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1
Introductory Summary

1.1 Global burden of psychiatric disorders and its challenges
within the medical field

The latest data from the World Health Organization (WHO) in 2019 indicate that one in every
8 people in the world live with a psychiatric condition, with anxiety and depressive disorders
being the most common. On top of that, in 2020, the numbers increased by 26 % and 28 %,
respectively, due to the global Covid-19 pandemic (WHO, June 2022). The Global Burden
of Diseases, Injuries, and Risk Factor Study has estimated the health burden of 369 di�erent
diseases and injuries using a metric called disability adjusted life years (DALYs1). In 2019, the
number of DALYs caused by anxiety and depressive disorders was estimated to be between 1.1
and 1.8 covering all ages and in the age group 10 – 24 years the number increased significantly
from 3.3. to 3.7, being among the top 10 leading causes of disability in total (Vos et al., 2020).
This evidence highlights the need for precise diagnostic tools and deducible e�ective treatment
modalities for psychiatric disorders, specifically in the anxiety and a�ective spectrum.

In reality, the field of psychiatry struggles with the biological validity of the current diagnostic
systems (Diagnostic and Statistical Manual and International Classification of Disease) and
the translation of research findings into personalized clinical applications. Diagnostic criteria
show a high phenotypic heterogeneity as they are not clearly separated from each other,
which results in di�erent symptom profiles leading to the same diagnosis; in turn there is a
high overlap of symptoms between distinct diagnoses (Cuthbert & Insel, 2013). The problem
may lie in the way psychiatric disorders are conceptualized as they are based on verbal
categorization of subjectively reported symptoms rather than relying on empirical data from
genetics, neuroscience, or psychophysiology. As a consequence, no central underlying disease
mechanism of psychiatric disorders has been identified, and their pathogenic pathways are still
elusive. Another di�culty may lay in the complexity of psychiatric disorders, as no singular

1DALYs quantify the loss of the equivalent of one year of full health.
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1. Introductory Summary

underlying cause is plausible: It is rather an interaction of manifold components in constitution,
etiology, and environmental exposure (Borsboom, 2017). For example, research in molecular
genetics points towards thousands of common and rare genetic variants which contribute
to psychiatric disorders and even further epidemiological studies have identified multiple
environmental risk factors which are associated with psychopathology (Uher & Zwicker, 2017).

So far, psychiatric diagnoses are purely phenomenological and despite many proposed candidates
within genetics and neuroscience, no biological marker has been found to be specific in
characterizing psychiatric disorders (Scull, 2021). In psychiatry, Genome-wide association
studies (GWAS) have uncovered a significant degree of polygenic architecture underlying
complex traits of psychiatric disorders, in which many single nucleotide polymorphisms (SNPs)
contribute to the development of one phenotype, but with relatively small e�ect sizes (Wendt
et al., 2020). Further, GWAS have illuminated another fundamental feature of the genetic
basis of psychiatric disorders, namely pleiotropy, in which a genetic variant on the gene
level or at the SNP level has e�ects on more than one phenotype (Polushina et al., 2021).
The Cross Disorder Workgroup of the Psychiatric Genomics Consortium has analyzed five
major psychiatric disorders (autism spectrum disorder, attention-deficit hyperactivity disorder,
bipolar disorder, major depressive disorder and schizophrenia) and found considerable evidence
of genetic overlap (Cross-Disorder Group of the Psychiatric Genomics C, 2013). Pleiotropy
makes it di�cult to determine specific genetic causes of a particular psychiatric disorder and
to interpret the results of genetic studies. One single gene may contribute to multiple disorders
or combination of symptoms, which, next to polygenicity, where one trait or phenotype is
influenced by multiple genes, also impedes the search for genetic markers or risk factors.
This leads to the point where we face the challenge of not only high heterogeneity and low
discriminatory power within symptoms and syndromes, but also in the underlying biological
factors.

The introduction of non-invasive brain imaging technologies, such as magnetic resonance
imaging (MRI), measuring grey and white matter volume or neural activity through blood-
oxygen-level dependent (BOLD) signal in functional MRI (fMRI) initially paved the way for the
identification of neuropathological underpinnings of psychiatric disorders (Jollans & Whelan,
2018). In psychiatry, for example, fMRI studies mostly focused on characterizing neural activity
within the context of constructs relevant for disease, such as reward anticipation (Knutson
et al., 2000), emotional processing (Hariri et al., 2002), and working memory (Owen et al.,
2005). These task-based fMRI approaches highlighted di�erential neural activation patterns
in patients compared to healthy participants. However, deeper explanatory insights are still
lacking due to inconsistent findings based on small sample sizes and high false-positive rates as
well as the coarseness of the methodological approach. The investigation of group di�erences on
a macro-scale does not necessarily provide meaningful understanding for individual di�erences
in disease etiology, and trajectories. This, once more, demonstrates the distinctive complexity of
psychiatric disorders, where causal pathways appear to originate from the intricate interactions
of psychological, environmental, socio-cultural, and biological factors (Nour et al., 2022).

To date, most research has focused on discrete diagnoses which are less likely to account for
their multifactorial nature. In order to overcome these challenges transdiagnostic research
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1.2 Neurocognitive deficits as a transdiagnostic phenomenon

is coming more into focus, which cuts across traditional diagnostic categories potentially
providing novel insights into how we might understand psychiatric disorders and facilitate the
identification of biologically based phenotypes (“biomarkers”) (Mitelman, 2019). Incorporating
biological evidence into prevention, diagnosis, prognosis and treatment could improve the
quality of healthcare through enabling personalized medicine and increasing remission rates for
patients. From a methodological perspective, it could be essential to move beyond association
studies alone, but rather towards data-driven clustering, such as unsupervised machine learning,
in order to reclassify psychiatric disorders based on empirically valid and biologically based
patterns of pathogenic mechanisms (Wardenaar & de Jonge, 2013).

1.2 Neurocognitive deficits as a transdiagnostic phenomenon

The occurrence of co-and multimorbidities is a principal limitation of the current nosology
system of psychiatric disorders. One example of tackling these di�culties was introduced
by the National Institute of Mental Health (NIMH), namely the initiative of the Research
Domain Criteria (RDoC). The overarching aim is to identify transdiagnostic factors across
clinical diagnoses to further guide transdiagnostic research through understanding the nature of
psychiatric disorders in relation to di�erent levels of dysfunction in fundamental psychological
and biological systems. In summary, RDoC is a dimensional approach which strives to highlight
biopsychological explanations for clinical symptoms (Insel et al., 2010).

Within the RDoC approach, cognitive systems are named as one of the main domains of analysis.
Cumulative evidence suggests that in the context of any psychopathology neurocognitive deficits
are very common, as underperformance in neuropsychological tests across neurocognitive
abilities has been well documented (East-Richard et al., 2020). Within the classical nosology
framework neurocognitive dysfunctions are associated with diagnoses like anxiety (Giomi
et al., 2021) and a�ective disorders (Ahern & Semkovska, 2017), obsessive compulsive
disorder (Abramovitch et al., 2013), schizophrenia (Schaefer et al., 2013), anorexia (Stedal
et al., 2021) and bulimia nervosa (Hirst et al., 2017), substance use disorders (Lees et al.,
2021), and personality disorders (Garcia-Villamisar et al., 2017). This underlines the notion
that neurocognitive dysfunction seems to be associated with the presence of psychopathology
in general, rather than being tied to a specific diagnosis or the symptom burden of a particular
disorder (David et al., 2008; Doyle et al., 2018).

The p factor model by Caspi et al. (2014) proposes a general factor of psychopathology with
greater explanatory power than specific factors related to single disorders. The p factor was
operationalized by reclassifying symptoms of psychiatric disorders using Confirmatory Factor
Analysis in a large birth cohort within a comprehensive longitudinal study design. The results
indicated the best fit for a hierarchical model with general psychopathology, labeled as p factor,
directly influencing all of the diagnostic symptom factors. The subordinate factors comprised
latent continuous traits: externalizing, internalizing, and thought disorders. An additional
analysis of neuropsychological test data revealed an association between neurocognitive
dysfunction and the p factor. This finding led to the conclusion that neurocognitive dysfunction
manifests across disorders, therefore, is transdiagnostically relevant and should be incorporated
within the broader framework of the general p factor (Caspi et al., 2014). Follow-up
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1. Introductory Summary

studies replicated these findings, both a�rming the robustness of the p factor in reflecting
psychopathology (Snyder et al., 2017), as well as highlighting the fact that neurocognitive
dysfunction may be strongly linked to the overall burden of psychopathology (Martel et al.,
2017).

Analogous to the p factor, Abramovitch et al. (2021) have introduced the C factor representing
cognitive dysfunction. Based on their meta-analysis they could show that underperformance
across neurocognitive domains was associated with multiple psychiatric disorders, which
supports the general hypothesis of its transdiagnostic nature and its relation to the p factor.
Specifically, in anxiety and a�ective disorders neuropsychological tasks tapping into the domain
of executive functioning seem to be mostly a�ected (Abramovitch et al., 2021).

1.3 Assessment of neurocognitive functioning and its di�culties

The NIMH has introduced the MATRICS (Measurement and Treatment Research to Improve
Cognition in Schizophrenia) initiative to establish a standardized and reliable framework for
the assessment of neurocognitive deficits and evaluation for potential treatments to improve
neurocognitive functioning. Within this approach the most promising measures were identified
for the quantification of individual abilities in the main neurocognitive domains such as
processing speed, attention / vigilance, working memory, verbal and visual learning, reasoning
and problem solving, and social cognition which are particularly a�ected in schizophrenia, but
also in other psychiatric disorders (Abramovitch et al., 2021; Nuechterlein et al., 2008). Mainly,
the majority of these domains tap into the concept of executive functioning, which refers to
a set of top-down neurocognitive processes to plan, organize, initiate, monitor, and adapt
goal-directed behavior. It essentially involves higher order mental functions which support
the regulation of thoughts, actions, and emotions. This makes executive functions and its
deviations fundamental for mental and physical health (Diamond, 2013). Working memory, a
key component of executive functions, is involved in maintenance, manipulation and retrieval
of relevant information in mind and has limited capacity (Baddeley, 1992; Baddeley, 2003).
Individual variability in working memory has been demonstrated to predict performance across
various other neurocognitive domains (Unsworth & Robison, 2017), such as learning (Unsworth
& Engle, 2005), and fluid reasoning (Kane et al., 2004). For example, in anxiety disorders,
working memory deficits have been identified as a central explanatory mechanism and have
been reliably associated with self-reported symptom severity (Moran, 2016).

Neuroimaging studies have identified large-scale brain networks that can be characterized by a
collection of brain regions and interconnections, which are consistently activated in response
to various stimuli or during resting state. Particularly, for the detection of neurobiological
underpinnings of neurocognitive and a�ective dysfunction in psychopathology scientists have
postulated that it is advantageous to apply this perspective on brain functionality and structure.
Large-scale brain networks are better aligned with the heterogenous nature of psychiatric
disorders and therefore could allow a more concise understanding (Menon, 2011). Meta-analyses
have shown that neural correlates of executive functioning, and particularly working memory,
are located within the bilateral frontoparietal network (FPN) (Owen et al., 2005; Rottschy
et al., 2012). The FPN constitutes a large-scale brain network, which is responsible for higher-
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1.3 Assessment of neurocognitive functioning and its di�culties

order neurocognitive processes, and operates through top-down modulation. This network
encompasses mainly the dorsolateral prefrontal cortex (PFC) and posterior parietal cortex
including the middle frontal gyrus, inferior parietal lobule, and cingulate gyrus, and can be
viewed as a functional hub, as it engages strongly with its constituent regions (Dixon et al.,
2018; Marek & Dosenbach, 2018).

Up until now, for the detection of neurocognitive abilities mainly neuropsychological tests are
administered as they allow the extraction of behavioral readouts with a high level of objectivity,
not only in clinical settings, such as psychiatry and neurology, but also in more general
applications such as the assessment of the intelligence quotient (Insel, 2014). The common
conceptualization of neurocognitive impairment is manifested in statistically significant lower
test scores compared to a reference sample or statistical norm (Abramovitch et al., 2021).
Research into neurocognitive deficits in psychopathology aims primarily at understanding
the involvement of neurocognitive functions in the etiology and manifestation of psychiatric
disorders and subsequently in identifying reliable biomarkers. The assumption behind this
approach is that neuropsychological test performance reflects brain abnormalities, which fits
with the biomedical model and its premise that the cause of psychiatric disorders are underlying
brain pathologies (Guze, 1989).

So far, no disorder-specific neurocognitive biomarker based on neuroimaging or neuropsycholog-
ical tests has been found to have su�cient specificity and predictive validity (Abramovitch et al.,
2021). Neuroimaging parameters are facing a low test-retest reliability through insu�cient
statistical power, lack of alignment of analytical pipelines and paradigms, which are impeding
the significance of measured e�ects. Therefore, e�ective clinical translation of results is missing
and clinical psychiatric decision making is not informed by neuroscientific data, not only
because of its costly administration (Nour et al., 2022). Another di�culty is situated in the
fact that neuropsychological tests are sensitive to behavioral dysfunction but are inherently
unspecific and may only detect di�erences when impairments are really evident. Behavioral
readouts of neurocognition do not allow distinguishing whether the decline is due to brain
pathology, peripheral perceptual deficits or motivational and e�ort related factors. As such,
neuropsychological tests can assess the relative di�erence from normative functioning, thus
providing a very useful tool, but not one that allows the direct understanding of the etiology
of the deficit. This leads to a limited potential for neuropsychological behavioral readouts to
serve as an endophenotypic factor or neurocognitive marker in psychopathology (Abramovitch
& Schweiger, 2015; Caspi et al., 2014)

It could be of high interest to foster transdiagnostic research according to the RDoC, but
also move beyond neuroimaging and behavioral neurocognitive parameters, and include easy
assessable psychophysiological readouts such as pupillometry. This could potentially provide a
deep understanding into the brain-behavior relationship and allow a high sensitivity towards
early deviations, which in turn could foster the development of diagnostic and preventive
interventions. A better understanding of human neurocognition could allow the development
of objective and reliable tools for the identification of specific abnormalities and thus aid in
the diagnosis and treatment prediction within psychopathology and foster insights into its
underlying mechanisms (Abramovitch & Schweiger, 2015).
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1. Introductory Summary

1.4 The pupil as a readout for neurocognition and its neurobi-
ological underpinnings

Oculomotor studies provide an ideal neuroscience model to investigate associations between
neural mechanisms and behavior, as the pupil allows probing into the brain. Its biological
pathways are relatively well characterized (Eckstein et al., 2017) with its two key mediators:
the brainstem nucleus locus coeruleus (LC), main noradrenergic output center (releasing
noradrenaline (NA), also referred to as norepinephrine), and the superior colliculus (SC) in
the brain stem with its cholinergic innervations (Joshi et al., 2016). Therefore, it provides an
additional measure with a high temporal resolution over and above behavioral parameters
such as accuracy and response times (Luna et al., 2008).

Since the early 1960s, researchers have been studying changes in pupil size as neurophysiological
markers. In particular, Kahneman and Beatty (1966) demonstrated that the pupil dilates when
individuals engage in mental arithmetic tasks involving information storage, and the magnitude
of dilation is contingent on the amount of information that needs to be remembered. Hence,
the authors have proposed that the observation of task-evoked changes in pupil size provide a
suitable indicator for shifts in mental e�ort, within and between neurocognitive tasks, as well as
for individual between-subject di�erences (Kahneman & Beatty, 1966). Over the past 50 years,
numerous studies have confirmed the utility of assessing pupil fluctuations as an indicator for
mental e�ort, showing that the pupil dilates in response to task di�culty (Robison & Unsworth,
2019). However, pupil size changes are not only linked to mental e�ort but to a broad range of
cognitive and a�ective processes, such as attention, memory, cognitive load (Gilzenrat et al.,
2010), decision-making (de Gee et al., 2014), reward anticipation (Schneider et al., 2018), and
autonomic arousal (Samuels & Szabadi, 2008). In summary, by measuring the contractions of
eye muscles we can examine neural processing and provide and easy-to-access, inexpensive,
noninvasive, and indirect readout of functionally relevant circuitry (Eckstein et al., 2017).

Pupil size fluctuations result from the activity of two opposing muscles: the dilator pupillae,
situated in the outer parts of the iris, enlarging the pupil, while the sphincter pupillae,
located in the central parts of the iris, is contracting the pupil. These muscles are controlled,
respectively, by the sympathetic and parasympathetic pathways of the autonomic nervous
system (McDougal & Gamlin, 2015) (Figure 1).
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1.4 The pupil as a readout for neurocognition and its neurobiological underpinnings

Figure 1: Axial view of the human eye and eye muscles responsible for eye movements and pupil
dilation and contraction. Adapted from Eckstein et al., 2017. Figure was created with BioRender.

Within the sympathetic pathway, noradrenergic postganglionic neurons from the superior
cervical ganglia (SCG) provide input to the dilator pupillae muscle, which in turn receives
projections from the ciliospinal center located in the intermediolateral cell column (IML) of
the spinal cord. In the parasympathetic pathway, neurons in the Edinger–Westphal nucleus
(EW) in the brainstem project to the ciliary ganglion (CG). The sphincter pupillae muscle
is activated by cholinergic postganglionic fibers in the CG via the short ciliary nerves. The
EW is innervated by projections from the olivary pretectal nucleus, and neurons in the olivary
pretectal nucleus receive direct retinal signals, which encompass inputs from intrinsically
photosensitive retinal ganglion cells crucial for the pupillary light reflex (Samuels & Szabadi,
2008) (Figure 2).

7



1. Introductory Summary

Figure 2: Regulation pathways of the human pupil. PVN = Paraventricular nucleus; LC = Locus
coeruleus; EW = Edinger-Westphal nucleus; IML = Intermediolateral cell column; SCG = Superior
cervical ganglion; CG = Ciliary ganglion. ACh = Acetylcholine; NA = Noradrenaline. Adapted
from Szabadi (2013). Figure was created with BioRender.

Initially, researchers highlighted the role of the LC-NA system mainly in bottom-up processes,
such as sensory encoding, arousal and sleep-wake cycle (Aston-Jones et al., 2007). This notion
was supported by investigations, which demonstrated that LC neurons exhibited continuous
firing rates during wakefulness, and reduced rates during dampened arousal, such as drowsiness
and slow wave sleep (Aston-Jones & Cohen, 2005; Szabadi, 2013).

The current more prominent theory behind the LC-NA system postulates a more complex
pattern involving top-down influences from cortical systems, while also modulating specific
behaviors (e.g. motor responses) rather than sensory processing alone (Aston-Jones & Cohen,
2005).

Anatomical studies in rodents and non-human primates have shown that the LC has extensive
projections to both cortical and subcortical regions (Szabadi, 2013). Therefore, the LC receives
top-down cortical input from frontal areas such as the orbitofrontal cortex (OFC) and the
anterior cingulate cortex (ACC) emphasizing its role in high-order processes (McBurney-Lin et
al., 2019). The conclusion of these investigations emphasized that LC neurons potentially exhibit
two modes of action during wakefulness, which are outlined in the adaptive gain theory (Aston-
Jones & Cohen, 2005). According to this theory, the LC-NA system is responding to shifts
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1.4 The pupil as a readout for neurocognition and its neurobiological underpinnings

in task utility by modifying gain modulation of cortical processing mechanisms responsible
for task performance, which, in turn, has an impact on the balance between exploitation
and exploration. It synthesizes observations on particular modes of LC functioning and the
influence of NA release in cortical processing. The two modes of action of the LC are: (1) the
phasic mode, which is associated with rapid and transient responses to task-relevant events,
and (2) the tonic mode, which refers to a sustained, baseline level of activity (Aston-Jones &
Cohen, 2005).

Optimal performance in most tasks occurs at an intermediate level of arousal, and it deteriorates
with either insu�cient or excessive arousal. Dampened arousal results in a state of drowsiness,
eventually progressing to sleep. Elevated arousal levels, triggered by the sudden occurrence of
a significant environmental stimulus, can enhance performance. However, when taken to the
extreme, heightened arousal may also induce distractibility and anxiety. This relationship is
depicted by the Yerkes-Dodson curve which follows an inverted U-shape (Yerkes & Dodson,
1908). A similar link exists between performance and LC-NA activity. The phasic activity
aids in shaping behavioral responses during task-related decision processes, while e�ectively
filtering out responses to irrelevant events. Therefore, it boosts reactions optimizing the
balance between system complexity and functional e�ciency which enhances performance
in the given task. Furthermore, the LC-NA system is attuned to continuous assessment of
task utility, which is conveyed by input from frontal structures. As task utility diminishes,
changes in tonic activity retract support for task performance, promoting alternative behaviors
that explore di�erent sources of reward. These adaptive functions are carried out through
the neuromodulatory e�ects of NA release at cortical sites. The two modes of LC activity
dynamically control the amplification of these cortical circuits, either enhancing or disengaging
task-specific processes (Aston-Jones & Cohen, 2005).

Building on the neuromodulatory impact of NA release on cortical processing, the adaptive gain
theory formalizes the assumption, that the phasic firing rate promotes exploitation, whereas
the tonic firing rate reflects disengagement from the given task, facilitating exploration (Aston-
Jones & Cohen, 2005). In phases of exploitation, task engagement is sustained while distraction
is suppressed and information is processed accurately. Throughout such phases, the baseline
firing rate of the LC is moderate and baseline pupil size remains stable. Phasic firing in the LC
is triggered by the occurrence of salient events, causing a temporary enlargement of pupil size.
Conversely, during tonic phases of exploration, task engagement is withdrawn and typically the
baseline firing of the LC is elevated as well as baseline pupil size is increased. The adaptive gain
theory establishes a connection between the phasic and tonic elements influencing fluctuations
in pupil size and, subsequently, behavior across diverse species. (Nassar et al., 2012).

Rajkowksi and colleagues (1994) were the first in recording the firing rate of single LC neurons
while concurrently monitoring pupil size changes in macaque monkeys, showing its correlative
and causal evidence. Baseline pupil size in relation to its diameter during fixation and task-
evoked pupil responses to acoustic sounds were positively correlated to LC activity, and the time
courses of the LC firing rate and pupil size fluctuations were almost indistinguishable (Aston-
Jones & Cohen, 2005; Joshi & Gold, 2020; Rajkowski et al., 1994). These results uphold
the theory of a linkage between LC activity and pupil dilation. Joshi and colleagues (2016)
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1. Introductory Summary

expanded these findings from correlative to additional causal evidence for this interconnection.
Electrophysiological recordings in rhesus monkeys demonstrated that changes in pupil size,
whether naturally occurring or triggered by external events, were reliably predicted at a fine
temporal scale through the activation of the LC (Joshi et al., 2016).

The question arises as to which mechanisms underlie the link between the LC and pupil
size fluctuations as there are no direct anatomical pathways? It has been postulated that
the connection is rather based on sources of common input to the two systems (Joshi et
al., 2016). Interestingly, this coupling is not unique to the LC as similar relationships are
apparent in the SC and ACC and posterior cingulate cortex. However, these regions are
again linked to the LC, reinforcing the general hypothesis that alterations in pupil size, not
caused by luminosity factors, reflect neuronal activity mediated by the LC (Joshi et al., 2016).
A more recent study by Megemont and colleagues (2022) has explored the precision with
which pupil size can be used as an index for LC activity in mice. They recorded LC neurons
optogenetically tagged simultaneously with changes in pupil fluctuations during a tactile
detection task and successfully replicated previous findings while demonstrating a positive and
monotonic correlation between pupil size and LC spiking activity. Moreover, the researchers
could show that consistent optical LC stimulations produced diverse pupil responses in each
trial. As a consequence, it was concluded that the variability in the coupling between the LC
and pupil fluctuations is attributed to the engagement of other additional brain areas and
neuromodulatory systems. (Joshi et al., 2016; Megemont et al., 2022; Reimer et al., 2016).

In humans, the quantification of LC activity with fMRI is rather challenging as the brain
stem nuclei are prone to physiological noise artifacts. On top of that, the nuclei are small
in relation to the spatial resolution of standard fMRI measurements, and therefore di�cult
to capture (Forstmann et al., 2017). Nevertheless, the first simultaneous measurement of
pupillometry and fMRI in humans could reveal an association between sustained pupil size
and BOLD activity in a dorsal pontine cluster, coinciding with the LC as identified through
neuromelanin-sensitive structural imaging. This association was observed in both during
resting state and task engagement in an oddball task (Murphy et al., 2014). In another study,
where participants performed a visual divided attention task, pupillometry and functional
brain activity were recorded successively. The main hypothesis was, that pupillometry as a
measure of individual di�erences in mental e�ort would serve as a more accuracte predictor of
LC activity than the behavioral responses alone. The results showed that changes in pupil
fluctuations correlated with activity specifically in the putative LC, SC, right thalamus as
well as with cortical activity in the dorsal FPN (Alnaes et al., 2014), pointing towards similar
results as in non-human primates and rodents. Pupil dilation seems to be linked to functional
changes in the brain that involve the LC-NA system and adjacent regions (Alnaes et al., 2014;
Joshi et al., 2016). In line with this notion, the results of a subsequent study using as well
individual neuromelanin-sensitive structural MRI and simultaneous pupil measurements were
again largely consistent with non-human primate physiology: Phasic pupil responses were
linked to activity in the brain stem, including the LC (de Gee et al., 2017). An overview of the
LC projections and pupil control pathways in the human neocortex is depicted in Figure 3.
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1.4 The pupil as a readout for neurocognition and its neurobiological underpinnings

Figure 3: Brain areas and circuits involved in controlling the human pupil. Blue lines = Locus
coeruleus centered pathways, yellow lines = Superior colliculus centered pathways, black lines
= Parasympathetic pathways, grey = Sympathetic pathways, CG = Ciliary ganglion, SCG =
Superior cervical ganglion. Adapted from Strauch et al., 2022. Figure was created with BioRender.

An updated theory on the factors a�ecting the pupil and its neural underpinnings in humans
proposes a hierarchical model, which partitions pupil responses into five factors with low,
intermediate, and higher levels. The factors on the low level are pupillary reactions to light and
focal distance, the intermediate level encompasses alertness, and arousal, whereas executive
functioning constitutes a high level factor. The low level factors are controlled by the pupillary
muscles (Figure 1). For the arousal related intermediate factors pupil size is indirectly controlled
by the LC circuit and the SC circuit, while the high level factors include circuits at all levels
such as sensory and executive control areas (Strauch et al., 2022).

These findings and taxonomies highlight the potential of utilizing pupil diameter as a non-
invasive readout of LC activity to obtain a clear comprehension of the involvement of
the LC-NA system in brain function, particularly top-down processes, such as executive
functioning. Under controlled conditions, the release of moderate levels of NA has been found
to substantially influence working memory, enhancing prefrontal cortical functions through
interactions with post-synaptic –-2A adrenoceptors that exhibit a high a�nity for NA (Ramos
& Arnsten, 2007; Sara, 2009). Moreover, an intake of NA reuptake inhibitor reboxtine as
an noradrenergic enhancer improved working memory functioning highlighting its role in
neurocognitive processing (Kuo et al., 2021).
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1. Introductory Summary

Investigations on the e�ect of stress exposure in working memory have found that there is
an evident impairment of top-down cognitive functions in the PFC when confronted with
stress due to elevated catecholamine release. Simultaneously, enhancing the emotional and
habitual responses of the amygdala and basal ganglia (Shansky et al., 2009). Continuous
exposure to stress results in dendritic atrophy in the PFC, which correlates with impaired
working memory (Hains et al., 2009). In contrast, chronic stress results in dendritic growth in
the amygdala with augmentation of the NA system (Vyas et al., 2002). Elevated NA release,
particularly through low-a�nity –-1 adrenoceptors (and likely —-1 adrenoceptors), under
stress conditions reduces the activity of PFC neurons but enhances amygdala functionality.
Conversely, under non-stressful conditions, moderate NA release activates higher a�nity –-2A
adrenoreceptors, strengthening the PFC, weakening the amygdala, and regulating NA cell
firing (Arnsten, 2000; Ramos et al., 2005). In other words, high NA engages low-a�nity –-1
adrenoceptors release, and it is associated with a “stressed brain” mitigating the activity
of the PFC and therefore leading to impaired working memory. Whereas, low NA release
engages higher a�nity –-2A adrenoreceptors which is associated with an intact neurocognitive
processing and dampened amygdala activity (Arnsten et al., 2015).

Further evidence for the pupil-NA coupling was provided by using clinical depth electrodes
implanted in the human amygdala while pupillometry was simultaneously recorded when
participants performed a visual a�ective oddball task. Generally, a positive pupil-NA correlation
was found and the results supported the hypothesis of a dependence between the pupil-NA
coupling and various brain states as the correlation was influenced by high and low arousal
levels (Bang et al., 2023).

To conclude, the LC-NA system has an impact on cortical excitability within brain regions
associated with executive functioning, such as working memory. The LC is connected both
anatomically and functionally to the ACC and OFC, enabling the regulation of high level
pupillary responses. A more profound comprehension of these interconnections may allow
the analysis of distinct neurocognitive factors by integrating psychophysiological and neural
measurements (Strauch et al., 2022).
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2
Aim of this thesis

The aim of this thesis was to explore the role of pupillometry during neurocognitive processing
in a transdiagnostic sample including patients with stress-related disorders, mainly a�ective
and anxiety disorders, as well as healthy control participants. The primary focus was on
working memory, the core feature of executive functioning (Baddeley, 1992; Baddeley, 2003).
The first study followed a methodological approach while identifying neural correlates of
pupil fluctuations during a working memory task in healthy individuals. The second study
built on these results, identifying computationally derived classes of pupillometric response
profiles during working memory processing in psychiatric patients. The resulting clusters
representing the pupillometric response profiles, were further analyzed in relation to an
extensive neurocognitive assessment battery covering multiple neurocognitive domains from
linguistic learning to perception and executive functioning, as well as self-reported symptoms
of depression and anxiety.
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3
Paper 1 | Disentangling subprocesses of

working memory through simultaneous

measurement of fMRI and pupillometry

3.1 Summary

The first study investigated neural correlates of pupil readouts in a working memory task
in healthy control participants. This analysis was part of the Biological Classification of
Mental Disorders (BeCOME) study at the Max Planck Institute of Psychiatry in Munich,
Germany. The overarching goal of the BeCOME study is to identify biology-based classes
of a�ective, anxiety, and stress-related psychiatric disorders. The results of the study should
ideally facilitate the introduction of pathophysiological mechanisms of psychiatric disorders
into diagnostics and then in a subsequent step improve the translational of biomedical research
into individualized clinical applications within psychiatry (Brückl et al., 2020).

For this specific project, only healthy control participants were included in the analysis.
They have conducted the N-back task, a reliable tool for the assessment of working
memory (Lamichhane et al., 2020), while pupillometry and fMRI were recorded simultaneously.
The task was designed in 8 blocks encompassing four di�erent cognitive load conditions:
fixation, 0-back, 1-back, and 2-back. Two psychophysiological readouts of the pupil diameter
were extracted: (1) mean pupil size per block, and (2) the first order derivative of pupil size,
namely pupil change. For the analysis of its neural correlates, mean pupil size per block and
the first order derivative of pupil size within one second time bins were entered as parametric
modulators to the general linear models (GLM) to analyze the baseline changes and to track
fluctuations within blocks, respectively. The results showed the typical increase of pupil size
with increasing working memory load. The analysis of BOLD activity associated with pupil
size per block with varying cognitive load revealed a positive correlation with the FPN, the
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3. Paper 1 | Disentangling subprocesses of working memory through simultaneous
measurement of fMRI and pupillometry

typically observed working memory network (Rottschy et al., 2012). Pupil change (first order
derivative of pupil size) on a moment-by-moment basis within one second time bins was
positively coupled with activity in the salience network, i.e. the insula and ACC.

The simultaneous measurement of pupillometry and BOLD activity allowed to disentangle two
subprocesses of working memory, one related to cognitive load and the other one related to
the salience of the presented stimuli within the task at hand.

The combined analysis of pupillometry and BOLD activity during a working memory task
with varying cognitive load sheds light on multiple levels of the hierarchical model postulated
by Strauch and colleagues (Strauch et al., 2022). Pupil change on a small time scale, here
within one second time intervals, is triggered by salient stimuli, which reflects arousal processes
on the intermediate level. Baseline pupil size between each cognitive load condition taps
into the higher-level factor indicating executive functioning and involving structures like
the PFC. Overall, these findings contribute to a better understanding of working memory
mechanisms and its deficits which could be of special interest for studying vulnerable groups
like individuals with psychiatric disorders and neurodegenerative diseases, who tend to show
such neurocognitive deficits (Huang-Pollock et al., 2017).

3.2 Contributions and reference

The study “Pupillometry tracks cognitive load and salience network activity in a working
memory functional magnetic resonance imaging task” was published in Human Brain Mapping
in 2022.

The project was conducted under the supervision of VS. The research project was designed by
VS, PS, MC and the BeCOME study team. Data were acquired by the BeCOME study team.
The data analysis was performed by JF, DP, FB. The data were interpreted by JF, VS, and
PS. All authors critically revised the manuscript written by JF and VS.

Fietz, J., Pöhlchen, D., Binder, F. P., BeCOME Working Group, Czisch, M., Sämann, P. G.,
& Spoormaker, V. I. (2022). Pupillometry tracks cognitive load and salience network activity
in a working memory functional magnetic resonance imaging task. Human Brain Mapping,
43 (2), 665-680.
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Abstract

The diameter of the human pupil tracks working memory processing and is associ-

ated with activity in the frontoparietal network. At the same time, recent neuroimag-

ing research has linked human pupil fluctuations to activity in the salience network.

In this combined functional magnetic resonance imaging (fMRI)/pupillometry study,

we recorded the pupil size of healthy human participants while they performed a

blockwise organized working memory task (N-back) inside an MRI scanner in order to

monitor the pupil fluctuations associated neural activity during working memory

processing. We first confirmed that mean pupil size closely followed working memory

load. Combining this with fMRI data, we focused on blood oxygen level dependent

(BOLD) correlates of mean pupil size modeled onto the task blocks as a parametric

modulation. Interrogating this modulated task regressor, we were able to retrieve the

frontoparietal network. Next, to fully exploit the within-block dynamics, we divided

the blocks into 1 s time bins and filled these with corresponding pupil change values

(first-order derivative of pupil size). We found that pupil change within N-back blocks

was positively correlated with BOLD amplitudes in the areas of the salience network

(namely bilateral insula, and anterior cingulate cortex). Taken together, fMRI with

simultaneous measurement of pupil parameters constitutes a valuable tool to dissect

working memory subprocesses related to both working memory load and salience of

the presented stimuli.

K E YWORD S

cerebral cortex, gyrus cinguli, humans, magnetic resonance imaging, neuroimaging, pupil,
short-term memory

1 | INTRODUCTION

Working memory is a core executive function (Meule, 2017) responsi-

ble for holding information in mind that is actively updated and can be

recalled over a short period of time (Baddeley, 1992, 2003). It is a
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capacity limited system (Luck & Vogel, 1997), confined to the tempo-

rary maintenance and manipulation of task-relevant information,

essentially contributing to higher order cognitive functioning and thus

to behavior. Although working memory is typically evaluated with

behavioral measures, such as reaction times (RTs) and accuracy rates,

physiological measures obtained during the actual processing can pro-

vide more sensitive and biologically based readouts of individual dif-

ferences within this cognitive domain (Brückl et al., 2020; Insel

et al., 2010).

A substantial body of evidence has shown that pupil diameter

increases with cognitive load during working memory performance

(Robison & Unsworth, 2019; Unsworth & Robison, 2018; van der

Wel & van Steenbergen, 2018; Zokaei, Board, Manohar, &

Nobre, 2019), and experimentally high versus low working memory

load can be distinguished by pupil diameter with an accuracy of up to

75% (Hogervorst, Brouwer, & van Erp, 2014). Beatty and Kahneman

were the first to observe that the pupil dilates as a function of task

difficulty and proposed that task-evoked changes in pupil diameter

constitute a reliable physiological index of changes in “processing
load” or “mental effort” (Beatty, 1982; Kahneman, Beatty, &

Pollack, 1967). To summarize, pupil diameter reflects how cognitive

load and attention unfold over time during cognitive processing—

presumably reflecting both: task demands and individual processing

differences (Alnaes et al., 2014).

In functional magnetic resonance imaging (fMRI) studies, working

memory tasks were typically found to activate the frontoparietal net-

work (FPN) across a wide range of experimental paradigms (Owen,

McMillan, Laird, & Bullmore, 2005; Rottschy et al., 2012; Wager &

Smith, 2003). The lateral prefrontal cortex (PFC) plays a crucial role in

working memory, with the rostral-lateral PFC being related to cogni-

tive processing during a working memory task irrespective of its spe-

cific components and the caudal-lateral PFC being related to working

memory load-dependent effects (Rottschy et al., 2012). Linking physi-

ological readouts of a working memory task with fMRI may elucidate

underlying core processes. Moreover, neural correlates of pupil fluctu-

ations in working memory have not been studied yet, particularly not

in a joint fMRI/pupillometry setup.

In a single human fMRI/pupillometry study employing neuromelanin-

sensitive imaging, the locus coeruleus (LC) and dorsal anterior cingu-

late cortex (dACC) were found to correlate with pupil diameter during

rest and during performance of an oddball task (Murphy, O'Connell,

O'Sullivan, Robertson, & Balsters, 2014). Further neuroimaging work

has associated pupil dilation during resting state, fear learning, and

reward anticipation with activity in the dACC and bilateral insula

(the salience network) (Leuchs, Schneider, Czisch, & Spoormaker,

2017; Schneider et al., 2016; Schneider, Leuchs, Czisch, Sämann, &

Spoormaker, 2018). Additionally, a more recent combined fMRI/

pupillometry study showed similar results when participants under-

took a steady-state attentional task, revealing a positive correlation of

pupil dilation with brainstem, subcortical and cortical regions including

the LC, thalamus, posterior cingulate cortex, ACC, and orbitofrontal

cortex (DiNuzzo et al., 2019). This line of evidence suggests a link

between spontaneous and task evoked (or modulated) pupil dilation

and the salience network—sometimes also referred to as the ventral

attention network, a system relevant for the detection of behaviorally

relevant stimuli and the coordination of neural resources (Menon &

Uddin, 2010; Peters, Dunlop, & Downar, 2016).

This implies that, while working memory is associated with FPN

activity in the brain (Rottschy et al., 2012), dynamic pupil fluctuations

during such processes could reflect the status of salience network

involvement. Up to now, pupillometry findings in working memory

tasks mainly point to pupil diameter reflecting the cognitive load

(Robison & Unsworth, 2019). This notion invites the question of how

these two lines of evidence can be integrated. Therefore, this study

had two major objectives: first, to examine the neural correlates of

varying pupil size as a function of cognitive load in a working memory

task, and second, to evaluate the more dynamic pupil fluctuations

within a given cognitive load condition and their neural correlates.

Disentangling such subprocesses may help us to better understand

working memory functioning and thus potential dysfunction in psychi-

atric disorders (Millan et al., 2012).

To examine this, we recorded the pupil size (equivalent to pupil

diameter) of healthy participants while they performed a working

memory task inside the MRI scanner, more specifically, the

established N-back task that reliably activates the FPN across partici-

pants (Drobyshevsky, Baumann, & Schneider, 2006) and time

(Caceres, Hall, Zelaya, Williams, & Mehta, 2009). We hypothesized

that pupil size would increase in relation to increasing working mem-

ory load. Moreover, in order to investigate the blood oxygen level

dependent (BOLD) correlates of working memory related pupil mea-

sures, we calculated both pupil size and pupil change (first-order

derivative of pupil size) time courses throughout the block wise orga-

nized N-back task. As previous research could show a relationship

between dynamic pupil fluctuations and the salience network (Leuchs

et al., 2017; Schneider et al., 2016, 2018), we expected to see similar

correlations during the working memory task within each block/condi-

tion. In contrast, the cognitive load dependent pupil size differences

should manifest itself between the task conditions and should be

closer related to the neural correlates of working memory.

2 | MATERIALS AND METHODS

2.1 | Participants

One-hundred and seven participants initially self-assigned as healthy

subjects in the Biological Classification of Mental Disorders

(BeCOME) study at the Max Planck Institute of Psychiatry in Munich,

Germany (registered on ClinicalTrials.gov: NCT03984084) with mea-

surements obtained up until January 14, 2020 were considered for

this analysis (Brückl et al., 2020). The BeCOME study pursues the

objective to identify biology-based classes of affective, anxiety, and

stress related mental disorders and it also includes healthy control

subjects, following the overall aim of introducing underlying patho-

physiological mechanisms into diagnostics and improving translation

of biomedical findings into tailored clinical applications.
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Exclusion criteria for the BeCOME study in general were any cur-

rent or past severe medical or neurological conditions, and the current

use of psychotropic medication. Anatomical MRI sequences were

inspected for incidental brain pathology, or other findings such as

large arachnoid cysts that would affect the fMRI analyses. Addition-

ally, all participants took part in the computer-based Munich Compos-

ite International Diagnostic Interview (DIAX/M-CIDI, Wittchen &

Pfister, 1997), which was slightly modified for the BeCOME study

through the addition of the assessment of symptoms of depression

and anxiety in the past 2 weeks. For the analysis in this current study,

we added a post hoc exclusion criterion: full or subthreshold (i.e., one

missing symptom) current psychiatric disorder, defined as present

within the past 12 months, as verified by the DIAX/M-CIDI.

Of the overall eligible sample of participants recruited as healthy

subjects (n = 107, Mage = 31.6 years, SDage = 10.2 years, 73 females),

38 participants were excluded due to the presence of any current full

or subthreshold psychiatric disorder, 14 participants were excluded

due to pupil (n = 10) or fMRI data (n = 4) not meeting the below

defined quality criteria, two participants were excluded as their pupil

data were not recorded due to a technical issue, and one further par-

ticipant was excluded due to a general technical malfunctioning. After

these exclusions, 52 healthy participants (n = 52, Mage = 31.5 years,

SDage = 9.7 years, 34 females) were included in our analyses. All par-

ticipants in the remaining sample were non-smokers and had normal

or contact lens corrected vision.

The BeCOME study protocol was in accordance with the Declara-

tion of Helsinki and approved by a local ethics committee (Ludwig Maxi-

milian University of Munich, reference number: 350-14). All participants

provided their written informed consent after the study protocol had

been fully explained and were reimbursed for their participation.

2.2 | The N-back task

In the N-back task participants view a sequence of stimuli

(e.g., letters) appearing one after another and are asked to respond

whenever a current stimulus (= target) matches the one from n steps

earlier in the sequence. For the N-back task, we used a set of capital

letters as stimuli (consonants B, C, D, G, P, T, W). The task as a whole

contained eight blocks, each consisting of 16 stimuli, of the type

0-back, 1-back, 2-back, and fixation. We refrained from adding condi-

tions with higher load due to the design of the BeCOME study (Brückl

et al., 2020). Besides healthy participants, patients with psychiatric

disorders, for example, mood disorders, were recruited for the

BeCOME study in general and cognitive impairments belong to the

spectrum of symptoms.

Each condition was presented once in the first half of the task

and once in the second (order first half: 0-back, 2-back, 1-back, fixa-

tion; order second half: 2-back, 1-back, fixation, 0-back). In the 0-back

condition, participants were instructed to react with a button press

when a single prespecified target letter (i.e., W) appeared on the

screen. Thus, this control condition had attentional but no working

memory demand (i.e., minimal working memory load). In the 1-back

and 2-back conditions, participants were asked to indicate with a but-

ton press whether a letter presented on the screen (= target) matched

a letter one or two steps before, respectively. Here, the cognitive load

increased with each task condition. All three aforementioned condi-

tions encompassed four target stimuli (25%) with varying letter identi-

ties and 12 (75%) non-target stimuli per block. In the fixation

condition, the capital letter X was shown repeatedly as a substitution

for the letter stimuli on the screen and no action was required. This

condition served as a baseline control as it included a visual input but

was lacking a required motor response as well as a working memory

and recognition/attentional aspect (Henson, 2007; Zhu et al., 2006).

Before each block, the respective instruction was displayed for

6 s, indicating which condition to follow. The single stimuli, as well as

the capital letter X in the fixation condition, were displayed for

500 ms followed by a fixation cross displayed for 2,000 ms before the

next stimulus appeared on the screen. In the first 1,000 ms of the fixa-

tion, cross display answers were collected.

All stimuli were presented using Presentation Software version

18.01 (Neurobehavioral Systems Inc., Berkeley, CA) in a central posi-

tion on a monitor located about 2 m behind the end of the scanner

bore, which could be seen by the participants via a mirror that was

attached to the head coil.

2.3 | Experimental procedure

The N-back task was included in the fMRI session on the first

BeCOME study day (Brückl et al., 2020). Before performing the task

inside the scanner, participants received instructions about the N-

back task in front of a computer outside the scanner by experienced

technicians instructed into the BeCOME study.

To ensure that participants fully understood the N-back task, they

completed a short, standardized training of the task outside the scan-

ner room. The training phase involved each condition of the task.

After assurance that the task was fully comprehended and any

remaining questions were clarified, participants were positioned in the

scanner.

2.4 | Behavior

To compare RTs and accuracy rates between conditions of the N-back

task with varying working memory load, we computed the individual

mean RTs and mean accuracy rates across respective trials and condi-

tions. Accuracy was defined as the ratio of pressing the response but-

ton in response to targets (= hits) in time, that is, from stimulus onset

until maximum 1,000 ms after end of the stimulus presentation in

addition to not pressing the response button when non-targets

appeared on the screen (= correct rejections) and the total number of

trials. Additionally, we quantified error responses as incorrectly not

pressing a button in response to targets (= missed hits) and incor-

rectly pressing the response button in non-target trials (= false

alarms), see Results section and Figures S1–S4 in the Supplement.
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For three participants, the behavioral parameters were not

recorded due to technical reasons; therefore, the behavioral analyses

were restricted to 49 participants.

2.5 | Pupillometry

Pupil size and gaze coordinates were recorded with an MR-compatible

eye tracker (EyeLink 1000 Plus; SR Research, Osgoode, ON, Canada),

which was placed at the end of the scanner bore and below the pre-

sentation monitor, such that the participant's right eye could be

tracked via the head coil mirror. Pupil size data were acquired in arbi-

trary units with a sampling rate of 250 Hz. In order to calibrate the

eye gaze position on the monitor, a standard nine-point calibration

procedure was applied. Eye tracking data were processed and ana-

lyzed in MATLAB (version 2019b, MathWorks, Natick, MA). Missing

data resulting from eye blinks were linearly interpolated between the

last saccade before blink onset and the first saccade after blink offset.

Saccade markers were provided by EyeLink software (SR Research

Ltd.). After this procedure, pupil size data were smoothed by comput-

ing the mean of a 200 ms sliding window and z-transformed to control

for variability in average pupil size across participants.

In order to ensure optimal data quality, datasets with more than

20% blink/eye closure-related missing pupil size values within one

block of the task were excluded (n = 8), this rate is equivalent to more

than 20% of interpolated data within one block. As strong shifts in

gaze can interfere with the pupil size detection, we also checked

whether the participants' gaze within one block was directed at the

center of the screen. For this purpose, we determined the median of

the horizontal (x) and vertical (y) gaze data over the course of the task

for each participant, yielding a pair of coordinates that indicated the

center of the screen on an individual level. Next, we computed the

average SDs of the x gaze (sd_x = 105.34) and y gaze (sd_y = 91.40)

shift across all participants. We defined a cut-off window by using 3.3

SDs around the participant's individual center coordinates. If the par-

ticipant's gaze remained outside this cut-off window for more than

20% of the time within one block, the participant was excluded from

further analyses (n = 2). The procedure of the data quality check was

derived from previous literature on pupil fluctuations and their neural

correlates in a number of tasks and resting state (Leuchs et al., 2017;

Schneider et al., 2016, 2018, 2020). In this study, we adapted the

criteria per block (instead of per stimulus) as we were interested in

the between and within effects of the blocks, which were also

modeled in our subsequent analysis. We also reran the main analyses

with including these subjects (for results of this additional analysis see

section 2.2 in the Supplement and Figures S5 and S6).

Pupil change was calculated as the first-order derivative of pupil

size. This difference between two consecutive time points of pupil

size, equivalent to pupil change, was calculated using MATLAB (ver-

sion 2019b, MathWorks). For further pupil response quantification,

we obtained the pupil maximum value in the search window of

1,000 ms (after stimulus presentation and the light reflex) to 2,500 ms

(trial end). From this maximum value, we then subtracted the baseline

of the respective trial defined as the mean pupil size between trial

onset and 500 ms, which equals the stimulus presentation, just before

the light reflex, and after the refractory period of the previous trial.

Additionally, we analyzed a potential tiring effect based on pupil

size differences between the first and the second half of the N-back

task, see Results section and Figure S7 in the Supplement.

2.6 | Statistical analyses of behavioral and
pupillometry data

We used Bayesian inferential statistics as implemented in the soft-

ware package JASP 0.12.2 (https://jasp-stats.org). We performed

Bayesian one-way repeated measures (rm) analysis of variances

(ANOVAs) with the N-back conditions (0-back, 1-back, 2-back, and

fixation) as the within subject factor. In a Bayesian repeated measures

(rm) ANOVA, different models are compared based on their likelihood

given the data. In our case, model comparisons included the null

model, stating that there is no effect of condition, and the alternative

model with the effect of condition, stating that the conditions differ.

The prior probability is equally distributed over those two options

(0.5) and the updated probability after observing the data (P(Mjdata))
provides the relevant output for these analyses. The posterior odds

represent the relative plausibility of the alternative model after

observing the data, and it is equal to the Bayes factor (BF10) multiplied

by the prior odds. The Bayes factor quantifies the change of relative

plausibility given the data. A BF10 of around one indicates that the

observed data are equally likely to occur under both models, a BF10
between one and three can be interpreted as anecdotal evidence

for the alternative hypothesis. A BF10 above three but under 10 is

seen as moderate evidence for the presence of an effect in favor of

the alternative model, and a BF10 above 10 is proposed to indicate

strong evidence for the presence of an effect. Whereas, for example,

a BF10 < 1/3, which is mathematically equivalent to BF01 > 3, can

be interpreted as moderate evidence in favor of the null model

(Wagenmakers et al., 2018). For Bayesian ANOVA post hoc tests,

Bayesian t tests were used. To control for multiple testing, the prior

probabilities were adjusted following the Westfall approach

(Westfall, 1997). The calculation of the prior model odds depends on

the number of respective conditions and in that way each single com-

parison is considered. The multiplication with the unadjusted Bayes

Factor for each pairwise comparison with a Cauchy (0, r = 1/sqrt(2))

prior, results in corrected posterior odds (van den Bergh et al., 2020).

For reasons of readability, we followed a hybrid approach and also

report more commonly used frequentist statistics (Keysers, Gazzola, &

Wagenmakers, 2020).

2.7 | fMRI data acquisition and preprocessing

All participants were scanned in a 3 Tesla MRI Scanner (Discovery

MR750, GE, Milwaukee, WI) at the Max Planck Institute of Psychiatry

in Munich, Germany. For the data acquisition a 32-channel head coil,
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covering 40 slices (AC-PC orientation of the slices, 96 ! 96 matrix, in-

plane field of view 24 ! 24 cm2, 3 mm slice thickness, 0.5 mm slice

gap, resulting voxel size 2.5 ! 2.5 ! 3.5 mm3, echo planar imaging

[EPI], TR 2.5 s, TE 30 ms, acceleration factor 2) was used. The N-back

task included a total number of 176 image volumes, of which the first

four volumes were discarded to avoid non-steady-state effects.

Preprocessing and analysis of the fMRI data was performed with

MATLAB (version 2019b, MathWorks) using SPM12 (Statistical Para-

metric Mapping Software, Wellcome Centre for Human Neuroimag-

ing, London, UK, http://www.fil.ion.ucl.ac.uk/SPM), and FSL 6.0

(Wellcome Centre Integrative Neuroimaging, Oxford, UK, https://fsl.

fmrib.ox.ac.uk/fsl/fslwiki). Preprocessing of the functional images

encompassed—in the order given—(a) realignment using rigid body

motion correction with the first image of the task as reference with an

additional FSL based rigid body motion to calculate root-mean-

squared intensity differences between volumes referred to as DVARS,

based on Power et al. (2014) and the resulting dummy regressor

matrix was saved for later denoising (outliers defined as values larger

than 75th percentile plus 1.5 times the interquartile range) (Power

et al., 2014); (b) slice time correction considering the bottom-up acqui-

sition interleaved scheme; (c) coregistration of the time series on a

specific single contrast-rich T2-weighted EPI image (details in the Sup-

plement); (d) segmentation of this specific image using the unified seg-

mentation algorithm in SPM to separate white matter (WM), gray

matter (GM), and cerebrospinal fluid (CSF), (e) spatial normalization

entering GM and WM probability maps into the iterative DARTEL

algorithm (Ashburner, 2007) using IXI study templates (www.brain-

development.org) in MNI space, (f) interpolation to a voxel resolution

of 2 ! 2 ! 2 mm3, (g) brain extraction using the FSL brain extraction

tool (BET, FSL version 6.0), and (h) spatial smoothing using an isotro-

pic Gaussian Kernel (full width at half maximum 6 ! 6 ! 6 mm3). Den-

oising was performed including the following set of nuisance

covariates in all first level general linear models (GLM): (i) Following

the aCompCor strategy (Behzadi, Restom, Liau, & Liu, 2007), five com-

ponents of WM and CSF (based on segmentation mentioned in Step

(d)); (ii) six motion correction coefficients from Step (a) along with their

temporal derivatives; and (iii) the DVARS-based binary matrix. Sub-

jects displaying excessive head movement during scanning—

potentially causing motion artifacts—were excluded from the study

(n = 4). The threshold for exclusion was set at 2 mm translation

between two consecutive volumes.

2.8 | First level analysis

Separate first level GLMs were created for modeling pupil size and

pupil change. For analyzing pupil size associated neural activity

between conditions, we entered the mean pupil size per block (40 s

time bins) as a parametric modulation within one blockwise regressor.

The blockwise regressor included onset times of all blocks in the four

conditions (fixation, 0-back, 1-back, 2-back) presented in the N-

back task.

For analyzing pupil change associated neural activity within condi-

tions, we divided the same blocks into 1 s time bins, which constituted

the regressor, and entered the corresponding mean pupil change

values of those 1 s time bins as its parametric modulation. For this

purpose, we downsampled pupil change to 1 Hz. We decided for this

approach, as downsampling to the TR (Murphy et al., 2014) before

convolution with the hemodynamic response function would result in

reduced temporal information, we were particularly interested in.

We used separate models for analyzing neural correlates of pupil

size and pupil change in order to prevent collinearity of regressors,

which would have a negative effect on statistical power as well as on

the parameter estimates (Mumford, Poline, & Poldrack, 2015).

To explicitly model potential effects of condition on pupil change

and to avoid the uncontrolled merge with interaction effects, we cre-

ated an additional first level GLM in which we partitioned the condi-

tion regressor (that so far was represented as one single regressor)

into four separate regressors (one for 0-back, one for 1-back, one for

2-back, and one for fixation) with onset times of the corresponding

1 s time bins. The equivalent mean pupil change values were entered

as parametric modulation.

To examine the neural correlates of trials and their pupil

responses, we created another GLM with one regressor encompassing

onsets of all trials across the whole task with a duration of 2.5 s. We

added the equivalent peak amplitudes in each trial as its parametric

modulation.

We used parametric modulators as they provide a flexible analysis

approach to disentangle the between and within block/condition

effects of the pupil parameters (Leuchs et al., 2017; Schneider

et al., 2016, 2018; Wood, Nuerk, Sturm, & Willmes, 2008).

All GLMs were run with nuisance regressors as stated above.

2.9 | Second level analysis

The group analyses were performed using Bayesian inference as

implemented in SPM12. The contrast images of the first level analyses

of all participants were used for the model, and tested with Bayesian

one-sample t tests against zero (contrasts [+1] and ["1]) for the

underlying pupil size, pupil change, and pupil peak GLM. For the sta-

tistical maps a minimum effect size of Cohen's d = 0.2 and a minimum

Bayes factor of #1,000 was selected (logBF = 3). In cases where rele-

vant separate clusters merged into one larger cluster, the threshold

was increased (d = 0.5, logBF = 3). For additional analyses, we ran a

one-way ANOVA in SPM12 with one factor (condition) encompassing

four levels (fixation, 0-back, 1-back, 2-back; dependent cells) as well

as a logical “AND” conjunction analysis to examine to what extent the

neural correlates of pupil change depended on condition. All analyses

were performed in MATLAB (version 2019b, MathWorks).

The tables detailing the anatomical extent of clusters were cre-

ated using the automated anatomical labeling (AAL) atlas (AAL 2 tool-

box; (Rolls, Joliot, & Tzourio-Mazoyer, 2015; Tzourio-Mazoyer

et al., 2002). Technically, as the AAL toolbox cannot process posterior
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probability maps, we used the frequentist maps at voxelwise pFWE

< .001 threshold for anatomical labeling.

The background image used for depiction of statistical maps

(Figures 4–7, S4–S6, S10–S16, S18, and S19 in the Supplement) was

generated by unified segmentation of all T1-weighted images,

followed by DARTEL spatial normalization, driven by GM and WM

segments (IXI templates, default settings), and application of the flow

fields to the bias-corrected whole head image. Supplemental

Figure S8 illustrates the spatial normalization procedure and compares

the matching of the resulting normalized functional images with the

template space.

3 | RESULTS

3.1 | Behavioral results

The Bayesian one-way rmANOVA yielded very strong evidence for an

effect of condition on RT with P(Mjdata) = 1.0, BF10 = 2 ! 1011,

F(2,96) = 43.1, p < .001 (Figure 1a). Descriptive statistics are listed in

Table 1. This shows that RT depended on the working memory load

level of the respective condition in the N-back task. The adjusted pos-

terior odds show (a) strong evidence that 0-back differed from 1-back

(odds of 15), (b) very strong evidence that 0-back differed from

2-back (odds of 4 ! 1010), and (c) very strong evidence that 1-back

differed from 2-back (odds of 1.7 ! 103). Results of the Bayesian post

hoc tests are listed in Table S1 in the Supplement.

Regarding accuracy, the Bayesian one-way rmANOVA showed

very strong evidence for an effect of condition on accuracy with

P(Mjdata) = 1.0, BF10 = 1 ! 106, F(2,96) = 21.4, p < .001 (Figure 1b).

Descriptive statistics for accuracy are depicted in Table 2. The adjusted

posterior odds show (a) very strong evidence that 0-back differed from

2-back (odds of 7.4 ! 103), (b) very strong evidence that 1-back dif-

fered from 2-back (odds of 2.4 ! 102), and (c) some evidence for no

differences between 0-back and 1-back (odds of 0.3). Results of the

Bayesian post hoc tests are listed in Table S2 in the Supplement.

3.2 | Pupillometry

For pupil size, the Bayesian one-way rmANOVA yielded very strong

evidence for an effect of condition on pupil size P(Mjdata) = 1.0, BF10

= 1 ! 1071, F(2,102) = 166.0, p < .001, indicating that pupil size

depended on working memory load (Figure 2). The adjusted posterior

odds show (a) very strong evidence that 0-back differed from 1-back

(odds of 1.6 ! 105), 2-back (odds of 1 ! 1020), and fixation (odds of

9 ! 107); (b) very strong evidence that 1-back differed from 2-back

(odds of 1 ! 1013) and fixation (odds of 4 ! 1016); and (c) very strong

evidence that 2-back differed from fixation (odds of 1 ! 1027). The

results for the post hoc tests are shown in Table S3 in the

Supplement.

To investigate event-related pupil responses, we analyzed target

and non-target trials in the three active N-back task conditions

F IGURE 1 Boxplots showing (a) reaction time (RT) and (b) accuracy in the N-back task in each condition. Horizontal line within each box
denotes median values; boxes extend from the 25th to 75th percentile; vertical extending lines (whisker) denote values outside the interquartile
range (IQR). The upper whisker extends to the largest value no further than 1.5 ! IQR and the lower whisker extends to the smallest value no
further than 1.5 ! IQR; dots beyond the end of the whiskers represent outliers

TABLE 1 Descriptive statistics for RT

Condition Mean SD N

95% credible interval

Lower Upper

0-back 0.400 0.045 49 0.386 0.413

1-back 0.432 0.087 49 0.407 0.457

2-back 0.498 0.082 49 0.474 0.521

Note: RT is presented in s.
Abbreviation: RT, reaction time.
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(0-back, 1-back, and 2-back). It becomes evident that the pupil shows

a stronger dilation in relation to target trials compared to non-target

trials in all three conditions (Figures 3 and S9 in the Supplement). To

examine differential scores, we subtracted peak values of the non-

target trials from the peak values of the target trials for each condition

(0-back, 1-back, and 2-back). A Bayesian one-way rmANOVA revealed

strong evidence for an effect of condition, P(Mjdata) = 1.0, BF10

= 2.94 ! 1011, F(1.73,88.19) = 41.73, p < .001 (Greenhouse–Geisser

corrected as assumption of sphericity was violated according to

Mauchly's test). The adjusted posterior odds show (a) very strong evi-

dence that the differential peak amplitude in the 0-back condition

(M = 0.59, SD = 0.3) was larger than the values for the 1-back

(M = 0.42, SD = 0.22, odds of 63.79) and 2-back conditions

(M = 0.23, SD = 0.22, odds of 1.89 ! 108), and (b) very strong evi-

dence that the values for the 1-back condition were larger than the

vales for the 2-back condition (odds of 5.72 ! 103).The descriptive

statistics of pupil peaks (maximum pupil amplitude minus baseline) are

provided in Table 3.

Furthermore, we analyzed the relation between pupil size and

performance on a trial-by-trial basis. We first down-sampled the pupil

size vector to a resolution of 10 Hz in each trial and then took the

mean of the pupil size values per trial (duration of 2.5 s) of all target

trials in the three active N-back conditions (0-back, 1-back, and

TABLE 2 Descriptive statistics for accuracy

Condition Mean SD N

95% credible interval

Lower Upper

0-back 0.980 0.037 49 0.969 0.990

1-back 0.970 0.034 49 0.960 0.980

2-back 0.929 0.066 49 0.910 0.948

F IGURE 2 (a) Boxplot showing the distribution of pupil size calculated as the mean of pupil size values in each condition (one value per
participant). (b) Mean pupil size over the time course of a task block within each condition. The x-axis represents the length (40 s) of one block.
We downsampled the pupil size values to 10 Hz and calculated the mean of both halves of the task within each condition. The shaded area
represents 95% confidence intervals of the mean. The gray vertical lines indicate trial onsets. The last gray vertical line at 40 s indicates the end of
the block
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2-back) with correct responses (= hits). Then, we calculated the Pear-

son correlation coefficient between these trial-wise pupil size values

and its respective RTs, which yielded a weak but significant (positive)

correlation, r = .23, p < .001.

3.3 | Functional magnetic resonance imaging

3.3.1 | Neural activity related to pupil size between
conditions

The second level GLM of the mean pupil size values per block

revealed very strong evidence for positively correlated BOLD

activity mainly in the FPN: the dorsolateral PFC (superior frontal

gyrus, middle frontal gyrus, supplementary motor area [SMA]),

ventrolateral PFC (inferior frontal gyrus), posterior parietal lobules

(angular gyrus), in addition to activity in the bilateral insula,

d = 0.2, logBF >3 (Figure 4). The reverse contrast revealed very

strong evidence for negatively correlated BOLD activity in bilat-

eral clusters of the precuneus, orbitofrontal gyrus, as well as acti-

vation in the anterior cingulate gyrus, posterior cingulate gyrus,

and the lateral parietal cortex (precentral and postcentral gyrus),

d = 0.2, logBF >3. For a detailed listing of these clusters, see

Table S4 in the Supplement.

3.3.2 | Neural activity related to pupil change
within conditions

The GLM with the mean pupil change values of the one-second time

bins revealed very strong evidence for correlation with BOLD activity

in the bilateral insula, caudate, thalamus, orbital inferior frontal gyrus,

anterior and middle cingulate gyrus, as well as in the superior frontal

gyrus, d = 0.5, logBF >3 (Figure 5). The anterior insula and the ante-

rior cingulate gyrus are typically conceptualized as the primary com-

ponents of the salience network (Menon & Uddin, 2010). The

negative contrast revealed strong evidence for corresponding nega-

tive correlations with the occipital lobe, d = 0.5, logBF >3. For a

detailed listing of these clusters, see Table S5 in the Supplement.

To examine the possibility that these correlates (Figure 5) were

confounded by differences in the mean pupil change values per condi-

tion (main effect of condition on pupil change, posterior probabil-

ity = 1.0), we ran two additional fMRI analyses. For the first analysis,

we entered the mean pupil change values of each block (one value per

block) into the GLM, analog to the aforementioned pupil size GLM.

For the second analysis, we entered demeaned pupil change values

within 1 s time bins (40 s per block = 40 values) as parametric modu-

lation in four separate regressors (one per condition) into the model,

such that there were no mean differences among the blocks anymore.

For the demeaned pupil change values, the mean pupil change of each

F IGURE 3 Mean pupil size in response to non-target (in blue) and target (in red) trials in the three active N-back task conditions (0-back,
1-back, and 2-back). The x-axis represents the length (2.5 s) of one trial. Between 0 and 0.5 s, the stimulus is presented, between 0.5 and 1.5 s,
the response, if necessary, is collected and between 1.5 and 2.5 s is the inter trial interval. The shaded area represents 95% confidence intervals
of the mean

TABLE 3 Descriptive statistics of
pupil peaks

0-back T 0-back NT 1-back T 1-back NT 2-back T 2-back NT

Mean 0.72 0.13 0.66 0.26 0.57 0.34

SD 0.36 0.13 0.33 0.21 0.33 0.22

Minimum 0.15 "0.13 0.13 "0.16 "0.04 0.04

Maximum 1.78 0.44 1.50 0.79 1.47 1.07

Note: T = target trials, NT = non-target trials, SD = standard deviation.
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block was subtracted from the pupil change value in the corres-

ponding 1 s time bins.

If the first analysis would show the salience network but not the

second one, this would be evidence for confounding mean differences

per block. If the second analysis would show the salience network but

not the first, it would be evidence that this network correlates with

dynamic within-block fluctuations. We could observe the latter pat-

tern of results (see Figures S10 and S11 in the Supplement), as the

second analyses revealed activation in the bilateral insula, caudate,

thalamus, orbital inferior frontal gyrus, anterior and middle cingulate

cortex (d = 0.5, logBF >3). These clusters (Table S6 in the Supplement)

showed a strong overlap with those of our main analysis of pupil

change within conditions (Figure 4). This supports the notion that it is

not the mean pupil change between conditions, but rather pupil

change within (i.e., during) the conditions that drives this result.

To further examine if there was an effect of condition on the

strength of the salience network adherence to the pupil change

dynamics, we performed an ANOVA testing for the main effect of

condition and a conjunction analysis with the three N-back conditions,

as well as all four conditions. In the ANOVA (main effect), we did not

observe relevant activity at the set thresholds (voxelwise pFWE

< .001). To evaluate whether we missed potentially relevant clusters

F IGURE 4 Neural correlates of pupil size between conditions. Hot colors: blood oxygen level dependent (BOLD) activity positively correlated
with pupil size. Cold colors: BOLD activity negatively correlated with pupil size (d = 0.2, logBF >3). L = left, R = right

F IGURE 5 Neural correlates of pupil change within conditions. Hot colors: blood oxygen level dependent (BOLD) activity positively
correlated with pupil change. Cold colors: BOLD activity negatively correlated with pupil change (d = 0.5, logBF >3). L = left, R = right
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due to an overly conservative threshold for a comparison among con-

ditions (as opposed to a test against 0 as in the previous tests), we

reduced the threshold to a frequentist voxelwise pFWE < .05, k > 50.

At this lower threshold, we could observe eight clusters as listed in

Table S7. The activation was mainly evident in the bilateral caudate,

middle and posterior cingulate gyrus, inferior frontal gyrus, in the mid-

dle frontal gyrus (pFWE < .05) (Figure S12 in the Supplement). The con-

junction analysis encompassing the parametric modulation of mean

pupil change of three conditions requiring a response (0-back, 1-back,

and 2-back) showed activation in the bilateral insula, SMA and the

inferior frontal gyrus and middle cingulate gyrus in the right hemi-

sphere at this lower threshold (voxelwise pFWE < .05, k > 30)

(Figure S13 in the Supplement). A conjunction analysis of all four con-

ditions (including fixation) only revealed similar activity at a low,

uncorrected threshold (uncorrected p < .001) (Figure S14 in the

Supplement).

The second level GLM of the pupil peak values per trial revealed

very strong evidence for positively correlated BOLD activity mainly in

the salience network (bilateral insula, dACC), thalamus, and SMA,

d = 0.2, logBF >3 (Figure 6). The negative contrast revealed strong

evidence for corresponding negative correlations mainly within the

occipital lobe, d = 0.2, logBF >3. For a detailed listing of these clus-

ters, see Table S8 in the Supplement.

3.3.3 | Conjunction: Neural correlates of pupil size
and pupil change

We overlaid the contrasts from the analysis on pupil size between

conditions and of pupil change within conditions to examine the

regional overlap (Figure 7). This conjunction analysis revealed activity

in the dACC and bilateral insula for both contrasts. Interestingly, this

activity was almost completely nonoverlapping, but rather in adjacent

subregions. The between condition pupil size-FPN network revealed

slightly more dorsally located clusters in the dACC/SMA, for instance,

whereas the within condition pupil change-salience network revealed

a more ventrally located cluster just above the corpus callosum with

associated activity in the midbrain/brainstem, thalamus, and basal

ganglia.

However, this apparent separation disappears at more lenient,

frequentist thresholds (pFWE.voxel < .05 and k > 100), with clusters of

activity in dACC and bilateral anterior insula becoming overlapping

(Figure S15 in the Supplement).

4 | DISCUSSION

In this study, we investigated the relationship between pupil fluctua-

tions and associated BOLD correlates during working memory

processing in healthy humans. For this purpose, participants per-

formed an N-back fMRI task while their pupil size was recorded simul-

taneously at a high sampling rate. To couple pupillometry with our

fMRI analysis, we quantified pupil fluctuations in two ways: (a) as dif-

ferences of mean pupil size between the N-back conditions that were

characterized by systematically varying working memory load levels,

and (b) as pupil change within these conditions. Eventually, these

extracted pupil size and pupil change measures were entered into sep-

arate first level GLMs of the fMRI BOLD time series.

As hypothesized, our results provided strong evidence for an

increase in pupil size with increasing working memory load, confirming

a robust interrelation between pupil size and the cognitive effort that

was encoded in the experimentally controlled levels of working

F IGURE 6 Neural correlates of pupil peak (maximum pupil size value in search window) per trial. Hot colors: blood oxygen level dependent
(BOLD) activity positively correlated with pupil peaks per trial. Cold colors: BOLD activity negatively correlated with pupil peaks per trial (d = 0.2,
logBF >3). L = left, R = right
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memory load. This aligns well with previous pupillometry reports

(Robison & Unsworth, 2019; Unsworth & Robison, 2018) and our

behavioral measures that reflected increasing task difficulty with

increasing working memory load, as indicated by typical stepwise RT

and accuracy profiles. These behavioral results represent an important

validation that at the group level, varying difficulty levels could be

successfully induced.

Analysis of BOLD activity linked to pupil size differences between

conditions yielded very strong evidence for activation of the bilateral

FPN including the dorsolateral PFC, ventrolateral PFC, posterior parie-

tal lobule, cerebellum and bilateral insula, albeit a small effect size.

Considering previous studies of neural activation during working

memory processing (Mencarelli et al., 2019; Owen et al., 2005; Rottschy

et al., 2012), our findings related to pupil size between conditions were in

line with the working memory network gained meta-analytically from

189 studies that revealed a strong, consistent bilateral activation of the

FPN encompassing the inferior frontal gyrus, bilateral insula, SMA,

superior frontal gyrus, and superior parietal lobule (Rottschy et al.,

2012). In the inverse contrast, we observed the default mode network

(DMN), the typical task negative network (Raichle, 2015). The results

so far support the understanding that pupil size averaged per condi-

tion is robustly reflecting the current working memory load at the

subject level, similar to analyses that directly model the gradual work-

ing memory recruitment of the FPN and DMN (Di, Zhang, &

Biswal, 2020).

The question that guided our further analyses, however, was how

this can be integrated with the literature on correlations between

pupil dilation and the salience network (Leuchs et al., 2017; Schneider

et al., 2016, 2018). We addressed this topic by focusing on the neural

correlates of mean pupil change within conditions and observed very

strong evidence with a medium effect size for a positive correlation of

pupil change with the activity level of the salience network. We

should add that this network, beyond its typical insular and dACC

hubs, also relays on the arousal system, such as the thalamus and the

posterior cingulate (Menon & Uddin, 2010). This correlation between

pupil change (first-order derivative of pupil size) and the salience net-

work was largely independent of the working memory load level, as

our secondary analyses revealed practically equivalent maps of the

salience network in 0-back, 1-back, and 2-back conditions (Figure S16

in the Supplement) with minor differential effects between these con-

ditions. When examining the peak voxel contrast estimates the activa-

tion in the bilateral caudate, for example, was mostly driven by the

2-back condition, possibly pointing toward a certain threshold of task

complexity that triggers involvement of the caudate only at the most

difficult stage (Figure S17 in the Supplement). Thus, we suggest that

cognitive load, or simple motor responding, does affect the correla-

tions between pupil change in more peripheral regions of the salience

network but not its core regions.

However, it is important to point out that these two distinct sub-

processes of working memory also showed a regional overlap and

share parts of the activation patterns mainly in the bilateral insula,

dACC, even though the peaks were adjacent and largely non-

overlapping within these regions. This conjunction of FPN and

salience regions supports the notion that salience network regions,

anterior insula and dACC, are involved in both processes: salience

detection and cognitive demand. The salience network, and particu-

larly the insula, integrates cognitive information and acts as a switch

between large-scale networks to facilitate access to attention and

working memory (Menon & Uddin, 2010). Furthermore, the anterior

insula and the dACC exhibit a close functional relationship and are

fundamental for effort related processes (Medford & Critchley, 2010).

In a wide range of cognitive tasks, including the N-back task, a

coactivation of the salience network and the PFC is very common

(Kurth, Zilles, Fox, Laird, & Eickhoff, 2010; Menon, 2011). Our results,

based on the simultaneous measurement of pupillometry and fMRI,

point toward a physiological upregulation when a target stimulus is

detected in a high demand condition and a response is required,

through connecting the insula and dACC with arousal-related regions

F IGURE 7 Regional overlap (in yellow) of neural correlates of pupil size between condition (in green; d = 0.2, logBF >3) and pupil change
within condition (in red; d = 0.5, logBF >3)
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(brainstem/midbrain, thalamus, and basal ganglia). According to the

adaptive gain theory, the LC receives top-down task-related informa-

tion from high-level structures and anatomical studies have shown

cortical projections from the dACC to the LC in primates (Aston-

Jones & Cohen, 2005). The coactivation pattern in our results can be

interpreted as a sustained restimulation of the FPN by the salience

network, as it is able to lead resources to the FPN. At the same time,

the FPN holds the task-relevant information leading to a potentially

stronger interconnection between these two networks.

The fixation condition showed a nonintuitive correlation pattern at

first glance: here pupil change revealed a correlation with DMN midline

hubs and some overlap with the bilateral dorsal ACC (Figure S16 in the

Supplement). The salience network activity was less pronounced

compared to positive correlations of pupil change with solely salience

network areas during the resting state (i.e., unconstrained cognition)

(Schneider et al., 2016), and compared to the 0-back, 1-back, and

2-back conditions in our study. One explanation for the salience net-

work being only weakly coupled with pupil change in the fixation condi-

tion might be the lack of salient stimuli and/or goal-directed motor

responses during that block. In turn, one reason for the appearance of

the DMN may be the low cognitive demand of the fixation condition

(passive viewing of the same repeating stimuli), which is in contrast to

the cognitively more demanding N-back conditions that decrease the

DMN “tonically” with less volatility and responsivity to single stimuli. A

strong recruitment of the salience network in parallel with pupil dilation

seems to occur either at rest (Schneider et al., 2016) when large, low

frequency fluctuations are present spontaneously, or in a cognitive

context above a cognitive demand threshold that requires actual

redistribution of resources from the DMN to FPN. The observed

common DMN and salience network recruitment resembles other

examples of transient positive coupling between the DMN and other

high control networks. Piccoli et al. (2015) reported that during specific

subphases of a working memory task—encoding and retrieval—the

DMN and the FPN coupled positively, whereas during the maintenance

phase with no visual input these networks remained anticorrelated

(Piccoli et al., 2015). The salience network plays an important role in

promoting such switches (Menon, 2011, 2015; Menon & Uddin, 2010),

and our within condition results demonstrate that salient stimuli trigger

its activity to uphold the functional segregation between the DMN and

the antagonistic FPN.

Further, we interpret the differences between and within condition

correlations with pupil size and pupil change as reflecting differences

between tonic versus phasic arousal, respectively: The correlation of

mean pupil size and activity in the FPN could relate to a tonic pupillary

response that increases as the task becomes more challenging. In addi-

tion, and occurring concurrently, the active N-back conditions contain

target stimuli conceivably triggering a phasic response that correlates

with the salience network independent of working memory load.

Both the tonic and phasic pupillary arousal states could be

attributed to the LC norepinephrine (NE) system (Aston-Jones &

Cohen, 2005; Gilzenrat, Nieuwenhuis, Jepma, & Cohen, 2010). The LC

is a neuromodulatory nucleus in the brainstem that is responsible for

most the NE released in the brain, and it has widespread projections

throughout the neocortex including frontal–parietal areas. Pupil dila-

tions related to cognitive processing are thought to result from an

inhibitory effect on the parasympathetic oculomotor complex by

release of NE from the LC (Szabadi, 2013). A possible explanation for

our observation might be that the task demand results in an increased

firing rate of LC neurons, which leads to an enlargement of the

pupil diameter and facilitation of working memory processing in

the PFC areas, which again is interconnected with the LC constituting

a reciprocal relationship (Alnaes et al., 2014; Arnsten, Wang, &

Paspalas, 2012; Mather et al., 2020; Sara & Bouret, 2012). To date,

there are no existing studies explicitly relating LC neuronal activity to

working memory, but neuropharmacological studies provide evidence

of the essential role of NE release for executive functioning (Arnsten

et al., 2012; Ramos & Arnsten, 2007). Hitherto, the increase in pupil

size during working memory was associated with task-evoked phasic

arousal, arguing that attention was constantly allocated in order to

actively maintain items in working memory (Unsworth & Robison,

2018). We speculate that the LC tonic activity might be responsible

for the general increase in the overall pupil size between conditions

and the LC phasic activity may be related to the pupil change within

conditions generated by the target stimuli. In the event-related ana-

lyses (Figures 3 and 6), we showed that the within condition pupil

responses were specifically related to the trials, which are primarily

affected by stimulus type (target vs. non-target) as larger pupil dila-

tions were associated with target trials and elicited activation in the

typical salience brain regions. Interestingly, the pupil dilation in

response to target trials was larger for the trials with lower cognitive

load. This is most likely a consequence of the larger mean pupil size

in the higher cognitive load conditions (Peysakhovich, Vachon, &

Dehais, 2017).

This raises the question of whether these stimulus type driven

modulations are associated with stimulus saliency or effort allocation.

In our N-back task, the target and non-target trials were not distin-

guishable by visual features alone. The participants needed to con-

stantly update their information in mind and then identify the target

solely by correctly memorizing the preceding trials (and in the case of

the 0-back condition remembering one specific stimulus), meaning that

the identification of the salience of targets required task-engagement

and effort allocation toward the stimulus. Research on primates has

shown that the phasic response is not particularly linked to specific sen-

sory attributes of a stimulus, but rather to task-relevant events (Aston-

Jones & Cohen, 2005). Following this line of thought, it is possible that

the effort allocation precedes the experienced salience of the target,

and the resulting correlation with the salience brain networks is a prod-

uct of both processes (Engström, Landtblom, & Karlsson, 2013).

The relationship of pupil fluctuations and neural activity is pro-

bably not exclusively dependent on the LC and the general noradren-

ergic tone controlled by it. Electrophysiological research in rhesus

monkeys has pointed toward a similar relationship of pupil temporal

dynamics and the inferior and superior colliculus in the mesencepha-

lon. Additionally, neural activity in the dACC could also be aligned in

time with changes in pupil diameter, reflecting underlying changes in

arousal (Joshi, Li, Kalwani, & Gold, 2016).
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Murphy et al. (2014) observed a very similar pattern of activation

as they also found positive correlations of pupil diameter with activity

in ACC, insula, and the thalamus in an oddball task. Moreover, they

could show that pupil diameter was positively correlated with BOLD

activity in the rostral LC (peri-LC), providing the first fMRI evidence

supporting the notion that the pupil diameter can be used as indirect

measure of LC activity (Murphy et al., 2014). In our analyses of pupil

change within conditions, we also observed activity in the brainstem

in areas that could encompass the LC, but our resolution and

preprocessing was not optimized for brainstem analyses.

Although the N-back task is well-established and has been one of

the most commonly used experimental paradigms for exploring the neu-

ral basis of working memory and executive functioning (Lamichhane,

Westbrook, Cole, & Braver, 2020), there are a few methodological con-

siderations with respect to our interpretations. The blocks of the N-back

task utilized in this study did not follow a randomized order, which

means that theoretically the fixed order could have an influence on the

results. Nevertheless, as each condition was present once in the first

half and once in the second half of the task, and as no tiring effect was

detected in the pupil data, we assume that the influence of the design

limitation was marginal (for analysis, see section 2.3 in the Supplement).

Another restraint may lie in the conditions of the task itself, which is

noticeable in the accuracy rates that showed overall a very high level of

correct responses. Although we observed large differences in accuracy

between 1-back and 2-back, and 0-back and 2-back, we did not observe

a difference between the 0-back and 1-back condition in accuracy

rates. This is probably due to a ceiling effect, with similar patterns

observed in healthy subjects in previous work (Hur, Iordan, Dolcos, &

Berenbaum, 2017; Jacola et al., 2014). These authors have proposed

that RTs represent a more meaningful readout for the N-back task. In

our study, we could observe a difference between all conditions regard-

ing that measure. The condition with the maximum working memory

load was 2-back, and conditions with higher load are generally feasible

in healthy subjects. The reason for not including a 3-back condition is

that our task is part of a larger study on psychiatric patients, some of

which have mood disorders with cognitive impairments, and healthy

participants. However, when taking our pupillary, behavioral and the

neural readouts into account, we can safely claim that the working

memory manipulation was successful, similar to previous work that did

not include a 3-back condition (Alonso-Lana et al., 2016; Dores

et al., 2017; Peysakhovich et al., 2017). Nevertheless, future research

could incorporate conditions with higher load in order to be able to

observe a potential inverted U-shaped pursuant to the Yerkes–Dodson

law (Yerkes & Dodson, 1908). Prior research on this has shown, that

pupillary dilation during a working memory task increased until it

reached an asymptote at around four to five items held in mental stor-

age (Robison & Unsworth, 2019; Unsworth & Robison, 2018). This could

be of potential interest as previous research has related this pattern to

the influence of NE on PFC functioning. In their work, the NE release

was dose dependent and also followed an inverted U relationship,

suggesting that performance increases with physiological or mental

arousal, but only up to a certain point until it reaches a plateau before

starting to decline (Aston-Jones & Cohen, 2005; Sara & Bouret, 2012).

To summarize, our findings suggest that fMRI with simultaneous

measurement of pupil parameters constitutes a valuable experimental

setup to decipher cognitive processes related to working memory load

itself versus the immediate salience of the presented stimuli. This dis-

tinction could be specifically relevant for patients with psychiatric dis-

orders. Cognitive impairment and in particular, working memory

deficits manifest in a wide range of psychiatric disorders both of the

affective and psychotic spectrum (Snyder, 2013). It has thus been pro-

posed as a transdiagnostic endophenotype or risk factor (Nolen-

Hoeksema & Watkins, 2011). Similarly, the salience network has been

identified as critical to psychiatric disease susceptibility (Goodkind

et al., 2015) across the affective and psychosis spectrum, and as such,

combined, sensitive tools for studying working memory processes and

their link to salience activity are particularly relevant. To this notion

we add, that two working memory subprocesses related to cognitive

load and salience could be distinguished by parallel fMRI and

pupillometry, which could help develop a more valid biological charac-

terization of working memory processes and deficits.

5 | CONCLUSION

Incorporating pupillometry in fMRI measurements during a working

memory task allowed differentiation between working memory load

effects and effects of the salience of the presented stimuli. We dem-

onstrated, that the mean pupil size between condition was related to

the FPN and that pupil change within conditions was associated with

activity in the salience network, independently from working memory

load. This combination of pupil and fMRI parameters may constitute

an effective tool for disentangling working memory subprocesses that

could be relevant for a range of psychopathological conditions.
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4
Paper 2 | Data-driven pupillometric

response profiles as transdiagnostic

biomarkers in a�ective and anxiety

disorders

4.1 Summary

The goal of the second study was to test whether individual pupillometric response profiles can
function as indication (“biomarker”) for neurocognitive deficits while cutting across diagnoses of
psychiatric disorders. As discussed before neurocognitive deficits constitute a general common
symptom in psychopathology (Caspi et al., 2014), which makes it a substantial transdiagnostic
factor. For the analysis latent class growth modelling, a data-driven, regression-based clustering
approach was used in order to find potential groups based on individual pupil size patterns
during working memory processing. The data were acquired as part of the BeCOME study, but
this time using the full spectrum reaching from healthy control participants to (medication-free)
patients with psychiatric diagnoses. The analysis included participants i) who had neither
current, nor history of a psychiatric disorder, and ii) participants with mainly a�ective and
anxiety disorders and its common comorbidities such as post-traumatic stress disorder or
obsessive-compulsive disorder.

The clustering produced two distinct pupil response profiles: (1) a group exhibiting a gradual
increase in pupil size with increasing cognitive load (reactive group), and (2) another displaying
an attenuated pupil response (non-reactive group). These profiles were significantly related to
neurocognitive performance in executive functioning and sustained attention. Individuals who
were more likely to belong to the reactive pupil response profile performed better on these
neurocognitive tests. Additionally, the resulting clusters were biologically validated in fMRI
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4. Paper 2 | Data-driven pupillometric response profiles as transdiagnostic biomarkers in
a�ective and anxiety disorders

through adding the groups mean pupil size scores as parametric modulation to the GLM. The
results indicated that the data-driven clusters also revealed di�erential neural correlates in
the N-back task: The reactive pupil response profile was associated with more activity in the
thalamus and less deactivation of the limbic system, potentially reflecting a better arousal
upregulation. The non-reactive pupil response profile showed stronger neural correlates in the
FPN regions.

This study went beyond behavioral readouts for neurocognition and across rigid diagnostic
criteria. Through applying a data-driven approach distinct pupil response profiles related to
neurocognitive performance were deciphered, which correlated with di�erential patterns of
arousal on a brain activity level. Based on these findings, pupil measurements have the potential
to serve as a highly sensitive and precise readout, and a psychophysiological biomarker for
early detection of neurocognitive deficits mainly within executive functioning.

4.2 Contributions and reference

The study “Data-driven pupil response profiles as transdiagnostic readouts for the detection
of neurocognitive functioning in a�ective and anxiety disorders” was published in Biological
Psychiatry: Cognitive Neuroscience and Neuroimaging in 2023.

The project was conducted under the supervision of VS. The concept of the study was designed
by VS, PS, MC, AKB, TB and the BeCOME study team. Data were acquired by the BeCOME
study team. The conception of the data analysis pipeline was done by JF and VS. The data
analysis was performed by JF. The data were interpreted by JF, VS, PS, DP. All authors
critically revised the manuscript written by JF and VS.

Fietz, J., Pöhlchen, D., BeCOME Working Group, Brückl, T. M., Brem, A. K., Padberg, F.,
Czisch, M., Sämann, P.G., & Spoormaker, V. I. (2023). Data-driven pupil response profiles
as transdiagnostic readouts for the detection of neurocognitive functioning in a�ective and
anxiety disorders. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging.
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Archival Report

Data-Driven Pupil Response Profiles as
Transdiagnostic Readouts for the Detection of
Neurocognitive Functioning in Affective and
Anxiety Disorders
Julia Fietz, Dorothee Pöhlchen, BeCOME working group, Tanja M. Brückl,
Anna-Katharine Brem, Frank Padberg, Michael Czisch, Philipp G. Sämann, and
Victor I. Spoormaker

ABSTRACT
BACKGROUND: Neurocognitive functioning is a relevant transdiagnostic dimension in psychiatry. As pupil size
dynamics track cognitive load during a working memory task, we aimed to explore if this parameter allows identifi-
cation of psychophysiological subtypes in healthy participants and patients with affective and anxiety disorders.
METHODS: Our sample consisted of 226 participants who completed the n-back task during simultaneous functional
magnetic resonance imaging and pupillometry measurements. We used latent class growth modeling to identify
clusters based on pupil size in response to cognitive load. In a second step, these clusters were compared on af-
fective and anxiety symptom levels, performance in neurocognitive tests, and functional magnetic resonance imaging
activity.
RESULTS: The clustering analysis resulted in two distinct pupil response profiles: one with a stepwise increasing
pupil size with increasing cognitive load (reactive group) and one with a constant pupil size across conditions
(nonreactive group). A larger increase in pupil size was significantly associated with better performance in neuro-
cognitive tests in executive functioning and sustained attention. Statistical maps of parametric modulation of pupil
size during the n-back task showed the frontoparietal network in the positive contrast and the default mode network
in the negative contrast. The pupil response profile of the reactive group was associated with more thalamic activity,
likely reflecting better arousal upregulation and less deactivation of the limbic system.
CONCLUSIONS: Pupil measurements have the potential to serve as a highly sensitive psychophysiological readout
for detection of neurocognitive deficits in the core domain of executive functioning, adding to the development of
valid transdiagnostic constructs in psychiatry.

https://doi.org/10.1016/j.bpsc.2023.06.005

Neurocognitive malfunctioning is a transdiagnostic phenome-
non (1,2) associated with psychopathology across multiple
disorders including anxiety disorders (3), mood disorders (4),
obsessive-compulsive disorder (5), schizophrenia (6), anorexia
nervosa (7), bulimia nervosa (8), substance use disorders (9),
and several personality disorders (10). Similarly, when moving
toward a more dimensional framework, neurocognitive mal-
functioning is linked to a whole spectrum of psychopatholog-
ical syndromes, such as rumination (11), dissociation (12), and
schizotypy (13), in addition to perceived subjective burden and
illness chronicity (14). Furthermore, baseline neurocognitive
functioning has been found to be predictive of treatment
response in pharmacotherapy and psychotherapy (15).

One advantage of neurocognitive tests is that on top of the
objective behavioral measures (1), physiological parameters of
cognitive processing can readily be added to provide addi-
tional, more in-depth understanding of the brain-behavior

relationship. Pupillometry is ideally suited to examine task-
related brain mechanisms as it provides information of un-
derlying physiological processes with high precision (16). The
pupil dilates or constricts in response to arousal and mental
effort through the modulation of several brainstem and
subcortical regions including the superior colliculus, the
cholinergic basal forebrain (17), and the locus coeruleus (LC), a
nucleus in the brainstem involved in physiological arousal and
cognitive functioning and the brain’s main noradrenergic
output center (18). The interconnection between the norad-
renergic (NE) activity of the LC and the pupil has been estab-
lished in numerous anatomical and physiological studies in
humans (19,20), primates (17,21), and rodents (22,23). Given
the importance of the LC-NE system for regulating attentional
status, it has been postulated that pupil-linked individual dif-
ferences in working memory (WM) may reflect regulation and
dysregulation of the LC-NE system (24).
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In WM paradigms, pupil size robustly depends on cognitive
load (25–27). In our previous work in healthy human partici-
pants, we could confirm this notion as pupil size increased with
cognitive load across conditions in parallel with activity in the
frontoparietal network (FPN) (25), the typically observed WM
large-scale brain network (28). Individual differences in WM
have been shown to predict performance in a variety of other
cognitive domains (24), such as learning (29) and fluid
reasoning (30), making it a core topic of interest for investi-
gation in the general population as well as in psychiatric
samples (31). This notion is further supported by converging
evidence for a link between pupillary motility alterations and
depression during various processes (32). For example,
research has shown that individuals with depression or
elevated risk of depression had higher pupillary reactivity to-
ward stimuli with negative valence (33). Further, rumination, a
pattern of repetitive and intrusive negative thinking, was
associated with greater baseline pupil dilation in depressed
adolescents (34). Interestingly, change in rumination following
a cognitive training program was predicted by pupillary oscil-
lations, reflecting task engagement at the beginning of the
training (35). Moreover, pupil dilation representing reward
anticipatory arousal has been found to negatively correlate
with depressive symptom load, i.e., the more acute depressive
symptoms, the lower the pupil dilation during the anticipation
of a reward (36).

However, it is largely unknown whether task-evoked pupil
size constitutes a valid physiological readout for neuro-
cognitive functioning in a dimensional, cross-diagnostic
approach. In this study, our aim was to identify data-driven
pupil response profiles during WM processing in a heteroge-
neous sample including healthy adults as well as unmedicated
patients. For this purpose, we simultaneously recorded pupil
size and functional magnetic resonance imaging (fMRI) while
participants performed the well-established n-back task
(37,38). We hypothesized that individual pupil response pro-
files during WM would be linked to performance in neuro-
cognitive tests of various cognitive domains and symptom
severity and would show differential blood oxygen level–
dependent (BOLD) activity patterns in the FPN and arousal
(salience) networks. Additionally, we were interested in how
mental disorders on the affective and anxiety spectrum
modulated these effects.

METHODS AND MATERIALS

Participants

Data for the presented analyses were obtained from the
ongoing Biological Classification of Mental Disorders
(BeCOME) study at the Max Planck Institute of Psychiatry in
Munich, Germany (ClinicalTrials.gov: NCT03984084). Local
ethics approval was obtained for this study. Unmedicated
patients with mainly Axis I disorders and healthy control par-
ticipants were included. Further recruitment strategies and
inclusion criteria have been previously described in detail
elsewhere (39). The BeCOME study protocol was in accor-
dance with the Declaration of Helsinki. All participants pro-
vided written informed consent after the study protocol had
been fully explained and were compensated for their partici-
pation (39). The sample for this project included all participants

with combined fMRI/pupillometry n-back measurements ob-
tained up until January 14, 2020. Of the 248 recruited partici-
pants (166 women, mean [SD] age = 35.0 [12.2] years) who
took part in the n-back task, 226 participants (152 women,
mean [SD] age = 34.7 [11.9] years) had available eye tracking
data, which served as basis for the clustering approach using
latent class growth modeling (LCGM) (40). For all subsequent
analyses, we excluded 5 patients who required medication
between the screening and study day 1 (and thus reported the
intake of psychopharmacological medication on study day 1),
leading to a sample size of 221 participants (151 women, mean
age = 34.58 [11.82] years). A more detailed description of
sample composition is presented in 1.1 in the Supplement.

Psychometric Instruments

During the inclusion visit, which took place 1 to 2 weeks before
the first of 2 study days, all participants underwent a stan-
dardized diagnostic interview (DIA-X/Munich Composite In-
ternational Diagnostic Interview [M-CIDI]) (41) assessing the
diagnosis of mental disorders according to DSM-IV including
information on onset, duration, and severity (39). For the
measurement of depressive symptoms and negative affectivity
(42), we used the Beck Depression Inventory-II (BDI-II) (43) and
the State-Trait Anxiety Inventory (44), respectively. Anhedonia
was assessed using the BDI-II anhedonic subscore consisting
of the following items: loss of pleasure (item no. 4), loss of
interest (item no. 12), loss of energy (item no. 15), and loss of
interest in sex (item no. 21) (45). The questionnaires were
administered on the first study day.

Neurocognitive Assessment

The neurocognitive testing session was scheduled on the first
study day at the same time of day (11 AM) and lasted 1 hour.
The order of the test administration was identical in all partic-
ipants, and they received written and verbal instructions before
each test (39). We administered tests for the following do-
mains: cognitive flexibility (46), inhibitory control (46), sustained
attention (47), episodic memory (48), word fluency (48), and
crystallized intelligence (49). A detailed description of each test
can be found in 1.2 in the Supplement.

fMRI/Pupillometry n-Back Task

The fMRI n-back task was part of the first scanning session on
the first study day (39). Before entering the scanner, all par-
ticipants received task instructions and performed a short,
standardized, computer-based training. After making sure that
the task was fully understood, the participants were placed in
the MRI scanner.

In the n-back task, a sequence of capital letters was dis-
played on the screen, and participants were asked to respond
when the current letter matched the one from “n” steps before.
The task included 4 conditions: fixation only (without any
response), 0-back (just responding to the target letter), 1-back,
and 2-back. Each condition was presented twice within a block
design while fMRI and pupillometry were recorded simulta-
neously. For assessment of task performance, we used indi-
vidual mean reaction time and mean accuracy rates across
respective conditions. A more detailed description of the task
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has been published elsewhere (25) and is included in 1.3 in the
Supplement.

Pupillometry

Pupil size of the participant’s right eye was recorded during the
n-back task at a sampling rate of 250 Hz with an MRI-
compatible eye tracker (EyeLink 1000 Plus; SR Research).
The data were processed and analyzed in MATLAB (version
2021b; The MathWorks, Inc.). Missing data related to eye
blinks were linearly interpolated between the last saccade
before blink onset and the first saccade after blink offset.
Additionally, pupil size data were smoothed by replacing
values with the mean of a 200-ms sliding window and z-
transformed to control for variability across participants. We
calculated individual mean pupil size values per task block (2
blocks per condition, 4 conditions).

Statistical Analyses

LCGM was used to identify latent classes of pupil responses
(40). This is a data-driven modeling technique that detects
heterogeneity in time series data. Eventually, it clusters in-
dividuals based on their growth trajectories, which are defined
by growth parameters such as intercept and slope (50). The
LCGM analysis was performed in R (version 4.2.0; R Founda-
tion for Statistical Computing) using the flexmix package (51).
Individual mean pupil size values per condition of the n-back
task were entered into the algorithm. To identify the optimal
number of classes, models with increasing number of latent
classes (from 1 to 10) were fitted to the data, and the best-
fitting model based on the Bayesian information criterion was
selected. The variance estimate for Gaussian components was
constrained to be equal, and the clustering model was run with
200 repetitions to achieve a stable cluster solution. To validate
the stability of the clustering, we used the holdout method as
an internal validation approach. We drew random subsamples
while leaving out 30% of participants and repeated this anal-
ysis 5 times. We reviewed whether it led each time to the same
cluster solution so that we confidently could use the original
one for further analysis.

To investigate associations between the resulting pupil
response profiles and psychopathology, neurocognitive func-
tioning, and behavioral parameters in the n-back task, we
estimated linear regression models in MATLAB (fitlm). The
models were adjusted for gender, age, and years of education.
Bonferroni-corrected significance levels were used to account
for multiple testing (.05/2 = .025 for the psychometric in-
struments, .05/6 = .008 for neurocognitive functioning, .05/2 =
.025 for behavioral parameters in the n-back task).

For additional analyses, we split the sample and investi-
gated healthy control participants and patients with a DIA-X/M-
CIDI ascertained DSM-IV diagnosis and compared their pupil
response profile associations using analyses of covariance in
R (version 4.2.0). Here, we used a subsample of participants
with either no current or past history of mental disorders
(healthy control participants, n = 36) and participants who
fulfilled the criteria for a full diagnosis related to affective and
anxiety disorders, posttraumatic stress disorder, and
obsessive-compulsive disorder in the past 4 weeks as verified
by the M-CIDI (n = 95) (41). For this exploratory comparison of

clinically defined groups, we added age as a standard covar-
iate for psychophysiological research.

To evaluate the accuracy of significant results, we checked
the normal distribution of residuals and multicollinearity in our
models. We examined model residuals with quantile-quantile
plots and additional Kolmogorov-Smirnov tests. If model re-
siduals deviated from normality, we performed additional
bootstrapping linear regression models in R (version 4.1.2)
using the boot package with 1000 bootstrap replicates. We
calculated 95% CIs to verify the significant result.

fMRI Preprocessing and Data Analysis

For fMRI data acquisition, a 3T MRI scanner (Discovery
MR750; GE Healthcare) with a 32-channel head coil, covering
40 slices (anterior commissure–posterior commissure orienta-
tion of the slices, 96 3 96 matrix, in-plane field of view 24 3 24
cm2, 3-mm slice thickness, 0.5-mm slice gap, resulting voxel
size 2.5 3 2.5 3 3.5 mm3, echo planar imaging, repetition time
2.5 seconds, echo time 30 ms, acceleration factor 2) was used.
Functional data were 176 T2*-weighted echo planar images for
the n-back task, where the first 4 volumes were discarded to
avoid non–steady-state effects.

For the preprocessing of the functional images, we used the
same pipeline as reported previously (25); a detailed descrip-
tion can be found in 1.4 in the Supplement. Essentially, we
entered the respective pupil size group means as a parametric
modulation to the 8 task blocks in the fMRI analyses and used
this modulation for our primary first- and second-level con-
trasts (see 1.4 in the Supplement for the first- and second-level
general linear models).

RESULTS

A description of the sociodemographic variables for 226 par-
ticipants that were used for the clustering is depicted in
Table 1.

Clustering of Pupil Response Profiles

The lowest value of the Bayesian information criterion was
found for the two-cluster solution: one cluster with a stepwise
increasing pupil size with increasing cognitive load (n = 178,
reactive pupil response profile) and one with a constant pupil
size across conditions and only a higher value in the most
demanding condition (n = 48, nonreactive pupil response
profile) (Figure 1A). Rerunning the analysis with randomly
selected subsamples resulted all 5 times according to the
Bayesian information criterion in the same two-cluster solution
with similar patterns of pupil response profiles. An overview of
the resulting model-fit indices and a detailed sociodemo-
graphic characterization of the clusters can be found in 2.1 in
the Supplement. The clusters differed significantly in age, and
therefore all subsequent analyses were controlled for this
variable.

We derived individual pupil profile (IPP) scores from the
resulting clusters by subtracting mean pupil size of fixation
from pupil size of 1-back, as the slope between these two
conditions provided the maximal differentiation between the
clusters. These IPP scores showed a strong correlation with
posterior probabilities extracted from the model (r = 0.76, p ,
.001), and a higher IPP corresponded to a stronger reactivity of
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pupil responses. Descriptive statistics of mean pupil size are
shown in 2.2 in the Supplement.

Associations of IPP With Self-reported Symptoms,
Neurocognitive Performance, and Mental Health
Status

No significant associations of IPP with depression (BDI-II,
b = 20.591, p = .65), anhedonia (b = 20.062, p = .83), or
negative affectivity (State-Trait Anxiety Inventory, b = 0.386,
p = .74) symptoms were observed across the groups. The
linear regression models revealed that the IPP significantly
predicted reaction times in the 0-back condition (b = 20.017,
p = .006) and nominally significantly in the 2-back condition
(b = 20.025, p = .05), although the latter did not survive the
Bonferroni correction (Figure 1B). Neither reaction time in the
1-back condition (b = 20.016, p = .15) nor accuracy rates
(0-back: b = 20.003, p = .44; 1-back: b = 0.006, p = .18;
2-back: b = 0.014, p = .11) yielded significant associations with
the IPP.

Furthermore, the investigation of associations between IPP
and additional neurocognitive tests showed a significant effect
for reaction time in cognitive flexibility (b =294.171, p = .0002),
inhibitory control (b = 222.350, p = .02), and performance
score in the sustained attention task (b = 13.230, p = .006)
(Figure 1C), of which only the result for inhibitory control did
not survive Bonferroni correction. Overall, participants with a
higher IPP performed better on these neurocognitive mea-
sures. Tests within the linguistic domain, such as verbal

memory (short term: b = 0.489, p = .31; long term: b = 0.788,
p = .13), word fluency (b = 2.235, p = .07), and crystallized
intelligence (b = 0.297, p = .51), were not correlated with the
IPP.

The assumption of normally distributed residuals was
violated for the model with reaction time for the 0-back con-
dition. The CIs from the bootstrapping procedure did not
include zero; therefore, we could assume that the effect was
significant with p , .05. No issues regarding multicollinearity
were observed in our regression analysis for all independent
variables (variance inflation factor , 2.5). For more details, see
2.3 in the Supplement.

The results of the analysis of how IPP and neurocognitive
measures were modulated by diagnostic status (absence vs.
presence of DIA-X/M-CIDI ascertained diagnosis) are reported
in 2.4 in the Supplement.

Functional MRI

In both groups, reactive and nonreactive, the parametric
modulation of mean pupil size per condition was positively
correlated with activity mainly in the FPN, which includes the
dorsolateral prefrontal cortex (PFC) (superior frontal gyrus,
middle frontal gyrus, and supplementary motor area), ventro-
lateral PFC (inferior frontal gyrus), and inferior parietal lobules,
and was negatively correlated mainly with activity in the default
mode network (DMN) and cingulate regions, including pre-
cuneus, posterior cingulate cortex, dorsomedial PFC, and
lateral parietal cortex (angular gyrus) (Figure 2A, B). The inter-
action contrast comparing the parametric modulation between
the two clusters showed higher correlations to pupil size in the
FPN (superior and inferior frontal gyrus and posterior parietal
lobules) in the nonreactive group compared with the reactive
group (Figure 2C), with both correlations being positive. This
was accompanied by more negative correlations in the deac-
tivated regions in the nonreactive group, which included the
DMN, but also extended to the amygdala, anterior cingulate
gyrus, hippocampus, nucleus accumbens, caudate, and thal-
amus. The latter region showed positive coupling to pupil size
in the reactive group and negative coupling in the nonreactive
group. The resulting contrast estimates within the mentioned
regions and a detailed listing of the resulting clusters are
depicted in 2.5 in the Supplement. Additionally, we ran a
control analysis excluding participants with excessive motion
within the MRI scanner. The results followed a similar pattern
and are reported in 2.6 in the Supplement.

DISCUSSION

We used LCGM with individual pupil size values of the different
cognitive load conditions from an n-back task and observed
two robust clusters of pupil response profiles. The clusters
were characterized by a reactive pattern, i.e., pupil size
increasing in parallel to increasing WM load and a nonreactive
pattern without such a stepwise increase in pupil size. The
pupil response profiles were significantly associated with
neurocognitive functioning, such as reaction times in 0-back,
2-back, cognitive flexibility, and inhibitory control as well as the
performance score in sustained attention, while there were no
associations with tests of the linguistic domain or depressive
symptoms and negative affectivity. On that basis, pupillometry,

Table 1. Sample Characteristics

Participants
Eligible for
Analyses,
n = 226

Healthy
Control

Participants,
n = 36

Patients With
DSM-IV

Diagnosis,
n = 99

Age, Years, Mean (SD) 34.7 (11.8) 32.4 (10.3) 36.0 (12.9)

Gender, Female, n 152 23 69

Years of Education, Mean
(SD)

12.2 (1.3) 12.3 (1.2) 12.0 (1.4)

Race/Ethnicity, n

African 1 0 0

Asian 8 1 3

Caucasian 178 30 75

Hispanic/Latin American 3 0 2

East Asian 5 1 3

Unknown 3 0 0

Other 6 0 5

Not indicated 22 4 11

Full DSM-IV Diagnosis,
Within Past 4 Weeks, n

Affective disorders 61 0 61

Anxiety-related
disorders

73 0 73

PTSD 10 0 10

OCD 21 0 21

The full diagnoses were assessed with the DIA-X/Munich Composite International
Diagnostic Interview (41). One participant can have multiple disorders. The ICD-10
codes for the diagnoses are provided in 1.5 in the Supplement.

PTSD, posttraumatic stress disorder; OCD, obsessive-compulsive disorder.
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and more specifically mean pupil size during WM processing,
allowed a stable clustering within a transdiagnostic sample,
while behavioral measures of neurocognitive functioning did
not (see 2.7 in the Supplement).

Participants with a reactive pupil response profile performed
better on neurocognitive tasks, primarily related to sustained
attention and processing speed in executive functioning, which
is in line with the notion that pupil size could act as a biological,
sensitive readout of neurocognition within these domains.
Generally, pupil dilation during cognitive tasks is known to
increase in relation to increased cognitive demand, which can
be reliably observed in the n-back task (52–54). The task-
evoked pupil dilation reflects processes related to mental
effort and available task-related resources, which can be
associated with performance in the given task (55).

Furthermore, the differences in pupil response profiles could
also be modulated by arousal states, as most participants are

able to upregulate their arousal system during the task at hand
to maintain attention and perform accordingly to the in-
structions. However, a plausible alternative explanation is that
a lack of task engagement or motivation has led to a nonre-
active pupil response profile.

To examine this more closely, we correlated the IPP with a
sum of 3 anhedonia items from the BDI-II and did not observe
a correlation. The question is to what extent such items cap-
ture task (dis)engagement well, but if we would have found a
correlation with anhedonia as a proxy for more general moti-
vation, this would have been an argument in favor of the
alternative explanation. Moreover, we observed a correlation
between the IPP and neurocognitive measures of sustained
attention and executive functioning in another setting and
observed stronger deactivation in the DMN in the nonreactive
group. This evidence is not in line with simply reduced
engagement during the n-back task, although we cannot rule

Figure 1. (A) Two data-driven clusters from the
latent class growth modeling analysis with different
individual pupil profiles. (B) Correlations between
individual pupil profiles and the mean reaction times
(rt) for the conditions of the n-back task. (C) Corre-
lations between individual pupil profiles and neuro-
cognitive measures. Shaded areas represent 95%
CIs. The depicted p values are related to the full
linear models including covariates. The plots are not
corrected for covariates.
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out this explanation completely given the indirectness of the
evidence. With this study, we extend the existing literature on
depression-related pupil reactivity alterations, where in-
dividuals with depression or heightened risk for depression
display stronger arousal toward negatively valanced stimuli
(32). The pupil reactivity profiles are in line with hypoactivity
and hyperactivity patterns in PFC and limbic system regions of
the brain in depressed individuals (56). Another study using
computational neural network modeling on the Stroop task
showed decreased pupil dilation, which was consistent with
disruption in PFC functioning leading to decreased cognitive
control and vigilance toward the task at hand (57).

Further, we were able to biologically validate the pupil
response profiles with fMRI. First, we mapped the neural cor-
relates of mean pupil size across cognitive load conditions
separately in each of the two pupil profile clusters and
demonstrated positive correlations in the FPN and negative
correlations mainly in the DMN, next to the caudate, amygdala,
and hippocampal regions, replicating and extending our pre-
vious study in healthy control participants (25). This shows that
in general, the increase in pupil size is temporally coupled to
WM-related brain processes in both groups. Interestingly, the
differential contrast revealed that the attenuated pupil size
patterns in the nonreactive group were characterized by
stronger activation in FPN regions and stronger deactivation in
the DMN, despite decreased behavioral performance. The

question arises: Why did we observe this at first glance con-
tradictory result? One answer is that, potentially, the reactive
group manages to successfully upregulate the arousal system,
which becomes visible in both the pupil reaction and its
coupling to activity in the thalamus. In contrast, the nonreac-
tive group is failing to do so, and as a consequence we
observe a compensatory pattern with increased, but inefficient
recruitment of the FPN and stronger deactivation of the DMN,
resulting in poorer behavioral performance reflected in reaction
times of the n-back task. A recent meta-analysis indicated that
any cognitively demanding task activating the executive con-
trol network, namely the FPN, downregulates the amygdala in
a load-dependent fashion, postulating a reciprocal relationship
(58). Pupil dilation is coupled to these brain regions, as the task
tracks not only mental effort, but also arousal-related pro-
cesses (16). The deactivation of the DMN (when considered in
relation to the pupil reaction) might also be an indicator of the
WM load interpreted as too high after an inefficient arousal
reaction and represent a consequence of the lack of arousal. In
sum, the nonreactive group might not recruit optimal levels of
arousal and mental effort, which is evident in their brain acti-
vation and pupil responses.

The role of the LC-NE system and the results on the effect
of mental health status on the individual pupil response profiles
in relation to neurocognitive functioning are discussed in the
Supplemental Discussion.

Figure 2. (A) Neural correlates of mean pupil size
for the reactive pupil response profile (n = 47) be-
tween conditions. Red indicates blood oxygen level–
dependent (BOLD) activity positively correlated with
pupil size. Cyan indicates BOLD activity negatively
correlated with pupil size. pvoxel.FWE , .05, k . 50.
(B) Neural correlates of mean pupil size for the
nonreactive pupil response profile (n = 47) between
conditions. Red indicates BOLD activity positively
correlated with pupil size. Cyan indicates BOLD ac-
tivity negatively correlated with pupil size. pvoxel.FWE

, .05, k . 50. (C) Interaction contrast between the
reactive and nonreactive group. Green indicates
reactive . nonreactive. Pink indicates reactive ,
nonreactive. pcluster.FWE , .001, k . 100 (voxel
collection threshold: uncorrected p , .001). x, y, z in
Montreal Neurological Institute space. FWE, family-
wise error; L, left; R, right.
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Although we have robustly validated our analysis and also
showed biological and behavioral correlates, our LCGM result
should be validated in an external sample, ideally with the
same experimental setup. Moreover, further validation using
the IPP, mapping the pupil size increase between a baseline
condition and more demanding condition, in other samples
would also be a valuable endeavor. As we derived for each
participant IPP scores based on the conditions from the widely
used n-back task, which are independent of clustering pro-
cedures or sample compositions, we aimed to increase the
external validity of this study and facilitate replication. Further,
it could be of special interest to run these analyses in samples
with stronger impairments on the cognitive and affective and
anxiety symptom level, e.g., individuals with severe depression in
inpatient care. In our case, we could not show any significant
associations with symptom severity related to depression and
negative affectivity, which could be due to the fact that we
included unmedicated, high-functioning participants with varying
degrees of affective and anxiety symptomatology. In turn, this is
also a strength of the current study, as we were able to observe
psychophysiological patterns without the possible confounding
effects of pharmacological treatments. The fact that in our
sample we did not observe severe impairments in participants
could be the reason for the different size of the clusters, as fewer
participants automatically belong to the nonreactive group. An
additional strength of our study is that we examined participants
across diagnostic criteria within the affective and anxiety disor-
der spectrum, moving beyond single disorders to a broader
scale analogous to the Research Domain Criteria (59). Despite
the fact that we were able to successfully induce varying WM
load conditions as reflected in the behavioral readouts (see 2.8 in
the Supplement), future experimental designs could benefit from
implementing conditions with higher load to potentially observe
an asymptotic reactivity pattern in pupil fluctuations.

In conclusion, we found two robust clusters with different
pupil response profiles that were related to neurocognitive
functioning in the domains of executive control and sustained
attention. Through the simultaneous measurement of pupill-
ometry and fMRI, we were able to dissect an arousal pattern
during cognitive processing and highlight its necessity of
upregulation and downregulation for successful performance.
Pupil dilation has the potential to act as a physiological readout
for neurocognitive performance in the domain of executive
functioning, a core construct in psychopathology (1). The data-
driven investigation of potential physiological markers of neu-
rocognitive functioning in mental disorders could inform clin-
ical research, and further facilitate diagnostic models and
personalized treatment decisions.
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5
Conclusion

Psychological states, such as mood, alertness, and motivation covary with activity in the
neuromodulatory systems of the brain impacting behavior. As such, they have a substantiated
e�ect on neurocognitive processes of sustained attention, perception, and the ability to both
retrieve memories and create new ones. Many pscychiatric and neurodegenerative disorders are
related to dysfunction in these neuromodulatory systems. The LC constitutes one of the major
sources for NA, a neuromodulator which plays a central role in higher order neurocognitive
processes involving the PFC and OFC (Strauch et al., 2022). Elucidating the factors that
influence the LC and its subsequent pathways and mechanisms is valuable for the understanding
of how the brain allocates attention and adapts to the environment to select, store and retrieve
information in order to form adaptive behavior (Sara, 2009).

The studies presented as part of this thesis recorded pupil diameter and BOLD activity
simultaneously, which allowed capturing moment-to-moment changes in neurocognitive
processing and attentional e�ort and enabling a precise modelling of the relationship between
pupillary responses and brain activity. The first project contributed to the understanding of
underlying cognitive load mechanisms in revealing two specific subprocesses, one related to
working memory and the other one to task-related salience (Fietz et al., 2022).

The second project proposes the use of pupil size recordings as a valuable tool for the assessment
of neurocognitive functioning in a transdiagnostic sample encompassing healthy individuals as
well as patients with mainly a�ective and anxiety disorders. Pupil response profiles, identified
through data-driven clustering, were strongly associated with the performance in neurocognitive
measures tapping into the domain of executive functioning (Fietz et al., 2023).

Therefore, the pupil has the potential to support diagnostics of neurocognitive deficits, in
particular in an early stage of the decline. As pupillary constriction and dilation provide an
easily accessible, inexpensive, and noninvasive readout they o�er a diverse range of applications,
specifically in the clinical field (Strauch et al., 2022). The early detection of alterations in pupil
size could indicate symptoms such as poor concentration, high arousal levels, and working
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memory impairment which are common across various psychiatric and neurodegenerative
disorders (Abramovitch et al., 2021). Future research could follow-up on the results and
implement and expend the experimental setup to other psychiatric and neurodegenerative
disorders as the LC-NA system is implicated in various conditions. For example, in attention-
deficit hyperactivity disorder executive functioning is impaired due to neuromodulatory
influences over fronto-cerebellar circuits while showing disorder specific pupil fluctuations (Del
Campo et al., 2011; Nobukawa et al., 2021; Townes et al., 2023). These pupillometric signatures
could be used for the assessment of neurocognitive processing in these conditions as well
as potentially give insights on changes in various brain states influenced by, for example,
pharmacological interventions.

To provide a more nuanced view on the presented studies in this thesis and its contribution to
the field it is important to address the limitations. Generally, cross-sectional study designs, such
as the BeCOME study, are comparable to a snapshot where acute and chronic cases, which are
known to exhibit substantial di�erences, are pooled together. The varying disease severities and
etiologies may shape the results in di�erent ways and in principal do not allow any deductions
which tap into causal interpretations (Spector, 2019). Additionally, from an experimental
psychological view, it could be of interest to add conditions with a higher cognitive load to
the experimental setup. This could allow potentially the observation of the inverted U shape
in working memory performance as well as the related findings in NAergic neurons and its
manifestation in pupil fluctuations (Aston-Jones & Cohen, 2005).

The overarching goal of neuroscientific research in the field of psychiatry and clinical psychology
is the establishment of biomarkers to inform and individualize diagnostics and treatment for
patients. Until now, neuropathological underpinnings of psychiatric disorders have little
to no influence on current healthcare practice as clinical decisions are mainly based on
phenomenological profiles (Cuthbert & Insel, 2013). The question is what characteristics a
potential biomarker would need to be considered in healthcare practice? Should it completely
substitute the phenomenological approach or rather add on valuable information? In other
medical fields, in which biomarkers are already well established, they provide an objective
estimate of the disease. The target conceptualization of a biomarker would be that it needs
to be reasonably simple and fast to obtain so that it can be easily implemented by clinicians.
Additionally, the personal and economic costs should be low and would ideally contribute to the
decision on which treatment is most likely to be beneficial for the patient (Jollans & Whelan,
2018). For decades no such biomarker with su�cient evidence was identified in psychiatry
that allows the questioning of biological reductionism within “brain disorders” in general. One
idea presented in the past years was to reorganize the phenomenological conceptualization of
psychiatric disorders within a network model. The hypothesis is that psychiatric disorders are
rather a causal interplay of symptoms which are highly context depended with multifactorial
explanations (Borsboom et al., 2019). However, setting aside the biological substrates of
medical conditions might potentially further hinder the progression of personalized medicine
within psychiatry. A paradigm which incorporates biological mechanisms, and their behavioral
manifestations is the process-view of psychopathology. Within this notion, psychiatric disorders
are rather disconnected from the current problematic artificial labelling and manifest within
processes such as reward anticipation, salience monitoring, fear conditioning and executive
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functioning. These processes are functional entities on a continuum where their nature matches
with the dimensionality between health and disease (Elbau et al., 2019; Kopf-Beck & Fietz,
2021).

The work summarized in this thesis introduces such a process-oriented physiological marker
using pupillometric data reflecting executive functioning abilities across psychiatric disorders,
therefore, having the potential for identifying related malfunctions before its manifestation
in behavioral responses. Changes in coupling between NA release and pupil fluctuations
could reveal impactful insights into the e�ects of stress on brain states, specifically related
to the involvement of the PFC. Di�ering levels of NA provide a molecular switch for
whether the PFC and consequently the amygdala are engaged or weakened. For example,
patients with post-traumatic stress disorder show elevated NA levels in cerebral spinal fluid
concentration (Geracioti et al., 2001). The PFC regulates levels of arousal though projections
to NA neurons where it can inhibit or facilitate LC firing and reduce or amplify the stress
response (Arnsten et al., 2015).

This process-view moves away from dichotomous categorization of health and disease and takes
social and normative factors into account, tapping into a rather holistic view of the human
disposition. A multimodal approach spanning wide-ranging levels of assessment for studying
pathophysiology could enhance the identification of individual biologically derived adaptive and
maladaptive patterns (Brückl et al., 2020). A combination of psychophysiological, functional,
and anatomical studies are needed to gain a better understanding of these process-oriented
mechanisms which form human behavior, mental, and emotional states (Elbau et al., 2019).
The main neuromodulatory systems in the brain play a crucial role in essential physiological,
behavioral, and neurocognitive functions, and have been linked to various psychiatric disorders.
Although, precise techniques for investigating neuromodulation, specifically NA recordings,
exist in animals, similar advancements are required in humans to expedite translational research
and further enhance the comprehension of the continuum between health and disease (Bang
et al., 2023).
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