
 

Aus dem 

Pathologischen Institut 
 

Institut der Universität München 

Direktor: Prof. Dr. Frederick Klauschen 

 

 

 

 

 

Reproducibility in cancer research: 

A study of the (epi)genomic, transcriptomic, and phenotypic stability in 

chromosomal translocation-driven pediatric sarcoma cell lines 

 

 

 

 

 

 

 

Dissertation 

zum Erwerb des Doktorgrades der Medizin 

an der Medizinischen Fakultät 

der Ludwig-Maximilians-Universität zu München 

 

vorgelegt von 
Merve Kasan 

 

aus 

Seyhan 

 

Jahr 

2024 

 

 

  



  

 
 

Mit Genehmigung der Medizinischen Fakultät 

der Universität München 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Berichterstatter:    Prof. Dr. Dr. Thomas Grünewald 
 
Mitberichterstatter:    Prof. Dr. Lars Lindner 
     Prof. Dr. Roland Dürr 
 
 
 
Mitbetreuung durch den  Dr. Florencia Cidre Aranaz 
promovierten Mitarbeiter: 
 
Dekan:     Prof. Dr. med. Thomas Gudermann 
 
 
 
 

Tag der mündlichen Prüfung:  12.12.2024 

 
 
 
  



  

 
 
 
  



  

 
 

 
 
 

 

Acknowledgements 

 
I extend my deepest appreciation to my supervisor, Prof. Dr. med. Thomas 

Grünewald, PhD., and my mentor, Dr. Florencia Cidre Aranaz, for their unwavering 

support throughout this research endeavor. Their dedication to scientific inquiry and 

mentorship has been a constant source of inspiration for me. Without their initiatives 

and guidance, many of my accomplishments would not have been possible. 

 

I would like to thank my colleagues and all collaborators for their contributions 

throughout this journey. 

 

I am deeply indebted to my friends for accompanying me and providing invaluable 

support along the way. Their presence has been invaluable in maintaining my 

equilibrium during challenging times. 

 

Foremost, I am profoundly grateful to my beloved family: my mother, Filiz, and my 

brother, Mert, for their boundless love, encouragement, and unwavering support 

throughout this demanding journey. 

 

 Lastly, my deepest gratitude lies with my remarkable father, Fikret, whose wisdom 

and guidance continue to resonate despite his early departure from this world. 

 

 
  



  

 
  



  

 
      
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

Es ist nicht genug zu wissen 

- man muss auch anwenden. 

 

Es ist nicht genug zu wollen 

 - man muss auch tun. 

 

 

Johann Wolfgang von Goethe 

 

 

 
 
 

 
 
 
 
 
 
 
  



 



 
8 

TABLE OF CONTENTS 

 

1 Table of Contents ................................................................................................ 8 

2 Abbreviations ..................................................................................................... 10 

3 Abstract .............................................................................................................. 14 

3.1. German ...................................................................................................................... 14 

3.2. English ....................................................................................................................... 16 

4 Introduction ........................................................................................................ 20 

4.1. Essence of Cancer Research: Tumor Models ..................................................... 20 

4.1.1 The need for cancer modelling .................................................................... 20 

4.1.2 Cancer Models ............................................................................................. 21 

4.2. Era of Multiomic Data .............................................................................................. 24 

4.2.1 Rise of the sequencing technology ............................................................. 25 
4.2.2 High throughput sequencing in cancer research ........................................ 26 
4.2.3 Genome sequencing .................................................................................... 27 
4.2.4 Transcriptome sequencing .......................................................................... 28 
4.2.5 Epigenome sequencing ............................................................................... 29 

4.3. Questioning Reproducibility in Preclinical Research .......................................... 30 

5 Cancer Entities Included In Study ................................................................... 33 

5.1. Breast carcinoma ..................................................................................................... 33 

5.1.1 Clinical aspects ............................................................................................ 33 

5.1.2 Genetic and transcriptomic aspects ............................................................ 34 

5.2. Cervix carcinoma ......................................................................................................36 

5.2.1 Clinical aspects ............................................................................................ 36 

5.2.2 Genomic and Transcriptomic Aspects......................................................... 37 

5.3. Ewing sarcoma ......................................................................................................... 38 

5.3.1 Clinical aspects ............................................................................................ 38 

5.3.2 Genomic and Transcriptomic Aspects......................................................... 39 

6 Study Concept, Aims, And Objectives ........................................................... 41 

7 Materials And Methodology ............................................................................. 43 

7.1. Materials .................................................................................................................... 43 

7.1.1 Cell lines ....................................................................................................... 43 
7.1.2  Chemicals and reagents .............................................................................. 43 
7.1.3  Compounds .................................................................................................. 45 
7.1.4 Commercial kits ............................................................................................ 45 
7.1.5 Consumables ............................................................................................... 46 
7.1.6 Technical equipment and instruments......................................................... 47 

7.2. Methodology .............................................................................................................. 48 



 
9 

7.2.1 Provenience of cell lines and cell culture conditions ................................... 48 
7.2.2 DNA extraction, methylation, and global screening arrays ......................... 52 
7.2.3 DNA methylation data analysis .................................................................... 52 
7.2.4 Global screening array (GSA) data analysis ............................................... 53 
7.2.5 RNA extraction, RNA sequencing and analysis .......................................... 54 
7.2.6 Gene set enrichment analysis (GSEA)........................................................ 56 
7.2.7 Drug screening and data analysis ............................................................... 56 
7.2.8 Other bioinformatic and statistical analyses ................................................ 58 

8 Results ................................................................................................................ 60 

8.1. EwS cell line is genomically more stable than the adult carcinoma cell lines 60 

8.2. EwS cell line displays remarkably stable and homogenous transcriptome ... 64 

8.3. COTF-driven EwS cell line exhibits a uniform and stable phenotype ............ 67 

8.4. Cell line stability is a spectrum even within the same tumor entity ................ 71 

9 Discussion .......................................................................................................... 78 

10 Conclusion, Limitations and Perspectives .................................................... 86 

11 References ......................................................................................................... 90 

12 Appendix .......................................................................................................... 113 

12.1. Supplementary tables and figures ...................................................................... 113 

12.2. List of tables ........................................................................................................... 116 

12.3. List of figures .......................................................................................................... 116 

 Affidavit............................................................................................................. 129 

 Confirmation of congruency…………………………………………………… 131 
 

 

  

This work is licensed under CC BY 4.0. https://creativecommons.org/licenses/by/4.0/



 
10 
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2 ABSTRACT 

2.1. German 

Seit Jahrzehnten dienen humane Zelllinien als unverzichtbare Werkzeuge in der 

Krebsforschung (1). Obwohl diese Forschungsmodelle aufgrund ihrer einfachen 

Handhabung und Fähigkeit wertvolle Einblicke in die Krebsbiologie zu liefern, weithin 

anerkannt und bevorzugt sind, haben jüngste Studien Fragen nach ihrer Zuverlässigkeit 

aufgeworfen (2–5). Im Laufe des letzten Jahrzehnts haben Forscher wichtige Merkmale 

hinsichtlich der genomischen Stabilität von Krebszelllinien in künstlichen 

Kulturbedingungen und der Reproduzierbarkeit von Ergebnissen, die mit diesen 

Modellen erzielt wurden, identifiziert (2,3,6). Ende der 2010er Jahre lieferten zwei 

wegweisende Studien neue Einblicke in die genomische und phänotypische Instabilität 

der hochmutierten adulten Karzinomzelllinien HeLa und MCF-7 (2,3). Diese Studien 

enthüllten eine bemerkenswerte Vielfalt derselben Krebszelllinie in verschiedenen 

Laboren sowie die Instabilität der jeweiligen Zelllinie in langandauernder Zellkultur, die 

zur genomischen und transkriptomischen Heterogenität und daraus resultierenden 

phänotypischen Variationen führte (2,3). Diese Erkenntnisse unterstreichen die 

Einschränkungen der Reproduzierbarkeit, die mit der Verwendung von menschlichen 

Zelllinienmodellen in der Krebsforschung verbunden sind. Dennoch bleibt die 

Verallgemeinerbarkeit solcher Schlussfolgerungen auf andere Krebszelllinien 

weitgehend unerforscht. Diese Doktorarbeit hatte zum Ziel, das Maß an Variationen in 

Krebszelllinien mit einer geringeren Mutationslast (oligomutiert) zu untersuchen. Um 

dieses Ziel zu erreichen, wurde das Ewing-Sarkom (EwS), ein pädiatrischer 

Knochenkrebs, als repräsentatives Modell ausgewählt, da es für seine minimale 

somatische Mutation bekannt ist (7–9).  
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Das EwS wird durch eine chromosomale Umordnung verursacht, die zu einem chimären 

onkogenen Transkriptionsfaktor (COTF) führt, der eine entscheidende Rolle bei der 

Regulation der Transkription und Biologie des Tumors spielt (8,10). Die Hypothese 

lautete, dass EwS-Zelllinien eine größere genetische und phänotypische Stabilität als 

adulten Karzinomzelllinien aufweisen würden. Die Analyse der molekularen und 

phänotypischen Merkmale von 11 Stämmen der EwS-Zelllinie A-673 aus verschiedenen 

Laboren zeigte eine bemerkenswerte genomische und phänotypische Einheitlichkeit, im 

Gegensatz zu Kontrollgruppen von adulten Karzinom-HeLa- und MCF-7-Stämmen. 

Darüber hinaus wurden neu erworbene A-673-, HeLa- und MCF-7-Zelllinien einer 12-

monatigen kontinuierlichen Zellkultur einer longitudinalen Analyse unterzogen. 

Bemerkenswerterweise zeigte die EwS-Zelllinie A-673 eine außergewöhnliche Stabilität 

in Bezug auf das Genom und Transkriptom sowie im Hinblick auf 

Arzneimittelempfindlichkeit im Vergleich zu Zelllinien von Karzinomen des 

Erwachsenenalters. Zusätzlich wurden vier weitere EwS-Zelllinien in die longitudinale 

Analyse aufgenommen, um die beobachtete Stabilität der A-673-Zelllinie zu validieren. 

Die Analyse ergab, dass zwar alle fünf EwS-Zelllinien eine höhere Stabilität als adulten 

Krebszelllinien des Erwachsenenalters aufwiesen, jedoch nach 12 Monaten 

kontinuierlicher Passage unterschiedliche Grade von (epi)genomischen, 

transkriptomischen und phänotypischen Veränderungen beobachtet wurden. Dies 

suggeriert, dass die Stabilität von Zelllinien ein Spektrum darstellt, selbst innerhalb 

derselben Krebsentität. Die bemerkenswerte Stabilität, die bei COTF-getriebenen 

pädiatrischen Sarkomzelllinien beobachtet wurde, unterstreicht ihr Potenzial als 

zuverlässige Modelle für die Krebsforschung und therapeutische Tests. Diese 

Entdeckung hat tiefgreifende Auswirkungen auf präklinische Studien und deutet darauf 

hin, dass solche Zelllinienmodelle konsistentere und reproduzierbarere Ergebnisse 

liefern könnten, was die Übertragung von Forschungsergebnissen in die klinische 
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Anwendung erleichtert. Darüber hinaus beleuchtet sie das Spektrum der 

Reproduzierbarkeit von wissenschaftlichen in vitro Ergebnissen und betont die 

Wichtigkeit einer sorgfältigen Berücksichtigung der Zellliniencharakteristika bei der 

experimentellen Gestaltung und Ergebnisinterpretation, selbst innerhalb derselben 

Tumorentität. 

 

Essenzielle Abschnitte dieser Dissertation wurden im Preprint aufgenommen: 

Merve Kasan, Jana Siebenlist, Martin Sill, Rupert Öllinger, Enrique de Álava, Didier 

Surdez, Uta Dirksen, Ina Oehme, Katia Scotlandi, Olivier Delattre, Martina Müller-

Nurasyid, Roland Rad, Konstantin Strauch, Thomas G. P. Grünewald, Florencia Cidre-

Aranaz, Genomic and phenotypic stability of fusion-driven pediatric Ewing sarcoma cell 

lines, bioRxiv 2023.11.20.567802 

 

2.2. English 

Since decades, human cell lines serve as indispensable tools in cancer research (1). 

While these research models are widely recognized and favorable due to their relatively 

easy usage and capability to provide invaluable insight into cancer biology, recent 

studies raised questions about their reliability (2–5). Over the past decade, researchers 

have identified significant challenges with the genomic stability of cancer cell lines in 

unnatural culture environments and the reproducibility of results obtained using these 

models (2,3,6,11). In the late 2010s, two pioneering studies have shed light on the 

genomic and phenotypic instability of highly mutated adult carcinoma cell lines: HeLa 

and MCF-7 (2,3). These studies revealed a remarkable diversity of the respective same 

cancer cell line across different laboratories, along with the instability of a cell line in 

prolonged cell culture leading to genomic and transcriptomic heterogeneity and 

consequential phenotypic variations (2,3).  

These findings underscored the limitations in reproducibility associated with using 

human cell line models in cancer research. Nevertheless, while the implications of these 
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observations on adult carcinoma cell lines are becoming increasingly apparent, the 

generalizability of such conclusions to other cancer cell lines remains largely 

unexplored. 

This thesis aimed to investigate the level of variation in cancer cell lines with a lower 

mutational burden (oligomutated). To achieve this goal, Ewing sarcoma (EwS), a 

malignant pediatric bone cancer, was selected as a representative model due to its 

reputation for harboring minimal somatic mutation (7–9). EwS is caused by a 

chromosomal rearrangement that results in a chimeric oncogenic transcription factor 

(COTF), which plays a crucial role in regulating the transcription and biology of the tumor 

(8,10). The hypothesis was that EwS cell lines would exhibit greater genetic and 

phenotypic stability than adult carcinoma cell lines. Analyzing the molecular and 

phenotypic traits of 11 EwS cell line A-673 strains from various laboratories showed 

remarkable genomic and phenotypic uniformity, contrasting control groups of adult 

carcinoma HeLa and MCF-7 strains. Additionally, newly purchased A-673, HeLa and 

MCF-7 cell lines were subjected to a 12-months continuous cell culture for a longitudinal 

analysis. Notably, EwS cell line A-673 exhibited exceptional stability in terms of genomic 

and transcriptomic levels as well as drug sensitivity, when compared to adult carcinoma 

cell lines. Further, four additional EwS cell lines were included in the longitudinal 

analysis to investigate the observed stability in the A-673 cell line. The analysis revealed 

that although all five EwS cell lines showed higher stability than their adult carcinoma 

counterparts, varying degrees of (epi)genomic, transcriptomic, and phenotypic 

alterations were observed after 12 months of continuous passaging. This indicated that 

cell line stability is a spectrum even within the same cancer entity.  

The observed remarkable stability of COTF-driven pediatric sarcoma cells underscores 

their potential as faithful models for cancer research and therapeutic drug testing. Since 

these cell line models could offer more consistent and reproducible outcomes, this 
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discovery may have profound implications for preclinical studies, which may aid in the 

translation of research findings into clinical applications. Moreover, this thesis sheds 

light on the spectrum of reproducibility in in vitro scientific results, emphasizing the 

importance of carefully considering cell line characteristics in experimental design and 

result interpretation, even within the same tumor entity. 

 

Key sections of this thesis were included in the preprint: 

Merve Kasan, Jana Siebenlist, Martin Sill, Rupert Öllinger, Enrique de Álava, Didier 

Surdez, Uta Dirksen, Ina Oehme, Katia Scotlandi, Olivier Delattre, Martina Müller-

Nurasyid, Roland Rad, Konstantin Strauch, Thomas G. P. Grünewald, Florencia Cidre-

Aranaz, Genomic and phenotypic stability of fusion-driven pediatric Ewing sarcoma cell 

lines, bioRxiv 2023.11.20.567802 
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3 INTRODUCTION 

Cancer is one of the most complicated diseases that humankind has been facing for 

centuries (12,13). According to the World Health Organization (WHO), cancer ranks 

second in mortality rates following cardiovascular diseases, affecting individuals across 

all age groups (14–16). With the escalating number of cancer cases, unraveling the 

disease's biological mechanisms and identifying novel vulnerabilities for preventive 

measures have become imperative (13,14,17).  

Historically, cancer posed an enigmatic puzzle for early physicians (18). However, 

recent technological advancements, including sophisticated research models and high-

throughput sequencing, hold promise in improving the understanding of this disease 

(19–21). In this context, the stability and reliability of research models in cancer field are 

pivotal factors, influencing the accuracy and translatability of findings from bench to 

bedside (22,21,23,24). Addressing these aspects is fundamental for advancing the 

comprehension of cancer biology and ultimately developing more effective therapeutic 

strategies (25). 

3.1. Essence of Cancer Research: Tumor Models  

3.1.1 The need for cancer modelling 

Understanding cancer, a complex phenomenon since the 18th century, requires reliable 

research models that accurately mimic human biology (26,21). Establishing such 

models is crucial for comprehensive examinations of cancer biology and its 

interconnected structures (13,27). Research models serve as fundamental tools in 

deciphering the mechanisms of tumor initiation, growth, and therapy response (11,21).  

They offer a controlled setting to explore genetic mutations, cellular interactions, and the 

tumor microenvironment—critical elements in cancer development (26). Tumor models, 
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whether cell cultures, animal models, or advanced technologies like organoids and 

patient-derived xenografts, are designed to mimic the multifaceted nature of human 

tumors (11,23,28). The comphrensive review by Thomas et al. on the history of cancer 

models condenses the cycle of modeling into five steps: a) system perception and 

question establishment; b) model design and setup, whereby the hypothesis could be 

tested with experimental observations; c) model testing, whose output will serve for the 

clinical data comparison and evaluation; d) result interpretation and consistency analysis 

between the result and the original system; and e) model optimization (28). Considering 

these elements, the first successful animal tumor model was reported in 1918 on rabbits 

exploring the potential link between coal tar exposure and carcinogenesis in mammalian 

skin cells (29). After that, numerous other animal tumor models emerged, propelling 

advancements in understanding cancer biology (30–32). 

A pivotal development unfolded several decades later with a groundbreaking report by 

Gey et al. in 1952, which described establishing the first human-derived cell line derived 

from a 31-year-old African-American woman diagnosed with cervix adenocarcinoma 

(33,34). This monumental achievement signified a remarkable leap forward in cancer 

research, fundamentally transforming the landscape by enabling the study of human 

cancer cells within controlled laboratory settings (33,35). This cell line, named HeLa, 

after the patients' name, was derived from and expeditiously provided to cancer 

research laboratories all over the world, as well as to pharmaceutical companies (34–

36). As a consequence, it became the most outstanding model in the community (37). 

3.1.2 Cancer Models 

3.1.2.1 in Vivo Models 

In in vivo studies, which translates to ‘in the living body of a plant or animal’ in English, 

various biological mechanisms are investigated within whole living organisms (38). In 
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cancer research, in vivo studies are performed using diverse tumor models, 

encompassing not only those derived from animals but also human material such as 

xenografts (23,39). Animal tumor models involving species like nematode C. elegans, 

zebrafish, mice, and rabbits play a pivotal role in investigating genetics and cancer 

biology, as well as in preclinical research for new anti-tumor therapies (40). Important 

historical milestones underlining the evolution of these models include Yamagiwa et al.'s 

first animal tumor model, which marked the beginning of extensive research in this area 

(28,29). Additionally, research of Skipper et al. on chemotherapeutic agents in murine 

leukemia and Hart & Fidler's demonstrations on metastatic tumor growth mechanisms 

were highly influential (41–44). Moreover, the introduction of C. elegans as a model for 

cancer-specific gene mutations and the discussions on zebrafish as a cancer model by 

White et al. opened new avenues in cancer genomics (23,39,40,45–47).  

Technological advancements in previous decades have significantly expanded the 

possibilities and broadened the horizons of genetic engineering in the realm of in vivo 

research models (48). Today, in addition to traditional syngeneic mouse models and 

murine tumor transfers to genetically matched immune-competent mice, various 

advanced models are available for the cancer research community (31,32,49). These 

include orthotopic tumor models, cell line-derived xenografts (CDX), patient-derived 

xenografts (PDX), and humanized mouse models, each offering unique advantages for 

different research needs (23,39,47). These models are crucial in advancing our 

understanding of cancer and developing novel therapeutic strategies (23,50).  

3.1.2.2 in Vitro Models 

The Latin phrase ‘in vitro’ translating to ’ outside the living body and in an artificial 

environment’ refers to studies involving isolated cells, tissues, microorganisms, or other 

biological molecules isolated from their original environment (51). In the early 1900s, a 

biologist-anatomist Ross Graham Harrison successfully observed a notable increase in 



 
23 

nerve fiber growth in artificial tissue cultures for several weeks (52). Harrison's 

innovative method preserved cells outside the body under controlled laboratory 

conditions, facilitating prolonged examination, commonly referred to as monolayer or 2D 

cell culture—a practice still one of the essential techniques in modern cancer research 

(53–55). Initially, mammalian cell culture relied on four primary techniques: organ 

culture, primary explant culture, organotypic culture and cell culture (Fig. 1) (56,57). 

Each method offered distinct advantages and paved the way for studying cell behavior, 

responses to stimuli, and exploring disease mechanisms outside the complex biological 

environment of living organisms (55,57). 

Modern cancer researchers benefit from the groundwork laid by earlier scientists in 

advancing cell culture methods. Important advancements in cell culture techniques 

include demonstrating medium changes and sub-culture, developing trypsinization 

methods, and exploring endless cell passaging possibilities (57–63). Additionally, Gey 

et al. established the first (cancer) cell line, HeLa, and Moore et al. demonstrated tumor 

cell proliferation in suspension culture, among many others (33,63,64).  

Shortly, two-dimensional cell culture became a routinely used model thanks to its 

affordable cost and ease of use (55).  
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Figure 1:Different culture methods. The diagram illustrates various culture techniques 

from left to right. It depicts organ culture on a filter disk, explant cultures in a flask, a stirred 

vessel facilitating enzymatic disaggregation, and a filter well showcasing an array of cells. This 

depiction offers insight into diverse approaches for cell cultivation. Figure from the book section 

“Basic Principles of Cell Culture“ by Freshney et al. 2006 (57) with permission under license 

number 5926630066999. 

 

The tumor microenvironment's (TME) profound impact on tumorigenesis, metastasis, 

and drug sensitivity in malignant cells is well-established and recognized as a hallmark 

of cancer (65–68).  

For the last few decades, three-dimensional (3D) tumor model technologies, such as 

spheroids, organoids, scaffolds, and hydrogels, have been providing a deeper insight 

into tumor biology by mimicing the TME (69,70). These advancements in 3D models 

provide a better understanding of tumor-stroma interactions, metastatic processes, and 

drug responses (24,71,72). 

Cell lines, immortalized cell populations derived from cancerous tissues, and two-

dimensional (2D) cell culture are fundamental models in cancer research, offering 

advantages in scalability, ease of manipulation, and cost-effectiveness (73,74). 

Furthermore, the extensive array of cancer cell lines derived from diverse cancer types 

is invaluable for examining tumor characteristics (73,74). Despite the more 

physiologically relevant nature of 3D models, 2D cell models and cancer cell lines 

remain indispensable in foundational cancer research and early-stage drug discovery 

(55). 

3.2. Era of multiomic data 

The six hallmarks of cancer, including maintaining proliferative signaling, avoiding 

growth suppression, refusing apoptosis, authorizing limitless replicative potential, 

stimulating invasion, and spread to other organs, and encouraging angiogenesis are 
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well-established (66,75,76). Cancer cells' uncontrollable proliferation and development 

ability result from a myriad of unique genetic abnormalities, which disrupt various cellular 

pathways, the complexity of tracking the consequences of these abnormalities adds 

another layer of challenge in cancer research, underscoring the need for sophisticated 

analytical tools and methodologies (66,77). Fortunately, the scientific and technological 

improvements over the last decades made the applicability of multiple high throughput 

sequencing possible in cancer research (78).  

3.2.1 Rise of the sequencing technology  

The introduction of the double-stranded DNA model by James Watson and Francis 

Crick, and the concept of genetic self-replication, marked a pivotal milestone in the dawn 

of a new era in molecular biology (79). This DNA model provided a framework for 

understanding biological inheritance and paved the way for many more scientific 

discoveries (79). 

Nucleic acid sequencing refers to determining the order of nucleotides in DNA or RNA. 

Frederick Sanger's pioneering work in sequencing insulin's amino acids in 1955 led to a 

shift in focus towards these sequences, enabling the decoding of genetic information 

(80). Subsequently, Fiers et al. completed the sequencing of RNA in 1976, and Wu and 

Padmanabhan et al. developed early DNA sequencing strategies in the 1970s. These 

milestones marked significant progress in understanding the genetic code (81–85). 

In the late 1970s, Fredrick Sanger and his team developed a technique called the 

‘dideoxy’ chain-termination method, which is now known as the ‘Sanger Method’ (86,87). 

This method enabled rapid DNA sequencing, which was a significant breakthrough in 

the field of genetics. The first complete genome sequencing of an organism was carried 

out using the Sanger method, and the organism in question was the bacterium 

Haemophilus influenzae (88). Furthermore, innovations in labeling techniques, 
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enhanced polymerases, and capillary gel electrophoresis have pushed genome projects 

forward, such as the Human Genome Project (89–91). The Human Genome Project was 

an extensive international effort that aimed to unlock the mysteries of the human 

genome and involved support from scientists across various disciplines (89,92). By the 

early 2000s, several draft versions of the human genome were available, topping in the 

announcement of the completion of the draft phase in 2003 (93). Approximately 99% of 

the human reference genome was made available in its final form (94).  

The advanced sequencing methods and devices marked the onset of high-throughput 

sequencing, also known as ‘Next-generation Sequencing’ (NGS) (95,96). The 

acceleration of genomic innovations over the last decade is a testament to the impact 

of the NGS era (97). Today, rapid whole-genome sequencing and resequencing, 

transcriptional and translational profiling, epigenome sequencing, and many other 

resourceful techniques are accessible, affordable, and widely employed by the scientific 

community (Fig. 2) (98). Sequencing technology's versatility and accessibility have 

transformed molecular biology, genetics, disease diagnosis, and targeted therapy 

development (80,91,97,99). 

3.2.2 High throughput sequencing in cancer research 

High-throughput sequencing has revolutionized cancer research in the 21st century. 

This technology allows for the quick and efficient decoding of large quantities of cancer 

DNA and RNA, enabling researchers to perform in-depth (epi)genomic and 

transcriptomic investigations (100). To gain a better understanding of cancer biology 

several large-scale cancer genome projects were initiated including The Cancer 

Genome Atlas (TCGA), Therapeutically Applicable Research to Generate Effective 

Treatments (TARGET) by the National Cancer Institute, Cancer Genome Project (CGP) 

by the Wellcome Trust Sanger Institute, and Pan-cancer Analysis of Whole Genomes 
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(PCAWG) by the International Cancer Genome Consortium (98,101–103) (Fig. 2). 

These initiatives delivered crucial insights, identifying genetic alterations driving diverse 

cancer types and uncovering pathways of tumor progression, revealing potential 

treatment targets (104). They drafted genomic landscapes across cancers, enabling 

classification into molecular subtypes and fostering tailored treatment approaches 

(105,106).  

 

Figure 2: Key milestones in sequencing technologies. Figure from Morganti et al. (98) 

with permission under license number 5926970016917. 

 

3.2.3  Genome sequencing 

NGS technology encompasses two essential approaches: Exome Sequencing, and 

Whole Genome Sequencing (WGS), introduced in the early 21st century. Both methods 

have been proven invaluable in cancer research (107). On the one hand, Exome 

Sequencing is a cost-effective strategy that selectively targets the genome's protein-

coding regions (108). This approach efficiently identifies mutations within cancer-

associated genes, revealing potential drivers of the disease (107,108). On the other 

hand, WGS enables researchers to examine an organism's entire genome 

comprehensively, providing a broad view of genetic alterations and structural variations 
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that play a role in cancer (108,109). By analyzing different regions of a single tumor, 

researchers can gain insights into diverse genetic profiles and develop tailored 

treatments (110,111) (Fig. 3). 

      

Figure 3: Various genetic testing methods aim at distinct genome segments. While 

Sanger sequencing focuses on a limited portion, targeted gene panels analyze coding regions 

of specific genes, whole exome sequencing captures nearly all coding sequences, and whole 

genome sequencing spans almost all regions of the genome. Figure from Devarajan et al. (111) 

published under CC BY-NC-ND license. 

3.2.4  Transcriptome sequencing 

The evolution of NGS brought a transformation in transcriptomic research, enabling 

precise quantification of gene expression and exploration of non-coding RNA (112). 

While traditional methods like Northern blotting and microarrays existed since the 1970s, 

their limitations, such as high background noise and limited dynamic range, sparked the 

need for innovation (101,113–115). The bulk RNA sequencing (RNA-seq) technology 

was introduced in 2008, inducing a dramatic shift in the field of transcriptomics 
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(116,117). RNA-seq offered the unprecedented ability to quantify gene expression levels 

with exceptional accuracy, sensitivity, and reproducibility (118).  

Furthermore, it enabled the detection of alternative splicing, post-transcriptional 

modifications, and the identification of novel transcripts (119,120). As a result, RNA-seq 

became instrumental in studying various biological processes, including disease 

mechanisms and developmental biology (112). 

In the 2010s, single-cell RNA-seq (scRNA-seq) technology was introduced (121), which 

allowed transcriptome profiling at the level of individual cells, shedding light on cell-to-

cell variability and heterogeneity (117,122). This breakthrough technology provided 

unprecedented insights into the intricate tapestry of gene expression within complex 

biological systems (123). 

 

3.2.5  Epigenome sequencing 

NGS has expanded its applications beyond genomics and transcriptomics to 

encompass epigenetics, particularly DNA methylation and histone modifications, crucial 

for gene expression and cellular differentiation (124,125). Histone modifications refer to 

a range of chemical changes to histone proteins, which are important regulators of 

chromatin structure and gene expression (126). 

These epigenetic marks, such as acetylation, methylation, phosphorylation, 

ubiquitination, and others, finely control the accessibility of DNA to transcriptional 

machinery, thus fine-tuning gene regulation (127,128). In cancer research, advanced 

sequencing techniques like Chromatin Immunoprecipitation followed by sequencing 

(ChIP-seq) have revolutionized the understanding of how histone modifications 

modulate gene expression in cancer cells (129–131). By systematically profiling histone 

modification patterns across cancer genomes with NGS, researchers can gain 

unprecedented insights into the epigenetic landscape, critical for identifying promising 
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therapeutic targets and furthering precision medicine approaches in cancer (132,133). 

DNA methylation, another key epigenetic process, involves the covalent addition of a 

methyl group to cytosine residues, mainly within CpG dinucleotides, particularly in gene 

promoter regions (134). This modification can suppress gene expression by interfering 

with transcription factor binding or recruiting chromatin-modifying enzymes (125). 

Furthermore, changes in DNA methylation patterns have been intricately linked to 

various diseases, including cancer and developmental disorders (135). Recent 

advances in DNA methylation analysis techniques, such as bisulfite sequencing, have 

revolutionized our understanding of the epigenetic landscape at single-nucleotide 

resolution (136,137). However, bisulfite sequencing has limitations, such as high cost, 

low throughput, and DNA quality requirements, leading to the development of alternative 

methods (137). 

3.3. Questioning Reproducibility in Preclinical Research 

To foster scientific progress, reliability and reproducibility of previous scientific results 

lay the groundwork for transformative discoveries (138,139). Unfortunately, the field of 

cancer research grapples with well-documented challenges in this regard, which may 

be a significant consequence considering the complexity of cancer. The Reproducibility 

Project: Cancer Biology, initiated in 2013, is a testament to these concerns, 

underscoring the need to assess the replicability of esteemed reports from 2010 to 2012 

(4,22,140). In cancer research, in vitro cell culture is fundamental in advancing our 

understanding of cancer biology and drug development (1,73). Nevertheless, it is 

accompanied by the potential risk for cell line misidentification and/or contamination, 

genetic drift, clonal selection, and adaptation, as well as phenotypic alterations due to 

long-term exposure to an artificial culturing environment (2,3,141,142). These issues 

have gained substantial attention over the last decade due to their profound impact on 
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research accuracy and applicability (4). Cell line misidentification (i.e., labeling a cell line 

incorrectly), and contamination (i.e., inadvertent introduction of foreign cells or 

microorganisms) are the some of the most common and fundamental challenges of in 

vitro experiments (141–144). Several prominent examples underscore the gravity of 

these challenges. For instance, studies revealed the frequent misidentification of MCF-

7 breast cancer cell line, mislabeled 37 out of 122 head and neck cancer cell lines, high 

authentication and cross-contamination issues in thyroid cancer cell lines, and cross-

contamination of the widely employed HeLa cervix cancer cell line, all of which raised 

questions on the reliability and robustness of the findings derived from their use 

(34,144–148).  

Addressing these issues requires rigorous quality control measures, including the 

authentication of cell lines through DNA profiling and regular screenings for 

contamination, as well as a notification system for the readers to evaluate the results 

with care (142,146,147). Initiatives like the International Cell Line Authentication 

Committee (ICLAC), European Collection of Authenticated Cell Cultures (ECACC), and 

the ATCC offer authenticated cell lines as reference materials, bolstering consistency 

across laboratories (142,144). Additionally, open-access databases and repositories 

containing comprehensive genomic and phenotypic data can facilitate cross-study 

comparisons, which may give the researchers insight into the reliability and 

reproducibility of cancer research (149,150). A substantial portion of the discrepancies 

observed in cancer cell line research can be ascribed to widespread mislabeling and 

contamination issues (142).  

Additionally, cancer cells are renowned for their adaptability to shifting environmental 

conditions, which causes instability within continuous cell culture systems (2,151). 

Prolonged cell culture has been shown to induce genetic instability and clonal selection 

dynamics in cancer cells, potentially leading to inconsistencies between initial and 
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subsequent experimental outcomes (2,143). In 2018, Ben-David et al. examined 27 

strains of MCF-7 breast carcinoma cell line, uncovering their substantial genetic and 

phenotypic heterogeneity (2). This diversity was evident not only at the single nucleotide 

level but also in shared copy number variations (CNV) across the MCF-7 strains (2). 

The observed genetic heterogeneity correlated with distinct gene expression patterns, 

morphological variations, and differences in drug sensitivity profiles among the strains. 

Specifically, when exposed to over 300 anti-cancer compounds, the 27 MCF7 strains 

displayed highly varied drug responses, with some exhibiting strong sensitivity to certain 

compounds while others showed resistance (2).  

These findings were further validated in an additional 13 cell lines included in the study 

and emphasized the influence of specific culture conditions on the evolution of cell lines, 

driven by positive clonal selection (2). 

In 2019, Liu et al. conducted a comprehensive cross-laboratory study on the HeLa cervix 

carcinoma cell line, revealing extensive diversity among different HeLa variants and 

those sourced from various laboratories (3). HeLa, being the first immortal cancer cell 

line, has played a significant role in biological research over the years (37). However, 

due to its extensive passaging and transfer between labs, multiple variants have 

emerged, including CLL2 (considered the original), HeLa S3 (also known as CLL2.2), 

and HeLa Kyoto, isolated from an early culture in Japan (3,37,152–155). Liu et al. 

gathered 14 HeLa cell lines from 13 laboratories and maintained them under uniform 

culture conditions (3). Analysis of their copy numbers, mRNA, protein levels, and 

turnover rates unveiled substantial genetic heterogeneity, particularly in the CLL2 and 

Kyoto variants (3). This heterogeneity was evident in variations observed through whole-

genome sequencing (WGS) as well as in transcriptomic and phenotypic characteristics 

(3). Furthermore, their longitudinal analysis revealed the progressive evolution of the 

HeLa cell line, with notable differences observed between low-passage and high-
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passage derivatives (3). These findings highlight the inherent challenges associated 

with utilizing established cell lines for cancer research and stress the importance of 

thorough characterization and validation of cell line models (3). 

Furthermore, while considerable attention has been directed towards extensively 

mutated adult carcinoma cell lines such as HeLa and MCF-7, there has been relatively 

less focus on understanding the genetic stability and evolutionary trajectories of other 

cancer types (2,3,6,146).  

Oligomutated pediatric sarcomas, characterized by a single COTF driving 

tumorigenesis, represent a distinct yet understudied subset of malignancies. One 

example is EwS, defined by a solitary genetic alteration, may be termed ‘oligomutated’, 

indicating a lower mutation burden compared to adult carcinoma cell lines (7–9,156). 

However, the degree to which these pediatric sarcomas undergo evolutionary changes 

and accumulate genetic alterations over time remains largely unexplored. A 

comprehensive understanding of the evolutionary dynamics of oligomutated pediatric 

sarcomas is imperative for elucidating the reproducibility and applicability of research 

findings within this specific context. 

4 CANCER ENTITIES INCLUDED IN STUDY 

4.1. Breast carcinoma 

4.1.1 Clinical aspects 

Breast carcinoma, a prevalent and life-threatening malignancy, predominantly affects 

individuals of the female gender and it is ranked as the most frequently diagnosed 

cancer among women globally (157–159). Age, with a peak incidence between 50 and 

69 years, and hormonal factors, such as human epidermal growth factor receptor 



 
34 

(HER2), estrogen receptor (ER), and progesterone receptor (PR) status, play essential 

roles in breast carcinoma's epidemiology (159,160). 

Breast carcinoma originates from epithelial cells in the breast ducts or lobules (161,162). 

Genetic and molecular alterations drive uncontrolled cell growth, resulting in tumor 

formation (160,161). Symptoms often include breast lumps, changes in size or shape, 

nipple abnormalities (retraction, inversion, discharge), and skin changes varying by 

subtype, size, stage, and patient characteristics (162).  

The diagnosis of breast carcinoma typically involves clinical evaluation, precise imaging, 

and biopsy, procedures that provide crucial histopathological insights for confirming the 

diagnosis and ascertaining hormone receptor status (162–164). Imaging techniques 

such as ultrasound, magnetic resonance imaging (MRI), and positron emission 

tomography (PET) aid in tumor assessment (165). Staging, accomplished through the 

tumor-node-metastasis (TNM) system, guides therapeutic planning and prognosis 

assessment by stratifying breast carcinoma (166,167). Treatment is typically 

multimodal, determined by factors like subtype, biomarker & mutation status (Ki-67, 

BRCA2, TP53) tumor size, and metastasis, with primary interventions including tumor 

removal surgery, followed by adjuvant and chemotherapy (162,168).  

4.1.2 Genetic and transcriptomic aspects  

Breast carcinomas exhibit diverse clinical and histopathological characteristics, 

accompanied by distinct genomic and transcriptomic features (Fig. 4) (169–171). This 

heterogeneity extends beyond inter-patient variation to encompass intra-tumor 

heterogeneity (172,173). Notably, susceptibility genes have emerged over time. 

Inherited mutations in BRCA1 and BRCA2 have been linked to a significantly elevated 

risk of hereditary breast carcinoma; further mutations in ATM, CHEK2, NBS1, PALB2, 

RAD50, and BRIP1 have shown a strong association, doubling the risk of this disease 
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(165,174–177). Significant associations have also been observed for LZTR1, ATR, and 

BARD1 (178). 

TP53 and PIK3CA represent frequently mutated genes in breast carcinoma, with 

mutations identified in roughly 30% of cases (162,177,179,180). TP53 encodes a pivotal 

tumor suppressor protein that regulates the cell cycle and DNA repair (181). At the same 

time, PIK3CA plays a critical role in governing cell growth and survival through the p110α 

subunit of the phosphatidylinositol-3-kinase (PI3K) pathway (179,182). Among the 

notable chromosomal rearrangements in breast carcinoma, ERBB2 (HER2) gene 

amplification or overexpression is a prominent example, occurring in 20-25% of breast 

cancer cases (183–185). This amplification leads to the overactivation of the HER2 

receptor, promoting cell proliferation and survival, and is associated with aggressive 

disease and therapy resistance (183,186). 

 

Figure 4: Diverse genetic mutations seen in breast carcinoma. Figure from Hasson, 

Menes, and Sonnenblick (171), published under CC BY-NC license. 

 

Genomic instability in breast carcinoma is further substantiated by frequent copy number 

alterations (CNAs), such as MYC proto-oncogene amplification, observed in up to 15% 

of breast carcinomas (187).  

Conversely, deletion of the CDKN2A gene, found in about 4% of breast tumors, results 

in the loss of tumor suppressor function, promoting uncontrolled cell division (188,189). 
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4.2. Cervix carcinoma  

4.2.1 Clinical aspects 

Cervical carcinoma, a highly prevalent malignancy worldwide, arises from the cellular 

transformation in cervix (190). Its incidence peaks between ages 30 and 50, primarily 

affecting adults (157,190–192). Persistent high-risk human papillomavirus (HPV) 

infection, notably HPV-16 and HPV-18, is one of the major risk factors in cervical 

carcinoma development (Fig. 5) (193–195). Socio-economic disparities, limited 

healthcare access, smoking, weakened immunity, and history of STIs further contribute 

to its widespread occurrence and global burden (196–198). Histopathologically, cervix 

carcinoma presents two primary subtypes based on the cell type of origin: squamous 

cell carcinoma and adenocarcinoma (190). In addition, rare subgroups include 

adenosquamous carcinoma, small cell carcinoma, lymphoma, and sarcomas (199).  

Common clinical symptoms include abnormal vaginal bleeding, post-coital bleeding, and 

pelvic pain are the most common symptoms (196,200). Notably, its presentation varies 

based on tumor stage, subtype, and patient characteristics. In advanced stages, urinary 

and rectal symptoms due to local invasion and abdominal and back pain can occur 

(190). Considering its silent progression and unspecific symptoms, early detection 

through cervical screening (through the Papanicolaou (Pap) smear for cytology and 

high-risk (hr)-HPV testing) is crucially important (201–203).  

Accurate diagnosis relies on clinical evaluation, imaging studies, and histopathological 

scrutiny through biopsy (colposcopy-guided cervical punch or cone biopsy) 

(190,196,199). Imaging techniques like MRI and CT scans help evaluate tumor size, 

extent, and lymph node involvement (190,199).  

Staging, using the International Federation of Gynecology and Obstetrics (FIGO) 

system, guides therapy and prognosis assessment based on tumor size, lymph node 

involvement, and distant metastasis (190,200,204). Cervical carcinoma therapy is 
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multifaceted, considering factors like immunohistochemical subtyping, biomarkers (e.g., 

p16, HPV status), and tumor staging to tailor treatments (190,196,199,205). Surgery is 

often the primary intervention for tumor removal in early stages, while concurrent 

chemoradiotherapy is crucial for advanced cases (190,199,205). Targeted therapies 

such as bevacizumab as well as immunotherapies like pembrolizumab show promise in 

recurrent or metastatic disease (206,207).  

 

Figure 5: Development of cervical carcinoma. Epithelial cells in the cervix transformation 

zone develop lesions due to persistent high-risk HPV (hr-HPV) infection. Lesions can either 

resolve or progress from CIN1 to CIN2 and CIN3 upon viral integration. Viral proteins E6 and 

E7 hinder apoptosis via TP53, cell cycle regulation via p21, T-cell response via toll-like receptors 

(TLR), and macrophage activation via cytokines. This results in inadequate immune response, 

viral replication, uncontrolled cell proliferation, genome instability, leading to CIS or CC. Figure 

from review by Ramachandran and Dörk (195) published under CC BY license. 

4.2.2 Genomic and Transcriptomic Aspects 

Cervix carcinoma is characterized by a multifaceted genomic landscape with diverse 

genetic alterations (208). Notably, infection with hr-HPV types is a pivotal event in this 

malignancy's development, leading to the incorporation of viral DNA into the host 

genome and subsequent genomic instability (208–210). Apart from HPV, it has been 

thoroughly studied that several genetic alterations contribute to cervix carcinoma's 

pathogenesis. These include somatic mutations in tumor suppressor genes like TP53 

and those involved in the PI3K-AKT-mTOR pathway promoting cell survival and 
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proliferation as well as in the critical oncogenes from RAS/RAF/MAPK signaling, which 

leads to unrestricted cell growth (208,211).  

Chromosomal rearrangements, such as the amplification of the long arm of 

chromosome 3 (3q), have been associated with cervix carcinoma (212). This region 

harbors several oncogenes, including TP63 and PIK3CA, whose amplification results in 

increased expression, driving cellular proliferation and survival in cervical carcinoma 

(212,213). Moreover, recurring E322K substitutions within the MAPK1 gene, alongside 

mutations in a subset of genes, specifically HLA-B, EP300, FBXW7, NFE2L2, ERBB, 

CBFB, and ELF3 have been observed in this tumor entity (208). Copy number 

alterations are frequent genomic events in cervical carcinoma (208,213,214). For 

instance, loss of heterozygosity in the chromosomal region containing the fragile 

histidine triad (FHIT) gene on chromosome 3p is a recurring event (215). This alteration 

impacts DNA repair processes and contributes to genomic instability, further 

complicating the molecular landscape of cervical carcinoma (213,215).  

4.3. Ewing sarcoma  

4.3.1 Clinical aspects 

Ewing sarcoma (EwS) is as the second most common malignant bone or soft tissue 

tumor in adolescents and young adults, peaking in incidence around the age of 15 and 

exhibiting a slight male predilection (9,216). It can manifest at various anatomical sites, 

predominantly within the pelvic region, femur, tibia, ribs, or, in the case of the soft-tissue 

variant, in the chest and pleural space, or musculature (9). The occurrence of EwS is 

attributed to genetic factors, as evidenced by familial clustering of EwS cases (217–

219). Notably, a demographic pattern emerges, with higher incidence rates among 

Caucasians compared to Asian/Native American or African-American populations 
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(9,220). Morphologically, EwS shares characteristics with the small round blue cell 

tumor group, making diagnosis challenging (221). Despite rigorous genetic scrutiny, the 

precise cellular origin of EwS still needs to be discovered (7–9,156). Putative candidates 

include mesenchymal stem cells (MSCs) and neural crest-originated stem cells, both 

implicated in the potential genesis of EwS (9,222–224). 

The most common symptom of this malignancy is localized, nonspecific pain, which can 

be misinterpreted as ‘growing pains’, potentially leading to delayed diagnosis (9,225). In 

localized stages, swelling in the affected area or a palpable tumor mass may occur 

(9,225). In more advanced or metastatic stages, additional symptoms, such as fever, 

night sweats, or significant weight loss (greater than 10% over the last six months), may 

manifest (9). The diagnosis of EwS relies on clinical evaluation, imaging of the primary 

lesion using an X-ray, MRI, and, if necessary, a CT scan, and molecular and 

histopathological assessment (226,227).  

Staging EwS, dependent on tumor mass and metastasis status, significantly impacts 

treatment procedures. Currently, EwS is managed based on its stage with a combination 

of surgical resection, (neoadjuvant) chemotherapy, and radiotherapy (226,228). 

4.3.2 Genomic and Transcriptomic Aspects 

EwS is characterized by a unique genetic structure that revolves around the oncogenic 

fusion of the EWSR1 gene with an ETS family transcription factor, predominantly FLI1 

(9). This fusion, often initiated by the chromosomal translocation t(11;22)(q24;q12), 

stands as the hallmark of EwS pathogenesis, giving rise to chimeric fusion proteins like 

EWSR1::FLI1 or EWSR1::ERG, which function as aberrant transcription factors 

(9,222,229–231). Despite this characteristic fusion, EwS exhibits a genomically silent 

nature, with minimal inherited predisposition sites beyond the primary fusion event. 

Although, some studies have reported the recurrence of somatic mutations in genes like 
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STAG2 and TP53, which can impact disease prognosis and aggressiveness, the genetic 

landscape of EwS remains relatively simple, with secondary alterations being rare (7–

9,156). When secondary alterations do arise in this oligo-mutated pediatric sarcoma, 

they typically involve genes associated with essential cellular processes like cell cycle 

regulation, DNA repair, or signaling pathways (7,8,156,222). Acting as the primary 

transcriptional regulator, the EWS::ETS fusion protein leverages GGAA-microsatellites 

to modulate chromatin structure, thereby inducing changes in gene expression (Fig. 6) 

(232,233). This highlights the pivotal role of the EWSR1::FLI1 fusion in molding the 

genomic architecture of EwS and propelling oncogenesis in this pediatric sarcoma, 

contributing to its genomically silent nature. 

   

Figure 6: Regulatory role of EWSR1::FLI1. Functional role of EWSR1::FLI1. 

EWSR1::FLI1 has a dual regulatory function: it can enhance the expression of oncogenes by 

activating GGAA-microsatellites (mSats) and suppress the activity of conserved enhancers. 

MSC refers mesenchymal stem cell. Figure from Riggi et al. (232) with permission under license 

number 5926640930964. 
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5 STUDY CONCEPT, AIMS, AND OBJECTIVES  

The primary objective of this project is to address the broader issue of reproducibility in 

research models, specifically human cell lines, and investigate their in vitro evolution 

and cross-laboratory diversity within pediatric oligomutated sarcomas. This investigation 

is motivated by the current knowledge gap, especially when compared to the vast 

amount of research on the effects of continuous cell culture on adult carcinoma cells. 

This research aims to provide insights into the reliability of cell line models in the context 

of pediatric oligomutated sarcomas, particularly those driven by COTF, presented by 

EwS, addressing a crucial aspect of research methodology and contributing to the 

broader goal of enhancing the reproducibility of findings in cell-based studies.  

The overarching goal is to unveil the extent of cell line evolution in pediatric oligomutated 

sarcomas and assess the genetic and phenotypic stability in contrast to observations 

made in highly mutated adult carcinoma cell lines. This thesis aims to contribute critical 

insights into the reproducibility of scientific findings in diverse cancer cell lines, 

hypothesizing that COTF-driven pediatric sarcoma cell lines exhibit greater genetic and 

phenotypic stability than previously studied adult carcinoma cell lines. Through rigorous 

analysis and comparison, this study endeavors to advance the understanding of in vitro 

cancer cell evolution, potentially shedding light on the reliability and reproducibility of 

scientific results in the context of pediatric oligomutated sarcomas. This study includes 

the widely used EwS cell line A-673, the extensively studied adult breast carcinoma cell 

line MCF-7, and the seminal immortal cervix carcinoma cell line HeLa, renowned for 

their genetic instability in vitro.  

Additionally other EwS cell lines MHH-ES-1, SK-ES-1, SK-N-MC, and TC-71 were 

included for a transversal and in-depth analysis of the in vitro cell line evolution within 

the same cancer entity.  
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AIMS AND OBJECTIVES 

1- Assess Genomic Stability of Fusion-Driven EwS 

- Investigate and compare the genomic evolution concerning single nucleotide 

polymorphism (SNP) alterations in the fusion-driven EwS cell line A-673 versus 

the previously studied adult carcinoma cell lines HeLa and MCF-7. 

- Explore and compare genomic variability among strains from different 

laboratories. 

- Analyze the longitudinal genomic evolution over time. 

2- Analyze Transcriptomic Stability of Fusion-Driven EwS 

- Explore and compare the transcriptomic stability and homogeneity in the fusion-

driven EwS cell line (A-673) and the adult carcinoma cell lines. 

- Investigate and compare transcriptomic homogeneity among strains across 

laboratories. 

- Study the longitudinal transcriptomic evolution over time. 

3- Evaluate Drug Response Uniformity of Fusion-Driven EwS 

- Assess and compare the uniformity and stability in drug response in fusion-driven 

EwS A-673 cell lines versus adult carcinoma strains. 

- Investigate and compare phenotypic stability among strains across laboratories. 

- Examine the longitudinal phenotypic stability over time. 

4- In-depth Analysis of Stability in the Same Sarcoma Entity 

- Investigate the evolution of different cell lines within the same sarcoma entity. 

- Explore and compare the degree of (epi)genomic, transcriptomic, and phenotypic 

evolution over time. 

  



 
43 

6 MATERIALS AND METHODOLOGY  

6.1. MATERIALS 

6.1.1 Cell lines 

Table 1: List of cell lines 

Article Specification Supplier 

A-673 EwS, wild type (WT) ATCC, Manassas, VA, USA 

A-673 EwS, WT, strain Delattre, O., Paris, France 

A-673 EwS, WT, strain Dirksen, U., Essen, Germany 

A-673 EwS, WT, strain De Álava, E., Seville, Spain 

A-673 EwS, WT, strain Grünewald, T., Munich, Germany 

A-673 EwS, WT, strain Kovar, H., Vienna, Austria 

A-673 EwS, WT, strain Scotlandi, K., Bologna, Italy 

A-673 EwS shcontrol (234) Grünewald, T., Munich, Germany  

A-673 EwS TR/shEF1(234) Grünewald, T., Munich, Germany  

HeLa cervix carcinoma, WT  DSMZ, Braunschweig, Germany 

HeLa cervix carcinoma, WT, strain Öhme, I., Heidelberg, Germany 

HeLa cervix carcinoma, WT, strain Jung, A., Munich, Germany 

MCF-7 breast carcinoma, WT DSMZ, Braunschweig, Germany 

MCF-7 breast carcinoma, WT, strain Jung, A., Munich, Germany 

MCF-7 breast carcinoma, WT, strain E. Butt, Würzburg, Germany 

MHH-ES-1 EwS, WT  DSMZ, Braunschweig, Germany 

TC-71 EwS, WT  DSMZ, Braunschweig, Germany 

SK-ES-1 EwS, WT  DSMZ, Braunschweig, Germany 

SK-N-MC EwS, WT  DSMZ, Braunschweig, Germany 

6.1.2 Chemicals and reagents 

Table 2: List of chemicals and reagents 

Chemical / reagent Specification Manufacturer 

Agarose 1kg Carl Roth 

Aqua bidestillata NA H. Kerndl 

Crystal violet NA Sigma-Aldrich 

CutSmart buffer 10x New England Bio Labs 

Dimethyl sulfoxide 
(DMSO) 

Sterile-filtered Sigma-Aldrich 
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DNA ladders GeneRuler 1kb Plus 

GeneRuler 100bp Plus 

Thermo Fisher Scientific 

dNTPs 10mM Sigma-Aldrich 

Ethanol ≥99.8%, denatured Carl Roth 

Fetal calf serum (FCS) NA Sigma-Aldrich 

Formaldehyde Pierce, 16% 

methanol-free 

Thermo Fisher Scientific 

Hydrochloric acid (HCl) 0.1N solution, endotoxin-free Merck 

Hematoxylin counterstain Based on Gill‘s formulation Vector Laboratories 

NU6140 50mg 

10mg 

5mg 

Biotechne 

Tocris 

Merck 

Nuclease-free H2O NA Carl Roth 

Penicillin/Streptomycin Penicillin: 10,000U/ml; 
Streptomycin: 10,000μg/ml 

Biochrom 

Phosphate-buffered 

saline (PBS) 

Dulbecco, 500ml Biochrom 

Plasmocure 100mg/ml Invivogen 

Radioimmuno-
precipitation assay 
(RIPA) buffer 

Pierce Thermo Fisher Scientific 

RNAse A Invitrogen PureLink 

RNase A 20mg/ml 

Thermo Fisher Scientific 

Roswell Park Memorial 

Institute 

(RPMI) 1640 medium 

Supplemented with stable 

glutamine 

Biochrom 

SYBR safe 400μl solution Thermo Fisher Scientific 

SYBR Select Mastermix Contains SYBR GreenER 
dye, AmpliTaq DNA 
polymerase UP, dNTPs with 
dUTP/dTTP-mixture, heatlabile 
UDG and optimized 
buffer components 

Applied Biosystems 

Trypan blue 0.4% Sigma-Aldrich, Thermo 

Fisher Scientific 

Trypsin (10x) Trypsin 
(1:250)/EDTA-Solution 
(0,5%/0,2 %) 

Biochrom 
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6.1.3 Compounds 

Table 3: List of compounds 

Compound Mechanism of action Manufacturer 

BI 2536 PLK1 inhibition (mitotic block, apoptosis) Selleckchem 

CCT245737 CHK1 Inhibition Selleckchem 

Doxorubicin DNA Topoisomerase II Inhibition Selleckchem 

Etoposide DNA Topoisomerase II Inhibition Selleckchem 

JQ1 BET bromodomain protein inhibition  Adooq Bioscience 

OSI-906 Linsitinib) IGF-1R Inhibition  Adooq Bioscience 

NU6140 CDK2 inhibition  Merck/Millipore 

Rapamycin Specific mTOR inhibition  Selleckchem 

Vincristine sulfate 
Interaction with tubulin resulting in mitosis 

inhibition at metaphase  
Selleckchem 

17-AGG (Tanespimycin) Heat shock protein 90 (HSP90) inhibition  Adooq Bioscience 

Adavosertib MK-1775 Selective inhibition of WEE1 kinase  Selleckchem 

CFI-402257 Selective inhibition of Mps1/TTK  MedChemExpress 

Clofarabine Inhibition of ribonucleotide reductase  Selleckchem 

Elesclomol Induction of ROS-mediated apoptosis  Selleckchem 

Gemcitabine 
Prevention of chain elongation resulting in 

DNA synthesis inhibition  
Selleckchem 

Mercaptopurine 
Purine metabolism inhibition through 

interference with nucleic acid synthesis  
Selleckchem 

Metformin 
AMPK pathway activation & mTOR 

signaling inhibition  
Selleckchem 

Mithramycin 

DNA/RNA polymerase inhibitor, DNA 

binding transcriptional inhibitor, TNF-⍺ 

and Fas ligand-induced apoptosis 

mediator 

Cayman chemical 

Olaparib 
PARP enzymes (PARP1 and PARP2) 

inhibition  
Selleckchem 

Triapine Ribonucleotide reductase inhibition  Selleckchem 

6.1.4 Commercial kits 

Table 4: List of commercial kits 

Usage Kit Components Manufacturer 
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Genomic DNA 

extraction 

 

 

NucleoSpin 

Lysis Buffer T1, Lysis Buffer B3, Wash 

Buffer BW, Wash Buffer B5 

(concentrate), Elution Buffer BE, 

Proteinase K (lyophilized), Proteinase 

Buffer PB, NucleoSpin Tissue Columns 

(light green rings), Collection Tubes (2ml) 

 

 

Machery-Nagel 

 

 

 

RNA extraction 

 

 

 

NucleoSpin 

RNA 

Lysis Buffer RA1, Wash Buffer RAW2, 

Wash Buffer RA3 (concentrate), 

Membrane Desalting Buffer MDB, 

Reaction Buffer for rDNase, rDNase 

(RNase-free, lyophilized), RNase-free 

H2O, NucleoSpin Filters (violet rings), 

NucleoSpin RNA Columns (light blue 

rings - plus Collection Tubes), Collection 

Tubes (2ml), Collection Tubes (1.5ml) 

 

 

 

Machery-Nagel 

6.1.5 Consumables 

Table 5: List of consumables 

Consumable Specification Manufacturer 

Cell culture flasks T150 (150cm2), T75 (75cm2), 

T25 (25cm2) T175 (175cm2), T75 

(75cm2), T25 (25cm2) 

TPP 

Corning 

Cell culture plates 96-well, 12-well, 6-well TPP 

Filters Rotilabo, sterile, 0.45 μm pore size Carl Roth 

Freezing containers Mr. Frosty Thermo Fisher 

Scientific 

Gloves Kimtech, Purple Nitrile 

Nitril NextGen 

Kimberly-Clark 

Meditrade 

Hemocytometers 

(single use) 

C-Chip Neubauer Improved NanoEnTek 

Laboratory film Parafilm Bemis 

Microscope slides TOMO adhesive glass slide Matsunami Glass 

PCR tube strips 4titude Brooks Life Sciences 

Petri dishes 10cm GBO 

10cm Nunclon 

Greiner 

Thermo Fisher 

Scientific 

Pipet tips 1250μl, 200μl, 100μl, 20μl, 10μl 

SurPhob SafeSeal 

Biozym 

qRT-PCR plate seals 4ti-0560 Brooks Life Sciences 

qRT-PCR plates Framestar, 96-well, semiskirted Brooks Life Sciences 



 
47 

Reaction tubes 50ml, 15ml 2ml, 1.5ml 

TPX Polymethylpentene (PMP) 

tubes for DNA sonication 

Greiner, Falcon 

Diagenode 

6.1.6 Technical equipment and instruments 

Table 6:Technical equipment and instruments 

Device/Equipment Model specification Manufacturer 

Aspirators Vacusafe FTA-1 Integra Biosan 

Automatic ice maker  SPR-80 Nordcap 

Cell counter Countess II Invitrogen 

Centrifuges Heraeus Megafuge 40R 

Heraeus Megafuge 8R 

5415R 

Universal 320 

Rotina 320R 

4K15C 

Thermo Fisher Scientific 

Thermo Fisher Scientific 

Eppendorf 

Hettich 

Hettich 

Sigma 

Electrophoresis gel chambers Sub-cell GT 

40-0911, 40-1410, 40-0708 

Bio-Rad 

Peqlab 

Electrophoresis gel imager Multiimage Light Cabinet Alpha Innotech 

Electrophoresis power 

suppliers 

PowerPac 300 Model 200 Bio-Rad 

Bio-Rad 

Flasks and bottles Erlenmeyer flask (Duran 500ml) 

Laboratory flask (Duran 1000ml, 500ml, 

250ml, 100ml) 

Schott 

Photo (plate) scanner Epson Perfection V370 Photo Epson 

Fridges and freezers 4°C, -20°C 

-80°C 

Bosch, Siemens 

Thermo Fisher Scientific 

Hemocytometers Neubauer Improved Hartenstein 

Incubators HERAcell 240i, Forma 3111 

CB-170 

Thermo Fisher Scientific 

Binder 

Laminar flow cabinets Safe 2020, Maxisafe 2020, Herasafe Thermo Fisher Scientific 

Liquid nitrogen tank Arpege 70 Air Liquide Medical 

Manual counter Analog Hartenstein 

Microscopes Axiovert 200 

Axiovert 25 

Axioplan 2 imaging 

Primovert 

Zeiss 

Zeiss 

Zeiss 

Zeiss 



 
48 

Multistep pipet Handy Step Brand 

PCR cyclers T100 Thermal Cycler  

Mastercycler pro 

Bio-Rad 

Eppendorf 

Pipets Pipetman 1000μl, 200μl, 100μl, 20μl, 

10μl, 2μl 

Gilson 

Pipetting assistants Pipetboy 2 

Accu-jet pro 

Integra 

Brand 

Plate readers Orion II microplate luminometer 

Varioskan 

Titertek-Berthold 

Thermo Fisher Scientific 

qRT-PCR cycler CFX Connect Bio-Rad 

Racks For 15ml and 50ml tubes, For 1.5ml 

and 2ml tubes For cryotubes, For PCR 

tubes 

Hartenstein   

Scissors Surgical, 160mm Hartenstein 

Sequencing system 
 

Illumina 

Spectrophotometers DS-11 

Nanodrop ND-1000 

DeNovix 

Peqlab 

Table centrifuges PerfectSpin mini 

Sprout 

LSE 

Spectrafuge 3-180 

Qualitron DW-41 

Peqlab 

Biozym 

Corning 

Neolab 

Thermo Fisher Scientific 

Thermoblocks and 

Thermoshakers 

Thermomixer comfort, Thermomixer 

compact, ThermoStat plus 

TS-100 

Eppendorf 

  

Biosan 

Vortexers Vortex Genie 2 

LSE 

7-2020 

Scientific_Industries 

Corning 

Neolab 

6.2. METHODOLOGY 

6.2.1 Provenience of cell lines and cell culture conditions 

For long-term culture assays the following early passage (<5 passages) human cancer 

cell lines were acquired: the cervix carcinoma cell line HeLa, the human breast 

carcinoma cell line MCF-7, the EwS MHH-ES-1, SK-ES-1, SK-N-MC, and TC-71 cell 

lines were purchased from the German Collection of Microorganism and Cell Cultures 
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(DSMZ). The A-673 EwS cell line was purchased from the American Type Culture 

Collection (ATCC). For cross-laboratory assays the various wild type strains of A-673, 

HeLa and MCF-7 cell lines with an undefined number of passages were assembled: A-

673 wild type strains were collected from O. Delattre from INSERM U830 ‘Genetics and 

Biology of Cancers’ Institut Curie Research Center, Paris France, U. Dirksen from 

International Ewing Sarcoma Research Group, Westdeutsches Tumorzentrum Essen 

(WTZ), Universität Duisburg-Essen (Essen, Germany), E. de Álava from Molecular 

Pathology of Sarcomas Laboratory, Hospital Universitario Virgen del Rocio (Sevilla 

Spain), K. Scotlandi from Laboratory of Experimental Oncology, Rizzoli Orthopedic 

Institute, University of Bologna (Bologna, Italy), and H. Kovar from Molecular Biology of 

Solid Tumors, St. Anna Kinderkrebsforschung, Children´s Cancer Research Institute 

(Vienna, Austria). Wild type MCF7 strains were kindly provided by E. Butt from University 

Clinic of Würzburg, Germany. HeLa strains were gifted by A. Jung from Pathology 

Institute of LMU (Munich, Germany), and I. Öhme from German Cancer Research 

Center (DKFZ, Germany). Single cell clones derived from A-673 cell lines with either a 

neutral manipulation (A-673/TR/shcontrol) or an inducible shRNA construct against its 

EWSR1::FLI1 fusion transcript (A-673/TR/shEF1) were previously described by the 

Grünewald laboratory (234) in Munich, Germany.  

Cultured at 37°C with 5% CO2, the cell lines were maintained in RPMI 1640 

supplemented with 10% fetal bovine serum and 1% penicillin-streptomycin. Daily 

monitoring and biweekly passaging using Trypsin-EDTA were conducted when cells 

reached approximately 70% confluency. All cell lines underwent routine mycoplasma 

contamination testing by nested PCR, and their purity and authenticity were confirmed 

by short tandem repeat (STR)-profiling. All primers for mycoplasma purity testing were 

retrieved from Eurofins Genomics, Ebersberg, Germany (Table 1). And mycoplasma 
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test was performed as according to the laboratory protocol designed by Dr. Dr. Martin 

F. Orth (235). 

 

Table 7: Primers used for Mycoplasma purity testing of the cell lines. 

Name/target Sequence Purpose 

Myco-F1  5'-ACACCATGGGAGCTGGTAAT-3'  Mycoplasma PCR  

Myco-F1t  5'-ACACCATGGGAGTTGGTAAT-3'  Mycoplasma PCR  

Myco-F2 5'-GTTCTTTGAAAACTGAAT-3'  Mycoplasma PCR  

Myco-F2a 5'-ATTCTTTGAAAACTGAAT-3'  Mycoplasma PCR  

Myco-F2cc  5'-GCTCTTTCAAAACTGAAT-3'  Mycoplasma PCR  

Myco-R1  5'-CTTCATCGACTTTCAGACCCAAGGCAT-3'  Mycoplasma PCR  

Myco-R1ac  5'-CTTCATCGACTTCCAGACCCAAGGCAT-3'  Mycoplasma PCR  

Myco-R1cat  5'-CCTCATCGACTTTCAGACCCAAGGCAT-3'  Mycoplasma PCR  

Myco-R1tt  5'-CTTCTTCGACTTTCAGACCCAAGGCAT-3'  Mycoplasma PCR  

Myco-R2  5'-GCATCCACCAAAAACTCT-3'  Mycoplasma PCR  

Myco-R2at  5'-GCATCCACCAAATACTCT-3'  Mycoplasma PCR  

Myco-R2ca  5'-GCATCCACCACAAACTCT-3'  Mycoplasma PCR  

   

 

 

Table 8: STR profiling of cell lines included in cross-laboratory analysis. 

 

 

  
D5S818 D13S317 D7S820 D16S539 vWA TH01 AMG TPOX CSF1PO 

A-673_1 (m0) A1 11 8 10 11 15 9,3 X 8 11 

A2 12 13 12 
 

18 
   

12 

A-673_2 (m6) A1 11 8 10 11 15 ? X 8 11 

A2 
 

13 12 
 

18 
    

A-673_3 (m12) A1 11 8 10 11 15 9,3 X 8 11 

A2 
 

13 12 
 

18 
    

 

A-673_4 

A1 11 8 11 7 15 10 ? 9 8 

A2 12 13 13 11 18 
   

10 

 

A-673_5 

A1 11 8 6 11 15 9,3 X 8 6 

A2 
  

10 
 

18 
   

11 

 A1 11 8 6 11 15 9,3 X 8 11 
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A-673_6 A2 
  

10 
 

18 
   

12 

 

A-673_7 

A1 11 8 6 11 15 9,3 X 8 6 

A2 12 13 10 
 

18 
   

11 

 

A-673_8 

A1 11 8 6 11 15 9,3 X 8 ? 

A2 
 

13 10 
 

18 
   

11 

 

A-673_9 

A1 11 8 6 11 15 9,3 X 8 6 

A2 
  

10 
 

18 
   

11 

 

A-673_10 

A1 11 8 6 11 15 9,3 X 8 11 

A2 12 
 

10 
 

18 
   

12 

 

A-673_11 

A1 11 8 6 11 15 9,3 X 8 11 

A2 12 
 

10 
 

18 
   

12 

 

HeLa_1 

A1 11 12 6 9 16 7 X 8 9 

A2 12 14 8 10 18 
  

12 10 

 

HeLa_2 

A1 11 12 6 9 16 7 X 8 9 

A2 12 14 8 ? 18 
    

 

HeLa_3 

A1 11 12 6 9 16 7 X 8 9 

A2 12 14 8 ? 18 
    

 

Hela_4 

A1 11 12 6 9 16 7 X 8 9 

A2 12 14 8 10 18 
  

12 10 

 

Hela_5 

A1 11 12 6 9 16 7 X 8 9 

A2 12 14 8 10 18 
  

12 10 

 

MCF_1 

A1 11 11 6 11 14 6 X 9 10 

A2 12 
 

8 12 15 
  

12 
 

 

MCF_2 

A1 11 11 6 11 14 6 X 9 9,3 

A2 12 
 

8 12 15 
  

12 
 

 

MCF_3 

A1 11 11 6 11 14 6 X 9 9,3 

A2 12 
 

8 12 15 
  

12 
 

 

MCF_4 

A1 11 11 6 11 14 6 X 9 9,3 

A2 12 
 

8 12 15 
  

12 
 

 

MCF_5 

A1 11 11 6 11 14 6 X 9 ? 

A2 12 
 

8 12 15 
  

12 
 

Table 9: STR profiling of additional EwS cell lines. 
  

D5S818  D13S317  D7S820  D16S539  vWA  TH01  AMG  TPOX  CSF1PO  

 
MHH-ES-1_1 

A1 13 8 6 11 16 8 X 8 11 

A2 
  

9 
 

17 9 
   

 
MHH-ES-1_2 

A1 13 8 6 11 16 8 X 8 11 

A2 
 

13 9 
 

17 9 
   

 
MHH-ES-1_3 

A1 13 8 6 11 16 8 X 8 11 

A2 
  

9 
 

17 9 
   

 
SK-ES_1 

A1 12 8 10 11 14 6 X 8 11 

A2 
 

9 11 
 

17 9,3 Y 
  

 
SK-ES_2 

A1 12 8 10 11 14 6 X 5 11 

A2 
 

9 11 
 

17 9,3 Y 8 
 

 A1 12 8 10 11 14 6 X 8 11 
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SK-ES_3 A2 
 

9 11 
 

17 9,3 Y 
  

 
SK-N-MC_1 

A1 11 11 8 12 17 9,3 X 9 9,3 

A2 
    

18 
  

11 
 

 
SK-N-MC_2 

A1 11 11 6 12 17 10 X 9 10 

A2 
  

8 
 

18 
  

11 
 

 
SK-N-MC_3 

A1 11 11 8 12 17 9,3 X 9 10 

A2 
    

18 
  

11 
 

 
TC-71_1 

A1 9,3 11 10 11 17 9,3 X 8 ? 

A2 
 

12 
 

11 
   

9 9,3 

 
TC-71_2 

A1 9,3 11 10 11 17 ? X 5 10 

A2 
 

12 
 

14 
  

Y 8 11 

 
TC-71_3 

A1 9,3 11 10 11 17 9,3 X 8 10 

A2 
   

14 
  

Y 9 11 

6.2.2 DNA extraction, methylation, and global screening arrays 

When the cell culture flasks reached about 70% confluency, cell lysates were prepared, 

and total DNA extraction was carried out using the NucleoSpin Tissue kit from 

Macherey-Nagel. This kit utilizes spin-column-based technology for efficient purification 

of DNA from various tissue samples, following a standard protocol provided by the 

manufacturer. For each sample, 900 ng of extracted DNA was used for subsequent 

analysis. Genomic DNA was profiled using the Illumina Infinium Global Screening array, 

a widely used genotyping platform that utilizes bead array technology to assay genetic 

variations across the genome.  

Additionally, methylation analysis was performed using the Illumina MethylationEPIC 

array, specifically designed to interrogate DNA methylation patterns at high resolution. 

Both genotyping and methylation profiling were conducted at the Molecular 

Epidemiology Unit of the German Research Center for Environmental Health (Helmholtz 

Center, Munich, Germany). 

6.2.3 DNA methylation data analysis  

The initial pre-processing of the raw methylation was performed in R version 3.3.1 by 

Martin Sill (236). Raw signal intensities were obtained from IDAT-files using the minfi 
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Bioconductor package version 1.21.4 in R version 3.3.1 (236,237). Each sample 

underwent individual normalization, involving background correction (shifting of the 5% 

percentile of negative control probe intensities to 0) and dye-bias correction (scaling the 

mean of normalization control probe intensities to 10,000) for both color channels. The 

methylated and unmethylated signals were corrected individually. Further methylation 

data management was kindly performed by Jana Siebenlist. Beta values were 

calculated from the retransformed intensities using an offset of 100 (as recommended by 

Illumina). Out of 865,859 probes on the EPIC array, 105,454 probes were masked 

according to Zhou et al. (238) as well as 16,944 probes on the X and Y chromosomes. 

In total, 743,461 probes were kept for downstream analysis. The beta values were 

transformed to M-values with the logit2 function of the minfi package version 1.42.0, R 

version 4.2.0 (236,237). A probe-wise differential methylation analysis (239) was 

performed using the limma package version 3.52.4 in R version 4.2.0 by comparing six 

and twelve months of culturing with the initial time point (m0) as reference (236,240). 

Significant differentially methylated CpG probes were extracted with the decideTests 

function of the limma package with an FDR<0.05 (Benjamini-Hochberg) (240).  

All significantly differentially methylated (total hypo- and hyper-methylated) CpG sites 

were visualized using PRISM 9 (GraphPad Software Inc. CA, USA) (241). 

6.2.4 Global screening array (GSA) data analysis  

The initial processing and quality control (QC) of the raw genotyping data was performed 

using PLINK version 1.9 (SNP call rate >95%, Hardy-Weinberg exact test <1e-6, and 

variants on Y chromosome were excluded) (242). In total 526,610 variants out of 

696,726 passed the QC filters. Infinium GSA v3.0 annotation file was used to filter for 

in-exon or non-synonymous variants. To determine single nucleotide alterations (SNA) 

after six and 12 months in cell culture (m6 and m12), each cell line was compared to its 
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m0 version (number of consistent alleles and changes from homozygous to 

heterozygous) using the Variant Call Format (VCF) file generated by PLINK 1.9. Further 

data analysis was performed in R version 4.2.1, using the vcfR package (243) version 

1.14.0 for parsing and analysing variant call format (VCF) files generated from NGS 

data., among other data processing packages described below. The distance between 

two time points for each cell line was computed in R version 4.2.1 using the proxy 

package version 0.4-27 (244). The eigenvectors, generated for dimension reduction in 

PLINK version 1.9, were used as input (242). The heatmap was generated in R version 

4.2.1 using pheatmap package version 1.0.12 (236,245). 

6.2.5 RNA extraction, RNA sequencing and analysis 

RNA extraction was conducted when cell culture flasks reached approximately 70% 

confluency, utilizing the NucleoSpin RNA kit from Macherey-Nagel, Germany, in 

accordance with the manufacturer’s instructions. Following extraction, RNA quality was 

assessed using a Nanodrop Spectrophotometer ND-1000 (Thermo Fisher) and 

quantified on a Qubit instrument (Life Technologies). Subsequently, for each sample, 

50–100 ng of RNA in three biological and two technical replicates were utilized as input 

material and profiled on an Illumina NextSeq 500 system at the Institute of Molecular 

Oncology and Functional Genomics in Rechts der Isar University Hospital (TranslaTUM 

Cancer Center, Munich, Germany). For library preparation for bulk 3’-sequencing of 

poly(A)-RNA, a protocol described by Parekh et al. was followed (246). Briefly, barcoded 

cDNA of each sample was generated with a Maxima RT polymerase (Thermo Fisher) 

using oligo-dT primer containing barcodes, unique molecular identifiers (UMIs) and an 

adapter. 5’ ends of the cDNAs were extended by a template switch oligo (TSO) and after 

pooling of all samples full-length cDNA was amplified with primers binding to the TSO-

site and the adapter. cDNA was fragmented and TruSeq-Adapters ligated with the 
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NEBNext® Ultra™ II FS DNA Library Prep Kit for Illumina® (NEB) and 3’-end-fragments 

were finally amplified using primers with Illumina P5 and P7 overhangs. P5 and P7 sites 

were exchanged to allow sequencing of the cDNA in read1 and barcodes and UMIs in 

read2 to achieve better cluster recognition. The library was sequenced with 75 cycles 

for the cDNA in read1 and 16 cycles for the barcodes and UMIs in read2. Initial data 

processing was conducted using the published Drop-seq pipeline (v1.0) to generate 

sample- and gene-wise UMI tables by Dr. Rupert Öllinger (247). After eliminating the 

transcripts with very low counts (sums of all samples <10), RNA-seq data in count matrix 

format was batch corrected using ComBat-Seq function of R package sva version 3.44.0 

(248), and differential gene expression analysis (DGEA) was performed using DESeq2 

version 1.36.0 on R version 4.2.1 (236,249). Combat-Seq adjusted data was used as 

count input for DESeqDataSet. To prevent potential false discoveries resulting from the 

detection of minimally expressed genes, the 40% lowest expressed genes across 

samples were excluded (remaining expressed genes N=10,257).  

For the examination of long-term cultured EwS cell lines a DGEA was performed using 

the top 60% expressed genes included in the raw count matrix (N=27,143, all EwS cell 

line samples were analyzed in one batch). For DGEA between two samples, genes with 

an adjusted p value less than 0.01 and an absolute log2 fold change greater than one 

were classified as DEG. Principal component analysis was employed to keep the 

overarching characteristics of the dataset with the plotPCA function. To 

comprehensively display the degree of variability between strains in each tumor type, 

gene-specific CV of the transcriptomic data was calculated. In the long-term culture 

experiments, the log2 fold change (log2FC) of gene expression for each cell line at 6 

and 12 months (m6 and m12) was evaluated relative to the baseline values at the initial 

time point (m0). 
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6.2.6 Gene set enrichment analysis (GSEA) 

To identify alterations in gene-sets over time following 6 months of continuous cell 

culture within each cancer entity, a gene expression dataset comprising raw transcript 

counts for each cell line (A-673, HeLa, and MCF-7) was utilized for gene set enrichment 

analysis (GSEA) (see section RNA sequencing (RNA-seq). GSEA was performed on 

GSEA software version 4.3 developed by the Broad Institute and the Molecular 

Signatures Database (MSigDB) library was employed (250,251). Enrichment statistics 

were weighted, and the metric for ranking genes was determined as signal-to-noise 

ratio. Each GSEA analysis was performed individually for every cell line, and 

comprehensive GSEA reports were generated. Following the completion of GSEA 

results for each cell line, the results were combined for each cancer entity using the 

tidyverse package in R and the combined dataset was then visualized using the ggplot2 

package in R version 4 (236,252).  

6.2.7 Drug screening and data analysis 

All A-673, HeLa and MCF-7 strains, as well as MHH-ES-1, SK-ES-1, SK-N-MC, and TC-

71 EwS cell lines, were tested against a core drug library consisting of 10 cytotoxic or 

cytostatic agents, or an extended drug library consisting of 20 agents (Materials 

section, Compounds). The experimental procedures involved the seeding of cells into 

96-well plates at a standardized density of 5×103 cells per well in triplicates. Following 

cell attachment, which typically occurred approximately 4 h post-seeding, serially diluted 

concentrations of each compound were meticulously added to the wells, with 

concentrations ranging from 1×10-5 µM to 10 µM. Throughout the experimental course, 

DMSO was utilized as the vehicle control to ensure the fidelity of the results. Following 

approximately 72 h incubation period maintained at 37 °C with 5% CO2 in a humidified 

atmosphere, the assessment of cell viability was carried out utilizing a meticulously 
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prepared solution of 25 µg/ml of resazurin salt (Sigma-Aldrich) as previously described 

(253). It is noteworthy that each compound-cell line combination was subjected to 

rigorous testing, with all assays performed in four biological replicates to ensure the 

robustness and reliability of the experimental findings. After acquiring the raw viability 

measurements, normalization of the cell viability data was conducted by aligning them 

with the corresponding DMSO control values. This normalization step aimed to account 

for any variations attributed to experimental conditions or technical factors. 

Subsequently, the area under the curve (AUC) for each cell line was computed using 

the PharmacoGx package version 3.0.2 within the R statistical environment, specifically 

version 4.2.1 (254). To evaluate the similarity or dissimilarity between drug sensitivity 

profiles across different cell lines, Euclidean distances (ED) were calculated. This 

involved determining the distance between the mean AUC value of all strains and the 

AUC value of each individual cell line using the formula: 

function(x1, x2) sqrt(sum((x1 – x2)2))= ED , 

 where x1 is the mean value of AUC of all strains and x2 the AUC of individual cell lines. 

This analytical approach facilitated the quantification of the degree of variation in drug 

response observed among the diverse cancer entities under investigation. Moreover, to 

provide a comprehensive illustration of the variability in drug response across different 

cancer types, the standard error of ED was visually represented. This visualization 

method was designed to accommodate potential differences in sample size, ensuring 

an accurate depiction of the variability in drug response profiles across the various 

cancer cell lines examined. Additionally, any changes in drug sensitivity profiles during 

the extended culture periods of six and twelve months (m6 and m12) were thoroughly 

examined. These analyses were conducted in comparison to the baseline 

measurements taken at the initial time point (m0). This comparative approach allowed 

for a comprehensive assessment of how drug sensitivity evolved over time, shedding 
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light on any potential adaptations or alterations in the response of the cell lines to the 

tested compounds. 

6.2.8 Other bioinformatic and statistical analyses  

Unless specified otherwise, all data analyses concerning to genomics, methylation, 

transcriptomics, and drug sensitivity were carried out in R version 4.2.1 (236). A range 

of R packages was utilized for various aspects of data processing and visualization. For 

data processing, the readxl package version 1.4.3 was employed for efficient handling 

of Excel files, while the tidyverse package version 2.0, reshape2 package version 1.4.4, 

cowplot package version 1.1.1, Rfast package version 2.0.8, and data.table package 

version 1.14.8 were utilized for diverse data manipulation tasks (252,255,256).  

Data visualization was facilitated by the ggplot2 package version 3.4.1, PupillometryR 

package version 0.0.4, and circlize package version 0.4.15 for circle plot (252,257,258). 

Furthermore, for specialized analyses such as principal component analysis (PCA) and 

volcano plots, the ggplot2 package version 3.4.1 was used (252). Spearman’s 

correlation analyses of quantitative data concerning both mRNA and drug response 

were carried out using the Hmisc package version 4.7-2 (259). Specific figures, including 

Figures 9b, 11, 12, 14b,14c,15,16 and Supplementary Figure 1b and e, were generated 

using PRISM 9 (GraphPad Software Inc., Ca, USA) (241). To enhance the robustness 

and comprehensiveness of transcriptomic datasets, data from this study were integrated 

with those from Liu et al. (3). This combined dataset underwent batch using ComBat-

Seq function of package sva version 3.44.0 (260), ensuring consistency and accuracy 

across different datasets and experimental batches. 
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7 RESULTS 

7.1. EwS cell line is genomically more stable than the adult 

carcinoma cell lines  

To investigate the clonal or genetic heterogeneity of COTF-driven sarcoma cell lines 

across laboratories and compare them with their adult carcinoma derivates, 11 distinct 

A-673 cell line strains were included from seven research groups. Additionally, five 

strains of HeLa, human cervix carcinoma cell line, and MCF-7, human breast carcinoma 

cell line, from three and two different laboratories, respectively were included (Fig. 7a), 

All cell line strains included in the study had an unknown passage number, yet they were 

deemed eligible for cell biology research purposes. Among the 11 A-673 strains, nine 

were wild type strains acquired from seven different laboratories, while two underwent 

genetic modifications. These two genetically modified cell lines, provided by Dr. Dr. M.F. 

Orth, were engineered using the dox-inducible pLKO-Tet-On all-in-one system 

containing a fusion transcript-specific shRNA for EWSR1::FLI1 (234). One cell line 

served as the shRNA control, representing a neutral manipulation, while the other 

featured shRNA targeting EWSR1::FLI1 (234). This experimental setup allowed 

assessing whether these genetic alterations cause significant differences at the 

genomic, transcriptomic, and phenotypic levels. To analyse the possible impact of 

continuous cell culture on the cell lines, a newly purchased strain (passage number < 5) 

was obtained for each cell line from international cell repositories (see Methods section). 

These new strains were cultured continuously for 12 months and analysed at three 

different time points (corresponding to month 0, 6, and 12, hereafter referred to as m0, 

m6, m12; (Fig. 7a) (261).  

All strains were passaged in the same cell culture conditions to minimize experimental 

bias before the genomic, transcriptomic, and phenotypical comparison and underwent 
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routine authenticity control using STR profiling. Additionally, routine Mycoplasma 

detection tests ensured the absence of microbial contamination (see Methods section). 

Initially, a comparative genomic analysis across laboratories was performed involving 

A-673 cell line strains and genotyped each newly acquired cell lines (m0) and their 

corresponding offspring from m6 on Illumina Global Screening Arrays (GSA). This 

approach enabled the tracking of genetic alterations over time, explicitly pinpointing 

point mutations at reference SNPs represented on this array platform. The analysis 

primarily focused on comparing the status—homozygous for reference allele, alternate 

allele, or heterozygous—of non-synonymous SNPs across these cell lines (Table 4). 

After six months of cell culture, a matching rate of over 98% of the genotyped SNPs was 

noted in each cell line (261). Upon closer examination of the in-exon SNP counts, it was 

observed that HeLa and MCF-7 cells exhibited 2.33-fold and 1.15-fold higher rates of 

genetic evolution, respectively, when compared to A-673 EwS cells (Fig. 7b) (261). This 

suggests that HeLa and MCF-7 cells are more prone to genetic changes than A-673 

EwS cells when kept in cell culture conditions for extended periods.  

Notably, SNP status alterations were consolidated differently among chromosomes 

within these cell lines. In A-673, most SNP status alterations were observed on 

chromosome 5, whereas MCF-7 exhibited predominant alterations on chromosome 19. 

Conversely, and consistent with the previous multi-omic comparison, HeLa 

demonstrated pronounced changes after six months, particularly on chromosomes 2 

and 9 (3). In 2019, Liu et al. revealed prevalent copy number variation (CNV) differences 

across various chromosomes, notably including chromosomes 2 and 9 (3).  
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The convergence of the findings of this thesis with theirs suggests a consistent pattern 

of genomic instability in these specific chromosomal regions within the HeLa cell line, 

with this thesis highlighting their heightened instability over time.  

SNP_ID Gene A-673_1 A-673_2 

rs1042718 ADRB2 0/1 0/0 

rs11167756 ARAP3 0/1 0/0 

rs11962165 HCG11 0/0 0/1 

rs12658464 ZNF474 0/1 0/0 

rs2229882 MAP3K1 0/1 0/0 

rs2547 CXCL14 0/1 1/1 

rs33409 SYNPO 0/1 0/0 

rs3733695 PCDHB7 0/1 1/1 

rs3822625 MAP3K1 0/1 0/0 

rs79790545 LVRN 0/1 0/0 

Table 10: Exemplary illustration of Non-synonymous SNP status comparison in A-

673_1 (m0) and A-673_2 (m6) 

 

Subsequently, the comparative analysis of non-synonymous SNPs impacting coding 

sequences and splicing regions across 11 distinct A-673 strains, including two 

genetically modified strains, unveiled an exceptional 98.9% consistency in shared SNPs 

among all strains (Fig. 7c). This striking finding stands in stark contrast to observations 

in MCF-7 cells, where Ben-David et al. reported a mere 35% of SNPs shared across all 

screened 27 MCF-7 strains (2). Further data analysis revealed that the SNP alterations 

were mainly within silent SNPs, and no specific functionality correlations were identified.   
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Figure 7: Longitudinal and cross-laboratory genomic stability in COTF-driven 

pediatric sarcoma cell line strains in contrast to adult carcinoma strains. a. Newly 

acquired wild type A-673 EwS, HeLa cervix carcinoma and MCF-7 breast carcinoma cell lines 

(A-673_1, HeLa_1 and MCF-7_1) at the initial time point (m0) were kept in culture over six 

months (m6; A-673_2, HeLa_2 and MCF-7_2) and twelve months (m12; A-673_3, HeLa_3 and 

MCF-7_3). Additional cell line strains were gathered from seven, three and two laboratories, 

respectively, and labeled A-673_4 to A-673_9, HeLa_4 to HeLa_5, and MCF-7_4 to MCF-7_5. 

Single cell clones with either a neutral manipulation (*, A-673_10) or an inducible shRNA 

construct targeting its EWSR1::FLI1 translocation (**, A-673_11) were included in the cross-

laboratory comparison. ATCC, American Type Culture Collection, DSMZ (German Collection of 

Microorganism and Cell Cultures). B. The relative counts of in-exon SNPs in A-673, HeLa, and 

MCF-7 were assessed after six months of continuous culture, with initial time point (m0) values 

used as reference (m6 vs. m0). c. A heatmap depicting the status (homozygous for reference 

allele, alternate allele, or heterozygous) of non-synonymous SNPs across 11 A-673 strains. 

Chromosomes are represented on the left color bar, while different SNP-IDs are shown on the 

right color bar (N=1,599). Figure and figure legend from Kasan et al., 2023 preprint available on 

bioRxiv, (261), also in press in Nature Communications under CC-BY license. 
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Despite the rigorous efforts in genomic data analysis, a significant limitation was 

encountered due to batch discrepancy, which hindered a complete longitudinal 

comparison (month 0 versus month 12) of carcinoma and EwS cell lines. Although all 

samples from months 0 and 6 underwent processing together, sequencing of MCF-7 

and HeLa m12 derivatives occurred separately. These batch discrepancies resulted in 

reduced SNP identification and compromised the accuracy of comparative assessment.  

7.2. EwS cell line displays remarkably stable and homogenous 

transcriptome  

To compare cross-laboratory heterogeneity in transcriptomic level between adult 

carcinoma cell lines and oligo-mutated pediatric sarcomas, RNA sequencing (RNA-Seq) 

was performed on 11 A-673, five HeLa, and five MCF-7 strains. Principal component 

analysis (PCA) of transcriptomic profiles showed striking differences between both 

carcinoma-derived cells and EwS cell lines: The A-673 EwS strains exhibited a notably 

tighter clustering pattern compared to the extensive diversity observed within the HeLa 

and MCF-7 carcinoma strains (Fig. 8a). Even despite the inclusion of two genetically 

modified A-673 strains, the EwS cluster maintained its remarkable transcriptomic 

homogeneity (Fig. 8a) (261). This is particularly notable given the smaller sample size 

of the carcinoma cell lines. The higher transcriptomic homogeneity of A-673 strains was 

further confirmed by comparing the coefficient of variation (CV) of gene expression of 

A-673 strains to adult carcinoma strains (Fig. 8b) (261). The differential impact on 

transcriptomic stability observed in this study could explain the tighter clustering and 

lower transcriptomic variability observed in A-673 EwS cells compared to the adult 

carcinoma cells. 
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Figure 8: Remarkable transcriptomic homogeneity in COTF-driven pediatric 

sarcoma strains compared to adult carcinoma strains. Transcriptomic PCA portrays 

the distribution of 11 A-673, five HeLa and five MCF-7 strains, covering a total of 10,256 

transcripts. B. Circle plot displays the coefficient of variation (CV) of expressed genes per 

chromosome (top 60% quantile) for all A-673, HeLa and MCF-7 cell line strains. c. Volcano plot 

visualizes the DEG obtained by comparison of two A-673, HeLa and MCF-7 strains with the 

highest variance (A-673_7 vs A-673_3, HeLa_5 vs HeLa_3 and MCF-7_5 vs MCF-7_3). The 

red dots represent significantly differentially expressed genes (BH adjusted P<0.01; |FC|>1). D. 

Combined transcriptomic PCA integrates A-673 and HeLa strains in the dataset and that of Liu 

et al. (HeLa_Liu) (N=13,569 transcripts). Figure and figure legend from Kasan et al., 2023 

preprint available on bioRxiv (261) also in press in Nature Communications under CC-BY 

license. 

 

For an in-depth investigation, the two strains displaying the highest transcriptomic 

variability were compared in each cancer type. These strains were A-673_7 and A-

673_3 for EwS, HeLa_5 and HeLa_3 for cervical cancer, and MCF-7_5 and MCF-7_3 

for breast cancer. Analysis of differentially expressed genes (DEGs) notably showed 

that the HeLa strains displayed over 60 times more DEGs (380 transcripts; 39 up-
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regulated, 341 down-regulated) meeting the criteria of |fold change (FC)|>1, Benjamini-

Hochberg (BH) adjusted P<0.01, in comparison to A-673 EwS strains which exhibited 

only five transcripts, all of which were up-regulated. Similarly, the MCF-7 strains showed 

a 20-fold increase in DEGs (108 transcripts; 57 up-regulated, 51 down-regulated) 

compared to A-673 EwS strains (Fig. 8c, Supp. Fig. 1a) (261). Furthermore, RNA-seq 

data derived from this thesis was combined with that of Liu et al., which included 14 

different HeLa strains from various laboratories (3). PCA clearly showed a specific 

clustering of HeLa strains of this thesis with their HeLa-CCL2 strains, suggesting a 

probable shared ancestry (Fig. 8d) (261). As expected, the HeLa strains exhibited 

greater heterogeneity than the A-673 strains (Fig. 8d, Supp. Fig. 1b) (261). In addition, 

the heterogeneity observed between the HeLa-CCL2 and Kyoto strains by Liu et al. 

suggests that integrating HeLa-Kyoto within the cell panel studied in this thesis would 

have even further increased the observed variability of HeLa cell strains when compared 

to the COTF-driven A-673 strains (3). 

Next, the global gene expression of the newly purchased cell lines (m0) of each cancer 

type and their respective m12 offspring was compared. Corresponding with the 

outcomes from the cross-laboratory analysis, a significant difference in global gene 

expression was evident in HeLa and MCF-7 cells in contrast to A-673 (A-673 cell line 

had a median log2FC zero, (ranging from –4.25 to 4.22); for HeLa median log2FC was 

0.47 (ranging from –3.39 to 16.89), and for MCF-7 median log2FC was also 0.47 

(ranging from –3.46 to 15.81); P<0.0001, two-sided Wilcoxon signed-rank test, Supp. 

Fig. 1c,d) (261). Finally, a Gene Set Enrichment Analysis (GSEA) was performed, which 

provided valuable insights into the molecular changes in cell lines over six months.  

Here, the A-673 cell line exhibited notable downregulation within the mitotic spindle 

pathways compared to its status at month 0. Conversely, cervix carcinoma cell lines 
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displayed significant enrichment scores not only in the mitotic spindle pathway but also 

in pathways related to protein secretion, TNF Beta signaling, epithelial-mesenchymal 

transition, MYC targets, and many others (Supp. Fig. 2). 

7.3. COTF-driven EwS cell line exhibits a uniform and stable 

phenotype 

To explore the intricate relationship between genomic and transcriptomic alterations and 

their impact on phenotype, the thesis delved into drug sensitivity, comparing COTF-

driven EwS cells with their highly mutated adult carcinoma counterparts. A panel of cell 

lines consisting of 11 A-673 EwS strains (including two genetically modified A-673 

strains), five HeLa cervical cancer strains, and five MCF-7 breast cancer strains were 

tested with ten different compounds targeting various cellular pathways. The 

methodological approach involved resazurin assays, wherein cells were incubated with 

each respective drug in 96-well plates under standardized conditions for 72 h. Viability 

data was calculated as a percentage relative to control wells incubated with vehicle 

(DMSO). Dose-response curves and the measurement of the AUC and IC50 values was 

subsequently performed for each compound. First, an exploratory data analysis using 

PCA with AUC values as input to identify the fundamental diversity within the dataset 

was performed. Leveraging PCA’s dimensionality reduction properties, this approach 

allowed to explore the data complexity while capturing essential patterns and 

relationships in a condensed form. Like in the transcriptomic and genomic layers, 

notable diversity was observed in adult carcinoma strains from various laboratories, 

contrasting with the homogeneous COTF-driven EwS cell strains (Fig. 9a).  

Despite the inclusion of two cell lines with genetic modifications, remarkable uniformity 

in drug response was displayed across the 11 A-673 cells (261).  
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To illustrate drug response of the panel of cell lines, a compound also screened in the 

study by Ben-David et al. on MCF-7 cells, 17-AGG, was selected and drug response 

curves were generated using the viability data (2). 17-AGG demonstrated a great 

dissimilarity in sensitivity variation across HeLa and MCF-7 carcinoma strains, and a 

remarkable stability in response in A-673 strains (Fig. 9b-d). 

Subsequently, the ED between drug sensitivity profiles of a specific cell line were 

calculated, allowing the measurement of the overall AUC to mean across all cell lines. 

Using ED was instrumental in acknowledging the multidimensional nature of drug 

response data, considering the magnitude and directionality of differences in response 

patterns among individual cell lines. This methodological choice was pivotal in 

establishing an unbiased and standardized metric for assessing drug sensitivity, 

ensuring an unbiased comparison across diverse cancer types. Building upon the prior 

findings, a stark contrast in drug response was observed between adult carcinoma 

strains and EwS strains across all screened compounds (P<0.005, one-sided Wilcoxon 

signed-rank test) (Fig. 10a). 



 
69 

 

Figure 9: The exceptional phenotypic uniformity in A-673 in contrast to HeLa and 

MCF-7 cell lines. A. Drug sensitivity PCA and b-d. drug response curves for 17-AGG of 11 

A-673, five HeLa and five MCF-7 cell line strains. 
 

To validate the uniformity in drug response among COTF-driven EwS cells and their 

disparity from carcinoma cell lines, the data was subjected to a Spearman’s correlation 

test. Once again, these results underscored the higher similarity among EwS strains 

compared to adult carcinoma strains Mean Spearman’s ρ of A-673 strains was 0.94 

(ranging from 0.95 to 0.93), HeLa strains 0.87 (ranging from 0.91 to 0.83), and for MCF-

7 0.88 (ranging from 0.92 to 0.85) (Fig. 10b) (261). This robust correlation analysis 

reinforces the notion that COTF-driven EwS cells exhibit a significantly more uniform 

drug response compared to adult carcinoma cell lines. 
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Figure 10: Uniform drug-response in COTF-driven A-673 strains. a. Left, jointed 

variability in drug sensitivity in all A-673, HeLa, and MCF-7 strains depicted as standard error of 

ED, each compound is shown as a black circle, one-sided Wilcoxon signed-rank test. Right, 

standard error of ED for each specific screened compound. B. Violin plot depicting the 

distribution of Spearman’s ρ for drug response across 11 A-673, five HeLa, and five MCF-7 cell 

line strains. Dotted black line shows the median (one-sided Wilcoxon rank-sum test). Figure and 

figure legend from Kasan et al. 2023 preprint available on bioRxiv (261), also in press in Nature 

Communications under CC-BY license.  

 

Moreover, to investigate the impact of prolonged culture on potential changes in drug 

sensitivity, a drug screening was performed on newly purchased A-673, MCF-7, and 

HeLa cells (m0). This comprehensive analysis was repeated at two additional 

predetermined intervals after continuous culturing (m6 and m12). Subsequently, the raw 

cell viability measurements at a standardized concentration of 1 µM were compared with 

their respective parental cells for each compound. Aligning with standards in compound 

screening assays (262), this approach allowed the consideration of diverse cancer types 

and mechanisms while presenting nuanced details in drug response. In parallel with 

earlier observations, a remarkably uniform phenotype in A-673 after 6 and 12 months 

contrasted the sensitivity instabilities observed in HeLa and MCF-7 cell lines (Fig. 11) 

(261). Displaying raw viability data for A-673, HeLa, and MCF-7 cell lines over 12 months 

distinctly highlights the relative stability of A-673 cells compared to the pronounced 

viability changes observed in carcinoma cell lines.  
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Notable shifts in drug sensitivity were observed in carcinoma cells over time with seven 

out of 10 compounds, compared to only slight changes in A-673 cells with only 2 out of 

the ten compounds tested (Fig. 11) (261). The varying degree of drug sensitivity shifts 

among these cell lines underscore the remarkable stability in drug response observed 

in A-673 cells compared to the more pronounced changes seen in carcinoma cells over 

the 12 months. 

 

Figure 11: Steady drug sensitivity in A-673 cell line after long term cell culture. 

Circle plots display the raw viability of A-673, HeLa and MCF-7 cell lines for each compound 

(at 1 µM) after 0, 6, and 12 months of continuous long-term culture (m0, m6, and m12). Figure 

and figure legend from Kasan et al. 2023 preprint available on bioRxiv (261), also in press in 

Nature Communications under CC-BY license. 

 

Furthermore, images of each cell line at each predetermined time point were captured, 

keeping consistent confluency levels, to visually assess cell morphology over time. 

Interestingly, all cells maintained a predominantly stable morphology throughout the 12 

months. Despite the observed changes in drug sensitivity, visual assessment of cell 

morphology did not reveal significant diversity (Supp. Fig. 3).  

7.4. Cell line stability is a spectrum even within the same tumor 

entity 

Finally, to further investigate if the absence of genomic and phenotypic evolution in EwS 

cell line A-673 was a general feature of EwS cell lines, four additional EwS cell lines, 

namely MHH-ES1_m0, SK-ES-1_m0, SK-N-MC_m0, and TC-71_m0 were purchased, 
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and subjected to a 12-month culture period (Fig 12a). Hereafter comprehensive 

genomic and epigenomic analyses of these cell lines were performed using Illumina 

GSA and MethylationEPIC BeadChip arrays.   

The analyses of different EwS cell lines revealed that, while all EwS cell lines exhibit 

relative stability in genomic, transcriptomic, and phenotypic level, compared to the A-

673 cell line, there is a spectrum of variability among these cell lines. This spectrum is 

evident in both non-synonymous SNP alterations and differentially methylated CpG sites 

over time among these EwS cell lines (Fig. 12b, c). Notably, while the majority of in-

exon SNPs (median of 99.6%, ranging from 99.3% to 99.8%) remained unchanged after 

12 months of continuous culture across these cell lines, differences in stability were 

noticeable (261). For example, A-673 and MHH-ES-1 cell lines showed less stability 

while TC-71 stood out for its remarkable genomic immutability (Fig. 12b).  

Further, an in-depth exploration of the transcriptional landscape, provided a nuanced 

comprehension of the dynamic evolution observed in EwS cell lines over an extended 

period. The analysis of DEGs within each EwS cell line at the 12-month mark reveals a 

spectrum of transcriptional alterations (Fig. 12d) (261). Notably, TC-71 stood out with 

minimal changes in gene expression, indicating remarkable transcriptional stability over 

12 months. In contrast, SK-ES-1 exhibited a distinctive profile, revealing the highest 

number of DEGs after 12 months of continuous culture— (219 transcripts; 99 up-

regulated, 120 down-regulated, marking a 50% increase compared to A-673) (Fig. 12d). 

This comprehensive exploration traverses the complex and varied dynamics within the 

genomic, epigenomic, and transcriptional layers, portraying the diverse spectrum of 

evolutionary behaviors intrinsic to EwS cell lines.  
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Figure 12: In-depth analysis of stability on individual cell lines from the same 

COTF-driven sarcoma entity. a. Newly acquired wild-type EwS cell lines A-673, MHH-ES-

1, SK-ES-1, SK-N-MC, and TC-71 EwS (_1) were kept in culture for six months (m6; _2), and 

12 months (m12; _3). ATCC, American Type Culture Collection, DSMZ (German Collection of 

Microorganism and Cell Cultures). b. Bar plot displays the Euclidean distance between the 

reference version of each cell line (_1) and its offspring at 6 months (_2) and 12 months (_3) 

after continuous culture (m6 vs. m0; m12 vs. m0), considering all SNPs. c. Bar plot depicting 

the number of differentially methylated CpG sites (including differentially hypo- and hyper-

methylated) for A-673, MHH-ES-1, SK-ES-1, SK-N-MC, and TC-71 after six (m6) and 12 months 

(m12) of continuous culture, referencing the initial time point (m0) values.  

d. Volcano plot of DEG after 12 months (m12) of continuous culture, using the respective initial 

time point (m0) values as reference for A-673, MHH-ES-1, SK-ES-1, SK-N-MC, and TC-71. The 

red dots denote significantly differentially expressed genes (BH adjusted P<0.01; |FC|>1). 

Figure and figure legend from Kasan et al. 2023 preprint available on bioRxiv (261), also in press 

in Nature Communications under CC-BY license. 

 

Additionally, the study involved subjecting newly acquired EwS cell lines to an extended 

drug library comprising ten additional compounds (Fig. 13). This included drugs that 

have recently been implicated in EwS field, such as elesclomol, olaparib, and 

gemcitabine (263–265). 
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Figure 13: Drug sensitivity change in each EwS cell line after 12 months. The 

relative variation in drug sensitivity for each EwS cell line measured as the absolute delta of 

mean AUC values from four biological replicates, comparing the m12 and m0 versions for the 

extended drug library (20 compounds) on each cell line. Figure and figure legend from Kasan et 

al. 2023 preprint available on bioRxiv (261), also in press in Nature Communications under CC-

BY license. 

 

In this analysis, a spectrum of inter-cell line variability in the collective drug response 

over time was depicted, ranging from the less stable A-673 to the notably stable TC-71 

EwS cell line (Fig. 13) (261). To provide a detailed illustration of drug sensitivity alters 

in these cell lines over time, three compounds were selected: previously mentioned 17-

AGG as well as Etoposide, and Doxorubicin, which are topoisomerase II inhibitors and 

used in the chemotherapy regimen for EwS (266).  

The drug response curves were generated for A-673 and TC-71 cell lines using viability 

data collected at months 0, 6, and 12. Notably, TC-71 cells showed a remarkably 

consistent and robust drug response curve for all three compounds compared to A-673 

cells (Fig 14a-c), which highlights the chemical response stability of TC-71 cells even 

after 12 months of culture, suggesting potential therapeutic advantages in drug 

screening assays and preclinical studies. 
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Figure 14: Drug response curves for A-673 and TC-71 cell lines depicting the sensitivity 

shift over 12 months for three compounds: a.17-AGG, b. Etoposide c. Doxorubicin. 

 

Finally, ranking plots were generated to allow for a detailed exploration of the stability 

spectrum across different data layers, as observed in EwS cell lines cultivated for 12 

months (Fig. 15) (261). By integrating diverse genomic, transcriptomic, and phenotypic 

metrics, these plots comprehensively depict how each cell line evolves under continuous 

culture conditions. These visualizations unveil the underlying dynamics within the EwS 

cell line landscape, from the intricate interplay of genetic alterations to the dynamic shifts 

in gene expression patterns and cellular phenotypes.  
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Such comprehensive evaluations serve as indispensable tools for researchers aiming 

to optimize experimental designs and enhance the translational relevance of their 

findings in EwS research. 

   

Figure 15: Cell line stability spectrum in EwS. Ranking plots illustrate the positioning of 

EwS cell lines based on their evolution degree due to long-term culturing for 12 months across 

various datasets. Figure and figure legend from Kasan et al. 2023 preprint available on bioRxiv 

(261), also in press in Nature Communications under CC-BY license.  

 

In conclusion, this thesis sheds light on the translational implications of findings from 

previous research, particularly regarding the stability and heterogeneity observed in 

adult carcinoma cell lines and the challenges surrounding reproducibility in cancer 

research using cell lines as research models.  
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The results suggest that such observations may not necessarily generalize to other 

cancer cell lines, particularly those harboring a stable genetic background and a defined 

driver mutation, such as the COTF found in EwS (Fig. 16) (261).  

Significantly, these findings suggest that research using COTF-driven cell line models 

like EwS, even following genetic modifications and extended periods of continuous 

culture should be reproducible. Furthermore, the results of this study unveil the variable 

degree of evolution among individual cell lines within the same cancer entity, 

emphasizing the importance of choice of cell line for the experimental outcome in 

question. These insights deepen the understanding of the molecular and phenotypic 

dynamics within cancer cell lines, with profound implications for designing and 

interpreting preclinical studies to advance therapeutic strategies for COTF-driven 

pediatric cancers like EwS. 

    

Figure 16: Summary illustration of the main results of this thesis. Figure and figure 

legend from Kasan et al. 2023 preprint available on bioRxiv (261), also in press in Nature 

Communications under CC-BY license. 
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8 DISCUSSION 

In this thesis, the primary objective was to investigate the validity of generalizing 

previous findings from studies focusing on the heterogeneity and instability observed in 

adult carcinoma cell lines, such as MCF-7 and HeLa, to a different paradigm: single 

COTF-driven pediatric sarcoma cell lines renowned for their genomic and transcriptomic 

stability (2,3). The reproducibility and reliability of cell line models in preclinical research 

are crucial for ensuring the accuracy and applicability of experimental results, 

particularly in the context of advancing therapeutic strategies in cancer treatment (2–

4,6). Given the significant attention placed on adult carcinoma cell lines in previous 

studies, this inquiry aimed to address a critical gap in knowledge by probing whether the 

same degree of heterogeneity and evolution is mirrored in long-term cell cultures of 

pediatric oligomutated sarcomas, particularly those propelled by COTFs like EwS. 

Shedding light on the clonal and genetic heterogeneity within pediatric sarcomas 

underscores the importance of utilizing a reliable research model to enhance the 

precision and relevance of experimental findings, ultimately shaping the implications for 

therapeutic development and clinical translation. This thesis focused on three distinct 

cancer entities, each represented by well-established cell line models: cervix carcinoma 

(HeLa), breast carcinoma (MCF-7), and EwS, specifically using the A-673 cell line. 

These cell lines serve as invaluable tools in cancer research, each embodying unique 

characteristics, and molecular profiles reflective of their respective cancer types 

(1,37,234,267). Examining these cell lines collectively aimed to explore the broader 

implications of findings across different cancer types and genetic backgrounds, with a 

particular focus on elucidating the stability and evolution dynamics within the context of 

COTF-driven pediatric sarcomas. 

The findings of this thesis align with previous studies, confirming the observed instability 

of adult carcinoma cell lines during prolonged culture and the significant diversity 
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observed across different research settings (2,3,6). Despite the relatively small sample 

size in the adult carcinoma "control" group, thesis results emphasize the potential 

limitations of generalizing these conclusions to other cell lines. Specifically, it suggests 

that such instability may not universally apply to all cell lines, especially to ones 

characterized by a stable genetic background and a distinct driver mutation, as 

exemplified by the COTF present in EwS (8,10,156). By focusing on COTF-driven cell 

line models like EwS, the investigation unveils a promising approach for achieving 

reproducible research outcomes, even in the presence of genetic alterations and 

prolonged culture durations. Furthermore, this study reveals the varying degrees of 

(epi)genomic and phenotypic evolution among cell lines of the same cancer type. This 

underscores the necessity of considering specific cell line attributes when interpreting 

and replicating research findings, highlighting the complex interplay between cellular 

characteristics and result reproducibility in cancer research. 

The analysis yielded valuable insights into the genomic and transcriptomic stability of 

the examined cell lines. Specifically, A-673 EwS cells exhibited remarkable stability at 

both the genetic and transcriptional levels compared to the adult carcinoma cell lines 

HeLa and MCF-7. This stability suggests a robustness in the genomic and 

transcriptomic architecture of A-673 cells, which could enhance their reliability as a 

model system for studying EwS and related conditions. In contrast, HeLa and MCF-7 

cells showed more pronounced genetic alterations, particularly in the form of non-

synonymous SNPs, over the 6-month culture period. This shared observation may imply 

various biological consequences.  

For example, it could be hypothesized that this genomic instability may lead to the 

dysregulation of critical genes involved in cell cycle control or tumor suppression 

pathways, such as PTEN and CDKN2A located on chromosomes 2 and 9, respectively, 

and their roles in the PI3K-AKT-mTOR and DNA repair pathways (268,269). The 
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comparative analysis of non-synonymous SNPs impacting coding sequences and 

splicing regions across 11 distinct A-673 strains from different laboratories revealed a 

remarkable 98.9% consistency in shared SNPs among all strains. This finding stands in 

contrast to observations in 27 MCF-7 strains, where Ben-David et al. reported a mere 

35% of SNPs shared across all screened strains (2). The stark disparity in SNP 

consistency between the two cell lines is likely due to the distinct genomic landscapes 

of the A-673 and MCF-7 cell lines. A-673 cells, originating from a pediatric patient with 

EwS, may exhibit genomic stability attributed to the regulatory role of the main driver, 

EWSR1::FLI1 fusion oncogene. Conversely, MCF-7 cells, derived from a metastatic 

breast cancer site of a 69-year-old patient, likely manifest a heightened mutation load 

due to their metastatic nature (160,170,270). 

Further the analyses revealed notable distinctions in transcriptomic and phenotypic 

characteristics between A-673 EwS cell lines and adult carcinoma cell lines. Specifically, 

a remarkable transcriptomic homogeneity among A-673 EwS strains was observed, 

including genetically modified strains, in contrast to the substantial diversity observed in 

HeLa and MCF-7 strains. Furthermore, GSEA uncovered a sparse number of 

significantly enriched pathways in EwS, contrasting with the abundance observed in 

cervix carcinoma. 

The unique genetic landscape of A-673 EwS cells, characterized by a single fusion 

oncogene presented a distinct transcriptomic stability compared to adult carcinoma cells 

(8,9,222). The dominant regulatory role of this single fusion oncogene in maintaining 

transcriptomic potentially reflects on the cellular behavior, disease progression, and 

therapeutic response observed clinically in EwS (9,222,271,272).  

For instance, the stability of A-673 EwS cells’ transcriptome might be influenced by the 

regulatory impact of the fusion oncogene on crucial pathways like cell cycle control (e.g., 

CDK4) or signaling pathways (like the IGF-1 pathway) that are commonly implicated in 
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EwS progression and therapeutic responsiveness (273–275). In contrast, the 

multifactorial genetic makeup with high mutation burden in HeLa and MCF-7 cells may 

contribute to diverse transcriptomic profiles and volatility, potentially involving genes 

related to hormone receptor pathways (e.g., estrogen receptor genes like ESR1 in 

breast cancer) and cellular proliferation pathways (such as the p53 pathway in cervical 

cancer) that play crucial roles in disease behavior and therapy response 

(37,168,170,276). 

Further, drug sensitivity assays revealed a consistent response in the A-673 cell line 

across both cross-laboratory and longitudinal assays for all tested compounds, 

contrasting with the varied responses observed in adult carcinoma strains. Moreover, 

the outcomes suggested a potential correlation between transcriptomic analysis and 

drug assays, indicating enrichment in mitotic spindle pathways and sensitivity alterations 

to specific drugs like vincristine and PLK-1 inhibitors, which present intriguing insights. 

Notably, a captivating phenomenon unfolded in drug sensitivity assays, wherein 

carcinoma cells exhibit an initial increase in sensitivity followed by the development of 

resistance, sparking speculation about underlying biological mechanisms.  

Rigorously validated for robustness, this study confirms the reliability of these 

observations regarding potential adaptations in signaling pathways. The phenomenon 

of cell lines in long-term cell culture gaining sensitivity after the first six months and 

developing resistance in the following six months raises intriguing questions about the 

underlying mechanisms.  

One plausible explanation could be the activation of compensatory signaling pathways 

or the emergence of adaptive mutations during prolonged culture. Studies suggest that 

prolonged exposure to specific compounds can trigger compensatory responses within 

cancer cells, leading to the development of resistance mechanisms as a survival 

strategy (277,278).  
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All cell images captured over time revealed stable morphology, likely due to cellular 

plasticity and adaptability, a phenomenon observed in various cancer cell lines under 

prolonged culture conditions (279–281). This stability may indicate preserved cellular 

homeostasis, highlighting the resilience of these cell lines to environmental changes and 

extended culturing (282). Notably, a subjective observation revealed that as time 

progressed, all three cell lines had an increased need for more frequent passaging and 

medium changes, leading to questions about their metabolic demands and growth 

characteristics. Although specific proliferation or metabolomic assays were not 

conducted to delve into this instance, this subjective observation underscores the 

dynamic nature of cell behaviour over extended culture periods. This trend aligns with 

existing literature suggesting that prolonged culture conditions can induce changes in 

cellular metabolism and growth patterns (2,3,6). Understanding these dynamics is 

crucial for comprehending the factors influencing cell behaviour during extended culture, 

offering valuable insights for optimizing cell culture conditions in research and potential 

clinical applications. 

Moving forward, further exploration into the biological mechanisms driving these 

differences, including factors influencing drug response and cell cycle regulation, will be 

imperative for advancing the understanding of pediatric sarcomas and guiding targeted 

therapeutic strategies. While this thesis primarily focused on genomic and transcriptomic 

analyses, understanding the correlation of these findings with biological pathways, and 

conducting functional validation studies will be essential to elucidate the underlying 

mechanisms behind the observed phenotypic differences.  

The analysis of different EwS cell lines revealed a spectrum of stability across various 

molecular profiling layers, including genomic, transcriptomic, and epigenomic analyses. 

This variability underscores the complex nature of tumor biology and highlights the 

dynamic response to environmental conditions. The observed differences in stability or 
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evolution among cell lines could stem from factors such as inherent genetic variability, 

variations in cell culture techniques, and interactions with the tumor microenvironment. 

The genomic stability of each cell line may be affected by its unique genetic landscape, 

which includes not only known FET::ETS rearrangements but also additional cell line-

specific mutations and alterations in copy numbers (8,283,284). For instance, the A-673 

cell line is known in EwS research due to an additional activating BRAF mutation, which 

may influence its stability and evolution dynamics (285,286). These findings have 

significant implications for cancer research and therapeutic development. 

Understanding the spectrum of stability within a cancer entity can inform the selection 

of appropriate cell line models for studying specific aspects of tumor biology or testing 

therapeutic interventions. For example, identifying highly stable cell lines, such as TC-

71, may offer advantages in longitudinal studies or preclinical drug screening assays, 

where consistent molecular profiles and drug response patterns are desirable. 

Conversely, cell lines exhibiting greater variability, such as SK-ES-1, provide valuable 

insights into the plasticity of cancer cells and potential mechanisms underlying drug 

resistance or sensitivity shifts. 

 

In conclusion, this thesis contributes to the ongoing discourse on the reproducibility of 

scientific findings, particularly in cancer research. By thoroughly examining the stability 

and heterogeneity of commonly used cell line models in preclinical studies, light is shed 

on the intricate dynamics driving genomic, transcriptomic, and phenotypic variations 

across different cancer entities. The robust stability demonstrated in COTF-driven 

pediatric sarcoma cells, as evidenced by the A-673 and TC-71 cell lines, underscores 

their potential as dependable models for investigating cancer biology and assessing 

therapeutic interventions. This discovery carries profound implications for the design 

and interpretation of preclinical studies, suggesting that certain cell line models may 



 
84 

offer more consistent and reproducible results, thus enhancing the translatability of 

research findings to clinical applications. This thesis also underscores the intrinsic 

diversity and instability inherent in adult carcinoma cell lines like HeLa and MCF-7. 

Despite their extensive utilization in cancer research, the findings suggest that their 

genomic and phenotypic variability could present challenges in reproducibility and result 

interpretation. This emphasizes the necessity of comprehending the specific attributes 

of cell line models and taking their genetic background into account when planning 

experiments and analyzing outcomes. 
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9 CONCLUSION, LIMITATIONS AND PERSPECTIVES 

This thesis delves into the stability and heterogeneity of commonly used cancer cell line 

models, shedding light on the reproducibility and reliability of preclinical studies. Through 

comprehensive analyses encompassing genomic, epigenomic, transcriptomic, and 

phenotypic aspects of A-673 EwS cells and adult carcinoma cell lines HeLa and MCF-

7, insights into the dynamics of cellular behavior in prolonged culture are provided. The 

primary aim was to assess the transferability of previous findings, primarily focusing on 

adult carcinoma cell lines, to other cancer cell types, particularly those with a stable 

genetic background driven by specific oncogenic drivers like the COTF found in EwS. 

By comparing these distinct cell line models, this thesis addresses the critical need for 

reliable and reproducible preclinical research tools in cancer studies. 

The findings suggest that the instability and heterogeneity observed in adult carcinoma 

cell lines may not necessarily apply to other cancer cell types. COTF-driven pediatric 

sarcoma cells, represented by the A-673 and TC-71 cell lines, demonstrate remarkable 

stability in genomic, transcriptomic, and phenotypic profiles, even following extended 

culture periods and genetic modifications. This underscores the potential of these cell 

line models as reliable tools for cancer research, offering more consistent and 

reproducible results compared to their adult carcinoma counterparts. 

However, this thesis also underscores the challenges associated with utilizing adult 

carcinoma cell lines in preclinical research. The substantial variability and instability 

observed in HeLa and MCF-7 cells emphasize the importance of understanding specific 

cell line characteristics and considering genetic background when interpreting 

experimental results.  

Caution should be exercised when extrapolating findings from these cell lines to other 

cancer types or clinical settings due to their genomic and phenotypic heterogeneity 

potentially introducing confounding factors that impact result reproducibility. 
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Additionally, this study did not correlate genomic findings with specific biological 

pathways or functional outcomes, which may yield additional information to elucidate 

the biological significance of identified alterations. Furthermore, employing single-cell 

sequencing techniques and functional validation studies using CRISPR-based gene 

editing and RNA interference approaches could provide a more nuanced understanding 

of cell line heterogeneity and validate the biological significance of identified alterations. 

Integrating multi-omics data from genomic, transcriptomic, epigenomic, and proteomic 

analyses, as well as metabolomics profiling, could offer a comprehensive view of the 

molecular landscape of pediatric sarcomas and provide deeper insights into the 

biological mechanisms underlying these tumors. Addressing these limitations should be 

a priority for future investigations to enhance the precision and reliability of genomic 

analyses in cancer cell line research. 

However, interpreting the functional relevance of molecular findings and correlating 

them with phenotypic outcomes presents a significant challenge. Future research should 

aim to elucidate the functional consequences of molecular alterations observed across 

different layers and their implications for cancer biology and therapeutic response. 

Furthermore, the research underscores the imperative for enhanced transparency and 

standardization in data analysis methods to bolster data reproducibility. This objective 

can be achieved through the development of user-friendly omics analysis tools and 

platforms that adhere strictly to best practices and established guidelines. 

 

Conversely, collaboration and knowledge sharing within the scientific community can 

help overcome challenges associated with cell line variability, advancing the 

understanding of cancer biology, and leading to enhanced therapeutic strategies for 

cancer patients.  
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Moving forward, addressing these limitations, and continuing to explore the underlying 

mechanisms driving cell line stability and heterogeneity will be essential. Standardizing 

protocols, improving bioinformatic expertise, and integrating multi-omics data from 

genomic, transcriptomic, epigenomic, and proteomic analyses could enhance the 

understanding of cancer biology and inform the development of effective therapeutic 

strategies.  
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11 APPENDIX 

11.1.  Supplementary Tables and Figures 

Table 11: DEGs across comparison of two strains with the highest variability. 

Chr Gene Base mean Log2FC p value Adj. p value Comparison 

chr11 CEND1 475,777 -13,693 3,34E-11 1,59758E-08 MCF-7_5 vs. MCF-7_3 

chr10 ACTA2 202,300 -4,420 9,50E-239 1,5427E-234 HeLa_5 vs. HeLa_3 

chr6 CGA 832,906 -3,912 1,39E-89 2,50532E-86 HeLa_5 vs. HeLa_3 

chr12 BCAT1 135,218 -3,597 1,84E-90 3,74272E-87 HeLa_5 vs. HeLa_3 

chr16 CDH3 23,364 -3,419 1,37E-08 6,97556E-07 HeLa_5 vs. HeLa_3 

chr5 EGR1 672,497 -2,970 8,51E-111 2,3053E-107 HeLa_5 vs. HeLa_3 

chr15 LINC00052 105,828 -2,776 2,26E-16 2,60257E-14 HeLa_5 vs. HeLa_3 

chr2 MLPH 309,524 -2,749 1,45E-29 3,51301E-27 HeLa_5 vs. HeLa_3 

chr9 TPM2 415,444 -2,744 1,16E-11 5,81656E-09 MCF-7_5 vs. MCF-7_3 

chr6 MARCKS 812,942 -2,588 2,14E-17 3,35515E-14 MCF-7_5 vs. MCF-7_3 

chr8 CLU 3631,970 -2,383 3,66E-18 9,20434E-15 MCF-7_5 vs. MCF-7_3 

chr9 ASS1 393,923 -2,106 8,42E-76 1,14009E-72 HeLa_5 vs. HeLa_3 

chr11 GSTP1 1611,288 -1,924 8,05E-13 5,06081E-10 MCF-7_5 vs. MCF-7_3 

chr8 CLU 9821,501 -1,436 3,58E-139 1,9403E-135 HeLa_5 vs. HeLa_3 

chr17 LLGL2 378,518 -1,377 3,04E-16 3,40432E-14 HeLa_5 vs. HeLa_3 

chrX SMC1A 722,158 -1,208 6,95E-04 0,045806346 A-673_7 vs. A-673_3 

chr19 HNRNPM 1159,023 -1,166 2,58E-04 0,020405921 A-673_7 vs. A-673_3 

chr9 RPL35 18299,226 -1,118 4,17E-126 1,3537E-122 HeLa_5 vs. HeLa_3 

chr1 HMGN2 677,700 -1,088 1,72E-03 0,088914254 A-673_7 vs. A-673_3 

chr12 GAPDH 11455,426 -1,082 1,49E-79 2,20437E-76 HeLa_5 vs. HeLa_3 

chr19 FTL 11229,056 -1,061 1,89E-74 2,1944E-71 HeLa_5 vs. HeLa_3 

chr4 OCIAD2 1011,670 -1,048 2,47E-04 0,020405921 A-673_7 vs. A-673_3 

chr1 PARP1 925,654 -1,016 3,18E-03 0,119098891 A-673_7 vs. A-673_3 

chr20 ID1 680,658 1,018 1,78E-16 2,06246E-14 HeLa_5 vs. HeLa_3 

chr3 HES1 2143,985 1,129 1,03E-06 0,000407906 A-673_7 vs. A-673_3 

chr10 AKR1C2 904,782 1,156 3,90E-30 9,75337E-28 HeLa_5 vs. HeLa_3 

chr9 HSPA5 1209,115 1,187 9,02E-06 0,001528763 A-673_7 vs. A-673_3 

chr16 NQO1 1375,265 1,211 3,85E-05 0,005716676 A-673_7 vs. A-673_3 

chr11 MALAT1 33768,499 1,214 3,67E-03 0,131856375 A-673_7 vs. A-673_3 

chr20 ID1 724,977 1,316 2,57E-04 0,020405921 A-673_7 vs. A-673_3 

chr10 DDIT4 468,315 1,346 1,92E-03 0,088914254 A-673_7 vs. A-673_3 

chr1 ID3 1620,048 1,412 9,12E-09 5,41401E-06 A-673_7 vs. A-673_3 

chr11 TAF1D 558,767 1,418 2,37E-04 0,020405921 A-673_7 vs. A-673_3 

chr5 BDP1 746,663 1,624 1,81E-06 0,000494611 A-673_7 vs. A-673_3 

chr12 DDIT3 543,712 1,637 2,85E-03 0,112770345 A-673_7 vs. A-673_3 

chr5 RHOBTB3 797,004 1,999 1,16E-13 7,76211E-11 MCF-7_5 vs. MCF-7_3 
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chr14 FOS 747,916 2,434 1,00E-17 2,01102E-14 MCF-7_5 vs. MCF-7_3 

chr8 TMEM64 539,388 2,709 2,34E-17 3,35515E-14 MCF-7_5 vs. MCF-7_3 

chr6 PKIB 303,461 2,833 3,90E-14 3,27012E-11 MCF-7_5 vs. MCF-7_3 

chr10 CALML5 777,387 3,083 1,20E-29 4,0139E-26 MCF-7_5 vs. MCF-7_3 

chr10 MSMB 173,787 3,839 2,06E-16 2,59071E-13 MCF-7_5 vs. MCF-7_3 

chr19 KLK11 208,829 3,921 2,48E-15 2,49057E-12 MCF-7_5 vs. MCF-7_3 

chr7 SHH 73,459 4,660 1,03E-10 4,48346E-08 MCF-7_5 vs. MCF-7_3 

chr6 HLA-DRB1 84,860 5,333 5,51E-15 5,03637E-12 MCF-7_5 vs. MCF-7_3 

chr4 AREG 246,140 6,995 1,31E-42 6,56276E-39 MCF-7_5 vs. MCF-7_3 

 

 

Supplementary Figure 1: a. Pie chart illustrating the count of DEGs categorized as up-regulated 
and down-regulated in each comparison. b. Gene-specific Spearman’s ρ analysis conducted across 
A-673 and HeLa cell line strains using the combined transcriptomic datasets depicted in Fig 10d. 
The median is indicated by dotted black lines, assessed using a one-sided Wilcoxon rank-sum test. 
c, d. Assessment of relative gene expression changes in A-673, HeLa, and MCF-7 cell lines after 
twelve months of continuous culture (m12 versus m0). Boxplots represent the interquartile range and 
mean (two-sided Wilcoxon signed-rank test). d. Distribution of genes per chromosome. e. Bar plot 
visualizing the Euclidean distance between the initial (m0) of A-673, HeLa, and MCF-7 cell lines and 
their progeny after twelve months of continuous cell culture. Figure and figure legend from Kasan et 
al. 2023 preprint available on bioRxiv (261), also in press in Nature Communications under CC-BY 
license. 
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Supplementary Figure 2: Bar plot depicting enriched pathways after 6 months of continuous cell 
culture for each cancer type. Darker colors indicate lower p-values. Positive scores signify 
upregulation, while negative scores denote downregulation. 

 

   
Supplementary Figure 3: Micrographs illustrating cell morphology at the initial time point (m0) and 
after 12 months of continuous cell culture (m12). The scale bar represents 100 µm. 

  

100 µm 
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