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NDM + KPCu 1 0.9

Acinetobacter haemolyticus NDM + OXA-23 1 0.9
Enterobacter cloacae KPC42 2 1.9
E. coli NDM  5 4.7

OXA-48  2 1.9
NDM + OXA-48  1 0.9

Klebsiella pneumoniae KPC42 5 4.7
KPC42 + NDM 3 2.8
KPC42 + VIM 2 1.9

Klebsiella variicola KPC42 + VIM 2 1.9
NDM + VIM 1 0.9

Pseudomonas aeruginosa NDM 1 0.9
Pseudomonas mendocina NDM 1 0.9
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Molecular characterization of 
carbapenem-resistance in 
Gram-negative isolates obtained 
from clinical samples at Jimma 
Medical Center, Ethiopia

Mulatu Gashaw 1,2*, Esayas Kebede Gudina 3, Solomon Ali 4, 

Liegl Gabriele 5, Thomas Seeholzer 6, Bikila Alemu 1, 

Guenter Froeschl 2,7, Arne Kroidl 2,7,8 and Andreas Wieser 5,6,7,8

1 School of Medical Laboratory Sciences, Jimma University, Jimma, Ethiopia, 2 CIHLMU Center for 

International Health, Ludwig Maximilians Universität München, Munich, Germany, 3 Department of 

Internal Medicine, Jimma University, Jimma, Ethiopia, 4 Saint Paul’s Hospital Millennium Medical 

College, Addis Ababa, Ethiopia, 5 Max von Pettenkofer-Institute (Medical Microbiology), Ludwig 

Maximilian University of Munich, Munich, Germany, 6 Fraunhofer Institute for Translational Medicine 

and Pharmacology ITMP, Immunology, Infection and Pandemic Research, Munich, Germany, 7 Division 

of Infectious Disease and Tropical Medicine, University Hospital (LMU), Munich, Germany, 8 German 

Center for Infection Research (DZIF), Munich, Germany

Background: In resource-constrained settings, limited antibiotic options make 

treating carbapenem-resistant bacterial infections di�cult for healthcare 

providers. This study aimed to assess carbapenemase expression in Gram-

negative bacteria isolated from clinical samples in Jimma, Ethiopia.

Methods: A cross-sectional study was conducted to assess carbapenemase 

expression in Gram-negative bacteria isolated from patients attending 

Jimma Medical Center. Totally, 846 Gram-negative bacteria were isolated 

and identified using matrix-assisted laser desorption ionization-time of flight 

mass spectrometry (MALDI-TOF MS). Phenotypic antibiotic resistance patterns 

were determined using the Kirby-Bauer disk di�usion method and Etest strips. 

Extended-spectrum β-lactamase phenotype was determined using MAST disks, 

and carbapenemases were characterized using multiplex polymerase chain 

reactions (PCR).

Results: Among the isolates, 19% (157/846) showed phenotypic resistance to 

carbapenem antibiotics. PCR analysis revealed that at least one carbapenemase 

gene was detected in 69% (107/155) of these strains. The most frequently 

detected acquired genes were blaNDM in 35% (37/107), blaVIM in 24% (26/107), 

and blaKPC42  in 13% (14/107) of the isolates. Coexistence of two or more 

acquired genes was observed in 31% (33/107) of the isolates. The most common 

coexisting acquired genes were blaNDM� +� blaOXA-23, detected in 24% (8/33) of 

these isolates. No carbapenemase-encoding genes could be detected in 31% 

(48/155) of carbapenem-resistant isolates, with P. aeruginosa accounting for 

85% (41/48) thereof.

Conclusion: This study revealed high and incremental rates of carbapenem-

resistant bacteria in clinical samples with various carbapenemase-encoding 

genes. This imposes a severe challenge to e�ective patient care in the context 

of already limited treatment options against Gram-negative bacterial infections 

in resource-constrained settings.
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Introduction

Gram-negative bacteria (GNB), such as Escherichia coli, Klebsiella 

pneumoniae, Acinetobacter baumannii, and Pseudomonas aeruginosa, 

are common culprits in healthcare-associated infections (Sikora and 

Zahra, 2020). Carbapenem resistance is increasing at alarming rates 

in these organisms (Beshah et al., 2023). �e resistance can arise from 

various mechanisms, including the production of carbapenemase 

enzymes, decreased permeability of the bacterial cell wall, increased 

e�ux pump activity, alterations in outer membrane porins, and target 

site mutations that reduce a�nity to carbapenems (Aurilio et  al., 

2022). �ese mechanisms can act individually or in combination, 

leading to the development of multidrug-resistant strains that pose 

signi�cant challenges in treating infections caused by these bacteria 

(Das, 2023). GNB have the ability to acquire and express a variety of 

carbapenemase genes (Dwomoh et al., 2022; Tenover et al., 2022; 

Tilahun et  al., 2022). �ese genes can spread within or between 

di�erent bacterial species through horizontal transfer of plasmids, 

conjugative transposons, or integrons (Hammoudi Halat and Ayoub 

Moubareck, 2020). As a result, carbapenem resistance in GNB is a 

major public-health concern worldwide. �e most common 

carbapenemases identi�ed in GNB include oxacillinases (OXA), 

Klebsiella pneumoniae carbapenemase (KPCs), and metallo-beta-

lactamases (MBLs), including New Delhi metallo-β-lactamase (NDM) 

and Verona integron-encoded metallo-beta-lactamase imipenemase 

(VIM) (Rabaan et  al., 2022). �ese enzymes can break down 

carbapenem antibiotics, and develop resistance not only to 

carbapenems, but also to many other beta-lactam antibiotics, such as 

penicillins, cephalosporins, and monobactams (Jean et al., 2022).

Infections with these pathogens are associated with high rates of 

mortality and morbidity since treatment options are limited to a few 

last-resort antibiotics that o�en come with many side e�ects (Caston 

et  al., 2022). Furthermore, infections with carbapenem-resistant 

GNBs increase healthcare cost and the length of hospital stays (Van 

Duin, 2017). Such infections are major concerns for critically ill 

patients, immunocompromised individuals, and those with 

comorbidities (Aleidan et al., 2021; Di Carlo et al., 2021). In resource-

constrained countries, including Ethiopia, the public health impact is 

even worse due to the lack of reserve treatment options (Alemayehu 

et al., 2023; Beshah et al., 2023).

Rapid and reliable detection of carbapenem-resistant GNB is 

critical for appropriate laboratory-guided patient management, for 

surveillance, and for applying e�ective evidence-based infection 

prevention and control practices (Nordmann and Poirel, 2019; 

Shanmugakani et al., 2020). A combination of phenotypic detection 

and genotypic con�rmation of carbapenemase-expressing genes by 

polymerase chain reaction (PCR) is recommended (Rabaan 

et al., 2022).

However, due to lack of technical expertise, specialized 

equipment, and reagents, detecting and tracking the molecular 

epidemiology of carbapenem-resistant bacterial isolates is  

di�cult in low-income countries (Nordmann and Poirel, 2019; 

Shanmugakani et  al., 2020). As a result, data on the burden of 

infections with carbapenem-resistant bacterial species and 

associated outcomes is scarce in Sub-Saharan African countries, 

including Ethiopia (Stewardson et al., 2019). �erefore, this study 

aimed to determine the extent of carbapenemases among GNBs 

obtained from clinical samples using both phenotypic and 

genotypic techniques.

Materials and methods

Study setting, design, and time

A cross-sectional study was conducted to detect the 

carbapenemase genes in carbapenem-resistant GNB obtained from 

patients treated at Jimma Medical Center (JMC). JMC is an 800-bed 

teaching hospital in southwest Ethiopia with a catchment population 

of over 20 million. All patients from whom samples were sent for 

culture and antibiotic susceptibility test as part of routine clinical care 

were recruited prospectively for the study.

Clinical sample collection

Clinical samples (blood, cerebrospinal �uid [CSF], wound swabs, 

ascitic �uid, pleural �uid, abscess, peritoneal �uid, and synovial �uid) 

were collected aseptically by the clinicians, nurses or laboratory 

professionals. Other clinical samples such as urine, stool, and sputum 

were collected by the patients themselves a�er proper instruction was 

provided. Samples were then transported within 1 h a�er collection to 

the JMC microbiology laboratory for analysis.

Bacterial isolation and identification

All clinical specimens, except for blood, were inoculated on 5% 

Colombia Sheep Blood, Chocolate, and MacConkey agars and 

incubated aerobically at 35–37°C for 18–22 h. Blood samples were 

collected and added to BD BACTEC bottles (Becton Dickinson, 

Sparks, MD, USA) and then incubated for 5 days at 35–37°C in the BD 

BACTEC™ FX40 (Becton Dickinson, Sparks, MD, USA) automated 

culture machine. If growth was observed, it was sub-cultured on 5% 

Colombia Sheep Blood, Chocolate, and MacConkey agars in similar 

environmental conditions for further analysis. Subsequently, all 

positive pure cultures were tested for antimicrobial susceptibility. 

Isolates were picked o� the plates and kept at −80°C in storage media 

containing skimmed milk, tryptone soya, glucose, glycerol, and 

distilled water until they were transported to Max von Pettenkofer 

Institute, Hospital Hygiene, and Medical Microbiology Laboratory in 

Munich, Germany. �ere, the isolates were re-identi�ed using matrix-

assisted laser desorption ionization-time of �ight mass spectrometry 

(MALDI-TOF MS, Bruker, Germany).
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Antimicrobial susceptibility testing

Antimicrobial susceptibility testing was carried out according to 

the Kirby-Bauer disk di�usion technique using 16 antibiotics (Bio-

Rad, France) (Supplementary Table S1). Reading of the results was 

done using the ADAGIO 93400 automated system (Bio-Rad, France) 

and interpreted as resistant (R), intermediate (I), and susceptible (S) 

based on the respective breakpoints for speci�c organisms in the 

European Committee on Antimicrobial Susceptibility Testing 

(EUCAST, 2021).

Phenotypic detection of ESBLs

ESBL phenotype identi�cation was carried out using MAST disks 

(Mast Group, UK) on all isolates (n = 648) that were non-susceptible 

to beta-lactam antibiotics such as cefotaxime, cefoxitin, cefepime, 

piperacillin/tazobactam, or meropenem in the Kirby-Bauer disk 

di�usion technique. �e results were interpreted using the Mast Disks 

Combi D68C ESBL/AmpC calculator spreadsheet (Mast Group, UK) 

and reported as negative, positive, or inconclusive for ESBL or/and 

AmpC. Isolates with reports of “Further work required” or “Equivocal” 

or that grew toward all disks with below 9 mm of inhibition zone were 

grouped together as “inconclusive.”

Detection of carbapenem resistance using 
Etest strips

All bacterial isolates that were intermediate or resistant to 

meropenem in the Kirby-Bauer disk di�usion method were tested 

with ertapenem Etest strips for Enterobacterales and meropenem Etest 

strips (both BioMérieux Deutschland GmbH) for non-lactose 

fermenting Gram-negative rods. According to EUCAST’s breakpoints 

for meropenem, an isolate was considered intermediate if the MIC 

value was between 2 and 8 mg/L and resistant when the MIC was 

greater than 8 mg/L. Bacterial isolates with MIC values greater than 

0.5 mg/L were interpreted as resistant to ertapenem. Otherwise, all the 

remaining strains were considered susceptible to meropenem or 

ertapenem, respectively (EUCAST, 2021).

Detection of carbapenemase encoding 
genes using PCR

�e DNA was extracted from 3 to 5 fresh pure colonies of the 

respective bacterial isolate and extracted using High Pure PCR 

template preparation kit (Roche, Germany) following the 

manufacturer’s instruction. �e quantity, purity, and concentration of 

the extracted DNA were measured by Nano-Drop ND-100 (�ermo 

Fisher Scienti�c, Wilmington, USA). Excluding the intrinsic 

carbapenem-resistant S. maltophilia, all the remaining isolates 

(n = 155) that were resistant to carbapenem antibiotics and/or showed 

inconclusive results in ESBL phenotypes by Mast disks (Mast Group, 

UK) were characterized by multiplex PCR to detect the carbapenemase 

encoding genes using speci�c primers and probes 

(Supplementary Table S2) used in previous studies (Kruttgen et al., 

2011; Huang et  al., 2012) and kindly provided by the molecular 

diagnostics of the Max von Pettenkofer Institute by Schubert S. and 

Gross B. Reference strains carrying blaOXA-48 (K. pneumoniae 

ATCC-BAA-2524), blaKPC (E. coli ATCC-1101362), and blaNDM 

(K. pneumoniae ATCC-BAA-2146) were used as positive controls.

Statistical analysis

�e data was entered and analyzed using Microso� O�ce 2016 

excel sheets and GraphPad Prism version 8.4.3. Tables and graphs 

were used to display the frequency of phenotypic antibiotic resistance 

patterns and the distribution of carbapenemase encoding genes 

among phenotypically carbapenem-resistant bacterial pathogens.

Ethical considerations

�e study was carried out with the approval of both Jimma 

University Institute of Health Institutional Review Board, Ethiopia 

(protocol numbers: IHRPGO/495/2018 & IHRPGO/1087/21) and the 

Ethics Committee of the Medical Faculty of Ludwig-Maximilians-

Universität of Munich, Germany (Opinion No: 21–0157). Written 

informed consent was obtained from study participants and parents 

or guardians in case of neonates, infants, and children before 

enrollment in the study. All the information was kept con�dential and 

recorded anonymously. �e culture results were sent back timely to 

the treating physicians to provide the recommended medical attention 

to the respective patients.

Results

Frequency of Gram-negative bacterial 
isolates

A total of 1,794 clinical specimens were processed during the study 

period. Of these, 953 specimens collected from 894 patients were 

positive resulting in the isolation of 1,010 bacterial strains. �e majority 

of isolates (846/1,010) were GNB, which were the only one included in 

the current study. A single bacterial pathogen was identi�ed in 896 

specimens, while two and three isolates were detected in the remaining 

55 and 2 clinical samples, respectively. Overall, more than 30 di�erent 

species of GNB were identi�ed. �e most commonly identi�ed 

bacterial pathogen was E. coli accounting for 27% (231/846) of the 

GNB isolates, followed by K. pneumoniae 19% (163/846), A. baumannii 

complex 15% (126/846), and E. cloacae complex 13% (108/846) 

(Supplementary Table S3). More than 75% (643/846) of the GNB were 

isolated from admitted patients. Of these, 32% (206/643) were from the 

neonatal intensive care unit (NICU), 27% (184/643) from surgical, 27% 

(173/643) from pediatric, and 12% (80/643) from medical wards.

Antimicrobial resistant pattern of 
Gram-negative bacteria

In Kirby-Bauer disk di�usion technique, a remarkable prevalence 

of non-susceptibility was observed against cefuroxime, ampicillin, and 

piperacillin, with rates reaching 100% (846/846), 92% (763/827), and 
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91% (655/720) respectively. Among the tested antibiotics, meropenem 

and amikacin showed the least resistance, 18% (149/846) and 12% 

(97/846), respectively. �e isolates also exhibited a high rate of 

resistance to trimethoprim-sulfamethoxazole (60%), aminoglycosides 

(11–57.4%), and �uoroquinolones (55.3–61.1%) (Figure 1).

Prevalence of ESBL phenotypes

All 648 bacterial isolates that were non-susceptible (tested 

intermediate or resistant) to one of the β-lactam antibiotics were 

further analyzed for ESBL phenotypes using Mast disks (MAST group 

UK). �e analysis revealed that 66% (425/648) of the isolates produced 

extended-spectrum beta-lactamases (ESBL), 7% (47/648) had both 

ESBL and AmpC phenotypes, and 3% (19/648) showed only an AmpC 

phenotype (Figure 2). �e remaining 24% (157/648) of the isolates 

showed inconclusive results when read with Mast disks combi D68C 

ESBL/AmpC calculator spreadsheets (Mast group, UK).

More than 75% (491/648) of the isolates that showed resistance to 

β-lactam antibiotics in the disk di�usion technique were con�rmed as 

ESBL and/or AmpC phenotypes by Mast disks (Mast group, UK). As 

shown in Table 1, all Citrobacter species, K. oxytoca, Proteus species, 

S. marcescens, M. morganii, C. sakazakii, L. adecarboxylata, 

M. odoratimimus, and P. stuartii were con�rmed as ESBL producers. 

Furthermore, the prevalence of ESBL production was observed in 93% 

(127/137) of K. pneumoniae, 94% (134/142) of E. coli, and 97% 

(98/101) of Enterobacter isolates. �e remaining 24% (157/648) of the 

isolates showed inconclusive results, primarily A. baumannii complex, 

and P. aeruginosa which accounted for 71% (87/122) and 98% (42/43) 

of the respective isolates as shown in Table 1.

Carbapenem minimum inhibitory 
concentrations

�e minimum inhibitory concentrations (MIC) of carbapenem 

antibiotics, speci�cally ertapenem for Enterobacterales and meropenem 

for non-lactose fermenting GNB, was determined using Etest strips. 

�is was done for all isolates (n = 155) that were tested carbapenem-

resistant in the Kirby-Bauer disk di�usion method and/or showed 

inconclusive results in the Mast disk analysis. Accordingly, 79% 

(105/133) of non-lactose fermenting isolates and 100% (24/24) of the 

lactose fermenting isolates showed intermediate or resistant phenotypes 

against meropenem or ertapenem Etest strip, respectively (Figure 3).

Molecular epidemiology of 
carbapenemase-expression in 
Gram-negative bacteria

�e PCR analysis revealed that 69% (107/155) of the carbapenem 

non-susceptible isolates carried at least one carbapenemase-encoding 

FIGURE 1

Antibiotic resistance patterns for Gram-negative bacteria (n� =� 846). AMP, ampicillin; PIP, piperacillin; AMC, amoxicillin-clavulanic acid; TZP, piperacillin-

tazobactam; CXM, cefuroxime; CTX, cefotaxime; CAZ, ceftazidime; FEP, cefepime; FOX, cefoxitin; MEM, meropenem; GM, gentamicin; TM, 

tobramycin; AN, amikacin; MXF, moxifloxacin; CIP, ciprofloxacin; SXT, Trimethoprim- sulfamethoxazole; R, resistant; I, intermediate; S, susceptible, IE: 

insu�cient evidence; and “–” No breakpoints.
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FIGURE 2

Flow diagram of the laboratory analysis to detect carbapenem-resistant Gram-negative bacteria. ⁎The antibiotic susceptibility test result to selected 

beta-lactam antibiotics such as cefotaxime, cefoxitin, cefepime, piperacillin/tazobactam, or meropenem; intrinsic resistances according to EUCAST are 

considered as expected; values with insu�cient evidence according to EUCAST were not taken into account (EUCAST, 2021).

TABLE 1 Proportion of ESBL phenotypes in Gram-negative bacteria (n  =  648).

Bacteria
ESBL AMPC ESBL and AMPC Inconclusive

n % n % n % n %

A. baumannii complex (n = 122) 14 11.5 1 0.8 20 16.4 87 71.3

Citrobacter species (n = 8) 5 NA 3 NA 0 0.0 0 0.0

Enterobacter species (n = 101) 85 84.2 6 5.9 7 6.9 3 3.0

E. coli (n = 142) 119 83.8 6 4.2 9 6.3 8 5.6

K. oxytoca (n = 9) 9 NA 0 0.0 0 0.0 0 0.0

K. pneumoniae (n = 137) 120 87.6 2 1.5 5 3.6 10 7.3

K. variicola (n = 21) 13 61.9 0 0.0 5 23.8 3 14.3

Proteus species (n = 34) 34 100.0 0 0.0 0 0.0 0 0.0

P. aeruginosa (n = 43) 1 2.3 0 0.0 0 0.0 42 97.7

Pseudomonas species (n = 4) 2 NA 0 0.0 0 0.0 2 NA

S. marcescens (n = 14) 14 NA 0 0.0 0 0.0 0 0.0

M. morganii (n = 5) 5 NA 0 0.0 0 0.0 0 0.0

Other GNRs (n = 8) 4 NA 1 NA 1 NA 2* NA

Total (n = 648) 425 65.6 19 2.9 47 7.3 157 24.2

Other Gram-negative rods (GNRs): Cronobacter sakazakii (1), Leclercia adecarboxylata (2), Myroides odoratimimus (2), Providencia stuartii (1), and *Stenotrophomonas maltophilia (2); NA, 

not applicable. Percentage is not calculated if the denominator is less than 20.
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FIGURE 3

The frequency of carbapenem minimum inhibitory concentrations of all strains tested resistant in Kirby-Bauer disk di�usion or having inconclusive 

results in the Mast Disk assay. The MICs of meropenem ranging from (0–2� mg/L), (2–8� mg/L), and� >� 8� mg/L were interpreted as sensitive, intermediate, 

and resistant; ertapenem MIC values ≤0.5� mg/L and� >� 0.5� mg/L were interpreted as sensitive and resistant, respectively, as indicated in the broken lines 

according to EUCAST breakpoints (EUCAST, 2021).

FIGURE 4

Distribution of carbapenemase encoding genes in various Gram-negative bacterial isolates with phenotypic resistance against carbapenems, as 

determined by PCR analysis. (A) The relative proportion of carbapenemase encoding genes (n� =� 179) as indicated in the pie chart. (B) The distribution of 

carbapenemase determinants in carbapenem-resistant isolates (n� =� 155). The PCR analysis revealed the presence of several types of carbapenemase 

determinants in many of the bacterial species. As a result, more than one carbapenemase determinant or mechanism of resistance was identified in 49 

of the isolates.

gene, including both inherent and acquired genes. Among the 

acquired carbapenemase genes, the most frequently identi�ed gene 

was blaNDM, constituting 21% (37/179) of the total detected genes. 

�is was followed by blaVIM and blaKPC42, accounting for 15% 

(26/179), and 8% (14/179) respectively (Figure 4A). Regarding the 

distribution of carbapenemase-encoding genes, blaNDM was detected 

in various strains including A. baumannii (24), E. coli (6), 

K. pneumoniae (3), K. variicola (1), P. aeruginosa (1), P. mendocina (1) 

and A. haemolyticus (1). On the other hand, due to its intrinsic 

presence in A. baumannii, the blaOXA-51-like gene was exclusively 

found in A. baumannii strains (79) (Figure  4B). Conversely, no 

carbapenemase-encoding genes could be detected in 31% (48/155) of 

carbapenem-resistant isolates. P. aeruginosa was the most common, 

accounting for 85% (41/48) of them (Figure 4B).

Co-harboring of two or more acquired genes was observed in 31% 

(33/107) of the isolates, with A. baumannii being the predominant 

strain, accounting for 70% (23/33) of those isolates. Multiple gene 

coexistence was also detected in A. haemolyticus (1), E. coli (1), 

K. pneumoniae (5), and K. variicola (3) strains. �e most common 

acquired coexisting genes were blaNDM + blaOXA-23, observed in 

24% (8/33) of the isolates (Table 2).

Discussion

Our study revealed high proportions of ESBL and carbapenemase 

producing Gram-negative pathogens, primarily E. coli, K. pneumoniae, 

E. cloacae complex, A. baumannii complex, and P. aeruginosa in 
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comparison to previous studies conducted worldwide (Chen et al., 

2021; Jean et al., 2022). In most low-income countries, carbapenems 

are considered the last-resort antibiotics, as other antibiotics like 

colistin and polymyxin B are not available. Carbapenem-resistant 

infections are increasing at alarming rates worldwide (Hammoudi 

Halat and Ayoub Moubareck, 2020), and this trend is even worse in 

low-income countries (Stewardson et al., 2019) including Ethiopia 

(Sewunet et  al., 2022; Tilahun et  al., 2022). Inadequate infection 

prevention and control measures, lack of proper hand hygiene, 

insu�cient isolation precautions, and limited regular AMR 

surveillance (Ali et  al., 2018; Eshetu et  al., 2019) contribute to 

this problem.

More than three-fourths (76.6%, 648) of the isolates were tested 

resistant to one or more beta-lactam antibiotics such as cefotaxime, 

cefoxitin, cefepime, piperacillin/tazobactam, or meropenem. 

Among all isolates, 59% (499/846) showed ESBL phenotypes, and 

19% (157/846) were carbapenem-resistant phenotypically. Our 

�ndings indicate an increase in ESBL phenotypes in Jimma 

compared to previous reports of 50–51% in 2016 (Gashaw et al., 

2018; Zeynudin et  al., 2018). �e observed high prevalence of 

ESBL-producing isolates could be  explained by the high rate of 

nosocomial infections among hospitalized patients (Ali et al., 2018). 

�e lack of proper infection prevention and control practices 

(Sastry et al., 2017; Maki and Zervos, 2021), along with horizontal 

gene transfer (Da Silva and Domingues, 2016) and the spread of 

resistant genes within local microbial populations may contribute 

to the high rate of beta-lactam resistance. Additionally, the high 

rates of Acinetobacter and Pseudomonas species which are 

TABLE 2 Frequency and distribution of carbapenemase-coding genes among Gram-negative bacteria (n  =  107).

Bacteria
AST using Etest strips Carbapenem resistance 

genes (n)
Resistance strains

% (n)Antibiotic MIC (mg/L)

Acinetobacter baumannii complex

(n = 81)

MP ≤2 (22) OXA-51 38.3 (41)

2–8 (19)

≤2 (4) VIM + OXA-51 12.2 (13)

2–8 (6)

>8 (3)

>8 (8) NDM + OXA-51 + OXA-23 7.5 (8)

2–8 (1) NDM + OXA-51 + OXA-58 4.7 (5)

>8 (4)

>8 (5) NDM + OXA-51 + VIM 4.7 (5)

2–8 (1) NDM + OXA-51 2.8 (3)

>8 (2)

>8 (1) NDM + OXA-51 + OXA-58 + VIM 0.9 (1)

>8 (1) NDM + OXA-23 0.9 (1)

>8 (1) OXA-51 + OXA-23 0.9 (1)

2–8 (1) VIM + OXA-51 + OXA-58 1.9 (2)

>8 (1)

>8 (1) NDM + KPCu 0.9 (1)

Acinetobacter haemolyticus (n = 1) MP >8 (1) NDM + OXA-23 0.9 (1)

Enterobacter cloacae (n = 2) ETP >0.5 (2) KPC42 1.9 (2)

E. coli (n = 8) ETP >0.5 (5) NDM 4.7 (5)

>0.5 (2) OXA-48 1.9 (2)

>0.5 (1) NDM + OXA-48 0.9 (1)

Klebsiella pneumoniae (n = 10) ETP >0.5(2) KPC42 4.7 (5)

>0.5(3)

>0.5(3) KPC42 + NDM 2.8 (3)

>0.5(2) KPC42 + VIM 1.9 (2)

Klebsiella variicola (n = 3) ETP >0.5(2) KPC42 + VIM 1.9 (2)

>0.5 (1) NDM + VIM 0.9 (1)

Pseudomonas aeruginosa (n = 1) MP >8 (1) NDM 0.9 (1)

Pseudomonas mendocina (n = 1) MP >8 (1) NDM 0.9 (1)

Interpretation: Meropenem, MIC value ≤ 2 mg/L → S, 2-8 mg/L → I, > 8 mg/L → R; and Ertapenem, MIC value ≤ 0.5 mg/L → S, >0.5 mg/L → R, and screening cut-o� for both antibiotics 

MIC > 0.12 mg/L.
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intrinsically resistant to many beta-lactam antibiotics could explain 

this increase.

In previous studies conducted in Ethiopia, the rate of carbapenem 

resistance among Gram-negative rods was low ranging 1.7–15.1% 

(Misha et al., 2021; Tekele et al., 2021; Seman et al., 2022; Tilahun 

et al., 2022; Alemayehu et al., 2023). However, our �ndings showed an 

increase in resistance to carbapenems (18.6%). Our current study 

revealed high rates of phenotypic carbapenem resistance among 

Acinetobacter (71.3%) and Pseudomonas species (97.7%, 42/43), 

compared to a previous study conducted in the same area in 2016, 

where resistance rates were 56.4 and 7.3% for Acinetobacter and 

Pseudomonas isolates, respectively (Sewunet et al., 2022). �is increase 

in resistance may be attributed to the increasing use of carbapenems 

at the hospital and poor infection control measures. Infections caused 

by such resistant isolates greatly limit the treatment options. �erefore, 

addressing the rising threat of carbapenemase-producing 

Acinetobacter and Pseudomonas species requires a multifaceted 

approach including the implementation of e�ective infection 

prevention and control measures, promotion of antimicrobial 

stewardship programs to ensure appropriate antibiotics use, and 

development of new antibiotics e�ective against these resistant strains 

(Mulani et al., 2019; Jean et al., 2022).

Additionally, it is important to identify the determinants of 

carbapenem resistance in bacterial pathogens. While many isolates 

express a carbapenemase, others may develop resistance due to other 

mechanisms such as porin loss (Atrissi et al., 2021). In our study, 

we investigated both the phenotypic resistance and the presence of 

carbapenemase genes. In A. baumannii, we found the presence of 

intrinsically encoded blaOXA-51-like genes, as well as the acquired 

blaNDM and blaKPC encoding genes. We did not investigate any 

regulatory phenotypes involved in increased expression of blaOXA-

51-like enzymes, so we  can only speculate on their role in the 

phenotypically resistant isolates, possibly in combination with 

permeability issues or e�ux pumps. Nevertheless, in the case of 

P. aeruginosa, the observed carbapenem resistance could not be linked 

to the carbapenemases tested in the study. Instead, it is more likely that 

the resistance is due to porin loss as suggested by a previous study 

(Atrissi et al., 2021).

Similar to previous studies conducted in Egypt (Abouelfetouh 

et  al., 2019) and South  Africa (Anane et  al., 2020), PCR analysis 

revealed that all A. baumannii isolates carried the blaOXA-51-like 

genes. In 13.6% (11/82) and 9.9% (8/82) of Acinetobacter strains, 

blaOXA-23-like and blaOXA-58-like genes were detected, respectively. 

�e prevalence of blaOXA-51-like gene in our study was higher than 

reported in a previous study in Jimma (63.1%) (Sewunet et al., 2022). 

�is can be  explained by the higher proportion of A. baumannii 

strains that currently dominate nosocomial infections as compared to 

previous studies. All 79 A. baumannii isolates carried the intrinsic 

blaOXA-51-like gene, but 22 of them were phenotypically susceptible 

to meropenem according to the MIC values. �is can be explained by 

the intrinsic low e�ciency of blaOXA-51, which is not easily detected 

by phenotypic methods, as reported in previous studies (Hu et al., 

2007; Nigro and Hall, 2018).

�e New Delhi metallo-beta-lactamase (NDM), classi�ed as 

group B in the Ambler classi�cation, is an enzyme that can break 

down a wide range of beta-lactam antibiotics, including carbapenems. 

It was �rst reported in Ethiopia in 2017  in A. baumannii strains 

(Pritsch et al., 2017). Back then, it could only be detected in some 

isolates of Acinetobacter baumannii, with no evidence of its presence 

in other isolates. However, NDM is no longer limited to Acinetobacter 

species and has been found in various GNB, such as K. pneumoniae, 

K. variicola, E. coli, P. aeruginosa, and P. mendocina (Legese et al., 

2022; Seman et al., 2022; Sewunet et al., 2022; Tufa et al., 2022). �is 

enzyme is particularly concerning because it can rapidly spread 

between di�erent bacterial species through horizontal gene transfer, 

leading to the emergence of extensively drug-resistant infections (Da 

Silva and Domingues, 2016). It is also frequently associated with other 

antibiotic resistance determinants and may be transferred alongside 

them. Our study detected the blaNDM gene in 34.6% of 

carbapenemase positive isolates, which is comparable to a study 

conducted in Kenya where 30% of the isolates carried the NDM gene 

(Villinger et al., 2022). �e other commonly acquired carbapenemase 

gene identi�ed in our study was blaKPC42, which was found in all 

carbapenem-resistant K. pneumoniae (10) and two of the three 

carbapenem resistant K. variicola strains. It has not been previously 

reported in Ethiopia but has been frequently reported in other parts 

of the world (Miranda et al., 2018).

Most of the A. baumannii isolates in our study harbored two (19) 

or three (21) carbapenemase genes. Moreover, �ve K. pneumoniae and 

three K. variicola isolates carried two carbapenemase genes. In total, 

50 of the isolates carried multiple carbapenemase genes (blaOXA-51, 

blaNDM, blaVIM, blaOXA-23, blaOXA-58, blaKPC42, blaOXA-48, 

and blaKPCu), which is consistent with other studies conducted in 

Ethiopia where multiple carbapenemase determinants have been 

reported (Legese et al., 2022; Sewunet et al., 2022). In general, the 

prevalence of NDM in Acinetobacter and other GNB has been 

increasing globally in recent years (Sands et al., 2021; Awoke et al., 

2022; Seman et al., 2022).

�ere are certain limitations to our study that should 

be  considered when interpreting the results. First, the study was 

conducted in a single tertiary level facility, which may not fully 

represent the diversity of antimicrobial resistance patterns in the 

broader community or other healthcare settings in the region. Second, 

the PCR analysis was performed on isolates that were phenotypically 

resistant to carbapenems in the disk di�usion method and/or showed 

inconclusive results in the Mast disk analysis. �is approach may have 

excluded some isolates with reduced carbapenem susceptibility that 

were not detected by the phenotypic resistance, potentially 

underestimating the true burden of carbapenem resistance in the 

study area. �ird, we  did not investigate if the resistance against 

carbapenems observed in some A. baumannii strains was due to 

overexpression of OXA-51 or other metabolic or regulatory changes 

such as loss of permeability or increased e�ux.

Conclusion

Our study demonstrated a high rate of carbapenem resistance 

among GNB, primarily in Acinetobacter species. �e majority of this 

resistance was attributed to carbapenemases, probably along with 

other factors. Consequently, treating infections caused by these 

pathogens in this region may prove challenging due to limited 

treatment options. To address this issue, it is essential to revise 

treatment strategies in order to e�ectively manage infections caused 

by resistant strains. Moreover, it is imperative to uphold diligent 

surveillance, apply optimal infection prevention and control strategies, 
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and promote antimicrobial stewardship practices to e�ectively manage 

and combat the dissemination of carbapenem-resistant bacteria.
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Abstract: The hospital environment is increasingly becoming an important reservoir for multi-drug-

resistant (MDR) Gram-negative bacteria, posing serious challenges to efforts to combat antimicrobial

resistance (AMR). This study aimed to investigate the role of hospital waste as a potential source of

MDR ESBL-producing bacteria. Samples were collected from multiple sources within a hospital and

its vicinity, including surface swabs, houseflies, and sewage samples. The samples were subsequently

processed in a microbiology laboratory to identify potential pathogenic bacteria and confirmed using

MALDI-TOF MS. Bacteria were isolated from 87% of samples, with the predominant isolates being

E. coli (30.5%), Klebsiella spp. (12.4%), Providencia spp. (12.4%), and Proteus spp. (11.9%). According to

the double disc synergy test (DDST) analysis, nearly half (49.2%) of the bacteria were identified as

ESBL producers. However, despite exhibiting complete resistance to beta-lactam antibiotics, 11.8% of

them did not test positive for ESBL production. The characterization of E. coli revealed that 30.6%

and 5.6% of them carried blaCTX-M group 1 type-15 and blaNDM genes, respectively. This finding

emphasizes the importance of proper hospital sanitation and waste management practices to mitigate

the spread of AMR within the healthcare setting and safeguard the health of both patients and the

wider community.

Keywords: hospital waste; MDR; ESBL; NDM; CTX-M; Gram-negative bacteria

1. Introduction

Multi-drug-resistant (MDR) bacteria, which produce both extended spectrum beta-
lactamase (ESBL) and carbapenemase, pose a significant and persistent global health
threat [1]. This phenomenon has resulted in increased rates of morbidity, mortality, and
escalated healthcare expenditures [1,2]. The presence of these bacteria in healthcare facili-
ties and their surroundings further exacerbates the problem [3]. Contaminated surfaces,
hospital sewage, and other environmental factors within the hospital have been identified
as potential reservoirs and sources of MDR bacteria due to their close proximity to patients
and healthcare workers. Furthermore, houseflies have the potential to mechanically trans-
mit MDR bacteria to both patients and the wider community [3–5]. In resource-limited
settings like Ethiopia, where healthcare infrastructure and waste management systems are
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suboptimal, the risk posed by hospital waste as a reservoir for MDR bacteria is becoming a
pressing concern [1,6].

Hospital sewage serves as a conduit for the disposal of various waste materials, in-
cluding fecal matter, biological wastes, biopsy specimens, clinical sample leftovers, and
discarded medical supplies, potentially carrying a myriad of pathogenic bacteria [7,8]. Such
sewage can contain MDR bacteria originating from infected or colonized patients, making
them a reservoir for the spread of drug-resistant strains within the hospital and to the
community [8]. The complex microbial niche in sewage provides opportunities for gene
transfer and genetic recombination, facilitating the acquisition and spread of resistance
determinants among bacteria [9,10]. Hospital environments, particularly those with inad-
equate sanitation and waste management practices, can attract houseflies, increasing the
risk of MDR bacteria being disseminated by these insects [6,11]. They can carry bacteria
on their body surfaces and within their digestive systems, facilitating their dissemination
from contaminated sources to other locations [11,12].

Previous studies conducted in the same study area have reported a high prevalence of
ESBL-producing bacteria and carbapenem-resistant strains among Gram-negative bacteria
isolated from clinical samples [13–17]. The prevalence rates for ESBL producers range from
50 to 80%, while carbapenem-resistant strains range from 10 to 20% [13–17]. Notably, ESBL
production is commonly observed in bacteria such as E. coli, K. pneumoniae, K. variicola, E.
cloacae, and many others [14,15,17]. Similarly, the emergence of carbapenem resistance is
frequently detected in Gram-negative bacteria such as A. baumannii, P. aeruginosa, E. coli,
and K. pneumoniae [16,17]. These resistant strains have been associated with healthcare-
associated infections, posing a serious threat to effective antimicrobial therapy [18]. As a
result, they contribute to increased morbidity, mortality, and healthcare costs [18,19].

Jimma Medical Center, located in Ethiopia, is a tertiary hospital that serves as a
referral center for the southwest region of the country and plays a crucial role in providing
essential healthcare services to a substantial population [20]. However, the potential
contribution of hospital waste to the spread of MDR bacteria in this setting remains poorly
understood. Therefore, understanding the dynamics and sources of MDR bacterial isolates
from hospital sewage, houseflies, and environmental samples provides valuable insights
into the prevalence, genetic characteristics, and potential transmission routes of drug-
resistant bacteria within healthcare settings and, more importantly, to the community.
Thus, based on the evidence, appropriate infection control measures can be implemented
to prevent their spread and reduce the burden of MDR infections. Therefore, this study
aimed to provide insights on potential reservoirs for MDR and ESBL-positive pathogenic
Gram-negative bacteria within the environment of Jimma Medical Center.

2. Results

2.1. Proportion of Bacterial Growth

The microbiological analysis revealed the presence of potential pathogenic bacteria
in samples obtained from houseflies, hospital rooms and medical device surface swabs,
and sewage samples. A total of 345 samples, including 111 surface swabs and 42 sewage
samples collected in 2019 and 192 housefly samples collected in 2021, were examined. The
overall isolation rate was 80.9% (95% CI: 77.2% to 84.6%), with a 100% isolation rate from
housefly and sewage samples. However, potentially pathogenic Gram-negative bacteria
were isolated from 40.5% (n = 45) of hospital rooms and medical device surface swab
samples (Figure 1).
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Figure 1. The proportion of aerobic bacterial growth obtained from housefly, sewage, and surface

swab samples.

2.2. Profile of Isolated Gram-Negative Bacteria

Further analysis of the bacterial isolates revealed a diverse range of species in surface
swabs, housefly, and sewage samples. A total of 37 different species of bacteria were
identified in housefly samples, while 23 species were isolated in sewage samples and
11 species in surface swabs. Among the housefly samples, Providencia species (20.7%) were
the most frequently isolated bacteria, followed by Proteus species (18.6%), E. coli (14.9%),
and Klebsiella species (11.2%). E. coli (60%), Aeromonas species (15.6%), and Acinetobacter
species (8.9%) were the predominant isolates in surface swabs. In sewage samples, E. coli
(52.1%), Klebsiella (19.1%), and Acinetobacter species (9.6%) were frequently identified.
However, it is noteworthy that MDR E. coli, Klebsiella, Acinetobacter, and Enterobacter species
were consistently isolated from all sample types. Despite the consistent presence of these
bacterial strains across all sample types, their prevalence and abundance varied (Table 1).

Table 1. The distribution of aerobic bacteria isolated from hospital rooms and medical device surface

swabs, housefly, and sewage samples at a tertiary hospital in Ethiopia.

Bacteria
Housefly Surface Swabs Sewage Total

n % n % n % n %

E. coli 32 29.6 27 25.0 49 45.4 108 30.4
Klebsiella species 24 54.5 2 4.5 18 40.9 44 12.4

Providencia species 44 100 - - - - 44 12.4
Proteus species 40 95.2 2 4.8 - - 42 11.8

Enterobacter species 16 69.6 1 4.3 6 26.1 23 6.5
Acinetobacter species 6 31.6 4 21.1 9 47.4 19 5.4

M. morganii 14 100 - - - - 14 3.9
Aeromonas species 1 NA 7 NA 2 NA 10 2.8
Kluyvera species 7 NA - - 2 NA 9 2.5
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Table 1. Cont.

Bacteria
Housefly Surface Swabs Sewage Total

n % n % n % n %

R. ornithinolytica 7 NA - - 2 NA 9 2.5
W. chitiniclastica 9 NA - - - - 9 2.5

C. freundii 5 NA - - - - 5 1.4
Pantoea species 2 NA - - 1 NA 3 0.8

P. gergoviae 1 NA - - 2 NA 3 0.8
E. hermannii 1 NA - - 1 NA 2 0.6

L. adecarboxylata 1 NA - - 1 NA 2 0.6
C. sakazakii - - - - 1 NA 1 0.3
E. fergusonii - - 1 NA - - 1 0.3
Hafnia alvei 1 NA - - - - 1 0.3

I. indica 1 NA - - - - 1 0.3
M. wisconsensis 1 NA - - - - 1 0.3
P. carotovorum 1 NA - - - - 1 0.3

P. putida 1 NA - - - - 1 0.3
Salmonella species - - 1 NA - - 1 0.3

S. maltophilia 1 NA - - - - 1 0.3
Total 216 60.8 45 12.7 94 26.5 355 100

Key: NA: not applicable, percentage was not calculated if the total number of bacterial isolates was less than 14.

2.3. Antibiotic Resistance Patterns

The results of the antibiotic susceptibility tests conducted on bacteria from all sample
types combined revealed a significant level of resistance to several antibiotics. Specifically, a
high rate of resistance was observed against cefuroxime, ampicillin, amoxicillin-clavulanic
acid, piperacillin, and cefotaxime, with 100%, 61%, 44%, 42.2%, and 41.1%, respectively.
Conversely, a low rate of resistance was observed against meropenem, amikacin, and
piperacillin-tazobactam, representing 3.1%, 3.1%, and 8.6%, respectively. Furthermore, the
double disc synergy test revealed that nearly half (49.2%) of the Gram-negative bacterial
isolates were ESBL producers. A high proportion of ESBLs was observed in species
such as Acinetobacter, Proteus, and Providencia, as indicated in Table 2. In general, an
alarming level of resistance, ranging from 30% (in gentamicin) to 61% (in ampicillin), was
observed to commonly used antibiotics, including beta-lactams, fluoroquinolones, and
aminoglycosides, in Gram-negative bacteria isolated from various environmental samples
of the medical center.

2.4. Molecular Epidemiology of ESBLs and Carbapenemase Expression in E. coli Strains

The findings of this study showed a high rate of ESBL- and carbapenemase-encoding
genes among E. coli strains obtained from surface swabs, housefly, and sewage samples.
A total of 66 E. coli strains were included in the analysis, and the presence of ESBL- and
carbapenemase-encoding genes was determined using DNA microarray technology. The
results revealed that 37.9% (n = 41) of the E. coli isolates exhibited at least one ESBL-
encoding gene, with the predominant variant being CTX-M group 1 type-15. Additionally,
5.6% (n = 6) of the E. coli isolates carried carbapenemase genes, solely blaNDM. Among
carbapenemase-encoding genes, five of them were found in housefly samples and the
remaining one gene was detected from a surface swab. Similarly, a high rate of ESBL genes
(43.9%) was detected in E. coli strains obtained from houseflies. However, 62.2% of the
blaTEM genes were found in E. coli strains obtained from sewage samples (Table 3).
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Table 2. The proportion of antibiotic-resistant Gram-negative bacteria obtained from surface swabs,

housefly, and sewage samples at a tertiary hospital in Ethiopia.

Antibiotics E. coli Klebsiella spp. Providencia spp. Proteus spp. Enterobacter spp. Acinetobacter spp. Ohers Total

AMP 73.1 100 86.4 81.0 95.7 100 91.3 61.0
PIP 65.7 100 61.4 59.5 60.9 IE 59.6 42.2

AMC 38 43.2 100 21.4 91.3 100 64.3 44.0
TZP 19.4 31.8 9.1 0 17.4 IE 17.0 8.6
CXM 100 100 - 100 - 100 100 100
CTX 34.3 50.0 65.9 64.3 69.6 100 44.6 41.1
CAZ 31.5 47.7 59.1 26.2 56.5 - 40.4 27.9
FEP 34.3 40.9 40.9 64.3 65.2 - 42.1 30.3
FOX 13.9 13.6 15.9 0 100 - 46.4 18.5

MEM 24.1 2.3 0 0 4.3 31.6 4.3 3.1
MXF 35.2 38.6 61.4 76.2 56.5 - 52.2 34.7
CIP 30.6 40.9 47.7 66.7 30.4 100 37.5 33.9
TM 20.4 31.8 34.1 66.7 47.8 47.4 42.6 29.7
GM 16.7 31.8 36.4 66.7 65.2 52.6 32.6 30.1
AN 1.9 2.3 0 4.8 8.7 5.3 8.5 3.1
SXT 43.5 47.7 61.4 71.4 56.5 57.9 50.0 38.7

ESBL 38.9 43.2 61.4 64.3 52.2 68.4 37.5 49.2

Key: AMP, ampicillin; AMC, amoxicillin/clavulanic acid; PIP, piperacillin; TZP, piperacillin-tazobactam; CXM,
cefuroxime; CTX, cefotaxime; CAZ, ceftazidime; FEP, cefepime; FOX, cefoxitin; MEM, meropenem; MXF, moxi-
floxacin; CIP, ciprofloxacin; GM, gentamicin; TM, tobramycin; AN, amikacin; SXT, sulfamethoxazole-trimethoprim;
ESBL, extended spectrum beta-lactamase; spp., species; IE, insufficient evidence; and “-”, no breakpoints. Only
resistant isolates were included in the proportion analysis, while intermediate and susceptible results were
excluded from the numerator. Additionally, rare bacterial isolates that do not have breakpoints in the EUCAST
guidelines were excluded from the denominator in AST analysis. The resistance patterns of specific bacterial
species are found in the Supplementary Table S1.

Table 3. Distribution of carbapenemase- and extended-spectrum-beta-lactamase-encoding genes of

Escherichia coli isolated from surface swab, sewage, and housefly samples at Jimma.

Types of Antimicrobial
Resistance Gene

Surface Swab
(n = 10)

Housefly
(n = 20)

Sewage
(n = 36)

Total

(n = 66) %

Carbapenemase encoding genes 1 5 0 6 5.6
NDM 1 5 0 6 5.6

ESBL encoding genes 8 18 15 41 37.9
CTX-M group 1 type-15 6 15 11 33 30.6
CTX-M group 1 type-9 2 0 2 3 2.7
CTX-M group 1, ND * 0 1 2 3 2.8

CTX-M group 1 type-15 + 9 0 2 0 2 1.8
AMPC encoding genes 3 2 1 6 5.6

CMY II (n = 11) 0 1 0 1 0.9
ACT/MIR (n = 10) 3 0 0 3 2.8

DHA (n = 5) 0 1 1 2 1.9
TEM/SHV encoding genes 3 11 23 37 34.3

blaTEM- (WT) (n = 144) 3 11 22 36 33.4
blaTEM-104K + 164C (n = 1) 0 0 1 1 0.9

Key: *—no specified CTX-M group-1, subtype enzymes.

3. Discussion

This study revealed that bacterial isolates were present in all sewage and housefly
samples, as well as in 40.5% of surface swabs. Although the proportion of bacteria detected
in surface swab samples was lower compared to housefly and sewage samples, it still
indicates a substantial presence of bacteria that could serve as potential sources of infections
within the healthcare facility. In our study, we identified a diverse range of antibiotic-
resistant bacterial isolates, including E. coli, Klebsiella spp., Providencia spp., Proteus spp.,
Enterobacter spp., Acinetobacter spp., Morganella morganii, and many others, in all categories
of samples. It is worth noting that a substantial proportion of these bacteria are known to
be pathogenic, or at least facultative pathogens, and have been associated with healthcare-
associated infections [21,22]. This emphasizes the potential role of the environment, as well
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as houseflies, in perpetuating the spread of MDR pathogens, not only among patients, but
to the wider community [6,23,24].

The microbiological analysis of surface swabs and sewage samples exhibited a wide
array of bacterial strains, including MDR ESBL strains. Therefore, sewage was only streaked
and analyzed with aerobic culture, so only the most prevalent aerobic Gram-negative
bacteria would be detected. The molecular characterization of E. coli strains from these
samples revealed the presence of acquired carbapenemase- and ESBL-encoding genes, such
as (blaNDM) (1), CTX-M group1 type-15 (17) and CTX-M group 1, ND (2), and blaTEM,
as well as AMPC-encoding genes, such as ACT/MIR and DHA (26). However, it is a
common practice at the hospital to release sewage into the nearby stream without proper
treatment. The high isolation rate of carbapenemase and ESBL bacterial strains in our
study makes this practice highly hazardous. Additionally, in the hospital rooms, the floors
are only mopped/cleaned twice daily with water and soap. In cases of suspected visible
contamination, a 5% sodium hypochlorite solution diluted in water is used for cleaning.
Such inadequate treatment and cleaning practices increase the risk of contamination for
patients, healthcare providers, and caregivers in the healthcare facility, as well as water
sources and the surrounding community [25–28]. In the community, transmission could
occur through direct contact with contaminated surfaces and water or indirectly through
animals that have direct contact with this contaminated water and environment [29].
The implications of this finding underscore the importance of implementing an effective
sewage treatment system and proper cleaning practices of the hospital rooms and medical
devices to mitigate the spread of MDR bacteria and minimize the risk of infections in
healthcare settings.

In this study, it was found that houseflies harbor a diverse range of bacteria, including
carbapenem-resistant strains and ESBL producers. Specifically, the analysis of E. coli strains
using DNA microarray technology revealed the presence of acquired blaNDM genes and
various ESBL-encoding genes in five and twenty E. coli strains, respectively. As a result,
houseflies have been recognized as potential vectors for the transmission of MDR bacteria
due to their attraction to waste areas such as open sewage systems, liquid and solid waste
disposal sites, waste bins, and poorly cleaned toilets [30]. These insects can carry bacteria
on their bodies and in their digestive systems, enabling them to spread pathogens from
contaminated sources like sewage or decaying organic matter to other surfaces, including
food, within a healthcare facility [30,31]. Moreover, houseflies can transport MDR bacteria
from the environment into healthcare settings or vice versa [32,33]. Hence, the detection of
MDR strains in the present study serves as a crucial warning, highlighting the necessity for
implementing specific hygiene precautions.

The resistance spectrum of identified bacterial strains, as well as the detected resistance-
encoding genes, was found to be similar to those observed in clinical samples from the
same area [17]. This highlights the potential risk of transmission and the challenges in
treating patients who acquire infections caused by these MDR bacteria transmitted through
the hospital environment [17,34,35]. Of particular concern is the presence of the acquired
blaNDM gene in this study, which encodes the New Delhi metallo-beta-lactamase and
confers resistance to many beta-lactam antibiotics, including carbapenems, the last-resort
antibiotics used to treat severe MDR bacterial infections [36]. It is worth noting that the
acquired blaNDM gene can be horizontally transferred to other bacteria in the environment,
further contributing to the dissemination of drug resistance [37–39]. Therefore, the high
prevalence of drug-resistant bacteria in these samples underscores the urgent need for
effective infection prevention and control strategies, including stringent hygiene practices
and proper waste management to minimize bacterial contamination in areas prone to
housefly infestation, such as toilets, sewage systems, waste bins, and the designated areas
for liquid and solid waste disposal in healthcare facilities.

This study has limitations that should be considered when interpreting these findings.
Firstly, it did not investigate the specific factors that contribute to the presence of MDR
bacteria in hospital waste, such as the duration and storage conditions of the waste or



Antibiotics 2024, 13, 374 7 of 12

the impact of specific infection control practices. Understanding these factors could help
in identifying associated risk factors and developing appropriate waste management
strategies in the hospital. Secondly, this study did not thoroughly examine the extent of the
transmission risks posed by these samples, including the spread of drug-resistant bacteria
to patients within the hospital and the potential dissemination to the wider community.
However, we plan to perform phylogenetic analysis on these bacterial strains and compare
them to patient isolates [17]. Thirdly, we conducted molecular analysis to detect resistance-
encoding genes on the most prevalent species, E. coli only. As a result, this part of the
findings may not reflect the distribution of all resistance-encoding genes in other bacterial
clades obtained from surface swabs, houseflies, and sewage. Furthermore, sewage was not
analyzed using filtration and enrichment techniques. Thus, the real load of MDR bacteria
in sewage will be higher than described in this study once the sensitivity of isolation is
improved here. We made an intentional decision for this process to limit this study to the
most prevalent and most problematic isolates. In depth analysis of the sewage is beyond
the scope of this manuscript and is planned for future projects.

4. Materials and Methods

4.1. Description of the Hygiene Practice in Study Area

Hospital hygiene procedures at JMC include floor mopping/cleaning conducted twice
daily as part of routine tasks by janitors in the wards, waiting areas, and corridors. The
cleaning of windows and tiles is performed once a week. However, these cleaning activities
lacked specific protocols and typically involved the use of detergent-based products, soap,
or a diluted solution of 5% sodium hypochlorite (bleach) mixed with water at a ratio of 1:10.
The diluted bleach solution was mainly used in areas with frequent contamination within
the facility. The solid waste of the hospital is disposed of in open or closed waste bins
without undergoing proper treatment, such as autoclaving. Then, the waste is transported
to an incineration facility twice daily (morning and evening). It is stored there a day prior
to incineration and left open, which can lead to the attraction of houseflies (Figure S1).
Furthermore, the liquid waste and sewage system of the hospital are directly released into a
nearby stream without undergoing any treatment, such as chemical inactivation, filtration,
or UV irradiation, prior to discharge.

4.2. Study Design, Area, and Period

A cross-sectional study was conducted to assess the extent and distribution of MDR
ESBL pathogenic gram-negative bacteria on surfaces, sewage, and houseflies at JMC during
two specific periods: May to September 2019 and June to October 2021. To avoid bias,
neither the janitors nor the healthcare providers were informed about the environmental
sampling, which took place at random intervals during working days. Surface swab
samples were collected from various wards within JMC, including the intensive care units
(ICUs) and the operating theatres, as well as the recovery rooms. Additionally, the inpatient
units, such as the surgical, medical, gynecological, maternity, pediatric, and ophthalmology
wards, were sampled. Furthermore, sewage and housefly samples were collected from
different points within the hospital, encompassing patient care areas, wards, laboratories,
and waste disposal sites. It is important to note that these environmental sample collections
were conducted during periods when no known outbreaks caused by Gram-negative
bacteria were reported.

4.3. Sample Collection

The surfaces surrounding the patients’ rooms and medical devices were sampled via
swab. The following surfaces were chosen for sampling, if they were available for the
individual patient: IV stands, inpatient floors, chairs, room sinks, walls, surgical tables,
anesthesia tubes, forceps, chest tube sets, bedrails, bedside tables, toilet doorknobs, room
doorknobs, electricity buttons, and cupboard knobs. Sterile cotton swabs pre-moistened in
a sterile normal saline solution (0.9% NaCl) were used for sampling surfaces. At each site,
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an area of approximately 4 cm2 was swabbed in two directions at right angles to each other
in a close zigzag pattern, rotating the swab during sampling to ensure that the entire surface
of the swab was used according to the guidelines [40]. Sewage samples were collected by
spot sampling methods using a wide-mouth container directly from the manholes. A total
of 111 surface swabs and 42 sewage samples were collected. Using a single proportion
formula, 192 housefly samples from both dry and liquid waste disposal sites of the hospital
were included in this study. The sample size was calculated considering a 2.5% margin
of error, a 95% confidence level, and a 3.3% prevalence of ESBL-producing E. coli isolated
from fly samples reported in a previous study [41]. The houseflies were captured using
a sweeping net and dumped in one milliliter of sterile normal saline in separate sterile
glass test tubes. All samples were transported to the Core Research Laboratory of Jimma
University for analysis.

4.4. Bacteria Isolation

In the core research laboratory, the housefly external flora was collected by dipping
the housefly into a tube containing 1 mL of normal saline. Then, the housefly was briefly
vortexed inside the tube to detach the bacterial flora, and all the houseflies were discarded
thereafter. After this, 100 µL of the sample was inoculated on MacConkey agar. Similarly,
surface swabs and 100 µL sewage samples were also inoculated on MacConkey agar. All the
plates were then incubated aerobically at 37 ◦C for 16–18 h. After an overnight incubation,
the plates were inspected and if there was growth, separate colonies were selected and sub-
cultured again on MacConkey agar and incubated at the same environmental conditions
to get pure cultures. For the sewage samples, to purify them easily, different individual
colonies were selected from the third or fourth quadrant of the inoculated plate. These
selected colonies were then subcultured under similar environmental conditions. Once the
pure colony was obtained, they were saved with storage media containing skimmed milk,
glucose, glycerol, tryptone soya, and distilled water at −81 ◦C.

4.5. Bacterial Identification

All stored isolates were transported to the Medical Microbiology Laboratory in Munich,
Germany, and identified using matrix-assisted laser desorption ionization–time of flight
mass spectrometry (MALDI-TOF MS) (Bruker, Ettlingen, Germany).

4.6. Antibiotics Susceptibility Test

The antibiotic susceptibility testing was performed using the Kirby–Bauer disc dif-
fusion method for 16 antibiotics, namely ampicillin (10 µg), amoxicillin-clavulanic acid
(30 µg), amikacin (30 µg), ceftazidime (30 µg), ciprofloxacin (5 µg), cefotaxime (30 µg),
cefuroxime (30 µg), cefepime (30 µg), cefoxitin (30 µg), gentamicin (10 µg), meropenem
(10 µg), moxifloxacin (5 µg), piperacillin (100 µg), trimethoprim-sulfamethoxazole (1.25 +
23.75 µg), tobramycin (10 µg), and piperacillin-tazobactam (10 µg) (Bio-Rad, Feldkirchen,
Germany), and read using the ADAGIO 93400 automated system (Bio-Rad, Feldkirchen,
Germany). The readings were interpreted as resistant, intermediate (susceptible with in-
creased exposure), or susceptible according to the respective breakpoints for every organism
in the European Committee on Antimicrobial Susceptibility Testing [42].

4.7. Extended Spectrum β-Lactamase Detection

The phenotypic detection of ESBL production was performed for all Gram-negative
isolates by a double disc synergy test (DDST) using ceftazidime and cefotaxime with
amoxicillin-clavulanic acid (10 µg) on Mueller–Hinton agar [43].

4.8. DNA Extraction

All E. coli strains that showed ESBL features from DDST and/or were resistant to
cefotaxime, cefepime, cefoxitin, piperacillin-tazobactam, or meropenem in the Kirby–Bauer
disc diffusion antibiotic susceptibility tests were selected for genotyping. After overnight
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aerobic incubation on blood agar (Oxoid, Cambridge, UK) at 37 ◦C, three to five pure
colonies were taken with an inoculating loop and suspended in nuclease-free water and
extracted using a High Pure PCR template preparation kit (Roche, Mannheim, Germany)
following the manufacturer’s instructions. The quantity, purity, and concentration of
extracted DNA was measured by NanoDrop ND-100 (Thermo Fisher Scientific, Wilmington,
NC, USA).

4.9. Molecular Characterization of E. coli Strains

Check-MDR CT103XL DNA microarray kits (Wageningen, The Netherlands) were
used to detect and identify encoding genes for carbapenemase (IMP, VIM, KPC, NDM-1,
SPM, OXA-23 like, OXA-24 like, OXA-48 like, and OXA-58 like), AmpC-type β–lactamase
(ACC, ACT, CMY, DHA, FOX, MIR, and MOX), ESBL (cefotaximase-Munich (CTX-M
type)), GES, VER, PER, BEL, Temoneira β-lactamase (TEM), and sulfhydryl (SHV) variant
encoding genes using the DNA microarray technique [44].

4.10. Data Quality Assurance

To ensure the reliability of the data, quality control (QC) measures were implemented
throughout the entire laboratory process. Standard operating procedures (SOPs) were
followed during the pre-analytical, analytical, and post-analytical stages to ensure the
quality of the test results, thereby maintaining a high level of accuracy. Using DensiCHEK
plus (BioMérieux, Craponne, France), the inoculum density of bacterial suspensions was
standardized to 0.5 McFarland for all phenotypic antibiotic susceptibility tests. The Mueller–
Hinton agar plates (Bio-Rad, Feldkirchen, Germany) were evenly streaked and loaded with
antibiotic discs (Bio-Rad, Feldkirchen, Germany) according to the EUCAST guidelines [42].
Control strains of Escherichia coli ATCC 25922 and Pseudomonas aeruginosa ATCC 27853 were
utilized to monitor the performance of antibiotic susceptibility tests.

4.11. Data Analysis

The data generated in the laboratory were entered into Epi-Data software version 4.6
and then analyzed using Microsoft Office 2016 Excel sheets and GraphPad Prism version
8.4.3. The findings were presented using descriptive measures, including tables, figures,
and percentages.

4.12. Ethical Consideration

Ethical clearance was obtained from the Ethical Review Board of Jimma University,
Institute of Health (protocol numbers: IHRPGO/495/2018 and IHRPGO/1087/21), and the
Ethics Committee of the Medical Faculty of Ludwig-Maximilians-Universität of Munich,
Germany (Opinion No: 21-0157).

5. Conclusions

The present study revealed a high rate of ESBL-producing Gram-negative bacteria
originating from patient surroundings and the hospital environment, including houseflies
caught in the hospital vicinity, as well as sewage samples. Moreover, the detection of
carbapenemase- and beta-lactamase-encoding genes was observed in E. coli strains, with
a predominant presence of blaNDM and blaCTX-M group 1, respectively. The isolation
rate of MDR bacteria from the houseflies was remarkable. Therefore, the implementation
of rigorous waste management and housefly control practices in and around healthcare
facilities is crucial to minimize the transmission of these resistant bacteria to patients and
the community at large. This includes the regular and thorough cleaning of surfaces and
medical devices, along with the proper segregation, handling, and disposal/inactivation
of hospital waste, particularly those with the potential for bacterial contamination. There
is also a dire need for proper sewage treatment, given the total absence, especially for
hospital wastewater.
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Background: The burden of multidrug-resistant bacterial infections in low- 

income countries is alarming. This study aimed to identify the bacterial etiol-

ogies and antibiotic resistance patterns among neonates in Jimma, Ethiopia.

Methods: An observational longitudinal study was conducted among 238 

presumptive neonatal sepsis cases tested with blood and/or cerebrospinal 

fluid culture. The bacterial etiologies were confirmed using matrix-assisted 

laser desorption ionization-time of flight mass spectrometry. The antibiotic 

resistance patterns were determined using the automated disc di�usion 

method (Bio-Rad) and the results were interpreted based on the European 

Committee on Antimicrobial Susceptibility Testing 2021 breakpoints. 

Extended-spectrum β-lactamases were detected using a double disc synergy 

test and confirmed by Mast discs (Mast Diagnostica GmbH).

Results: A total of 152 pathogens were identified. Of these, Staphylococcus 

aureus (18.4%) was the predominant isolate followed by Klebsiella pneumo-

niae (15.1%) and Escherichia coli (10.5%). All the isolates exhibited a high 

rate of resistance to first- and second-line antibiotics ranging from 73.3% for 

gentamicin to 93.3% for ampicillin. Furthermore, 74.4% of the Gram-negative 

isolates were extended-spectrum β-lactamase producers and 57.1% of S. aureus 

strains were methicillin resistant. The case fatality rate was 10.1% and 66.7% 

of the deaths were attributable to infections by multidrug-resistant pathogens.

Conclusions: The study revealed a high rate of infections with multidrug- 

resistant pathogens. This poses a significant challenge to the current global 

and national target to reduce neonatal mortality rates. To address these chal-

lenges, it is important to employ robust infection prevention practices and 

continuous antibiotic resistance testing to allow targeted therapy.

Key Words: sepsis, neonate, multidrug resistant, extended-spectrum 

β-lactamases, methicillin-resistant Staphylococcus aureus, low-income 

countries, Ethiopia

(Pediatr Infect Dis J 2024;43:687–693)

Neonatal sepsis is a life-threatening condition characterized by a 
systemic response to infection that can a�ect newborns less than 

1 month of age.1 Neonates that are born prematurely or with low birth 
weight are particularly vulnerable.2 Infections with multidrug-resistant  
(MDR) bacteria are di�cult to treat because they have developed 
resistance to multiple clinically used antibiotics.3–5 This significantly 
limits the treatment options and thus despite antibiotic treatment, neo-
natal sepsis continues to be one of the leading causes of morbidity and 
mortality in neonates.6 According to a report by Waters et al, neonatal 
mortality accounts for over one million deaths each year, with low- 
income countries contributing to 99% of these deaths, which are 
largely caused by infections with MDR bacteria.2,7,8

In low-income countries, treating infections with MDR bac-
teria can be even more challenging due to limited availability of 
e�ective antibiotics.9 Combination therapy with multiple antibiotics 
including carbapenems may be required in some cases to achieve 
acceptable therapeutic outcomes.10 However, carbapenems are not 
widely available in low-income countries, and their widespread 
and inappropriate use would increase the risk of bacterial resistance 
against these antibiotics.11 Therefore, preventing neonatal infections 
caused by MDR bacteria is crucial.12 To achieve this, practicing good 
hygiene and proper infection control measures in health care settings 
are essential. Additionally, judicious and targeted use of antibiotics, 
early diagnosis and proper sanitation in neonatal units can help to 
reduce the risk of these infections.13,14

In neonates, bacterial infections with extended-spectrum 
β-lactamases (ESBL)-producing Enterobacterales,9,15,16 methicillin- 
resistant Staphylococcus aureus (MRSA)9,17 and extremely drug- 
resistant Acinetobacter baumannii18 are more common and  
frequently fatal.7,16,19 The problem is even worse, particularly, in 
low-income countries where there are inadequate diagnostic facili-
ties, limited antimicrobial susceptibility tests, lack of reliable diag-
nostic markers, a shortage of skilled health workers and limited 
antibiotic options to treat these infections.9,17–19 In addition, surveil-
lance data about infections with MDR bacteria and the outcome 
of those cases are scarce in low-income countries. Therefore, this 
study aimed to determine the extent of MDR bacteria causing sep-
sis in neonates admitted to a tertiary teaching hospital in Ethiopia 
and the fate of those cases.

MATERIALS AND METHODS

Setting
Jimma Medical Center is the largest university hospital in 

southwest Ethiopia with over 800 beds and a catchment popula-
tion of over 20 million. The study was conducted at the neonatal 
intensive care unit (NICU) of the hospital, which is a second-level 
NICU with a total bed capacity of 50 and an annual admission of 
1800–2400 neonates.

Study Design
An observational longitudinal study was carried out between 

April and October 2018. All neonates admitted to the NICU with 
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a clinical diagnosis of sepsis and a request for blood culture and/
or cerebrospinal fluid (CSF) cultures during the study period were 
invited to this study. Case definitions, participant recruitment, data 
collection procedures, and other clinical profiles of the study par-
ticipants as well as risk factors for infections have been published 
elsewhere.20 The participants were recruited after obtaining consent 
from their parents or caregivers and were followed until discharge 
or death. During their recruitment and follow-up, di�erent varia-
bles including demographic information, risk factors (neonatal and 
maternal), clinical presentations, laboratory results, microbiologic 
data, and antimicrobial treatment were collected using case report 
forms (CRF) (Questionnaire, Supplemental Digital Content 1, 
http://links.lww.com/INF/F530).

Study Population
In this study, a total of 352 neonates were recruited. Of 

these, we obtained completed CRF in 309 cases. Blood and/or CSF 
cultures were performed on 195 neonates with complete CRF and 
43 neonates with incomplete CRF who had a presumptive diagno-
sis of sepsis (Figure, Supplemental Digital Content 2, http://links.
lww.com/INF/F531).

Sample Collection
As a part of a routine workup, one sample of 1–3 mL venous 

blood was collected from the neonates by trained nurses. Additionally, 
2–3 mL of CSF was also collected by resident physicians from the neo-
nates with suspected meningitis. The specimens were collected asepti-
cally and were immediately transported to the microbiology laboratory 
of Jimma Medical Center for processing and analysis.

Isolation and Identification of Pathogens
The blood specimens were inoculated into a BD BACTEC Peds 

Plus/F bottle (Becton Dickinson, Sparks, MD). The bottles were then 
incubated in the BD BACTEC FX40 (Becton Dickinson, Sparks, MD) 
automated culture machine for up to 5 days until they were flagged 
“negative” or “positive” for growth. Positively flagged bottles were 
subcultured on Blood, Chocolate, and MacConkey agar (Oxoid, Cam-
bridge, England). The CSF specimens were directly inoculated on 
Blood, Chocolate and MacConkey agar (Oxoid, Cambridge, England) 
plates within 30 minutes of collection.

The Chocolate and Blood agar plates were incubated at 
5%–10% CO

2
. All the plates were incubated at 35–37 °C aerobically 

for 18–24 hours for first inspection. Growth was monitored for a total 
of 72 hours to detect also fastidious organisms. After overnight incu-
bation, all the inoculated plates were inspected, and organisms grown 
on the plates were identified according to the standard microbiologic 
identification techniques and stored in storage media at −80 °C.21 
These isolates were then transported to the Munich research laboratory 
at the Max von Pettenkofer Institute, Hospital Hygiene and Medical 
Microbiology (Ludwig-Maximilians-Universität, Munich, Germany), 
on dry ice. Here, detailed resistance testing and identification using 
matrix-assisted laser desorption ionization-time of flight mass spec-
trometry (Bruker, Germany) were performed.

Antimicrobial Susceptibility Testing
Antimicrobial susceptibility testing was carried out by stand-

ardized Kirby-Bauer disc di�usion technique to 25 antibiotics in total 
for Gram-negative and Gram-positive bacterial pathogens (Table, 
Supplemental Digital Content 3, http://links.lww.com/INF/F532). The 
results were read using the ADAGIO 93400 automated system (Bio-
Rad, Feldkirchen, Germany), and interpreted as resistant, intermediate 
or susceptible according to the European Committee on Antimicrobial 
Susceptibility Testing (2021) guideline.22

Extended-spectrum β-lactamase Detection
Phenotypic detection of ESBL production by double disc 

synergy test using ceftazidime and cefotaxime with amoxicillin- 
clavulanic acid (10 μg) was performed on all Gram-negative 
isolates that showed resistance to selected β-lactam antibiotics 
such as cefotaxime (30 µg), cefepime (30 μg), cefoxitin (30 μg), 
piperacillin-tazobactam (30 μg) or meropenem (10 μg). Results 
were interpreted automatically by the ADAGIO (Bio-Rad, Feld-
kirchen, Germany) system. Furthermore, the ESBL phenotypes 
were confirmed using mast discs (Mast Diagnostica GmbH, 
Reinfeld, Germany) for all resistant isolates. The results were 
interpreted with the Mast discs combi D68C ESBL/AmpC cal-
culator spreadsheet (Mast Diagnostica GmbH, Reinfeld, Ger-
many) and reported as negative or positive for ESBL and/or 
AmpC phenotypes.

Quality Control
All the laboratory activities were carried out according to the 

laboratory’s standardized operating procedures. Using DensiCHEK 
plus (BioMérieux, Deutschland GmbH, Nürtingen, Germany), the 
inoculum density of bacterial suspensions was standardized to 0.5 
McFarland for all phenotypic susceptibility tests. The Mueller- 
Hinton agar plates (Bio-Rad, Feldkirchen, Germany) were evenly 
streaked and loaded with antibiotic discs (Bio-Rad, Feldkirchen, 
Germany) and mast discs (MAST Diagnostica GmbH, Reinfeld, 
Germany) according to the European Committee on Antimicrobial 
Susceptibility Testing guideline.22

Statistical Analysis
The data were entered and analyzed using Microsoft O�ce 

2016 Excel. Tables and graphs were used to display the frequency 
of bacterial pathogens, as well as their antimicrobial resistance 
(AMR) patterns.

Ethical Considerations
Ethical approval was obtained from both Jimma University 

Institute of Health Institutional Review Board, Ethiopia (protocol 
number: IHRPGD/274/2018) and the Ethics Committee at the 
Medical Faculty of Ludwig-Maximilians-Universität of Munich, 
Germany (opinion No: 21-0157). Written informed consent was 
obtained from the families or guardians of each neonate before 
they were recruited into the study. All the data were collected pro-
spectively and anonymized after data merging. The microbiology 
results obtained during routine workup were provided to the treat-
ing physician to ensure that the respective neonates received the 
required medical attention based on the findings.

RESULTS
A total of 352 neonates were included in the study. Among 

them, 68.0% (204/352) were male, and 87.8% (309/352) had CRF 
completed. More than 85.0% (301/352) of the neonates were recruited 
within the first week of life. Of the neonates who had their birth weight 
determined, more than half of them (75/146) had a low birth weight. 
Specifically, 19.2% (28/146) weighing less than 1500 g and the remain-
ing 32.2% (47/146) fell within the weight range of 1500–2499 g. More-
over, 41.7% (83/199) of the neonates were born preterm, while 20.7% 
(63/304) were resuscitated at birth. Regarding maternal factors, 95.7% 
(291/304) of the mothers had at least one antenatal care follow-up, and 
94.3% (284/304) gave birth in health care facilities. Among neonates 
treated at the Jimma Medical Center, most frequently observed signs 
and symptoms of sepsis were rapid breathing, fever, and changes in 
feeding patterns, accounting for 64.6% (122/195), 48.1% (91/195) 
and 39.0% (76/195), respectively, as detailed in a previously published 
 article.20
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Microbiologic analyses were performed for 313 clinical 
specimens (211 blood and 102 CSF) obtained from 238 neonates 
with presumptive diagnosis of sepsis. Both blood and CSF cul-
tures were done for 75 of the neonates. Overall, 63.5% (134/211) 
and 3.9% (4/102) of the blood and CSF cultures, respectively, 
were positive with a total of 152 isolated pathogens. Of all, 59.2% 
(90) of the pathogens were Gram-negative rods, 35.5% (54) were 
Gram-positive cocci and 5.3% (8) were fungal pathogens. The most 
predominant isolates were S. aureus 18.4% (28) followed by Kleb-
siella pneumoniae 15.1% (23), Escherichia coli 10.5% (16) and A. 
baumannii 9.2% (14) (Table 1).

Antibiotic Resistance Patterns of the Isolates
All isolated Gram-negative bacteria were resistant against 

cefuroxime. High rate of resistance was also observed against 
first- and second-line antibiotics for the treatment of neonatal sep-
sis in the study area. This includes ampicillin (93.3%), cefotaxime 
(83.3%), ceftazidime (76%) and gentamicin (73.3%). On the other 
hand, a lower proportion of resistance was detected against mero-
penem (12.2%) and amikacin (13.3%) (Fig. 1). Over 80% of Kleb-
siella species, the second most frequently isolated bacteria, were 
resistant to the tested β-lactam antibiotics excluding meropenem. 
Furthermore, all Serratia marcescens, Pseudomonas aeruginosa, 
Acinetobacter and Enterobacter species were nonsusceptible to 
ampicillin, amoxicillin-clavulanic acid, cefoxitin and cefuroxime 
(Table 2).

Among cultured Gram-positive bacterial pathogens, most 
S. aureus strains were penicillinase producers with a high level of 
resistance to penicillin/ampicillin (89.3% each), and amoxicillin- 
clavulanic acid (53.6%). Of Staphylococcus haemolyticus iso-
lates, the second most frequent Gram-positive bacteria, all 
showed complete resistance against penicillin and ampicil-
lin. Overall, 38.9% of Gram-positive isolates and 57.1% of S. 
aureus strains were methicillin resistant based on the phenotypic 
result of cefoxitin testing (Table 3). Half of the Gram-positive 
isolates were resistant to erythromycin and nearly 29.6% of the 
Gram-positive isolates showed inducible clindamycin resistance. 
In general, the most e�cient treatment options left were amik-
acin and meropenem for Gram-negative isolates (Table 2), and 
linezolid, vancomycin and tigecycline for Gram-positive isolates 
(Table 3).

Detection of Extended-spectrum β-lactamase 
Phenotypes

In the current study, both the double disc synergy test and 
the ESBL phenotype analysis with mast discs were performed for 
83.3% (75) of Gram-negative bacterial isolates due to detected 
resistance. The analysis revealed that 53.3% (48), 11.1% (10) and 
10% (9) of the Gram-negative isolates showed ESBL, AmpC, and 
ESBL + AmpC phenotypes, respectively. All of Enterobacter cloa-
cae, Klebsiella oxytoca and Acinetobacter seifertii; and 87% of K. 
pneumoniae strains showed ESBL and/or AmpC phenotypes. Car-
bapenem resistance was detected in 78.6% of A. baumannii isolates 
(Table 4).

In our study, a total of 24 (10.1%) neonates included in 
this study unfortunately passed away during their admission. It is 
important to note that all these neonates were born prematurely. 
In terms of their birth weight distribution, 45.8% (11) of the cases 
weighed less than 1500 g, 37.5% (9) fell within the weight range 
of 1500–2499 g and the remaining 16.7% (4) had a weight greater 
than 2500 g. Among these unfortunate cases, 66.7% (16/24) had 
culture-confirmed sepsis and all the culture-confirmed cases were 
attributed to MDR Gram-negative pathogens such as Klebsiella 
species (7), A. baumannii (5), P. aeruginosa (2) and E. cloacae 
(2).

DISCUSSION
In this study, blood culture was able to identify etiologic 

agents in 63.5% of neonates with presumptive diagnosis of sep-
sis. The detection rate is higher than in previous studies conducted 
in di�erent parts of Ethiopia; 46.6% in Gondar,23 44.7% in Addis 
Ababa24 and 29.4% in Asella.25 It is also higher than studies done 
in other low- and middle-income countries; 49.7% in Tanzania,26 
43.4% in India,27 16.9% in Nepal28 and 12.2% in Iran.29 The high 
rate of culture positivity in our study may be explained by vari-
ous reasons. First, the participants in the current study were neo-
nates admitted to NICU only, excluding neonates in relatively  
stable medical conditions admitted to other pediatric wards. Sec-
ond, we used a highly sensitive automated blood culture system 
(BD BACTEC Blood Culture) unlike in most of the other studies 
mentioned above where manual systems were used.30 Third, since 
we used only one blood specimen for culture, substantial isolation 

TABLE 1. Organisms Isolated From Neonates Admitted With Sepsis to Neonatal Intensive Care Unit at Jimma 

Medical Center, Ethiopia

Type of Microorganism Bacteria Number Percent

Gram-positive bacteria (n = 54) Staphylococcus aureus 28 18.4

Staphylococcus haemolyticus 12 7.9
Staphylococcus epidermidis 4 2.6
Staphylococcus xylosus 3 2.0
Staphylococcus sciuri 3 2.0
Staphylococcus cohnii 2 1.3
Staphylococcus hominis 1 0.7
Staphylococcus lugdunensis 1 0.7

Gram-negative bacteria (n = 90) Klebsiella pneumoniae 23 15.1
Escherichia coli 16 10.5
Acinetobacter baumannii 14 9.2
Klebsiella variicola 10 6.6
Serratia marcescens 10 6.6
Enterobacter xiangfangensis 6 3.9
Enterobacter cloacae 4 2.6
Klebsiella oxytoca 3 2.0
Pseudomonas aeruginosa 2 1.3
Acinetobacter seifertii 1 0.7
Enterobacter bugandensis 1 0.7

Fungal infections (n = 8) Candida species 8 5.3
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of coagulase-negative Staphylococci (15.1%) with a suspicion of 
representing residential flora contaminants might have contributed 
to higher culture positivity rates. However, the presence of low birth 
weight in over half of the neonates included in our study highlights 
the importance of considering the role of coagulase-negative Staph-
ylococci in causing endogenous nosocomial bloodstream infections 
among these vulnerable neonates.31 Nevertheless, in such a low- 
income setting where studies on neonatal infections are limited, 
such a finding also reflects the reality on the ground.

All the Gram-negative isolates in the current study showed 
a high rate of resistance against commonly used antibiotics such 
as ampicillin (93.3%), cefotaxime (83.3), ceftazidime (76%) and 
gentamicin (73.3%). Similarly, recent studies in Ethiopia, India, 
Nepal and China also showed high levels of resistance against 
ampicillin (85%, 78%, 100% and 80% respectively) and ceftriax-
one (57%, 100%, 100% and 50% respectively) in Gram-negative 
organisms.23,27,28,32 Despite this high rate of resistance, 90% of the 
neonates in the current study were treated with the combination 
of ampicillin and gentamicin as first-line treatment.20 Of all K. 
pneumoniae isolates on the other hand, more than 80% were resist-
ant against all tested β-lactam antibiotics excluding meropenem. 
Likewise, S. aureus, the most common causative agent of neonatal 

sepsis, showed a high rate of resistance to penicillin (89.3%), ampi-
cillin (89.3%) and amoxicillin-clavulanic acid (53.6%).

In the present study, the prevalence of ESBL phenotypes 
among Gram-negative bacteria was 74.4%. This is higher than 
previous reports in other low- and middle-income countries such 
as Nepal (20.6%),33 Tanzania (10.5%)34 and India (67.3%).9 In 
our data, 87% of K. pneumoniae isolates were confirmed pheno-
typically as ESBL producers. Comparably high prevalence was 
reported in previous studies from Yemen35 and Tanzania34 in which 
100% and 65.6% of K. pneumoniae were ESBL producers, respec-
tively. Additionally, the prevalence of MRSA in the current study  
was 57.1%, which was comparable with a recent multisite  
study done in Asian and African countries (61.1%),36 and another 
study from India where 56.6% were methicillin resistant.9 In our 
NICU, despite the routine use of gloves and gowns, due to a short-
age of handwashing facilities and hand sanitizers, health care per-
sonnel and parents/caregivers do not wash or rub their hands before 
and after dealing with neonates infected with MDR pathogens con-
sistently. Additionally, the ward is not restricted so that the tra�c 
flow is high and facilitates the spread of MDR pathogens. These 
poor infection prevention and control practices, irrational antibi-
otic use, and the transfer of neonates with severe infections from 

FIGURE 1. Antibiotic resistance patterns of Gram-negative bacterial pathogens.“-” indicates no breakpoints; AMP, ampicillin; 
AMC, amoxicillin-clavulanic acid; AN, amikacin; CAZ, ceftazidime; CIP, ciprofloxacin; CTX, cefotaxime; CXM, cefuroxime; 
FEP, cefepime; FOX, cefoxitin; GM, gentamicin; IE, insufficient evidence; MEM, meropenem; MXF, moxifloxacin; PIP, 
piperacillin; SXT, sulfamethoxazole-trimethoprim; TM, tobramycin; TZP, piperacillin-tazobactam. 
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other low-level facilities could all explain the high prevalence of 
MDR bacteria, including MRSA and ESBL. Many infections are 
suspected to be health care related. For example, the Acinetobacter 
strains are known to live within the clinics and infect also patients 
with burn wounds and surgical patients.37

In our study, the inpatient neonatal mortality rate was 10.1%, 
which is comparable with a recent multisite study conducted in low- 
and middle-income countries of Asia and Africa, which reported an 
overall neonatal mortality rate of 11.3%.36 It is noteworthy that a 
significant proportion of these deaths were attributed to infections 
caused by MDR bacteria. In addition to the devastating impact on 
mortality, infections with MDR bacteria such as ESBL producers 
and MRSA can have several other adverse consequences. These 
infections often lead to prolonged hospital stays, increasing health 
care costs and placing an additional burden on already scarcely 

available health care facilities. This may be improved using proper 
antibiotic treatment strategies and implementing an antibiotic stew-
ardship program. Also, early sample taking and resistance testing 
would be essential to switch treatment to e�ective substances early 
during the septic episode.

Our study is one of only few available studies on eti-
ologies and AMR patterns in neonatal sepsis in Ethiopia. We 
believe that the findings in this study could provide important 
data for the policy level to eventually facilitate interventions to 
tackle neonatal mortality and AMR. However, since our study 
is limited to one facility and that only neonates admitted to 
the NICU were included may limit the generalizability of the 
findings. However, it will be representative of the prevalence of 
severe neonatal infections in low-income settings, as all those 
cases ultimately end up in NICU.

TABLE 2. Antibiotic Resistance Patterns Including Intrinsic Resistance Among Gram-negative Bacterial Pathogens 

in Neonates Admitted With Sepsis to Neonatal Intensive Care Unit of Jimma Medical Center, Ethiopia

Antibiotics
Klebsiella spp.

n (%)
Escherichia coli

n (%)
Acinetobacter spp.

n (%)
Enterobacter spp.

n (%)
Serratia marcescens

n (%)

Pseudomonas 
aeruginosa

n*

AMP 36 (100) 10 (62.5) 15 (100) 11 (100) 10 (100) 2

PIP 36 (100) 10 (62.5) IE 11 (100) 7 (70) 2
AMC 29 (80.6) 10 (62.5) 15 (100) 11 (100) 10 (100) 2
TZP 23 (63.9) 6 (37.5) IE 10 (90.9) 0 2
CXM 36 (100) 16 (100) 15 (100) - 10 (100) 2
CTX 32 (88.9) 9 (56.3) 15 (100) 11 (100) 6 (60) 2
CAZ 31 (86.1) 7 (43.8) - 11 (100) 6 (60) 2
FEP 32 (88.9) 7 (43.8) - 11 (100) 6 (60) 2
FOX 7 (19.4) 5 (31.3) - 11 (100) 10 (100) -
MEM 0 0 11 (73.3) 0 0 0
GM 29 (80.6) 5 (31.3) 13 (86.7) 8 (72.7) 0 IE
TM 29 (80.6) 6 (37.5) 13 (86.7) 7 (63.6) 1 (10) 1
AN 0 0 11 (73.3) 0 0 1
MXF 16 (44.4) 8 (50.0) - 7 (63.6) 0 -
CIP 17 (47.2) 8 (50.0) 15 (100) 6 (54.5) 2 (20) 2
SXT 26 (72.2) 7 (43.8) 14 (93.3) 9 (81.8) 1 (10) -

*We did not calculate the percentage (%) if the total number of isolates was less than 10.

“-” indicates no breakpoints; AM, ampicillin; AMC, amoxicillin + clavulanic acid; AN, amikacin; CAZ, ceftazidime; CIP, ciprofloxacin; CTX, cefotaxime; CXM, cefuroxime; FEP, 

cefepime; FOX, cefoxitin; GM, gentamicin; IE, insufficient evidence; MEM, meropenem; MXF, moxifloxacin; PIP, piperacillin; SXT, sulfamethoxazole + trimethoprim; TM, tobramycin; 

TZP, piperacillin + tazobactam.

TABLE 3. Antibiotic Resistance Pattern of Isolated Gram-positive Bacterial Strains in Neonates Admitted With 

Sepsis to Neonatal Intensive Care Unit of Jimma Medical Center, Ethiopia

Antibiotics
Staphylococcus aureus

n (%)
Staphylococcus haemolyticus

n (%)
Others
n (%)

Total
N (%)

Benzylpenicillin 25 (89.3) 12 (100) 14 (100) 51 (94.4)

Ampicillin 25 (89.3) 12 (100) 14 (100) 51 (94.4)
Amoxicillin-clavulanic acid 15 (53.6) 8 (66.7) 5 (35.7) 28 (51.9)
Cefoxitin 16 (57.1) 1 (8.3) 4 (28.6) 21 (38.9)
Meropenem 1 (3.6) 3 (25) 2 (14.3) 6 (11.1)
Ciprofloxacin 3 (10.7) 11 (91.7) 6 (42.9) 20 (37)
Moxifloxacin 2 (7.1) 11 (91.7) 6 (42.9) 19 (35.2)
Clindamycin 5 (17.9) 6 (50) 5 (35.7) 16 (29.6)
Erythromycin 11 (39.3) 9 (75) 7 (50.0) 27 (50.0)
Gentamicin 11 (39.3) 9 (75) 6 (42.9) 26 (48.1)
Linezolid 1 (3.6) 0 0 1 (1.9)
Mupirocin 0 0 0 0
Rifampicin 5 (17.9) 5 (41.7) 3 (21.4) 13 (24.1)
Trimethoprim-Sulfamethoxazole 3 (10.7) 11 (91.7) 6 (42.9) 20 (37.0)
Tigecycline 0 0 0 0
Vancomycin 0 0 0 0

Others: Staphylococcus epidermidis (4), Staphylococcus xylosus (3), Staphylococcus sciuri (3), Staphylococcus cohnii (2), Staphylococcus hominis (1) and Staphylococcus lugdun-

ensis (1).



Copyright © 2024 Wolters Kluwer Health, Inc. Unauthorized reproduction of this article is prohibited.

 The Pediatric Infectious Disease Journal • Volume 43, Number 7, July 2024

692 | www.pidj.com © 2024 The Author(s). Published by Wolters Kluwer Health, Inc

Gashaw et al

CONCLUSIONS
The finding of our study demonstrates a high rate of infec-

tions caused by MDR pathogens including ESBL producers and 
MRSA among neonates. This poses a significant challenge to 
the national and eventually also global target to reduce neonatal 
mortality rates. Therefore, it is crucial to implement policies and 
interventions to address this issue e�ectively. This highlights the 
importance of developing locally acceptable and applicable guide-
lines, adhering to evidence-based practices, committing to rational 
antimicrobial use, improving diagnostic facilities including routine 
antimicrobial susceptibility testing and implementing regular AMR 
surveillance in neonatal units to reduce the burden of infections 
with MDR pathogens and improve patient outcome.
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