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Zusammenfassung

Die Einführung von Hochdurchsatz-Sequenzierungsmethoden der nächsten Generation
(NGS) ermöglicht nun genomweite Untersuchungen zur Genregulation in bisher nicht gekan-
ntem Detailgrad und Maßstab. Dies hat jedoch auch die Komplexität der Analysen erhöht
und zu neuen Herausforderungen für die Bioinformatik geführt. Darunter wurde die Iden-
tifizierung von Unterschieden in der Verteilung von Reads in einzelnen genomischen Re-
gionen, zum Beispiel in Genen oder Promotoren, bisher nur wenig adressiert.

In dieser Arbeit haben wir neuartige Methoden entwickelt, um genomische Regionen
mit signifikanten Veränderungen in der Verteilung von Reads zu identifizieren. Dies wurde
motiviert durch Analysen von Veränderungen im promoter-proximalen Pausieren der Poly-
merase II (Pol II) und der Chromatin-Zugänglichkeit bei einer lytischen Infektion mit
dem Herpesvirus Typ 1 (HSV-1). Bestehende Methoden zur Analyse von Veränderun-
gen im Pausieren von Pol II konzentrieren sich ausschließlich auf Verhältnisse von Read-
Zahlen innerhalb bestimmter Fenster und können nicht zwischen einfachen Zu- oder Ab-
nahmen des Pausierens oder komplexeren Veränderungen in der Pol II-Verteilung un-
terscheiden. Um diese Einschränkung zu überwinden, haben wir zuerst einen Ansatz
entwickelt, der auf dem Clustern von Pol II Profilen um Promotoren basiert. Dabei
zeigte sich, dass Pol II bei den meisten Wirtsgenen bei einer HSV-1-Infektion häufiger an
stromabwärts gelegenen Stellen pausiert. Da diese erste Methode immer noch nicht in der
Lage war, Veränderungen in der Verteilung von Reads auf Einzelgen-Ebene zu erkennen,
haben wir RegCFinder entwickelt, um Unterregionen von genomischen Fenstern zu bestim-
men, die Unterschiede in der Verteilung von Reads zwischen zwei Bedingungen aufweisen.
RegCFinder ermöglicht es, sich auf beliebige gewünschte Regionen für jede Art von Sequen-
zierungsdaten zu konzentrieren. Wir haben RegCFinder angewendet, um Veränderungen
der Chromatin-Zugänglichkeit und der Positionierung der Nukleosomen in Promotorre-
gionen während einer HSV-1-Infektion zu untersuchen. Dies enthüllte eine wesentliche
Veränderung der Chromatin-Architektur bei einer HSV-1-Infektion für die Mehrheit der
Wirtsgene. Hier führte die Relaxation von +1-Nukleosomen zu einer Verbreiterung der
zugänglichen Chromatin-Regionen an der Transkriptions-Startstelle (TSS) in Abhängigkeit
vom Transkriptionsniveau in nicht infizierten Zellen.

Zusammenfassend liefert diese Arbeit neue Beiträge zur Identifizierung von Änderungen
in der Read-Dichte auf Gen-Ebene für jede Art von Sequenzierungsdaten. Die Anwendung
dieser Methoden lieferte darüber hinaus neue Erkenntnisse über die Infektion mit einem
weitverbreiteten menschlichen Krankheitserreger.





Summary

The introduction of high-throughput next-generation sequencing (NGS) methods now al-
lows genome-wide investigations into gene regulation at unprecedented detail and scale.
Yet, this also increased complexity of analyses and has introduced new challenges for
bioinformatics. One major challenge that has hardly been addressed so far is the iden-
tification of differences in read distributions on individual genomic regions, e.g., genes or
promoters.

In this thesis, we developed novel methods to identify genomic regions exhibiting signifi-
cant changes in read distributions. This was motivated by analyses of changes in promoter-
proximal pausing of polymerase II (Pol II) and chromatin accessibility in lytic Herpes virus
type 1 (HSV-1) infection. Existing methods for analyzing changes in Pol II pausing fo-
cus only on ratios of read counts within specific windows and cannot distinguish between
simple increases or decreases in pausing or more complex changes in Pol II distribution.
To address this limitation, we first developed an approach based on clustering Pol II oc-
cupancy profiles around promoters. This revealed a prevalent delay of Pol II pausing to
more downstream sites for most host genes in HSV-1 infection. Since this first method
was still incapable of detecting changes in read distributions at single-gene level, we devel-
oped RegCFinder to determine subregions of genomic windows that exhibit differences in
read distributions between two conditions. RegCFinder allows to focus on any regions of
interest for any type of sequencing assay. We applied RegCFinder to investigate changes
of chromatin accessibility and nucleosome positioning in promoter regions during HSV-1
infection. This uncovered a major change in chromatin architecture upon HSV-1 infection
for the majority of host genes. Here, relaxation of +1 nucleosome positions led to a broad-
ening of accessible chromatin regions at the transcription start site (TSS) into downstream
regions depending on transcription levels in uninfected cells.

In summary, this thesis presents novel contributions toward identifying changes in read
density at gene level for any type of sequencing data. Furthermore, application of these
methods provided new insights into infection with a common human pathogen.
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Chapter 1

Introduction

1.1 Functional genomics

Functional genomics refers to a multitude of approaches studying a biological organism and
the interplay of its individual molecular units [1–4]. Functional genomics approaches aim at
determining gene functions and their specific role in the context of certain conditions [2–5].
In particular, analysis of gene expression under different contexts allows to systematically
evaluate the linkage between genotypes and phenotypes and to relate events in healthy or
disease-affected cells to the genomic sequence [1, 2, 6–8].

The introduction of next-generation sequencing (NGS) has proven to be crucial for
functional genomics studies [3, 4, 9–11]. NGS has elevated analyses from single genes to
genome-wide levels and has increased resolution to nucleotide level [6, 8]. Prior to the de-
velopment of NGS, Sanger sequencing was introduced in 1977, being the gold standard for
determining nucleic acid sequences for many years [12, 13]. This method utilizes natural
DNA synthesis to build a complementary strand by incorporating one of the four amino
nucleobases [14]. In the early days of Sanger sequencing, radioactively labeled dideoxynu-
cleotide triphosphate (ddNTP) was used as a non-reversible chain terminator [11]. It was
later simplified by using fluorescence labeling together with a laser-based detection, which
increased the overall efficiency of that method [11, 15–17]. Due to this progress, entire
genomes could be sequenced, which led to a rapid evolvement of the functional genomics
field [2]. The first organism for which a complete genome sequence was determined was
Haemophilus influenzae in 1995 [18]. Soon, genome sequences of several other organisms,
including Drosophila Melanogaster, Homo Sapiens, and Mus Musculus, were determined
[19].

While it was previously believed that the genome size is proportional to the complexity
of the organism. The completion of the human genome project in 2003, however, made
it clear that this assumption is not valid anymore [20]. This is known as the C-value
paradox [3, 21–25]. Currently, the 3.2 gigabase (Gb) long human reference genome is
estimated to encode for ˜ 20,000 protein-coding genes [26]. Remarkably, protein-coding
genes constitute the smallest part of the genome with around 59 million base pairs (bp) (˜
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1 % of the human genome). The largest part of the genome consists of intergenic regions
and non-coding genes with biological functions that are still poorly understood [27–30].

The development of NGS revolutionized and massively sped up genome sequencing
[3, 4, 9–11]. NGS introduced massively parallel sequencing of short DNA fragments, thus
increasing throughput substantially [31]. The original DNA fragments are first amplified
and then millions of sequencing reactions are conducted simultaneously [32]. In this way,
sequencing costs are significantly reduced, while the amount of sequencing data is increased
at the same time [33, 34].

The capability to decode DNA sequences at large scale resulted in various approaches
to elucidate gene functions on a genome-wide scale [35]. Indeed, functional genomics
considers more than just the bare DNA sequence but employs various omics methods
[8, 36, 37]. These refer to the analyses of different molecular entities, including the genome
and the transcriptome [38]. Analyses are focusing on transcription, translation, protein-
protein interactions, and epigenetic regulations [1]. Following the introduction of NGS,
functional genomics studies have created a huge amount of primary data obtained with
different sequencing assays, some of which are outlined in Section 1.3 [8, 39, 40]. Several
large projects such as the ENCODE project extensively used omics approaches to elucidate
functional elements in the human genome and, as a result, created a large encyclopedia
of data [41, 42]. Further large-scale projects used NGS to quantify genetic variations, to
characterize the genotype-phenotype linkage, and to characterize the epigenome among
others [3, 4, 43–46]. The recent introduction of third-generation sequencing (TGS) has
further revolutionized the field. TGS can sequence a single molecule without the need of
fragmentation or polymerase chain reaction amplification in real-time [47–50].

1.2 Biological background

Transcription of DNA into RNA represents the first step of gene expression, followed by
the translation of RNA into proteins (Figure 1.1a). This sequence of events is known as
the central dogma of molecular biology and is assumed to be unidirectional [51]. The
transcription cycle itself consists of three phases: initiation, elongation, and termination.
The key transcriptional player for most genes is the RNA polymerase II (Pol II), an enzyme
synthesizing the RNA. Transcription is initiated when Pol II recognizes the transcription
start site (TSS), but is quickly paused after 20 to 60 nucleotides [52]. This promoter-
proximal Pol II pausing is critical, because many initiated transcripts are aborted and thus
do not reach the elongation phase. In fact, the failure rate is high as only around 10 %
of transcripts are elongated and reach their transcription termination sites (TTS) [53–55].
Transcription termination is triggered by a polyadenylation (poly(A)) signal sequence that
is highly conserved among eukaryotes. The central part of the poly(A) signal consists of
an AAUAAA sequence (or variants thereof), which is typically enclosed by specific up-
and downstream sequence elements [56–58]. Recognition of the transcription termination
signal causes cleavage and polyadenylation of the nascent transcript. As a consequence,
nascent RNA downstream of the cleavage site is degraded and Pol II disassociates from
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Figure 1.1 Gene structure and transcription. (a) The promoter region is located up-
stream of a gene and contains specific binding sites for Pol II and TFs. The TSS marks the
beginning of transcription, which continues till the transcription termination site (TTS).
Following transcription from 5’ end to 3’ end, a 5’ cap and a poly(A) tail are added to the
resulting pre-mRNA and introns are spliced out. The mature mRNA is then translated
into a protein. (b) The DNA is winded around histones to build the nucleosome com-
plexes (grey cylinders). First, general transcription factors (GTF) assemble at promoter
regions and Pol II is recruited to form the PIC. Pol II then starts transcribing several
nucleotides (nt) of DNA and quickly pauses after 20 to 60 nt, near the +1 nucleosome. Pol
II pausing is maintained by the negative elongation factor NELF. The recruitment of the
cyclin-dependent kinase (CDK) 9 subunit of the positive transcription elongation factor b
(P-TEFb) complex then promotes pause release of Pol II. Meanwhile, the +1 nucleosome
is disassembled and again reassembled after passing of Pol II, facilitated by the histone
chaperone FACT. Then, Pol II continues with transcription elongation, mainly mediated
by the P-TEFb.

the DNA strand [59, 60].

The transcription cycle is a highly complex process that requires many more transcrip-
tion factors (TF) in addition to Pol II [61, 62]. General TFs accumulate during initiation
and form the pre-initiation complex (PIC) [63–67]. The PIC recruits and guides Pol II to
the TSS (Figure 1.1b) [68]. Specific binding sites in the promoter region define the position
where TFs can bind and hence are important for either enhancing or suppressing gene ex-
pression [3, 69, 70]. Through their ability to bind DNA in a sequence-specific manner, TFs
are major players in transcription regulation [71]. By (de)acetylation of histones, TFs are
also capable to modify the chromatin structure [72] and their binding to DNA sequences
can impact nucleosome positions [73, 74].

Notably, nucleosomes also impact the transcription cycle, because they represent tran-
scription barriers for Pol II and must be disassembled and reassembled during transcription
[75–77]. A nucleosome represents the basic unit of chromatin, a complex of DNA wrapped
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around a histone (Figure 1.1b) [78–80]. Histones are octamer protein complexes consisting
of the subunits H3, H4, H2A, and H2B, and are linked to the DNA via the H1 histone
[80–82]. Promoter regions are generally depleted from nucleosomes and thus referred to as
nucleosome-free regions (NFR). In contrast, gene bodies are covered with nucleosomes. In
general, nucleosomes are very well-positioned around promoters and less so with increas-
ing distance to the TSS [83–86]. The very first nucleosomes up- and downstream of the
TSS are referred to as -1 and +1 nucleosomes, respectively. Depending on nucleosome
compaction, the chromatin state is commonly classified as closed (heterochromatin) or
open (euchromatin) and the chromatin structure also impacts the transcription regulation
[87–91]. Closed chromatin prevents TF to bind in promoter regions and can lead to gene
silencing [87]. Thus, nucleosomes contribute to gene regulation.

Within the scope of this thesis, changes in the transcription cycle and the chromatin
architecture for the host during infection by herpes simplex virus type I (HSV-1) were
investigated. HSV-1 is a large DNA virus that belongs to the family of herpesviridae with
more than hundred herpesviruses [92–94]. In addition to HSV-1, there are only eight other
herpesviruses infecting humans [95–97]. Due to its short replication cycle, HSV-1 is often
taken as model virus to study the early phase of DNA virus infection. HSV-1 is known
for causing cold sores and fever blisters [98–100], but it can also cause lethal diseases like
encephalitis [101–104]. To date, HSV-1 infection is still not curable, but its symptoms can
be treated [105]. Once HSV-1 infects a host, it persists for the lifetime of the host [106].
According to the World Health Organization (WHO), more than two thirds of the world
population aged below 50 are infected by HSV-1, with similar rates estimated by the Robert
Koch Institute in Germany [107, 108]. The virus is highly infectious and orally transmitted
across epithelial cells [98, 109–111]. When infecting a cell, the viral envelope merges with
the host membrane and releases its capsid into the cytoplasm [98, 110]. The virus can reach
and infect host neuronal cells of the nervous system where it remains in an inactive (latent
infection) state [112]. Reactivation from latency can be triggered by different conditions
such as stress or a weakened immune system [113–120]. This remarkable characteristic of
Herpesviridae to switch between active (lytic) and latent infection is the target of many
investigations but yet poorly understood [114, 121].

The HSV-1 virus has a linear double-stranded DNA genome that is divided into two
unique segments and four repeat regions [110, 122, 123]. It encodes for at least 121 open
reading frames (ORF) with more than hundred gene products [110, 124]. The genes are
classified into immediate early (IE), early (E), and late (L) groups according to the point
of time of their expression [110, 125]. In general, IE genes (ICP0, ICP4, ICP22, ICP27,
and ICP47) are responsible for recruiting host transcription factors and regulatory proteins
to start viral gene expression [126–128]. In particular, the viral gene ICP27 is known for
interfering with Pol II transcription termination downstream of 3’ gene ends resulting in
disruption of transcription termination (DoTT) [129]. Recently, it was uncovered that read-
through transcription following DoTT is accompanied by increased chromatin accessibility
downstream of 3’ gene ends (downstream open chromatin region (dOCRs)), requiring the
viral gene ICP22 [130]. In addition to the effects of the viral IE genes, the viral host shutoff
(vhs) protein contributes to the host transcriptional shutoff by degrading host and viral
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mRNAs [98, 131].

1.3 Functional genomics assays important for this the-

sis

RNA sequencing (RNA-seq) quantifies gene expression on the RNA level by measuring
transcript abundancies [36, 132, 133]. To make use of the whole-genome sequencing tech-
niques described above, RNA is first reverse transcribed into complementary DNA (cDNA),
which is then sequenced [134, 135]. RNA-seq is usually applied under different conditions,
so that differentially regulated genes can be discovered. More recent sequencing techniques
such as global run-on sequencing (GRO-seq) or precision nuclear run-on sequencing (PRO-
seq) focus on mapping actively engaged Pol II sites with base pair resolution, especially at
gene 5’ ends [136–138]. These methods can also be used to analyze Pol II pausing or to
measure the transcription rate of Pol II [139].

Identification and quantification of protein-DNA interactions that contribute to gene
regulation can be performed by chromatin immuno-precipitation coupled to DNA sequenc-
ing (ChIP-seq) [36, 140, 141]. For this purpose, DNA-binding proteins are first crosslinked
to DNA and chromatin is then fragmented. An antibody specific to a selected DNA-binding
protein is used to immunoprecipitate the DNA-protein complex [142]. After that, the com-
plex is purified to obtain the DNA, which is then sequenced. Alignment of reads to the
genome then reveal the protein binding sites [143]. ChIP-seq can also be used to analyze
histone modifications, DNAmethylations, or nucleosome localizations [85, 144, 145]. Epige-
nomic states can be inferred from ChIP-seq of histone modifications [146]. For genome-
wide quantification of chromatin accessibility, ATAC-seq (assays for transposase-accessible
chromatin coupled to high-throughput sequencing) can be used [3, 147–150]. This method
utilizes the hyperactive Tn5 transposase to target accessible DNA by cutting and inserting
specific adaptors for sequencing, known as tagmentation [87, 151, 152]. Recently, ChIP-
mentation was introduced as an improvement to ChIP-seq which combines tagmentation
with immunoprecipitation [153]. Tagmentation is carried out directly on bead-bound chro-
matin, so that only DNA purification is required beforehand. Consequently, it offers a rapid
solution with minimal cell number requirements and high resolution to map transcription
factor binding sites and histone modifications [153].

1.4 Challenges for bioinformatics analyses of functional

genomics data

1.4.1 Standard approaches

Regardless of the sequencing assay being utilized, resulting raw sequencing reads are first
preprocessed, which usually includes quality control, read trimming, and finally read align-
ment [154–156]. Here, the introduction of NGS has led to new challenges for data handling
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and bioinformatics analyses, in particular for mapping sequencing reads to the genome
[157, 158]. Fragments obtained by NGS are shorter but more abundant and, therefore,
accurate and fast methods had to be developed to map the fragments back to their orig-
inal location on the DNA sequence [9, 11, 31, 32, 40, 159–162]. Common alignment tools
include Bowtie [163] or BWA [164] for short-read genome alignment, and STAR [165],
TopHat [166], or ContextMap [167] for spliced read alignment [161]. The mapping pro-
vides each read with its genomic position, so that read counts per gene or transcript can
be determined. Usually, read counts are the basis for further downstream analyses inves-
tigating gene function, regulation, and biological mechanisms [37]. Downstream analysis
commonly includes differential expression analysis (DEA) [168, 169]. Several tools for DEA
are available, including DESeq2, edgeR, and limma [168–170]. These tools mainly differ in
the way dispersion is estimated [168].

DEA methods for RNA-seq data estimate log2 fold-changes and the statistical signif-
icance based on the change in total read counts for a particular feature, e.g., genes or
promoter regions. However, if only the distribution of reads for the corresponding genomic
window is altered without any significant change in total number of reads (e.g., due to Pol
II pausing changes), these changes are not detected. Differential methods for ChIP-seq
data analyses suffer from the same problem. Identification of TF binding sites is usually
carried out by peak calling methods [171], e.g., MACS2 [172], BCP [173], or GEM [174],
whereas genomic annotation of peaks is typically achieved by HOMER [175], MEME [176],
or ChIPseeker [177]. Some approaches first identify peaks by using peak calling algorithms
and then assess differences in read counts within peaks between different conditions by us-
ing DEA methods [178], e.g., DiffBind [179], or PeakSeq [180]. Here, only total counts for
peak regions are evaluated, while changes in read distributions within these peaks are ne-
glected. A second class of ChIP-seq analyses approaches use a segmentation approach that
relies on a sliding window, e.g., diffReps [181], THOR [178], or CisGenome [182]. Again,
only the total number of read counts within the current sliding window are considered, so
that changes in the distribution of reads of with the same or similar number of total reads
remain undetected [178, 181, 183].

1.4.2 Pausing index

One approach that explicitly aims to quantify changes in distributions is the pausing index
(PI), which was specifically developed to quantify changes in promoter-proximal Pol II
pausing. PIs are calculated as the ratio between normalized read counts in the promoter
window and those of the gene body window. For this purpose, normalized read counts can,
e.g., be determined as number of reads per kilobase per million mapped reads (RPKM)
[184]. The promoter window p typically includes the TSS, while the gene body window
b includes the gene without the promoter window. Importantly, promoter and gene body
windows lack an exact definition and choices of promoter and gene body windows strongly
affect PI analysis. In general, PI for a gene g is calculated as follows:
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Figure 1.2 Changes in Pol II pausing for selected genes in HSV-1 infection.
Read coverage for gene promoters in PRO-seq data on the sense strand for uninfected
(green) and HSV-1 strain F (WT-F) infected (blue) cells for the genes (a) ATP5G1 and
(b) METTL13. Read coverage is normalized to a total number of mapped reads and
averaged between replicates. The used TSS is indicated by the vertical line below read
coverage tracks. Gene annotation is indicated at the top. Boxes represent exons, lines
represent introns, and direction is indicated by the arrowhead. The genomic coordinates
are shown at the bottom. Read coverage plots were created with the R Bioconductor
Package Gviz [189].

PI(g) =
RPKM[pstart,pend]

RPKM[bstart,bend]

. (1.1)

Unfortunately, PI analysis only reports changes in the distribution of reads between pro-
moter and gene body windows, but fails to detect altered read count distributions within
specified genomic windows. Moreover, a reduction of PI, normally interpreted as a loss of
Pol II pausing, can also originate from delayed pausing beyond the promoter window.

We previously utilized PI analysis to analyze Pol II pausing changes upon inhibition of
CDK11 [185]. CDK11 is a kinase that phosphorylates the C-terminal domain of Pol II [186].
PI analysis showed an increase of pausing upon CDK11 inhibition for more than 70 % of
genes. PI analysis was also utilized to analyze pausing changes in HSV-1 infection, which
is the subject of the first article included in this thesis [128, 187, 188]. Here, we applied
PI analysis for a first assessment of Pol II pausing changes after 3 h of HSV-1 infection.
Indeed, while this showed a reduction in PI for around 90 % of host genes, inspection of
read coverages for the corresponding PRO-seq data showed that the reduction in PI did
not simply represent reduced pausing (illustrated in Figure 1.2). Reduced PI for the gene
ATP5G1 reflected a broadened Pol II occupancy downstream of the TSS in read coverage
data (Figure 1.2a). Meanwhile, the apparently reduced PI for the gene METTL13 reflected
a secondary pause site downstream of the TSS in read coverage data (Figure 1.2b). Thus,
PI analysis was not able to distinguish between simple reductions in occupancy and more
complex alterations.
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1.4.3 Metagene analysis

A more widely used method to analyze changes in the distribution of reads is the metagene
analysis, which displays the average read distribution over a set of genes for specified
genomic regions (for an example see Figure 2.1b). This method is applicable to any number
of conditions. Metagene analyses have the advantage that they can illustrate various
changes of read distributions. This allows identifying general trends but has the drawback
that changes affecting only a minority of genes can be missed. Unfortunately, the method is
only applicable for sufficiently large gene sets due to the poor signal-to-noise ratio per gene.
Hence, metagene analyses cannot be performed at the level of individual genes in contrast
to PI analysis. Our group previously utilized metagene analysis to investigate effects of
CDK12 inhibition and could show that long genes suffer from a Pol II processivity defect
[190]. Furthermore, we have applied metagene analysis to inspect Pol II pausing changes
upon HSV-1 infection first for all host genes, which confirmed a general decrease of Pol
II at the TSS and a broadening of Pol II signal into downstream regions [188]. However,
more complex deviations from that general change in Pol II occupancy affecting only a
subset of genes were not identified. We could solve this issue by clustering genes according
to their read distributions and subsequently applying metagene analyses on these grouped
gene sets as outlined in Section 2.1.

Identification of differential genomic regions between conditions has also been pursued
by methods developed for identifying differential chromatin modifications such as diffReps
[181]. diffReps conducts a de novo search for differential chromatin domains (DCD) utiliz-
ing a sliding window approach [181]. Windows with significant differences in total number
of reads are selected and overlapping windows are subsequently merged. Unfortunately,
this approach does not identify changes in the distribution of reads within the window.
Moreover, the de novo discovery cannot be targeted to genomic regions and hence, mul-
tiple testing correction has to be very stringent due to the high number of performed
tests. Similarly, methods such as XCAVATOR [191] for investigating copy number vari-
ants (CNV) based on read depth (RD) aim at identifying differentially covered genomic
regions. However, their underlying assumption for CNV events differs from changes com-
monly observed in functional genomics assays as CNV events are characterized by sudden
shifts in RD between consecutive genomic windows [191]. Ultimately, none of the available
methods allowed analyses of read distribution changes suited for our purpose. State-of-the-
art methods either lacked gene level analysis or were only capable of identifying changes
in total number of reads rather than changes in distributions of reads. For this reason,
we developed a novel method called RegCFinder which is presented in the second article
included in this thesis and applied in the third article [192].

1.5 Thesis outline

In this thesis, I developed and applied different methodologies to investigate changes in
read distributions in functional genomics data which resulted in the three articles included
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in this thesis. Here, the focus was on changes in Pol II pausing and chromatin accessibility
at promoter regions upon HSV-1 infection. In the following, I briefly summarize the content
of each contributing article. My contribution to the work is described in Section 1.6.

Contributing article for Section 2.1

Weiß E, Hennig T, Graßl P, Djakovic L, Whisnant A.Ws., Jürges C.S., Koller F,
Kluge M, Erhard F, Dölken L, and Friedel C.C. HSV-1 Infection Induces a Down-
stream Shift of Promoter-Proximal Pausing for Host Genes. Journal of Virology,
97(5):e00381–23, April 2023

In the first article outlined in Section 2.1, we examined changes in promoter-proximal
Pol II pausing upon HSV-1 infection compared to uninfected cells using previously pub-
lished PRO-seq data. Usually, Pol II pauses shortly downstream of the TSS which is also
reflected as a strong and well-defined peak of Pol II occupancy near the TSS in PRO-seq
data. Previous studies on Pol II pausing in HSV-1 infection reported a reduction of Pol II
pausing at promoters [127, 128]. Our initial PI analysis also suggested a loss of pausing.
However, metagene analysis in combination with hierarchical clustering uncovered more
complex changes in Pol II pausing behavior than anticipated so far. During infection, Pol
II occupancy peaks broadened and/or shifted toward downstream regions. By refining the
well-known metagene analysis by a preceding clustering of genes, we were able to identify a
new aspect of transcriptional changes upon HSV-1 infection for host genes. We conducted
further downstream analyses and could exclude several biological mechanisms as the cause
for delayed Pol II pausing.

Contributing article for Section 2.2

Weiß E and Friedel C.C. RegCFinder: targeted discovery of genomic subregions with
differential read density, Bioinformatics Advances, 3(1):vbad085, June 2023

In Section 2.2, I present RegCFinder, our novel bioinformatics method to identify ge-
nomic subregions with differences in read distributions. RegCFinder operates on a single-
gene level and is targeted by specifying genomic windows of interest as input. The method
is realized as a workflow for the workflow management system (WMS) Watchdog and can
be easily used by bioinformation and wet lab scientists with limited programming expertise
due to automatic deployment of software dependencies with Conda [193, 194]. We demon-
strated the wide applicability of RegCFinder by applying it on two different real-world
scenarios. With the help of RegCFinder we reanalyzed PRO-seq data of HSV-1 infection
regarding Pol II pausing, which indeed confirmed the general downstream shift of Pol II
pausing. However, gene-level results revealed very different extents in the delay of Pol II
pausing. Furthermore, we could distinguish a subset of genes with read-in transcription as
well as a set of genes with proper pausing loss. Likewise, re-analysis of the ChIP-seq data
for CDK12 inhibition confirmed that long genes are preferentially affected by a loss of Pol
II at 3’ gene ends [190].
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Contributing article for Section 2.3

Weiß E, Whisnant A.W., Hennig T, Djakovic L, Dölken L, and Friedel C.C. HSV-1 in-
fection induces a downstream shift of the +1 nucleosome, bioRxiv 2024.03.06.583707;
doi: https://doi.org/10.1101/2024.03.06.583707

In the article described in Section 2.3, we investigated changes in chromatin acces-
sibility in promoter regions upon HSV-1 infection. By applying RegCFinder to a large
ATAC-seq data set of wild type (WT) and null-mutant HSV-1 infections, we uncovered
three major patterns of chromatin changes: increased chromatin accessibility either down-
stream or upstream of the TSS, and decreased chromatin accessibility around the TSS.
Through further downstream analyses of gene expression data, we were able to show that
increases upstream of the TSS effectively also represented downstream changes, only for
genes located on the opposite strand in bidirectional promoters. Moreover, the extent
of changes in chromatin accessibility is dependent on gene expression prior to infection.
Since chromatin accessibility is tightly associated with nucleosome positioning, we further
investigated ChIPmentation data of the noncanonical histone variant H2A.Z, which is en-
riched at +1 and -1 nucleosomes [195]. This uncovered that +1 nucleosomes are shifted
downstream upon HSV-1 infection, thus extending the NFR at promoter regions.

1.6 Contribution

I was the leading bioinformatics author on all three contributing articles. Under the su-
pervision of Prof. C. Friedel, I developed and applied methods for bioinformatics analyses
of published experimental data and data provided by collaboration partners from the lab-
oratory of Prof. L. Dölken (T. Hennig, L. Djakovic, A.W. Whisnant). For the first article
[188], I substantially extended preliminary analyses by P. Graßl performed in her Bache-
lor’s Thesis. Furthermore, I supervised F. Koller in her Bachelor’s Thesis, which provided
sequence motif analyses for that article. M. Kluge provided support for metagene anal-
yses and C. S. Jürges and Prof. Erhard provided transcript start site annotations. For
the second article [192], I developed and implemented the RegCFinder method based on
suggestions and under the supervision of Prof. C. Friedel and performed the evaluation of
RegCFinder on published sequencing data of PRO-seq and ChIP-seq assays. For the third
article [196], I applied the newly developed RegCFinder on published ATAC-seq data and
H2A.Z ChIPmentation data provided by the collaboration partners mentioned above. For
all three articles, I wrote the first draft of the articles. I was supported in the revision by
C. Friedel, L. Dölken, and T. Henning for the first article, by C. Friedel for the second
article, and by C. Friedel, A. W. Whisnant, T. Hennig, and L. Dölken for the third article.



Chapter 2

Summary of contributing articles

2.1 Changes in promoter-proximal Pol II pausing dur-

ing HSV-1 infection

2.1.1 Biological motivation

Previous studies of HSV-1 infection showed a wide-spread shutoff of host transcription
mediated by viral IE genes and enhanced by the viral vhs protein [129, 131, 197]. Host
transcription shutoff is particularly affected by a global reduction of Pol II occupancy
from host genes [126–128, 198]. The article presented in this section [188] was based on
a re-analysis of published PRO-seq data for mock and WT-F HSV-1 infection at 3 h post
infection (p.i.) from a study by Birkenheuer et al. [128]. This re-analysis was initially
motivated by manual inspection of mapped reads for individual genes in a genome browser
(IGV) which showed different types of changes in read distributions at gene starts (Figure
1.2).

2.1.2 TSS identification during HSV-1 infection

For an accurate genome-wide analysis of changes at gene starts, the used TSS first had to
be precisely and correctly identified for each gene. Because genes can have more than one
annotated transcript start, we determined the dominant TSS per gene based on PRO-seq
and PROcap-seq data of flavopiridol-treated uninfected human foreskin fibroblasts (HFF)
[199]. Flavopiridol inhibits CDK9 which is necessary for Pol II pause release. Thus, Pol II
is arrested in a paused state at the TSS and TSS identification is facilitated [195, 200–203].
Candidate TSS were first identified using the iTiSS program developed by Jürges et al.
[204]. Then, the candidate TSS were reduced to a consensus set that only included consis-
tent start sites confirmed by both data sets. In addition, TSS were restrained to be located
near an annotated gene start (≤ 500 bp) to obtain high confidence sites. Finally, 7,650
unique TSS were selected using only the highest expressed TSS for each gene. The selected
TSS matched very well the Pol II promoter peaks in the PRO-seq data by Birkenheuer et
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Figure 2.1 Transcription start sites in PRO-seq data. (a) Heatmap showing Pol
II occupancy profiles in PRO-seq data on sense strand for mock and WT-F infection
(separated by vertical black line) after hierarchical clustering analysis. For this purpose,
PRO-seq profiles for mock and WT-F infection were first concatenated and then clus-
tered according to Euclidean distances and Ward’s clustering criterion. The cutoff on the
hierarchical clustering dendrogram was chosen to obtain 50 clusters (marked by colored
rectangles between the dendrogram and heatmap). Pol II profiles for all analyzed genes
are shown for a 6 kb promoter window centered around the TSS identified in PROcap-seq
and PRO-seq data. (b) Metagene plot of PRO-seq profiles in sense direction in the 6 kb
promoter windows for mock (dark green) and WT-F HSV-1 infection (dark blue). The
colored bar at the bottom indicates the significance of paired Wilcox tests for each posi-
tion comparing normalized coverage between the two conditions. P -values were adjusted
for multiple testing with the Bonferroni method; color code: red = adj. P -value ≤ 10−15,
orange = adj. P -value ≤ 10−10, yellow = adj. P -value ≤ 10−3.

al. (Figure 2.1a), better than to gene starts annotated by Ensembl.

2.1.3 Identifying groups of genes with altered PRO-seq profiles

As a first analysis, we performed standard PI analysis to assess the differences in Pol II
pausing between mock and WT-F infection. This analysis identified a reduced PI for WT-
F in comparison to mock for the majority of host genes (˜ 90 %). However, as outlined
in the introduction, PI analysis cannot distinguish between a proper loss of pausing and
other pausing changes. In the next step, a metagene analysis suggested more complex
alterations in the Pol II occupancy (Figure 2.1b). Instead of a mere reduction of Pol II
occupancy at the TSS, Pol II occupancy was significantly broadened toward downstream
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sites. Unfortunately, metagene analysis on all genes did not allow distinguishing subgroups
of genes with distinct changes. Thus, we combined metagene analysis with a clustering ap-
proach to identify genes with similar changes in read distributions. We applied hierarchical
clustering on concatenated Pol II promoter occupancy profiles for mock and WT-F infec-
tion of individual genes and selected a cutoff on the clustering dendrogram that resulted
in 50 clusters identified by manual inspection of the clustering dendrogram (Figure 2.1a).
This analysis identified distinct changes of Pol II pausing, including secondary minor pause
sites originating downstream of TSS in HSV-1 infection (as shown for the selected gene
in Figure 1.2b). The other identified patterns of changes included reduced pausing at the
TSS but broadened Pol II occupancy in downstream direction, two equally high pausing
peaks, and a second pause site downstream higher than at the TSS.

To characterize the 50 gene clusters, we identified the main peaks of Pol II occupancy
within the promoter window. For this purpose, the major peak was first identified as
the global maximum. Subsequently, the next highest local peaks up- and downstream of
the major peak were identified using the find peaks function in the R ggpmisc package.
Furthermore, secondary peaks were required to be sufficiently far from the borders of the
6 kb promoter window (i.e., between -1,800 bp and +4,800 bp relative to the TSS). In
addition, the difference between the height of the secondary peak and the minimum value
between the major and secondary peak should reach at least 10 % of the major peak
height, while the height of the secondary peak should reach 20 % of the major peak. If
secondary peaks reached 95 % of the major peak height, both peaks were considered as
equally high. 28 clusters showed new secondary pause sites downstream of the TSS with
a mean distance of 480 bp to the major peak (Figure 2.2). For eight of these clusters, the
secondary downstream peak was at least as high as the major peak. In total, pausing at
the original TSS was reduced for 48 clusters and broadened toward downstream sites for
45 clusters (Figure 2.2a).

To analyze a possible correlation between gene function and changes in Pol II paus-
ing, over-representation analysis for Gene Ontology (GO) terms was performed for each
cluster [205, 206]. However, no significant enrichment for biological functions or molecular
processes could be identified. Enrichment analysis for transcription factor binding motifs
from TRANSFAC showed that cluster 32 was strongly enriched for G-rich or C-rich mo-
tifs. As GC content and GC skew have been shown to be correlated to pausing [187], we
investigated the GC content for each cluster. While this confirmed GC-richness of pause
sites, the GC content did not appear to be correlated to distinct pausing changes.

2.1.4 Integration with further functional genomics data

To investigate the time when the Pol II pausing changes manifested during infection,
we studied two more recently published PRO-seq studies by Birkenheuer et al. [198, 207]
which included three time points (1.5 h, 3 h, 6 h) of HSV-1 WT-F infection [198]. Metagene
analysis for each time point for the same 50 clusters revealed that Pol II occupancy was
shifted downstream at 3 h and 6 h p.i. While changes between 3 h and 6 h p.i. were
negligible, significant differences were observed between 1.5 and 3 h p.i. with decreased
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Figure 2.2 Pol II peak identification across clusters. (a) Positions and relative
heights of peaks identified in PRO-seq profiles in sense direction in mock (light red) and
WT-F (turquoise) HSV-1 infection for all 50 clusters. Darker turquoise indicates a common
peak between mock and WT-F infection. The relative peak height was computed by
dividing the peak height by the sum of all peak heights for the same condition. (b)
Statistics on the number of clusters and number of genes with different types of identified
peaks across the clusters. Identified peaks are classified according to their number, location,
and relative height.
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occupancy at the major peak and increased broadening downstream of the TSS peak at 3 h
p.i. compared to 1.5 h p.i. In addition, the study by Birkenheuer et al. [198, 207] included
infection with the ∆ICP22 null mutant and its repair virus for the same three time points.
ICP22 was previously identified to inhibit host transcription elongation by interacting with
CDK9 [186, 208]. Therefore, we investigated whether the presence of ICP22 was necessary
for changes in Pol II pausing in HSV-1 infection. However, both ∆ICP22 and repair virus
infection showed similar alterations in Pol II pausing. Generally, no significant differences
were detected between ∆ICP22 and repair virus infection at 3 h and 6 h p.i. with the only
exception being two clusters where the TSS peak was slightly reduced in ∆ICP22 infection.
Thus, ICP22 was not required to induce delayed Pol II pausing downstream of the TSS.

Furthermore, the additionally emerging Pol II pausing sites during HSV-1 infection
could result from alternative transcription initiation. Therefore, we investigated the pres-
ence of alternative TSSs for all clusters either detected in flavopiridol-treated PROcap-seq
or PRO-seq data or being present in the human genome annotation from Ensembl. For
most clusters, less than 15 % of genes showed an alternative TSS at positions with addi-
tional Pol II peaks. This was independent of whether experimentally or annotated TSS
were considered. In addition, we re-analyzed recently published data of cRNA-seq and
directional RNA-seq (dRNA-seq) data, which are enriched for 5’ transcript ends, of mock
and HSV-1 WT strain 17 (WT-17) infection [124]. Here, cRNA-seq was performed for 1,
2, 4, 6, and 8 h post HSV-1 infection and dRNA-seq was performed for 8 h post HSV-1
infection. Metagene analyses for all clusters showed peaks co-located with the TSS peaks
in PRO-seq data present in mock infection for both data sets. However, no peaks were
detected that coincided with newly emerging PRO-seq peaks downstream of the TSS upon
HSV-1 infection.

Pol II pausing is mediated by its key regulator, the negative elongation factor NELF
[209–211], and rapid depletion of NELF induces a shift of pausing sites toward downstream
regions [210, 211]. Since NELF is depleted from some host genes in HSV-1 infection, NELF
depletion could cause the delay in Pol II pausing [126]. We thus reanalyzed data for 0, 1,
2, and 4 h auxin-induced NELF degradation [210] and again performed metagene analyses
of our 50 clusters. This showed that changes in Pol II pausing could not be explained by
the loss of NELF.

2.2 Identifying regions with differential read density

using RegCFinder

2.2.1 Motivation and overview

The second article included in this thesis presents RegCFinder, which we developed to ad-
dress the problems experienced with PI and metagene analysis [192]. The main objective
of RegCFinder is to identify regions with differential read density at single-gene level. It
can process any type of functional genomics sequencing assay as input, e.g., ATAC-seq or
ChIP-seq. By specifying certain genomic regions as input, RegCFinder can be targeted
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to a wide range of applications. This not only includes promoter regions but also gene
ends or viral genomes. RegCFinder is implemented as a workflow for the WMS Watchdog
[193, 194] and the required software is deployed using Conda [212]. If a computing cluster
is available, Watchdog can be used to schedule the input regions to be analyzed in paral-
lel. RegCFinder makes use of the linear solution to the well-known “all maximum scoring
subsequences” (AMSS) problem and is thus highly efficient [213]. It allows the comparison
of two conditions, each having two or more replicates, and uses DEXSeq for the statistical
analyses of the identified differential regions to provide them with fold-changes and sig-
nificance [214]. Analyses with more than two conditions require the comparison of each
condition with a common reference.

2.2.2 Method

RegCFinder takes aligned sequencing data in BAM format and a set of windows of interest
W (genomic regions in adapted BED format) as input. It is designed for two conditions
(i.e., c1: control, c2: test) with two or more replicates each (samples s11, . . . , s1k and s21,
. . . , s2k with k ≥ 2 as the number of replicates). For each sample sck and each input window
w ∈ W , read counts per sequence position rwcs(i) are determined and then normalized to
obtain the read density dwcs(i):

dwcs(i) =
rwcs(i)∑
i∈w rwcs(i)

for s ∈ [1 : k], i ∈ w. (2.1)

The read densities dwcs(i) for each replicate are then averaged to read densities dwc (i) for
each condition c ∈ {1, 2}:

dwc (i) =
1

k

k∑
s=1

dwcs(i) for i ∈ w. (2.2)

Based on these read densities, RegCFinder then aims to identify subregions of the in-
put windows where the density is higher in one condition than in the other. In a perfect
case, where read distributions look like those exemplified in Figure 2.3a, differential sub-
regions could simply be determined by searching for the intersection points of the two
curves. Unfortunately, read distributions are noisier and look more similar to the example
in Figure 2.3b. Therefore, we formulated the problem as an instance of the all maximum
scoring subsequences (AMSS) problem [213]. This problem searches for all nonoverlapping
maximal scoring subsequences (MSS) on a sequence X = (x1, . . . , xn) of real numbers. A
subsequence m of X is an MSS if two requirements are fulfilled:

1. All subsequences of m must have a smaller score than m

2. No supersequence of m fulfills the first condition.
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Figure 2.3 Identification of subregions with differences in read distributions.
(a) Simplified illustration of ideal read densities for two conditions. (b) Illustration of
realistic read distributions with noise. (c, d) Differential regions are identified by calculating
dw12 = dw1 − dw2 (c) and dw21 = dw2 − dw1 (d) and then identifying regions with predominantly
positive values in these sequences (shaded regions).

For this purpose, the score Si,j for a subsequence is defined as the sum of each element
within this corresponding subsequence (xi, . . . , xj) of X:
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Si,j =

j∑
l=i

xl (2.3)

Notably, every positive element is contained in one MSS. A linear time algorithm for
this problem was developed by Ruzzo and Tompa in 1999 [213]. To apply the MSS problem,
the read densities dwc (i) for the two conditions are subtracted from each other to calculate
the two sequences dw12 := dw1 − dw2 and dw21 := dw2 − dw1 . This is illustrated in the Figures
2.3c and 2.3d. In addition, a pseudo-count adjusted by a parameter ρ (default ρ = 1) is
subtracted from each element in the sequences. We introduced this pseudocount to prevent
RegCFinder from identifying long, meaningless MSS with many zero elements surrounded
by positive elements due to sparse read counts (e.g., Y = (1, 0, 0, 0, 0, 0, 0, 0, 0, 1)). ρ can
be used to tune the length of resulting MSS, with high values of ρ leading to shorter MSS.
The final two sequences for computation of MSS are then defined as follows:

Xw
st(i) = 100× dwst(i)−

ρ

|w| for 1 ≤ i ≤ |w|, s, t ∈ {1, 2}, s ̸= t, (2.4)

Read densities are multiplied by 100 to obtain larger numbers. As a consequence, long
MSS are penalized by a linear function p(λ) = ρ

|w|(λ), where λ is the length of the MSS.

Application of the algorithm by Ruzzo and Tompa [213] then generates two sets of MSS:
M12 for Xw

12, and M21 for Xw
21. In the next step, short MSS consisting only of one or a

few positive elements are filtered. For this purpose, a randomization approach is imple-
mented in RegCFinder for which each of the input sequences X is repeatedly (by default
1000 times) permuted randomly (Figure 2.4a). MSS are then determined for each of the
randomly permuted sequences (Figure 2.4c). The set of MSS from the original sequences
(Figure 2.4b) are then filtered, keeping only MSS with scores better than the maximum
for any MSS on the randomized sequences (Figure 2.4d). The final set of MSS for an input
window w is obtained by merging the filtered MSS M12 and M21 into a final set M . In
case of overlaps, the MSS with the higher score is retained.

Finally, the significance of each MSS ∈ M is assessed by DEXSeq to obtain fold-changes
and P -values. Originally, DEXSeq was developed to identify differential exon usage [214].
To meet the requirements of DEXSeq, RegCFinder creates a new extended annotation file.
Here, genes are the initial input windows w ∈ W and exons are defined as identified MSS
from M as well as filler regions between these subregions that are defined as introns. In this
way, significance of each MSS is estimated with regards to the background window w. In the
end, RegCFinder provides a table with all identified MSS ∈ M (also denoted as regions
of change, short RegC) per input window w ∈ W , and the corresponding information
about significance, fold-change, genomic coordinates, score, and the condition in which
read density is higher.
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Figure 2.4 Filtering MSS by randomization. (a) Randomized read density difference
sequence based on the original sequence Xw

21 for that window. (b) Original read density
difference sequence for that window. (c) All MSS identified on the randomized sequence
distribution. The x-axis shows the position and the y-axis the score. (d) All MSS identified
on the original sequence. The grey dotted line indicates the threshold for retaining an MSS
determined by the MSS with maximum score on the randomized sequences.
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2.2.3 Results

Real-life application
We reanalyzed promoter-proximal Pol II pausing upon HSV-1 infection on a gene level by
applying RegCFinder on the 6 kb promoter windows used for the analysis described in
the first article (see Section 2.1). For the set of 7,650 genes, RegCFinder identified 7,621
significant differential RegC for 6,958 genes (multiple testing adjusted P -value ≤ 0.01,
96 % of genes). We also evaluated RegCFinder with ten randomizations instead of the
default 1,000. This led to more identified RegC but at the same time to a smaller fraction
of significant RegC. Thus, increased significance can be achieved by reducing sensitivity
and vice versa.

The location of RegC across promoter regions for genes which have at least one signif-
icant RegC are illustrated in the heatmap in Figure 2.5. Based on RegC locations in the
promoter region, genes were clustered into eleven groups. Compared to our previous meta-
gene analyses discussed in Section 2.1, this permitted detection of more diverse changes of
Pol II occupancy. Not only did we confirm the delay of Pol II pausing into downstream
regions (clusters 2, 5-11), but we also observed increased Pol II occupancy upstream of
some genes (clusters 3, 4). Subsequent analyses of these clusters revealed that increased
Pol II occupancy upstream of genes is due to read-through transcription originating from
upstream genes. Moreover, RegCFinder results allowed to distinguish between clusters
with increased read coverage only shortly downstream of the TSS (9, 10, part of 11) and
clusters with increased read coverage extended till 3 kb downstream of TSS (clusters 5-8,
part of 11). For the latter case, inspection of individual genes identified examples for both
a very long delay in pausing and increased elongation due to loss of pausing.

To further demonstrate the wide applicability of RegCFinder, we also applied it to a
ChIP-seq study for Pol II and Ser2 phosphorylation (P-Ser2) upon DMSO treatment and
4.5 h inhibition of CDK12 [190]. This study previously showed that CDK12 inhibition
induces a Pol II processivity defect, which is accompanied by a shift of read coverage from
gene 3’ ends into gene bodies [190]. Our analysis was performed for whole genes with
additional 3 kb upstream of the TSS and downstream of the TTS, respectively. In general,
RegCFinder confirmed the loss of Pol II from gene 3’ ends and the shift of P-Ser2 peaks
from gene 3’ ends into gene bodies. Moreover, clustering of genes based on their concate-
nated RegC profiles for Pol II and P-Ser2 into 15 groups revealed that long genes were
more strongly affected by premature transcription termination.

Comparison to other tools
We evaluated our method in comparison with other existing approaches aiming to detect
differentially covered regions, namely XCAVATOR (developed for CNV detection, see Sec-
tion 1.4.3) and diffReps (developed for DCD localization, see Section 1.4.3) [181, 191].
Analyses of these methods were carried out with the same data as for RegCFinder (see
above), i.e., Pol II pausing upon HSV-1 infection on PRO-seq data and analysis of Pol
II processivity upon CDK12 inhibition on ChIP-seq data. XCAVATOR did not identify
any significant differential regions for any of the two experiments. Most likely, this can
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Figure 2.5 Regions with differences in read densities in PRO-seq data between
mock and WT-F HSV-1 infection identified by RegCFinder. Heatmap showing
the location of identified RegC in 6 kb promoter regions. RegC are colored in red and blue
if they have higher read density in mock or WT-F, respectively. White regions represent
RegC that were not significant or regions without differences between conditions. The
vertical black line indicates the TSS. Genes were clustered hierarchically into eleven groups
according to their RegC pattern within promoter regions based on Euclidean distances and
Ward’s clustering criterion. Clusters are indicated by the colored and numbered rectangles
between the dendrogram and the heatmap.

be explained by the lack of sudden shifts in read coverage expected for CNVs. Regions
identified by diffReps were filtered for those overlapping the analyzed promoter regions as
its sliding window approach did not allow for a targeted analysis. Most of the identified
regions for both studies represented only absolute changes in read coverage and changes
were only determined in an unstranded manner. Hence, both tools were unsuitable for
identifying regions with differential read distributions.
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2.3 HSV-1 infection induces a downstream shift of +1

nucleosomes

2.3.1 Biological motivation

Previously, it was shown that HSV-1 infection impacts chromatin architecture downstream
of gene 3’ ends [130, 215]. Since Pol II pausing is linked to nucleosome positioning [216, 217],
we investigated changes in chromatin accessibility in promoter regions for the third study
included in this thesis [196]. Using RegCFinder, we analyzed recently published ATAC-
seq data [130] for mock and HSV-1 WT-17 infection as well as null mutant infections for
ICP0, ICP22, ICP27, and vhs. Analysis of these null mutant infections allowed studying
the individual role of each gene with regard to potential chromatin changes in infection.
Furthermore, we also analyzed an ATAC-seq time-course experiment of WT infection for
1, 2, 4, 6, and 8 h p.i. that enabled us to investigate when in the course of HSV-1 infection
changes in chromatin accessibility are established [215]. In addition, we analyzed new
ChIPmentation data performed at the lab of our collaboration partner Lars Dölken for
mock and WT HSV-1 infection with an antibody recognizing the histone variant H2A.Z.
H2A.Z is especially enriched in the +1 and -1 nucleosomes that surround the TSS and
define the borders of the NFR at the TSS [195].

2.3.2 Widespread extension of the NFR in HSV-1 infection

We first performed pairwise comparisons of HSV-1 WT and null mutant infections against
mock on the ATAC-seq data to identify chromatin changes in promoter regions during HSV-
1 infection. Here, the same 6 kb promoter windows were used as input for RegCFinder as
for the analysis described in Section 2.2.3. We restricted subsequent analyses to genes that
exhibited at least one significant RegC for any of the performed comparisons, yielding 4,981
genes in total. Analysis of RegC locations across HSV-1 infection variants in a heatmap
revealed very consistent changes between WT and null mutant infections with increased
chromatin accessibility generally observed downstream of the TSS for the majority of host
genes (Figure 2.6). We then utilized a clustering approach for the identification of distinct
patterns of changes in chromatin accessibility. Here, clustering was performed based on the
concatenated vectors of RegC locations within promoter regions for all pairwise analyses.
The obtained 14 clusters are visualized in Figure 2.6. We then applied metagene analyses
for each cluster to characterize the chromatin accessibility changes. Metagene plots were
augmented to show the fraction of promoter windows in the cluster with a RegC at each
position (see Figure 2.7). This identified three major patterns of changes in chromatin
accessibility at promoters: I increased chromatin accessibility downstream of the TSS
(example in Figure 2.7a), II increased chromatin accessibility upstream of the TSS (example
in Figure 2.7b), and III increased chromatin accessibility, both, up- and downstream of the
TSS. Notably, almost all clusters displayed increased chromatin accessibility downstream of
the TSS (pattern I) and only three clusters (919 genes) showed the reverse picture (pattern
II).
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Figure 2.6 Regions with chromatin accessibility and H2A.Z distribution changes
in promoters during HSV-1 infection. The heatmap shows locations of RegC iden-
tified by RegCFinder in ATAC-seq and H2A.Z ChIPmentation profiles in WT (ATAC-seq
and H2A.Z ChIPmentation) and null mutant HSV-1 infections (ATAC-seq only). RegC are
colored in red and blue for regions with higher read density in mock or HSV-1 infection,
respectively. White color represents regions without significant differences. 6 kb promoter
regions centered around TSS (vertical black lines) are concatenated for all six comparisons
performed (separated by vertical black line). Genes were clustered hierarchically into 14
groups according to their RegC pattern in ATAC-seq data based on Euclidean distances
and Ward’s clustering criterion. Clusters are indicated by the colored and numbered rect-
angles between the dendrogram and the heatmap.
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Figure 2.7 Augmented metagene analysis of selected clusters from Figure 2.6.
Metagene plot showing the average ATAC-seq profile for mock (red) and WT (blue) HSV-
1 infection in a 6 kb promoter window. The colored bands below the metagene curves
indicate the percentage of genes having a RegC at that position in mock (m-RegC) or WT
(i-RegC), respectively. (a) shows the average profile for cluster 9 as an example for pattern
I with broadened chromatin accessibility downstream of the TSS. (b) shows the average
profile for cluster 7 as an example for pattern II with broadened chromatin accessibility
upstream of the TSS.

To determine the onset time of these changes, we applied RegCFinder to pairwise
comparisons of each point of the infection ATAC-seq time-course and mock infection. This
revealed that changes in chromatin accessibility were beginning to manifest already at
4 h p.i., with changes becoming more pronounced until 8 h p.i. Although changes at 8
h p.i. were less pronounced than those from the first ATAC-seq experiment which was
performed at 8 h p.i., they confirmed the changes in chromatin accessibility as a result of
an independent experiment. We also analyzed changes in chromatin accessibility for HSV-1
infection with peracetic acid (PAA) treatment, which inhibits viral replication and reduces
relocation of Pol II to viral genomes [198, 218–220]. This showed that PAA substantially,
but not completely, reduced the broadening in chromatin accessibility downstream of the
TSS.

2.3.3 Downstream shift of +1 nucleosomes

To test whether the increase in chromatin accessibility up- or downstream of the TSS upon
HSV-1 infection reflected changes in nucleosome positions, we investigated ChIPmentation
data for the histone variant H2A.Z. Nucleosomes, in particular those around the TSS, are
very well-positioned and function as natural barriers to transcription [221, 222]. We applied
RegCFinder to H2A.Z ChIPmentation data for mock and WT infection and compared this
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to the ATAC-seq results (see Figure 2.6). RegC identified on H2A.Z largely reflected the
major patterns detected in ATAC-seq data, indicating that H2A.Z occupancy of the +1
nucleosome was shifted downstream of the TSS for the majority of genes in analogy to
pattern I in ATAC-seq data. For pattern II cluster 8 and part of clusters 6 and 7, H2A.Z
occupancy of the -1 nucleosome was shifted upstream of the TSS matching changes in
ATAC-seq data. This was confirmed by metagene analyses for H2A.Z of these clusters. To
summarize the identified changes in promoter regions, HSV-1 infection leads to extensions
of NFR, mostly toward downstream regions, as +1 nucleosomes are shifted downstream of
the TSS. Exceptions with extended NFR upstream of the TSS showed upstream shifted -1
nucleosomes, respectively.

2.3.4 The link between transcription and chromatin changes

In yeast, it was shown that loss of Pol II leads to a relaxation of +1 nucleosome positions
shifting them toward downstream sites [145]. We thus hypothesized that the global loss of
host transcription in HSV-1 infection leads to the observed changes in +1 and -1 nucleosome
positions. Consistent with previously reported loss of transcription in HSV-1 infection
[127, 128], gene expression analysis (in terms of RPKM) in chromatin-associated RNA-seq
data for mock and 8 h post WT HSV-1 infection showed reduced transcriptional activity
upon HSV-1 infection across all clusters (Figure 2.8a) [131]. However, RPKM levels for
pattern II clusters were notably lower than those for other genes, both before and after
infection. Further analyses confirmed that genes which are more strongly expressed prior
to infection exhibit larger downstream broadening of the NFR. In contrast, lowly expressed
genes showed no or only small changes in nucleosome positions.

Since pattern II essentially resembled a mirrored image of pattern I, we hypothesized
that these might represent bidirectional promoters. Thus, for each cluster we analyzed
the promoters for presence of annotated antisense gene starts within 1 kb upstream of the
respective TSS. This showed that pattern II clusters were highly enriched for bidirectional
promoters. To clarify which direction of transcription was dominant for each promoter,
we quantified gene expression as RPKM for the window downstream of the TSS in sense
direction (DSR) relative to the window upstream of the TSS in antisense direction (UAR).
The distributions of log2 ratios of DSR to UAR for all clusters are shown in Figure 2.8b.
This showed that pattern II clusters generally exhibited low log2 DSR:UAR ratios. Low
positive or even negative log2 ratios of DSR to UAR indicated strong transcription in an-
tisense direction which, in many cases, was the dominant direction of transcription. Thus,
pattern II effectively represented the same type of changes as pattern I, with downstream
shifts of +1 nucleosomes on the opposite strand.

To demonstrate that inhibition of transcription alone can induce downstream shifts
of +1 nucleosomes, we analyzed published H2A.Z ChIP-seq data with and without α-
amanitin treatment [223]. α-amanitin inhibits RNA synthesis by degrading Rbp1, the
largest Pol II subunit. This prevents Pol II translocation and reduces Pol II occupancy at
the TSS [224–229]. In contrast, H2A.Z has been shown to accumulate at the TSS upon
α-amanitin treatment [223]. RegCFinder and metagene analyses confirmed very similar
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Figure 2.8 Gene expression and antisense transcription for genes with differ-
ent changes in chromatin accessibility. (a) Boxplots of gene expression (RPKM) in
chromatin-associated RNA in mock (red) and WT (blue) infection for all clusters, grouped
according to the three major patterns. Median gene expression values for all genes for
mock and WT are indicated by horizontal red and blue dashed lines, respectively. Value
below cluster numbers on the x-axis indicate adjusted P -values for Wilcoxon rank sum test
comparing gene expression levels of the corresponding cluster against values of all other
analyzed genes. P -values are adjusted for multiple testing with the Bonferroni method.
The NA group refers to genes for which no significant RegC were identified in their pro-
moters by RegCFinder. (b) Boxplots showing log2 ratios of DSR to UAR in mock (red)
and WT (blue) infection for all clusters, grouped according to the three major patterns.
DSR was calculated on the region from the TSS to 3 kb downstream of the TSS and UAR
in the region from 3 kb upstream of the TSS to the TSS. Median log2 ratios for mock
and WT infection across all genes are indicated by dashed red and blue horizontal lines,
respectively.

changes upon α-amanitin treatment as during HSV-1 infection. In general, clusters with
nucleosome shifts up- or downstream of the TSS showed even more pronounced shifts upon
α-amanitin treatment than upon WT HSV-1 infection. In conclusion, our analyses showed
that downstream shifts of +1 nucleosomes are likely a consequence of the loss of Pol II
from the host genome in HSV-1 infection.



Chapter 3

Discussion and outlook

3.1 Analyzing changes in read distributions

Differential analyses are an important aspect of functional genomics and many methods
have previously been developed for this purpose. For instance, this includes DESeq2 [168]
and edgeR [169] for differential gene expression analysis, DEXSeq [214] for differential
exon usage or diffReps [181] for detecting differential chromatin modifications. However,
state-of-the-art methods commonly do not consider changes in the distribution of reads.
Identification of such differences in read distributions was the key objective of this thesis.
By focusing on detecting these changes at the level of individual genes or smaller groups of
genes, we aimed to address the problems of standard metagene analyses. Metagene plots
visualize the mean read coverage over a set of genomic windows, e.g., genes or promoter
regions. While they easily can combine multiple conditions and different experiments
and allow easy identification and interpretation of changes in read distributions, they are
not designed for analyses at the level of single genes. As metagene plots represent only
mean read coverage changes, changes for single genes can deviate significantly from these
mean changes. Furthermore, evaluation of changes is commonly based on visual inspection
without a precise quantification.

In contrast to metagene analyses, PI analysis quantifies read distribution changes be-
tween promoter and gene body at gene level, but the results depend strongly on the size of
promoter and gene body windows. Since this method compares absolute read count ratios
between two windows, it can identify reductions or increases of read counts in either one
of the windows, but cannot distinguish more complex changes in read distributions. As
a consequence, we were not able to properly distinguish delayed Pol II pausing with this
method.

As a first approach to address this issue, we developed a method based on clustering read
distribution profiles (contributing article for Section 2.1 [188]). While this provided novel
results regarding Pol II pausing changes in HSV-1 infection, it still did not allow analysis
at single-gene level. We thus developed RegCFinder, a novel method to analyze changes
in read distributions at the level of individual genes and identify genomic regions with
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differential read density (contributing article for Section 2.2 [192]). This overcame many
of the above-mentioned limitations of currently available methods. Moreover, the extent
and significance of changes in the identified regions are quantified. Since it is implemented
as a workflow for the WMS Watchdog, RegCFinder can make use of Watchdog features,
including automatic deployment of software with conda, parallel distribution on a computer
cluster, progress monitoring, and error detection.

We evaluated RegCFinder against the alternative approaches either originally developed
for detection of copy number variation (CNV) (XCAVATOR [191]) or identification of
differential chromatin domains (DCD) (diffReps [181]). However, their original purposes
did not suit our objectives to identify changes in read distributions. Hence, these tools did
not yield meaningful results for our target applications.

An important feature of RegCFinder is its applicability to any functional genomics se-
quencing assay. By specifying genomic input regions, the search can be targeted without
any limit for size or number. Furthermore, RegCFinder makes use of the linear run time of
the Ruzzo and Tompa algorithm [213] for solving the “all maximum scoring subsequences”
(AMSS) problem and is thus highly efficient. Finally, its independence of the type of se-
quencing assays and its standardized results allows for an easy data integration throughout
and after the analysis. It should be noted that RegCFinder is designed to compare only
two conditions against each other. If more conditions need to be analyzed, a common
reference is required, however, this is generally the case for differential methods.

3.2 Applications of RegCFinder

Novel insights into HSV-1 infection
Throughout the contributing articles within this thesis, we investigated changes in Pol II
occupancy and nucleosome positioning upon HSV-1 infection and uncovered more complex
changes than previously anticipated. While the downstream delay of Pol II pausing was
originally discovered with metagene analysis combined with clustering, we showed that
the analyses at single-gene level facilitated by RegCFinder allowed identification of further
types of changes. Since transcription is tightly associated with the chromatin structure
and nucleosome positioning, RegCFinder was applied to ATAC-seq and H2A.Z ChIPmen-
tation data of HSV-1 infection (contributing article for Section 2.3 [196]). This revealed
that the NFR at promoters was commonly extended in downstream direction, which was
associated with downstream shifts of +1 nucleosomes. Furthermore, we showed that genes
with strong expression prior to infection were affected more strongly than less expressed
genes. Previously, it was shown that Pol II pausing is enhanced by strong positioning of
the +1 nucleosome, while less well positioned +1 nucleosomes enhance Pol II pause release
[230]. Moreover, depletion of NELF leads to reduced Pol II pausing at promoter-proximal
sites and increased pausing at further downstream sites near +1 nucleosomes [210]. Hence,
the observed downstream shifts of +1 nucleosomes could provide a possible explanation for
the delay in Pol II pausing upon HSV-1 infection. In support of this hypothesis, changes in
+1 nucleosome positioning occurred already at 4 h p.i. but not yet at 2 h p.i., similarly to
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Pol II pausing where changes were visible at 3 h p.i. but not yet at 1.5 h p.i. Importantly,
these changes were independent of ICP22, which mediated chromatin changes downstream
of genes.

Beyond promoters and HSV-1 infection
Since RegCFinder was developed to allow inspection of any genomic region, it is applicable
beyond the promoter regions that were the focus of this thesis. For instance, at the moment
we are currently applying RegCFinder to investigate premature transcription termination
upon HSV-1 infection again using the PRO-seq data from the study by Birkenheuer et
al. [128]. However, for this study, we are focusing on input windows surrounding poly(A)
sites. In addition, RegCFinder was already successfully utilized to investigate epigenetic
changes induced by Kaposi’s sarcoma-associated herpesvirus (KSHV). Here, RegCFinder
was able to detect changes in chromatin structure on both the host and the KSHV genome.

3.3 Conclusion

In summary, the RegCFinder method developed as part of this thesis represents a new
bioinformatics approach to analyze functional genomics data. With the help of RegCFinder,
we not only extended the current understanding of HSV-1 infection but made general ob-
servations on the linkage between transcription and chromatin architecture. In particular,
we also showed that loss of Pol II from human genomes generally appears to lead to a
downstream shift of +1 nucleosomes and an extension of the NFR. This had previously
only been reported for yeast [231]. Since RegCFinder can be targeted to any type of ge-
nomic feature, including viral genomes and 3’ gene ends, it will be highly useful for a wide
range of applications beyond those presented in this thesis.
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Glossary

+1 nucleosome First nucleosome downstream of the TSS. 4

ATAC-seq Deep sequencing technology to assess chromatin accessibility. 5

C-value paradox Organismal complexity does not correlate with genome size. 1

Central dogma of molecular biology Unidirectional synthesis from DNA to mRNA to
proteins. 2

ChIP-seq Deep sequencing technology for identification of protein-DNA interactions. 5

ChIPmentation Combination of ChIP-seq and tagmentation by Tn5 transposase. 5

cRNA-seq RNA-seq based on circulization of RNA fragments for mapping of 5’ transcript
ends. 15

DEXSeq Method for inferring differential exon usage in RNA-seq data. 16

dRNA-seq Directional RNA-seq based on selective cloning and sequencing of 5’ ends of
cap-protected RNA molecules. 15

ENCODE Encyclopedia of DNA elements of all functional elements in the human genome.
2

GRO-seq Global run-on sequencing for mapping active RNA Polymerase II. 5

Metagene analysis Method for aggregating and normalizing a group of features regard-
ing their read coverage within a given window and visualizing their common shape.
8

Mock infection Cells infected in the same medium but without the virus expression,
functions as healthy control. 11

Pol II pausing Promoter-proximal RNA polymerase II pausing. 2
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PRO-seq Precision run-on sequencing for mapping active RNA pOlymerase II with single-
base resolution. 5

PROcap-seq Variation of PRO-seq for mapping transcription initiation sites with base-
pair resolution. 11

Read-through Transcription beyond TTS due to unrecognized termination signal. 4

RegC Regions of change, maximal subregions identified by the AMSS algorithm. 18

RegCFinder de novo discovery of genomic regions with differential read density. 8

RNA-seq Deep sequencing technology for transcriptome profiling. 5



Acronyms

AMSS All maximum scoring subsequences. 16

BAM Binary alignment map format. 16

BED Browser extensible data format. 16

bp Base pair. 1

CDK Cyclin-dependent kinsase. 3

cDNA Complementary deoxyribonucleic acid. 5

CNV Copy number variant. 8

DCD Differential chromatin domains. 8

ddNTP Dideoxynucleotide triphosphate. 1

DEA Differential expression analysis. 6

DNA Deoxyribonucleic acid. 1

dOCR Downstream open chromatin region. 4

DoTT Disruption of transcription termination. 4

DSR Downstream sense region. 25

Gb Gigabase. 1

GO Gene ontology. 13

HSV-1 Herpes simplex virus type I. 4

IE Immediate early genes of HSV-1 virus. 4

IGV Integrative genomics viewer. 11
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mRNA Messenger RNA. 3

MSS Maximum scoring subsequences. 16

NELF Negative elongation factor. 3

NFR Nucleosome-free region. 4

NGS Next generation sequencing. 1

ORF Open reading frame. 4

P-TEFb Positive transcription elongation factor b. 3

p.i. post infection. 11

PAA Peracetic acid. 24

PI Pausing index. 6

PIC Pre-initiation complex. 3

Pol II RNA polymerase II. 2

poly(A) Polyadenylation site. 2

RD Read depth. 8

RNA Ribonucleic acid. 2

RPKM Reads per kilobase million. 6

TF Transcription factor. 3

TGS Third generation sequencing. 2

TSS Transcription start site. 2

TTS Transcription termination site. 2

UAR Upstream antisense region. 25

vhs Viral host shutoff protein. 5

WHO World health organization. 4

WMS Workflow management system. 9
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WT Wild-type. 10

WT-17 HSV-1 wild-type strain 17 infection. 15

WT-F HSV-1 wild-type strain F infection. 7
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R Zimmer, M Landthaler, F Grässer, PJ Lehner, CC Friedel, F Erhard, and L Dölken.
Integrative functional genomics decodes herpes simplex virus 1. Nature Communi-
cations, 11(1):2038, 2020.

[125] C Prod’hon, I Machuca, H Berthomme, A Epstein, and B Jacquemont. Characteriza-
tion of regulatory functions of the HSV-1 immediate-early protein ICP22. Virology,
226(2):393–402, 1996.

[126] T Rivas, JA Goodrich, and JF Kugel. The herpes simplex virus 1 protein ICP4 acts
as both an activator and repressor of host genome transcription during infection.
Molecular and Cellular Biology, 41(10):e0017121, 2021.

[127] RG Abrisch, TM Eidem, P Yakovchuk, JF Kugel, and JA Goodrich. Infection by
herpes simplex virus 1 causes near-complete loss of RNA polymerase II occupancy
on the host cell genome. Journal of Virology, 90(5):2503–2513, 2016.

[128] CH Birkenheuer, CG Danko, and JD Baines. Herpes simplex virus 1 dramatically
alters loading and positioning of RNA polymerase II on host genes early in infection.
Journal of Virology, 92(8):e02184–17, 2018.

[129] A Rutkowski, F Erhard, A L’Hernault, T Bonfert, M Schilhabel, C Crump, P Rosen-
stiel, S Efstathiou, R Zimmer, CC Friedel, and Lars Dölken. Widespread disruption
of host transcription termination in HSV-1 infection. Nature Communications, 6:
7126, 2015.

[130] L Djakovic, T Hennig, K Reinisch, A Milić, AW Whisnant, K Wolf, E Weiß, T Haas,
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ABSTRACT Herpes simplex virus 1 (HSV-1) infection exerts a profound shutoff of host
gene expression at multiple levels. Recently, HSV-1 infection was reported to also impact
promoter-proximal RNA polymerase II (Pol II) pausing, a key step in the eukaryotic tran-
scription cycle, with decreased and increased Pol II pausing observed for activated and
repressed genes, respectively. Here, we demonstrate that HSV-1 infection induces more
complex alterations in promoter-proximal pausing than previously suspected for the vast
majority of cellular genes. While pausing is generally retained, it is shifted to more down-
stream and less well-positioned sites for most host genes. The downstream shift of Pol II
pausing was established between 1.5 and 3 h of infection, remained stable until at least 6
hours postinfection, and was observed in the absence of ICP22. The shift in Pol II pausing
does not result from alternative de novo transcription initiation at downstream sites or
read-in transcription originating from disruption of transcription termination of upstream
genes. The use of downstream secondary pause sites associated with 11 nucleosomes
was previously observed upon negative elongation factor (NELF) depletion. However,
downstream shifts of Pol II pausing in HSV-1 infection were much more pronounced than
observed upon NELF depletion. Thus, our study reveals a novel aspect in which HSV-1
infection fundamentally reshapes host transcriptional processes, providing new insights
into the regulation of promoter-proximal Pol II pausing in eukaryotic cells.

IMPORTANCE This study provides a genome-wide analysis of changes in promoter-proxi-
mal polymerase II (Pol II) pausing on host genes induced by HSV-1 infection. It shows
that standard measures of pausing, i.e., pausing indices, do not properly capture the com-
plex and unsuspected alterations in Pol II pausing occurring in HSV-1 infection. Instead of
a reduction of pausing with increased elongation, as suggested by pausing index analysis,
HSV-1 infection leads to a shift of pausing to downstream and less well-positioned sites
than in uninfected cells for the majority of host genes. Thus, HSV-1 infection fundamen-
tally reshapes a key regulatory step at the beginning of the host transcriptional cycle on
a genome-wide scale.

KEYWORDS HSV-1 infection, RNA polymerase II pausing

Lytic herpes simplex virus 1 (HSV-1) infection exerts a profound shutoff of host gene
expression. Two major contributors to this shutoff are the degradation of host and

viral mRNAs by the virus host shutoff protein (vhs) (1, 2) and a general inhibition of the
host transcriptional activity by HSV-1 (3–6). Efficient recruitment of RNA polymerase II
(Pol II) and elongation factors from the host chromatin to replicating viral genomes
leads to a substantial loss of Pol II occupancy from the host genome as early as 2 to 3 h
postinfection (h p.i.) (3–6). By 8 h p.i., host transcriptional activity is estimated to be
only 10 to 20% of uninfected cells (7). We previously showed that HSV-1 infection dis-
rupts transcription termination for the majority but not all cellular genes, leading to
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read-through transcription for tens of thousands of nucleotides beyond the poly(A)
site (8). More recently, Rivas et al. (9) and Birkenheuer et al. (10) demonstrated that
HSV-1 also impacts promoter-proximal pausing of Pol II on host genes. Following tran-
scription initiation, Pol II pauses 20 to 60 nucleotides (nt) downstream of the transcrip-
tion start site (TSS) (11, 12) as a consequence of one or more structural rearrangements
within the transcription elongation complex (13). Pausing makes Pol II vulnerable to
nucleosome-induced arrest, backtracking of the elongation complex along the DNA,
and promoter-proximal premature termination (13). The elongation factor TFIIS can
rescue Pol II from pausing and restart transcription by mediating cleavage of back-
tracked RNA (14). In contrast, 5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole sensi-
tivity-inducing factor (DSIF) and negative elongation factor (NELF) stabilize paused Pol
II (15, 16). Phosphorylation of DSIF, NELF, and the Pol II C-terminal domain by the CDK9
subunit of the positive transcription elongation factor b (P-TEFb) is required for the
release of paused Pol II into gene bodies and the switch to productive elongation (17–
19). As a consequence, inhibition of P-TEFb by CDK9 inhibitors increases promoter-
proximal pausing (20). While the facilitates chromatin transcription (FACT) histone
chaperone complex has previously been reported to cooperate with P-TEFb to over-
come NELF/DSIF-mediated inhibition of Pol II elongation (21), recent studies in
Drosophila instead suggest a role of FACT in the maintenance of Pol II pausing, with
FACT knockdown decreasing Pol II pausing (22).

The HSV-1 immediate early protein ICP22 inhibits Pol II transcription elongation by direct
interaction with CDK9 (23), and ectopic expression of a short segment of ICP22 mimics the
effects of P-TEFb inhibition on Pol II transcription (24). Moreover, ICP22 directly interacts
with both FACT subunits (25) and ICP22 is required for the redistribution of FACT as well as
the DSIF-subunit SPT5 and the elongation factor SPT6 to viral genomes (24). Consistent with
ICP22 mimicking the effects of P-TEFb inhibition, Birkenheuer et al. (10) recently found that
Pol II pausing was reduced for a subset of host genes in an ICP22-null mutant (DICP22) of
HSV-1 compared to a repair virus derived from the null mutant with a genetically restored
ICP22. For this purpose, they employed precise nuclear run-on followed by deep sequenc-
ing (PRO-seq), which sequences RNA that is actively transcribed by Pol II and depicts strand-
specific Pol II transcriptional activity. Transcription initiation from most human gene pro-
moters is bidirectional with productive transcription elongation occurring only in the sense
direction (26–29). PRO-seq thus provides nucleotide-level resolution of Pol II activity and
allows separating sense and antisense Pol II initiation and pausing. Birkenheuer et al. (5) pre-
viously also reported that Pol II levels at the promoter-proximal pause site were altered in a
gene-specific manner in HSV-1 strain F (WT-F) infection compared to mock. However, they
did not explicitly investigate Pol II pausing for host genes in WT-F infection but only for
HSV-1 genes in a later study (30). When comparing promoter-proximal Pol II pausing
between mock and HSV-1 strain KOS infection using Pol II chromatin immunoprecipitation
sequencing (ChIP-seq), Rivas et al. (9) recently found that HSV-1 infection frequently
reduced promoter-proximal Pol II pausing, at least for activated genes. This was largely de-
pendent on ICP4. ICP4 is one of five immediate early proteins (including also ICP0, ICP22,
ICP27, and ICP47) expressed shortly after infection and is necessary for the transcription of
early and late viral genes (31). HSV-1-activated genes exhibited a greater increase in Pol II
occupancy on gene bodies than on promoters, consistent with increased transcriptional
elongation. For repressed genes, promoter-proximal Pol II pausing was increased inde-
pendently of ICP4 with Pol II occupancy decreasing more strongly on gene bodies than in
the promoter region.

Here, we report on a genome-wide investigation of the impact of HSV-1 infection
on promoter-proximal pausing of all expressed host genes. This is based on a reanaly-
sis of PRO-seq data for mock and 3-h p.i. WT-F infection from the study by Birkenheuer
et al. (5). Our reanalysis revealed that HSV-1 infection only seemingly leads to a reduc-
tion of Pol II pausing for the majority of genes when using standard Pol II pausing
index analyses. More detailed analyses, however, demonstrated that Pol II pausing is
retained in HSV-1 infection for most host genes but shifted to sites further downstream
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of the promoter. In contrast to well-defined Pol II pausing peaks at the TSS observed in
mock infection, HSV-1 infection resulted in more varied and less well-positioned pat-
terns of Pol II pausing. This included both broadening of Pol II pausing peaks into
downstream regions for some genes as well as newly originating or increasing Pol II
peaks at downstream sites for other genes. In summary, our study demonstrates that
HSV-1 impacts promoter-proximal Pol II pausing in a more complex and unexpected
manner than previously thought.

RESULTS
Widespread changes in promoter-proximal Pol II pausing during HSV-1 infec-

tion. The standard measure for quantifying promoter-proximal pausing is the so-called
pausing index (PI) of a gene, which is calculated as the ratio of normalized read counts
in a window around the TSS (=promoter window) divided by normalized read counts
in a window on the gene body excluding the promoter. We thus started by performing
a genome-wide PI analysis using the published PRO-seq data of mock and 3-h p.i. WT-
F infection from the study by Birkenheuer et al. (5). Notably, PIs were also used by
Rivas et al. (9) to quantify the effects of lytic HSV-1 infection on Pol II pausing from Pol
II ChIP-seq and by Birkenheuer et al. (10) to determine differences in Pol II pausing
between DICP22 and repair virus infection. Since annotated gene 59 ends do not nec-
essarily reflect the used TSS in a cell type and multiple alternative TSSs are often anno-
tated, we first identified the dominantly used TSS for each gene from published
PROcap-seq and PRO-seq data of flavopiridol-treated uninfected human foreskin fibro-
blasts (HFF) (32) (see Materials and Methods). PROcap-seq is a variation of PRO-seq
that specifically maps Pol II initiation sites. Flavopiridol inhibits CDK9 and thus arrests
Pol II in a paused state at the TSS (33) and allows also identifying the TSS for genes
that are not or weakly paused in untreated cells. Consistent peaks in PROcap-seq and
PRO-seq of flavopiridol-treated HFF provided an initial set of 136,090 putative TSS posi-
tions, which were further filtered to identify high-confidence sites by requiring a maxi-
mum distance of 500 bp to the nearest annotated gene. This identified 42,193 poten-
tial TSS positions for 7,650 genes (median number of TSS per gene = 4 with a median
distance of 42 bp). For each gene, the TSS with the highest expression was selected for
further analysis. Although the PRO-seq data by Birkenheuer et al. (5) was obtained in
HEp-2 cells, for most genes the identified TSS in HFF matched very well to PRO-seq
peaks in mock-infected HEp-2 cells (Fig. S1a in the supplemental material), better than
gene 59 ends annotated in Ensembl (Fig. S1b).

For PI calculation, normalized read counts were determined in a strand-specific manner
as reads per kilobase million (RPKM) in the window from the TSS to TSS 1 250 bp for the
promoter region and from TSS 1 250 bp to TSS 1 2,250 bp (or the gene 39 end if closer)
for the gene body. It should be noted that there is no consensus on how to best define
promoter and gene body windows for PI calculation and a wide range of alternative ranges
have previously been used (see, e.g., references 34–36). Genes with zero reads in the pro-
moter or gene body window in mock or WT-F 3 h p.i. were excluded, resulting in PIs for
7,056 genes (Data set S1 in the supplemental material). This analysis showed that for the
vast majority of genes PIs were reduced upon 3-h p.i. HSV-1 infection compared to mock
(Fig. 1a). Even with very lenient criteria for an increase in PI, i.e., a fold change.1 in HSV-1
infection compared to mock, only 763 genes (10.8%) showed an increase in PI upon HSV-1
infection (red in Fig. 1a). In contrast, 2,082 genes (29.5%) exhibited a slightly reduced PI
(fold change ,1 but $0.5, blue in Fig. 1a) and 4,211 genes (59.7%) showed a strongly
reduced PI (fold change ,0.5, i.e., more than 2-fold reduced, green in Fig. 1a). Thus, HSV-1
infection induces widespread changes in promoter-proximal Pol II pausing of host genes,
resulting in PI reductions for almost all genes and strong PI reductions for the majority of
genes. This is consistent with findings by Birkenheuer et al. (5) that Pol II occupancy at pro-
moter-proximal regions was reduced for the majority of genes in WT-F infection compared
to mock. While they also found a reduction of Pol II on gene bodies for most of these
genes, they did not investigate the relative change between promoter-proximal regions
and gene bodies, i.e., the change in PI.
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FIG 1 HSV-1 infection impacts promoter-proximal pausing of most host genes. (a) Scatterplots comparing pausing indices (PI) between mock
and WT-F infection at 3 h p.i. The dashed line indicates equal PI values and solid lines a 2-fold change in PIs. Genes were divided into three

(Continued on next page)
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HSV-1 infection shifts Pol II pausing to downstream sites for most host genes.
A disadvantage of PI analyses is that PIs are not only impacted by increases or decreases in
Pol II pausing with decreased or increased elongation across the gene body but also by
any alteration in Pol II occupancy affecting the number of reads in either promoter or gene
body windows. We thus next investigated read coverage in a genome viewer for several
example genes with reduced PI. This indicated that changes in promoter-proximal Pol II
pausing during HSV-1 infection were highly complex as exemplified by the ATP5G1 and
METTL13 genes in Fig. 1b. Instead of narrow promoter-proximal PRO-seq peaks observed
in mock infection, promoter peaks in HSV-1 infection often extended into the gene body
by a few hundred nucleotides (e.g., ATP5G1) and/or additional downstream peaks were
observed as, e.g., for METTL13. However, at the end of these extended/additional peaks,
read levels dropped again to similarly low levels relative to the promoter peak as in unin-
fected cells. Read levels were not increased across the whole gene body relative to the pro-
moter peak as would be expected with increased levels of elongation and productive tran-
scription. The extended promoter peaks and additional downstream peaks in HSV-1
infection reduced PI values, as they extended .250 bp from the TSS into the gene body.
Consequently, gene body RPKM, i.e., the denominator in PI calculation, was increased rela-
tive to the promoter RPKM, i.e., the numerator. It should be noted that overall Pol II occu-
pancy was reduced both on the promoter and gene body for the majority of genes during
HSV-1 infection as already reported by Birkenheuer et al. (5). To allow comparing the distri-
bution of Pol II occupancy, not absolute levels, and visualize downstream shifts in pausing
sites, different scales are used for mock and HSV-1 infection in read coverage plots like Fig.
1b. These reflect the highest values observed in mock and HSV-1 infection, respectively, for
the selected genomic region.

To investigate whether such complex pausing changes were a global trend, we per-
formed metagene analyses in 63 kb windows around promoters for all 7,650 analyzed
genes (Fig. S2a, excluding 1 gene without reads in some samples, significance analysis
for differences in antisense and sense transcription between mock and WT-F infection
in Fig. S2b and c, respectively) as well as separately for the three gene groups defined
above based on PI changes (Fig. 1d to f, significance analyses shown in Fig. S2d to i).
For metagene analyses, the 6 kb promoter windows for each gene were divided into
101 bins. PRO-seq read counts were determined for each bin in a strand-specific man-
ner, normalized to sequencing depth, and averaged across replicates. Subsequently,
bin values for each gene were normalized to sum up to 1 to obtain the Pol II occu-
pancy profile around the promoter for each gene before averaging across all genes.
This normalization allows comparing Pol II occupancy around the promoter between
genes with different expression levels and makes the analysis independent of global

FIG 1 Legend (Continued)
groups according to changes in their PI: (i) increased PI in HSV-1 infection (fold change .1, 763 genes, red); (ii) slightly reduced PI in HSV-1
infection (fold change ,1 but $0.5, 2,082 genes, blue); and (iii) strongly reduced PI in HSV-1 infection (fold change ,0.5, 4,211 genes, green).
(b) Read coverage around the TSS in PRO-seq data (sense strand only) for mock (dark green) and WT-F infection at 3 h p.i. (dark blue) for
example genes with a reduction in PI upon HSV-1 infection. Read coverage was normalized to total number of mapped reads and averaged
between replicates. The identified TSS used in the analysis is indicated by a short vertical line below each read coverage track. Gene annotation
is indicated at the top. Boxes represent exons, lines represent introns, and direction is indicated by arrowheads. Genomic coordinates are
shown at the bottom. Figures are not centered around the TSS, but a larger region downstream of the TSS was included than upstream of the
TSS. (c) Metagene plot showing the distribution of PRO-seq profiles from 3 kb upstream of the TSS to 3 kb downstream of the TTS in sense
direction for mock (dark green) and 3-h p.i. WT-F infection (dark blue) for all analyzed genes with a gene length .3 kb. Here, regions from
23 kb to 11.5 kb of the TSS and from 21.5 kb to 13 kb of the TTS were divided into 90-bp bins, respectively, and the remainder of the gene
body (11.5 kb of TSS to 21.5 kb of TTS) into 100 bins of variable length to compare genes with different lengths. Shorter genes were excluded
as regions around the TSS and TTS would overlap otherwise, resulting in 6,206 genes. The colored band below the metagene curves indicates
the significance of paired Wilcoxon tests comparing the normalized PRO-seq coverages of genes for each bin between mock and 3-h p.i. WT-F
infection. P values are adjusted for multiple testing with the Bonferroni method within each subfigure; color code: red = adj. P value # 10215,
orange = adj. P value # 10210, yellow = adj. P value # 1023. (d to f) Metagene plots showing the distribution of PRO-seq profiles in sense (dark
green and blue) and antisense (gold and red) direction from 23 kb to 1 3 kb around the TSS for the three gene groups defined in panel a
with increased PI (d), strongly reduced PI (e), and slightly reduced PI (f). Mock infection is shown in dark green (sense) and gold (antisense) and
WT-F infection at 3 h p.i. in dark blue (sense) and red (antisense). For this purpose, the TSS 6 3 kb promoter window for each gene was
divided into 101 bins, and PRO-seq read counts for each sample were determined for each bin, normalized to sequencing depth, and averaged
across replicates. Subsequently, bin values for each gene were normalized to sum up to 1 to obtain the Pol II occupancy profile in the
promoter window. PRO-seq profiles were determined separately for sense and antisense strands. Results of significance analyses are shown in
Fig. S2d to i.
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changes in Pol II occupancy between mock and HSV-1 infection. As a consequence,
sharp, singular peaks at promoters are characterized by higher peak maxima (e.g., dark
green curves in Fig. 1c to f), while broader peaks or multiple peaks have lower peak
maxima (e.g., dark blue curves in Fig. 1c, e, and f). Normalization was performed inde-
pendently for sense and antisense PRO-seq profiles; thus, the height of peaks does not
reflect relative levels of sense versus antisense transcription but the distribution of
sense and antisense transcription, respectively, around the TSS. To assess the signifi-
cance of differences between two conditions, Wilcoxon signed-rank tests were per-
formed for each bin in metagene plots comparing normalized coverage values for
each gene between the two conditions across all genes. Multiple testing corrected P
values are color coded at the bottom of metagene plots (red = adjusted [adj.] P
value # 10215; orange = adj. P value # 10210; yellow = adj. P value # 1023). If .2
curves are included in metagene plots, significance results for pairwise comparisons
are shown in the supplemental material.

Analysis of all genes already showed that PRO-seq profiles for both sense and antisense
direction were significantly altered between mock and HSV-1 infection (Fig. S2a to c). In
HSV-1 infection, lower Pol II occupancy was observed directly at the TSS and increased occu-
pancy down- and upstream of the TSS for sense and antisense transcription, respectively.
This was limited to within 2,250 bp of the TSS in both cases. Metagene analysis on complete
genes from the promoter to downstream of the transcription termination site (TTS) con-
firmed that this relative increase in occupancy downstream of the TSS did not extend across
gene bodies (Fig. 1c). Significance analysis showed highly significant differences in the distri-
bution of Pol II occupancy between mock and WT infection for almost the complete gene
body, with the notable exception of the region at the end of the promoter window, where
increased relative Pol II occupancy in HSV-1 infection downstream of the TSS changed to
decreased relative Pol II occupancy on the gene body. The reduction in Pol II occupancy
downstream of the TTS during HSV-1 infection reflects the loss of Pol II pausing at the TTS
associated with disruption of transcription termination previously reported in HSV-1 infection
(8). Interestingly, genes with increased PI upon HSV-1 infection (red in Fig. 1a) only showed a
small change in Pol II occupancy in sense direction at the promoter in HSV-1 infection (Fig.
1d; Fig. S2e). In contrast, genes with strong PI reduction upon HSV-1 infection showed a
strong reduction of the major peak height at the TSS, a pronounced broadening of the peak
into the gene body, and a second minor peak downstream the TSS (Fig. 1e; Fig. S2g). A simi-
lar but less pronounced effect was observed for genes with a weak reduction in PI, with a
general broadening of the TSS peak but no minor peak (Fig. 1f; Fig. S2i). These changes in
the distribution of Pol II occupancy explain the reduction in PIs as read counts in the gene
body window are increased relative to read counts in the promoter window.

To identify groups of genes with distinct patterns of changes of Pol II occupancy
around the TSS between HSV-1 and mock infection, we performed hierarchical cluster-
ing of genes based on their PRO-seq profiles in sense direction for both mock and
HSV-1 infection (Fig. 2a). Since we wanted to ensure that genes with distinct patterns
of changes were placed in different clusters, a stringent cutoff was applied on the clus-
tering dendrogram to obtain 50 gene clusters at the cost of obtaining multiple clusters
with similar patterns. While most clusters exhibited only a narrow peak at the TSS in
mock infection (e.g., Fig. 2b; Fig. S3a, b, f to h), some already exhibited a second minor
peak shortly after the TSS already before infection (e.g., Fig. 2c and d; Fig. S3c to e). In
addition, a few clusters representing a total of 2,018 genes showed peaks in mock
infection that were shifted relative to the TSS we had identified (e.g., Fig. 2d; Fig. S3e).
In all cases, the peak was shifted at most 750 bp from the identified TSS and was com-
monly within 100 to 200 bp of the identified TSS. Since the position of peaks within
clusters was highly similar due to the stringent clustering cutoff, analysis of individual
clusters thus avoids confounding effects resulting from the misidentification of TSS
positions. Typical Pol II occupancy changes upon HSV-1 infection included a reduction
of peak height at the TSS with a broadening of the peak into the gene body (e.g.,
Fig. 2b) and changes in minor and major peak heights in case multiple peaks were
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FIG 2 Distinct patterns of changes in promoter-proximal pausing upon HSV-1 infection. (a) Heatmap showing the result of the hierarchical clustering
analysis of PRO-seq profiles in mock and WT-F infection. For clustering, PRO-seq profiles in sense direction for mock and WT-F infection were first
concatenated and then divided by the maximum value in the concatenated profiles. This resulted in a value of 1 for the position of the highest peak in
either mock or HSV-1 infection. Hierarchical clustering was performed according to Euclidean distances and Ward’s clustering criterion, and the cutoff on
the hierarchical clustering dendrogram was selected to obtain 50 clusters (marked by colored rectangles between the dendrogram and heatmap). Clusters
are numbered from top to bottom. (b to e) Metagene plots of PRO-seq profiles on the sense strand in mock (dark green) and WT-F infection at 3 h p.i.
(dark blue) for example clusters 6, 4, 47, and 9 in panel a. See Materials and Methods and Fig. 1 legend for an explanation of metagene plots. The colored
bands below the metagene curves in each panel indicate the significance of paired Wilcoxon tests comparing the normalized PRO-seq coverages of genes
for each bin between mock and 3-h p.i. WT-F infection. P values are adjusted for multiple testing with the Bonferroni method within each subfigure; color
code: red = adj. P value # 10215, orange = adj. P value # 10210, yellow = adj. P value # 1023.
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already present before infection (e.g., Fig. 2c and d) as well as new peaks originating
downstream of the TSS in HSV-1 infection (e.g., Fig. 2e). Figure S4 provides an overview
on positions, number, and relative heights of Pol II occupancy peaks in mock and HSV-
1 infection for each cluster. In total, 30 clusters shared the same major TSS peak
between mock and HSV-1 infection, which included also clusters with only a reduction
in peak height but no broadening of the TSS peak (cluster 20; Fig. S3f) and clusters
without loss of Pol II pausing (clusters 21 and 27; Fig. S3g and h). Twenty-eight clusters
showed a second peak in HSV-1 infection downstream of the TSS peak with a median
distance of 480 bp to the major peak (e.g., Fig. 2c and d). For 9 of these 28 clusters, the
major TSS peak differed between mock and HSV-1 infection (e.g., Fig. 2e). Almost all
clusters exhibited a reduced Pol II peak height at the TSS (except clusters 27 and 21,
262 genes; Fig. S3g and h), and most clusters with a reduced Pol II peak height showed
an extension of the peak into the gene body or an increased downstream peak (except
clusters 7, 20, 23, 24, and 36, 480 genes). Read coverage plots for example genes from
different clusters are shown in Fig. S5, and a UCSC genome browser session showing
PRO-seq read coverage for all human genes separately for replicates is available at https://
genome.ucsc.edu/cgi-bin/hgTracks?hgS_doOtherUser=submit&hgS_otherUserName=
Caroline+Friedel&hgS_otherUserSessionName=PROseq_HSV1.

Recently, the Baines lab also published PRO-seq data of 1.5-, 3-, and 6-h p.i. WT-F,
DICP22, and its repair virus infection as well as 3-h p.i. WT-F infection with cyclohexi-
mide (CHX) treatment (10, 30, 37). This allowed investigation of both the progression
of the changes in Pol II pausing during infection as well as the impact of ICP22.
Metagene analyses confirmed the downstream shift of Pol II pausing at 3 and 6 h p.i.
for both WT-F and the repair virus (Fig. 3a to d; Fig. S6 for significance analysis of pair-
wise comparisons for WT-F), with a reduction of the major peak height compared to
1.5 h p.i. and a broadening of the TSS peak or increasing or newly originating down-
stream peaks. Both 3 and 6 h p.i. differed significantly from 1.5 h p.i., but only a few dif-
ferences were observed between 3 and 6 h p.i. (Fig. S6). Alterations in pausing were
slightly less pronounced at 6 h p.i. than at 3 h p.i. for WT-F infection (Fig. 3a and b; Fig.
S6), whereas they were slightly more pronounced at 6 h p.i than at 3 h p.i. for the repair
virus infection (Fig. 3c and d). Taken together, these results indicate that HSV-1 infec-
tion impacts Pol II pausing already very early in infection (after 1.5 h p.i. but before 3 h
p.i.) and that the downstream shift in Pol II pausing remains stable until at least 6 h p.i.
DICP22 infection generally showed the same trend as the repair virus (Fig. 3e and f)
with no significant differences downstream of the TSS between DICP22 and repair virus
infection at 3 and 6 h p.i. (Fig. S7). For several clusters, a small reduction of the TSS
peak was observed in DICP22 compared to repair virus infection, which was statistically
significant for some of these clusters at either 3 h p.i. (clusters 1, 6, and 13) or 6 h p.i.
(clusters 6 and 25). This is consistent with the observation by Birkenheuer et al. (10)
that pausing indices were increased in the repair virus compared to DICP22 infection
for 472 and 721 genes at 3 and 6 h p.i., respectively. In summary, these results show
that ICP22 is not required for the downstream shift in Pol II pausing but leads to more
retention of Pol II directly at the TSS for some genes. Unexpectedly, at 1.5 h p.i. the op-
posite effect was observed with a significantly increased Pol II pausing peak at the TSS
in DICP22 infection and reduced Pol II levels downstream of the TSS. A possible expla-
nation for this observation is that DICP22 infection progresses more slowly than repair
virus infection such that small effects are already detectable in repair virus infection by
1.5 h but not in DICP22 infection. By 3 h p.i., the downstream shift in Pol II pausing is
then well established in both viruses. Interestingly, while inhibition of protein transla-
tion by CHX during the first 3 h of WT-F infection significantly attenuated changes in
pausing both at the TSS and downstream of the TSS, some Pol II pausing changes
were still observed in the absence of viral protein translation compared to mock infec-
tion (Fig. S8). While most clusters showed increased Pol II levels shortly downstream of
the TSS in WT-F infection with CHX treatment compared to mock, indicative of a small
downstream shift in Pol II pausing, these differences were not statistically significant.
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However, for some clusters, Pol II occupancy was significantly reduced at or shortly
upstream of the TSS and, for many clusters, it was significantly reduced further down-
stream of the TSS (.1.5 kb). Although the interpretation of these changes is not
straightforward, they indicate a role of viral tegument proteins, e.g., VP16, which also
interacts with P-TEFb (24), or a virus entry-induced stress or immune response in
manipulating Pol II pausing.

FIG 3 Downstream shift of Pol II pausing throughout the first 6 h of HSV-1 infection and impact of ICP22.
Metagene plots of PRO-seq profiles on the sense strand for 1.5-, 3-, and 6-h p.i. WT-F infection (a and b), repair virus
infection (c and d), and DICP22 infection (e and f) for example clusters in Fig. 2a. Metagene plots with significance
analyses of pairwise comparisons between time points for WT-F infection for these and other example clusters can
be found in Fig. S6. Metagene plots with significance analyses of pairwise comparisons between repair virus and
DICP22 infection for the same time points for these and other example clusters can be found in Fig. S7.
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To investigate whether the different patterns in Pol II pausing changes were corre-
lated with gene function or transcription factor binding, we performed over- and
underrepresentation analysis for Gene Ontology (GO) terms and transcription factor
binding motifs from TRANSFAC for each cluster (Data set S2; adj. P value cutoff ,
0.001, a stringent P value cutoff was chosen to adjust for performing this analysis sepa-
rately for 50 clusters). This revealed an enrichment of subunits of the spliceosomal
snRNP complex, specifically U5 and U6 snRNAs, in cluster 27 (adj. P value , 1.31 �
1027), one of the clusters without change in pausing. Since U6 snRNAs are transcribed
by RNA polymerase III (38), not Pol II, we investigated the PRO-seq signal of the U6
snRNAs in a genome browser. While some signal was found, it commonly either started
already upstream of the U6 snRNA locus or resulted from many reads mapping at the
same position. Since U6 snRNA loci are repeated several times in the human genome,
we performed a BLAT search for the 70-bp sequence covered by these reads. We found
many occurrences of this sequence with few mismatches within Pol II transcribed
regions, either in introns of protein-coding genes or in regions downstream of their 3’
end that are still reached by Pol II before RNA cleavage at the upstream poly(A) site.
This suggests that these reads were mismapped to other U6 snRNA loci due to
sequencing errors making them more similar to these other loci than their actual ge-
nomic origins. It is thus not surprising that these loci are enriched in cluster 27, which
exhibits no changes between mock and WT-F infection. Nevertheless, they still repre-
sent only a very small fraction of this cluster (;7.5%). Cluster 16 was enriched for
genes encoding proteins of the large ribosomal subunit (adj. P value , 0.00057), but
again these represented only a very small fraction (5.9%) of this cluster. No other over-
or underrepresentation was observed. Thus, clusters identified based on changes in
pausing did not represent functionally related gene groups. Interestingly, however,
cluster 32 was strongly enriched for a number of G- or C-rich transcription factor bind-
ing motifs, with 90% of genes having a match for a long G-rich motif (GGGMGG
GGSSGGGGGGGGGGGG, adj. P value , 0.00025). In contrast, several A- and T-rich motifs
(e.g., NNNNRNTAATTARY, adj. P value , 6.94 � 1029) were underrepresented. The oppo-
site effect was observed for cluster 6, with G-/C-rich motifs being under- and A-/T-rich
motifs being overrepresented. A few G-/C-rich motifs were also underrepresented in clus-
ter 10. Recently, Watts et al. showed that GC content is high around pause sites and that
GC skew [= (G 2 C)/(G 1 C)] peaks in the 100 nt upstream of the pause site (39). Analysis
of GC content and GC skew around the TSS for individual clusters indeed showed a high
GC content for cluster 32 at and downstream of the TSS, although no peak in GC skew
(Fig. S9a). In contrast, GC content was less increased around the TSS for cluster 6, while GC
skew peaked at the TSS and was increased downstream of the TSS (Fig. S9b). As clusters
32 and 6 differed considerably regarding the change in Pol II pausing upon HSV-1 infec-
tion, this raises the possibility that sequence composition around the TSS could play a role
in determining the changes in Pol II pausing upon HSV-1 infection. However, analysis of
the other clusters did not reveal any consistent trend in GC content or GC skew that
explained differences in Pol II pausing between clusters. The one consistent trend we
observed was that clusters for which the major PRO-seq peak was significantly upstream
of our identified TSS commonly exhibited a plateau of high GC content starting at the
PRO-seq peak and extending to the TSS (e.g., Fig. S9c and d). It should be noted that the
HSV-1 genome is highly GC rich (;68%, Fig. S9e) and almost 50% of viral genome posi-
tions have a GC content at least as high as observed at host pause sites (70%; reference
39). Consistently, many occurrences of the G/C-rich over- or underrepresented transcrip-
tion factor binding motifs for clusters 6 and 32 can be found in the HSV-1 genome (Fig.
S9e), with these occurrences being even more G/C-rich than the viral genome overall.

Considering the bidirectionality of transcription initiation at human promoters, we also
performed metagene analyses of PRO-seq profiles in antisense direction. Antisense tran-
scription initiation at bidirectional promoters commonly only results in short, unspliced,
nonpolyadenylated, and unstable upstream antisense RNAs (uaRNAs) (40) that have highly
heterogeneous 39 ends (41). The metagene analyses of antisense PRO-seq profiles for all
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genes as well as genes grouped by PI changes also showed a significant reduction in the
antisense TSS peak height and a broadening of the peak in the antisense direction (Fig. 1d
to f; Fig. S2). However, clustering of antisense PRO-seq profiles in mock and HSV-1 infec-
tion with the same approach as for sense profiles to obtain 50 clusters did not identify dif-
ferent patterns between clusters. Most of the 50 antisense clusters exhibited only the
same pattern as the metagene analysis of all genes (e.g., Fig. 4a). Only two clusters (430
and 375 genes) showed a small secondary antisense peak originating in HSV-1 infection in
addition to the broadening of the antisense signal upstream of the TSS (Fig. 4b and c).
One other cluster (129 genes) showed a secondary peak that was already present in mock
infection but increased relative to the TSS peak in WT infection (Fig. 4d); however, the
increase at this secondary peak was not statistically significant.

Delayed pausing is not an artifact of de novo transcription initiation or read-
through transcription. Since increasing or newly originating secondary PRO-seq
peaks could also represent alternative transcription initiation, we next investigated the
presence of alternative TSSs for all clusters in either the PROcap-seq and PRO-seq data

FIG 4 Changes in antisense promoter-proximal pausing in HSV-1 infection. Metagene plots of PRO-seq profiles on antisense direction
in mock (gold) and WT-F infection at 3 h p.i. (red) for example clusters resulting from the hierarchical clustering of genes according to
antisense PRO-seq profiles in mock and WT-F infection. Here, clustering was performed as described in Fig. 2a legend but applied to
concatenated antisense PRO-seq profiles in mock and WT-F infection. Thus, clusters shown here differ from the clusters shown in all
other figures. (a) The most common pattern observed for almost all clusters with a broadening of the antisense PRO-seq peak at the
TSS. (b to d) The only three clusters that exhibit different patterns with additional peaks originating or increasing in antisense direction
during infection. See Materials and Methods and Fig. 1 and 2 legends for the explanation of metagene plots.
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of flavopiridol-treated HFF or the human genome annotation. For most clusters, ,15%
of genes showed evidence for an alternative TSS at the additional peak positions in ei-
ther flavopiridol-treated cells (e.g., Fig. S10a and c) or the genome annotation (e.g., Fig.
S10b and d). This is in clear contrast to clusters in which the TSS identified from flavo-
piridol-treated HFF did not represent the dominant TSS in HEp-2 cells. Here, almost
50% of genes had an additional peak in flavopiridol-treated cells or an annotated tran-
script start at the position of the dominant TSS in HEp-2 cells (e.g., Fig. S10e and f). We
furthermore investigated induction of alternative de novo transcription initiation down-
stream of the TSS during HSV-1 infection using cRNA-seq and directional RNA-seq
(dRNA-seq) data of transcript 59 ends for mock and HSV-1 strain 17 (WT-17) infection of
HFF from our recent reannotation of the HSV-1 genome (n = 2 replicates) (42). cRNA-
seq is based on circularization of RNA fragments. dRNA-seq is based on selective clon-
ing and sequencing of the 59 ends of cap-protected RNA molecules resistant to the 59–
39-exonuclease XRN1. Both methods strongly enrich reads from 59-RNA ends. cRNA-seq
was performed for mock and 1-, 2-, 4-, 6-, and 8-h p.i. HSV-1 infection. dRNA-seq was
performed for mock and 8-h p.i. HSV-1 infection with and without XRN1 treatment.
Metagene analyses of cRNA- and dRNA-seq data showed clear peaks coinciding with
the major PRO-seq peaks in mock infection and smaller peaks at minor PRO-seq peaks
already present in mock infection (Fig. 5a to d; Fig. S11 and S12). In contrast, no
(increased) peaks were observed at the positions of downstream PRO-seq peaks that
increased or newly originated during HSV-1 infection. This was the case both early (2
and 4 h p.i. in cRNA-seq; Fig. 5a and b; Fig. S11) and later in infection (6 and 8 h p.i. in
cRNA-seq, Fig. 5a and b and Fig. S11; 8 h p.i. in dRNA-seq, Fig. 5c and d; Fig. S12)
around the 3 and 6 p.i. time points when the downstream shift of Pol II pausing was
observed in the PRO-seq data.

Since cRNA- and dRNA-seq were obtained for WT-17 infection, while PRO-seq was
performed for WT-F infection, we compared expression changes for host genes
between WT-17 and WT-F infection to assess the similarity of virus-induced expres-
sion changes. For this purpose, we analyzed total RNA-seq data for WT-17 infection
at 8 and 12 h p.i. and WT-F infection at 8 h and 12 h p.i. (Fig. S13). Total RNA-seq data
for (i) mock and 8-h p.i. WT-17 infection were taken from our previous study (8), for
(ii) mock and 12-h p.i. WT-17 infection from the study by Pheasant et al. (43), and for
(iii) mock and 8- and 12-h p.i. WT-F infection from our recent study (44). Since RNA-
seq data for WT-F at 8 and 12 h p.i. were obtained in the same experiment and thus
expected to be more similar due to less technical noise, we included RNA-seq for WT-17
infection from two different sources to assess the extent of differences that can be
ascribed to experimental noise rather than differences between virus strains. This analysis
showed that gene expression fold changes compared to mock were highly correlated
between WT-17 and WT-F infection both for 8 and 12 h p.i. (Fig. S13a and b), with most
genes showing less than a 2-fold difference (indicated by gray lines). Comparison of fold
changes for 8 and 12 h p.i. for WT-17 infection between separate experiments (Fig. S13c)
showed that observed differences between WT-17 and WT-F were within the range of dif-
ferences observed in separate experiments. In contrast, fold changes were highly similar
between 8 and 12 h p.i. from the same experiment (Fig. S13d). Moreover, when compar-
ing differentially expressed genes (P, 0.01) across time points and strains (Fig. S13e), we
observed a high consistency across all four conditions, with differences reflecting more
the source of the data than the HSV-1 strain. For instance, a group of genes (marked by a
red rectangle in Fig. S13e) was partly downregulated in the 12-h p.i. WT-17 data from
Pheasant et al. (43) but generally upregulated in the WT-17 8-h p.i and WT-F data from
our lab. Since total RNA-seq reflects the cumulative effect of viral infection on host
expression up to this time point, the similarity observed between WT-17 and WT-F infec-
tion late in infection confirms a strong concordance in virus-induced host expression
changes up to this time point between the two strains. We conclude that changes in Pol
II occupancy during HSV-1 infection are not due to alternative initiation at novel TSSs
leading to capped transcripts. However, we cannot fully exclude that some may reflect
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FIG 5 Delayed pausing is not an artifact of alternative de novo initiation or read-in transcription. (a to d) Metagene plots
of cRNA-seq profiles on the sense strand in mock and WT-17 infection at 1, 2, 4, and 8 h p.i. (a and b) and dRNA-seq
profiles on the sense strand in mock and 8-h p.i. WT-17 infection (c and d) with and without XRN1 treatment for example
clusters 4 and 9, which show broadening of peaks or additional peaks originating or increasing in height in PRO-seq data
during WT-F infection. For metagene plots of PRO-seq profiles for these clusters, see Fig. 2c and e. (e) Boxplots showing
the distribution of read-in transcription at 3 to 4 h p.i. for genes in the 50 clusters identified from sense PRO-seq profiles.
Boxes represent the range between the first and third quartiles for each cluster. Black horizontal lines in boxes show the
median. The ends of the whiskers (vertical lines) extend the box by 1.5 times the interquartile range. Data points outside
this range (outliers) are shown as small circles. The red horizontal line indicates the cutoff we previously used to
determine that no read-in transcription is observed (#5% read-in transcription). Metagene plots of PRO-seq profiles for
clusters 7, 23, and 33 to 37 with some read-in transcription observed at 3 to 4 h p.i. are shown in Fig. S14.
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abortive de novo initiation at novel initiation sites downstream of the TSS. This analysis
also excludes Pol II creeping, which is observed upon H2O2 treatment (45), as the latter
would lead to signals from capped transcripts increasing downstream of the TSS in the
pausing region.

We previously showed that late in infection “read-in” transcription originating from
disrupted transcription termination for an upstream gene commonly extends into
downstream genes, which can be mistaken for induction of downstream genes (8).
Although read-in transcription only affected very few genes within the first 4 h p.i.,
increased Pol II occupancy downstream of the TSS could potentially originate from
read-in transcription. To quantify read-in transcription, we used our previously pub-
lished 4-thiouridine sequencing (4sU-seq) time course for every hour of the first 8 h of
lytic HSV-1 strain 17 (WT-17) infection of HFF (8). 4sU-seq sequences newly transcribed
RNA obtained by labeling with 4sU in specific time intervals of infection (here: 1-h
intervals for the first 8 h of lytic expression). Read-in transcription was quantified as
previously described (see references 7 and 46 and Materials and Methods for details).
In brief, we first calculated the percentage of upstream transcription (=transcription in
a 5-kb window upstream of the gene 59 end/gene expression) for mock infection and
each 1-h window of HSV-1 infection. Subsequently, the percentage of read-in transcrip-
tion was calculated by subtracting values in mock infection from values in each 1-h
window of HSV-1 infection (multiplied by 100, negative values set to zero). This analysis
included only genes with $5 kb to the next up- or downstream gene. By 3 to 4 h p.i.,
read-in transcription was essentially absent (i.e., much less than 5%) for almost all
genes in nearly all clusters (Fig. 5e). Only a few clusters (clusters 7, 23, 33, to 37) exhib-
ited a small extent of read-in transcription already this early in infection; however,
these clusters did not exhibit substantial downstream shifts in Pol II occupancy or addi-
tional secondary peaks (Fig. S14). The largest of these clusters, cluster 7, indeed
showed significantly increased Pol II occupancy in the sense direction upstream of the
TSS in HSV-1 infection (Fig. S14a), consistent with read-in transcription. We conclude
that read-in transcription extending (partially) into downstream genes does not explain
extended TSS peaks or novel or increasing downstream peaks in Pol II occupancy
observed in HSV-1 infection.

Delayed pausing in HSV-1 infection occurs downstream of secondary pause
sites used upon NELF depletion. Recently, Aoi et al. (47) showed that rapid depletion
of NELF, the key mediator of Pol II pausing, does not completely abolish pausing.
Instead, Pol II is paused at a secondary more downstream pause site around the 11
nucleosome. Since Rivas et al. (9) showed an ICP4-dependent decrease of NELF in the
promoter-proximal region of some HSV-1-activated genes, we reanalyzed PRO-seq
data from the study of Aoi et al. (47) for 0-, 1-, 2-, and 4-h auxin-induced degradation
of NELF for our 50 clusters to investigate whether changes in pausing upon NELF
depletion showed similarities to changes of HSV-1 infection. For this purpose, we also
used the TSS positions identified from the PROcap-seq and PRO-seq data of flavopiri-
dol-treated HFF for the NELF degradation data. Although Aoi et al. performed PRO-seq
in DLD-1 (colorectal adenocarcinoma) cells, our identified TSS matched well to PRO-
seq peak positions for 0 h NELF degradation in these cells (Fig. S15a). This was also
confirmed in metagene analyses for our 50 clusters (Fig. 6b and d; Fig. S15c to k).

In the metagene analyses, we indeed observed an increased second PRO-seq peak
upon NELF degradation or a broadening of the first PRO-seq peak downstream of the TSS
for a few of our clusters (e.g., Fig. 6; Fig. S15b to e). For most clusters, however, we only
observed a reduction in the major peak height and a minor broadening of the peak into
downstream regions (e.g., Fig. S15f to k). In either case, the changes in the distribution of
Pol II occupancy in HSV-1 infection were much more pronounced than after NELF deple-
tion, with more extensive broadening of peaks and new secondary peaks arising further
downstream of the major peak. In summary, delayed pause sites in HSV-1 infection are fur-
ther downstream than “normal” secondary pause sites at 11 nucleosome positions used
upon NELF depletion.
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DISCUSSION

Promoter-proximal Pol II pausing is a key regulatory step between transcription ini-
tiation and productive elongation. HSV-1 infection has previously been reported to
dramatically impact Pol II positioning on host genes, including promoter-proximal
regions (5). Promoter-proximal Pol II pausing on HSV-1 genes also plays a key role in
HSV-1 transcription (30). Rivas et al. (9) recently reported that HSV-1 infection leads to
a reduction in pausing indices for activated host genes and an increase in pausing indi-
ces at repressed host genes. While our reanalysis of PRO-seq data of mock and 3-h p.i.
WT-F infection also showed a reduction of pausing indices for most expressed host
genes during HSV-1 infection, it also illustrated that pausing indices are an inadequate
measure of promoter-proximal Pol II pausing. Pausing indices are altered by any
change in the distribution of Pol II between the promoter and gene body. Thus, more
in-depth analyses are necessary to characterize changes in promoter-proximal Pol II
pausing, not only during HSV-1 infection. Our metagene analyses revealed that HSV-1
infection does not lead to a simple reduction of promoter-proximal Pol II pausing with
a relative increase of elongating Pol II on the whole gene body. Instead, we observed
that Pol II pausing is retained for the vast majority of genes but is shifted to down-
stream pause sites. This is reflected in broadened Pol II promoter-proximal peaks that
extend further into the gene body and newly originating or increasing downstream
peaks. A fine-grained clustering analysis identified a wide range of different patterns

FIG 6 HSV-1 infection leads to stronger downstream shifts in pause sites than NELF depletion. Metagene plots
around the TSS of PRO-seq profiles for mock and 3-h p.i. WT-F infection from the study of Birkenheuer et al. (5) (a
and c) and 0-, 1-, 2-, and 4-h auxin-inducible degradation of NELF from the study by Aoi et al. (47) (b and d) for
example clusters showing a broadening of the TSS peak (a and b) or a small downstream peak (c and d) upon
NELF degradation. See Materials and Methods and Fig. 1 and 2 legends for the explanation of metagene plots.
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for different genes in HSV-1 infection, which contrasts with the sharp promoter-proxi-
mal peaks commonly observed in uninfected cells. This indicates that the positioning
of shifted pause sites in HSV-1 infection is less well defined than that of “normal” pause
sites in uninfected cells. Pronounced downstream shifts of Pol II pausing were only
observed after 1.5 h p.i. but remained stable until at least 6 h p.i. Analysis of transcript
start site profiling for early (2 and 4 h p.i.) and later (6 and 8 h p.i.) infection time points
and of newly transcribed RNA in HSV-1 infection excluded that this was due to de novo
initiation at downstream sites or read-in transcription originating from disrupted tran-
scription termination for upstream genes.

Interestingly, analysis of promoter-proximal pausing in the antisense direction also
showed a broadening of antisense TSS peaks upon HSV-1 infection, with antisense tran-
scription extending further upstream of the TSS than in uninfected cells. However, second-
ary antisense peaks were only observed for a small fraction of genes (12.2%). It has been
proposed that Pol II is particularly prone to pausing and termination during early elonga-
tion, specifically on AT-rich sequences often found upstream of promoters (48). Previously,
we reported both widespread disruption of transcription termination in HSV-1 infection (8)
and activation of antisense transcription at promoters and within gene bodies (49). It is
thus tempting to speculate that activation of antisense transcription in HSV-1 infection
could be linked to alterations in antisense Pol II pausing, potentially in combination with
disruption of transcription termination in the antisense direction.

Nucleosomes represent a natural barrier to transcription and are disassembled before
and reassembled after transcribing Pol II (50). Nucleosomes directly downstream of the TSS
are generally well positioned at specific locations, in particular the 11 nucleosome, but
less so further up- or downstream (51–53). In the presence of NELF, Pol II pausing occurs
between the promoter and the11 nucleosome, and strong positioning of the11 nucleo-
some increases pausing (54). While NELF has previously been considered to be required for
establishing Pol II pausing, rapid depletion of NELF using auxin-inducible degron does not
abolish pausing (47). Instead, pausing appears to be a two-step process with Pol II transi-
tioning from the first to a secondary pause site associated with 11 nucleosomes upon
NELF depletion. As Rivas et al. (9) reported decreased levels of NELF at promoter regions of
four activated genes tested by ChIP, depletion of NELF from host promoters may play a
role in the downstream shift of promoter-proximal Pol II pausing in HSV-1 infection.
Notably, a few clusters with additional downstream peaks observed in HSV-1 infection al-
ready showed small and much less pronounced peaks at these positions in mock infection.
This supports the hypothesis that loss of pausing at major pause sites upon HSV-1 infection
leads to pausing of Pol II at secondary downstream pause sites. However, a comparison of
the effects of NELF degradation and HSV-1 infection for the 50 identified clusters showed
that HSV-1 infection led to much more pronounced alterations in Pol II pausing and more
extensive downstream shifts of pause sites than degradation of NELF. We conclude that
NELF depletion at promoters alone is unlikely to explain the delay in Pol II pausing
observed in HSV-1 infection.

The role of ICP22 in shaping Pol II pausing during WT HSV-1 infection remains an in-
triguing open question given its previously reported inhibition of the CDK9 subunit of
P-TEFb (23). Moreover, lack of ICP22 during HSV-1 infection reduces promoter-proximal
Pol II pausing of immediate early genes ICP4, ICP0, and ICP27 and some host genes
compared to infection with a repair virus carrying ICP22 (10). We therefore investigated
whether infection with an ICP22-null mutant (10) exhibited differences in Pol II pausing
compared to the repair virus. While we observed small differences directly at the TSS
for some genes, no significant differences between DICP22 and the repair virus were
detected downstream of the TSS at 3 and 6 h p.i. These results confirm an effect of
ICP22 on pausing directly at the TSS for some host genes but also show that ICP22 is
not required for the widespread downstream shift of Pol II pausing. Interestingly,
global inhibition of protein translation and thus de novo lytic viral gene expression by
CHX during the first 3 h of HSV-1 infection increased pausing peaks directly at the TSS
and largely abolished the downstream shift in Pol II pausing but still resulted in

Downstream Shift of Pol II Pausing in HSV-1 Infection Journal of Virology

Month YYYY Volume XX Issue XX 10.1128/jvi.00381-23 16

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//j

ou
rn

al
s.

as
m

.o
rg

/jo
ur

na
l/j

vi
 o

n 
19

 M
ay

 2
02

3 
by

 2
00

1:
4c

a0
:4

00
0:

10
11

:1
41

:8
4:

1:
25

.

74 Appendices



differences in Pol II occupancy in the promoter region compared to mock infection.
The HSV-1 tegument protein VP16 delivered with incoming virions contains a region
with structural similarity to ICP22 that interacts with P-TEFb (24). Furthermore, the
coexpression of VP16 and ICP22 restores phosphorylation of CDK9 pThr186, a mark of
CDK9 activity, which is reduced when expressing ICP22 on its own (24). Based on these
and previous findings, Isa et al. (24) proposed a model in which ICP22 activity leads to
promoter-proximal stalling and premature termination of elongating Pol II on cellular
genes, which is attenuated by VP16 to redirect cellular resources for transcription of vi-
ral immediate early genes. This raises the possibility that VP16 plays a role in HSV-1-
mediated changes in Pol II pausing. Considering the many ways HSV-1 manipulates
the host transcription factory, including other factors involved in Pol II pausing like
FACT, SPT5, and SPT6 (required for RNA Pol II progression through 11 and subsequent
nucleosomes; reference 55), it is likely that no single viral protein is solely responsible.
As such, the downstream shift in Pol II pausing may simply be a by-product of other
processes ongoing in HSV-1 infection, e.g., the general loss of Pol II and elongation fac-
tors from the host genome and their recruitment to viral genomes. Moreover, consid-
ering the high GC content of the HSV-1 genome (68%) similar to the GC content at
host pause sites (70%; reference 39) and evidence that high GC content stabilizes DNA-
RNA hybrids downstream of the pause site and in this way contributes to pausing (56),
HSV-1 may need to manipulate host pausing factors to alleviate Pol II pausing at viral
promoters and allow active elongation for viral genes. In this case, the downstream
shift of Pol II pausing on host genes may simply be a bystander effect.

The functional impact of the observed changes in promoter-proximal Pol II pausing
during HSV-1 infection also remains unclear. Rivas et al. (9) concluded that ICP4 acti-
vates host genes by promoting the release of paused Pol II into elongation. However,
our analysis showed that Pol II is not fully released from pausing but pausing is shifted
to downstream sites for most genes. Nevertheless, the global changes in pausing
might still serve to promote increased elongation for a few genes as some genes
strongly upregulated in total RNA indeed exhibited increased elongation rather than
delayed pausing. This is exemplified by the JUNB gene in Fig. S16a. JUNB encodes the
JunB subunit of the heterodimeric AP-1 transcription complex, which is composed of
members of the JUN, FOS, ATF, and MAF protein families (57). JUNB is an immediate
early gene induced rapidly and transiently by various stimuli and depletion of a NELF
subunit increased JUNB expression both before and after induction by interleukin-6
stimulation (58), indicating that NELF-mediated pausing is involved in attenuating
JUNB expression. HSV-1 infection has been shown to activate AP-1 binding activity via
JNK/SAPK and p38 MAPK pathways, with JunB and JunD being the major AP-1 compo-
nents by 11 h p.i. (59). While the role of AP-1 in HSV-1 infection has not been completely
resolved, AP-1 has recently been reported to induce a gene encoding miR-24, a microRNA
that dampens the host antiviral response to HSV-1 (60). On the other hand, the down-
stream shift in Pol II pausing might also have a negative effect on transcription for affected
genes. Premature termination at promoter-proximal pausing sites is both an essential as-
pect of gene regulation and a response to the accumulation of Pol II stalling and arrest
(61). It would thus be tempting to speculate that alterations of Pol II pausing lead to
increased premature termination and in this way contribute to the loss of host transcrip-
tional activity. Since transcripts terminated prematurely close to the TSS are generally
unprocessed and nonpolyadenylated and thus rapidly degraded (62), they are unlikely to
have any functional impact themselves. What lends some weight to this hypothesis is that
a number of genes with shifted Pol II pausing play a role in antiviral responses. For
instance, METTL3 (Fig. S16b) stabilizes IRF3 mRNA via N6-methyladenosine modification,
and type I interferon (IFN) induction, e.g., in response to HSV-1 infection, is impaired in
METTL3 knockout cells (63). In contrast, overexpression of METTL3 enhanced type I IFN
induction by HSV-1 (63). Similarly, the DExD-box RNA helicase DDX50 (Fig. S16c) activates
the IRF3 signaling pathway following infection with RNA and DNA viruses, including an
ICP0-null mutant of HSV-1 (64). Several other DExD/H-box helicases, many of which have
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been identified as regulators of antiviral innate immunity (65), show shifts in Pol II pausing,
e.g., DHX36 (Fig. S16d, involved in DNA virus sensing; reference 66) or DDX3X (Fig. S5a,
contributes to IRF3 activation; reference 67). Notably, however, HSV-1 depends on optimal
DDX3X protein levels for viral gene expression, replication, propagation, and infectivity and
incorporates DDX3X proteins into mature particles (68–70). This highlights that it is difficult
to fully appreciate the functional impact of downstream shifts in Pol II pausing on virus
infection.

Finally, it should be noted that our study has also important implications for the
analysis of functional genomics studies on HSV-1 and potentially other viral infections.
As already observed in previous studies reporting on disruption of transcription termi-
nation or activation of antisense transcription observed upon HSV-1 infection (8, 49),
standard sequencing data analysis methods are not designed and are thus insufficient
to uncover previously unsuspected alterations in transcription. Thus, more in-depth
analyses and customized methods are required. In summary, our study highlights a
novel aspect in which HSV-1 infection fundamentally alters the host transcriptional
cycle, which has implications for our understanding not only of HSV-1 infection but
also of the maintenance of Pol II pausing in eukaryotic cells.

MATERIALS ANDMETHODS
Previously published sequencing data analyzed in this study. PROcap-seq and PRO-seq data of fla-

vopiridol-treated uninfected HFF cells were taken from the study by Parida et al. (32) (GEO accession:
GSE113394, samples GSM3104917 and GSM3104913). PRO-seq data for mock and WT-F infection at 3 h p.i. of
HEp-2 cells were taken from the study by Birkenheuer et al. (5) (n = 3 replicates, GEO accession: GSE106126,
samples GSM2830123 to GSM2830127). PRO-seq data of HEp-2 cells for 1.5, 3, and 6 h of WT-F, DICP22, and
ICP22 repair virus infection and 3-h p.i. WT-F infection 1 CHX treatment were taken from studies by
Birkenheuer et al. (30) and Dunn et al. (37) (n = 2 to 6, GEO accessions: GSE130342, samples GSM3736426 to
GSM3736437; GSE169574, samples GSM5210187 to GSM5210194; GSE202363, samples GSM6112020 to
GSM6112028). PRO-seq data for 0, 1, 2, and 4 h of auxin-induced degradation of NELF were taken from the
study by Aoi et al. (47) (n = 1 apart from 0 h with n = 2, GEO accession: GSE144786, samples GSM4296314 to
GSM4296316, GSM4296318, and GSM4296319). dRNA-seq data for mock and 8-h p.i. HSV-1 infection with and
without XRN1 treatment and cRNA-seq data for mock and 1-, 2-, 4-, 6-, and 8-h p.i. HSV-1 infection of HFFF
was taken from our previous study (42) (n = 2, GSE128324, samples GSM3671394 to GSM3671411). 4sU-seq
data for mock and hourly intervals for the first 8 h of WT-17 infection of HFFF were taken from our previous
study (8) (n = 2, GEO accession: GSE59717, samples GSM1444171 to GSM1444179, GSM1444185 to
GSM1444193). Total RNA-seq for mock and WT-F and WT-17 infection at 8 and 12 h p.i. were taken from our
previous studies (8, 44) (n = 2, GEO accession: GSE59717, samples GSM1444166, GSM1444170, GSM1444180,
GSM1444193; GSE185239, samples GSM5608630 to GSM5608643 without PAA) and the study by Pheasant et
al. (43) (n = 5, SRA accession: SRP168592, samples SRR8187008 to SRR8187014, SRR8186995 to SRR8186999).

Read alignment. The read alignment pipeline was implemented and run in the workflow manage-
ment system Watchdog (71, 72). Published sequencing data were first downloaded from SRA using the
sratoolkit version 2.10.8. Sequencing reads were aligned against the human genome (GRCh37/hg19) and
human rRNA sequences using ContextMap2 version 2.7.9 (73) (using BWA as short read aligner (74) and allow-
ing a maximum indel size of 3 and at most 5 mismatches). PRO-seq reads commonly contain parts of
sequence adapters that cannot be aligned to the genome. While these can be removed before alignment
using, e.g., cutadapt (75) as outlined in the protocol by Mahat et al. (76), we did not include it in our workflow
as ContextMap2 automatically trims parts of reads that cannot be aligned to the genome. As a consequence,
adapter sequences were automatically removed during alignment. For sequencing data of HSV-1 infection,
alignment also included the HSV-1 genome (human herpesvirus 1 strain 17, GenBank accession code:
JN555585). For the two repeat regions in the HSV-1 genome, only one copy was retained each, excluding nu-
cleotides 1 to 9,213 and 145,590 to 152,222 from the alignment. SAM output files of ContextMap2 were con-
verted to BAM files using samtools (77). Read coverage in bedGraph format was calculated from BAM files
using BEDTools (78).

Data plotting and statistical analysis. All figures were created in R, and all statistical analyses were
performed in R (79). Read coverage plots were created using the R Bioconductor package Gviz (80).

Transcription start site identification. We used the iTiSS program to identify candidate TSS in
PROcap-seq and PRO-seq of flavopiridol-treated HFF (42, 81). For this purpose, iTiSS was run separately
for each sample in the SPARSE_PEAK mode with standard parameters. Afterward, the iTiSS TSRMerger
program was used to select only peaks that were identified in both samples within 65 bp. Consistent
peaks were only further considered if they were within 500 bp of the nearest annotated gene, and for
each gene the TSS with the highest read count (weighted by the number of possible alignments for the
read) was selected for further analyses.

Calculation of pausing indices. PRO-seq read counts in promoter windows (TSS to TSS 1 250 bp)
and gene bodies (TSS 1 250 bp to TSS 1 2,250 bp or gene 39 end if closer) were determined using
featureCounts (82) and gene annotations from Ensembl (version 87 for GRCh37) (83) in a strand-specific
manner and normalized by the total number of reads and window lengths to obtain RPKM values. RPKM
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values were averaged between replicates and genes with zero reads in either promoter or gene body
window were excluded from the analysis. PI for a gene was then calculated as the ratio of promoter
RPKM to gene body RPKM.

Metagene and clustering analysis. Metagene analyses were performed as previously described (84)
using the R program developed for this previous publication (available with the Watchdog binGenomemodule
in the Watchdog module repository (https://github.com/watchdog-wms/watchdog-wms-modules/)). For pro-
moter region analyses, the regions 23 kb to 13 kb of the TSS were divided into 101-bp bins for each gene.
For each bin, the average coverage per genome position was calculated in a strand-specific manner for PRO-
seq data and bin read coverages were then normalized by dividing by the total sum of all bins. Metagene
curves for each replicate were created by averaging results for corresponding bins across all genes and meta-
gene plots and then showing the average metagene curves across replicates. Genes without any reads in any
of the analyzed samples were excluded from the analysis. For metagene analyses on the whole gene, the
regions from 23 kb to 11.5 kb of the TSS and from 21.5 kb to 13 kb of the TTS were divided into 90-bp
bins, and the remainder of the gene body (11.5 kb of TSS to 21.5 kb of TTS) into 100 bins of variable length
to compare genes with different lengths. Genes with a gene length ,3 kb were excluded as regions around
the TSS and TTS would overlap otherwise. To determine the statistical significance of differences between av-
erage metagene curves for two conditions, paired Wilcoxon signed rank tests were performed for each bin
comparing normalized coverage values for each gene for this bin between the two conditions. P values were
adjusted for multiple testing with the Bonferroni method across all bins within each subfigure and are color-
coded in the bottom track of subfigures: red = adj. P value # 10215, orange = adj. P value # 10210, yellow =
adj. P value# 1023.

For hierarchical clustering analysis, PRO-seq profiles for each gene and condition were calculated for
sense or antisense strand as for metagene analyses (without averaging across genes). PRO-seq profiles
in promoter windows for mock and WT-F infection at 3 h p.i. were then concatenated and divided by
the maximum value in the concatenated vector. Hierarchical clustering was performed using the hclust
function in R according to Euclidean distances and Ward’s clustering criterion. Peaks in metagene plots
for each cluster were then determined in the following way: first, all local and global maxima and min-
ima of metagene curves for each condition were identified for each cluster using the find_peaks func-
tion in the R ggpmisc package. The major peak was the global maximum. Subsequently, the next high-
est local maxima up- or downstream of the major peak were determined and retained as secondary
peaks if (i) they were sufficiently removed from the borders of the 6 kb promoter window (i.e., within
bins 30 to 80 of the 101 bins), (ii) the difference between the height of the secondary peak and the mini-
mum value between the major and secondary peak was at least 10% of the major peak height, and (iii)
the height of the secondary peak was at least 20% of the major peak height.

Over- and underrepresentation analysis. Over- and underrepresentation analysis of Gene Ontology
(GO) terms and transcription factor binding motifs from TRANSFAC was performed for each cluster using
the g:Profiler webserver (85) and the R package gprofiler2 (86), which provides an R interface to the
webserver. P values were corrected for multiple testing using the Benjamini-Hochberg false discovery
rate (87) and significant terms or motifs were identified at an adjusted P value cutoff of 0.001.

Calculation of GC content and GC skew. Genome sequences in the 63kb around the TSS for each
gene were extracted from the hg19 genome with twoBitToFa (http://genome.ucsc.edu/goldenPath/
help/twoBit.html) and mean GC content and GC skew (G 2 C)/(G 1 C) was calculated in 100-bp sliding
windows with steps of 1 bp as described by Watts et al. (39).

Differential gene expression analysis and quantification of read-in transcription. Number of
fragments (=read pairs) per gene or in the 5 kb upstream of a gene were determined from mapped
paired-end 4sU-seq reads in a strand-specific manner using featureCounts (82) and gene annotations
from Ensembl (version 87 for GRCh37). For genes, all fragments overlapping exonic regions on the corre-
sponding strand by $25bp were counted for the corresponding gene. For the 5-kb upstream regions,
all fragments overlapping the 5 kb upstream of the gene 59 end were counted. Fold changes in gene
expression and statistical significance of changes were determined using DESeq2 (88), and P values
were adjusted for multiple testing using the method by Benjamini and Hochberg (87). Gene expression
and upstream transcriptional activity were quantified in terms of fragments per kilobase of exons per
million mapped reads (FPKM). Only reads mapped to the human genome were counted for the total
number of mapped reads for FPKM calculation. The percentage of read-in transcription was calculated
as previously described (7, 46) for 7,271 genes that had no up- or downstream gene within 5 kb and
were well expressed (average FPKM over replicates $1) in at least one time point of our 4sU-seq time
course. For this purpose, the percentage of transcription upstream of a gene was first calculated sepa-
rately for each replicate as percentage of upstream transcription = 100 � (FPKM in 5 kb upstream of
gene)/(gene FPKM) and averaged between replicates. Second, the percentage of read-in at each 4sU-
seq time point of infection was calculated as the percentage of upstream transcription in infected cells
minus the percentage of downstream transcription in uninfected cells. Negative values were set to 0.

Code availability. Workflows for PI calculation, metagene analyses, clustering, and figure creation
were implemented and run in Watchdog (71, 72) and are available at https://doi.org/10.5281/zenodo
.7322848. Corresponding Watchdog modules are available in the Watchdog module repository (https://
github.com/watchdog-wms/watchdog-wms-modules/).
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(a)

(b)

Fig. S1 Heatmaps of PRO-seq profiles on the sense strand in mock infection in a window of ±3 kb
around (a) the TSS positions identified from PROcap-seq and PRO-seq data of flavopiridol-treated HFF
or (b) annotated gene 5’ ends. For this purpose, PRO-seq profiles were divided by the maximum value
in the ±3 kb promoter window, resulting in a value of 1 for the position of the highest peak in PRO-seq
profiles. Hierarchical clustering of normalized PRO-seq profiles for all genes was performed using the hclust
function in R according to Euclidean distances and Ward’s clustering criterion. The central position in
the promoter window (= the identified TSS) is marked by a vertical magenta line.
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Fig. S2 (a-c) Metagene plot showing the distribution of PRO-seq profiles in sense (dark green and blue)
and antisense (gold and red) direction from -3 kb to +3 kb around the TSS for all analyzed genes for mock
infection (dark green and gold) and WT-F 3 h p.i. infection (dark blue and red). One gene without reads
on the sense strand in some of the analyzed samples was excluded. (b) and (c) show metagene curves
from (a) separately for antisense (b) and sense (c) direction. The color track at the bottom indicates
the significance of paired Wilcoxon tests comparing the normalized PRO-seq coverages of genes for each
bin between mock and WT-F 3 h p.i. infection. P-values are adjusted for multiple testing with the
Bonferroni method within each subfigure; color code: red = adj. p-value ≤ 10−15, orange = adj. p-value
≤ 10−10, yellow = adj. p-value ≤ 10−3. (d-i) Metagene plots showing the distribution of PRO-seq profiles
separately for antisense (d,f,h) and sense (e,g,i) direction for genes with increased PI (d,e), strongly
reduced PI (f,g) and slightly reduced PI (h,i). The color track at the bottom indicates the significance of
paired Wilcoxon tests comparing the normalized PRO-seq coverages of genes for each bin between mock
and WT-F 3 h p.i. infection.
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     cluster 27 (n=202)
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Fig. S3 Metagene plots showing the PRO-seq profile in sense direction from -3 kb to +3 kb around
the TSS for mock infection (dark green) and WT-F 3 h p.i. infection (dark blue) separately for example
clusters. Cluster numbers and number of genes in each cluster are indicated on top of subfigures. The color
track at the bottom of each subfigure indicates the significance of paired Wilcoxon tests comparing the
normalized PRO-seq coverages of genes for each bin between mock and WT-F 3 h p.i. infection. P-values
are adjusted for multiple testing with the Bonferroni method within each subfigure; color code: red = adj.
p-value ≤ 10−15, orange = adj. p-value ≤ 10−10, yellow = adj. p-value ≤ 10−3.
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Peak pattern no. clusters no. genes no. clusters no. genes
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TSS peak

13 1461 17 2986

Two approximately equally high peaks 2 232 4 296
Additional downstream peak higher than TSS
peak

0 0 7 834

none of the above 2 228 1 46

(b)

Fig. S4 (a) Positions, number, and relative heights of peaks identified in PRO-seq profiles in sense
direction for the 50 clusters. Mock infection is shown in light red and WT-F 3 h p.i. infection in turquoise.
Darker turquoise indicates that a peak is present at the same position in mock and WT-F 3 h p.i. infection.
The relative peak height is calculated as the peak height divided by the sum of all peak heights for the
same condition. Thus, a single peak has a value of 1, two equally high peaks both have a value of 0.5, and
so on. (b) Statistics on the number of clusters and number of genes with different types of peak patterns
defined by the number and relative height of peaks for mock and WT-F 3 h p.i. infection shown in (a).
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Fig. S5 Read coverage around the TSS in PRO-Seq data (sense strand only) for mock (green) and
WT-F infection (blue) at 3 h p.i. for example genes (gene name of the selected gene on the top left) in
different clusters (cluster number shown below subfigures). Read coverage was normalized to total number
of mapped reads and averaged between replicates. The identified TSS used in the analysis is indicated
by a short vertical line below each read coverage track. Gene annotation is indicated at the top. Boxes
represent exons, lines represent introns and direction is indicated by arrowheads. Genomic coordinates
are shown on the bottom. Please note that figures are not centered around the TSS, but a larger region
downstream of the TSS was included than upstream of the TSS.
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Fig. S6 Metagene plots showing the PRO-seq profile in sense direction from -3 kb to +3 kb around the
TSS for the pairwise comparisons of WT-F 1.5, 3 and 6 h p.i. infection for example clusters. Cluster
numbers and number of genes in each cluster are indicated on top of subfigures. The color track at the
bottom of each subfigure indicates the significance of paired Wilcoxon tests comparing the normalized
PRO-seq coverages of genes for each bin between the two time-points of WT-F infection. P-values are
adjusted for multiple testing with the Bonferroni method within each subfigure; color code: red = adj.
p-value ≤ 10−15, orange = adj. p-value ≤ 10−10, yellow = adj. p-value ≤ 10−3.
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Fig. S7 Metagene plots showing the PRO-seq profile in sense direction from -3 kb to +3 kb around the
TSS for the pairwise comparisons of ∆ICP22 and repair virus infection at 1.5 (left column), 3 (middle
column) and 6 h (right column) for example clusters. Cluster numbers and number of genes in each cluster
are indicated on top of subfigures. The color track at the bottom of each subfigure indicates the significance
of paired Wilcoxon tests comparing the normalized PRO-seq coverages of genes for each bin between the
two time-points of WT-F infection. P-values are adjusted for multiple testing with the Bonferroni method
within each subfigure; color code: red = adj. p-value ≤ 10−15, orange = adj. p-value ≤ 10−10, yellow =
adj. p-value ≤ 10−3.
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Fig. S8 Metagene plots showing the PRO-seq profile in sense direction from -3 kb to +3 kb around the
TSS for WT-F 3 h p.i. ± CHX (left column) and for mock infection and WT-F 3 h p.i.+CHX (right
column) for example clusters. Cluster numbers and number of genes in each cluster are indicated in
subfigures. The color track at the bottom of subfigures indicates the significance of paired Wilcoxon tests
comparing the normalized PRO-seq coverages of genes for each bin between the two conditions. P-values
are adjusted for multiple testing with the Bonferroni method within each subfigure; color code: red = adj.
p-value ≤ 10−15, orange = adj. p-value ≤ 10−10, yellow = adj. p-value ≤ 10−3.
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Fig. S9 (a-d) GC content and GC skew in promoter regions for example clusters (cluster numbers shown
on top of subfigures). For each gene GC content and GC skew was determined in 100 bp sliding windows
from -3 kb of the TSS to +3 kb of the TSS. Values for each sliding window were then averaged across genes
in this cluster. The bottom panel of each subfigure shows the PRO-seq profiles in mock and WT-F 3 h
p.i. infection for comparison. The color tracks at the bottom of PRO-seq panels indicate the significance
of paired Wilcoxon tests comparing the normalized PRO-seq coverages of genes for each bin between the
two time-points of WT-F infection. P-values are adjusted for multiple testing with the Bonferroni method
within each subfigure; color code: red = adj. p-value ≤ 10−15, orange = adj. p-value ≤ 10−10, yellow = adj.
p-value ≤ 10−3. (e) Boxplots showing the distribution of the GC content determined in sliding windows
of length 100 bp on the HSV-1 genome (GenBank accession JN555585.1, red) and the GC content of
motif occurrences in the HSV-1 genome for transcription factor motifs found to be either over-represented
(green) or under-represented (blue) in Clusters 6 and 32. Motif occurrences were determined using the
fimo function of the MEME suite.
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Fig. S10 (a,c,e) Percentage of genes exhibiting a peak in the PROcap-seq and PRO-seq data of
flavopiridol-treated HFF at particular positions for example clusters (indicated on the top left of sub-
figures). This includes all identified peaks for a gene not just the major peak used for identifying the TSS.
For this purpose, the region ± 3 kb around the identified peak was divided into bins of 60 bp and for each
bin the percentage of genes with a peak falling into this bin were calculated. The red dashed vertical line
marks the identified TSS. Green dotted vertical lines indicate peak positions in mock infection and blue
dotted vertical lines peak positions in WT-F infection at 3 h p.i. (b,d,f) Percentage of genes exhibiting
an annotated TSS in each 60 bp bin around the identified TSS for example clusters (indicated on the top
left of subfigures). TSS and peak positions in WT-F infection at 3 h p.i. are indicated as in (a,c,e)
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Fig. S11 Metagene plots of cRNA-seq profiles on the sense strand in mock and WT-17 infection at 1,
2, 4, and 8 h p.i. for example Clusters 6, 11, 39, and 47, which show broadening of peaks or additional
peaks originating or increasing in height in PRO-seq data during WT-F infection. For metagene plots of
PRO-seq profiles for these clusters see Fig. 2 and Fig. S3.
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Fig. S12 Metagene plots of dRNA-seq profiles on the sense strand in mock and WT-17 8 h p.i. infection
with and without XRN1 treatment for example Clusters 6, 11, 39, and 47, which show broadening of
peaks or additional peaks originating or increasing in height in PRO-seq data during WT-F infection. For
metagene plots of PRO-seq profiles for these clusters see Fig. 2 and Fig. S3.
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Fig. S13 (a-d) Scatter plots comparing log2 fold-changes (log2FC) in gene expression for analyzed genes
between mock and WT-F or WT-17 infection at 8 or 12 h p.i. from the studies of Rutkowski et al. (WT-17
8 h p.i., R), Djakovic et al. (WT-F 8 and 12 h p.i., D) and Pheasant et al. (WT-17 12 h p.i., P). Colors
indicate density of points from low (blue) to high (red). Black lines indicate the diagonal and gray lines
a fold-change of 2. (e) Heatmap showing log2 fold-changes for WT-F or WT-17 infection at 8 or 12 h
p.i. compared to mock for all genes differentially expressed (multiple testing adjusted p-value < 0.01)
in at least one virus strain or time-point of infection. Hierarchical clustering was performed in R using
Euclidean distances and Ward’s clustering criterion. Six broad clusters were identified and are marked by
colored rectangles on the right.
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Fig. S14 Metagene plots showing the PRO-seq profile in sense direction from -3 kb to +3 kb around
the TSS for mock infection (dark green) and WT-F 3 h p.i. infection (dark blue) separately for Clusters
7, 23, and 33 to 37, which exhibit a small extent of read-in transcription in 3-4 h p.i. 4sU-seq (see Fig.
5). Cluster numbers and number of genes in each cluster are indicated on top of subfigures. The color
track at the bottom of each subfigure indicates the significance of paired Wilcoxon tests comparing the
normalized PRO-seq coverages of genes for each bin between mock and WT-F 3 h p.i. infection. P-values
are adjusted for multiple testing with the Bonferroni method within each subfigure; color code: red = adj.
p-value ≤ 10−15, orange = adj. p-value ≤ 10−10, yellow = adj. p-value ≤ 10−3.
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(k)

Fig. S15 (a) Heatmaps of PRO-seq profiles for 0 h auxin-inducible degradation of NELF from the study
by Aoi et al. in a window of ±3 kb around the TSS positions identified from PROcap-seq and PRO-seq
data of flavopiridol-treated HFF. For this purpose, PRO-seq profiles were divided by the maximum value
in the ±3 kb promoter window, resulting in a value of 1 for the position of the highest peak in PRO-seq
profiles. Hierarchical clustering of normalized PRO-seq profiles for all genes was performed using the hclust
function in R according to Euclidean distances and Ward’s clustering criterion. The central position in the
promoter window (= the TSS identified in flavopiridol-treated HFF) is marked by a vertical magenta line.
(b-k) Metagene plots around the TSS of PRO-Seq profiles for mock and WT-F 3 h p.i. infection from the
study of Birkenheuer et al. (left column) and 0, 1, 2, and 4 h auxin-inducible degradation of NELF from
the study by Aoi et al. (right column) for example clusters showing (b-e) an increased downstream peak
or (f-k) only a reduced and slightly broadened TSS peak upon NELF degradation.
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Fig. S16 Read coverage around the TSS in PRO-Seq data (sense strand only) for mock (green) and
WT-F infection (blue) at 3 h p.i. for example host genes (gene name of the selected gene on the top
left) mentioned in the discussion. Read coverage was normalized to total number of mapped reads and
averaged between replicates. The identified TSS used in the analysis is indicated by a short vertical line
below each read coverage track. Gene annotation is indicated at the top. Boxes represent exons, lines
represent introns and direction is indicated by arrowheads. Genomic coordinates are shown on the bottom.
Please note that figures are not centered around the TSS, but a larger region downstream of the TSS was
included than upstream of the TSS.
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Abstract
Motivation: To date, no methods are available for the targeted identification of genomic subregions with differences in sequencing read distribu-
tions between two conditions. Existing approaches either only determine absolute read number changes, require predefined subdivisions of in-
put windows or average across multiple genes.

Results: Here, we present RegCFinder, which automatically identifies subregions of input windows with differences in read density between two con-
ditions. For this purpose, the problem is defined as an instance of the all maximum scoring subsequences problem, which can be solved in linear time.
Subsequently, statistical significance and differential usage of identified subregions are determined with DEXSeq. RegCFinder allows flexible definition
of input windows to target the analysis to any regions of interests, e.g. promoters, gene bodies, peak regions and more. Furthermore, any type of se-
quencing assay can be used as input; thus, RegCFinder lends itself to a wide range of applications. We illustrate the usefulness of RegCFinder on two
applications, where we can both confirm previous results and identify interesting gene subgroups with distinctive changes in read distributions.

Availability and implementation: RegCFinder is implemented as a workflow for the workflow management system Watchdog and available
at: https://github.com/watchdog-wms/watchdog-wms-workflows/

Contact: caroline.friedel@bio.ifi.lmu.de

Supplementary information: Supplementary data are available at Bioinformatics Advances online.

1 Introduction

Functional genomics assays using high-throughput sequenc-
ing provide unparalleled opportunities for investigating cellu-
lar processes at unprecedented detail. To name just two
examples, ChIP-seq and similar assays allow genome-wide
mapping of DNA–protein interactions, e.g. for transcription
factors and histones (Johnson et al., 2007). Precision nuclear
run-on analysis (PRO-seq) sequences nascent RNA 3’ ends
and thus allows studying active RNA Polymerase II (Pol II)
transcription in a strand-specific manner (Mahat et al., 2016).

To identify differences between conditions probed with
functional genomics assays, numerous computational and sta-
tistical methods have been developed. One commonly used
approach employs differential analysis methods on read count
data, e.g. DESeq2 (Love et al., 2014), to determine log2 fold-
changes in read counts and statistical significance for selected
genomic windows. These windows can be either user-defined,
e.g. windows around the transcription start site (TSS) for in-
vestigating promoter-proximal Pol II pausing, or identified us-
ing peak calling, e.g. for differential transcription factor
binding analysis. This approach is implemented in the
Bioconductor package DiffBind (Ross-Innes et al., 2012),
which applies DESeq2 or edgeR after identifying a consensus
peak set for all samples. This method considers only the total
number of reads in each genomic window, but not how the
reads are distributed. Thus, a change in the distribution of

reads within a window, e.g. due to changes in Pol II pausing
or occupancy of DNA binding proteins, without (significant)
changes in the total number of reads would not be identified
as differential.

To identify read distribution changes between conditions for
particular types of genomic windows (e.g. promoters, gene
bodies), metagene plots are commonly used. These show the
average read distribution profile for sets of genomic regions.
While they allow identifying general trends, individual genomic
windows can deviate substantially from the general trend and
changes affecting only a minority of genomic windows are of-
ten missed. Furthermore, observed changes can only be corre-
lated to other properties of individual genomic windows, such
as, e.g. gene length or sequence composition, by subdividing
windows into subgroups based on these other properties and
then performing metagene analyses separately for subgroups.
We previously used this approach to show that CDK12 inhibi-
tion triggers a Pol II processivity defect preferentially for long,
poly(A)-signal-rich genes (Chirackal Manavalan et al., 2019).
More recently, we used clustering of read distribution profiles
for promoter windows in PRO-seq data for Herpes Simplex vi-
rus 1 (HSV-1) infection to identify subsets of genes with differ-
ent Pol II pausing changes during HSV-1 infection (Weiß et al.,
2023). Metagene analyses of clusters showed that HSV-1 infec-
tion induced a downstream shift of Pol II pausing for the ma-
jority of host genes. While these metagene analyses provided
novel insights in the general impact of CDK12 inhibition and
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HSV-1 infection, respectively, they did not admit more detailed
analyses at single-gene level.

For analysis of Pol II pausing at single-gene level, pausing
indices (PIs) have been previously established as a standard
metric. The PI of a gene is calculated as the ratio of normal-
ized read counts in a window around the TSS (¼ promoter
window) divided by normalized read counts on the gene body
excluding the promoter. PIs are easy to calculate and are al-
tered by changes in the distribution of Pol II occupancy
around the TSS and on the gene body. However, while a re-
duction of PIs is commonly considered evidence of a loss or
reduction of Pol II pausing, it can also originate from shifts or
an extension of the pausing region downstream of the TSS, as
observed, e.g. for HSV-1 infection. Thus, PI changes can be
easily misinterpreted and results depend on how wide pro-
moter windows are defined.

De novo identification of regions with differential use be-
tween conditions can be performed with diffReps (Shen et al.,
2013), which was developed for identifying differential chro-
matin modification sites from ChIP-seq data. It first employs
a sliding window approach along the complete genome to
identify windows with a significant difference in read counts
between two conditions and then merges overlapping win-
dows. While diffReps does not require predefined regions of
interest as input, it also does not allow targeting the differen-
tial analysis to specific genomic windows of interests. Such ge-
nomic windows could not only be peak regions but also
promoters, gene bodies, enhancer regions or other types of ge-
nomic windows depending on the biological question. While
these windows are covered by the sliding windows, the posi-
tion of the sliding windows relative to the start and end of the
regions of interest varies. This complicates the comparison be-
tween different regions of interest. Furthermore, all sliding
windows are included in the differential analysis, increasing
the number of statistical tests performed (one per sliding win-
dow). Accordingly, more stringent multiple testing correction
is required, which reduces the sensitivity of the approach.

Detection of differentially covered genomic windows is also
commonly performed when identifying copy number variants
(CNVs) based on read depth (RD). However, these
approaches generally assume sudden shifts in RD between
consecutive genomic windows with different copy numbers
(Magi et al., 2017), which is often not observed for differen-
tial regions in functional genomics assays.

Here, we present RegCFinder, a novel method for identify-
ing subregions (¼ Regions of Change) of input windows with
differences in read distributions between two conditions.
RegCFinder can be applied to any type of functional genomics
assay and any user-defined genomic windows, such as peak
regions, promoters, genes, enhancers, etc. RegCFinder pro-
ceeds in two steps: First, regions of change are identified for
each input window by reducing this problem to the problem
of finding all non-overlapping maximal scoring subsequences
in a sequence of real numbers. Second, fold-changes in the rel-
ative use of these regions and statistical significance of fold-
changes are calculated using DEXSeq (Anders et al., 2012).
DEXseq was originally developed to determine differential
exon usage from exon counts in multiple RNA-seq replicates
for different conditions. This identifies exons of a gene whose
relative use compared with the other exons of the same gene
increases or decreases. By redefining “genes” as input win-
dows and “exons” as identified regions of change with
“filler” regions in-between, we can assess whether there is a

statistically significant difference in the use of these regions
across replicates of two conditions. We evaluate the useful-
ness of RegCFinder on the tasks of identifying changes in Pol
II pausing upon HSV-1 infection and Pol II processivity upon
CDK12 inhibition at single-gene level and compare it against
diffReps and XCAVATOR, an RD-based approach for CNV
detection. This confirmed both general results from our previ-
ous studies, but identified subsets of genes with different char-
acteristics not evident from metagene analyses.

2 Methods
2.1 General idea

The input to RegCFinder is a set of user-defined genomic win-
dows W (in BED format) and aligned read data (in BAM for-
mat) for two conditions c1 and c2 with two or more replicates
each (samples s11; . . . ; s1k and s21; . . . ; s2k with k � 2 the num-
ber of replicates). RegCFinder then first calculates density
functions of the read distribution for each condition and each
window in the following way: First, the number of reads map-
ping to each position i 2 w for each window w 2W are deter-
mined for each sample. This results in values
rw

11ðiÞ; . . . ; rw
1kðiÞ; rw

21ðiÞ; . . . ; rw
2kðiÞ 8i 2 w 8w 2W. Second,

read densities dw
11; . . . ;dw

1k;d
w
21; . . . ; dw

2k are calculated for all

w 2W and for each condition j 2 f1;2g as

dw
js ið Þ ¼

rw
js ið ÞP

i2w rw
js ið Þ

for s 2 1 : k½ �; i 2 w: (1)

Finally, the average density across replicates for each condi-
tion is calculated 8w 2W as

dw
j ið Þ ¼ 1

k

Xk

s¼1

dw
js ið Þ for i 2 w: (2)

In the ideal case, densities would be continuous functions
as exemplified in Figure 1a but due to noise in the sequencing
data, densities are more likely to look as shown in Figure 1b.

The key idea behind RegCFinder is to identify subregions of
input windows in which the density is higher in one condition
than in the other. In the example in Figure 1a, this would be
straightforward as we could simply determine the borders of
regions as those positions i 2 w for window w, where the two
density functions cross, i.e. where dw

1 ðiÞ ¼ dw
2 ðiÞ (or alternatively

where dw
1 ðiÞ � dw

2 ðiÞ ¼ 0, shown as dashed lines in Fig. 1a).
However, in the realistic scenario exemplified in Figure 1b, den-
sity functions can cross several times splitting the window into
many small regions. To prevent this, we want to tolerate some
crossovers between densities within a region, provided that the
density for one condition tends to be higher than the density for
the other condition for most of the region. In terms of the differ-
ences between conditions, i.e. dw

12 :¼ dw
1 � dw

2 (example in
Fig. 1c) or dw

21 :¼ dw
2 � dw

1 (example in Fig. 1d), this means that
we aim to identify regions in which either dw

12 or dw
21 contains

mostly positive values with few negative values in-between (col-
ored rectangles in Fig. 1c and d).

This reduces our problem to a well-known computational
problem, i.e. the problem of finding all maximum scoring sub-
sequences (AMSS) in a sequence of real numbers, which can
be solved in linear time (Ruzzo and Tompa, 1999). In the fol-
lowing sections, we describe the AMSS problem and how we
use the solution to this problem in RegCFinder.
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2.2 All maximum scoring subsequences

The input to the AMSS problem is a sequence X ¼
ðx1; . . . ;xnÞ of real numbers. The score Si;j of a subsequence
ðxi; . . . ;xjÞ of X is defined as

Si;j ¼
Xj

l¼i

xl: (3)

The score of an empty subsequence is 0.
A maximum scoring subsequence (MSS) of X is then de-

fined as a subsequence m ¼ ðxi; . . . ;xjÞ of X with the follow-
ing properties:

1) All proper subsequences m0 ¼ ðxk; . . . ;xlÞ of m have a
lower score than m, i.e. Sk;l < Si;j.

2) No proper supersequence of m fulfills property 1.

As the empty sequence is also a subsequence of any subse-
quence of X, Si;j > 0 for any MSS of X. Furthermore, the
MSS of X are disjoint and every xj 2 X with xj > 0, i.e. every
positive element of X, is contained in an MSS of X. The
AMSS problem is simply the problem of finding all MSS of X.
A linear-time algorithm for solving this problem was devel-
oped by Ruzzo and Tompa (1999).

2.3 Calculation of MSS in RegCFinder

RegCFinder implements the algorithm by Ruzzo and Tompa
to separately calculate all MSS for the sequences dw

12 ¼
ðdw

12ð1Þ; . . . ; dw
12ðjwjÞÞ and dw

21 ¼ ðdw
21ð1Þ; . . . ;dw

22ðjwjÞÞ for
each window w with two small modifications. First, we multi-
ply each element in the sequence by 100 to obtain larger val-
ues and, second, we subtract a small value from each element
in the sequence. This serves to prevent long stretches of zeroes
in a sequence, which would lead to artificially long MSS if the
sequence contains positive elements at the end of these long
stretches of zeroes. For instance, for X ¼ ð1;0; 0;0;
0;0; 0;0;0; 1Þ, the only MSS is the complete sequence.

The final input sequences for window w, for which MSS
are calculated in RegCFinder, are thus defined as

Xw
st ið Þ ¼ 100� dw

st ið Þ � q
jwj for 1 � i � wj j; s; t 2 1;2f g; s 6¼ t:

(4)

Here, q is a pseudocount, which is set to 1 by default. SincePjwj
i¼1 dw

s ðiÞ ¼ 1 for s 2 f1;2g, we have for s; t 2 f1;2g; s 6¼ t
that

Xjwj

i¼1

Xw
st ðiÞ ¼ 100�

Xjwj

i¼1

dw
st ðiÞ �

Xjwj

i¼1

q
jwj

¼ 100�
�Xjwj

i¼1

dw
s ðiÞ �

Xjwj

i¼1

dw
t ðiÞ

�
� q ¼ �q:

(5)

As a consequence, long MSS are penalized with a linear
penality function p kð Þ ¼ q

wj j � k, where k is the length of the
MSS. Thus, higher values of q lead to shorter MSS.

2.4 Filtering and merging of MSS

In the following, let M12 be the set of MSS determined for
Xw

12 and M21 be the set of MSS for Xw
21. As noted above, any

positive element of the input sequence X is contained in an
MSS. Thus, even without long stretches of mostly positive val-
ues, MSS will be identified. In the worst case, every positive
element will be an MSS of length 1, e.g. as for the sequence
X ¼ ð1;�2;1;�2;1;�2;1Þ (MSS underlined). Furthermore,
even random sequences can contain long MSS if they contain
a sufficient number of large positive elements larger than abso-
lute values of most negative values (see Fig. 2a and b).

To identify and remove such MSS that are no better than
random, we repeatedly randomly permute each of the input
sequences X by sampling jXj times from X without replace-
ment (default¼ 1000 randomizations). We then identify MSS
for the randomized sequences and remove all MSS for the
original sequence with a score less than or equal to the maxi-
mum MSS score identified for any of the randomized sequen-
ces. In case of the example shown in Figure 2c (calculated
from the example in Fig. 1d), all identified MSS are removed
with a score below the gray dotted line in Figure 2d. Thus, for
the example in Figure 1 only one region would be identified in
which the density for condition 2 is higher than the density of
condition 1 (red transparent rectangle in Fig. 1d). In this way,
RegCFinder also filters regions with only small differences in
the distributions (e.g. the region left of the left dashed vertical
line in Fig. 1a).

After filtering MSS, M12 and M21 are merged to obtain the
final regions of change. In case of overlapping MSS m12 2
M12 and m21 2M21, only the MSS with the highest score is
retained. Regions with higher density in condition 1 (c1) than
in condition 2 (c2) are denoted as c1 > c2 regions and regions
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Figure 1. Example illustrating the RegCFinder approach. (a) RegCFinder aims to identify regions with differences in read distributions between two

conditions. In the ideal case shown here, this can easily be done by identifying the intersection points of the corresponding density functions. (b)
Sequencing noise, however, leads to noisy read densities (dw

1 and dw
2 for condition 1 and 2, respectively) with multiple intersection points. Differences in

density functions are calculated from the densities in (b) resulting in sequences dw
12 :¼ dw

1 � dw
2 (c) and dw

21 :¼ dw
2 � dw

1 (d). Maximal scoring

subsequences (MSS) are calculated for these sequences and filtered based on randomization (see also Fig. 2). The shaded rectangles mark the final MSS
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with higher density in condition 2 than in condition 1 are
denoted as c2 > c1 regions.

2.5 Significance assessment using DEXSeq

To assess statistical significance of differential and log2 fold-
changes in relative use of the identified regions given the num-
ber of reads in each replicate, RegCFinder uses DEXSeq
(Anders et al., 2012). For this purpose, a new annotation file
is generated for DEXSeq with “genes” defined as the input
windows. The “exons” consist of the identified regions of
change and “filler” regions representing the genomic regions
within the window between and around regions of change.
For the example in Figure 1, five exons would be defined: two
regions of change (blue and red rectangle in Figure 1c and d,
respectively) and three filler regions (i) on the left of the first
region, (ii) on the right of the second region and (iii) between
the two regions. Read counts for exons are determined using
featureCounts (Liao et al., 2014) on input BAM files.
DEXSeq results are included in the final output file (in TSV
format), which contains coordinates of the identified regions,
their MSS score and their log2 fold-change and multiple test-
ing adjusted P-value from DEXSeq.

3 Results
3.1 Input data

We evaluated RegCFinder on two datasets, which we previ-
ously investigated using metagene analyses to identify

differences in Pol II pausing (Weiß et al., 2023) and Pol II
processivity (Chirackal Manavalan et al., 2019), respectively.
The first dataset was obtained with PRO-seq for mock infec-
tion and 3 h post wild-type (WT) HSV-1 infection (three repli-
cates each) by Birkenheuer et al. (2018). Here, mock infection
means that cells were exposed to the same medium as the
HSV-1-infected cells that lacked virus. We previously used
clustering of read distributions around the TSS and metagene
analyses of clusters to show that WT HSV-1 infection leads to
a downstream shift in Pol II pausing for most host genes
(Weiß et al., 2023). Unfortunately, the metagene analysis did
not allow further investigating this effect at single-gene level.
PI analysis on this dataset showed widespread reductions in
PIs for most genes, which can be misinterpreted as a loss in
Pol II pausing and increased elongation.

The second dataset consisted of ChIP-seq data for Pol II
and Ser2 phosphorylations (P-Ser2) of the Pol II carboxy-
terminal domain (CTD) in a cell line expressing an analog-
sensitive version of the CDK12 kinase (Chirackal Manavalan
et al., 2019). This analog-sensitive CDK12 is inhibited by the
ATP analog 3-MB-PP1. Three replicates were obtained each
with either DMSO (Ctl) or 3-MB-PP1 (Inhi) treatment for
4.5 h. We previously reported that CDK12 inhibition induces
a Pol II processivity defect characterized by a loss of ChIP-seq
read coverage toward 3’ ends of predominantly long, poly(A)-
signal-rich genes and a shift of the terminal P-Ser2 peak into
the gene body (Chirackal Manavalan et al., 2019) (see
Supplementary Fig. S7a for an example). Matching RNA-seq
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Figure 2. (a) Randomized and (c) original input sequence obtained from the example in Figure 1b and d. (b, d) MSS identified on the randomized (b) and

original (d) sequence. Each MSS is shown as a horizontal line covering the positions in the genomic window shown on the x-axis. The y-axis position of

the MSS indicates its score. The dashed line in (d) shows the maximum MSS score across 10 randomizations. All MSS with a score less or equal to this

score are discarded, resulting in the identification of the one region of change shown in Figure 1d
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of nuclear RNA showed that this was associated with prema-
ture transcription termination at poly(A) signals within gene
bodies.

Data preprocessing is described in the Supplementary
Material.

3.2 Changes in Pol II pausing during HSV-1 infection

We first applied RegCFinder to the PRO-seq samples of mock
and WT HSV-1 infection for promoter windows defined as
63 kb around the TSS of 7650 genes (with the default of
1000 randomizations). These TSS were previously identified
from PROcap-seq and PRO-seq data of flavopiridol-treated
uninfected human foreskin fibroblasts (Weiß et al., 2023) (see
Supplementary Material). PROcap-seq is a variation of PRO-
seq that specifically maps Pol II initiation sites. Flavopiridol
inhibits CDK9, which is required for the switch to active elon-
gation, and arrests Pol II in a paused state at the promoter.
This allows also identifying the TSS for genes that are not or
weakly paused in untreated cells.

RegCFinder identified a total of 7621 regions of change for
the input windows. For 7201 regions, a P-value was calcu-
lated by DEXSeq. The remaining 420 regions were excluded
by DEXSeq in the independent filtering step, which excludes
regions with low read counts. For 6958 regions (96.7% of
regions with P-values), a significant change was observed
(multiple testing adjusted P-value �0.01). For comparison, a
test with only 10 randomizations instead of the default 1000
randomizations identified 10 528 regions of change for which
DEXSeq calculated P-values, but only 88% of these were sta-
tistically significant (adj. P � 0.01). Thus, by increasing the
number of randomizations, significance of results can be im-
proved at the cost of reduced sensitivity.

Of the 7201 regions of change with P-values, 3414 had a
higher density in mock than WT (mock>WT regions) and
3787 had a higher density in WT (WT>mock regions). Fold-
changes determined by DEXseq were consistent with the
RegCFinder predictions as mock>WT regions had positive

log2 fold-changes in the comparison of mock versus WT and
WT>mock regions had negative log2 fold-changes
(Supplementary Fig. S1). In contrast, the median log2 fold-
change of the 10 072 filler regions was close to zero and only
1697 filler regions (17%) showed a statistically significant
change. Notably, with 10 randomizations, only 8% of the
filler regions were statistically significant. Since more random-
izations lead to more stringent filtering, some correct regions
of change identified with 10 randomizations are thus filtered
with 1000 randomizations and instead included as filler
regions.

Figure 3a visualizes the location of the identified regions
within the input promoter windows for the 4128 windows
containing at least one region with a P-value from DEXseq.
Here, each row represents one window and each column a
position in the window (from �3 kb upstream of the TSS to
þ3 kb downstream of the TSS, red ¼ mock>WT regions,
blue ¼ WT>mock regions, white ¼ filler regions or region
without DEXseq P-value). Windows were clustered according
to Euclidean distances and Ward’s clustering criterion. A cut-
off on the clustering dendogram was chosen manually to ob-
tain the 11 clusters marked in Figure 3a. Supplementary
Figure S2 shows log2 fold-changes in mock versus WT deter-
mined with DEXseq for regions with adj. P � 0.01 for win-
dows ordered as in Figure 3a. The latter confirms the high
consistency between log2 fold-changes determined by
DEXseq and the type of region determined by RegCFinder.

Figure 3a reveals both interesting subgroups as well as gen-
eral trends. With some exceptions (clusters 1–4), WT>mock
regions extended downstream of the TSS, while mock>WT
regions were located around or upstream of the TSS.
However, there were strong differences with regard to how
far downstream of the TSS the WT>mock regions extended.
For clusters 9, 10 and parts of cluster 11, the WT>mock
regions ended well before the 3’ end of the promoter win-
dows. This is consistent with a downstream shift of Pol II
pausing and confirmed by inspection of read distributions for

10248000 10249000 10250000 10251000 10252000 10253000

0.
0

0.
5

1.
0

1.
5

de
ns

ity
 * 

10
0 

(m
oc

k)

chr5

log2fc:0.7554, adj.p.:1.469e−08469e−08

10248000 10249000 10250000 10251000 10252000 10253000

0.
0

0.
4

0.
8

de
ns

ity
 * 

10
0 

(W
T)

chr5

log2fc:−0.5917, adj.p.:5.514e−14

1 2 3 4 5 6 7 8 9 10 11

0
5

10
20

30

Cluster

%
 re

ad
−i

n 
tra

ns
cr

. a
t 3

−4
 h

 p
.i.

(b)

(c)

(a)

Figure 3. (a) Heatmap showing the location and type of identified regions of change (red ¼mock>WT, blue ¼WT>mock) for 4128 windows with at least

one region with P-values determined by DEXSeq. For details, see the main text. The TSS is indicated by a black vertical line. (b) Read density in mock (red,

top panel) and WT (blue, bottom panel) infection for an example from cluster 10. Windows are shown in 5’–3’ direction, i.e. regions up- and downstream

of the TSS are to the left and right, respectively, of the TSS (black vertical line). Red shaded rectangle ¼mock>WT region, blue shaded rectangle ¼
WT>mock regions. Log2 fold-changes and adj. P-values in mock versus WT infection are shown in the top panel for mock>WT regions and in the bottom

panel for WT>mock regions. (c) Boxplots showing the distribution of % read-in transcription (for definition, see the text) at 3–4 h p.i. for the 11 clusters

marked in (a). The red horizontal line indicates the cutoff (5%) we previously used for identifying genes with read-in transcription
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individual genes (Fig. 3b) and metagene analyses
(Supplementary Fig. S3a). For other clusters (5–8, partly 11),
WT>mock regions extended to or close to the 3’ end of pro-
moter windows suggesting either a further downstream shift
of pause sites or increased elongation due to a loss of pausing.
While the metagene analyses suggest the former
(Supplementary Fig. S3b and c), inspection of individual genes
identifies both examples for increased elongation
(Supplementary Fig. S4a) and increased (relative) use of
downstream pause sites (Supplementary Fig. S4b). This
reflects the limits of metagene analyses due to averaging
across genes with potentially diverse patterns.

Interestingly, clusters 3 and 4 had long WT>mock regions
upstream of the TSS. We previously showed using 4sU-seq
that HSV-1 infection disrupts transcription termination, lead-
ing to extensive read-through transcription beyond poly(A)
sites that can extend for tens-of-thousands of nucleotides into
intergenic regions and into downstream genes (Rutkowski
et al., 2015). 4sU-seq is based on labeling newly transcribed
RNA with 4-thiouridine (4sU) in specific time intervals (here:
1 h intervals during infection) followed by sequencing of la-
beled RNA. Read-through transcription extending into a
downstream gene is denoted as “read-in transcription” and
calculated as expression in the 5-kb upstream of the gene start
divided by gene expression (Hennig et al., 2018). [Formal def-
inition: % read-in transcription¼ 100 � fragments per mil-
lion mapped reads (FPKM) in the 5 kb upstream of the gene
start divided by the gene FPKM. Values for uninfected cells
are subtracted from values for infected cells and negative val-
ues are set to 0]. Analysis of read-in transcription previously
determined using 4sU-seq for mock and 3–4 h p.i. HSV-1 in-
fection (Rutkowski et al., 2015) showed significant read-in
transcription for clusters 3 and 4 (Fig. 3c, metagene plots in
Supplementary Fig. S3d and e). Thus, WT>mock regions
identified by RegCFinder upstream of the TSS reflect read-in
transcription for these genes.

3.3 Impact of CDK12 inhibition on Pol II processivity

As a second analysis, we applied RegCFinder to ChIP-seq
data for Pol II and P-Ser2 with DMSO (Ctl) or 3-MB-PP1
(Inhi) treatment for 4.5 h. Here, we used windows covering
complete genes from �3 kb upstream of the TSS to þ3 kb
downstream of the transcription termination site (TTS). We
included only genes with a distance �5 kb to the next up- and
downstream gene (¼8086 gene windows).

More regions of change were identified for P-Ser2 (10 218
with P-values calculated by DEXseq) than for Pol II (7065)
and a larger fraction of P-Ser2 regions were significant (90%)
than of Pol II regions (83%). This can be explained by the
fact that Pol II ChIP-seq reads are often concentrated in the
promoter region due to Pol II pausing, resulting in lower cov-
erage on gene bodies (Yu et al., 2015). In contrast, P-Ser2
reads more evenly cover the gene body with a less prominent
peak shortly downstream of the TTS (see e.g. Supplementary
Fig. S7a). Again, log2 fold-changes determined by DEXSeq
were consistent with the direction of change identified by
RegCFinder (Supplementary Fig. S5).

For 3405 and 4639 genes at least one statistically signifi-
cant region of change was identified for Pol II and P-Ser2,
respectively. Here, 74% and 86%, respectively, of these
genes contained both a significant Inhi>Ctl and Ctl>Inhi
region. The heatmap in Figure 4 visualizes the identified
regions of change in Pol II and P-Ser2 for the 3534 genes

for which at least one region of change was identified in
both Pol II and P-Ser2 similar to Figure 3. Here, the posi-
tions of the identified regions relative to the 5’ (left) and 3’
end of the window (right) are shown. Regions were clus-
tered as described above and 15 clusters were obtained
from the clustering dendogram (marked in Fig. 4). Results
were generally highly consistent between Pol II and P-Ser2
ChIP-seq, with regions of changes of the same type identi-
fied at similar positions.

Clusters 1–5 exhibited the pattern we expected from our
previous metagene analysis, which showed a loss of Pol II
from gene 3’ ends and a shift of 3’ end P-Ser2 peaks into the
gene body upon CDK12 inhibition (Chirackal Manavalan
et al., 2019). Accordingly, Inhi>Ctl regions (red), i.e. regions
with a relative increase upon inhibitor treatment, were lo-
cated closer to the TSS and Ctl>Inhi regions (blue) were lo-
cated closer to the TTS. An example gene for cluster 1 is
shown in Supplementary Figure S7a. In this case, the
Inhi>Ctl region found for P-Ser2 approximately matched
the terminal P-Ser2 peak shifted upstream upon CDK12
inhibition.

Previously, we found that longer genes were more strongly
affected by CDK12 inhibition and loss of Pol II at gene 3’
ends resulted in a reduction in nuclear RNA levels for corre-
sponding genes (Chirackal Manavalan et al., 2019). As illus-
trated in the example gene in Supplementary Figure S7a, this
is not due to down-regulation of the complete gene, but rather
due to premature transcription termination leading to a loss
of reads in the 3’ end region of the gene. Consistent with this,
clusters 4 and 5, for which Inhi>Ctl regions ended relatively
close to the gene start, indicating a strong shift of Pol II from
the gene 3’ end toward the gene 5’ end, contained longest
genes (Supplementary Fig. S6). Moreover, clusters 1–5 all
showed a strong reduction in nuclear RNA levels upon
CDK12 inhibition and stronger reduction was observed for
clusters with Inhi>Ctl regions ending closer to the TSS
(Fig. 5).

For cluster 6, Inhi>Ctl regions in Pol II and P-Ser2 cover a
large fraction of the gene and are followed by only short or
no Ctl>Inhi regions at the 3’ end. Thus, the Pol II processivity
defect is only noticeable close to the gene 3’ end. Consistently,
these genes were short and little reduction in nuclear RNA
was observed. In contrast, cluster 8 showed similar patterns
as observed for the example in Supplementary Figure S7a, i.e.
an Inhi>Ctl region between two Ctl>Inhi regions for P-Ser2.
This central Inhi>Ctl region reflects the shift of the terminal
P-Ser2 peak into the gene body. Cluster 13 represents the one
example with strong divergence between the Pol II and P-Ser2
results. Manual inspection of example genes showed generally
low read coverage on gene bodies, in particular for Pol II,
explaining the low consistency between Pol II and P-Ser2
results.

The remaining clusters (clusters 7, 9–11, 14 and 15)
showed Inhi>Ctl regions downstream of relatively long
Ctl>Inhi regions in either P-Ser2 alone or in both Pol II and
P-Ser2. The Inhi>Ctl regions were not followed by additional
downstream Ctl>Inhi regions or only very short ones.
Notably, genes in these clusters did not show reduced expres-
sion upon CDK12 inhibition, with some even showing an in-
crease in expression. An example gene from cluster 15 is
shown in Supplementary Figure S7b. Here, no premature
transcription termination is observed and this gene is even
weakly up-regulated in nuclear RNA (log2 fold-change 0.36,
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adj. P ¼ 6:69� 10�6). The Inhi>Ctl region identified by
RegCFinder is located upstream of the terminal P-Ser2 peak.
While the summit position of the P-Ser2 peak is unchanged,
read distributions upstream of this peak clearly differ between
control and CDK12 inhibition.

In summary, RegCFinder identified interesting subsets of
genes that are not fully explained by our existing model of the
effects of CK12 inhibition on Pol II processivity developed
based on metagene analyses. One such subset is cluster 2,
which shows a strong shift of the terminal P-Ser2 peak into

Figure 4. Heatmap showing the location of identified regions of change in Pol II and P-Ser2 ChIP-seq data for control (Ctl) and CDK12 inhibitor (Inhi)

treatment. Location is shown relative to the window start and end. Inhi>Ctl regions are indicated in red and Ctl>Inhi regions are indicated in blue. Filler

regions and regions without a P-value calculated by DEXSeq are shown in white. For more details, see the main text

Figure 5. Boxplots showing the distribution of log2 fold-changes in nuclear RNA between CDK12 inhibitor and control treatment for the clusters from

Figure 4
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the gene body that cannot be explained by gene length alone.
Moreover, 46% of genes shown in Figure 4 (i.e. clusters 7, 9–
11, 14 and 15) showed changes in Pol II occupancy upon
CDK12 inhibition that do not appear to be directly linked to
premature transcription termination and warrant further
research.

3.4 Comparison to competing approaches

We compared RegCFinder against two alternative approaches
that focus on identifying differentially covered regions in the
genome: XCAVATOR, a RD-based approach for CNV detec-
tion (Magi et al., 2017), and diffReps, developed for detecting
differential chromatin modification sites (Shen et al., 2013).
Full details of the comparison can be found in the
Supplementary Material. In brief, XCAVATOR did not iden-
tify any differential regions on the PRO-seq and ChIP-seq
data, likely due to the absence of sudden shifts in read cover-
age. diffReps mostly identified regions with absolute changes
in RD. Consequently, results on the PRO-seq data differed
strongly. On the ChIP-seq data, diffReps identified a subset of
regions identified by RegCFinder on input genes.

4 Discussion

In this article, we present RegCFinder, a new approach for de-
termining differences between two conditions in sequencing
data. In contrast to previous approaches, it focuses on identi-
fying differences in the distribution of reads at single-gene, or
rather single-window, level. Given a set of input windows de-
fined by the user, RegCFinder identifies subregions of these
input windows, the so-called regions of change, in which one
condition has a higher read density than the other condition.
For this purpose, the problem is defined as an instance of the
AMSS problem, which can be solved efficiently in linear time
(Ruzzo and Tompa, 1999).

Since this problem definition considers only the distribution
of reads within the input windows but not the absolute read
numbers, statistical significance and log2 fold-changes in the
relative use of each identified region of change compared with
the rest of this input window are calculated with DEXSeq
from read counts. Since we also include “filler” regions that
are not part of any identified regions of change in the input
for DEXSeq, this step is not limited to identifying regions of
change as statistically significant. Indeed, in the two applica-
tions shown in this article, 8–17% of filler regions showed a
statistically significant change. Nevertheless, this is much
lower than the 84–96% of the regions of change identified by
RegCFinder that were statistically significant. Furthermore,
we observed a trade-off between sensitivity and specificity of
RegCFinder that can be tuned by adjusting the number of ran-
domizations used for filtering the identified MSS. Fewer ran-
domizations result in less stringent filtering while more
randomizations lead to filtering of some of the truly differen-
tial regions, which will then be included as filler regions.
Notably, for significance analysis, DEXSeq can be replaced
with any other method with a similar purpose.

Since RegCFinder is both agnostic to how input windows
are defined by the user and what type of sequencing data is
provided as input, it lends itself to a wide range of applica-
tions. Here, we illustrated the usefulness of RegCFinder on
two applications: (i) Pol II pausing changes upon WT HSV-1
infection analyzed using PRO-seq data and (ii) changes in Pol
II processivity upon CDK12 inhibition analyzed using ChIP-

seq of Pol II and P-Ser2. In both cases, we previously used
metagene analyses on subgroups of genes either defined (i) by
clustering of PRO-seq read distributions for mock and WT in-
fection (Weiß et al., 2023) or (ii) based on gene length or dif-
ferential gene expression (Chirackal Manavalan et al., 2019).
While the metagene analyses already yielded interesting novel
insights, we were frustrated by their limitations regarding the
analysis of individual genes, which motivated the develop-
ment of RegCFinder. Other approaches, in particular PIs,
were also unsatisfactory as they could not distinguish between
“normal” Pol II pausing changes with increased elongation
and the downstream shifts of pause sites in WT HSV-1
infection.

The analysis of PRO-seq data of mock and WT HSV-1 in-
fection confirmed the downstream shift of Pol II pausing to
less well-defined downstream pause sites for a large fraction
of genes (clusters 9, 10 and partly 11 in Fig. 3). For other
genes (clusters 5–8 and partly 11), increased read density in
WT infection downstream of the TSS extended until or close
to the end of the promoter window. An investigation of exam-
ple genes suggested that at least some of these genes may not
actually exhibit delayed Pol II pausing but rather increased
elongation on the whole gene body. Thus, RegCFinder now
allows more detailed analyses of these genes and their charac-
teristics compared with other genes for which pausing is
retained at downstream sites. Finally, RegCFinder also identi-
fied genes with read-in transcription originating from dis-
rupted transcription termination of an upstream gene. Thus,
no prior filtering of these genes was necessary.

Similarly, the analysis of Pol II and P-Ser2 ChIP-seq upon
CDK12 inhibition confirmed our previous observations for a
large fraction of genes. However, we also identified a large
number of genes with different patterns of changes in the Pol
II and P-Ser2 distribution that open up new avenues of inves-
tigation into the role of CDK12 not evident from the meta-
gene analyses.

RegCFinder also provides new possibilities for integrating
different data types. First, location of identified regions of
change for two or more types of data (e.g. different ChIP-seq
antibodies, different sequencing assays) or different experi-
ments can be easily compared with the heatmap approach
shown in Figure 4. Second, the new DEXSeq annotation cre-
ated from identified regions of change for one data type or ex-
periment can be directly used to calculate differential use on a
different data type or in a different experiment. For instance,
one could analyze if P-Ser2 regions showed the same differen-
tial use in Pol II ChIP-seq data or ChIP-seq data for other
CTD phosphorylations, elongation factors, histone modifica-
tions or in nuclear RNA-seq data.

The limitations of RegCFinder should also be noted. First,
it is designed for pairwise comparisons of conditions. Thus, it
cannot be used for segmentation of input windows given only
one condition and comparison of three or more conditions
requires comparison to a common reference (similar to other
differential approaches like differential gene expression or
exon usage). Second, depending on the noise level in the data,
the precise border positions of regions of change may be diffi-
cult to determine using the RegCFinder approach and thus
will likely vary between biological replicates or different
RegCFinder parameter settings. In cases in which borders can
be more accurately determined by other means, e.g. reads
crossing splice junctions in case of RNA-seq, it may thus be
better to use these other means or complement the
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RegCFinder results with such other information. Finally,
RegCFinder is targeted toward applications in which the read
distribution provides information, such as functional geno-
mics approaches based on short read sequencing, like ChIP-
seq, PRO-seq, ATAC-seq and more. While in principle
RegCFinder could also be applied to read densities obtained
from long-read sequencing, the applications usually addressed
by long-read sequencing likely are not suited for the
RegCFinder approach.

In summary, RegCFinder implements a novel approach for
identifying genomic regions with differences in read density
between two conditions. Due to its flexibility regarding the
definition of input windows and the type of input sequencing
data, we believe it will be of broad use for a wide range of bio-
logical questions.
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RegCFinder: targeted discovery of genomic

subregions with differential read density

Supplementary Material

Elena Weiß and Caroline C. Friedel

1 Data preprocessing

PRO-seq data were aligned against the human genome (GRCh37/hg19), human rRNA sequences, and
the HSV-1 genome (GenBank accession code: JN555585) using ContextMap2 version 2.7.9 [Bonfert
et al., 2015] (using BWA [Li and Durbin, 2009] as short read aligner and allowing a maximum indel size
of 3 and at most 5 mismatches). For the two repeat regions in the HSV-1 genome, only one copy was
retained each, excluding nucleotides 1–9,213 and 145,590–152,222 from the alignment. ChIP-seq reads
were aligned to the human genome (hGRCh38/g38) using BWA [Li and Durbin, 2009]. Reads with an
alignment score < 20 were discarded. SAM output files of aligners were converted to BAM files using
samtools [Danecek et al., 2021].

Log2 fold-changes in nuclear RNA for CDK12 inhibition vs. control were taken from our previous
publication [Chirackal Manavalan et al., 2019].

2 Identification of TSS

To identify TSS from the PROcap-seq and PRO-seq of flavopiridol-treated cells, the iTiSS program
[Jürges et al., 2021] was run separately for each sample in the SPARSE PEAK mode with standard
parameters. Afterward, the iTiSS TSRMerger program was used to select only peaks that were identified
in both samples within ±5 bp resulting in 136,090 putative TSS positions. These were further filtered by
requiring a maximum distance of 500 bp to the nearest annotated gene. This resulted in 42,193 potential
TSS positions for 7,650 genes. The TSS with the highest expression was selected for each gene.

3 Supplementary Figures
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Supplementary Fig. S1 Boxplot showing log2 fold-changes for mock vs. WT infection determined
with DEXseq for WT>mock, mock>WT regions and filler regions. Positive log2 fold-changes indicate
increased use in mock and negative log2 fold-changes increased use in WT.
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Supplementary Fig. S2 Heatmap illustrating log2 fold-changes in mock vs. WT determined with
DEXseq for regions of change with adj. p ≤ 0.01. The order of windows is the same as in Fig. 3a. Here,
all regions with log2 fold-change ≤ −2 or log2 fold-change ≥ 2 are shown with the darkest blue or red,
respectively. Filler regions and regions with no p-value or adj. p > 0.01 are shown in white.
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Supplementary Fig. S3 Metagene curves in the ± 3 kb around the TSS for mock (red) and WT (blue)
infection for selected clusters from Fig. 3 in the main manuscript (cluster numbers and number of genes
in each cluster on top of subfigures). For this purpose, the regions -3 kb to +3 kb of the TSS were divided
into 101 bp bins for each gene. For each bin, the average coverage per genome position was calculated
in a strand-specific manner for PRO-seq data and bin read coverages were then normalized by dividing
by the total sum of all bins. Metagene curves for each replicate were created by averaging results for
corresponding bins across all genes and then showing the average metagene curves across replicates.
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Supplementary Fig. S4 Read density in mock (red, top panel) and WT (blue, bottom panel) infection
for example windows from cluster 8. The black vertical line marks the TSS and windows are shown in
5’ to 3’ direction, i.e. regions up- and downstream of the TSS are to the left and right, respectively, of
the vertical line. mock>WT regions are marked by a red shaded rectangle and WT>mock regions by a
blue shaded rectangle. Log2 fold-changes and adj. p-values in mock vs. WT infection are shown in the
top panel for mock>WT regions and in the bottom panel for WT>mock regions.
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Supplementary Fig. S5 Boxplots showing log2 fold-changes for CDK12 inhibitor treatment (Inhi) vs.
control (Ctl) determined with DEXseq for Inhi>Ctl, Ctl>Inhi and filler regions determined from Pol II
(a) and P-Ser2 ChIP-seq (b). Positive log2 fold-changes indicate higher use in Inhi and negative log2
fold-changes higher use in Ctl.
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Supplementary Fig. S6 Boxplots showing the distribution of gene lengths for the clusters shown in
Fig. 4.
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(a)

(b)

Supplementary Fig. S7 Read coverage plots showing nuclear RNA-seq data on the respective strand
and Pol II and P-Ser2 ChIP-seq data for example genes ((a) UBE3C, from cluster 1 in Fig. 4, (b) TKT,
from cluster 15 in Fig. 4) for control (Ctl, blue) and CDK12 inhibitor treatment (Inhi, red). Read counts
were normalized to the total number of mapped reads per sample and averaged between replicates. Blue
and red boxes below Pol II and P-Ser2 tracks indicate identified regions of change in Pol II and P-Ser2
ChIP-seq data, respectively. Exon (boxes) and intron (lines) structure of corresponding genes is shown
on top of subfigures, with gene strand indicated by arrowheads.
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4 Comparison to competing approaches

4.1 Comparison to XCAVATOR

Since tools for discovery of copy number variants (CNVs) based on identifying changes in read depth
(RD) appear to be potentially useful for identifying regions with differential read distributions, we first
evaluated XCAVATOR [Magi et al., 2017] for our applications. XCAVATOR is an RD-based approach
that performs differential CNV detection between two conditions (instead of one condition against a
reference genome) and is able to also detect multiple copy amplifications. Thus, it appeared most
appropriate for identifying genomic regions with differential read distributions among the CNV tools we
researched.

Unfortunately, application of XCAVATOR to both PRO-seq data for mock and WT HSV-1 infection
from the study by Birkenheuer et al. [2018] and ChIP-seq data for Pol II and P-Ser2 with DMSO (Ctl)
or 3-MB-PP1 (Inhi) treatment for 4.5 h from the study by Chirackal Manavalan et al. [2019] did not
identify any differential regions. To test that we ran XCAVATOR correctly, we applied it also to low-
coverage whole genome shotgun read data from the 1000 genomes project (for individuals NA12878 and
NA12815) [1000 Genomes Project Consortium, 2015]. This test did identify ∼17,000 differential regions,
which excludes usage errors on our side. The likely explanation why XCAVATOR does not identify any
differential regions on the PRO-seq and ChIP-seq data is that changes observed on these data do not
follow the assumptions underlying RD-based tools for detecting CNVs. In brief, RD-based tools generally
assume that the number of reads mapping to any region of the reference genome (=read count) follows
a Poisson distribution and is proportional to the copy number of this region. Thus, the copy number for
a genomic region can be estimated from consecutive windows, which should show similar fold-changes
to the reference or between conditions (taking into account noise) if they have the same copy number.
Furthermore, sudden shifts between consecutive windows with different copy numbers are expected. In
contrast, changes in read counts for consecutive subwindows of the differential regions that RegCFinder
aims to identify may in- or decrease (see e.g. Fig. 1c,d) and no sudden shifts are observed at the end
of the differential regions. It is thus not surprising that XCAVATOR (and similar tools) cannot recover
these types of differential regions, for which they were not developed.

4.2 Comparison to diffReps

We also compared RegCFinder against diffReps [Shen et al., 2013]. diffReps also pursues a sliding
window-based approach on the whole genome to identify differential regions similar to RD approaches
for CNV detection. However, it first determines the significance of a change within each sliding window
separately using a negative binomial distribution. Subsequently, diffReps merges overlapping significant
windows and recalculates significance of merged windows. This does not require (approximately) the
same fold-changes for all subwindows of a differential region and no sudden shifts at the end of regions.

We applied diffReps to both the PRO-seq data and ChIP-seq data using default parameters (in
particular, window size = 1000, step size = 100). For this purpose, sequence alignments in BAM format
were first converted to the BED format required by diffReps using the bamtobed utility of BEDTools
[Quinlan and Hall, 2010]. Since diffReps uses a sliding window approach across the complete genome, no
target windows can be defined. To compare diffReps results against RegCFinder, we then analyzed the
overlap of significant regions identified by diffReps to input windows used for RegCFinder. Furthermore,
since diffReps was developed for ChIP-seq data, it does not consider read strand. Thus, the diffReps
analysis for the PRO-seq data was performed in an unstranded manner.

4.3 Results on PRO-seq data for HSV-1 infection

Application of diffReps to PRO-seq data for mock and WT HSV-1 infection identified a total of 71038
differential regions, with 30022 of these determined as up-regulated by diffReps in WT infection and 41016
as down-regulated. Almost all of these (70299 = 99%) were significant at an adjusted p-value cutoff of
0.01 (p-value calculated by diffReps). To directly compare results against RegCFinder, we evaluated
the 9040 differential regions identified by diffReps that overlapped the 7650 promoter windows used as
input for RegCFinder. Here, 6462 of the promoter windows overlapped with at least one differential
region identified by diffReps. Location of these differential windows is visualized in the heatmap in
Supplementary Fig. S8 on the left side in the same way as for the RegCFinder results in Fig. 3a . The
right side of Supplementary Fig. S8 shows regions identified by RegCFinder for these windows. Here,
“WT” (blue) indicates regions found to be up-regulated in HSV-1 infection by diffReps or WT>mock
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regions from RegCFinder and “mock” (red) down-regulated regions identified by diffReps or mock>WT
regions from RegCFinder. To identify distinct patterns in the regions identified by diffReps, we clustered
the heatmap for diffReps results according to Euclidean distances and Ward’s clustering criterion. The
RegCFinder regions in Supplementary Fig. S8 are ordered according the clustering on the diffReps
regions. This comparison showed that, with the exception of (parts of clusters) 7-10, the patterns of
changes identified by diffReps differed strongly from the changes identified by RegCFinder. If not noted
explicitly otherwise, differential regions mentioned below are differential regions identified by diffReps.

Here, clusters 1-5 represented promoter windows containing almost only differential regions down-
regulated in WT compared to mock. For most of these windows (clusters 1, 2, 4 and 5), these regions
covered the TSS and upstream (in case of clusters 2 and 5) or downstream regions (in case of clusters 4
and 5). Birkenheuer et al. previously showed using these PRO-seq data that HSV-1 infection leads to
a loss of Pol II both at gene promoters and gene bodies for the majority of human genes [Birkenheuer
et al., 2018]. This suggests that diffReps identified reduced presence of Pol II at promoters in clusters
1, 2, 4 and 5 as well as gene bodies in clusters 4 and 5, which was confirmed by manual inspection in
a genome viewer for example genes from these clusters (Supplementary Fig. S9a,b). Here, diffReps did
not identify the relative increases downstream of the TSS in HSV-1 infection found by RegCFinder for
many of these genes.

For diffReps clusters 2 and 5, for which down-regulated regions were also found upstream of TSS,
inspection indicated that this represented a reduction in antisense transcription from these promoters
(Supplementary Fig. S9c) or other close-by promoters on the opposite strand (Supplementary Fig. S9d).
Such pairs of close-by promoters on opposite strands with transcription diverging from these promoters
are denoted as divergent promoters. Notably, for most human promoters, transcription initiation is

Supplementary Fig. S8 Heatmap showing the location and type of differential regions identified by
diffReps (left side) or RegCFinder (right side) for 6462 windows with at least one differential region
determined by diffReps (adjusted p-value ≤ 0.01). The TSS is indicated by black vertical lines in both
cases. Windows were clustered according to the location of diffReps differential regions and RegCFinder
results are shown according to this order (Color scheme: red = regions down-regulated according to
diffReps or mock>WT regions according to RegCFinder, blue=regions up-regulated according to diffReps
or WT>mock regions according to RegCFinder).
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bidirectional but elongation occurs only in the sense direction while antisense transcription is quickly
terminated [He et al., 2008, Preker et al., 2008, Seila et al., 2008, 2009]. Reduced levels of Pol II at human
promoters during HSV-1 infection thus likely also lead to reduced antisense transcription. While PRO-
seq data is strand-specific, diffReps does not consider strand as noted above and thus cannot distinguish
between changes in sense and antisense transcription. In summary, diffReps clusters 1-5 predominantly
reflect the loss of Pol II on host genes and thus changes in absolute levels of Pol II, but not differences
in the distribution of Pol II.

Clusters 6, 9, 11-14 represent windows for which regions up-regulated in HSV-1 infection are found
upstream of the TSS by diffReps. Analysis of read-in transcription (Supplementary Fig. S9e) and manual
inspection of example genes indicated that up-regulated regions upstream of the TSS partly resulted from
either (i) read-in transcription from upstream genes (in particular for some windows in clusters 12 and
14, example in Supplementary Fig. S10a), (ii) divergent promoters (Supplementary Fig. S10b) or (iii)
promoters for which (non-productive) antisense transcription continued further into upstream regions
before it was terminated (Supplementary Fig. S10c). Consistent with (i), RegCFinder also identified
WT>mock regions upstream of the TSS for some windows in diffReps clusters 6, 11, 12 and 14. However,
enrichment of read-in transcription for any diffReps clusters was by far not as high as for RegCFinder
clusters 3 and 4 (see Fig. 3c), for which a substantial fraction of genes showed read-in >5%, i.e. greater
than the cutoff we previously used to distinguish genes with read-in transcription. Thus, RegCFinder
clusters 3 and 4 more specifically identify genes with read-in transcription than any of the clusters from
the diffReps analysis.

Observations (ii) and (iii) are consistent both with the broadening of antisense Pol II pausing peaks
we previously reported [Weiß et al., 2023] and previously reported activation of antisense transcription in
HSV-1 infection [Wyler et al., 2017]. Both phenomena lead to increased transcription further upstream
of the TSS. However, up-regulated upstream regions were not consistently identified by diffReps for
all genes with extended antisense transcription. They were also not identified by RegCFinder, as it
performs the analysis in a strand-specific manner. To identify changes in antisense Pol II distribution,
input windows for the opposite strand would have to be used.

Up-regulated regions downstream of the TSS observed in clusters 7-10 and 12-14 represented increased
Pol II levels on the gene body. Generally, this was either due to (i) increased elongation along the whole
gene and potentially downstream of the gene due to read-through transcription beyond poly(A) sites
(example in Supplementary Fig. S10c), (ii) a downstream shift in Pol II pausing (Supplementary Fig.
S10d) or in a few cases (iii) read-through transcription from a downstream gene on the opposite strand
(Supplementary Fig. S10e). However, (i) and (ii) were also observed for windows for which diffReps
only identified down-regulated regions (clusters 1, 2, 4 and 5, e.g. Supplementary Fig. S9a). In contrast,
RegCFinder often identified WT>mock regions for genes in these clusters.

Accordingly, metagene plots for all diffReps clusters showed a downstream broadening of the PRO-seq
signal and differed only in the extent of broadening (Supplementary Fig. S11). Furthermore, consis-
tent with presence of read-in transcription for some genes in clusters 12 and 14, some small increases
upstream of the TSS were observed in metagene plots for these clusters (Supplementary Fig. S11d,e).
In contrast, metagene plots for RegCFinder clusters showed more diverse patterns, including not only
a downstream broadening of PRO-seq peaks but increased upstream levels for RegCFinder clusters 3
and 4 (Supplementary Fig. S3d,e), reflecting the read-in transcription observed for many genes of these
clusters, and increased downstream peaks for clusters 7, 8 and 10 (Supplementary Fig. S3a-c) Finally,
up-regulated regions identified by diffReps often included the major Pol II peak at the TSS, which was
reduced relative to downstream regions (Supplementary Fig. S10b-d,f). In summary, these observations
suggest that diffReps predominantly does not detect the change in read distributions but rather absolute
changes in read depth.
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Supplementary Fig. S9 (a-d) Read coverage plots showing PRO-seq coverage in mock (red) and WT
HSV-1 infection (blue) separately on the positive and negative strand for example genes. Input windows
(gray), differential regions identified by diffReps (DR, red=down-regulated in HSV-1 infection, blue=up-
regulated in HSV-1 infection) and regions of change identified by RegCFinder (RCF, red=mock>WT,
blue=WT>mock) are shown below read coverage tracks. Exon (boxes) and intron (lines) structure of
genes in this genomic region is shown on top of subfigures, with gene strand indicated by arrowheads.
The central gene for which the promoter window was defined is indicated in the top left of subfigures.
(e) Boxplots showing the distribution of the % read-in transcription for the 14 clusters obtained for
differential regions identified by diffReps in Supplementary Fig. S8. For details on calculation of read-in
transcription, see legend to Fig. 3c. 10
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Supplementary Fig. S10 Read coverage plots as in Supplementary Fig. S9 for example genes: (a)
example gene (ZNF304, on the right side) with read-in transcription from an upstream gene (ZNF543,
on the left side); (b) two genes (RSRC2, KNTC1) with divergent promoters on opposite strands; (c)
a gene (SRSF6) with increased elongation along the whole gene and read-through transcription; (d) a
gene (METTL3) with a downstream shift in Pol II pausing; (e) a gene (STX1A, reverse strand) for
which read-through transcription is observed for a downstream gene on the opposite strand (WBSCR22,
forward strand); (f) a gene (GPX1) with a downstream shift in Pol II pausing, for which the up-regulated
region identified by diffReps includes the TSS. 11
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Supplementary Fig. S11 Metagene curves in the ± 3 kb around the TSS for mock (red) and WT
HSV-1 (blue) infection for selected clusters from Supplementary Fig. S8 (cluster numbers and number
of genes in each cluster on top of subfigures). For a description on how metagene curves were calculated
see caption to Supplementary Fig. S3.
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4.4 Results on ChIP-seq data for CDK12 inhibition

Application of diffReps to Pol II and P-Ser2 ChIP-seq data identified 23215 differential regions on the
Pol II ChIP-seq data (23004 with adj. p-value < 0.01). 11590 of these were up-regulated and 11625
down-regulated. 10778 (∼46%) of the differential regions overlapped 3630 of the gene windows we had
defined as input for RegCFinder (Supplementary Fig. S12a). For the P-Ser2 ChIP-seq data 42064
differential regions were identified (41909 with adj. p-value < 0.01), with 15762 region up-regulated and
26302 down-regulated. 20313 (∼48%) of these differential windows overlapped 4776 of the gene windows
(Supplementary Fig. S12b).

Clustering analysis of the location heatmaps indicated that in both cases a large fraction of gene
windows (39% and 22% for the Pol II and P-Ser2 ChIP-seq data, respectively) belonged to one large
cluster with no specific pattern regarding the location of differential regions. This was even the case when
selecting a relatively stringent clustering cutoff for the P-Ser2 data, which resulted in 20 clusters. As
the differential regions identified by diffReps on the Pol II ChIP-seq data were fewer and covered smaller
fractions of input gene windows, we focused on the diffReps results on the P-Ser2 data for the comparison
against RegCFinder. Here, more distinctive patterns were observed and many clusters showed down-
regulation at or close to the end of genes upon inhibitor treatment (clusters 1, 4, 5, 8, 11, 12, 14-18 and
20) as expected from our previous study [Chirackal Manavalan et al., 2019]. Some, but not all of these
clusters also exhibited regions up-regulated upon inhibitor treatment upstream of these down-regulated
regions (clusters 15-20).

Supplementary Fig. S12c shows a direct comparison of differential regions identified by diffReps
(left) and RegCFinder (right) on the P-Ser2 data. diffReps identified on average twice as many regions
per window (4.25 on average) than RegCFinder (2.16 on average). Often this was due to diffReps
identifying multiple small regions where RegCFinder identified one large region covering all of these (see
e.g. Supplementary Fig. S13a-e). Thus, some sort of clustering of close-by differential regions from
diffReps would have to be applied to group these together into “meta-regions” for downstream analyses.

Apart from the large, non-specific cluster 9, RegCFinder generally identified the same differential
regions as diffReps – but commonly as one continuous region rather than the multiple smaller regions
identified by diffReps – as well as additional up- and/or downstream regions (e.g. Supplementary Fig.
S13b,d,f). Manual inspection of example genes confirmed that in many cases a clear relative increase in
reads was observed in these additional regions identified by RegCFinder (e.g. Inhi>Ctl regions in Sup-
plementary Fig. S13b,f). Other additional differential regions reflect a shift in the relative distribution
of reads from these regions to other regions in the window (e.g. Ctl>Inhi regions in Supplementary Fig.
S13d,e). That diffReps does not identify these regions as differential likely reflects the different objective
of diffReps, which focuses on identifying regions with differences in ChIP-seq enrichment rather than
changes in the distribution of reads within particular windows.

For the large non-specific cluster 9, diffReps identified only short (relative to gene length) differential
regions and no consistent patterns with no similarity to RegCFinder results. diffReps cluster 9 contained
very long genes (Supplementary Fig. S14a, e.g. Supplementary Fig. S13g). Consistently, genes from
RegCFinder clusters 4 and 5, which represented the clusters with the longest genes in the RegCFinder
clustering analysis, were strongly enriched in diffReps cluster 9. Here, diffReps cluster 9 contained
around 48% of RegCFinder clusters 4 and 5 genes, but diffReps results did not reflect the distinctive
pattern identified by RegCFinder with a relative increase in P-Ser2 close to the gene start upon CDK12
inhibition and a decrease of P-Ser2 further downstream. Thus, the loss of P-Ser2 signal towards gene
ends in particular for long genes is not as clearly reflected in diffReps results as in RegCFinder results.
In part, this is likely due to the fact that these genes are also among the most lowly expressed genes
(according to nuclear RNA-seq data, Supplementary Fig. S14b). Thus, diffReps likely does not identify
these differential regions due to low read counts (see e.g. Supplementary Fig. S13h).

In summary, our comparison shows that diffReps identifies only a subset of differential regions
with changes in the P-Ser2 distribution identified by RegCFinder on the input gene windows, while
RegCFinder recovers most differential regions identified by diffReps.
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(a) (b)

(c)

Supplementary Fig. S12 (a,b) Heatmap showing the location and type of differential regions identified
by diffReps on the Pol II (a) and P-Ser2 (b) ChIP-seq data for windows with at least one differential
region determined by diffReps (adjusted p-value ≤ 0.01). (c) Heatmap showing the location and type
of differential regions identified by diffReps (left side) or RegCFinder (right side) for the P-Ser2 ChIP-
seq data for windows with at least one differential region determined by diffReps (adjusted p-value ≤
0.01). Windows were ordered according to the clustering in (b). Color scheme: blue = regions down-
regulated according to diffReps upon inhibitor treatment or Ctl>Inhi regions according to RegCFinder,
red=regions up-regulated according to diffReps or Inhi>Ctl regions according to RegCFinder. Cluster
numbers are indicated on the left.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Supplementary Fig. S13 Read coverage plots showing nuclear RNA-seq data on the respective strand
and Pol II and P-Ser2 ChIP-seq data for example genes for control (Ctl, blue) and CDK12 inhibitor
treatment (Inhi, red). Read counts were normalized to the total number of mapped reads per sample
and averaged between replicates. Input windows (gray), differential regions identified by diffReps (DR,
blue=down-regulated upon inhibitor treatment, red=up-regulated upon inhibitor treatment) and regions
of change identified by RegCFinder (RCF, blue=Ctl>Inhi, red=Inhi>Ctl) are shown below read coverage
tracks. Exon (boxes) and intron (lines) structure of corresponding genes is shown on top of subfigures,
with gene strand indicated by arrowheads. Gene symbols of the central gene for which the window was
defined are shown on the top left.
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Supplementary Fig. S14 Boxplots showing distribution of (a) gene length and (b) gene expression
(calculated as fragments per million mapped reads =: FPKM) in nuclear RNA-seq data for control
samples for the 20 clusters identified from the location heatmap for differential regions identified by
diffReps on the P-Ser2 data from Supplementary Fig. S12b.
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Abstract 18 

Herpes simplex virus 1 (HSV-1) infection induces a loss of host transcriptional activity and 19 

widespread disruption of host transcription termination, which leads to an induction of open 20 

chromatin downstream of genes. In this study, we show that lytic HSV-1 infection also leads to 21 

an extension of chromatin accessibility at promoters into downstream regions. This is most 22 

prominent for highly expressed genes and independent of the immediate-early proteins ICP0, 23 

ICP22, and ICP27 and the virion host shutoff protein vhs. ChIPmentation of the noncanonical 24 

histone variant H2A.Z, which is strongly enriched at +1 and -1 nucleosomes, indicated that 25 

these chromatin accessibility changes are linked to a downstream shift of +1 nucleosomes. In 26 

yeast, downstream shifts of +1 nucleosomes are induced by RNA Polymerase II (Pol II) 27 

degradation. Accordingly, irreversible depletion of Pol II from genes in human cells using α-28 

amanitin altered +1 nucleosome positioning similar to lytic HSV-1 infection. Consequently, 29 

treatment with phosphonoacetic acid (PAA) and knockout of ICP4, which both prevent viral 30 

DNA replication and alleviate the loss of Pol II from host genes, largely abolished the 31 

downstream extension of accessible chromatin in HSV-1 infection. In the absence of viral DNA 32 

replication, doxycycline-induced expression of ICP27, which redirects Pol II from gene bodies 33 

into intergenic regions by disrupting transcription termination, induced an attenuated effect that 34 

was further enhanced by co-expression of ICP22. In summary, our study provides strong 35 

evidence that HSV-1-induced depletion of Pol II from the host genome leads to a downstream 36 

shift of +1 nucleosomes at host promoters. 37 

  38 
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Importance 39 

Lytic herpes simplex virus 1 (HSV-1) infection leads to a profound host transcription shutoff. 40 

Loss of RNA Polymerase II (Pol II) in yeast has previously been shown to relax +1 nucleosome 41 

positioning to more thermodynamically favorable sites downstream of transcription start sites. 42 

Here, we show that a similar phenomenon is likely at play in lytic HSV-1 infection. Sequencing 43 

of accessible chromatin revealed a widening of nucleosome-free regions at host promoters into 44 

downstream regions. By mapping genome-wide positions of the noncanonical histone variant 45 

H2A.Z enriched at +1 and -1 nucleosomes, we demonstrate a downstream shift of +1 46 

nucleosomes for most cellular genes in lytic HSV-1 infection. As chemical depletion of Pol II 47 

from genes also leads to a downstream shift of +1 nucleosomes in human cells, changes in 48 

chromatin architecture at promoters in HSV-1 infection are likely a consequence of HSV-1-49 

induced loss of Pol II activity from the host genome. 50 
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Introduction 52 

Herpes simplex virus 1 (HSV-1) is one of nine human herpesviruses, and more than half of the 53 

global population are latently infected with HSV-1 (1-4). HSV-1 does not only cause the 54 

common cold sores but is also responsible for life-threatening diseases, particularly in the 55 

immunocompromised (5). The HSV-1 genome consists of 152 kilobases (kb) of double-56 

stranded DNA and encodes for at least 121 large open reading frames (ORFs) and >100 small 57 

ORFs (6). Upon lytic infection, four of the five viral immediate early (IE) genes, i.e., ICP0, 58 

ICP4, ICP22 and ICP27, hijack the host gene expression machinery to ensure viral replication 59 

during early stages of infection (7-11). This results in the recruitment of RNA polymerase II 60 

(Pol II) from the host chromatin to viral genomes and a general shutoff of host transcription (7, 61 

9, 11-13). Pol II recruitment to viral genomes is predominantly facilitated by the viral IE protein 62 

ICP4 (13), which effectively sequesters Pol II into the viral replication compartments (14). The 63 

global host transcription shutoff is further exacerbated by ICP22-mediated inhibition of host 64 

transcription elongation (15) and the viral vhs (virion host shutoff) protein. vhs is a nuclease 65 

delivered by the tegument of the incoming viral particles that cleaves both viral and host 66 

mRNAs (16-18). We recently demonstrated that vhs continuously degrades about 30 % of host 67 

mRNAs per hour during the first 8 h of high multiplicity lytic infection of primary human 68 

fibroblasts (19).  69 

 70 

HSV-1 further disturbs host transcription by inducing a widespread disruption of host 71 

transcription termination (DoTT) resulting in read-through transcription for tens of thousands 72 

of nucleotides (nt) beyond cellular polyadenylation (pA) sites (20). Read-through transcription 73 

commonly extends into downstream genes, leading to a seeming transcriptional induction of 74 

these genes. DoTT negatively affects host gene expression in two ways: First, as read-through 75 

transcripts are not exported (21), DoTT prevents the translation of newly transcribed mRNAs 76 
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and thus dampens the host transcriptional response to infection. Second, it redirects a large 77 

fraction of ongoing Pol II transcription from host gene bodies into downstream intergenic 78 

regions and, thus, further exacerbates the depletion of Pol II from host genes. We recently 79 

showed that ICP27 is sufficient for inducing DoTT (22). Interestingly, transcription 80 

downstream of genes (DoG) is also induced in cellular stress responses (21, 23-25). 81 

Accordingly, infection with an ICP27-null mutant still induces read-through transcription, 82 

albeit at much lower levels, presumably due to a virus-induced cellular stress response (26). In 83 

contrast to stress-induced DoGs, HSV-1-induced DoTT is associated with a massive increase 84 

of chromatin accessibility downstream of genes (denoted as downstream open chromatin 85 

regions (dOCRs)) detectable by ATAC-seq (Assay for Transposase-Accessible Chromatin 86 

using sequencing) (21). dOCR induction requires strong absolute levels of transcription 87 

downstream of genes, thus it is predominantly observed for highly transcribed genes with strong 88 

read-through. Treatment with phosphonoacetic acid (PAA) during HSV-1 infection, which 89 

inhibits viral DNA replication (27, 28), results in increased dOCR induction (29). As viral DNA 90 

redirects Pol II from the host chromatin, PAA treatment mitigates the loss of Pol II from the 91 

host genome and thus increases absolute levels of transcription on host genes and – importantly 92 

for dOCR induction – read-through regions. We recently showed that ICP22 is both required 93 

and sufficient for inducing dOCRs in the presence of ICP27-induced read-through (29). 94 

 95 

As we previously only investigated chromatin accessibility downstream of genes, we now 96 

further explore our previously published ATAC-seq data to examine changes in chromatin 97 

accessibility around host gene promoters. This revealed a broadening of open chromatin regions 98 

at promoters into regions downstream of the transcription start sites (TSS) for most host genes. 99 

While it was consistently observed in the absence of ICP0, ICP22, ICP27, and vhs, PAA 100 

treatment and ICP4 knockout, both of which inhibit viral DNA replication and alleviate the 101 

HSV-1-induced loss of host transcription, substantially reduced the extension of open 102 
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chromatin at the TSS. Weiner et al. previously showed that Pol II depletion in yeast induces 103 

downstream shifts of +1 nucleosomes, in particular for highly expressed genes (30). 104 

Transcribing Pol II disturbs histone-DNA interactions and, at high transcription rates, leads to 105 

eviction of nucleosomes from the chromatin (31). Weiner et al. proposed that Pol II depletion 106 

relaxes chromatin, allowing nucleosomes to shift to more thermodynamically favorable sites.  107 

The noncanonical histone H2A variant H2A.Z is strongly enriched at gene promoters at +1 and 108 

-1 nucleosome positions (32, 33), likely as H2A.Z deposition increases nucleosome mobility 109 

and makes DNA more accessible to the transcriptional machinery (34). We thus performed 110 

ChIPmentation for H2A.Z during lytic HSV-1 infection to map +1 nucleosome positions. This 111 

showed that changes in chromatin accessibility in HSV-1 infection reflected a downstream shift 112 

of +1 nucleosomes. We observed similar changes in H2A.Z occupancy upon treatment with α-113 

amanitin, a deadly toxin found in Amanita mushrooms, which inhibits transcription by 114 

preventing translocation of Pol II and triggering degradation of Rpb1, the largest subunit of Pol 115 

II (35). Our findings thus provide strong evidence that depletion of Pol II from host genes during 116 

HSV-1 infection leads to the downstream shift of +1 nucleosomes to more thermodynamically 117 

favorable sites.  118 
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Results 120 

Widespread extension of chromatin-free regions downstream of transcription start sites 121 

To investigate changes in chromatin accessibility within promoter regions during HSV-1 122 

infection, we re-analyzed our recently published ATAC-seq data (29) for mock and wild-type 123 

(WT) HSV-1 infection of human fetal foreskin fibroblasts (HFF) as well as infection with null 124 

mutant viruses for the HSV-1 IE proteins ICP0, ICP22, and ICP27 as well as the tegument-125 

delivered late protein vhs. Samples for mock, WT, vhs, and ICP27 infection were collected 126 

at 8 h p.i., while samples for ICP0 and ICP22 infection were collected at 12 h p.i. To assess 127 

chromatin accessibility changes in promoter regions, we identified genomic regions with 128 

differential ATAC-seq read density using our recently published RegCFinder method (36). 129 

RegCFinder searches for genomic subregions for which the read distribution differs between 130 

two conditions (e.g., mock and WT infection). It is targeted towards regions of interest by 131 

specifying genomic windows as input (Sup. Fig 1a in supplemental material). For each input 132 

window, subregions that show differences in the distribution of reads within this window are 133 

identified. Statistical significance and log2 fold-changes for identified subregions are 134 

determined by DEXSeq (37). We defined the windows of interest as the ± 3kb promoter region 135 

around the TSS of 7,649 human genes. These TSSs were previously defined in our analysis of 136 

promoter-proximal Pol II pausing in HSV-1 WT infection (38) based on a re-analysis of 137 

published precision nuclear run-on sequencing (PRO-seq) and PROcap-seq (a variation of 138 

PRO-seq) data of flavopiridol-treated uninfected HFF. Inhibition of the CDK9 subunit of the 139 

positive transcription elongation factor b (P-TEFb) by flavopiridol arrests Pol II in a paused 140 

state at the TSS, allowing the mapping of Pol II initiation sites with both PRO- and PROcap-141 

seq. Filtering for high-confidence TSSs confirmed by both data sets and within a maximum 142 

distance of 500 bp to the nearest annotated gene on the same strand identified the major TSS 143 

for 7,649 genes. Using these 6 kb promoter windows as input, we applied RegCFinder to our 144 
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ATAC-seq data for WT and all null-mutant infections in comparison to mock to identify 145 

promoter subregions that show differences in the distribution of open chromatin between 146 

infection and mock.  147 

 148 

It should be noted that dOCRs can extend into downstream genes following very strong read-149 

through transcription. We nevertheless did not filter promoter windows beforehand to exclude 150 

genes for which dOCRs extended from an upstream gene into their promoter window for two 151 

reasons: (i) Since dOCRs represent changes in chromatin accessibility, RegCFinder should, by 152 

design, detect them; (ii) The farther the distance from the upstream gene, the less pronounced 153 

are changes in chromatin accessibility in dOCR regions, making it difficult to distinguish them 154 

from background. Any approach we tested to filter promoter windows overlapping with dOCRs 155 

from upstream genes before the RegCFinder analysis either excluded too many or too few 156 

windows. Thus, we decided to first run RegCFinder and then investigate which detected 157 

changes were due to the induction of dOCRs from upstream genes. 158 

 159 

RegCFinder identified 23,000-24,000 differential subregions (in the following also denoted as 160 

RegC, short for regions of change) for each virus infection compared to mock (WT: 23,357 161 

RegC, ICP0: 23,532, ICP22: 24,640, ICP27: 23,523, vhs: 23,716, Sup. Fig 1b). Between 162 

29 and 37 % of these showed a statistically significant difference in read density within the 163 

corresponding 6 kb promoter windows upon infection (multiple testing adjusted p-value (adj. 164 

p.) ≤ 0.01, WT: 8,552 RegC, ICP0: 6,740, ICP22: 5,710, ICP27: 7,188, vhs: 6,860). These 165 

represented between 3,129 (ICP22 infection) and 4,391 (WT) genes (Sup. Fig 1c). The lower 166 

fraction of statistically significant differential regions in ICP22 infection is likely due to the 167 

relatively low number of ATAC-seq reads mapping to the host genome compared to the other 168 

infections (~3.8-fold fewer, see Sup. Table 1 in supplemental material). The main reason for 169 
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this was the high fraction of reads mapping to the HSV-1 genome in ICP22 infection (70-170 

94%) compared to WT infection (~52%). We confirmed the higher proportion of viral reads in 171 

ICP22 infection compared to WT in an independent experiment for both 8 and 12 h infection 172 

with the ΔICP22 mutant and its parental WT strain F (WT-F, Sup. Table 1). Previously, 173 

McSwiggen et al. showed that the viral genome remains largely nucleosome-free and thus 174 

highly accessible (14). In contrast, the human genome is predominantly inaccessible except at 175 

promoters, gene bodies of highly expressed genes and enhancers (39). Accordingly, ATAC-seq 176 

coverage on the HSV-1 genome is essentially uniform (Sup. Fig 2a,b). The exception are the 177 

inverted repeat regions as we masked the terminal repeat copies from read alignment. Thus, the 178 

internal repeats exhibit approximately twice the coverage of the unique HSV-1 genome regions. 179 

The flat ATAC-seq coverage is observed for all null mutants, indicating that viral chromatin 180 

accessibility is not dependent on individual viral proteins.  181 

 182 

Fig 1a visualizes the positions of identified RegC for the 4,981 promoter windows containing 183 

at least one statistically significant (adj. p. ≤ 0.01) differential region for at least one virus 184 

infection compared to mock. Log2 fold-changes for statistically significant regions are 185 

illustrated in Sup. Fig 1d.  Here, blue indicates that the relative read density in that subregion 186 

is increased during virus infection compared to mock (infection>mock, denoted as i-RegC in 187 

the following), and red indicates that relative read density in that subregion is higher in mock 188 

compared to infection (mock>infection, denoted as m-RegC). Strikingly, our results showed a 189 

highly homogeneous picture for WT and null-mutant infections compared to mock, with 190 

changes in the same direction observed at approximately the same locations. To identify distinct 191 

patterns of changes in chromatin accessibility, we performed hierarchical clustering on the 192 

RegC location heatmap in Fig 1a. We selected a cutoff on the dendrogram to obtain 14 clusters 193 

identified by visual inspection. To visualize the average read density for each cluster, we 194 

performed metagene analyses of promoter windows combined with statistics on RegC locations 195 
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for each cluster (Fig 1b,d,f,g, Sup. Fig 3). Each 6 kb input window was divided into 101 bins 196 

of ~59 bp for metagene analyses. For each bin, ATAC-seq read counts were determined, 197 

normalized to sequencing depth, normalized to sum up to 1 for each input window, averaged 198 

across all windows in each cluster, and then averaged across replicates. In addition, we show 199 

which fraction of windows have an m- (red) or i-RegC (blue) for each bin.  Based on the location 200 

heatmap and the metagene analyses, we identified three major patterns of changes in chromatin 201 

accessibility around promoters during WT infection: (I) ATAC-seq peaks at the TSS that shift 202 

and/or broaden into regions downstream of the TSS during HSV-1 infection (clusters 1, 2, 4, 5, 203 

9, 10, 12, 14, a total of 3,472 genes, Fig 1b, Sup. Fig 3a-g, examples in Fig 1c, Sup. Fig 4a-204 

h), (II) ATAC-seq peaks at the TSS that shift and/or broaden into regions upstream of the TSS 205 

(clusters 6, 7, 11, a total of 919 genes, Fig 1d, Sup. Fig 3h,i, examples in Fig 1e, Sup. Fig 4i-206 

k), and (III) an increase in chromatin accessibility both up- and downstream of the TSS peak in 207 

infection compared to mock (cluster 13, 126 genes, Fig 1f, example in Sup. Fig 4l). Two 208 

clusters (3 and 8, a total of 464 genes) exhibited a combination of patterns I and II with an 209 

extension of the TSS peak in both up- and downstream direction (Fig 1g, Sup. Fig 3j, Sup. Fig 210 

4m,n).  211 

 212 

Most chromatin accessibility changes at promoters are independent of dOCR induction 213 

First, we evaluated which observed changes were due to dOCRs extending into promoter 214 

regions. For this purpose, we determined the fraction of promoter windows in each cluster that 215 

overlapped with dOCRs of the 1,296 genes for which we previously showed consistent dOCR 216 

induction across different HSV-1 strains (29) (Fig 2a). dOCR regions in mock, WT and all null 217 

mutant infections (average across two replicates) were identified as previously described (21, 218 

29) (see also Materials and Methods). It is important to note that some relatively short dOCRs 219 

are already observed in mock infection, but these substantially extend during HSV-1 infection 220 

in read-through regions. In this analysis, we also included ATAC-seq data obtained in the same 221 
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experiment for 8 h p.i. WT infection combined with PAA treatment (WT+PAA) to identify 222 

dOCR regions that are not as clearly detectable without PAA treatment but may still bias 223 

promoter analyses. WT (± PAA) and null mutant infections are ordered according to the overall 224 

extent of dOCR induction in Fig 2a. While no differences to mock infection were observed for 225 

ICP22 infection as expected, some clusters showed enrichment for dOCR overlaps upon 226 

WT(± PAA), ICP0, ICP27, and vhs infection. This increased with the overall extent of 227 

dOCR induction in these viruses. Notably, since read-through in ICP27 infection is strongly 228 

reduced, dOCR induction is also reduced – but not abolished – as dOCRs require strong read-229 

through transcription. 230 

 231 

However, no cluster had more than 20% of promoter windows overlapping with dOCRs even 232 

with PAA treatment, and most had <5% overlap, indicating that dOCRs represent only a very 233 

small fraction of observed changes in chromatin accessibility around promoters. Most 234 

importantly, the extension of accessible chromatin regions at promoters was also observed upon 235 

infection with an ICP22-null mutant. Moreover, in contrast to dOCRs, which increase upon 236 

PAA treatment, the extension of open chromatin at promoters was strongly reduced by PAA 237 

treatment, indicating that it is not linked to dOCRs (Fig 2b,c, Sup. Fig 5-18). Even for clusters 238 

12-14, which exhibited some enrichment for dOCRs, most differential regions were also 239 

detected in ICP22 infection (Sup. Fig 16-18) and thus not linked to dOCR induction. This 240 

was confirmed in the independent ATAC-seq experiment for 8 and 12 h infection with WT-F 241 

and its ΔICP22 mutant, which also confirmed the chromatin changes at promoters for a different 242 

HSV-1 strain (Sup. Fig 19). Notably, there was little change between 8 and 12 h infection in 243 

both WT-F and ΔICP22 infection. The absence of ICP0, ICP27, or vhs also had little impact on 244 

changes in chromatin accessibility around promoters (Sup. Fig 5-18) despite the longer 245 

duration of infection for the ICP0-null mutant and the different parental virus strains for the 246 
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null mutants. These observations suggest that there is an upper limit to the extent of chromatin 247 

accessibility changes at promoters in HSV-1 infection. We conclude that neither dOCR 248 

induction nor the activity of ICP0, ICP22, ICP27, or vhs alone explains most observed changes 249 

in chromatin accessibility at promoters in HSV-1 infection. 250 

 251 

Extension of accessible chromatin regions around promoters is linked to transcription 252 

To correlate observed changes to potential transcription factor binding, we next performed 253 

motif discovery for novel and known motifs in m- and i-RegC grouped either by cluster or 254 

pattern compared to the background of all promoter windows using HOMER (40) but found no 255 

enriched motifs. Functional enrichment analysis for Gene Ontology (GO) terms for each cluster 256 

also yielded no significant results, except for cluster 13 (pattern III). Cluster 13 was enriched 257 

for “mRNA splicing via the spliceosome” and related terms, however, this was mainly due to 258 

several snRNA genes in this cluster. Accordingly, cluster 13 was significantly enriched for 259 

snRNA genes (Fig 2d, adj. p. = 3 × 10−16, see Materials and Methods). In contrast, pattern I 260 

clusters tended to contain high fractions of protein-coding genes but no or very few snRNAs. 261 

Manual investigation of these few snRNAs either showed no shift or an overlap with other 262 

protein-coding genes. Thus, most snRNAs either showed no significant changes or a relative 263 

increase in chromatin accessibility on both sides of the TSS (= pattern III in cluster 13) but no 264 

down- or upstream shifts in chromatin accessibility.  Notably, snRNAs are transcribed by RNA 265 

Polymerase III (Pol III), not Pol II.  However, snRNA loci and other genes not transcribed by 266 

Pol II (rRNAs, tRNAs) are repeated several times in the human genome. The quality of read 267 

mappings to these loci is thus insufficient to draw a definitive conclusion. Consequently, few 268 

snRNA (55), almost no rRNA (12) and no tRNA loci were included in our analysis. In summary, 269 

this analysis provides clear evidence for an extension of accessible chromatin at promoters of 270 

many genes transcribed by Pol II, particularly protein-coding genes. 271 

 272 
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Strikingly, cluster 7 (= the most pronounced case of pattern II) was significantly enriched for 273 

antisense transcripts (adj. p. = 5 × 10−15). The other pattern II clusters 6 and 11, as well as 274 

cluster 8 (combined pattern I + II), also contained a relatively high fraction of antisense 275 

transcripts.  Consistently, we found that cluster 7 (adj. p. = 3.8 × 10−14) and to a lesser degree 276 

clusters 6 and 11 (adj.  p. = 0.006 and 0.041, respectively) were enriched for bidirectional 277 

promoters, i.e., promoters containing an annotated gene start within 1 kb upstream of the TSS 278 

of the target gene (= the gene around whose TSS the promoter window was originally defined, 279 

Fig 2e, see Fig 1e for an example). We thus hypothesized that pattern II essentially represented 280 

the mirror image of pattern I (mirrored at a vertical axis through the TSS) with the 281 

“downstream” broadening/shift of chromatin accessibility occurring in antisense direction for 282 

bidirectional promoters. To confirm this, we calculated the sense-to-antisense transcription 283 

ratio in promoter windows for all genes. For this purpose, we analyzed RNA-seq data of 284 

chromatin-associated RNA, which depicts nascent transcription, for mock and 8 h p.i. WT 285 

HSV-1 infection from our recent study (19). We also included in this analysis the 2,668 genes 286 

(denoted as NA group) without significant chromatin accessibility changes that were excluded 287 

from Fig 1a. Interestingly, metagene analyses for these genes also revealed a slight broadening 288 

of the TSS peak into downstream regions. However, this was much less pronounced than for 289 

pattern I clusters and, therefore, not detected by RegCFinder (Sup. Fig 20a). To calculate the 290 

sense-to-antisense transcription ratio, promoter windows were divided into the regions down- 291 

and upstream of the TSS, and expression in chromatin-associated RNA was determined in sense 292 

direction for the downstream region (=DSR) and in antisense direction for the upstream region 293 

(=UAR). We then compared log2 ratios of DSR to UAR expression between clusters (Fig 3a). 294 

Positive log2(DSR:UAR) ratios indicate that sense transcription downstream of the TSS is 295 

stronger than antisense transcription upstream of the TSS, and negative values indicate the 296 

opposite. Strikingly, all pattern II clusters had significantly lower DSR to UAR ratios than the 297 

remaining genes, while pattern I tended to have considerably higher ratios. While for pattern II 298 
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clusters 6 and 11 median values were still positive, values for cluster 7 with the most 299 

pronounced pattern II were commonly negative. Thus, transcription upstream of the TSS in 300 

antisense direction was the dominant mode of transcription for cluster 7 promoters, which 301 

means pattern II essentially just represents pattern I for the genes on the antisense strand.  302 

 303 

Next, we investigated differences in gene expression changes in WT compared to mock 304 

infection between patterns (Sup. Fig 20b). This showed a significant difference (adj. p < 0.001) 305 

for cluster 1, for which gene expression was more strongly down-regulated than for all other 306 

genes. No other consistent trends were observed between the different patterns. In contrast, 307 

gene expression (quantified as FPKM = fragments per kilobase million mapped reads, Fig 3b) 308 

differed considerably between patterns. Most pattern I clusters as well as cluster 3 (combined 309 

pattern I+II) exhibited median expression levels above average in mock (Fig 3b), which was 310 

statistically significant for 5 clusters. In contrast, clusters 6, 7 (pattern II) and 8 (combined 311 

pattern I+II) exhibited relatively low expression values, with cluster 7 genes having 312 

significantly lower expression. The latter is consistent with these genes being less expressed 313 

than their antisense counterpart in these bidirectional promoters. Genes without significant 314 

chromatin accessibility changes (NA group) also showed significantly lower expression, albeit 315 

not as low as cluster 7. These differences between clusters/patterns were generally maintained 316 

in HSV-1 infection at lower overall expression levels, consistent with the absence of differences 317 

in gene expression fold-changes between most clusters. When stratifying analyzed genes into 318 

five equal-sized groups according to FPKM in chromatin-associated RNA in uninfected cells, 319 

we observed that the fraction of genes with at least one significant RegC increased with gene 320 

expression (Fig. 3c). Consistently, pattern II was significantly enriched among the lowliest 321 

expressed genes and depleted among genes with medium to high expression (Fig. 3d). In 322 

contrast, cluster 5, 9 and 10 with pattern I were enriched among the most highly expressed 323 

genes. Metagene analyses on the five gene expression groups confirm this trend, with the 324 
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downstream extension of chromatin accessibility increasing with gene expression (Fig. 3e-g). 325 

Interestingly, pattern I cluster 1, which showed a significantly higher reduction in gene 326 

expression during HSV-1 infection than the other analyzed genes, was most frequent among 327 

genes with low to high expression but weakly significantly depleted among the most highly 328 

expressed genes. In summary, these results indicate that HSV-1 infection extends the accessible 329 

chromatin around promoters in the dominant direction of transcription for most host genes. 330 

Here, highly expressed genes and moderately expressed genes with stronger transcription 331 

reduction in HSV-1 infection are most strongly affected. Notably, although highly expressed 332 

genes do not generally exhibit a stronger reduction of transcription relative to their original 333 

expression levels in mock, the absolute drop in Pol II occupancy between mock and HSV-1 334 

infection is more pronounced than for more lowly expressed genes. Thus, our results show 335 

parallels to observations for yeast that Pol II depletion induces downstream shifts of +1 336 

nucleosomes, which extends nucleosome-free regions and accordingly accessible chromatin at 337 

promoters, most prominently for highly expressed genes (30). We thus hypothesized that the 338 

loss of Pol II during HSV-1 infection causes the extension of accessible chromatin at promoters 339 

during HSV-1 infection.  340 

 341 

Changes in chromatin accessibility manifest between 4 and 6 h of HSV-1 infection  342 

To investigate how early in infection changes in chromatin accessibility around promoters can 343 

be detected, we ran RegCFinder on an ATAC-seq time-course for 1, 2, 4, 6, and 8 h p.i. WT 344 

infection from our previous publication (21) (Fig 4a,b). While barely any significant 345 

differential regions were identified at 1 and 2 h p.i., 1,963 significant regions in 1,249 promoter 346 

windows were identified by 4 h p.i. and 7,558 significant regions in 3,989 promoter windows 347 

by 8 h p.i. (Fig 4b). Log2 fold-changes for significant differential regions generally reflected 348 

the patterns observed in the analysis for WT and null mutant infections (Fig 4a). The same 349 

applied when we separately determined fold-changes and significance on the time-course data 350 
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for the differential regions determined for WT vs. mock from our initial analysis (Sup. Fig 21) 351 

and when we performed metagene analyses for the clusters from Fig 1a (Fig 4d-f, Sup. Fig 22, 352 

example genes in Sup. Fig 23). Although the changes in chromatin accessibility at 8 h p.i. of 353 

the time-course were less pronounced than for the original WT vs. mock comparison at 8 h p.i., 354 

this nevertheless confirms the changes in chromatin accessibility around promoters in HSV-1 355 

infection in an independent experiment. The lower fraction of viral reads at 8 h p.i. in the time-356 

course experiment (~25%, Sup. Table 1) than both for the first WT experiment (~52%) and 357 

WT-F at 8 h (~61%) suggests a slower progression of infection in the time-course experiment, 358 

which likely explains why the effect was less pronounced. Again ATAC-seq read coverage on 359 

the HSV-1 genome remained essentially uniform throughout the time-course (Sup. Fig 2c,d). 360 

 361 

The time-course analysis also reveals that these changes begin to manifest by 4 h p.i., with 362 

1,249 genes already showing a significant change. Moreover, genes that showed an early effect 363 

(by 4 h p.i. or earlier) were significantly more highly expressed than genes that showed an effect 364 

by 6 h p.i. or later (Fig 4c). The lowest expression was observed for genes with a significant 365 

effect in the first WT experiment but not in the time-course. This again confirms the link 366 

between expression levels of a gene and the change in chromatin accessibility. Notably, we 367 

previously showed that transcriptional activity on host genes drops substantially in the first 4 h 368 

of infection to only 40% of transcription in uninfected cells, which was further halved until 8 h 369 

p.i. (19). Thus, the onset of the extension of accessible chromatin regions at promoters into 370 

downstream (for pattern I) and upstream (for pattern II) regions follows the onset of the drop in 371 

host transcription during infection. This provides further evidence for the hypothesis that loss 372 

of Pol II from host genes drives changes in chromatin accessibility at promoters. Since the 373 

slower progression of virus infection in the time-course experiment likely leads to a less 374 

pronounced loss of Pol II from host genes, this would explain the differences in effect between 375 

the time-course and the null mutant experiment. 376 
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 377 

ICP4 knockout reduces, and combined expression of ICP22 and ICP27 induces the 378 

extension of accessible chromatin 379 

We already showed above that PAA treatment substantially reduced the broadening and/or 380 

downstream shift of accessible chromatin regions at promoters (Fig 2b,c, Sup. Fig 5-18). This 381 

was also observed for 8 and 12 h p.i. PAA treatment of WT-F in our independent ATAC-seq 382 

experiment with little differences between the two time-points (Sup. Fig 24). Control 383 

experiments with mock ± PAA at 8 and 12 h showed no changes in chromatin accessibility at 384 

promoters (Sup. Fig 25). We previously found that PAA alleviates the depletion of Pol II from 385 

host genomes by inhibiting viral DNA replication (29). This provides further evidence that Pol 386 

II depletion leads to the observed shifts in chromatin accessibility at promoters. The original 387 

ATAC-seq experiment with null mutant infections also included infection with an ICP4 null 388 

mutant at 8 h p.i., which had not been previously published. Since ICP4 facilitates recruitment 389 

of Pol II to viral replication compartments (13, 14) and Pol II depletion from host promoters is 390 

not observed in ICP4 infection (13, 41), we now also investigated changes in chromatin 391 

accessibility in ICP4 infection. Strikingly, while we still observed the extension of accessible 392 

chromatin in down- (Fig 5a, Sup. Figs 26a-g,k,l) or upstream direction (Fig 5b, Sup Fig. 393 

26h,i), it was similarly reduced in ICP4 infection compared to WT infection as upon PAA 394 

treatment. The fraction of viral reads in ATAC-seq experiments was comparably low at 3-4% 395 

in both ICP4 and WT+PAA infection (Sup. Table 1). This is consistent with previous reports 396 

that there is no viral DNA replication in the absence of ICP4 (42, 43). Moreover, high chromatin 397 

accessibility in HSV-1 infection has been shown to be independent of ICP4 (13) and ATAC-398 

seq read coverage remained essentially uniform (Sup. Fig 2a,b), thus low ATAC-seq read 399 

numbers in ICP4 infection are not due to reduced chromatin accessibility of viral genomes. 400 

 401 
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We next tested for enrichment in promoter regions of ICP4 binding sites on the human genome 402 

previously identified with ChIP-seq by Dremel et al. (41). This showed a significant enrichment 403 

(adj. p. = 1.1 × 10−5) of ICP4 binding sites for genes with significant RegC (compared to the 404 

NA group of genes without any significant changes) and among these, a weakly significant 405 

enrichment in clusters 9 (pattern I, adj. p = 0.0046) and 11 (pattern II, adj. p.=0.0018). Notably, 406 

the only cluster with less frequent ICP4 binding than the NA group was cluster 13 (pattern III), 407 

which did not show shifts in chromatin accessibility. Thus, promoters of genes with significant 408 

shifts in chromatin accessibility are more frequently bound by ICP4 than genes without shifts, 409 

providing evidence that Pol II depletion from host genomes by ICP4 contributes to this 410 

phenomenon. However, since PAA does not inhibit ICP4 synthesis (27), the strongly reduced 411 

chromatin changes at promoters in WT + PAA infection indicate that in absence of viral DNA 412 

replication ICP4 activity is not sufficient to induce the full extent of chromatin accessibility 413 

changes. 414 

 415 

Nevertheless, the question remains why reduced changes in chromatin accessibility are 416 

observed even in absence of ICP4. A possible explanation is that activities of other immediate-417 

early proteins, which are still expressed and active in the absence of ICP4  (42-44), lead to an 418 

effective depletion of Pol II from host gene bodies. Two candidates for this are ICP27, which 419 

redirects Pol II transcription from gene bodies into intergenic regions by disrupting transcription 420 

termination (20), and ICP22, which inhibits host transcription elongation (15). In particular, 421 

HSV-1-induced disruption of transcription termination has a massive effect on remaining host 422 

transcriptional activity, with ~50% of newly transcribed RNA reads originating from intergenic 423 

regions (20). To investigate whether ICP27 and/or ICP22 expression alone can induce such 424 

changes, we re-analyzed our recently published Omni-ATAC-seq (a recent improvement of 425 

ATAC-seq (45)) data for telomerase-immortalized human foreskin fibroblasts (T-HFs) that 426 

express either ICP22 (T-HF-ICP22 cells) or ICP27 (T-HF-ICP27 cells) in isolation or 427 
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combination (T-HF-ICP22/ICP27 cells) upon doxycycline (dox) exposure. While we did not 428 

identify any significant RegC upon ICP22 expression alone, ICP27 expression alone led to 429 

significant changes for >2,000 genes (Fig 5c, Sup. Fig 27a,b). Combined ICP22 and ICP27 430 

expression led to more pronounced results, with the same patterns observed as for WT infection 431 

but in an attenuated manner (Fig 5c-e, Fig 27). Thus, the combined activity of ICP22 and ICP27 432 

is sufficient to induce a moderate extension of chromatin accessibility at promoters. RNA-seq 433 

analysis performed in parallel to ATAC-seq in the same experiment showed that ICP27 was not 434 

as strongly expressed in the T-HF-ICP22/ICP27 cells upon dox exposure as in the T-HF-ICP27 435 

cells (~3-fold less). In contrast, ICP22 was much more strongly expressed upon dox exposure 436 

in T-HF-ICP22/ICP27 cells than in the T-HF-ICP22 cells (>5-fold more). This indicates that 437 

direct effects mediated by ICP22 are important for further extending chromatin accessibility at 438 

promoters rather than any indirect effects via enhancement of ICP27 expression and thus read-439 

through.   440 

 441 

Nevertheless, our results showed that the pronounced changes observed in WT infection require 442 

viral DNA replication but neither ICP22 nor ICP27 expression. Notably, although ICP27 is 443 

required for optimal viral DNA replication, knockout of ICP27 does not completely abolish 444 

viral DNA replication (46). Consistent with this,  ~23% of ATAC-seq reads have a viral origin 445 

in ICP27 infection in contrast to only 3-4% in ICP4 and WT + PAA infection (Sup. Table 446 

1, Sup. Fig 2a,b). This is comparable to the 8 h p.i. time-point in the time-course experiment. 447 

Furthermore, depletion of Pol II from host promoters is still observed in ICP22 and ICP27 448 

infection (41). We conclude that the common feature between the different experimental 449 

conditions that exhibit promoter chromatin changes is the depletion of RNA Pol II from host 450 

promoter regions either by a generalized loss of Pol II or by Pol II translocation into downstream 451 

genomic regions upon disruption of transcription termination.   452 

 453 
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HSV-1 infection induces a downstream shift of +1 nucleosomes 454 

The HSV-1-induced changes in chromatin accessibility at promoters indicate a broadening of 455 

the nucleosome-free region around promoters in either sense (pattern I) or antisense (pattern II) 456 

direction. The extension of nucleosome-free regions requires shifts in +1 or -1 nucleosome 457 

positions, and depletion of Pol II has been shown to induce a downstream shift of +1 458 

nucleosomes in yeast (30). We, thus, performed ChIPmentation in HFF for mock and WT 459 

infection at 8 h p.i. with an antibody recognizing the C-terminal part of the non-canonical 460 

histone H2A.Z (n=3 replicates).  H2A.Z is highly enriched at gene promoters at -1 and +1 461 

nucleosome positions (32, 33) and is encoded by two genes, whose protein products H2A.Z.1 462 

and H2A.Z.2 differ by only three amino acids. While their genomic occupancy patterns are 463 

similar, there are quantitative differences, with H2A.Z.1 being more abundant at active 464 

promoters than H2A.Z.2 (47). Since the C-terminal regions of H2A.Z.1 and H2A.Z.2 differ 465 

only by the last amino acid, the antibody used for ChIPmentation recognizes both isoforms. A 466 

metagene analysis of all analyzed promoter windows showed the expected distribution of 467 

H2A.Z occupancy in mock infection with two peaks on both sides of the TSS, corresponding 468 

to -1 and +1 nucleosome positions (Sup. Fig 28a).  469 

 470 

Application of RegCFinder to H2A.Z ChIPmentation data generally identified a relative 471 

increase in H2A.Z downstream of the TSS during infection and a relative decrease upstream of 472 

the TSS for pattern I and combined pattern I+II clusters (Fig 6a, log2 fold-changes for 473 

differential regions shown in Sup. Fig 28b, examples in Fig 6b, Sup. Fig 29a-g,k,l).  Metagene 474 

analyses showed that this reflected a downstream shift and broadening of +1 nucleosome peaks 475 

as well as a relative increase of +1 nucleosome peaks compared to -1 nucleosome peaks (Fig 476 

6d, Sup. Fig 28c-i,m,n). In contrast, cluster 7 (most pronounced pattern II cluster) showed the 477 

opposite trend with relative increases in H2A.Z upstream of the TSS and decreases downstream 478 

of the TSS (example in Fig 6c). Consistent with pattern II representing pattern I in antisense 479 
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direction, the metagene analysis showed an upstream shift and broadening of the -1 nucleosome 480 

peak and a relative increase of the -1 nucleosome peak compared to the +1 nucleosome peak 481 

(Fig 6e).  However, this was only observed for a few genes in cluster 6 and cluster 11 (Fig 6a, 482 

Sup. Fig 28j,k, examples in Sup. Fig 29h,i), which fits with the observation that pattern II in 483 

the ATAC-seq data was also much less pronounced for these clusters. In contrast to pattern I 484 

and II, pattern III in the ATAC-seq data (cluster 13) was not associated with distribution 485 

changes in H2A.Z (Sup. Fig 25l, example in Sup. Fig 29j), thus it is not shaped by shifts in +1 486 

and/or -1 nucleosome positioning. This is consistent with pattern III being at least partly 487 

associated with dOCR induction for upstream genes, which we previously linked to impaired 488 

nucleosome repositioning following Pol II transcription downstream of genes (29).  489 

 490 

In summary, our data confirm that the broadening of chromatin accessibility around promoters 491 

results from down- and upstream shifts of +1 or -1 nucleosomes, respectively. Here, the shift 492 

direction depends on whether sense or antisense transcription represents the dominant direction 493 

of transcription at this promoter. Notably, a recent study in yeast proposed that -1 nucleosomes 494 

should be considered +1 nucleosomes for antisense transcription (48). This suggests that the 495 

loss of Pol II from host promoters during HSV-1 infection induces a shift of +1 and -1 496 

nucleosome positions similar to what was previously observed for yeast. To confirm that 497 

inhibition of transcription alone can lead to shifts of +1 and -1 nucleosomes in human cells, we 498 

re-analyzed published H2A.Z ChIP-seq data of HCT116 cells with and without α-amanitin 499 

treatment from the recent study by Lashgari et al. (49). They showed that α-amanitin treatment 500 

leads to reduced Pol II levels at gene TSSs and increased incorporation of H2A.Z at TSSs of 501 

transcribed genes. Here, Pol II ChIP and RT-qPCR of control genes showed that α-amanitin 502 

treatment reduced Pol II signal at the TSS to 10-20% of untreated cells and transcriptional 503 

activity to less than 40%. This is not much lower than what has previously been reported for 504 

HSV-1 infection: Abrisch et al. found that Pol II occupancy on gene bodies upon 4 h HSV-1 505 
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infection was reduced on average to around 20% (9), and we previously estimated that 506 

transcriptional activity was reduced to 20-40% between 4 and 8 h p.i. (19). Notably, in contrast 507 

to DRB and flavopiridol, which inhibit transcription via arresting Pol II in a paused state at the 508 

promoter, α-amanitin induces a loss of Pol II from the host genome, thus making it a better 509 

model of HSV-1-induced Pol II depletion. 510 

 511 

Lashgari et al. previously only analyzed changes in absolute H2A.Z levels at promoters and did 512 

not focus on changes in +1 and -1 nucleosome positioning. Metagene and RegCFinder analyses 513 

of the H2A.Z ChIP-seq data indeed showed a similar trend upon α-amanitin treatment as during 514 

HSV-1 infection (Fig 6f,g, Sup. Fig 30, examples are shown in Sup. Fig 31). Pattern I and 515 

pattern I+II clusters showed a massive broadening of the +1 nucleosome peak into downstream 516 

regions, even more pronounced than what is observed upon HSV-1 infection. In addition, they 517 

also exhibited a (less pronounced) broadening of -1 nucleosome peaks. Similarly, pattern II 518 

clusters showed a strong broadening of both -1 and +1 nucleosome peaks into upstream regions. 519 

In the case of cluster 7 (strongest pattern II), the broadening was much more pronounced for 520 

the -1 nucleosome (i.e., the +1 nucleosome in antisense direction) than for the +1 nucleosome 521 

(i.e., the -1 nucleosome in antisense direction). This analysis confirms that the depletion of Pol 522 

II from promoters leads to a downstream shift of +1 nucleosomes in human cells. In summary, 523 

our results demonstrate that the shift of +1 and -1 nucleosomes in the direction of transcription 524 

in HSV-1 infection is a consequence of Poll II depletion from host chromatin.  525 

Discussion  526 

Previously, we showed that HSV-1 infection disrupts chromatin architecture downstream of 527 

genes with strong read-through transcription. In this study, we reveal that chromatin 528 

architecture is also substantially altered at host gene promoters during HSV-1 infection. Here, 529 

57% of genes showed a statistically significant change in the distribution of chromatin 530 
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accessibility at promoters in WT HSV-1 infection, and metagene analyses indicated similar but 531 

less pronounced changes even for genes without statistically significant changes. In essence, 532 

we identified three types of changes: Most genes showed a shift and/or broadening of accessible 533 

chromatin into regions downstream of the TSS (pattern I). In contrast, ~900 genes showed the 534 

opposite trend with a shift and/or broadening of accessible chromatin into regions upstream of 535 

the TSS (pattern II). A further ~460 genes exhibited a combination of patterns I and II, with the 536 

broadening of accessible chromatin in the downstream direction being more pronounced than 537 

in the upstream direction. Only a small set of genes (126 genes) showed relative increases in 538 

chromatin accessibility up- and downstream of the TSS, which could partly be attributed to 539 

overlaps with dOCRs from upstream genes and partly to an enrichment for short non-coding 540 

RNAs not transcribed by Pol II, for which promoter windows were longer than the actual gene. 541 

We thus did not further investigate this pattern.  542 

 543 

As patterns I and II were still observed in the absence of ICP22, which is necessary for dOCR 544 

induction, these are not artifacts of dOCRs extending into downstream genes. On the contrary, 545 

PAA treatment, which increases dOCR induction, substantially reduced – though not 546 

completely abolished – patterns I and II. Furthermore, knockout of neither ICP0, ICP22, ICP27, 547 

nor vhs substantially affected patterns I and II. In contrast, ICP4 knockout, similar to PAA 548 

treatment, also alleviated the down- and upstream broadening of chromatin accessibility. Both 549 

PAA treatment and ICP4 knockout largely abolish viral DNA replication and consequently 550 

alleviate the depletion of Pol II from host genes, leading us to hypothesize that this HSV-1-551 

induced loss of Pol II causes the widespread extension of open chromatin at host gene 552 

promoters. This hypothesis was further supported by the observation that combined dox-553 

induced expression of ICP22 and ICP27 (and to a lesser degree dox-induced ICP27 expression 554 

alone) led to some broadening of chromatin accessibility at promoters despite knockout of 555 

neither of these proteins affecting the HSV-1-induced changes. Knockout of ICP22 or even 556 
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ICP27 does not sufficiently abolish viral DNA replication and thus has only a minor effect on 557 

the depletion of Pol II from host genomes and, consequently, on chromatin accessibility 558 

changes. In contrast, in the absence of viral DNA replication, ICP22 and ICP27 (and potentially 559 

other viral factors) sufficiently reduce Pol II levels on gene bodies to induce an alleviated form 560 

of those chromatin accessibility changes. Notably, we determined that the more pronounced 561 

changes upon co-expression of ICP27 with ICP22 compared to expression of ICP27 alone are 562 

likely due to  the direct effects of ICP22 on transcription. ICP22 interacts with P-TEFb, several 563 

transcriptional kinases, as well as elongation factors such as the FACT complex to inhibit 564 

transcription elongation of cellular genes (15). Moreover, both the relatively late onset of 565 

chromatin accessibility changes between 4 and 8 h p.i. in our time-course ATAC-seq analysis 566 

and the generally reduced levels of changes in the time-course, which had a lower fraction of 567 

viral reads at 8 h p.i., confirm that significant depletion of Pol II is necessary to observe 568 

substantial effects on chromatin accessibility. On the other hand, the little differences observed 569 

between 8 and 12 h of infection and the null mutants of ICP0, ICP22, ICP27 and vhs also 570 

suggest that there is an upper limit to the extent of  chromatin accessibility changes at promoters 571 

in HSV-1 infection. 572 

 573 

Analysis of transcriptional activity using RNA-seq of chromatin-associated RNA revealed that 574 

pattern I and II are indeed linked to transcription, with pattern I associated with more highly 575 

expressed genes and pattern II associated with bidirectional promoters with strong antisense 576 

transcription on the opposite strand. In the case of cluster 7, for which pattern II was most 577 

pronounced, antisense transcription was much higher than sense transcription. This was not due 578 

to the widespread induction of antisense transcription in HSV-1 infection, which we previously 579 

reported on (50), but these genes already exhibited strong transcription in antisense direction in 580 

uninfected cells originating from bidirectional promoters. Consistently, cluster 7 was enriched 581 

for genes annotated as antisense, and more than a third of these promoters contained an 582 
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annotated gene starting on the opposite strand within 1 kb upstream of the TSS of the target 583 

gene. Thus, pattern II is essentially just pattern I for the genes on the opposite strand in 584 

bidirectional promoters.  585 

 586 

Since the broadening of chromatin accessibility in promoter regions suggested an extension of 587 

nucleosome-free regions at promoters, we mapped +1 and -1 nucleosome positions by 588 

ChIPmentation of the H2A.Z histone variant enriched at these nucleosomes. Analysis of H2A.Z 589 

occupancy indeed showed a downstream shift of +1 nucleosomes for pattern I genes in HSV-1 590 

infection and an upstream shift of -1 nucleosomes for genes with the most pronounced pattern 591 

II (cluster 7). This further confirmed that pattern II just represents pattern I for genes on the 592 

antisense strand. It is also consistent with recent results from yeast by Bagchi et al. that -1 593 

H2A.Z-containing nucleosomes should be considered as +1 nucleosomes for antisense 594 

transcription (48). Downstream shifts of the +1 nucleosome to more thermodynamically 595 

favorable sites have previously been reported upon Pol II degradation in yeast by Weiner et al. 596 

(30), in particular for highly expressed genes. Re-analysis of published H2A.Z ChIP-seq data 597 

for α-amanitin-induced depletion of Pol II from gene promoters indicates that depletion of Pol 598 

II alone is sufficient to induce downstream shifts of +1 nucleosomes in human cells. Moreover, 599 

for genes with dominant antisense transcription (cluster 7), it resulted in upstream shifts of -1 600 

nucleosomes. Although 24 h α-amanitin treatment – as used for ChIP-seq – potentially leads to 601 

other effects beyond losing genome-bound Pol II that may explain chromatin changes, rapid 602 

degradation of Pol II with an inducible degron system has also been shown to increase 603 

chromatin dynamics similar to α-amanitin (51). The broadening of H2A.Z peaks in both HSV-604 

1 infection and upon α-amanitin treatment, respectively, indicate a less precise positioning of 605 

corresponding nucleosomes. This was more pronounced upon α-amanitin treatment and also 606 

observed for -1 nucleosomes, suggesting that loss of Pol II upon α-amanitin treatment is more 607 

pronounced than in HSV-1 infection. 608 
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 609 

One open question remaining concerns the biological significance of the observed changes in 610 

nucleosome positioning. Our analysis of gene expression changes did not suggest an effect on 611 

differential gene expression, rather the opposite with strong down-regulation leading to the 612 

same effect for less strongly expressed genes (cluster 1) as for highly expressed genes that are 613 

not more down-regulated than other genes. However, the downstream shifts in +1 nucleosomes 614 

may provide an explanation for the downstream shift of Pol II pausing we recently reported for 615 

HSV-1 infection (38). The +1 nucleosome was shown to play a role in promoter-proximal  616 

Pol II pausing between the promoter and the +1 nucleosome (52). In particular, the +1 617 

nucleosome represents a 2nd barrier to Pol II pause release independent of the main pausing 618 

factor negative elongation factor (NELF). Upon NELF depletion, Pol II stops at a 2nd pausing 619 

region around the +1 nucleosomal dyad-associated region (53). We previously observed that 620 

Pol II pausing in HSV-1 infection is shifted to more downstream and less well-positioned sites 621 

for the majority of genes (38), consistent with +1 nucleosome positioning also appearing less 622 

well-positioned upon HSV-1 infection in our H2A.Z ChIPmentation data. Alternatively, the 623 

shifts in +1 nucleosomes might also be linked to the mobilization of H1, H2 (including H2A.Z), 624 

and H4 histones during HSV-1 infection (54-56), which has been proposed to serve as a source 625 

of histones for viral chromatin assembly. Nevertheless, even if the changes in nucleosome 626 

positioning upon Pol II depletion are of no further functional consequence for HSV-1 infection, 627 

they are highly relevant for any functional genomics studies on chromatin architecture in 628 

HSV-1 infection or other conditions that deplete Pol II from the genome. If not properly taken 629 

into account, the broadening of accessible chromatin at promoters may be mistaken, e.g., for 630 

differential transcription factor binding, which could lead to wrong conclusions. Together with 631 

read-through transcription and dOCRs extending into downstream genes, this represents one 632 

more example of how HSV-1 infection confounds standard functional genomics analyses. In 633 
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any case, our study highlights that HSV-1 infection impacts chromatin architecture at promoters 634 

independently of the widespread changes downstream of genes mediated by ICP22. 635 

 636 

Materials and Methods  637 

Previously published sequencing data analyzed in this study 638 

ATAC-seq for mock and WT HSV-1 infection (strain 17, 8 h p.i.), WT infection with 8 h PAA 639 

treatment, infection with ICP0-null mutant (ΔICP0, strain 17, (57), 12 h p.i.), ICP22-null mutant 640 

(ΔICP22, R325, strain F, (58), 12 h p.i.), ICP27-null mutant (ΔICP27, strain KOS, (59), 8 h 641 

p.i.) and vhs-null mutant (Δvhs, strain 17, (60)) in of HFF were taken from our recent 642 

publication (29) (n=2 apart from ΔICP22 infection with n=4, GEO accession: GSE185234). 643 

This experiment also included infection with an ICP4-null mutant (ICP4, n12, strain KOS, 644 

(42), 8 h p.i.) which had not previously been published. ATAC-seq data for mock and WT 645 

HSV-1 infection of HFF at 1, 2, 4, 6 and 8 h p.i. WT infection (n=2 replicates, GEO accession: 646 

GSE100611) and chromatin-associated RNA-seq data for mock and 8 h p.i. WT infection (GEO 647 

accession: GSE100576) were taken from our previous publication (21). H2A.Z ChIP-seq data 648 

of untreated and α-amanitin-treated HCT116 cells were taken from the study by Lashgari et al. 649 

(49) (n=2, GEO accession: GSE101427).  650 

 651 

ChIPmentation, library preparation and sequencing 652 

HFF were purchased from ECACC and cultured in Dulbecco’s Modified Eagle Medium 653 

(DMEM, ThermoFisher #41966052) supplemented with 10% (v/v) Fetal Bovine Serum (FBS, 654 

Biochrom #S0115), 1× MEM Non-Essential Amino Acids (ThermoFisher #11140050) and 1% 655 

penicillin/streptomycin. Two days prior to infection, two million HFF cells were seeded in 15 656 

cm dishes. On the day of infection, cells had expanded to ~80% confluency. Cells were infected 657 

with the respective viruses as described in the results section (n=3). At 8 p.i., cells were fixed 658 

for 10 minutes at room temperature by adding 1% formaldehyde (final) directly to the medium. 659 
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Cells were scraped in 1mL of ice-cold 1x PBS containing protease inhibitor cocktail (1x) 660 

(Roche #11836153001) with an additional 1mM phenylmethylsulfonyl fluoride (PMSF). Cells 661 

were pelleted at 1500 rpm for 20 min at 4 °C. Supernatant was aspirated and cell pellets were 662 

frozen in liquid N2. 663 

 664 

Cell pellets were resuspended in 1.5 mL 0.25% [w/v] SDS sonication buffer (10 mM Tris 665 

pH=8.0, 0.25% [w/v] SDS, 2 mM EDTA) with 1x protease inhibitors and 1 mM additional 666 

PMSF and incubated on ice for 10 minutes. Cells were sonicated in fifteen 1 minute intervals, 667 

25% amplitude, with Branson Ultrasonics SonifierTM S-450 until most fragments were in the 668 

range of 200-700 bp as determined by agarose gel electrophoresis. Two million cells used for 669 

the preparation of the ChIPmentation libraries were diluted 1:1.5 with equilibration buffer (10 670 

mM Tris, 233 mM NaCl, 1.66% [v/v] Triton X-100, 0.166% [w/v] sodium deoxycholate, 1 mM 671 

EDTA, protease inhibitors) and spun at 14,000x g for 10 minutes at 4 °C to pellet insoluble 672 

material. Supernatant was transferred to a new 1.5 mL screw-cap tube and topped up with 673 

RIPA-LS (10 mM Tris-HCl pH 8.0, 140 mM NaCl, 1 mM EDTA pH 8.0, 0.1% [w/v] SDS, 674 

0.1% [w/v] sodium deoxycholate, 1% [v/v] Triton X-100, protease inhibitors) to 200 μL. Input 675 

and gel samples were preserved. Lysates were incubated with 1μg/IP of anti-H2A.Z antibody 676 

(Diagenode, #C15410201) on a rotator overnight at 4 °C.  677 

 678 

Dependent on the added amount of antibody, the amount of Protein A magnetic beads 679 

(ThermoFisher Scientific #10001D) was adjusted (e.g., for 1-2 μg of antibody/IP = 15 μL of 680 

beads) and blocked overnight with 0.1% [w/v] bovine serum albumin in RIPA buffer. On the 681 

following day, beads were added to the IP samples for 2 h on a rotator at 4 °C to capture the 682 

antibody-bound fragments. The immunoprecipitated chromatin was subsequently washed twice 683 

with 150 μL each of ice-cold buffers RIPA-LS, RIPA-HS (10 mM Tris-HCl pH 8.0, 50 0mM 684 

NaCl, 1 mM EDTA pH 8.0, 0.1% [w/v] SDS, 0.1% [v/v] sodium deoxycholate, 1% [v/v] Triton 685 
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X-100), RIPA-LiCl (10 mM Tris-HCl pH 8.0, 250 mM LiCl, 1 mM EDTA pH 8.0, 0.5% [w/v] 686 

sodium deoxycholate, 0.5% [v/v] Nonidet P-40) and 10 mM Tris pH 8.0 containing protease 687 

inhibitors. Beads were washed once more with ice-cold 10 mM Tris pH 8.0 lacking inhibitors 688 

and transferred into new tubes. 689 

 690 

Beads were resuspended in 25 μL of the tagmentation reaction mix (Nextera DNA Sample Prep 691 

Kit, Illumina) containing 5 μL of 5x Tagmentation buffer, 1 μL of Tagment DNA enzyme, 692 

topped up with H2O to the final volume and incubated at 37 °C for 10 minutes in a thermocycler. 693 

Beads were mixed after 5 minutes by gentle pipetting. To inactivate the Tn5 enzyme, 150 μL 694 

of ice-cold RIPA-LS was added to the tagmentation reaction. Beads were washed twice with 695 

150 μL of RIPA-LS and 1x Tris-EDTA and subjected to de-crosslinking by adding 100 μL 696 

ChIPmentation elution buffer (160 mM NaCl, 40 μg/mL Rnase A (Sigma-Aldrich #R4642), 1x 697 

Tris-EDTA (Sigma #T9285) and incubating for 1h at 37 °C followed by overnight shaking at 698 

65 °C. The next day, 4 mM EDTA and 200 μg/mL Proteinase K (Roche, #03115828001) were 699 

added, and samples incubated for another 2h at 45 °C with 1000 rpm shaking. Supernatant was 700 

transferred into a new tube and another 100 μL of ChIPmentation elution buffer was added for 701 

another hour at 45 °C with 1000 rpm shaking. DNA was isolated with MinElute PCR 702 

Purification Kit (Qiagen #28004) and eluted in 21 μL of H2O. 703 

 704 

DNA for the final library was prepared with 25 μL NEBNext Ultra II Q5 Master Mix, 3.75 μL 705 

IDT custom primer i5_n_x (10 μM); 3.75 μL IDT custom primer i7_n_x (10 μM); 3.75 μL H2O 706 

and 13.75 μL ChIPmentation DNA. The Cq value obtained from the library quantification, 707 

rounded up to the nearest integer plus one additional cycle, was used to amplify the rest of the 708 

ChIPmentation DNA. Library qualities were verified by High Sensitivity DNA Analysis on the 709 

Bioanalyzer 2100 (Agilent) before performing sequencing on NextSeq 500 (paired-end 35bp 710 
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reads) at the Core Unit Systemmedizin, Würzburg, Germany. All samples were sequenced at 711 

equimolar ratios.  712 

 713 

Read alignment 714 

The read alignment pipeline was implemented and run in the workflow management system 715 

Watchdog (61, 62) as already previously described (38). Public sequencing data were 716 

downloaded from SRA using the sratoolkit version 2.10.8. Sequencing reads were aligned 717 

against the human genome (GRCh37/hg19), the HSV-1 genome (Human herpesvirus 1 strain 718 

17, GenBank accession code: JN555585) and human rRNA sequences using ContextMap2 719 

version 2.7.9 (63) (using BWA as short read aligner (64) and allowing a maximum indel size 720 

of 3 and at most 5 mismatches). For the two repeat regions in the HSV-1 genome, only one 721 

copy was retained each, excluding nucleotides 1–9,213 and 145,590–152,222 from the 722 

alignment. SAM output files of ContextMap2 were converted to BAM files using samtools 723 

(65). Read coverage in bedGraph format was calculated from BAM files using BEDTools (66). 724 

Subregions of promoter windows (TSS ± 3 kb) with differential read coverage in ATAC-seq 725 

and H2A.Z ChIPmentation/-seq data were determined with RegCFinder (36). For this purpose, 726 

RegCFinder was applied to ATAC-seq data for all pairwise comparisons of mock to WT and 727 

null mutant infections as well as mock to each timepoint of infection for the time-course data 728 

and to H2A.Z ChIPmentation and ChIP-seq data for the comparison of mock and WT infection 729 

as well as untreated and α-amanitin-treated HCT116 cells.  730 

  731 
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Quality control 732 

Statistics on numbers of mapped reads and reads mapped to human and HSV-1 genomes were 733 

determined with samtools (65). Promoter/Transcript body (PT) scores were determined with 734 

ATACseqQC (66). For peak calling, BAM files with mapped reads were converted to BED 735 

format using BEDvTools (67) and peaks were determined from these BED files using F-Seq 736 

with default parameters (68). The fraction of reads in peaks (FRiP) was calculated with 737 

featureCounts (69) using identified peaks as annotation. Annotation of peaks relative to genes 738 

was performed using ChIPseeker (70).  739 

 740 

Data plotting and statistical analysis 741 

All figures were created in R and all statistical analyses were performed in R (67). Read 742 

coverage plots were created using the R Bioconductor package Gviz (68). 743 

 744 

Metagene and clustering analysis 745 

Metagene analyses were performed as previously described (69) using the R program developed 746 

for this previous publication (available with the Watchdog binGenome module in the Watchdog 747 

module repository (https://github.com/watchdog-wms/watchdog-wms-modules/)). For 748 

promoter region analyses, the regions −3 kb to +3 kb of the TSS were divided into 101 equal-749 

sized bins for each gene. For each bin, the average coverage per genome position was calculated 750 

and bin read coverages were then normalized by dividing by the total sum of all bins. Metagene 751 

curves for each replicate were created by averaging results for corresponding bins across all 752 

genes in a cluster/group and then averaged across replicates. For hierarchical clustering 753 

analysis, RegCFinder profiles of differential regions were calculated for each promoter window 754 

and comparison by setting each position in an m-RegC to 1, in an i-RegC to -1 and all other 755 

positions to 0.  RegCFinder profiles of each promoter window for each comparison were 756 

concatenated into one row in the matrix. Hierarchical clustering of the resulting matrix was then 757 
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performed using the hclust function in R according to Euclidean distances and Ward’s 758 

clustering criterion.   759 

 760 

Analysis of downstream open chromatin regions (dOCRs) 761 

Open chromatin regions (OCRs) were determined from ATAC-seq data by first converting 762 

BAM files with mapped reads to BED format using BEDTools (70) and then determining 763 

enriched regions from these BED files using F-Seq with default parameters (71). dOCRs for 764 

individual genes were calculated from OCRs as previously described (21, 29). In brief, dOCRs 765 

are determined for genes by first assigning all OCRs overlapping with the 10 kb downstream 766 

of a gene to this gene. Second, OCRs starting at most 5 kb downstream of the so far most 767 

downstream OCR of a gene are also assigned to this gene. In both steps, individual OCRs can 768 

be assigned to multiple genes. The second step is iterated until no more OCRs can be assigned. 769 

The dOCR of a gene is then defined as the region from the gene 3’end to the end of the most 770 

downstream OCR assigned to this gene. 771 

 772 

Gene expression analysis  773 

Number of fragments (=read pairs) per gene were determined from mapped paired-end RNA-774 

seq reads in a strand-specific manner using featureCounts (72) and gene annotations from 775 

Ensembl (version 87 for GRCh37). For genes, all fragments overlapping exonic regions on the 776 

corresponding strand by ≥ 25bp were counted for the corresponding gene. Fold-changes in gene 777 

expression and statistical significance of changes were determined using DESeq2 (73) and p-778 

values were adjusted for multiple testing using the method by Benjamini and Hochberg (74). 779 

Gene expression was quantified in terms of fragments per kilobase of exons per million mapped 780 

reads (FPKM). Only reads mapped to the human genome were counted for the total number of 781 

mapped reads for FPKM calculation.  782 
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 783 

Motif discovery and enrichment analysis 784 

Motif discovery was performed for each cluster separately for the i- and m-RegC regions using 785 

findMotifsGenome.pl script of the Homer suite (40), with our 7,649 input promoter windows 786 

as background. For this purpose, we used the hg19 annotation provided by Homer and 787 

automated trimming of input windows was disabled. Significant motifs were identified at a 788 

q-value (=False Discovery Rate (FDR) calculated with the Benjamini-Hochberg method (74)) 789 

cutoff of 0.01. Over-representation of Gene Ontology (GO) terms was performed separately for 790 

each cluster using the g:Profiler webserver (75) and the R package gprofiler2 (76), which 791 

provides an R interface to the webserver. As background gene list, the genes corresponding to 792 

our 7,649 input promoter windows were provided. P-values were corrected for multiple testing 793 

using the Benjamini-Hochberg method (74) and significantly over-represented GO terms were 794 

identified at an multiple testing adjusted p-value cutoff of 0.001. Enrichment of gene types 795 

(obtained from the Ensembl annotation (version 87 for GRCh37)) within clusters was 796 

determined using one-sided Fisher’s exact tests (with alternative = greater).  Enrichment (odds-797 

ratio >1) or depletion (odds-ratio < 1) of ICP4 binding sites from the study of Dremel et al. (41) 798 

within clusters as well as enrichment and depletion of clusters within gene groups with different 799 

expression levels were determined with two-sided Fisher’s exact tests. P-values were always 800 

corrected for multiple testing using the Benjamini-Hochberg method.  801 
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  999 

Figures 1000 

Fig 1: HSV-1 infection impacts chromatin accessibility around promoters for the majority 1001 

of host genes.  1002 

(a) Heatmap illustrating the location of differential regions (m- and i-RegC) identified by 1003 

RegCFinder on the ATAC-seq data for WT, ∆ICP0, ∆ICP22, ∆ICP27, and ∆vhs infection 1004 

compared to mock infection. Results are shown for 4,981 (out of 7,649) promoter windows 1005 

containing at least one statistically significant (adj. p. ≤ 0.01) differential region for at least one 1006 

virus infection compared to mock. Red and blue colors represent m-RegC (mock>infection) 1007 

and i-RegC (infection>mock) locations, respectively, within promoter windows. Here, each 1008 

heatmap row shows results for the same input window in different comparisons of virus 1009 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 26, 2024. ; https://doi.org/10.1101/2024.03.06.583707doi: bioRxiv preprint 

A.3 175



42 

 

infection to mock. Colored rectangles on top of the heatmap indicate which virus infection was 1010 

compared to mock. Black vertical lines in the center of each part of the heatmap indicate the 1011 

position of the TSS. Hierarchical clustering was performed according to Euclidean distances 1012 

and Ward’s clustering criterion, and the cutoff on the hierarchical clustering dendrogram was 1013 

selected to obtain 14 clusters (marked by colored rectangles between the dendrogram and 1014 

heatmap and numbered from top to bottom as indicated). Log2 fold-changes for differential 1015 

regions are shown in Sup. Fig 1d. (b) Metagene plot showing the average ATAC-seq profile 1016 

around the TSS ± 3 kb in mock (red) and WT (blue) infection for cluster 5, an example for 1017 

pattern I. For a description of metagene plots, see Materials and Methods. The colored bands 1018 

below the metagene curves in each panel indicate the percentage of genes having an m- or i-1019 

RegC (red or blue, respectively) at that position. (c) Read coverage in a ±3.6 kb window around 1020 

the TSS in ATAC-seq data of mock (red) and WT (blue) infection, for example, gene FBXO28 1021 

with pattern I. Read coverage was normalized to the total number of mapped reads for each 1022 

sample and averaged between replicates. A short vertical line below the read coverage track for 1023 

mock infection indicates the TSS. Gene annotation is indicated at the top. Boxes represent 1024 

exons, lines represent introns, and the direction of transcription is indicated by arrowheads. 1025 

Below the read coverage track for WT infection, m-RegC (red bars) and i-RegC (blue bars) are 1026 

shown for the comparison of WT vs. mock infection. (d) Metagene plot as in (b) for cluster 7, 1027 

the most pronounced case of pattern II. (e) Read coverage plot as in (c) for example gene 1028 

ARHGAP1 with pattern II. Here, the promoter window also contains the TSS of the ZNF408 1029 

gene on the opposite strand, and the accessible chromatin region is extended upstream of the 1030 

ARHGAP1 TSS, i.e., downstream of the ZNF408 TSS.  (f,g) Metagene plots as in (b) for (f) 1031 

cluster 13, which exhibits pattern III, and (g) cluster 8, one of two clusters exhibiting the 1032 

combined I+II pattern. 1033 

 1034 
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Fig 2: Changes in chromatin accessibility at promoters are mostly independent of dOCR 1035 

induction. 1036 

(a) Bar plots showing the percentage of promoter regions for each cluster overlapping with 1037 

dOCRs downstream of the 1,296 genes for which we previously showed consistent dOCR 1038 

induction across different HSV-1 strains (29). dOCR regions in mock, WT (± PAA treatment), 1039 

and null mutant infection were calculated as previously described (29) (see Materials and 1040 

Methods for further details), and the overlaps of promoter windows to dOCR regions 1041 

originating from an upstream gene were determined for each cluster. WT (± PAA treatment) 1042 

and null mutant infection are ordered according to the overall extent of dOCR induction. Only 1043 

a few clusters (12-14) showed some enrichment for dOCRs from upstream genes, which was 1044 

abolished in ICP22 infection. (b-c) Metagene curves showing average ATAC-seq profiles in 1045 

promoter windows for mock (red), WT (blue), WT+PAA (green), and ICP22 (orange) 1046 

infection for clusters 5 (b) and 7 (c). (d) Barplot showing the percentage of genes in each cluster 1047 

annotated as either protein-coding, long intervening/intergenic noncoding RNAs (lincRNA), 1048 

snRNA, antisense, or others in Ensembl. The significance of enrichment of each gene type in 1049 

each cluster was determined using a one-sided Fisher's exact test (with alternative = greater), 1050 

and p-values were corrected for multiple testing using the Benjamini-Hochberg method. Adj. 1051 

p. < 0.05 are indicated in the corresponding field of the barplot. (e) The percentage of 1052 

bidirectional promoters in each cluster was calculated as the percentage of promoter windows 1053 

containing a protein-coding, lincRNA, or antisense gene (according to Ensembl annotation) on 1054 

the opposite strand to the target gene starting within 1 kb upstream of the TSS of the target 1055 

gene. Enrichment and significance analysis and multiple testing correction were performed as 1056 

for (d) and adj. p. < 0.05 are indicated on top of bars. 1057 

 1058 

Fig 3: Changes in chromatin accessibility at promoters are linked to transcription. 1059 
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(a,b) Boxplots showing the distribution of (a) log2(DSR:UAR) ratios and (b) gene expression 1060 

(FPKM) values in chromatin-associated RNA in mock (red) and 8 h p.i. WT (blue) HSV-1 1061 

infection for all clusters (grouped by pattern, cluster numbers are shown below each boxplot) 1062 

and remaining genes without significant chromatin accessibility changes (NA group). DSR was 1063 

calculated as the expression in chromatin-associated RNA for the region downstream of the 1064 

TSS in the sense direction of the target gene and UAR as the expression in the upstream region 1065 

in the antisense direction. P-values for Wilcoxon rank sum tests comparing values in mock 1066 

infection for each cluster against all other analyzed genes are indicated below cluster numbers 1067 

and were corrected for multiple testing using the Bonferroni method. (c) Barplot showing the 1068 

percentage of genes with very low, low, medium, high and very high gene expression with at 1069 

least one significant differential region (RegC). Here, gene expression cutoffs for the five 1070 

groups were determined such that each group contains the same number of genes and are 1071 

indicated below the labels on the x-axis. Multiple testing corrected p-values for two-sided 1072 

Fisher’s exact tests comparing the fraction of genes with RegC between subsequent gene 1073 

expression groups are indicated on top of bars. (d) Percentage of genes within each cluster 1074 

among those genes with at least one significant RegC for the five gene expression groups from 1075 

(c). Significance of enrichment or depletion for each cluster in each gene group was determined 1076 

with two-sided Fisher’s exact tests and multiple testing correction was performed with the 1077 

method by Benjamini and Hochberg. Adj. p. < 0.05 are shown and are underlined in case the 1078 

cluster is enriched and not underlined if it is depleted. Clustered are ordered and colored 1079 

according to pattern (red-yellow: pattern I, green: pattern I + II, blue: pattern II, magenta: 1080 

pattern III). (e-g)  Metagene curves showing average ATAC-seq profiles in promoter windows 1081 

for mock (red) and WT infection (blue) for genes with very low, medium, and very high 1082 

expression from (b).  1083 
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Fig. 4: Changes in chromatin accessibility begin to manifest between 4 and 8 h p.i. 1084 

depending on gene expression 1085 

(a) Heatmap showing the log2 fold-changes determined with DEXSeq on the ATAC-seq time-1086 

course data (1, 2, 4, 6 and 8 h p.i. WT infection compared to mock infection) for statistically 1087 

significant differential regions (m- and i-RegC) identified by RegCFinder. For comparison, 1088 

log2 fold-changes for the WT vs. mock comparison from Fig 1a are also shown. Each row 1089 

represents the results for one of the input windows included in Fig 1a. Colored rectangles on 1090 

top indicate the time-point of infection or whether the original WT vs. mock comparison is 1091 

shown.  Statistically significant differential regions are colored according to the log2 fold-1092 

change determined by DEXSeq. Here, the color scale is continuous between -1 and 1, and all 1093 

log2 fold-changes >1 are colored the same red, and all log2 fold-changes <1 the same blue. 1094 

Promoter windows are ordered as in Fig 1a, and clusters are annotated by colored and numbered 1095 

rectangles on the left. (b) Number of statistically significant differential regions (m- and i-1096 

RegC) and number of genes with at least one statistically significant differential region 1097 

identified for each time-point of infection in the ATAC-seq time-course data. (c) Boxplot 1098 

showing the distribution of gene expression (FPKM) values in chromatin-associated RNA for 1099 

mock and 8 h p.i. WT infection for genes with significant changes in chromatin accessibility in 1100 

promoter windows (i) at 4 h p.i. or earlier, (ii) at 6 h p.i. but not yet at 4 h p.i., (iii) at 8 h p.i. 1101 

but not yet at 6 h p.i. and (iv) in the analysis shown in Fig 1a, but not yet at 8 h p.i. in the time-1102 

course ATAC-seq experiment. P-values for Wilcoxon rank sum tests comparing FPKM values 1103 

in mock infection between subsequent groups are also indicated. (d-f) Metagene curves of 1104 

ATAC-seq profiles in mock infection (red) and all time-points of infection (blue shades) from 1105 

the time-course experiment, for example, clusters 5 (pattern I, d), 7 (pattern II, e) and 13 (pattern 1106 

III, f). The colored bands below the metagene curves indicate the percentage of genes having 1107 

an i- or m-RegC (blue or red, respectively) at that position in the comparison of 8 h p.i. to mock 1108 
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infection from the time-course experiment. Metagene plots for all clusters are shown in Sup. 1109 

Fig 22. 1110 

Fig 5: Chromatin accessibility changes upon ICP4 knockout and dox-induced combined 1111 

ICP22 and ICP27 expression 1112 

(a-b) Metagene curves showing average ATAC-seq profiles in promoter windows for mock 1113 

(red), WT (blue), WT+PAA (green) and ICP4 (violet) infection for clusters 5 (a) and 7 (b). 1114 

Metagene plots for all other clusters are shown in Sup. Fig 26. (c) Heatmap showing the 1115 

location of differential regions (m- and i-RegC) identified by RegCFinder for T-HF-ICP27 cells 1116 

and T-HF-ICP22/ICP27 cells upon dox exposure. Each row represents the results for one of the 1117 

input windows included in Fig 1a. Promoter windows are ordered as in Fig 1a and clusters are 1118 

annotated as colored and numbered rectangles on the left. Log2 fold-changes for differential 1119 

regions are shown in Sup. Fig 27b. (d-e) Metagene curves showing average ATAC-seq profiles 1120 

in promoter windows for T-HF-ICP22/ICP27 cells with (blue) and without (red) dox exposure 1121 

for clusters 5 (d) and 7 (e). The colored bands below the metagene curves indicate the 1122 

percentage of genes having an m-RegC (red, decreased upon dox exposure) or i-RegC (blue, 1123 

increased upon dox exposure) or at that position. Metagene plots for all clusters are shown in 1124 

Sup. Fig 27. 1125 

 1126 

Fig 6: HSV-1 infection and depletion of Pol II from human genes lead to a downstream 1127 

shift of H2A.Z-containing +1 nucleosomes. 1128 

(a) Heatmap showing the location for differential regions (m- and i-RegC) identified in the WT 1129 

vs. mock comparison on the ATAC-seq (left half, identical to left-most part of Fig 1a) and 1130 

H2A.Z ChIPmentation data (right half) for the promoter windows included in Fig 1a. 1131 

Differential regions with mock>infection (m-RegC) are marked in red, and differential regions 1132 

with infection>mock (i-RegC) in blue. The order of promoter windows is the same as in Fig 1133 
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1a, and clusters are indicated by colored and numbered rectangles on the left. Log2 fold-1134 

changes for differential regions are shown in Sup. Fig 28b. (b,c) Read coverage in a ±3.6 kb 1135 

window around the TSS in H2A.Z ChIPmentation data for mock (red) and WT (blue) infection, 1136 

for example, genes with (b) pattern I (FBXO28) and (c) pattern II (ARHGAP1). For 1137 

descriptions of read coverage plots, see caption to Fig 1. (d-g) Metagene plots of H2A.Z profiles 1138 

for mock and WT infection (d,e) and untreated and α-amanitin-treated HCT116 cells (f,g) for 1139 

clusters 5 (pattern I, d,f) and 7 (pattern II, e,g). Metagene plots for other clusters can be found 1140 

in Sup. Fig 28 and 30, respectively. The colored bands below the metagene curves in each panel 1141 

indicate the percentage of genes having m- or i-RegC at that position. For (f,g), m-RegC (green) 1142 

are differential regions with relative read coverage higher in untreated cells and i-RegC (violet) 1143 

differential regions with relative read coverage higher upon α-amanitin-treatment.  1144 
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Fig 3
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Fig 4
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Fig 5
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Fig 6
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Supplementary Figures
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(d)

Sup. Fig 1 (a) Overview on the RegCFinder approach (Weiss and Friedel, 2023). The key objective
of RegCFinder is to identify subregions of an input window that show a relative increase in read density
within the input window in one condition compared to a second condition. In our application, this means
identifying subregions of 6 kb promoter windows that exhibit a relative increase in read density in mock
compared to HSV-1 infection (red shaded region, denoted as m-RegC) or vice versa (blue shaded region,
denoted as i-RegC). In this example, an m-RegC (mock>infection) is identified around the TSS and an
i-RegC (infection>mock) downstream of the TSS. This would reflect a relative decrease of read density
at the TSS and a relative increase downstream of the TSS during infection. Statistical significance of
changes in read density between identified subregions of input windows (including identified m- and i-
RegC as well as filler regions between them) is determined with DEXSeq (Anders et al., 2012). (b)
Barplot showing the number of identified differential regions (= m- and i-RegC) for WT and null mutant
infections in comparison to mock infection. (c) Barplot showing the number of unique genes with at least
one statistically significant (multiple testing adjusted p-value (adj. p.) ≤ 0.01) differential region for WT
and null mutant infection in comparison to mock infection. (d) Heatmap visualizing log2 fold-changes for
the identified differential regions shown in Fig. 1a. For this purpose, results for the same input window
for the different comparisons of WT or null mutant virus infections to mock are concatenated in one row
of the heatmap matrix. Colored rectangles on top of columns indicate which virus infection was compared
to mock. Black vertical lines in the center of each comparison indicate the position of the TSS. Regions
corresponding to statistically significant differential regions are colored according to the log2 fold-change in
mock vs. infection determined by DEXSeq. Here, the color scale is continuous between -1 and 1 and log2
fold-changes > 1 are colored the same red and log2 fold-changes < 1 the same blue. Promoter windows
are ordered as in Fig. 1a and clusters from Fig. 1a are annotated as colored and numbered rectangles
on the left.
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(a) (b)

(Continued on next page)
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(c) (d)

Sup. Fig 2 Read coverage on the HSV-1 genome for (a,b) WT (blue), ∆ICP0 (green), ∆ICP22 (orange),
∆ICP27 (cyan), ∆vhs (brown), WT+PAA infection (dark green) and ∆ICP4 infection (magenta) from
the first ATAC-seq experiment and (c,d) 1 h (blue), 2 h (magenta), 4 h (brown), 6 h (green), and 8 h
p.i. (orange) HSV-1 infection from the ATAC-seq time-course experiment. Read coverage was normalized
to total number of mapped reads for each sample and averaged between replicates. For (a) and (c),
the y-axis range was determined independently for each condition and for (b) and (d) the same y-range
was chosen for all conditions based on the maximum observed coverage. The black rectangles above the
genome coordinates depict the position of the inverted repeat regions in the HSV-1 genome. The terminal
repeat copies at the start and end of the genome were masked from read alignment, resulting in all reads
from the inverted repeats mapping to the internal repeat copies.
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(j) pattern I + II

Sup. Fig 3 Metagene plots showing ATAC-seq profiles around the TSS ± 3 kb in mock (red) and WT
(blue) infection for all clusters apart from clusters 5, 7, 8, and 13, which are shown in Fig. 1. See Materials
and Methods for a detailed description of metagene plots. The colored bands below the metagene curves in
each subfigure indicate the percentage of genes having an m- or i-RegC (red or blue, respectively) at that
position for the comparison of WT infection to mock. Subfigures (a-g) show clusters with pattern I with
a shift and/or broadening of the TSS peak into downstream regions, while (h-i) show clusters that exhibit
the mirror pattern II with a shift and/or broadening of the TSS peak into upstream regions. Subfigure
(j) shows a cluster with combined patterns I and II.

6

A.3 193



(a) pattern I, cluster 1 (b) pattern I, cluster 2

(Continued on next page)
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(c) pattern I, cluster 4 (d) pattern I, cluster 5

(Continued on next page)
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(e) pattern I, cluster 9 (f) pattern I, cluster 10

(Continued on next page)
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(g) pattern I, cluster 12 (h) pattern I, cluster 14

(Continued on next page)
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(i) pattern II, cluster 6 (j) pattern II, cluster 7

(Continued on next page)
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(k) pattern II, cluster 11 (l) pattern III, cluster 13

(Continued on next page)
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(m) pattern I + II, cluster 3 (n) pattern I + II, cluster 8

Sup. Fig 4 Read coverage in a ± 3.6 kb window around the TSS in ATAC-seq data of mock (red),
WT (blue), ∆ICP0 (green), ∆ICP22 (orange), ∆ICP27 (cyan), ∆vhs (brown) and WT+PAA infection
(magenta) for example genes for all patterns and clusters. Pattern and cluster are indicated below each
subfigure. Read coverage was normalized to total number of mapped reads for each sample and averaged
between replicates. The TSS used in the analysis is indicated by a short vertical line below the read
coverage track for mock infection. Gene annotation is indicated at the top. Boxes represent exons, lines
represent introns, and direction of transcription is indicated by arrowheads. The name of the gene whose
promoter window was analyzed is indicated in larger font on the top left and – if not clear from the context
– beside the gene annotation. Names for other genes overlapping the input window are indicated next
to these genes if necessary. Below each read coverage track m- (red bars) and i-RegCs (blue bars) are
indicated for the comparison of the corresponding virus infection to mock.
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(f)

Sup. Fig 5 Metagene plots of ATAC-seq profiles in mock as well as (a) WT infection, (b-e) null mutant
infections and (f) WT+PAA infection for cluster 1 (pattern I). See Materials and Methods for a detailed
description of metagene plots. The colored bands below the metagene curves in each subfigure indicate the
percentage of genes having an m- or i-RegC (red or blue, respectively) at that position for the corresponding
comparison of WT or null mutant virus infection to mock.
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(f)

Sup. Fig 6 Metagene plots of ATAC-seq profiles in mock as well as (a) WT infection, (b-e) null mutant
infections and (f) WT+PAA infection for cluster 2 (pattern I). See Materials and Methods for a detailed
description of metagene plots. The colored bands below the metagene curves in each subfigure indicate the
percentage of genes having an m- or i-RegC (red or blue, respectively) at that position for the corresponding
comparison of WT or null mutant virus infection to mock.
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(f)

Sup. Fig 7 Metagene plots of ATAC-seq profiles in mock as well as (a) WT infection, (b-e) null mutant
infections and (f) WT+PAA infection for cluster 3 (combined pattern I + II). See Materials and Methods
for a detailed description of metagene plots. The colored bands below the metagene curves in each subfigure
indicate the percentage of genes having an m- or i-RegC (red or blue, respectively) at that position for the
corresponding comparison of WT or null mutant virus infection to mock.

16

A.3 203



0.
00

0.
02

0.
04

0.
06

0.
08

cluster 4 (n=326)
AT

AC
-s

eq
 p

ro
fil

e

-3000 -1500 TSS 1500 3000

mock
WT

m-RegC
<25%
25-50%
50-75%
>75%

i-RegC
<25%
25-50%
50-75%
>75%

(a)

0.
00

0.
02

0.
04

0.
06

0.
08

cluster 4 (n=326)

AT
AC

-s
eq

 p
ro

fil
e

-3000 -1500 TSS 1500 3000

mock
ΔICP0

m-RegC
<25%
25-50%
50-75%
>75%

i-RegC
<25%
25-50%
50-75%
>75%

(b)

0.
00

0.
02

0.
04

0.
06

0.
08

cluster 4 (n=326)

AT
AC

-s
eq

 p
ro

fil
e

-3000 -1500 TSS 1500 3000

mock
ΔICP22

m-RegC
<25%
25-50%
50-75%
>75%

i-RegC
<25%
25-50%
50-75%
>75%

(c)

0.
00

0.
02

0.
04

0.
06

0.
08

cluster 4 (n=326)

AT
AC

-s
eq

 p
ro

fil
e

-3000 -1500 TSS 1500 3000

mock
ΔICP27

m-RegC
<25%
25-50%
50-75%
>75%

i-RegC
<25%
25-50%
50-75%
>75%

(d)

0.
00

0.
02

0.
04

0.
06

0.
08

cluster 4 (n=326)

AT
AC

-s
eq

 p
ro

fil
e

-3000 -1500 TSS 1500 3000

mock
Δvhs

m-RegC
<25%
25-50%
50-75%
>75%

i-RegC
<25%
25-50%
50-75%
>75%

(e)

0.
00

0.
02

0.
04

0.
06

0.
08

cluster 4 (n=326)

AT
A

C
−

se
q 

pr
of

ile

−3000 −1500 TSS 1500 3000

mock
WT + PAA

m−RegC

<25%
25−50%
50−75%
>75%

i−RegC

<25%
25−50%
50−75%
>75%

(f)

Sup. Fig 8 Metagene plots of ATAC-seq profiles in mock as well as (a) WT infection, (b-e) null mutant
infections and (f) WT+PAA infection for cluster 4 (pattern I). See Materials and Methods for a detailed
description of metagene plots. The colored bands below the metagene curves in each subfigure indicate the
percentage of genes having an m- or i-RegC (red or blue, respectively) at that position for the corresponding
comparison of WT or null mutant virus infection to mock.
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Sup. Fig 9 Metagene plots of ATAC-seq profiles in mock as well as (a) WT infection, (b-e) null mutant
infections and (f) WT+PAA infection for cluster 5 (pattern I). See Materials and Methods for a detailed
description of metagene plots. The colored bands below the metagene curves in each subfigure indicate the
percentage of genes having an m- or i-RegC (red or blue, respectively) at that position for the corresponding
comparison of WT or null mutant virus infection to mock.
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(f)

Sup. Fig 10 Metagene plots of ATAC-seq profiles in mock as well as (a) WT infection, (b-e) null
mutant infections and (f) WT+PAA infection for cluster 6 (pattern II). See Materials and Methods for
a detailed description of metagene plots. The colored bands below the metagene curves in each subfigure
indicate the percentage of genes having an m- or i-RegC (red or blue, respectively) at that position for the
corresponding comparison of WT or null mutant virus infection to mock.
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Sup. Fig 11 Metagene plots of ATAC-seq profiles in mock as well as (a) WT infection, (b-e) null
mutant infections and (f) WT+PAA infection for cluster 7 (pattern II). See Materials and Methods for
a detailed description of metagene plots. The colored bands below the metagene curves in each subfigure
indicate the percentage of genes having an m- or i-RegC (red or blue, respectively) at that position for the
corresponding comparison of WT or null mutant virus infection to mock.
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Sup. Fig 12 Metagene plots of ATAC-seq profiles in mock as well as (a) WT infection, (b-e) null
mutant infections and (f) WT+PAA infection for cluster 8 (combined pattern I + II). See Materials and
Methods for a detailed description of metagene plots. The colored bands below the metagene curves in
each subfigure indicate the percentage of genes having an m- or i-RegC (red or blue, respectively) at that
position for the corresponding comparison of WT or null mutant virus infection to mock.
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Sup. Fig 13 Metagene plots of ATAC-seq profiles in mock as well as (a) WT infection, (b-e) null
mutant infections and (f) WT+PAA infection for cluster 9 (pattern I). See Materials and Methods for a
detailed description of metagene plots. The colored bands below the metagene curves in each subfigure
indicate the percentage of genes having an m- or i-RegC (red or blue, respectively) at that position for the
corresponding comparison of WT or null mutant virus infection to mock.
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Sup. Fig 14 Metagene plots of ATAC-seq profiles in mock as well as (a) WT infection, (b-e) null
mutant infections and (f) WT+PAA infection for cluster 10 (pattern I). See Materials and Methods for
a detailed description of metagene plots. The colored bands below the metagene curves in each subfigure
indicate the percentage of genes having an m- or i-RegC (red or blue, respectively) at that position for the
corresponding comparison of WT or null mutant virus infection to mock.
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Sup. Fig 15 Metagene plots of ATAC-seq profiles in mock as well as (a) WT infection, (b-e) null
mutant infections and (f) WT+PAA infection for cluster 11 (pattern II). See Materials and Methods for
a detailed description of metagene plots. The colored bands below the metagene curves in each subfigure
indicate the percentage of genes having an m- or i-RegC (red or blue, respectively) at that position for the
corresponding comparison of WT or null mutant virus infection to mock.
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Sup. Fig 16 Metagene plots of ATAC-seq profiles in mock as well as (a) WT infection, (b-e) null
mutant infections and (f) WT+PAA infection for cluster 12 (pattern I). See Materials and Methods for
a detailed description of metagene plots. The colored bands below the metagene curves in each subfigure
indicate the percentage of genes having an m- or i-RegC (red or blue, respectively) at that position for the
corresponding comparison of WT or null mutant virus infection to mock.
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Sup. Fig 17 Metagene plots of ATAC-seq profiles in mock as well as (a) WT infection, (b-e) null
mutant infections and (f) WT+PAA infection for cluster 13 (pattern III). See Materials and Methods for
a detailed description of metagene plots. The colored bands below the metagene curves in each subfigure
indicate the percentage of genes having an m- or i-RegC (red or blue, respectively) at that position for the
corresponding comparison of WT or null mutant virus infection to mock.
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Sup. Fig 18 Metagene plots of ATAC-seq profiles in mock as well as (a) WT infection, (b-e) null
mutant infections and (f) WT+PAA infection for cluster 14 (pattern I). See Materials and Methods for
a detailed description of metagene plots. The colored bands below the metagene curves in each subfigure
indicate the percentage of genes having an m- or i-RegC (red or blue, respectively) at that position for the
corresponding comparison of WT or null mutant virus infection to mock.
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Sup. Fig 19 Metagene plots of ATAC-seq profiles in mock, WT strain F (WT-F) and ∆ICP22 infection
at 8 and 12 h p.i. for all clusters (indicated on top of subfigures) ordered according to patterns (indicated
below subfigures). See Materials and Methods for a detailed description of metagene plots.
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Sup. Fig 20 (a) Metagene plot of the ATAC-seq profiles for mock (red) and WT (blue) infection for all
promoter windows for which no significant RegC was identified in the ATAC-seq data for any of the WT
or null mutant infections compared to mock (denoted as NA group in (b)). These genes were not included
in Fig. 1a and most analyses in this article. See Materials and Methods for an explanation of metagene
plots. (b) Boxplot showing the distribution of log2 fold-changes in chromatin-associated RNA for 8 h p.i.
WT infection compared to mock for all clusters (grouped by pattern) as well as genes without significant
differential regions (NA group). P-values for Wilcoxon rank sum tests comparing log2 fold-changes for each
group against all other analyzed genes were corrected for multiple testing using the Bonferroni method
and are shown below each gene group.
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Sup. Fig 21 Heatmap showing the log2 fold-changes determined with DEXSeq on the ATAC-seq time-
course data (1, 2, 4, 6 and 8 h p.i. WT infection compared to mock) for the differential regions (m-
and i-RegC) determined in the WT vs. mock comparison shown in Fig. 1a. Each row shows log2 fold-
changes for the same m- and i-RegCs at the different time-points of the time-course compared to mock.
For comparison, log2 fold-changes for the WT vs. mock comparison from Fig. 1a/Sup. Fig. 1d are
also shown. Colored rectangles on top indicate the time-point or whether the WT vs. mock comparison is
shown. Statistically significant differential regions are colored according to the log2 fold-change determined
by DEXSeq. Here, the color scale is continuous between -1 and 1 and all log2 fold-changes > 1 are colored
the same red and all log2 fold-changes < 1 the same blue. Promoter windows are ordered as in Fig. 1a
and clusters from Fig. 1a are annotated as colored and numbered rectangles on the left.
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Sup. Fig 22 Metagene plots of ATAC-seq profiles in mock infection (red) and all time-points of infection
(blue shades) from the ATAC-seq time-course experiment for all clusters (indicated on top of subfigures)
ordered according to patterns (indicated below subfigures). See Materials and Methods for a detailed
description of metagene plots. The colored bands below the metagene curves in each subfigure indicate the
percentage of genes having an m- or i-RegC (red or blue, respectively) at that position for the comparison
of 8 h p.i. to mock.
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(a) pattern I, cluster 2 (b) pattern I, cluster 5

(Continued on next page)
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(c) pattern I, cluster 10 (d) pattern I, cluster 12

(Continued on next page)
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(e) pattern II, cluster 6 (f) pattern II, cluster 7

(Continued on next page)
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(g) pattern I + II, cluster 3 (h) pattern I + II, cluster 8

Sup. Fig 23 Read coverage in a± 3.6 kb window around the TSS in ATAC-seq data for mock (dark green),
1 h (blue), 2 h (magenta), 4 h (brown), 6 h (green), and 8 h p.i. (orange) for example genes with pattern
I (a-d), pattern II (e,f) and combined patterns I and II (g,h). Read coverage was normalized to total
number of mapped reads for each sample and averaged between replicates. The TSS used in the analysis
is indicated by a short vertical line below the read coverage track for mock infection. Gene annotation
is indicated at the top. Boxes represent exons, lines represent introns, and direction of transcription is
indicated by arrowheads. The name of the gene whose promoter window was analyzed is indicated in
larger font on the top left and sometimes beside the gene annotation. Names for other genes overlapping
the input window are also indicated. Below each read coverage track m- (red bars) and i-RegCs (blue bars)
are indicated for the comparison of the corresponding time-point of infection to mock. Corresponding read
coverage plots in ATAC-seq data for mock, WT, ∆ICP0, ∆ICP22, ∆ICP27, ∆vhs and WT+PAA infection
are shown in Sup. Fig. 4.
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Sup. Fig 24 Metagene plots showing ATAC-seq profiles in mock and WT-F infection at 8 and 12 h p.i.
± PAA for all clusters (indicated on top of subfigures) ordered according to patterns (indicated below
subfigures). See Materials and Methods for a detailed description of metagene plots.
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Sup. Fig 25 Metagene plots showing ATAC-seq profiles in mock infection at 8 and 12 h p.i. ± PAA
for all clusters (indicated on top of subfigures) ordered according to patterns (indicated below subfigures).
See Materials and Methods for a detailed description of metagene plots.
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Sup. Fig 26 Metagene plots of ATAC-seq profiles for mock (red), WT (blue), WT+PAA (green) und
∆ICP4 infection (violet) for all clusters (indicated on top of subfigures) ordered according to patterns
(indicated below subfigures). See Materials and Methods for a detailed description of metagene plots.
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Sup. Fig 27 (a) Number of significant RegC and genes with significant RegC identified by RegCFinder
for T-HF-ICP27 cells (left) and T-HF-ICP22/ICP27 cells (right) upon dox exposure. (b) Heatmap vi-
sualizing log2 fold-changes for the differential regions identified for T-HF-ICP27 cells (left half) and T-
HF-ICP22/ICP27 cells (right half) upon dox exposure for the promoter windows included in Fig. 1a.
One row of this heatmap represents results for a particular input window. Black vertical lines in the
center of each half of the heatmap indicate the position of the TSS. Regions corresponding to statistically
significant differential regions (adj. p. < 0.01) are colored according to the log2 fold-change determined
by DEXSeq. Here, the color scale is continuous between -1 and 1 and log2 fold-changes > 1 are colored
the same red and log2 fold-changes < 1 the same blue. Promoter windows are ordered as in Fig. 1a and
clusters from Fig. 1a are shown as colored and numbered rectangles on the left. (c-p) Metagene plots of
ATAC-seq profiles for T-HF-ICP22/ICP27 cells with (blue) and without (red) dox exposure for all clusters
(indicated on top of subfigures) ordered according to patterns (indicated below subfigures). See Materials
and Methods for a detailed description of metagene plots. The colored bands below the metagene curves
indicate the percentage of genes having an m-RegC (red, decreased upon dox exposure) or i-RegC (blue,
increased upon dox exposured) or at that position.
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Sup. Fig 28 (a) Metagene plot of H2A.Z profiles for mock infection for all analyzed promoter windows.
See Materials and Methods for an explanation of metagene plots. (b) Heatmap showing log2 fold-changes
for differential regions (m- and i-RegC) identified in the WT vs. mock comparison on the ATAC-seq
(left half) and H2A.Z ChIPmentation data (right half) for the promoter windows included in Fig. 1a.
Statistically significant (adj. p. < 0.01) differential regions are colored according to the log2 fold-change
determined by DEXSeq. Here, the color scale is continuous between -1 and 1 and log2 fold-changes > 1
are colored the same red and log2 fold-changes < 1 the same blue. Promoter windows are ordered as in
Fig. 1a and clusters from Fig. 1a are annotated as colored and numbered rectangles on the left. (c-n)
Metagene plots of H2A.Z profiles in mock (red) and WT (blue) infection for clusters with pattern I (c-i,
cluster 5 is shown in Fig. 4d), pattern II (j,k, cluster 7 is shown in Fig. 4e), pattern III (l) and combined
patterns I and II (m,n). See Materials and Methods for an explanation of metagene plots. The colored
bands below the metagene curves in each panel indicate the percentage of genes having an m- or i-RegC
at that position in the comparison of WT vs. mock in the H2A.Z ChIPmentation data.
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(a) pattern I, cluster 1 (b) pattern I, cluster 2

(c) pattern I, cluster 4 (d) pattern I, cluster 9

(e) pattern I, cluster 10 (f) pattern I, cluster 12
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(g) pattern I, cluster 14 (h) pattern II, cluster 6

(i) pattern II, cluster 11 (j) pattern III, cluster 13

(k) pattern I + II, cluster 3 (l) pattern I + II, cluster 8
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Sup. Fig 29 Read coverage in a ± 3.6 kb window around the TSS in H2A.Z ChIPmentation data for mock
(red) and WT (blue) infection for example genes with pattern I (a-g), pattern II (h,i), pattern III (j) and
combined patterns I and II (k,l). Read coverage was normalized to total number of mapped reads for each
sample and averaged between replicates. The TSS used in the analysis is indicated by a short vertical line
below the read coverage track for mock infection. Gene annotation is indicated at the top. Boxes represent
exons, lines represent introns, and direction of transcription is indicated by arrowheads. The name of the
gene whose promoter window was analyzed is indicated in larger font on the top left and – if not clear from
the context – beside the gene annotation. Names for other genes overlapping the input window are also
indicated if necessary. Below each read coverage track m- (red bars) and i-RegCs (blue bars) are indicated
for the comparison of WT vs. mock om the H2A.Z ChIPmentation data. Corresponding read coverage
plots in ATAC-seq data for mock, WT, ∆ICP0, ∆ICP22, ∆ICP27, ∆vhs and WT+PAA infection are
shown in Sup. Fig. 4.
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Sup. Fig 30 Metagene plots of H2A.Z profiles for untreated (green) and α-amanitin-treated (violet)
HCT116 cells for clusters with pattern I (c-g, cluster 5 is shown in Fig. 4f), pattern II (h,i, cluster 7 is
shown in Fig. 4g), pattern III (j) and combined patterns I and II (k,l). See Materials and Methods for
an explanation of metagene plots. The colored bands below the metagene curves in each subfigure indicate
the percentage of genes having an m- or i-RegC at that position in the comparison of α-amanitin-treatment
vs. no treatment in the H2A.Z ChIP-seq data. Here, m-RegC are differential regions with relative read
density higher in untreated cells and i-RegC differential regions with relative read density higher upon
α-amanitin-treatment.
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(a) pattern I, cluster 1 (b) pattern I, cluster 2

(c) pattern I, cluster 4 (d) pattern I, cluster 5

(e) pattern I, cluster 9 (f) pattern I, cluster 10
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(g) pattern I, cluster 12 (h) pattern I, cluster 14

(i) pattern II, cluster 6 (j) pattern II, cluster 7

(k) pattern II, cluster 11 (l) pattern III, cluster 13
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(m) pattern I + II, cluster 3 (n) pattern I + II, cluster 8

Sup. Fig 31 Read coverage in a ± 3.6 kb window around the TSS in the H2A.Z ChIP-seq data for
untreated (green) and α-amanitin-treated (violet) HCT116 cells for example genes for all patterns and
clusters. Pattern and cluster are indicated below each subfigure. Read coverage was normalized to total
number of mapped reads for each sample and averaged between replicates. The TSS used in the analysis
is indicated by a short vertical line below the read coverage track for untreated cells. Gene annotation
is indicated at the top. Boxes represent exons, lines represent introns, and direction of transcription is
indicated by arrowheads. The name of the gene whose promoter window was analyzed is indicated in
larger font on the top left and – if not clear from the context – beside the gene annotation. Names for
other genes overlapping the input window are also indicated when necessary. Below each read coverage
track m-RegCs (i.e. differential regions with relative read coverage higher in untreated cells) and i-RegC
(i.e. differential regions with relative read coverage higher upon α-amanitin-treatment) are indicated.
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