief summary of the most important equations, which will
be relevant in the main part of this paper. For more detailed
derivations, we refer the reader to previous publications related
to RPA energies16,18,20,31,32,34 and gradients.68,84

3.1. RPA Total Energies. 3.1.1. All-Electron Energy
Expression. The total energy within the adiabatic-connection
fluctuation−dissipation theorem and the RPA15,85 can be
expressed as86,87

E E EP P Ptotal
HF

C
RPA[ ] = [ ] + [ ] (4)

where EHF[P] denotes the Hartree−Fock energy evaluated
with KS orbitals, stemming from a prior DFT calculation.
The RPA correlation energy ECRPA can be expressed within

the RI approximation16,18,20 as

E 1 X V X V1
2

d Tr(ln (i ) (i ) )C
RPA

0
0 0= [ ] +

+

(5)

with the noninteracting density−density response function X0
and the electron−electron interaction operator in the auxiliary
basis employing a short-range RI metric32

V P m R R r S S m Q( ) ( )( )PQ
R S

N

,
12

1
12

1
12

1
aux

= | | | | | |
(6)

with m12 denoting the RI-metric and r12 the interelectronic
distance. For efficiency reasons, the response function is
computed in the imaginary time domain according to31,32,34

X G B G B(i ) ( i ) (i )MN

N
M N

0,
, , ,

0, 0,

basis

=
(7)

where the three-center integral tensor BM is defined as

B m M( )M
12= | | (8)

The one-particle Green’s function in the imaginary time
domain is given by

G G G(i ) ( i ) (i ) (i ) (i )0 0 0= + (9)

with G0(iτ) defined as

G P H S P(i ) exp( ( ) )0 KS F= (10)

G C C(i ) exp( ( ) )
i

N

i i i0, F

occ

=
(11)

and G̅0(iτ) as

G P H S P(i ) exp( ( ) )0 virt KS F virt= (12)

G C C(i ) exp( ( ) )
a

N

a a a0, F

virt

=
(13)

where Cμi and Cμa denote occupied and virtual MO
coefficients, respectively. ϵi and ϵa denote the occupied and

virtual orbital energies, respectively. The Fermi level ϵF is
defined as ( )1

2 HOMO LUMO+ where ϵHOMO and ϵLUMO are the
orbital energies of the highest occupied MO and the lowest
unoccupied MO, respectively.32,88 Θ(iτ) is the Heaviside step
function and S is the overlap matrix. The Kohn−Sham
Hamiltonian HKS is defined as

H h J P V PKS xc= + [ ] + [ ] (14)

with the matrix representation of the one-electron potential h,
the Coulomb potential J, and the exchange−correlation
potential Vxc. Subsequently, the response function (eq 7) is
transformed into the imaginary frequency domain by a cosine
transform,58 or, equivalently, a contracted double-Laplace
transform31,34 according to

X X(i ) 2 d cos( ) (i )0
0

0=
+

(15)

in order to carry out the frequency integration in eq 5.
3.1.2. Frozen-Core Energy Expression. Within the frozen-

core approximation, only the correlation of active electrons is
considered. Thus, the frozen-core approximation can be
implemented for RPA correlation energies by considering
excitations from active electrons only, which can be easily
achieved by restricting the sum over occupied orbitals in the
construction of G0(−iτ) to active occupied orbitals according
to

G C C( i ) exp( ( ))
i

N

i i i0,
act

F

act

=
(16)

G P H S P( i ) exp( ( ) )0
act

act KS F act= (17)

This way, the general expression for the active Green’s function
within the frozen-core approximation reads

G G G(i ) ( i ) (i ) (i ) (i )0
act

0
act

0= + (18)

Thus, by using the active Green’s function as defined above in
the computation of the response function (eq 7), we obtain the
active response function

X G B G B(i ) ( i ) (i )MN

N
M N

0,
act

, , ,
0,
act

0,

basis

=
(19)

which allows to compute the RPA correlation energy within
the frozen-core approximation.

3.2. RPA Gradients in the AO Basis. The first derivative
of the RPA total energy (eq 4) with respect to perturbations
caused by nuclear displacements can be expressed as

E E EP P Px x x
total

HF,
C
RPA,[ ] = [ ] + [ ] (20)

The contribution of the HF functional can be further separated
according to

E E EP P Px x xHF, HF,( ) HF[ ] = [ ] + [ ] (21)

Please note that at this stage, the response of the KS density
has to be evaluated (which is most efficiently accomplished
using the Z-vector method)83,84 since the HF functional is not
stationary with respect to the KS orbitals. This differs from
regular HF force calculations, where the response of the HF
orbitals can be expressed with the derivative of the overlap
matrix and the energy-weighted one-particle density matrix.89

The first contribution in eq 21 is given by
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E P Ph PJ P PK PTr( 0.5( ))x x x xHF,( ) ( ) ( ) ( )[ ] = + [ ] + [ ] (22)

and the second one by

E P H PTr( )x xHF
HF[ ] = (23)

with

H h J P K PHF = + [ ] + [ ] (24)

where K denotes the HF exchange matrix. In the following, we
will first present the all-electron formulation for ECRPA,x and
subsequently derive the corresponding frozen-core expressions.
3.2.1. All-Electron Gradient Expression. The derivative of

the RPA correlation energy can be expressed according to

i
k
jjjjj

y
{
zzzzz

i
k
jjjjj

y
{
zzzzz

i
k
jjjjj

y
{
zzzzz

E
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E
x

E
x

V B G
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, , Tr
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(i )

(i )
Tr

(i )
(i )

x
C
RPA,

0
C
RPA

C
RPA

0

0 C
RPA

0

0

[ ] =

+ +

(25)

The first term in eq 25 can be evaluated as68

E
V

1 X V 1 X1
2

d ( ( (i ) ) (i ))C
RPA

0
0

1
0= [ ]

+

(26)

i
k
jjj y

{
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1

12
( )

12
1

= | | | | | | | | | |
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| | | | | | (27)

The contribution from the three-center integrals to the RPA
gradient (second term, eq 25) can be evaluated in the
imaginary time domain according to68
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C
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+ +
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(28)

where the correlated screened Coulomb interaction in the
auxiliary basis is defined as

W V 1 X V 1(i ) ( (i ) )c 0
1= (29)

Lastly, the contribution of the Green’s function to the RPA
gradient (third term, eq 25) can be evaluated in the imaginary
time domain as well yielding

i
k
jjjjj

y
{
zzzzz

i
k
jjj y

{
zzz

E
xG

G

G G

Tr
(i )

(i )

Tr d ( i ) (i ) (i ) ( i )x x

C
RPA

0

0

0
0 0= [ + ]

+

(30)

with the correlated self-energy defined as67,90,91

W B G B(i ) (i ) (i )
P Q

N N

PQ
Q P

, ,
c, 0,

aux basis

=
(31)

The detailed derivation for the evaluation of G0
x(iτ) arising in

eq 30 can be found in ref 68. Here, we only want to note the
most important steps in the evaluation: starting with the
representation of the Green’s function given in eqs 10 and 12
together with the power series representation of the
exponential function84,88,92 allows to take the derivative with
respect to a perturbation x. Furthermore, to avoid the
derivative of the virtual density, which arises in the evaluation
of G̅0

x(iτ), Pvirt
x can be expressed in terms of Px by taking the

derivative of the completeness relation 1 = PS + PvirtS. Thus,
the final expression for the contribution of the Green’s
function to the RPA gradient reads68

i
k
jjjjj

y
{
zzzzz

E
xG

G
P H S V P

S S S

Tr Tr( ( )

)

x x x

x

C
RPA

0

0
RPA KS

( )
F

( )
RPA

1 1 ( )

= +

+ +
(32)

where we have introduced the following quantities

V J P V PRPA RPA xc RPA= + [ ] + [ ] (33)

P PY P Yd ( ( i ) (i ))RPA
0

virt=
(34)

= + + (35)

Y H S

H S P

d ( ( i )( )

exp( ( ) ) (i ))
0

KS F

KS F

=

+

+

(36)

Y H S

H S P

d ( (i )( )

exp( ( ) ) ( i ))
0

KS F

KS F virt

=

+

+ +

(37)

Y Y Y(i ) ( i ) (i ) (i ) (i )= + (38)

n
Y H S P P

H S P

( i )
( )

(( ) ) (i )

(( ) )

n k

n n
n k

k

1 0

1

KS F
1

KS F

=
!= =

(39)

n
Y H S P P

H S P

(i )
( )

(( ) ) ( i )

(( ) )

n k

n n
n k

k

1 0

1

KS F virt
1

virt

KS F virt

=
!= =

(40)

Now, the only remaining quantity to be determined is the
derivative of the occupied one-particle density Px. The density
response can be determined by solving the coupled-perturbed
KS (CPKS) equations for all 3Natoms perturbations, which,
however, becomes very expensive. A better approach is to first
summarize all terms containing density derivatives, specifically,
the contribution stemming from EHF[Px] (eq 23) and from the
Green’s function (eq 32), resulting in

H V PTr( )x
HF RPA[ + ] (41)

and use the Z-vector technique83,84 on eq 41, which requires
solving only one CPKS equation instead of 3Natoms equations.
Within an AO-formalism, the response of the density can be
evaluated by considering its subspace projections. The
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occupied−virtual and virtual−occupied subspace projections of
Px can be solved using the density matrix-based Laplace
transformed (DL) CPKS equations.93 The occupied−occupied
subspace projection can be easily evaluated according to

P PS Px x
oo = (42)

3.2.2. Frozen-Core Gradient Expression.Within the frozen-
core approximation, the derivative of the RPA correlation
energy reads

i
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act

C
RPA
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0
act

0
act

C
RPA

0
act

0
act

[ ]

= +

+
(43)

where we use the active Green’s function (eq 18). Upon closer
inspection, it becomes apparent that for the evaluation of the
first two terms, the equations derived for the all-electron case
can be used, however, replacing the Green’s function with the
active Green’s function throughout the complete computation.
Therefore, the contribution of the electron−electron operator
to the RPA gradient (first term, eq 43) can be computed using
eqs 26 and 27, however, using the active response function (eq
19) and for the contribution of the three-center integrals to the
RPA gradient (second term, eq 43), eq 28 can be employed
using the active Green’s function.
The task ahead is now to compute the contribution of the

active Green’s function to the RPA gradient (third term, eq
43). We can start by following the same steps as for the all-
electron Green’s function bringing us to the following
expression

i
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jjjjj
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jjj y

{
zzz
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xG
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G G

Tr
(i )

(i )

Tr d ( i ) (i ) (i ) ( i )x x

C
RPA

0
act

0
act

0
act 0 act 0

act,= [ + ]
+

(44)

where we introduced the active self-energy Σact which is
constructed according to eq 31 employing the active Green’s
function (eq 18). The contribution of the active Green’s
function in the negative imaginary time domain can be
evaluated using eq 17 following the same procedure as outlined
for the all-electron case in ref 68. Here, it is important to note
that the active Green’s function (eq 17) is dependent not only
on the active density but also on the all-electron KS density P
through the KS Hamiltonian (eq 14). Therefore, G0

act,x(−iτ)
depends explicitly on the response of the active density Pact

x ,
but it also depends implicitly on the response of the all-
electron KS density Px through HKS

x (eq 14).
The derivative of the Green’s function in the positive

imaginary time domain is computed as in the all-electron case
and is thus only dependent on the response of the all-electron
KS density.
Finally, after collecting all terms, we arrive at the following

expression for the contribution of the active Green’s function
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(45)

where we have introduced the following quantities

V J P V PRPA
act

act RPA
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xc RPA
act= + [ ] + [ ]+

(46)
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(49)

Y Y Y(i ) ( i ) (i ) (i ) (i )act act act= + (50)

where Yact(−iτ) can be computed using eq 39 utilizing the
active density and active self-energy and Y̅act(iτ) according to
eq 40 using the active self-energy.

When comparing the expression within the frozen-core
approximation (eq 45) with the all-electron expression (eq
32), it becomes clear that within the frozen-core approx-
imation, we have to evaluate not only the response of the KS
density but also the response of the active density. This fact
makes the evaluation of gradients within the frozen-core
approximation nontrivial.

To eventually make use of the Z-vector technique for the
computation of perturbed densities, we start by summarizing
all terms containing density responses, such as the contribution
stemming from EHF[Px] (eq 23) and from the active Green’s
function (eq 45) resulting in

H V P PTr( )x x
HF RPA

act
act act[ + ] + (51)

While the evaluation of Px is not new and can, in principle, be
done as in the all-electron case, we do require an expression for
Pact
x . The next section is structured as follows: we will start by

reviewing important equations from MO response theory.
Subsequently, we will derive an expression for both densities in
terms of MO quantities. Lastly, we will derive the final Z-vector
equation for the efficient evaluation of both density responses.

Please note that for the implementation of the frozen-core
approximation for related AO-based electron correlation
methods (such as MP2 or CC variants), the equivalent of
eq 51 has to be derived, that is, an expression that depends on
the response of the active and all-electron density. After that
expression is obtained, the density responses can be computed
as outlined in the next section.

3.3. Evaluating the Contribution of Density Re-
sponses to the RPA Gradient. 3.3.1. MO-Response Theory.
In this section, we will review some important equations from
MO response theory94 that will become very useful and
relevant in the upcoming sections.

The derivative of the MO coefficient matrix can be
expressed as
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=
(52)

where we used the unitary matrix Ux to express the perturbed
MO coefficient matrix as a linear combination of the
unperturbed quantities. In the quest to obtain an expression
for Ux, the CPKS equations can be derived�specifically by
taking the derivative of the off-diagonal elements of the Fock
matrix.95 The CPKS equations within the MO formalism read
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(53)

where we introduced the following quantities

A A( )aibj ab ij i a aibj= (54)
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with the exchange−correlation kernel f xc. It should be noted
that by construction, the CPKS equations solve only for the
occupied−virtual block of Ux ({Uaix }). However, to obtain an
arbitrary block Upqx , the following equation can be used95
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(57)

3.3.2. Evaluating Density Responses (Pactx and Px). In order
to evaluate Pact

x and Px, we may start by visualizing the different
subspace projections of each density response. This is shown in
Figure 1, where the subspace projections of Px are shown on
the left and those of Pact

x on the right. For Pact
x , the core−core as

well as the core−virtual (virtual−core) blocks evaluate to zero
as has been shown in Appendix B. Therefore, using Figure 1,
the response of the all-electron and the active density can now
be expressed in terms of their subspace projections. This allows

us to break down the task of evaluating the complete density
responses (Pact

x and Px) into the evaluations of each individual
subspace projection. This can be accomplished by utilizing
quantities from MO response theory (Section 3.3.1) to express
each subspace projection in terms of Ux. As shown in
Appendices A and B, the resulting equations for Px read
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and for Pact
x
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where {UIi′x } is defined according to eq 57.
3.3.3. Efficient Evaluation of Perturbed Densities: RPA-

Lagrangian, Z-Vector Technique.We may recall that the term
depending on density responses is given by eq 51. In this
section, we aim to combine the observations made in the last
two sections to efficiently solve eq 51 using the Z-vector
technique.83,84 To accomplish this, we can start by inserting
the expressions for Px (eq 58) and Pact

x (eq 60) into eq 51
according to

Figure 1. Schematic representation of the different subspace projections of the all-electron perturbed density (left) and the active perturbed density
(right). The gray blocks evaluate to zero.
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The contribution stemming from Poo
x (eq 42) as well as the

contribution from Pact,aa
x can be easily evaluated according to

V H P V H PS PTr( ) Tr( )x x
RPA
act

HF oo RPA
act

HF[ + ] = [ + ]
(63)

P P S PTr( ) Tr( )x x
act act,aa act act act= (64)

The contribution of the remaining subspaces can be evaluated
utilizing their expressions given in eqs 59 and 61. As shown in
the detailed derivation in Appendix C, the final expression
reads
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and the RPA Lagrangian Q is defined as
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Using eq 65, we are able to simultaneously determine the
contributions stemming from the virtual−occupied subspace of
Px as well as the virtual−active and active−core subspaces of
Pact
x . Now, we can apply the Z-vector technique on the right

hand side of eq 65 giving the final expression

Q U Z B Z Z BTr( ) Tr( )x x xT T T T+ = [ + ] (70)

with

Z Q A( )T T 1= (71)

Accordingly, only one CPKS equation has to be solved to
obtain the perturbation-independent matrix Z.

3.4. Cholesky Decomposition. An important technique
used in AO-based theories to achieve rank reduction is the CD
with complete pivoting of positive semi-definite density
matrices,96−100 which allows to overcome the unfavorable
scaling with the size of the atom-centered basis by
reintroducing the occupied index. When the frozen-core
approximation is used, instead of the aforementioned occupied
index, the active-orbital index is introduced. Thus, by using the
CD within an AO-based theory, the frozen-core approximation

becomes profitable also in terms of increased computational
efficiency and memory requirements.

The most demanding steps within the calculation of RPA
gradients in terms of memory and computational resources are
the computation of the response function (eq 7), which
formally scales as N N( )aux

2
basis
2 , and the computation of the

self-energy (eq 31), where the most demanding step is the
contraction of the screened Coulomb interaction with the
three-center integrals formally scaling as N N( )aux

2
basis
2 . Thus,

we will use the CD of ground-state densities to reduce the
scaling and memory requirements for both steps.
3.4.1. All-Electron Formalism. To introduce the CD, we

make use of the fact that the Green’s function in negative
imaginary time is invariant with respect to projections onto the
occupied subspace

G G SP( i ) ( i )0 0= (72)

Using eq 72 together with the CD of the occupied ground-
state density, P = LLT allows to express the response function
as32,34
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This reduces the formal scaling for the computation of the
response function to N N N( )aux

2
basis occ .

For the computation of the self-energy in negative imaginary
time, we can use eq 72 together with the CD of the ground-
state density to yield
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M N
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(77)

The scaling for the expensive contraction can thus be reduced
to N N N( )aux

2
basis occ .

For the self-energy in the positive imaginary time domain,
instead of computing Σ(iτ) directly, we can also compute
SPΣ(iτ) without changing the final result of the gradient
calculation. The details and reasoning for this approach can be
found in ref 68. This gives rise to the CD of the occupied
density. Thus, we obtain the following expression
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scaling as N N N( )aux
2

basis occ .
3.4.2. Frozen-Core Formalism. We can derive the frozen-

core equivalent of eq 72 as
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G G SP( i ) ( i )0
act

0
act

act= (80)

and use the pivoted CD of the active density Pact = L̃L̃T to
reformulate the active response function and active self-energy
using the approaches presented in the last section. This
reduces the scaling for the computation of the response
function and for the expensive contraction within the
calculation of the self-energy to N N N( )aux

2
basis act . Thus, within

the frozen-core approximation, we are able to reduce the
computational effort and memory requirement for the two
most costly steps by a factor of Nocc/Nact.

4. COMPUTATIONAL DETAILS
The frozen-core approximation was implemented for RPA
forces in the FermiONs++ program package,101−103 which was
compiled with the GNU Compiler Collection (GCC) version
8.1. Kohn−Sham orbitals required for the RPA calculations
were obtained from preceeding DFT calculations using the
generalized gradient approximation of Perdew, Burke, and
Ernzerhof104,105 provided by the libXC library.106 For atomic
basis sets, we use the def2-SVP, def2-TZVP, and def2-QZVP
basis sets107,108 as well as Dunning’s augmented correlation-
consistent basis sets with core-weighted functions (aug-cc-
pwCVQZ).74 For the RI approximation, which is applied to
the four-center integrals in the correlation part of the RPA
energy, the corresponding RI basis sets are employed.109,110

For the time and frequency grid, we used 13−15 grid points.34

When using the frozen-core approximation, the following
number of orbitals was kept frozen: H−Be: 0, B−Mg: 1, Al−
Zn: 5, and Ga−Kr: 9. All calculations were carried out on a
CPU compute node containing 2 AMD EPYC 7302 16-core
processors (in total, 32 cores/64 threads @ 3.0 GHz). Since
the most compute intensive steps involve dense linear algebra,
we use the high performance of the Math Kernel Library
(version 2021). Thus, the speedup from the frozen-core
approximation is the result of smaller matrix dimensions�and
therefore a lower number of floating point operations�in the
time-determining steps.

5. RESULTS AND DISCUSSION
5.1. Validation of the Implementation. First, we will

validate our implementation by comparing our analytical
frozen-core gradients to numerical results, which we obtained
using the five-point stencil method with a step size of 10−5 Å.
For the computations, we used the molecules in the G2 test set
since it includes various main-group elements (specifically,
elements from the first to third row), which allows us to
investigate an assortment of systems with a broad range of
frozen-core orbitals. However, since the geometries of the G2
test set were already optimized and consequently comprised
very small gradient vectors, we decided to distort one atom in
each molecule by 0.2 Å in order to obtain larger gradients to
asses. Please note that the small size of the gradient vector for
preoptimized geometries serves as the first consistency check
of our new implementation. We computed the analytical and
numerical frozen-core gradients for the molecules in the
distorted G2 test set using the def2-QZVP basis set and the
corresponding RI basis set. The results are shown in Table 2
where we denoted the mean-absolute deviation (MAD) as well
as the number of frozen-core orbitals compared to the total
number of occupied orbitals for each system. As can be
observed, the MADs are on the order of 10−6 to 10−4 a.u.,

which is within the error of numerical differentiation.
Therefore we can conclude that our implementation is correct.

5.2. Accuracy of RPA Frozen-Core Forces Compared
to All-Electron Forces. In this section, we will investigate the
error that is introduced when using the frozen-core
approximation or, equivalently, the effect of neglecting the
electron correlation of core electrons for molecular geometries.
Dunning’s augmented correlation-consistent basis sets with
core-weighted functions (aug-cc-pwCVQZ) are used as well as
the corresponding RI basis sets in order to obtain accurate
results when all electrons are correlated. In Table 3, the
equilibrium bond lengths and angles for small main-group
molecules as optimized with and without the frozen-core
approximation are summarized. As can be seen, the deviation
in bond lengths is below 0.5 pm and the deviation in bond
angles is below 0.2°. Those deviations are in very good
agreement with results obtained for related electron correlation
methods; for example, in ref 71, the effect of core correlation
was investigated using CC and many-body perturbation theory
and the largest deviations for bond lengths were found to be
0.3 pm and for bond angles 0.1°. Thus, our work extends these
findings (ref 71) to RPA. That is, the correlation of core
electrons has minimal effect on molecular geometries for RPA
as well, meaning that the frozen-core method has indeed
shown to be a very accurate approximation in the scope of this
study.

5.3. Timings. In this section, we will investigate the
efficiency of our frozen-core RPA forces as compared to all-
electron forces. For this, we have computed a DNA fragment
as well as linear alkanes of increasing length using the def2-SVP
and def2-TZVP basis sets with the corresponding RI basis sets
with and without the frozen-core approximation. In Table 4,
the speedups obtained by using the frozen-core approximation
compared to the all-electron timings are shown. As can be
seen, depending on the size of the basis set, we obtain a
speedup of 20−30%. The decreased speedup when moving to
larger basis sets can be rationalized by the increased number of
virtual orbitals, which are not influenced by the frozen-core
approximation and, therefore, other steps in the calculation

Table 2. Comparison of Analytical and Numerical Frozen-
Core RPA Forces for the Distorted G2 Test Set Using the
def2-QZVP Basis Set with the Corresponding RI Basis Seta

system Ncore/Nocc MAD system Ncore/Nocc MAD

CO 2/7 0.470 P2 10/15 0.040
SiO 6/11 0.268 CH4 1/5 0.164
H2N−NH2 2/9 0.216 Na2 4/11 0.003
Cl2 10/17 0.054 HOCl 6/13 0.071
PH3 5/9 0.175 H3C−SH 6/13 0.200
CH3−OH 2/9 0.186 H3C−CH3 2/9 0.120
H2S 5/9 0.112 NH3 1/5 0.038
CS 6/11 0.607 HCl 5/9 0.077
LiF 1/6 0.016 SiH2 5/8 0.154
H3Si−SiH3 10/17 0.294 N2 2/7 0.433
SiH4 5/9 0.364 ClF 6/13 0.076
CH2 1/4 0.265 HO−OH 2/9 0.154
NaCl 6/14 0.075 HCN 2/7 0.876
H2O 1/5 0.069 HF 1/5 0.025
CO2 3/11 0.461 formaldehyde 2/8 0.150
ethylene 2/8 0.157 CH3Cl 6/13 0.141
C2H2 2/7 0.230 F2 2/9 0.056
aMADs are given in units of 10−3 a.u.
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become more computationally demanding. For heavier
elements with more frozen-core electrons, we of course expect
larger speedups.
For a more detailed analysis, we have summarized timings

for the most time-consuming steps within the gradient
calculation for a DNA fragment using the def2-SVP basis set.
Specifically, we summarized the timings for the computation of
the response function [X0(iτ), eq 75] of the screened Coulomb
interaction [Wc(iτ), eq 29], the self-energy [Σ(±iτ); eqs 76
and 78], the auxiliary matrix Y(iτ) (eq 38), as well as the
contribution from ∂ECRPA/∂V (eqs 26 and 27). The results are
shown in Figure 2. As expected, the biggest speedups are
obtained for the two most computationally demanding steps,
that is, the calculation of the response function as well as the
computation of the self-energy, since for the computation of
those terms, we made use of Cholesky decomposed densities
as explained in Section 3.4.

6. CONCLUSIONS
In this work, we have presented a detailed derivation of the
frozen-core approximation within RPA gradients in the AO
formalism. The main difficulty lies in the evaluation of the
response of the active density in addition to the response of the
all-electron KS density, for which we have outlined an efficient
way to account for both density responses. By comparing our
analytical frozen-core RPA gradients to numerical results, we
demonstrated the validity and correctness of our implementa-
tion. Furthermore, we investigated the error introduced by the

frozen-core approximation on molecular geometries for small
main-group molecules. We found that the deviation in bond
lengths lies below 0.5 pm and that in bond angles lies below
0.2°. Lastly, we have shown that by using the frozen-core
approximation, we are able to achieve speedups of 20−30%
depending on the size of the chosen basis set. We expect these
speedups to be larger for systems with more frozen-core
electrons. By introducing the frozen-core approximation to
RPA gradients, we extended RPA to practical applications by
improving the computational efficiency with practically
negligible loss in accuracy and removing the limitation in the
basis set selection.

Finally, we would also like to emphasize that the presented
derivation in the AO framework allows us to easily adopt the

Table 3. Comparison of Equilibrium Bond Distances r (pm) and Angles α (deg) for Small Main-Group Molecules Obtained
Using All-Electron RPA Forces and Frozen-Core RPA Forcesa

system param. all-electron frozen-core system param. all-electron frozen-core

H2O r 96.34 0.08 NH3 r 101.64 0.11
α 103.901 −0.102 α 106.064 −0.171

CO r 113.53 0.25 CS r 154.32 0.36
Cl2 r 201.33 0.45 HCl r 127.71 0.15
HCN r(C−N) 115.86 0.20 C2H2 r(C−H) 106.46 0.11

r(C−H) 106.80 0.12 r(C−C) 120.70 0.20
H2S r 133.84 0.20 PH3 r 141.44 0.30

α 92.165 −0.013 α 93.333 0.014
SiH4 r 151.41 0.34 CH4 r 108.96 0.15

α 92.394 0.035 α 109.471 0.000
HF r 92.28 0.06 SiO r 151.824 0.36
CH2O r(C−O) 121.11 0.21 HOCl r(O−H) 96.91 −0.09

r(C−H) 110.32 0.11 r(O−Cl) 171.17 −0.38
α(H−C−O) 121.702 −0.012 α 102.176 0.097
α(H−C−H) 116.596 −0.024 F2 r 143.87 0.19

H2O2 r(O−H) 96.82 0.09 N2 r 110.35 0.20
r(O−O) 147.23 0.28 SiH2 r 151.41 −0.38
α(O−O−H) 99.389 0.088 α 92.358 0.035
α(H−O−O−H) −113.225 0.167

aThe frozen-core RPA results are displayed as differences to the corresponding all-electron results. The geometry optimizations were carried out
using the aug-cc-pwCVQZ basis set and the corresponding RI basis set.

Table 4. Speedups (%) for the Computation of Frozen-Core
Forces Compared to All-Electron Results for a DNA
Fragment and the Average Speedup for Five Linear Alkanes
(C10H22−C50H102)

basis Set alkanes (DNA)1
def2-SVP 31 29
def2-TZVP 22 26

Figure 2. Timings for the most time-consuming steps during the
computation of the all-electron (red) and frozen-core (green) RPA
forces for (DNA)1 (61 atoms, Nocc = 130, Nact = 95) using the def2-
SVP basis set. For a detailed description of the steps and symbols, we
refer to the text.
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outlined procedure to related electron correlation methods
formulated in the AO basis that require the evaluation of
density responses, such as MP2 or CC variants.

■ APPENDICES

A. Relationship between Px and Ux

The KS density P is defined as
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Taking the derivative of eq 81 gives
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Inserting eq 52 into eq 82 gives an expression for the perturbed
density entirely in terms of Ux and C
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Splitting the summation over all orbitals into occupied and
virtual orbitals gives the subspace projections of Px in terms of
the respective blocks of Ux
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It follows that the first term in eq 84 corresponds to the
occupied−occupied subspace projection of Px and can be
easily determined using eq 42. The second and third terms in
eq 84 correspond to the virtual−occupied and occupied−
virtual subspace projections of Px, respectively, and can be
obtained using the CPKS equations. The subspace projections
of Px (eq 85) are also illustrated in Figure 1 (left).
B. Relationship between Pact

x and Ux

To determine the relation between the active perturbed
density Pact

x and Ux, we first note that the KS density can be
expressed as a sum of the active and core density as
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where the summation over all occupied orbitals was split into
the summation over core orbitals and active orbitals.
In a similar way, we can determine the perturbed active

density Pact
x from the perturbed KS density Px. Starting with eq

82, we can split the summation over the occupied space into
core and active subspaces
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and we can identify Pact
x as
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Next, we can proceed to split the summations over all orbitals
into core, active, and virtual subspaces according to
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which reveals the different subspace projections of Pact
x that are

also illustrated in Figure 1 (right). Thus, the task ahead is to
evaluate the different subspace projections.

Upon closer inspection, it becomes apparent that the
active−active subspace can be computed according to

P P S Px x
act,aa act act= (93)

and the active−virtual (virtual−active) subspace can be
determined using the CPKS equations. The only undetermined
subspace is the active−core (core−active) subspace. To derive
an expression for Pact,ca

x and Pact,ac
x , we can express the active−

core (core−active) block of Ux using equation eq 57
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(94)

C. Efficient Computation of Perturbed Densities:
RPA-Lagrangian, Z-Vector Technique
Inserting the expression for Px (eq 88) and for Pact

x (eq 91) into
eq 51 yields
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The first two terms can be readily evaluated using eqs 42 and
93, respectively. For the evaluation of the remaining terms, we
use the following symmetries

P P( )x x
vo ov

T= (96)

P P( )x x
act,va act,av

T= (97)

P P( )x x
act,ac act,ca

T= (98)

which require the evaluation of only one of each subspaces.
Furthermore, inserting the specific expressions for each
subspace projection (eqs 84 and 91) and using matrix index
notation for the trace result in the following contributions
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Next, we can extend the summation range in the second term
to all occupied orbitals (since the core−virtual block is zero),
transform the first terms of each trace expression into the MO
basis, and insert eq 94 into the third term yielding the final
expression
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with
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and the RPA Lagrangian Q defined as
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Now, we can use the Z-vector technique for the first term in eq
65. Using eq 53, we can express Ux as

U A B( )x x1= (105)

This allows us to express QTUx in eq 100 as

Q U Z Bx xT T= (106)

with

Z Q A( )T T 1= (107)

Thus, inserting eq 106 into eq 100 yields

Z Z BTr( )xT T[ + ] (108)
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ABSTRACT: A method for the analytical computation of nuclear magnetic resonance (NMR)
shieldings within the direct random phase approximation (RPA) is presented. As a starting point,
we use the RPA ground-state energy expression within the resolution-of-the-identity
approximation in the atomic-orbital formalism. As has been shown in a recent benchmark study
using numerical second derivatives [Glasbrenner, M. et al. J. Chem. Theory Comput. 2022, 18, 192],
RPA based on a Hartree−Fock reference shows accuracies comparable to coupled cluster singles
and doubles (CCSD) for NMR chemical shieldings. Together with the much lower computational
cost of RPA, it has emerged as an accurate method for the computation of NMR shieldings.
Therefore, we aim to extend the applicability of RPA NMR to larger systems by introducing
analytical second-order derivatives, making it a viable method for the accurate and efficient
computation of NMR chemical shieldings.

1. INTRODUCTION
Nuclear magnetic resonance (NMR) spectroscopy has
emerged as an important tool for the structure determination
of organic, inorganic, and macromolecular compounds in the
field of chemistry and biochemistry.1−4 However, the precise
determination of molecular or solid state structures from
experimental NMR spectra can be tedious due to the difficulty
of assigning the signals.2,5 In these cases, employing quantum
chemical methods for the computation of NMR shielding
tensors can aid in the interpretation of experimental spectra
and, thus, help in the elucidation of structures.2,6 Hence, a lot
of effort has been put into the development of such methods,
e.g., refs 2,7−10.
Methods for the computation of molecular NMR shifts

range from Hartree−Fock (HF)11−15 and density functional
theory (DFT)16−18 to wave function-based post-HF methods
such as Møller−Plesset perturbation theory (MP2),19,20

coupled cluster (CC) variants,21−23 and multiconfigurational
self-consistent field (MCSCF).24 Among these methods, HF
and DFT have the lowest computational cost, with comparably
moderate accuracy. Nonetheless, the development of low-
scaling implementations has made the computation of systems
with over 1000 atoms possible.25,26 MP2 has been shown to
yield more accurate results than HF and DFT20,27,28 while also
being computationally more demanding. However, significant
advancements have been made in the development of efficient
methods for the computation of MP2 NMR shifts to alleviate
this issue.29−39 The most accurate methods for the
computation of NMR shifts are coupled cluster singles and
doubles (CCSD) as well as with additional perturbative triples
(CCSD(T)).40 However, the CC methods are accompanied by
the highest computational cost among the above-mentioned

methods and are, if no further approximations are applied, only
feasible for very small systems.

A method that has proven to combine both high accuracy
and low computational cost is the random phase approx-
imation (RPA).41 In a recent benchmark study,41 it was shown
that RPA provides comparable accuracy for NMR chemical
shieldings as CCSD, albeit with reduced computational effort,
also when compared to MP2.

RPA, originally introduced by Bohm and Pines in 1953,42 is
usually implemented as a post-Kohn−Sham (KS)43 method. It
stands on the fifth and highest rung of Jacob’s ladder44 and
does not contain any empirical parameters. The expression for
the RPA ground-state energy can be derived in the context of
DFT43,45 using the adiabatic-connection fluctuation−dissipa-
tion theorem (ACFDT).46−48 However, the original formula-
tion46,48 has an M( )6 scaling with the system size M, making
it only feasible for small systems. By introducing the
resolution-of-the-identity (RI)49−53 approximation, Furche
and co-workers54 lowered the formal scaling to M( )4 ,
rendering RPA as one of the formally lowest scaling correlation
methods. Further improvements for the computational
efficiency of the RPA ground-state energies followed,54−63

paving the way for the investigation of systems with more than
1000 atoms.58−63

Received: May 23, 2023
Published: October 20, 2023

Articlepubs.acs.org/JCTC

© 2023 The Authors. Published by
American Chemical Society

7542
https://doi.org/10.1021/acs.jctc.3c00542

J. Chem. Theory Comput. 2023, 19, 7542−7554

D
ow

nl
oa

de
d 

vi
a 

L
M

U
 M

U
E

N
C

H
E

N
 o

n 
A

pr
il 

19
, 2

02
4 

at
 1

3:
36

:0
9 

(U
T

C
).

Se
e 

ht
tp

s:
//p

ub
s.

ac
s.

or
g/

sh
ar

in
gg

ui
de

lin
es

 f
or

 o
pt

io
ns

 o
n 

ho
w

 to
 le

gi
tim

at
el

y 
sh

ar
e 

pu
bl

is
he

d 
ar

tic
le

s.



For the investigation of many molecular properties,
derivatives of the ground-state energy are necessary. In this
regard, there are two routes to obtain higher-order derivatives,
either numerically or analytically. Generally, analytical
derivatives are superior to numerical schemes since they are
significantly more efficient and avoid errors stemming from a
finite step size.8,64 It is worth noting here that mixed schemes,
e.g., calculating the first derivative analytically and the second
derivative numerically, are also conceivable and in fact often
applied, e.g., for vibrational frequency calculations, as a trade-
off between computational efficiency and development effort.
While various methods have been developed for the analytical
evaluation of first-order properties at the RPA level of
theory,65−71 to the best of our knowledge, no analytical
second-order properties such as NMR shieldings with post-KS
methods based on the ACFDT exist. A first step in this
direction was taken by Glasbrenner et al.41 by introducing a
numerical implementation of RPA shielding tensors for
benchmarking the performance of RPA and the closely related
σ-functionals.72 It has been found that RPA calculations based
on a HF reference provide NMR shieldings comparable to the
CCSD accuracy. Based on these promising results, we aim to
extend the applicability of RPA NMR by deriving the
expression for the RPA NMR shielding tensor as an analytical
second derivative of the RPA energy. This enables the accurate
prediction of NMR shieldings of large molecules with a low
formal scaling behavior.
We want to note that refs 8,73−78, which describe RPA

NMR, use RPA synonymously with coupled-perturbed HF as
well as time-dependent HF. However, in our work, RPA stands
for an ACFDT-based post-KS method and gives different
results than coupled-perturbed HF and time-dependent HF.
Therefore, the methods described in these references differ
from the method introduced in this work.
This work is structured as follows: after establishing the

notation used throughout this work in Section 2, we will derive
the analytical mixed second derivative of the total RPA energy
with respect to the nuclear magnetic moment and an external
magnetic field to obtain the NMR shielding tensor in
Section 3. To accomplish this, we will start by reviewing the
expression for the RPA correlation energy within the atomic-
orbital basis in Section 3.1 and subsequently derive its first
derivative with respect to the nuclear magnetic moment in
Section 3.2. In the main part of the theory in Section 3.3, we
will derive the second derivative with respect to the magnetic
field. Due to the close relation of RPA and MP2, we will make
use of several methods used for the Laplace transformed
atomic-orbital MP2 NMR method, as introduced by us earlier.
Finally, after providing the computational details in Section 4,
we will present the validation of our theory and implementa-
tion.

2. NOTATION
Throughout this work, we adopt the following notation:

• μ, ν, λ, σ: atomic-orbital indices; N: total number of AO-
basis functions

• P, Q: auxiliary function indices; Naux: total number of
auxiliary functions

We use the Mulliken notation for two- and three-center
integrals. Furthermore, Einstein’s sum convention is em-
ployed.79 For general intermediates containing both integrals
and densities, the derivative with respect to a general

perturbation ξ is denoted as Oξ, while intermediate derivatives
containing only the differentiated integrals are denoted as O(ξ).
In all other cases, Oξ is used as a short-hand notation for O.

3. THEORY
The elements of the NMR shielding tensor σrs

A of a nucleus A
can be expressed as the mixed second derivative of the
electronic energy E with respect to a coordinate of the nuclear
magnetic moment ms

A and the magnetic field Br evaluated at
zero according to

= { }
= =

B m
E r s x y z, , ,rs

A

r s
A

m 0 B 0

2

,A (1)

In this work, the focus is on NMR shieldings based on RPA,
which are derived as the analytical second derivatives of the
total RPA energy with respect to B and m. To ensure gauge
origin independence, we employ gauge-including atomic
orbitals (GIAOs)12,13,80−83 defined as

i
k
jjj y

{
zzz= = [ × ]r B r B 0 B R R r( , ) ( , ) exp

i
2

( )0

(2)

where i is the imaginary unit, χμ(r, B = 0) denotes the field-
independent atomic-orbital basis function centered at Rμ, and
R0 is the gauge origin. Through the utilization of GIAOs, we,
therefore, formally introduce complex quantities.

The remainder of this section is structured as follows: we
will first give a brief review of the RPA total energy in the
atomic-orbital basis formulation and subsequently continue
with the first derivative with respect to the nuclear magnetic
moment m. We derive both in terms of complex-valued
orbitals without any assumptions on the symmetry of functions
in the time and frequency domain. This general formulation of
the RPA energy and first-order properties differs from the
derivation presented by Beuerle and Ochsenfeld68 for
molecular gradients since it was carried out for real-valued
orbitals only. Subsequently, the second derivative of the RPA
energy with respect to the magnetic field B is derived and
evaluated at m = 0 and B = 0. This leads to a simplification of
the expressions, such that no complex-valued matrices enter
the final equations. All matrices are either purely real and
symmetric or purely imaginary and skew-symmetric. Further,
all time- and frequency-dependent quantities are either odd or
even functions in the time or frequency domain.

Please note that in the following sections, we will provide
only a brief summary for RPA energies and gradients, which
serve as a starting point for the second derivative. For a more
detailed account, we refer the reader to previous publications
on RPA energies54−56,59−61 and gradients.68,84

3.1. AO-RPA Total Energies. Within the adiabatic-
connection formalism,47 the total energy of the electronic
ground state can be expressed as46,48

[ ] = [ ] + [ ]E E EP P Ptotal HF
c (3)

where the total electronic energy Etotal, the Hartree−Fock
energy EHF, and the correlation energy Ec are evaluated with
the density P obtained from a prior DFT or HF calculation.
Please note that the following derivations will be carried out
for the more general case of a KS-DFT reference calculation.
However, we will note necessary changes for an HF reference
calculation where needed. The correlation energy can be

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://doi.org/10.1021/acs.jctc.3c00542
J. Chem. Theory Comput. 2023, 19, 7542−7554

7543



expressed within the zero-temperature fluctuation−dissipation
theorem and the RPA85 as well as the RI approximation54−56

after analytical coupling-strength integration as

= [ + ]
+

E 1 X X
1

4
d Tr ln( (i ) ) (i )c

RPA
0 0

(4)

Here, the electron−electron interaction operator in the
auxiliary basis is given as

= | |P r Q( )PQ 12
1 1

(5)

within the RI approximation with the r12−1 Coulomb metric,
where r12 is the interelectronic distance. For efficiency reasons,
the noninteracting response function is computed in the
imaginary time domain and transformed into the imaginary
frequency domain using the Fourier transform

=
+

X X(i ) d exp(i ) (i )0 0 (6)

The Fourier transform simplifies to a cosine transform57,61 or,
equivalently, to a double Laplace transform59,60 if X0(iτ) is an
even function in the imaginary time domain. The response
function in the imaginary time domain is given by86

= + +X X X(i ) ( ) (i ) ( ) (i )0 0 0 (7)

=X G G(i ) ( i ) (i )P Q
0,PQ 0, 0, (8)

=+X G G(i ) ( i ) (i )P Q
0,PQ 0, 0, (9)

where the three-center RI integrals are defined as

= | |r P( )P
12

1
(10)

and the noninteracting Green’s functions are defined as

= +G G G(i ) ( ) (i ) ( ) (i )0 0 0 (11)

=G P H S P(i ) exp( ( ) )0 F (12)

=G P H S P(i ) exp( ( ) )0 virt F virt (13)

with the Fermi level ϵF,
60,87 the Heaviside step function Θ(τ),

the occupied density P, and the virtual density Pvirt. Further,
the Hamiltonian H is defined according to

= + [ ]H h G P (14)

where h denotes the matrix representation of the one-electron
Hamiltonian, and G[P] is defined as

[ ] = [ ] + [ ]G P J P V Pxc (15)

with the matrix representation of the Coulomb potential J and
the exchange-correlation potential Vxc. Please note that for a
RPA calculation based on a Hartree−Fock reference, Vxc is
replaced by the Hartree−Fock exchange K.
3.2. First Derivative with Respect to the Nuclear

Magnetic Moment. The first derivative of the RPA total
energy in eq 3 with respect to the nuclear magnetic moment m
reads

[ ] = [ ] + [ ]E E EP
m

P
m

P
m

total HF
c
RPA

(16)

In the following sections, we will first review the expression for
[ ]E P

m

HF
and subsequently derive an expression for the derivative

of the RPA correlation energy Ec
RPA with respect to m.

3.2.1. First Derivative of the HF Functional with Respect
to the Nuclear Magnetic Moment. The derivative of the HF
energy with respect to the nuclear magnetic moment m, given
by the first term in eq 16, can be written as

[ ] = +E P
m

Ph H PTr( ) Tr( )m m
HF

HF (17)

with

= + [ ] + [ ]H P P h P J P P K PTr( ) Tr( )m m m m
HF (18)

It is important to note that the HF energy is not stationary
with respect to the KS density. Therefore, the density response,
i.e., the last term in eq 17, has to be evaluated explicitly and
cannot be avoided as in regular HF gradient calculations.88 A
most efficient alternative is to use the Z-vector method, as
outlined later in this work.84,89

3.2.2. First Derivative of the RPA Correlation Energy with
Respect to the Nuclear Magnetic Moment. The first
derivative of the RPA correlation energy (eq 4) with respect
to a general perturbation ξ is given by68

i
k
jjjjj

y
{
zzzzz

i
k
jjjjj

y
{
zzzzz

i
k
jjjjj

y
{
zzzzz

= +

+

E E E

E
G

G

Tr Tr

Tr

c
RPA

c
RPA

c
RPA

c
RPA

0

0

(19)

When considering the derivative with respect to the nuclear
magnetic moment m, the above equation reduces to

i
k
jjjjj

y
{
zzzzz=

+E E
m X

X
G

G
m

Tr d
(i )

(i )
(i )
(i )

(i )c
RPA

c
RPA

0

0

0

0

(20)

since both the electron−electron interaction operator in the
auxiliary basis and the three-center integral tensor are
independent of m, and thus their derivative is zero.

For a given imaginary frequency, the first term in eq 20
evaluates to

=E
X

W
(i )

(i )
1

4
(i )c

RPA

0
c

(21)

where the correlated screened Coulomb interaction, which is
also one of the central quantities in the GW-approxima-
tion,67,90,91 is defined as

= [ ]W 1 X 1(i ) ( (i ) )c 0
1

(22)

To evaluate the derivative of the RPA correlation energy with
respect to m entirely in the imaginary time domain, eq 6 can
be inserted into eq 20 to yield

i
k
jjjjj

y
{
zzzzz

=
+ +E

m
W

X
G

G
m

Tr
1

4
d d (i )

exp(i )
(i )
(i )

(i )

c
RPA

c

0

0

0

(23)
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Next, Ŵc(iω) has to be transformed into the imaginary time
domain. Therefore, we consider the expression for its inverse
Fourier transform

=
+

W W(i )
1

2
d (i ) exp( i )c c (24)

When comparing the right-hand side of eq 24 with eq 23, it
becomes apparent that eq 23 cannot be rewritten directly in
terms of Wc(iτ). However, Wc(iτ) can be expressed in terms of
its even and odd part as Wc(iτ) = Wc

even(iτ) + Wc
odd(iτ), which

allows us to rewrite the first two terms in eq 23 as

=

+
W W

W W

(i )
1

2
d (i ) exp(i )

(i ) (i )

c c

c
even

c
odd (25)

with

=
+

W W(i )
1

d cos( ) (i )c
even

0
c (26)

=
+

W W(i )
i

d sin( ) (i )c
odd

0
c (27)

Inserting eq 25 into eq 23 finally yields
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jjjjj

y
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zzzzz

i
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jjjjj

y
{
zzzzz
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jjjjj
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zzzzz

y
{
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=

=
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+

E
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X
G
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W
X
G

G
m

W
X
G

G
m

1
2

Tr d (i )
(i )
(i )

(i )
(28)

1
2

Tr d (i )
(i )
(i )

(i )

1
2

Tr d ( i )
( i )
( i )

(29)

( i )

c
RPA

c
0

0

0

0
c

0

0

0

0
c

0

0

0

After the evaluation of X
G

(i )
(i )

0

0
, the following expression is

obtained

i
k
jjj y

{
zzz= +

+E
m

G G
1
2

Tr d (i ) ( i ) ( i ) (i )m mc
RPA

0
0 0

(30)

where the correlated self-energy Σ is introduced, which is
another central quantity in the GW-approximation.67 For
positive and negative imaginary times, Σ(iτ) is defined as

= W G(i ) ( i ) (i )P Q
c,PQ 0, (31)

The last term that remains to be evaluated in eq 30 is the
derivative of the Green’s functions with respect to m. A
detailed derivation can be found in ref 68. In the following,
only the most important steps of the derivation are shown.
Differentiating the Green’s functions given in eqs 12 and 13
yields

=

+

G
m

P H S P

P H S P

(i )
exp( ( ) )

(exp( ( ) ))

m

m

0
F

F (32)

=

+

G
m

P H S P

P H S P

(i )
exp( ( ) )

(exp( ( ) ))

m

m

0
virt F virt

virt F virt (33)

The occupied and virtual densities are related through the
completeness relation

= +1 PS P Svirt (34)

By differentiating the above identity with respect to the nuclear
magnetic moment,84 the following relation is obtained:
Pvirt
m = −Pm, which only requires the evaluation of the occupied

density. The derivative of the matrix exponentials can be
evaluated by differentiating the corresponding series expan-
sion.84,87,92

The final expression reads

i
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jjjjj

y
{
zzzzz=

= +

E E
m X

X
G

G
m

V P P h

Tr
(i )

(i )
(i )

(i )
(35)

Tr( ) (36)m m

c
RPA

c
RPA

0

0

0

0

RPA RPA

where the following intermediates are introduced

= + [ ]V M G P
1
2

( )RPA RPA (37)

=
+

P PY P Y1
2

d ( ( i ) (i ))RPA
0

virt (38)

as well as

= +M M M (39)

=

+

+
M Y H S

H S P

d ( (i )( )

exp( ( ) ) ( i ))
0

F

F virt (40)

=

+

+
M Y H S

H S P

d ( ( i )( )

exp( ( ) ) (i ))
0

F

F (41)

and the matrices

= +Y Y Y(i ) ( ) (i ) ( ) (i ) (42)

=
!= = k

Y(i )
1

( ) (i ) ( )
k l

k
k l l

1 0

1
1

(43)

=
!= = k

Y(i )
1

( ) (i ) ( )
k l

k
k l l

1 0

1
1

(44)

with ( ) defined as

= +( ) ( ) ( ) ( ) ( ) (45)

= H S P( ) ( )F (46)

= H S P( ) ( )F virt (47)

and (i ) as

= +(i ) ( ) (i ) ( ) (i ) (48)

= P(i ) ( i ) (49)
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= P(i ) ( i ) virt (50)

The Y matrices are most efficiently evaluated using a recursion
scheme according to34,84

=
=

Y Y(i ) (i )
k

k
0 (51)

l
m
oooo
n
oooo

=
=

+ >

k

k
k

Y
Y

(i )
0 0
1

( ( ) (i ) (i ) ( )) 0k
k k1 1

(52)

with

=
!k

( )
1

( )k
k

(53)

3.3. Second Derivative with Respect to the Magnetic
Field. The mixed second derivative of the total RPA energy
with respect to m and B reads

= [ ]

= [ ] + [ ]
= =

= = = =

E

E E

P
B m

P
B m

P
B m

m 0 B 0

m 0 B 0 m 0 B 0

2 total

,

2 HF

,

2
c
RPA

, (54)

In the following sections, the mixed second derivative of the
HF energy, given by the first term in eq 54, is reviewed.
Subsequently the second derivative of the RPA correlation
energy, given by the second term in eq 54, is derived, and
finally both components are combined to form the total
shielding tensor.
3.3.1. Second Derivative of the HF Energy with Respect to

the Magnetic Field. The second derivative of the HF energy
with respect to m and B can be obtained by differentiating
eq 17 with respect to B yielding

[ ] = +
+
+

= +
+

= =

E P
B m

P h Ph
H P
H P

H P
H P

Tr( ) Tr( )
Tr( )
Tr( )

(55)

Tr( )
Tr( )

(56)

m 0 B 0

B m Bm

B m

Bm

B m

Bm

2 HF

, HF

HF

HF
HF

HF

For simplicity in the following, the first two contributions from
the HF functional are summarized in the intermediate σ̃HF. We
note here that the contributions from Tr(HHF

B Pm) and
Tr(HHFPBm) do not arise in the case of a HF reference, as
explained in detail in Appendix A. The magnetic field
derivative of the HF Hamiltonian HHF

B is given by

= + [ ] + [ ] + [ ]H h J P K P K PB B B B B
HF (57)

where the term J[PB] is zero, due to the skew symmetry of the
purely imaginary B-field derivative of the density matrix.
3.3.2. Second Derivative of the RPA Correlation Energy

with Respect to the Magnetic Field. The second derivative of
the RPA correlation energy with respect to the magnetic field
B can be obtained by differentiating eq 36

= +

+ +

[ ]

= =
V P V P

P h P h

Tr( ) Tr( )

Tr( ) Tr( )

E P
B m

m 0 B 0

B m Bm

B m Bm
,

RPA RPA

RPA RPA

2
c
RPA

(58)

The derivative of the density with respect to the nuclear
magnetic moment in the first term of eq 58 can, in principle, be
evaluated by solving the coupled-perturbed KS (CPKS)
equations for all perturbations of the nuclear magnetic
moment. However, the response of the density can be
obtained more efficiently using the Z-vector technique,84,89

which requires the evaluation of only one CPKS equation.
Within the AO-based formulation, the density matrix-based
Laplace transformed CPKS method93 developed by our group
is employed.

In the next sections, the derivation of the B-field derivatives
of the PRPA and the VRPA intermediates is explained in detail.
Figure 1 provides a schematic overview of the necessary steps

to derive an expression for the central intermediates PRPA
B and

VRPA
B . The next section starts with the evaluation of PRPA

B , which
will lead to an expression for the magnetic field derivative of
the correlated self-energy ΣB. As can be seen in Figure 1, this
requires the B-field differentiated correlated screened Cou-
lomb interaction Wc

B, which in turn contains the derivative of
the noninteracting response function X0

B. Subsequently, the
evaluation of VRPA

B will be detailed, and finally, the
contributions from the HF functional and the RPA correlation
energy are combined to formulate the final equation for the
computation of the total RPA NMR shieldings.

Figure 1. Schematic representation of the derivation of VRPA
B and

PRPA
B . ST denotes a sine transform and IST denotes an inverse sine

transform. All arrows are labeled with the corresponding equations
from the text.
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3.3.3. Derivative of PRPA with Respect to the Magnetic
Field. Differentiation of eq 38 with respect to the magnetic
field yields

= +
+

P P Y PY P Y

P Y

1
2

d ( ( i ) ( i ) (i )

(i ))

B B B B

B

RPA
0

virt

virt (59)

The direct evaluation of Pvirt
B can again be avoided by

differentiation of the completeness relation given in eq 34
with respect to the B-field

=P P S S SB B B
virt

1 1 (60)

Here, we note that at this stage the density response PB is
evaluated directly by solving the CPKS equations for all B-field
perturbations without utilizing the Z-vector technique. Since
there are only three perturbations in total, this does not
constitute a considerable overhead.
Apart from PB, the evaluation of eq 59 requires the B-field

derivative of the Y intermediates. Since the derivative of the Y
matrices also arises in the evaluation of Laplace transformed
atomic-orbital MP2 NMR shieldings,33,34,38 the approach
recently introduced by Glasbrenner et al.34 is adopted for
the evaluation of YB(iτ). Differentiating the recursion formula
for Y(iτ) given in eq 51 with respect to the B-field yields

=
=

Y Y(i ) (i )
k

k
B B

0 (61)

= +

+ +

>

k

k

Y Y Y(i )
1

( ( ) (i ) ( ) (i )

(i ) ( ) (i ) ( ))

0

k k k

k k

B B B

B B

1 1

1 1

(62)

At this point the derivatives of ( ) and (i ) are required.
Differentiation of the respective expressions given in
eqs 46−50 results in

= H S P H S P( ) ( ) ( )B B B B
F F (63)

= H S P H S P( ) ( ) ( )B B B B
F virt F virt (64)

=i P P( ) ( i ) ( i )B B B (65)

= P P(i ) ( i ) ( i )B B B
virt virt (66)

where the B-field derivative of the Hamiltonian (eq 14) is
given by

= + [ ] + [ ]H h G P G PB B B B (67)

Up to this point, the only unknown quantity is the B-field
derivative of the correlated self-energy, which is the focus of
the next section.
3.3.4. Derivative of the Correlated Self-Energy with

Respect to the Magnetic Field. The derivative of the self-
energy, i.e.,

=
= =

W G
B B
(i )

( ( i ) (i ) )P Q

B 0 B 0
c,PQ 0,

(68)

can be obtained by differentiating eq 31 using the product rule.
Further simplifications can be made by considering the
symmetries of all quantities when evaluating at B = 0. Since

the vector potential that describes the magnetic field is purely
imaginary, any associated B-field differentiated Hermitian
matrix will necessarily be purely imaginary and therefore
skew-symmetric in the time domain. Furthermore, both the
magnetic field derivative of the noninteracting response
function X0

B(iτ) and the derivative of the correlated screened
Coulomb interaction Wc

B(iτ) are odd functions in the
imaginary time domain. All remaining, nondifferentiated
quantities are purely real, symmetric, and even functions in
the imaginary time domain. A detailed derivation is shown in
Appendix B, while here only the resulting working equations
are presented

= G

W G
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(69)

= +
W

G

W G

W
G

W G

B

B

B

B

( i )
(i )

( i )

(i ) ( i )

(i )
( i )

(i ) ( i )

P Q

P
Q

P Q

P
Q

B c,PQ
0,

c,PQ 0,

c,PQ
0,

c,PQ 0, (70)

If done stepwise, the computation of the self-energy and its B-
field derivative formally scale as N N( )aux

2 2 and thus constitute
the steepest scaling steps in the computation of RPA NMR
shieldings.

In the following sections, first the B-field derivative of the
correlated screened Coulomb interaction Wc(iτ) is evaluated
and subsequently the derivative of the Green’s functions is
evaluated.

Since no simple closed expression for the correlated
screened Coulomb interaction in the imaginary time domain
exists, the B-field derivative is evaluated in the imaginary
frequency domain Ŵc

B(iω) and subsequently transformed back
into the imaginary time domain using an inverse sine transform

=
+

W W(i ) 2i d sin( ) (i )B B
c

0
c (71)

Ŵc
B(iω) can be obtained by differentiating eq 22 with respect

to the B-field yielding

= [ ]

= [ ] [ ]
[ ]

W
B B

1 X 1

1 X X
1 X

(i )
( ( (i ) )) (72)

( (i ) (i )
(i ) )

(73)B

c
0

1

0
1

0

0
1

where the following identity for the derivative of matrix
inverses of a general matrix is used

=( )1
1 1

(74)
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As can be seen from eq 73, for the computation of Ŵc
B(iω), the

B-field derivative of the response function in the imaginary
frequency domain X̂0

B(iω) is needed. For efficiency reasons, the
B-field derivative of the response function is computed in the
imaginary time domain and transformed back into the
imaginary frequency domain using the sine transform

=
+

X X(i ) 2i d sin( ) (i )B B
0

0
0 (75)

By differentiating eq 9 using the product rule, an expression for
X0
B(iτ) is obtained according to

=

+

+

+

+X G
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G G

G
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B

B
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( i ) (i )
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P
Q

0,PQ 0,
0,

0, 0,

0,
0,

0, 0, (76)

Finally, to complete the evaluation of Σ(iτ), the B-field
derivative of the Green’s function is needed. Differentiating
eqs 12 and 13 yields

=

+

G
B

P H S P

P H S P

(i )
exp( ( ) )

(exp( ( ) ))

B

B

0
F

F (77)

=G
B

P H S P

P H S P

(i )
exp( ( ) )

(exp( ( ) ))

B

B

0
virt F virt

virt F virt (78)

The B-field derivative of the matrix exponentials in the above
equations can be obtained, as explained in Section 3.2.68

3.3.5. Derivative of VRPA with Respect to the Magnetic
Field. Differentiating eq 37 yields

= + [ ] + [ ]V M G P G P
1
2

( )B B B B
RPA RPA RPA (79)

The evaluation of PRPA
B was described in detail in the last

section. An expression for MB = M̅B + MB can be obtained by
differentiating eqs 40 and 41 using the product rule yielding

=

+ + [ ]
+

+
M Y H S

Y H S H S P
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d ( (i )( )
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The evaluation of all B-field derivatives in the above expression
has been described in the previous section.
3.3.6. Second Derivative of the Total RPA Energy. By

combining eqs 56 and 58, an expression for the total RPA
energy can be obtained according to

[ ] = [ + ]

+ [ + ]
+ + +

= =

E P
B m

V H P

V H P

P h P h

Tr( )

Tr( )

Tr( ) Tr( )

m 0 B 0

B B m

Bm

B m Bm

2 total

,
RPA HF

RPA HF

RPA RPA
HF

(82)

For simplicity, the contribution σ̃HF is treated separately with
the usual techniques used for the computation of HF and DFT
shifts. The contribution of the remaining terms will be
described in detail in the next section.
3.3.7. Final Equation for RPA NMR Shieldings: Nested Z-

Vector Approach for Avoiding PBm. The nested Z-vector
approach provides an efficient way to evaluate PBm with a
reduced number of CPKS equations. It was first introduced by
Maurer and Ochsenfeld33 for AO-MP2 NMR shieldings and
recently improved by Glasbrenner et al.34 Here, we want to
stress that Gauss had already introduced the respective MO-
based Z-vector equations in the framework of MO-MP2 in
1992.19

In the following, the basic idea for the nested Z-vector
method is reviewed, and subsequently the final equations are
presented. A detailed derivation can be found in ref 34.

The objective is to evaluate Tr([VRPA + HHF]PBm), i.e., the
second term in eq 82. For this, we first consider the CPKS
equation for the B-field derivative of the density

=AP bB B (83)

where A is the KS Hessian matrix and bB is the right-hand side
of the CPKS equation. Next, eq 83 is differentiated with
respect to m and rearranged to obtain an expression for PBm

according to

= [ ]P A b A P( )Bm Bm m B1 (84)

Using eq 84 together with the Z-vector ansatz allows to rewrite
Tr([VRPA + HHF]PBm) as

[ + ] = [ ]V H P Z b A PTr( ) Tr( ( ))Bm Bm m B
RPA HF (85)

where Z is computed by solving one CPKS equation AZ =
VRPA + HHF. Next, all terms in Tr(Z(bBm − Am[PB])) need to
be reordered, such that only terms of the form Tr[···Pm] result,
which renders the expression amenable to another Z-vector
step. The reordering is performed analogously to eqs D12−
D28 in ref 34. It was shown that this, in combination with the
terms Tr[VRPA

B Pm] from eq 58 and Tr[HHF
B Pm] from eq 56,

leads to

[ ] + [ + ]
= + +

Z b A P V H P

O h O h OP

Tr( ( )) Tr( )

Tr( ) Tr( ) Tr( )

Bm m B B B m

F
m

Y
m m

RPA HF

m m (86)

Applying eqs 85 and 86 to eq 82 and rearranging terms, yields
the final expression for the RPA NMR shieldings as

= [ + ] + [ + ]
+ +

P O h P O h

Z b

Tr( ) Tr( )

Tr( )
Y

Bm B
F

m

O
m

RPA RPA
HF

m m

(87)

The introduced quantities OYm, OFm, O, and ZO are defined in
ref 34. Here, we note that following the notation of ref 34 in
the context of the AO-MP2 NMR shieldings, the intermediates
PRPA and (VRPA + HHF) correspond to the intermediates
and , respectively, and likewise for the differentiated
intermediates. In essence, for an efficient treatment of the
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contributions from the HF Hamiltonian, i.e., Tr(HHF PBm) and
Tr(HHF

B Pm) from eq 56, HHF needs to be added to the VRPA
intermediate, and likewise for the B-field differentiated
quantities, to avoid the solution of two nested Z-vector
equations. Finally, an overview of all necessary steps to
compute NMR chemical shieldings at the RPA level of theory
is provided in the Supporting Information.

4. COMPUTATIONAL DETAILS
Analytical NMR shifts at the RPA level of theory were
implemented within our quantum chemistry package
FERMIONS++.94−96 As a starting point for the RPA
calculations, DFT with the generalized gradient approximation
of Perdew−Burke−Ernzerhof (PBE),97 as provided by the
Libxc library version 5.1.1,98 as well as the Hartree−Fock
method, are employed. For all PBE reference calculations, an
uncoupled DFT scheme is used.99,100 The frozen core
approximation is not utilized. Further, dense matrix algebra
routines from the Intel Math Kernel Library (version 2022.0.0)
are employed. Dunning’s correlation-consistent basis sets with
core weighted functions (cc-pwCVDZ, cc-pwCVTZ)101 are
used in combination with the corresponding RI basis sets.102

For the time and frequency integration57,61 as well as the
cosine57,61 and sine transformation90 to switch between two
domains, optimized minimax grids57 are employed. For this,
we use 15 grid points, which is proven to be sufficiently
accurate, as shown in Section 5.2. The derivatives of numerical
integration roots and weights used for the numerical imaginary
time and frequency quadratures are neglected. This is justified
by earlier work on RPA gradients,67,68 which employ the same
integration grids and for which it was found that this
approximation yields sufficiently accurate results. Further, the
validity of the gauge origin independence was confirmed by
carrying out calculations after shifting each coordinate of the
gauge origin by 5 Å. The isotropic shieldings showed
deviations that did not exceed 0.05 ppm. Detailed results are
provided in the Supporting Information. As commonly done in
implementations of NMR shieldings, the explicit use of
complex-valued matrices is avoided by treating purely
imaginary matrices using skew-symmetric, real-valued matrices.
To validate our implementation, we further computed

numerical RPA NMR shifts that were recently presented by
our group.41 In this context, the RPA correlation energy is
computed within the RI approximation using the method of
Furche and co-workers.54 For the numerical frequency
integration, we employ the Clenshaw−Curtis scheme54,103

with 120 grid points, which was confirmed to provide accurate
results in ref 41.

5. RESULTS AND DISCUSSION
5.1. Validation of the Implementation. For the

validation of our implementation of analytical RPA NMR
shifts, the shifts are compared against the results obtained with
the numerical RPA NMR reference implementation.41 There-
fore, analytical and numerical RPA NMR shifts based on a
preceding PBE reference calculation (RPA@PBE) and based
on a HF reference (RPA@HF) were computed for the
molecules in the test set assembled by Gauss and co-
workers104 as well as the test set of Flaig et al.27 For the
Gauss benchmark set, the molecules SO2 and O3 are excluded,
as in ref 104, as well as PN, which is a difficult case for
theoretical computations in general.105

The results for the Gauss benchmark set are shown in
Figure 2 and in more detail in Table 1, where the mean

absolute deviations (MADs) of the analytical istropic NMR
shifts with respect to the numerical results are shown for the
most common nuclei in the test set, i.e., 1H, 13C, 15N, 17O, and
19F, at the RPA@HF and RPA@PBE levels of theory using the
cc-pwCVTZ basis set with the corresponding RI basis set. As
can be seen, the MADs for the different nuclei at the RPA@HF
and RPA@PBE levels of theory are all on the order of
10−2 ppm, which is well within the error of numerical
differentiation.

The corresponding results for the Flaig benchmark set are
provided in Figure 3 and in more detail in Table 1 for the
nuclei 1H, 13C, 15N, 17O, and 19F. All calculations were carried
out using the cc-pwCVDZ basis set with the corresponding RI
basis set. Evidently, for this benchmark set, all MADs are also
on the order of 10−2 ppm and comparable with the results
obtained for the Gauss benchmark set. Since the errors are well
within the error of numerical differentiation, it is safe to
conclude that the presented theory and the implementation
thereof are correct.
5.2. Accuracy: Convergence of the Minimax Grid. To

motivate the choice for the number of numerical integration
points for the minimax grids in the previous section, NMR
shift calculations on the benchmark set by Gauss and co-
workers104 are performed at the RPA@HF level of theory

Figure 2. MADs in 10−2 ppm of analytical to numerical isotropic
NMR shifts for the 1H, 13C, 15N, 17O, and 19F nuclei at the RPA@HF
and RPA@PBE levels of theory for the molecules in the Gauss104

benchmark set. All calculations were carried out using the cc-
pwCVTZ basis set with the corresponding RI basis set.

Table 1. Comparison of MADs in 10−2 ppm of Analytical to
Numerical Isotropic NMR Shifts for the 1H, 13C, 15N, 17O,
and 19F Nuclei at the RPA@HF and RPA@PBE Levels of
Theorya

benchmark reference 1H 13C 15N 17O 19F

Gauss HF 0.05 0.41 0.53 5.91 4.97
PBE 0.01 0.32 0.31 21.19 6.44

Flaig HF 0.84 2.08 6.01 6.94 1.52
PBE 0.04 3.05 7.73 7.73 2.52

aAll Calculations were carried out with the cc-pwCVTZ basis set for
the Gauss benchmark set and with the cc-pwCVDZ basis set for the
Flaig benchmark set.
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using the cc-pwCVTZ basis set for a varying number of
integration points. The MADs with respect to the results
obtained with the largest available integration grid are
presented in Table 2 for the most represented nuclei in this
benchmark set, i.e., 1H, 13C, 15N, 17O, and 19F.

The results in Table 2 show that the numerical integration
grids allow to smoothly converge the obtained chemical shifts.
For lighter elements, such as 1H, the errors are almost
independent of the grid size and smaller than 10−3 ppm. For
heavier elements, such as 17O, a grid size of 15 integration
points allows one to obtain an accuracy on the order of
10−2 ppm, compared to the converged result obtained with 20
integration points. In conclusion, based on the obtained
results, the choice of 15 integration points provides a good
compromise between accuracy and computational cost, which
is why this number of grid points was employed in all
presented calculations.

6. CONCLUSIONS
An analytical expression for NMR chemical shieldings at the
direct RPA level of theory as a post-KS method based on
ACFDT is presented for the first time. By taking the mixed
second derivative of the RPA ground-state energy expression
with respect to the nuclear magnetic moment and an external
magnetic field, the NMR shielding tensor is obtained. For this,
a rigorous derivation for the analytical expression is presented,
with which the evaluation of the shielding tensor is possible
with formal O(N4) time complexity, in contrast to the higher-
scaling of other correlation methods such as MP2 or CC. The
derived expressions and the implementation are sensibly
verified by comparing the obtained chemical shifts against
the numerical implementation by Glasbrenner et al.41 For this,
calculations on established NMR benchmark sets were carried
out with both HF and a commonly used representative for
DFT functionals, i.e., PBE, as reference. While the employed
implementation is only preliminarily optimized in terms of
computational efficiency and not yet optimized in terms of
memory requirements, the presented equations represent an
ideal stepping stone toward a low-scaling and efficient
implementation of NMR shieldings at the RPA level of theory
in future work. Similar to the AO-RPA gradients, the
evaluation of the noninteracting response function and the
correlated self-energy in the imaginary time domain represent
the formally highest scaling steps, and the necessity to compute
their magnetic field derivatives adds additional O(N4) scaling
steps. However, efficient techniques, such as the attenuated
Coulomb RI approximation60 and Cholesky molecular orbitals,
to treat the involved integral contractions can be leveraged for
a low-scaling implementation at reduced cost in future work.
The application of these low-scaling techniques therefore
provides a valuable route toward NMR shift calculations on
large molecules with good accuracy and affordable cost.

Furthermore, the derived expression for the analytical
second derivative of the RPA energy can easily be extended
to the related σ-functionals72 to profit from the reduced errors
not only for atomization, reaction, and noncovalent interaction
energies but possibly also for NMR shifts.

■ APPENDICES

A. Derivation of the Hartree−Fock Energy Functional
Shielding Contribution
The Hartree−Fock energy functional is given as

i
k
jjj y

{
zzz[ ] = + [ ]E P Ph PG PTr

1
2

HF

(88)

To compute the HF contribution to the total NMR shielding
tensor, this expression is first differentiated with respect to the
nuclear magnetic moment m given by

[ ] = + + [ ]E P
m

P h Ph P G PTr( )m m m
HF

(89)

As the basis functions are independent of m, the contribution
from the differentiated integrals, i.e., Gm[P] is zero. The terms
contracted with the response of the density matrix Pm can be
collected in the HF Hamiltonian HHF to yield

[ ] = +E P
m

Ph P HTr( )m m
HF

HF (90)

Figure 3. MADs in 10−2 ppm of analytical to numerical isotropic
NMR shifts for the 1H, 13C, 15N, 17O, and 19F nuclei at the RPA@HF
and RPA@PBE levels of theory for the molecules in the Flaig27

benchmark set. All calculations were carried out using the cc-
pwCVDZ basis set with the corresponding RI basis set.

Table 2. Analysis of the RPA NMR Shift Convergence for
the 1H, 13C, 15N, 17O, and 19F Nuclei with the Number of
Minimax Grid Points Ng

a

Ng
1H 13C 15N 17O 19F

10 0.01 0.62 1.75 3.20 0.97
11 0.01 0.50 1.40 2.57 0.77
12 0.01 0.41 1.14 2.07 0.61
13 0.01 0.36 0.91 1.73 0.49
14 0.00 0.26 0.70 1.31 0.42
15 0.00 0.24 0.54 1.07 0.31
16 0.00 0.15 0.39 0.75 0.23
17 0.00 0.13 0.26 0.53 0.39
18 0.00 0.09 0.14 0.32 0.34
19 0.00 0.04 0.07 0.15 0.08
20 - - - - -

aAll values are given as MADs in 10−2 ppm with respect to the results
obtained for Ng = 20 at the RPA@HF level of theory. All calculations
were carried out using the cc-pwCVTZ basis set with the
corresponding RI basis set.
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Since the occupied−occupied part of Pm is given by Poo
m =

−PSmP = 0 and the virtual−virtual part is necessarily zero, the
density response is given by the nonzero occupied−virtual and
virtual−occupied blocks as

= +

= +

P PSP 1 SP 1 PS P SP

P P

( ) ( ) (91)

(92)

m m m

m m
ov vo

At the same time the occupied−virtual and virtual−occupied
parts of the HF Hamiltonian, given by the following subspace
projections,

= =SPH 1 PS 1 SP H PS 0( ) ( )HF HF (93)

= =H H 0HF,ov HF,vo (94)

vanish for a matching converged HF density. Therefore, the
trace of PmHHF is zero and the HF contribution to the total
shielding tensor, after second differentiation with respect to B,
is given by

[ ] = +E P
B m

P h PhTr( ) Tr( )B m Bm
2 HF

(95)

However, in the case of a KS reference density, the HF energy
functional is nonstationary with respect to the density and thus
the occupied−virtual and virtual−occupied parts of the HF
Hamiltonian are nonzero. Therefore, in this case, the HF
contribution to the total shielding tensor is given by

[ ] = + +

+

E P
B m

P h Ph H P

H P

Tr( ) Tr( ) Tr( )

Tr( )

B m Bm B m

Bm

2 HF

HF

HF (96)

B. Derivative of the Self-Energy with Respect to the
Magnetic Field
Carrying out the differentiation in eq 68 for the self-energy
Σ(−iτ) in the negative imaginary time domain yields

=
+

+

+

+

=

W
G

W G

W
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W G

B B
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( i ) ( i )
( i )

( i ) ( i )

( i )
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( i ) ( i )

P Q

P
Q

P Q

P
Q

B 0

c,PQ
0,

c,PQ 0,

c,PQ
0,

c,PQ 0,

(97)

When evaluating the above expression at B = 0, all quantities
that are not B-field derivatives evaluate to real-valued matrices
(symmetric) and even functions in the imaginary time domain.
All B-field derivatives are purely imaginary quantities (skew-
symmetric) and odd functions in the imaginary time domain.

With this in mind, +W

B

( i )c,PQ can further be simplified by using
the definition in eq 25 and the fact that it is an odd function in
the imaginary time domain:
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c

Inserting the above expression into eq 97 yields the final
expression given in eq 70.

By analogy, the self-energy in the positive time domain can
be written according to

+
=
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(100)

Again, rewriting W

B

( i )c,PQ using eq 25 and considering that it
is an odd function in the imaginary time domain yields

=

=+ = +

W
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B

W
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W
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( i ) ( i ) ( i )
(101)

(i ) (i )
(102)
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Finally, inserting the above equation into eq 100 yields eq 69.
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1 Implementation

The following algorithm summarizes the necessary steps for computing NMR chemical shield-

ings at the RPA level of theory.

Algorithm 1 Compute RPA NMR chemical shieldings.
compute H, S, P, Pvirt, V, and B ▷ SCF intermediates
compute hm, hBm, SB, H(B), and BB

solve CPSCF for PB

compute PB
virt

compute HB

if not Hartree–Fock reference then
compute HHF and HB

HF
end if
compute G0(iτ) ▷ first derivative intermediates
compute X0(iτ)
cosine transform of X0(iτ) to X̂0(iω)
compute Ŵc(iω)
inverse cosine transform of Ŵc(iω) to Wc(iτ)
compute Σ(iτ)
compute Y(iτ) by recursion with A(τ) and B(iτ)
integrate Y(iτ) to form PRPA

integrate Y(iτ) and Σ(iτ) to form M
compute VRPA

for every B-field component do ▷ second derivative intermediates
compute GB

0 (iτ)
compute XB

0 (iτ)
sine transform of XB

0 (iτ) to X̂B
0 (iω)

compute ŴB
c (iω)

inverse sine transform of ŴB
c (iω) to WB

c (iτ)
compute ΣB(iτ)
compute YB(iτ) by recursion with AB(τ) and BB(iτ)
integrate Y(iτ) and YB(iτ) to form PB

RPA
integrate Y(iτ), YB(iτ), Σ(iτ), and ΣB(iτ) to form MB

compute VB
RPA

end for
solve Z-vector equation ZVRPA = A−1(VRPA +HHF) ▷ nested Z-vector/final shieldings
compute O, OFm , and OYm

solve Z-vector equation ZO = A−1O
compute σ = Tr([PRPA +OYm ]hBm) + Tr([PB

RPA +OFm ]hm) + Tr(ZOb
m) + σ̃HF

The algorithm can roughly be grouped into four stages. First, the computation of all
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intermediates also present in HF NMR shieldings, i.e., the densities, the Hamiltonian, the

integrals, etc., as well as their derivatives. Second, the formation of all intermediates also

occurring in the first derivative of the RPA equations, which are independent of the magnetic

field. Third, B-field derivatives of the intermediates of the first derivative, and lastly the

nested Z-vector step to obtain the final intermediates for the NMR shieldings.

The most involved steps in terms of computational effort are the computation of the

response function X0(iτ) and the self-energy Σ(iτ) in the imaginary time domain, as well

as their B-field derivatives. Here, X0(iτ) is most efficiently computed according to, e.g.,

Ref. S1 by premultiplying the Green’s functions with the three-center integrals and then

using a matrix multiplication to multiply both third-order tensors. The same approach can

be used for the B-field derivative of the response function. The self-energy is computed as

explained in Ref. S2 and its SI. For the B-field derivative of the self-energy we use the same

approach. Here, we want to note that for the matrix multiplications we use the high parallel

performance of the MKL library for dense matrix algebra routines.
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2 Gauge Invariance

Table S1: Testing the gauge origin independence at the RPA@HF level of theory using the
def2-SVP and cc-pwCVTZ basis sets with the corresponding RI basis sets for the molecules
in the Gauss benchmark set. For each basis set the NMR shifts are given in ppm for the
initial geometry (reference) and after each atom has been translated by 5 Å(transl.) as well
as the resulting absolute deviation (abs. err.).

def2-SVP [ppm] cc-pwCVTZ [ppm]

molecule element transl. reference abs. err. transl. reference abs. err.
AlF

Al -4.1606 -4.1605 0.0001 -4.8933 -4.8936 0.0002
F 3.7843 3.7823 0.0020 -2.5863 -2.5871 0.0008

C2H4
C 13.5843 13.5850 0.0007 8.0167 8.0169 0.0003
C 13.5843 13.5850 0.0007 8.0172 8.0169 0.0003
H 0.3400 0.3400 0.0000 0.1530 0.1499 0.0031
H 0.3400 0.3400 0.0000 0.1466 0.1499 0.0033
H 0.3400 0.3400 0.0000 0.1531 0.1499 0.0032
H 0.3400 0.3400 0.0000 0.1468 0.1499 0.0031

C3H4
C -0.8958 -0.8959 0.0001 -2.3976 -2.3762 0.0213
C 16.5324 16.5323 0.0001 10.5089 10.5229 0.0140
C 16.5324 16.5323 0.0001 10.5468 10.5229 0.0239
H 0.7695 0.7695 0.0000 0.5412 0.5476 0.0064
H 0.7695 0.7695 0.0000 0.5391 0.5476 0.0085
H 0.1390 0.1390 0.0000 0.0055 0.0054 0.0000
H 0.1390 0.1390 0.0000 0.0001 0.0054 0.0053

CH2O
O 120.5025 120.5017 0.0008 82.7901 82.7902 0.0000
C 21.1176 21.1176 0.0000 12.2381 12.2387 0.0006
H 0.3273 0.3273 0.0000 0.1245 0.1186 0.0058
H 0.3273 0.3273 0.0000 0.1126 0.1186 0.0060

CH3F
C 0.6198 0.6197 0.0001 -1.3122 -1.3128 0.0007
F -9.1903 -9.1894 0.0009 -7.9269 -7.9254 0.0016
H 0.0139 0.0139 0.0000 -0.1095 -0.1076 0.0019
H 0.0139 0.0139 0.0000 -0.1051 -0.1076 0.0025
H 0.0139 0.0139 0.0000 -0.1083 -0.1076 0.0007

CH4
C 1.1768 1.1747 0.0021 1.3187 1.3182 0.0005
H 0.0179 0.0180 0.0001 -0.0461 -0.0460 0.0001
H 0.0180 0.0180 0.0000 -0.0460 -0.0460 0.0000
H 0.0180 0.0180 0.0000 -0.0460 -0.0460 0.0000
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H 0.0180 0.0180 0.0001 -0.0459 -0.0460 0.0001

CO
C 34.8474 34.8478 0.0004 24.6474 24.6476 0.0002
O 49.7149 49.7178 0.0028 33.9522 33.9530 0.0008

FCCH
C 4.5935 4.5934 0.0001 2.0948 2.0918 0.0030
C 2.7262 2.7263 0.0001 -0.2682 -0.2672 0.0010
H 0.3649 0.3649 0.0000 0.2173 0.2173 0.0000
F -0.1199 -0.1190 0.0009 -3.9647 -3.9823 0.0176

FCN
F 7.1241 7.1225 0.0016 -0.2682 -0.2703 0.0021
C 8.2799 8.2794 0.0005 5.3903 5.3900 0.0003
N 30.1391 30.1381 0.0010 20.9845 20.9848 0.0003

H2C2O
C 4.3011 4.3010 0.0001 2.2121 2.2113 0.0009
C 15.1969 15.1970 0.0001 8.7411 8.7352 0.0059
O 42.7184 42.7181 0.0003 26.3746 26.3681 0.0064
H 0.4432 0.4432 0.0000 0.1693 0.1673 0.0021
H 0.4432 0.4432 0.0000 0.1646 0.1673 0.0026

H2O
O 6.1048 6.1066 0.0018 5.8646 5.8657 0.0011
H 0.5146 0.5146 0.0000 0.4335 0.4339 0.0004
H 0.5146 0.5146 0.0000 0.4333 0.4339 0.0006

H2S
S 8.2477 8.2485 0.0009 8.7821 8.7865 0.0044
H 0.5157 0.5157 0.0000 0.2848 0.2857 0.0009
H 0.5157 0.5157 0.0000 0.2845 0.2857 0.0012

H4C2O
O -11.4164 -11.4150 0.0014 -14.9307 -14.8794 0.0513
C 0.2379 0.2380 0.0001 -1.7721 -1.7721 0.0000
C 0.2381 0.2380 0.0000 -1.7677 -1.7721 0.0045
H -0.0084 -0.0084 0.0000 -0.1355 -0.1444 0.0088
H -0.0084 -0.0084 0.0000 -0.1488 -0.1444 0.0044
H -0.0084 -0.0084 0.0000 -0.1346 -0.1444 0.0098
H -0.0084 -0.0084 0.0000 -0.1479 -0.1444 0.0035

HCN
H 0.1919 0.1919 0.0000 0.0776 0.0776 0.0000
C 15.7958 15.7957 0.0001 11.5072 11.5071 0.0000
N 43.4703 43.4703 0.0000 32.1927 32.1927 0.0000

HCP
H -0.0709 -0.0709 0.0000 -0.1727 -0.1727 0.0000
C 26.8904 26.8920 0.0015 18.0367 18.0369 0.0002
P 48.7256 48.7297 0.0041 32.5252 32.5260 0.0008
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HF
H 0.8963 0.8964 0.0001 0.8973 0.8972 0.0001
F 3.4654 3.4627 0.0027 3.0933 3.0962 0.0029

HFCO
O 59.6156 59.6138 0.0017 37.5707 37.5889 0.0182
C 11.8853 11.8851 0.0002 6.0880 6.0736 0.0144
F 2.8728 2.8736 0.0008 -7.2110 -7.2375 0.0266
H 0.0653 0.0653 0.0000 -0.1022 -0.0882 0.0140

HOF
O 94.8495 94.8534 0.0039 73.5406 73.5422 0.0017
H 1.9550 1.9549 0.0001 1.5882 1.5875 0.0007
F -66.9284 -66.9253 0.0031 -76.2030 -76.2082 0.0052

LiF
Li -0.8679 -0.8679 0.0000 -0.8239 -0.8239 0.0000
F -12.5098 -12.5098 0.0001 -1.8842 -1.8845 0.0004

LiH
H 0.4265 0.4265 0.0000 0.3036 0.3036 0.0000
Li 0.3786 0.3786 0.0000 -0.1106 -0.1107 0.0001

N2
N 60.9736 60.9742 0.0005 46.4441 46.4434 0.0007
N 60.9736 60.9742 0.0005 46.4441 46.4434 0.0007

N2O
N 47.6472 47.6460 0.0011 37.0936 37.0939 0.0003
N 47.6002 47.5990 0.0011 37.8976 37.8977 0.0001
O 34.7642 34.7621 0.0021 22.7467 22.7465 0.0003

NH3
N 3.8785 3.8787 0.0002 4.0256 4.0258 0.0002
H 0.2181 0.2181 0.0000 0.1343 0.1341 0.0002
H 0.2181 0.2181 0.0000 0.1344 0.1341 0.0003
H 0.2180 0.2181 0.0000 0.1345 0.1341 0.0004

OCS
O 32.8266 32.8281 0.0015 19.9120 19.9142 0.0022
C 25.1191 25.1194 0.0002 17.9478 17.9482 0.0004
S 24.1941 24.1940 0.0001 9.8036 9.8036 0.0000

OF2
O 68.5144 68.5128 0.0016 34.5995 34.6088 0.0093
F 3.3360 3.3362 0.0002 -18.4908 -18.4840 0.0068
F 3.3412 3.3362 0.0049 -18.5005 -18.4840 0.0165
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3 Detailed Validation Results

In the following section detailed results for the GaussS3 and the FlaigS4 benchmark set are

presented. The order of the nuclei corresponds to the order given in the geometry files of

the respective molecules obtained from the SI in the case of the GaussS3 benchmark set

and from the download section of the Ochsenfeld group websiteS5 in the case of the FlaigS4

benchmark set. Shifts of nuclei which are not chemically equivalent are labeled appropriately

for an unambiguous assignment. For smaller molecules the respective functional group, and

if necessary the orientation, is given and for aromatics numbering according to the IUPAC

nomenclature is chosen.

3.1 Detailed Validation Results: Gauss Benchmark Set

Table S2: Detailed results of the RPA NMR shifts for all molecules in the Gauss benchmark
setS3 at the RPA@HF/cc-pwCVTZ level of theory for the numerical reference implementation
(reference) as well as the analytical implementation (result). All shifts and the resulting
deviations are given in ppm.

molecule element result reference abs. err.
AlF

Al -4.8936 -4.8950 0.0015
F -2.5871 -2.4875 0.0995

C2H4
C 8.0169 8.0204 0.0035
C 8.0169 8.0204 0.0035
H 0.1499 0.1503 0.0004
H 0.1499 0.1503 0.0004
H 0.1499 0.1503 0.0004
H 0.1499 0.1503 0.0004

C3H4
C -2.3762 -2.3758 0.0005
C 10.5229 10.5281 0.0051
C 10.5229 10.5281 0.0051
H 0.5476 0.5463 0.0013
H 0.5476 0.5463 0.0012
H 0.0054 0.0058 0.0004
H 0.0054 0.0058 0.0004

CH2O
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O 82.7902 82.6459 0.1443
C 12.2387 12.2425 0.0038
H 0.1186 0.1195 0.0009
H 0.1186 0.1195 0.0008

CH3F
C -1.3128 -1.3089 0.0039
F -7.9254 -7.9222 0.0032
H -0.1076 -0.1071 0.0005
H -0.1076 -0.1071 0.0005
H -0.1076 -0.1071 0.0005

CH4
C 1.3182 1.3200 0.0019
H -0.0460 -0.0460 0.0000
H -0.0460 -0.0460 0.0000
H -0.0460 -0.0460 0.0000
H -0.0460 -0.0460 0.0000

CO
C 24.6476 24.6488 0.0011
O 33.9530 33.9399 0.0131

FCCH
C 2.0918 2.0954 0.0036
C -0.2672 -0.2641 0.0031
H 0.2173 0.2161 0.0012
F -3.9823 -3.9386 0.0437

FCN
F -0.2703 -0.2593 0.0110
C 5.3900 5.3935 0.0034
N 20.9848 20.9702 0.0146

H2C2O
C 2.2113 2.2086 0.0026
C 8.7352 8.7477 0.0125
O 26.3681 26.3467 0.0215
H 0.1673 0.1676 0.0003
H 0.1673 0.1675 0.0002

H2O
O 5.8657 5.8665 0.0008
H 0.4339 0.4339 0.0000
H 0.4339 0.4339 0.0000

H2S
S 8.7865 8.7782 0.0083
H 0.2857 0.2858 0.0001
H 0.2857 0.2858 0.0001

H4C2O
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O -14.8794 -14.8979 0.0185
C -1.7721 -1.7677 0.0044
C -1.7721 -1.7677 0.0044
H -0.1444 -0.1437 0.0006
H -0.1444 -0.1437 0.0006
H -0.1444 -0.1437 0.0006
H -0.1444 -0.1437 0.0006

HCN
H 0.0776 0.0761 0.0015
C 11.5071 11.5120 0.0048
N 32.1927 32.1900 0.0027

HCP
H -0.1727 -0.1741 0.0014
C 18.0369 18.0328 0.0041
P 32.5260 32.4875 0.0385

HF
H 0.8972 0.8971 0.0001
F 3.0962 3.0949 0.0013

HFCO
O 37.5889 37.5400 0.0489
C 6.0736 6.0813 0.0077
F -7.2375 -7.2411 0.0036
H -0.0882 -0.0875 0.0007

HOF
O 73.5422 73.4006 0.1416
H 1.5875 1.5873 0.0002
F -76.2082 -76.0488 0.1594

LiF
Li -0.8239 -0.8231 0.0008
F -1.8845 -1.8240 0.0605

LiH
H 0.3036 0.3036 0.0000
Li -0.1107 -0.1096 0.0011

N2
N 46.4434 46.4436 0.0002
N 46.4434 46.4437 0.0003

N2O
N 37.0939 37.0826 0.0113
N 37.8977 37.8925 0.0052
O 22.7465 22.7367 0.0097

NH3
N 4.0258 4.0283 0.0025
H 0.1341 0.1341 0.0000
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H 0.1341 0.1341 0.0000
H 0.1341 0.1341 0.0000

OCS
O 19.9142 19.9108 0.0034
C 17.9482 17.9512 0.0031
S 9.8036 9.7461 0.0575

OF2
O 34.6088 34.4193 0.1895
F -18.4840 -18.4269 0.0571
F -18.4840 -18.4266 0.0574
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Table S3: Detailed results of the RPA NMR shifts for all molecules in the Gauss benchmark
setS3 at the RPA@PBE/cc-pwCVTZ level of theory for the numerical reference implementa-
tion (reference) as well as the analytical implementation (result). All shifts and the resulting
deviations are given in ppm.

molecule element result reference abs. err.
AlF

Al -12.5395 -12.5407 0.0012
F -25.8208 -25.8211 0.0003

C2H4
C 20.7298 20.7377 0.0079
C 20.7298 20.7377 0.0079
H 0.3384 0.3386 0.0002
H 0.3384 0.3386 0.0002
H 0.3384 0.3386 0.0002
H 0.3384 0.3386 0.0002

C3H4
C -2.9284 -2.9238 0.0046
C 21.3029 21.3117 0.0088
C 21.3029 21.3117 0.0088
H 0.9359 0.9361 0.0002
H 0.9359 0.9361 0.0002
H -0.1389 -0.1389 0.0000
H -0.1389 -0.1389 0.0000

CH2O
O 220.4304 219.8347 0.5958
C 31.8927 31.8966 0.0039
H 0.0714 0.0715 0.0001
H 0.0714 0.0715 0.0001

CH3F
C -1.9967 -1.9966 0.0001
F -20.7658 -20.7645 0.0013
H -0.4794 -0.4794 0.0000
H -0.4794 -0.4794 0.0000
H -0.4794 -0.4794 0.0000

CH4
C 1.8436 1.8456 0.0020
H -0.0590 -0.0590 0.0000
H -0.0590 -0.0590 0.0000
H -0.0590 -0.0590 0.0000
H -0.0590 -0.0590 0.0000

CO
C 52.3831 52.3850 0.0019
O 71.6005 71.5951 0.0055
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FCCH
C 8.9862 8.9872 0.0010
C 5.0325 5.0352 0.0027
H 0.4341 0.4343 0.0002
F -5.5674 -5.5578 0.0096

FCN
F -9.4155 -9.4147 0.0008
C 18.3118 18.3125 0.0006
N 50.2996 50.2937 0.0058

H2C2O
C 3.7803 3.7816 0.0013
C 26.7004 26.7042 0.0038
O 61.5271 61.4990 0.0281
H 0.2732 0.2732 0.0001
H 0.2732 0.2732 0.0001

H2O
O 4.0511 4.0525 0.0014
H 0.8537 0.8537 0.0000
H 0.8537 0.8537 0.0000

H2S
S 10.5790 10.5488 0.0301
H 0.4957 0.4957 0.0000
H 0.4957 0.4957 0.0000

H4C2O
O -19.6393 -19.6391 0.0002
C -2.9245 -2.9235 0.0009
C -2.9245 -2.9236 0.0009
H -0.5762 -0.5762 0.0000
H -0.5762 -0.5762 0.0000
H -0.5762 -0.5762 0.0000
H -0.5762 -0.5762 0.0000

HCN
H -0.1525 -0.1526 0.0000
C 27.2219 27.2264 0.0045
N 65.8816 65.8822 0.0006

HCP
H -0.4788 -0.4788 0.0000
C 43.6045 43.6065 0.0019
P 100.7949 100.7578 0.0372

HF
H 1.7421 1.7421 0.0000
F 0.5872 0.5846 0.0026

HFCO
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O 100.6239 100.5588 0.0651
C 19.8154 19.8164 0.0010
F -29.0573 -29.0556 0.0017
H -0.3361 -0.3361 0.0000

HOF
O 121.8165 121.2863 0.5303
H 2.2540 2.2541 0.0001
F -71.9220 -72.1018 0.1798

LiF
Li -2.0030 -2.0031 0.0000
F -15.1874 -15.1811 0.0063

LiH
H -0.0427 -0.0428 0.0000
Li 1.3533 1.3550 0.0018

N2
N 80.3644 80.3690 0.0046
N 80.3644 80.3690 0.0046

N2O
N 59.5667 59.5670 0.0003
N 66.8380 66.8419 0.0038
O 38.3326 38.3284 0.0042

NH3
N 3.6714 3.6733 0.0019
H 0.2822 0.2822 0.0000
H 0.2822 0.2822 0.0000
H 0.2822 0.2822 0.0000

OCS
O 38.5240 38.5158 0.0082
C 41.5165 41.5165 0.0000
S 13.8466 13.8308 0.0158

OF2
O 55.7934 54.9134 0.8800
F -28.0742 -28.2949 0.2206
F -28.0742 -28.2949 0.2206
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3.2 Detailed Validation Results: Flaig Benchmark Set

Table S4: Detailed results of the RPA NMR shifts for all molecules in the Flaig benchmark
setS4 at the RPA@HF/cc-pwCVDZ level of theory for the numerical reference implementation
(reference) as well as the analytical implementation (result). All shifts and the resulting
deviations are given in ppm.

molecule element result reference abs. err.
Acetylene (C2H2)

H 0.0861 0.0859 0.0002
C 8.4582 8.4780 0.0198
C 8.4582 8.4781 0.0198
H 0.0861 0.0859 0.0002

Ethylene (C2H4)
H 0.3076 0.3084 0.0009
H 0.3076 0.3084 0.0009
C 13.4627 13.4998 0.0371
H 0.3076 0.3084 0.0009
C 13.4626 13.4998 0.0372
H 0.3076 0.3084 0.0009

Ethane (C2H6)
H -0.0524 -0.0522 0.0001
H -0.0524 -0.0522 0.0001
H -0.0524 -0.0522 0.0001
C 1.4695 1.4784 0.0089
H -0.0524 -0.0522 0.0001
H -0.0524 -0.0523 0.0001
C 1.4694 1.4784 0.0090
H -0.0524 -0.0523 0.0001

Benzene (C6H6)
H 0.2580 0.2591 0.0011
H 0.2580 0.2591 0.0011
C 11.9683 12.0091 0.0409
H 0.2580 0.2591 0.0011
C 11.9683 12.0092 0.0410
H 0.2580 0.2591 0.0011
C 11.9683 12.0092 0.0410
H 0.2580 0.2591 0.0011
C 11.9683 12.0092 0.0410
C 11.9683 12.0092 0.0410
C 11.9683 12.0091 0.0409
H 0.2580 0.2591 0.0011

Tetrachloromethane (CCl4)
C -0.9163 -0.9147 0.0016
Cl -10.1405 -10.1198 0.0207
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Cl -10.1405 -10.1198 0.0207
Cl -10.1405 -10.1198 0.0207
Cl -10.1405 -10.1198 0.0207

Tetrafluoromethane (CF4)
F 1.3975 1.4164 0.0188
F 1.3975 1.4166 0.0191
F 1.3975 1.4166 0.0191
C -5.6193 -5.6128 0.0064
F 1.3975 1.4165 0.0189

Propadiene (CH2CCH2)
H 0.1796 0.1802 0.0006
H 0.1796 0.1802 0.0006
CH2 6.2350 6.2590 0.0239
C−−C−−C 20.6112 20.6644 0.0532
H 0.1796 0.1802 0.0006
CH2 6.2351 6.2589 0.0239
H 0.1796 0.1802 0.0006

Acetaldehyde (CH3CHO)
O 77.9944 78.1373 0.1429
CHO 0.1444 0.1452 0.0008
CHO 20.9302 20.9626 0.0324
CH3, out of CCO plane 0.0217 0.0219 0.0002
CH3, out of CCO plane 0.0217 0.0219 0.0002
CH3 2.4229 2.4315 0.0086
CH3, in CCO plane 0.2397 0.2399 0.0002

Chloroform (CH3Cl)
C 2.9458 2.9462 0.0003
Cl -21.6412 -21.6328 0.0084
H 0.1091 0.1091 0.0000
H 0.1091 0.1091 0.0000
H 0.1091 0.1091 0.0000

Acetonitrile (CH3CN)
N 42.4969 42.5614 0.0645
CN 14.4076 14.4328 0.0252
H 0.0640 0.0641 0.0001
H 0.0655 0.0655 0.0001
CH3 0.9050 0.9119 0.0069
H 0.0653 0.0654 0.0001

Acetone (CH3COCH3)
H, in CCC plane 0.2100 0.2101 0.0002
H, out of CCC plane -0.0359 -0.0357 0.0002
H, out of CCC plane -0.0359 -0.0354 0.0005
CH3 2.2390 2.2466 0.0075
O 59.2885 59.4418 0.1533
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CO 21.0772 21.1097 0.0325
H, out of CCC plane -0.0359 0.2102 0.2461
H, out of CCC plane -0.0359 -0.0357 0.0002
CH3 2.2390 2.2468 0.0078
H, in CCC plane 0.2100 -0.0360 0.2460

Fluoromethane (CH3F)
F -9.8763 -9.8764 0.0001
H -0.0009 -0.0009 0.0001
H -0.0009 -0.0009 0.0001
C 1.0363 1.0428 0.0065
H -0.0009 -0.0008 0.0001

Methylamine (CH3NH2)
NH2 0.0521 0.0521 0.0001
NH2 0.0521 0.0521 0.0001
N 2.1892 2.2004 0.0112
CH3, antiperiplanar to lone pair -0.1745 -0.0625 0.1120
CH3, gauche to lone pair -0.0626 -0.0625 0.0001
C 0.7933 0.8019 0.0086
CH3, gauche to lone pair -0.0626 -0.1744 0.1118

Dimethyl ether (CH3OCH3)
H, in COC plane -0.0900 -0.0898 0.0001
H, out of COC plane -0.1058 -0.1057 0.0001
H, out of COC plane -0.1058 -0.1057 0.0001
C 0.2035 0.2118 0.0083
O -6.7843 -6.7804 0.0039
H, out of COC plane -0.1058 -0.1057 0.0001
H, out of COC plane -0.1058 -0.1057 0.0001
C 0.2035 0.2118 0.0082
H, in COC plane -0.0900 -0.0898 0.0001

Methanol (CH3OH)
OH 0.3536 0.3535 0.0001
O -0.8619 -0.8536 0.0082
CH3, gauche to OH -0.1264 -0.0263 0.1001
CH3, gauche to OH -0.1264 -0.1263 0.0001
C 0.4881 0.4958 0.0077
CH3, antiperiplanar to OH -0.0264 -0.1263 0.0999

Methylphosphine (CH3PH2)
C 1.6790 1.6800 0.0011
P 6.7592 6.7706 0.0114
PH2 0.1609 0.1609 0.0001
PH2 0.1609 0.1609 0.0001
CH3, gauche to lone pair -0.0006 -0.0006 0.0000
CH3, gauche to lone pair -0.0006 -0.0006 0.0000
CH3, antiperiplanar to lone pair -0.0018 -0.0017 0.0000
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Methanethiol (CH3SH)
C 1.3876 1.3884 0.0008
S 4.3638 4.3698 0.0060
SH 0.3022 0.3022 0.0000
CH3, antiperiplanar to SH 0.0278 0.0278 0.0000
CH3, gauche to SH 0.0002 0.0003 0.0000
CH3, gauche to SH 0.0002 0.0003 0.0000

Methane (CH4)
H 0.0182 0.0184 0.0002
H 0.0182 0.0184 0.0002
H 0.0182 0.0184 0.0002
C 1.9054 1.9133 0.0079
H 0.0182 0.0184 0.0002

Carbon dioxide (CO2)
O 19.3097 19.3454 0.0357
C 13.4738 13.4891 0.0152
O 19.3097 19.3453 0.0356

Carbon monoxide (CO)
O 47.7924 47.8807 0.0883
C 35.0061 35.0445 0.0384

Furan (C4H4O)
3-H 0.2051 0.2057 0.0005
2-H 0.2082 0.2087 0.0005
3C 9.5302 9.5488 0.0185
4-H 0.2051 0.2057 0.0005
2C 12.4641 12.4850 0.0209
4C 9.5302 9.5488 0.0186
1O 10.3533 10.4096 0.0562
5C 12.4642 12.4851 0.0209
5-H 0.2082 0.2087 0.0005

Glycine (NH2CH2COOH)
NH2 0.0221 0.0222 0.0001
NH2 0.0592 0.0593 0.0001
N 1.5762 1.5853 0.0091
CH2 0.0746 0.0747 0.0001
CH2 0.0224 0.0224 0.0000
CH2 1.2177 1.2256 0.0079
C−−O 37.2847 37.3778 0.0931
COOH 14.9177 14.9401 0.0224
OH 9.7918 9.8330 0.0412
OH 0.3915 0.3921 0.0006

Formaldehyde (H2CO)
O 111.0888 111.1752 0.0864
H 0.2826 0.2836 0.0009
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C 21.1961 21.2295 0.0333
H 0.2826 0.2836 0.0010

Hydrogen cyanide (HCN)
H 0.0601 0.0598 0.0003
C 16.3948 16.4221 0.0273
N 42.1806 42.2535 0.0729

Formamide (HCONH2)
NH2 0.3538 0.3543 0.0005
NH2 0.3662 0.3667 0.0005
N 7.2581 7.2796 0.0215
CHO 0.0740 0.0743 0.0003
C 16.7315 16.7528 0.0213
O 34.4261 34.5238 0.0976

Formic acid (HCOOH)
OH 0.5611 0.5616 0.0005
OH 9.1381 9.1754 0.0373
CH 0.1191 0.1194 0.0003
C 14.8579 14.8790 0.0211
C−−O 41.7052 41.7970 0.0918

Imidazole (C3H4N2)
3-H 0.1194 0.1202 0.0008
2-H 0.4273 0.4280 0.0007
3N 10.7744 10.8151 0.0406
4-H 0.3158 0.3165 0.0007
2C 17.1388 17.1675 0.0287
4C 10.9611 10.9867 0.0256
1N 35.5496 35.6308 0.0813
5C 12.2712 12.2994 0.0282
5-H 0.3522 0.3530 0.0008

Pyridine (C5H5N)
2-H 0.3683 0.3695 0.0012
1N 42.2988 42.4102 0.1114
6-H 0.3683 0.3695 0.0012
2C 15.5825 15.6170 0.0345
3-H 0.1291 0.1297 0.0006
6C 15.5825 15.6170 0.0345
5-H 0.1291 0.1297 0.0006
3C 7.3790 7.4037 0.0248
5C 7.3790 7.4037 0.0248
4C 15.7400 15.7658 0.0259
4-H 0.3905 0.3912 0.0007

Pyrimidine (C4H4N2)
6-H 0.3878 0.3888 0.0010
1N 24.1426 24.2371 0.0944

S-19



2-H 0.2580 0.2592 0.0012
6C 18.0969 18.1322 0.0353
5-H 0.0596 0.0604 0.0008
1C 16.0559 16.0916 0.0357
5C 4.4116 4.4397 0.0281
3N 24.1424 24.2367 0.0943
4C 18.0960 18.1311 0.0351
4-H 0.3875 0.3885 0.0010

Tetramethylsilane (Si(CH3)4)
H -0.0658 -0.0658 0.0000
H -0.0658 -0.0658 0.0000
H -0.0658 -0.0658 0.0000
H -0.0658 -0.0658 0.0000
H -0.0658 -0.0658 0.0000
H -0.0658 -0.0658 0.0000
H -0.0658 -0.0658 0.0000
H -0.0658 -0.0658 0.0000
H -0.0658 -0.0658 0.0000
C 2.0029 2.0043 0.0014
C 2.0029 2.0043 0.0014
C 2.0029 2.0043 0.0014
Si -11.3421 -11.3278 0.0144
H -0.0658 -0.0658 0.0000
H -0.0658 -0.0658 0.0000
C 2.0029 2.0043 0.0014
H -0.0658 -0.0658 0.0000
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Table S5: Detailed results of the RPA NMR shifts for all molecules in the Flaig benchmark
setS4 at the RPA@PBE/cc-pwCVDZ level of theory for the numerical reference implementa-
tion (reference) as well as the analytical implementation (result). All shifts and the resulting
deviations are given in ppm.

molecule element result reference abs. err.

Acetylene (C2H2)
H 0.0787 0.0784 0.0003
C 19.1544 19.1837 0.0292
C 19.1544 19.1837 0.0292
H 0.0787 0.0784 0.0003

Ethylene (C2H4)
H 0.5381 0.5391 0.0010
H 0.5381 0.5391 0.0010
C 27.1906 27.2432 0.0526
H 0.5451 0.5461 0.0010
C 27.2817 27.3347 0.0530
H 0.5451 0.5461 0.0010

Ethane (C2H6)
H -0.1615 -0.1614 0.0001
H -0.1615 -0.1614 0.0001
H -0.1615 -0.1614 0.0001
C 1.6414 1.6559 0.0145
H -0.1618 -0.1616 0.0001
H -0.1618 -0.1616 0.0001
C 1.6159 1.6304 0.0146
H -0.1618 -0.1616 0.0001

Benzene (C6H6)
H 0.4910 0.4922 0.0012
H 0.4910 0.4922 0.0013
C 24.1266 24.1809 0.0542
H 0.4910 0.4922 0.0013
C 24.1267 24.1809 0.0543
H 0.4910 0.4922 0.0013
C 24.1267 24.1809 0.0543
H 0.4910 0.4922 0.0013
C 24.1267 24.1809 0.0543
C 24.1267 24.1809 0.0543
C 24.1266 24.1809 0.0542
H 0.4910 0.4922 0.0013

Tetrachloromethane (CCl4)
C 7.7902 7.7945 0.0043
Cl -36.5447 -36.5615 0.0168
Cl -36.5447 -36.5615 0.0168
Cl -36.5447 -36.5615 0.0168
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Cl -36.5447 -36.5615 0.0168

Tetrafluoromethane (CF4)
F -6.0114 -5.9824 0.0290
F -6.0116 -5.9817 0.0299
F -6.0116 -5.9817 0.0299
C -4.0609 -4.0475 0.0134
F -6.0117 -5.9821 0.0296

Propadiene (CH2CCH2)
H 0.2550 0.2557 0.0007
H 0.2765 0.2772 0.0007
CH2 14.4060 14.4407 0.0347
C−−C−−C 41.5436 41.6158 0.0722
H 0.2658 0.2664 0.0007
CH2 14.4060 14.4399 0.0339
H 0.2658 0.2664 0.0007

Acetaldehyde (CH3CHO)
O 205.4081 205.4133 0.0052
CHO 0.0321 0.0334 0.0013
CHO 41.5548 41.6041 0.0494
CH3, out of CCO plane -0.0362 -0.0359 0.0003
CH3, out of CCO plane -0.0362 -0.0359 0.0003
CH3 4.5204 4.5366 0.0162
CH3, in CCO plane 0.4048 0.4052 0.0003

Chloroform (CH3Cl)
C 4.2965 4.2981 0.0016
Cl -41.3884 -41.3727 0.0157
H -0.0046 -0.0045 0.0000
H -0.0046 -0.0045 0.0000
H -0.0046 -0.0045 0.0000

Acetonitrile (CH3CN)
N 71.8026 71.8871 0.0845
CN 30.2404 30.2746 0.0342
H -0.0142 -0.0141 0.0001
H -0.0118 -0.0117 0.0001
CH3 0.5402 0.5514 0.0112
H -0.0120 -0.0119 0.0001

Acetone (CH3COCH3)
H, in CCC plane 0.3530 0.3532 0.0002
H, out of CCC plane -0.2379 -0.2377 0.0003
H, out of CCC plane -0.2379 -0.2377 0.0003
CH3 4.5256 4.5392 0.0136
O 174.4594 174.5093 0.0499
CO 41.1737 41.2223 0.0486
H, out of CCC plane -0.2479 -0.2476 0.0004
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H, out of CCC plane -0.2479 -0.2476 0.0004
CH3 4.4580 4.4728 0.0148
H, in CCC plane 0.3383 0.3386 0.0003

Fluoromethane (CH3F)
F -26.8766 -26.8692 0.0074
H -0.3595 -0.3594 0.0001
H -0.3595 -0.3594 0.0001
C 0.9788 0.9902 0.0114
H -0.3595 -0.3594 0.0001

Methylamine (CH3NH2)
NH2 -0.0521 -0.0521 0.0000
NH2 -0.0521 -0.0521 0.0000
N 0.4456 0.4641 0.0186
CH3, antiperiplanar to lone pair -0.7037 -0.7036 0.0001
CH3, gauche to lone pair -0.2410 -0.2408 0.0001
C 0.6955 0.7109 0.0154
CH3, gauche to lone pair -0.2410 -0.2408 0.0001

Dimethyl ether (CH3OCH3)
H, in COC plane -0.3361 -0.3360 0.0002
H, out of COC plane -0.4440 -0.4439 0.0001
H, out of COC plane -0.4440 -0.4439 0.0001
C 0.6376 0.6523 0.0147
O -14.9422 -14.9251 0.0171
H, out of COC plane -0.4440 -0.4439 0.0001
H, out of COC plane -0.4440 -0.4439 0.0001
C 0.6373 0.6523 0.0149
H, in COC plane -0.3361 -0.3360 0.0002

Methanol (CH3OH)
OH 0.3781 0.3777 0.0003
O -7.8372 -7.8206 0.0165
CH3, gauche to OH -0.6123 -0.6121 0.0001
CH3, gauche to OH -0.6123 -0.6121 0.0001
C 0.1934 0.2073 0.0139
CH3, antiperiplanar to OH -0.2089 -0.2088 0.0001

Methylphosphine (CH3PH2)
C 1.0495 1.0519 0.0024
P 14.2332 14.2472 0.0140
PH2 0.0468 0.0468 0.0001
PH2 0.0468 0.0468 0.0001
CH3, gauche to lone pair -0.1364 -0.1363 0.0000
CH3, gauche to lone pair -0.1364 -0.1363 0.0000
CH3, antiperiplanar to lone pair -0.1528 -0.1528 0.0001

Methanethiol (CH3SH)
C 0.9706 0.9728 0.0022
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S 4.3320 4.3284 0.0036
SH 0.3438 0.3439 0.0001
CH3, antiperiplanar to SH -0.0761 -0.0761 0.0000
CH3, gauche to SH -0.1995 -0.1995 0.0000
CH3, gauche to SH -0.1995 -0.1995 0.0000

Methane (CH4)
H 0.0014 0.0016 0.0002
H 0.0014 0.0016 0.0002
H 0.0014 0.0016 0.0002
C 2.2800 2.2920 0.0120
H 0.0014 0.0016 0.0002

Carbon dioxide (CO2)
O 29.8121 29.8546 0.0425
C 27.1710 27.1911 0.0201
O 29.8121 29.8546 0.0425

Carbon monoxide (CO)
O 87.4544 87.5640 0.1096
C 63.0853 63.1363 0.0509

Furan (C4H4O)
3-H 0.4369 0.4375 0.0006
2-H 0.4133 0.4139 0.0006
3C 20.4635 20.4898 0.0263
4-H 0.4369 0.4375 0.0006
2C 25.2926 25.3221 0.0296
4C 20.4633 20.4898 0.0265
1O 41.2453 41.3227 0.0774
5C 25.2923 25.3221 0.0299
5-H 0.4133 0.4139 0.0006

Glycine (NH2CH2COOH)
NH2 -0.3357 -0.3356 0.0001
NH2 -0.1692 -0.1691 0.0001
N -2.9521 -2.9364 0.0158
CH2 -0.1440 -0.1439 0.0001
CH2 -0.1341 -0.1341 0.0000
CH2 3.1432 3.1575 0.0143
C−−O 107.4834 107.5693 0.0859
COOH 32.4836 32.5163 0.0328
OH 13.1910 13.2577 0.0666
OH 0.3283 0.3291 0.0008

Formaldehyde (H2CO)
O 270.1876 269.8305 0.3571
H 0.4016 0.4033 0.0017
C 43.2373 43.2921 0.0548
H 0.4018 0.4035 0.0017
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Hydrogen cyanide (HCN)
H -0.1398 -0.1402 0.0004
C 32.4556 32.4908 0.0352
N 77.7749 77.8627 0.0878

Formamide (HCONH2)
NH2 0.5833 0.5839 0.0006
NH2 0.4932 0.4939 0.0006
N 13.5060 13.5393 0.0334
CHO 0.0313 0.0317 0.0005
C 37.0433 37.0737 0.0304
O 106.7358 106.8051 0.0692

Formic acid (HCOOH)
OH 0.7453 0.7460 0.0007
OH 8.1066 8.1726 0.0660
CH 0.1891 0.1895 0.0004
C 34.6067 34.6384 0.0317
C−−O 112.0754 112.1526 0.0772

Imidazole (C3H4N2)
3-H 0.4304 0.4314 0.0010
2-H 0.6165 0.6173 0.0008
3N 29.9086 29.9642 0.0556
4-H 0.4904 0.4912 0.0008
2C 28.2279 28.2661 0.0382
4C 23.6096 23.6444 0.0349
1N 73.2228 73.3188 0.0960
5C 24.7178 24.7582 0.0404
5-H 0.6076 0.6085 0.0010

Pyridine (C5H5N)
2-H 0.4742 0.4757 0.0015
1N 85.5818 85.7092 0.1273
6-H 0.4742 0.4757 0.0015
2C 27.1182 27.1686 0.0504
3-H 0.4988 0.4998 0.0010
6C 27.1182 27.1687 0.0505
5-H 0.4988 0.4998 0.0010
3C 20.3647 20.4059 0.0412
5C 20.3647 20.4059 0.0412
4C 26.3408 26.3839 0.0431
4-H 0.5778 0.5787 0.0010

Pyrimidine (C4H4N2)
6-H 0.5046 0.5060 0.0014
1N 70.4828 70.6091 0.1263
2-H 0.2864 0.2881 0.0017
6C 29.3256 29.3789 0.0533
5-H 0.5507 0.5516 0.0009
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1C 27.3475 27.4033 0.0558
5C 17.7443 17.7867 0.0424
3N 70.4820 70.6095 0.1275
4C 29.3232 29.3762 0.0530
4-H 0.5041 0.5055 0.0013

Tetramethylsilane (Si(CH3)4)
H -0.2583 -0.2582 0.0001
H -0.2583 -0.2582 0.0000
H -0.2583 -0.2582 0.0000
H -0.2583 -0.2582 0.0000
H -0.2583 -0.2582 0.0001
H -0.2583 -0.2582 0.0000
H -0.2582 -0.2582 0.0000
H -0.2582 -0.2582 0.0000
H -0.2582 -0.2582 0.0000
C 1.6427 1.6451 0.0024
C 1.6426 1.6452 0.0026
C 1.6420 1.6452 0.0032
Si -13.0176 -12.9900 0.0275
H -0.2583 -0.2582 0.0000
H -0.2583 -0.2582 0.0001
C 1.6426 1.6452 0.0026
H -0.2583 -0.2582 0.0001
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3.3 Detailed Validation Results: Summary For All Nuclei

Table S6: Comparison of MADs in ppm of the analytical to the numerical isotropic
NMR shifts for all nuclei in the Gauss benchmark setS3 at the RPA@HF/cc-pwCVTZ and
RPA@PBE/cc-pwCVTZ level of theory. Additionally, the number of occurrences N test

nuc of a
given element within the benchmark set is given.

reference 1H 7Li 13C 15N 17O 19F 27Al 31P 33S

N test
nuc 37 2 20 8 15 10 1 2 3

HF 0.0005 0.0009 0.0041 0.0053 0.0591 0.0497 0.0015 0.0385 0.0329

PBE 0.0001 0.0009 0.0032 0.0031 0.2119 0.0644 0.0012 0.0372 0.0230

Table S7: Comparison of MADs in ppm of the analytical to the numerical isotropic
NMR shifts for all nuclei in the Flaig benchmark setS4 at the RPA@HF/cc-pwCVDZ and
RPA@PBE/cc-pwCVDZ level of theory. Additionally, the number of occurrences N test

nuc of a
given element within the benchmark set is given.

reference 1H 13C 15N 17O 19F 29Si 31P 33S 35Cl

N test
nuc 111 61 10 14 5 1 1 1 5

HF 0.0084 0.0208 0.0601 0.0694 0.0152 0.0144 0.0114 0.0060 0.0183

PBE 0.0004 0.0305 0.0773 0.0773 0.0252 0.0275 0.0140 0.0036 0.0166
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4 Detailed Results for the Convergence of the Minimax

Grid

Table S8: Detailed results of the RPA NMR shift convergence for all nuclei in the Gauss
benchmark setS3 with the number of minimax integration points Ng. All values are given as
MADs in ppm in comparison to the results obtained with Ng = 20 at the RPA@HF level of
theory using the cc-pwCVTZ/cc-pwCVTZ-RI basis sets.

Ng
1H 7Li 13C 15N 17O 19F 27Al 31P 33S

10 0.0001 0.0003 0.0062 0.0175 0.0320 0.0097 0.0108 0.0366 0.0166

11 0.0001 0.0002 0.0050 0.0140 0.0257 0.0077 0.0075 0.0297 0.0130

12 0.0001 0.0002 0.0041 0.0114 0.0207 0.0061 0.0059 0.0244 0.0103

13 0.0001 0.0001 0.0036 0.0091 0.0173 0.0049 0.0049 0.0190 0.0084

14 0.0000 0.0001 0.0026 0.0070 0.0131 0.0042 0.0040 0.0156 0.0066

15 0.0000 0.0000 0.0024 0.0054 0.0107 0.0031 0.0029 0.0114 0.0053

16 0.0000 0.0000 0.0015 0.0039 0.0075 0.0023 0.0021 0.0088 0.0039

17 0.0000 0.0000 0.0013 0.0026 0.0053 0.0039 0.0015 0.0058 0.0027

18 0.0000 0.0000 0.0009 0.0014 0.0032 0.0034 0.0010 0.0039 0.0015

19 0.0000 0.0000 0.0004 0.0007 0.0015 0.0008 0.0005 0.0022 0.0006

20 – – – – – – – – –
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ABSTRACT: An efficient method for the computation of nuclear magnetic resonance (NMR)
shielding tensors within the random phase approximation (RPA) is presented based on our
recently introduced resolution-of-the-identity (RI) atomic orbital RPA NMR method
[Drontschenko, V. et al. J. Chem. Theory Comput. 2023, 19, 7542−7554] utilizing Cholesky
decomposed density type matrices and employing an attenuated Coulomb RI metric. The
introduced sparsity is efficiently exploited using sparse matrix algebra. This allows for an efficient
and low-scaling computation of RPA NMR shielding tensors. Furthermore, we introduce a
batching method for the computation of memory demanding intermediates that accounts for their
sparsity. This extends the applicability of our method to even larger systems that would have been
out of reach before, such as, e.g., a DNA strand with 260 atoms and 3408 atomic orbital basis
functions.

1. INTRODUCTION
The accurate and efficient prediction of nuclear magnetic
resonance (NMR) shielding tensors from quantum chemical
calculations has emerged as an important technique to assist
experimental NMR spectroscopy in structure determina-
tion.1−7 Methods for the computation of NMR shielding
tensors providing reasonable accuracy at moderate computa-
tional cost include Hartree−Fock (HF)8−12 theory and density
functional theory (DFT).13−15 Here, the development of low-
scaling methods allowed the computation of systems with over
1000 atoms.16,17 In general a higher level of accuracy can be
achieved by wave function based post HF-methods such as
Møller−Plesset perturbation theory (MP2),18,19 multiconfi-
gurational self-consistent field (MCSCF) methods,20 and
coupled cluster (CC) variants.21−23 MP2 has been shown to
be more accurate than HF and DFT,19,24,25 while coupled
cluster singles and doubles (CCSD) as well as CCSD with
additional perturbative triples (CCSD(T)) are among the
most accurate methods.26 However, the increased accuracy
comes at an increased computational cost, which makes the
development of efficient and low-scaling techniques an
important task in the development of wave function based
NMR methods. Specifically, much progress has been made in
this regard for MP2 and its related methods.27−36

A method that has recently been shown to combine both
accuracy and low computational cost is the random phase

approximation (RPA). In a recent benchmark study it was
shown that RPA based on a HF reference calculation is able to
provide NMR shielding tensors comparable in accuracy to
CCSD.37 Due to these promising results, we successfully
derived and implemented a method for the computation of
analytical RPA NMR shielding tensors.38

RPA is usually implemented as a post-Kohn−Sham (KS)39

method. It stands on the fifth rung on Jacob’s ladder40 of
density functional approximations, and does not contain any
empirical parameters. The RPA ground state energy can be
obtained within the framework of DFT39,41 by applying the
adiabatic-connection fluctuation−dissipation theorem
(ACFDT).42−44 The ACDFT provides an exact expression
for the electron correlation energy in terms of the KS response
function and the response function of the system of fully
interacting electrons. However, the latter quantity contains the
exchange-correlation kernel, the functional derivative of the
exchange-correlation potential with respect to the density,
which is not known. The simplest approximation is to neglect
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this contribution, which leads to the (direct) random phase
approximation. From its formal derivation, RPA is able to
seamlessly incorporate the description of mid- to long-range
dispersion interactions, eliminating the need for empirical
corrections, and, furthermore, it can also be employed for
metallic systems.45−48 However, in its original form, the
computation of RPA energies scales as M( )6 with the system
size M, limiting its applicability to small systems. Furche and
co-workers extended the applicability of RPA by utilizing the
resolution-of-the-identity (RI)49 approximation achieving an

M( )4 scaling, which makes RPA one of the formally lowest
scaling correlation methods. Further, by reformulating the RPA
ground state energy expression in the atomic orbital (AO)
basis50 and using an attenuated Coulomb RI metric,51

Cholesky decomposed ground state densities,52 and sparse
matrix algebra we were able to obtain asymptotically linear
scaling with the system size. These techniques were also
applied to the computation of first-order properties within
RPA, specifically analytical nuclear gradients, thereby achieving
an M( )2 scaling.53

In ref 38 we introduced a method for the calculation of
analytical RPA NMR shielding tensors for the first time. We
used an atomic orbital formalism as well as the RI
approximation with the Coulomb RI metric. This provides
an optimal starting point to improve the computational
efficiency as well as scaling behavior. In this work we switch
to the attenuated Coulomb RI metric, thereby introducing
sparsity in the three-center integral tensors, and use Cholesky
decomposition (CD) of ground state densities as well as CD of
the Green’s function in the positive imaginary time domain.
The introduced sparsity is efficiently exploited using sparse
matrix algebra.

While these techniques are able to improve the computa-
tional efficiency of the method, another challenge has to be
addressed. For the computation of NMR shielding tensors, the
three-center RI tensors as well as their B-field derivatives have
to be stored in memory. Together with the memory
requirements of intermediates arising during the calculation,
the memory required for the method easily exceeds the
available random access memory (RAM), which limits the
tractable system sizes. For the computation of RPA energies,
we solved this problem in ref 54 by developing an optimized
batching scheme for the computation of the response function
by batching over auxiliary function indices, atomic orbital
indices, as well as time quadrature points. The three-center
integral tensor was recomputed for each batch (integral-direct)
and transformed on the fly. The optimal number of batches
was computed by minimizing the number of integral
calculations, under the constraint of not exceeding the system
memory using a Lagrange formalism. This constitutes the best
trade off between program runtime and memory demand.
However, the optimized batching was so far implemented only
for dense matrices and, thus, the sparsity of matrices was not
exploited when computing the number of batches. When
utilizing sparse matrices, the challenge lies in approximating
their memory demand, which is not known beforehand and
only determined at program runtime. In this context, we want
to note that the most common batching approach within
electron correlation methods in literature is batching over one
index only, such as the auxiliary function index,52,76−78 AO
index,79,80 or molecular orbital index81,82 (virtual or occupied).
The number of batches is chosen to be as low as possible

without exceeding the available memory. Since dense matrices
are employed, the memory demand can be easily approxi-
mated.

In this work, we introduce a sparse batching method by
approximating the memory demand of sparse matrices by
sampling the auxiliary function space and precomputing a
number of intermediates. As will be demonstrated, the
overhead for the precomputations is practically insignificant.
Since there is a considerable number of intermediates within
RPA NMR that have to be computed by batching, we opted
for a simple batching scheme over auxiliary function indices.
The three-center integrals and their magnetic field derivatives
are stored on disk and read into memory for each batch and
transformed on the fly. While this batching scheme is not
optimal yet, it constitutes a starting point for the development
of sparse batching methods. In a next step, our sparse sample
batching method could be combined with optimal batching,
however, we leave this for future work.

The present work is structured as follows: We start with a
brief review of the atomic orbital RI-RPA-NMR method in
Section 2.2 and continue in Section 2.3 with the description of
our new ω-CDD-RI-RPA-NMR method. The theory is
concluded in Section 2.4 with the description of our new
batching method to achieve a memory efficient implementa-
tion. Next, after establishing the computational details in
Section 3, we start the results section by considering the
accuracy of the introduced approximations in Section 4.1. The
scaling is analyzed in Section 4.2. In Section 4.3 the
performance of our method is examined, by considering the
timings for the most computationally demanding steps within
ω-CDD-RI-RPA-NMR (Section 4.3.1) and analyzing the
batching in detail for sparse systems in Section 4.3.2 and in
Section 4.3.3 for dense systems that are more representative of
potential applications. Finally, the conclusion is given in
Section 5.

2. THEORY
The NMR shielding tensor σA of a nucleus A is given by the
mixed second derivative of the electronic Energy E with
respect to the components of the nuclear magnetic moment
mA and the magnetic field B evaluated at zero

= { }
= =

B m
E r s x y z, , ,rs

A

r s
A

m B

2

0, 0A (1)

In this work, we will compute the NMR shielding tensor at the
RPA level of theory: we start by introducing the notation used
throughout this work and subsequently, in Section 2.2, we give
a short summary of the RPA NMR method introduced in ref
38. The theory for the low-scaling RPA NMR method is
detailed in Section 2.3 and memory efficient batching
implementation is provided in Section 2.4.
2.1. Notation. The following notation is used in this work:
• μ, ν, λ, σ: Atomic orbitals (total number: N).
• P, Q, R, S: Auxiliary functions (total number: Naux).
• i, j: Occupied Cholesky orbitals (total number: Nocc).
• a, b: Virtual Cholesky orbitals (total number: Nvirt(iτ)).

Mulliken notation is used for two- and three-center integrals.
Einstein’s sum convention is employed.55 The derivative of a
quantity O with respect to a perturbation ξ, i.e., O, is
abbreviated as Oξ.
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2.2. Atomic Orbital RI-RPA Nuclear Magnetic Reso-
nance Shieldings. 2.2.1. AO-RI-RPA Total Energy. The total
energy of the electronic ground state can be expressed within
the adiabatic-connection formalism43 as42,44

[ ] = [ ] + [ ]E E EP P PHF
c (2)

where the Hartree−Fock energy EHF and the correlation
energy Ec are evaluated with the density matrix P from a
preceding KS-DFT or HF calculation. Further, by applying the
zero-temperature fluctuation−dissipation theorem, the random
phase approximation,56 as well as the RI approximation,57−59

the correlation energy can be expressed as

= [ + ]
+

E 1 X X
1

4
d Tr ln( (i ) ) (i )c

RPA
0 0

(3)

The RI approximation employed in the above equation allows
to factorize four-center-two-electron integrals within an
arbitrary metric m12 as

| | | | | | | |
| | | |

r m P P m R R r S
S m Q Q m

( ) ( )( ) ( )
( ) ( )

(4)

(5)P
PQ

Q

12
1

12 12
1

12
1

12
1

12

leaving behind three-center integral tensors P as well as two-
center integral tensors summarized in the electron−electron
interaction operator PQ , both defined as

= | |m P( )P
12 (6)

= | | | | | |P m R R r S S m Q( ) ( )( )PQ 12
1

12
1

12
1

(7)

Please note that matrix operations are to be taken before
indexing in this work. The noninteracting response function in
the imaginary frequency domain X̂0(iω) in eq 3 is obtained by
the Fourier transform

=
+

X X(i ) d exp(i ) (i )0 0 (8)

which simplifies to a cosine transform,52,60 or, equivalently to a
double Laplace transform50,51 in case X0(iτ) is an even
function in the imaginary time domain. The response function
in the imaginary time domain is given by61

= +

+

+X X X(i ) ( ) (i ) ( ) (i )

( , )
0 0 0

(9)

=X G G(i ) ( i ) (i )PQ
P Q

0, 0, 0, (10)

=+X G G(i ) ( i ) (i )PQ
P Q

0, 0, 0, (11)

with the noninteracting Green’s function defined as

= +

+

G G G(i ) ( ) (i ) ( ) (i )

( , )
0 0 0

(12)

=G P H S P(i ) exp( ( ) )0 F (13)

=G P H S P(i ) exp( ( ) )0 virt F virt (14)

here ϵF denotes the Fermi level,51,62 Θ(τ) the Heaviside step
function, and S is the overlap matrix. The occupied and virtual

density matrix is given by P and Pvirt, respectively. The
Hamiltonian H is defined according to

= + [ ]H h G P (15)

[ ] = [ ] + [ ]G P J P V Pxc (16)

with the matrix representation of the one-electron Hamiltonian
h, the Coulomb potential J, and exchange-correlation potential
Vxc. Computing the response function in the imaginary time
domain and Fourier transforming into the imaginary frequency
domain (rather than direct computation in the (iω)-domain)
allows for an atomic orbital formulation opening the way for
linear scaling RPA implementations.50−52

2.2.2. First Derivative with Respect to the Nuclear
Magnetic Moment. The first derivative of the total RPA
energy, i.e., eq 2, with respect to the nuclear magnetic moment
m is given by38,53

[ ] = [ ] + [ ]E E EP
m

P
m

P
m

HF
c
RPA

(17)

The derivative of the HF energy with respect to m can be
expressed as

[ ] = +E P
m

Ph H PTr( ) Tr( )m m
HF

HF (18)

= + [ ] + [ ]H P P h P J P P K PTr( ) Tr( )m m m m
HF (19)

with the matrix representation of the Hartree−Fock exchange
K. Since the HF energy is not stationary with respect to the KS
density matrix, the response Pm has to be evaluated, which
differs from regular HF gradient calculations where it can be
avoided.63

Next, differentiating the RPA correlation energy given in eq
3 with respect to m results in38,53

= +E
m

V P P hTr( )m mc
RPA

RPA RPA (20)

It is important to note that the density matrix response Pvirt
m

could be avoided in this expression using the relation Pvirt
m =

−Pm.38,53,64
The central intermediates VRPA and PRPA are defined as

= + [ ]V M G P
1
2

( )RPA RPA (21)

=
+

P PY P Y1
2

d ( ( i ) (i ))RPA
0

virt (22)

Further, M is given by

= +M M M (23)

= +
+

M Y H S H S Pd ( (i )( ) exp( ( ) )

( i ))
0

F F virt

(24)

= +
+

M Y H S H S Pd ( ( i )( ) exp( ( ) )

(i ))
0

F F

(25)

and Y(iτ) is expressed according to

= +Y Y Y(i ) ( ) (i ) ( ) (i ) (26)
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=
!= = k

Y(i )
1

( ) (i ) ( )
k l

k
k l l

1 0

1
1

(27)

=
!= = k

Y(i )
1

( ) (i ) ( )
k l

k
k l l

1 0

1
1

(28)

with ( ) defined as

= +( ) ( ) ( ) ( ) ( ) (29)

= H S P( ) ( )F (30)

= H S P( ) ( )F virt (31)

and (i ) as

= +(i ) ( ) (i ) ( ) (i ) (32)

= P(i ) ( i ) (33)

= P(i ) ( i ) virt (34)

The Y matrices are most efficiently evaluated using a recursion
scheme. The detailed procedure and corresponding equations
can be found in refs 34 and 64.

Furthermore, the correlated self-energy Σ(iτ), which is of
central importance in this work, is defined as

=

+

W G(i ) ( i ) (i )

( , )

PQ
P Q

c, 0,

(35)

with the intermediate

=

+

+
W W

W

(i )
1

d (cos( ) (i )

i sin( ) (i ))

c
0

c

c (36)

defined in terms of the correlated screened Coulomb
interaction

= [ ]W 1 X 1(i ) ( (i ) )c 0
1

(37)

2.2.3. Second Derivative with Respect to the Magnetic
Field: NMR Shielding Tensor. The NMR shielding tensor, i.e.,
the second mixed derivative of the total RPA energy with
respect to m and B, is defined as38

= [ ]

= [ ] + [ ]
= =

= = = =

E

E E

P
B m

P
B m

P
B m

m 0 B 0

m 0 B 0 m 0 B 0

2 total

,

2 HF

,

2
c
RPA

, (38)

Evaluating the above equation by forming the second
derivative of the HF energy and of the RPA correlation energy
with respect to m and B results in38

= [ ]

= [ + ] + [ + ]
+ + +

= =

E P
B m

V H P V H P

P h P h

Tr( ) Tr( )

Tr( ) Tr( )

m 0 B 0

B B m Bm

B m Bm

2 total

,

RPA HF RPA HF

RPA RPA
HF (39)

= + [ ] + [ ] + [ ]H h J P K P K PB B B B B
HF (40)

It should be noted that the term J[PB] in the above equation is
zero, due to the skew-symmetry of the purely imaginary
density matrix derivative and the contribution σ̃HF = Tr(PBhm)
+ Tr(PhBm) is treated separately with the usual techniques
used for the computation of HF and DFT shifts for simplicity.
The perturbed density matrix Pm, given in the first term of eq
39, can, in principle, be computed by solving the coupled
perturbed KS (CPKS) equations for all perturbations of the
nuclear magnetic moment. However, a more efficient route is
to use the Z-vector technique,64,65 which requires the solution
of only one CPKS equation. We employ the density matrix-
based Laplace-transformed CPKS method66 developed by our
group within our AO formulation.

At this point, the challenging terms from eq 39 that remain
to be evaluated are the B-field derivatives of the RPA
intermediates VRPA and PRPA as well as the second derivative
of the density matrix PBm. In this context the second derivative
of the density matrix, PBm, can be computed using a nested Z-
vector approach32,34 which was introduced in the framework of
Laplace-transformed MP2 NMR. Employing the efficient
approach of ref 34 allows to derive the final equations for
the computation the NMR shielding tensor within RPA (in
terms of VRPA

B and PRPA
B ) as detailed in ref 38. The central task

in RPA NMR is, however, the evaluation of VRPA
B and PRPA

B ,
which is the subject of the next section.

2.2.4. Computation of RPA NMR Intermediates: VRPA
B and

PRPA
B . The detailed evaluation of the intermediates VRPA

B and
PRPA
B has been presented in ref 38 and we refer to this reference

for a complete derivation and the corresponding equations.
Figure 1 provides an overview over the important inter-
mediates that have to be differentiated in order to obtain VRPA

B

and PRPA
B . The equation numbers from ref 38 corresponding to

the specific steps are provided and we intend to only review
the detailed equations for the two most demanding steps,
specifically, the computation of ΣB(iτ) and X0

B(iτ).
The B-field derivative of the self-energy can be obtained by

either directly differentiating eq 35 using the product rule, as
has been done in ref 38, or by taking the partial derivatives of
Σ(iτ) with respect to W̃c(iτ), , and G0(iτ) multiplied by the
respective B-field derivative of each quantity. This results in

Figure 1. Schematic representation of the derivation of the intermediates VRPA
B and PRPA

B . ST denotes a sine transform and IST an inverse sine
transform. All arrows are labeled with the corresponding equations from ref 38. (Reproduced from ref 38. Copyright 2023 American Chemical
Society).
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= +

+ +

W

W

B B G
G

B

B

(i ) (i )
( i )

( i ) (i )
(i )

(i )

(i )
( , )

PQ

PQ

P

P
c,

c,

0

0

(41)

For the B-field derivative of the self-energy in the positive
imaginary time domain it follows for the partial derivatives of
eq 41 (for τ > 0)

=

i
k
jjjjjj

y
{
zzzzzzW

W

W
G B

B

B

(i )
( i )

( i )

(i )
(i )

PQ

PQ

PQ P Q

c,

c,

c,
0, (42)

=
i
k
jjjjj

y
{
zzzzz W

G

G
G

B B
(i )
(i )

(i )
(i )

(i )
PQ

P Q

0

0
c,

0,

(43)

= +
i
k
jjjj

y
{
zzzz W G

B B
(i )

(i ) (i ) ctP

P

PQ
Q

P

c, 0,

(44)

In eq 44 the abbreviation “ct” denotes the conjugate transpose
of the first term on the right-hand site, a notation that will be
employed from now on. The terms Wc(iτ) and Wc

B(iτ) are
given by the cosine and sine transforms, respectively, as

=
+

W W(i )
1

d (i )cos( )c
0

c (45)

=
+

W W(i ) 2i d (i )sin( )B B
c

0
c (46)

The partial derivatives for the self-energy in the negative
imaginary time domain are given for τ ≥ 0 by

=

i
k
jjjjjj

y
{
zzzzzzW

W

W
G

B

B

( i )
(i )

(i )

(i )
( i )

PQ

PQ

PQ P Q

c,

c,

c,
0, (47)

=

i
k
jjjjj

y
{
zzzzz

W
G

G
G

B

B

( i )
( i )

( i )

(i )
( i )

PQ
P Q

0

0

c,
0,

(48)

= +
i
k
jjjj

y
{
zzzz W G

B B
( i )

(i ) ( i ) ctP

P

PQ
Q

P

c, 0,

(49)

The B-field derivative of the response function, i.e., eq 11,
can be obtained using the same strategy yielding

= +

+

+ + +

+

X
B

X
G

G
B

X
G

G
B

X
B

(i ) (i )
( i )

( i ) (i )
(i )

(i )

(i )
0P

P

0 0

0

0 0

0

0

0

(50)

with the partial derivatives

=
+i

k
jjjjj

y
{
zzzzz

G
G

X
G

G
B B

(i )
( i )

( i ) ( i )
(i )

QP

Q P0

0

0 0,
0,

(51)

=
+i

k
jjjjj

y
{
zzzzz G

GX
G

G
B B

(i )
(i )

(i )
( i )

(i )

QP

Q P0

0

0
0,

0,

(52)

= +
+i

k
jjjjj

y
{
zzzzz G G

X
B B

(i )
( i ) (i ) ctP

P

QP

Q
P

0
0, 0,

(53)

The self-energy and response function as well as their B-field
derivatives can be computed with a formal scaling of

N N M( )aux
2 2 4 and thus are the steepest scaling steps in

the computation of RPA NMR shieldings. Further, since these
steps require the three-center integrals as well as their B-field
derivatives, they are also the most demanding steps in terms of
memory requirements. Thus, for an efficient implementation of
RPA NMR it is necessary to optimize these steps in terms of
computational effort as well as memory requirements. The
former is described in the next section, where we employ a
local RI metric and Cholesky decomposition together with
sparse matrix algebra to reduce the computational effort as well
as lower the scaling. Then, in Section 2.4, those computational
optimizations are combined with a batching scheme to achieve
a memory efficient implementation.
2.3. Low-Scaling RPA NMR Method: ω-CDD-RI-RPA-

NMR. 2.3.1. Strategies for Low-Scaling: Local RI Metric and
Cholesky Decomposition of Density Type Matrices. The
computation of the response function and self-energy as well as
their respective B-field derivatives constitute the most
computationally demanding steps in the calculation of RPA
NMR shieldings. In this section we describe several methods to
optimize these steps and lower their scaling.

As mentioned in Section 2.2.1 we employ the RI
approximation which allows to avoid the four-center-two-
electron integrals and instead work with lower rank tensors,
specifically three-center and two-center integral tensors (see
eqs 4 and 5). The crucial factor to decrease computational
effort and lower the scaling in extended molecular systems is
the choice of the RI metric m12. The Coulomb metric =m

r12
1

12

has proven to be optimal for modeling density type
repulsions.67 However, due to the very slow decay, it couples
the charge distributions (μν) with the auxiliary functions P in
the three-center integral tensor (μν|m12|P) over effectively
infinite distances. Thus, no sparsity can be gained in their
matrix representation. In contrast to that, the overlap metric
m12 = δ(r12) is very local since it decays as exp(−r122 ) for
Gaussian basis sets. The introduced sparsity comes, however,
at the cost of decreased accuracy.67 A metric that combines
both, accuracy and sparsity, is the Coulomb metric attenuated
by the complementary error function (erfc)51,68,69 expressed as

=m
w r
r

erfc( )
12

att 12

12 (54)

The attenuation parameter watt determines the attenuation
strength. By varying this parameter the sparsity and loss in
accuracy can be controlled. In the limiting cases of watt → 0
and watt → ∞ the Coulomb metric and overlap metric are
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retrieved, respectively. It has been shown in ref 51 that the
attenuation parameter watt = 0.1 au gives very good results for
RPA energy calculations by balancing accuracy and sparsity.
Further, ref 53 reports the same for RPA nuclear gradients. In
this work we will further investigate if these findings can be
extended to second order properties, specifically RPA NMR
shieldings.

Another strategy we will employ, is pivoted Cholesky
decomposition (CD)50−52,70−74 of density type matrices. In
this context the pivoted Cholesky decomposition of a positive
semidefinite (NR × NR) matrix is given by

= T (55)

where is a lower triangular matrix with dimensions
×N( rank( ))R . Thus, if the rank of a matrix is significantly

less than its dimensions then substantial savings in computa-
tional effort and memory requirements can be achieved. In
order to make use of that, we start by considering that the
Green’s function in the negative imaginary time domain is
invariant to projection onto the occupied space, which gives
rise to the Cholesky decomposition of the occupied ground
state density matrix P = LLT resulting in52

=

=

G PSG SP

LL SG SLL

( i ) ( i ) (56)

( i ) (57)

0 0

T
0

T

where the Cholesky matrix L has dimensions (N × Nocc). It
should be noted that the CD of the virtual density matrix is of
not much use since its rank corresponds to the number of
virtual orbitals Nvirt, which is not significantly less than the
number of basis functions. Next, the CD of the Green’s
function in the positive imaginary time domain is considered
according to

=G L L(i ) (i ) (i )0 virt virt
T (58)

Since G̅0(iτ) is a negative semidefinite matrix it is made
positive semidefinite by multiplication with −1. The rank of
G̅0(iτ), which corresponds to the columns of Lvirt(iτ), is time
dependent and decreases with increasing time, that is
rank(G̅0(iτ)) ≤ Nvirt.

It is important to note that CD of the B-field derivative of
the Green’s function and density matrix is not possible since
both matrices are not positive semidefinite.

2.3.2. Calculation of the Self-Energy and Its B-Field
Derivative. For the calculation of the self-energy given by eq
35 we can insert eq 58 for the computation of Σ(iτ) and eq 57
for the computation of Σ(−iτ) leading to

= W(i ) ( i ) (i ) (i ) 0PQ a
P

a
Q

c, (59)

= W G( i ) (i ) ( i ) 0PQ i
P

i j j
Q

c, 0,

(60)

where we have used the fact that the unperturbed correlated
screened Coulomb interaction is an even function in the (iτ)-
space. Further, the following notation for transformed
quantities has been introduced

G L SG SL( i ) ( ( i ) )i j i j0,
T

0 (61)

L( )i
P P

i (62)

L(i ) ( (i ))a
Q Q

avirt (63)

Next, for the B-field derivative of the self-energy we start by
considering the partial derivatives of the self-energy in the
positive imaginary time domain. For the partial derivative with
respect to W̃c(iτ), i.e., eq 42, and for the partial derivative with
respect to the three-center integrals, i.e., eq 44, we can employ
eq 55 leading to

=

i
k
jjjjjj
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{
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c,PQ virt

T

(65)

For the term containing the derivative of the Green’s function,
that is eq 43, CD cannot be used since G0

B is not positive
semidefinite.

Similarly, for the self-energy in the negative imaginary time
domain eq 56 can be inserted into the partial derivative term
containing Wc

B(iτ), i.e., eq 47, and the term containing B, i.e.,
eq 49, resulting in

=
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jjjjjj

y
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(67)

Again, the term containing the derivative of the Green’s
function eq 48 cannot be transformed using CD.

2.3.3. Calculation of the Response Function and its B-
Field Derivative. The evaluation of the response function can
be restricted to positive imaginary times, that is eq 11, since
the unperturbed response function is an even function in the
(iτ)-domain. Using eqs 56 and 58 allows to express the
response function according to

=

=

+X

G

L L L SG SL

L L

(i ) ( (i )) ( ( i ) )

( (i ) )

(68)

(i ) ( i ) (i ) (69)

PQ
P
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Q
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a j
P

i j ai
Q

0,
T

virt
T

0

virt
T

0,

where

L L(i ) ( (i ))i a
Q Q

i a
T

virt (70)

For the B-field derivative of the response function eq 50 its
partial derivatives given by eqs 51−53 can be considered.
Inserting eq 56 into eq 52 and into eq 53; furthermore
inserting eq 58 into eq 51 and into eq 53 yields
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2.3.4. Scaling. When discussing the scaling in this section,
we refer to the asymptotic scaling in the limit of very large
system sizes. In this context a distinction is made for the
theoretical scaling of the ω-CDD-RI-RPA method employing
dense matrix algebra, which is generally denoted as “formal
scaling” and the method is referred to as “dense method”, and
the same method employing sparse matrix algebra which is
discussed in the context of computing sparse systems, which is
denoted as “sparse method”.

As noted earlier, our AO-RI-RPA-NMR implementation of
ref 38 has a formal scaling of N N( )aux

2 2 and scales as M( )4

with the system size. In this section we investigate the
asymptotic scaling of the dense and sparse implementation for
the computation of the self-energy and response function as
well as their B-field derivatives using our new ω-CDD-RI-RPA-
NMR formulation as introduced in the previous sections. The
results are shown in Table 1. The asymptotic scaling of the
sparse method for the response function and its B-field
derivative can be reduced to linear provided that the matrices
G0(iτ) and as well as their B-field derivatives are sparse. The
asymptotic scaling for the self-energy and its B-field derivative
can be reduced only to quadratic at this stage, since the
correlated screened Coulomb interaction is in general a dense
matrix as it contains the

r
1

12
term.53 Thus, for sparse systems

generally a quadratic scaling with the system size would be
expected for the ω-CDD-RI-RPA-NMR method.
2.4. Memory Efficient Implementation. As a starting

point for the implementation of our new ω-CDD-RI-RPA-
NMR method, we used the framework of our AO-RI-RPA-
NMR method.38 An overview containing all steps of the
calculation is provided in the Supporting Information of ref 38.
However, the steps involving the computation of the response
function and self-energy as well as their B-field derivatives will
be replaced by the memory efficient method introduced below.
We employ the following directives for a memory efficient
implementation:

• Σ(iτ), X0(iτ), ΣB(iτ), and X0
B(iτ) are computed for one τ

quadrature point at a time.
• Each partial derivative term corresponding to ΣB(iτ),

and X0
B(iτ) is computed within a separate batching

scheme.
• The partial derivative terms for the magnetic field

derivative of the self-energy are computed for the

positive and negative imaginary time domain within the
same batching scheme.

• The three-center integrals and their B-field derivatives
are stored on disk in a compact matrix format, where
only elements (with a significant contribution) from the
upper triangular matrix are stored for each auxiliary
function. When the integrals and their derivatives are
needed within the calculation they are copied back into a
regular matrix format for one auxiliary function at a time
and the lower triangular matrix is filled by considering
the symmetry of the three-center integrals and the skew-
symmetry of its B-field derivative.

• Intermediates that are stored on disk are read into
memory for one aux-batch for efficient read perform-
ance.

• Integrals are transformed for one auxiliary function at a
time.

• For efficiency, common intermediates are precomputed
and stored on disk to be reused.

• The loops over auxiliary function indices are parallelized.
With these guidelines in mind, a memory efficient
implementation for the computation of Σ(iτ) and X0(iτ) as
well as their magnetic field derivatives is possible. The detailed
algorithms and technical details of the implementations are
provided in the Supporting Information.

2.4.1. Computation of Batches: Accounting for Sparsity.
In the previous section, batching schemes were described for
the computation of the self-energy and response function as
well as their B-field derivatives. The task ahead is to develop a
method for the computation of the number of batches by

Table 1. Asymptotic Scaling for the Computation of the
Self-Energy and Response Function As Well As Their B-
Field Derivatives within the ω-CDD-RI-RPA-NMR Method
Utilizing Dense Matrix Algebra (Dense) and Using Sparse
Matrix Algebra (Sparse) Assuming Sparse Systemsa

scaling

quantity equation nr. dense sparse

Σ(iτ) 59 N NN( (i ))aux
2

virt M( )2

ΣB(iτ)

W
W

B
(i )
( i )

( i )

c

c 64 N NN( (i ))aux
2

virt M( )2

G
G

B
(i )
(i )

(i )

0

0 43 N N( )aux
2 2 M( )2

B
(i ) 65 N NN( (i ))aux

2
virt M( )2

Σ(−iτ) 60 N NN( )aux
2

occ M( )2

ΣB(−iτ)

W
W

B
( i )

(i )
(i )

c

c 66 N NN( )aux
2

occ M( )2

G
G

B
( i )
( i )

( i )

0

0 48 N N( )aux
2 2 M( )2

B
( i ) 67 N NN( )aux

2
occ M( )2

X0(iτ) 69 N NN( )aux
2

occ M( )
X0
B(iτ)
X

G
G

B
(i )

( i )
( i )0

0

0 71 N NN( (i ))aux
2

virt M( )

X
G

G
B

(i )
(i )

(i )0

0

0 72 N NN( )aux
2

occ M( )

X
B

(i )0 73 N N N( (i ) )aux
2

virt occ M( )
aFor the B-field derivatives, the scaling for all partial derivative terms
is provided. Further, the equation numbers for each term are noted.
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accounting for the sparsity of all matrices within a step of the
calculation. In this context a general framework for the
computation of batches will be presented.

First, the dependence of the sparsity on the time quadrature
point τ is investigated for the self-energy, response function,
and their B-field derivatives. In Figure 2 the sparsity patterns
for all of the mentioned quantities are shown for the linear
alkane C80H162 in a cc-pwCVDZ basis set. As can be seen, the
sparsity shows a strong dependence on the τ quadrature point
for all quantities, increasing with the value of τ. Presumably,
this can be traced back to the exponential functions within the
Green’s functions eqs 13 and14 which decay with increasing τ.
This indicates that the sparsity associated with this exponential
decay is present in both, sparse and dense systems. Due to this
observation, the number of batches is recomputed for each τ
quadrature point.

Next, an approximation for the memory demands of sparse
matrices is necessary, since they are not previously known and
only determined at program runtime. In our implementation
sparse matrices are implemented in a block-sparse format,
where the matrices are divided into blocks of constant size.
Upon allocation of the sparse matrix, the blocks are screened.
Each block with an L2-norm lower than a threshold value ϑa is
removed. A second screening threshold ϑm is used for the
matrix−matrix multiplication. If the product of the L2-norms
of two matrix-blocks is below ϑm the matrix−matrix multi-
plication of those blocks is not preformed. More information
about block-sparse matrices, their matrix−matrix multiplication
routine, as well as the memory allocation technique is given in
the Supporting Information of ref 75.

For the computation of batches the relevant memory
demands that need to be approximated are those of third-
order tensors kl

m with dimension (Nk × Nl × Nm). In our
implementation third-order tensors are generally represented
by a vector containing a number of Nm sparse matrices of size
(Nk × Nl). Thus, the total memory demand of the tensor is
given by the sum of the memory demands of the respective
sparse matrix associated with each m. Specifically in this work
the third index m refers to the auxiliary function index. To
approximate the total memory demand of these tensors, we
sample the auxiliary function space by precomputing
intermediate quantities for a number of auxiliary functions to
determine their memory demands. Subsequently, the average
memory demand for one auxiliary function is computed from
the sampling and multiplied by the total number of auxiliary

functions to approximate the memory demands of the tensor.
Further, for B-field derivatives of third order tensors, we carry
out the sampling for all B-field directions, compute the
approximate memory demands, and determine the maximum
memory out of all B-field directions. The maximum memory is
then used for the computation of batches. In this work, we
sample the auxiliary function space in steps of 100, which
provides reliable results while not significantly increasing the
computational effort of the method. Thus, together with the
available system memory, the number of batches can be easily
determined. By recomputing the batches for each τ quadrature
point and approximating the sparsity of all matrices as
described, we are able to account for sparsity in the
computation of the number of batches for each batching
scheme.

3. COMPUTATIONAL DETAILS
Our new method was implemented in the FERMIONS++
program package.83−85 The RPA NMR shieldings computed in
this work are based on preceding Hartree−Fock calculations.
In ref 37 this setup was shown to provide accurate NMR
shieldings of about CCSD quality. Optimized minimax grids60

for the time and frequency integration52,60 as well as the cosine
and sine86 transformation are employed with 15 grid points,
which has been shown in ref 38 to yield accurate results. For
our new method, in the following denoted as ω-CDD-RI-RPA-
NMR, we employ sparse matrix algebra (ϑa = 10−7, ϑm = 10−9,
block size (96 × 96)) and the attenuated Coulomb metric with
the attenuation parameter ωatt = 0.1 au. The truncation
tolerance used for the pivoted Cholesky decomposition is
10−11. The implementation introduced in ref 38 is denoted as
AO-RI-RPA-NMR and utilizes the Coulomb metric as well as
dense matrix algebra routines as provided by the Math Kernel
Library (version 2022.0.0). The frozen core approximation is
not applied. The atomic orbital basis sets cc-pwCVDZ87 and
cc-pwCVTZ87 were used with their corresponding RI basis
set.88

4. RESULTS AND DISCUSSION
4.1. Accuracy. Several techniques have been employed to

improve the efficiency and the scaling of our RPA NMR
method.38 To test the accuracy of our ω-CDD-RI-RPA-NMR
method, calculations have been performed for the molecules in
the test set assembled by Gauss and co-workers,89 excluding
the molecules SO2 and O3 as has been done in ref 89 as well as

Figure 2. Sparsity patterns of the self-energy and the response function as well as their B-field derivatives (for one direction of the magnetic field)
for the first time grid point (τ1) and the last one (τN dτ

) for the linear alkane C80H162 using the cc-pwCVDZ basis set with the corresponding RI basis
set.
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PN as done in ref 38. Further, the test set of Flaig et al.24 was
used. To analyze the deviations for more extended systems the
monomers in the L7 test set90 (excluding C3GC monomer B
and C2PD monomer A due to the high computing demands of
the AO-RI-RPA-NMR method) as well as a set of three linear
alkanes with 10−30 carbon atoms have been computed. NMR
shieldings computed using the new ω-CDD-RI-RPA-NMR
method are compared to the results obtained with the AO-RI-
RPA-NMR method,38 which employs the Coulomb RI metric
and dense matrix algebra. By this comparison, the error
introduced through the local RI metric, the utilization of sparse
matrix algebra, as well as Cholesky decomposition can be
assessed for the ω-CDD-RI-RPA-NMR method. The cc-
pwCVDZ and cc-pwCVTZ basis sets were used with the
corresponding RI basis sets for the Gauss and Flaig test set. For
the L7 test set and the set of linear alkanes the cc-pwCVDZ
basis set was used due to the high computing demands of the
AO-RI-RPA-NMR method that is used as the reference. The
results are shown in Table 2, where the mean absolute errors

(MAEs) and the standard deviations (SDs) of the ω-CDD-RI-
RPA-NMR method compared to the AO-RI-RPA-NMR
method are displayed for different test sets. As can be seen,
the MAEs and SDs are on the order of 10−3 ppm for all
considered test sets. Therefore, we can conclude that the
introduced techniques do not compromise the accuracy of the
method.

Given that the ω-CDD-RI-RPA-NMR method does not
introduce any significant error, it is preferred over the AO-RI-
RPA-NMR method due to its superior computational
efficiency. In this context dense matrix algebra may be
employed for smaller systems, while sparse matrix algebra is
more efficient for larger systems and especially sparse systems.
As shown in the Supporting Information for linear alkanes, an
early crossover for C10H22 with the dense method is observed.
4.2. Scaling Behavior with the System Size. To analyze

the effective scaling of our method with the system size, we
carried out calculations on linear alkanes of increasing length
using the cc-pwCVDZ basis set with the corresponding RI
basis set. This system was chosen as an optimal test case due to
its local electronic structure and the ability to systematically
increase the system size. The calculations were performed on a
compute node with AMD EPYC 9334 processors with 128
threads, 1.5 TB of RAM, and 4.7 TB of disk space. No
batching was employed for the calculations.

The computation of the B-field derivative of the response
function and the self-energy are the computationally most
demanding steps and are among the formally steepest scaling
steps of the calculation. Thus, to analyze the effective scaling
behavior with the system size of both steps, we measure the
number of floating point operations (FLOPs) that are required
for their computation. The results are given in Figure 3. As can

be seen, a quadratic scaling is obtained for the computation of
X0
B(iτ), which is higher than the expected asymptotic linear

scaling that was discussed in Section 2.3.4. In comparison, in
ref 52 an effective scaling of M1.39 was determined for the (non
differentiated) response function by computing linear alkanes
with 2170−7210 atomic orbital basis functions. Presumably,
similar behavior could be obtained for the B-field derivative of
the response function for larger systems. This would indicate a
later onset of linear scaling behavior for larger systems.
However, without batching the computation of ω-CDD-RI-
RPA-NMR is limited to linear alkanes with up to 3090 atomic
orbital basis functions on a compute node with 1.5 TB of
RAM. A similar discussion can be applied to the computation
of the B-field derivative of the self-energy. The observed
scaling is also higher than the expected asymptotic quadratic
scaling, which was discussed in Section 2.3.4. For the (non
differentiated) self-energy an effective scaling of M2.43 was
obtained in ref 53 using linear alkanes with 1930−4810 atomic
orbital basis functions. Thus, we would expect to converge to
the expected quadratic scaling for the B-field derivative of the
self-energy for larger systems as well.
4.3. Performance. 4.3.1. Timings. In the following, the

timings for the most time-consuming steps within the
calculation of ω-CDD-RI-RPA-NMR shieldings are inves-
tigated. Please note that the total timings refer to the time for
the RPA NMR correlation contribution only, that is, excluding
the time for the preceding HF NMR calculation. We computed
a DNA fragment with two adenine-thymine base pairs (128
atoms; 580 electrons) using the cc-pwCVDZ basis set (N =
1646) with the corresponding RI basis set. Further, as an
example of sparse systems, we computed the linear alkane
C60H122 (182 atoms; 482 electrons) using the same basis set
(N = 1690). No batching was employed for the calculations,

Table 2. MAEs (ppm) and SDs (ppm) of Isotropic NMR
Shielding Constants Obtained Using the ω-CDD-RI-RPA-
NMR Method with Respect to the AO-RI-RPA-NMR
Results for the Molecules in the Gauss Benchmark Set, the
Flaig Benchmark Set, the L7 Test Set, and a Set of Linear
Alkanesa

benchmark set basis set MAE [10−3 ppm] SD [10−3 ppm]

Gauss cc-pwCVDZ 2.40 4.9
cc-pwCVTZ 0.90 1.54

Flaig cc-pwCVDZ 1.42 3.04
cc-pwCVTZ 1.04 2.98

L7 cc-pwCVDZ 1.34 2.6
linear alkanes cc-pwCVDZ 0.59 0.91

aThe cc-pwCVDZ and cc-pwCVTZ basis sets were used with the
corresponding RI basis set.

Figure 3. Log−log plot of the FLOPs for the calculation of X0
B(iτ)

(blue) and ΣB(iτ) (red) against the number of atomic orbital basis
functions for linear alkanes of increasing size employing the ω-CDD-
RI-RPA-NMR method.
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which were carried out on a compute node with AMD EPYC
7452 processors with 128 threads, 1 TB of RAM, and 4.7 TB
of disk space. The results are shown in Figure 4. For both

systems the computation of the B-field derivative of the self-
energy is the most compute intensive step, followed by the
computation of X0

B(iτ) as well as YB(iτ). However, for the
sparse system, i.e., C60H122, the timings for all three steps are
on the same order while for the dense system, i.e., (DNA)2, the
computation of ΣB(iτ) is still dominating. This demonstrates
that for the linear alkane the sparsity of ΣB(iτ) is efficiently
exploited using sparse matrix algebra.

Next, detailed timings for the partial derivatives within the
calculation of ΣB(iτ) (∀τ ∈ (−∞, +∞)) and X0

B(iτ) are
investigated. The results are shown in Figure 5. Starting with

the timings for ΣB(±iτ) given on the left-hand side of Figure 5,
it can be observed that the dominating step is the partial
derivative term containing the derivative of the Green’s
function. Since CD cannot be applied to this term, it is the
most demanding step in terms of computational resources as
well as memory requirements. However, for the linear alkane
the sparsity introduced through the local metric in the three-
center integral tensor is exploited using sparse algebra, which
lowers its contribution to the total time compared to the dense
DNA fragment. Further, it is evident that the computation of
the B-field derivative of the self-energy is more efficient for the
negative imaginary time domain than for the positive imaginary
time domain. This is due to the very efficient CD of the ground
state density matrix within the calculation of ΣB(−iτ), while
the CD of the Green’s function in the positive imaginary time
domain within the calculation of ΣB(iτ) is less effective. For
the computation of X0

B(iτ), shown on the right-hand side of
Figure 5, the partial derivative term containing G0

B(−iτ)
requires over 50% of the total time for both systems. For this
term only the CD of G̅0(iτ) can be used, while the more
efficient CD of the ground state density matrix can only be
used for the remaining terms.

4.3.2. Batching: Linear Alkanes. As described in Section
2.4.1, the introduced batching method was designed to
account for the sparsity of intermediates when computing
the number of batches. To test this aspect of our batching
method, we performed calculations on linear alkanes of
increasing length using the cc-pwCVDZ atomic orbital basis
set with the corresponding RI basis set. All calculations were
performed on a compute note with AMD EPYC 7302
processors using 64 threads, 250 GB of RAM, and 1.7 TB of
disk space.

As has been shown in Section 2.4.1, the sparsity of
intermediates has a dependence on the τ quadrature point,
typically increasing with the τ quadrature points. To account
for this, we recompute the number of batches for each τ
quadrature point. Since the number of batches is dependent on
the memory demands of intermediates it would be expected

Figure 4. Timings for the computationally most demanding steps
within the ω-CDD-RI-RPA-NMR calculation for the DNA fragment
(DNA)2 computed using dense matrix algebra and a linear alkane
which was computed using sparse matrix algebra. The cc-pwCVDZ
basis set with the corresponding RI basis set was used. Note that the
timings for the B-field derivative of the self-energy in the positive and
negative imaginary time domain are summarized in ΣB(iτ).
Calculations were performed on a compute node with 1 TB of
RAM without employing batching.

Figure 5. Contribution of the partial derivative terms (a) for the computation of ΣB(iτ) (nonshaded bars) and ΣB(−iτ) (shaded bars) as well as
(b) for the computation of X0

B(iτ) to the total time required for the computation of ΣB(±iτ) and X0
B(iτ), respectively.
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that the number of batches also decreases with the τ
quadrature point. Thus, we start our investigation by
considering the number of batches for all intermediates for
each τ quadrature point using the linear alkane C100H202. The
results are displayed in Figure 6. It can be observed that the

computation of the partial derivative term G (i )X
G

B(i )
(i ) 0

0

0

requires the highest number of batches, which was expected
since this term has the highest memory demand given that CD
of the ground state density matrix is not possible for that term.
However, the number of batches does decrease significantly
with increasing τ points due to the increasing sparsity for
which our batching is able to accommodate for. The decrease
in batches can be observed for all terms except for

W (i )
W

B(i )
(i ) c

c
, G (i )X

G
B(i )

(i ) 0
0

0
, and B(i ) . For the first term

it is due to the fact that W̃c
B(iτ) is in general a dense matrix,

while for the second term the memory demand is dominated
by the memory required for the batched three-center integrals
in the AO basis as well as the three-center integrals
transformed with L, which are independent of τ. For the last
term the batched B-field derivatives of the three-center
integrals are loaded into memory for all three magnetic field
directions, whose memory is also independent of τ. To
summarize, in general the sparsity of intermediates increases
with the τ quadrature points, which our batching is able to
account for. As demonstrated, the number of computed
batches decreases with increasing τ.

Next, we investigate the total number of batches (for the
first τ quadrature point) for each intermediate with increasing
system sizes. The results are given in Figure 7. Since the
number of batches overlap for some intermediates, the results
are also summarized in the Supporting Information for clarity.
It can be observed again, that the partial derivative term

G (i )X
G

B(i )
(i ) 0

0

0
requires the highest number of batches and

increases the strongest with the system size. Further, for the
partial derivative terms within the calculation of ΣB(iτ) the
number of batches is lower compared to the partial derivative
terms for X0

B(iτ). For the calculation of ΣB(iτ) the batching
over auxiliary functions is very beneficial, since various memory
demanding intermediates can be computed for one auxiliary
function at a time.

For the computation of batches we approximated the
memory demands of sparse matrices by sampling the auxiliary

function space and precomputing a number of intermediates,
which introduces an overhead. To investigate the extend of the
overhead, we examine the total time for the computation of
batches for increasing system sizes and consider the
contribution to the total computation time for the correlation
part of the RPA NMR calculation. The results are displayed in
Figure 8. The computation time for the sample batching of the

largest system size is still under 5 min and the total
contribution does not exceed 1% of the total computation
time. Therefore, it can be concluded, that the overhead that
comes with the sample batching method is practically
insignificant.

Another overhead that comes with the batching method is
associated with disk input/output (I/O) operations. When
using the batching method certain quantities, such as the three-

Figure 6. Number of aux-batches for the calculation of the most
memory demanding steps per τ quadrature point for the linear alkane
C100H202. Note that τi denotes the ith τ quadrature point. Calculations
were carried out on a compute node using 250 GB of RAM.

Figure 7. Number of auxiliary function batches for the computation
of the partial derivative terms within the calculation of ΣB(iτ) (∀τ ∈
(−∞, +∞)) and X0

B(iτ) for linear alkanes of increasing size. Note that
only the partial derivative terms are displayed, for which the number
of batches is larger than 1. Calculations were performed on a compute
node with 250 GB of RAM.

Figure 8. Wall time (s) for the computation of batches using the
sample batching method for systems of increasing size with their
contribution to the total time for the correlation part of the ω-CDD-
RI-RPA-NMR calculation.
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center integrals and their B-field derivatives, are stored on disk
and read into memory within the respective batching scheme.
On the left-hand side of Figure 9 the total time for disk I/O
operations as well as the contribution to the total time for the
correlation part of the ω-CDD-RI-RPA-NMR calculation is
shown for increasing system sizes. As can be seen, the
contribution does increase with the system size, due to the
increasing number of batches. For the largest system the disk
I/O contribution is less than 15% of the total time, which is
still acceptable. However, for efficiency reasons an integral
direct computation of the three-center integrals and their B-
field derivatives would certainly be beneficial, but we leave this
to future work on this topic.

Lastly, we investigate the maximum disk space requirements
of the method for increasing system sizes. The results are
summarized on the right-hand side of Figure 9. As can be seen,
the disk space demands are low compared to the total disk
space, due to the compact storage format we adopted for the
three-center integrals and their derivatives as explained in
Section 2.4. Therefore, it can be concluded that currently the
disk space does not yet constitute a bottleneck in the
computation of large system sizes.

In summary, we can conclude this section with the following
points:

• The sparsity of intermediates increases with the number
of τ quadrature points, which our sparse sample batching
is able to account for.

Figure 9. Wall time (h) required for disk I/O operations for increasing system sizes with the contribution to the total time for the correlation part
of the ω-CDD-RI-RPA-NMR calculation (left). Further, disk space requirements (GB) for increasing system sizes with the contribution to the total
disk space are displayed on the right-hand side.

Figure 10. Number of aux-batches for the calculation of intermediates per τ quadrature point for (a) the tweezer complex and (b) (DNA)4. Note
that τi denotes the ith τ quadrature point. Calculations were carried out on a compute node using 1 TB of RAM.
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• The time for the computation of batches within the
sample batching method is practically insignificant (<1%
of the total time).

• The disk space demands are relatively low and currently
do not hinder the calculation of large systems.

• Disk I/O operations have a significant contribution to
the total time for larger systems, thus, an integral-direct
scheme for the three-center integrals and their B-field
derivatives would be beneficial to explore in future work.

4.3.3. Batching: Illustrative Applications. We further test
our batching method on chemically relevant systems
representative for potential applications. All calculations were
performed on a compute node with AMD EPYC 7452
processors using 128 threads, 1 TB of RAM, and 4.7 TB of disk
space.

First, we test the performance of our method for a tweezer
host−guest complex (92 atoms; 374 electrons) which has been
investigated in literature from an application point of view91 as
well as for performance analysis within NMR calculations.35,36

The structure was taken from refs 35,36. The calculation was
carried out using a cc-pwCVTZ AO basis set (N = 2912) with
the corresponding RI basis set. The correlation part of the RPA
NMR calculation took 4 days. Here, disk I/O operations
accounted for 6.1% of that time and the computation of
batches for 0.2%. While disk I/O operations have a significant
contribution to the total time, the time for the computation of
batches is practically insignificant. The calculation required
541.0 GB of disk space, which is clearly under the available 4.7
TB. Further, on the left-hand side of Figure 10 the number of
batches per τ quadrature point is given for all intermediates
with a batch number larger than 1. It is interesting to note that
for the dense system the number of batches for the
intermediate G (i )X

G
B(i )

(i ) 0
0

0
is also dependent on the τ

quadrature point and decreases significantly with increasing
τ, which was also observed for sparse systems in the previous
section. This shows that our sample batching method is also
beneficial for dense systems.

Next, we performed calculations on a DNA strand with four
adenine-thymine base pairs, denoted as (DNA)4 (260 atoms;
1220 electrons), using a cc-pwCVDZ AO basis set (N = 3408)
with the corresponding RI basis set. The correlation part of the
RPA NMR calculation required 7.5 days in total. Out of that
time 5.3% was spend on disk I/O operations, while the sample
batching only took 0.2% of the total time. Thus, the time
needed for the sample batching method is practically
insignificant in this case as well. The time spend on disk I/O
operations is not the dominating part, but has still a significant
contribution to the total time. The required disk space was
687.3 GB which amount to 14.6% of the available disk space.
Next, the number of batches is investigated for all τ quadrature
points. The results are given on the right-hand side of Figure
10. Here, only terms are displayed for which the batch count
exceeds 1. It can be observed again that the number of batches
for the intermediate G (i )X

G
B(i )

(i ) 0
0

0
shows a strong dependence

on the τ quadrature point, making our sample batching
relevant for dense systems as well.

5. CONCLUSIONS
An efficient and low-scaling method for the computation of
RPA NMR shielding tensors has been presented that is based
on our AO-RI-RPA-NMR method introduced in ref 38. We

utilize Cholesky decomposed ground state densities as well as
Cholesky decomposed Green’s functions in the positive
imaginary time domain. Further, the attenuated Coulomb RI
metric was employed to introduce sparsity in the three-center
integral tensors, which was efficiently exploited using sparse
matrix algebra. Specifically, these techniques were employed
for the computation of the response function, self-energy and
their B-field derivatives which constitute the steepest scaling
and most demanding steps in terms of computational effort
and memory requirements. It was shown that the introduced
approximations do not deteriorate the accuracy of the method.
The scaling with the system size was analyzed using linear
alkanes, which revealed close to a quadratic scaling.

To lower the memory demand of the method and, thus,
extend its applicability to even larger systems, we introduced a
batching method for memory demanding intermediates. Here,
the memory demand of sparse matrices was approximated by
sampling the auxiliary function space and used to compute the
number of batches for each τ quadrature point. It was shown
that the overhead related to the sampling method has only a
small contribution to the total time (<1%) and, thus, is
practically insignificant. Further, we analyzed the number of
batches for each τ quadrature point for, both, sparse systems
and dense systems. We found, that there is a decrease in
batches with increasing τ quadrature points for sparse and
dense systems. This shows, that our batching method is
beneficial for both sparse and dense systems. Further, within
the batching method, the three-center integrals and their B-
field derivatives were stored on disk and read into memory
within the respective batching scheme and transformed on the
fly. As has been shown, the contribution from disk I/O
operations is not the dominating step but it does have a
significant contribution to the total time.

In future work, the efficiency of our method could be further
improved by utilizing an integral-direct scheme for the
integrals and their derivatives and combining the sparse
sample batching method with an optimized batching scheme as
introduced in ref 54.

The importance of our new NMR method is further
highlighted by the possibility to use it as a basis for the
implementation of NMR shieldings based on a method that is
closely related to RPA, that is σ-functionals.92,93 Due to the
close relation of σ-functionals and RPA, it should be possible
to implement analytical σ-functional NMR shieldings using our
efficient RPA NMR implementation. This would provide
another accurate and efficient method for the computation of
NMR shieldings. Since σ-functionals92,93 and extensions
thereof94−96 are being developed it would be interesting to
explore these possibilities in future work.
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1 Memory Efficient Implementation

1.1 Batching Scheme: Σ(iτ)

The computation of the self-energy is shown in Algorithm 1. First the intermediate W is

computed (lines 1-12) and written on disk. For efficiency, lines 5-9 are implemented as a

matrix multiplication. Then, within a separate batching scheme, W and the three-center

integrals are read into memory for one auxiliary function batch (aux-batch) (lines 14 and

15, respectively). It should be noted that quantities are read into memory for one aux-batch

at a time, rather than one auxiliary function, in order to optimize reading performance,

since processing larger data in fewer instances is more efficient than repeatedly processing

smaller amounts of data. Then, in lines 17-21, the self-energy in the negative imaginary

time domain is computed for one auxiliary function at a time. In lines 23-27 the self-energy

in the positive imaginary time domain is computed, again, for one auxiliary function at a

time. To increase computational efficiency, we parallelize over the auxiliary function indices

(lines 17-21 and 23-27). It should be noted that Σ(iτ) and Σ(−iτ) are computed within

the same batching scheme, since the memory demanding third order tensors are computed

for one auxiliary function at a time and, thus, do not show high memory requirements.

The memory requirements for the batching method are rather determined by the memory

demands of W and B, which are loaded into memory for one aux-batch.
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Algorithm 1 Σ(±iτ) per τ ≥ 0

1: ⊲ Calculate WP (iτ)(∀P ) and write on disk
2: for aux-batch1 do
3: for aux-batch2 do
4: read BQ ∀Q ∈ aux-batch2
5: for P ∈ aux-batch1 do
6: for Q ∈ aux-batch2 do
7: WP

µν(iτ) += Wc,PQ(iτ)BQ
µν ∀µ, ν

8: end for
9: end for

10: end for
11: write on disk WP

µν(iτ) ∀µ, ν, P ∈ aux-batch1
12: end for
13: for aux-batch1 do
14: read WP (iτ) ∀P ∈ aux-batch1
15: read BP ∀P ∈ aux-batch1
16: ⊲ Calculate Σ(−iτ)
17: for P ∈ aux-batch1 do ⊲ parallel
18: WP

µi(iτ) = WP
µν(iτ)Lνi ∀µ, i

19: BP
νj = BP

νλLλj ∀ν, j
20: Σµν(−iτ) += WP

µi(iτ)G0,ij
(−iτ)BP

νj ∀µ, ν
21: end for
22: ⊲ Calculate Σ(iτ)
23: for P ∈ aux-batch1 do ⊲ parallel

24: WP

µa(iτ) = WP
µν(iτ)Lvirt,νa(iτ) ∀µ, a

25: BP

νa(iτ) = BP
νλLvirt,λa(iτ) ∀ν, a

26: Σµν(iτ) += WP

µa(iτ)B
P

νa(iτ) ∀µ, ν
27: end for
28: end for

1.2 Batching Scheme: X0(iτ)

For the computation of the response function in Algorithm 2, the three-center integrals are

read into memory for one aux-batch (line 2) and subsequently transformed with the Cholesky

matrix L (line 4) and used for the computation of the intermediate B̃Pai(iτ) (line 5). In a

second aux-batch loop, the three-center integrals are read into memory for the respective

aux-batch (line 8) and used to compute the intermediate BQai(iτ). Finally, in line 14 the

response function is computed by multiplying both intermediates. It should be noted that

the symmetry of the response function is exploited for the second aux-batch loop (lines 7-

17). Further, lines 12-16 are implemented as a matrix multiplication. The loops over the

auxiliary function indices are parallelized (lines 3-6 and 9-11).
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Algorithm 2 X0(iτ) per τ ≥ 0

1: for aux-batch1 do
2: read BP

µν ∀µ, ν, P ∈ aux-batch1
3: for P ∈ aux-batch1 do ⊲ parallel
4: BP

µj = BP
µνLνj ∀j, µ

5: B̃P
ai(iτ) = G

0,ij
(−iτ)BP

µjLvirt,µa(iτ) ∀i, a
6: end for
7: for aux-batch2 ≥ aux-batch1 do
8: read BQ

µν ∀µ, ν,Q ∈ aux-batch2
9: for Q ∈ aux-batch2 do ⊲ parallel

10: BQ

ai(iτ) = Lvirt,µa(iτ)BQ
µνLνi ∀i, a

11: end for
12: for P ∈ aux-batch1 do
13: for Q ∈ aux-batch2 do

14: X0,PQ(iτ) = B̃P
ai(iτ)B

Q

ai(iτ)
15: end for
16: end for
17: end for
18: end for

1.3 Batching Scheme: ΣB(iτ)

A general outline for the computation of ΣB(iτ) is provided in Algorithm 3. First, the partial

derivative with respect to W̃c(−iτ) is computed (line 2). Next, the intermediate W(iτ) is

computed and written on disk as shown in Algorithm 1 lines 1-13. This intermediate is read

into memory for the computation of the remaining partial derivatives, that is, the partial

derivative with respect to the Green’s function (line 4) and three-center integrals (line 5). All

partial derivative terms (lines 2-4) are computed for the B-field derivative of the self-energy

in the positive and negative imaginary time domain within the same batching scheme.

Algorithm 3 ΣB(iτ) ∀τ ∈ (−∞,+∞)

1: for all τ do
2: calc. ∂Σ(iτ)

∂W̃c(−iτ)

∂W̃c(−iτ)
∂B

3: calc. batched WP (iτ)(∀P ); write on disk

4: calc. ∂Σ(iτ)
∂G0(iτ)

∂G0(iτ)
∂B

5: calc. ∂Σ(iτ)
∂BP

∂BP

∂B (∀P )
6: end for

Algorithm 4 XB
0 (iτ) ∀τ ≥ 0

1: for all τ do
2: calc. ∂X0(iτ)

∂G0(−iτ)
∂G0(−iτ)

∂B

3: calc. batched B̃
P

µi(−iτ)(∀P, µ, i); write on disk

4: calc. ∂X0(iτ)
∂G0(iτ)

∂G0(iτ)
∂B

5: calc. ∂X0(iτ)
∂BP

∂BP

∂B (∀P )
6: end for

S-5



1.3.1 Partial Derivative Term: ∂Σ(±iτ)
∂B

∂B
∂B

The computation of the partial derivative with respect to the three-center integrals is shown

Algorithm 5. Here, first, W(iτ) is read into memory for one aux-batch. Next, the B-field

derivatives of the three-center integrals are read into memory for one aux-batch and all mag-

netic field directions. Next, the contribution to ΣB(−iτ) is computed for one aux-function

at a time (lines 7-13). Here, the intermediate W(iτ) is computed first and subsequently used

to compute the contribution to ΣB(−iτ) for one magnetic field direction at a time. The

contribution to ΣB(iτ) is computed in lines 15-21. A similar loop structure is used, starting

with a loop over auxiliary functions, where W(iτ) is computed and used to compute the

contribution to ΣB(iτ) (lines 18 and 19) for one B-field direction at a time. The loops over

the auxiliary function indices (lines 7-13 and 15-21) are parallelized. Since the contribution

to the derivative of the self-energy in the positive and negative imaginary time domain is

computed for one auxiliary function at a time, the memory demand of this algorithm is de-

termined by W(iτ) and the derivatives of the three-center integrals. Therefore, it is sensible

to combine the computation of the partial derivatives of the self-energy in the positive and

negative imaginary time domain in one batching scheme.
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Algorithm 5 ∂Σ(±iτ)
∂B

∂B
∂B per τ ≥ 0

1: for aux-batch1 do
2: read WP (iτ) ∀P ∈ aux-batch1
3: for B ∈ B = {Bx, By, Bz} do

4: read
(
BP
λν

)B ∀λ, ν, P ∈ aux-batch1
5: end for
6: ⊲ Calculate contribution to ΣB(−iτ)
7: for P ∈ aux-batch1 do ⊲ parallel
8: WP

µj(iτ) = WP
µν(iτ)LνiG0,ij

(−iτ) ∀µ, j
9: for B ∈ B = {Bx, By, Bz} do

10: ΣB
µν(−iτ) += WP

µj(iτ)
(
BP
λν

)B
Lλj ∀µ, ν

11: ΣB
νµ(−iτ) −= ΣB

µν(−iτ) ∀µ, ν
12: end for
13: end for
14: ⊲ Calculate contribution to ΣB(iτ)
15: for P ∈ aux-batch1 do ⊲ parallel

16: WP

µa(iτ) = WP
µν(iτ)Lvirt,νa(iτ) ∀µ, a

17: for B ∈ B = {Bx, By, Bz} do

18: ΣB
µν(iτ) += WP

µa(iτ)
(
BP
λν

)B
Lvirt,λa(iτ) ∀µ, ν

19: ΣB
νµ(iτ) −= ΣB

µν(iτ) ∀µ, ν
20: end for
21: end for
22: end for
23:

1.3.2 Partial Derivative Term: ∂Σ(±iτ)

∂W̃c(∓iτ)

∂W̃c(∓iτ)
∂B

Algorithm 6 displays the detailed procedure for the computation of the partial derivative
∂Σ(±iτ)
∂Wc(∓iτ)

∂Wc(∓iτ)
∂B

. The contributions to ΣB(−iτ) and ΣB(iτ) are computed within the same

batching scheme. Lines 5-9 are implemented as a matrix multiplication.
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Algorithm 6 ∂Σ(±iτ)

∂W̃c(∓iτ)

∂W̃c(∓iτ)
∂B per τ ≥ 0

1: for aux-batch1 do
2: for aux-batch2 do
3: read BQ ∀Q ∈ aux-batch2
4: for B ∈ B = {Bx, By, Bz} do
5: for P ∈ aux-batch1 do
6: for Q ∈ aux-batch2 do

7:
(
WP

µν

)B
(iτ) = WB

c,PQ(iτ)BQ
µν ∀µ, ν

8: end for
9: end for

10: end for
11: end for
12: read BP ∀P ∈ aux-batch1
13: ⊲ Calculate contribution to ΣB(−iτ)
14: for P ∈ aux-batch1 do ⊲ parallel
15: BP

νj = BP
νµLµj ∀ν, j

16: B̃
P

νi(−iτ) = G
0,ij

(−iτ)BP
νj ∀ν, i

17: for B ∈ B = {Bx, By, Bz} do

18:
(
W̃P

µi

)B
(iτ) =

(
WP

µν

)B
(iτ)Lνi ∀µ, ν, i

19: ΣB
µν(−iτ) +=

(
W̃P

µi

)B
(iτ)B̃

P

νi(−iτ) ∀µ, ν
20: end for
21: end for
22: ⊲ Calculate contribution to ΣB(iτ)
23: for P ∈ aux-batch1 do ⊲ parallel

24: BP

µa = BP
µνLvirt,νa(iτ) ∀µ, a

25: for B ∈ B = {Bx, By, Bz} do

26:
(
W̃P

µa

)B
(iτ) =

(
WP

µν

)B
(iτ)Lvirt,νa(iτ) ∀µ, a

27: ΣB
µν(iτ) +=

(
W̃P

µa

)B
(iτ)BP

νa(iτ) ∀µ, ν
28: end for
29: end for
30: end for

1.3.3 Partial Derivative Term: ∂Σ(±iτ)
∂G0(±iτ)

∂G0(±iτ)
∂B

Algorithm 7 shows the computation of the partial derivative ∂Σ(±iτ)
∂G0(±iτ)

∂G0(±iτ)
∂B

. The contribu-

tions to ΣB(−iτ) and ΣB(iτ) are computed within the same batching scheme.
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Algorithm 7 ∂Σ(±iτ)
∂G0(±iτ)

∂G0(±iτ)
∂B per τ ≥ 0

1: for aux-batch1 do
2: read BP ∀P ∈ aux-batch1
3: read WP (iτ) ∀P ∈ aux-batch1
4: ⊲ Calculate contribution to ΣB(−iτ)
5: for P ∈ aux-batch1 do ⊲ parallel
6: for B ∈ B = {Bx, By, Bz} do

7: ΣB
µν(−iτ) −= WP

µλG
B
0,λσ(−iτ)BP

σν ∀µ, ν
8: end for
9: end for

10: ⊲ Calculate contribution to ΣB(iτ)
11: for P ∈ aux-batch1 do ⊲ parallel
12: for B ∈ B = {Bx, By, Bz} do

13: ΣB
µν(iτ) −= WP

µλG
B

0,λσ(iτ)BP
σν ∀µ, ν

14: end for
15: end for
16: end for

1.4 Batching Scheme: XB
0 (iτ)

A general outline for the computation of XB
0 (iτ) is provided in Algorithm 4.

B̃Pµi(−iτ) := G
0,ij

(−iτ)BPµj (1)

is precomputed and written on disk (line 3) by batching over the auxiliary function index.

This intermediate is then read into memory for the computation of the partial derivative

with respect to G0(iτ) (line 4) as well as B (line 5).

1.4.1 Partial Derivative Term: ∂X0(iτ)
∂B

∂B
∂B

The detailed computation of the partial derivative with respect to the three-center integrals

is shown in Algorithm 8. First, the intermediate B̃(−iτ) is read into memory for one aux-

batch (line 2) and transformed with Lvirt(iτ) (line 4). In a second aux-batch loop, the B-field

derivatives of the three-center integrals are read into memory for one B-field direction and

one aux-batch and subsequently transformed in line 10. Finally, in lines 12-17 the derivative

of the response function is computed per B-field direction. Lines 12-17 are implemented as a

matrix multiplication. Further, the loops over the auxiliary function indices are parallelized
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(lines 3-5 and 9-11).

Algorithm 8 ∂X0(iτ)
∂B

∂B
∂B per τ ≥ 0

1: for aux-batch1 do

2: read B̃
P

µi(−iτ) ∀i, µ, P ∈ aux-batch1
3: for P ∈ aux-batch1 do ⊲ parallel

4: B̃P
ai(iτ) = B̃

P

µi(−iτ)Lvirt,µa(iτ) ∀i, a
5: end for
6: for aux-batch2 do
7: for B ∈ B = {Bx, By, Bz} do

8: read
(
BQ
µν

)B ∀µ, ν,Q ∈ aux-batch2
9: for Q ∈ aux-batch2 do ⊲ parallel

10:
(
BQ

ai

)B
(iτ) = Lvirt,µa(iτ)

(
BQ
µν

)B
Lνi ∀i, a

11: end for
12: for P ∈ aux-batch1 do
13: for Q ∈ aux-batch2 do

14: XB
0,PQ(iτ) += B̃P

ai(iτ)
(
BQ

ai

)B
(iτ)

15: XB
0,QP (iτ) −= XB

0,PQ(iτ)
16: end for
17: end for
18: end for
19: end for
20: end for

1.4.2 Partial Derivative Term: ∂X0(iτ)
∂G0(−iτ)

∂G0(−iτ)

∂B

The computation of the partial derivative ∂X0(iτ)
∂G0(−iτ)

∂G0(−iτ)

∂B
is given in Algorithm 9. Lines 15-

19 are implemented as a matrix multiplication.
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Algorithm 9 ∂X0(iτ)
∂G0(−iτ)

∂G0(−iτ)
∂B per τ ≥ 0

1: for aux-batch1 do

2: read BP ∀P ∈ aux-batch1
3: for P ∈ aux-batch1 do ⊲ parallel

4: BP

µa = BP
µνLvirt,νa(iτ) ∀µ, a

5: end for
6: for aux-batch2 ≥ aux-batch1 do
7: read BQ ∀Q ∈ aux-batch2
8: for Q ∈ aux-batch2 do ⊲ parallel

9: BQ

µa(iτ) = BQ
µνLvirt,νa(iτ) ∀µ, a

10: end for
11: for B ∈ B = {Bx, By, Bz} do
12: for Q ∈ aux-batch2 do ⊲ parallel

13:
(
B̃Q
µa

)B
(iτ) = BQ

νaG
B
0,νµ(−iτ) ∀µ, a

14: end for
15: for P ∈ aux-batch1 do
16: for Q ∈ aux-batch2 do

17: XB
0,PQ(iτ) += BP

µa

(
B̃Q
µa

)B
18: end for
19: end for
20: end for
21: end for
22: end for

1.4.3 Partial Derivative Term: ∂X0(iτ)

∂G0(iτ)

∂G0(iτ)
∂B

The computation of the partial derivative ∂X0(iτ)

∂G0(iτ)

∂G0(iτ)
∂B

is shown in Algorithm 4. Lines 12-16

are implemented as a matrix multiplication.
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Algorithm 10 ∂X0(iτ)

∂G0(iτ)

∂G0(iτ)
∂B per τ ≥ 0

1: for aux-batch1 do

2: read BP ∀P ∈ aux-batch1
3: for P ∈ aux-batch1 do ⊲ parallel
4: BP

µi = BP
µνLνi ∀µ, i

5: end for
6: for aux-batch2 ≥ aux-batch1 do

7: read B̃
Q

µi(−iτ) ∀i, µ,Q ∈ aux-batch2
8: for B ∈ B = {Bx, By, Bz} do
9: for P ∈ aux-batch1 do ⊲ parallel

10:
(
B̃P
µi

)B
(iτ) = BP

νiG
B

0,νµ(iτ) ∀µ, i
11: end for
12: for P ∈ aux-batch1 do
13: for Q ∈ aux-batch2 do

14: XB
0,PQ(iτ) +=

(
B̃P
µi

)B
(iτ)B̃

Q

µi(−iτ)
15: end for
16: end for
17: end for
18: end for
19: end for

2 Batching-Results: Linear Alkanes

Tab. S1 provides the number of batches corresponding to Fig. 7.

Table S1: Number of auxiliary function batches for various intermediates for linear alkanes
of increasing size. Calculations were carried out on a compute node with 250 GB of RAM.

Quantity Number of aux-batches
N = 1690 N = 1970 N = 2250 N = 2530 N = 2810

X0(iτ) 1 1 1 1 3
XB

0 (iτ)
∂X0(iτ)
∂G0(−iτ)

∂G0(−iτ)

∂B
1 3 4 5 7

∂X0(iτ)

∂G0(iτ)

∂G0(iτ)
∂B

1 1 1 3 3
∂X0(iτ)
∂B

∂B
∂B

1 1 1 3 5

Σ(iτ) 1 1 1 1 2
ΣB(iτ)
∂Σ(iτ)

∂W̃c(−iτ)

∂W̃c(−iτ)
∂B

1 1 1 2 2
∂Σ(iτ)
∂G0(iτ)

∂G0(iτ)
∂B

1 1 1 1 1
∂Σ(iτ)
∂B

∂B
∂B

1 1 1 2 2
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3 Timings: Dense vs. Sparse Implementation

NMR shieldings were computed at the RPA@HF level of theory using the cc-pwCVDZ basis

set with the corresponding RI basis set for linear alkanes. The computations were carried out

using the ω-CDD-RI-RPA-NMR method, that is, the atomic-orbital RPA NMR formulation

with an attenuated Coulomb RI metric and Cholesky decomposed density type matrices.

Tab. S2 compares the timings for the computations using dense matrix algebra, denoted

as ‘Dense’, and using sparse matrix algebra, denoted as ‘Sparse’. The computations were

carried out on a compute node with AMD EPYC 7302 processors using 64 threads, 250 GB

of RAM, and 1.7 TB of disk space. For dense matrix algebra routines the Intel Math Kernel

Library (version 2022.0.0) was employed.

Table S2: Timings for the computation of the RPA correlation part within the computation
of NMR shieldings at the RPA@HF/cc-pwCVDZ level of theory for the ω-CDD-RI-RPA-
NMR method using dense and sparse matrix algebra for linear alkanes.

System Wall Time [s]
Dense Sparse

C5H12 61.34 72.38
C10H22 312.81 309.13
C20H42 1775.70 1418.08
C30H62 5689.82 3415.05

4 Isotropic NMR shielding constants for (DNA)4/cc-pwCVDZ

Table S3: Isotropic NMR shielding constants for (DNA)4 computed using RPA@HF (RPA
based on a preceding HF calculation) and the cc-pwCVDZ basis set with the corresponding
RI basis set.

Nucleus Shieldings [ppm]

H 1.57833

H 1.390977

S-13



Table S3: (continued)

H 0.74982

O 39.625412

C 1.525101

C 18.766431

H 4.234651

C 8.601825

H 1.334232

N 5.214792

O 17.11874

H 0.619695

C 17.137739

C 13.991661

O 0.76482

H 0.011777

H -0.037214

N 3.382744

H 0.71742

C -0.030678

O -4.852926

H 0.164014

C -1.494732

H 0.8372

H 0.626706
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Table S3: (continued)

C -0.995834

C 0.181645

H 0.264816

H 1.446535

H 1.880048

H 1.201433

O 22.899628

H 0.90182

C -0.18823

C 1.699186

C 17.939165

H 4.876313

O 5.865786

O -0.517268

O 3.17016

C 8.729024

H 1.672155

N 9.706986

O 18.694527

P -5.558484

C 17.851583

C 15.038718

O -1.16659
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Table S3: (continued)

H 0.551018

H 0.292424

N 3.527311

H 1.234812

C -0.122849

O -4.047136

H 0.476733

C -1.016173

H 1.023262

H 0.81029

C -1.005319

C 0.469242

H 0.401737

H 0.972414

H 1.431564

H 1.057215

O 28.595151

H 0.713146

C 0.058148

C 1.184723

C 17.507499

H 5.095655

O 5.81443
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Table S3: (continued)

O -1.839941

O 5.196133

C 8.006601

H 1.577159

N 11.366697

O 19.340224

P -6.552366

C 18.108446

C 15.040221

O -0.071245

H 0.736576

H 0.389637

N 3.613857

H 1.191251

C 0.015605

O -3.912513

H 0.634324

C -1.013577

H 0.765568

H 0.746337

C -0.87146

C 0.277107

H 0.422746
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Table S3: (continued)

H 0.708284

C 0.121936

O 6.030582

O -1.702112

O 7.620857

P -6.168668

H 0.550693

O -0.527313

H 0.730181

H 0.358968

O 0.543564

H 0.208021

C 0.101372

H 0.601108

C -0.243286

H 0.405819

H 0.393301

C -0.907799

C 0.163644

O -3.917446

H 0.707194

O 15.168253

C -1.382187
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Table S3: (continued)

C 13.889823

H 2.942117

N 3.281975

H 1.113149

N 12.03376

O 29.206439

C 17.825503

C 15.360425

C 6.329633

H 0.608848

H 0.514207

C 0.423383

H 0.392887

H 2.627137

H -1.669095

N 23.600778

N 14.486347

H 1.437691

C -12.18866

C 19.393901

C 10.615719

N 10.929766

N 35.457777
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Table S3: (continued)

H 0.541916

C 16.505611

C 14.777031

H 0.531465

N 4.828071

H 0.67236

O 0.971618

H -0.012738

H -0.085093

H 5.723445

H 3.634883

C -1.569247

H 0.549683

H 0.996448

C -0.036606

O -4.625606

H 0.132045

N 3.035753

N 8.401628

H 3.482241

C 0.35842

C -1.211749

H 0.295052
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Table S3: (continued)

C 17.904118

C 22.012332

H 0.649918

C 0.083592

C 7.155296

N 14.804725

N 38.438202

H 2.121572

O 5.909475

O -1.372144

O 8.308139

C 18.475192

C 17.977088

P -5.856548

N 6.676367

H 1.644376

O -0.548599

H 0.368341

H 0.672384

H 6.422013

H 6.702008

C -0.441486

H 1.286438
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Table S3: (continued)

H 1.551719

C 0.094695

O -3.279313

H 0.656462

N 20.344932

N 17.348439

H 4.026186

C 0.978224

C -0.8653

H 0.619598

C 22.681794

C 22.697891

H 0.765969

C 0.563298

C 10.044622

N 13.580254

N 41.966413

H 2.404027

O 5.971144

O -1.176067

O 8.216446

C 20.655167

C 18.88493
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Table S3: (continued)

P -5.806898

N 7.221697

H 1.41152

O -0.545968

H 0.470987

H 0.947656

C -0.63689

H 0.879467

H 0.463376

C 0.180698

O -3.046955

H 0.772728

C 0.383694

C -0.789458

H 0.269318

C -0.012608

H 0.427743

O -1.47565

O 5.690395

O 2.276213

P -6.347167

H 0.058347

O -0.367606
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Table S3: (continued)

H 0.227289

H 0.611955

O 0.100699

H -0.239016

C -0.088877

H 0.312979

C -0.739927

H -0.609891

H -0.434058

C -1.201207

C -0.582964

O -3.537079

H -0.133302

C -2.177435

H -0.451347

N 4.87628

C 14.281054

N 8.532255

H 2.11225

C 14.638668

N 34.43981

C 21.046854

C 4.679381
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Table S3: (continued)

N 44.749026

C 7.53773

H -10.798186

N 43.585368

H 9.508841

S-25
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Abstract

In recent years, density-functional methods relying on a new type of fifth-rung cor-
relation functionals called σ-functionals have been introduced. σ- Functionals are
technically closely related to the random phase approximation and require the same
computational effort but yield distinctively higher accuracies for reaction and transi-
tion state energies of main group chemistry and even outperform double-hybrid func-
tionals for these energies. In this work, we systematically investigate how accurate
σ-functionals can describe nuclear magnetic resonance (NMR) shieldings. It turns
out that σ-functionals yield very accurate NMR shieldings, even though in their op-
timization, exclusively, energies are employed as reference data and response prop-
erties such as NMR shieldings are not involved at all. This shows that σ-functionals
combine universal applicability with accuracy. Indeed, the NMR shieldings from a
σ-functional using input orbitals and eigenvalues from Kohn–Sham calculations with
the exchange-correlation functional of Perdew, Burke and Ernzerhof (PBE) turned
out to be the most accurate ones among the NMR shieldings calculated with vari-
ous density-functional methods including methods using double-hybrid functionals.
That σ-functionals can be used for calculating both reliable energies and response
properties like NMR shieldings characterizes them as all-purpose functionals, which
is appealing from an application point of view.
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ABSTRACT: In recent years, density-functional methods relying on a new type
of fifth-rung correlation functionals called σ-functionals have been introduced. σ-
Functionals are technically closely related to the random phase approximation and
require the same computational effort but yield distinctively higher accuracies for
reaction and transition state energies of main group chemistry and even
outperform double-hybrid functionals for these energies. In this work, we
systematically investigate how accurate σ-functionals can describe nuclear
magnetic resonance (NMR) shieldings. It turns out that σ-functionals yield very
accurate NMR shieldings, even though in their optimization, exclusively, energies
are employed as reference data and response properties such as NMR shieldings
are not involved at all. This shows that σ-functionals combine universal
applicability with accuracy. Indeed, the NMR shieldings from a σ-functional
using input orbitals and eigenvalues from Kohn−Sham calculations with the
exchange-correlation functional of Perdew, Burke and Ernzerhof (PBE) turned out to be the most accurate ones among the NMR
shieldings calculated with various density-functional methods including methods using double-hybrid functionals. That σ-functionals
can be used for calculating both reliable energies and response properties like NMR shieldings characterizes them as all-purpose
functionals, which is appealing from an application point of view.

1. INTRODUCTION
In recent years, a new class of density-functional theory (DFT)
methods, σ-functional methods, have been introduced.1,2

Within these methods, all parts of the electronic energy,
including the exchange energy, are calculated exactly, with the
exception of the correlation energy. The latter is obtained by
the σ-functional, which is a fifth-rung functional in the
common classification of density functionals3 and therefore
depends on occupied as well as unoccupied Kohn−Sham (KS)
orbitals and their eigenvalues. Technically, σ-functionals are
closely related to the random phase approximation (RPA),4−7

and like the RPA, they emerge from the adiabatic-connection
fluctuation−dissipation (ACFD) theorem.8,9 The formal
foundation of σ-functionals is many-body perturbation theory
along the adiabatic connection.10,11

Both within the RPA and with σ-functionals, the correlation
energy is evaluated from the eigenvalues ( )n of the
dynamic, i.e., frequency-dependent, KS response function by
integrating functions H ( ( ))f

n of ( )n along the complex-
valued frequency i . The difference between the RPA and σ-
functionals lies in the function H f . Within σ-functionals, the
f u n c t i o n H f e q u a l s t h e R P A f u n c t i o n

= + +H ( ( )) ln(1 ( )) ( )n n n
RPA supplemented by a

correction function H to obtain a modified function
= +H H Hf RPA 1,2 This means the RPA can be considered

as a σ-functional with the correction term H being zero. The
correction function H( ( ))n to the RPA function

H ( ( ))n
RPA is obtained by optimizing atomization, reaction,

and transition state energies as well as noncovalent interaction
energies from various established reference sets.1,2,12,13 Like
the RPA, σ-functionals are usually employed in a post-self-
consistent-field (post-SCF) manner by evaluating the total
electronic energy with orbitals and eigenvalues from a previous
self-consistent KS calculation using exchange-correlation
functionals of a lower rung. σ-Functionals were optimized1,2

for orbitals and eigenvalues from KS calculations with the
generalized gradient approximation (GGA) functional PBE,14

the meta-GGA functional TPSS,15 as well as the hybrid
functionals PBE016,17 and B3LYP.18

In main group chemistry, σ-functionals yield reaction and
transition state energies that are distinctively more accurate
than those of the RPA.2,13 Compared to lower rung functionals
of the GGA, meta-GGA, or hybrid type, the gain in accuracy is
even higher. Even double-hybrid functionals, which are also
fifth-rung functionals, are outperformed in accuracy by σ-
functionals in main group chemistry.13 Indeed, σ-functionals
reach chemical accuracy of 1 kcal/mol in main group
chemistry.2,13 Furthermore, σ-functionals, like the RPA, can
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describe noncovalent interactions highly accurately in a
seamless way. Molecular geometries and vibrational frequen-
cies,19 as well as singlet−triplet gaps,20 can also be obtained
very accurately with σ-functionals. Using orbitals and
eigenvalues from the hybrid functionals PBE0 and B3LYP
within σ-functionals leads to the most accurate results;
however, orbitals and eigenvalues from the GGA functional
PBE still yield results with accuracies that are much higher
than that of GGA, meta-GGA, or hybrid functionals. Besides
the original σ-functionals of refs 1 and 2, other versions of σ-
functionals have been introduced recently.12,21,22 In this work,
however, we will focus on the original σ-functionals of refs 1
and 2.

σ-Functionals exhibit an excellent ratio of accuracy to
computational effort. The evaluation of the total energy with σ-
functionals or the RPA requires for medium-size molecules of
about 100 to 200 atoms less computational effort than a
preceding KS calculation with a hybrid functional for the input
orbitals and eigenvalues (within the program package Molpro,
using a canonical implementation).13 Recently, efficient setups
with basis sets of different quality were introduced both for
Gaussian-type and Slater-type basis sets.13 σ-Functionals have
been implemented in a number of established quantum
chemistry packages, e.g., Molpro,1,2 Turbomole,19 ADF,13,20

PySCF, and FermiONs++.21,22

While σ-functional methods have been shown to be valuable
approaches for calculating energetic data, like reaction or
transition state energies, and molecular properties that are
directly related to energies such as molecular geometries or
vibrational frequencies, it is still largely unknown whether they
are also able to accurately predict other molecular properties.
NMR shieldings are such a property and, indeed, represent a
quantity of great practical relevance. Recently, NMR shieldings
were calculated for the first time within the RPA using
numerical second derivatives and an extensive benchmark
study was carried out.23 Due to the good results of the RPA,
analytical RPA NMR shieldings were also introduced
recently24 to extend the applicability of RPA NMR to larger
systems. Among the RPA setups tested in ref 23, the one
employing orbitals and eigenvalues from a preceding Hartree−
Fock (HF) calculation turned out to provide the most accurate
NMR shieldings. This setup, however, is not well suited for the
calculation of energies within the RPA. For the latter, orbitals
and eigenvalues from hybrid KS methods, e.g., using the PBE0
functional, lead to the best RPA results. This means, there
seems to be no all-purpose RPA setup suitable for both
energies and response properties like NMR shieldings. In ref
23, a first test of the performance of σ-functionals in the
calculation of NMR shieldings was presented for one setup
using PBE input orbitals and eigenvalues. The results were
encouraging with NMR shieldings that were more accurate
than those from the RPA with the same input data but less
accurate than the results from the RPA based on HF orbitals
and eigenvalues.
In this work, we present a systematic investigation of the

performance of σ-functionals within the calculation of NMR
shielding parameters. We consider the influence of the
exchange-correlation functional used in the KS calculation to
generate the input orbitals and eigenvalues. In particular, we
study the effect of varying the amount of nonlocal exchange in
hybrid functionals. Besides the PBE and PBE0 functionals,
with 0% and 25% nonlocal exchange, respectively, we test the
PBEh33, PBEh50, and PBEh100 functionals with 33%, 50%,

and 100% nonlocal exchange, respectively. Additionally, input
data from HF calculations are tested (HF is equal to PBEh100
except for the missing PBE correlation). Furthermore, we
consider how strong NMR shieldings depend on the choice of
the optimization of σ-functionals. Finally, the effect of the basis
set size is investigated.

2. THEORY
2.1. RPA and σ-Functionals. The ACFD theorem

provides an exact expression for the KS correlation energy.
Its application, however, requires approximations for the not
exactly known Hartree-exchange-correlation kernel, the
frequency-dependent functional derivative of the sum of the
Hartree and the exchange-correlation potential with respect to
the electron density. The RPA can be obtained via the ACFD
theorem by invoking a single but drastic approximation, that is
to completely neglect the exchange-correlation kernel and to
account only for the known Hartree kernel.

An RPA calculation requires to construct the KS response
matrix X ( )0 , represented in an RI (resolution of identity)
auxiliary basis set { }f . Its matrix elements are given by

= |
+

|

+ | |

X f f

f f

( ) ( )
1

( ) i
( )

( )
1

( ) i
( )

i a
i a

i a
a i

a i
i a

i a

0,

occ unocc

(1)

with the three-index integrals

| =
| |

†

f d d
f

r r
r r r

r r
( )

( ) ( ) ( )
i a

i a

(2)

and with ϕi and ϕa denoting occupied and unoccupied orbitals,
respectively, and εi and εa the corresponding eigenvalues. For
real-valued orbitals, eq 1 simplifies to

= |
+

|X f f( ) ( )
2( )

( )
( )

i a
i a

i a

i a
i a0,

occ unocc

2 2

(3)

For closed-shell systems, it is possible to sum over spatial
instead of spin orbitals and to take into account spin by an
additional factor of 2.

Diagonalization of X0 (or more precisely, of its negative)
yields the eigenvalues ( )n

25

=X V V( ) ( ) ( ) ( )0
T (4)

with the matrix V containing the eigenvectors and the diagonal
matrix ( ) containing the eigenvalues ( )n . Since X0 is
negative definite, all ( )n are positive. The RPA correlation
energy can then be written exclusively in terms of the ( )n

= { [ + ] + }E 11
2

d Tr ln ( ) ( )c
RPA

0 (5)

= { }H1
2

d Tr ( ( ))
0

RPA
(6)

= H1
2

d ( ( ))
n

n
0

RPA

(7)

with

= [ + ] +H ( ) ln 1RPA (8)
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The frequency integration has to be performed numerically.
The total energy for RPA (and equivalently for σ-functionals,
see below) is given by

= | | +E H ERPA
0 0 c

RPA (9)

i.e., the sum of the Hartree−Fock energy expression evaluated
with KS orbitals and the RPA correlation energy.

σ-Functionals can be considered a generalization of the RPA,
meaning that they replace the function HRPA by a different one,
H f . This function H f is optimized with the help of

(energetic) reference data in order to correct the error
introduced in RPA by neglecting the exchange-correlation
kernel.

The approach of refs 1 and 2 decomposes H f as the sum of
HRPA and a correction function H represented by cubic splines

= +H H H( ) ( ) ( )f RPA (10)

but there are also other possible ways to represent H f , for
example, by a power series approximation. H(σ) is defined as2

l

m

ooooooooooooooooooo

n

ooooooooooooooooooo
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ÅÅÅÅÅÅÅÅ
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ÑÑÑÑÑÑÑÑ
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ÅÅÅÅÅÅÅÅ
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Ö
ÑÑÑÑÑÑÑÑ
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+ + + +

+ + +

+ + +
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H
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0, 1,
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1
(11)

with = +x x xi i i1 and with the intervals

lmo
no

= [ ]
[ ] =

+I x x m M
x m M

, for 1 1
, form

m m

m

1

(12)

The abscissae points xm are selected before the optimization.
Note that in the optimization process the coefficients cp m, of eq
11 are not optimized directly, but instead piecewise cubic
Hermite interpolating polynomials (PCHIPs)26 are used.
PCHIPs are monotonous within each interval and are
described by one parameter per interval. The PCHIP
parameters for the first two and the last two intervals are set
to zero, i.e., the number of parameters involved in the
optimization equals M − 4. For more details on the
optimization process, see refs 2 and 12. The parametrizations
presented in Table 1 differ in the selection of abscissae values
and in which reference sets are included in the optimization
process and the weights assigned to them.
It is important to emphasize that the construction of σ-

functionals is not just an optimization of empirical parameters,

but that it is was developed on the basis of an expansion of the
exact exchange-correlation kernel with respect to the coupling
strength of the electrons10,11 and follows the strategy
underlying τ-functionals, which model the effect of the
correlation kernel by a function of eigenvalues τ of a
combination of the exact Hartree-exchange kernel with the
KS response function.10,11,22 Because of their physically
motivated form, σ-functionals have shown a high degree of
transferability to describe properties not included in their
optimization. How far this transferability extends to the
description of NMR shieldings is investigated in this work.
2.2. NMR with RPA-Based Methods. The nuclear

magnetic resonance shielding tensor A of a nucleus A is
given by the mixed second derivative of the electronic energy E
with respect to the nuclear magnetic moment mA =
m m m( , , )x

A
y
A

z
A T and the magnetic field B = (Bx, By, Bz)T,

both evaluated at zero according to

Table 1. Overview of Parametrizations for σ-Functionals and their Differences in Number and Position of Spline Abscissae
Values as well as the Reference Sets and Weights Used in the Optimization of the Respective Parametrizationa

name description input #param. ref

P1, P2, P3 first parametrization based only on few reference sets and abscissae points PBE 11 (P1,P2) 1
17 (P3)

W1 parametrization using more reference sets and abscissae points PBE, TPSS, 19 2
PBE0, B3LYP 18

S1, S2 parametrizations with systematically reworked reference sets and abscissae points; S2 is identical to S1,
except that it additionally contains total energies with a small weight

PBE 18 12
PBE0 17

S1re reparametrization with same sets and weights as S1 for the use with small basis sets PBE 18 13
PBE0 17

A1, A2 alternative parametrization with the same abscissae points as W1 but different reference sets, uses frozen
core approximation for generating input data

PBE 19 22
PBE0 18

aThe exact setup for each parametrization can be found in the cited references, respectively. The column “input” relates the parametrizations
indicated in the first column with the functionals that can be used to generate input orbitals and eigenvalues. For each of the functionals in the
column “Input,” a parametrization indicated in the first column exists. The column “#param.” indicates how many parameters are involved in the
respective parametrization, which depends on the number of abscissae points selected for the spline function.
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= { }
= =

E
B m

r s x y z, , ,rs
A

r s
A

m 0 B 0

2

,A (13)

In this work, we employ numerical second derivatives for the
computation of the NMR shielding tensor within the RPA and
σ-functionals as introduced in ref 23. This requires the
computation of the energy E B m( , )A for different values of the
magnetic field strength and size of the nuclear magnetic
moment to compute a component of the NMR shielding
tensor, e.g., xy

A, as23

[

]

m B
E B m

E B m

1
2

(( , 0, 0) , (0, , 0) )

(( , 0, 0) , (0, , 0)

xy
A

y
A

x
x y

A

x y
A

T T

T T
(14)

As done in ref 23, both Bx and my
A are set to a constant value δ

yielding

[

]

E

E

1
2

(( , 0, 0) , (0, , 0) )

(( , 0, 0) , (0, , 0)

xy
A

2
T T

T T (15)

In the implementation, a value of δ = 0.1 a.u. is used, which
proved to provide accurate results in ref 23. The remaining
components can be computed accordingly.
In this work, all errors are given for the isotropic NMR

shielding constants
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in ppm.
Furthermore, gauge-including atomic orbitals (GIAOs)27−30

denoted by { }r B( , )p are utilized to ensure gauge origin
independence

= = [ × ]( )r B r B 0 B R R r( , ) ( , ) exp
i
2

( )p p p 0

(17)

where i is the imaginary unit, p denotes a GIAO index,
=r B 0( , )p is a field-independent atomic orbital basis

function centered at Rp, and R0 is the gauge origin. Thus, by
employing GIAOs, complex-valued quantities are introduced.
Using eq 15, the components of the NMR shielding tensor

based on the RPA or σ-functionals can be computed by
evaluating the total RPA or σ-functional energy resulting from
eq 9 for different perturbations given by magnetic fields and
nuclear magnetic moments in different directions. Specifically,
the computation of the perturbed energy encompasses the
following steps: first, a HF or KS-DFT calculation is carried
out in the presence of a perturbation to obtain the orbitals and
orbital energies. Due to the use of complex-valued orbitals, i.e.,
GIAOs, the SCF has to be carried out using complex matrix
algebra. The detailed procedure is described in ref 23. The
complex-valued orbitals and the orbital energies are then used
to compute the perturbed total RPA or σ-functional energy (eq
9).

3. COMPUTATIONAL DETAILS
The optimizations of the new parametrizations for σ-
functionals based on PBEh33, PBEh50, PBEh100, and HF
input data were performed as described in ref 12 using the

basis sets and the reference sets and weights of parametrization
S1, i.e., parametrizations S1 for PBEh33, PBEh50, PBEh100,
and HF input data were made (most reference data were taken
from the GMTKN55 database,31 see Supporting Information).
The selection of abscissae points is identical to σ(S1)@PBE0
of ref 12. The required molecular calculations of those
reference sets included in the parametrization S1 of ref 12,
see Table 2 of ref 12 for details, were carried out with Molpro
2023.1.32 For the SCF calculations, the keyword “old” was
specified in order to use an older version of the SCF algorithm
since the newer version turned out to cause convergence
problems in some cases.

Nuclear magnetic resonance shielding tensors were
computed for the RPA and σ-functionals using the finite-field
method23 implemented in a development version of the
FermiONs++ program.33−35 In this context, the perturbed
RPA and σ-functional energies were computed using the RI
approximation as introduced by Furche and coworkers6

employing GIAOs.27−30 The numerical frequency integration
was carried out using the Clenshaw−Curtis scheme6,36 with
120 grid points, which has been shown to yield accurate
results.23 The frozen core approximation was not employed.
The SCF convergence criteria, DFT settings, and finite-field
parameters were set as in ref 23. A range of different DFT
functionals were used as a starting point for the RPA and σ-
functional calculations, such as PBE,14 B3LYP,37 PBE0,16,17 as
well as hybrid PBE functionals with various amounts of
nonlocal exchange, that is PBEh33, PBEh50, and PBEh100.
Further, NMR shielding tensors based on the meta-GGA
functionals SCAN38 and revTPSS39 were also computed using
the finite-field method within the FermiONs++ program using
the same SCF, DFT, and finite-field settings as ref 23.

NMR shielding tensors based on double-hybrid DFT,40

specifically employing the functionals B2PLYP41 and DSD-
PBEP86,42 have been computed using the ORCA program
(version 5.0.1).42,43 For the computation of the MP2 part, the
RI approximation was employed and the frozen core
approximation was not used.

The correlation consistent basis sets of the types cc-pVXZ
(X D, T, Q),44,45 cc-pwCVXZ (X T, Q),45,46 and aug-cc-
pwCVXZ (X T, Q)47 have been used together with their
corresponding RI basis sets.48,49

All calculations were carried out for the molecules in the test
set assembled by Gauss and coworkers49 (excluding O3 and
SO2 like in refs 23 and 50). This comprises a total of 26
molecules with 68 nuclei, specifically 18 hydrogen nuclei, 17
carbon nuclei, 10 oxygen nuclei, 9 fluoride nuclei, 7 nitrogen
nuclei, and 2 sulfur, phosphor, and lithium nuclei, as well as
one aluminum nucleus. The complete list of molecules can be
found in the Supporting Information. For calculations using
basis sets with core-weighted functions, the molecules LiF and
LiH were removed from the test set.

As reference serves data from the coupled cluster singles
doubles with perturbative triples (CCSD(T)) method. The
CCSD(T)/cc-pVXZ (X D, T, Q) data has been obtained
from ref 23, while CCSD(T)/cc-pwCVXZ (X T, Q)
reference values have been computed using the CFOUR
program.51 Further, basis set extrapolated CCSD(T) data,
denoted as aug-cc-pCV[TQ]Z, have been obtained from ref
49.

As an error measurement in this work, we employ mean
average errors of isotropic NMR shielding constants taken over
all nuclei of the molecules in the benchmark set. While the
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absolute values of isotropic shielding constants vary signifi-
cantly between nuclei and studying each type separately would
certainly be beneficial, the key trends in methodological
accuracy are also reflected in the combined error analysis of all
nuclei. A detailed account of the absolute isotropic NMR
shielding constants for each nucleus in the molecules from the
Gauss benchmark set is provided in the Supporting
Information.

4. RESULTS
4.1. RPA and σ-Functional Calculations with Different

Input Orbitals and Eigenvalues and Comparison to
Other Methods. Figure 1 shows mean average errors (MAEs)
of NMR shieldings computed with several methods with
respect to CCSD(T) using the cc-pVQZ basis set as well as
CCSD(T) with the basis set extrapolation aug-cc-pCV[TQ]Z.
The basis set extrapolated reference data is expected to be the
most accurate. In Figure 1, the MAE of 4.3 ppm of the
CCSD(T)/cc-pVQZ shieldings with respect to the corre-
sponding basis set extrapolated CCSD(T) data shows the basis
set incompleteness error of CCSD(T) at the QZ level (for
RPA and σ-functionals, this error is much lower, see Section
4.3).
Figure 1 shows that the σ-functional setup σ(S1)@PBE, i.e.,

the σ-functional resulting from parametrization S1 of ref 12 for
PBE input orbitals and eigenvalues, yields the lowest MAE of
all considered methods. The NMR shieldings from CCSD and
the double-hybrid DSD-PBEP86 exhibit MAEs that are only
slightly higher and represent the next accurate results. The
comparison with double-hybrid functionals is especially
interesting because these functionals are fifth-rung functionals

like σ-functionals. While the double-hybrid functional DSD-
PBEP86 performs very well, the double hybrid functional
B2PLYP is considerably less accurate. The DFT methods PBE,
B3LYP, and CAM-B3LYP52 of GGA, hybrid, and range-
separated hybrid type, respectively, exhibit MAEs that are a
factor of 5 to 10 larger than the MAE of the σ-functional
approach σ(S1)@PBE. The DFT method KT253 shows MAEs
about half as large as the DFT methods PBE, B3LYP, and
CAM-B3LYP but still more than twice as large as those of
σ(S1)@PBE. The meta-GGA functional SCAN has a similar
accuracy as B2PLYP, while the revTPSS functional is less
accurate.

The NMR shieldings from the RPA based on HF or
PBEh100 input data, i.e., RPA@HF or RPA@PBEh100, are
quite accurate and show only somewhat larger MAEs than
those of σ(S1)@PBE. The admixture of exact nonlocal
exchange in the functional used for generating the input data
has a different effect for σ-functionals compared to the RPA.
While σ(S1)@PBE has clearly the lowest MAE, the σ-
functionals based on HF or hybrid DFT methods with the
amount of exact exchange ranging from 25% to 100% yield all
similar MAEs (with σ(S1)@PBEh50 being a slight outlier) of
about 8 ppm. For RPA, on the other hand, the MAEs of NMR
shieldings strongly and continuously become smaller from
RPA@PBE over RPA@PBE0 (=RPA@PBEh25) and RPA@
PBEh33 to RPA@PBEh50, and the lowest MAEs are obtained
for RPA with HF or PBEh100 input data, RPA@HF or RPA@
PBEh100, respectively. The RPA NMR shieldings depend
much stronger on the amount of admixture of exact exchange
in the KS calculations generating the input orbitals and
eigenvalues than the NMR shieldings from σ-functionals. The

Figure 1. MAEs (ppm) of isotropic NMR shielding constants for different methods, including RPA and σ-functionals using the cc-pVQZ basis set
(and corresponding RI basis set) compared to CCSD(T)/aug-cc-pCV[TQ]Z shieldings (blue) and CCSD(T)/cc-pVQZ shieldings (green). The
data for RHF, PBE, KT2, CAM-B3LYP, and CCSD were obtained from ref 50, while data for CCSD(T), MP2, RPA@HF, and RPA@PBE were
taken from ref 23. The shieldings based on the functionals SCAN38 and revTPSS39 were computed using the finite field method of ref 23. The
individual shielding constants can be found in the Supporting Information.
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MAEs of NMR shieldings of σ-functionals in contrast to those
of RPA setups never become very large. A similar behavior is
seen for the weighted deviation of relative energies that were
used in the optimization process of σ-functionals, see Table S1.
The energies for σ-functionals are much less dependent on the
amount of exact exchange than for RPA. In particular, RPA@
HF and RPA@PBEh100 yield very high errors for energies.
The MAEs of RPA as well as of σ-functional shieldings

calculated with the cc-pVQZ basis set compared to CCSD(T)
reference data for the same basis set are much smaller
(typically by about 3−4 ppm) than the MAEs compared to the
CCSD(T) reference data obtained with the basis set
extrapolation aug-cc-pCV[TQ]Z. This difference is similar to
the corresponding difference of 4.3 ppm of the CCSD(T)
reference data when going from the cc-pVQZ basis sets to the
extrapolation aug-cc-pCV[TQ]Z. The reason is that the
CCSD(T)/cc-pVQZ shieldings are systematically too large
compared to the extrapolated values, see Figure S1 for the
results evaluated on mean signed error (MSE). While it is
known that conventional DFT methods usually yield system-
atically too low shieldings,50 it is found that RPA and σ-
functionals (which are converged at the QZ level, see Section
4.3) have positive MSE, see Figure S1. Calculated NMR
shieldings can be combined with vibrational corrections,50

which are mostly negative, and thus typically worsen
conventional DFT methods but improve CCSD(T) results.
The findings of this work suggest that also RPA and σ-
functionals should benefit from vibrational corrections.
4.2. Influence of the Parametrization. Figure 2 displays

the effect of different parametrizations for the σ-functional with

PBE input data, see Table 1 for an overview of available
parametrizations. Figure 2 illustrates that the parametrization
has a significant influence. The latest and arguably best
balanced parametrizations, S1 and S2, clearly demonstrate
superior performance. The dependence of the accuracy of
NMR shieldings on the parametrization is distinctively larger

than that on the accuracy of energies, see refs 1, 2, and 12. This
indicates that response properties like NMR shieldings are
more sensitive to the setup than energies. To keep things in
perspective, we note that even the MAEs of the least good
performing parametrization P3 of σ-functionals are still about a
factor of 2 smaller than the MAEs of the DFT methods PBE,
B3LYP, and CAM-B3LYP.
4.3. Influence of Basis Sets. Figure 3 shows the MAEs of

NMR shieldings for calculations employing the cc-pVTZ

atomic orbital (AO) basis set. Again σ(S1)@PBE yields clearly
the best results, followed by σ(S1)@PBE0. In ref 13, the
parametrization S1re was presented as a reoptimization of S1
(with identical weights as S1) specifically for small basis sets. It
was shown to clearly reduce the error of reaction energies
when using triple-ζ basis sets for reference data included in the
optimization and for reference data that was not included.
Applying optimization S1re to NMR shieldings, σ(S1re)@
PBE0 has a lower error than σ(S1)@PBE0 compared to the
extrapolated CCSD(T) results. σ(S1re)@PBE yields results of
a similar quality as σ(S1)@PBE when compared with the
extrapolated reference but clearly higher errors when compared
to CCSD(T) data of the same basis set (cc-pVTZ). The
explanation for this behavior is that the reparametrization S1re
corrects the basis set error to some extent.

Figure 4 shows the basis set dependence of NMR shieldings
obtained with the most accurate σ-functional approach σ(S1)
@PBE. Compared to the basis set-extrapolated CCSD(T)/
aug-cc-pCV[TQ]Z reference data, an inclusion of core
polarization functions leads to a moderate improvement of
the MAE from 4.6 to 3.8 ppm, see entries cc-pVQZ and cc-
pwCVQZ in Figure 4. The quality of the shieldings with the
smaller cc-pVTZ basis set benefits somewhat stronger from the

Figure 2. MAEs (ppm) of σ@PBE isotropic NMR shielding constants
for different parametrizations using the cc-pVQZ basis set (and
corresponding RI basis set) compared to CCSD(T)/aug-cc-pCV-
[TQ]Z shieldings (blue) and CCSD(T)/cc-pVQZ shieldings (green).
The individual shielding constants can be found in the Supporting
Information.

Figure 3. MAEs (ppm) of isotropic NMR shielding constants using
the cc-pVTZ basis set (and corresponding RI basis set) compared to
CCSD(T)/aug-cc-pCV[TQ]Z shieldings (blue), CCSD(T)/cc-
pVQZ shieldings (green), and CCSD(T)/cc-pVTZ shieldings
(orange). The individual shielding constants can be found in the
Supporting Information.
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inclusion of core polarization functions, with a reduction of the
MAE from 6.3 to 4.5 ppm. A basis set extrapolation from the
cc-pwCVTZ to the cc-pwCVQZ basis set, see entry cc-
pwCV[TQ]Z in Figure 4, does not lead to changes in the MAE
compared to the shieldings obtained with the cc-pwCVQZ
basis set; in both cases, an MAE of 3.8 ppm is found. This
indicates that the σ(S1)@PBE shieldings are well converged
with the cc-pwCVQZ basis set, and a basis set extrapolation is
not necessary. We also considered the effect of augmentations
of the cc-pwCVTZ and cc-pwCVQZ to aug-cc-pwCVTZ and
aug-cc-pwCVTZ basis sets. The comparison of the basis set-
extrapolated cc-pwCV[TQ]Z and aug-cc-pwCV[TQ]Z shield-
ings suggests that augmentation functions are not required (see
Figure S2 and discussion in the Supporting Information).
In summary, the setup σ(S1)@PBE with the cc-pwCVQZ

basis set yields the most accurate NMR shieldings, while the
setup σ(S1)@PBE with the cc-pVQZ basis set is only slightly
less accurate.
In ref 13, it was furthermore reported that the RI auxiliary

basis can be chosen one cardinal number smaller than the AO
basis without significantly affecting the accuracy for reaction
energies. Table 2 shows that this finding can also be applied to
NMR shieldings. This is an important result because a smaller
auxiliary basis greatly reduces the required computational
effort, see ref 13.

5. CONCLUSION
The comparison of NMR shieldings calculated from σ-
functionals with CCSD(T) reference values and with other
DFT methods shows that σ-functionals using PBE input
orbitals and eigenvalues, i.e., σ(S1)@PBE, yield the most

accurate NMR shieldings. Compared to the GGA and hybrid
DFT functionals PBE, B3LYP, or CAM-B3LYP, the difference
in accuracy is large, with MAEs of σ(S1)@PBE compared to
the CCSD(T) reference data being up to an order of
magnitude smaller. Compared to NMR shieldings from the
RPA, the gain in accuracy is not as distinct but still clearly
noticeable, and even compared to the best performing double-
hybrid functional DSD-PBEP86, the σ-functional setup σ(S1)
@PBE shows a slightly better performance. NMR shieldings
from a σ-functional based on PBE0 input orbitals and
eigenvalues, i.e., σ(S1)@PBE0, exhibit MAEs that are a bit
larger than those of the setup σ(S1)@PBE but still highly
accurate. Thus, both σ-functional setups, σ(S1)@PBE and
σ(S1)@PBE0, are well-suited for the calculation of NMR
shieldings.

Both setups, σ(S1)@PBE and σ(S1)@PBE0, have been
shown previously12,13 to yield very good reaction, transition
state, and noncovalent interaction energies. Thus, both setups
are generally applicable setups for investigating both energies
and NMR shieldings. The setup σ(S1)@PBE is computation-
ally somewhat more efficient than the setup σ(S1)@PBE0
because instead of a hybrid KS calculation, PBE0, a GGA KS
calculation, PBE, is carried out for generating the input data.
Moreover, the setup σ(S1)@PBE yields slightly more accurate
NMR shieldings but somewhat less accurate energetic data
than σ(S1)@PBE0. Therefore, the choice of which of the two
setups to use depends on the computational effort that shall be
invested and the main quantity of interest.

Due to the high accuracy obtained by σ-functionals for
NMR shielding constants, an analytical implementation for
second-order properties based on σ-functionals would be
desirable, which we intend to explore in future work. In this
context, the implementation can be built on an existing RPA
NMR implementation with moderate programming effort. The
computation of analytical NMR shielding constants would
extend the applicability of σ-functionals to even larger systems
and provide a very accurate method for potential computa-
tional applications.

The finding that σ-functionals yield highly accurate NMR
shieldings is remarkable not only from an application point of
view but also because the optimization of σ-functionals is
carried out exclusively using energetic reference data. Response
properties like NMR shieldings are not involved at all in the
optimization of σ-functionals. That σ-functionals nevertheless
yield accurate NMR shieldings shows a high transferability of
the constructed σ-functionals out of the realm they were
optimized in. This is important from the perspective of the
goal of constructing all-purpose correlation functionals of
universal validity.

Figure 4. MAEs (ppm) of isotropic NMR shielding constants for
σ(S1)@PBE computed with different basis sets compared to
CCSD(T)/aug-cc-pCV[TQ]Z (blue) and CCSD(T) with the same
basis set (green). Further, cc-pwCV[TQ]Z denotes basis set
extrapolated σ(S1)@PBE results. The individual shielding constants
can be found in the Supporting Information.

Table 2. Comparison of MAEs in ppm (Relative to
CCSD(T) with the Respective AO Basis Set) for σ(S1)@
PBE and σ(S1)@PBE0 Using Different Combinations of
AO Basis Sets and RI Basis Sets

MAE [ppm]

AO basis RI basis σ(S1)@PBE σ(S1)@PBE0

cc-pVQZ cc-pVQZ/mp2fit 2.32 3.97
cc-pVTZ/mp2fit 2.40 4.02

cc-pVTZ cc-pVTZ/mp2fit 1.86 3.54
cc-pVDZ/mp2fit 1.97 3.07
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M.; Celani, P.; Györffy, W.; Korona, T.; Lindh, R.; Mitrushenkov, A.;
Rauhut, G.; Shama-sundar, K. R.; Adler, T. B.; Amos, R. D.; Bennie, S.
J.; Bernhardsson, A.; Berning, A.; Cooper, D. L.; Deegan, M. J. O.;
Dobbyn, A. J.; Eckert, F.; Goll, E.; Hampel, C.; Heaÿ̃elmann, A.;
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1 Content

This supporting information contains, (i) the mean absolute errors (MAEs) of all reference sets
that were involved in the optimization of σ-functionals with parametrization S1 (Sec. 2), (ii) the
mean signed errors (as opposed to the mean absolut errors discussed in the main text) of the con-
sidered isotropic NMR shielding constants (Sec. 3), (iii) a discussion of the effect of augmented
basis sets in the calculation of NMR shieldings with the σ-functional setup σ(S1)@PBE (Sec. 4),
and (iv) tables with all calculated absolute isotropic NMR shieldings (Sec. 5).

Additionally, in separate files, we provide the coefficients for the new parametrizations
σ(S1)@PBEh33, σ(S1)@PBEh50, σ(S1)@PBEh100, and σ(S1)@HF. These data are available on
Zenodo (https://doi.org/10.5281/zenodo.10974893).
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2 MAEs of reference sets for new parametrizations
σ(S1)@PBEh33, σ(S1)@PBEh50, σ(S1)@PBEh100, and
σ(S1)@HF

Table S1: MAEs in kcal/mol of RPA and σ(S1) calculations of those reference sets that enter
the optimization for the parametrization S1 for σ-functionals using input data from PBE, PBE0,
PBEh33, PBEh50, PBEh100, and HF. (The entries for σ-functionals based on PBE and PBE0
input data have already been published in Ref. [1] but are included here for completeness).
Additionally the weighted deviation is shown using the weights of parametrization S1 according
to Table 2 in Ref. [1]. Basis sets were used according to ’Setup 0’ of Ref. [2] (see Table 2 there).
For the nature of the reference sets see Table 1 of Ref. [2]. Reference sets were taken from the
GMTKN55 database [3] unless noted otherwise.

Testset RPA σ(S1) RPA σ(S1) RPA σ(S1) RPA σ(S1) RPA σ(S1) RPA σ(S1)

@PBE @PBE0 @PBEh33 @PBEh50 @PBEh100 @HF

W4-17a,b 26.35 6.48 21.91 5.85 23.03 6.49 26.07 6.78 37.89 6.59 37.49 7.15

YBDE18 3.34 1.54 3.25 1.15 3.38 1.16 3.75 1.14 5.77 1.57 5.68 1.94

MOR41-3d9c,d 1.96 1.8 1.59 1.85 1.55 1.67 1.38 1.59 2.83 3.65 3.66 4.2

MOBH35-3d9BHc,e 1.72 1.68 1.22 1.37 1.21 1.24 1.28 0.99 3.1 1.36 3.28 1.71

MOBH35-3d9REc,e 1.96 2.25 2.1 2.11 2.15 2.04 2.15 1.81 4.46 2.51 4.74 3.18

W4-17REa,b,f 2.96 1.38 1.9 0.99 2.09 1.01 2.72 1.17 4.92 2.7 5.22 3.7

PA26 3.67 1.52 4.04 1.05 4.15 0.97 4.34 0.95 4.6 0.94 4.36 0.91

ISO34 0.78 0.5 0.64 0.32 0.63 0.31 0.61 0.42 0.8 0.74 0.87 0.78

BH76 1.66 1.21 1.02 1.22 1.1 1.23 1.76 1.23 4.87 2.73 5.62 3.73

PX13 0.56 0.43 0.98 0.54 1.23 0.57 1.96 0.46 4.57 0.19 4.7 0.2

WCPT18 1.06 0.54 0.86 0.55 1.32 0.56 2.23 0.57 5.15 0.43 5.15 0.57

BHPERI 0.71 0.92 1.81 1.1 2.22 1.14 3.01 0.82 5.17 0.6 4.64 1.1

PCONF21 0.41 0.54 0.21 0.43 0.14 0.42 0.08 0.26 0.39 0.22 0.53 0.21

MCONF 0.26 0.17 0.15 0.11 0.11 0.12 0.05 0.06 0.26 0.11 0.36 0.13

S22g,h 0.96 0.46 0.88 0.31 0.88 0.3 0.92 0.26 1.14 0.14 1.28 0.43

G2RC 3.84 1.1 1.49 0.93 1.31 0.88 1.36 0.83 3.23 1.29 3.54 1.28

PNICO23g 1.56 0.91 1.1 0.46 1.03 0.4 0.97 0.39 1.08 0.25 1.13 0.32

WeightedDev(S2h) 2.27 1.23 1.78 1.04 1.88 1.01 2.22 0.99 3.97 1.69 4.18 2.14

a Atomization and reaction energies containing C2 and ClOO are excluded because KS calculations for the input
orbitals and eigenvalues did not converge. b Reference [4] c Using only a subset of those reactions with 3d transition

metals (reactions 1-6,12,15,40 in MOR41 and reactions 1-9 in MOBH35). d Reference [5] e Reference [6] f Reference [7]
g Using counterpoise correction. h Reaction 21 is excluded because KS calculation did not converge.
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3 Mean signed errors of isotropic NMR shielding constants
based on various density functionals, as well as RPA, and
σ-functionals

R
H
F

P
B
E

K
T
2

S
C
A
N

re
v
T
P
S
S

B
3L

Y
P

C
A
M
-B

3L
Y
P

B
2P

L
Y
P

D
S
D
-P

B
E
P
86

C
C
S
D

C
C
S
D
(T

)

M
P
2

R
P
A
@
P
B
E

R
P
A
@
P
B
E
0

R
P
A
@
P
B
E
h
33

R
P
A
@
P
B
E
h
50

R
P
A
@
P
B
E
h
10
0

R
P
A
@
H
F

σ
(W

1)
@
B
3L

Y
P

σ
(S
1)
@
P
B
E

σ
(S
1)
@
P
B
E
0

σ
(S
1)
@
P
B
E
h
33

σ
(S
1)
@
P
B
E
h
50

σ
(S
1)
@
P
B
E
h
10
0

σ
(S
1)
@
H
F

−25

−20

−15

−10

−5

0

5

10

15

20

-9
.2

-1
3.
4

-1
9.
6

-2
3.
8

-5
.3

-9
.4

-1
.1

-5
.3

-1
1.
6

-1
5.
7

-2
0.
0

-2
4.
1

-1
8.
8

-2
2.
9

-7
.1

-1
1.
3

0.
8

-3
.4

3.
4

-0
.7

4.
1

0.
0

11
.3

7.
2

16
.9

12
.8

11
.4

7.
3

10
.3

6.
2

1.
5

-2
.6

4.
3

1.
0

4.
1

0.
0

7.
6

3.
5 4.
5

0.
4

7.
3

3.
2

7.
5

3.
4

9.
4

5.
3
8.
0

3.
9

7.
2

3.
0

M
ea
n
S
ig
n
ed

E
rr
o
rs

[p
p
m
]

Ref: CCSD(T)/aug-cc-pCV[TQ]Z

Ref: CCSD(T)/cc-pVQZ

Figure S1: Mean signed errors (ppm) of isotropic NMR shielding constants based on various
methods in a cc-pVQZ basis set compared to basis set extrapolated CCSD(T) data, denoted as
CCSD(T)/aug-cc-pCV[TQ]Z (blue), and CCSD(T)/cc-pVQZ data (green). For all calculations
the Gauss benchmark set [8] was used.
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4 Effect of augmentation of the basis set

Figure S2 shows the basis set dependence of σ(S1)@PBE NMR shieldings similar to Figure 4 of
the main paper, but now additionally results from extrapolated aug-cc-pwCV[TQ]Z basis sets
are included. For technical reasons the molecules H4C2O and C3H4 could not be calculated
with aug-cc-pwCVQZ basis sets and were therefore excluded from the benchmark set of Gauss
and coworkers [8] in all cases. Due to the two missing molecules the MAEs for those basis sets
included in Table 4 of the main text as well as Table S2 in this supporting information are
not identical. The removal of the two molecules leads to a slightly higher MAE of 4.2 ppm for
the cc-pwCV[TQ]Z shieldings compared to 3.8 ppm for the full reference set, see Table 4 main
text. The MAE of the aug-cc-pwCV[TQ]Z shieldings and of the cc-pwCV[TQ]Z shieldings for
the benchmark set of Ref. [8] without H4C2O and C3H4 is identical (4.2 ppm) which suggests
that augmentation functions are not required.
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Figure S2: MAEs (ppm) of NMR shieldings for σ(S1)@PBE computed with different basis sets
compared to CCSD(T)/aug-cc-pCV[TQ]Z (blue) and CCSD(T) with the same basis set (green).
Further, aug-cc-pwCV[TQ]Z and cc-pwCV[TQ]Z denote basis set extrapolated σ(S1)@PBE re-
sults. For all calculations the Gauss benchmark set [8] was used with the molecules H4C2O and
C3H4 excluded.
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5 Absolute isotropic NMR shieldings

5.1 Absolute isotropic NMR shieldings at the RPA level of theory with
a cc-pVQZ basis set

Table S2: Absolute isotropic NMR shieldings (ppm) for each nucleus (nuc.) of the molecules
(mol.) in the Gauss benchmark set [8] with a cc-pVQZ basis set (with the corresponding RI basis
set). As reference serve CCSD(T)/cc-pVQZ shieldings (taken from Ref. [9]) as well as basis set
extrapolated CCSD(T)/aug-cc-pCV[TQ]Z shieldings (extrap.) taken from Ref. [8].

mol. nuc. CCSD(T) extrap. RPA@PBE0 RPA@PBEh33 RPA@PBEh50 RPA@PBEh100

AlF

AL 587.7 572.9 588.5 588.4 588.5 589.9

F 212.2 211.8 227.5 227.0 226.3 227.6

C2H4

C 72.9 69.7 75.1 74.2 72.7 69.7

H 26.1 26.0 26.5 26.5 26.4 26.4

C3H4

C 193.2 192.1 191.7 191.5 191.3 191.3

C 86.5 83.7 88.7 87.9 86.4 83.5

H 24.5 24.4 24.8 24.8 24.8 24.7

H 30.7 30.6 30.9 30.9 30.9 30.9

CH2O

O -377.2 -378.6 -300.3 -306.2 -317.4 -351.8

C 6.5 1.5 16.5 14.8 12.0 7.2

H 22.1 22.0 22.8 22.7 22.7 22.7

CH3F

C 124.5 122.1 125.6 125.2 124.7 124.7

F 482.7 482.9 476.9 477.3 478.0 480.0

H 27.5 27.3 27.7 27.7 27.7 27.8

CH4

C 199.9 198.9 197.3 197.1 196.9 196.7

H 31.4 31.3 31.5 31.5 31.5 31.5

CO

C 5.8 2.2 13.5 11.5 8.0 0.6

O -51.9 -55.0 -34.5 -36.6 -40.3 -49.8

FCCH

C 181.4 179.9 180.8 180.5 180.0 179.2

C 102.6 100.1 104.3 103.9 103.2 102.7

H 30.6 30.5 30.8 30.8 30.7 30.7

F 424.0 423.5 425.1 425.5 426.1 426.1

FCN
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Table S2: (continued)

F 375.1 374.1 377.9 378.1 378.4 379.5

C 84.8 82.2 86.7 86.1 85.0 82.6

N 120.1 117.9 125.0 123.9 121.5 114.2

H2C2O

C 194.4 193.3 192.8 192.6 192.3 192.0

C -2.0 -6.3 3.0 2.2 0.7 -3.1

O -4.3 -5.9 13.7 12.9 11.1 2.4

H 29.3 29.2 29.6 29.6 29.5 29.5

H2O

O 341.0 338.0 338.5 338.4 338.2 337.0

H 30.9 30.6 31.1 31.1 31.0 30.9

H2S

S 759.6 739.0 749.2 748.3 746.5 742.1

H 30.7 30.5 30.9 30.9 30.9 30.9

H4C2O

O 364.7 363.2 363.4 364.1 365.1 366.3

C 155.1 153.2 155.1 154.8 154.5 154.5

H 29.2 29.1 29.4 29.4 29.5 29.5

HCN

H 29.1 29.0 29.3 29.3 29.3 29.3

C 87.3 84.6 90.4 89.5 87.8 83.8

N -11.3 -14.1 -0.4 -2.5 -6.3 -15.6

HCP

H 29.7 29.6 29.9 29.9 29.9 30.0

C 41.1 37.6 44.9 43.7 41.4 34.1

P 426.9 388.0 440.4 439.5 436.2 410.9

HF

H 29.1 28.8 29.4 29.3 29.2 29.0

F 419.9 420.3 418.7 418.7 418.7 418.3

HFCO

O -91.0 -94.3 -65.0 -66.7 -70.3 -85.7

C 43.1 39.6 46.4 45.7 44.5 41.7

F 166.9 165.3 182.3 181.9 181.6 184.0

H 24.0 23.9 24.3 24.3 24.3 24.4

HOF

O -58.7 -68.9 -27.9 -34.6 -45.2 -59.3

H 20.0 19.6 21.1 21.0 20.7 20.6

F 191.6 192.2 211.2 211.6 212.9 216.8

LiF

LI 89.4 89.3 89.5 89.5 89.5 89.7
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Table S2: (continued)

F 377.0 382.5 382.2 381.8 381.6 384.9

LiH

H 26.6 26.6 26.7 26.8 26.8 26.9

LI 89.3 89.3 89.6 89.5 89.4 89.2

N2

N -57.6 -60.4 -46.2 -48.8 -53.4 -62.9

N2O

N 109.4 106.4 114.1 112.5 109.6 102.4

N 16.0 12.6 21.1 19.4 16.1 7.6

O 199.9 199.0 205.9 205.2 204.0 199.8

NH3

N 273.1 270.7 270.3 270.1 269.8 268.7

H 31.6 31.4 31.8 31.8 31.8 31.8

OCS

O 98.7 96.8 108.1 107.2 105.5 100.4

C 33.8 30.2 37.9 36.7 34.4 28.1

S 815.1 796.7 818.6 818.3 817.6 813.3

OF2

O -430.3 -447.1 -353.9 -368.4 -388.4 -407.1

F -12.7 -24.0 21.0 19.0 16.4 13.5

PN

N -340.7 -344.0 -307.4 -314.0 -325.7 -355.6

P 118.2 50.6 150.1 141.7 127.1 92.3

AlF

AL 587.7 572.9 588.5 588.4 588.5 589.9

F 212.2 211.8 227.5 227.0 226.3 227.6

C2H4

C 72.9 69.7 75.1 74.2 72.7 69.7

H 26.1 26.0 26.5 26.5 26.4 26.4

C3H4

C 193.2 192.1 191.7 191.5 191.3 191.3

C 86.5 83.7 88.7 87.9 86.4 83.5

H 24.5 24.4 24.8 24.8 24.8 24.7

H 30.7 30.6 30.9 30.9 30.9 30.9

CH2O

O -377.2 -378.6 -300.3 -306.2 -317.4 -351.8

C 6.5 1.5 16.5 14.8 12.0 7.2

H 22.1 22.0 22.8 22.7 22.7 22.7

CH3F

C 124.5 122.1 125.6 125.2 124.7 124.7
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Table S2: (continued)

F 482.7 482.9 476.9 477.3 478.0 480.0

H 27.5 27.3 27.7 27.7 27.7 27.8

CH4

C 199.9 198.9 197.3 197.1 196.9 196.7

H 31.4 31.3 31.5 31.5 31.5 31.5

CO

C 5.8 2.2 13.5 11.5 8.0 0.6

O -51.9 -55.0 -34.5 -36.6 -40.3 -49.8

FCCH

C 181.4 179.9 180.8 180.5 180.0 179.2

C 102.6 100.1 104.3 103.9 103.2 102.7

H 30.6 30.5 30.8 30.8 30.7 30.7

F 424.0 423.5 425.1 425.5 426.1 426.1

FCN

F 375.1 374.1 377.9 378.1 378.4 379.5

C 84.8 82.2 86.7 86.1 85.0 82.6

N 120.1 117.9 125.0 123.9 121.5 114.2

H2C2O

C 194.4 193.3 192.8 192.6 192.3 192.0

C -2.0 -6.3 3.0 2.2 0.7 -3.1

O -4.3 -5.9 13.7 12.9 11.1 2.4

H 29.3 29.2 29.6 29.6 29.5 29.5

H2O

O 341.0 338.0 338.5 338.4 338.2 337.0

H 30.9 30.6 31.1 31.1 31.0 30.9

H2S

S 759.6 739.0 749.2 748.3 746.5 742.1

H 30.7 30.5 30.9 30.9 30.9 30.9

H4C2O

O 364.7 363.2 363.4 364.1 365.1 366.3

C 155.1 153.2 155.1 154.8 154.5 154.5

H 29.2 29.1 29.4 29.4 29.5 29.5

HCN

H 29.1 29.0 29.3 29.3 29.3 29.3

C 87.3 84.6 90.4 89.5 87.8 83.8

N -11.3 -14.1 -0.4 -2.5 -6.3 -15.6

HCP

H 29.7 29.6 29.9 29.9 29.9 30.0

C 41.1 37.6 44.9 43.7 41.4 34.1

P 426.9 388.0 440.4 439.5 436.2 410.9
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Table S2: (continued)

HF

H 29.1 28.8 29.4 29.3 29.2 29.0

F 419.9 420.3 418.7 418.7 418.7 418.3

HFCO

O -91.0 -94.3 -65.0 -66.7 -70.3 -85.7

C 43.1 39.6 46.4 45.7 44.5 41.7

F 166.9 165.3 182.3 181.9 181.6 184.0

H 24.0 23.9 24.3 24.3 24.3 24.4

HOF

O -58.7 -68.9 -27.9 -34.6 -45.2 -59.3

H 20.0 19.6 21.1 21.0 20.7 20.6

F 191.6 192.2 211.2 211.6 212.9 216.8

LiF

LI 89.4 89.3 89.5 89.5 89.5 89.7

F 377.0 382.5 382.2 381.8 381.6 384.9

LiH

H 26.6 26.6 26.7 26.8 26.8 26.9

LI 89.3 89.3 89.6 89.5 89.4 89.2

N2

N -57.6 -60.4 -46.2 -48.8 -53.4 -62.9

N2O

N 109.4 106.4 114.1 112.5 109.6 102.4

N 16.0 12.6 21.1 19.4 16.1 7.6

O 199.9 199.0 205.9 205.2 204.0 199.8

NH3

N 273.1 270.7 270.3 270.1 269.8 268.7

H 31.6 31.4 31.8 31.8 31.8 31.8

OCS

O 98.7 96.8 108.1 107.2 105.5 100.4

C 33.8 30.2 37.9 36.7 34.4 28.1

S 815.1 796.7 818.6 818.3 817.6 813.3

OF2

O -430.3 -447.1 -353.9 -368.4 -388.4 -407.1

F -12.7 -24.0 21.0 19.0 16.4 13.5

PN

N -340.7 -344.0 -307.4 -314.0 -325.7 -355.6

P 118.2 50.6 150.1 141.7 127.1 92.3
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5.2 Absolute isotropic NMR shieldings at the RPA@PBE0 level of
theory with a cc-pVTZ basis set

Table S3: Absolute isotropic NMR shieldings (ppm) for each nucleus (nuc.) of the molecules
(mol.) in the Gauss benchmark set [8] with a cc-pVTZ basis set (with the corresponding RI basis
set). As reference serve CCSD(T)/cc-pVTZ shieldings (taken from Ref. [9]) as well as basis set
extrapolated CCSD(T)/aug-cc-pCV[TQ]Z shieldings (extrap.) taken from Ref. [8].

mol. nuc. CCSD(T) extrap. RPA@PBE0

AlF

AL 576.5 572.9 582.0

F 200.2 211.8 215.8

C2H4

C 77.3 69.7 79.4

H 26.3 26.0 26.7

C3H4

C 194.9 192.1 193.3

C 90.3 83.7 92.4

H 24.6 24.4 25.0

H 30.9 30.6 31.1

CH2O

O -376.5 -378.6 -297.7

C 13.2 1.5 23.3

H 22.3 22.0 23.0

CH3F

C 127.4 122.1 128.3

F 479.2 482.9 473.3

H 27.7 27.3 27.9

CH4

C 201.3 198.9 198.7

H 31.5 31.3 31.6

CO

C 11.3 2.2 19.6

O -49.8 -55.0 -31.6

FCCH

C 183.1 179.9 183.1

C 105.3 100.1 107.0

H 30.7 30.5 31.0

F 421.2 423.5 422.6

FCN

F 373.2 374.1 376.9

C 88.2 82.2 90.2
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Table S3: (continued)

N 122.4 117.9 127.7

H2C2O

C 196.3 193.3 194.9

C 3.4 -6.3 8.5

O -3.9 -5.9 15.1

H 29.5 29.2 29.8

H2O

O 344.3 338.0 341.2

H 31.3 30.6 31.6

H2S

S 758.5 739.0 748.5

H 30.9 30.5 31.2

H4C2O

O 362.1 363.2 361.4

C 158.1 153.2 158.0

H 29.4 29.1 29.6

HCN

H 29.2 29.0 29.5

C 91.5 84.6 94.7

N -7.4 -14.1 3.7

HCP

H 29.7 29.6 29.9

C 45.4 37.6 48.7

P 412.9 388.0 427.0

HF

H 29.5 28.8 29.9

F 419.8 420.3 418.2

HFCO

O -88.0 -94.3 -61.3

C 47.0 39.6 50.5

F 167.2 165.3 182.5

H 24.3 23.9 24.6

HOF

O -44.4 -68.9 -12.0

H 20.7 19.6 21.9

F 188.3 192.2 209.4

LiF

LI 90.8 89.3 90.7

F 370.3 382.5 368.9

LiH
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Table S3: (continued)

H 26.5 26.6 26.7

LI 90.0 89.3 90.3

N2

N -52.5 -60.4 -40.3

N2O

N 114.3 106.4 119.5

N 22.1 12.6 27.4

O 197.0 199.0 204.2

NH3

N 276.2 270.7 272.8

H 32.0 31.4 32.2

OCS

O 98.7 96.8 108.9

C 37.9 30.2 42.2

S 810.9 796.7 817.9

OF2

O -402.8 -447.1 -323.5

F 0.0 -24.0 34.8

PN

N -336.0 -344.0 -301.1

P 89.4 50.6 128.1
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5.4 Absolute isotropic NMR shieldings at the σ-functional level of the-
ory with a cc-pVTZ basis set

Table S5: Absolute isotropic NMR shieldings (ppm) for each nucleus (nuc.) of the molecules
(mol.) in the Gauss benchmark set [8] with a cc-pVTZ basis set (with the corresponding
RI basis set) for σ-functionals based on various parametrizations and references. As refer-
ence serve CCSD(T)/cc-pVTZ shieldings (taken from Ref. [9]) as well as basis set extrapolated
CCSD(T)/aug-cc-pCV[TQ]Z shieldings (extrap.) taken from Ref. [8].

mol. nuc. CCSD(T) extrap. S1@PBE S1re@PBE S1@PBE0 S1re@PBE0

AlF

AL 576.5 572.9 577.5 571.4 575.8 569.8

F 200.2 211.8 206.6 194.1 205.3 198.3

C2H4

C 77.3 69.7 77.3 77.4 77.6 77.4

H 26.3 26.0 26.5 26.4 26.5 26.4

C3H4

C 194.9 192.1 194.8 195.9 193.1 194.1

C 90.3 83.7 90.5 90.4 90.6 90.2

H 24.6 24.4 24.8 24.7 24.9 24.7

H 30.9 30.6 31.0 31.0 31.0 31.0

CH2O

O -376.5 -378.6 -376.0 -431.2 -344.1 -398.0

C 13.2 1.5 14.8 10.1 16.8 10.2

H 22.3 22.0 22.6 22.3 22.6 22.3

CH3F

C 127.4 122.1 128.4 128.3 127.2 126.5

F 479.2 482.9 477.8 477.8 474.6 476.9

H 27.7 27.3 27.9 27.8 27.8 27.7

CH4

C 201.3 198.9 200.2 201.0 199.3 200.2

H 31.5 31.3 31.5 31.5 31.5 31.5

CO

C 11.3 2.2 10.2 3.5 13.4 6.2

O -49.8 -55.0 -49.2 -65.3 -42.4 -58.4

FCCH

C 183.1 179.9 181.4 182.4 182.8 183.6

C 105.3 100.1 105.0 105.2 105.6 105.0

H 30.7 30.5 30.8 30.7 30.9 30.8

F 421.2 423.5 419.7 420.0 420.3 421.5

FCN

F 373.2 374.1 369.7 366.5 371.5 369.9
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Table S5: (continued)

C 88.2 82.2 87.9 87.2 88.9 87.7

N 122.4 117.9 119.9 119.0 126.0 125.6

H2C2O

C 196.3 193.3 194.7 195.7 195.0 196.2

C 3.4 -6.3 2.1 -0.1 5.0 2.1

O -3.9 -5.9 -2.7 -13.7 8.6 -1.5

H 29.5 29.2 29.6 29.5 29.7 29.5

H2O

O 344.3 338.0 341.2 343.3 340.8 343.6

H 31.3 30.6 31.4 31.4 31.5 31.4

H2S

S 758.5 739.0 746.9 746.5 745.7 751.8

H 30.9 30.5 31.1 31.0 31.1 31.0

H4C2O

O 362.1 363.2 359.1 357.9 359.8 361.2

C 158.1 153.2 158.4 158.8 157.2 157.5

H 29.4 29.1 29.6 29.5 29.6 29.4

HCN

H 29.2 29.0 29.4 29.3 29.4 29.2

C 91.5 84.6 90.8 89.2 92.7 90.0

N -7.4 -14.1 -6.4 -10.3 -0.6 -4.7

HCP

H 29.7 29.6 29.9 29.8 29.9 29.8

C 45.4 37.6 44.4 43.4 48.5 48.2

P 412.9 388.0 416.5 411.2 422.0 419.2

HF

H 29.5 28.8 29.7 29.8 29.9 29.8

F 419.8 420.3 419.0 419.0 417.8 418.7

HFCO

O -88.0 -94.3 -91.7 -109.1 -75.1 -92.7

C 47.0 39.6 45.7 44.4 47.5 44.8

F 167.2 165.3 166.8 153.3 168.7 157.6

H 24.3 23.9 24.5 24.3 24.4 24.3

HOF

O -44.4 -68.9 -38.1 -72.9 -34.1 -67.9

H 20.7 19.6 21.2 20.2 21.2 20.2

F 188.3 192.2 191.8 174.4 193.3 187.0

LiF

LI 90.8 89.3 90.7 90.6 90.5 90.4

F 370.3 382.5 367.9 362.2 365.3 362.4
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Table S5: (continued)

LiH

H 26.5 26.6 26.5 26.5 26.6 26.6

LI 90.0 89.3 90.6 90.9 90.3 90.5

N2

N -52.5 -60.4 -55.4 -65.9 -48.9 -60.3

N2O

N 114.3 106.4 111.8 109.8 117.5 114.8

N 22.1 12.6 22.9 21.5 26.0 23.5

O 197.0 199.0 194.0 189.8 199.4 194.7

NH3

N 276.2 270.7 273.3 275.4 273.2 275.2

H 32.0 31.4 32.1 32.0 32.1 32.0

OCS

O 98.7 96.8 99.4 93.5 104.8 100.6

C 37.9 30.2 38.6 37.8 41.2 39.4

S 810.9 796.7 805.5 802.5 808.5 806.0

OF2

O -402.8 -447.1 -381.6 -484.6 -392.5 -466.4

F 0.0 -24.0 3.3 -24.4 8.9 -14.5

PN

N -336.0 -344.0 -338.1 -358.6 -318.2 -333.1

P 89.4 50.6 84.6 58.8 100.8 79.2
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5.5 Absolute isotropic NMR shieldings at the σ(S1)@PBE level of the-
ory with a cc-pwCVXZ basis set (X∈ T, Q)

Table S6: Absolute isotropic NMR shieldings (ppm) for each nucleus (nuc.) of the molecules
(mol.) in the Gauss benchmark set [8] with a cc-pwCVTZ and cc-pwCVQZ basis (with their cor-
responding RI basis sets). ‘extrap.’ denotes basis set extrapolated CCSD(T)/aug-cc-pCV[TQ]Z
shieldings (taken from Ref. [8]) and ‘S1@PBE’ denotes σ(S1)@PBE shieldings. The CCSD(T)/cc-
pwCVTZ and CCSD(T)/cc-pwCVQZ calculations were carried out using the CFOUR program
[10].

mol. nuc. extrap. cc-pwCVTZ cc-pwCVQZ

CCSD(T) S1@PBE CCSD(T) S1@PBE

AlF

AL 572.9 571.7 567.6 572.1 568.3

F 211.8 198.2 203.2 206.6 218.2

C2H4

C 69.7 74.7 74.7 71.1 72.7

H 26.0 26.3 26.4 26.1 26.2

C3H4

C 192.1 193.7 193.1 192.6 192.3

C 83.7 88.0 87.9 84.9 86.6

H 24.4 24.6 24.7 24.4 24.6

H 30.6 30.9 31.0 30.7 30.8

CH2O

O -378.6 -380.8 -380.1 -382.2 -359.6

C 1.5 10.5 12.2 4.5 8.0

H 22.0 22.3 22.6 22.1 22.4

CH3F

C 122.1 126.0 127.2 123.3 125.3

F 482.9 480.4 478.3 482.3 482.6

H 27.3 27.6 27.9 27.4 27.6

CH4

C 198.9 200.4 198.8 199.3 198.6

H 31.3 31.4 31.5 31.4 31.3

CO

C 2.2 8.7 7.3 4.1 6.0

O -55.0 -50.0 -49.6 -54.4 -46.9

FCCH

C 179.9 182.2 180.6 180.6 179.7

C 100.1 104.1 104.3 101.2 102.4

H 30.5 30.6 30.7 30.5 30.5

F 423.5 422.1 420.1 422.6 423.7
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Table S6: (continued)

FCN

F 374.1 373.7 369.5 373.7 374.1

C 82.2 87.0 86.5 83.6 84.1

N 117.9 120.9 118.4 118.5 119.5

H2C2O

C 193.3 195.0 193.1 193.8 192.9

C -6.3 0.9 -0.6 -4.2 -2.6

O -5.9 -5.3 -5.0 -6.7 2.5

H 29.2 29.5 29.5 29.3 29.3

H2O

O 338.0 344.8 341.1 340.7 339.1

H 30.6 31.2 31.4 30.9 30.8

H2S

S 739.0 734.3 727.0 736.9 733.4

H 30.5 30.7 30.8 30.6 30.5

H4C2O

O 363.2 362.4 358.8 363.2 361.4

C 153.2 156.3 156.6 154.1 155.0

H 29.1 29.4 29.5 29.2 29.3

HCN

H 29.0 29.2 29.3 29.1 29.2

C 84.6 89.9 89.0 86.1 86.4

N -14.1 -9.8 -8.2 -13.4 -7.4

HCP

H 29.6 29.6 29.8 29.6 29.7

C 37.6 43.0 42.1 39.0 39.4

P 388.0 389.4 390.8 388.8 390.3

HF

H 28.8 29.4 29.7 29.1 29.0

F 420.3 420.7 419.4 419.8 420.6

HFCO

O -94.3 -90.7 -95.0 -94.3 -87.6

C 39.6 45.5 44.2 41.3 42.0

F 165.3 167.6 166.6 165.3 172.3

H 23.9 24.2 24.4 24.0 24.1

HOF

O -68.9 -47.2 -40.4 -61.2 -51.0

H 19.6 20.6 21.2 20.0 20.3

F 192.2 186.0 188.5 189.4 196.8

N2
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Table S6: (continued)

N -60.4 -54.8 -58.0 -59.9 -57.8

N2O

N 106.4 111.6 109.2 108.0 108.8

N 12.6 20.1 20.6 14.3 17.4

O 199.0 197.7 194.1 197.7 198.4

NH3

N 270.7 275.7 272.2 272.8 270.8

H 31.4 31.9 32.0 31.6 31.6

OCS

O 96.8 97.9 98.8 96.6 102.5

C 30.2 35.9 36.5 31.7 34.3

S 796.7 797.2 791.6 797.6 796.6

OF2

O -447.1 -409.5 -387.3 -434.0 -402.3

F -24.0 -4.7 -2.4 -15.1 -8.0

PN

N -344.0 -339.8 -338.4 -344.8 -332.7

P 50.6 53.9 51.3 52.9 56.9
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5.8 Absolute isotropic NMR shieldings for double hybrid density func-
tionals

Table S9: Absolute isotropic NMR shieldings (ppm) for each nucleus (nuc.) of the molecules
(mol.) in the Gauss benchmark set [8] for the double hybrid functionals B2PLYP [11] and DSD-
PBEP86 [12]. ‘extrap.’ denotes basis set extrapolated CCSD(T)/aug-cc-pCV[TQ]Z shieldings
(taken from Ref. [8]). The CCSD(T) data was obtained from Ref. [9].

mol. nuc. CCSD(T) extrap. B2PLYP DSD-PBEP86

AlF

AL 587.7 572.9 571.1 579.0

F 212.2 211.8 184.7 197.2

C2H4

C 72.9 69.7 58.8 65.4

H 26.1 26.0 26.0 26.0

C3H4

C 193.2 192.1 185.4 190.3

C 86.5 83.7 66.2 70.1

H 24.5 24.4 24.2 24.1

H 30.7 30.6 30.8 30.8

CH2O

O -377.2 -378.6 -406.3 -378.7

C 6.5 1.5 -10.1 -1.8

H 22.1 22.0 21.7 21.9

CH3F

C 124.5 122.1 114.7 120.5

F 482.7 482.9 476.0 482.1

H 27.5 27.3 27.4 27.4

CH4

C 199.9 198.9 194.5 198.3

H 31.4 31.3 31.5 31.4

CO

C 5.8 2.2 -7.3 -0.2

O -51.9 -55.0 -68.4 -59.8

FCCH

C 181.4 179.9 175.9 179.2

C 102.6 100.1 91.8 97.4

H 30.6 30.5 30.7 30.6

F 424.0 423.5 413.8 420.0

FCN

F 375.1 374.1 364.2 370.9

C 84.8 82.2 74.9 80.2
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Table S9: (continued)

N 120.1 117.9 110.1 118.7

H2C2O

C 194.4 193.3 190.3 194.2

C -2.0 -6.3 -11.9 -4.4

O -4.3 -5.9 -6.2 6.4

H 29.3 29.2 29.4 29.3

H2O

O 341.0 338.0 337.8 341.4

H 30.9 30.6 31.0 30.8

H2S

S 759.6 739.0 741.1 757.5

H 30.7 30.5 30.8 30.6

H4C2O

O 364.7 363.2 357.4 368.1

C 155.1 153.2 147.0 152.6

H 29.2 29.1 29.5 29.5

HCN

H 29.1 29.0 29.2 29.1

C 87.3 84.6 78.0 82.7

N -11.3 -14.1 -28.8 -17.1

HCP

H 29.7 29.6 29.8 29.6

C 41.1 37.6 27.3 35.4

P 426.9 388.0 395.4 412.1

HF

H 29.1 28.8 29.2 29.0

F 419.9 420.3 417.0 419.8

HFCO

O -91.0 -94.3 -104.0 -87.9

C 43.1 39.6 31.3 37.9

F 166.9 165.3 137.4 152.8

H 24.0 23.9 23.8 23.9

HOF

O -58.7 -68.9 -99.3 -76.1

H 20.0 19.6 19.6 19.8

F 191.6 192.2 188.5 198.8

LiF

LI 89.4 89.3 88.4 89.1

F 377.0 382.5 356.8 370.2

LiH
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Table S9: (continued)

H 26.6 26.6 26.6 26.5

LI 89.3 89.3 88.7 89.0

N2

N -57.6 -60.4 -74.0 -62.9

N2O

N 109.4 106.4 101.4 111.4

N 16.0 12.6 7.3 16.8

O 199.9 199.0 189.1 199.3

NH3

N 273.1 270.7 269.1 272.8

H 31.6 31.4 31.8 31.7

OCS

O 98.7 96.8 87.3 96.6

C 33.8 30.2 26.5 32.6

S 815.1 796.7 799.2 813.1

OF2

O -430.3 -447.1 -527.3 -480.5

F -12.7 -24.0 -38.9 -16.5

PN

N -340.7 -344.0 -369.6 -333.0

P 118.2 50.6 74.4 105.1
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5.9 Absolute isotropic NMR shieldings for meta-GGA density func-
tionals

Table S10: Absolute isotropic NMR shieldings (ppm) for each nucleus (nuc.) of the molecules
(mol.) in the Gauss benchmark set [8] for the meta-GGA functionals SCAN [13] and revTPSS
[14]. ‘extrap.’ denotes basis set extrapolated CCSD(T)/aug-cc-pCV[TQ]Z shieldings (taken from
Ref. [8]). The CCSD(T) data was obtained from Ref. [9].

mol. nuc. CCSD(T) extrap. SCAN revTPSS

AlF

AL 587.7 572.9 559.5 557.5

F 212.2 211.8 191.2 161.6

C2H4

C 72.9 69.7 66.0 60.2

H 26.1 26.0 25.8 26.3

C3H4

C 193.2 192.1 182.6 177.7

C 86.5 83.7 78.5 73.5

H 24.5 24.4 24.2 24.7

H 30.7 30.6 30.6 30.9

CH2O

O -377.2 -378.6 -331.7 -372.7

C 6.5 1.5 -1.8 -6.4

H 22.1 22.0 21.5 21.9

CH3F

C 124.5 122.1 116.3 111.1

F 482.7 482.9 471.7 459.4

H 27.5 27.3 27.2 27.6

CH4

C 199.9 198.9 197.5 189.4

H 31.4 31.3 31.4 31.8

CO

C 5.8 2.2 7.0 0.9

O -51.9 -55.0 -36.7 -59.4

FCCH

C 181.4 179.9 178.4 175.1

C 102.6 100.1 93.9 92.7

H 30.6 30.5 30.5 31.1

F 424.0 423.5 404.6 389.2

FCN

F 375.1 374.1 359.6 340.3

C 84.8 82.2 80.0 77.9
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Table S10: (continued)

N 120.1 117.9 123.0 111.2

H2C2O

C 194.4 193.3 194.7 186.7

C -2.0 -6.3 1.1 -7.7

O -4.3 -5.9 29.5 -9.9

H 29.3 29.2 29.3 29.8

H2O

O 341.0 338.0 346.5 334.1

H 30.9 30.6 31.0 31.7

H2S

S 759.6 739.0 755.0 719.3

H 30.7 30.5 30.7 31.3

H4C2O

O 364.7 363.2 345.8 335.9

C 155.1 153.2 145.2 141.9

H 29.2 29.1 29.0 29.5

HCN

H 29.1 29.0 29.0 29.4

C 87.3 84.6 83.6 80.9

N -11.3 -14.1 -13.0 -20.8

HCP

H 29.7 29.6 29.6 29.9

C 41.1 37.6 29.0 22.2

P 426.9 388.0 359.8 347.2

HF

H 29.1 28.8 29.3 30.2

F 419.9 420.3 432.4 415.7

HFCO

O -91.0 -94.3 -72.0 -99.4

C 43.1 39.6 35.5 31.0

F 166.9 165.3 141.7 115.5

H 24.0 23.9 23.4 23.7

HOF

O -58.7 -68.9 -68.6 -84.9

H 20.0 19.6 20.1 20.7

F 191.6 192.2 185.4 162.9

LiF

LI 89.4 89.3 88.8 87.8

F 377.0 382.5 385.5 352.8

LiH
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Table S10: (continued)

H 26.6 26.6 26.7 26.6

LI 89.3 89.3 89.2 89.4

N2

N -57.6 -60.4 -57.9 -67.7

N2O

N 109.4 106.4 108.1 100.2

N 16.0 12.6 14.7 9.3

O 199.9 199.0 190.3 174.9

NH3

N 273.1 270.7 273.5 264.5

H 31.6 31.4 31.8 32.3

OCS

O 98.7 96.8 105.9 77.8

C 33.8 30.2 36.7 30.9

S 815.1 796.7 804.1 765.2

OF2

O -430.3 -447.1 -490.1 -525.5

F -12.7 -24.0 -26.2 -51.1

PN

N -340.7 -344.0 -358.4 -383.2

P 118.2 50.6 41.4 23.9
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Chapter 4

Conclusion

In this thesis several novel methods were introduced for the efficient calculation of
RPA energies and properties based on first and second-order derivatives of the en-
ergy.

For the memory-efficient computation of RPA energies, an optimized batching
scheme was introduced, completely alleviating the memory bottleneck of the method.
This advancement allowed the computation of systems with up to 1,052 atoms and
11,230 basis functions on a single compute node, something that was not possible
before. The introduced method can also be adapted for related electron correlation
methods that come with high memory demands, which makes this method widely
applicable and transferable.

For nuclear gradients within RPA an efficient method was presented to introduce
the frozen-core approximation. Since nuclear gradients are typically unaffected by
the correlation between core electrons and between core and valence electrons, the
error introduced by the frozen-core approximation was shown to be minimal, while
performance gains of 20-30% were observed. Further, most atomic and auxiliary
basis sets are designed to correlate only the valence electrons, thus, they do not
include any additional tight Gaussians for the core region. These basis sets can
now be used for the computation of RPA gradients leading to accurate results and
further performance gains due to the smaller size of the basis set.

Furthermore, this thesis described, for the first time, the derivation and imple-
mentation of analytical second-order derivatives for the computation of NMR shield-
ings within RPA. The implementation, based on a formulation in the atomic-orbital
space, has been validated by comparison with numerical RPA NMR shieldings. By
using a local RI metric, Cholesky decomposed density type matrices, sparse matrix
algebra techniques, and a memory efficient batching scheme, an efficient and low-
scaling formulation was obtained. This made the computation of NMR shieldings
of a DNA strand with 260 atoms and 3408 AO basis functions on a single compute
node possible. Since RPA has been previously shown to yield accuracies comparable
to CCSD, the introduced efficient and low-scaling analytical NMR method opens the
door for applications to large systems with high accuracy.

σ-Functionals are closely related to RPA, with a σ-functional implementation
building directly upon an RPA implementation. Thus, all improvements that were
introduced for RPA can also be employed for the σ-functionals with moderate ad-
ditional programming effort. σ-Functionals have been shown to yield high accuracy
for energetic data as well as nuclear gradients and vibrational frequencies. In this
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4. Conclusion

work, a comprehensive benchmark study was conducted to study the accuracy of
σ-functionals for NMR shieldings using numerical second-order derivatives. It has
been found that σ-functionals perform exceptionally well, achieving accuracies com-
parable to CCSD(T) and outperforming RPA, all investigated density functionals,
and MP2. Therefore, analytical σ-functional NMR shieldings would be beneficial
in the future, where the efficient RPA NMR method presented in this work can be
utilized for the implementation. This would provide another highly accurate and
efficient method for the computation of NMR shieldings.

Therefore, the methods introduced in this thesis play a crucial role in advancing
RPA, moving it closer to being established as the preferred functional of choice for
various computational applications.
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