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Zusammenfassung
In dieser Arbeit wird der Aufbau eines neuartigen experimentellen Systems beschrieben, das
aus einer Kombination von dreidimensionalen optischen Gittern und optischen Pinzetten be-
steht und mithilfe dessen Quantensimulationsexperimente mit ultrakalten Ytterbium-Atomen
in zustandsabhängigen Potentialen ermöglicht werden. Dabei stellt diese Arbeit die erste
Beschreibung einer erfolgreichen Realisierung von Seitenbandkühlprozessen mithilfe des
ultraschmalen Uhrenübergangs in bosonischen, spinlosen Elementen dar, die uns ermögli-
chen, gefangene Atome in einem ein- oder zweidimensionalen optischen Gitter bis auf den
axialen Grundzustand herabzukühlen, und die auch das Erreichen des absolut niedrigsten
Quantenzustands in allen drei Raumdimensionen möglich machen sollte. Zudem werden
seitenbandunaufgelöste Molasse-Kühltechniken geschildert, die es uns erlauben, Fluoreszenz-
abbildungen von Atomen in optischen Pinzetten sowie Gittern bei jeweils unterschiedlichen
Wellenlängen mit langen Belichtungszeiten vorzunehmen.

Hierbei ist das Einhalten von quasi-magischen Bedingungen entscheidend, um vergleichba-
re Fallentiefen für Atome im Grund- und angeregten Zustand unabhängig von der Position in
der Falle oder der Intensität des Fallenlichts zu erreichen. Dies wird bei dem Molasse-Kühlen
durch eine Verkippung der Magnetfeldrichtung, die die Quantisierungsachse festlegt, zu einem
erstmals bestimmten magischen Winkel verwirklicht. Gleichsam erlaubt die Verwendung
eines Gitters bei einer magischen Wellenlänge die hochpräzise Anregung von Atomen in den
metastabilen Uhrenzustand, der als orbitaler Freiheitsgrad ein Schlüssel zur Simulation von
komplexen Vielteilchensystemen darstellt. Durch spektroskopische Messungen bestimmen
wir zwei weitere, zuvor unbestimmte magische Wellenlängen, die sich besonders für optische
Pinzetten in Neutralatom-Quantencomputern eignen.

Um zudem das Spektrum der realisierbaren Quantensimulationsexperimente zu erweitern,
messen wir auch potentialfreie Wellenlängen, bei denen die atomare Polarisierbarkeit und
somit die Atom-Licht-Wechselwirkung verschwindet, sowohl für den Grund- als auch den
Uhrenzustand mithilfe von periodischer Modulation, die zu parametrischem Heizen und
kontrolliertem Teilchenverlust führt. Ergänzend illustrieren wir eine neuartige Messmetho-
de, die auf thermometrischen Messungen des Seitenbandspektrums beruht. Dies stellt die
erste Messung solcher Wellenlängen für Ytterbium und insbesondere die erste Beschreibung
einer potentialfreien Wellenlänge für einen optisch angeregten Zustand überhaupt dar. Un-
terstützt wird dieses Resultat durch ein empirisches Modell, das die Polarisierbarkeiten der
drei energetisch niedrigsten Zustände über den sichtbaren und infraroten Spektralbereich
beschreibt und die gemessenen magischen und potentialfreien Wellenlängen miteinbezieht,
um die Präzision des Modells zu verbessern.

Zudem führen wir in dieser Arbeit aus, wie optische Fallen bei ebendiesen Wellenlängen
die Simulation von Gittereichtheorien in zwei räumlichen Dimensionen sowie die gezielte
Neuanordnung von Atomen in Gittern mit geringen Abständen zwischen den Gitterplätzen
ermöglichen können. Während Ersteres einen großen Schritt hin zu einem besseren Verständ-
nis von komplizierten Feldtheorien bedeuten würde, erlaubt Letzteres die Initialisierung von
beliebigen Anfangszuständen in optischen Gittern und eröffnet somit neue Möglichkeiten
bei der Untersuchung von Vielteilchensystemen.
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Abstract
This thesis reports on the construction of a novel experimental system based on a combination
of a three-dimensional optical lattice and a tweezer array, which aims at the implementation of
quantum simulation experiments with ultracold ytterbium atoms in state-dependent potentials.
With large ground-state fractions as an essential prerequisite for most quantum simulation
protocols, we describe the first realization of sideband cooling on the ultranarrow clock transi-
tion of spinless bosonic ytterbium atoms trapped in one- and two-dimensional optical lattices.
This allows us to reach the lowest vibrational band along the strongly confined directions and
is expected to provide us with a method to cool the atoms to the absolute motional ground
state. In addition, we characterize a complementary molasses cooling method, enabling us
to perform fluorescence imaging of atoms in optical tweezers and lattices at different trap
wavelengths for long exposure times.

Here, it is instrumental to attain quasi-magic conditions to cancel differential light shifts,
rendering the cooling efficient for all atoms irrespective of their position in the trap and its depth.
To this end, we find a new magic angle for this cooling transition by tilting the magnetic field
vector with respect to the lattice polarization. Moreover, we make use of a magic-wavelength
lattice to excite atoms to the metastable clock state with high precision, which can thus be
used as an orbital degree of freedom to simulate complex many-body systems. Conducting
spectroscopic measurements of the wavelength-dependent ac Stark shift, we further determine
two previously unknown magic wavelengths, which will likely find manifold applications in
neutral-atom quantum computing systems.

To expand the toolbox for quantum simulation experiments, we also measure the tune-out
wavelengths for the ground and clock state, where the respective ac polarizability and thus the
atom-light coupling vanishes, by means of a modulation scheme to induce parametric heating
and subsequent atom loss from the trap. Furthermore, we present a novel approach to detect
tune-out wavelengths via sideband thermometrymeasurements. This represents the first report
of such wavelengths for ytterbium and, in particular, the first time a tune-out wavelength for
an excited state of an optical transition has been determined. We frame these results in an
empirical model that describes the dynamical polarizabilities of the three lowest-lying states
over the visible and infrared optical spectrum by taking the measured distinctive wavelengths
into account, which leads to an enhanced predictive power of this model.

Additionally, we explicate on the facility of leveraging state-dependent potentials for the
simulation of lattice gauge theories in one and two spatial dimensions as well as strategies
for the dense rearrangement of atoms in lattices or tweezer arrays with minimal spacings.
While the former would enable the unprecedented study of complicated field theories, the
latter could pave the way for quantum simulation experiments with arbitrary initial states
in optical lattices, opening up the possibility to study new phenomena in previously inac-
cessible many-body systems.
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Introduction

Quantummechanical descriptions of microscopic properties and dynamics have fundamentally
shaped our understanding of atomic, optical, or solid state systems. The contrast to classically
intuitive behavior does not only challenge our perception of quantum phenomena, but also
complicates theoretical calculations of complex systems such as strongly correlated or disor-
dered many-body states on classical computers due to the exponentially growing Hilbert space
size [1–3]. This motivates the utilization of quantum particles to study such systems, leading to
the concept of analog quantum simulators [4]. Immense progress has been achieved towards
realizing suchmachines within the last decades, with more andmore experiments reaching the
boundaries of classically accessible simulations [5–8], entailing the necessity of benchmarking
the simulated results [9, 10]. Similarly, the development of large-scale, programmable quantum
computers to solve classically hard problems [11, 12] has advanced remarkably despite limita-
tions on the state preparation, read-out, and gate fidelities [13], and first hints of a quantum
advantage for specific problems were given [14, 15].

In both regards, ultracold atoms have emerged as a powerful platform, where early seminal
discoveries, such as the observation of a quantum phase transition from a superfluid to a Mott
insulator [16] or the condensation of pairs of fermionic atoms [17–19], were followed by the
realization of non-trivial topological phases in artificial magnetic fields [20, 21] and many-body
localized states [22, 23]. In the last few years, these developments have progressed to reports
of spin-charge deconfinement in fermionic atom chains [24], fractional quantum Hall states
[25], toric-code-type topological spin liquids in Kagome arrays [26], and continuous symmetry
breaking in the dipolar XY model in square Rydberg tweezer arrays [27]. Simultaneously,
neutral-atom systems have emerged as a leading contender in the race for the highest fidelities
of single- and two-qubit gates [28, 29] and demonstrated the scalability to several thousands
of physical qubits [30, 31].

A main reason for the success of ultracold atom experiments is the enormous amount of
controllability and the vast number of tuning knobs quantum gas systems provide [5, 7]. Here,
the degrees of freedom strongly depend on the chosen trap platform. Optical lattices do not
only offer regular, defect-free potential landscapes, but also allow for adjusting the kinetic and
potential energy of trapped particles by varying the lattice power or magnetic fields [6]. Here,
the underlying optical potential can be shaped to provide the desired dimensionality or lattice
structure, also enabling triagonal, hexagonal, or even octagonal order and, thus, the study of
spin-frustrated systems, topological edge modes, or quasi-crystalline order [32–34]. The advent
of quantum gas microscopes has further enabled the precise determination of atomic positions
and spin states in optical lattices [35–39]. In addition, the interaction strength and range can
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2 Introduction

be adjusted via Feshbach resonances [40] or Rydberg interactions [41, 42]. Depending on the
chosen element and transitions, one can further cover a broad range of sensitivity to external
or internal fields, which is of major relevance for highly accurate atomic clocks [43] or the
search for new particles and changes in fundamental constants [44–46].

To be able to conduct quantum simulation experiments of the models of interest, it is
often necessary to achieve an initial state with very low entropy and near-unity ground-state
fractions [6]. This is particularly true for Hubbard(-like) models, where especially the fermionic
model has gained considerable attention due to its capability to describe relevant aspects in the
behavior of strongly correlated electrons in a crystal [47]. The standard approach to reach the
absolute ground state and high filling fractions in an optical lattice for the last 20 years has been
based on evaporative cooling in a dipole trap to reach a Bose-Einstein condensate or a quantum
degenerate gas at sufficiently low temperature, which is then adiabatically transferred into
the optical lattice to perform the experiment of interest [5]. While this cooling method has
brought record-breaking temperatures as low as 450(80) pK for bosons [48], reaching very low
temperatures below one tenth of the Fermi temperature is fundamentally more complicated
in fermionic systems [49], limiting the exploration of the Fermi-Hubbard phase diagram [47,
50–53] and its implications on our understanding of, e.g., superconductivity [54]. Furthermore,
despite progress towards accelerated evaporation and fast Bose-Einstein condensation of Er
atoms in less than a second [55], the vast majority of quantum simulators suffers from low
cycle times of 15 s or more, owing to the slow thermalization rates [56].

Arrays of tightly focused tweezer beams, on the other hand, provide the possibility to
form arbitrary trap geometries with variable depths of the individual traps and to dynamically
rearrange atoms, such that the initially large entropy of laser-cooled atoms can be removed
and similarly homogeneous filling fractions as in a Mott insulator are possible [57–59]. This
has also opened up the opportunity for a much faster preparation of atoms in the ground state,
achieved by sideband [60–63], polarization gradient [26, 30], or Sisyphus cooling [64, 65]. The
utilization of excitations to Rydberg states further enables sufficiently long-ranged dipole-dipole
interactions to bridge the larger gaps between atoms in tweezers compared to optical lattices
[57], which has been used to demonstrate highly entangled states [10, 66]. This in combination
with large repetition rates and a reasonable potential for scalability [30, 31] renders tweezer
arrays highly suitable for quantum processing applications. There has also been significant
development towards tweezer-based atomic clocks recently, with reports of sub-wavelength
movements [67] and spin squeezing [68, 69] to enhance the metrological precision.

Remarkable novel avenues have emerged with the demonstration of multi-species arrays
in optical tweezers, where Rb and Cs atoms [70] as well as 171Yb–174Yb mixtures [71] have
been simultaneously loaded and arranged to enable cross-talk-free control and read-out of data
and ancilla qubits, which are essential for quantum error correction and otherwise require
imperfect shelving or transport operations [59, 72]. A second promising hybrid approach
unites optical lattices and tweezers to implant atoms on desired lattice sites, where they can
controllably tunnel to adjacent sites. This can then be used to perform spatial search and boson
sampling algorithms [73, 74]. A second application of this tweezer-lattice combination is the
continuous loading and recycling of atoms to form large-scale arrays of atoms [75, 76].

A vital precondition for many of the aforementioned experiments is the knowledge of
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the dynamical polarizability of the relevant states at the trapping wavelengths. While large
absolute values are beneficial as they enable deep, power-efficient traps, in particular the
differential polarizability can be of great significance as it determines the effect of trap depth
inhomogeneities on the observed transition linewidth [77]. Therefore, the operation at magic
wavelengths, where this effect is fully canceled, has been of major importance for optical lattice
clocks [43, 78], but has also been found useful for cooling and high-fidelity addressing purposes
[62, 72, 79–83]. In contrast, for certain applications like improved cooling schemes [84, 85] or
state preparation protocols [86–88], a non-zero light shift is required. First realizations of such
state-dependent potentials have used spin-selective optical lattices to coherently delocalize
atomic wavefunctions [89] and to arrange two atoms in adjacent double-well sites to study
superexchange dynamics [90]. They have later been used to initialize a system with a single
spin impurity [91, 92] and to observe anyonic statistics on a plaquette [93]. For elements
with an orbital degree of freedom like ytterbium, these internal states can be interpreted as
independent species, such that state-dependent lattices act on their relative mobilities and can
cause an effective mass imbalance [94, 95]. Furthermore, state-dependent potentials lie at the
heart of several quantum computing protocols [96–98], where in particular the concept of local,
targeted detuning of individual atoms has gained considerable attention [91, 99, 100].

This thesis

The main subject of this thesis is the development of a hybrid tweezer-lattice quantum simu-
lator with ytterbium atoms, employing state-dependent potentials and optical sub-Doppler
cooling on the clock transition. The described experimental apparatus hereby bridges the
gap between traditional lattice-based quantum simulators and dynamical tweezer systems in
multiple ways, facilitating sideband cooling sequences to reach the motional ground state of
an optical lattice significantly faster than with the traditional evaporation method and paving
the way for the deterministic preparation of arbitrary initial states. To this end, we demon-
strate enhanced loading and quasi-magic fluorescence imaging of bosonic ytterbium atoms
in a tweezer array and extend the imaging facility to a deep three-dimensional clock-magic
lattice, which we tune to state-insensitivity by means of a magic magnetic field angle with
respect to the lattice polarization. Further, this thesis reports on new magic wavelengths for
the clock transitions, which are detected via high-precision spectroscopic measurements, and
wavelengths of maximal state selectivity (“tune-out”) for both the ground and the clock state,
determined by heating-induced atom loss and thermometry measurements. We embed these
results in a theoretical model for the dynamical polarizability of the ground and two lowest
excited states and find very good agreement with experimentally quantified values. In light
of the currently ongoing developments in our experiment towards 3D motional ground-state
cooling and the implementation of tune-out tweezer arrays, a protocol for the controlled rear-
rangement of atoms in closely filled optical lattices as well as a pathway for the experimental
simulation of two-dimensional lattice gauge theories is given.



4 Introduction

Outline
This thesis is divided into five chapters, which are structured as follows:

Chapter 1 introduces the electronic structure and interaction properties of ytterbium atoms,
with a particular focus on the dimorphism that is enabled by the transition to the metastable
clock state. We then turn to a discussion of light-atom interactions and derive empirical models
to provide accurate polarizability predictions of the three energetically lowest states. Further-
more, themain concepts of atomic traps are presented. We conclude theChapterwith an outline
on the eventual purpose of the experiment as a quantum simulator for lattice gauge theories,
and specifically consider the realization of the necessary state-dependent potential landscape.

In Chapter 2 the experimental apparatus is described, starting with the vacuum chamber,
the magnetic coils, and the optical setups around the main chamber as well as the lasers. We
then discuss and characterize the various stages to be able to trap atoms in a magneto-optical
trap and to transfer them into optical lattices in various dimensions. As this allows us to address
the clock transition, an overview of the manipulation methods of the clock state pair is given.
This is followed by a description of the objective, which enables the generation of tweezer
arrays and fluorescence imaging facilities, with a particular focus on the newly developed
enhanced loading and molasses cooling capacity in our tweezer array.

Having established the experimental platform, Chapter 3 covers novel methods of molasses
cooling during fluorescence imaging and reaching sub-Doppler-cooled temperatures in a magic
lattice. While the former utilizes a newly discoveredmagic angle for thewider intercombination
line, the latter is based on the ultranarrow clock transition. We demonstrate how cooling along
a single direction in a one-dimensional lattice can reduce the temperature to a few µK, and
introduce a swept sideband cooling technique to reach the motional ground state in a 2D
lattice. Its extension to 3D as well as an outlook on an implementation of Raman sideband
cooling in the clock-magic lattice is further outlined.

In Chapter 4 the first measurements of four distinctive state-dependent wavelengths in
ytterbium are presented. We begin with the spectroscopic characterization of two new magic
wavelengths for the optical qubit, followed by a description of tune-out wavelength mea-
surements for the ground as well as the clock state based on a parametric heating scheme.
Moreover, the implications of such maximally state-dependent wavelengths on relevant as-
pects of quantum computation and simulation are touched upon, with a particular focus on
a dense atom resorting scheme.

The final Chapter completes this thesis with a brief summary of the central findings and
provides a prospect of avenues to future work on this experiment.
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CHAPTER 1

An ytterbium quantum simulator

The selection of a specific element for a neutral atom quantum simulator is one of the most
central decisions, as it determines the physical properties and, thus, the toolbox that can be used
in experiments. In this Chapter, we delineate the relevant atomic properties of ytterbium and
why it has been chosen for this experiment. We focus in particular on the far off-resonant atom-
light coupling, where we develop an empirical model to accurately describe the light shift of the
three most relevant states in Yb for potential trap wavelengths, before we move on to discussing
some theoretical concepts on atom traps, i.e., magneto-optical traps (MOTs), optical lattices,
and tweezers, that will be important in the context of this thesis. Furthermore, an outline on
the quantum simulation protocol for lattice gauge theories (LGTs), which is the eventual goal
of this experiment, and its implications on the specific experimental design is given.

1.1 The alkaline-earth-like atom ytterbium
The lanthanide rare-earth element Yb features a nuclear charge of 𝑍 = 70 and seven stable
isotopes, among which five are bosonic with nucleon numbers of 𝐴 = 168, 170, 172, 174,
and 176 with a nuclear spin of 𝐼 = 0, joined by the two fermionic isotopes 171Yb and 173Yb
[104]. While the latter two are anticipated to be mostly used in the future of the experiment,
due to their non-vanishing nuclear spins of 𝐼 = 1∕2 and 𝐼 = 5∕2, respectively, the results in
this thesis were mostly obtained with the most abundant (≃32% natural abundance) isotope,
174Yb. The 70 electrons are arranged in the configuration [Xe]4𝑓146𝑠2 [105]. With two valence
electrons in an outer 𝑠-shell and a set of complete inner shells, the electronic structure of
Yb resembles the one of alkaline-earth metals like Ca or Sr, which is why it is referred to as
an alkaline-earth-like (AEL) atom.

1.1.1 Level structure
The spins of the two valence electrons can align to form a spin singlet (𝑆 = 0) or triplet (𝑆 = 1),
which consequentially determines the symmetry of the spatial wavefunction and manifests
a He-like separation of energy levels into two manifolds. According to the selection rules,
optical dipole transitions between the singlet and triplet manifolds are forbidden, owing to
the necessary spin flip. This gives rise to metastable higher lying states, which can be used for

6
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extremely precise atomic clocks [78] and two-species quantum simulation [106, 107]. While
the use of the spin-orbit (𝐿𝑆) coupling term notation 2𝑆+1L𝐽 , indicating that the orbital angular
momentum 𝐿, electronic spin 𝑆, and total electronic angular momentum 𝐽 are good quantum
numbers, is a reasonably good approximation, the large electron number entails a significant
influence of 𝑗-𝑗 coupling [108, 109]. This further implicates that the dipole selection rules yield
decent lowest-order estimates of the optical transition strengths, but electrostatic interactions
as well as spin-orbit, Zeeman, and hyperfine coupling effects lead to finite admixtures of dipole-
allowed states to enable weakly allowed intercombination lines, thus violating the selection
rules. Since a detailed summary of these effects applied to the relevant energy levels in Yb can
be found in [110], we will restrict this discussion to a mere description on the most important
energy levels for this work, displayed in Fig. 1.1.

The (6𝑠2)1S0 ground state is connected to the (6𝑠6𝑝)
1P1 state via the strong, dipole-allowed

transition at 398.9nm [111]. Owing to its large natural linewidth of Γ399 = 2𝜋 × 29.13MHz
[112], the substantial photon scattering rate, and only very weak leakage into the (6𝑠5𝑑)3D1
state [113], this transition is perfectly suited for slowing, cooling, and imaging purposes. We
also use it for initial absorption spectroscopy to test the atomic oven (Chapter 2.1.1), where
the isotope shifts yield the characteristic multi-peak structure of Fig. 2.2.

The most prominent and practically advantageous case of state mixing is the (6𝑠6𝑝)3P1
state in the triplet manifold, which inherits a finite linewidth of Γ556 = 2𝜋 × 183 kHz from
the 1P1 state, to which it is spin-orbit-coupled in the intermediate coupling regime [110, 114].
Here, a marked difference to the generally very similar level structure in Sr arises, where
this transition exhibits a linewidth of only 2𝜋 × 7.4 kHz [115]. In Yb, the relatively short
wavelength of 555.8nm and its closed nature further contribute to its usefulness as the narrow-
linewidth cooling transition in the MOT and in optical tweezers or lattices. In addition, the
finite total electronic spin and the concurring Zeeman splitting allow for the precise calibration
ofmagnetic fields for bosonic isotopes, while the emerging hyperfine structure for the fermionic
isotopes additionally facilitates Raman sideband cooling and spin-selective imaging techniques
(Chapter 3.3) [63], but also spin-state mixture initialization [94] and optical Stern-Gerlach
separation measurements [116].

As the 578.4nm 1S0 →
3P0 transition does not only violate the spin selection rule ∆𝑆 = 0,

but also does not observe the necessary total electronic angular momentum change ∆𝐽 = ±1
for 𝐽 = 0, it is doubly forbidden. Therefore, the atom-light coupling vanishes for the bosonic
isotopes. For the fermionic isotopes, the hyperfine interaction between states with different
electronic angular momentum 𝐽 but identical total atomic angular momentum 𝐹, caused by
the non-zero nuclear spin and finite nuclear moment, leads to a small perturbation of the bare
3P0 eigenstate and thus to a small admixture of the

1P1 and 3P1 states [110, 116]. The engendered
linewidths are minuscule with values of Γ578 ≃2𝜋×40mHz for 173Yb [121] and 2𝜋×53(6)mHz
in the case of 171Yb [120]. For the bosonic isotopes, the missing nuclear spin can be emulated
by applying a strong external magnetic field [124, 125] and one can induce a finite transition
matrix element — a technique that will be described in more detail in the next Section.

The dipole-allowed 3P0 →
3D1 transition at 1388.7nm [123] with a linewidth of Γ1389 =

2𝜋 × 309 kHz [122] has become a standard tool of Yb-based experiments to quickly repump
atoms from the clock state. From the 3D1 state, the atoms predominantly decay back to the 3P0
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(6s2)1S0

4f136s25d (J=2)

(6s6p)1P1

(6s6p)3P1

(6s5d)3D1

(6s7s)3S1

(6s6p)3P0

(6s6p)3P2
λ = 398.9 nm
γ = 29.1 MHza

λ = 431.2 nm
γ ~ 0.8 mHze

λ = 507.3 nm
γ ~ 15 mHzd

λ = 649.1 nm
γ = 1.5 MHzf

λ = 680.1 nm
γ = 4.3 MHzf

λ = 770.2 nm
γ = 5.9 MHzf

λ = 578.4 nm
γ ~ 50 mHzc

λ = 555.8 nm
γ = 183 kHzb

λ = 1388.7 nm
γ = 308 kHzg

λ = 1539.1 nm
γ = 170 kHzg

λ = 2092.6 nm
γ = 4.5 kHzg

Spin singlet Spin triplet Core-excited

Figure 1.1 | Energy level diagram of ytterbium. Partial term diagram of the relevant low-lying electronic
states in LS eigenstate notation for the states with a closed f -shell and in terms of the total angular
momentum for the core-excited state (J = 2). Arrows indicate optical transitions that are mentioned in
this work, labeled with their transition wavelengths λ and natural linewidths γ = Γ∕2π. For the latter,
we either display its measured or the inferred value from the LS coupling method discussed in the next
Section. For the ultranarrow clock transitions we state the linewidths for 171Yb. The (6s2)1S0 and (6s6p)3P0
states will also be referred to as |||g⟩ and |e⟩ throughout this thesis. Superscripts indicate the reference
where the values for this transition were taken from: a [112], b [117, 118], c [119, 120], d [121], e [45], f

[113], g [122, 123]

state with a branching ratio of 0.64, but 35% of the atoms end up in the 3P1 state, from where
they further decay to the ground state. Only a small fraction of 1% of the atoms are lost to
the dark 3P2 state in one repumping cycle. By driving this transition multiple times, we can
repumpmore than 95% of the clock state atoms within less than ten cycles, allowing for reliable,
independent imaging of the clock-state population and for the dissipative step of a resolved
sideband cooling technique on the clock transition (Chapter 3). The maximally achievable
repumping efficiency of 97.4% can be further enhanced by simultaneously repumping the
atoms stuck in the 3P2 state via the

3S1 transition at 770.2nm [126].

1.1.2 The clock transition
The existence of doubly forbidden and thus ultranarrow transitions with linewidths on the
order ofmHz [121] or even µHz [45, 127, 128] is one of the most outstanding properties of AEL
atoms. This has made them very promising candidates for optical lattice clocks, which have
been brought to fruition since with systematic uncertainties around or even below 10−18 in
units of the clock frequency [129, 130]. This progress beyond the capabilities of microwave
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clock transitions has been fueled by the extraordinary Q-factors of ≃1017, but also the very low
sensitivity to external fields due to the vanishing total electronic angular momentum for both
the 1S0 and

3P0 state. To this end, such transitions are denominated “clock” transitions, and
we will interchangeably refer to the 3P0 state as the clock or 𝑒 state for the remainder of this
work. For quantum simulation purposes, the metastability of the clock state, entailed by its
correspondingly large lifetime of > 10 s is tremendously valuable, as it allows for an orbital
degree of freedom. For the fermionic isotopes, this is further enriched by SU(𝑁) symmetric
interactions due to the decoupled electronic angular momentum from the nuclear spin [116].

The atom-light interaction of a stable laser close to the clock resonance, e.g., during spec-
troscopic measurements, is well described by the simple two-level-atom picture, taking only
the ground state, denoted |||𝑔⟩, and the clock state |𝑒⟩ into account. In this case, and having
applied the rotating-wave approximation, we can write the Hamiltonian as [77]

𝐻TLA = ℏ (
0 Ω0∕2

Ω0∕2 −∆ ) (1.1)

with the laser detuning ∆ = 𝜔 − 𝜔0 from the atomic resonance 𝜔0 and the resonant Rabi
frequency

Ω0 = −𝐝 ⋅ 𝐄ℏ = − ⟨𝑔||| 𝜀 ⋅ 𝐝 |𝑒⟩
𝐸
ℏ . (1.2)

Here, we treat the laser light classically, i.e., as an electric field

𝐄(𝑡) = 𝐸0 cos(𝜔𝑡 + 𝜑) = 𝐄(+)𝑒−𝑖𝜔𝑡 + c.c. (1.3)

oscillating at an angular frequency of 𝜔, and with 𝐄(±) = 𝜀𝐸0𝑒∓𝑖𝜑∕2 the positive-frequency
electric field amplitude vector and the intensity defined as 𝐼 = 2𝑐𝜖0|𝐸(+)|2 = 𝑐𝜖0|𝐸|2∕2 [110,
131]. An in-depth derivation of the dipolematrix element ⟨𝑔|||𝑑 |𝑒⟩ is given in [110] and [77], and
will be discussed further in Section 1.2. Using the generalized Rabi frequency Ω =

√
Ω2
0 + ∆2

we obtain the eigenenergies

𝐸± =
ℏ
2 (−∆ ± Ω) (1.4)

to the dressed states

|+⟩ = sin 𝜃 |||𝑔⟩ + cos 𝜃 |𝑒⟩ , (1.5)
|−⟩ = cos 𝜃 |||𝑔⟩ − sin 𝜃 |𝑒⟩ (1.6)

with 𝜃=arctan(−Ω∕∆)∕2. Starting with all atoms in the ground state, irradiation with resonant
light will therefore lead to the well-known Rabi oscillations,

|||𝜓(𝑡)⟩ = |+⟩ 𝑒−𝑖Ω0𝑡∕2 + |−⟩ 𝑒𝑖Ω0𝑡∕2, (1.7)

and a 𝜋-pulse with ∆𝑡𝜋 = 𝜋∕Ω0 = 1∕2𝑓0 will fully transfer the atoms into the excited state.
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With the pulse duration fixed to this value while scanning the laser frequency across the
resonance the clock state fraction will then follow a sinc2 shape:

𝑃e(∆) =
Ω2
0

Ω2
0 + ∆2

sin2
⎛
⎜
⎜
⎝

𝜋
2

√
Ω2
0 + ∆2

Ω0

⎞
⎟
⎟
⎠

. (1.8)

Notably, one can thus change the observed linewidth by varying the Rabi frequency, e.g., by
adapting the intensity of the laser beam. A different approach to a complete transfer from |||𝑔⟩ to
|𝑒⟩ is the adiabatic rapid passage (ARP), wherewe remain in the initial dressed state aswe slowly
(𝜏 ≪ 1∕Ω0) chirp the laser pulse from ∆≪ −Ω across the resonance to ∆≫ Ω or vice versa,
which entails a population inversion. This protocol is more robust to inhomogeneities, e.g.,
due to trap light shifts, and can be further enhanced by a Gaussian intensity modulation [110].

In the presence of decoherence, be it the limited coherence time of the laser, temperature
or interaction shifts, intensity inhomogeneities, or a short lifetime of the excited state, the ideal
Rabi oscillations are damped and decay to a steady-state value of [77]

𝑃e =
𝑠∕2
1 + 𝑠 , (1.9)

where we make use of the saturation parameter [110]

𝑠 =
𝐼∕𝐼sat

1 + (2∆∕Γ)2
. (1.10)

Here, we have introduced the saturation intensity 𝐼sat = 𝜋ℎ𝑐𝛾∕3𝜆3 with 𝛾 = Γ∕2𝜋 the natural
linewidth of the transition [77]. For the clock transition, the |𝑒⟩ lifetime exceeds the duration
of most experimental sequences, but other sources of incoherence, in particular for a relatively
hot atomic cloud, typically lead to dephasing after a fewms. For longer clock-pulse durations
the lineshape therefore converges to a Lorentzian, with a maximum excitation fraction of 1∕2.

In contrast to the hyperfine-interaction-induced finite linewidth of the clock transition for
the fermionic isotopes, the nuclear spin of 𝐼 = 0 for the bosonic isotopes inhibits light-atom
coupling without the presence of external fields. A strong magnetic field, however, induces
Zeeman coupling to the 3P1 state, ℏΩZ(𝐵) =

⟨3P0
|||| �̂�𝐁

||||
3P1

⟩
, with the magnetic dipole operator

�̂�, and a 𝐵-field-dependent mixing angle 𝜉 = Ωz∕∆(3P1 −
3P0) of the unperturbed eigenstates

in first-order perturbation theory [124],

|||||
3P0

′⟩ = ||||
3P0

⟩
+ 𝜉 ||||

3P1
⟩
, (1.11)

ignoring the normalization prefactors for clarity. Thereby, quenching the transitions leads
to a finite Rabi frequency of [110, 124]

Ω(𝐵) = 𝜉Ω3P1 = Ω3P1ΩZ(𝐵)∕∆(3P1 −
3P0) = 𝛼𝐵

√
𝐼 cos(𝜃) (1.12)

for the angle 𝜃 between themagnetic field and the polarization of the clock light. The coefficient
𝛼, which includes the atomic parameters, has been measured to be 0.588Hz∕(G

√
mW∕cm2)
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[125], which allows for reasonable Rabi frequencies ofΩ0 ≃200Hz for an intensity of 10W∕cm2

and amagnetic field strength of 𝐵 = 100G. Notably, the Zeeman coupling is strong enough that
it can also be used for the fermionic isotopes to adjust the Rabi frequency in an𝑚𝐹-dependent
way. As a different approach, a collinear excitation of the clock state in a three-photon process
via the 3P1 and

3S1 states at moderate magnetic field strengths has been demonstrated for
two bosonic isotopes in Sr [132, 133], which otherwise require similarly large magnetic fields
to quench the transition [124, 134]. This technique could allow for very high clock Rabi
frequencies of several hundreds of kHz also for 174Yb.

While the linear differential Zeeman shift is a relevant effect for the other transitions
we commonly use, with a shift of, e.g., ∆Z = −𝑔𝐽𝜇B𝐵𝑚𝐽 = −1.449(7)MHz∕G × 𝐵𝑚𝐽 for
the 1P1 transition [135], where 𝜇B is the Bohr magneton, it is trivially zero for the bosonic
and very small for the fermionic isotopes, where the latter is again induced by the hyperfine
coupling. Nevertheless, it can play a significant role in the interorbital interactions [136, 137]
and has been precisely determined for both isotopes [110], with an exemplary value of ∆Z =
−191(7)Hz∕G×𝐵𝑚𝐹 for 171Yb. In setups with a high spectroscopic precision, even at moderate
magnetic fields also the quadratic shift from Zeeman coupling to the 3P1 state is significant.
It was determined to be ∆(2)Z = −0.0612(10)Hz∕G2 for 174Yb [138] and −0.0606(1)Hz∕G2 for
173Yb [110]1, and is commonly used to calibrate the magnetic coils.

Contrary to the weak coupling of the clock transition to magnetic fields owing to the
vanishing electronic angular momentum of both states, electric fields can strongly influence
the transition. In particular, the cancellation or precise determination of differential ac Stark
shifts is crucial for high-precision spectroscopy results and quantum simulation protocols that
involve this orbital degree of freedom. We will thus discuss the wavelength-dependent light
shift of both the 1S0 and

3P0 state in detail in Section 1.2. However, even for a perfectly cancelled
differential ac Stark shift the clock light itself leads to a noticeable intensity-dependent shift,
the so-called probe shift. It originates from the coupling to nearby transitions and is estimated
to amount to ∆S ≃ 15Hz∕(W∕cm2) [44, 124].

1.1.3 Interactions
While atomic interactions will be particularly relevant for future quantum simulation experi-
ments with the apparatus presented in this work (Chapter 4.4), they are also a crucial aspect in
the context of lattice and tweezer loading, lifetimes, and certain cooling techniques. As detailed
descriptions of the generally complex interatomic scattering processes can be found elsewhere
[40, 116], we will focus on a short description of the properties relevant for this work.

Elastic collisions

Under the approxiation that the main interaction processes are binary elastic collisions with a
spherically symmetric and sufficiently short-ranged inter-atomic interaction potential 𝑉(𝐫),

1Notably, one would expect a vanishingly small difference for the different isotopes [114].
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and taking the low-energy limit, the scattering amplitude 𝑓(𝐤,𝐤′) = 𝑓(𝜃) as defined in the
scattered wavefunction

𝜓(𝐫) ∼ 𝑒𝑖𝐤⋅𝐫 + 𝑓(𝐤,𝐤′)𝑒
𝑖𝑘𝑟

𝑟 (1.13)

reduces to2 [116, 139]

𝑓 = − 1
𝑎−1 + 𝑖𝑘

. (1.14)

Here, 𝐫 denotes the relative position and 𝐤 and 𝐤′ the wave vectors of the incoming and
outgoing waves with a relative angle of 𝜃. Typically, these approximations are reasonably
good for the dilute and cold atomic clouds that are prepared in quantum gas experiments.
Remarkably, the low-energy scattering behavior can thus be understood solely by knowledge of
the 𝑠-wave scattering length 𝑎, where a positive (negative) value indicates repulsive (attractive)
interactions. This parameter is determined empirically in most cases, since theoretical ab initio
calculations require an exact treatment of the generally highly non-trivial interaction potential.
While the scattering length is uniquely defined for the collisions of two ground-state atoms of a
single isotope, they may vary significantly not only between isotopes, but also between different
electronic states and for interorbital interactions, i.e., for collisions of an |𝑒⟩-|||𝑔⟩ pair. For the
latter, in the case of the fermionic isotopes the antisymmetric wavefunction under particle
exchange further produces two distinct interaction states — an orbital triplet state, |||𝑒𝑔+

⟩
, and

the singlet states, |||𝑒𝑔−⟩, with correspondingly symmetrized spin wavefunctions [116, 140].3 An
overview of the experimentally determined 𝑠-wave scattering lengths for the relevant isotopes
and scattering channels is given in Table 1.1. We note that almost all scattering lengths are
positive and sizeable, apart from the ground-state scattering length of 171Yb, which stands out
with an almost vanishingly small value. This is expected to influence the effectiveness of the
lattice loading process, as this depends on the atomic thermalization via scattering; however,
this did not present itself as a major issue in our setup (Chapter 2.6.1).

The full decoupling of electronic angular momentum from the nuclear spin further leads to
the absence of spin-changing collisions and the emergence of an SU(𝑁) interaction symmetry
for the fermionic isotopes, with 𝑁 ≤ 2𝐼 + 1 [106, 116]. For 171Yb, this corresponds to the
standard SU(2) group, while the preparation of subsets of𝑚𝐹 states for 173Yb flexibly allows
for the study of larger 𝑁 up to SU(6). This has been used to study the properties of a 1D
Fermi liquid [146] and the equation of state of the 2D and 3D SU(𝑁) Fermi-Hubbard model
[147–149]. In the context of our experiment, this will be particularly relevant for the realization
of non-Abelian lattice gauge theories (Chapter 1.4).

2Here, we have neglected the effective range term −𝑟ef f𝑘2∕2, which is the first-order correction to introduce a
finite energy dependence.

3This holds for atoms with different spins. For two atoms in the same spin state, only the anti-symmetric channel
allows for collisions.
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Isotope 174Yb 173Yb 171Yb

agg(a0) 104.9(1.5)a 199.4(2.1)a −2.8(3.6)a

a
(+)
eg (a0) 94.7(1.6)b 1878(37)c 240(4)d

a
−
eg(a0) n/a 219.7(2.2)c 389(4)d

aee(a0) 126.7(2.3)b 306(10)e 104(7)d

β
(−)
eg (cm3s−1) ≪ 10−14f <3 × 10−15e ≤2.6(3) × 10−16d

βee(cm3s−1) 2.0(1.4) × 10−11g 2.2(6) × 10−11e 4.8(2.1) × 10−12d

Table 1.1 | Scattering lengths and two-body loss coefficients of 174Yb, 173Yb, and 171Yb. The s-wave
scattering lengths a are in units of the Bohr radius a0. The inter-orbital scattering length aeg for 174Yb and
the one for the triplet scattering channel a+eg for the fermionic isotopes are displayed in the same row, as
well as the two-body loss rates βeg and β−eg. The values are taken from a [141], b [142] in agreement with
[143], c [136], d [144], e [145], f [143], g taking the mean value of reported results in [142, 143].

Inelastic scattering

In addition to elastic collisions, we also have to consider inelastic scattering interactions if the
particles are not strongly separated and once the electronic state enables relaxation processes.
This applies to collisions of clock-state atoms with an atom in the ground state, but even more
so to 𝑒-𝑒 scattering events. In these cases, the atoms can form a molecule, whose bound state
is significantly lower in energy than the wavefunction for the separated atoms. Therefore,
this process can release large amounts of energy, which can be converted to kinetic energy,
allowing the colliding pair to escape from the trap [106, 140]. We can describe this loss process
by the differential equation

d𝑛(𝑡)
d𝑡 = −𝛽𝑛2(𝑡), (1.15)

with the two-body loss coefficient 𝛽, which is solved by

𝑛(𝑡) = 1
1∕𝑛0 + 𝛽𝑡

(1.16)

with the initial atomic density 𝑛0. In the presence of additional single-body loss channels of
strength 𝛾, e.g., due to collisions with vacuum background atoms or off-resonant scattering,
this differential equation expands to

d𝑛(𝑡)
d𝑡 = −𝛽𝑛2(𝑡) − 𝛾𝑛(𝑡) (1.17)

and we obtain a resulting time-dependent population of

𝑛(𝑡) =
𝑛0𝛾

𝑒𝛾𝑡(𝑛0𝛽 + 𝛾) − 𝑛0𝛽
. (1.18)
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Wenote that the 𝑒-𝑒 loss rate coefficients for all threemain isotopes (Table 1.1), while still linked
with uncertainty, are considerably large and can pose a severe limitation to the clock-state
lifetime, as discussed in Chapter 4.3.

A loss process that is also affecting pure ground-state samples are three-body collisions, or
recombinations, in which part of the binding energy of a weakly bound molecule is transferred
onto a third involved atom [150]. Again, we can determine the solution to the corresponding
differential equation d𝑛(𝑡)∕d𝑡 = −𝜅𝑛3(𝑡) as

𝑛(𝑡) =
𝑛0√

1 + 2𝜅𝑡
. (1.19)

Due to the strong density dependence this effect only plays a role in relatively dense clouds,
which can be the case for atoms transferred from a MOT into a deep 3D lattice (Chapter 2.6).

1.2 AC polarizability

Expanding on the (near-)resonant atom-light interaction delineated in Section 1.1.2, we now
turn to a description of the far-detuned coupling of Yb atoms to light, which is essential
for the understanding of optical lattices or tweezers and for the concept of state-dependent
potentials. After a brief derivation of the theory behind the ac polarizability tensor, we outline
the polarizability landscape for the three lowest-lying electronic states, the 1S0,

3P0, and
3P1

states, and its implications on the choice of wavelengths for optical traps and other techniques
to adjust the differential light shift. Here, the empirical polarizability model, which was first
presented in [101], is discussed and expanded to include the tune-out wavelength for the 3P0
state, but also to present an improved model for the 3P1 polarizability, which is of particular
relevance for cooling and imaging purposes [63, 83, 151].

1.2.1 Far-detuned atom-light coupling

As the theoretical description of the atom-light interaction in [77] and its application on
ytterbium atoms in [110] is highly elaborate and extensive, the following treatment closely
follows their discussion and notation. Returning to the dipole interaction

𝑉ac(𝑡) = −𝐝(𝑡) ⋅ 𝐄(𝑡)∕2, (1.20)

with a classical electric field as in Eq. (1.3) and an induced oscillating atomic dipole moment
𝐝(𝑡) = 𝐝(+)𝑒−𝑖𝜔𝑡 + c.c., we note that the role of the dipole moment has changed compared to
Eq. (1.2) as we now consider the case of far-detuned light, i.e., ∆ ≫ Γ. In this regime, the
ac Stark or light shift as a second-order perturbation theory effect governs the interactions,
and the induced atomic polarization and, consequently, the dipole moment depends on the
external electric field, mediated by the dynamical polarizability 𝛼(𝜔), which itself is a function
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of the detuning from the respective transition. Dropping the terms oscillating with 2𝜔 as we
are only interested in the time-averaged light shift 𝑉ac = ⟨𝑉ac(𝑡)⟩, this yields [110]

𝑉ac = −Re(𝛼(𝜔))|𝐸(+)|2 = − 1
2𝑐𝜖0

Re(𝛼(𝜔))𝐼. (1.21)

We can use this expression to determine the dipole force [116]

𝐅(𝐫) = −∇𝑉ac(𝐫) =
1

2𝑐𝜖0
Re(𝛼(𝜔))∇𝐼(r), (1.22)

which is the working principle of optical lattices and tweezers, where strong intensity gradients
exert a restoring force on the atoms.

The potential experienced by an atom in a state |||𝛽⟩ in an optical trap thus depends on the
real part of the ac polarizability of this state, which is given by [77, 116]

Re(𝛼𝛽(𝜔)) =
∑
𝛽′≠𝛽

2𝜔𝛽′𝛽
ℏ(𝜔2𝛽′𝛽 − 𝜔2)

|||⟨𝛽|𝜀 ⋅ 𝐝|𝛽′⟩|||
2 . (1.23)

Here, we have to sum over the individual contributions from all relevant transitions to states
|||𝛽′
⟩
if there is no single dominant transition close to the laser frequency 𝜔. This is the case for

most of the commonly used trapping laser wavelengths in Yb and will be particularly necessary
for a correct determination of the polarizability landscapes in the next Section. The dipole
matrix element |||⟨𝛽|𝜀 ⋅ 𝐝|𝛽′⟩|||

2 is related to the transition linewidth Γ𝛽′𝛽 by the expression [77]

Γ𝛽′𝛽 =
𝜔3𝛽′𝛽

3𝜋𝜖0ℏ𝑐3
|||⟨𝛽|𝜀 ⋅ 𝐝|𝛽′⟩|||

2 , (1.24)

such that we can write the ac Stark shift as

𝑉ac(𝜔) = −
∑
𝛽′≠𝛽

3𝜋𝑐2

2𝜔3𝛽′𝛽
(
Γ𝛽′𝛽
∆𝛽′𝛽

+
Γ𝛽′𝛽

𝜔𝛽′𝛽 + 𝜔) 𝐼. (1.25)

If we apply the rotating-wave approximation to the aforementioned case of an effective two-
level system, this expression reads𝑉ac(𝜔) = 3𝜋𝑐2Γ𝐼∕2𝜔30∆, which is negative and thus trapping
for the energetically lower-lying state for ∆< 0, while the higher-lying state experiences an
anti-trapping potential and atoms in this state will therefore be pushed towards the intensity
minima. This behavior is inverted for blue-detuned light, i.e., ∆>0. Notably, this antithetical
shift of ground and excited state would be highly undesired in a multiorbital quantum gas
experiment, as this would not allow for simultaneous trapping of all involved states. Instead, the
existence of multiple relevant transitions in real atomic systems demands for a generalization
of this intuition of red- and blue-detuned frequencies, as different contributing transitions can
amplify or cancel each other, giving rise to non-trivial differential polarizabilities.

The specific case of a perfectly canceled polarizability is denoted as a tune-out wavelength
and is particularly relevant for the quantum simulation scheme devised for this experiment,
as laser beams at this wavelength do not couple to atoms in this state up to first order, while
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any other state generally exhibits a finite polarizability and thus can be addressed. Similarly
important aremagicwavelengths where the polarizabilities of two states of interest are identical,
which suppresses the differential Stark shift on the corresponding transition to allow for trap-
independent manipulation.

While this treatment is sufficient for the case of the ground and clock state in 174Yb due to
their vanishing angular momenta, the hyperfine structure in the fermionic isotopes requires the
introduction of the polarizability tensor 𝛼𝜇𝜈(𝜔), which describes the anisotropic polarization
response of the atom in a given projection 𝑚𝐹 of the total atomic angular momentum 𝐹 to
the light field as [110]

𝑑(+)𝜇 = 𝛼𝜇𝜈(𝜔)𝐸
(+)
𝜈 . (1.26)

The corresponding ac Stark shift is then defined as [77]

𝑉ac = −𝑑(+)𝜇 𝐸(−)𝜇 ∕2 − 𝑑(−)𝜇 𝐸(+)𝜇 ∕2 = −Re(𝛼𝜇𝜈)𝐸
(−)
𝜇 𝐸(+)𝜈 , (1.27)

where the real part of the polarizability tensor is given by4

Re(𝛼𝜇𝜈(𝜔)) =
∑
𝐹′,𝑚′

𝐹

2𝜔𝐹′𝐹
ℏ(𝜔2𝐹′𝐹 − 𝜔2)

⟨𝐹𝑚𝐹|𝑑𝜈
||||𝐹

′𝑚′
𝐹
⟩ ⟨
𝐹′𝑚′

𝐹
||||𝑑𝜇 |𝐹𝑚𝐹⟩ . (1.28)

Decomposing the polarizability tensor into its irreducible scalar, vector, and tensor compo-
nents, we obtain [77]

𝛼(0)(𝐹;𝜔) =
∑
𝐹′

2𝜔𝐹′𝐹
3ℏ(𝜔2𝐹′𝐹 − 𝜔2)

|⟨𝐹||𝐝||𝐹′⟩|2

𝛼(1)(𝐹;𝜔) =
∑
𝐹′
(−1)𝐹′+𝐹+1

√
6𝐹(2𝐹 + 1)
𝐹 + 1 {

1 1 1
𝐹 𝐹 𝐹′}

𝜔𝐹′𝐹
ℏ(𝜔2𝐹′𝐹 − 𝜔2)

|⟨𝐹||𝐝||𝐹′⟩|2 (1.29)

𝛼(2)(𝐹;𝜔) =
∑
𝐹′
(−1)𝐹′+𝐹

√
40𝐹(2𝐹 + 1)(2𝐹 − 1)
3(𝐹 + 1)(2𝐹 + 3) {

1 1 2
𝐹 𝐹 𝐹′}

𝜔𝐹′𝐹
ℏ(𝜔2𝐹′𝐹 − 𝜔2)

|⟨𝐹||𝐝||𝐹′⟩|2

with the reduced matrix elements ⟨𝐹||𝐝||𝐹′⟩, which allows us to write the light shift as

𝑉ac(𝐹,𝑚𝐹 ;𝜔) = − 𝛼(0)(𝐹;𝜔)|𝐸(+)|2

− 𝛼(1)(𝐹;𝜔)(𝑖𝐄(−) × 𝐄(+))z
𝑚𝐹
𝐹 (1.30)

− 𝛼(2)(𝐹;𝜔)
3|𝐸(+)z |2 − |𝐸(+)|2

2
3𝑚2

𝐹 − 𝐹(𝐹 + 1)
𝐹(2𝐹 − 1)

.

This expression can be simplified by introducing the degree of circular polarization 𝑞, which

4This only holds for linearly polarized light; for circularly polarized light the 𝜔𝐹′𝐹 term in the nominator is
replaced by 𝜔.
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is 0 for linearly polarized and +1 (−1) for right-hand (left-hand) circularly polarized light,
such that [110]

𝑉ac(𝐹,𝑚𝐹 ;𝜔) = − 𝐼
2𝑐𝜖0

[
𝛼(0)(𝐹;𝜔)

+𝛼(1)(𝐹;𝜔)𝑞(�̂� ⋅ �̂�)
𝑚𝐹
𝐹 (1.31)

+ 𝛼(2)(𝐹;𝜔)
3|𝜀𝑧|2 − 1

2
3𝑚2

𝐹 − 𝐹(𝐹 + 1)
𝐹(2𝐹 − 1) ]

for laser light with a unit wave vector �̂� and polarization vector 𝜀. The scalar shift only depends
on the total angular momentum, while the vector and tensor shift further contain a dependence
on the projection 𝑚𝐹 . The linear relationship for the vector light shift acts as an effective
linear Zeeman shift, but only occurs for light with a circular polarization projection on the
quantization axis. This is contrary to the tensor shift, which is maximal for linearly polarized
light along the quantization axis, but also non-zero for circularly polarized light. Given its
dependence on the absolute value of𝑚𝐹 , the shift is analogous to a linear Stark shift [110].

The LS coupling approximation

While these formulae are powerful tools, they require knowledge of the reduced dipole matrix
element |⟨𝐹||𝐝||𝐹′⟩|, whose precise computation is generally a hard task. Complex numerical
methods such as configuration interaction (CI) and relativistic many-body perturbation theory
(MBPT) models have been applied to determine them for the relevant transitions for the Yb
ground and several clock states, which allowed for an extrapolation of their respective polariz-
abilities [44, 152–154]. While these calculations are quite precise and offer decent predictions
for the search of, e.g., new magic wavelengths, they disagree in parts, and the theoretical
uncertainty of certain distinctive wavelengths like the clock-state tune-out wavelength can
amount to tens of nm. In particular, the treatment of core-excited states, where an electron
from the outer 4𝑓-subshell is excited, causes significant problems as these states lie outside
the computational subspace of the employed techniques. We instead utilize a simpler method,
closely following the calculations in [110], by approximating the involved states as eigenstates
of the electronic spin and angular momentum operators, �̂�, �̂�, and 𝐽. This strongly simplifies
the hyperfine reduced matrix element computation, as we can now write it in terms of the
finestructure matrix element [77]:

⟨𝐹||𝐝||𝐹′⟩ = ⟨𝐽||𝐝||𝐽′⟩(−1)𝐹′+𝐽+𝐼+1
√
(2𝐽 + 1)(2𝐹′ + 1) { 𝐽 𝐽′ 1

𝐹′ 𝐹 𝐼}
(1.32)

Expressing the reduced matrix element of a fine-structure transition 𝐽 → 𝐽′ in terms of its
linewidth in analogy to Eq. (1.24) [77],

|⟨𝐽||𝐝||𝐽′⟩|2 =
3𝜋ℏ𝜖0𝑐3

𝜔3𝐽′𝐽

2𝐽′ + 1
2𝐽 + 1 Γ𝐽′𝐽 , (1.33)
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allows for the usage of measured quantities to obtain the polarizability in the 𝐿𝑆 coupling
approximation. While the transition frequencies𝜔𝐽′𝐽 arewell known fromvarious spectroscopic
measurements [155], the actual linewidth of the very transition we are interested in is unkown
for most transitions to higher-lying states that do not find application in typical experiments.
Instead, only the radiative lifetimes 𝜏 of the excited states are known. Therefore, we again
apply the 𝐿𝑆 coupling approach to also determine the dipole matrix elements for transitions
to the remaining lower-lying states, which gives us an estimate of the branching ratios that
can then be used to compute the transition linewidths of interest [110], Γ = 𝛽∕𝜏. To this end,
we further decompose the fine-structure reduced matrix element into its spin and angular
momentum components as [77]

⟨𝐽||𝐝||𝐽′⟩ = ⟨𝐿||𝐝||𝐿′⟩(−1)𝐽′+𝐿+𝑆+1
√
(2𝐿 + 1)(2𝐽′ + 1) {𝐿 𝐿′ 1

𝐽′ 𝐽 𝑆}
𝛿(𝑆′−𝑆)(1−𝛿(Π𝑙1,𝑙2−Π𝑙′1,𝑙

′
2
)),

(1.34)
where Π𝑙1,𝑙2 = (−1)𝑙1+𝑙2 is the parity operator and 𝑙1 and 𝑙2 are the individual electronic orbital
quantum numbers of the two valence electrons, ensuring that all selection rules are respected.
This at hand, we can compute the branching ratio

𝛽(𝐽′, 𝐽) =
𝜔3𝐽′𝐽|⟨𝐽

′||𝐝||𝐽⟩|2∑
𝐽′′ 𝜔

3
𝐽′𝐽′′|⟨𝐽′||𝐝||𝐽′′⟩|2

(1.35)

where we sum over all states |||𝐽′′
⟩
that are energetically below |||𝐽′

⟩
. We note that the orbital

reduced matrix elements in Eq. (1.34) are canceled in Eq. (1.35) for most of the states that
are relevant for our model due to the selection rule 𝐿 = 𝐿′ ± 1. The resulting polarizability
curves for the 1S0,

3P0, and
3P1 states are depicted in [110].

However, the reduced complexity comes at the price of lower accuracy where configuration
mixing and higher-order perturbation theory effects become crucial. In addition, this method
does not take the whole static electric dipole polarizability 𝛼(𝜔 = 0) into account, which is
relevant to describe core excitations and presents itself as a finite overall offset. This largely
accounts for the deviation in the 1S0 polarizability between the CI+MBPT results from [152]
and simple 𝐿𝑆 coupling estimate in [110]. In the next Section, we therefore enrich this simple
model with empirically determined parameters by fitting to measured tune-out and magic
wavelengths, which provides a very accurate description of the polarizability landscape of the
clock state pair in the visible wavelength range.

Off-resonant scattering

Before, we however briefly turn to the imaginary part of the polarizability, causing off-resonant
scattering. Intuitively, this can be understood as the action of dipole oscillations that are out
of phase with the incident wave, leading to a dissipated power of [156]

𝑃ac = ⟨�̇�(𝑡) ⋅ 𝐄(𝑡)⟩ = 𝜔
𝑐𝜖0

Im(𝛼(𝜔))𝐼 (1.36)
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and a consequential scattering rate of

Γac =
𝑃ac
ℏ𝜔 = 1

ℏ𝑐𝜖0
Im(𝛼(𝜔))𝐼 (1.37)

with which atoms are absorbed and spontaneously reemitted. In the case of far-detuned traps,
this process is undesired as it causes heating due to net momentum gain from the random
emission direction after the directed absorption recoil. Expressing the imaginary part of the
polarizability in a similar way as the real part in Eq. (1.23) and inserting it into Eq. (1.37),
we obtain the scattering rate [77]

Γac =
3𝜋𝑐2

2ℏ𝜔3𝛽′𝛽
(
Γ𝛽′𝛽
∆𝛽′𝛽

+
Γ𝛽′𝛽

𝜔𝛽′𝛽 + 𝜔)
2

𝐼. (1.38)

For cases in which we can apply the rotating wave approximation, this equation simplifies to a
term proportional to Γ2𝛽′𝛽∕∆

2
𝛽′𝛽, and we can compare the trapping potential to the scatter-

ing rate, yielding

𝑉ac
Γac

= ℏ∆Γ . (1.39)

Therefore, in this simple picture it is preferential to choose a trapping wavelength that is far
detuned from any strong transition. Contrary to the light shift, however, it is highly non-trivial
to generalize this to more complex multi-level systems, as interference effects between various
transitions can enhance or suppress scattering at certain wavelengths. As this concludes the
discussion of the scattering, we will now use the term polarizability equivalently to its real
part for the remainder of this work.

1.2.2 An empirical model for ytterbium light shifts
To elucidate the total and differential light shifts for the two main transitions 1S0 → 3P0
and 1S0 →

3P1 in Yb over the range of wavelengths that are typically used in quantum gas
experiments, we utilize the expression Eq. (1.31) in combination with experimental data on
relevant transitions and distinctive wavelengths like magic or tune-out wavelengths.

The 1S0 state

Since the 1P1 state is the energetically lowest one that is connected to the ground state via a
strong, dipole-allowed transition, it dominates the scalar polarizability 𝛼0 for all wavelengths
above 399nm, apart from a small region around the intercombination line to the 3P1 state
at 556nm (Fig. 1.3). This renders light at almost all wavelengths in the visible and infrared
range red-detuned and thus enables trapping of atoms in the ground-state, which conveniently
allows for the use of powerful lasers emitting light at 1064nm for, e.g., dipole traps and 532nm
for optical lattices or tweezers. The 3P1 transition in turn provides a zero-crossing of the
polarizability at an accessible wavelength and at sufficient distance to the transition itself
such that off-resonant scattering at this tune-out wavelength was expected to not be limiting,
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Figure 1.2 | Relevant energy levels and transitions for the empirical polarizability models. The tran-
sitions from the ground state are depicted as blue arrows, while the transitions from the 3P0 and 3P1
states are indicated in orange and green, respectively. The various states are ordered by their spin and
orbital quantum number, apart from the core-excited states, which are listed in the 1S column for visibility
reasons. Notably, the 1S0 ↔

3P1 transition is relevant for the polarizabilities of both involved states, but
only marked as blue. Transitions to high-lying states that are accounted for by the fit parameters are
neglected in this Figure.

which is confirmed by the experimental results (Chapter 4.2). Further transitions to the triplet
manifold, which would violate the selection rules, can be safely neglected owing to the resulting
marginal linewidths. Instead, we can focus on transitions to singlet states with odd parity.
About 110THz above the 1P1 state resides the core-excited state [Xe]4𝑓135𝑑6𝑠2(7∕2, 5∕2)𝐽=1,
where an electron from the 4𝑓-shell is excited to the 5𝑑 orbital [117]. Here, not only the Russell-
Saunders notation breaks down, but also the standard numerical treatment of the polarizability,
as it requires two valence electrons above closed shells [152]. As this state shares the total
angular momentum 𝐽 = 1 and the odd parity with the 1P1 state, the Coulomb interaction is
expected to significantly mix these states, in which case also the 𝐿𝑆 coupling approach would
fail. Naively ignoring this effect, we treat this state as sufficiently described by its linewidth
of Γ = 2𝜋 × 11.1(6)MHz and the transition wavelength of 346.5nm [117].

At even smaller wavelengths below 250nm further 1P1 transitions with increasing lifetimes
emerge, which however become less and less significant for the exact shape of the polarizability
curve in the wavelength regime we are interested in due to the ∼𝜔−4𝐽′𝐽 dependence. Instead,
they mostly lead to a small positive5 and almost constant overall shift. Moreover, for these
states the branching ratio calculation is more complicated, since from there a decay to the
1D2 states is possible and the orbital reduced matrix elements in Eq. (1.35) do not cancel. We
therefore neglect these transitions and instead absorb their action in a global offset as an
empirical parameter. This parameter can be determined by fitting the bare scalar polarizability
to the ground-state tune-out wavelength at 553.3nm, whose measurement will be discussed
in Chapter 4.2. We find that the small resulting offset of −0.8ℎHz∕Wcm−2 leads to a precise

5A positive polarizability results in a negative potential, which is why the shift is negative in the context of
Fig. 1.3.
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Figure 1.3 | Empirical model for the scalar ground- and clock-state light shift. We add a global offset
to the g light shift (blue) obtained from the LS coupling model to exactly fit the tune-out wavelength
at 553.3 nm (blue square). Similarly, we introduce an effective transition for the e light shift (orange) to
fit to the measured e tune-out and magic wavelengths (circles) to obtain an improved estimate of the
polarizability landscape. The schematics in squares illustrate the vanishing polarizability of a given state
at its tune-out wavelength, while the encircled schematic indicates the identical potential of a magic trap.
Notably, the total light shift at the 459.6 nm and 552.6 nm magic wavelengths has not been determined, so
that the vertical position of the corresponding markers is only determined by the polarizability crossing.
Measured absolute polarizabilities for the 759.3 nm magic and the g tune-out wavelength are denoted by
grey errorbars. Inset: Zoom-in on the light shift close to the 1S0 →

3P1 transition.

match of the static polarizability of our model to the value of 𝛼(0) = −6.61(28)ℎHz∕Wcm−2

that was determined numerically [152, 153], indicating the validity of our approach. We
note that here we use the notation in terms of the experimentally more intuitive intensity-
normalized scalar potential 𝑉ac,0∕𝐼, which is identical to the total potential for the bosonic
isotopes and can be related to the scalar polarizability via the prefactors −2𝑐𝜖0 as defined in
Eq. (1.21). Remarkably, due to the precise knowledge of the dominant 1P1 and 3P1 transition
linewidths [112, 117, 122] and the large frequency gap to higher-lying states that would require
a more complex treatment, even the bare 𝐿𝑆 coupling estimate from [110] for the 𝑔 tune-out
wavelength is correct within 0.05nm.

The 3P0 state

Being part of the triplet manifold, the 3P0 state couples to a completely different set of transitions
than the 1S0 state, which entails strongly diverging polarizabilities — a prerequisite for far-
detuned state-dependent potentials. The dipole selection rules again constrain the set of
transitions that need to be taken into account almost fully to ones that connect |𝑒⟩ to the
3S1 and 3D1 states. Consequently, the five lowest of these states largely determine the 3P0
polarizability in the visible and infrared regime: the (6𝑠5𝑑)3D1 repump transition at 1388.7nm,
the 2𝜋×1.5(2)MHzwide (6𝑠7𝑠)3S1 transition at 649.1nm, the (6𝑠6𝑑)3D1 transition at 444.0nm
with a linewidth of 2𝜋 × 4.1(1)MHz, the quite narrow (6𝑠8𝑠)3S1 transition at 411.1nm with
Γ = 2𝜋 × 0.6(1)MHz, and the 2𝜋 × 2.4(1)MHz broad (6𝑠7𝑑)3D1 transition at 370.1nm [110,
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157]. The determination of the linewidths is performed analogous to Eq. (1.35) and an overview
of the relevant transitions is given in Appendix A. A transition to a 3P1 state is further allowed
if its parity is even, such as for the transition to the (6𝑝2)3P1 state at 377.1nm [155]. Here, we
struggle again to ascertain the correct branching ratio as we would have to assume that the
reduced dipolematrix elements for the transition to the 3P0 clock state are identical to the ones to
the 3D and the 3S states, which is certainly not correct. With a short lifetime of just 15ns [157],
its impact on the polarizability in the blue spectral region is not negligible, and we estimate a
linewidth of Γ ≃2𝜋 × 4MHz by assuming a similar contribution from all matrix elements. We
furthermore take the transition to the 4𝑓135𝑑6𝑠6𝑝(7∕2, 5∕2)𝐽=1 core-excited state at 397.6nm
into account [158, 159]. This state is peculiar despite its small linewidth of 2𝜋 × 194(2) kHz,
as it gives rise to a repulsive magic wavelength 16GHz above the transition [130]. While its
effect on the clock-state polarizability is overshadowed by the adjacent transitions, it provides
a benchmark of our model at this lower end of the wavelength range we wish to consider.

Unfortunately, while their energies are well known [155], information about the lifetime
of higher-lying 3S1 and 3D1 states is scarce. To still be able to accurately capture the measured
magic and tune-out wavelengths, we introduce an additional, empirical transition, whose
frequency and linewidth are free fit parameters. This effective transition ismeant to compensate
for the simplifications in our linewidth computations as well as for the limited transition
dataset. We assume the ground-state polarizability to be sufficiently described by the offset
model mentioned above, such that we can fit the |𝑒⟩ polarizabilities to the values for |||𝑔⟩ at
the experimentally determined magic wavelengths at 459.6nm, 552.6nm, and 759.3nm. In
addition, we can include the 𝑒 tune-out wavelength at 576.6nm to our fitting dataset, and
we obtain a fitted transition at 376.65nm with a linewidth of 2𝜋 × 16.4MHz. Notably, this
puts it in the direct vicinity of the two highest-frequency transitions, which indicates that our
branching ratio calculations underestimate the actual linewidths here. We can also include
a global offset in our fitting function, which would incorporate the effects of very high-lying
states. However, this degree of freedom does not visibly change the polarizability trend above
400nm and seems to rather counteract the fitted resonance as the fitted offset is small but
positive, using the notation in terms of the induced potential 𝑉ac∕𝐼. Consequently, the effective
transition is shifted towards lower wavelengths and features an increased linewidth. This
behavior cannot be motivated physically, since we would expect an attractive effect of the
neglected higher-lying transitions, and we therefore refrain from using this offset in our model.

In an effort to reduce the sensitivity to the imperfect branching ratio calculation of tran-
sitions with unknown linewidths, we truncate the transition dataset and study its effect on
the polarizability curve and the fitted resonance. Starting with the transitions at the highest
frequencies, we observe the expected behavior: The fitted resonance first shifts towards lower
wavelengths as the missing transitions at 370nm and 377nm need to be compensated, then
upwards due to the now-gone 397nm transition (Fig. 1.4). Simultaneously, the effective transi-
tion simply absorbs the linewidths of the neglected transitions. As the resulting changes in
the polarizability at visible wavelengths are marginal, we can safely use the reduced transition
dataset, which yields the fit parameters 𝜆ef f = 374.7nm and Γef f = 2𝜋 × 23.6MHz. The
resulting polarizability curve is displayed in Fig. 1.3.

In a direct comparison to the model that was in presented in [101], which does not contain
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Figure 1.4 | Effect of fitting a reduced transition dataset for the clock-state polarizability model. A The
empirical transition that we employ to fit the distinctive wavelengths is located right in between the
(6s7d)3D1 and (6p2)3P1 states (transition wavelengths depicted as white circles). Therefore, the position of
the fitted effective resonance moves only slightly as these transitions are included in the model. Similarly,
the 4f 135d6s6p(7∕2, 5∕2)J=1 core-excited state couples too weakly to the 3P0 state to induce a visible
effect. B As the number of transitions that we take into account changes, the linewidth of the effective
transition grows or shrinks correspondingly, as can be seen from the overlap with the summed individual
transition linewidths (squares interpolated with a dotted line), using the full transition dataset as a
common reference point.

the clock-state tune-out wavelength, we observe a small change of ∆𝜆ef f = −1.4nm and
∆Γef f = 2𝜋 × 0.7MHz for our updated parameters, which however does not translate into a
visible change of the overall polarizability landscape. This reflects the considerable accuracy
of the old model already, which predicts the 𝑒 tune-out wavelength to be at 575.52nm, with
a deviation of only 0.18ℎHz∕Wcm−2 at the measured wavelength of 576.6nm, and despite
significant measurement uncertainties of the individual lifetimes of the most relevant states,
i.e., in particular the (6𝑠7𝑠)3S1 state. This is in stark contrast to the pure 𝐿𝑆 coupling model
that expects a tune-out wavelength at ≃540nm [110]. On the contrary, the congruence with
the computed 3P0 polarizability values from [152] is remarkable, and also the extracted static
polarizability is found to be reasonably close. Hence, the prediction of the clock-state tune-out
wavelength based on the numerical data from [152] is also very precise, as is the case for the
ground-state tune-out wavelength at 553.3nm. Later unpublished updates to this numerical
model, which contained a rescaling of the correlation potential and led to significant shifts of
the predicted distinctive wavelengths of interest, have worsened this accuracy [154].

Upon performing the same comparison of our model to the numerical data for the 1S0 state,
we notice a highly concordant behavior in the low-frequency regime, which is consistent with
the congruent static polarizabilities, but for wavelengths below the 3P1 transition the numerical
simulation computes a weaker trend towards the 1S0 transition. This widening gap has also
been observed in [110]. The discrepancy is particularly apparent at the blue magic wavelength,
which was measured at 459.6nm. While the ab initio calculations provide a predicted value
of 459.3nm, the corrections to the 1S0 polarizability to achieve a better fit to the red magic
wavelength at 759.3nm shift the prediction to 465.4nm, in agreement with the first-principles
computation in [153]. As our empirical model is able to capture the measured magic wave-
lengths, but also exhibits a large overlap with the numerical 3P0 data, which was not corrected
in [152], we assume that this correction causes an overcompensation at lower wavelengths, as
it is based on a fit of the matrix element of the 4𝑓135𝑑26𝑠𝐽=1 transition at 267nm. A second
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potential reason for this discrepancy is the treatment of the 4𝑓135𝑑6𝑠2(7∕2, 5∕2)𝐽=1 core-excited
state. While it is not unlikely that the 𝐿𝑆 coupling approximation underestimates the effect
of state mixing with the 1P1 state, the simplification of a negligible energy difference between
these two states in the mixing calculation in [152] could be an overestimate. To elucidate this,
we turn to the blue-detuned magic wavelength measured in [159]. Given the proximity to
the 3P0 → 4𝑓135𝑑6𝑠6𝑝(7∕2, 5∕2)𝐽=1 transition, the position of the magic wavelength is almost
independent of other 3P0 transitions and should thus offer a good indication of the accuracy of
our model for the 1S0 polarizability around the

1P1 transition. We therefore re-include the core-
excited transition for this purpose and find the expected magic wavelength at 753.9405THz, i.e.,
within the measurement uncertainty, and at a polarizability of 726ℎHz∕Wcm−2 compared to a
measured value of 728ℎHz∕Wcm−2 [159]. We therefore do not find evidence for a significantly
underestimated state mixing in our model.

As a further check of the validity of our model in a different part of the spectrum we can
use the clock-state polarizability at the ground-state tune-out wavelength. Unfortunately, the
determination of an absolute, non-zero polarizability requires a precise gauge of the intensity,
which is generally a very hard task. This is reflected in relatively large error bars, and the
expectation value from our empirical model is right at the 1𝜎 threshold, which is likely rather
an indication of the limited accuracy with which we were able to determine the light shift
(Chapter 4.2). In addition, we can utilize the polarizability ratios of 3.3(2) at 670nm, 3.06(4)
at 671.509nm, and 1.97(5) at 690.1nm reported in [95, 110] as benchmarks, and we obtain
the values 3.26, 3.08, and 1.95.

We therefore believe to have the most precise model for the scalar 1S0 and
3P0 state polariz-

abilities in the visible and near-infrared wavelength range, with the largest systematic errors
stemming from uncertainties in the measured (6𝑠7𝑠)3S1 and (6𝑠6𝑑)3D1 lifetimes. This can help
to deliver expected polarizability ratios for new state-dependent lattices analogously to [95] or
at useful non-magic trap wavelengths like 532nm, where so far only theoretical estimates have
been performed [80, 152, 153], but can also yield more accurate predictions of further distinct
wavelengths, like the magic wavelength at 411.41nm, the second 𝑒 tune-out wavelength at
1022.3nm, or the anti-magic wavelengths at 617.1nm and 1134.2nm, where the ground- and
clock-state light shifts are equal in amplitude, but have opposite signs.

For the fermionic isotope 173Yb we must also consider contributions from the vector and
tensor shift. While it is common practice to minimize the vector shift by choosing linearly
polarized light for lattice beams, the strongly focused beam in optical tweezers can lead to
distortions of the polarizability, such that even for a purely linearly polarized input beam vector
shifts can play a role [160]. However, due to the vanishing total electronic angular momentum
in the ground and clock state, these contributions are generally orders of magnitude smaller
than the scalar light shift. This is not the case at the scalar tune-out wavelengths, where
contributions from the vector and tensor polarizability will remain finite. While for most of the
applications this will most likely not be limiting as the sensitivity to the residual light shift in
typical quantum simulation setups is too small, for applications where this effect does matter
a small trap wavelength shift will allow for a |𝑚𝐹|-dependent combined tune-out condition,
similar to the cancellation of the tensor shift in lattice clocks [161]. While it would be favorable
to translate the results of the empirical model for the 1S0 scalar polarizability to the vector
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and tensor components, it is a priori not evident how this can be realized for the empirical
parameters determined for the scalar light shifts. As the overall effect of the tensor shift is
about six orders of magnitude weaker than the scalar contributions, the simple 𝐿𝑆 coupling
results from [110] are likely sufficient for most conceivable purposes.

The 3P1 state

Due to the growing importance of the 3P1 transition for efficient cooling and high-fidelity
imaging purposes, it has also become more relevant to understand its differential polarizability.
The quest for magic conditions to allow for homogeneous, trap-independent addressing of
this transition has led to the discovery of several magic wavelengths [76, 83, 162] and magic
angles [63, 72, 80]. Notably, these magic conditions strongly rely on the chosen isotope, in the
above mentioned cases 171Yb and 174Yb, as well as on the hyperfine transition and the final
𝑚𝐹 state of the 3P1 transition. This is a result of the finite total electronic angular momentum,
which not only gives rise to hyperfine structure but also renders the vector and tensor shifts
comparable in size to the scalar contribution. Hence, this state requires a markedly more
complex treatment as we attempt an empirical model for its total polarizability. We again start
with the 𝐿𝑆 coupling approximation as given by [110] to obtain the basis of our polarizability
estimate. The 3P1 state shares the relevant transitions of the

3P0 state — apart from the (6𝑝2)3P1
transition, which is dipole-forbidden for the (6𝑠2)3P1 state —, but the resonance frequencies
are shifted by −21THz. This as well as the different Clebsch-Gordan coefficients further entail
differing branching ratios and, thus, linewidths, as in particular the 3P1 →

3S1 transitions
are broader than for the clock state, while the 3D1 transitions are weaker (Appendix A). In
addition, we have to take transitions to the 3D2 states as well as the intercombination line
to the ground state into account. Close to the latter, the light shift exhibits the opposite sign
compared to the one for the 1S0 state, in agreement with our intuition for a two-level system.
According to the bare 𝐿𝑆 coupling model, this causes the scalar 3P1 light shift to be positive
in between the 556nm transition and the one to the (6𝑠7𝑠)3S1 state at 680.1nm, and also
close to zero around 550nm. The consideration of the tensor shift for linearly polarized light
leads to a reduced total polarizability, but in particular for the 𝑚𝐹′ = 0 state the total shift
is still significantly smaller than for the 1S0 state. This however contradicts the detection of
a near-magic condition for 174Yb at 532nm [80, 151] and a magic wavelength at 486.78nm
for the 𝐹′ = 3∕2, 𝑚𝐹′ = 1∕2 transition in 171Yb [83]. This discrepancy is further supported
by CI and MPBT calculations for the scalar polarizability that suggest a similar offset of the
3P1 𝐿𝑆 coupling estimate as for the

3P0 state [44, 163, 164], motivating the usage of a similar
empirical approach with an effective transition. A priori, the corresponding wavelength and
linewidth can be chosen as free parameters that are determined by fitting to the experimentally
known distinctive wavelengths. However, the similarity of the sets of states that the 3P0 and

3P1
states couple to invites to constrain 𝜆ef f ,3P1 to ≃385nm, with the 10nm difference to 𝜆ef f due
to the states’ energy gap and in the vicinity of the (6𝑠7𝑑)3D1 and 3D2 states. In contrast, the
linewidth can be quite different as the number of transitions that are absorbed in the effective
transition as well as their strengths deviate significantly from the case of 3P0. We further have
to incorporate this effective transition also into the vector and tensor shift, where the total



26 An ytterbium quantum simulator

400 450 500 550 600 650 700 750 800
Wavelength (nm)

40

30

20

10

0

10

20

30

V a
c/
I(
h
H
z
W

1 c
m

2 )

1S0 3P1

3P1 (6s6d)3D1

3P1 (6s6d)3D2

3P1 (6s7s)3S1

3P1 (6s8s)3S1

1S0
3P1,mF =0
3P1,mF =0, 37°
3P1,mF =1

400 450 500 550 600 650 700 750 800
Wavelength (nm)

40

30

20

10

0

10

20

30

V a
c/
I(
h
H
z
W

1 c
m

2 )

1S0 3P1

3P1 (6s6d)3D1

3P1 (6s6d)3D2

3P1 (6s7s)3S1

3P1 (6s8s)3S1

1S0
3P1,mF =1/2
3P1,mF =1/2, 17°
3P1,mF =3/2, 90°

A

B

Figure 1.5 | Empirical model for the 3P1 light shift. A Total shift for selected transitions and magnetic
field angles for 174Yb. Using the LS coupling model as in [110] in combination with a effective resonance
at the same frequency as for the 3P0 model and adjusted branching ratios for the (6s6d)3D0 transitions
we find decent agreement with the measured near-magic condition at≃532 nm [80, 151] and the magic
angle at 759 nm (Chapter 3.1.1). Unless indicated otherwise, the polarization is chosen to be parallel to
the quantization axis (θ = 0◦). B For the F′ = 3∕2,mF′ = ±1∕2 and mF′ = ±3∕2 transitions in 171Yb,
the overlap between predicted and measured magic wavelengths at≃485 nm is very reasonable. The
magic angles at 759 nm for F′ = 3∕2,mF′ = ±1∕2 and at 783.8 nm for F′ = 3∕2,mF′ = ±3∕2 are captured
similarly well.

electronic angular momentum of the empirical excited state appears as a third free parameter.
In order tomaintain aminimal number of degrees of freedom, we therefore divide the transition
into two parts, with one transition to an effective 𝐽 = 1 and 𝐽 = 2 state, respectively. We adopt
the relative linewidths from the nearby (6𝑠7𝑑)3D1 and 3D2 transitions and assume identical
energies, motivated by the negligibly small frequency difference between the (6𝑠7𝑑)3D states,
to enable the usage of a single effective wavelength and linewidth. This yields a similarly
constrained model as for the 3P0 state, based on a minimal set of necessary assumptions. We
utilize the magic angles of 𝜃 = 17◦ for the 𝐹′ = 3∕2, 𝑚𝐹′ = −1∕2 state in 171Yb [72] and
37(1)◦ for the 𝑚𝐹′ = 0 state in 174Yb as discussed in Chapter 3.1.1 at 759nm as a reference
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for our model, where 𝜃 is the angle between the quantization-axis-defining magnetic field
and the polarization of the lattice beams. Furthermore, the magic wavelengths at 486.78nm
for the 171Yb 𝐹′ = 3∕2, |𝑚𝐹′| = 1∕2 states [83] as well as the ones at ≃483nm and 783.8nm
for𝑚𝐹′ = 3∕2 states [76, 162] provide a helpful testbed to find the linewidth of the empirical
transitions as the single free parameter. This yields a value of Γef f = 2𝜋 × 59MHz, where we
find the best agreement. This way, our model can plausibly reproduce the magic conditions
for𝑚𝐹′ = 0 in 174Yb at an angle of ≃36◦ at 759nm as well as the magic angles that have been
determined for the fermionic isotopes. The near-magic condition at 532nm for 174Yb, however,
does not appear to be captured very well, although an exact quantification of the discrepancy
is non-trivial. This deviation is underlined by predicted scalar and tensor light shifts at 532nm
that differ by a factor of≃2 and≃1∕2 from themeasured values of𝑉0

ac = −5.60(5)ℎHz∕Wcm−2

and 𝑉2
ac(𝑚𝐹 = ±1, 𝜃 = 0) = 0.95ℎHz∕Wcm−2 [80]. It is not obvious where this disagreement

stems from, given the largely consistent magic conditions at the remaining wavelengths, which
render strong inaccuracies from the 𝐿𝑆 approximation and branching ratio simplifications
unlikely, albeit possible. Therefore, a measurement of a magic wavelength at ≃ 548nm would
help to elucidate potential shortcomings of the presented polarizability model for the 3P1 state.

1.3 Trapping atoms
Having established the principles of resonant and off-resonant atom-light interaction, we now
turn to a discussion of the slowing and cooling steps that are required to reach a cloud of
cold atoms, followed by the theory behind optical lattices and tweezers. Since these concepts
have been illuminated in great detail elsewhere [116, 165], we will restrict the scope of this
Section to the main features.

The first stage in the typical cascade of cooling efforts for AEL atoms is the Zeeman slower
(ZS), which uses a judiciously configured magnetic field gradient to maintain the resonance
condition ∆ + ∆D + ∆B = 0 as the atoms get slowed down by scattering photons while they
propagate through themagnetic field [165]. Here, the laser detuning from the atomic resonance
∆ is negative to account for the positive Doppler shift ∆D = 𝑘𝑣 and the spatially varied Zeeman
shift ∆B = (𝑔𝐹′𝑚𝐹′ − 𝑔𝐹𝑚𝐹)𝜇B𝐵∕ℏ, with 𝑘 = 2𝜋∕𝜆 the wavevector of the ZS light. For AEL
atoms such as Yb, the stretched 1S0(𝐹,𝑚𝐹)→ 1P1(𝐹′ = 𝐹 + 1, 𝑚𝐹′ = 𝑚𝐹 ± 1) transition offers
the desired large scattering rate and isotope-agnostic slowing performance, but also requires a
powerful ZS beam (𝐼 ∼ 100mW) to saturate the transition, given the saturation intensity of
𝐼sat = 60mW∕cm2 [116]. Here, the scattering rate can be expressed in the context of Eq. (1.9) as

𝑅sc = Γ𝑃e =
Γ
2

𝐼∕𝐼sat
1 + 4∆2∕Γ2 + 𝐼∕𝐼sat

, (1.40)

with a maximum scattering rate of Γ∕2 at 𝐼 ≫ 𝐼sat.
With a similar working principle the magneto-optical trap (MOT) captures atoms in its

center with the help of a magnetic field gradient 𝐴. This gradient leads to a linearly varying
Zeeman shift, whose sign depends on the𝑚𝐹′ state of a stretched transition. Correspondingly
circularly polarized light is therefore tuned into resonance of a stretched transition if an atom
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is leaving the MOT center6 such that the atom experiences a scattering force, slowing it down
and pushing it back. The MOT resonance condition is thus given by [116]

𝑘𝑣 +
𝑔𝐹′𝑚𝐹′𝜇B

ℏ 𝐴𝑥 + ∆ = 0. (1.41)

However, this condition can only be fulfilled if an incoming, initially untrapped atom is slow
enough such that continuous scattering in strongly intensity-saturating MOT beams can halt
it right at the MOT edge, i.e., after a propagation of 2𝑤MOT, where 𝑤MOT is the MOT beam
waist. This leads to the definition of the maximum capture velocity

𝑣c =
√

2ℏ𝑘Γ
𝑚 𝑤MOT ≈

√
𝑤MOT × 69m∕s. (1.42)

Notably, for typical narrow-line 3D MOT configurations, the transition is massively power-
broadened to Γ′ = Γ

√
1 + 𝐼∕𝐼sat ∼10Γ, which increases the capture velocity accordingly [116].

1.3.1 Optical lattices
Once the atoms are captured and cooled down to a temperature 𝑇 ∼ 𝑇D, where 𝑇D =
ℏΓ∕(2𝑘B) = 4.4 µK is the Doppler temperature limit of the 3P1 transition, they can be trans-
ferred into an optical lattice, generated by interfering laser beams. The simplest geometry is
constituted by a retro-reflected beam, forming a standing wave with lattice spacing 𝑎 = 𝜆∕2

𝐼(𝐫) = 4𝐼0(𝐫) cos2(
2𝜋
𝜆 𝑥) (1.43)

with the intensity profile

𝐼0(𝐫) =
2𝑃
𝜋𝑤0

𝑒
− 2𝑟2

𝑤20 , (1.44)

and 𝑟 =
√
𝑦2 + 𝑧2. Note that we neglected the longitudinal expansion of the Gaussian beam

around the waist 𝑤0, as the Rayleigh range 𝑧R = 𝜋𝑤2
0∕𝜆 is typically much larger than the

region of interest. The corresponding potential 𝑉 at the lattice wavelength can then be inferred
from the polarizability and we can approximate the potential at a single site as [166]

𝑉(𝑟, 𝑥) ≃ 𝑉0 (−1 + 𝑘2𝑥2 − 𝑘4
3 𝑥

4 + 2
𝑤2
0
𝑟2 − 2 𝑘

2

𝑤2
0
𝑟2𝑥2) , (1.45)

using 𝑘 = 2𝜋∕𝜆. Here, we have expanded the longitudinal sinusoidal potential as well as the
radial Gaussian confinement by harmonic oscillators, also including a quartic distortion from
the cosine. In addition, in the last term we take the lowest-order coupling into account. The
two harmonic terms can be used to obtain the corresponding trap frequencies, with

𝑓l =
√

2𝑉0𝑘2
𝑚 = 2

ℎ
√
𝑉0𝐸rec (1.46)

6Or if a fast atom is entering the MOT region.
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the lattice trap frequency along the strongly confined longitudinal axis, and

𝑓r =
√

𝑉0
𝑚𝜋2𝑤2

0
(1.47)

the radial trap frequency. Here, we have introduced the recoil energy 𝐸rec = ℏ2𝑘2∕2𝑚, which
is a common unit to express the lattice depth and amounts to ℎ × 2 kHz for photons at the
759nm magic wavelength. The energy spectrum in first-order perturbation theory is fur-
ther given by [166]

𝐸𝑛 = ℏ𝜔x (𝑛x +
1
2)+ ℏ𝜔r(𝑛y + 𝑛z + 1) −

𝐸rec
2 (𝑛2x + 𝑛x +

1
2)− 𝐸rec

𝑓l
𝑓r
(𝑛y + 𝑛z + 1) (𝑛x +

1
2) ,

(1.48)
which shows the deviation of the longitudinal band gap7 from the equidistant harmonic
oscillator levels as

∆𝐸n = −𝐸rec(𝑛x + 1) − 𝐸rec
𝑓l
𝑓r
(𝑛y + 𝑛z + 1). (1.49)

Hence, in a 1D lattice we can spectroscopically observe a first sideband with a maximal excur-
sion at 𝑓l − 𝐸rec∕ℎ and a long tail towards the carrier for relatively large radial temperatures
(Chapter 2.6.1). Notably, for the standard lattice depths used in spectroscopy sequences, where
the calculation above holds, the band gap is considerably larger than the recoil energy the
atom would receive upon the absorption of a probe photon, which is 𝐸rec = 3.4 kHz for the
clock transition. This ratio is quantified in the Lamb-Dicke parameter 𝜂 =

√
𝐸rec∕ℎ𝑓l. We can

therefore probe the clock state excitation as well as repump the atoms back into the ground
state without adding momentum from the absorption recoil to the atoms if 𝜂 ≪ 1, i.e., the
reception of the recoil kick is suppressed due to the discrete band structure, and the projec-
tion of the beams is mostly along the strongly confined lattice axis. This is equivalent to the
suppression of Doppler shifts.

In the case of a shallow-angle lattice such as our vertical lattice (Chapter 2.6.3), we have
to take the harmonic confinement along all three dimensions into account, and we can ap-
proximate the potential as8

𝑉z = 𝑉0,z 𝑒
−𝑚

2 (𝜔
2
x𝑥2+𝜔2y𝑦2+𝜔2z𝑧2) cos2( 𝜋𝑎z

𝑧) (1.50)

with the harmonic trapping frequencies [56]

𝜔2x =
8𝑉0,z
𝑚

⎛
⎜
⎝

2
𝑤2
0,v

sin2 𝜃 + 1
2
⎛
⎜
⎝

1
𝑧2R,v

+ 1
𝑧2R,h

⎞
⎟
⎠
cos2 𝜃

⎞
⎟
⎠
≈
16𝑉0,z
𝑚𝑤2

0,v
sin2 𝜃

𝜔2y =
16𝑉0,z
𝑚𝑤2

0,h
(1.51)

7For a detailed justification of this term we refer to [5, 110].
8The exact solution is quite involved, which is why we will use the second-order expansion in analogy to [56].
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𝜔2z =
8𝑉0,z
𝑚

⎛
⎜
⎝

2
𝑤2
0,v

cos2 𝜃 + 1
2
⎛
⎜
⎝

1
𝑧2R,v

+ 1
𝑧2R,h

⎞
⎟
⎠
sin2 𝜃

⎞
⎟
⎠
≈
16𝑉0,z
𝑚𝑤2

0,v
cos2 𝜃

and the opening angle 2𝜃 between the two beams. Here, we have allowed for elliptical lattice
beams, i.e., the horizontal and vertical waists𝑤0,h and𝑤0,v and corresponding Rayleigh lengths
𝑧R,h and 𝑧R,v can differ, but we assume that both beams have equal sizes and are perfectly
overlapped. However, for typically feasible beam sizes the Rayleigh lengths are much larger
than the waists, which is why we can neglect these terms.

For a higher-dimensional lattice, where the beams are either orthogonally polarized or
detuned from each other by more than the laser’s spectral width, the individual potential con-
tributions sum up to the total lattice potential, which can be approximately expressed as [110]

𝑉lat(𝑥, 𝑦, 𝑧) =
∑
𝑖=x,y,z

𝑉𝑖 ≈
∑
𝑖=x,y,z

(𝑉0,𝑖 cos2(𝑘𝑖𝑟𝑖) +
1
2𝜔

2
𝑖 𝑟
2
𝑖 ) . (1.52)

Here, 𝑟𝑖 denotes the three directions 𝑥, 𝑦, and 𝑧, and the harmonic confinement frequen-
cies consist of the root of the squared horizontal contributions 𝜔 =

√
4𝑉0,𝑖∕𝑚𝑤2

0,𝑖 from the
orthogonal horizontal beams and the vertical contributions defined in Eq. (1.51).

In optical lattices with at least moderate depths, the harmonic potential significantly alters
the motion of cold and non-interacting atoms, and one can consider the system to be described
by the tight-binding Hamiltonian, expressed in second quantization [116]

�̂�0 =
∫
d3𝑟�̂�†(𝐫) (− ℏ2

2𝑚∇2 + 𝑉lat(𝐫)) �̂�(𝐫) = −𝐽
∑
⟨𝑖,𝑗⟩

𝑐†𝑖 𝑐𝑗, (1.53)

where
�̂�(𝐫) =

∑
𝑗
𝑤𝑗(𝐫)𝑐𝑗 (1.54)

is the field annihilation operator defined in terms of the lowest-band Wannier function 𝑤𝑗(𝐫)
and the annihilation operator 𝑐𝑗 for an atom at the lattice site 𝑗. In this model, only nearest-
neighbor hopping is allowed, supported by the negligible overlap of the Wannier function
on non-neighboring sites for lattices deeper than 𝑉0 ≃ 5𝐸rec. The tunneling amplitude 𝐽𝑛
of an atom in the 𝑛-th Bloch band to an adjacent site can then be computed via the discrete
Fourier transform of the band energy 𝐸𝑛(𝐪), where 𝐪 is the quasimomentum of the Bloch
wave eigenstates, such that [5]

𝐽𝑛(𝐫) =
∑
𝐪
𝑒−𝑖𝐪⋅𝐫𝐸𝑛(𝐪). (1.55)

For deep lattices one can approximate the tunneling rate for atoms in the lowest band as [5]

𝐽 ≃ 4
√
𝜋
𝐸rec (

𝑉0
𝐸rec

)
3∕4

𝑒−2(𝑉0∕𝐸rec)3∕2 , (1.56)
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i.e., the tunneling rate depends approximately exponentially on the lattice depth. In the case
of deep lattices we can further find that the Wannier functions are localized exponentially
on the lattice site around 𝑥 = 0, [167]

𝑤𝑗(𝑥) ∼𝑒−(−𝐸𝑛)
1∕2𝑥. (1.57)

For the general case of arbitrary lattice parameters and band occupations, theWannier functions
as well as the tunneling rates are computed numerically.

1.3.2 Optical tweezers

In contrast to optical lattices that use interference effects to generate arrays of tightly confined
sites, optical tweezers take advantage of the strong focusing power of objectives with a high
numerical aperture (𝑁𝐴 = 𝑛 sin 𝜃). For a well-aligned tweezer, the intensity field that provides
the trapping force approaches the shape of an Airy disk [168],

𝐼(𝑟) = 𝐼0 (
2𝐽1(1.22𝜋𝑟∕𝜉)
1.22𝜋𝑟∕𝜉

)
2

, (1.58)

where 𝜉 = 1.22𝜆∕2𝑁𝐴 is the radial diffraction limit and 𝐽1 is the Bessel function of the first
kind of order one. The minimal size of an optical tweezer is thus given by its wavelength and
the aperture of the objective. The exact shape of the mapping of a point source onto a finite
extent is denoted as the point spread function (PSF) and is subject to the wavefront quality
and intensity profile of the input beam. In particular, for a Gaussian envelope of the tweezer
beam at the entrance pupil the point spread function also attains a Gaussian component. A
detailed description of typical optical aberrations and their effect on the PSF can be found in
[169]. Notably, this also affects the longitudinal intensity distribution, which can be expressed
for a perfectly flat wavefront in a similar way as the radial one,

𝐼(𝑧) = 𝐼0
⎛
⎜
⎜
⎝

sin (𝜋𝑧𝑁𝐴
2

2𝜆
)

𝜋𝑧𝑁𝐴2

2𝜆

⎞
⎟
⎟
⎠

2

, (1.59)

which consequently motivates the definition of the longitudinal diffraction limit 𝜁 = 2𝜆∕𝑁𝐴2,
also referred to as the depth of field in the object plane [170]. To evaluate the quality of a point
spread function, multiple figures of merit exist. A typical choice is the radial distance 𝜉′ from
the peak to the first intensity minimum. However, this might obfuscate the true signal as
certain aberrations, in particular spherical ones, can lead to a reduced width of the main peak
at the expense of an increase in the power in the lobes, which overall worsens the imaging
performance. In contrast, the Strehl ratio is a direct measure of a point spread function’s
proximity to the ideal Airy disk and thus of the wavefront error. For a detected PSF with
peak intensity 𝐼0, the Strehl ratio 𝑆𝑅 = 𝐼0∕𝐽0 quantifies its quality as it compares 𝐼0 to the
ideal peak intensity 𝐽0. While this generally only necessitates the total power as additional
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information, technical factors like a finite pixel size can demand for additional corrections
to obtain reliable results, as discussed in [169].

In a similar fashion to the formulation of trap frequencies in an optical lattice one can also
approximate the tweezer potential as a harmonic oscillator, which yields the radial and longitu-
dinal trap frequencies analogously to Eq. (1.47) with 𝜉 and 𝜁 as the relevant quantities of extent.

1.4 Quantum simulation of lattice gauge theories
In this last Section of the Chapter we will focus on the eventual purpose of the experiment
as a quantum simulator to study lattice gauge theories (LGTs), which governs major design
decisions. While several experiments have demonstrated building blocks on the path to such a
quantum simulator [171, 172], only few actual realizations of dynamical gauge theories have
been reported [26, 173–178]. This is mainly based on the intricate realization of the local gauge
invariance, which is a fundamental part of any gauge theory, but is not natively realized in
typical experimental apparatus. Instead, it has to be engineered via complex lattice geometries
and state initialization techniques to provide the appropriate Hilbert space contraints. In
particular, the simulation of basic features of a 1D U(1) quantum field theory in [175] requires
an initial state with single atoms residing on all shallow sites of a tilted 1D superlattice and
an interaction potential tuned to only allow for collective hopping of two particles onto their
neighboring deep superlattice well, thus encoding the information on the matter and field
states in the occupation of deep and shallow lattice sites.

The approach we are following promises a more intrinsic manifestation of local gauge
invariance by precisely defining the potential landscape of the ground and clock state in Yb via
state-dependent potentials within the lowest-energy manifold, which gives us accurate control
over the possible tunneling processes. The realization of a U(1) Abelian LGT with fermionic
matter has been theoretically outlined in [179], which is why we will discuss only the main
ideas presented therein, and then move on to the practical subtleties. We will close the Section
with an outlook to an extension of this protocol to the simulation of non-Abelian theories.

In 1D, the Hamiltonian of a spin-1∕2 representation of discretized quantum electrody-
namics is given by [179]

�̂� = −𝐽
∑
𝑗

(
�̂�†𝑗 �̂�𝑗,𝑗+1�̂�𝑗+1 + ℎ.𝑐.

)
+𝑚

∑
𝑗
(−1)𝑗�̂�†𝑗 �̂�𝑗 + 𝜏

∑
𝑗
�̂�𝑗,𝑗+1, (1.60)

where �̂�†𝑗 is the creation operator for a fermion of mass𝑚 on lattice site 𝑗, �̂�𝑗,𝑗+1 is the parallel
transport operator, rendering nearest-neighbor tunnelling gauge invariant, �̂�𝑗,𝑗+1 the electric
field operator, and 𝜏 the background electric field energy. Here, we use the common choice
of a staggered mass, i.e., in an alternating fashion the charge at a matter site is thought of as
positive or negative, corresponding to the notion of positrons and electrons, whose interactions
are mediated by field sites [180, 181]. This allows us to define the gauge symmetry operator

𝐺𝑗 = 𝐸𝑗,𝑗+1 − 𝐸𝑗−1,𝑗 − 𝑞𝑗 (1.61)
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Figure 1.6 | Quantum simulation of lattice gauge theories with AEL atoms. A In a state-dependent
staggered triple-well potential atoms in the ground (blue) and clock state (orange) are only free to move in
a correlated manner (depicted in green shaded area) as single particle hopping is tuned out of resonance
by selecting an appropriate depth of the center wells. B Abstracted potential geometry for the two states.
Solid grey lines indicate that correlated hopping is possible, while the lattice sites indicated with a cross
are far detuned to prevent tunneling (dashed line). C Mapping onto a U(1) quantum link model. Atoms on
the center well correspond to matter with positive charge (e) or vacua (g) while the absence implies a
vacuum in the former and an electron in the latter case. The lattice sites in between represent electric
fields, whose directions depend on the orbital state as well as the position within the four-site unit cell,
ensuring local gauge invariance. Correlated hopping of an e-g pair thus simulates the pair creation or
annihilation dynamics. D This model can also be extended to 2D, where an atom in a given state can
access five different sites arranged in cross shape, indicated by light blue and orange bars denoting the
hopping bonds. Again, the potentials for e and g are shifted by two sites. Tunneling from link sides is
only allowed in exactly two directions, such that the ninth lattice site per cluster is detuned for both
states (grey cross). E The corresponding representation in the quantum link model is analogous to the 1D
case. To enhance the visibility empty matter sites are also faintly color-coded. The figure is adapted with
permission from [179].

with the charge 𝑞𝑗 = 𝜓†𝑗𝜓𝑗−(1−(−1)
𝑗)∕2 and𝐸𝑗,𝑗+1 |||𝜓⟩ = ±1∕2, which is equivalent to Gauss’s

law for 𝐺𝑗 |||𝜓⟩ = 0. Hence, this relation needs to be fulfilled throughout the whole chain. It can
be shown that this Hamiltonian can be realized by a Hubbard-like model for spin-polarized
fermionic atoms in two different orbital states acting as different species in a state-dependent
superlattice with an effective triple-well geometry for each state, which is shifted by two lattice
sites for the |𝑒⟩ atoms with respect to |||𝑔⟩ [179]. This mapping is schematically depicted in
Fig. 1.6 A-C. We note that small energy offsets 𝛿g and 𝛿e suppress resonant single-particle
hopping, and a large energy penalty ∆ on every fourth site restricts the motion of a single
atom to the triple-well system. The lattice sites available to both states then correspond to
field sites, while the matter sites for electrons and positrons are available to only ground- and
clock-state atoms, respectively. An atom in |𝑒⟩ on its matter site can then be thought of as
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a positive charge, and |||𝑔⟩ atoms on the adjacent field sites can be mapped onto a negative
(left) and positive (right) electric field pointing away from the positron. An empty lattice site
at the center well for the ground state then corresponds to a negative charge, such that the
positive electric field is terminated. Since all lower-order tunnelling processes are detuned,
the fermionic statistics prevent the double occupation of sites with identical atoms, and an 𝑒-𝑔
double occupancy is penalized by the on-site interaction, the dominant dynamics in this model
are correlated hopping events, where adjacent atoms in |||𝑔⟩ and |𝑒⟩ tunnel in the same direction
to their neighboring sites. This process can be understood as the creation or annihilation
of electron-positron pairs and is the simplest example of a time evolution in such a gauge
theory. From a technical perspective, this model can be implemented in various ways, but they
resemble each other in that a superposition of a clock-magic lattice and state-dependent optical
tweezers is necessary. One potential realization makes use of a retro-reflected lattice, where
every second lattice site is strongly detuned for one of the two states by means of a tweezer close
to, but not right at a tune-out wavelength for the other state. A second implementation is based
on a superlattice with a vanishing relative phase between the short and the long sublattice,
providing the staggered potential, while the tweezers are utilized to alternatingly deepen the
shallow sites for 𝑔 and 𝑒 atoms. While superlattices have become a common tool in quantum gas
experiments [38, 90, 182, 183], their combination with tweezers would be unique. We further
note that all schemes require single-site resolution to read out the final occupation in the lattice.

A great advantage of this scheme is the ability to generalize it to (2+1)D. The simplest
extension to two dimensions demands for an underlying lattice structure consisting of large
plaquettes with four lattice sites per unit cell to realize matter vortices connected by field
links, which hence resembles a Lieb lattice. This can be formed by the superposition of
two orthogonal superlattices [184], or by overlapping a square lattice with additional tunable
potentials [185]. However, in the case that the Lieb lattice potential needs to be state-insensitive,
all involved wavelengths are required to be magic. In the former case, this would entail the
usage of two monochromatic superlattices formed by retro-reflected short-wavelength lattices
in combination with two additional beams that interfere at an angle of 2𝜃 = 60◦ to form a
long-wavelength lattice with a spacing of 𝜆. In total, this would involve twelve horizontal
lattice beams spaced by 30◦ (Fig. 1.7 A). The latter would require a third tweezer potential,
where both 759nm and 459nm light could be used. The experimental apparatus is designed
such that both options are feasible, which necessitated amongst others a large-aperture design
of the glass cell and the magnetic coils. A simpler but far more easily realizable approach
is the usage of a quasi-Lieb lattice structure, which exhibits an additional lattice site in the
center of the large cell, whose occupation however is strongly suppressed by the application of
a tweezer (Fig 1.7 D). Such a lattice structure can be formed by a partial four-fold interference,
with a diagonal lattice beam polarization that causes a superposition of the simple cubic lattice
with a lattice constant 𝑎 = 𝜆∕2 with the diagonal lattice with 𝑎 = 𝜆∕

√
2 [186], as depicted

in Fig. 1.7 B-C. This also adds to the range of tunable lattices geometries that can be realized
with a bipartite lattice as described in [185].

However, for the 2D extension of the LGT ansatz denoted in [179] we require state-
independent lattice wells at the link sites around thematter vertices, which in turn are supposed
to be state-selective (Fig. 1.6 B). In the case of repulsive tune-out wavelengths, one can thus tune
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Figure 1.7 | Realization of a magic Lieb lattice. A A monochromatic Lieb lattice can be generated by the
superposition of four different sublattices, two of which are retro-reflected and two are interfering under
a steep angle of 2θ = 60◦. Beams of the same color exhibit the same frequency and polarization and thus
interfere. Dark blue colors represent a deep lattice potential, whereas a vanishing potential is depicted as
white. B In contrast, two individual retro-reflected, mutually non-interfering beams generate a simple
cubic lattice. This can either be realized by offsetting their frequency or by selecting their polarization
to horizontal (depicted as small arrows). C Once the four beams are made to interfere, which requires
their polarization to be vertical, the lattice geometry shifts to a diagonal shape with a sin4 profile, such
that the new lattice constant is larger by a factor of

√
2 compared to the simple cubic case. D Choosing

a polarization angle in between leads to a superposition of the lattices in B and C. This can be used to
generate a Lieb-lattice-like structure if additional tweezers (depicted as light blue circles) offset the lattice
well in the center of each plaquette to prevent tunnelling to this site. For the potential illustrated here we
admix 1∕4 of the diagonal lattice, corresponding to a polarization angle of 30◦.

the deep vertex sites into resonance for the desired state by applying a correspondingly strong
tune-out tweezer. Since the suitable tune-out wavelenths in Yb are attractive, a significantly
larger number of tweezers would be required to realize the necessary potential. Therefore, the
Lieb lattice structure is not the ideal geometry for our underlying magic lattice, and instead the
combination of the simple cubic and diagonal lattice appears to be more suitable (Fig. 1.8 A).
While the relative depths of deep and shallow wells can be tuned by adjusting the polarization
𝜗 of the lattice beams, the desired state-dependent potentials at the matter sites are realized by
a pattern of 𝑔 and 𝑒 tune-out tweezers at every eighth lattice site, respectively. This relatively
low density of tweezers ensures a sufficiently large spacing of 𝑑 =

√
2 × 759nm = 1074nm

to prevent the typical loss effects related to beating of adjacent tweezers with a spacing well
below ≃ 1 µm [74]. We note that the lattice can be generated in two different ways: In a
setup analogous to the 2D lattice described in Chapter 2.6.2 one can use two phase-locked
beams at the same frequency and retro-reflect them at individual mirrors. The four beams
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Figure 1.8 | Potentials for a 2D LGT simulation. A Using the lattice geometry with a partial four-fold
interference, we can realize the necessary potential geometry for the 2D simulation as in Fig. 1.6 D-E by
adding tune-out-wavelength tweezers at the vertices (blue: g tune-out, orange: e tune-out). The resulting
lattice structures for the ground (blue) and clock state (orange) are depicted on the right, assuming
diffraction-limited tune-out tweezers at the corresponding wavelengths 577 nm for the g and 553 nm
for the e potential. The accessible landscape for each state takes the form of a four-legged cross with
a small adjustable detuning δg between the vertex and the links. The detuned adjacent vertices are
only accessible for atoms in the clock state. B While the bipartite lattice can be generated also with two
retro-reflected beams, the relative phase φx − φy between the two lattice arms is not intrinsically stable
and can drift, such that the lattice is deformed. For a relative phase difference of π this leads to a simple
cubic lattice instead. C With a bow-tie geometry, the two sublattices are topologically stable and only
translate upon phase changes.

propagating with wavevectors of 𝐤x , −𝐤x , 𝐤y , and −𝐤y , respectively, where 𝐤x,y = 2𝜋∕𝜆𝑒x,y ,
then lead to an intensity profile given by

𝐼(𝑥, 𝑦) =
(
|𝐸1𝑒𝑖𝑘x𝑥 + 𝐸2𝑒−𝑖𝑘x𝑥+𝑖𝜑x |2 + |𝐸3𝑒𝑖𝑘y𝑦 + 𝐸4𝑒−𝑖𝑘y𝑦+𝑖𝜑y |2

)
cos2𝜗

+ |𝐸1𝑒𝑖𝑘x𝑥 + 𝐸2𝑒−𝑖𝑘x𝑥+𝑖𝜑x + 𝐸3𝑒𝑖𝑘y𝑦 + 𝐸4𝑒−𝑖𝑘y𝑦+𝑖𝜑y |2 sin
2𝜗, (1.62)

where the relative phases along 𝑥 and 𝑦 are determined by the distance 𝑑x,y to their retro-
reflecting mirrors, 𝜑x,y = 2𝑑x,y𝑘x,y . Since these two phases are not coupled, their difference
is a priori variable and therefore subject to drifts if not actively stabilized. For a relative
phase of 𝜑x − 𝜑y = 0, this generates exactly the desired lattice. However, for any other
phase difference the four-fold-interference sublattice generated by the vertical polarization
component is deformed while the cubic lattice experiences a mere shift of its position, such
that the total lattice geometry changes up to the extreme case of 𝜑x −𝜑y = 𝜋, where we instead
obtain a simple cubic lattice (Fig. 1.8 B). This is contrasted by the case of a bow-tie lattice,
where the relevant phases are the distance from the center to the sole retro-reflecting mirror
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and back, 𝜑 = 2𝑑𝑘, and the phase from the diagonal propagation 𝑑, 𝜃 = 𝑑𝑘 (Fig. 1.8 C). The
resulting intensity pattern is therefore

𝐼(𝑥, 𝑦) =
(
|𝐸1𝑒𝑖𝑘x𝑥 + 𝐸2𝑒−𝑖𝑘x𝑥+𝑖𝜑+2𝑖𝜃|2 + |𝐸3𝑒𝑖𝑘y𝑦+𝑖𝜃 + 𝐸4𝑒−𝑖𝑘y𝑦+𝑖𝜑+𝑖𝜃|2

)
cos2𝜗

+ |𝐸1𝑒𝑖𝑘x𝑥 + 𝐸2𝑒−𝑖𝑘x𝑥+𝑖𝜑+2𝑖𝜃 + 𝐸3𝑒𝑖𝑘y𝑦+𝑖𝜃 + 𝐸4𝑒−𝑖𝑘y𝑦+𝑖𝜑+𝑖𝜃|2 sin
2𝜗, (1.63)

and we notice that the relative phases of the diagonal sublattice along the diagonal axes
(𝑒x±𝑒y)∕

√
2 are 𝜃∕2 and 𝜃∕2+𝜑∕2. Hence, the shape of both lattice components is topologically

preserved and instead only the global position is changed upon variations in 𝜑 and 𝜃 [185–187].
Notably, this phase-change-induced translation will in general be independent of tweezer array
shifts, which are mainly governed by the mechanical motion of the objective. To provide a
stable superposition of the tweezer arrays onto the lattice potential, it is therefore imperative
to achieve a highly passively stable system with relative drifts of≪ 𝑎 on timescales of several
minutes to hours to prevent permanent mismatches [65, 82].

Eventually, this model is also extendable to simulate non-Abelian gauge theories such
as quantum chromodynamics [188, 189]. Here, one can make use of the SU(𝑁)-symmetric
interactions in 171Yb and in particular in 173Yb that allow for a synthetic spin dimension that
can simulate different spins in a spin-1∕2 system, corresponding to U(1) × SU(2), or colors
(U(1) × SU(3)) [106, 116]. To this end, we have to generalize the notion of Gauss’s law to a
conservation of particles on a link, also denoted as rishons [190]. We further have to impose a
total spin singlet condition for all particles surrounding a vertex, corresponding to the triple
wells in the 1D case. This is trivially satisfied for the SU(1) model described above using
spin-polarized spins, but requires states of the kind |↑↓⟩ − |↓↑⟩ or |||rgb

⟩
− |||grb

⟩
+ |||gbr

⟩
+ …

for SU(2)- and SU(3)-symmetric simulations. Thus, it is crucial to suppress spin-changing
collisions between |||𝑔⟩ and |𝑒⟩ as they would violate the gauge invariance. Suppressing this
exchange interaction is likely possible by applying a magnetic field that splits the𝑚𝐹 states
differently for the two orbital states (Chapter 1.1.2), which detunes this interaction channel
out of resonance. An indispensable precondition in this case is the ability to image the atoms
in a spin-resolved fashion, which is discussed in Chapter 3. One can further allow for multiple
particles per site in 2- or 3-rishon models, which would however suffer from prohibitively fast
inelastic 𝑒-𝑒 losses without any further precautions. Instead, the usage of Rydberg dressing
could lead to the desired interactions within multiple rishons [189, 191]. With such a setup,
obvious goals are the studies of confinement in 2D and thermalization dynamics, but even
the controlled breaking of gauge invariance by, e.g., the removal of atoms on matter sites,
equaling the loss of a quark in a baryon, might entail very interesting insights into quantum
chromodynamics and its limitations.



CHAPTER 2

Experimental design

At the initiation of the laboratory, several experiments had already demonstrated cooling of
ytterbium atoms down to quantum degeneracy [145, 192–197] and shown the possiblity of
single-site resolution in optical lattices [80, 198] and tweezers [151]. Therefore, this experiment
leverages the experiences and developments of these preceding machines in many ways. At
the same time, the combination of optical lattices and tweezers is still comparably unique,
with just three other experiments that have demonstrated this conjunction so far [62, 65, 76].
This technique simultaneously allows for and necessitates some deviations from the classical
experimental design on the levels of the vacuum chamber, the experimental setup, and the steps
within the sequence to reach a cold atomic cloud inside a trap. In this Chapter, we describe the
details of these considerations and designs, startingwith the vacuum chamber and themagnetic
coils. We then introduce the laser and main experimental setups, followed by a discussion of
the experimental sequences and designs for loading the 3D MOT, optical lattices, or tweezers.

2.1 Vacuum chamber
An inevitable necessity for ultracold atomexperiments is the isolation from the room-temperature
environment and a low background gas scattering rate. Both are achieved by reaching a very
high vacuum with pressures ≃3 × 10−11mbar in the glass cell where the experiments are con-
ducted. At these pressures, the vacuum lifetime typically exceeds a minute and the system is
decoupled from the environment up to interactions with electromagnetic fields like the Earth’s
magnetic field, whose compensation is discussed in Chapter 2.2.3, or black-body radiation
effects1. Furthermore, it is beneficial to ensure that the atomic flux is terminated once the
MOT loading step is completed, since otherwise the directed atom beam will scatter off the
trapped atoms and decrease their lifetime [116].

In our experiment, the vacuum chamber is separated into three main parts: The atom
source, which provides a collimated atomic beam, the science chamber containing large

1To this end, a first generation of experiments is testing cryogenic systems to decrease the background scattering
rate, which can extend the vacuum lifetime to even tens of minutes [199], and to reduce the sizeable contribution
to the current systematic error in lattice clock experiments from the black-body shift. However, heat-shield coating
with hydrogen seems to limit the cooling effect to last only a few days in some setups [31].

38
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Figure 2.1 | CAD render of the vacuum chamber. While the separation of the atom source from the
UHV main chamber via the differential pumping tube is clearly visible, the second tube is hidden in the
part between the cube and the cross. Both NEG and ion pumps yield sufficient pumping rates for the
respective gases in each section, and angle valves – placed on the far side in the orientation of this image
– allow for effective diffusion to the turbo-molecular pump during the bake-out. The contiguous hot
cathode gauge provides an approximate measure of the pressure inside the glass cell. As a strain relief, a
short bellow is placed between the tube from the atom source and the cube, here depicted as a simple
tube. The shutter is displayed in its closed position, while it typically remains open in the experiment,
held in position by a bistable pneumatic actuator.

vacuum pumps and pressure gauges, and the glass cell (Fig. 2.1). Each of these sections will
be discussed in the following.

2.1.1 Atom source

To eject atoms from a reservoir, either ovens or dispensers have been applied in quantum
gas experiments. For Yb, the best combination to provide a pre-cooled atomic beam found
so far is an oven followed by a Zeeman slower section. In the oven, typically a few grams of
solid ytterbium are heated up to temperatures of ≳ 380 ◦C where atoms start to effuse from
the solid state. Compared to alkali-metal elements like Rb, Na, or Cs, this is a rather high
temperature, owing to the low vapor pressure of ≃ 10−3mbar at 400 ◦C [200], but still easily
achievable with standard heating wires and temperature controllers. However, this results in
a velocity distribution peaked at ≃300m∕s for a typical operating temperature of 420 ◦C and
thus necessicates slowing sections to efficiently load atoms into a MOT.

In our experimental apparatus, the oven as well as a Zeeman slower and a 2DMOT are real-
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ized within a commercial atomic beam source.2 This system is designed to work as a compact,
independent vacuum chamber, which only requires appropriately shaped and polarized beams
for the Zeeman slower and the 2DMOT as well as a temperature control loop for the oven and a
heated window once it is connected to the main science chamber. As the details of the mechan-
ical design are proprietary, only a rough overview of the working principle can be outlined.

The atom source can be divided into four main sections: the oven, the Zeeman slower, the
2D MOT, and a differential pumping tube. In the oven section, the Yb reservoir is heated by
a thermal resistor, whose current and hence its temperature is controlled via a PID feedback
loop. Adjacent to the oven, an array of 13mm long capillaries with a diameter of 210 µm serves
the purpose of selecting and collimating atoms that are leaving the oven to provide a roughly
collinear flow of atoms. At an operating temperature of 420 ◦C, the manufacturer measured
an initial flux of Φ ≃ 6 × 1012 atoms∕s after the capillaries. Unfortunately, this component
exhibited major design flaws, which is why the oven had to be swapped twice within less than
30 months of operation. In the original oven that was part of the delivered atom source as well
as in the second oven, a material was used for the capillaries that can react with Yb, which led
to clogging of the nozzle in both cases after a few months of operation, leading to a strongly
reduced flux.3 In the first oven, the Yb reservoir further contained a significant amount of
hydrogen which was at first believed to be responsible for the clogging as Yb and H2 quickly
react to YbH2 above 400 ◦C and could therefore form growing compounds on the capillary walls.
Hence, the two latest ovens that were used for the majority of the 3D lattice work described
in Chapter 3.2 have undergone a degassing procedure to deplete the Yb reservoir from H2.
However, as the second oven also suffered from clogging, in the most recently installed oven
the nozzles are made out of the same material that was used for the reservoir, which did not
show signs of degradation or reaction with Yb in any oven model so far.

The capillaries are followed by heat shields and the Zeeman slower section, with a few
centimeters of free flight in between which can be used for initial absorption spectroscopy
measurements through adjacent viewports to determine the oven flux. Due to direct line
of sight to the nozzle, these viewports end up being coated with Yb after a few weeks of
normal operation and typically do not allow for further spectroscopy measurements anymore.
Furthermore, a small 3L∕s ion pump,4 a 100L∕s non-evaporable getter (NEG) pump,5 and
an angle valve are installed in promixity to the oven. The magnetic field for the Zeeman
slower is generated by permanent magnets, which allows this section to extend over a distance
of just a few centimeters. Once the atoms are slowed down, they reach the 2D MOT. This
section contains a 5L∕s NEG pump6 and two identical but slightly angled arrays of mirrors
and waveplates. These arrays use a single beam each to achieve a reduction of the transverse
temperature close to the Doppler temperature of 𝑇 = 3mK ≃4 𝑇D as well as a deflection of
the atomic beam by a total of 20◦ (Fig. 2.5). To this end, the 2D MOT not only produces a
collimated atomic beam but also serves as an optical shutter, since only with activated 2DMOT

2AOSense Beam-RevC-Yb
3In a diagnosis by the manufacturer, the defective oven nozzles were described to “crumble apart” despite

reports that it should be inert to Yb.
4Gamma Vacuum 3S TiTan
5SAES NEXTorr Z100
6SAES STS172
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Figure 2.2 | Absorption spectroscopy of the commercial oven. A Absorption spectra on the 1P1 transition
for various temperatures, after the first oven swap in 2023. We use an intensity of I ≃ 0.05 Isat to not
saturate the transitions. While the four most abundant bosonic isotopes are clearly visible, the fermionic
transitions are suppressed and obfuscated for the chosen polarization. B Absorption amplitude of the
174Yb transition dip as a function of temperature for all three ovens after the respective bake-outs. While
the first two ovens show the onset of absorption only past 400 ◦C, in agreement with measurements
performed at the manufacturer before shipping, the latest oven exhibits an increase of flux by a factor of
≃4, which now allows us to run the oven at 380 ◦C instead of 420 ◦C as before. For fear of shortening the
oven lifetime the oven flux was tested only up to 400 ◦C for this newest oven.

beams the atoms can reach the main chamber. Undeflected atoms, however, travel towards
the Zeeman slower window. To prevent this window from getting coated with a reflective
ytterbium layer, a heated, anti-reflection-coated sapphire window is placed in front of the
viewport itself. The temperature of this hot window is chosen such that the effusion rate
exceeds the atomic beam flux at least by a factor of 10, which corresponds to temperatures of
330 ◦C for oven temperatures of 420 ◦C. Atoms that are impinging on the Sapphire window
therefore do not adhere to it, ensuring a lasting operation of the Zeeman slower. Before they
reach the heated window, undeflected atoms fly past three orthogonal, ≃4mm large windows
which are meant to be used for continuous absorption spectroscopy measurements. The
corresponding signal can then be utilized to, e.g., lock the laser at 398.9nm onto the atomic
resonance, or to monitor the oven flux. Unfortunately, when the first oven started clogging,
these windows became highly reflective, likely due to coating with Yb. According to the
manufacturer, the spectroscopy windows are designed to have no direct line of sight either
with the oven or the heated Zeeman slower window and therefore should not get coated under
any circumstance. In other experiments, however, it has been observed that clogged capillaries
can lead to erratic trajectories [201], although the exact process remains unclear as the distance
between oven and spectroscopy windows is substantial.

In case the atoms get deflected by the 2D MOT beams, they first pass a gate valve, followed
by a 108mm long and 6mm wide differential pumping tube. The gate valve is essential for the
purpose of keeping the ultrahigh vacuum in the main chamber while the oven is swapped,
such that only the atom source needs to be baked afterwards. The differential pumping tube,
on the other hand, provides a pressure gradient between the science chamber and the atom
source. This is crucial as the pressure measured by the ion pump next to the oven usually
exceeds 1 × 10−9mbar when the oven is running.
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2.1.2 Science chamber
The atom source is attached to the ultra-high vacuum (UHV) chamber via a short con-flat (CF)
16 bellow to prevent stress on the atom source’s tube flange. The main science chamber itself
consists of two segments, a CF40 cube and a CF40/CF63 cross, separated by another 6mm
wide and 53mm long differential pumping tube. This ensures a consistently low pressure
in the glass cell, as we observe only minimal pressure changes of 𝛿𝑝 ≃ 0.5 × 10−11mbar
in the second segment despite pressure increases by two orders of magnitude in the atom
source. The pressure is measured by a hot cathode pressure gauge, which is positioned next
to a 500L∕s NEG and ion combination pump7 and an angle valve. To provide high pumping
rates during baking, a second angle valve is installed in the first segment, together with a
200L∕s NEG-ion combination pump.8 Furthermore, a mechanical shutter, consisting of a
long strut mounted at the bottom of a long flexible bellow, is attached to the cube. The shutter
can be actuated pneumatically and was designed to serve as an additional atomic beam block
in case the deactivated 2D MOT would not provide a sufficient suppression of the atomic
beam flux. However, the vacuum-limited lifetime of 𝜏 = 250(30) smeasured in the 3D lattice
discussed in Chapter 2.6.4 indicates that this does not pose a problem and thus the shutter is
constantly held in the opened position. Notably, this lifetime is on par with other quantum
gas experiments reporting pressures of 1 × 10−11mbar [116, 202–204], which indicates that
the pressure of 𝑝 ≃ 3 × 10−11mbarmeasured by the hot cathode gauge is overestimated. In
the long-term pressure graph, an overall clearly visible trend towards lower pressures can be
observed, only interrupted by the pressure increases due to the oven swaps and modulated
by the oven temperature. For a more in-depth discussion of the pressure limitations in our
setup and details on the bake-out procedure we refer to [205].

2.1.3 Glass cell
Optical access is a valuable asset in quantum gas microscopes and optical tweezer experiments.
To reach large numerical apertures, microscope objectives have to feature a large meniscus lens
and typically need to be placed very close to the vacuum window, thus obstructing a large solid
angle for beams that cannot be sent through the objective. Likewise, the optics necessary to
generate deep optical lattices are preferably placed close to the atoms for various reasons, most
relevantly to enhance the passive mechanical stability and to minimize the effect of inevitable
local temperature variations, as discussed in detail in Chapter 2.6.4. Simultaneously, while
the 3D MOT optics can be placed far from the atoms, the capture velocity and thus the trap’s
efficacy depends on the beam sizes as outlined in Chapter 2.5. Less stringent requirements
have to be met in general for the remaining beams which are used for cooling or addressing of
specific transitions. However, implementing this multitude of beams poses a major challenge.
A more traditional approach to circumvent the concomitance of 3DMOT and optical traps is to
spatially separate the two stages and transport the atoms from the MOT chamber to the glass
cell [202, 206, 207]. This, however, greatly adds to the overall complexity of the experiment,
reduces the efficiency due to imperfect transport, and increases the cycle time.

7SAES NEXTorr D500-5
8SAES NEXTorr Z200
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In order to keep the experimental apparatus as simple and compact as possible and to enable
cycle times of 100ms, the glass cell’s optical access is optimized to allow for a single-chamber
design, entailing that no atom transport is required as the MOT is overlapped with the lattices
and tweezers. This is achieved with an octagonal cross section and two alternating edge lengths
with a relative ratio of 5:3. The glass cell frame offers eight horizontal bores with sizes of
16.1mm and 11mm, corresponding to opening angles of 24◦ and 32◦, and 35mm large vertical
bores. Onto these bores UV-grade fused-silica windows9 with a nano-textured broadband anti-
reflectivity (AR) coating are fused.10 The horizontal windows exhibit diameters of 19.5mm
and 14.5mm at a thickness of 3.2mm, while the top and bottom windows are stepped with an
inner (outer) diameter of 34mm (44mm), a thickness of 3mm of the protruding ring, and an
overall thickness of 6mm. This step is key to a minimal overall height of the glass cell of 26mm,
rendering a moderate objective working distance of 14mm possible, while retaining a sufficient
thickness to prevent bending due to the pressure difference of 1 bar. This cambering effect was
simulated by means of a finite-element analysis for different window sizes and proportions,
yielding an optimal compromise for the values mentioned above. While the calculated bending
radii of 320m and 400m for the outer and inner surface, respectively, are not negligible, this
effect is expected to be radially symmetric and therefore only appears as a small spherical
aberration in the overall imaging performance, which can be compensated well. In contrast,
if the specified window flatness of <1∕10 𝜆 and parallelism of <5 arcsec were not met, this
would visibly compromise the imaging quality, as discussed in Chapter 2.7.

One of the goals during the conception of the glass cell design was to allow for twelve beams
spaced by 30◦, which is necessary to create a 2D monochromatic superlattice. This could have
also been achieved with a rectangular cell, likely the most common type of glass cell used in
recent ultracold atom experiments. However, owing to the complex contacting process for such
cells, the choice of AR coatings is limited, and in most cases no AR coating is used at all, which
can lead to very strong reflections, in particular for shallow-angled beams. Contacting windows
with treated surfaces onto a glass frame, on the other hand, is viable, which thus facilitates
a significantly more power-efficient setup. The nano-structure AR coating we chose uses a
randomly etched moth-eye-like structure to provide very low reflectivities over a large range
of wavelengths – the two-surface reflectivity was measured by the manufacturer to be < 0.7%
for light at 400 − 1100nm and < 0.5% at 1389nm for the horizontal windows11 and < 0.12%
from 400 to 850nm for the stepped vertical ones,12 measured at 0◦ angle of incidence (AOI).
At selected wavelengths we were able to reproduce this performance, and even for non-zero
AOIs the reflectivity appears to remain very low. The measured loss of ≃2% at 553nm after
four surfaces as part of determining the clock-state polarizability at the ground-state tune-out
wavelength (Chapter 4.2) is therefore attributed to absorption in the fused silica bulk.

Upon attaching the glass cell to the vacuum chamber, great care was taken in ensuring
a parallel alignment of the glass cell to the surface of the optical table. Two beams, one
from the top and one from the front, were used to send the weak glass cell reflection back

9Laser Components PP1724UV-S, PP0612UV, PP0712UV, custom design
10Precision Glassblowing, custom design
11TelAztec RAR-L2
12TelAztec RAR-L
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to itself, with a beam path long enough to provide a resolution of ≲ 1mrad. Despite this
careful alignment, a later reproduction of this measurement after more than a year yielded
a deviation of 2mrad along the tubing direction, which could stem from a slow relaxation
or set of the flange connection.

2.2 Magnetic coils

Controllable magnetic fields constitute the second essential ingredient for a cold atom experi-
ment. In particular, they are required for generating a quadrupole field for the 3D MOT, for
nulling out the Earth’s magnetic field and other stray fields, and for producing Helmholtz
fields to lift the degeneracy of states with different magnetic quantum numbers or to tune
the interaction strength using magnetic Feshbach resonances [40, 136, 137]. In the case of
most Alkali-metal atoms one can further use magnetic fields to trap or separate the atoms
depending on their𝑚F state [38, 39], which in general is not possible in Yb due to its heavy
weight and the low magnetic moment.

To this end, there are six pairs of coils built into the experiment: The main coils, three
perpendicular sets ofweak shim coils, additional compensation coils along the vertical direction,
and a pair of strong coils along one horizontal direction, referred to as transverse coils.

1
2

3
4

5

6

1 Main coils

4 Vertical shim coils
5 X shim coils
6 Y shim coils

2 Transverse coils
3 Compensation coils

N
S

Figure 2.3 | CAD render of the coil mount. The two glass-fiber-enforced plastic plates hold the glued
main coils in place and serve as a platform to which the independent mounts for the compensation coils,
the vertical and horizontal shim coils, and the transverse coils are attached. The aluminium mounts to
hold the latter also contain the independent set of anti-parallel shim coils along this direction. The power
and water connections for the hollow-core wires are routed horizontally and almost parallel to the glass
cell flange (leaving the coil cage towards the top left of the image, not depicted in this render for clarity)
in the case of the main coils, and downwards to the optical table surface for the transverse coils.
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2.2.1 Main coils
The main coils’ purpose is twofold: First, to provide a strong quadrupole field during the
MOT loading and compression, and second, to apply a large, homogeneous 𝐵 field for clock
spectroscopy in 174Yb or separating the𝑚F states during Raman cooling in 171Yb. The coils
are oriented along the vertical direction to allow for maximal optical access in the horizontal
plane and are placed as close to the glass cell as possible to maximize the 𝐵 field that can
be achieved. Simultaneously, the distance between the center of the coils of 62.2mm is only
slightly larger than the effective coil radius of 50.4mm13 to ensure maximal field strength
and uniformity of the field in the Helmholtz configuration. Further, their inner diameter is
chosen to allow for the insertion of the high-NA objectives. Ideally, one would also like to
send laser beams under a steep angle through the gap between objective and coils. This is
mostly relevant for the vertical MOT beams, but could also be used for vertical lattice and
cooling beams. Due to the significant diameter of the objective’s meniscus lens, the minimum
possible incidence angle of such beams would require the coils to be either very thin or have a
very large radius, though, and thus prohibit the use of such beams. Instead, the vertical MOT
beams pass through the objective, as described in Chapter 2.3.

Another feature to strive for is reaching the orbital Feshbach resonance in 171Yb at 1300G
[144]. This would require coils made out of flat-band wires which are glued onto a water-cooled
heatsink as they can be compactly wound [208]. However, in this case, one has to ensure
a surface flatness of typically ≲ 10 µm to allow for sufficient heat transport to the heatsink
and to hereby prevent overheating the coils at large currents. Reaching this by emerizing the
respective surfaces of custom commercial coils as initially planned proved to produce shorts
as the insulation was partially chipped off, connecting several wires. Instead, the final coils
consist of an almost identical pair of hollow-core copper wires with 48 windings, allowing
for a brief14 application of up to 500G in parallel configuration or a vertical field gradient of
up to 130G∕ cm in the anti-Helmholtz configuration where the magnetic field is zero in the
center and increases linearly with distance. To generate these fields, currents of up to 70A
must be applied, requiring water cooling through the hollow cores with a hole diameter of
1.6mm. The coils are glued to a nonmagnetic, high-tensile glass-fiber-enforced plastic mount,15
connected by nonmagnetic, black anodized aluminium posts. The temperatures are monitored
by several thermocouples glued to the coils. Their signals are also fed into the interlock to
turn off the coil power supply to prevent overheating.

Switching between anti-Helmholtz and Helmholtz configurations is made possible by
MOSFETs in combination with an H bridge. With this circuit we can also shunt the current,
ramping down the magnetic field from several hundred to a few G within ≃ 8ms as measured
by spectroscopy on the 1P1 transition. However, due to the finite inductance and eddy currents

13Taking the arithmetic mean of the inner and outer coil diameter of 37mm and 63.8mm as well as the mean of
the maximal and minimal distances of the coil surfaces of 87.6mm and 36.8mm and treating the coils as infinitely
thin provides a sufficiently good approximation of the actual magnetic field. Taking the actual dimensions into
account in more complex calculations yields corrections only on the percent level and is thus comparable to
manufacturing uncertainties.

14For duty cycle times of ≃ 50% at large 𝐵 fields the required cooling power is significant, and the steady-state
temperature passes the threshold of 20 ◦C, which gets close to the interlock safety threshold of ≃20.7 ◦C.

15EP GC 201, manufactured by Erhard Hippe KG.
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in adjacent components it takes ≃50ms until the field has completely decayed to below the 3P1
spectroscopy detection limit. (Fig. 2.4 F). To calibrate the coils, i.e., to determine which field
strength is applied at the atom’s position at a given current, we employ two different schemes.
The first relies on the quadratic Zeeman shift on the 3P0 transition as discussed in Chapter 1.1.2
which can be spectroscopically interrogated with great precision and yields a calibration factor
of 7.595(50) G∕A (Fig. 2.4 A). In the second scheme we spectroscopically track the linear
Zeeman splitting for the 𝜎+ and 𝜎− transitions on the 3P1 transition, which was determined to
be 2.089429(70)MHz∕G [135]. For this purpose, we use a horizontal MOT beam that provides
finite projections on the 𝜋 as well as the 𝜎± transitions to simultaneously resolve all three
resonances. Since these measurements were performed with 174Yb and in the clock-magic
lattice at 759.354nm, care has to be taken to minimize systematic errors from the differential
Stark shift for this transition as well as from state mixing due to a lattice-induced electric field
as in Fig. 2.4 B, which was performed in a deep 3D lattice. Therefore, the spectroscopy pulse
is applied right after the lattice is fully turned off for 1ms, after which it is ramped back up
again to image the atoms (Fig. 2.4 C). With this method we achieve a comparable calibration
factor of 7.41(8) G∕A, which is also in agreement with the calculated value of 7.23G∕A and
the value of 7.74G∕A obtained with a Hall probe upon testing the coils.

2.2.2 Transverse coils

A second pair of hollow-core wire coils is attached to the side of the coil mount to allow for a
versatile application of 𝐵 fields also in the horizontal direction. This is necessary to be able to,
e.g., drive the clock transition with a vertical beam or to apply a strong quantization axis along
the magic angles for the 3P1 transition in

171Yb and 174Yb. The coils consist of 9 windings and
are rectangular with outer (inner) dimensions of 105.5mm× 84.5mm (79.9mm× 59.8mm),
where the thickness and sizes are chosen such that they do not restrict the optical access.
Instead, the coils are placed in the projection of the glass cell frame at a relative distance of
164mm, i.e., a factor of 366% from the ideal Helmholtz configuration of 𝑑 = 0.5445 𝑎, where 𝑎
is the mean edge length of the rectangular coils. However, on the typical experimental length
scales of ≲ 100 µm the resulting magnetic inhomogeneity is expected to be negligibly small.
Water cooling allows for the application of up to 10A in the horizontal direction, allowing for a
maximal magnetic field of 𝐵 ≃25G. Again employing the linear Zeeman splitting method on
the 3P1 transition, we obtain a calibration factor of 2.99(11) G∕A. Notably, this was measured
at moderate fields of up to 2G without water cooling. This pair of coils is further used to
compensate for stray magnetic fields in the east-west direction of the lab; here we found a field
of 0.146(10) G to minimize the magnetic field at the atom position by measuring the crossing
of the 3P1 𝜎

+ and 𝜎− transitions (Fig. 2.4 D). Interestingly, this direction is the only one that
significantly deviates from the expected respective geomagnetic field component of 15mG,
but aligns with the direction of the adjacent optical tables and labs.
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Figure 2.4 | Calibration methods for the magnetic coils. A Quadratic Zeeman shift on the 3P0 transition
after calibration of the main coils. B Spectroscopy on the 3P1 transition in a≃4000 E rec deep 2D lattice
at 759 nm. By applying a 4 G offset field with the vertical shim coils we can scan across the inversion
point. Despite a reasonable stray field compensation on the∼100 mG level, the individual resonances
do not cross, which is an effect of the significant vertical electromagnetic field induced by the lattice,
which mixes themJ states for small external magnetic fields. C We thus perform 3P1 spectroscopy during
a time of flight where the lattice is off, which is selected to be 1 ms. The atom loss during this time is still
acceptable to provide spectroscopy signals with a large signal-to-noise ratio. The Gaussian fit serves as
a guide to the eye. D Lattice-free spectroscopy with horizontal circularly polarized light to resolve the
π− and both σ-transitions. E Fitted resonance positions for the three transitions, using the fit function
δ(mF′) = mF′µ

√
B

2
⊥ + (B∥ − B0)2. From the splitting behavior we can extract the calibration factor for

the vertical shim field and both longitudinal and transverse residual offset fields. F Lingering magnetic
field after turning off the main coils, detected via 3P1 offset spectroscopy. After a fast initial decay within
≃8 ms a much slower decay sets in, which we compensate by applying a counteracting exponential ramp
with the vertical shim coils to suppress the total magnetic field 20 ms after the main coils have been
turned off. The solid green line shows an exponential fit after 10 ms waiting time, and its deviation from
the experimental data for shorter times is indicated by the dashed line.

2.2.3 Compensation coils
To null out the Earth’s vertical magnetic field component and other potential stray fields we
use a dedicated, additional pair of coils which is mounted on top of the main coils. Using 50
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windings of 1mm thick copper wire with amean diameter of 125mmwe can generate 2.92G∕A
as again determined via lattice-free 3P1 spectroscopy, and we find the minimal distance between
the 𝜎+ and 𝜎− transitions to occur at 𝐼0 = 143(1)mA or 𝐵0 = 0.418(3) G. This value is in
reasonable agreement with the vertical geomagnetic field strength of 𝐵geo ≃ 0.440G.

2.2.4 Shim coils
A set of three weak coil pairs are attached to the six sides of the coil mount to be able to
steer the position of the compressed MOT – in our case primarily to optimize the transfer
of atoms from the MOT into the lattices or tweezers. They can further be used to stray field
compensation or to apply a quantization axis in an arbitrary direction. However, the maximum
field strength attainable with the horizontal shim coils is limited to 𝐵 ≃ 1.3G, owing to the
1mm copper wires which are only passively cooled and therefore permit currents up to 2A
until the temperatures strongly increase. In addition, the relative spacing between the coils
is 164.4mm for the pair connected to the transverse coils and 192mm to the orthogonal one
which is significantly larger than the optimal Helmholtz configuration distance for dimensions
of 82mm× 62mm and 102mm× 93mm, respectively. This as well as a restriction of the coils’
height to 8mm, allowing for 23 windings, is necessary to prevent loss of optical access. The
vertical shim coil pair is mounted inside the compensation coils with a mean diameter of
90mm and 35 windings. Calibrating the coils via spectroscopy on the 3P1 transition in time
of flight yields 2.46(4) G∕A for the vertical shim coils, 0.66(1) G∕A for the coils parallel to the
transverse coils, and 0.67(1) G∕A for the orthogonal horizontal pair. Since there is only one
pair of coils along the north-south direction and the lattices and tweezers are located slightly
north of the center of the coils, which requires the compressed MOT to be pushed in that
direction, it is not possible to compensate for a measured residual field of 𝐵0 = 0.190(3) G in
northern direction, in agreement with the corresponding Earth’s magnetic field component
of 𝐵geo ≃ 0.210G. While a later upgrade to the experiment to add a weak compensation coil
pair with opposite polarity is feasible, the overall insensitivity of Yb to external magnetic fields
does not render this particularly necessary.

2.3 Optical setup
The final main constituent of the experiment is the optical setup around the vacuum chamber,
responsible for shaping and directing the various laser beams onto the atoms. Owing to the
multitude of beams and wavelengths, almost all lasers and the corresponding laser setups
are located on two adjacent optical tables. This does not only provide more space but also
isolates the main experimental table from unavoidable mechanical, electric, or magnetic
noise from shutters, acousto-optical modulators (AOMs), or Faraday isolators. The main
experiment’s optical setup is described in the following, whereas the individual laser setups
are described in Chapter 2.4.

For the optics around the vacuum chamber two independent breadboards were chosen:
a rather compact one for the Zeeman slowing and 2D MOT optics on one side of the atom
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Figure 2.5 | Schematic of the atom source setup. A Illustration of the 2D MOT and ZS beam paths around
the atom source chamber. The respective sizes and angles are to scale. B Working principle of the 2D
MOT. Circularly polarized light enters the chamber and interacts with the atoms for the first time. It is
deflected upwards by two mirrors and passes twice through a QWP in front of the first mirror to maintain
the correct polarization. Upon retro-reflection, the light is rotated to the orthogonal circular polarization
to complete the 2D MOT. Depicted is the rotated orientation of the 2D MOT system by≃3◦.

source, and one large, monolithic breadboard surrounding the glass cell. An off-the-shelf
breadboard16 with a cut-out for the coil mount which was used as the initial main breadboard
to allow for the first experimental results was later replaced by a custom large-size breadboard,17
designed for maximal space and stability. The experimental results discussed in Chapters 4.1
and 4.2 were performed with the initial setup, whereas the 3D lattice and the tweezers were
implemented as part of the final, hybrid setup.

2.3.1 Atom source setup
To be able to run the atom source in the most efficient condition and to achieve the best atomic
flux in the glass cell, we designed the corresponding setup to allow for a 6×30mm elliptical
beam for the 2D MOT and a 6mm circular beam for the Zeeman slower.

For the 2D MOT beams, the light coming out of a single-mode polarization-maintaining
(PM) fiber18 and collimated by a fiber collimator19 is expanded to 6mm via a 3:1 telescope
(Fig. 2.5). Given the large final size of the 2D MOT beams, for each of the two beams an
individual 5:1 cylindrical telescope follows a 1" beamsplitter cube20, and a strongly folded

16Thorlabs MB6090/M
17Base Lab Tools, Inc., SABCUST836, custom design
18Fibercore HB450-SC, customized by Coastal Connections
19Schäfter+Kirchhoff GmbH, 60FC-4-M8-33
20Altechna UAB, M0078016, custom design
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configuration was chosen for 75×50mm rectangular mirrors.21 Each beam then passes through
a 2" multi-order quarter-wave plate22 to obtain a right-hand circularly polarized beam in the
point of view of receiver definition. Initially, we aligned both beams to impinge on the windows
in the center, both vertically and horizontally, i.e., at a beam height of 50mm. Indeed, at this
height, the weak fluorescence of atoms passing through the 2D MOT windows and scattering
photons were visible. However, we noticed that at this height and horizontal direction no
backreflection from the retroreflecting mirror inside the atom source could be identified.
Instead, a significant downwards tilt of ≃3◦ had to be implemented to achieve a good overlap
with the backreflection. This requires the beam height at the last incoupling mirror to be
≃59mm, almost exceeding the tilt adjustment range of the mirror mount23, which makes the
vertical alignment of the beams relatively sensitive to misalignment. An equal relative power
balancing and a total laser power of ≃ 30mW was found to yield optimal performance.

The Zeeman slowing beam uses the same collimator and a similar telescope combination
as the 2D MOT. Note that, according to the manufacturer, the beam should mildly converge as
it enters the heated window. We achieve this by placing the −75mm and 300mm telescope
lenses at a relative distance of ≃240mm from each other and thus 15mm further apart than
necessary for a collimated beam, thereby ensuring that the focus is at a distance of ≃5m from
the Zeeman slower. Due to space constraints, only one tunable mirror mount was used for
the incoupling mirror. Therefore, a careful initial positioning and alignment is required. To
this end, we use scattered light from the 2D MOT optics and coils as a reference, since good
coupling is achieved when the Zeeman slower beam is roughly centered and does not scatter
brightly at the orifices. Using the Zeeman slower window as a reference, i.e., making sure that
the beam is centered with respect to the heating elements, or backreflection off the window
were found to be misleading and thus not helpful. This initial aligment reliably brought us very
close to the optimum. Again, the vertical axis appears to be more sensitive than the horizontal
one. To allow this mirror and the quarter-wave plate to be placed only a few centimeters
from the heated window, an M3-threaded breadboard was cut to make it fit closely to the
atom source. This leaves the maximal amount of space for the main breadboard. The optimal
power for a detuning of −580MHz from resonance was initially found to be ≃250mW, with
a strong power dependence past 200mW. Later changes in the 3D MOT setup as described
in section 2.3.3 decreased the optimal power to ≃ 220mW. For lower detunings, in spite of
calculations from AOSense indicating otherwise, the optimal power as well as the overall 3D
MOT loading rate is reduced, whereas for a detuning of −590MHz the optimal power was
back at 250mW, but only with a small improvement compared to the initial values, which
is why the detuning was kept at −580MHz.

2.3.2 Intermediate setup
Apart from few exceptions, the majority of the beams is sent through the glass cell’s horizontal
windows, as displayed in Fig. 2.6. To this end, most of the optics are placed on one large, main

21LENS Optics GmbH, custom design
22Altechna UAB, M0077955, custom design
23Thorlabs KM200S
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Figure 2.6 | Schematic of the intermediate setup. A Illustration of the beam paths on the mezzanine
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beams are simplified and most optics are omitted for clarity. The relative angles of the various beams,
however, represent the state of the experiment at that time, apart from a slightly exaggerated tilt of the
magic dipole trap beam (turquoise).

breadboard, and the remaining beams are directed upwards from the optical table surface
or downwards from an additional small breadboard mounted on top of the main one. As
the design and manufacturing of the final “mezzanine” breadboard would have significantly
delayed the progress, a preliminary setup was installed. Its main purpose was to test the
crossed-slowing-beam-enhanced MOT loading (Chapter 2.5) as well as the clock spectroscopy
in the 1D lattice (Chapter 2.6.1), and ended up also being used for the magic and ground-state
tune-out wavelength measurements.

In this setup all three MOT beams at 556nm are oriented perpendicular to each other
and are retroreflected for maximal power efficiency and compactness – two beams are sent in
within the horizontal plane, and one beam from the bottom (Fig. 2.6. The fiber collimators24
with a focal length of 75mm are chosen to provide beams with a large waist of 5.6mm such
that the aperture of the wider horizontal glass cell windows is used to full capacity. After
the collimators, the polarization of each beam is cleaned from any unwanted components
introduced by birefringence of the fiber or preceding optics via a combination of a half-wave
plate (HWP) and a polarizing beam splitter cube (PBS). This is then followed by a beam sampler
at an angle of 45◦, reflecting≃3% of the light onto a photodiode, whose signal is used to stabilize

24Schäfter+Kirchhoff GmbH, 60FC-L-4-M75-01
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the intensity of the beam. This sequence of optics is used for all beams on the experimental
table. In the case of the MOT beams, the polarization is further rotated by 1" quarter-wave
plates (QWPs)25 before passing through the glass cell and in front of the retroreflecting mirror
to ensure appropriate circular polarization for each of the beams.

The vertically polarized 399nm slowing beams are sent in through the same horizontal
glass cell windows as the horizontal 3D MOT beams, but under a steep half angle of 22.5◦ to
create the crossing region≃18mm in front of theMOT center. This provides a short pathway to
the MOT while preventing any significant overlap of the slowing beams with the MOT, which
is vital due to the large scattering rate and recoil energy of the 1P1 transition. As the two beams
are split up by means of a PBS, we further have to rotate the polarization of the horizontally
polarized beam with a HWP to generate a net scattering force that counterpropagates to the
atomic beam. The working principle and characterization of this slowing technique is further
explained in Chapter 2.5.1.

The 759nm lattice beam propagates horizontally, unlike most optical lattice clock experi-
ments in which the effect of gravitational sag is typically reduced by aligning it with the strongly
confined lattice axis [204, 209, 210]. However, this is not relevant for deep lattice potentials,
and while the systematic uncertainties arising from such potentials matter for high-precision
atomic clocks, they are exiguous in the magic wavelength measurements. To create such a
deep lattice, up to 5W of light is sent through a polarization-maintaining photonic crystal fiber
(PCF)26 with a large mode field diameter of 12.5 µm, minimizing the effect of Bragg scattering
at very high intensities. The light is then outcoupled by a 20mm fiber collimator27 to produce
a 1.6mm-sized beam (1∕𝑒2 diameter), focused down to a waist of 62 µm using a standard
achromatic lens with a focal length of 200mm28, recollimated with an identical achromat on
the other side, and retroreflected by a dichroic mirror29mounted inside a piezo-actuated mirror
mount.30 Optimal backreflection of the beam onto itself and thus a high-contrast standing
wave are guaranteed by coupling the retroreflected beam back into the fiber and maximizing
the power at the rejection port of the Faraday isolator. Back-coupling efficiencies of ≃ 50%
were measured, taking the AOM’s finite first-order diffraction efficiency into account. In this
vein, we can reach lattice depths of up to ≃ 50 µK.

The retroreflecting mirror is chosen to be highly reflective (> 99.5%) for 759nm as well
as the range 550 − 560nm while it is transmitting more than 95% of the light at 578nm and
1389nm. This is desirable as it allows for clock and repump beams co-propagating with the
lattice beam, which is necessary to probe the clock excitation fraction in the Lamb-Dicke
regime for the 1D lattice case. The clock beam is focused by the achromatic lens to a waist
of ≃ 110 µm while the repump beam is kept large by means of a second lens. Both beams
are superimposed with a long-pass dichroic.31

Absorption imaging is performed with a 6.6mm wide 399nm beam under a shallow angle
25Altechna UAB, M0077959, custom design
26TraTech JMPR-2M-HP2.5FC MSL-LMA PM 15/230
27Schäfter+Kirchhoff GmbH, 60FC-L-4-M20-02, adapted fiber receptacle to be compatible with FC/APC PCF
28Thorlabs AC254-200-AB
29Optoman, PAN3901, custom design
30New Focus 8821
31Thorlabs DMLP650
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of 10.4◦ with respect to the lattice axis. The shadow on the blue beam cast by the atomic
cloud is imaged onto a CMOS camera32 with a 4:3 telescope consisting of a 𝑓 = 200mm and
𝑓 = 150mm achromatic lens pair. As the space on the breadboard is limited, the last lens as
well as the camera are mounted in a vertical assembly, fully covered by a lens tube to minimize
stray light exposure, and structurally stabilized by cage rods. We choose a long-pass dichroic
mirror33 to reflect the 399nm beam up towards the absorption imaging camera such that
556nm fluorescence light can be collected with a separate imaging setup.

In the final stage of this setup, the beam for the magic and 𝑔 tune-out measurement was
inserted. Depending on the type of measurement, the beam is either co-propagating with
the magic lattice and thus retro-reflected by the same mirror to form a lattice (tune-out), or
slightly tilted by ≃ 1◦ (magic) to block the beam in front of the mirror, thereby preventing
any backreflections as any formation of a standing wave would be detrimental. The beam is
superimposed onto the lattice beam using a short-pass dichroic34 and can be steered with a
piezo-actuated mirror mount35 to precisely optimize the overlap with the atomic cloud. The
relative position of lattice and tune-out beam as well as the individual beam shapes at the atom
position can further be monitored on a second identical CMOS camera by inserting a mirror
on a flip mount. With the aid of a 1:1 telescope, the atomic plane is imaged onto the camera,
using the small portion of light leaking through the retroreflection mirror.

2.3.3 Hybrid tweezer-lattice setup
The experiments we envision to conduct in the future entail a considerable technical com-
plexity. In particular, coalescing a quantum gas microscope based on a 3D optical lattice
with several tweezer arrays requires careful design both on the mechanical as well as on the
optical level. In this Chapter the optical design of the upgraded experimental setup is dis-
cussed, comprising the magic 3D lattice and the 532nm tweezer array, but also the setup
for the 𝑒 tune-out measurement.

Breadboard design

As for the fundamental distribution, the lattices and state manipulation optics are located on
the main breadboard, whereas the microscope objective placed below the glass cell apportions
the space on the optical table to the tweezer and fluorescence imaging path (Fig. 2.7). In this
way, the large distances required to achieve a sufficient magnification for both the tweezer
array spacing and the imaging (cp. Chapter 2.7) can be realized by folding the respective beam
paths below the remaining optics on the mezzanine breadboard. Furthermore, placing the
optics on the optical table yields a very stable reference and should therefore not excessively
suffer from mechanical noise. Eventually, the breadboard above largely protects the beam
paths from turbulent air flows which are known to pose a sizeable limit for highly stable
imaging or tweezer beam paths as they can distort the wavefronts or erratically deflect the

32Allied Vision Mako G-234B
33Thorlabs DMLP505
34Thorlabs DMSP650
35New Focus 8807
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beams [169]. While this aims at providing a high absolute stability of the tweezer array and
imaging performance, relative stability between the lattices and the objective is of even greater
importance for the purpose of future experiments in this setup. Following the discussion of
the phase stability of lattices in Chapter 1.4, the passive stability of a lattice is mostly governed
by the magnitude of fluctuations of the optical path length, rendering minimal distances of
the retroreflecting mirror to the atomic plane preferable, while the objective determines the
position of the tweezer arrays. To maintain a precise overlap of the tweezers with the desired
lattice sites, the decisive lattice optics and the objective thus have to share a common reference.
This is achieved by mounting the objective directly to the main breadboard and placing the
lattice retroreflecting mirrors close to this mount and the glass cell. Both are fundamental for
reaching common-modemechanical vibrations andminimizing the effect of thermal expansion
and contraction, i.e., changes of distances due to temperature fluctuations.

Moreover, selecting a material with a minimal coefficient of thermal expansion (CTE) as
well as a low elasticity, usually expressed in Young’s modulus, is expedient. Titanium alloys
like grade-5 Ti combine an excellently low CTE of 8.6 × 10−6m∕mK with a high Young’s
modulus of up to 125GPa, while still being machineable, and are both non-magnetic and
relatively light with a moderate density of ≃4.5 g∕cm3 [211]. We therefore employ titanium for
compact components such as the objective holders or screws around the glass cell. For larger
components like the mezzanine breadboard, however, one typically has to rely on aluminium
or stainless steel due to their superior machinability. Recently, also light-weight, highly stable
and non-magnetic solutions based on carbon fiber reinforced polymers (CFRP) have been
introduced. While they further benefit from the extremely low CTE of carbon fiber composites
of ≃1-2 × 10−6m∕mK, which can be reduced even closer to zero by specifically designing the
orientation of the fibers, large-scale CFRP breadboards with a custom cut-out for the coil mount
become very costly [212]. Steel-based honeycomb breadboards also provide a high stiffness
and can even dampen mechanical noise, but are very heavy and can be manufactured only
in a limited number of forms. We therefore decided to choose a solid, monolithic aluminium
breadboard with edge lengths of 1.0m× 1.2m and a minimally sized cut-out to accomodate the
coil mount and the vacuum chamber parts, trading in a mediocre elastic modulus of ≃68GPa
[213] and CTE of 23.4 × 10−6m∕mK [214] for compact and versatile mounting options for
both the lattice optics and the objective mount. This allows the retroreflecting mirrors to be
placed at a distance of 150mm from the atomic plane, while the objective is mounted to the
breadboard at a distance of ≃110mm from its center. Taking standard daily peak-to-peak air
temperature fluctuations on the optical table of 0.1K as a reference, the lattice would drift
by 0.1 lattice sites because of the change in air’s refractive index and by 1.8 lattice sites due
to the breadboard’s thermal expansion [215].36 This assumes that the temperature change of
the breadboard is of the same magnitude and the breadboard expands around its center, the
glass cell. Notably, sudden changes in the coil’s duty cycle and thus its temperature can also
locally influence the temperature of the surrounding breadboard and air around the glass cell
even more significantly. To reduce this effect as far as possible, we placed the pillars that hold

36Changes in pressure and humidity similarly alter the refractive index, but the typical changes observed on
the optical table of ≲5mbar in pressure and ≲1% in relative humidity typically happen on slower timescales and
translate to drifts by about one and 0.01 lattice sites, respectively.
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the breadboard right below the most crucial optics. Assuming that the optical table surface
is sufficiently far away from the coils and other heating sources, and taking into account the
lower CTE of steel of ≃16 × 10−6m∕mK [214], one can approximate the pillars to define the
local origin of thermal expansion. For later stages of the experiment, which potentially require
maximally stringent constraints on drifts and instabilities, a specifically designed, compact
second breadboardmade from a low-expansionmaterial such as Zerodur or CFRP can be placed
on top of the main breadboard, which could also host a second generation of the objective
mount, directly linking the two most crucial components. This would largely eliminate the
detrimental effects of both mechanical as well as temperature fluctuations.

The positions of the pillars further determine the compliance and transmissibility of the
main breadboard. It is usually advantageous to maximize the lowest vibrational eigenfre-
quencies, and to ensure that the most sensitive optics are placed where the amplitude of any
low-frequency vibrational mode is minimal. We optimized this behavior with a finite-element
analysis, assuming the pillar positions to be fully immobile and the pillar-breadboard connec-
tions to be perfectly rigid while neglecting the effect of the threaded holes. Naturally, larger
distances between pillars allow for lower frequencies of vibrational modes to appear in between
these points, so it is favorable to not exceed a maximum distance of 300mm in our case to keep
the resonance frequencies above 500Hz. At the same time, the tweezer and imaging optics
below the breadboard require sufficient space to allow for the necessary folded beam paths,
so the maximum density is bounded from below to a minimal distance of ≃200mm. Further,
in the model all pillars are assumed to have the exact same height and are ideally positioned,
i.e., there is no additional stress from slightly differing pillar heights, varying breadboard
thicknesses, or tilt. The real breadboard, however, suffers from these imperfections, although
a careful placement and adjustment of the respective pillar heights on the level of 100 µm
was performed prior to the insertion into the experiment. The results of the finite-element
analysis are discussed in more detail in Appendix B. The pillars are made from aluminium
and are filled with a mixture of lead balls and finely grained sand, which not only makes
them heavier, providing better intrinsic stability than pure aluminium posts, but also dampens
mechanical vibrations, similar to a mass damper.

3D lattice

The horizontal MOT and crossed slowing beam optics are aligned in almost the same way
as on the temporary breadboard, as is the imaging beam (Fig. 2.7 A). The main differences
pertain to the fiber collimators and following optics, which are placed further away from the
glass cell, close to the edges of the larger breadboard, and the MOT beams, now being slightly
tilted by ≃ 2◦ with respect to the window’s normal. The latter provides space for the two
orthogonal horizontal lattice beams which are directed to the glass cell under a precise angle
of −5◦. To reach lattice depths of 1100 𝐸rec in each arm, the lattice beams are collimated to 1∕𝑒
diameters of 3.1mm by means of the 20mm outcoupler from the previous setup, combined
with a 2:1 telescope in the case of the first arm (L1), and a 𝑓 = 40mm outcoupler37 for
the second lattice beam (L2), until they are focused by achromatic, 𝑓 = 200mm lenses to a

37Schäfter+Kirchhoff GmbH, 60FC-T-4-M40L-24, adapted fiber receptacle to be compatible with FC/APC PCF
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calculated waist of ≃32 µm at the atomic cloud. Instead of using a lens in combination with
a planar mirror for retroreflection, in this setup the 0.5" retroreflecting mirror, again coated
with a dichroic coating,38 is curved with a radius of curvature of 150mm, minimizing the
number of optical elements and the phase-stability-defining distance from the atom cloud
to the mirror. The mirror is mounted in a compact piezo-actuated mirror mount39 to allow
for careful backcoupling of the retroreflected light into the fiber while blocking as little of
the 3D MOT beam as possible. We rotate the horizontal polarization after the PBS used for
polarization cleaning after the fiber to vertical by means of zero-order half-wave plates to
realize a common polarization vector for both beams. As the lattice beams are generated
from separate lasers, this leads to a usually unwanted four-beam interference with changed
lattice spacings if the two laser frequencies are very similar, which is why we usually operate
the lasers with a ≃500MHz relative frequency spacing. Using the same fiber back-coupling
technique to ensure optimal retroreflection, in this setup we exceed the efficiency measured in
the temporary setup and reach values of ≃60% at the rejection port of the Faraday isolator on
the laser setup. This is measured in relation to the power after the fiber on the experimental
table, which is very close to the optimum one can expect under the assumption of a fiber
coupling efficiency of 70% and losses of 2 × 3% at the beam sampling plates, neglecting further
losses at mirrors, lenses, and waveplates.

The shallow-angle vertical lattice, which is discussed in more detail in Chapter 2.6.3, is
aligned along the long axis of the vacuum chamber, such that the two beams enter the glass cell
opposite the flange transition and in between the two slowing beams. The initial properties of
the vertical lattice beam very much resemble the ones for the second horizontal lattice beam
until it is beam-shaped by a cylindrical 3:1 telescope and sent through the Kösters prism where
it is split up in two parallel beams. To generate the deepest lattice possible, the two beams
are sent in under a maximally large angle of 20◦, with the 𝑓 = 50mm aspheric focusing lens
placed 20mm in front of the glass cell window. This precludes using this window for any other
beam unless it can be sent through the same lens. Notably, due to the geometry of the Kösters
prism, the mirrors required to steer the beam under the optimal angle of 60◦ with respect to the
horizontal plane also deflect the azimuthal angle of the elliptical beam. For our configuration,
we find an optimal angle of the cylindrical lenses of 28◦ with respect to the vertical plane to
align the azimuthal ellipticity angle with the lattice planes, maximally widening the beam
horizontally to a waist of 27.1mm while retaining a tightly focused vertical waist of 8.9mm.

The clock state can be addressed with four different beams: One beam under an angle of
35◦ with respect to L2, i.e., with a projection on both horizontal lattice axes, which was mostly
used to perform initial spectroscopy measurements in the 2D and 3D lattice, two beams that
co-propagate with L1 and L2, respectively, using the curved dichroic retroreflecting mirror
as a last leg of a telescope to focus the beams onto the atoms, and a fourth vertical beam
overlapped with the top MOT beam using a short-pass dichroic. To reach high Rabi frequencies
of Ω0 ≃ 2𝜋 ×8 kHz even for 174Yb at 400G, the waist of the horizontal co-propagating clock
beams is chosen to be 130 µm, which cannot be reached with a combination of a standard fiber
collimator and just one lens in front of the curved dichroic mirror. Therefore, an additional

38Optoman OPPN3136
39Newport 8807
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𝑓 = 1000mm lens is inserted into the collimated beam with a diameter of 1.1mm, which is
then further focused by an achromat with a focal length of 250mm placed ≃80mm before the
curved dichroic. Notably, this clock beam size is expected to lead to an onset of observable
spatial inhomogeneities in the intensity due to the Gaussian beam shape, with the outermost
atoms in a 40 µm wide cloud experiencing a 10% lower Rabi frequency, although this effect
has not had a measurable impact on the measured clock excitation fidelities. For each beam,
the polarization is rotated to vertical to match the quantization axis defined by the strong
main or transverse coils.

Similarly to the intermediate setup, two repumping beams are superimposed on the clock
beams along L1 and in between L1 and L2 with long-pass dichroics. As only low intensities
are required for a saturation of the repumping cycle, the beam size at the atom plane is chosen
to be ≃2mm in diameter, which we reach by slightly defocusing the collimator40 for the beam
along L1 to reach an approximately collimated beam after the curved dichroic mirror. For
the other repump beam, the collimated beam size after the 𝑓 = 8mm collimator is already
sufficiently large and does not require further beam shaping.

For themeasurements of the 3P0 tune-out wavelength, the corresponding lattice is formed at
an angle of 40◦with respect to L2 to provide significant overlapwith both horizontal lattice arms.
Crucially, this averts the complicated separation of the clock and tune-out beam, which are
too close in frequency to allow for an efficient application of dichroic mirrors. Since the signal
from the amplitude-modulated lattice is very small, the beam is strongly focused to 80 µmwaist
via an achromatic 𝑓 = 200mm lens, and re-collimated on the far side by a second achromat
with a focal length of 250mm, followed by a standard dielectric retroreflection mirror. This
larger focal length for the second lens allows for an easier insertion of a beam block, which is
necessary to prevent the formation of a lattice for initial alignment and the determination of the
ground-state polarizability by means of Stark shift clock spectroscopy. Notably, this small waist
leads to sizeable intensity inhomogeneities over the cloud size, similar to the effect described in
Chapter 4.2 for the case of the 𝑔 tune-out polarizability. As for the magic lattices, the generation
of a standing wave is ascertained by coupling the retroreflected beam back into the fiber, which
yields an approximate efficiency of ≃50%, which in this case can only be indirectly estimated
as the Faraday isolator rejection port happens to be at an unaccessible angle.

Themost recent addition to the setup are four Raman beams operated near the 3P1 transition:
two co-propagating with the clock beams along L1 and L2, one counter-propagating to the
clock beam in between L1 and L2, and one vertical beam. All four beams are designed to
have a waist of ≃ 250 µm, which is sufficiently large to obviate inhomogeneity effects, but
still small enough for fast Raman cycles even at large detunings. For the latter two beams,
this is conveniently achieved with a single 𝑓 = 750mm lens placed shortly after the beam
sampler. The other two beams are superimposed onto the 578nm beams using a narrow-edge
long-pass dichroic mirror,41 where we employ its orthogonal, horizontal polarization to allow
for a clean separation from the vertically polarized clock beams. As they also pass through the
𝑓 = 250mm achromat and the curved dichroic mirror, their beam diameter of 640 µm after the
collimator and the distance to the lens is chosen to yield the desired waist at the atom cloud.

40Schäfter+Kirchhoff 60FC-4-M5-08
41AHF F38-A567
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Tweezer array

The vertical dimension is used for fluorescence imaging and the generation of tweezer arrays,
which is why the cross section (Fig. 2.7 B) is dominated by the microscope objective, owing to
its large NA of 0.7022 and the aperture of 35mm in diameter. To maintain optimal imaging
performance, the optics surrounding the objective are selected to be correspondingly large
and maximally flat. Therefore, mostly 3" mirrors42 are used to guide the imaging and tweezer
beams, and a custom bandpass dichroic43 of size 60mm × 40mm is employed to split the
imaging light at 399nm and 556nm from the loading tweezer array at 532nm (Fig. 2.7 C).
The imaging light is focused onto a qCMOS camera44 by achromats of different focal lengths,
depending on the desired magnification. For this work, a focal length of 500mm was chosen,
resulting in a magnification of 20. To suppress stray light at other wavelengths apart from
the fluorescence signal at 399nm, a bandpass filter45 transmitting light only at 400 ± 20nm
is mounted on a 50mm long lens tube in front of the qCMOS camera. As the objective is not
coated black on the inside, the loading tweezer array is a strong additional source of unwanted
stray light, and an additional notch filter46 to block light at 532 ± 15nm is added.

The light for the crossed-AOD-generated 532nm tweezer array is outcoupled from the PM
PCF using an achromat with 60mm focal length,47 yielding a collimated beam size of 3.2mm
in diameter. After cleaning the polarization with a PBS, a HWP is employed to match the
optimal polarization angle of the first AOD,48 which is tilted by 40◦ to make the AOD pattern
share the same principal axes as the 2D lattice. This in combination with a careful collimation
and alignment of the AOD angle, mounted on a 5-axis stage,49 enables us to reach up to 92%
diffraction efficiency into the first order, when using a single frequency to drive the AOD. The
orthogonal AOD is placed after a 4𝑓 telescope consisting of two achromats with 100mm focal
length. This images the 1D array generated by the first AOD onto the crystal of the second one,
therefore minimizing potential mismatch in the conversion of the two series of RF frequency
tones into a square array of optical tweezers. Furthermore, a second HWP again rotates the
tweezer beam polarization to the optimal angle for the second AOD, which in turn diffracts
up to 96% into the first order.50 The AOD is followed by a combination of two HWPs and a
PBS to both clean and arbitrarily adjust the polarization of the tweezer beams at the atom
position, which is of importance for reaching magic-angle conditions [63]. In order to utilize
the full high-efficiency bandwidth of 50MHz, which is crucial to keep the beat frequency
between adjacent tweezers as large as possible, it is mapped onto the objective’s field of view
(FOV) of 100 µm. Taking the AOD’s measured total angular deflection range of 41mrad and

42Thorlabs BB3-E02
43Optoman OPPN2800
44Hamamatsu Orca-Quest C15550-20UP
45AHF F47-444
46AHF F40-534
4760FC-T-4-M60L-01, adapted fiber receptacle to be compatible with FC/APC PCF
48AA DTSX-400-532.556
49Thorlabs PY005/M
50This value is the comparison between the power in the first order and the total beam power in front of the

AOD, measured with a standard handheld powermeter at ≃1mW input power. At this point, the zeroth order of
the first AOD has been blocked.
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the objective’s effective focal length of 24.97mm into account, a magnification of 10 serves
this purpose. Since lenses with focal lengths of less than 100mm tend to introduce observable
spherical aberrations, the magnifying telescope comprises an achromatic 𝑓 = 100mm and
𝑓 = 1000mm lens pair. In the focus of the first telescope lens a backside-polished mirror is
placed, whose leakage light is imaged via a 3:2 telescope on a CMOS camera51 to perform
intensity balancing and monitoring of the tweezer array.

Owing to the space restrictions introduced by the coils and the objective, the bottom
MOT beam is required to be sent through the objective. However, to reach the desired wide,
collimated beam, it has to be focused at the back focal plane of the objective. This strategy has
been efficiently employed in several experiments [63, 216], where this plane was sufficiently
close to the outermost lens to allow for a small mirror reflecting the converging MOT beams
into the objective (Fig. 2.27). Owing to an unfavorable position of the back focal plane this is
less straightforward with our objective. Instead, a large dichroic mirror, acting like a 80:20 non-
polarizing beam splitter (NPBS) at 556nm, is used to reflect the MOT light into the objective
[62]. Placed very close to the dichroic, a 3" plano-convex lens of 𝑓 = 150mm focal length
provides the correct convergence angle of 𝜃∕2 = 14.6◦ to produce a collimated beam with a
diameter of 12mm in the glass cell. Since the required beam size at this point is close to the
full clear aperture of 75mm, the collimated beam after the 75mm outcoupler is magnified
by a telescope consisting of a 𝑓 = 30mm and a 𝑓 = 200mm lens after a QWP to make the
polarization circular. The effect of the various optics, such as the dichroic and the objective
on the polarization was found to be negligible in a test setup, which is why no additional
HWP is implemented. Two steering mirrors are placed at a distance approximately equal to
the focal length of the first telescope lens to allow for independent tuning of the position and
pointing of the MOT beam at the atomic plane. Due to the position of the dichroic close to
the objective, and to not obstruct the space on the optical table required for tweezer beam
paths, the whole MOT beam path is attached to the bottom of the main breadboard, using
a combination of lens tubes and cage mounts.

As the MOT beam possesses a highly non-Gaussian beam shape after passing through the
objective (Fig. 2.27), it is not suited for retro-reflection. Instead, we use a separate MOT beam
from the top, mounted on a compact breadboard above the coil cage and beam-shaped like the
horizontal beams (Fig. 2.7 D). Onto this MOT beam we overlap the vertical Raman cooling via
a PBS by selecting the orthogonal polarization. This has implications on the planned Raman
cooling process, which will be discussed in Chapter 3.3. We can furthermore add a vertical
clock cooling beam using a dichroic mirror. Notably, the aperture in the breadboard allows
for angles of up to 17◦ with respect to the vertical axis, which is precisely the magic angle in
171Yb for the 3P1 transition in the magic lattice at 759nm. Thus, it is possible to perform the
optical pumping step in a magic condition, which could allow for a more efficient cooling and
lower temperatures. The projected beam path uses an angled mirror mount which directs the
beam orthogonal to the MOT beam and ensures sufficient tunability.

51Allied Vision Alvium 1800 U-240m
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Upgrades in the future

While the vertical cooling beams are crucial to reach single-site resolution, additional tweezer
arrays at the tune-out wavelengths for the 1S0 and the

3P0 states and amore complex lattice setup
are essential to implement the devised LGT schemes. The latter can be reached by creating a
bow-tie lattice with adjustable polarization angles, realizing a tunable four-fold interference as
described in Chapter 1.3.1. This requires the two retro-reflected horizontal lattice beams to
be replaced by a single beam. The tune-out tweezer arrays are planned to be generated with
crossed AODs, reproducing the 532nm loading tweezer array. While overlapping the 577nm
tweezer beam onto the existing beams can be done with dielectrically coated dichroics, the
wavelength separation for the 553nm tweezer array to still allow for fluorescence imaging
of 556nm photons is more delicate. For moderate system size one can take advantage of
judiciously chosen lattice potentials which then require only weak tweezer powers, such that
losing a vast portion of the power at a NPBS is still sufficient. As an alternative, the tweezer
beams can be separated from the imaging path, i.e., the tweezer beam paths would remain on
the optical table, while the fluorescence detection would take place on the top breadboard. This
solution requires the insertion of a second objective, which in turn demands for a similar NPBS
solution for the top MOT and potential Raman beams. Furthermore, to avoid fluctuations
of the imaged atoms one has to shield the imaging beam path from turbulences. A second
objective would further allow for an increase of the effective NA, which however requires the
technically challenging addition of two separate images.

2.4 Laser setups

Having discussed the laser beams required on the main experimental table, we now turn to the
setups that provide the laser light at the correct frequency and power. Apart from the clock
and the 577nm tune-out setup, we uniformly use a system of self-designed compact optics
mounts based on a dense M3 grid. This custom system has first been used in the now Tübingen-
based potassium tweezer experiment [217] and has found widespread application in our group
since [218, 219]. With two interleaved grids, each with a distance of 12.5mm between the
threaded holes, the breadboards allow for very compactly spaced optics. In addition, all bases
are designed to guide the beam centered on the grid, which eases and accelerates the alignment
while providing increased vibrational stability compared to standard M6-based setups as the
default beam height is only 35mm and the bases can be tightened to the breadboard directly
instead of being clamped. In turn, this system suffers from lower stability in cases where the
beam is not aligned to the row of threads and the components have to be clamped to the table.
This is typically the case for AOMs and the optics thereafter.
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Figure 2.8 | Schematic of the blue laser setup. A Illustration of the optical beam paths. While the layout
is close to the actual implementation on the breadboard, this image contains minor simplifications for
clarity. Frequency-doubled light at 399 nm from the laser is split up into four branches, with three of
them sharing an AOM double-pass to shift their frequencies. Light leaking through the retro-reflecting
mirror is used for the wavemeter. The imaging beam passes two more AOMs to reach the resonance, while
the slowing and 2D MOT AOMs are appropriately red-detuned. The independent high-power ZS beam is
shifted down in frequency in a single-pass configuration. Fundamental leakage light at 798 nm is used for
the offset cavity lock and for an auxiliary wavemeter beam. B Frequencies of the several branches and
the relative frequency shifts induced in single passes (light grey) or in a double-pass configuration (dark
grey).

2.4.1 Blue laser setup

The blue laser setup provides light to be used for the Zeeman slower, the 2D MOT, the slowing,
and the imaging beam. The light is generated by an amplified and frequency-doubled ECDL52
with an output power of≃1.1W at 398.9nm. Since the ZSworksmost effectively at a detuning of
−580MHz, a large frequency gap to the resonant imaging light has to be bridged. Furthermore,
the 2D MOT and slowing beams also require a significant detuning from the resonance, which
is why a judiciously planned chain of AOMs is implemented to shift the frequencies of the
respective beams. A sketch of the setup as well as the frequencies and detunings of each
beam is displayed in Fig. 2.8. Given the proximity to the ultraviolet spectrum, we utilize fused-
silica-based AOMs, which however suffer from a polarization-dependent diffraction efficiency.
Therefore, most AOMs are installed in a single-pass configuration. As the ZS branch is the most
power-demanding one, its light passes through just one AOM53, which shifts the frequency
down by −200MHz, and is then polarization-matched and coupled into a single-mode PM

52Toptica TA SHG pro
53IntraAction ASM-200B8
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fiber with core-less end caps.54 The end caps allow for a larger beam size and thus lower
intensity at the air-fiber interface, making it less prone to aging or power-induced damage, and
we therefore employ them for all beams that can exceed 100mW in the visible range. Thereby,
over the duration of more than three years, the ZS fiber has only been exchanged once due
to a damaged fiber end, despite a power of ≃450mW on the incoupling side. The remaining
beams are guided through a double-pass AOM setup, detuning the light by 2×+105MHz. This
allows for independent adjustments of the ZS detuning. The selected AOM55 was tested to
exhibit the best overall diffraction efficiency of ≃53%. However, given a single-pass efficiency
of 87%, one can gain in available laser power in the future by replacing the double pass. At
the retro-reflecting mirror, the leakage light is fiber-coupled into a multi-mode fiber leading to
the wavemeter.56 After the double pass, the light is split up using a PBS, with one beam going
through a 150MHz AOM57 to shift it to the net detuning of −30MHz required for the 2DMOT.
The other beam is sent through an AOM at 90MHz,55 followed by another PBS to separate the
slowing beam from the imaging beam. The latter is shifted up by the remaining 90MHz up via
another AOM55 to be resonant with the 1P1 transition. Both the slowing and the imaging beam
further pass a home-built mechanical shutter before polarization matching and fiber coupling
to fully suppress transfer of blue light onto the glass cell unless it is desired. As the imaging or
removal of 𝑔 atoms is separated in time from the loading, we can further adjust the frequency
by tuning the offset lock frequency (discussed in detail in Chapter 2.4.8). The light required for
this lock is taken from the laser port for the fundamental, i.e., at 798.8nm. Part of the light is
diffracted by an AOM58 to allow for intensity stabilization, before it is coupled into the fiber of
an electro-optical modulator (EOM) required for the offset lock. The remaining fundamental
leakage light is directly fiber-coupled and can be used for monitoring the laser frequency on
the wavemeter in cases where the second-harmonic generation (SHG) cavity fails to lock.

2.4.2 Green laser setups
For the purpose of providing light for the 3D MOT, molasses cooling, and Raman sideband
cooling, we employ two separate laser setups operating at or near the 3P1 transition. This
offers the required flexibility to choose the optimal Raman detuning or different hyperfine
transitions for the MOT and optical pumping steps. To this end, the two setups are referred
to as MOT and Raman setups, respectively.

MOT setup

Resonant light for the four MOT arms is produced in a fiber-coupled Toptica TA SHG pro
system. Initially, the included FiberMon equipment was used to transport the light to the
breadboard. However, after repeated failures of the fiber after the internal photodiode, which
led to a slow degradation of the mode shape after the fiber, likely due to imperfect handling of

54Coastal Connections, P-FaknsFAkns-3f/125/3-5, using a Fibercore HB450-SC fiber.
55Gooch&Housego I-M110
56HighFinesse WS8-2
57AAMQ150-A1,5
58Gooch&Housego AOMO 3080-122
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Figure 2.9 | Schematic of the green laser setups. A Illustration of the MOT laser beam paths, with a
simplified layout for clarity. The fiber-coupled light at 556 nm is collimated and separated into a main
high-power branch, which is then divided into the four MOT beams. Each beam can be tuned in frequency
by a double-pass AOM configuration. Additional light is guided to the wavemeter and to the beatnote
setup next to the Raman laser setup. Light at the fundamental wavelength is beam-shaped, frequency-
shifted by an AOM and coupled to an EOM for the offset cavity lock. B Layout of the Raman laser beam
paths. Light at 1112 nm is coupled into a waveguide PPLN frequency doubler after beam shaping and
filtering of unwanted modes. The 556 nm light is separated from the fundamental using a dichroic mirror
and then split up into four Raman beams, each of them passing through an AOM for fast switching and
adjustments of relative detunings. An auxiliary fibercoupler is used for the wavemeter signal and for the
beatnote lock.

the high power of ≃1.2W in front of the fiber coupling, this was permanently replaced by a
standard fiber of the same type,59 causing no further issues since. The light from the fiber is
collimated with an 𝑓 = 8mm achromat to a beam diameter of ≃1.5mm and separated into
two branches by a PBS. The transmitted beam is typically very weak and serves as a source for
the wavemeter and the beatnote lock for the Raman laser. The strong, reflected beam is first
demagnified to a size of≃0.5mm in diameter bymeans of a 3:1 telescope, and then split up into
four separate double-pass AOM60 setups. Each double pass is aligned in a cat-eye configuration
to enable adjustments of the respective AOM frequency over several MHz around the center
frequency of 80MHz without losses in the fiber coupling efficiency. Shutters in front of the
fiber couplers further avoid leakage of light onto the atoms. A fifth double pass was set up
to serve as a guide beam for the objective and tweezer optics alignment, but can also be used
as a green imaging or independent optical pumping beam.

59Thorlabs P3-405PM-FC-2
60Gooch&Housego AOMO 3080-120
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Raman setup

The second laser61 provides up to 2.4W at 1112nm. The second-harmonic generation is
performed in a fiber-coupled waveguide PPLN crystal62. However, the fiber coupling efficiency
of the infrared light into the fiber pigtail is limited to≃40%. This ismostly due to a very irregular
beam shape at the laser output that persists even after adjusting the cylindrical telescope after
the tapered amplifier (TA). Inserting both a cylindrical and an intentionally defocused spherical
telescope compensates for the most severe aberrations. To protect the fiber from damage, we
block powerful higher-order modes with an iris in front of the fiber coupler. Despite this
imperfect coupling, we can reach frequency-up-converted powers of 550mW, corresponding
to ≃1W of incoupled fundamental light, for optimal quasi-phase and polarization matching
conditions. The former is achieved by stabilizing the temperature of the waveguide to ≃0.01 ◦C.
After the waveguide, a dichroic63 separates the 556nm beam from the transmitted infrared
light, which is then safely blocked. The green light is then split up into five separate beams,
four of which are then frequency-shifted by +110MHz by AOMs64 and coupled into fibers,
guiding the light onto the experimental table, while the fifth beam is directly coupled into a
short fiber leading to the beatnote lock setup and a wavemeter port.

2.4.3 Clock laser setup
The clock laser setup is one of the two that are placed on a commercial M6 honeycomb
breadboard.65 The reduced transmissibility compared to the standard M3 breadboards, made
from solid aluminium, helps in decoupling the laser linewidth from mechanical noise on the
optical table, induced by, e.g., mechanical shutters on other setups or vibrations from water
cooling lines. The setup is organized similarly to the MOT setup, with the main difference
that the fiber-coupled laser,52 capable of a power of up to 660mW at 578nm after the fiber,
is mounted on the same breadboard as the optics. Furthermore, the three main beams pass
through the AOMs60 only once before they are fiber-coupled, since here the frequency scan
ranges are typically significantly narrower than for the MOT beams. We employ commercial
low-noise shutters66 instead of home-built ones to minimize the mechanical noise on the laser
light. Additional light is provided for the wavemeter and a beatnote setup, fed with clock light
from the neighboring Yb lab via a 50m long fiber. This greatly helped in initially finding the
clock resonance and determining the zero crossing temperature of our ULE cavity.

2.4.4 Repump setup
The light for the laser setup for the 1388.8nm 3P0 →

3D1 repumping transition is provided
by a fiber-coupled distributed-feedback (DFB) laser67 on a temperature-controlled butterfly

61Toptica TA pro
62NTT Electronics, WH-0556-000-A-B-C-M
63Thorlabs DMLP650T
64Gooch&Housego AOMO 3110-120
65Newport M-SG-23-2
66SRS SR475
67Acal BFi NLK1E5GAAA
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Figure 2.10 | Schematic of the clock and repumper laser setups. A The fiber-coupled output light of
the 578 nm clock laser is collimated and split into five branches. Three beams pass through AOMs and
low-noise shutters and are coupled into fibers to be transported to the main table. The fourth beam is
used for wavemeter frequency monitoring, the fifth one can be used for beatnote measurements. For
the frequency lock, fiber-coupled light at the fundamental frequency is modulated by a temperature-
stabilized EOM and sent to the adjacent ULE cavity. B The collimated light from the fiber-coupled 1389 nm
repumper laser is divided into two beams after passing through a Faraday isolator. In two identical AOM
single-pass configurations we prepare the light for the fiber coupling. Two home-built shutters prevent
unwanted resonant leakage light.

mount.68 While the laser diode current control is based on a Toptica DCC110 driver, the
temperature stabilization for both the mount and the diode is performed by a digital home-built
controller based on the Thorlabs MTD415T module, which requires minor adjustments to the
laser mount. The output power of 28mW is distributed between two branches after the optical
isolator,69 each of which consists of an AOM70 followed by a shutter and an achromat coupling
the light into a standard PM fiber.71 As optical powers of ≲1mW are sufficient to saturate the
transition by a factor of 105 for standard beam sizes, the intensity stabilization loop is optimized
for a large photodiode gain and low-voltage setpoints. Given the large power-broadened
linewidth of Γ ≃ 100MHz and the insensitive nature of the repump process, the laser is not
actively frequency-stabilized, and instead we only routinely re-optimize the laser frequency
by scanning the diode temperature setpoint, which offers a relatively coarse but accurate
enough tuning knob with a slope of −15.4GHz∕K. However, as the experimentally observed
linewidth of Γ ≃ 4GHz due to relatively strong short-term fluctuations of the free-running
laser is significantly larger than the atomic linewidth, a frequency stabilization could improve
the repumping duration to well below 100 µs, which would speed up the clock sideband cooling
process (Chapter 3) significantly.

68Newport LDM-4984T
69Thorlabs IO-4-1390-VLP
70Gooch&Housego AOMO 3080-197
71Thorlabs P3-1310PM-FC-10
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2.4.5 Lattice laser setups

At the magic wavelength of 759nm the most powerful available laser sources are Ti:Sapphire
lasers. For our three lattice arms, we use three independent Sirah Matisse CS lasers, optically
pumped with up to 25W of 532nm light by Spectra-Physics Millennia eV diode-pumped solid
state (DPSS) lasers. The resulting output powers of up to 8W in combination with a very
Gaussian beam profile allow for as much as 4.6W of lattice light after the fibers. About 10% of
the power is lost at the Faraday isolator,72 placed directly after the laser output and a periscope
to direct the beam to a height of 35mm. At the first rejection port of the isolators for the two
horizontal lattice arms, we place a PBS, channeling the bulk of retro-reflected light into a
high-power beam trap,73 but also guiding a fraction onto a photodiode. This signal can be
used for monitoring and optimization of the lattice alignment. In all three setups, the beam
is then demagnified and diffracted by an AOM.74 This AOM has been specifically selected
due to its excellent thermal handling properties, as it exhibits negligible thermal pointing
drifts even at a combined laser power of ≃10W.75 Separating the first order from the zeroth
one by a D-shaped mirror and another high-power beam trap, we then couple the beam into
the PCF using an aspheric lens.76 As the two horizontal lattice arm setups are placed on the
main optical table, the fibers are only 2m long, while the setup for the vertical lattice is placed
on the adjacent optical table such that a 4m long fiber is sufficient to guide the beam at the
desired position on the main breadboard.

72Toptica SSR780
73Thorlabs BT600/M
74IntraAction AOM-402AF3
75For this approximate result, we use ≃3W of back-reflected power counter-propagating to the incident beam

with a power of ≃7W.
76Thorlabs C397TMD-B
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2.4.6 Loading tweezer setup

As the laser source for the 532nm loading tweezers we use a DPSS laser77 with a power of up
to 18W. We again mount the laser on a honeycomb breadboard78 to dampen mechanical noise
from the water cooling. After the Faraday isolator79 we use a cylindrical telescope to correct for
the elliptical beam shape and diffract the light into the first order of an AOD.80. While the AOD
requires an inconveniently large radio frequency (RF) power of 3W at the center frequency
of 80MHz, the AOD provides a better high-power pointing stability than the modulators we
tested at this wavelength. Given the very high optical power one requires for large arrays, this
is an important prerequisite. The diffracted light is then coupled into a PCF,52 transporting it
onto the experimental table with an overall efficiency of ≃50% at a power of several W. We
minimize the losses by placing the coupler as close as possible to the target fiber end position
on the opposite optical table, allowing for a fiber length of 4m. We plan to upgrade the setup
in the future by switching the primary laser source to a 1064nm, 55W, very low-noise master
oscillator power amplifier (MOPA),81 which was originally planned to be used for a dipole
trap. The light will then be single-pass frequency-doubled in a periodically poled Mg-doped
stoichiometric lithium tantalate (PPMgSLT) SHG crystal [220, 221].

2.4.7 Tune-out laser setups

Since the uncertainties in the theoretical predictions for the tune-out wavelengths were consid-
erable, we decided to use the less established but promising platform of vertical-external-cavity
surface-emitting lasers (VECSELs), providingmore than 10nm of tuning range and output pow-
ers that exceed 1.5W even at wavelengths that are almost unaccessible with, e.g., external-cavity
diode lasers (ECDLs). In such a laser, a thin semiconductor gain chip is optically pumped by a
strong laser at a lower wavelength; for our applications this is typically performed at 807nm
[222, 223]. The lasing cavity is then formed by the gain chip and a second, external mirror,
such that the light is oscillating in free space. This space is used to place frequency-selective
elements like etalon or birefringent filters (BRFs). For the tune-out wavelengths described in
this thesis, one has to further double the frequency of the infrared fundamental light using a
SHG crystal. In this case, typically V-shaped cavities are used, where the intermediate mirror
is coated such that the frequency-doubled light is transmitted and outcoupled from the laser.
While we also conceptualized and constructed a home-built VECSEL, which was tested to
lase at ≃587nm, we used commercial VECSELs82 for the measurements due to their larger
output power, better noise properties, and easier handling.

77Coherent Verdi V18
78Thorlabs B6060A
79Thorlabs IO-5-532-VHP
80IntraAction ASD1002B47
81Coherent Mephisto MOPA
82Vexlum VALO SHG SF
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Figure 2.12 | Schematic of the green and yellow tune-out setups. A The 553 nm beam for the g tune-out
wavelength is diverging as it exits the VECSEL, which is why we place a collimating lens close to the output.
The beam then passes an optical isolator and telescope to resize the beam, until we couple the first order
of a single-passed AOM into an end-capped fiber. B Similarly, the 577 nm light for the e tune-out lattice
is collimated with a telescope and fiber-coupled after passing an AOM. To align the retro-reflected light
back through the fiber, we pick up light at a cube in front of the AOM and place a temporary QWP in the
beam path.

Green tune-out setup

The laser for the ground-state tune-out wavelength at 553.3nm is mounted directly on the
M3 breadboard. Owing to the laser design, the frequency-doubled Vexlum output beam is
mildly divergent, necessitating an collimation lens after a periscope, but in front of the Faraday
isolator83 and a telescope. The laser beam is then split up into a branch that is coupled into a
fiber leading to the wavemeter, and the main beam which passes through a standard 80MHz
AOM, which was recently replaced for a more power-stable 40MHz AOM.84 Up to ≃900mW
of light are coupled into the fiber and guided to the optical table. However, the output power
strongly depends on the precise temperature settings of the SHG crystal, the BRF, and the
etalon and can change from mode to mode, which is why the maximum power used for the
magic and 𝑔 tune-out measurements is significantly lower. The laser can be locked to the
wavemeter by feeding the error signal to a piezo-actuated mirror, thereby adjusting the cavity
length to keep the frequency stable. As this laser constitutes a very early model of this type,
it does not contain a second piezo like the newer yellow one, which would therefore require
slightly more advanced solutions like a filtering cavity to allow for both fast and slow locks
[224]. For the future application of this laser, which is mainly generating a potential offset for
one state while leaving the other state unaffected, a wavemeter lock or even a free-running
laser will most likely suffice as the induced potentials on the ground state for a detuning of
a few GHz are still negligible (Chapter 4.2).

Yellow tune-out setup

Having noticed a distinct effect of the water cooling flowrate through the green Vexlum laser
on its noise properties, we placed the laser for the 577nm excited-state tune-out wavelength on

83Thorlabs IO-5-560-HP
84IntraAction AOM-402AF1
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a damping honeycomb breadboard85 to mitigate the vibrational motion from the chiller. We
thus cannot use the customM3-based optics mounts, which would commend a beam height of
35mm, which we can exploit to omit the periscope. We therefore use the unorthodox height
of ≃ 43mm, corresponding to the laser output height. After the optical isolator86 we pick
up a beam for the wavemeter signal and collimate the main beam using a telescope. Due to
the large output powers of up to 2.2W and the corresponding thermalization issues we saw
occurring with other AOMs, we utilize a very similar AOM84 as for the lattices to allow for
fast switching and intensity modulation. After a PBS that can be used for reflecting out the
retro-reflected beam the light is coupled into a fiber with core-less end caps. Notably, because
of the highly circular beam shape, we can achieve fiber coupling efficiencies of more than
75%. Furthermore, water absorption lines around the fundamental of the tune-out frequency
strongly reduce the power output, necessitating a reduction in humidity to 11% by means of
desiccant bags in the laser. Nonetheless, it is wise to avoid these frequency ranges during
the tune-out measurement (Chapter 4.3).

2.4.8 Frequency locks
The lasers for the 1P1, 3P1, and

3P0 transitions are locked to an ultra-low-expansion (ULE) cavity
– either directly via an offset Pound-Drever-Hall (PDH) lock or by means of a beatnote lock
in the case of the Raman laser.

ULE PDH lock

The commercial reference cavity87 that was purchased for this purpose consists of a single,
121mm long ULE glass spacer88 in a high-vacuum chamber onto which two high-reflectivity
mirrors are optically contacted. The plano-concave cavity configuration with a radius of cur-
vature of 1m enables stable resonance conditions if the properties of the incoupled beams
are matched to the cavity modes. The spacer rests on four pillars inside a vacuum chamber,
pumped down to pressures of 10−9mbar to thermally and acoustically isolate the cavity from
the environment. A built-in Peltier element driven by a temperature controller89 provides a
thermally stable enviroment on the level of ≃1mK, as measured by an out-of-loop thermistor.
This, combined with an operation at the zero crossing of the CTE of the ULE spacer (Chap-
ter 2.6.1), offers a stable frequency reference on the Hz level if the linear drift due to ageing
is compensated by a feed-forward loop. As we lock lasers at three different wavelengths with
increasing frequency stability requirements to the same cavity, the IBS coating is designed to
yield a finesse of >10 × 103 for 798nm and 1112nm, and >150 × 103 for 1157nm.

The ideal mounting direction of the breadboards around the cavity is vertical, connecting
them directly to the vacuum chamber and deflecting the light by 90◦ through the horizontal
cavity bore. With only limited breadboard space, we separate the blue from the yellow and

85Newport, custom design
86Thorlabs IO-5-589-HP
87Menlo Systems ORC-Cylindric
88Corning, ULE 7973
89SRS PTC10
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Figure 2.13 | Schematic of the optics around the reference cavity. A Layout of the green and yellow
incoupling side. Light from the EOMs is collimated and sampled on a PD to allow for intensity stabilization.
After a mode-shaping telescope the polarization of the 1157 nm beam is cleaned by a Glan-Taylor polarizer.
The 1112 nm and the 1157 nm beams are superimposed on a dichroic mirror and focused onto the planar
cavity mirror. Before passing through an achromatic QWP the transmitted 798 nm light is separated
with a second dichroic. A mirror deflects the light onto the horizontal plane and into the cavity. The
reflected light at each wavelength is monitored on separate PDs after a PBS and a dichroic mirror. To
enhance the visibility, the color code of the respective frequency-doubled light has been used despite
the infrared nature of all involved beams. B Layout of the blue incoupling side. Similar to the green and
yellow breadboard, the 798 nm light passes a telescope, a PBS for reflection monitoring, a focusing lens,
and an achromatic QWP until it is guided into the cavity. The transmitted 1112 nm and 1157 nm light is
detected on PDs. At the position of the beam blocks one can place a camera to study the transverse cavity
modes upon initial coupling into the cavity.

green optical paths, counterpropagating the respective beams in the cavity. The optical setups
are displayed schematically in Fig. 2.13. To reach the optimal mode-matching conditions we
shape the beam using a defocused telescope and a focusing lens. While the 798nm light is
coupled in from the planar side, the 1112nm and 1157nm light impinges on the concavemirror
first, which is why here the refraction and propagation inside the spacer are taken into account
to ensure the focus position at the planar mirror. For each beam, three photodiodes monitor the
reflected and transmitted light as well as the total power after the fiber, allowing for intensity
stabilization. After aligning the beams to the lowest transverse electromagnetic mode (TEM00),
we first verify the finesses by sweeping the laser frequency over the cavity resonance and
observing the oscillatory behavior of the reflected light (Fig. 2.14 D). We can fit this ringdown
feature caused by photons stored in the cavity with the solution of the differential equation [225]

𝑑𝐸
𝑑𝑡 = −(1 − 𝑖�̄�𝑡′)𝐸 + 𝑖𝜂, (2.1)

where 𝑡′ is the normalized field ringdown time, 𝜂 is the drive rate containing the finesse F and
the mirror transmission T , and �̄� is the parametrized frequency sweep rate, which also depends
on the finesse. Numerically solving the result for the reflectivity and transmittivity, we obtain
finesses of 26(2) × 103, 244(15) × 103, and 450(43) × 103 at 798nm, 1112nm, and 1157nm,
respectively, with the large uncertainty stemming from the multitude of fit parameters and,
in the case of the clock light, a ringdown time exceeding the time over which the unlocked
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Figure 2.14 | Offset lock method, EOM characterization, and finesse measurements. A Light from the
laser is phase-modulated to generate sidebands atΩ1 andΩ2. The sideband atΩ2 is locked to the cavity
resonance via the PDH sidebands atΩ1, which allows for tuning of the fundamental laser frequency to
match the atomic resonance. B Spectrally resolved power of the EOM for the clock laser as a function of
the applied modulation depth. The solid line is a least-squares fit of the first three Bessel functions of the
first kind, J0,1,2(V), to the data. C From this calibration one can determine the optimal voltage for a lock
to the respective sideband. In this thesis, only locks to the first sideband are used. D Frequency sweep
measurement of the cavity finesse at 1157.4 nm. The solid orange line is a fit to the data (black) and yields
F = 450(43) × 103. E Photon storage ringdown measurement, which provides a more accurate value of
the fitted finesse of F = 484.1(3) × 103.

laser is stable enough. Notably, this model takes losses at the mirrors from, e.g., absorption
or scattering into account, thus using the expression

F = 𝜋
√
1 − T −A∕2
T +A∕2

(2.2)

for the finesse, with the loss parameterA [226]. Despite the limitations, it is apparent that the
finesses in particular for the MOT laser, but also for the clock greatly exceed the specifications
and also surpass the values one can deduce from the calculated mirror reflectivities of 22× 103,
178 × 103, and 339 × 103 for 798nm, 1112nm, and 1156nm.

We lock the lasers to the cavity using a modified PDH technique, called offset or electronic
sideband lock [116, 227, 228]. This allows us to tune the laser on the atomic resonance, to switch
between isotopes, and to adjust this offset even during themeasurement sequence. Thismethod,
which is illustrated in Fig. 2.14 A, relies on a lock to a modulation sideband with variable
frequency Ω1, which in turn is also phase-modulated at a lower frequency Ω2 to generate a
PDH error signal fed back to the laser. The resulting electric field is then given by [228]

𝐸 = 𝐸0𝑒𝑖(𝜔0𝑡+𝛽1 sin(Ω1𝑡+𝛽2 sin(Ω2𝑡))), (2.3)
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where 𝜔0 is the carrier frequency, and 𝛽1 and 𝛽2 are the modulation depths of the offset and the
PDH sidebands, respectively. Expanding this expression up to second order in the modulation
depths, this yields a power spectrum as in Fig. 2.14 B. Using this expansion, one can determine
the frequency discriminant 𝐷, which describes the linear slope of the reflected power with
respect to the detuning of the offset sideband from the cavity resonance for small detunings, to be

𝐷 =
8F𝑃0
∆𝜈FSR

𝐽21(𝛽1)𝐽0(𝛽2)𝐽1(𝛽2). (2.4)

Here, ∆𝜈FSR = 𝑐∕2𝐿 = 1.236GHz is the free spectral range (FSR) of the cavity, and 𝐽𝑛(𝛽) is the
𝑛-th order Bessel function of the first kind. From this relation one can read off the optimal
modulation depths that maximize the discriminant to be 𝛽1 = 1.84 and 𝛽2 = 1.03, which can
be transformed into RF powers by fitting the measured carrier and sideband powers after the
EOMs90 as a function of the applied voltage of the modulation signal (Fig. 2.14 C). To generate
stable locks for each laser, we send the phase-modulated signal from the respective reflection
photodetector through an amplifier and a mixer, which demodulates the PDH signal to provide
the mixed-down linear response of the cavity. This is then low-pass filtered and turned into an
actuation signal by a Toptica FALC 110module, which can be fed back to the laser by either
controlling the diode current or the piezo voltage. In our case, the former is chosen. For the
clock laser, we further clean the photodiode signal from any DC offset by placing a DC block in
front of the low-noise amplifier, and we filter out high-frequency components from the other
PDH locks as well as other noise. This is particularly necessary as the shared beam path and
imperfect dichroics to separate the light at 1112nm and 1157nm can otherwise lead to strong
cross talk between the two locks. With the laser referenced to the cavity, one can conduct
a more precise measurement of the finesse at this wavelength by abruptly turning off the
light with an AOM and studying the exponential decay of the transmitted light as the photons
slowly leak out of the cavity (Fig. 2.14 E). This method yields a finesse of F = 269(1) × 103
for 1112nm and F = 484.1(3) × 103 at 1157nm.

In an effort to enhance the temperature stability of the cavity, the whole setup including
the breadboards was encased in a plastic enclosure. To prevent the transfer of acoustic noise
to the inside, the different segments are connected via a vibration-damping vinyl material.
This enclosure reduces the amplitude of temperature fluctuations on the optical table by a
factor of about 2 to ∆𝑇 ≃ 0.05mK.

Beatnote lock

Having a stable reference at hand, the Raman laser can be stabilized to the locked MOT laser
at a variably detuning of up to several GHz by comparing the beatnote to a reference signal
at the desired detuning. To this end, we superimpose the two beams at 556nm on a separate
breadboard using a NPBS. The light is then coupled into a single-mode PM fiber to avoid
detrimental effects from imperfect wavefront or pointing overlap, and detected on a high-
speed photodiode.91 The frequency comparison and error signal generation is performed in

90Jenoptik PM785 for 798nm, Jenoptik PM1064 for 1112nm and 1157nm
91Thorlabs DET025AFC/M
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Figure 2.15 | Frequency stability of the cavity-locked 556 nm and 578 nm lasers, obtained by beatnote
measurements. A Linewidth of the 3D MOT laser measured by beating its light with a similar laser locked
to an identical cavity in an adjacent lab. The resulting linewidth is likely an overestimate as the long fiber
between the labs presumably introduced a significant amount of additional noise. The full-width-half-
maximum value refers to the 3 dB threshold. B Similarly, we detect the beatnote of our clock laser with
the clock laser in a second neighboring lab [116]. We detect the frequency difference with a frequency
counter and collect the deviation over a duration of 10 minutes.

a home-built lock box for detunings up to a few 100MHz, while a modified RF evaluation
board92 allows for a phase-locked loop at larger detunings which would enable us to lock
the Raman laser close to the 3P1 𝐹

′ = 1∕2 transition, while the MOT laser has to remain at
the 𝐹′ = 3∕2 transition [229].

2.5 MOT loading

Every experimental run starts by loading atoms into the 3D MOT, from where they can be
transferred to a lattice or tweezer array. While the linewidth of the 1S0 →

3P1 intercombination
line offers a small Doppler temperature of 𝑇D = 4.4 µK, which benefits the handover of cold
atoms to an optical trap, the maximum capture velocity of 𝑣c ≃ 7.2m∕s (ignoring power
broadening effects, cp. Chapter 1.3) for the beam sizes of 𝑤0 ≃ 5.5mm used to obtain the
first MOT signal is markedly lower than the Zeeman-slowed mean longitudinal velocity of
the atomic beam of ⟨𝑣x⟩ ≃ 40m∕s. To circumvent this discrepancy between ZS exit velocity
and MOT capture range, in other experiments an additional 3D MOT stage using the broad
1P1 transition has been employed [63, 162, 230, 231], as it is a standard procedure for Sr [64,
232–234], where this can also be combined with sawtooth-wave adiabatic passages (SWAP) [62,
235, 236] or frequency modulation [233] to artificially widen the effective linewidth of the 3P1
transition. Similar modulation techniques have been employed in the first Yb experiments
[194, 237] as well as modern tweezer setups [151] and have been predicted to work well for an
AOSense system [238]. Inspired by the loading rate enhancement via crossed slowing beams
at 399nm prior to the 3D MOT in [239], however, we decided to investigate the feasibility
of using a similar geometry in our setup.

92Analog Devices EV-ADF4108EB1Z
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2.5.1 Slowing beams
In order to understand the necessity of the decelerating effect of the crossed slowing beams,
we first study the properties of the Zeeman-slowed atomic beam as it propagates from the
atom source to the glass cell. We assume a ballistic motion of the atoms as they emanate from
the 2D MOT with the mean longitudinal velocity of ⟨𝑣x⟩ = 40m∕s with the corresponding
standard deviation of 𝜎x = 14.7m∕s, as simulated by the manufacturer, and a transverse
velocity distribution given by the radial temperature of 𝑇r ≃4mK. By equating the kinetic and
thermal energy we can identify the mean transverse velocity to be ⟨𝑣r⟩ ≃0.6m∕s. We further
assume a uniform distribution of atom positions as they leave the first differential pumping
tube and propagate the position and velocity vectors of a randomly chosen sample. This at
hand, we can determine the portion and velocity of atoms that reach the MOT beam position in
the center of the glass cell (Fig. 2.16 A). We further have to select for atoms that did not bounce
off the walls of the second differential pumping tube, which poses a similarly stringent aperture
limit given its small size. This yields a percentage of 3.1% of the initial flux that is accessible for
our MOT. Crucially, owing to the relatively long flight distance of 645mm to the MOT center,
the longitudinal velocity distribution is markedly truncated at 𝑣 ≲9m∕s as the slower atoms
sag into the vacuum chamber before reaching the MOT. Hence, relying on the fraction of atoms
with a velocity below the maximumMOT capture velocity consitutes an ineffective strategy,
with maximally achievable loading rates of 2(1) × 106 s−1 for 174Yb at usual oven temperatures.

While an additional blue MOT, both in sequential or simultaneous shell configuration,
allows for a significantly larger capture velocity range, it also greatly increases the complexity
of the setup and the sequence and suffers from imperfect transfer efficiencies. Frequency-
modulating the greenMOT beams provides a relatively simplemethod of enhancing the capture
rate, which is why this option was kept as a back-up. The easy-to-implement and yet effective
slowing technique, however, allows us to directly address the atoms in the most prevalent
velocity class while not disturbing the slower atoms that can be captured anyway. This is
achieved by selecting a corresponding detuning of 𝛿 ≃−90MHz or ≃3Γ to compensate for the
Doppler shift at 40m∕s. The optimal combination of detuning and power is further governed
by the distance of the crossing region to the MOT center, as the scattering of photons absorbed
from the slowing beams lead to a redistribution of energy from the longitudinal into the radial
dimension, which causes “blooming” of the atoms’ trajectories. This effect is minimized for
short distances between the crossing region of the slowing beams and the MOT center, as
realized in [239] where the slowing beams are guided parallel and close to the MOT beams.
In our setup, this would limit the MOT beam size and, thus, the capture velocity, as they are
designed to fill out the respective windows. Instead, we angle the slowing beams as described
in Chapter 2.3.2 such that the beams will not intrude in any future beam path while keeping
the crossing region close to the MOT. To quantify the expected increase in MOT loading rate,
we simulate the slowing effect in two ways:

First, we perform a purely classical simulation, treating both the atomic motion and the
light-atom interaction classically in a two-level picture. The latter is then described by the
radiation force

𝐅rad = ℏ𝐤𝑅sc, (2.5)
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where scattering rate 𝑅sc, as defined in Eq. (1.40), depends on the local intensity 𝐼(𝑥, 𝑦, 𝑧) of
the two slowing beams and the detuning 𝛿′ = 𝛿 + 𝐤 ⋅ 𝐯, accounting for the Doppler shift
of the light with a wavevector 𝐤 seen by an atom with velocity 𝐯 (Chapter 1.3). This allows
us to define an acceleration field generated by the two crossed slowing beams, each of them
assumed to be Gaussian (Fig. 2.16 B, inset), and we can compute the atoms’ dynamics by
numerically solving the equation of motion, also taking the gravitational force into account.
By evaluating the fraction of atoms within the capture velocity range, i.e., between 0 and
7.2m∕s, we can determine promising starting conditions for the tuning parameters power and
detuning (Fig. 2.16 B). As anticipated, the largest capture rates are expected at a detuning of
𝛿 ≃ 90MHz, and modest intensities of 𝐼 ≃ 𝐼sat = 60mW∕cm2 already suffice. Notably, this
result overestimates the overall slowing efficiency as it assumes an idealized on-axis motion of
the atoms through the crossing region. The calculation further neglects the discrete photon
absorption and re-emission steps and the associated momentum kicks.

This diffusion effect in the transverse plane is taken care of in the second simulation, where
we consider the interaction of the atom with the radiation field to be quantized. Choosing a
Trotterization ansatz, we discretize the time propagation into steps of ∆𝑡 = 0.1 × 1∕Γ ≃ 3.4ns,
ensuring that the scattering probability per step is always much smaller than 1. Based on
whether a randomly drawn number between 0 and 1 is below or above the scattering probability
at the current atom position and velocity, we simulate a scattering event or perform a trivial
propagation step. In the case of a scattering event, the change in momentum due to the
absorption and re-emission into a randomly chosen direction is treated as a single process, and
the atomic motion is computed according to the new velocity. In Fig. 2.16 C several sample
traces are shown to illustrate the slowing as well as the “blooming” effect. For the simulation
in Fig. 2.16 D-F, we stop each Monte Carlo run after ten million time steps or if the atom leaves
the region of interest, which is given by the diameter of the glass cell tube of 11mm in the
radial and 2.5mm behind the MOT center in the longitudinal direction, where the slowing
beams cannot interact with the atoms any longer. To obtain reasonable initial phase space
conditions, we randomly choose from two Gaussian distributions for the longitudinal and
transverse velocities, respectively, and from a uniform distribution of positions at the first
differential pumping tube end. We then perform the calculation of a ballistic motion again and
reject the samples that would collide with the second differential pumping tube or the glass
cell aperture. To decide if an atom counts as captured by the MOT after the Monte Carlo time
propagation, we demand that its longitudinal position is close to or behind the MOT center and
its velocity is below the maximum capture velocity. At each power and detuning combination
we calculate the trajectory of 2000 atoms. From this we then obtain maximumMOT loading
rates of 200 × 106∕s for a detuning of −3 Γ and a power of 12mW, i.e., a colossal enhancement
compared to the loading rate without the slowing beams. This result is supported by MOT
loading measurements without slowing beams, which yield only marginal numbers of trapped
atoms. However, we notice a strong dependence of the optimal slowing beam power on the
atom source state and in particular on the ZS performance. While the best MOT loading rates
were initially achieved at 𝑃 ≃4.5mW, this later changed to 7.5mW after we observed the onset
of decay of the first oven. Fig. 2.16H shows a typicalMOT loadingmeasurement as a function of
the slowing beam power in the state of the experiment when this work was completed, i.e., with
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Figure 2.16 | Relevance and performance of the slowing beams. A Simulation of ballistic atomic motion
out of the atom source tube. While 3% of the atoms pass through the second differential pumping tube
and reach the MOT, the low-velocity tail of the longitudinal distribution is truncated. B Classical simulation
of the slowing beam effect. We find the optimal parameter range at δ ≃−3 Γ and I ≃0.6 Isat. The position
of the empirically optimized parameters P ≃ 5 mW and δ ≃ 90 MHz is denoted by a cross. Inset: The
radiation force field created by the crossed slowing beams in the horizontal plane. C Sample trajectories to
illustrate the semiclassical simulation. Atoms starting with vx = 40 m∕s are slowed down as they absorb
counter-propagating photons. Upon reemission, the random recoil kick broadens the horizontal velocity
distribution, leading to a dispersed atomic beam. D Initial and final velocity distribution at P ≃5 mW and
δ ≃ −90 MHz. E Fraction of captured atoms as a function of detuning and maximum capture velocity at
P ≃5 mW. Inset: Line cut at vc = 7.2 m∕s (grey dashed line). F Captured fraction for δ = −3 Γ. G Line cut
at vc = 7.2 m∕s. H Measured dependence of MOT loading rate on slowing beam power.
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reduced MOT beam diameters. We attribute the discrepancy in the measured optimal power
to the computed maximum to an imperfect alignment of the slowing beams. In particular, a
larger distance to the MOT leads to a reduction of the optimal slowing power, as the transverse
velocity distribution has to be narrower to allow the atoms to reach the MOT.

2.5.2 3D MOT
With active slowing beams and in the retro-reflecting three-beam setup, we were able to load
60 × 106 174Yb atoms within 1 s, with loading curves as in Fig. 2.17 B. To this end, we use
a magnetic field gradient of 𝐴z = 4.9G∕cm along the vertical and 𝐴r = 2.4G∕cm in the
horizontal directions, satisfying the trapping condition in the characteristic ellipsoidal shell
region with a radius of ℏ|∆|∕𝜇′𝐴r ≃2.2mm and a thickness of ℏΓ

√
1 + 𝐼∕𝐼sat∕𝜇′𝐴r ≃1.8mm

for a detuning of 𝛿 ≃ 36Γ and a power of 𝑃 = 60mW in each beam, corresponding to an
intensity of 𝐼 = 880 𝐼sat. To reach dense atomic clouds as in Fig. 2.17 A, we compress the
MOT by linearly increasing the gradient to 𝐴z = 15.6G∕cm within 100ms and simultaneously
ramping the detuning and the power down to 𝛿 ≃1Γ and 𝐼 ≃1 𝐼sat, respectively. This does not
only increase the density to 𝑛 ≃1011 atoms∕cm3, but also reduces the temperature to 𝑇 ≃35 µK,
as determined by time-of-flight absorption measurements (Fig. 2.17 D-E). Here, we utilize the
dependence of momentum on temperature, 𝑚𝑣2 = 𝑘B𝑇, to fit the function

𝜎(𝑡TOF) =
√
𝜎20 +

𝑘B𝑇
𝑚 𝑡2TOF (2.6)

to the extracted cloud sizes as a function of the time of flight 𝑡TOF. Notably, while this tempera-
ture can be further reduced by choosing smaller final detunings and powers, this also quickly
leads to increased atom loss. Whereas this trade-off is typically favorable in experiments that
load a dipole trap or tweezer arrays, we find this comparably high temperature to provide the
optimal signal for most of our lattice-based experiments, as it provides an efficient transfer
into the lattice, which is turned on during the MOT compression ramp. After a hold time
of 100ms to allow the atoms to thermalize inside the lattice, the MOT beams are turned off
and the magnetic field gradient is shunted.

In this setup, we simulated the situation with MOT beams created by two objectives by
reducing the size of the vertical MOT beam with an iris. We observed that for equal detunings
and unchanged power balancing the MOT performance remains almost steady up to a vertical
beam size of 𝑑 ≃ 5mm, where an abrupt decay to zero at a beam diameter of 2mm sets in,
owing to the insufficient hold against gravity in large parts of the MOT. However, by tuning
the relative intensities and reducing the detuning of the bottom beam one can counterbalance
this deficit, which is the predominant reason for the mild reduction of MOT loading rate upon
the insertion of the objective. Indeed, the majority of the ≃35% loss can be traced back to the
lower MOT beam intensities of 𝐼r = 440 𝐼sat in the horizontal plane, 𝐼bottom = 200 𝐼sat from the
bottom, and 𝐼top = 100 𝐼sat from the independent top beam.93 This ratio in combination with a
slightly larger gradient of 𝐴z = 5.5G∕cm and a detuning of 𝛿bottom = 25 Γ for the bottom beam

93Owing to its highly non-Gaussian, but rather flat-topped beam profile, the calculation of the MOT beam
intensity after the objective assumes a uniform intensity across the beam.
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Figure 2.17 | Loading a 3D MOT. A Absorption images of the compressed MOT after varying the time
of flight. Initially, the cloud is slightly deformed, but quickly becomes spherical as the atoms expand
according to their initial momenta. Furthermore, they experience the gravitational pull along −x. B
MOT loading rates of up to≃60 × 106∕s could be achieved with maximal MOT beam sizes. The onset of
saturation after 2 s is in part due to a too dense cloud which is not fully penetrated by the imaging light.
Inset: Image of the uncompressed MOT of 174Yb in the glass cell center, with its characteristic hollow-core
shape due to the finite thickness over which the trapping condition is fulfilled. C By fitting the vertical
cloud center position as the cloud drops after turning off the MOT we can calibrate the magnification of the
absorption camera by ensuring that the fit yields the expected gravitational acceleration of g = 9.81 m∕s2.
D, E Characterization of the MOT temperature by fitting Eq. (2.6) to the vertical and horizontal cloud sizes
in A, respectively.

was found to be most optimal, but even an almost fully blocked top beam could be compensated
for. This demonstrates the possibility of a five-beam MOT, which has been realized for Dy
and Er [240] and was implemented in a recent Yb setup [241]. With the installation of the
retro-reflecting mirrors for the horizontal lattice, the horizontal MOT beam sizes have also
been compromised, leading to a reduction of the MOT loading rate by ≃5%. In contrast to the
loading parameters, which purely aim at maximal MOT atom numbers, in this final setup the
compression powers and detunings are optimized for both atom number and temperature in
the 3D lattice and the tweezers by maximizing the atom count in a shallow lattice or tweezer
array. In this vein, we find a compression gradient of 𝐴z = 24.4G∕cm in combination with
a detuning of 𝛿bottom = 10 Γ and 𝛿r,top = 12 Γ for the bottom and the remaining beams,
respectively, at an intensity of 𝐼 ≃2 𝐼sat to work best. While the compressed MOT temperature
of 𝑇 ≃30 µK is still significantly larger than the Doppler temperature, lower temperatures can
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only be achieved at the expense of atom loss. However, this temperature combined with the
volume of 𝑉 ≃7 × 10−5 cm3 allows for a direct transfer into the 3D lattice or a tweezer array.

Notably, for large densities one has to ensure a sufficiently large power or small enough
optical density, e.g., by choosing an extended time of flight. Thus, our standardMOT absorption
images are taken with an imaging power of 𝑃 = 8mW, an imaging pulse duration of 50 µs, and
after a time of flight of 7.5ms. Otherwise, the atom count is underestimated as the imaging
light cannot fully penetrate the atomic cloud. We also take the non-linear dependence of the
optical density on the imaging intensity in the modified Lambert-Beer law into account by
experimentally calibrating the saturation count parameter, ensuring that the obtained atom
count does not depend on the imaging power [242]. Hereby, we find an imaging-duration-
dependent saturation count of 𝐶sat = 169.367 µs−1.

2.6 Lattice loading
The eventual goal of our experiment, i.e., studying complex discrete systems based on Hubbard
Hamiltonians, is facilitated by the use of judiciously engineered optical lattices (Chapter 1.4),
but even for the steps en route lattices offer the trap depths, homogeneities, and versatility
to serve as a pivot for most experiments. In contrast to the traditional approach, which uses
time-consuming evaporative cooling in a dipole trap to then adiabatically load the BEC into the
lattice, the direct loading from the MOT is fast, at the expense of a relatively high temperature
of the atoms. While for early results like the magic wavelength measurements this did not
impair the outcome, in-lattice cooling has become necessary for more advanced stages of the
experiment and will be discussed in Chapter 3. In this Chapter we will discuss the setup
and properties of the lattices used so far, but also delineate the standard manipulation and
read-out processes we employ.

2.6.1 1D lattice
The main purpose of the one-dimensional lattice in the temporary setup was to set up the clock
addressing infrastructure and to provide a reasonably deep trap for the tune-out modulation. To
this end, the moderately focused lattice beams can create a standing wave with trap frequencies
of up to 𝑓l ≃90 kHz in the strongly confined dimension and 𝑓r ≃280Hz in the radial direction,
as determined by parametric heating and lattice intensity quench experiments, respectively. The
former technique utilizes modulation, in this case amplitude modulation, to observe a heating
response at a multiple of the lattice trap frequency. Contrary to the tune-out modulation case,
where only the atom count yields pronounced loss features around the resonance, modulating
the lattice itself also leads to a fast, visible increase in the longitudinal temperature which we
can detect by fitting the cloud size in the respective absorption images after a brief time of
flight of 200 µs (Fig. 2.18 B). Notably, the width of the resonance feature strongly depends on
the initial temperature of the sample as hotter atoms explore larger parts of the lattice site
and therefore experience a weaker trap on average. For the lattice quench measurement to
ascertain the trap frequencies along the weakly confined axes we abruptly increase the lattice



2.6 Lattice loading 81

0.0 5.0 10.0 15.0 20.0 25.0 30.0 35.0
Lattice holding time (ms)

-1.0

-0.5

0.0

0.5

1.0

Cl
ou

d 
ce

nt
er

 p
os

itio
n 

(
m

)

f = 266.1(9) Hz

100.0 120.0 140.0 160.0 180.0 200.0 220.0 240.0
Modulation frequency (kHz)

32.5

35.0

37.5

40.0

42.5

45.0

47.5

Ho
riz

on
ta

l c
lo

ud
 si

ze
 (

m
)

f = 2 × 190.5(3) kHz
 = 9.8(4) kHz

100 0 100
Yellow detuning (Hz)

0.0

50.0

100.0

150.0

200.0

250.0

At
om

 c
ou

nt
 (×

10
3 )

g
e

100 0 100
Yellow detuning (Hz)

0.0

0.2

0.4

0.6

0.8

1.0

Ex
cit

at
io

n 
fra

ct
io

n

0 25 50 75 100 125 150 175
Hold time (s)

0.0

20.0

40.0

60.0

80.0

100.0

120.0

140.0

At
om

 c
ou

nt
 (×

10
3 )

 = 650(60)×10 9 s 1

A B

C D

E F

0.0 0.25 0.5 0.75 1.0 1.25 1.5 1.75 2.0
Clock pulse duration (ms)

0.0

0.2

0.4

0.6

0.8

1.0

Ex
cit

at
io

n 
fra

ct
io

n

0 = 2 × 6.26(2) kHz

-100.0 -50.0 0.0 50.0 100.0
Yellow detuning (kHz)

0.0

0.1

0.2

0.3

0.4

Ex
cit

at
io

n 
fra

ct
io

n

Tl = 13.5(7) K
Tr = 29.7(7) K

Figure 2.18 | 1D lattice characterization and clock spectroscopy. A Lattice quench measurement
to ascertain the trap frequency along the weakly confined axes. A fast increase in the lattice depth
induces a damped harmonic motion along the vertical direction as the total potential minimum including
gravitational sag gets shifted upwards. This motion is detected by fitting a 2D Gaussian to the absorption
images. B The trap frequency along the strongly confined axis determined by modulation spectroscopy.
The parametric heating caused by amplitude modulation of the lattice is observed as a horizontally
expanded cloud at twice the band gap. C Lifetime measurement in a deep 1D lattice. Scanning the hold
time after turning off the MOT yields a decay that is well described by the two-body loss function Eq. (1.16)
owing to collisions of relatively hot atoms at T ≃ 20µK. D Rabi oscillations on the clock transition at
B = 400 G and with P ≃ 300 mW clock beam power. The fast visibility decay is a result of both temperature
and collisional decoherence, which also limits the maximum excitation fraction into the clock state. E
Coherent clock excitation spectrum after a π-pulse for a power of P ≃ 500µW and B = 30 G, yielding
a Fourier-limited, fitted linewidth of Ω0 = 15.8(4)Hz. The significant difference between the g state
depletion and the appearance of an e state peak on resonance is due to fast inelastic e-e collisions and
lattice-induced losses from a Raman transition from the clock to the (6s7s)3S1 state, despite a massive
detuning of 67 THz [72, 159], and an imperfect repumping efficiency. To obtain meaningful excitation
fractions we thus correct for this calibrated discrepancy of≃25.3% in 1D spectroscopy results. F Sideband
spectroscopy of an uncooled cloud in a deep lattice. We can extract the axial trap frequency as well as the
longitudinal and radial temperatures by fitting Eq. (2.9) to the data.

depth to the maximum after holding the atoms at a moderate depth. This sudden change in
the harmonic trap frequency leads to a “sloshing” movement of the atomic cloud owing to
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gravitational sag, which can be observed as damped oscillations in the vertical cloud position
at the trap frequency (Fig. 2.18 A).

These measurements can further help us elucidate the lattice waist and the polarizability
of the 1S1 and

3P1 states at the magic wavelength. Equating the expressions for the radial and
the longitudinal lattice trap frequencies, defined in Eq. (1.47) and Eq. (1.46), respectively, we
can further estimate the lattice waist as

𝑤 =
√
2

𝑘lat
𝑓l
𝑓r

= 61(3) µm, (2.7)

which however tends to underestimate the waist as the fit to the modulation spectroscopy
result determines the mean trap frequency the atoms observe, which is less than the maximum
trap frequency. By imaging the focus of the lattice beam we can obtain an independent gauge
of the lattice waist of 𝑤0 = 67

(+5
−1
)
µm in the atomic plane. These results can then be used to

determine the intensity in combination with the calibrated photodiode voltage, corresponding
to a power of 𝑃0 ≃ 3.9W. By calculating the lattice depth from the band gap between the
lowest and the third lowest band we can convert the measured longitudinal trap frequency
to the potential depth 𝑉0 ≃589 𝐸rec, assuming a negligible fraction of atoms to be in higher
harmonic levels that experience anharmonicities. From this we then get a polarizability of
10.6ℎHz∕(Wcm−1), which is in good agreement with values measured in the neighboring Yb
lab [110, 243]. However, it deviates by 18% from the polarizability of 9ℎHz∕(Wcm−1) one
can infer from [209]. Combined, we utilize these values to determine the uncertainty of the
polarizability at the 759nmmagicwavelength to benchmark the empiricalmodel in Chapter 1.2.

A second method of extracting the axial trap frequency 𝑓lat is to perform sideband spec-
troscopy. While the 3P1 transition in Sr is narrow enough to allow for this technique in suf-
ficiently deep traps, one has to resort to clock transitions for this purpose in the case of Yb.
Despite the avoidance of trap-induced broadening effects in the magic lattice, it is still inher-
ently challenging to obtain the first signal of the 3P0 transition. The standard procedure in this
case is the detection of atom loss while the excitation frequency is swept across the resonance
[116]. In our case, this was greatly aided by a beatnote measurement with the clock laser in
the neighboring Yb lab (Fig. 2.15 B), helping us to precisely determine the cavity resonance
position and, thus, the required offset lock frequency. This further allowed us to ascertain the
zero-crossing temperature 𝑇0, where the cavity length is extremal and the CTE vanishes up
to first order. By measuring the beat frequency of both lasers while they are locked to their
respective reference cavities and detecting the frequency shift for different cavity temperatures
we find a parabolic behavior as expected, with an extremum at 𝑇0 = 25.435(4)◦C. Note that here
the linear frequency shift of 𝛿�̇� ≃58mHz∕s, which was later determined via long-term spectro-
scopic measurements, initially obfuscated the signal, as the total duration of this measurement
exceeded eight days. A second remarkable feature was observed in the transients. Following
each temperature change, there is an almost immediate reaction of the cavity resonance, which
was also observed in oscillations in the clock resonance position that were directly correlated to
temperature oscillations of the laminar flow air curtain. A second, much slower, and crucially
counterpropagating trend sets in on the timescale of several to tens of minutes. This initially
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caused significant confusion, as the transient behavior can seem very erratic, and only once
the cavity has reached a thermal equilibrium again, which was typically found to be the case
after ≃ 1.5 days, a meaningful frequency offset signal could be obtained.

Leveraging the stable frequency reference, we can trace the clock transition by detecting the
loss of ground-state atoms as we scan the AOM frequency across the resonance. By employing
the decay channel via the 3D1 repump transition (Chapter 1.1.2) we can also observe the
simultaneous appearance of atoms in the 3P0 state [244].

94 Notably, in the bosonic isotopes
such as 174Yb one has to apply a considerable magnetic field to induce a finite transition matrix
element. This can be utilized as an additional tuning knob to adjust the linewidth beyond
power broadening. Therefore, in a standard spectroscopy sequence with 174Yb the atoms in
the lattice are exposed to clock light for a certain duration and at a given frequency while
the Helmholtz field is on, followed by an absorption image of the atoms in the ground state
after the coils are shunted. Since the atoms in the 3P0 state remain unaffected by the 399nm
light and the 𝑔 atoms are entirely removed by a sufficiently long and powerful imaging pulse,
a repump pulse can bring ≃ 97.4% of the 𝑒 atoms back into the ground state, where they
are imaged using a second absorption pulse. Subsequently, the lattice is turned off and the
remaining reference and dark images are taken.

While in some measurements a fixed, long clock pulse duration is favorable, we mostly
perform coherent clock spectroscopy, meaning that an exact 𝜋-pulse is applied when the
laser is on resonance. This leads to a Fourier-limited lineshape as in Fig. 2.18 E, with the
functional form of the fitting function given by Eq. (1.8). To identify the 𝜋-pulse time 𝑇𝜋 =
𝜋∕Ω0, we perform Rabi oscillations on resonance, which decay exponentially within a few
oscillation periods unless sub-Doppler cooling is performed, as can be seen in Fig. 2.18 D. The
corresponding dephasing is mostly induced by the occupation of multiple motional harmonic
oscillator states and interaction shifts [142, 166].

For most of the time, such as for the magic wavelength spectroscopy runs in Chapter 4.1,
we apply moderate magnetic fields of 𝐵 ≃100G and clock powers of 𝑃 ≃10mW, which result
in Rabi frequencies of Ω0 ≃2𝜋 × 50Hz. This allows for precision spectroscopy results with
the ability to detect shifts on the order of a few Hz. For some measurements, however, it
is desirable to achieve a fast transfer to the excited state, where Rabi frequencies of up to
Ω0 = 2𝜋 × 2.8(1) kHz at 𝐵 = 400G and 𝑃 ≃300mW can be used. This is particularly valuable
in the case of sideband spectroscopy, as the Rabi frequency for driving a sideband transition
is modified by the Lamb-Dicke parameter 𝜂 =

√
𝐸rec∕ℎ𝑓lat, with 𝐸rec the recoil energy of a

clock transition photon. For a deep 1D lattice with 𝑓lat ≃ 90 kHz this parameter is 𝜂 ≲ 0.2.
Moreover, for a 3D ground-state fraction well below unity the sideband spectrum exhibits a
distribution of resonances, which precludes a coherent excitation of all atoms at once. We
therefore typically employ long, incoherent clock pulses with a duration of > 10ms to reach a
dephased equilibrium, which allows us to obtain sideband spectra as in Fig. 2.18 F. From such
spectra it is not only possible to extract the trap frequency along the clock beam, but also both

94While this is the most common method to bring the atoms back into the ground state, an adiabatic rapid
passage as discussed in Chapter 1.1.2 can yield higher transfer efficiencies and does not require an additional laser
[120, 245].
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the longitudinal and radial temperature, 𝑇l and 𝑇r. While the former can be inferred from the
ratio between the areas enclosed by the red and the blue sideband by inverting the relation

𝐴red∕𝐴blue =

∑∞
𝑛l=1 𝑒

−𝑛lℎ𝑓lat∕𝑘B𝑇l∑∞
𝑛l=0 𝑒

−𝑛lℎ𝑓lat∕𝑘B𝑇l
(2.8)

which is derived from the respective Boltzmann distributions, the latter defines the shape and
width of each sideband due the coupling term in the potential expansion Eq. (1.45). Intuitively,
this can be understood as the effect of hotter atoms exploring larger parts of the pancake-
shaped potential and therefore experiencing a weaker trapping force also along the longitudinal
direction compared to very cold atoms in the radial motional ground state. Using Eq. (1.49)
and assuming a thermal distribution of motional levels along the weakly confined axes we
can approximate the blue and red sideband lineshape as [166]

𝑃(±𝛿)b,r = 𝑃0
𝑁l∑

𝑛l=0,1
𝑒
−

𝐸𝑛l
𝑘B𝑇l

ℎ4𝑓2l
𝐸2rec𝑘2B𝑇

2
r
(𝛾(𝑛l)b,r − 𝛿) 𝑒

− ℎ2𝑓l
𝐸rec𝑘B𝑇r

(𝛾(𝑛l)b,r−𝛿)Θ(𝛾(𝑛l)b,r − 𝛿) (2.9)

with the negative sign of the detuning in the argument for the red sideband, the longitudinal
energy gap 𝛾(𝑛l)b = 𝑓l − 𝑓rec(𝑛l + 1) in the case of the blue and 𝛾(𝑛l)r = 𝑓l − 𝑓rec𝑛l for the
red sideband, the number of longitudinal harmonic oscillator levels 𝑁l ≃ 𝑉0∕ℎ𝑓l, and the
Heaviside function Θ. We note that in this approximation only the linear dispersion of the
harmonic oscillator states is considered, which is why this functional form is only valid for
atomic clouds with sufficiently low temperatures with respect to the overall lattice depth,
such that higher-order band structure corrections do not play a role. Applying this on the
sideband spectrum in Fig. 2.18 F we obtain a longitudinal temperature of 𝑇l = 13.5(7) µK
and a radial temperature of 𝑇r = 29.7(7) µK, which also paradigmatically demonstrates the
effect of a strong confinement on the Boltzmann distribution as well as the simple cooling
technique of evaporating the hottest atoms that carry too much kinetic energy for the lattice,
as both the longitudinal as well as the radial temperature is significantly lower than in the
compressed MOT, but with a particularly sizeable difference for the former. This evaporation
can be further enhanced by lowering the lattice depth even more, however at the expense of
losing a significant amount of atoms. Holding the atoms in a ≃700𝐸rec deep lattice for variable
hold times in turn leads to lifetime measurements as in Fig. 2.18 C, which are significantly
affected by the large initial number of ≃ 150 atoms residing in a single lattice plane, where
three-body collisions lead to a distinct deviation from an exponential decay. Instead a fit using
Eq. (1.19) provides an excellent description of the loss curve. Therefore, we have to rely on
much more sparsely filled 1D lattices or utilize the larger number of lattice sites in 2D and
3D lattices to obtain an estimate of the vacuum lifetime.

In a very similar fashion, we can also load 171Yb atoms into the 1D lattice, despite the much
lower scattering length (Chapter 1.1.3). Due to the non-zero nuclear spin, we can perform clock
spectroscopy in significantly weaker magnetic fields and yet obtain faster Rabi frequencies of
up to Ω0 = 35(1) kHz, with the majority of the uncertainty stemming from a relatively slow
response of the intensity controller for the first ≃10 µs. We further test optical pumping of both
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Figure 2.19 | Narrow spectroscopy in the 2D lattice. A Clock spectrum at B = 50 G and P ≃ 200µW.
In comparison to Fig. 2.18 E the coherent clock excitation on the carrier is limited to the N2D ≃5 × 103

atoms in the 2D crossing region, while the majority of atoms in the 1D lattice wings observes a Doppler-
broadened resonance. We therefore apply a correction factor of 3.7 to obtain the excitation fraction in the
right panel. B Absorption images for g (top, blue) and e (bottom, red) state images. Clearly visible is the
absence of atoms in the 1D lattice wings in the e image.

𝑚𝐹 states on the 3P1 transition, which will be of relevance for the initialization of spin-polarized
samples and the dissipative step of the Raman sideband cooling process (Chapter 3.3).

2.6.2 2D lattice
As the horizontal 2D lattice consists of two independent retro-reflected 1D lattices, we combine
them by iteratively moving one lattice axis until they appear at the same height in absorption
images and cross at the desired position in the horizontal plane as determined via fluorescence
imaging from below. Owing to the weak confinement along the vertical direction the signal
from the latter is faint and one is restricted to very low imaging powers to not lose most atoms
after very few scattering events. Therefore, an additional, however more coarse indicator of the
2D crossing region are the optimal 𝑥 and 𝑦 shim coil field strengths to efficiently load into each
lattice arm. As in the 1D case, we can load the 2D lattice directly from the 3D MOT. Despite a
moderate depth of 𝑉0 ≃350 𝐸rec in each arm, a significant number of atoms also populates the
1D lattice branches outside of the crossing region. A pure 2D lattice occupation can then be
achieved by turning one lattice arm off at a time and handing the atoms over in between.

Performing an analysis of the individual lattice sizes by comparing the radial and longitudi-
nal trap frequencies as in Eq. (2.7), we obtain waists of 𝑤0 = 44(2) µm, which is significantly
larger than the 32 µm we would expect from Gaussian beam propagation computations. We
attribute this deviation to aberrations induced by the focusing lens.

This step is not necessary in the case of clock spectroscopy with clock beam 3, which is not
superimposed on any lattice axis. Hence, only atoms in the 2D lattice region can be addressed
in the Lamb-Dicke regime and almost all atoms in the 1D lattice branches will be detuned due
to their Doppler shift. In the clock-state absorption image after the repumping step we can
thus identify the pure 2D crossing region. With a total number of tubes of ≃25 × 103 and a
typical atom number of𝑁 ≃20× 103 the maximum occupation on a single site is much smaller
than in the 1D case, where the mean occupation number per layer in standard spectroscopy
sequences was found to be 70(11). Remarkably, this allowed for very narrow spectroscopy
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results in a cloud cooled to 𝑇 ≃12 µK by aggressive spilling to 𝑉0 ≃220 𝐸rec, with linewidths
Γ2D<10Hz. This indicates that the minimum linewidths of Γ1D ≃30Hz obtained in the 1D
lattice were actually interaction-limited. An exemplary signal is depicted in Fig. 2.19 A, at
𝐵 = 50G and 𝑃 ≃ 200 µW. At this point, the clock pulses reach durations of up to 100ms,
which leaves the atoms in a superposition with the 3P0 state for a significant period. However,
due to the Raman scattering process via the (6𝑠7𝑠)3S1 state (Chapter 4.3) and large inelastic
collision coefficients [143] the 1∕𝑒 lifetime of this state in a 2D lattice at this depth and at
such moderate temperatures is limited to few 100ms, which complicates further reductions
of the linewidth in this configuration.

Similar to the 1D lattice case, we can also perform sideband spectroscopy in the 2D lattice.
However, here the relatively simple result of Eq. (2.9) breaks down as the two radial axes can
no longer be described by a single frequency and cold atoms do not necessarily occupy the trap
center anymore. Instead, they might be trapped in a tube in a shallow part of the lattice arm
along which we probe the sideband occupation. We therefore observe a wider distribution of
sideband frequencies, which can be fitted by the model discussed in Chapter 3.

2.6.3 Vertical lattice
To reach the strong confinement in all three dimensions necessary for efficient fluorescence
imaging we further equip our experiment with a vertical lattice. For this purpose, a wide
array of design choices has been explored already, in particular in the context of quantum gas
microscopy. This was mostly driven by the challenge to simultaneously achieve large trap
frequencies, wide spacings to simplify loading into a single plane, and minimal instabilities.
While a retro-reflected vertical lattice is power-efficient and can provide excellent phase stability,
it requires a suitably high-reflectance-coated and shaped surface in front or within the objective,
and the small resulting vertical lattice constant renders the removal of atoms in unwanted
planes challenging. So far, “slicing” on such a compact scale has only been successfully
performed in alkali metals by selectively detuning atoms on a magnetically sensitive transition
via a magnetic field gradient [36, 246–248]. Using the 3P2 clock transition, one can circumvent
the weakly susceptible nature of most transitions in Yb to magnetic fields as this ultra-narrow
transition features a sufficiently large Zeeman splitting to allow for a resolution of individual
planes in typical gradients. This was demonstrated to work in a vertical lattice generated by
two beams intersecting at a shallow angle 𝜃 [80], which increases the lattice constant as

𝑎v =
𝜆

2 sin(𝜃)
. (2.10)

This larger spacing has also been exploited for magnetically targeting a single remaining plane
in alkali-based microscopes, where narrow hyperfine-structure transitions can be used to
selectively remove or shelve atoms [35, 249–252]. In Yb, however, the necessity of a stabilized
clock laser at the 3P2 transition at 507nm renders this technique prohibitively complex if the
generation of a single 2D plane is its sole purpose. In contrast, accordion lattices with variable
intersection angles allow for very wide spacings initially to load just a single lattice plane from
the previous trap, which can then contract to a tight lattice during imaging [37, 198, 253, 254].
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Figure 2.20 | Vertical lattice mount. A Schematic of the working principle. A Kösters prism generates
two parallel beams, which are focused and brought to interference by a lens. B Cross section of the mount
and relevant optics. The ingoing beam can be reproducibly aligned onto the mount using two irises in
between a long lens tube. Two mirrors are used to steer the beam onto the fixed mirror mount, which
guides the beam towards the prism. Before traversing a lens tube, which holds the aspheric focusing lens,
each beam propagates through a window, which can be tilted for the upper beam. This allows for tuning
of the interference phase. C Picture of the mount in a test setup without the irises installed. However, a
waveplate was mounted in the upper beam, which was later removed as the prism does not measurably
change the relative polarization.

This flexibility comes at the cost of reduced passive stability, in particular due to asymmetric
beam paths or mechanical motion. A third approach utilizes a strongly focused light sheet in
lieu of a lattice to provide additional vertical confinement [65, 255], which avoids the generation
of multiple planes but limits the attainable trap frequencies in this dimension.

Choosing a maximally symmetric ansatz to generate a shallow-angle lattice, we aim at
a highly stable system, combined with a moderate vertical lattice spacing of 𝑎v = 2.2 µm
and depths of up to 𝑓v = 45 kHz. The design follows the conception in [256], where a
Kösters prism,95 consisting of two symmetric, fused-silica halves glued together to form a
non-polarizing, equilateral triangle, is used to split a single, collimated incoming beam into
two parallel beams. In the optimally aligned case, an aspheric lens then recombines the beams
at the focus, causing the desired interference fringes (Fig. 2.20 A). Therefore, the number of
degrees of freedom upon alignment is limited owing to the inherent symmetry, and a worst-
case difference in the beam path lengths of less than 400 µm can be deducted from simple
geometric considerations, taking into account mechanical tolerances and a misaligned setup
that generates a lattice with a potential equal to half the maximally possible depth. While
designs with other prisms such as Wollaston prisms or PBS have also been brought to fruition
[252, 257], they suffer from the drawback that they either require a focus inside the crystal to

95B. Halle, IKP 040
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Figure 2.21 | Characterization of the vertical lattice. A Horizontally integrated intensity profile measured
in the test setup. The solid line is a least-squares fit using Eq. (2.11), from which we obtain the visibility
and lattice spacing. The x-axis is corrected for the magnification of 25. Inset: Image of the magnified
vertical lattice. B Lattice depth calibration using modulation spectroscopy and fitting the peaks in the
cloud size, similar to Fig. 2.18. The least-squares fit indicates a maximum trap frequency of fz = 48 kHz at
P = 4 W total power. Inset: Absorption image of atoms trapped in the vertical lattice as well as the dipole
traps formed by the individual beams outside the crossing region.

image both crossing and focus onto the atoms with a telescope, which can quickly lead to dire
spherical or coma aberrations, or a set of at least two independent mirrors, which opens the
door to position and phase drifts of the lattice due to relative mechanical motion.

In the setup depicted in Fig. 2.20 the angle 𝜃 and, in conjunction, the lattice spacing 𝑎v
are determined by the distance between the parallel beams in front of the lens and its focal
length. A strict upper bound of 2𝜃max = 24◦ is further set by the size of the glass cell bore of
11mm. Taking the finite beam size, the protrusions to retain the lens, and slight margins for
alignment into account, we find an angle of 2𝜃 ≃ 20◦ to be optimal. This corresponds to a
beam separation of 𝑑 ≃ 18mm for a focal length of 𝑓 = 50mm, which conveniently allows
for the usage of an off-the-shelf asphere with a diameter of 25mm.96 Targeting a vertical
extent below 20 µm to contain less than 10 planes, the vertical beam size in front of the lens
is required to be 𝑤0,z = 1.5mm. With a cylindrical 3:1 telescope97 we expand the horizontal
beam size in the atomic plane to a waist of 𝑤0,y = 26.6(3) µm, approximately concurring with
the Gaussian envelope of the horizontal lattice beams. In Fig. 2.21 A, inset, an image of the
lattice at the focus is shown, taken in a test setup with amagnification of 25. Crucially, the fitted
vertical dimension of 𝑤0,z = 8.7(1) µm is quite close to the theoretical expectation of 7.8 µm,
indicating that the aspheric lens indeed images the beam with a close-to-diffraction-limited
performance, despite the eccentric beam positions. Similarly important is a high contrast,
which we consistently find to be 𝑉 ≳ 90% by fitting the function

𝑃(𝑧) = 𝐴 𝑒−2𝑧
2∕𝑤2

0,z
(
𝐶 cos(𝜋𝑧∕𝑎v)2 + 1 − 𝐶

)
(2.11)

to a vertical line cut of images taken in the test setup and extracting the visibility

𝑉 =
𝐼max − 𝐼min
𝐼max + 𝐼min

= 𝐶
2 − 𝐶 (2.12)

96Asphericon ALL25-50-U-U
97This telescope is mounted under an angle of 𝜗 ≃ 30◦ with respect to the vertical axis to account for the 60◦

deflection at the mirror in front of the prism
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from the fitted baseline 𝐶. We attribute the finite baseline to imperfect power splitting at the
prism and small aberration effects, while polarization mismatch seems to play a negligible
role. Furthermore, we can extract the lattice constant 𝑎v = 2.23(1) µm from this fit. To obtain
a more complete picture of the full 2D interference pattern, we integrate the signal over all
columns. We then determine the image rotation angle that maximizes the spacing by analyzing
the high-frequency column power of the Fourier-transformed image. This takes a potential
tilt of the lattice plane with respect to the horizontal axis into account. As we would expect,
this rotation is consistently found to be well below 1◦. Fitting the resulting integrated intensity
profile with Eq. (2.11) as displayed in Fig. 2.21 A yields very similar results aside from a slightly
worse visibility of 𝑉 = 89(1)%, with the uncertainty determined from the results of several
alignment iterations. To benchmark the fitted lattice constant 𝑎v , we further detect the position
of the high-frequency peak in the Fourier-transformed integrated line cut, which agrees with
the fit result within error bars.

Aligning the vertical lattice is made possible by means of several high-precision motional
stages. The longitudinal position can be adjusted by a translation stage,98 onto which a 100mm
long lens tube is mounted, which in turn holds the asphere. This lens tube is made of the low-
CTE ceramicMacor to reduce the effect of local temperature changes from the nearbymain coils.
The independent prismmount can be adjusted in pitch and yaw, which would ideally transform
into purely translational changes in the horizontal and vertical direction, respectively, if the
prism could be mounted at a distance equal to the focal plane of the lens. However, this ideal
setup, which has been realized in [256], is not feasible in our case due to space constraints.99
Therefore, any tip or tilt of the prism inevitably induces a collateral rotation of the lattice planes,
which is inconsequential for a rotation around the vertical lattice axis. Any undesired rotation
around the transverse horizontal axis, on the other hand, has to be compensated by a vertical
translation of the prism (Fig. 2.22). To minimize the effect of any alignment step on the vertical
lattice properties, in particular on the distance and parallelism of the two beams after the
prism, the goniometer100 and rotation stage101 for pitch and yaw adjustments are mounted to
cause a rotation around the center of the fixed incoupling mirror that is attached to the top
of the prism mount. To ensure a reliable and reproducible alignment of the lattice beam on
this mirror, in particular after the insertion into the experiment where no direct diagnostics is
possible, we utilize a detachable set of two irises in front of the periscope mirrors, connected by
a 170mm long lens tube. Hence, a singular alignment of the periscope mirrors in a test setup is
sufficient to achieve overlap of beam waists and crossing with the desired lattice constant. To
maintain this initial alignment, the mirror mounts102 are thermally compensated to withstand
drifts caused by temperature changes. To counteract phase fluctuations and to ensure a stably
centered position of the main lattice plane, a picomotor-driven mirror mount103 can slightly

98Newport M-SDS25
99In contrast to the setup in [256], a 𝑓 = 100mm aspheric lens would lead to a beam separation of 36 µm and a

vertical beam size of 𝑤0 = 3mm, which would exceed the size of the Kösters prism.
100OptoSigma GOHT-40A40BMSR
101OptoSigma KSPT-406MH, customized for picomotor compatibility
102Newport Suprema ZeroDrift ST05-F2H
103Newport 8886
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A

B C

Figure 2.22 | Alignment of the vertical lattice. A Degrees of freedom of the vertical lattice mount. A
translation stage controlling the position of the focusing lens allows for longitudinal alignment, while a
picomotor-controlled rotation stage adjusts the transverse horizontal position of the lattice. The vertical
position and tilt is defined by a goniometer and a translation-stage. Both rotation axes are chosen to pass
through the incoupling mirror, which is firmly attached to the prism mount. This ensures that the beam
impinges on the prism under the optimal angle of 60◦ with respect to the splitting plane, guaranteeing
parallel beams after the prism. The roll degree of freedom is not adjustable as the corresponding lattice
tilt was found to be negligible. B Exaggerated visualization of the effect on the lattice by adjusting the
goniometer and C the vertical translation stage. As the distance from the splitting plane to the lens
exceeds the focal length, a rotation of the prism does not only result in a vertical translation, but also in a
small tilt of the lattice planes. This can be compensated by a prism translation. However, due to limited
space the translation stage is not oriented parallel to the ingoing beam and therefore any adjustment
will also lead to a changed beam separation and, hence, lattice spacing. Higher-order effects involve
longitudinal shifts of the crossing point.

rotate a 3.2mm thick, nano-textured window.104 A tilt of 𝛿𝜃 = 1.45◦ encompasses a relative
phase change of 2𝜋 with respect to the second beam passing through the same window, but
in a fixed mount. With an overall transmission of 𝑇 ≃ 96% of the whole setup at the lattice
wavelength a total power of 𝑃diss ≃ 50mW is dissipated at and within the optics at full power.

Before obtaining a first signal of the prealigned vertical lattice we first test the heating-
induced pressure increase, as the lattice beams provoke local heating and thus diffusion and
desorption of various gases from the glass cell tubing where their power is partially absorbed.
To this end, we slowly ramp up the lattice power until we see a response on the hot cathode
gauge, which initially happened at 𝑃 ≃2W total power after the fiber. From this point on, we
incrementally increase the power and wait for the pressure to settle. Despite the gradualness
the pressure had risen to 1.2 × 10−10mbar after we reached the full power for the first time,
104Newport 05Q20RAR.L
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but decreased back to the base level within the next hours. We perform this step whenever the
vertical lattice has been realigned, although the pressure increase is typically not detectable if
the lattice position is only marginally adjusted. Consequently, we trace the lattice beams by
scanning the shim coil currents around the expected position until a signal of captured atoms
is visible in absorption images. Crucially, the individual lattice beams provide a sufficiently
confining potential to trap atoms not only in the interference region, but also in the dipole traps
as can be seen in Fig. 2.21 B, inset, which eases the search for the initial signal significantly.

We probe the potential generated by the vertical lattice with modulation spectroscopy and
find that we can approximately reach the calculated trap frequency of 46.0 kHz for a total power
of 𝑃 = 4W (Fig. 2.21 B), assuming perfect interference of two equally strong, unaberrated
beams, which intersect at an angle of 2𝜃 = 20◦.

2.6.4 3D lattice
After initial alignment, the vertical lattice was displaced by a few mm from the 2D lattice,
mostly due to an off-centered position of the 2D lattice. As more substantial translations are
easier to accomplish by moving the horizontal lattices, we align them iteratively onto the
vertical lattice position by taking sequential images of the individual lattice beams to create
a 3D lattice with a maximum total depth of 𝑉3D ≃ 6000 𝐸rec. This does not only allow for
fluorescence imaging, which will be discussed in detail in Chapter 2.7.5, but also leads to a
remarkable lattice loading pattern (Fig. 2.23). The typical lattice loading regime used in the
1D lattice measurements is a 1000𝐸rec deep trap, beyond which a reduction of the loading
efficiency is observed. In a 2D lattice we find a very similar optimum of the total lattice depth,
indicating that this phenomenon is rather related to the total trap depth or intensity instead
of, e.g., the inhibition of thermalization of MOT-cooled atoms by a reduced atom density per
lattice site. The vertical lattice then adds a third layer to study this effect, and fluorescence
imaging allows to study the population only in the 3D region, where the molasses cooling is
effective. Here we can detect a balancing effect where a shallower horizontal lattice can be
compensated by a deeper vertical one, offering a local optimum at a combined horizontal lattice
power of ≃ 900𝐸rec and at ≃ 300𝐸rec vertical lattice depth. We find a significantly stronger
global maximum, however, in a very deep 3D lattice configuration at ≃4000𝐸rec horizontal
and≃1000𝐸rec vertical depth, allowing for loading rates of≃70× 103 atoms within just 100ms,
which roughly corresponds to a 3D filling fraction of 0.5. We confirm via absorption imaging
that in this deep loading regime only the 3D lattice region is populated, indeed, since the
individual lattice arms remain in the intermediate depletion condition. Upon changing the
MOT compression detuning and gradient parameters, we findweak trends towards an optimum
at larger depths for larger detunings, while a MOT beam frequency closer to resonance appears
to allow for weaker loading lattices. Notably, we cannot resolve any change in the optimal
MOT compression detunings compared to the weaker loading regime. We hypothesize that
in the intermediate, bad loading regime the lattice, being non-magic for the MOT transition,
detunes the atoms out of the MOT resonance condition at the lattice wells, while for even
deeper lattices the stronger Stark shift in combination with the very strong attractive potential
allows for rethermalization into the lattice despite subpar MOT conditions. However, we note
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Figure 2.23 | Trapping atoms in a 3D lattice. A Simplified sketch of the 3D lattice geometry with two
retroreflected horizontal lattice beams forming tubes in the crossing region, which are vertically sectioned
by the pancake-shaped potentials generated by the shallow-angle vertical lattice. B The loading efficiency
into the 3D lattice region, probed with molasses-cooled fluorescence imaging (Chapter 3.1.2), exhibits a
strongly non-linear dependence on the lattice depth, with a first local maximum at a combined horizontal
lattice depth of≃900 E rec and a weak vertical lattice contribution of≃300 E rec, where we did not adjust
the recoil energy for the larger lattice spacing in the vertical lattice. After an intermediate regime where
loading into the 3D lattice is almost fully suppressed and only the weaker 1D lattice arms are populated, a
stronger second maximum in very deep traps with depths of≃5000 E rec is observed. C By imaging the
three lattices individually, we can determine their relative positions and align them onto each other. While
we use absorption imaging from the side to align the lattices vertically, fluorescence imaging enables us
to find the optimal horizontal overlap, as depicted in this false-color plot, with lattice arm 1 shown in blue,
lattice arm 2 in red, and the vertical lattice in green. D Lifetime of ground-state atoms in the 3D lattice,
performed after rethermalized clock-sideband cooling in a 1D lattice and with fluorescence imaging.

that this effect demands for further study by, e.g., testing the loading efficiency in even deeper
lattices to elucidate whether a second depletion regime exists, or by similar measurements
in various lattice configurations for the fermionic isotopes, where the different spin structure
changes the overall lattice light shift, which could confirm or falsify our hypothesis that this
is the cause for the observed bimodal loading parameter pattern.

The additional vertical confinement also extends the ground-state lifetime in the lattice
to more than 3 minutes (Fig. 2.23 D), which we assume to be mostly vacuum-limited. This
lifetime can be directly extracted from a single exponential fit to a cooled cloud, or by taking
the initial two-body losses into account. Despite the deep lattice potential and the low filling
fraction of ≃ 0.5, collision-induced loss of atoms is significant at temperatures of 𝑇 ≃25 µK,
as the atoms can tunnel through the lattice with a rate of 𝐽 ≃ 20Hz using Eq. (1.55). Once
the atomic temperature is cooled 𝑇 < 10 µK, corresponding to �̄� ≃ 1, thermal tunneling is
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Figure 2.24 | Illustration of the lattice and tune-out tweezer potentials. To-scale sketch of the extent
of optical tweezers at the ground- and clock-state tune-out wavelength at 553 nm (green) and 577 nm
(blue) for a NA of 0.7 relative to a magic superlattice potential with a spacing of a = 759∕2 nm (red). The
computed overlap of the diffraction-limited tweezer potential with the adjacent lattice site is below 10%.

suppressed to 𝐽 ≲1mHz and collisions cease to play a role. The cooling method used to obtain
these temperatures is described in Chapter 3.

2.7 Microscope objective
The final essential ingredient for our experiment is the microscope objective,105 responsible for
the generation of optical tweezers and single-site resolution imaging in the lattice. To minimize
the overlap of a diffraction-limited clock-state tune-out tweezer with the adjacent lattice sites
to <10%, we selected a NA of 0.7 (Fig. 2.24). To this end, we use Eq. (1.58) and integrate the
intensity weighted with the lattice potential above 𝑎∕2 for 𝑎 = 380nm and 𝜉 ≃ 502nm the
diffraction limit at 577nm for a NA of 0.7. Since the exact position of this tune-out wavelength
was unknown at this point, and the theory predictions spanned 565 to 590nm, depending on
the model [44, 97, 110, 152–154], the objective is optimized for 399nm and the range between
532 and 590nm. Although the lenses are further AR-coated to reflect ≃3% of the light at these
wavelengths in total, i.e., at all surfaces combined, the calculated transmission at 399nm is only
73%, due to a strongly absorbing glass which is essential to optimally compensate for chromatic
aberrations. In a test setup, the measured transmission was even lower at 𝑇 ≃ 65%. As this
poses a decisive limitation of the imaging efficiency at 399nm, we also discussed the option of a
single blue-transmission-optimized objective for imaging, while the second objective would be
used for the tweezers. However, the moderate transmission gain of 5%would have substantially
impacted the FOV, which is why we did not further pursue this option.

Because of its position in the center of strong magnetic coils the objective housing has to
be non-metallic. The stiff polyetherimide thermoplastic Ultem has emerged as the industry
standard for such applications and has also been chosen for our objectives. The mechani-
cal design was optimized for overall compactness and in particular for a very short excess
length beyond the entrance and exit pupil, which is crucial for the objective MOT beam setup
described in Chapter 2.7.2.

105Special Optics, 54-35-25@399&532-590nm, custom design
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2.7.1 Objective mount
The large NA in combination with the sizeable working distance of 14mm demands for large-
diameter lens arrays inside the objective. This does not only pose technical challenges due
to the correspondingly large overall objective diameter of 56mm, but also compounds the
complex task of accurate alignment, in particular the alignment onto the glass cell where a
relative tilt of 0.25mrad can already visibly distort the point spread function [169]. Therefore,
the ability to carefully control the objective position in all three dimensions as well as tip and
tilt and to execute minuscule adjustments is vital. We achieve this by constructing a custom
5-axis stage, controlled by picomotors.

In the first design, which was intended to be arranged around the flat-band-wire coil system,
the objectives are inserted into relatively compact vertical piezo stages,106 enabling fast and
precise objective focus changes and especially refocusing evenwithin the sequence. These piezo
stages, also made from Ultem to prevent eddy currents, are mounted within titanium buckets,
which are in turn referenced to an outer breadboard-like aluminium structure (Fig. 2.25). With
an overall height of just 25mm, the objective mounts do not overtop the objectives itself, which
is of major importance for the objective MOT beam concept. Each inner mount is designed to
rest on three main support points, the spheric tips of the vertical picomotors,107 to provide a
minimally constrained geometric plane. These three picomotors are equidistantly oriented
on a circle of radius 97mm around the optical axis and are responsible for arbitrary tilt or
height adjustments. To ensure a firm connection to the surrounding outer mount for the top
objective, four compression springs made from titanium are located next to the picomotors.
Owing to the symmetry-breaking rectangular shape of the piezo stage we employ two springs
at the short edge, symmetrically placed around the picomotor, and one spring close to each
of the diagonal picomotors, on the conduit to the objective center to prevent any potential
tipping. Their stiffnesses are chosen to be at 𝐹 ≃ 8N around the centered position.108 At a
maximum extension of 2mm the retention force combined with the gravitational pull amounts
to 16N, which is close to but does not exceed the maximum force of 22N a picomotor can
exert. The alignment in the horizontal plane is made possible by two orthogonal picomotors,109
both acting on the center of the inner mount. Again, we utilize springs to make sure the
picomotor tips remain the pivots, but here we select a combined stiffness that almost reaches
the maximum picomotor force upon the maximum excursion of 4mm. By placing the springs
as far out as possible we reduce the crosstalk between the two horizontal axes. The design
further includes three screws that can be pre-adjusted to a minimum height to prevent that
accidental misalignment of the objective causes a collision with the glass cell.

While the initial design of the bottom objective mount became unrealizable because of the
more compact hollow-core coil mount, the top mount was manufactured and later tested by a
neighboring lab. It is also being used in two labs at MPQ, where one mount has been integrated
with only minor changes110 [258], whereas the mount for the second lab is a significantly

106MCL Z100, customized
107Newport 8321
108The individual strength of the springs at the short edge of the piezo stage are correspondingly halved.
109Newport 8301NF
110The picomotors were exchanged for screws and PEEK was used instead of titanium.
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Figure 2.25 | Illustration of the initial objective mount design. A Arrangement of the two objectives with
their respective mounts. Each objective rests in a piezo stage, mounted inside a titanium structure, which
is referenced to the outer breadboards by means of picomotors and springs. Further displayed is the
separation of the MOT beams (green) from the imaging and tweezer beams (blue) with a dichroic. B Top
view of the upper objective mount. Almost all vertical springs are hidden beneath the picomotors (blue),
while the horizontal springs, positioned far out to improve the sensitivity to yaw, are visible. Clamps allow
us to lock the inner mount in place after the objective is aligned.

improved version, with fully decoupled translational degrees of freedom – decoupled from
each other as well as the tip and tilt adjustment by including translation-stage-like guiding
rails and using several independent shells for the inner mount [259].

Owing to the enormous tweezer beam path lengths it is highly non-trivial to achieve a stable
setup for all three envisioned tweezer wavelengths with an objective from the top. We therefore
redesigned the bottom objectivemount to fit in between the coil mount pillars, however keeping
the general idea of a picomotor-based 5-axis stage. Since the piezo stage itself was too large and
the switch too sudden to develop a custom piezo solution, the only remaining knob to adjust
the focus vertically is the simultaneous movement of all three vertical picomotors. To ensure
that this movement is also uniform, i.e., the picomotors perform steps of identical sizes, we use
a maximally symmetric design, consisting of a ring-shaped inner titanium mount which the
objective is screwed into. The outer, fixed mounting structure consists of an aluminium bracket
that is attached to the bottom of the mezzanine breadboard, close to the position of the retro-
reflecting mirrors for the optical lattice. Just as for the top mount, the two parts are connected
by a combination of picomotors and springs, where the latter are again judiciously chosen to
provide a maximal force in the contemplated working windows while not overstraining the
former. A planar indentation in the circular inner mount provides the contact points for the
horizontal picomotors, slightly breaking the symmetry of the circular inner mount.
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Figure 2.26 | Design of the second bottom objective mount. A Similarly to the first design, the objective
is mounted inside a titanium-ring, which is held in place by picomotors to adjust its position and angle.
Due to the limited space in between the coils, the outer mount is shaped in form of a bracket. The dichroic
that separates the imaging and tweezer beams from the bottom MOT beam as well as the focusing lens
are firmly attached to the mount. B Top view of the objective mount. The vertical picomotors and springs
are aligned at equidistant angles, such that the symmetry is only broken by the horizontal picomotors.

2.7.2 The bottom MOT beam

The lower surface of the outer bracket exhibits a breadboard-like grid of threaded holes, which
we utilize to mount the bottom MOT beam optics. We further provide for the usage of a mirror
positioned in the center of the objective to project a focused MOT beam onto the back focal
plane. If the size of this mirror is small compared to the objective aperture, the introduced
aberrations are negligible, which can be intuitively understood as a low-frequency truncation
of the Fourier transform, not affecting the resolution of details. Unfortunately, the back focal
plane for the optimal objective lens design is 34mm behind the outermost lens. A 10mm
wide collimated MOT beam at the atomic plane therefore implies a beam size of 14mm at
the entry facet, with a beam convergence half angle of 11.6◦. Adapting the objective design
to move the back focal plane further out or to reduce the convergence angle compromises
the imaging properties and increases the effective focal length. Alternatively, one can deviate
from a collimated configuration and select a focus in front of the back focal plane. Moving the
focal spot 20mm further out would entail a reduction of the MOT beam diameter of 6.4mm at
the entrance pupil, but also a significant inwards curvature of the wavefront, which does not
necessarily harm the MOT efficiency. Placing the mirror as close as geometrically possible to
the objective without clipping the MOT beam then requires a mirror size of 7mm. Fig. 2.27 D
shows the aberrations one would expect for such a mirror, and the effect of various mirror sizes
on the Strehl ratio. Selecting a maximally acceptable size of 9mm in turn allows for a ≃8mm
large MOT beam in the atomic plane. Upon testing the effect of reducing the vertical MOT
beam size in the preliminary setup, we found a marginal decrease of the loading rates down
to 8mm in diameter, followed by a sharp decrease below 6mm. Placing a 7mm large mirror
embedded in the imaging beam center therefore constitutes one viable option, but requires a
suspension-based mounting structure close to the objective. The objective mount is designed
to allow for such a solution, with a recess for a larger mirror to reflect the MOT beam onto
the small mirror mounted on a base which can be held in place by three thin ropes. However,
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Figure 2.27 | Overlapping the bottom MOT beam with the imaging beam path. A Schematic of the
“exploded” objective mount components including the MOT beam focusing lens and the dichroic mount,
highlighting the functionality of the glider and its base plate. Rails and stop bolts ensure reproducible de-
and attachment of the dichroic. B The alternative solution features a 7 mm large mirror in the center of
the imaging beam, close to the objective’s entrance aperture, which is held in place by adjustable titanium
wires. A second mirror and a focusing lens provide a suitably shaped beam (green) further upstream. C
Beam profile of the bottom MOT beam after the objective in a test setup, taken at a larger distance to
the objective than the working distance to fit the whole beam on the camera. At this point, the beam
width is 4.2 mm in diameter and the non-Gaussian, partially flat-top-like profile is clearly visible. The test
setup did not include the dichroic, which further alters the beam shape. D Simulated impact of a 7 mm
large mirror, attached to four wires (inset), on the imaging performance. While almost invisible in the
linear scale (left), one can see the PSF deformation in the logarithmic scale (right), causing a square-like
widening of the lobes while the PSF center is almost unaffected. For a three-wire geometry as visualized
in B the aberrations analogously exhibit a mild trefoil pattern.

the mirror needs to be precisely cut into an elliptical shape without damaging the reflective
surface, which turned out to be highly non-trivial.

We thus focused on a different approach that utilizes a dichroic mirror to superimpose the
MOT beam onto the tweezer and imaging beams, similar to [62]. In this scenario, the MOT
beam can be chosen to be up to 12mm large and collimated at the atoms as the convergence
angle is less severely limited. However, one has to accept significant power losses at the dichroic
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owing to the tune-out wavelength at 553.2nm which is too close to the 3P1 resonance to allow
for a substantial separation with dielectric coatings. Furthermore, in order to offer the option
of efficiently imaging green fluorescence, e.g., from a Raman cooling process, it is expedient
to select a large transmission at 556nm, which entails losing a considerable portion of the
MOT light. We selected a dichroic mirror with 80% transmission at this wavelength and > 95%
transmission at 399, 532, and 577nm.111 With this dichroic, the effective power per MOT
beam is reduced to about one half of the value used in the preliminary setup. Notably, we
underestimated the effect of the spread of angles of incidence due to the convergence, which
leads to locally enhanced but also reduced reflectivities, causing some areas of the MOT beam
after the objective to be significantly darker than the average. From a technical perspective,
two main challenges arise. First, since the available overall height is limited to 205mm by the
mezzanine breadboard, and the minimum beam height of the tweezer beam path is 50mm,
the MOT beam with a collimated size of 𝑑 ≃ 75mm in front of the focusing lens needs to be
guided right below the objective mount, which itself is designed to be as flat as possible without
impairing the mechanical stability. Therefore, the focusing lens mount consists of a slender
ring structure with small extrusions to provide an area of support for the glued 3" lens and
a base plate with a carved out center and slotted holes to allow for fine in situ adjustments
of the focus position. In a similar fashion, the mount to which the dichroic is glued had to
be carefully designed in order to offer sufficient space for the mirror that is mounted on the
optical table and reflects the tweezer beams upwards. This task is further complicated by the
second challenge, which is the necessary detachability of the dichroic mount. During the
objective alignment process, the objective itself or add-on tools like irises or a mirrors need to
be inserted or removed, which requires a temporary removal of the dichroic. However, upon
reinsertion the exact position and angle needs to be recovered since otherwise the alignment
progress would be vitiated. We thus devise a dual structure with one base firmly attached to
the objective mount, featuring a set of rails on which the main dichroic mount can glide into
place. A stop bolt prevents the glider from moving too far, and the mount can be screwed
tight. In this vein, we do not observe any apparent displacement of the tweezer or the MOT
beam during the alignment process.

2.7.3 Objective performance
Because of the optical complexity of the objectives and their vulnerability to imperfections or
damages, it is a common practice to test and characterize themicroscope objectives in a separate
setup before inserting them into the experiment. This further helps to understand the precision
requirements and informs on alignment techniques that reliably work in the final setup where
the imaging performance can usually only be quantified indirectly by observations of the atomic
signal. These tests and strategies for our objectives have been described in great detail in [169],
which is why the following will be restricted on a brief overview of the main results.

The main figure of merit is the PSF, which can be obtained by imaging a point-like light
source. We use a 250nm large pinhole on a resolution test chart112 and image the diffracted

111UltraFast Innovations, BS2209
112Technologie Manufaktur, TC-RT01
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Figure 2.28 | Diffraction-limited performance of the objective in a test setup. A Shape of the point
spread function in the horizontal and vertical plane for an axial scan across the focus in logarithmic
scale, at 399 nm and with a 250 nm wide pinhole. The asymmetry between the two planes in the focus
position and the divergence of the intensity maximum around it indicate astigmatic aberrations, while
the asymmetry in the y-plane cut hints at coma. B Axial intensity distribution in the center of the point
spread function. We fit to this with a Gaussian distribution (black dotted line) and we find that the fitted
Gaussian waist is in good agreement with the expected value ofwax = 1.11µm. The dark blue dashed line
indicates the expected axial diffraction limit ψ0. C PSF at the focus, in both linear and logarithmic scale.
By comparing the data to the fitted Airy disk we can observe a cross-like pattern in the residue, which is a
clear sign of astigmatism. D Despite the aberrations, the objective performance is still diffraction-limited
as the aximuthal average of the PSF displays a minimum close to the expected Rayleigh limit ξ0 (dark blue
dotted line) and follows the simulated perfect Airy disk (grey solid line). The effect of the finite aperture
size is small, as shown by the black solid line, where the ideal Airy disk is convolved with the aperture.
The figures are adapted with permission from [169].

light with a 𝑓 = 1000mm achromatic lens onto a high-resolution camera.113 The resulting
magnification of 40.1(2) allows us to sample the PSF with an effective pixel size of 46nm. By
scanning the relative distance between objective and resolution chart we can then determine
the focus position, at which the signal was found to be optimal using both Airy disk fits and a
determination of the Strehl ratio. As both objectives fulfill the criterion for a diffraction-limited
performance of a Strehl ratio > 0.8 at 399nm as well as 532nm, they exhibit only small but
visible optical aberrations (Fig. 2.28 A). For the objective that is implemented in the experiment
at this stage, the main aberrations are astigmatism and coma, while the second objective shows
mostly trefoil contributions. From this analysis we can expect a resolution of 𝜉 = 364(5) nm
at 399nm and 465(11) nm at 532nm in our experiment. We can also derive the axial extent,
which is linked to the depth of field, from a Gaussian fit to the intensity in the center and obtain
waists of 𝑤 = 1.05(4) µm and 1.28(5) µm for 399nm and 532nm, respectively.

113Allied Vision, Alvium 1200 U-1240m
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The subsequent test is a repetition of this procedure, but for an off-axis point within the
FOV. Again, we observe a performance in accordance with the specification as the Strehl ratio
drops below 0.8 only beyond a distance of 50 µm from the optical axis for 399nm light, which
greatly exceeds the 3D lattice area. For the tweezer light at 532nm the diffraction limit is
achieved even for distances as large as 100 µm, with a PSF that is only marginally deformed.
This comfortably allows for 50 × 50 tweezer arrays with a spacing of 2.8 µm, which is also the
estimated maximum number of tweezers we can achieve in our current setup.

2.7.4 Tweezer loading

With the objective capable of producing diffraction-limited tweezers, the goal for the preceding
beam path is to provide a plane wave at the entrance pupil, i.e., we have to ensure that the
remaining optics are correctly aligned and do not introduce severe additional aberrations. One
limiting factor in this endeavor is the surface quality of the optics involved. In particular, we
identify a general soft upper limit of 𝜆∕10 on the acceptable flatness of the reflecting optics
in front of the objective before the imaging fidelity suffers from a disturbed wavefront, while
the effect is typically less strong in transmission. We attribute this to the predominant surface
imperfection, as determined by high-precision interferometricmeasurements, which is bending
either along one axis or radially out- or inwards, thus causing astigmatism in the former and
spherical aberrations in the latter case for a reflected beam. However, we observe that in most
cases both surfaces are similarly bent, which then diminishes the effect on the wavefront of a
transmitted beam. Notably, it is possible to correct for such introduced aberrations by using a
similarly bent but orthogonally oriented mirror at a different position, but this is generally hard
to realize accurately. Instead, we interferometrically scrutinize a large set of mirrors and select
the ones that yield the best flatness results. While we find unsuitably curved surfaces for some
off-the-shelf 3" mirrors, most of them exceed our expectations with flatnesses ≲ 𝜆∕15 even
after glueing them into the mirror mounts114 at three corners. Similarly, one of the dichroics
to split the tweezer and imaging light offers a flatness of 𝜆∕20 when loosely held in place.
However, as soon as we clamp or glue it into its custom mount at more than one point the
rectangular dichroic starts to strongly bend along its long axis, independent of where the glue
is applied and which glue is used. We ascribe this behavior to the relatively thin substrate
with a thickness of just 7mm. To circumvent this issue, we glue the dichroic at just one corner
with a low-shrinkage UV curing adhesive,115 which compounds the measured flatness only
slightly. As the last optical element before the objective, the size of the bottom MOT dichroic
is mostly governed by the required MOT beam size and we can afford a substrate thickness
of 12.7mm. Hence, the interferometric measurements do not indicate any bending after it
was glued into its mount. Unfortunately, for such large diameters the overall intrinsic surface
flatness tends to be subpar, and indeed we determine a value of ≃ 𝜆∕6 for the best mirror.
Crucially, the unevenness of the two surfaces appears to be asymmetric, which will thus also
cause non-trivial deformations of the transmitted tweezer beam wavefront.

114Thorlabs Polaris-K3S4 for horizontal, custom mount for upwards reflection.
115Thorlabs NOA61
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The best possible optics at hand, we take great care upon their alignment.116 Especially the
placement of the lenses demands for precision, as any tilt or displacement with respect to the
optical axis will cause coma and astigmatism, while an imperfect longitudinal position gives
rise to spherical aberrations. We use the thoroughly ascertained optimal relative distances
between the lenses from the test setup as well as the de- and reflection of the guide beam at
each lens to minimize these effects. This guide beam was previously aligned such that the
backreflection of the lower glass cell window is overlapped with the ingoing beam close to
the second AOD, at a distance of more than 2m. In combination with a pointing sensitivity of
0.5 − 1mm using a pinhole card, this corresponds to an angular sensitivity of 0.25 − 0.5mrad.
In this process, we also determine the angle mismatch between the two glass cell windows to
be 𝛿𝜃 ≃2mrad. Once the objective is inserted and aligned horizontally onto the guide beam
position using an iris, we can leverage the guide beam and the detachable 10:1 telescope lenses
to align the objective onto the glass cell. Here, we make use of the Newton rings created by
the various curved surfaces inside the objective and move the vertical picomotors until the
backreflected rings align concentrically on the ingoing beam.

To obtain the first tweezer signal, we utilize a single, very deep tweezer, which is turned on
during the MOT compression stage and whose size is artificially widened to several µm by an
iris, and observe the blue fluorescence signal of atoms as they quickly get ejected from the trap
by the powerful imaging light at several tens of 𝐼sat. This allows us to optimize the compressed
MOT position to achieve good overlap with the position of the tweezers. In a tighter tweezer
we can then observe a direct signal of trapped atoms with a weaker imaging beam. Notably, the
light shift on the 1P1 transition induced by the tweezer light is substantial for such a strong beam,
which is why either the imaging detuning or the tweezer power has to be adapted at this step.
Since the imaging-induced heating is not countervailed at this point, most atoms escape during
the exposure time, which is why the histogram shows a broad distribution. To counteract this
heating effect we perform molasses cooling on the 3P1,𝑚𝐽 = 0 transition in a weak magnetic
field and slightly blue-detuned from the free-space resonance by 𝛿 ≃1Γ, similar to the method
described in [151, 260] (Fig. 2.29 A). Using the light from the horizontal MOT beams at 𝐼 ≃𝐼sat
and a weak (𝐼 ≪ 𝐼sat) blue imaging beam, we can now clearly resolve two discrete peaks in the
histogram (Fig. 2.30 C), delivering the binary information whether a single or no atom was
present. This also demonstrates the concurrent effect of blue-shielded collisions induced by the
cooling light, as even without any additional photoassociation (PA) pulses double occupancies
are fully suppressed while the typical single-tweezer loading efficiency of ≃65% significantly
exceeds 50%, which would be expected for a Poisson-distributed, parity-projected sample.
This has so far only been demonstrated for Rb [261–263], K [264], and 171Yb [63], but not for
174Yb.117 Remarkably, the optimal detuning for the first image appears to be red-shifted by
≃100 kHz to the peak we find for subsequent images after post-selecting for initially occupied
tweezers, determined by fitting the empirical distribution

𝑃(𝛿) = 𝐴
𝛽
𝑒−(𝑧+𝑒−𝑧) (2.13)

116Amore fine-grained description of the alignment procedure is given in [169].
117We note that the histogram in [260] appears to display a very similar behavior, but is not further mentioned in

the text.
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Figure 2.29 | Enhanced tweezer loading and molasses cooling. A Average number of detected photons
for the first and second image as a function of the 556 nm molasses beam detuning. While a lower
detuning seems preferable for the first image, a more blue-detuned beam leads to an enhanced collection
of scattered photons due to the suppression of trap loss, with a baseline of ≃20 counts for effectively
uncooled atoms at large detunings. An empirical fit using Eq. (2.13) is displayed as a solid line. B The
optimal detuning shows a weak but noticeable negative correlation with the tweezer depth, which is
likely caused by a tweezer-induced local shift of the magnetic field. Note that the y-axis values exhibit a
systematic error of≃200 kHz due to uncertainties in the π transition resonance determination.

with 𝑧 = (𝛿 − 𝜇)∕𝛽 to the averaged photon counts. Furthermore, the maximum counts for the
second image exceed the amplitude of the first-image peak by more than a factor of two. This
indicates that a separate slighlty red-detuned shielding pulse could provide the energy for a
weakly-bound molecule to expel one atom, while a more blue-detuned cooling beam helps to
retain more atoms during imaging. The optimal detuning for the second image weakly depends
on the tweezer power and exhibits a downwards slope (Fig. 2.29 B), in disagreement with the
lightshiftmeasured in [151]. This could be a result of theweak vertical externalmagnetic field of
𝐵 = 1G that could allow a deep tweezer to locally induce a comparable field, potentially causing
a change in the tensor shift. We note that around the time of the measurement slow changes
in the cavity expansion rate accumulated to a significant deviation from the feed-forwarded
correction, which was only found and determined later. The position of the 𝜋 resonance
therefore had to be traced back, causing a significant systematic uncertainty ≃ 200 kHz on
the 𝑦-axis intercept. Using just a single pulse, we find that the molasses cooling suppresses
imaging-induced atom loss sufficiently well that we can image atoms for several tens or even
hundreds ofms, which leads to a very clear separation of the single- and no-atom peak in the
histogram. For typical tweezer sequences we choose an exposure time of 𝑡exp = 50ms, yielding
a classification fidelity of 99(1)%, which is given by the overlap of Gaussian fits to the two peaks
and limited by the atom loss during imaging. The latter is quantified by imaging the same atom
multiple times, and we find a loss rate of 1(1)% per image. To achieve this, we find a reduction
of the tweezer depth to 𝑓r ≃135 kHz and 𝑓l ≃30 kHz helpful as determined by modulation
spectroscopy (Fig. 2.30 D), corresponding to a trap depth of𝑈0 = ℎ×11.7MHz = 𝑘B×0.56mK.
At this lower depth, however, the averaged loading efficiency is slightly decreased from 58(2)%
to 55(2)%, which could indicate that the blue shielding is indeed assisted by a change of the
quantization axis from the tweezers itself. We note that this measurement was performed in
a square tweezer array consisting of 5 × 5 tweezers at a distance of 10 µm to each other. We
therefore attribute the larger loss rates in deeper tweezers mostly to imperfect homogenization
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Figure 2.30 | Characterization of the 532 nm tweezer array. A Fluorescence image of a single tweezer,
imaged with 399 nm light. A Gaussian fit to the raw data yields waists ofw0,x = 348(11) nm andw0,y =
412(14) nm, showing astigmatism. The expected waist from a diffraction-limited beam is 339 nm. The
panel on the right displays a bicubic interpolation of the fitted data. B Image of a 10 × 10 array, spaced by
5µm. Despite averaging over 50 individual images one can see inhomogeneous brightnesses, owing to
imperfectly balanced tweezer powers affecting both the loading and cooling fidelity. C Histogram of a
typical 5×5 array after 50 ms exposure time and 80 averages. In the first image (dark blue), the single-atom
peak is well-separated from the peak that indicates a vacant tweezer. From a double-Gaussian fit (dark
solid line) we can estimate the imaging fidelity. The molasses cooling further allows to retain more than
50% of the atoms in the tweezers. The histogram of initially occupied tweezers is displayed in light blue,
indicating a loss rate of ≃ 1(1)%. Inset: The tweezer-resolved loss rates show that only few tweezers
account for the majority of all losses. The relative shift of the peaks for the first and second image is
due to background light impinging on the camera before the actual image is taken. D Trap frequency
measurement in≃ 7 mW deep tweezers using modulation spectroscopy. In the dark blue sequence the
modulation parameters were chosen to clearly resolve the longitudinal resonance, which saturates the
resonance at the radial trap frequency. In a separate measurement (light blue) the modulation is then
adjusted to display the radial resonance well. The solid line is a linear interpolation. E Release-recapture
measurement for a varied release time during which the tweezer is off. The probability of a recapture
event depends on the atomic temperature. A Monte Carlo simulation fit (solid line) yields a temperature
of 58(2)µK. F Lifetime of uncooled atoms in the tweezer array. The 1∕e lifetime of 33(1) s is obtained by
an empirical Gaussian fit (solid line) and agrees with the result of a single exponential fit within error bars.
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of the tweezer arrays, which is also observed in a spatial map where some tweezers show
multiple loss events while a majority exhibits vanishingly low rates.

The homogenization algorithm of the array is based on a reference camera image and uses
a simple PID loop to adjust the RF power of the individual tones sent to the AODs, while the
phases are chosen randomly and equidistantly. Typically, within 3 − 5 iterations we reach
an intensity distribution with a standard deviation of 𝜎 ≲5% according to the camera image.
Owing to the complex imaging process, this can translate into larger inhomogeneities in the
actual tweezer depths, which is why one would perform a calibration of the camera image
once maximally power-balanced tweezers are required [82].

Analogously to the lattice case, we can also perform lifetime measurements in the tweezers
where we scan the hold time of the atoms in 𝑃 ≃18mW deep tweezers. This measured lifetime
of 𝜏 = 33(1) s can likely be extended by intermittent molasses cooling cycles to balance heating
from the tweezer itself [199]. Eventually, we can employ the release-recapture technique to
determine the temperature of the atoms [265]. Here, we quench the tweezer light off for a
variable amount of time and observe the number of atoms that are retained after the tweezer
array is restored. Very cold atoms will not travel far horizontally in the short time of flight
and can thus be recaptured even after longer wait times. Notably, a gravitational drop beyond
the depth of field will always constitute a limit on the maximum achievable release time. As
we did not cool the atoms for this measurement after they were imaged for the first time to
determine which tweezers are occupied, this informs on the imaging-induced heating and its
compensation by the molasses cooling. We quantify the temperature by performing a classical
Monte Carlo-based fit to the data. The fit model samples a given number of atoms — in our
case 106 — and stochastically assigns a position and velocity vector relative to the tweezer
center according to a Boltzmann distribution [265],

∆𝐫x,z =
√

𝑘B𝑇
2𝜋𝑚𝑓r,l

(2.14)

and
∆𝐯 =

√
𝑘B𝑇
𝑚 , (2.15)

with temperature as the fit parameter and the tweezer trap frequencies of 𝑓r = 210 kHz and
𝑓l = 47 kHz as fixed input parameters. We propagate the atoms’ position and vertical velocity
during the period of free time of flight with a simple ballistic equation of motion, and we
can determine its final kinetic and potential energy at the time of the tweezer restoration.
By comparing this quantity to the trap depth, we can decide whether the atom counts as
recaptured or lost, and compare this outcome to the data. The fit then yields a temperature
of 𝑇 = 58(2) µK, in good agreement with the uncooled temperature in a similar experiment
with 174Yb [260]. Notably, this is larger than the mean temperature of atoms in the compressed
MOT, indicating that the atoms are quite hot after the exposure to imaging and cooling light,
and further measurements with varying imaging powers and different trap depths can likely
elucidate the onset of critical heating that leads to elevated losses during imaging and afterwards.
Similarly, in the future we can test the minimal temperature we can achieve with molasses
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Figure 2.31 | Imaging atoms in a 5 × 5 tweezer array overlapped with a 1D magic lattice. A Image of
the bare tweezer array, averaged over 50 iterations. B Single-shot image of atoms trapped in the 532 nm
tweezers and in a 759 nm 1D lattice. While the tweezers operate in a quasi-magic condition for the 3P1
cooling transition, the lattice potential is not cooling-magic and the atoms are quickly lost from the lattice
after scattering blue photons. We can thus not only detect the diagonally oriented lattice itself, but also
observe a large number of photon counts from escaping atoms on the lower right edge of the image, as
the imaging beam is irradiating the traps from above. Grey square: Region of interest in A.

cooling by adding a cooling pulse before the release, which should reduce the temperature
to 𝑇 ≃ 20 µK according to the results from [260].

2.7.5 Fluorescence imaging
Similar to fluorescence imaging in the tweezers, we can also collect photons scattered by atoms
in a lattice. This modality can be used complementary to absorption imaging and is particularly
useful in the context of single-site-resolved imaging. Without the necessary resolution or in the
case of atoms occupying several vertical lattice planes, such that a high fraction of atoms will
reside outside the depth of field, the retrieval of absolute atom counts from fluorescence images
is highly non-trivial as the number of scattered photons per atom is only reliably gaugeable
with separable histogram peaks. However, in contrast to absorption images it is possible to
generate fluorescence snapshots with very large signal-to-noise ratios (SNR) by selecting long
exposure times of a few 100ms, in case an appropriate cooling technique is applied to suppress
atom loss during imaging. Further, the high-NA objective and the very-low-noise qCMOS
camera in combination with a precisely aligned tube lens aid the fluorescence image SNR.
For the results in this thesis, we use the 399nm imaging beam that is also used for absorption
images to scatter blue photons. We note that it is also possible to use the 556nm 3P1 transition
for imaging, and in particular collect the photons that are scattered during molasses or Raman
cooling steps [63, 151]. This can increase the imaging efficiency as the lower recoil energy
and transition linewidth reduces the susceptibility to atom loss, at the expense of a larger
PSF. Notably, the proximity to the ground-state tune-out wavelength will strongly complicate
the necessary optics once all planned tweezer arrays are installed, which is why we aim at
continuing to use blue fluorescence light.

While it is possible to obtain a fluorescence signal of atoms trapped in a 1D lattice geometry,
the two weakly confined axes cannot hold the atoms against the quickly accumulated recoil
energy, and we can only observe a relatively weak signal. This was still found sufficient
to overlap the horizontal lattice arms onto the tweezer array (Fig. 2.31). In this image, the



106 Experimental design

molasses cooling detuning is chosen to be optimal for the 532nm tweezers, which is not the
ideal detuning for the 759nm lattice owing to the unequal differential 1S0 −

3P1 polarizability
and therefore the signal of atoms in the lattice is very faint. The polarizability difference in
174Yb is not irreconcilably large, though, and we suspect that a quasi-magic condition exists
where the polarizabilities are sufficiently small to allow for simultaneous cooling in both traps,
which will then allow for in situ optimization of the tweezer array alignment onto the lattice.
A similar quasi-magic condition is used for fluorescence imaging in the deep magic 3D lattice,
where the strong confinement along all three dimensions provides an ideal basis to retain the
atoms. This mechanism is described in the next Chapter.



CHAPTER 3

Ground-state cooling in a magic lattice

The existence of considerably large trap frequencies in optical traps with strongly confined axes
opens up a suite of cooling techniques that leverages the discrete vibrational level structure.
Among the oldest andmost commonly used cooling schemes are polarization gradient and gray
molasses cooling [30, 58, 262, 266, 267], which use a changing polarization of a harmonic trap
to create a Sisyphus process, where the atoms are excited when they acquire a finite potential
energy, but are repumped to the bottom of the potential, causing a net energy loss. Similarly,
Λ-enhanced gray molasses and electromagnetically induced transparency (EIT) techniques
transfer cooled atoms to dark states induced by two interfering lasers that couple multiple
ground states to a common excited state [264, 268, 269]. Even lower temperatures have been
reached with Raman sideband cooling schemes [60, 61, 250, 270–272], where two Raman
beams drive a transition to the sideband of a second ground state via a far-detuned virtual
excited state. Notably, all these cooling methods can be related to a Raman coupling process to
a lower motional state, where for the former judiciously designed light shifts supersede the
role of the two-photon detuning in Raman sideband cooling [273].

While these cooling schemes work well in spinful alkali atoms, they can only be partially
applied to the case of fermionic AEL atoms and cannot be used at all for spin-less bosonic AEL
isotopes such as 174Yb. Compared to a single demonstration of EIT cooling in 171Yb on the
556nm transition [274], Raman sideband cooling has been shown to be versatile and work
well in different trap wavelengths and configurations with this isotope [63, 72, 76, 275]. Spin-
agnostic cooling techniques such as Sisyphus cooling in traps with differing potential depths
for the ground and excited state have found widespread application in particular in Sr-based
experiments [64, 65, 233], but has also been demonstrated in 171Yb recently [276]. Resolved
sideband cooling using a single-photon transition to the red sideband of the excited state has
become similarly popular in AEL atoms, with very high ground-state fractions reached within
just tens or few hundreds ofms [62, 82, 234, 277, 278]. Notably, these cooling techniques can be
combined with a shelving trick of atoms in the motional ground state to convert the remaining
atoms in higher vibrational states to vacancies in the so-called erasure cooling scheme [279].

In this Chapter, we will delineate the first demonstration of sideband cooling in 174Yb,
based on a combination of a clock-state sideband transition and a dissipative deexcitation after
repumping to the 3D1 state. This allows us to reach nK temperatures and axial ground state
fractions in excess of 90% both in 1D and 2D optical lattice systems. Moreover, a pathway to

107
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an extension to 3D lattices and the applicability to fermionic isotopes is discussed, followed
by a concept to realize spin-polarized 171Yb atoms in the ground state via Raman sideband
cooling in a 3D lattice. Before delving into thesemethods to reach the absolutemotional ground
state, we start with a discussion of a molasses cooling technique on the 3P1 intercombination
line that enables high-fidelity fluorescence imaging in a magic lattice. Here, the missing
spectral resolution of the trap frequencies limits the minimal temperature to several µK, as
cooled atoms are not dark to the cooling light, but it allows for the fast reduction of entropy to
counteract heating induced by fluorescence imaging on the 1P1 transition. The results presented
in Sections 3.1 and 3.2 are in preparation for publication [103].

3.1 Molasses cooling

Collecting a vast number of fluorescence photons scattered by trapped atoms in a lattice is a
decisivemechanism for quantum gasmicroscopes, but can also help to boost the signal-to-noise
ratio for experiments without single-site resolution [36, 37, 120]. The pivotal prerequisite for a
large photon count is the balancing of scattering-induced recoil heating to retain the atom at
its original lattice site, which is why oftentimes the scattered photons of the cooling light itself,
e.g., from near-resonant molasses or Raman beams, are used [35, 249, 250]. In cases where
a transition is not suitable for cooling purposes because of its large linewidth, but favorable
over other transitions owing to its short wavelength, as is the case for the 1P1 transition in AEL
atoms, simultaneous cooling on a different transition is required. To this end, Sisyphus cooling
on the 3P1 transition has been demonstrated to allow for single-site resolution imaging on the
broad 461nm transition in an optical lattice using 84Sr [255]. In a similar vein, it has been
shown for 174Yb that molasses cooling on the 556nm intercombination line can counteract
the scattering of 399nm photons in a 532nm lattice [80], where the small lattice constant
necessitates the usage of such short-wavelength imaging light. In contrast to the Sisyphus
cooling method that is also commonly used in Sr tweezers [65], unresolved molasses cooling
on the broader 3P1 transition in Yb does not rely on but instead suffers from inhomogeneities
in the trapping potential. Therefore, the near-magic condition for this transition at 532nm
was found to be a decisive ingredient for effective cooling during fluorescence imaging, as it
allows for homogeneous cooling in the whole trap and for atoms in all bands.

For a clock-magic lattice at 759nm, so far no realization of efficient fluorescence imaging
has been reported, and the scalar polarizabilities of the 1S0 and

3P1 states are expected to vary
significantly at this wavelength, rendering the lattice non-magic for the cooling transition.
However, the magic angle that was found for 171Yb in optical tweezers at this wavelength
[72] as well as our polarizability model indicate the existence of a magic angle also at this
wavelength. This would render the 759nm lattice compatible with molasses cooling and allow
for high-fidelity fluorescence imaging with single-site resolution.
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3.1.1 Magic angle
Magic angles can generally be used for transitions that are less narrow than clock transitions,
but narrow enough that light shifts at the trap wavelength play a crucial role, like the 3P1
state. Here, one can adjust the tensor shift contribution to cancel the finite scalar differential
polarizability by selecting the appropriate direction of the magnetic field with respect to the
trap beam polarization. For optical lattices consisting of multiple beams at relative angles
to each other, the polarization is typically constrained, and the magnetic field vector needs
to be adjusted. Due to the limited stability and calibration accuracy of magnetic fields along
an arbitrary direction in most experimental apparatus, this method is more coarse than the
usage of a carefully measured magic wavelength, whereas for single-beam traps like 1D lattices,
optical dipole traps, or tweezers it can also be possible to rotate the polarization and keep the
magnetic field fixed [280]. Hence, the magic angles reported for Yb have been determined
with a precision on the level of ∼ 1◦ [72, 80]. This precision, however, entirely suffices for
typical trap depths in ultracold Yb experiments, given the comparably broad linewidth of
the 3P1 transition. Similarly, our determination of the absolute magic angle for

174Yb in the
clock-magic lattice is restricted by our magnetic coil calibration uncertainty on the order of
a few percent, as discussed in Chapter 2.2.

Following the standard approach of near-magic spectroscopy, we observe the light shift of
the three 3P1 resonances, corresponding to transitions to the 𝑚𝐹′ = 0,±1 states, increase or
decrease at a given lattice wavelength and angle between the magnetic field and the lattice
beam polarization as the lattice power is ramped up (Fig. 3.1 A, inset). Vitally, this requires a
clearly defined, uniform polarization across the whole lattice, which is why we use a matching
vertical polarization of the horizontal lattice beams, and we turn the horizontally polarized
vertical lattice off during this spectroscopic measurement. Similarly, the magnetic field is
chosen to be as strong as possible to reduce the lattice-induced tilt in the local quantization
axis as observed in Fig. 2.4 B, where the uncooled transverse coils impose a limit of 4.8G.1
This restricts the magnetic field vector to rotations in the vertical plane orthogonal to the
main chamber axis. Utilizing the time-of-flight method developed in Chapter 2.2.1 and a brief
spectroscopy pulse, we can confirm the zero position of the 𝜋 transition, determined by fits
to the corresponding spectra with a Lorentz distribution (Fig. 3.1 A). As we ramp up the 2D
lattice power during the spectroscopy pulse, we start to observe the characteristic resonance
shifts, whose slope significantly varies for different polar magnetic field angles 𝜃. In particular,
for an angle of 𝜃 = 38◦ the light shift almost vanishes. However, as the total lattice power
exceeds 𝑃 ≃3.5W, corresponding to a lattice depth of 𝑉 ≃1000𝐸rec, a systematic curvature
towards lower frequencies appears. This curvature is found to be more severe for smaller 𝜃,
which agrees with our expectation that the vertical electric field generated by the lattice beams
competes with the external magnetic field [281]. To model this behavior, we use a second
order polynomial function without any constant term and fit the data, such that we obtain
a linear and a quadratic light shift contribution. While the quadratic shift does not contain
actual physical information and is an artifact of the weak external field, we can use the fitted

1While the transverse coils can be water-cooled, persistent technical difficulties with a chiller so far did not
allow for the usage of higher currents in this coil pair.
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Figure 3.1 | Magic angle spectroscopy for a moderate magnetic field. A The shift of the π transition to
the 3P1,mF′ = 0 state is probed for various lattice powers and magnetic field angles with respect to the
vertical polarization of the two lattice beams (inset). While the resonance shift follows the anticipated
linear dependence for low lattice powers, a quadratic trend sets in for lattice depths above V ≃1000 E rec,
corresponding to a combined lattice power of P ≃ 3.5 W. We thus fit the data for each angle with a
quadratic function without offset (solid lines). B Using the fitted linear component (the color indicates
the corresponding data in A), we observe a zero crossing of the differential Stark shift at θ = 37.0◦,
obtained from a linear fit (dark green solid line). Over this range, the linear approximation deviates only
slightly from the correct scaling Vac ∝ 3 sin2

θ − 1 (Eq (3.1), light green). Inset: The quadratic deviation
from the purely linear light shift decreases for larger magnetic field angles, where the overlap with the
lattice-induced magnetic field becomes larger. C To investigate the systematic uncertainty accompanied
by this magnetic field tilt we fit a purely linear function without offset to subsets of the data in A. Starting
with the lowest lattice power datapoints, we iteratively extend the fit range towards higher powers, which
thus lead to a change in the fitted light shift and to a different zero-crossing. Extrapolating this trend to
the y-axis intercept with a linear (θl) and quadratic (θq) function, we obtain a deviation of 0.2◦ compared
to θmagic.

linear component to extract the magic angle. We can use Eq. (1.31) to find the Stark shift
dependence on 𝜃 for a fixed wavelength and obtain

∆𝑉ac(𝑚𝐹′) = − 𝐼
2𝑐𝜖0

(∆𝛼(0) + 𝛼(2) 3 cos
2 𝜃 − 1
2 (3𝑚2

𝐹′ − 2)) + 𝜇𝐵𝑚𝐹′ , (3.1)

where we made use of the fact that the ground state does not exhibit any tensor shift and the
vector shift is zero for a linearly polarized lattice. In addition, the Zeeman splitting of the
𝑚𝐹′ = ±1 states is taken into account. For the 𝜋 transition, this reduces to a cos2 𝜃 dependence,
which we can use to extract a zero crossing at 37.1◦. However, the narrow angular range of the
data does not support this model well, owing to the expected minimal curvature at these angles.
Therefore, one can approximate this dependence to be linear, which yields a magic angle of

𝜃magic = 37.0(1.5)◦. (3.2)

While the statistical uncertainty of 0.09◦ is small, we have to take the more sizeable systematic
uncertainty from the resonance shift curvature into account. To gauge this effect, we use a
purely linear fit to the weak-lattice subset of the data and determine the zero crossing of the
resulting light shifts. We can now increase the lattice power threshold up to which we fit
the data and observe an ever decreasing extracted value for the root (Fig. 3.1 C). In this vein,
we can extrapolate the trend to the hypothetical zero crossing at a vanishing lattice power
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Figure 3.2 | Magic angle spectroscopy at low magnetic field amplitudes. A Bending of the 3P1 π transi-
tion for a magnetic field strength of B = 1.5 G and various field angles θ relative to the vertical polarization
of the lattice beams as the lattice power is increased, causing a tilt of the local quantization axis. At this B
field amplitude the quadratic resonance shift overwhelms the linear component even at low lattice pow-
ers, preventing a meaningful extraction of the magic angle. B Resonance shifts of the threemF′ transitions
in a 1100 E rec deep 2D lattice upon changing θ, probed with a circularly polarized spectroscopy beam
with a minimal angle of≃45◦ to the magnetic field vector. We fit the resonances with three Lorentzian
distributions and use Eq. (3.1) to extract the ratio of ∆α(0) and α(2), assuming the coil calibrations to be
precise such that the Zeeman splitting is not a free parameter. Displayed as solid lines are the correspond-
ing fits. C The fitted resonance positions and the polarizability fit as a function of θ as determined in B.
The magic angle of θmagic = 37◦ is indicated with a white hexagon, and its error bar does not contain
the contribution from the coil calibrations, since the datapoints use the same calibration factors. The
remaining error bars for this Figure are determined from the resonance fit uncertainty and are smaller
than the datapoints.

and obtain a value of 36.88◦ for a linear extrapolation and 36.81◦ for a quadratic fit. Using
the larger deviation from the latter, we receive a systematic uncertainty of 0.2◦. This value,
however, is overshadowed by the uncertainty stemming from the magnetic coil calibration,
with relative uncertainties of 1.6% and 3.7% for the main and transverse coils, respectively.
The resulting accuracy of the applied magnetic field angle around 𝜃magic is thus 𝛿𝜃 = 1.1◦,
taking the root mean square of the two individual uncertainty contributions. Almost negligibly
small is the effect of the uncompensated geomagnetic field along the orthogonal direction,
which amounts to 0.07◦.

We note that this measurement result agrees with the expected value of 37.8◦ from the mea-
sured magic angle of 𝜃magic ≃17◦ for the 𝐹′ = 3∕2, 𝑚𝐹′ = 1∕2 transition in 171Yb [72] within
the error bars. For this calculation we neglect the isotope shifts of the dominant transitions,
which are typically on the order of a few GHz and thus insignificant at this wavelength.

To study the Stark shift of all three𝑚𝐹′ transitions over the maximal accessible magnetic
field range, we rotate the externalmagnetic field into the plane parallel to themain chamber axis,
which we denote with the azimuthal angle 𝜙 = 0. Along this direction, the field strength is even
more limited to 1.5G, which is why the light shift curvature for the 𝜋 transition is prominent
even for low lattice depths (Fig. 3.2 A). Conveniently, this magnetic field strength puts the 𝜎±
transitions in its direct proximity, and we can observe the light shifts evolve as expected from
Eq. (3.1) in single spectroscopic measurements at a lattice depth of 𝑉 ≃1100𝐸rec (Fig. 3.2 B-C).
In particular, this confirms the measured magic angle within the measurement uncertainty.
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3.1.2 Near-magic narrow-line cooling in a clock-magic 3D lattice

While the knowledge of the magic angle paves the way for magic molasses cooling during
fluorescence imaging in a clock-magic trap, this is complicated in our 3D lattice setup by
the horizontal polarization of the vertical lattice, which is chosen for optimal confinement
strength. Thus, it is impossible to reach the magic angle for atoms on every lattice site as the
local polarization axis will depend on the position within the lattice. However, as 𝜃magic is
close to 45◦ and the 3P1 transition is sufficiently broad, it is still possible to find a near-magic
condition that enables long exposure times with controllable atom loss in a very deep 3D lattice.
This leads to high signal-to-noise-ratio images with a four-fold increase in the detected photon
count compared to molasses-free imaging after 200ms exposure to a weak (𝐼 ≃10−3 × 𝐼sat) blue
imaging beam and two horizontal, retro-reflected molasses beams at 𝐼 ≃ 0.8 𝐼sat (Fig. 3.3 A).
Here, the stark contrast in the relative intensities is governed by the almost two times larger
recoil energy for 399nm photons as well as the substantially larger scattering rate compared to
the narrow 556nm transition. We find this effective magic condition for an orientation of the
magnetic field with a polar angle of 𝜃 ≃60◦ and and azimuthal angle of 𝜙 ≃60◦. Remarkably,
this is in disagreement with our intuition, in particular given the worse cooling performance
right at the measured magic angle (Fig. 3.3 B) and the trend to vanishing differential Stark
shifts at smaller 𝜃 for deeper lattices. We attribute the discrepancy to the weak magnetic field
strength of 1.5G and the complex interplay of the orthogonally polarized horizontal and vertical
lattice beams at a total lattice depth of ≃4500𝐸rec, as not only the polar angle leads to a strong
shift of the relevant 𝜋 transition, apparent in the varying molasses cooling resonance, but also
the azimuthal angle 𝜙 (Fig. 3.3 C-D). In particular the latter decisively determines the width
and thus the effectiveness of the cooling feature, where large angles are strongly preferred.
This is congruent with the expectation that a magnetic field in the plane spanned by the two
polarization vectors satisfies the near-magic condition best. Close to the optimal configuration,
the molasses resonance right below the 𝜋 transition can be identified as a sharp peak. At this
frequency, the cooling light is sufficiently far red-detuned from the carrier transition to mostly
drive the red sideband. Given the natural linewidth of 𝛾 = 183 kHz ≃𝑓l, atoms that are cooled
to the ground state will still scatter photons, i.e., the cold atoms are not fully dark and will
thus gain recoil kicks, and in particular the probability of sideband heating via blue sideband
transitions is not negligible. This limits the minimal achievable temperature to several µK [80,
273]. Remarkably, we also notice a second, broader feature red-detuned from the 𝜎− transition,
spanning almost 4MHz in total. We identify this peak as the molasses cooling resonance next
to the inhomogeneously broadened transition to the 𝑚𝐹′ = −1 state, where we can keep a
subset of the atoms at certain trap depths cold, such that they remain in the lattice longer
and scatter more photons, while atoms on a different equipotential surface are detuned. We
anticipate this feature to allow for the study of the trap depth homogeneity once our setup
enables single-site imaging [282], which is currently hindered by the occupation of several
vertical lattice planes. Atoms in off-center planes are out of focus and therefore contribute
with a blurred PSF, obfuscating the signal of atoms in the in-focus layer. A potential method to
reach the occupation of a single 2D plane within the 3D lattice is described in Section 3.2.3.

Furthermore, we note that we observe the molasses cooling effect also for horizontally
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Figure 3.3 | Near-magic molasses cooling condition in a clock-magic 3D lattice. A The sharp molasses
cooling resonance appears slightly red-detuned from the π transition, which however is shifted by the
3D lattice compared to the free-space resonance. The solid line is a Lorentzian fit serving as a guide to
the eye. On resonance, due to a spectral filter in front of the camera the number of collected photons
is slighly reduced compared to the far-detuned and thus uncooled background photon count. Notably,
next to the σ− transition a second, weaker and broader cooling resonance is visible, displaying the spatial
inhomogeneity due to the non-magic condition. Since the vertical lattice beams are horizontally polarized
(right inset), the polarization symmetry of the 2D lattice is broken and it is not possible to reach the magic
angle for the whole lattice. Introducing the azimuthal angle φ relative to the vertical lattice wavevector
allows us to find a near-magic condition sufficient to enable efficient cooling. Left inset: Fluorescence
image with 399 nm imaging light of a molasses-cooled cloud. B Angular dependence of the near-magic
magnetic field vector. For a polar angle close to θmagic the horizontal lattices experience a satisfied magic
condition, but the vertical lattice is non-magic if the magnetic field is aligned orthogonal to its polarization
φ = 0. For larger azimuthal angles the vertical lattice starts to become magic and an optimal condition is
found at θ ≃φ≃ 60◦. C For a fixedφ ≃60◦, varying the polar angle does not lead to significant changes of
the cooling efficiency. Instead, only a shift in the optimal cooling frequency is observed. D In contrast, the
non-magic vertical lattice at θ = θmagic and for small φ also affects the number of scattered photons, in
agreement with B.

polarized lattice beams at a similar polar angle, but with a reduced efficiency, such that the
imaging beam intensity has to be reduced and less photons are scattered within the same
exposure time. While a precise photon-atom count calibration without single-site resolution
is complex and therefore still pending, we estimate a collection of ≃25 photons per trapped
atom within 200ms in this case, while we seem to detect up to ≃50 photons per atom in the
case of vertically polarized horizontal beams.

In some cases it might be worthwhile to reduce the exposure time, e.g., in the case of
state-selective imaging of 𝑔 and 𝑒 atoms. As discussed in more detail in Chapter 4.3, the
clock-state atoms suffer from a fast loss process in the deep imaging lattice by means of a
Raman transition to the 3P1 and

3P2 states via the
3S1 state, where the former transfers the
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atom back to the ground state. Hence, the observed ratio of ground- and clock-state atoms
from fluorescence images is skewed, and in particular the number of remaining clock-state
atoms after long-exposure images of the ground-state fraction can be very low. Due to technical
reasons it is not possible to controllably select a longer exposure time for the second image2
and we therefore either use shorter exposure times of only 50ms, or we independently detect 𝑔
and 𝑒 images in alternating shots by toggling a strong resonant “blow-away” pulse on the 1P1
transition, followed by a repumper pulse before the imaging starts. In the former case, we can
afford a larger imaging pulse intensity, as a faster heating rate is outweighed by an increased
scattering and photon collection rate. To ensure that we do not accidentally image ground-state
atoms during the second exposure time, we stop the molasses cooling 30ms before the end of
the first imaging duration to gradually remove all ground-state atoms from the trap as they
scatter 399nm photons, akin to a blow-away pulse. However, for the results shown in this
thesis we mostly rely on separate imaging of atoms in the ground and clock state due to the
significantly larger signal-to-noise ratio we can achieve via the long exposure time.

Recently, very fast fluorescence imaging of Er atoms trapped in an optical lattice and
tweezers on the 30MHz wide 401nm transition using two counter-propagating high-intensity
beams has been demonstrated, based on earlier work in Li [283–285]. The scattering of
tens of photons within just a few µs is made possible by free-space imaging and alternating
brief pulses from opposing directions, only causing a moderate momentum spread from the
diffusive random walk motion upon re-emission of a photon instead of fast acceleration in
the propagation direction of a single imaging beam. While this momentum spread prevents
a direct compatibility with single-site-resolved imaging in our magic lattice, we expect it to
yield a similar signal in the homogeneously loaded 3D lattice with the benefit of a strongly
reduced imaging duration. However, the counter-propagation of the second beam would not
allow for the simultaneous usage of the current absorption imaging setup (Fig.2.7 A), which
is why this fluorescence modality has not been tested yet.

3.2 Resolved sideband cooling on the clock transition
In contrast to the 7 kHz wide 3P1 transition in Sr, the 556nm transition in Yb is not narrow
enough to resolve the trap frequencies, the prerequisite for resolved sideband cooling, in any
typical optical lattice or tweezer array. Instead, in order to target a sideband transition one has
to resort to the much narrower clock transitions or perform two-photon Raman transitions
as discussed in Section 3.3. For the former, the lack of spontaneous decay within viable
experimental timescales demands for a different dissipative step to remove the entropy from
the system. Choosing the 1S0 →

3P0 transition, the
3P0 →

3D1 repumping transition is an ideal
candidate due to the reasonably large linewidth of Γ = 2𝜋 × 308 kHz, which can be easily
power-broadened to several tens ofMHz, the favorable branching ratios with only marginal
losses into the dark and untrapped 3P2 state, and the long wavelength of 1389nm, entailing a

2Owing to the absence of a physical shutter, the camera records photon counts even before the trigger to start
the exposure is sent. Therefore it would be possible to send a late trigger after some precursory exposure, but this is
less controlled and can lead to systematic errors.
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Figure 3.4 | Clock-transition sideband cooling in Yb. The very narrow linewidth of the 3P0 transition
allows to resolve the individual sidebands even in comparably weak magic optical traps, such that we
can selectively drive the red |||g, n⟩→ |e, n − 1⟩ or blue |||g, n⟩→ |e, n + 1⟩ sideband transitions, which are
detuned from the carrier by the trap frequency along the clock beam wavevector,±fl. For a transition to
the red sideband, this step initiates the cooling process, which is followed by incoherently driving the
repumping transition to the 3D1 state, until the e atom has either decayed back to the ground state or is
stuck in the dark 3P2 state. Since this dissipative process is strongly agnostic of the motional state, the
atom has lost the kinetic energy hfl after a full cycle. Once the motional ground state has been reached,
the red sideband cannot be driven, rendering the cold atoms dark to the cooling light.

low recoil energy of ℎ × 595Hz. Tuning the frequency of a clock beam to the red sideband, one
can then drive the |||𝑔, 𝑛⟩→ |𝑒, 𝑛 − 1⟩ transition, and a subsequently or simultaneously applied
repumper pulse will transfer the atoms in the clock state predominantly back to |||𝑔, 𝑛 − 1⟩ via
the 3P1 state, as the radiative decay preserves the motional state owing to the suppression of
blue and red sideband transitions by a factor of 𝜂2(𝑛+1) and 𝜂2𝑛, respectively [273]. Repeating
this process therefore iteratively reduces the axial harmonic oscillator level by one quantum.
Atoms in the motional ground state, however, cannot be addressed by the clock beam anymore
and are thus dark to the cooling beams. This enables one to reach considerable ground-state
fractions along the cooled, strongly confined axis [278]. In particular, even temperatures below
the recoil limit of 𝑇 = 410nK for the decay cascade can be achieved, as the collection of recoil
momenta is impeded by the lattice band gap.

While this scheme works very well along the axial direction of a 1D lattice, cooling atoms
also along the weakly confined axes requires more elaborate schemes involving counter-
propagating clock beams to address specific velocity classes of the Doppler-broadened radial
spectra [126], or lattices blue-detuned from the 1389nm 3P0 →

3D1 transition to enable a
Sisyphus cooling process driven by a clock excitation to the repump lattice potential minima
[276]. However, both methods necessitate two orthogonal beam pairs, each consisting of two
counter-propagating beams, along the weakly confined directions, which can be unfeasible
due to limited optical access along these directions in certain experimental setups, especially
in combination with high-NA objectives. We therefore introduce a simple extension of the
basic 1D sideband cooling scheme with single longitudinal clock and repumping beams to
show 3D cooling of 174Yb atoms by means of lattice-quenched rethermalization in Section 3.2.1.
In Section 3.2.2 we further delineate resolved sideband cooling in a higher-dimensional lat-
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tice, which has not been demonstrated for Yb so far. Section 3.2.3 then offers an outlook on
reaching the 3D motional ground state by extending this method to the vertical direction.
We further discuss the possibility to use this method to load a single vertical lattice plane via
momentum refocusing, which would allow for the first demonstration of single-site resolved
imaging of Yb in a magic lattice.

3.2.1 Rethermalized 1D sideband cooling
For 171Yb, the finite clock transitionmatrix element allows for a relatively strong coupling, with
carrier Rabi frequencies exceeding 10 kHz. Correspondingly, the red sideband, where the Rabi
frequency is modified by a factor of 𝜂

√
𝑛, can also be addressed with sub-ms pulses. The broad

distribution of trap frequencies experienced by 𝑇l ≃ 10 µK cold atoms in a 1D lattice during the
sideband pulse leads to the well-known long tail towards the carrier [166], which leads to an
incoherent sum of detunings for the sideband pulse, preventing coherent Rabi cycles on this
sideband transition. Therefore, the simplest cooling strategy involves a continuous application
of the clock and repump beams, where a moderate intensity of the latter ensures a controllable
light shift on the clock transition. Since the excitation to the 3D1 state is typically still faster
than the sideband Rabi frequency, this process is mostly limited by the sideband addressing
rate and can quickly decrease the mean longitudinal temperature, such that a ground state
occupation of >90% can be reached within tens ofms [278]. As an alternative, one can use
a sequence of interleaved clock and repump pulses, where each pulse duration is chosen to
reach a near-saturated population transfer.

While the general scheme can be readily carried over to cool 174Yb atoms, the clock Rabi
frequencies are inherently limited by the applied magnetic field strength. With our experimen-
tal setup, where we can reach up to 400G and 300mW of optical power in the clock beam,
this leads to a saturation of the sideband excitation after ≃ 1ms at a detuning of −80 kHz
from the carrier in a ≃ 580𝐸rec deep lattice with co-propagating clock and repump beams.
However, even with a 0.5ms long clock pulse, about 75% of the saturated sideband population
can be addressed. For ≃ 2mW of 1389nm light, we are able to repump all atoms from the
clock state within 0.5ms, such that we can choose a duration of 1ms for each cooling pulse
pair, using the sequential cooling method and the most efficient clock pulse duration. As we
repeat this cooling pulse sequence, we observe a marked reduction of the red sideband height,
which is indicative of a lower longitudinal temperature. For a pulse train consisting of 30
clock and repumper pulses each, we reach temperatures of 3.1(2) µK and 15.4(3) µK along
the longitudinal and radial directions, compared to initial temperatures of 𝑇l,0 = 9.3(6) µK
and 𝑇r,0 = 11.7(4) µK (Fig. 3.6), where we have “pre-cooled” the cloud by spilling the hottest
atoms after loading the lattice by reducing the lattice depth to 290𝐸rec for 150ms. Here, the
temperatures are determined from a fit with the approximative Eq. (2.9) to both the full side-
band spectrum as well as a zoom-in on the blue sideband. We can extract both 𝑇l and 𝑇r from
each fit, but as the ratio of the areas below the red and blue sidebands is a precise gauge of
the longitudinal temperature here we rely on the fit to the full spectrum. Similarly, the finely
resolved blue sideband contains more accurate information about the radial temperature —
with the exception of the uncooled dataset, where both radially and axially high temperatures
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Figure 3.5 | Rethermalized clock sideband cooling in a 1D lattice. A Schematic of the experimental
sequence. At a strong magnetic field of 400 G we address the red sideband on the clock transition with
0.5 ms short pulses, followed by equally short 1389 nm repumping pulses. After 30 repetitions the atoms
are sufficiently close to the motional ground state and we wait for the atoms to redistribute the radial
kinetic energy via elastic collisions. To enhance the collision rate the lattice depth is ramped up to
≃1500 E rec. The coils are turned off during the wait time to minimize the heating from the high currents.
This process can be repeated multiple times to reduce the radial temperature. B Sideband spectra of the
atomic cloud before (dark blue) and after 20 cycles of rethermalized sideband cooling (light blue). The red
sideband is virtually suppressed and the width of the blue sideband is strongly narrowed, indicative of the
temperature reduction. The temperatures are determined by a fit with Eq. (2.9) (solid lines). C Modulation
spectroscopy measurements of the cooled sample show narrow heating resonances in the 1D lattice used
for sideband cooling (light blue). Upon switching to the second horizontal lattice after a hand-off in a
2D lattice we observe a significantly broader resonance (dark blue), demonstrating the heating caused
by the change in the lattice dimensionality. The solid lines are a linear interpolation. D While the Rabi
oscillations suffer from limited excitation ratios and fast motional dephasing in an uncooled cloud, clock
pulses after sideband cooling yield almost full-contrast oscillations with significantly longer decoherence
times of≃30 Rabi cycles, as obtained from damped sinusoidal fits (solid lines).

lead to a partially ambiguous result with correspondingly large statistical uncertainties, which
is why we rely on the well-resolved result from the full spectrum for 𝑇r,0. At this point, we
observe a slight change in the shape of the blue sideband, as the lower longitudinal mean
vibrational state ⟨𝑛l⟩ leads to a sharper high-frequency cut-off trend, while the low-frequency
tail grows. We note that this observed increase in the radial temperature can be expected as
an effect of recoil kicks along the weakly confined directions from the spontaneous decay
cascade. Further increasing the number of cooling pulses to ≃50 leads to a fully suppressed
red sideband, with longitudinal temperatures of ≲ 1 µK.

Remarkably, we observe a reappearance of this sideband if we introduce a wait time of
≃ 50ms before the 20ms long, incoherent sideband pulse, accompanied by a visible reduction
of the blue sideband extent, which furthermanifests for longerwait times. This is an effect of the
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Figure 3.6 | Temperature evolution for different rethermalization cycle numbers. A Starting with a
slightly colder cloud as in Fig. 3.5 B by spilling the hottest atoms, we see a marked reduction of the
red sideband amplitude after the first sideband cooling pulse train. At this point, the blue sideband
mostly reflects the different longitudinal temperature. However, as we apply more cooling cycles with
interleaved rethermalization periods, not only does the red sideband fully vanish, but also the blue
sideband is compressed. B Zooming in on the blue sideband, we can clearly observe the step-wise
reduction of the radial temperature resulting in a narrowing sideband resonance. C By fitting the full
sideband spectrum we extract the longitudinal temperature (top panel) as a function of the applied cooling
cycles. The fast reduction to Tl ≃ 3µK within a single cycle illustrates the effectiveness of the cooling
method along the strongly confined axis. For very low Tl the fit becomes sensitive to the single-shot noise
in A, limiting the accuracy of the fit. Bottom panel: From the finer resolution of the blue sideband in B
we can obtain the radial temperatures, showing an exponentially decreasing trend converging towards
a minimal temperature of Tr = 4.2(2)µK. For large axial temperatures, the fit to the blue sideband is
insufficient to distinguish the radial and temperature longitudinal contributions, causing a large statistical
uncertainty for the uncooled dataset. The fit to the full spectrum, in contrast, can utilize the red sideband
height to obtain a radial temperature of Tr,0 = 11.7(4)µK.

considerable mean atom occupation per lattice layer of ≃230, which leads to myriad collisions
and thus rethermalization among the spatial dimensions. Notably, due to the longitudinally
lower temperature the atoms initially propagate in an almost fully 2D plane, which enhances
the collision rate to ≃ 10 kHz. However, these elastic collisions mostly occur head-to-head,
such that the rethermalization is generally much slower. To intensify the speed with which
the radial kinetic energy is redistributed to the longitudinal direction, we find it useful to
increase the lattice depth to ≃ 1500𝐸rec, where the rethermalization time is approximately
halved to a 1∕𝑒 time of ≃ 40ms. This can be explained by the lattice depth dependence of
the localization of the Wannier functions around the potential minimum, since this lattice
quench augments the overlap of the atomic wavefunctions along the strongly confined axis.
We note that we observe a simultaneous rise of the longitudinal steady-state temperature by
0.6(3) µK, but no indication of collision-induced atom loss.

Performing a second sequence of sideband pulses after a wait time of ≃ 100ms, where
the rethermalization trend is found to have saturated, we can again cool the atoms close
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to the longitudinal motional ground state with a fitted temperature of 𝑇l = 2.2(2) µK, but
we simultaneously detect a reduced radial temperature of 𝑇r = 13.1(3) µK. We turn the
strong magnetic field off during the waiting period to minimize the effective duty cycle, since
otherwise the coils cannot be sufficiently cooled. This process can be repeated, which leads to
a continuous shrinkage of the width of the blue sideband. We quantify this reduction to entail
an exponential reduction of the radial temperature, while the red sideband vanishes within
four cooling cycles to below the detection limit we can achieve without multiple averages.
We note that the extracted values for the longitudinal temperatures in Fig. 3.6 C are likely
overestimates as we have to restrict the fitting range from below to ensure the convergence of
the fits for most datasets with no distinguishable red sideband amplitude. After 20 cycles we
then see an asymptotical radial temperature of 4.2(2) µK, indicating that at this temperature
the collision rate has decreased to a value that is no longer sufficient to redistribute the kinetic
energy within the chosen wait time.

Fig. 3.5 B demonstrates the difference in the sideband spectra between an uncooled cloud,
where we did not apply any spilling of hot atoms, and a sideband-cooled sample. From the
carrier peak height we can further deduce an upper bound on the incurred losses from the
cooling, which we estimate to be ≃15%, which agrees with the fraction of 2.6% of repumped
atoms that decay to the dark 3P2 state for an initial longitudinal mean occupation number of
2.9 and four additional cooling cycles that are on average necessary due to the rethermalization
from the radial directions. The mean radial occupation number at the final temperature is
⟨𝑛r⟩ ≃230, which is sufficiently low to also produce a very sharp parametric heating resonance
dip in amodulation spectroscopymeasurement (Fig. 3.5 C), reflecting the narrow blue sideband
owing to the significantly reduced excursions of the cooled atoms along the weakly confined
axis. However, this situation changes aswe transfer the atoms to the power-balanced orthogonal
horizontal lattice arm and perform the same measurement there, where we observe the typical
widened resonance. This demonstrates the adversary effects of changing the dimensionality
of the system for a substantial mean occupation number along this direction, which is then
mapped onto a larger temperature as the strong confinement is ramped up.

The effectiveness of the longitudinal cooling also enables a strongly improved clock state
addressing fidelity, as can be seen in Fig. 3.5 D. Motional dephasing of hot atoms in various
harmonic oscillator levels leads to both reduced 𝜋-pulse contrast and fast decay of the Rabi
oscillations, whereas in the cooled case up to 93% of the atoms can be coherently excited to
the clock state and the oscillations remain coherent for a 1∕𝑒 number of ≃30 cycles. While
the missing fraction to full-contrast oscillations can be partially traced to the remnant non-
zero harmonic oscillator level occupation, we estimate this to be the case for less than 2%
of the atoms. Instead, we attribute this effect to the presence of interaction shifts in the 1D
lattice planes as well as to original 𝑒 atoms that are repumped back to the ground state via
the 3S1 Raman channel during the imaging of ground-state atoms. In particular the latter can
amount to ≃ 8% spurious counts (Chapter 4.3, [120]) despite a short exposure time closely
following the clock pulse.3 The clock-state photon count, however, is biased by the fast inelastic
collisions of 𝑒-𝑒 atompairs in the 1D lattice. To avoid this, several techniques including coherent

3The wait time until we start the imaging is limited by the slow ramp-down of the magnetic field, which we can
compensate from 20ms after the end of the clock pulse (Chapter 2.2.1).
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delocalization in excited lattice bands and ratchet-like lattice loading methods from the MOT
have been developed to reduce the atomic density while maintaining large atom numbers
[120, 286]. We further notice that the dephasing time correlates with the inverse of the Rabi
frequency, i.e., with the time that atoms spend in the clock state, which underlines the role
of interactions in this process. Therefore, the clock excitation fidelity is aided by the spatial
separation of cold atoms in higher-dimensional lattices.

An additional observation pertains to the cooling performance in a very deep lattice. We find
that for trap frequencies and thus optimal cooling detunings of 𝑓l >100 kHz it is increasingly
hard to reach very low mean occupation numbers, with minimal ⟨𝑛l⟩ of 0.5 for a ≃2000𝐸rec
deep lattice. This effect could stem from the departure of the 3D1 state from a sufficiently near-
magic condition. Although the large power-broadened linewidth of the repumper transition
appears unlikely to be limiting, the light shift of this state at 759nm is essentially unkown and
could become significant in such deep lattices, which would cause a local dependence of the
repumping efficiency. The potential reason of the necessary overall longer cooling time due to
the smaller Lamb-Dicke factor can be excluded, as the cooling in the weaker lattice does not
show a worse performance upon a reduction of the clock beam power by the same amount.

While the results presented in this Section for the first time illustrate the feasibility of fast
resolved clock sideband cooling in 174Yb, a crucial disadvantage of the rethermalizationmethod
to reduce the 3D temperature of the sample is its dependence on the slow energy redistribution
process. This leads to total cooling sequence durations of up to 2.8 s, and theminimal achievable
temperature along the weakly confined axes is limited to a few µK. Therefore, a straightforward
extension of this technique involves direct sideband cooling along both horizontal lattices,
which will be discussed in the next Section.

3.2.2 2D sideband cooling
While we now know that sideband cooling on the clock transition can quickly remove kinetic
energy of atoms along the beam’s direction at a given lattice frequency, the different energy
landscape in the 2D lattice renders this methodmore challenging. Whenwe probe the sideband
spectrum along one lattice arm with uncooled atoms in a 2D lattice, we observe distinct
differences compared to the 1D case. As the most evident difference, the tails towards the
carrier extend significantly further and are not fitted well by Eq. (2.9) anymore. Also, the
second sidebands are clearly visible and do not possess a clear cut-off at 2𝑓l, but instead appear
smeared out, reaching well into the first sidebands. This behavior can be traced back to the
broken symmetry along the orthogonal horizontal direction, where the atoms cannot move
freely any longer, but are trapped inside tubes, while the motion along the vertical direction
is still only constrained by the weak Gaussian confinement. Therefore, in contrast to the
one-dimensional lattice we cannot approximate all lattice sites to be identical, since atoms that
are trapped in distant sites from the center experience a weaker maximum lattice potential even
when they travel to the center of their tubes. For a 40 µmwide atomic cloud in a 2D lattice with
horizontal beam diameters of 90 µm, we therefore obtain a substantially broadened distribution
of the maximum trap frequencies the atoms can observe. Since the clock spectroscopy beam
detects the projection of the local trap frequency onto its wavevector, i.e., it is only sensitive
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to the local contrast of the lattice arm parallel to the spectroscopy beam, this leads to an
even wider spread, where atoms can reside on lattice sites that appear shallow since the local
trapping potential is predominantly provided by the orthogonal lattice beam. Remarkably, this
allows us to directly discern deep from weak lattice depth projections as the brightness of the
fluorescence image spatially varies during the clock detuning sweep across the sidebands. The
resolution of this phenomenon is slightly obfuscated, however, by the atomic motion along
the vertical direction that adds the well-known radial-temperature-dependent tail feature to
the individual spectrum of each tube.

This necessitates a more complex treatment of the sideband spectrum, which takes the
initial size of the cloud with respect to the lattice beam waist along which the sideband is
probed into account. We further have to adapt the calculations for the lineshape contribution
of individual lattice sites to take the strong confinement along the second horizontal axis into
account, finding that the term linear in 𝛾(𝑛l)− 𝛿 in Eq. (2.9) vanishes as a result of the changed
density of states along the now singleweakly confined axis [103]. This compresses the size of the
radial tail for each lattice site. Additionally, we can safely neglect the very weak dependence
of the sideband distribution function on the temperature along the orthogonal horizontal
direction and treat the two strongly confined axes as independent of each other. While this
provides an analytical expression, the Gaussian lattice depth inhomogeneities in the horizontal
plane cannot be captured in a simple functional form. Therefore, we sample over a grid of
lattice sites of adjustable density to generate a discrete set of lattice depths, whose summed
contributions to the overall sideband spectrum areweightedwith aGaussian population density.
As this summation slows down the calculation severely, we typically constrain the grid size to
arrays of at most 30× 30 and discard the minuscule contributions from lattice sites at distances
larger than 3𝜎 from the center. As a side effect, this entails a peaky sub-structure on the
modeled sideband spectrum shape from the individual summands. We smoothen the peaks by
convolving over the fitted carrier linewidth to reduce the risk of fitting to data artifacts.

Crucially, this model requires independent knowledge of the cloud size with respect to the
lattice waist, since the broadening effects of this ratio and the radial temperature are too similar
to leave the former as a free fit parameter. We therefore use the extractedwaist of𝑤0 = 44(2) µm
from Chapter 2.6.2 and employ fluorescence images to fit a 2D Gaussian distribution and
extract an estimate of the cloud extent. For the lattice loading parameters we use for this type
of measurements we consistently find a cloud size of 𝜎 = 15(1) µm, which however might
be an overestimate due to the substantial spherical aberrations of atoms in vertical planes
far out of the depth of field. Using this value for our sideband model nevertheless, we find a
very good agreement with the data for the first sidebands (Fig. 3.7 D), whereas our theoretical
description of the second sidebands consistently appears to overvalue the actual strength
for high longitudinal temperatures. Since the second sidebands do not contain additional
physically relevant information, we do not investigate this further at this point and instead
restrict our evaluation to the first sidebands.

The inhomogeneous trap depths in the 2D lattice also demand for amore advanced approach
as we turn to sideband cooling. We find it no longer sufficient to use a single cooling frequency,
which only addresses a specific class of atoms in a certain spatial region of the lattice. A result
of this naive single-detuning technique is depicted in Fig. 3.7 B, where we can observe dent-like
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Figure 3.7 | Multi-tone sideband cooling in a 2D lattice. A In a simple extension of the 1D cooling scheme
to a≃750 E rec deep 2D lattice we apply a pulse sequence of up to 15 1 ms long clock pulses along one arm,
interleaved with repump pulses and followed by identical cooling steps along the orthogonal, intensity-
balanced horizontal lattice arm. Due to the trap depth inhomogeneity in the 2D lattice, further repetitions
of this cooling sequence at a different cooling detuning are necessary to address all atoms. Here, we
find six discrete frequency steps by−7 kHz, starting at−30 kHz and ending at−72 kHz, to yield very high
ground-state fractions. While the order with which the two horizontal directions are cooled does not show
any effect on the final temperature along each arm, we observe a clearly worse cooling performance if
the sign of the cooling detuning steps is changed. B Cooling at a single clock pulse frequency leads to a
clear reduction of the red sideband amplitude at this frequency and slightly below, illustrating the effect
of the lattice depth inhomogeneity on the total sideband spectrum. Here, the horizontal position of the
arrows indicates the chosen cooling detuning δ. C Varying the number of pulses per detuning step leads
to a fast initial temperature reduction along the cooling direction to≃5µK for three pulses, but we have
to apply 15 pulses to reach a temperature close to the asymptotic value of Tl ≃2µK at this lattice depth.
The radial temperature decreases slowly but linearly with the number of pulses, which we attribute to
thermalization as the total cooling duration increases. D From the corresponding sideband spectra we
can further learn that the cooling efficiency is not spatially uniform, as the red sideband for three cooling
pulses per cycle exhibits an irregular shape where the amplitude in the intermediate detuning regime is
only slightly reduced compared to the uncooled case. Thus, the overall cooling duration can likely be
reduced by adjusting the number of pulses for each detuning.

features in the red sideband below the cooling beam detuning, which highlights the limited
responsiveness of the 2D-trapped atoms. This is in contrast to the 1D lattice case where atoms
are free to move through the potential minimum even when they are radially hot, such that all
atoms can be addressed by a single cooling beam detuning just above −𝑓l. Therefore, effective
cooling of the whole sample in 2D requires pulses at variable detunings. A first attempt of
cooling pulses at three different frequencies, spaced by 10 kHz to cover a range from≃−70 kHz
to ≃−45 kHz, leads to a significantly improved result of ⟨𝑛l⟩ ≃ 0.4, where we hold the atoms in
a ≃ 680𝐸rec deep lattice with balanced horizontal lattice arms, such that the sideband spectra
obtained from clock pulse interrogation with the two co-propagating spectroscopy beams yield
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Figure 3.8 | Sweeping sideband cooling in a 2D lattice. A Instead of sending multiple cooling pulses
at a constant detuning as for the multi-tone cooling scheme, we can also iteratively change the cooling
frequency during each pulse train by performing a frequency sweep, starting with pulses at the onset
of the sideband close to the carrier and ending with a detuning of δ ≃ fl. Afterwards, we switch to the
orthogonal lattice arm and repeat this process. We find 15 pulses during each frequency sweeps to achieve
the best cooling performance. While the experimental realization utilizes two independent signals from
direct digital synthesizers (DDS) for the two clock beams, here we depict them as a single source for
reasons of clarity. B After ten such cycles (light blue), the red sideband is barely visible and we detect a
temperature reduction to Tl ≲1.5µK along both horizontal lattice arms compared to initial temperatures
of ≃ 13µK, which is determined by probing the sideband spectrum with both horizontal clock beams
independently and fitting the 2D sideband model, where we sum over 30 different lattice depths within a
cloud size of σ ≃15µm. The temperature along the weakly confined vertical direction is also substantially
reduced, owing to weak but present rethermalization in multiply occupied sites. The fit result for the
hotter sample however strongly depends on the cloud size, which is non-trivial to carefully assess with a
considerable number of lattice planes out of the objective’s focus.

the same trap frequency of 𝑓l = 74 kHz. Here, we use a similar pulse sequence to the 1D case,
however with a clock cooling pulse duration of 1ms, owing to the clock power distribution
among both horizontal beams, and with 20 pulses per cooling detuning. We note that we still
require only the repumper beam along lattice arm 1, since this dispersive process is agnostic
of any directionality. As expected, cooling along one lattice arm leaves the temperature along
the orthogonal direction essentially unchanged, but we can interleave identical cooling pulse
trains for both clock beams, i.e., apply a given number of clock pulses along the first arm before
switching to arm two at the same detuning, then switch back to lattice arm one at the next
detuning, until the sample is cooled down horizontally to a temperature of 𝑇h ≃2 µK. With
this tri-tone method, we however still observe a remnant red sideband, which we ascribe to
the imperfect addressing of atoms at even smaller detunings. We thus expand the range of
cooling detunings to seven values from −30 kHz to −72 kHz, spaced by 7 kHz. As most atoms
are addressed by more than one pulse sequence due to the long radial tail, we reach near-
asymptotic longitudinal temperatures of 𝑇l ≃1.5 µK after 15 pulses, and even for a single clock
pulse per frequency step along each axis we observe a significant reduction of the horizontal
temperature (Fig. 3.7 C). We further detect a linearly decreasing radial temperature as the
number of pulses grows, which is consistent with slow rethermalization during the longer
overall cooling duration. This redistribution of energy is much weaker than for the 1D lattice
as the occupation per 2D lattice site is substantially lower, such that a considerable fraction
of atoms can only collide with other atoms after randomly tunneling to adjacent populated
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sites. Hence, we detect only minimally reappearing red sidebands if we introduce wait times
of up to 2 s between the cooling sequence and the sideband spectroscopy pulse.

Assessing the magnitude of cooling-induced losses as a significant figure of merit for
the applicability of this scheme is substantially complicated in the 2D lattice case by very
fast inelastic 𝑒-𝑒 losses from doubly occupied tubes. After the horizontal cooling the atomic
wavefunctions are strongly confined to the center of each lattice site, such that the atoms
are bound to collide within few oscillation periods along the vertical direction, whereas the
uncooled atoms are much less likely to scatter. Experimentally, we can quantify this effect
by studying the combined 𝑒 + 𝑔 signal as a function of the delay between the clock excitation
and the repump pulse, which shows a rapid loss within ≃5ms. Unfortunately, this timescale
is too fast for pure clock-state imaging, since we require a comparably long blow-away pulse
for residual 𝑔 atoms in this case, such that this collisional loss effect strongly dominates the
signal reduction for cold samples. We can inhibit these losses by adding a weak vertical lattice
after the clock pulse to separate the atoms before they can collide, such that we can gauge the
fraction of lost atoms to be slightly weaker than for the rethermalized 1D cooling. We expect
these losses to be largely recoverable by adding a repump beam resonant with the 3S1 transition
to regain the atoms trapped in the 3P2 state. In our case, the magnitude of the incurred losses
does not justify the additional complexity from such a beam.

Upon permuting the order of horizontal cooling axes we cannot identify any difference
in the sideband spectra with a given clock beam, which is in contrast to the markedly higher
temperatures if we reverse the order of detuning steps. This can be explained by the effect
that hotter atoms appear closer to the carrier and we thus increase the chances of addressing a
single atom multiple times in subsequent detuning cycles until it has reached the motional
ground state, while it is possible to accidentally disregard cooled atoms if the cooling beam
detuning is moved closer to the carrier.

To avoid this effect, we also test a slightly different approach, where the cooling beam
frequency is swept across the red sideband during a single pulse sequence, followed by an
identical sweep along the second lattice arm (Fig. 3.8 A). We can again repeat this process
multiple times until the ground state fraction is sufficiently large. While we mostly observe a
dependence of the final temperature on the total number of pulses, we find that very few cooling
pulses per sweep lead to a worse cooling performance as the frequency gap introduced by the
finite repump pulse durations gets too large. With 15 pulses per sweep and ten repetitions
we achieve longitudinal temperatures of 𝑇l = 1.3(1) µK in a ≃ 720𝐸rec deep lattice, and we
observe an even stronger reduction of the radial temperature compared to the septa-tone
cooling method. Notably, it does not appear straightforward to reach horizontal temperatures
below 1 µK, corresponding to an average harmonic oscillator state of ⟨𝑛l⟩ ≲ 0.1, with this
method alone. Reducing the lattice depth, however, allows us to reach nK temperatures, which
is in line with our observations in the 1D lattice where the cooling limit is similarly defined
by the lattice depth. This motivates a reduction of the lattice depth after the initial cooling
sequences, which is only fully effective if also the radial temperature is sufficiently low to
prevent spilling losses in the weaker lattice.
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3.2.3 3D sideband cooling

Having demonstrated multi-directional clock sideband cooling, the addition of a third cooling
direction in a 3D lattice appears natural. However, in our apparatus the magnetic field strength
along the horizontal plane we can generate with the transverse coils is limited to ≃25G. This
does not only impede the vertical clock sideband cooling in 174Yb, as the corresponding clock
pulses are required to be 16 times longer compared to the horizontal pulses in a 400G field,
which can only be partially compensated by a larger optical power in the vertical beam, but also
exacerbates the quest for an initial signal: Along the horizontal directions it is convenient to
use the lattice beams as a guide to achieve a decent initial overlap with the atomic cloud, which
typically yields a reasonable spectroscopic signal right away. For the vertical beam, we are
lacking this means of assistance, which is why a broadened clock transition would be helpful.
Therefore, it is expedient to switch to 171Yb, where the magnetic field strength requirements are
markedly less stringent and larger Rabi couplings can be achieved. Unfortunately, recurring
technical issues with the water chiller for the main coils prevented us from exploring the
clock coupling along the vertical axis. Therefore, this Section is restricted to a theoretical
discussion of the expected sideband shape from the vertical lattice and its implications on
vertical cooling avenues.

Besides the smaller Rabi frequency in 174Yb, amajor difference for cooling along the vertical
lattice axis is the weaker longitudinal confinement, which also results in a larger Lamb-Dicke
factor. While one would intuitively expect this to result in a poorer cooling efficiency, we
anticipate this effect to be secondary as we still reside well in the resolved sideband regime. In
addition, we conjecture from the reciprocally proportional lower temperature limit we observe
in 1D and 2D that the smaller light shift in the dissipative steps, which we suspect as the reason
for this limiting effect, may outweigh the increased chance of motional level-changing decay
processes. A third challenge is imposed by the significant harmonic confinement along the
vertical direction, which is in contrast to the negligible expansion of the horizontal lattice
beams due to the much larger Rayleigh lengthscale. This will result in resolvable vertical
lattice planes in the sideband spectrum for a sufficiently cold cloud, as displayed in [56]. In
addition, the radial motion is now fully suppressed, such that the sideband shape is now
purely defined by the discrete motional levels along each lattice axis as well as the further
enhanced inhomogeneous projections of the local lattice depths. Therefore, the sidebands carry
almost neglibly little information on the orthogonal temperatures, rendering 3D thermometry
necessary to obtain the temperatures along each lattice axis. For an uncooled sample in a 3D
lattice, this leads to a plateau-like sideband spectrum without any clear features apart from a
cut-off at the horizontal lattice trap frequency 𝑓l. In order to cool atoms in all vertical planes,
this will likely necessitate even larger frequency sweep ranges than for the 2D case, interleaved
or followed by a similar multi-frequency cooling sequence along the vertical direction, until we
can resolve single sharp sideband peaks similar to the sideband spectra in optical tweezers [72].
At this point, the determination of the temperatures along each lattice axis can be performed
by comparing the area under the red and blue sidebands as defined in Eq. (2.8).

Crucially, in future experiments we are only interested in the atoms in the center plane,
which we can sharply image with our objective, and fluorescence signal contributions from
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atoms in residual planes are detrimental as they provide a blurred photon background. There-
fore, a significant auxiliary goal of vertical cooling beyond reaching the 3D motional ground
state is to achieve a single occupied vertical lattice plane. As outlined in Chapter 2.6.3, Yb
provides only limited options to selectively remove atoms outside the desired plane with a
resonant pulse. Instead, a viable pathway is provided by the release-and-retrap method [287,
288], where an initially widespread atomic cloud is contracted to the center of a harmonic trap
by momentum refocusing after cooling in a lattice potential. Semiclassical calculations suggest
that this method should provide a large refocused fraction of atoms in the central vertical lattice
plane after an abrupt ramp-down of the vertical lattice, which is quenched back on after an
evolution in the harmonic confinement of the 2D lattice for a duration of 𝑇r∕4, if the vertical
temperature is brought to ≲1.2 µK, and almost complete wavefunction overlap for 𝑇r <600nK.
From this point on, the probability of loading an atom into an adjacent plane as the vertical
lattice is ramped back up is largely defined by the extent of the wavefunction in the harmonic
trap, and thus the refocusing fidelity benefits frommaximally deep 2D lattices. Remarkably, for
our lattice parameters the simulated results are almost independent of the initial temperature,
which is typically defined by the MOT loading temperature and determines the spatial extent of
the could, indicating a negligible expected influence of anharmonicities in the lattice potential.

A second approach that should not require the presumably tortuous and inefficient overall
cooling of the whole 3D cloud leverages the high spectral resolution of the clock transition to
selectively cool atoms in the central vertical lattice layer. Here, we can utilize our knowledge of
the 2D sideband spectra combined with the sideband peak of the deepest vertical lattice layer
to apply cooling pulses that only address the atoms in this single plane, which strongly reduces
the required detuning ranges, making the cooling sequence shorter and more efficient. As the
cold atoms in the lattice sites of interest will barely move during a brief lattice quench while the
uncooled atomswill quickly escape, a release-and-recapture step can help to strongly reduce the
atomic density in unwanted vertical planes. A second, more deterministic avenue of removing
hot atoms in these planes is provided by erasure cooling [279], where atoms are transferred to
the 3P0 state on the carrier transition, but only atoms in non-zero motional levels are brought
back to the ground state via a second clock pulse resonantwith the corresponding blue sideband,
driving the |𝑒, 𝑛⟩→ |||𝑔, 𝑛 − 1⟩ transition. After or during this sideband pulse, resonant 399nm
light quickly heats the atoms out of the lattice, such that we retain only the shelved atoms in
|𝑒, 0⟩. Since a small, but finite number of atoms also populates the lowest motional level in
unwanted lattice planes and thus remain trapped, we can use the aforementioned momentum
refocusing method to bring them to the central lattice layer. With this method, a significant
fraction of atoms is discarded, which might not be desired. Therefore, by the extension of
the initial cooling detunings to adjacent vertical lattice planes we can enhance the number
of atoms that can be refocused after erasure cooling.

While the clock sideband cooling results discussed in this Chapter refer to 174Yb, we expect
the discussed methods to be directly transferable to the fermionic isotopes, since this cooling
scheme has already been demonstrated for 171Yb [278] and the more complex spin structure in
173Yb should not lead to significant differences in moderate magnetic fields. Instead, the finite
dipole matrix element eliminates the requirement of large magnetic fields and rather improves
the cooling efficiency due to the significantly faster Rabi oscillations we can achieve with an



3.3 Raman sideband cooling 127

otherwise identical setup, which accelerates the cooling in particular along the vertical axis.
Notably, the final spin configuration after a clock sideband cooling cycle will be unpolarized,
such that subsequent or simultaneous optical pumping on the 3P1 transition will be necessary
to achieve a cold, spin-polarized sample.

3.3 Raman sideband cooling
An alternative cooling method for the fermionic isotopes that directly yields a spin-polarized
atomic cloud is Raman sideband cooling on the 3P1 transition. This has been shown to work
well for 171Yb atoms in magic traps at 759nm, with demonstrations of fast cooling to mean
vibrational occupation numbers of ⟨𝑛⟩ ≃0.05 in optical tweezers [72] and ⟨𝑛⟩ ≃0.23 in a 2D
lattice consisting of a cavity-enhanced lattice arm [275]. Here, the two ground-state spin levels
are coherently coupled via a two-photon Raman transition detuned from the 𝑚𝐹′ = ±1∕2
levels of the 𝐹′ = 3∕2 state, where the Raman detunings ∆RB ≫𝛾 and intensities allow for fast,
resolved sideband transitions by selecting a correspondingly chosen relative detuning. This
coherent step is then followed by a (near-)resonant optical pumping step to close the cooling
cycle by spontaneous emission (Fig. 3.9 A). For the optical pumping step it is wise to choose
a 𝜎 transition, as the atoms preferably decay back to the ground state upon emission of a 𝜋
photon, given by the two times larger branching ratio from the excited state, which reduces
the average number of scattered photons during the cooling cycle.

The optimal implementation depends on the experimental conditions and the trap geometry,
as good control of the circular polarization for the 𝜎 Raman and pumping beams as well as
appropriate Zeeman shifts of the 3P1 states are crucial to reach very low final temperatures.
In our setup it is beneficial to use the top MOT beam, denoted as MOT beam 4 in Fig. 2.7,
for optical pumping along the vertical direction in a magnetic field created by the main coils,
and a perpendicularly polarized beam for the 𝜎 Raman leg, such that the two beams can be
superimposed with a PBS. For the 𝜋 Raman transition we then plan on using three different
Raman beams, two of which are co-propagating with the horizontal lattice beams, to allow
for cooling along each spatial direction, as sketched in Fig. 3.9 B. With high optical powers
of up to ≃100mW available in each beam and waists of 𝑤0 ≃250 µm, we can reach very fast
two-photon Rabi frequencies ΩR even for large detunings, where

ΩR =
Ω1Ω2
2∆RB

(3.3)

and Ω1,2 are the single-photon Rabi frequencies for the two Raman legs. Preliminary cal-
culations suggest that Gaussian 𝜋 pulses of a total duration of 20 µs (43 µs) are sufficient to
provide a virtually complete population transfer to the red sideband of the opposite spin state
along the horizontal (vertical) direction at a detuning of 2GHz [229], which is the bandwidth
limit of the beat lock photodiode. For the optical pumping step, one would ideally choose the
𝐹′ = 1∕2 submanifold, since there only the desired 𝜎 transition can be driven and the dark
state cannot experience recoil kicks due to unwanted excitations. However, due to the isotope
shift of ≃6GHz to the 𝐹′ = 3∕2 states this would necessitate an independent laser or limit the
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Figure 3.9 | Envisioned Raman sideband cooling scheme in 171Yb. A We start the cooling cycle in a spin-
polarized sample with a Raman sideband transition from |||mF = 1∕2, n

⟩
to |||mF = −1∕2, n − 1

⟩
, where

each Raman beam pair is detuned from the excited state by ∆RB ≃2 GHz (dark green). The dissipative step
is initiated by an optical pumping transition to the ||||F

′ = 3∕2,mF′ = 1∕2
⟩

state, from where the atoms
preferably decay back to |||mF = 1∕2, n − 1

⟩
, preserving the reduced vibrational state. To account for

non-magic trapping conditions, the detuning ∆OP for this step can be chosen empirically to yield the best
pumping efficiency. Spin-selective imaging can be performed on a stretched transition to themF′ = ±3∕2
states using a horizontal MOT beam to allow for vertical scattering of light (light green). B Illustration of
the optical layout, displaying the necessary beams for the Raman cooling scheme as well as the individual
lattice beams. The circularly polarized beams for the σ Raman leg (RB1) and the optical pumping (MOT4)
are vertically aligned and parallel to the magnetic field, while the horizontal Raman beams (RB2-4) are
linearly polarized. RB2 and RB3 co-propagate with the lattice beams to achieve a maximal overlap of
the total wavevector with the respective lattice arm, while RB4 allows for independent addressing of the
vertical motional state.

maximum detuning for the Raman step, which would be given by a high-frequency AOM to
detune the Raman beams from the 𝐹′ = 1∕2 transitions. We will therefore attempt to detune
the 𝑚𝐹′ = ±3∕2 states using a considerable Zeeman shift of ≳10MHz in magnetic fields of
≃ 10G to make off-resonant excitations of the dark state highly unlikely.

Since the optical pumping step requires light that is resonant or slightly red detuned to
prevent sideband heating, we have to ensure a sufficiently near-magic operating condition to
prevent that the inhomogeneous lattice depth shifts certain atoms into a blue-detuned regime,
where the cooling is no longer efficient. One can counteract this effect by choosing a detuning
∆OP such that all atoms experience sufficiently red-detuned pumping light [63]. However,
this leads to a prolonged optical pumping pulse duration and causes local differences in the
efficiency of this process, which likely limits the minimal temperature. Therefore, we can
alternatively tilt the quantization axis with respect to the MOT beam by 17◦ to reach the magic
condition for 171Yb, which entails a corresponding tilt of the vertical Raman beam to allow
for fast subsequent pulses without having to wait for the magnetic field to settle, and adjusted
polarization vectors of the horizontal Raman beams.

For the envisioned quantum simulation protocols that allow for a spin degree of freedom
also spin-resolved imaging techniques are essential. While it is possible to Zeeman-shift
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the |||𝑔,𝑚𝐹⟩ and |𝑒,𝑚𝐹′⟩ states sufficiently far to allow for spin-selective shelving of atoms in
one spin state to the 3P0 state, the lattice-induced losses in the deep imaging lattice prevent
efficient subsequent imaging of both spin states. Instead, we can take advantage of the stretched
transitions to the𝑚𝐹′ = ±3∕2 states to let atoms in the bright state scatter fluorescence photons,
while the unwanted coupling of the dark spin state is prevented by a large Zeeman shift. We
note that this requires us to employ a horizontal MOT beam to allow for the emission of atoms
into the direction of the objective, as this would be suppressed for the vertical MOT beam.



CHAPTER 4

State-dependent potentials

This Chapter presents the measurements of four distinct state-dependent wavelengths for
the 1S0 and

3P0 clock state pair in
174Yb: two magic wavelengths as well as the ground- and

clock-state tune-out wavelength. The magic wavelengths are detected via clock spectroscopy
by minimizing the differential ac Stark shift introduced by a dipole trap beam, while the tune-
out wavelengths are measured by parametrically heating atoms with a modulated additional
lattice. We further determine the non-zero polarizability of the corresponding clock-transition
counterpart at the respective tune-out wavelengths. These results are then used to optimize
and benchmark the empirical model for the 1S0 and

3P0 polarizabilities, as discussed in Chapter
1.2. The central findings of Chapters 4.1 and 4.2 have been published in [101], the results of
Chapter 4.3 are in preparation for publication [102].

4.1 Measuring magic wavelengths
Optical traps generally induce a differential Stark shift on internal atomic states, leading to
inhomogeneities and broadening when the transition that connects them is driven. Small or
vanishing differential light shifts therefore ease the possibility of optical addressing of atoms.
In alkali metals, most traps are already sufficiently close to magic for the relevant optical
transitions due to their simple electronic structure, and magic conditions are mostly relevant
for the elements Cs, which possesses a comparably large fine-structure splitting [79, 131]. For
the narrow hyperfine transitions, on the other hand, magic conditions can only be found close
to the transitions themselves, which entails substantial scattering rates [289]. In AEL atoms,
the rich electronic structure and thus strongly differing polarizability landscapes for the states
of interest lead to the existence of many experimentally accessible magic wavelengths, but also
to wide spectral regions with strong polarizability deviations. This is particularly relevant for
the narrow dipole-forbidden transitions. While for some applications this state selectivity can
be useful as discussed in the following Sections, magic-wavelength traps for the clock state
pair have become ubiquitous in the context of lattice or tweezer clock experiments [68, 82, 115,
130, 290–292], where the maximal state insensitivity necessary for high-precision spectroscopy
requires the precise cancellation of scalar, vector, or tensor shift components. They have also
found widespread applications in quantum computation and simulation experiments, as they

130
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enable high-fidelity qubit gates and read-out schemes [72, 83, 293], or in atomtronics [294].
Especially in the context of Rydberg physics, moreover the existence of triple-magicwavelengths
for the ground, excited, and Rydberg state has been theoretically explored [295, 296].

Magic wavelengths are commonly measured spectroscopically by scanning the laser around
the supposed position and recording the light shift on the transition in dependence of the
wavelength. Furthermore, to reduce the sensitivity to systematic errors, in most measurements
the power is varied at each wavelength [151, 209]. To ascertain two previously undetermined
magic wavelengths for the clock transition in 174Yb we also utilize this exact scheme. However,
while it is typically the trap itself whose wavelength and power is scanned, we leverage the
well-known magic wavelength at 759.3nm to provide a 730 𝐸rec deep, state-independent lattice
potential in which we can probe the clock transition with small linewidths of few tens of Hz
as outlined in Chapter 2.6.1. Light at around the new magic wavelengths to probe the Stark
shift is then delivered via an almost collinear, focused dipole beam with a waist of𝑤0 ≃125 µm.
This waist is chosen to provide a high intensity in the atomic plane, but is not small enough to
lead to a significant inhomogeneity across the atomic cloud, given the lattice waist of ≃65 µm
and typical radial cloud sizes of 𝜎 ≃ 16 µm. We further prevent the formation of a lattice,
which would lead to locally differing Stark shifts and thus broadening of the transition, by
blocking the dipole beam after is has passed through the glass cell, which is why a small relative
angle of ≃ 1◦ to the lattice beam is necessary. We ensure optimal overlap with the atomic
cloud by maximizing the light shift at a significant detuning from the magic wavelength with a
picomotor-driven mirror mount and record the resulting beam position relative to the lattice
beam on a camera that approximately images the atomic plane.

For the 459nmmagic wavelength we use an optical parametric oscillator (OPO),1 which
can provide up to 80mW at longer wavelengths and on average 60mW of blue light on the
experimental table. Eachmeasurement consists of three coherent clock frequency scans around
the expected resonance with and without the dipole beam, at a magnetic field of 𝐵 = 100G
and a clock beam power of 𝑃 ≃5mW, such that we obtain a linewidth of Ω0 ≃ 60Hz from a
Rabi lineshape fit. We repeat this measurement for in total ten different dipole beam power
values, such that we can fit a linear function to the data and extract the differential light shift
𝑉ac∕𝑃 at this dipole beam frequency. Here, we randomly choose the order of powers and
detunings and digitally lock the OPO as well as the lattice laser to the wavemeter to suppress
the influence of potential drifts in alignment or frequency. Producing these fitted light shifts at
various frequencies over a range of almost 4THz leads to an approximately linear scaling with
frequency (Fig. 4.1 D). However, a slight negative curvature is overt. This can be reproduced by
a comparison with the expected differential light shift from the empirical model in Chapter 1.2.
In order to prevent self-referencing loops, given that the empirical model is fed by the extracted
magic wavelength, we therefore restrict the datapoints that we take into account to a detuning
of ±1THz around the magic wavelength, where this curvature effect is less severe, and fit the
remaining dataset with a linear function, whose zero crossing is the magic wavelength. To
quantify the systematic uncertainty stemming from the residual curvature, we return to the
empirical model and compare the corresponding deviation to a linear fit in a mostly result-

1Hübner Photonics C-WAVE VIS+IR Low Power
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Figure 4.1 | Measurement of the blue and green magic wavelengths in 174Yb. A For a dipole beam
frequency close to, but not right at the magic frequency the clock resonance is shifted (green) compared to
the bare resonance (grey). We quantify the shift by fitting a Rabi lineshape (solid lines). The corresponding
datapoint is shown as a white hexagon in B. B The extracted resonance shifts increase linearly with the
applied dipole beam power and change sign as the green magic frequency is crossed. We obtain the
light shifts from the slopes of linear fits (solid lines), with the respective data points shown as white
hexagons in C. C Close to the magic frequency we can approximate the light shift to be linear in the
detuning, such that we can determine fgreen with a linear fit to the data. The error bars correspond to the
standard deviation (B) and 1σ-fit uncertainty (C) and are smaller than the data points. Inset: Zoom-in on
the datapoints close to fgreen. D With the same technique we also obtain the light shifts close to the blue
magic wavelength. However, due to less available laser power and a smaller differential polarizability
slope a larger frequency range has to be probed, over which the polarizability curvatures are no longer
negligible, as illustrated with data from the empirical polarizability model (grey solid line). We therefore
restrict the dataset to detunings of ±1 THz and assess the resulting systematic uncertainty introduced by
the linear fit (blue solid line) by means of a comparison to the more complex polarizability model. E In
order to determine the influence of pointing drifts we fit to the absorption images of the atomic cloud in
the lattice with a rotated 3D Gaussian distribution. This enables us to estimate the dipole beam intensity
averaged over the whole cloud, which is also relevant for the calculation of the clock-state polarizability
at the ground-state tune-out wavelength as discussed in the next Section. F Light shift data for fgreen
without compensation for the photodiode filter etaloning effect. Instead, the fit function includes the
calibrated sinusoidal correction, yielding an almost identical root.

agnostic way. More specifically, we calculate the values for the light shift at the laser frequencies
where the data was taken, such that we obtain a discrete set of light shift values from our model.
This dataset is fitted with the same linear function as the measured data, and we subtract the
extracted zero crossing from the actual magic wavelength that the empirical model predicts and
arrive at a value of 𝛿𝑓sys = +11GHz. This way, we cancel the mismatch of 30GHz between
the predicted and measured wavelength without the introduction of further fitted offsets. We
note that this assumes an adequate description of the curvature by our effective model, which
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we believe to be valid. Further potential systematic errors from, e.g., misalignment during the
measurements are found to be negligible. In total, we thus attain a magic frequency of

𝑓blue = 652281 ± 10stat
(+11
−0
)
sys GHz. (4.1)

Here as well as for the results to follow in this Chapter, the statistical uncertainty is given
by the 1𝜎-error of the fit.

Later, in a measurement with a tweezer array at this magic wavelength our result was con-
firmed within the error bars [162]. In particular, the reported result of 𝑓blue = 652295.6(7) GHz
underlines the validity of our estimate for the systematic error. We note that the significantly
smaller uncertainty of this measurement is a result of the strongly focused light in a tweezer
array, leading to a three to four orders of magnitude larger intensity at moderate individual
tweezer depths. As any deviation from the magic wavelength will lead to inhomogeneneous
broadening from imperfectly balanced tweezers as well as from the finite extent of the wave-
function in the traps, in this case a spin-echo type measurement has to be performed to retain
the optimal frequency resolution.

In a similar vein, the measurement of the green magic wavelength is aided by laser powers
of up to 500mW after the fiber, but also by a steeper slope of the differential polarizability,
which translates into a significantly smaller frequency range of ≃50GHz over which we can
probe the light shift response to achieve similar resonance shifts. This renders the consideration
of polarizability curvature effects superfluous and we can safely fit a linear function to the
light shift data to receive a value of

𝑓green = 542502.05 ± 0.08stat
(+0.01
−0.11

)
sys GHz. (4.2)

For this measurement we find two other sources of systematic uncertainty relevant. From the
recorded beam position of the dipole beam we first note a drift of 25 µm with respect to the
lattice, which is not negligible as this corresponds to a 10% reduction of the peak intensity
in the cloud center, assuming perfect initial alignment. This however is an overestimate of
the intensity reduction observed by the whole atomic cloud, which is why we fit a rotated 3D
Gaussian distribution to a representative set of recorded absorption images of the atomic cloud
in the lattice. This yields an axial and transverse size of 𝜎l = 288(18) µm and 𝜎r = 16.52(4) µm,
where the error bar includes the fit uncertainty as well as the propagated uncertainty from the
relative angle between the imaging and the lattice beam of 10.4(5)◦. Taking the measured waist
of 125(15) µm and the relative angle between lattice and dipole trap of 0.75(12)◦ into account
and integrating the Gaussian dipole beam intensity over the atomic density distribution, we
obtain weighted mean intensities of 3.8(8) kW∕cm2 for an optimal overlap and 3.5(8) kW∕cm2

for the translated case, which corresponds to a reduction to 92.6% of the initial intensity.
Assuming a linear evolution of the beam displacement, we can then correct the recorded light
shifts at each dipole beam frequency for the intensity reduction and compute the resulting zero
crossing, which is offset by−110MHz from 𝑓green. Notably, this treatment assumes an accurate
image of the atomic plane onto the reference camera, which is a conservative approximation
and likely overestimates the actual pointing drift and its effect on the measurement. The
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second significant contribution to the systematic uncertainty originates in a relatively severe
etaloning behavior introduced by a spectral filter in front of the photodetector that is used
to stabilize the intensity of the dipole beam. This filter blocks stray light in particular from
the lattice beam to prevent crosstalk. While the photodiode calibration was also checked at
five different, randomly chosen dipole beam frequencies during the measurement, the results
seemed consistent with the photodetector uncertainty apart from one outlier. In order to
verify this calibration, we carefully measure the photodiode voltage at a constant laser power,
determined with a low-noise integrating sphere,2 for various laser frequencies, and we observe
a clear sinusoidal behavior with a relative amplitude of ≃20% and a periodicity of 58.7(4) GHz,
in agreement with the filter thickness of 5mm. We further rule out a power dependence and
calibrate the etaloning curve on two successive days to ensure that this behavior is static. This
at hand, we can apply the newly gained calibration factors to rescale the fitted light shifts, such
that we obtain the data in Fig. 4.1. To quantify the corresponding systematic uncertainty, we
linearly propagate the fit errors of the four fitted parameters— frequency, phase, amplitude, and
background for the sine —, which amounts to a value of 10MHz. We can further benchmark
the validity and accuracy of this rescaling method by including the etaloning correction into
the magic-wavelength fitting function and use the constant photodiode calibration factor for
the light shift data instead, which reproduces 𝑓green well within the statistical uncertainty
associated to the fit. The result is displayed in Fig. 4.1.

It is to be expected that the blue magic wavelength will be of great relevance for tweezer-
based experiments as the shorter wavelength entails substantially smaller tweezers and thus
tighter traps at the same power. In addition, the ground- and clock-state polarizability is
expected to be more than twice as large compared to the magic wavelength at 759nm, such that
a tweezer array at this wavelength can provide seven times deeper tweezers with the same input
power, which roughly compensates for the higher available laser power at 759nm. The smaller
diffraction-limited size further allows for a reduced spacing of the tweezer, assuming that
here the overlap of side lobes with adjacent tweezers is the limitation in a given experimental
apparatus. However, it has to be noted that the trap wavelength is short enough to allow for
two-photon ionization processes to occur if an atom is in the clock state, which could limit the
lifetime of 𝑒 atoms in 459nm tweezers. In stark contrast, it is unlikely that the green magic
wavelength finds significant applications as a trapping wavelength owing to the much smaller
polarizability compared to both the blue and red magic wavelength. A second seemingly
deterrent feature is the proximity to the intercombination line, as one could expect noticeable
off-resonant scattering. However, in a simple calculation that takes only single transitions
into account, we find that the scattering rate induced by the 1P1 transition is of very similar
magnitude, such that interference or optical pumping effects are not negligible. To test this and
to be able to compare to the scattering rate at the nearby tune-out wavelength, we therefore
perform a lifetime measurement by holding the atoms in the 730 𝐸rec deep lattice, identical to
the procedure for the 𝑔 tune-out measurement described in detail in the next Section, while
the dipole beam is kept at a constant power of 𝑃 ≃ 230mW. However, we only notice an
insignificant lifetime difference of 0.1(8)mHz to the measurement without the dipole beam at
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an overall single-exponential decay rate of 46(1)mHz, indicating that the the scattering rate
at this frequency does not pose a large limitation.

4.2 Measuring the ground-state tune-out wavelength
In alkali elements, tune-out wavelengths of the ground state occur in direct proximity to
electronic transitions, and in particular the lowest wavelength can only be found in between
the D1 and D2 fine-structure transitions. Measurements of such tune-out wavelengths can
therefore help to determine the relative transition matrix elements, as has been done for Li, K,
Rb and Cs [297–302]. They further allow to constrain the theory polarizability curves around
optical transitions [297–299, 303, 304], which is particularly relevant for more complex atoms
such as Dy [305] or even molecules [306], and can yield oscillator strengths and state lifetimes
[298, 300]. These measurements can also provide a benchmark for quantum electrodynamic
calculations since high-precision measurements of tune-out wavelengths in He can resolve
discrepancies to predictions by fundamental atomic structure theory [303, 307], and can be
used to enhance the determination of the black-body radiation shift in optical clocks [298].
Eventually, optical Feshbach resonance beams at tune-out wavelengths prevent the additional
parasitic dipole force from deforming the optical trap [308].

Since the measurement of a tune-out wavelength involves the determination of an absolute
and not a differential light shift measurement, one can typically not resort to spectroscopy.
Instead, the vanishing atom-light coupling is leveraged. This can be performed, e.g., by matter-
wave-enhancedKapitza-Dirac diffraction after sending sequences of standingwaves, i.e., optical
lattice pulses, through a BEC, such that the atoms undergo stimulated two-photon scattering
events. Quenching off the lattice then enables the observation of atoms in several diffraction
orders spaced by 2ℏ𝑘 after a time of flight [298, 302, 304, 305, 309]. Tune-out wavelengths
have further been measured interferometrically by observing a vanishing phase shift 𝜙 =
−
∫
𝑉ac𝑑𝑡∕ℏ in a Mach-Zehnder interferometer with fast atoms [297, 301, 310], in combination

with amulti-pass cavity [300], or in a BEC using Bragg scattering [299]. Additionally, a tune-out
wavelength has been measured in a pump-probe measurement in a hot, high-density vapor
cell via the vanishing dispersion at the tune-out wavelength, where the probe beam is not
refracted [311]. Furthermore, static changes in the center-of-mass position by a displaced,
circularly polarized dipole beam close to a vector-shifted tune-out wavelength in a BEC of
Cs atoms [308] and deviations in the total trap frequency recorded by the momentum of an
oscillating He BEC [307] have been employed. Another method to observe the vanishing
coupling to light at the tune-out wavelength is periodic modulation of a beam close to the
tune-out wavelength to either induce dynamical changes in the atomic density, which was
performed in He [303], or parametric heating, as measured in Sr and 23Na40Kmolecules, where
also the shift in the stimulated rapid adiabatic passage (STIRAP) two-photon resonance allows
one to determine the polarizability [204, 306].

For our measurement of the ground-state tune-out wavelength we utilize the heating-
induced atom loss method by resonant modulation as first demonstrated in [204] since it does
not require a BEC or an interferometric setup. Here, atoms in the deep 1D lattice are perturbed
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by an additional lattice close to the tune-out wavelength, which is modulated at a multiple of
the trap frequency 𝑓z. This excites the atoms to higher vibrational bands until they can escape
from the trap, such that an enhanced loss rate can be measured unless the lattice is at the
tune-out frequency and thus cannot induce heating. To this end, we superimpose the 553nm
beam onto the magic lattice, such that a combined lattice is formed, and spectroscopically
maximize its overlap using the introduced light shift on the clock state as a probe. Owing to the
incommensurate wavelengths, amplitude modulation of the tune-out lattice will then lead to a
mixture of phase and amplitude modulation observed by the atoms, depending on the lattice
site they populate. This leads to two well-resolved resonances at both the axial trap frequency
and its first multiple upon scanning the modulation frequency as displayed in Fig. 4.2 B,
corresponding to excitations by one or two harmonic oscillator quanta. We choose a square-
wave modulation signal, feed-forwarded from a signal generator to the intensity stabilizing
circuit, whose bandwidth is tuned to be slower than the signal to prevent a distortion of
the rectangular pulses. This enables us to achieve a controllable, full-depth modulation at a
constant average intensity 𝐼to. To test the quality of the pulse shape we Fourier-transform the
recorded modulation signal observed by a fast photodiode, which yields additional peaks at odd
multiples of the requested modulation frequency with their amplitudes falling off as 𝑓−1, as we
would expect for a square-wave pulse train. This is reflected by weaker, but clearly discernible
peaks at one third and two thirds of 𝑓z, where the atoms experience parametric heating via
phase and amplitude modulation from the third harmonics. The relatively wide resonances
and the noticeable shift of the observed center of the phase-modulation peak by ≃−18 kHz
compared to the longitudinal trap frequency of 𝑓z = 114.7(3) kHz obtained from the clock
sideband spectra are a consequence of the relatively high initial temperature along the weakly
confined axis of 𝑇r ≃25 µK, which allows the atoms to explore the individual lattice sites to a
great extent, such that on average they experience a significantly weaker lattice. Notably, a
signal in the fitted cloud size is barely visible, unlike for modulation spectroscopy in the bare
magic lattice, which indicates that for this weakmodulation depth the parametric heating leads
to a comparably fast loss of individual atoms instead of a continuous, rethermalized heating
response of the whole could. In addition, the limited spatial resolution of the absorption
imaging setup prevents the detection of minuscule changes in the spatial extent.

For the atom loss detection measurement we select the resonance frequency at 2𝑓z =
178 kHz, corresponding to |𝑛⟩→ |𝑛 + 2⟩ excitations, and modulate the tune-out lattice while
the atoms are held in the ≃730 𝐸rec deep magic lattice for variable times. We then compare the
resulting lifetime 𝜏 = 1∕Γ, obtained via a fit with a single exponential function,𝑁(𝑡) = 𝑁0𝑒−Γ𝑡,
to the lifetime without the tune-out lattice, 𝜏0, from which we can extract the excess loss rate
Γexc = 1∕𝜏 − 1∕𝜏0. The lifetime with an unmodulated tune-out lattice at a constant intensity of
𝐼to is also tested, but does not show any difference to the case where it is fully turned off. By
toggling the tune-out lattice and randomizing the order of the selected wait times we ensure
that the detected lifetime difference is not spuriously impaired by potential slow drifts of
the lifetime due to, e.g., thermalization or changes in the lab environment during the data
acquisition. We further carefully calibrate the photodiode at every frequency we choose for the
tune-out lattice to account for the etaloning of the filter as discussed in the previous Section.
To maximize the unmodulated lifetime signal, we reduce the initial occupation per lattice site
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Figure 4.2 | Determination of the ground-state tune-out wavelength. A In contrast to the setup for
the magic wavelength measurement depicted in Fig. 2.6 A, we superimpose the beam close to the
tune-out wavelength onto the deep magic lattice (grey), such that a shallow tune-out lattice (green)
is formed. B Loss spectrum of ground-state atoms for a variable modulation frequency (green) after
40× 103 modulation periods at a detuning of ∆ = 327 GHz from the tune-out wavelength fto, compared to
a reference measurement without the tune-out lattice (grey). The error bar is the standard deviation from
two averages. We can clearly identify the transitions at around 89 kHz and 178 kHz, corresponding to
excitations by one or two harmonic oscillator quantum numbers, respectively. Owing to the square-pulse
amplitude modulation, we also observe weak resonances at the third harmonics. The grey dashed vertical
line indicates the modulation frequency used for the lifetime measurements. C As the tune-out lattice
frequency is scanned across fto, we observe a quadratic increase of the excess loss rate Γexc. This loss
rate is determined from the lifetime difference between the modulated tune-out (green) and the bare
magic lattice (grey, lower panels) by fitting to each lifetime curve with a single exponential function (solid
line). The corresponding data points are highlighted by white hexagons in the upper panel. We can fit the
dependence of excess loss rate on the detuning with a quadratic function without offset to determine
the exact position of fto. The error bars reflect the standard deviation of the fit uncertainties of the
corresponding decay curves. Insets: Schematic of the amplitude of the two lattices and the polarizability
sign flip around the tune-out wavelength.

by reducing the lattice loading depth to ≃390 𝐸rec, such that ≃55 atoms populate each layer on
average. This way, we can suppress two-body interaction effects which otherwise dominate the
loss rate for short wait times at larger loading lattice depths. While this reduces the amplitude
of the lifetime curve, we achieve an overall better signal as the introduction of a two-body loss
term as in Eq. (1.18) significantly increases the fit uncertainty. Since the two-body losses can
also be inhibited by reducing the temperature of the atomic cloud, first attempts of longitudinal
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clock sideband cooling as discussed in Chapter 3.2.1 were performed prior to the measurement,
but did not show a sufficient reduction of the total temperature to significantly increase the
overall signal. We therefore maintain the simple experimental sequence with a 10ms lattice
ramp to the holding depth, followed by a 5ms ramp of the tune-out lattice. We further note
that a modulation at the |𝑛⟩ → |𝑛 + 1⟩ resonance frequency is found to yield a comparable
loss rate, in agreement with the similarly deep resonance feature in the modulation spectrum.
From a theoretical perspective, this can be understood as the comparable effect of the power
spectra of lattice center position and amplitude fluctuations, 𝑆p(𝑓) and 𝑆a(𝑓), which both
depend on the ratio of tune-out and deep lattice potential, i.e., are proportional to 𝛼2𝐼2to, and
determine the loss rates as [204, 312, 313]

Γexc,phase = 𝜋2𝑓2z
𝑆p(𝑓z)
⟨𝑥2⟩

, (4.3)

with ⟨𝑥2⟩ the mean-square position of an atom in the trap, and

Γexc,amplitude = 𝜋2𝑓2z𝑆a(2𝑓z), (4.4)

respectively. The decision to choose the modulation at twice the trap frequency is therefore
mostly based on a slightly larger loss response and a cleaner modulation signal. From the above
equations we can also determine the expected loss rate trend around the tune-out wavelength,
as the polarizability can again be approximated to be linear in frequency for a range much
smaller than the detuning from the dominant transition, i.e., Γexc ∝ 𝛼2(∆) ∝ ∆2 with ∆ the
detuning from the tune-out wavelength, where 𝛼 = 0.

This is indeed borne out by the data as the frequency of the tune-out lattice is scanned
(Fig. 4.2 C). We further notice a vanishing excess loss rate at the tune-out frequency 𝑓to, which
is also in agreement with out expectations of a fully suppressed atom-light coupling without
any vector or tensor shift contributions. Hence, we can fit the data with the quadratic function
Γexc = 𝐴(𝑓 − 𝑓to)2 and we obtain as a result

𝑓to = 541832.49 ± 0.23stat
(+0.05
−0.24

)
sys GHz. (4.5)

However, the dependence of the loss rate on the tune-out potential appears to subtly
deviate from the simple quadratic behavior for large detunings ∆ > 20GHz, which thus
introduces a systematic uncertainty to the measured tune-out frequency. A signature of this
deviation is the occurrence of a non-zero offset of 1.46(41)mHz if this fit parameter is added
to the fitting function. However, this offset is unphysical as it does not reflect the vanishing
excess loss rate detected in the lifetime measurements at 𝑓to. We first investigate this trend
by fitting a partial dataset with and without offset and keep track of the fit results, starting
with the datapoints closest to 𝑓to and then increasing the detuning range within which we
take datapoints into account. While the fit for very small datasets up until the fit threshold
|∆c| ≃ 11GHz naturally yields very diffuse results with large error bars, the picture for the
intermediate detuning regime up to |∆c| ≃21GHz shows a trend that is in agreement with our
expectation of an offset consistent with zero (Fig. 4.3 B). At the same time, the fit result for the
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Figure 4.3 | Assessing the systematic error from the parametric heating saturation effect. A Fitted tune-
out frequency for partial datasets in dependence of the frequency range |∆c| centered around fto. Here, the
quadratic fitting function does not include an offset. For small |∆c|, the limited number of data points at
asymmetrically spaced detunings lead to a bias towards lower frequencies, which changes as we include
data points above 11.5 GHz. From this point on, the maximal deviation amounts to≃−250 MHz. The grey
shaded area indicates the detuning range with a still marginal influence of the heating saturation, gauged
via the fitted offset in B, but sufficiently many datapoints to extract a systematic uncertainty contribution.
B Accumulation of an offset for growing datasets when we fit with a three-parameter quadratic function,
indicative of the deviation from the expected quadratic behavior at larger detunings. C To further test
this deviation, we measure Γexc at a constant detuning ∆ ≃25 GHz and vary the tune-out lattice power.
For loss rates Γexc ≳20 mHz we observe a deviation from the expected quadratic behavior (dotted line).
An empirical quartic function appears to capture the flattening behavior (solid line). Inset: Correction
factor determined from the quartic fit to allow for rescaling of the saturated excess loss rates. D As we
apply this correction to the tune-out data, we notice a vanishing offset even for the three-parameter fit
function. Uncorrected values are shown in grey. We have to disregard two data points with a loss rate
>40 mHz (red), as they lie outside of the measured calibration range determined in C.

quadratic function without offset approaches 𝑓to, but mostly remains below with a maximum
deviation of −243MHz at |∆c| ≃ 12GHz (Fig. 4.3 A). As we increase the fit threshold |∆𝑐|
further, the fitted offset almost continuously rises, while the extracted root mostly remains
at a lower frequency than 𝑓to. We therefore use the maximum deviation in the intermediate
detuning range as one contribution to the systematic error. Simultaneously, we probe the loss
rate deviation by varying the tune-out lattice power at a constant detuning of∆ ≃25GHz. Here,
we observe a stark discrepancy to the simple loss model for the maximally attainable powers
of 𝑃 ≃ 270mW where the loss rate appears to flatten, while we would again naively expect a
quadratic increase, Γexc ∝ 𝐼2to (Fig. 4.3 C). This effect could be explained by a stronger influence
of the lattice anharmonicity as the atoms experience fast heating to highermotional bands, such
that the modulation is no longer resonant with the bulk of the atoms, likely accompanied by a
change in the thermalization rate of hot atoms that can tunnel through the lattice and therefore
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redistribute their energy among colder atoms. However, we do not find any signature of the
appearance of two-body losses at large detunings. A second potential explanation is the lattice
potential modification introduced by a relatively strong tune-out lattice. However, the expected
contribution is by far too weak to have an effect on the observed lattice frequency — over the
probed frequency range of±35GHz the axial trap frequency does not exceed≃40Hz according
to our empirical polarizability model — and an altered tunneling rate is expected to manifest
in an increased two-body loss rate, as observed in [204]. We therefore attribute this deviation to
a higher-order effect beyond the harmonic approximation underlying Eq. (4.4). To empirically
compensate for this saturation effect, we introduce a quartic term to the fitting function, such
that we can compute a correction to any measured loss rate in order to obtain the value we
require for the quadratic model. Applying this correction on the tune-out data as shown in
Fig. 4.3 D, we obtain a fit result with a root that deviates from 𝑓to by +53MHz, independent of
the inclusion of an offset. Furthermore, the fitted offset for the corrected data is consistent with
zero. Notably, two datapoints cannot be included in the corrected dataset as there the excess loss
rate exceeds 40mHz, which is themaximum that wasmeasured in the calibrationmeasurement
in Fig. 4.3 C, and hence the correction model is not trustworthy beyond this threshold.

Knowing that the ground-state polarizability is zero, a spectroscopic measurement of the
differential Stark shift thus yields a direct quantification of the clock-state light shift. We thus
employ the same concept as for the magic measurements by tilting the tune-out beam away
from the retro-reflecting mirror and determine the resonance shift as a function of the applied
power. Despite the proximity to the magic wavelength, the enormous induced shifts of up to
4 kHz for the large powers of 𝑃to >100mW result in an unwanted inhomogeneous broadening
of the linewidth due to the finite extent of the tune-out dipole beam. To be able to obtain
a robust light shift measurement, one can therefore adjust the magnetic field strength and
clock power correspondingly to also broaden the unshifted linewidth to an extent that the
spatial dipole beam inhomogeneity is outweighed. This is done in two different ways: We
first employ a strong magnetic field of 𝐵 = 300G and a clock beam power of 𝑃 ≃ 100mW
for all datapoints, leading to a constant linewidth of almost 3 kHz. This however reduces
the sensitivity to small resonance shifts at low dipole beam powers. The second method
thus utilizes an adaptive magnetic field strength, which is chosen to yield a constant ratio
between the shift and linewidth of about 1 for all dipole beam strengths, which however entails
additional systematic uncertainties from the magnetic field calibration. Alternatively, one can
limit the tune-out power to 𝑃 ≲35mW, where the broadening does not yet appear, and detect
the light shift for the low-linewidth parameters as for the magic wavelength measurements.
Since all three methods provide similar results, we use the latter method to obtain the final
light shift value for reasons of comparability to the data presented in the previous Section. As
a matter of fact, the small differences between the three results are largely outbalanced by
the systematic uncertainties in the technically challenging determination of the dipole beam
intensity, which is required to achieve the total light shift. By detecting its intensity-stabilized
power in front of the glass cell with an integrating sphere for several dipole beam setpoints
we can calibrate the applied optical power on the few-percent level, mostly limited by the
specified powermeter uncertainty of 3%. While the glass cell windows are AR-coated and thus
the surfaces reflect almost negibile fractions of the incident light, the absorption and diffuse



4.3 Measuring the clock-state tune-out wavelength 141

scattering of light in the glass windows leads to ameasurable reduction of the transmitted power.
To quantify this reduction we detect the power in front and after the glass cell at a stabilized
power of 𝑃 ≃180mW with three different powermeters: the integrating sphere, a conventional
photodiode sensor, and a thermal power head. In this vein, we measure a maximal decrease
of 2.1% with the integrating sphere, compared to 1.6% and 0.2% detected by the conventional
photodiode and the thermal head, respectively. We therefore multiply the calibrated power by
0.9895%, corresponding to identical losses at both windows. Taking themaximally conservative
estimate for the systematic uncertainty, we instead assume this loss to either take only place
at the first or the second window, while the other window is assumed to transmit 100%. This
increases the uncertainty of the optical power at the atoms to ≃6%, yielding a contribution
of ±0.24ℎHz∕Wcm−2 to the total systematic uncertainty of the light shift. An estimate of the
power at hand, we now turn to the determination of the intensity. Again using the camera to
image the beam at the atomic plane, we confirm the beam size of 𝑤0 = 125(2) µm by a fit to a
2D Gaussian distribution. We note that this deviates from the waist of 110 µm we would expect
according to the propagation of a Gaussian beam. This indicates that either the focus of the
dipole beam is not precisely at the atomic plane, the imaging plane of the camera is shifted, or
the focusing lens introduces aberrations. Since it is not straightforward to disentangle these
effects, we take the total discrepancy to the theoretically expected waist as an conservative
estimate of the associated uncertainty. We can then repeat the fit to the absorption images of
the atomic cloud with a 3D Gaussian as in Section 4.1 to obtain the mean atomic resonance
shift and the corresponding systematic uncertainty from the beam waist, the fitted cloud size,
and the relative angle to the imaging and lattice beam, amounting to ±0.85ℎHz∕Wcm−2. As
the final source for systematic errors we assess the effect of the potential longitudinal mismatch
of the dipole focus with respect to the atomic plane. Since the lattice and the dipole beam are
focused by the same achromatic lens and we have established a reasonable agreement between
the expected and measured lattice size, the axial overlap of their foci is mostly determined by
the collimation accuracy of the dipole beam, and we assume a worst-case focus shift of 5mm.
This entails an asymmetric uncertainty contribution of −0.48ℎHz∕Wcm−2. Notably, here we
do not take a radial pointing mismatch into account as we assume the Stark shift optimization
prior to the measurement to yield reasonably overlapped beams. We therefore obtain a total
light shift of the clock state at the ground-state tune-out wavelength of

𝑉ac,𝑒∕𝐼 = −3.8 ± 0.07stat
(+1.1
−1.6

)
sys ℎ × Hz∕Wcm−2. (4.6)

4.3 Measuring the clock-state tune-out wavelength
So far, no measurement of a tune-out wavelength for the excited state of an optical qubit has
been reported. However, there is a number of interesting applications that require a potential
at such a wavelength even beyond the LGT simulation scheme devised in Chapter 1.4, which
will be discussed in the next Section. Unfortunately, the determination of this wavelength
transpires to involve a plethora of complicating circumstances. The most obvious limitation
is the minuscule polarizability slope as the tune-out wavelength is located almost exactly in
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between two comparably strong transitions spaced by ≃ 200nm (Fig. 1.3), which not only
necessitates a larger frequency probing range during the measurement, but also the best
theoretical predictions are associated with large error bars and disagree on the order of several
nm [97, 152, 153]. Since our initial empirical model [101] appears to strongly agree with the
3P0 polarizability curve determined in [152], we presume the clock-state wavelength at the
value of ≃576nm predicted by both models. However, the theoretical uncertainty causes the
practical complication of purchasing a suitable laser that can be tuned far enough in case
this expectation value turns out to be imprecise. The tuning ranges of typical commercially
available high-power lasers are limited to few nm around the selected center wavelength, and
the output power quickly drops outside of the specified range. Among these lasers, the VECSEL
technology enables the largest tuning ranges of up to ∆𝜆 ≃ 10nm in the visible range with
output powers of 𝑃 ≃2W over large parts of this spectrum. Unfortunately, during the design of
a new gain chip one cannot fully predetermine the eventual center wavelength. Therefore, the
tuning range of the VECSEL we initially received was centered around 572nm and exhibited
a relatively steep power drop beyond 576.5nm.

A second limitation is imposed by the shorter lifetime of clock-state atoms in the 759nm
lattice compared to atoms in the ground state. In typical experimental conditions, the pre-
dominant contributions, however, are lattice-induced losses from a Raman process via the
(6𝑠7𝑠)3S1 state [72, 110, 120, 314], which is surprising at first, given the enormous detuning of
67THz,3 and 𝑒-𝑒 inelastic collisions (Chapter 1.1.3). While the latter lead to mere atom loss,
the former process leads to a expected reappearance of ≃ 59% of the clock-state atoms that
undergo this Raman transition in the ground-state (Fig. 4.4 A), given by the comparison of
branching ratios from the 3S1 state to the 3P1 and

3P2 states. Here, the remaining atoms end up
in the untrapped 3P2 state and are also lost. For

171Yb, this loss process has been characterized
recently [120], with reported trap-depth-dependent loss rates of Γ3S1 = 9(1.2) × 10−4Hz∕𝐸rec,
which is divided into atoms transferred to 3P2 with a rate of Γ3P2 = 3.3(5) × 10−4Hz∕𝐸rec and to
3P1 and thus

1S0 eventually with Γ3P1 = 5.7(7) × 10−4Hz∕𝐸rec. We note that the inherent limit
of vacuum background losses of Γvac ≃ 5mHz, which is shared with the ground state, is not
a significant factor for this 𝑒 tune-out measurement. Similarly, the loss of clock-state atoms
due to a decay back to the ground state can be safely neglected for 174Yb, while it can become
relevant for the fermionic isotopes with loss rates of few tens of mHz.

Since the inelastic collisions lead to almost complete atom loss within few hundreds ofms,
it is therefore impossible to achieve long clock-state lifetimes for a reasonably large number of
atoms in the 1D lattice configuration used for the previous Sections. As the adversary effects of
𝑒-𝑒 collisions can only be prevented by separating atoms into individual sites, it is beneficial
to use a higher-dimensional lattice to multiply the lattice site density — while ≃1500 layers
are populated in the 1D lattice case, we typically reach a cloud size that corresponds to the
occupation of ≃ 25 × 103 tubes or ≃ 140 × 103 3D lattice sites. As this entails an average
population of 0.5 atoms per 3D lattice site for typical MOT loading times, two-body losses
would be mostly inhibited without the presence of tunneling. However, for uncooled atoms
this necessitates the usage of deep lattices as otherwise the significant fraction of atoms in

3We note that in [120] a detuning of 64THz is mentioned, which is in disagreement with the energy of the 3S1
state given by NIST [105].



4.3 Measuring the clock-state tune-out wavelength 143

0 200 400 600 800 1000 1200
Effective lattice depth Veff (Erec)

0.0

0.2

0.4

0.6

0.8

e
lo
ss

ra
te

(H
z)

0 5 10
Wait time (s)

0.0

200.0

400.0

Ph
ot
on

co
un
t(
×1

03
)

1463Erec
274Erec
183Erec

0 500 1000
0.00

0.25

0.50

0.75

3 P
1
de

ca
y
ra
tio

0 2 4 6 8 10 12 14
Wait time (s)

0.0

0.2

0.4

0.6

0.8

1.0
Re

lat
ive

 st
at

e 
po

pu
lat

io
n

g
e
g + e

A B

Figure 4.4 | Limits on the clock-state lifetime in a magic lattice. A We detect the fluorescence signal of
a 2D-cooled cloud of e atoms for varying hold times in the magic 2D lattice with (orange) and without
(grey) a second g atom removal pulse right before the repumping and imaging steps. This allows us to
directly trace the e atom loss as well as the combined ground- and clock-state signal, and we can infer
the ground state fraction (dark blue) from the difference between the two, showing the appearance of g
atoms from the lattice-induced Raman process that transfers e atoms into the 3P1 and 3P2 state, which
leads to a decay to the ground state for the former and losses for the latter. We fit the g and g + e decay
with an exponential function (solid lines) and use Eq. (4.7) to describe the ground-state trend with the
relative strength of the Raman and inelastic collision losses as the only free parameter. To this end, we
independently measure the lifetime of a pure g cloud at this lattice depth of 274 E rec (light blue). B We
find that the e lifetime of 5.3(1) s at this lattice depth is optimal by repeating this measurement for various
lattice depths between 180 and 1500 E rec. For deeper traps, the lattice-induced Raman process leads to
a linearly increasing loss rate, while for shallower lattices two-body losses become dominant. We can
model this competition via a fit with Eq. (4.9) (solid line), which also reveals the lattice depth dependence
of the Raman loss rate (dotted line) and its deviation from the value measured in [120] (grey dotted line).
Here, we account for the lower time-averaged lattice depth Veff the radially hot atoms experience, but not
for the Gaussian trap depth inhomogeneity, which likely explains the deviation. We also observe slightly
dissenting ratio of atoms that undergo the Raman transition to the 3P1 state and therefore reappear as g
atoms (bottom right inset). For shallow lattices, two-body losses contribute significantly and lead to a
reduced 3P1 ratio, while for deep lattices, where tunneling and hence inelastic collisions are suppressed,
we detect 70(3)% of the initial clock-state atoms returning in g, as determined by a fit to the data with an
exponential saturation curve (solid line), which is slightly larger than the 63(8)% reported in [120] (grey
dotted line). The lifetime trends for the various lattice depth regimes are illustrated in the top left inset.
Here, we also observe the effect of fast initial losses in weak lattices due to spilling of radially hot atoms
as well as quick tunneling-induced inelastic collisions, leading to a reduction of the early-time photon
count. From wait times of 100 ms on, the remaining trend is well-captured by a single exponential fit. At
the optimal lattice depth from A, this decrease amounts to≃ 25% compared to deep lattices, which still
yields the best signal-to-noise ratio at long wait times. The corresponding datapoints in the main plot are
indicated by hexagons of matching color.

higher bands can propagate through the lattice, which in turn limits the lifetime to much less
than a second because of the off-resonant Raman scattering process.

Hence, we have to resort to the cooling methods developed in the previous Chapter to
suppress the tunneling of 𝑒 atoms through a weak lattice. Here, we find that the swept 2D
clock sideband cooling is sufficient to reach clock lifetimes of 5.3(1) s, which is not only larger
than the 3D-cooled lifetimes reported in [120] for 171Yb, but also exceeds the lifetime achieved
in a BEC of 173Yb atoms in a 90 𝐸rec deep, magic 3D lattice [110]. This value is found at a
sweetspot between the onset of inelastic collisions and significant lattice-induced losses in
a ≃ 250 𝐸rec deep 2D lattice (Fig. 4.4 B).
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In order to understand this behavior better, we quantitatively compare the loss mechanisms
for different lattice depths. For shallow lattices the 𝑒 loss is defined by two strongly different
timescales, with the first loss processes taking place withinms, such that they do not appear
any longer after a wait time of 100ms. From this point on, a slow decay sets in that is well
described by an exponential fit. We ascribe the first process to spilling of radially hot atoms
after the lattice is ramped down from the cooling depth of ≃ 400𝐸rec as well as two-body losses
incurred from the few remaining atoms in higher motional bands that can tunnel through
the lattice until they find a collisional partner. The slow exponential decay is then caused by
Raman losses on top of inelastic collisions after tunneling of motional ground-state atoms.
This is contrasted by the fully lattice-dominated loss behavior in deep lattices, where even
higher-band tunneling is inhibited such that the initial photon count is large, but the Raman
loss process leads to a fast clock-state decay.

Starting with an atomic sample purely consisting of atoms in the 3P0 state by removing
remnant 𝑔 atoms after the resonant 𝜋 pulse with a first blow-away pulse on the 1P1 transition,
we are informed of the relative ratio between the two loss mechanisms — two-body and
Raman processes — by the relative number of 𝑒 atoms that reappear in the ground state. We
can detect this quantity by toggling the second blow-away pulse that removes all 𝑔 atoms
from the lattice before the clock-state atoms are repumped ahead of the fluorescence imaging
sequence. In this vein, we can detect the mere 𝑒 lifetime as well as the combined 𝑒 + 𝑔
signal evolution, therefore allowing us to infer the appearance of ground-state atoms from
the difference between the two measured curves (Fig. 4.4 A). We also determine the pure
ground-state-atom loss rate at the corresponding lattice depth, which is found to be 26(2) s
in the 250𝐸rec deep lattice and vacuum-limited to 220(30) s beyond ≃600𝐸rec. This at hand,
we can describe the Raman-induced 𝑔 evolution as

𝑁g(𝑡, 𝑉) = 𝑁e,0 𝜁(𝑉)
(
1 − 𝑒−Γe(𝑉)𝑡

)
𝑒−Γg(𝑉)𝑡, (4.7)

which is a solution to the rate equations

�̇�g = −Γg(𝑉)𝑁g + 𝜁(𝑉)Γe(𝑉)𝑁e

�̇�e = −Γe(𝑉)𝑁e. (4.8)

Here, we combine all loss channels for the clock state into a single lattice-depth-dependent
decay rate, Γe(𝑉) = 𝑉Γ3S1 + Γ0(𝑉), where Γ3S1 is the Raman loss rate and Γ0 contains the
residual decay processes like off-resonant scattering or slow inelastic collision processes after
lowest-band tunneling,4 and the relative strength of these processes at a given lattice depth is
captured in the prefactor 𝜁(𝑉), which describes the ratio of atoms that are transferred to the
3P1 state, from where they can decay to 𝑔. Notably, any spontaneous decay from the 3P0 state is
eliminated once the magnetic field is turned off. This then allows us to fit the ground-state
fractions for various lattice depths with the single free parameter 𝜁. For deep lattices, where the
Raman-induced losses are predominant, this factor is expected to approach the 3P1 branching

4While this two-body process would typically require a different, 𝑁2
e -dependent term in the rate equation, this

effect is too weak to be differentiated from a single-body loss term for the conditions in this measurement.
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ratio fraction from the 3S1 state compared to the sum of the branching ratios to the 3P1 and
3P2

states. As was found in [120], this rate is slightly modified by off-resonant Raman transitions
to further states, such that for 171Yb the calculated value of 𝜁 = 0.65 was confirmed within
the error bars of the measurement that yielded 𝜁 = 0.63(8). For 174Yb, we consistently find an
even larger fraction of 𝜁 = 0.70(3) for lattice depths above 700𝐸rec (Fig. 4.4 B, bottom right
inset). Furthermore, we notice a deviating lattice-dependent loss rate Γ3S1 by tracing the total
𝑒 loss rate for the different lattice depths by a fit with

Γe(𝑉) =
√
𝑉2Γ3S1 2 + 𝑎 𝑒−2𝑉∕𝑉c , (4.9)

which reproduces the linear dependence on 𝑉 for deep traps and takes the losses from expo-
nentially faster tunneling in shallow lattices into account. Here, we also correct for the finite
radial temperature along the vertical direction, which leads to a lower temporally averaged
lattice depth [315, 316]

𝑉ef f =
𝑉

1 + 𝑘B𝑇r∕𝑉
. (4.10)

This corresponds to the marked shift of the sideband maxima from 𝑓l towards the carrier for
𝑇r ≳ 5 µK that we also observe in the sideband spectra. From this we obtain Γ3S1 = 5.8(2) ×
10−4Hz∕𝐸rec and thus a ground-state quenching rate of Γ3P1 = 𝜁Γ3S1 = 4.1(2) × 10−4Hz∕𝐸rec.
This is significantly lower than the measured values of Γ3S1 = 9(1.2) × 10−4Hz∕𝐸rec for 171Yb
[120] and 15(1) × 10−4Hz∕𝐸rec for 173Yb [110], which can at least partially be explained by
the Gaussian trap depth inhomogeneity that is not accounted for in this calculation, as it
is non-trivial to exactly quantify the relative sizes of atomic cloud and lattice beams with-
out single-site resolution.

We further note that we do not find any sign of influence of the number of ground-state
atoms on the 𝑒 lifetime, consistent with the marginal inelastic collision rates 𝛽eg for 𝑒-𝑔 atom
pairs [142, 143]. Remarkably, any additional vertical confinement does not sufficiently help to
retain multiple atoms within a tube from colliding and expelling each other to outweigh the
damage incurred by the Raman losses. This can be understood as an effect of the comparably
power-inefficient trap formed by the vertical lattice: In contrast to the second horizontal lattice
the added number of sites is lower by a factor of ≃4, and owing to the shallow-angle geometry
about an order of magnitude stronger beams are necessary to create the same separating
potential. It is further not particularly crucial to reduce the vertical temperature of the atoms
as we cannot effectively suppress the scattering of atoms in multiply occupied tubes in either
case and the rethermalization, i.e., the redistribution of kinetic energy into the horizontal
direction is only very weak due to the strongly differing trap frequencies. Thus, we do not
expect significant lifetime improvements upon introducing 3D motional cooling at a later
stage (Chapter 3.2.3). Moreover, we note that the 1D rethermalization cooling yields worse
clock-state lifetimes despite an overall lower temperature. However, as the mean occupation
number along the weakly confined horizontal direction is still large even after reaching the
saturation of rethermalization, the ramp-up of the horizontal lattice leads to an increase of the
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Figure 4.5 | Measurement of the tune-out wavelength for the clock state. A Modulating the amplitude
of a retro-reflected beam close to the e tune-out wavelength leads to phase- and amplitude-modulation
resonance features at the fundamental and harmonics of the 2D lattice trap frequency for atoms in the
clock state (orange), similar to the g tune-out case. We choose the amplitude modulation resonance at
68 kHz (grey dotted line) for the lifetime tune-out measurements in B and C. With a considerably smaller
modulation amplitude we can also resolve the trap frequencies experienced by ground-state atoms (blue),
which are shifted and broadened due to the tune-out lattice itself. B A comparison of the lifetimes of e
atoms in the 2D lattice with an additional tune-out lattice yields a reduction if the latter is modulated
(orange) and detuned (upper panel) from the tune-out wavelength with respect to the case of a steady,
unmodulated beam (blue). For comparably small detunings, the lifetime difference becomes negligible
(lower panel). However, we consistently detect a longer lifetime if the tune-out lattice is fully turned off
(grey), which is evaluated further in Fig. 4.6. Solid lines represent exponential fits to the data. C The excess
loss rate determined from the difference in the fitted lifetimes for the modulated and constant tune-out
lattice shows a quadratic dependence around the tune-out wavelength, allowing for a two-parameter fit
without offset to extract fto,e. The datapoints corresponding to the lifetimes in B are indicated by white
hexagons. In contrast to the g tune-out case, we do not find any indication on a parametric heating
saturation effect at large excess loss rates. Inset: Illustration of the lattice geometry for this measurement,
with the tune-out beam generating an irregular total pattern on top of the 2D magic lattice.

temperature along this second horizontal direction, and the atoms can tunnel more frequently
to adjacent tubes, causing faster losses.

Long clock-state lifetimes at hand, we again retro-reflect the 𝑒 tune-out beam to form a
standing wave, in order to be able to induce strong parametric heating analogously to the
measurement of the tune-out wavelength for the ground state. With the 𝑒 tune-out lattice at a
large angle between both horizontal lattice arms (Fig. 2.7 A), the combined lattice potential
has a non-trivial shape, but can again be divided into sites that mostly observe center position
or amplitude oscillations, such that we again expect both phase and amplitude modulation
peaks in modulation spectroscopy measurements. We note that in this geometry pure phase
modulation, induced by two independent beams with a relative detuning that is equal to
the band gap and therefore generates a running wave, is expected to yield similar results
since the disadvantage of the missing interference power enhancement is compensated by the
addressing of atoms in every lattice site. However, the retro-reflected geometry directly allows
for the search of a signal of ground-state atoms trapped inside a clock-tune-out lattice, which
is why we continue with this method. Contrary to the 𝑔 tune-out case, we can easily perform
modulation spectroscopy of both ground- and clock-state atoms in this configuration. Here,
the stark polarizability difference between the two states close to the 𝑒 tune-out wavelength
leads to a markedly higher |𝑛⟩ → |𝑛 + 2⟩ resonance frequency for the ground-state atoms



4.3 Measuring the clock-state tune-out wavelength 147

in a deep tune-out lattice (Fig. 4.5 A). The observed shift from 𝑓z ≃ 68 kHz to ≃ 91 kHz is
in agreement with our expectation of an on average ≃ 6 µK deep tune-out lattice for a 1S0
polarizability of 𝑉ac,𝑔∕𝐼 = −13ℎHz∕Wcm−2 and an average tune-out power of 𝑃 = 0.7W∕2
at this wavelength, with the factor of 1∕2 stemming from the modulation. We note that the
|𝑛⟩ → |𝑛 + 1⟩ resonance does not shift as much and instead just appears to be smeared out
towards larger frequencies, which is consistent with our picture of a fraction of lattice sites that
mostly experience changes in the position of the potential minimum due to the tune-out lattice
modulation, which thus does not result in a change of the local lattice depth up to first order.
Upon a reduction of the tune-out lattice depth for the ground-state atoms we can retrieve the
lower resonance frequencies measured for atoms in the 3P0 state.

For the lifetime measurements in the 240𝐸rec deep 2D lattice we can observe a clean
exponential decay from wait times of 20ms after the 𝜋-pulse on. Up to this point, the fast
initial loss processes, such as two-body losses on multiply occupied sites and spilling of atoms
that are radially too fast for the lower lattice depth compared to the cooling depth of 400𝐸rec,
have ebbed away and the dominant loss process is lattice-induced photon scattering. In a
methodically similar fashion to the ground-state tune-out wavelength measurement we now
iterate the frequency of the tune-out lattice, andwe again observe a dependence compatiblewith
a quadratic function. Crucially, the inversion point was found to be at the lower frequency edge
of the laser tuning range, such that with this gain chip it was not possible to scan significantly
beyond the tune-out wavelength. Therefore, the VECSEL was refitted with a different gain chip
that exhibits a tuning range of ±4nm around 576.5nm. Repeating the lifetime measurements
with the updated laser over a large range of almost 2THz, we can now probe the excess loss
rate on both sides of the clock-state tune-out frequency, which is thus found to be at

𝑓to,𝑒 = 519.942(18) THz. (4.11)

This value is determined by fitting a quadratic function without offset to the excess loss rate
induced by the lattice modulation compared to the case of a constant tune-out lattice at the
same average power. If we instead use the bare 𝑒 lifetime in the magic lattice as a reference,
we observe a very similar quadratic trend, but with a finite offset of ≃ 20(10)mHz at the
minimum, which is shifted by 3GHz from 𝑓to,𝑒 (Fig. 4.6). We add this difference as a systematic
uncertainty to the statistical uncertainty of 15GHz given by the fit error. This offset motivates
the study of the loss rate induced by the unmodulated tune-out lattice, which does not show
any clear dependence on the detuning and is compatible with a constant additional loss rate.
A weak dependence could likely be explained by relative intensity noise (RIN), corresponding
to a weak, inherent modulation of the atoms, while a frequency-independent loss can be a
consequence of Raman scattering via the same 3S1 transition that also causes losses at the
magic wavelength, given the smaller detuning of 58THz. We attempt to distinguish these two
effects by quantifying the power dependence of the excess loss induced by the unmodulated
light precisely at the tune-out wavelength. In agreement with the expectation of an off-resonant
Raman process, the loss rate appears to increase monotonously as the tune-out lattice power
is ramped up (Fig. 4.6 C). Due to limited tune-out beam power and the comparably small
magnitude of this loss process, however, we cannot clearly discriminate between a linear and
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Figure 4.6 | Quantification of the finite unmodulated loss rate. A When compared to the case of the
bare magic lattice without the tune-out beam the excess loss rate in the modulated tune-out lattice does
not approach zero at the tune-out frequency and thus needs to be fitted with a quadratic function that
includes an offset. The extracted minimum agrees with fto,e well within the statistical uncertainty. B The
loss induced by the presence of a constant tune-out lattice appears to be frequency-independent, with
an excess loss rate of 20(10)mHz, indicated by the solid orange line and the shaded region. C Probing
the excess loss rate of an intensity stabilized tune-out lattice beam at the tune-out frequency for various
powers shows an increase that is compatible with a linear dependence (dashed line), which would indicate
that Raman scattering losses are the cause, but also a quadratic function fits to the data. Such a trend
could be caused by RIN on the tune-out beam or e-g collisional effects.

a quadratic increase, where the latter would indicate a different loss process such as RIN
or 𝑒-𝑔 collisions to be dominant. We note that we anticipate such collisions to be mostly
frequency-independent, as they would be driven by heated ground-state atoms, which observe
an effectively constant polarizability in this frequency regime.

A second approach to determine the tune-out wavelength is via a novel thermometric
method that directly probes the parametric heating response via sideband spectroscopy instead
of atom loss detection. This can be expected to provide a more time-efficient ascertainment, as
the temperature increase can be measured at a constant, significantly shorter modulation time
compared to the long durations necessary for the lifetime measurements, where the atoms are
required to be heated up sufficiently to be able to leave the trap. Indeed, we find a modulation
time of 0.5 s after the swept 2D sideband cooling sufficient to cause a visible increase in the
longitudinal temperature of ∆𝑇l ≃0.7 µK at a detuning of 754GHz (Fig. 4.7 A). Close to the
tune-out wavelength, wemeasure a negligibly small heating effect compared to the longitudinal
temperature of 𝑇l ≃960(70) nKmeasured without tune-out lattice. This is consistent with our
previous observation of very weak 𝑒-𝑔 interaction effects, since remnant or Raman-induced
ground-state atoms are heated up fast in this far-from-tune-out lattice for this state. In contrast
to the axial temperature, no change in temperature along the weakly confined vertical direction
is recorded (Fig. 4.7 C), which is consistent with our expectation as the modulation takes place
at a multiple of the longitudinal trap frequency. Fitting the overall longitudinal thermometry
response around the tune-out wavelength with a three-parameter quadratic function yields
a minimum at 519.86(5) THz, i.e., offset from 𝑓to,𝑒 measured by lifetime measurements by ≃
80GHz. For future measurements, the efficiency of this measurement can be further enhanced
by only probing a small part of the red and blue sideband around the modulation frequency
instead of taking the whole first sideband spectrum.

We note that the measurements suffer from several systematic imperfections, which are
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Figure 4.7 | Thermometry as an alternative to determine the clock-state tune-out wavelength. A We
can detect the parametric heating directly by performing sideband spectroscopy in the≃250 E rec deep
holding lattice after a wait time of 500 ms with the modulated tune-out lattice active. The solid lines
display the fits to the 2D sideband spectroscopy model discussed in Chapter 3.2.2 for a cloud size of
σ ≃10µm, from which we extract the longitudinal and radial temperatures. B Around fto,e the longitudinal
temperatures remain close to the minimal temperature of ≃ 1.0µK recorded for the same wait time but
in the bare 2D lattice, while a temperature increase is detected for larger detunings. The data appears to
follow a quadratic dependence, allowing us to extract the minimum at a detuning of−80 GHz from fto,e
from a corresponding fit (solid line). The temperatures obtained from the data in A are denoted as white
hexagons. C The fitted radial temperatures remain within the error bar of the mean radial temperature
Tr = 10.0(5)µK (solid line and shaded area), which is in agreement with our expectation of a negigible
coupling of longitudinal and vertical temperatures in the 2D lattice.

based upon the fact that this measurement was planned to only yield a good indication of the
frequency range of interest for a carefully executed main measurement. This is then also the
reason for the asymmetric andmostly coarse spacing of detunings as well as the limited number
of overall datapoints. Furthermore, at each tune-out frequency only a single measurement
is performed, such that the individual statistical uncertainties are quite large and explain the
significant scatter of datapoints, causing a comparably large overall statistical uncertainty
from the quadratic fits. In addition, the modulation was provided in a less controlled fashion
compared to the 𝑔 tune-out measurement as the intensity stabilization circuit could not be
trimmed to not partially interfere with the feed-forwarded modulation signal from the signal
generator. Therefore, the modulation amplitude could have changed between individual
datapoints — a factor that is enhanced by an overall unstable laser output power despite efforts
to choose the intensity stabilization setpoint at a conservative value. However, we assume that
this affected all datapoints in a similar way, such that this does not cause a systematic shift but
only contributes to the observed statistical uncertainty. While an upgrade to the modulation
loop that allows for a stabilization to the modulated signal itself by using a fast Toptica FALC
110 instead of home-built stabilization boxes was implemented and found to solve the former
issue, instabilities in the longitudinal modes due to an unsuitably designed lasing cavity as
well as suspected thermalization issues were found to lead to a strong deterioration of the laser
output power within hours after the laser is turned on. A constant worsening of this problem,
leading to output powers below 500mW, required us to ship the laser back to the manufacturer
for a second time to equip the laser with adjusted cavity mirrors, defering a more precise
measurement of the clock-state tune-out wavelength beyond the completion of this work.
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4.4 Quantum simulation and computation with tune-out potentials
Having determined the tune-out wavelengths for the optical qubit in Yb, this Section outlines
prospects of simulation experiments and techniques that are enabled by this knowledge. No-
tably, the presented schemes are not restricted to Yb alone, but can also be used for other
AEL atoms, in particular Sr.

One of the most exciting avenues enabled by tune-out wavelengths is the toolset it provides
for tweezer arrays in the context of enhanced site-selective optical addressing or transporting
abilities. The clock-state qubit is a key part in most quantum computing architectures based
on AEL atoms and has found applications in particular for mid-circuit measurements and
local shelving operations [72, 317, 318]. While the latter is so far performed by detuning the
clock transition for atoms that are not to be shelved via the application of tweezer light at a
non-magic wavelength for the clock state pair before a global clock pulse is sent, these tweezers
also perturb the trapping potential for the detuned atoms, which can have detrimental effects
on the coherence of the non-shelved atoms. In the protocols that have been demonstrated so
far, this was not limiting as the unshelved ancilla qubits were imaged destructively as part of
first mid-circuit operation demonstrations. However, the ability to not disturb atoms either in
the ground- or clock-state manifold by applying tweezers at the respective tune-out wavelength
to detune them ahead of a global rotation can open up new possibilities to reach, e.g., many-
particle entanglement of atoms initially both in 𝑔 and 𝑒 via state-selective Rydberg interactions.
A second method to achieve two-qubit gates that is made possible by tweezers at a tune-out
wavelength is the locally adiabatic transport of atoms to an adjacent tweezer with an atom
in the complimentary optical and nuclear qubit state [97]. By means of a spin-dependent
light shift from a global beam close to the 3P1 transition one can precisely time the duration
over which the two atoms can interact, which realizes a

√
SWAP gate for an interaction time

equal to half a spin-exchange oscillation.
With the advent of hybrid tweezer-lattice systems, the possibility of resorting atoms to

arbitrary initial configurations with dense spacings by means of movable tweezer arrays has
appeared to be tantalizingly close, but yet out of reach so far. In optical lattices with typical
spacings of 𝑎 ≃ 500nm the comparably large size of a tweezer causes significant overlap
with adjacent lattice sites, such that the total potential is distorted and the tweezer effectively
pulls atoms from surrounding lattices sites into its center. Therefore, resorting of dense atom
arrays in a lattice has only been demonstrated for anisotropic lattices with large constants
of 𝑎 >1 µm and low filling fractions, and abrupt onsets of near-unity atom loss probabilities
are observed when a tweezer is moved past an occupied lattice site at a distance of ≲900nm
[75, 76]. However, in such lattices the tunneling rate of atoms in the lowest band is severely
limited and thus not suitable for most quantum simulation approaches that rely on decently
fast tunneling dynamics, in particular given the relatively large weight of AEL atoms. Notably,
the usage of deep pinning tweezers to counteract the distortion of a nearby tweezer is mostly
inhibited due to beating effects between adjacent AOD-generated tweezers owing to their
frequency difference, which is typically in the realm of the radial trap frequency and its lowest
harmonics for spacings below 1 µm, causing fast heating and atom loss. Instead, one can make
use of the orbital degree of freedom and a movable tweezer array at the tune-out wavelength to
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Figure 4.8 | Dense lattice resorting scheme based on tune-out tweezers. A To reach a uniform popula-
tion of one atom per lattice site in a target region (blue shaded area) in an originally sparsely populated
magic optical lattice (grey), we apply local shelving operations of g atoms (blue) to the clock state via a
global π pulse or ARP sequence. Atoms that are not located at a target site are detuned from this global
clock pulse via a weak local tune-out potential, induced via tweezers at either the ground- or clock-state
tune-out wavelength. For clarity reasons we choose the latter for this illustration (green). B Using mobile
e tune-out tweezers, we can rearrange ground-state atoms to empty lattice sites (small grey circles) in
the target region. Shelved atoms in e (orange) remain unaffected due to the vanishing Stark shift of the
tweezers for this state. C After the completion of the resorting step, we ramp the tweezer array down and
unshelve the static atoms via a global repump pulse to the 3D1 transition. Alternatively, one can perform
a second clock pulse with weak tune-out tweezers at the position of the rearranged atoms in g. D In this
vein, one can achieve arbitrary initial states even in lattices with small spacings. This method can also be
inverted to shelve atoms that are to be moved, such that g tune-out tweezers are employed for this step,
and is readily extendable to static magic-wavelength tweezer arrays and other AEL elements.

circumvent these issues. Starting with a sparsely loaded magic lattice in this scheme, atoms on
lattice sites that shall remain occupied are shelved to the 3P0 state via a global clock 𝜋-pulse. If
a subset of atoms in the lattice is supposed to be moved, these atoms are detuned from the clock
pulse via non-magic tweezer light, e.g., at a tune-out wavelength as described above. In the
next step, atoms in the ground state from unshelved lattice sites or a different loading reservoir
are moved to the desired lattice position in tweezers at the 𝑒 tune-out wavelength, such that
the shelved atoms do not experience any change in potential and thus remain unaffected. After
ramping down the moving tweezer we can then bring the shelved stationary atoms back to
the ground state via the repump transition to the 3D1 state, which is very far detuned from
any transition for ground-state atoms, such that the rearranged atoms are undisturbed and
remain in 𝑔. We note that this scheme can also be inverted to move clock-state atoms in 𝑔
tune-out tweezers, thus eventually repumping the resorted atoms, while the ground-state
atoms in the lattice remain untouched. In Yb, the larger ground-state polarizability at the
𝑒 tune-out wavelength compared to the 𝑔 tune-out case renders a resorting beam at 577nm
more power-efficient, despite the slightly larger wavelength. As 𝑔 tune-out tweezers would be
only neglibily further detuned from the (6𝑠7𝑠)3S1 than the magic lattice and are instead closer
to the higher-lying (6𝑠6𝑑)3D1 and (6𝑠8𝑠)3S1 transitions, they might therefore exhibit larger
trap-induced losses on 𝑒 atoms and thus make the resorting process less effective.

In order to avoid losses to the 3P2 state or the necessity to use a second repumper, an
alternative way to unshelve the 𝑒 atoms is a resonant clock 𝜋-pulse. To this end, instead of
fully turning off the tune-out tweezers after the rearrangement step we ramp them down to
a lower depth such that it only induces a Stark shift on this particular site during the global
clock pulse, but does not alter the lattice potential on adjacent sites to a significant extent.
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Once this step is completed, the tune-out tweezers can be fully ramped down. With this
resorting scheme, the limit on the distance between atoms in neighboring lattice sites after
many rearrangement cycles is determined by its ratio to the tweezer extent, 𝑑∕𝜉, compared
to the spectral resolution of the shelving clock pulse. As long as the induced Stark shift on
the tweezer site is large compared to the resonance detuning from the weak light shift on the
adjacent sites and the clock Rabi frequency,5 a spectral separation is possible. Notably, this
scheme is readily extendable to other AEL atoms such as Sr, but also to alkali metals as long
as the resorting duration is kept much shorter than the inverse of the off-resonant scattering
rate in the tune-out tweezers. Alternatively, for the latter, one can use different𝑚𝐹 states as
an additional degree of freedom in combination with elliptically polarized tweezer light to
shape the relative vector shift of the two target states.

5Although it is possible to push this boundary for very cold atoms with a clearly defined light shift from the
nearby tweezer by, e.g., selecting a Rabi frequency whose nodes in the Rabi lineshape match this detuning, this
appears practically unfeasible for high-fidelity applications.



Conclusions and outlook

The results in this thesis demonstrate the usefulness and versatility of ultracold ytterbium
quantum gases in hybrid traps for quantum simulation and computation applications and set
the stage for the implementation of first-of-its-kind lattice gauge theory simulations. Here,
the combination of state-dependent tweezer arrays with a three-dimensional magic lattice
does not only provide a tool to generate the necessary complex initial states, but also opens the
door to realize elaborate, dynamical potential landscapes. While the hitherto demonstrated
rearrangement schemes have been limited to relatively sparse fillings in optical lattices due to
technical reasons [74, 75], the utilization of tweezers at a tune-out wavelength could reduce
this intrinsic boundary to below typical lattice constants. The superposition of traps at different
wavelengths, on the other hand, has found a large breadth of applications, from lattice depth
homogenization and compensation of harmonic confinement [319] to the creation of sharp
potential edges [33] and the scaling of trap sizes [30]. However, this has been barely used so
far to extend the line-up of realizable trap geometries [185]. In this thesis we have illustrated
methods to augment this scope to (anti-)Lieb lattices and discussed their suitability for two-
dimensional LGT simulation schemes by adding state dependence to the total potential.

To this end, a key result presented herein is the determination of four previously unknown
distinctive wavelengths. For the measurements of two newmagic wavelengths at 459.6nm and
552.6nm we utilized a stable high-power clock laser setup, which allows us to drive fast clock
Rabi cycles as well as perform narrow-linewidth resonance scans. As we anticipated [101],
the magic wavelength at 459.6nm has quickly found applications in quantum computation
setups [162], owing to its larger polarizability and the shorter wavelength compared to the
widely used 759.3nmmagic wavelength. The tune-out wavelengths at 553.3nm for the ground
and at 576.6nm for the clock state will play an essential role in the envisioned fermionic U(1)
LGT simulation measurements [179], but can also be used, e.g., in novel types of transport
measurements with state-selective potentials. Here, one can use a deep ground-state tune-
out tweezer to pin a single atom in the clock state to this lattice site, which then acts as an
impurity for a bath of ground state atoms, while the latter do not observe a modification of the
lattice potential [145, 320]. Using single-site resolution and coherent control over the impurity
spin, this allows for a controlled study of the dynamics of the impurity as well as the bath
and, hence, of non-Markovian processes in out-of-equilibrium systems. Furthermore, the
impurity can be understood as disorder in the system, which could therefore also enable the
observation of many-body localization [2]. We note that as a variation of such measurements
the confinement of the clock-state atom can be tuned to extend to more than one lattice site by
adjusting the tune-out potential accordingly, allowing for a controlled mobility of the impurity
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[94]. Implementations of state-dependent potentials in AEL atoms are further expected to
enable the study of twisted-bilayer models in two independent optical lattices at the tune-out
wavelengths for the optical qubit with a small relative angle to simulate Moiré superlattices
and graphene-like flat bands [321, 322], or to realize analog quantum chemistry simulation
schemes, where a combination of magic lattices and non-magic tweezers emulates the behavior
of electrons and their interaction with nuclei [323].

The measured state-dependent wavelengths could also find multiple applications in quan-
tum computation, where tune-out wavelengths have been proposed to be used for fine control
of collisional gates in tweezers [97] or the separation into storage and transport lattices and
tweezer arrays [96, 324]. Here, the crucial feature is the ability to shuttle atoms in one state
while leaving atoms in the other state unaffected.

Moreover, the report of experimentally determined distinctive wavelengths is relevant as
accurate ab initio calculations of these quantities are typically highly intricate [299, 325–327],
and especially elements with more than one valence electron and an accordingly rich energy
level structure require a sophisticated theoretical treatment [204, 284, 298]. In the case of
Yb, this is further complicated by the non-trivial interplay of well-understood 𝐿𝑆 transitions
with core-excited states from the 4𝑓 subshell, which exceed the typical computational sub-
spaces [152]. Here, measurements of distinctive wavelengths such as the magic and tune-out
wavelengths that are reported in this thesis provide valuable feedback and can be used to
improve the calculations of transition matrix elements [327], which can in turn inform on
expected scattering rates as a second relevant key figure of a given trap wavelength beyond
the ac polarizability [77, 110, 120].

A different direction that this experiment can explore involves the simulation of coupled
1D chains of spin-1/2 fermions, similar to [328], where antiferromagnetically ordered Li atoms
have formed a synthetic ladder, coupled by strong orthogonal magnetic superexchange inter-
actions 𝐽⊥. In their system, the atoms can only tunnel along their chain with a rate 𝑡, but the
strong singlet bonds along the rungs energetically penalize a broken spin order. Therefore,
an initially prepared hole pair will attempt to prevent the formation of a string of displaced
singlet bonds, inflicting an energy cost of 𝑙 𝐽⊥ with the string length 𝑙, and instead move to-
gether. To prevent Pauli repulsion of the two holes along the rung, their system utilized a
potential offset between the two chains. In our Yb setup, this ladder could be realized in
a synthetic fashion, making use of the orbital degree of freedom and on-site interactions of
ground- and clock-state atoms, where the superexchange interaction along rungs is given by
the spin exchange energy between atoms in different spins, which could enable superexchange
energies that are comparable to the tunneling energies. [189]. This study of bound states
could shed light on the electronic behavior in pressurized nickelates, which have been found
to host high-temperature superconductivity [329].

The second main result of this thesis, after the measurement of the magic and tune-out
wavelengths, pertains to novel clock sideband cooling techniques in one- and two-dimensional
lattices. The extension of this scheme to 3D lattices likely enables one to perform the initial
state preparation almost two orders of magnitude faster than in previous ytterbium-based
quantum simulators, which boosts the experimental cycle times and thus the accumulation of
statistics. This further marks the first demonstration of sideband cooling in bosonic ytterbium,
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which is fundamentally impeded by the vanishing transition matrix element to the clock
state. However, using acceptably large magnetic fields we have reached sub-µK temperatures
along the strongly confined axes of one- and two-dimensional lattices within few hundreds
ofms, with clear prospects of reaching a 3D-cooled cloud and further extending this scheme
to the fermionic isotopes. Since for most quantum simulation or computation protocols only
a maximal population in the absolute ground state is necessary, temperatures on the order
of a few 100nK are typically sufficient [330]. Here, we note that higher temperatures are
not necessarily limiting, as erasure cooling on the hotter atoms leaves a pure sample in the
motional ground state, but this step quickly reduces the lattice filling fraction too far to still
be efficient. Furthermore, 3D sideband cooling on the clock transition could allow for the
first Yb experiment with single-site resolution in a clock-magic lattice and the first quantum
gas microscope with fermionic AEL atoms.

While fluorescence imaging on the intercombination line akin to magic tweezer experi-
ments is expected to work well for 171Yb [72], this thesis also presents an efficient molasses
cooling technique during imaging on the broad 399nm transition to prevent atom loss. Choos-
ing this wavelength for imaging purposes allows for a resolution below the lattice spacing,
which will benefit the signal-to-noise ratio of a 174Yb quantum gas microscope. Due to the
faster Rabi cycles that are possible in the fermionic isotopes, this clock sideband cooling
method might also be useful for future quantum computation implementations in 459.6nm
clock-magic traps, where Raman sideband cooling is limited by the strong non-magicness
of the 3P1 transition because of the nearby (6𝑠6𝑑)

3D transitions. In particular with the aid
of a frequency-locked repump laser the clock sideband cooling duration could be reduced to
few tens of ms to reach a 3D-cooled array.

In conclusion, the reported results showcase the enormous potential of state-dependent
traps and optical cooling methods for ytterbium quantum gas experiments to allow for faster
andmore versatilemeasurements. The unification of optical lattices with tweezer arrays further
promotes the realization of complexmodelHamiltonians and the scaling of quantumprocessors.
Hence, this thesis lays the foundation for a combination of all three modalities to contribute to
understanding complex phenomena in condensed matter and high-energy physics.
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Appendix A Transition properties for the empirical polarizability model
Here, we collect the properties of the optical transitions from the 1S0,

3P0, and
3P1 states that

are relevant for the empirical polarizability model (Chapter 1.2). Notably, we omit certain
transitions from the two excited states compared to the model described in [110] that are
instead captured by the empirical transitions.

|J⟩ |||J′
⟩

ωJ′J∕2π (THz) λJ′J (nm) γJ′J (MHz) τ (ns) β Ref.
1S0 (6s6p)3P1 539.386800 555.802 0.183 869.6 1 [117, 122]

(6s6p)1P1 751.526389 398.911 29.127 5.464 1 [112]
(7∕2, 5∕2)J=1 865.111516 346.536 11.052 14.4 1 [117]

3P0 (6s5d)3D1 215.870446 1388.761 0.308 329.3 0.639 [122]
(6s7s)3S1 461.867846 649.087 1.516* 15.9 0.151 [157]
(6s6d)3D1 675.141040 444.044 4.081* 22.7 0.582 [157]
(6s8s)3S1 729.293151 411.073 0.625* 34.3 0.135 [157]

EmpiricalJ=1 797.204099 374.709 23.567 Fit
3P1 (6s2)1S0 −539.386800 −555.802 0.183 869.6 1 [117, 122]

(6s5d)3D1 194.778008 1539.149 0.170 329.3 0.352 [122]
(6s5d)3D2 202.657933 1479.303 0.280* 500 0.879 [113]
(6s7s)3S1 440.775408 680.148 3.954* 15.9 0.395 [157]
(6s6d)3D1 654.048602 458.364 2.783* 22.7 0.397 [157]
(6s6d)3D2 654.927593 457.749 5.215* 24.2 0.793 [157]
(6s8s)3S1 708.200713 423.316 1.718* 34.3 0.370 [157]

EmpiricalJ=1 778.975785 384.855 22.313 0.378 Fit
EmpiricalJ=2 778.975785 384.855 36.687 0.622 Fit

Table A.1 | Overview of the transition parameters for the 1S0, 3P0, and 3P1 empirical polarizability
model. We denote the respective initial and final states as |J⟩ and ||||J

′⟩ and highlight the used total
electronic angular momentum of the effective transitions with a subscript. The transition frequencies
and the corresponding vacuum wavelengths are taken from [155] unless mentioned otherwise in Fig. 1.1.
Experimentally measured linewidths γJ′J = ΓJ′J∕2π are given wherever possible, and we use the average
of the linewidths measured in [117, 122] due to their comparably large error bars. For transitions where
only the lifetime of the excited state is known we employ the LS model and calculate the branching
ratios β following [110]. These linewidths are marked with an asterisk. The references for the linewidth
measurements are given if applicable, otherwise the respective entry denotes the reference for the lifetime
measurement. For the empirical J = 1 and J = 2 transitions to the 3P1 state, β describes their relative
strength given by the computed branching ratios of the neglected nearby transitions.
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Appendix B Finite-element simulation and optical design of the main
breadboard

To understand and optimize the positioning of pillars to support the large main breadboard,
we study its vulnerability to mechanical vibrations, which can affect the phase stability of
the lattices, which is of importance for the relative stability between the tweezer array and
the lattices, as discussed in Chapter 2.3.3. Using a finite-element simulation, we compute
the lowest vibrational modes of the main breadboard and their frequencies by assuming a
homogeneous gravitational force from its own weight, i.e., neglecting the placement of other
components on it, and constraining the pillars to be infinitely stiff, such that the area of support
is not flexible. We position the pillars such that the resonance frequencies for the critical areas
around the glass cell, where the retro-reflecting lattice mirrors and the objective mounts reside,
are maximized. The resulting configuration is displayed in Fig. B.1

A

C D

B
619 Hz

735 Hz

670 Hz

762 Hz

Figure B.1 | Acoustic modes of the main breadboard. Four out of the five lowest vibrational modes
for the final breadboard configuration are displayed. The position of the pillars, which are assumed to
be stable and possess identical heights, are indicated by white rectangles. The modes with the lowest
frequencies mainly affect less relevant parts of the breadboard, and only for the resonance frequency of
762 Hz in D we expect a significant effect on the lattice and tweezer stability. Not depicted is the symmetric
mode of the one in C with a resonance frequency of 737 Hz.

While Fig. 2.7 A shows a simplified optical setup on the main breadboard level around
the glass cell, Fig. B.2 allows for a more detailed examination of the optical layout. We de-
pict the setup to scale and with all relevant optical components and mounts included, apart
from beam blocks and fibers and neglecting changes in the beam sizes of focused beams
close to the glass cell.
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Figure B.2 | Complete optical layout on the main breadboard. To-scale illustration of the individual
beam paths and placements of optics and optomechanics for the e tune-out wavelength measurements.
The individual wavelengths are color-coded as follows: Blue: 399 nm, green: 556 nm, yellow: 577 nm,
orange: 578 nm, red: 759 nm, brown: 1389 nm. The purpose of the individual beams is given in Fig. 2.7 A.
In light gray the main breadboard outline as well as relevant components of the magnetic field coils are
depticted. The position of the pillars for the top breadboard is indicated by solid grey circles, and the
outline of the top breadboard is shown as a light grey rectangle.
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