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Abstract 

Infectious respiratory diseases comprise the 4th most fatal group of diseases worldwide. COVID-

19 patients exhibit unique pathophysiology, which is not observed in pneumonia caused by other 

respiratory viruses or bacterial pathogens with similar severity. Most COVID-19 studies lack ap-

propriate comparisons to other viral types of pneumonia, hindering the development of bi-

omarkers for early identification of high-risk COVID-19 patients. This study aims to investigate the 

humoral immune responses and identify distinct proteomics signatures associated with COVID-

19 compared to influenza and bacterial pneumonia. Moreover, the project specifically focuses on 

unraveling autoimmune aspects of severe COVID-19. 

I applied proteomic profiling to bronchoalveolar lavage fluid (BALF) and plasma samples from 

pneumonia patients of the SCRIPT cohort at Northwestern Memorial Hospital (NMH) Chicago 

and assessed the enrichment of molecular signatures unique to COVID-19 (n=13), influenza 

(n=7), and bacterial pneumonia (n=6) patients at up to five time points after intubation in the in-

tensive care unit. Emphasizing persistent proteomic signatures during hospitalization, I outlined 

plasma- and lung-abundant proteins and revealed upregulation of immunoglobulin production in 

the bronchoalveolar environment specific to SARS-CoV-2 infection. 

Secondly, utilizing a single-cell multi-omic dataset of COVID-19 patients (n=102) at mild and se-

vere stages, I identified the overrepresentation of immunoglobulin V-domains connected to 

COVID-19 severity. Furthermore, my findings elucidated the transcriptomic and surface protein 

markers of plasma cell populations, contributing to COVID-19-specific humoral immune re-

sponses observed in the BALF of Chicago cohort.  

Lastly, I applied a Differential Antibody Capture (DAC) assay on two independent cohorts of acute 

COVID-19 patients to capture plasma antibodies that show affinity to native lung proteins. I iden-

tified 93 putative autoantibody targets specific to COVID-19 patients, with 19 targets in common 

in both cohorts. Among the putative autoantigens, I observed extracellular matrix, complement 

regulation, nuclear antigens, and immune regulatory proteins. Besides that, the dynamic changes 

in autoantibody patterns were correlated with clinical parameters, revealing the effect of individual 

autoantibodies and overall autoreactivity on severe COVID-19 immunopathology. This was 

demonstrated by the significant correlation of the cumulative autoantigen coefficient with a length 

of intubation, aspartate transaminase (AST), alanine transaminase (ALT), Troponin I, and procal-

citonin, indicating prolonged recovery periods, multi-organ damage, and increased susceptibility 

to secondary bacterial infections. 

My work improves the understanding of unique proteomic features specific to COVID-19 pneu-

monia, revealing the upregulation of complement cascade, platelet degranulation proteins, and 

immunoglobulins in the lung environment. Besides that, the research sheds light on the develop-
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ment of autoantibody responses during the acute phase of infection, thus providing potential bi-

omarkers to improve the diagnosis in uncertain cases and identify severe COVID-19 trajectories 

at an early stage.  
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1. Introduction 

1.1. Overview of the coronavirus disease 2019 

According to the National Health Institutes, pneumonia is defined as a lung infection in which 

alveoli become filled with fluid or pus (1). Pneumonias can be caused by molecular pathogens of 

bacterial, viral, or fungal origin and common symptoms can vary from mild to severe, including 

cough, fever, chills, and difficulty respiring.  

One of the most recent examples of acute pneumonia is severe acute respiratory syndrome coro-

navirus 2 (SARS-CoV-2), which emerged in Wuhan, China, in December 2019 and rapidly caused 

a worldwide pandemic, leading to more than 5.4 million deaths and 287 million individuals affected 

by December 31, 2021 (2).  

This became possible due to the wide range of SARS-CoV-2 transmission mechanisms. Among 

them are direct contact, and airborne transmission through droplets (2). The primary mechanism 

for SARS-CoV-2 was shown to be droplets or aerosols and direct contact with infected individuals 

(3). The median incubation period of SARS-CoV-2 is estimated to reach 5.1 days, and most pa-

tients develop symptoms within 11.5 days of infection (4). Infected with SARS-CoV-2 individuals 

develop respiratory illness ranging from mild to severe and lethal outcomes characterized by 

acute respiratory failure, septic shock, and multiorgan failure. Besides that, 17.9% to 33.3% of 

infected individuals never develop symptoms (5). A recently published meta-analysis reported 

that severe disease course was noted in 23% of the infected patients, while 6% were deceased 

(6). 

The virus targets the respiratory system, leading to the increased influx of immune cells, endo-

thelial cell activation, and accumulation of fluid in the lungs, resulting in breathing complications 

and, in critical cases, acute respiratory distress syndrome (ARDS). Among common manifesta-

tions of COVID-19 include fever, fatigue, dry cough, alternations of smell and taste, and shortness 

of breath (7). COVID-19 is not limited to the respiratory system, and multiple studies have reported 

extrapulmonary symptoms (8). Additionally, COVID-19 clinical manifestations can persist after 

the acute phase of the disease in approximately 10% of the infected individuals, characterized as 

long COVID-19 (9). 

The main risk factor for susceptibility to severe pneumonia caused by COVID-19 is age; life-

threatening cases become more common in patients aged 65 years onward (6). Another critical 

factor is sex, and a retrospective evaluation of the mortality rates in acute care hospitals in the 

United States of America (USA) in 2020 revealed a higher mortality rate in male (12.5%) com-

pared to female patients (9.6 %) (10). Higher mortality in SARS-CoV-2-infected male patients is 

https://sciwheel.com/work/citation?ids=16242486&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=14087803&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=9938886&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=8378827&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=8457363&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=11021150&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=9099795&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=8133897&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=15201290&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=11021150&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=10868301&pre=&suf=&sa=0
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hypothesized to be caused by impaired T cell activation and higher levels of fucosylated anti–

SARS–CoV–2 antibodies (ABs) (11). Additionally, patients with pre-existing medical conditions 

had six times higher hospitalization rates than those without medical conditions (45.4% vs. 7.6%) 

based on the reported cases in January-May 2020 (7). Main comorbidities imposing risk of devel-

oping severe COVID-19 included diabetes, hypertension, obesity, chronic lung disease, cardio-

vascular disease, chronic kidney disease, and chronic liver disease. 

Several measures have been implemented to prevent the active spread of the virus, including 

social distancing and everyday use of medical masks (5). In 2020-2021, many countries estab-

lished lockdown protocols, which reduced infection rates and decreased hospital loads, providing 

necessary care for severe and critical COVID-19 patients (12). More importantly, the pandemic 

significantly impacted global healthcare systems and the economy. During 2020-2022 several 

governments imposed traveling restrictions and quarantine, resulting in the service industry suf-

fering from reduced customer activity, which led to financial difficulties and massive job loss. Fur-

thermore, the COVID-19 pandemic-imposed challenges to the management of health workers 

and medical supplies, as well as facility usage (13). Finally, the pandemic, besides its direct ef-

fects on the health of individuals, increased morbidity risk for other treatable diseases, which lead 

to notable disruption in healthcare services (12). These factors lead to long-term economic con-

sequences triggering fears of financial crisis and recession and strong socio-economic effects on 

many aspects of human life. 

1.2. SARS-CoV-2 structure and mechanism of the host cell 
entry 

SARS-CoV-2 is a positive-sense, single-stranded RNA virus, which belongs to the Coronoviridae 

family (16). It structurally and phylogenetically resembles SARS-CoV and MERS-CoV and con-

sists of four main proteins: spike (S), envelope (E) glycoprotein, nucleocapsid (N), and membrane 

(M) protein. Additionally, it includes 16 nonstructural proteins and 5-8 accessory proteins (14).  

The S, E, and M proteins form the virion membrane, while N interacts with viral genomic RNA to 

remain confined in the virion. The S protein facilitates virus entry and consists of two subunits: S1 

and S2, which are cleaved by the furin protein convertase in the Golgi apparatus during the virus 

maturation process in the host cell. The primary function of S1 is to bind to the host cell receptor 

in the new cell, and S2 mediates membrane fusion, allowing virus entry.  

Additionally, the S1 subunit can be further divided into a receptor-binding domain (RBD) and an 

N-terminal domain (NTD), facilitating viral entry into the host cell and serving as a potential target 

for neutralization in response to vaccines. 

https://sciwheel.com/work/citation?ids=10751108&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=9099795&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=10245997&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=16242705&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=10245997&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=12836801&pre=&suf=&sa=0
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The primary host receptor utilized by SARS-CoV-2 for cell entry is angiotensin-converting enzyme 

(ACE2), a carboxypeptidase in the renin-angiotensin-aldosterone system (RAAS). This receptor 

is ubiquitously expressed in the lower respiratory tract, making it a primary site of COVID-19 

infection. Besides the respiratory system, ACE2 is also detected in other organs, specifically the 

heart, liver, kidney, small intestine, and brain (15), which is believed to account for multi-organ 

involvement in some COVID-19 patients (16). 

Upon interaction with ACE2, the S1 subunit changes its conformation and binds the receptor via 

the RBD, followed by the fusion between viral and cellular membranes and the entrance of the 

virus into the host cell. The virus attachment process is followed by interaction between the S2 

subunit and the host transmembrane serine protease 2 (TMPRSS2), which governs cell entry and 

viral replication (17). 

The replication process starts with the translation of the SARS-CoV-2 genome into two large pol-

yproteins, ORF1a and ORF1b (Fig.1.2). These polyproteins undergo proteolytic cleavage by the 

viral proteases PLpro and Mpro, yielding 16 non-structural proteins (nsp) (18). These proteins are 

essential in mediating viral replication and transcription by interfering with host translation and 

innate immune responses, establishing viral replication complexes, and modulating host cell func-

tions (19). As a next step, SARS-CoV-2 modifies the host cell membrane to create a replication 

organelle, which shields viral RNA and enzymes and protects them from the host immune system. 

These organelles are built primarily using double-membrane vesicles (DMVs) formed from the 

endoplasmic reticulum (ER) (20). The formation of DMVs is guided by viral proteins nsp3, nsp4, 

and nsp6, which remodel ER and connect DMVs with other cellular structures (21). Within the 

organelles, viral non-structural proteins assemble into the replication and transcription complex 

(RTC), which also contains an RNA-dependent RNA polymerase (RdRp), RNA helicase, and a 

proofreading enzyme to ensure the fidelity of RNA replication. RdRp synthesizes full-length cop-

ies of the viral genome and shorter subgenomic messenger RNAs (sgRNAs) (22). These sgRNAs 

are then translated into S, M, E, and N viral proteins essential for viral replication and assembly. 

The replication in the organelles enables efficient viral replication and transcription, contributing 

to the pathogenicity of SARS-CoV-2. 

Finally, viral RNA and N proteins undergo assembly into ribonucleoprotein (RNP) complexes, 

which are then included in new virus particles. Recent studies demonstrated that RNPs assemble 

into a "beads-on-a-string" structure with several RNP complexes wrapped around the viral RNA 

(23). As a next step, the N and the M viral proteins are transported to the ER-to-Golgi intermediate 

compartment (ERGIC), where they incorporate RNP complexes into new virions (24). These viri-

ons mature while passing through the Golgi apparatus and later exit the cell via a process of 

fusion of lysosomes with the cellular membrane, lysosomal exocytosis (25). This process requires 

https://sciwheel.com/work/citation?ids=8312649&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=11262612&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=8370547&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=11023460&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=9324967&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=10051705&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=13209250&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=11189168&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=9650804&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=10570231&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=9930723&pre=&suf=&sa=0
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various factors, including calcium ions and members of the SNARE complex. The new viral par-

ticles invade respiratory epithelial cells, providing new infectious material for the infection trans-

mission via respiratory droplets. 
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Figure 1.2: Mechanisms of SARS-CoV-2 entry to the host cells. The SARS-CoV-2 virus con-

tains the spike (S), membrane (M), and envelope (E) proteins, as well as a single-stranded RNA 

that surrounds nucleocapsid (N) proteins. The virus life cycle begins with the interaction of the S 

protein and the ACE2 receptor on the host cells (step 1). The cell protease TMPRSS2 facilitates 

the fusion of the viral envelope with the cell membrane, leading to the virus's entry into the cell. 

Once inside the host cell, the viral RNA is released and translated into polyproteins ORF1a and 

ORF1b (step 2), which are then processed into non-structural proteins (nsp1–16) that form the 

replication and transcription complex (RTC) (step 3). The host cell's endoplasmic reticulum (ER) 
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membranes are altered to form double-membrane vesicles (DMVs), which serve as replication 

sites (step 4). The RTC replicates the viral RNA and produces subgenomic mRNAs (sg-mRNA) 

(step 5), which are then translated into viral proteins (S, M, E, and N) (step 6). The newly synthe-

sized RNA binds with N proteins to form the nucleocapsid (step 7). Structural proteins are trans-

ported to the ER-to-Golgi intermediate compartment (ERGIC), where they combine with the nu-

cleocapsid to create new virus particles (step 8). These particles mature as they pass through the 

Golgi apparatus and are later released from the cell through lysosomal exocytosis (step 9). The 

figure is taken from (26), copyright permission is acquired from the publisher.    

https://sciwheel.com/work/citation?ids=15884448&pre=&suf=&sa=0
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1.3. Clinical manifestations and pathophysiology of COVID-19 

Although COVID-19 is considered a respiratory infection, patients infected with SARS-COV-2 

display many symptoms, many of which also involve other organ systems besides the lung. This 

rendered COVID-19 patient management and made the development of the markers and treat-

ment strategies for all involved organ systems particularly challenging. At the pandemic's begin-

ning, clinicians implemented severity assessment parameters as part of the screening routine to 

assess COVID-19 severity and mortality and the potential high risk of requiring critical care. 

Among them were C-reactive protein (CRP), Sequential Organ Failure Assessment (SOFA), In-

terleukin-6 (Il-6), and leukocyte count. CRP and IL-6 levels were demonstrated to be predictive 

of the patients' inflammation backgrounds, while the SOFA score and leukocyte count were im-

plemented to predict multi-organ failure and high mortality risk (27,28). 

Additionally, the NIH classified COVID-19 into five distinct severity types based on clinical symp-

toms, laboratory tests, radiographic abnormalities, and organ functions (29). The severity catego-

ries included asymptomatic, mild, moderate, severe, and critical illness. Asymptomatic patients 

are SARS-CoV-2 positive; however, they do not exhibit any clinical symptoms consistent with 

COVID-19. Mild cases were characterized by the detection of symptoms such as fever, cough, 

sore throat, malaise, headache, muscle pain, nausea, vomiting, diarrhea, anosmia, or dysgeusia 

without shortness of breath or abnormal chest imaging. Patients with moderate severity present 

clinical symptoms or radiologic evidence of lower respiratory tract disease and reduced oxygen 

saturation (SpO2) ≥94%. Severe COVID-19 cases are defined by SpO2 less than 94%, and a 

ratio of partial pressure of arterial oxygen to fraction of inspired oxygen (PaO2/FiO2) of less than 

300, together with increased frequency of breathing greater than 30 breaths/min, or lung infiltrates 

taking more than 50% of the total lung volume. Finally, critical cases are distinguished by acute 

respiratory failure, septic shock, or multiple organ dysfunction. Additionally, severe and critical 

COVID-19 patients undergo endotracheal intubation, which is installed to present a respiratory 

crisis, remove accumulated liquids from the lungs, and improve therapy administration. For the 

parameters defining respiration failure or ARDS in severe and critical COVID-19 patients, clini-

cians commonly use PaO2/FiO2 (P/F) ratio and positive end-expiratory pressure (PEEP) to clas-

sify severity (30). PEEP is the pressure applied to the mechanical ventilator used to stabilize the 

lungs and improve oxygenation; higher values represent increased respiratory failure. The P/F 

ratio displays the partial pressure of oxygen in arterial blood (PaO2) to the fraction of inspiratory 

oxygen concentration (FiO2), which indicates reduced oxygenation and more severe ARDS. In 

severe cases, patients are connected to an Extracorporeal Membrane Oxygenation (ECMO) de-

vice, which provides heart and lung support to patients with decreased organ functions. 

Apart from having a substantial respiratory pathology compared with diseases caused by other 

viral respiratory pathogens, COVID-19 patients exhibit a distinct pathophysiology that is charac-
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terized by increased extrapulmonary manifestations. These conditions include thrombotic com-

plications, acute kidney injury, myocardial injury, acute coronary syndromes, hepatocellular injury, 

gastrointestinal symptoms, hyperglycemia and ketosis, neurologic illnesses, ocular symptoms, 

and dermatologic complications. One of the features of COVID-19 pathophysiology was the in-

creased frequency of blood clotting events, corresponding to increased levels of D-dimer, C-re-

active protein (CRP), P-selectin, and fibrinogen (31,32). For example, D-dimer is a product of 

cross-linked fibrin cleavage and a marker of elevated coagulation events (33). A recent study 

revealed increased D-dimer levels in 10% of all COVID-19 patients, corresponding to the high 

coagulation pathology frequency (34) and several lines of evidence support the hypothesis of the 

involvement of inflammatory, immune, coagulation, and complement pathways in COVID-19 co-

agulopathy (35). Associations of the innate immune response and coagulation, leading to clot 

formation promoted by endothelial cell dysfunction and inflammation, have been named ‘immu-

nothrombosis’. 

1.3.1. Endothelial dysfunction and thromboinflammation 

Under normal conditions, the vascular endothelium maintains its homeostasis by expressing anti-

thrombotic molecules that inhibit platelet activation (e.g. nitric oxide, prostacyclin, and ectonucle-

otidases) and coagulation (e.g. tissue factor pathway inhibitor (TFPI)). In addition, expression of 

thrombomodulin, and endothelial cell protein C receptor (EPCR) ensures negative regulation of 

blood coagulation. Besides that, vascular endothelium carbohydrate-rich glycocalyx lining has an 

anticoagulant property and protects against pathogen invasion (36). 

In contrast, SARS-CoV-2 infection was reported to disrupt vascular endothelium, which is be-

lieved to be one of the main contributors to the disease pathogenesis (37,38). ACE2, a regulator 

protein in the renin-angiotensin-aldosterone and kallikrein-kinin systems (39,40), plays an im-

portant role in this process. The first system maintains blood pressure and electrolyte balance, 

and the second regulates the relaxation of smooth muscle cells and vascular permeability. SARS-

CoV-2 has a unique interaction mechanism with its receptor ACE2, which induces endothelial cell 

dysfunction at the early stage of the infection in the lung. This leads to the activation of both 

regulatory systems during COVID-19 resulting in increased vascular permeability, inflammation, 

and organ damage (41,42). 

Additionally, the innate immune system can also enhance COVID-19-induced pathogenic mech-

anisms and contribute to clot formation via neutrophils, which are recruited early after the begin-

ning of the infection in response to chemoattractants released at sites of virus-mediated injury. 

Neutrophils play an essential role in the phagocytosis and formation of the neutrophil extracellular 

traps (NETs), as well as the release of the proteolytic enzymes, chemokines, and reactive oxygen 

and nitrogen species (RONS), contributing to the first-line of immune response to the virus. NETs 

are released when neutrophils undergo programmed cell death (43). They consist of network-like 
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structures with the inclusion of DNA, histones, oxidant enzymes, coagulant factors, and comple-

ment factors. NETs were also reported to promote clotting in COVID-19 by retaining platelets and 

expressing functional tissue factors (TF), having an increasing tendency in more severe and de-

ceased patients (44). 

1.3.2. Dysregulation of the complement system  

In addition to neutrophils, the complement system is another critical component of the COVID-19 

patients’ pathophysiology (45). COVID-19 patients exhibit elevated serum levels of C5a and C5b-

C9 complement components, which correlate with disease severity (46,47). Several reports sug-

gest that SARS-CoV-2 activates the complement in two ways directly and indirectly. Direct acti-

vation occurs through the classical, lectin, and alternative pathways. The classical pathway of 

complement activation is triggered by the formation of complement-fixing antibody immune com-

plexes (IgG or IgM) (46). Secondly, the alternative pathway activation relies on the competitive 

interaction of C3 and C5 convertase with negative regulation factor H (48). Notably, the cleavage 

of component C5 leads to the release of pro-thrombotic factors from platelets, activation of TF, 

and induction of P-selectin expression on endothelial cells, promoting leukocyte recruitment (35). 

Lastly, the lectin pathway becomes activated by the direct interaction of S protein with mannose-

binding lectin (MBL), FCN2, and COLEC11 and by the N-protein mediated enhanced C4 cleavage 

by MASP2 (49). Additionally, damaged epithelial and endothelial cells release complement fac-

tors, mediating the indirect complement activation. 

Lastly, complement activation is tightly connected to platelet homeostasis. Platelet activation can 

be triggered by multiple factors, specifically C3a and C5a complement proteins, inflammatory 

cytokines, anti-SARS-CoV-2 antibodies, and messengers produced by activated endothelial cells 

(50), which is another important factor in COVID-19 pathophysiology. One of the reported mech-

anisms triggering platelet activation in COVID-19 involves increased MAPK signaling and throm-

boxane A2 (TXA2) in platelets (51). Additionally, patients with COVID-19 demonstrate increased 

levels of circulating platelet activation markers CCL5 and platelet factor 4 (PF4) and platelet-

monocyte and platelet-neutrophil aggregates (52). Due to the activation of the endothelium, these 

aggregates can adhere to the vessel walls and promote hypercoagulability (53). Moreover, 

dysregulated coagulation and inflammatory pathways, constantly activated through the positive 

feedback loop between complement, NETs, and coagulation impose secondary tissue damage 

in critical COVID-19 patients (54). Thus, activated platelets, neutrophils, and complement play 

complementary roles in increased thrombotic events in COVID-19 patients and predict more se-

vere patient conditions. 
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1.3.3. Extrapulmonary manifestations 

Another important hallmark of COVID-19 is the extrapulmonary symptoms affecting the gastroin-

testinal, renal, and cardiac systems. Firstly, the most frequently encountered extrapulmonary 

manifestation of COVID-19 is acute kidney injury (AKI), which is also associated with increased 

mortality risk (55). According to recent reports, >20% of hospitalized and >50% of ICU COVID-19 

patients are likely to develop AKI (56). The pathophysiology of COVID-19 AKI originates from 

several factors, including cardiovascular comorbidity, the direct effect of the virus on the kidney, 

and upregulated inflammatory responses (57). However, endothelial injury and dysregulation of 

the complement and coagulation system are considered to be the main drives of this process 

(58). Several research groups have also reported the presence of the virus in renal endothelial 

cells, where they can promote endothelial damage and vasoconstriction, followed by the for-

mation of microthrombi and renal microvasculature injury (56). However, further studies must be 

initiated to determine biomarkers capable of more accurately predicting COVID-19-mediated kid-

ney injury.  

Myocardial injury in COVID-19 patients commonly manifests as myocardial ischemia (MI), blood 

flow obstruction in coronary arteries to the heart, and myocarditis, inflammation of the heart mus-

cle. A retrospective study of 187 patients with COVID-19 from a single center revealed that 27.8% 

exhibited elevated troponin levels, indicative of myocardial injury (59). Additionally, a meta-anal-

ysis of published studies showed that acute myocardial injury and pre-existing cardiovascular 

diseases were highly associated with increased mortality and ICU admission in COVID-19 pa-

tients (60). Among the potential mechanisms driving myocardial injury in COVID-19 patients, re-

searchers suggested multiple mechanisms, including direct injury from the viral infection, medi-

ated by ACE2 receptors expressed in myocardiocytes, endothelial cell injury and hypercoagula-

bility, and cytokine storm, which induces systemic inflammation and potentially leads to myocar-

dial injury without direct viral infiltration (61).  

To summarize, besides profound lung damage phenotype, COVID-19 patients, also display sev-

eral extrapulmonary manifestations, which develop due to the ubiquitous expression of ACE2, in 

multiple extrapulmonary tissues. Other important drivers, such as immunothrombosis, endothelial 

damage, and dysregulation of immune responses, all might contribute to the broad spectrum of 

manifestations observed in COVID-19 patients.   
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Figure 1.3: Underlying mechanisms of COVID-19 pathophysiology. The infection process 

begins with SARS-CoV-2 entry into the cell via its interaction with ACE2 in the presence of 

TMPRSS2. 

Proposed mechanisms for COVID-19 caused by infection with SARS-CoV-2 include (1) direct 

virus-mediated cell damage; (2) dysregulation of the RAAS as a consequence of downregu-

lation of ACE2 related to viral entry, which leads to decreased cleavage of angiotensin I and 

angiotensin II; (3) endothelial cell damage and thromboinflammation; and (4) dysregulation 

of the immune response and hyperinflammation caused by inhibition of interferon signaling 

by the virus, T cell lymphodepletion, and the production of proinflammatory cytokines, partic-

ularly IL-6 and TNFα (Gupta et al., 2020, p. 1018). 

The figure is taken from (59), copyright permission is acquired from the publisher. 
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1.4. Immunopathology of severe COVID-19  

One of the critical hallmarks of SARS-CoV-2-induced pneumonia is the dysregulation of the im-

mune response, which results in the impairment of defense mechanisms. This leads to irreversi-

ble inflammatory responses, autoimmune-like manifestations in the patients, and tissue damage. 

The most notable differences were observed in dysregulations of the adaptive immune responses 

in COVID-19 patients. In the mild COVID-19 stage, SARS-CoV-2-specific CD4+ and CD8+ T cells 

are activated and provide a rapid viral clearance (62). CD4+ T cells contribute to the production 

of neutralizing antibodies (ABs) and have been studied in great detail to improve the production 

of vaccines for COVID-19 (63),(64). In contrast, in severe COVID-19, impaired T-cell mechanisms 

are responsible for the disease progression. For example, polyfunctional antigen-specific T cells 

were shifted to the dominating cytotoxic phenotype, resulting in increased tissue damage (65). 

Besides that, activated CD4+ and CD8+ cells have been detected in elevated proportions in the 

lungs of severe COVID-19 patients, promoting inflammation, endothelial dysregulation, and fibro-

sis (66). Additionally, several studies reported the presence of SARS-CoV-2-specific regulatory T 

cells (T regs) in patients with critical disease stages connected to overall poor T cell responses 

(67). Finally, T cells in patients with COVID-19 demonstrated exhaustion phenotypes, character-

ized via upregulated surface PD-1 and TIM-3, which can impact the patients' long-term recovery. 

Thus, elevated exhaustion levels and reduced functional diversity of T cells predict severe pro-

gression in patients with COVID-19 (68). 

Clinicians have also reported lymphopenia, a reduction in white blood cell count, as a critical 

feature of patients with COVID-19, especially in severe cases (69). CD4+ and CD8+ T cells and 

natural killer (NK) cells were considered the most affected immune cell types (69,70). Additionally, 

reduced frequencies of helper T cell subsets have been observed in severe cases, coupled with 

insufficient humoral immune response. Notably, B cell numbers were also reduced in some 

COVID-19 patients requiring intensive care, which has been used as an indicator of disease se-

verity and prognosis (71).  

Lastly, alterations in neutrophil and monocyte counts have been broadly observed in patients with 

COVID-19. Increased neutrophil numbers were reported in 38% of the patients from the Wuhan 

study (72). The neutrophil count and neutrophil-to-lymphocyte ratio have been used to predict the 

severity of the disease and potentially poor clinical outcomes (44). At the same time, severe 

COVID-19 patients also demonstrate reduced levels of eosinophils, basophils, and monocytes 

(69). 

Finally, increased cytokine production is another key feature of severe COVID-19. Already at the 

beginning of the pandemic, it was noted that critical and severe COVID-19 patients demonstrate 

an increase in inflammatory cytokines, specifically IL-1β, IL-2, IL-6, IL-7, IL-8, IL-10, G-CSF, gran-

ulocyte macrophage-colony stimulating factor (GM-CSF), interferon-inducible protein-10 (IP10), 
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monocyte chemotactic protein 1 (MCP1), macrophage inflammation protein-1α, IFN-γ, and TNF-

α, named ‘cytokine storm’ (16,44,73,74). This uncontrolled release of cytokines often leads to the 

hyperactivated state of the immune system and multi-organ failure.  

1.4.1. B cell-mediated immunopathology 

B cell-mediated immunopathology is an important contributor to the clinical picture of COVID-19 

patients. In the context of humoral immunity, antigen-specific B cell activation is required to de-

velop virus-specific antibodies, followed by the formation of germinal centers (GCs) in lymph 

nodes and the development of long-lived antibody-producing cells (75).  

The GC reaction is vital in providing antibody diversity via the interaction of T and B cells and 

ultimate expression of the adaptive immune response. During the early stages of the immune 

response, B cells recognize foreign antigens and migrate to the GC, where they interact with T 

cells on the border between B and T cell zones, which leads to their activation and differentiation 

into GC B cells and T follicular helper cells (Tfh)(76). The maturation of B cells in the GC is facil-

itated by the transcriptional factor Bcl-6. GC B cells move into the dark zone, where they undergo 

somatic hypermutation (SHM) and class switch recombination (CSR) proliferate. SHM is respon-

sible for providing diversity to the antibody pool, introducing random mutations in the V-region of 

the BCR. Another important reaction is CSR, which allows the production of antibodies of different 

isotypes. Subsequently, GC B cells move to the light zone, interacting with Tfh cells and getting 

positively selected based on their affinity to the antigen. Transcriptional factors Myc and Rel drive 

the GC reaction, enabling the continuous circulation of B cells between light and dark zones (75). 

The humoral immune response induced by SARS-CoV-2 infection emerges with non-specific IgM 

antibodies appearing on day six during the acute phase of infection (77). This is followed by an 

increase in virus-specific IgG and IgA isoforms, produced by the GC reaction, peaking at 23 days 

from symptom onset and residing in the circulation for up to 16 months after the infection (78). As 

COVID-19 infects the respiratory system, mucosal IgA is also increased in serum and saliva sam-

ples (79). According to structural studies, most neutralizing antibodies detected in patients are 

directed to the viral S protein and bind distinct epitopes of the RBD, blocking viral interaction with 

the ACE2 receptor (80). Importantly, in COVID-19 patients, increased IgG levels are associated 

with disease severity. Severe and critical cases demonstrate high antibody titers in the first seven 

days of the disease and humoral immune responses in milder cases peak on day 15 (81). Addi-

tionally, a higher titer of total antibodies is associated with a worse clinical outcome in COVID-19 

patients (82).  

Despite the major protective functions of the antibodies, malfunction of the humoral immune re-

sponse has been reported to contribute to the pathology of severe COVID-19. Several studies 

have reported the initiation of extrafollicular B cell responses in critical and severe COVID-19 
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patients in the absence of GCs in lymphatic organs as well as low levels of SHM among B cells 

(83). Critical patients demonstrate excessive humoral responses with low levels of SHM, which 

facilitate disease exacerbation (84). Moreover, several studies have shown that IgG complexes 

(virus-specific antibodies) undergo glycosylation or fucosylation of the Fc region, which further 

leads to the activation of the FcyRs on myeloid cells and amplifies the production of proinflamma-

tory cytokines, specifically IL-6 and TNF. This mechanism was observed in critical but not mild 

COVID-19 patients, leading to excessive lung damage (11). Additionally, many studies have re-

ported auto-reactive antibodies towards IFNs and cytokines, which are more prevalent in severe 

patients and are associated with unfavorable disease prognosis (85,86).  

Considering the significant role of the adaptive immune response in COVID-19 pathogenesis, 

many of the recently approved treatment agents for severe COVID-19 cases are immunomodu-

lators (29). Besides commonly used corticosteroids, such as dexamethasone, which interacts with 

glucocorticoid receptors (GR) and suppresses the immune system, using a more targeted ap-

proach was proven beneficial for severe and critical COVID-19 cases. This was achieved by using 

monoclonal antibodies counteracting with the IL-6 pathway, such as tocilizumab and sarilumab, 

inhibitors of the JAK-STAT signaling pathway (baricitinib and tofactinib), and IL-1 targeted agents 

(anakinra and canakinumab) (29). All these agents were successfully applied to hospitalized pa-

tients with a rapidly worsening disease trajectory, turning down the ‘cytokine storm’ and changing 

the disease outcome.   
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Figure 1.4.1: The immunopathology of COVID-19. Lymphopenia is a crucial feature of patients 

with COVID-19, specifically in severe cases. Activation of CD4+ and CD8+ T cells in severe pa-

tients with a central memory phenotype, accompanied by high levels of IFN-γ, TNF-α, and IL-2, 

is a hallmark of COVID-19. Another mechanism of COVID-19 immunopathology is the accumu-

lation of exhausted T cells, characterized by programmed cell death protein-1 (PD1), T cell im-

munoglobulin domain, and mucin domain-3 (TIM3) upregulation. Lastly, neutrophil levels are sig-

nificantly higher in severe patients, while the percentage of eosinophils, basophils, and mono-

cytes are reduced. ‘Cytokine storm’ denotes the increased cytokine production, especially IL-1β, 

IL-6, and IL-10, and indicates hyperactivation of the immune system accompanied by uncontrolled 

release of signaling molecules. Finally, increased overall antibody titers, particularly IgG levels 

are observed in severe patients suggesting early seroconversion and possible B-cell-mediated 

immunopathology. The figure is taken from (87), copyright permission is acquired from the pub-

lisher. 
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1.4.2. Role of autoantibodies in the development of severe COVID-19 

Several studies investigating mechanisms of immune dysregulation in acute COVID-19 reported 

induction of aABs with the potential implications for disease severity and long COVID. Besides 

that, severe COVID-19 patients demonstrated extrafollicular B cell activation, suggesting a po-

tential auto-reactive B cell emergence mechanism similar to one in autoimmune diseases. More-

over, a broad spectrum of autoantibodies have been identified in COVID-19 patients with an acute 

course of the disease, targeting antigens of pulmonary, vascular, renal, gastrointestinal, and cen-

tral nervous systems. Notably, COVID-19-induced autoimmunity is not the first instance of auto-

reactivity caused by viral infections; similar cases have been previously reported in individuals 

infected with parvovirus B19, Epstein-Barr virus, and hepatitis A and B (88).  

In addition, electronic health records demonstrate an increase in new-onset autoimmune diagno-

ses in individuals with SARS-CoV-2 infection compared to ones without infection (89,90). A new 

report on the German cohort consisting of 642,000 patients with COVID-19 suggests that 43% of 

individuals exhibited an increased likelihood of new-onset autoimmunity (91).  

Molecular mimicry (92), bystander activation (93), and epitope spreading are discussed among 

the hypothesized molecular mechanisms underlying aAB production in acute COVID-19 (94). 

Firstly, increased levels of circulating self-antigens, released due to extensive tissue damage and 

the impaired generation of pro-inflammatory cytokines lead to B cells' bystander activation (acti-

vation without antigen recognition) targeting host tissues (95,96). The second hypothesis consid-

ers the possibility of SARS-CoV-2 proteins/RNA products and host molecule interactions. In a 

highly inflammatory environment, the innate immune system reacts against self-antigens, a tenet 

coined as intermolecular epitope spreading (94). Finally, molecular mimicry theory, which de-

scribes viral epitopes cross-reacting with host proteins, leads to the breach of the tolerance mech-

anism and autoimmunity (92). Cross-reactive epitopes have been identified on domain 2 of the 

SARS-CoV S protein that shares similarities with specific proteins found in human lung epithelial 

cells (92). Additionally, it has been observed that the antibodies against SARS-CoV S protein can 

lead to increased adherence of human peripheral blood mononuclear cells to A549 cells (97). 

One of the first reports describing autoimmune pathology in severe COVID-19 patients was a 

study conducted by Bastard et al., which highlighted autoantibodies against type I IFNs detected 

in 10% of COVID-19 patients and contributing to a more severe disease course (91). Subse-

quently, autoantibodies became a solid concept in COVID-19 research, with a growing number 

of studies describing new autoantibodies in severe patients. One of them demonstrated that 

45.4% of COVID-19-positive patients have at least one of three common autoantibodies assessed 

in the clinics: antinuclear (ANAs), anti-antiphospholipid, or anti-cytoplasmic neutrophil antibodies 

(ANCAs) (98). 
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Furthermore, human protein arrays screened for aABs in hospitalized COVID-19 patients (either 

in the ICU or regular ward) compared to other ICU patients who did not have COVID-19 (99) and 

revealed 260 candidate autoantigens, which were more abundant, but not limited to severe 

COVID-19 cases. Subsequently, several research groups described autoantibodies targeting var-

ious other proteins, such as immune signaling molecules (cytokines, chemokines, and their re-

ceptors) (85), G protein-coupled receptors (GPCR) (100), anti-cardiolipin (101,102), cardiac anti-

gens (103), ribosomal and chromatin proteins, thyroid antigens (104), acute phase proteins and 

platelet surface proteins. Most of the studies claim the association of autoantibodies with the se-

verity of disease and age (101). Notably, increased levels of autoantibodies are strongly associ-

ated with increased mortality in elderly COVID-19 patients (105), as elderly patients are more 

prone to develop autoimmune reactions due to increased amounts of free DNA in the circulation, 

and thus increased autoantibodies, and immunosenescence (106).  

Additionally, clinical evidence has shown that severe COVID-19 patients develop profound organ 

damage, myopathy, inflammation of the joints, anti-phospholipid syndrome, manifesting by deep 

vein thrombosis, pulmonary embolism as well as neurological symptoms, which were partially 

supported by the presence of aABs. For example, antibodies targeting cardiolipin, platelet glyco-

protein, C1q, and beta-glycoprotein (APOH) were described to significantly increase the proba-

bility of developing severe disease by increasing the risk of thrombotic events specific to the 

COVID-19 clinical picture, such as deep vein thrombosis and pulmonary thromboembolism 

(107),(108).  

Whether the presence of autoantibodies in the course of infectious disease is always associated 

with less favorable outcomes is an open question. For example, autoantibodies against chemo-

kines, specifically CCL19 in post-COVID-19 patients were associated with better disease prog-

nosis and prevented the development of PASC at one year post-infection(85). Despite the multi-

ple studies describing a broad array of aABs induced in the acute COVID-19 phase, only a few 

studies outlined an association with a progression of long COVID-19 (85,109). Noteworthy, auto-

antibodies are also detected in healthy individuals at physiological levels (109–113) and can be 

affected by age, sex, and disease conditions.  

The induction of aABs and their potential role in disease severity and long COVID demonstrates 

the complexity of immune responses to COVID-19. This emphasizes the necessity for further 

research to uncover the mechanisms driving aAB production and the implications of aABs for 

clinical management. 
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Figure 1.4.2: Potential mechanisms and examples of aABs in COVID-19. During the acute 

phase of COVID-19 infection, autoantibodies can be generated via three possible mechanisms. 

Molecular mimicry between the S SARS-COV-2 protein and human proteins can induce autoan-

tibodies that cross-react with human proteins. In addition, autoreactive T and B cells are activated 

by the release of proinflammatory cytokines, and these autoimmune responses are perpetuated 

and amplified by epitope spreading which emerges during chronic autoimmune or inflammatory 

conditions. 

The wide distribution of autoantigens across different tissues (CNS, PNS, endocrine system, 

muscle, blood and vascular system) accounts for the systemic manifestations of post-COVID-
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19 patients. Abs, autoantibodies; ACE-2, angiotensin-converting enzyme-2; AChR, anti-ace-

tylcholine receptor; ANCA, anti-neutrophilic cytoplasmic antibodies; APLs, antiphospholipid 

antibodies; BCR, B cell receptor; CASPR2, contactin-associated protein-like 2; CBFA2T2, 

CBFA2/RUNX1 partner transcriptional co-repressor 2; CNS, central nervous system; GAD-

65A, glutamic acid decarboxylase-65 autoantibodies; HSPA5, heat shock protein family A 

member 5; IFNs, interferons; LGI1, leucine-rich glioma inactivated protein 1; MDA5, mela-

noma-differentiation-associated gene 5; MHC, major histocompatibility complex; MOG, Mye-

lin oligodendrocyte glycoprotein; MuSK, anti-muscle-specific kinase; NEFH, neurofilament 

heavy; NEFM, neurofilament medium; NMDAR, N-Methyl-D-Aspartate Receptors; PDGFB, 

platelet-derived growth factor subunit B; PF4, platelet factor 4; PNS, peripheral nervous sys-

tem; PR3, protease 3; RBC, red blood cell; TCR, T cell receptor; TPO, thyroperoxidase; TSH, 

thyroid stimulating hormone ( Ding et al., 2023, p.7). 

The figure is taken from (114), copyright permission is acquired from the publisher. 
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1.5. Pathophysiology of long COVID 

Alongside the acute manifestations of COVID-19, there is growing evidence of chronic pulmonary 

and extra-pulmonary complications following the resolution of the primary infection. These mani-

festations are termed the post-acute sequelae of SARS-CoV-2 infection (PASC) or long COVID 

(LC). According to the WHO, PASC occurs in individuals with confirmed SARS-CoV-2 infection 

in the following three months from the onset of COVID-19 (115). The symptoms should last at 

least two months and cannot be explained by an alternative diagnosis. Symptoms may persist 

from the initial illness or be a new onset. According to current statistics, PASC is observed in 

approximately 10-20% of the SARS-CoV-2 infected individuals (115). Moreover, a systematic re-

view of COVID-19 survivors who developed PASC showed that the median age of the patients is 

54.4 years, with 56% of males and 79% of patients being hospitalized during COVID-19 infection 

(116). Additionally, among non-hospitalized COVID-19 survivors with PASC, most of the individ-

uals were middle-aged women (117).  

Similar to acute COVID-19, PASC patients demonstrate a broad spectrum of manifestations with 

affected pulmonary and extrapulmonary organ systems (118). Additionally, an online survey cov-

ering 4,000 individuals from 56 countries reported a wide range of symptoms covering neuropsy-

chiatric, systemic, reproductive, musculoskeletal, immunological, and cardiovascular systems 

(119). Among the most common symptoms are weakness, fatigue, general malaise, and impaired 

concentration and breathlessness (120). 

Ongoing clinical research focuses on stratifying PASC patients into specific categories based on 

symptom patterns to derive more tailored patient treatment approaches and avoid the heteroge-

neous nature of the disease. A recent report, where machine learning techniques were employed, 

suggested that the classification of PASC patients should be divided into eleven clinical outcome 

categories based on the common symptoms (121). With emerging consensus stratifications for 

PASC, the next challenge would be understanding key mechanisms and pathologies associated 

with different symptoms of the disease and developing clinical biomarkers capable of successfully 

guiding clinical treatment strategies. Unfortunately, to date, PASC-specific immunobiology and 

associated risk factors remain elusive. 

As a potential mechanism of PASC, researchers highlight the persistence of viral copies and RNA 

in multiple tissues after acute infection, excessive tissue damage, the imbalance of microbiome 

and virome, and the emergence of autoimmune reactions triggered by the virus (122). One of the 

leading hypotheses of PASC development is the presence of remaining SARS-CoV-2 reservoirs 

in the body after the acute phase of the infection. Specifically, viral proteins and RNA products 

have been ubiquitously detected in the respiratory, cardiac, and renal systems and the patients' 

brains, muscles, and eyes (123,124). This may be one of the triggers for constantly elevated pro-

inflammatory cytokines levels, specifically IL-6, TNF-α, and IL-1β, IFN-β and IFN-λ1, detected in 
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PASC patients (125). Additionally, the gastrointestinal tract has been proposed as a site for viral 

reservoirs, with evidence of the virus detection in stool samples and colon biopsies (123). 

Further, evidence has been accumulated since the onset of the COVID-19 pandemic, suggesting 

multiple organ damage caused by the infection, which persisted even after the resolution of the 

acute symptoms (126–128). Re-analyzed multi-organ MRI data from 201 non-hospitalized indi-

viduals with PASC revealed that 70% of patients in the group exhibited impairment in one or more 

organs four months after the initial COVID-19 onset (129). Notably, the heart was the most com-

monly affected organ, with the lungs following in order (127). Despite the observed radiological 

changes in several organs from symptomatic and asymptomatic patients, the relationship be-

tween these changes and the development of PASC remains unclear.  

Impairment of adaptive immune responses to SARS-CoV-2 is considered one of the susceptibility 

factors in PASC. Researchers reported that the detection of anti-N, -M, and -S T effector memory 

(TEM) cells were reduced in PASC patients compared to convalescent individuals. At the same 

time, anti-N T follicular helper cells and anti-N IgGs are elevated in the circulation (130). One of 

the leading hypotheses supporting these observations is the presence of viral antigens in PASC 

patients. Another potential mechanism of PASC development is autoimmunity. Elevated levels of 

autoantibodies have been reported in patients with PASC, including autoantibodies (aAB) against 

ACE2, beta-adrenergic receptor, muscarinic acetylcholine receptor M2, and several angiotensin 

receptors (104). Moreover, some other aABs were found in a cohort of acute COVID-19 patients, 

specifically aABs, targeting extracellular matrix components, vascular system proteins, coagula-

tion factors, platelet surface proteins, and immunomodulatory proteins (85,86,101). To a certain 

extent, aAB titers correlate with disease severity and it has been suggested that COVID-19 pa-

tients demonstrate an increase in double negative 2 (DN2) B cells, which are negative for IgD, 

CD27, CXCR5 and CD21, similar to the ones observed in SLE(131).  

However, there is currently a lack of studies demonstrating the role of autoantibodies in the path-

ophysiology of PASC.   
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Figure 1.5: Immunopathology of long COVID. The immunopathology of post-acute sequelae 

of COVID-19 (PASC) manifests itself on several levels. PASC patients exhibit various persistent 

symptoms, such as brain fog, headache, fatigue, and cough. Long-term neuro- and gastro inflam-

mation, as well as liver and heart conditions, are observed in PASC patients after the acute phase 

of SARS-CoV-2 infection. However, the underlying cellular processes and mechanisms that drive 

PASC remain unclear. Recent scientific reports suggest the persistence of virus particles, tissue 

damage, autoantibodies, and autoreactive T cells, which contribute to the disease's etiology. The 

figure is taken from (132), copyright permission is acquired from the publisher. 
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Main question 

My work aimed to derive protein signatures obtained from proteome profiles of BALF and plasma 

unique to COVID-19 patients compared to influenza and bacterial pneumonia, with a primary 

focus on gaining a better understanding of the autoimmune aspects of severe COVID-19. The 

biomarkers undercovered in this analysis will assist in improving the diagnosis of pneumonia in 

uncertain cases and predicting the response to therapy in episodes of ventilator-acquired pneu-

monia. 

Specific objectives for each chapter consist of:  

1. Proteomic analysis of biofluids of patients with infectious lung diseases 

Here I applied proteomics to profile bronchoalveolar lavage fluid (BALF) and plasma samples 

from a longitudinal cohort of intubated pneumonia patients to identify unique molecular signatures 

specific to COVID-19, influenza, and bacterial pneumonia. Moreover, I examined the persistence 

of the identified protein signatures throughout the hospitalization period and defined plasma- and 

lung-abundant proteins, yielding distinct proteomic profiles in the early stages of SARS-CoV-2 

infection. 

2. Single-cell multi-omic analysis of COVID-19-induced B cell populations 

I used two single-cell multi-omic datasets to define the molecular characteristics of B cells that 

contribute to COVID-19-specific humoral immune responses in severe COVID-19. Additionally, I 

evaluated B cell responses across various disease severities and identified B cell subsets con-

tributing to autoantibody production.  

3. Study of autoantibody binding repertoire of acute COVID-19 patients 

I aimed to identify putative autoantibody targets in acute COVID-19 patients from two independent 

cohorts using the DAC assay and to analyze the dynamic changes in autoantibody profiles over 

time. Furthermore, I explored the correlation relationship between autoantigens and clinical pa-

rameters, providing insights into the immunopathology of severe COVID-19 and its potential role 

in multi-organ damage and susceptibility to secondary infections.  
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2. Material and Methods 

2.1. Human participants and sample availability: Chicago 
cohort  

Samples from COVID-19, bacterial pneumonia, Influenza, and non-pneumonia control patients 

were collected from participants enrolled in The Successful Clinical Response in Pneumonia 

Therapy (SCRIPT) study, STU00204868 (133). The Northwestern University Institutional Review 

Board granted ethical approval for the study, and informed consent was secured from all partici-

pants or their legal representatives. 

Participants in the SCRIPT study were at least 18 years old and had a clinical suspicion of pneu-

monia, as indicated by fever, radiographic infiltrate, and respiratory secretions. All patients expe-

rienced respiratory failure and required mechanical ventilation in the ICU. Intubation was per-

formed based on the judgment of bedside clinicians to worsening hypoxemia, hypercapnia, or the 

work of breathing refractory to high-flow oxygen or non-invasive ventilation modes. Decisions 

regarding extubation were made by bedside clinicians following a protocol-guided assessment of 

spontaneous breathing, especially in patients demonstrating physiological improvement in cardi-

orespiratory status during the mechanical ventilation period. 

Bronchoscopy coupled with blood draws for most of the samples was performed as a part of 

routine clinical operations to guide antimicrobial therapy. Bronchoalveolar lavage (BAL) and 

plasma samples from the SCRIPT study participants were collected between June 15th, 2018, 

and July 6th, 2020, in the ICU at Northwestern Memorial Hospital in Chicago. Clinical laboratory 

tests adhered to the local ICU protocols, including multiplex PCR (BioFire Film Array Respiratory 

2 panel), automated cell count, and urinary antigen testing for Streptococcus pneumoniae and 

Legionella pneumophilia serogroup one on the day of admission. Additionally, clinicians followed 

ARDSNetwork protocols for all patients, including those with COVID-19. The protocols involved 

the implementation of a higher PEEP and lower fractional inspired Oxygen (FiO2) strategy for 

individuals experiencing severe hypoxemia (134). For 16 hours per day, prone positioning was 

employed in patients with PaO2/FiO2 <150 without contradictions (135). For patients showing 

improved oxygenation to prone positioning, the procedure was repeated. The care team used 

esophageal balloon catheters (Cooper Surgical, USA) to estimate transpulmonary pressure and 

optimize PEEP, particularly in patients with a higher-than-normal body mass index (BMI). 

2.1.1. Definition of pneumonia subgroups  

Critical care physicians at Northwestern Memorial Hospital (NMH) in Chicago retrospectively cat-

egorized patients into groups, including COVID-19 pneumonia, non-COVID-19 viral pneumonia, 
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pneumonia due to other pathogens, or non-pneumonia controls. This classification was performed 

according to a standardized adjudication procedure (133). Specifically, the non-pneumonia con-

trol group consisted of patients who underwent bronchoscopy to exclude pneumonia from the 

diagnosis but did not display any quantifiable cultures, as well as negative PCR for bacterial and 

viral pathogens. Besides that, all the patients had an alternative diagnosis and negative antigens 

for S. pneumoniae and L. pneumoniae serogroup 1 in the urine. However, some of the patients 

from this group acquired ventilator-associated pneumonia later in the course. Patients with a pos-

itive nasopharyngeal swab or BAL for respiratory viral pathogen were assigned to the viral pneu-

monia group. Patients with the detection of bacterial pathogens by PCR analysis, a positive urine 

antigen, or positive quantitative cultures with more than 100 colony-forming units per ml, were 

assigned to the bacterial pneumonia group. Additionally, during the study, BAL fluid was screened 

for methicillin-resistant S.aureus (MRSA) using the PCR method (MRSA/SA SSTI), as well as the 

BioFire FilmArray Respiratory 2 (RP2) panel and Pneumonia panels. Patients assigned to the 

COVID-19 subgroup had a positive SARS-CoV-2 antigen detected by one of the platforms: the 

Cepheid Gene Expert, Abbott ID NOW, Becton Dickinson, and a locally developed and validated 

PCR. Moreover, pneumonia was diagnosed in some patients without COVID-19 based on the 

clinical witness, radiographic findings, and positive response to the antimicrobial therapy. Lastly, 

patients with detected new respiratory pathogen with a quantitative culture or PCR more than 48 

hours after intubation in serial BAL samples were assigned to the ventilator-assigned pneumonia 

subgroup. Northwestern Medicine Enterprise Data Warehouse provided the clinical laboratory 

data. Acute physiology score (APS) and SOFA, commonly used as severity assessment scores, 

were calculated from Electronic Health Record data with the help of previously validated scripts 

(133). 

2.1.2. Sample collection 

BAL was collected from intubated ICU patients with single-use aScope (Ambu, USA) devices 

under sedation and topical anesthetic. Based on the available chest imaging or observations ac-

quired during the procedure, the bronchoscope was wedged in the area of interest. Aliquots of 30 

ml of normal saline each were sequentially installed and received back, reaching a total volume 

ranging from 90 to 120 ml, the fluid returned after the initial aliquot was discarded. The obtained 

samples were divided between clinical testing and research. Similar collecting procedures were 

applied for non-bronchoscopic BAL (NBBAL) samples, except that NBBAL was performed with 

directional guidance by a respiratory therapist rather than a pulmonologist. In the case of COVID-

19 patients, sampling was performed from the area with the highest radiographic abnormality by 

a critical care physician using a disposable device. Sedation and neuromuscular blockade were 

administered to prevent cough during bronchoscopy, with the earliest procedure being performed 

immediately after intubation to take advantage of the prior neuromuscular blockade administra-

tion. 
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Besides BAL, whole blood from the patients of the SCRIPT cohort was collected in lithium heparin 

tubes. The collection was performed on the same day as BAL or NBBAL procedures. After spin-

ning down for 10 minutes at 1690 x g at 4˚C, a cellular component was removed, and the plasma 

fraction was stored at -80˚C before the following proteomic analysis. 

Consent was obtained from patients or their legal representatives to collect all BAL and plasma 

samples. 

Additionally, I received BAL and plasma samples from the SCRIPT cohort from healthy individuals 

enrolled in the studies Pro00088966 and Pro00100375 at Duke University. BAL was collected 

from the healthy volunteers under sedation and topical anesthesia in the bronchoscopy suite or 

the intensive care unit. Clinicians selected the bronchopulmonary segment of interest based on 

the chest CT scan, installed 90 to 120 ml of saline into the segment, and aspired back. The first 

5 ml of the returned fluid was discarded. 

2.1.3. Visualization of the clinical metadata 

Clinical metadata and clinical blood chemistry from Chicago cohort patients were plotted using 

ggplot2 (v.3.4.4) in the R (v.4.3.0) environment. Statistical comparison of the groups was per-

formed using base R (v.4.3.0) with tidyverse (v.1.3.0) and visualized the plots using ggpubr 

(v.0.6.0). For statistical testing, I assessed the distribution of the variables using a Shapiro-Wilk 

test. I applied non-parametric tests for parameters that did not fit the normal distribution. P values 

<0.05 were considered significant. Two-sided statistical tests were performed in all cases. Alluvial 

plots for categorical clinical parameters were generated using ggalluvial (v.0.12.5) and edited in 

Adobe Illustrator 2024. Graphical illustrations were generated with BioRender license, copyright 

permissions were acquired.  
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2.2. Human participants and sample availability: Munich 
cohort 

Serum samples of SARS-CoV-2 positive patients, confirmed by PCR result, were collected from 

March to June 2020 from the patients admitted to the University Hospital of LMU (Ludwig Maxi-

milian University) (136). The sampling was performed longitudinally, up to 54 days from the day 

of admission on the patients in regular wards and intensive care units (ICU). All serum samples 

were preserved as 250ul aliquots in 2D barcoded biobanking vials (Thermo Scientific, USA) at 

−80°C in the LMU LabMed Biobank. 

Clinical and clinical chemistry data was obtained from electronic patient records and included sex, 

age, date of onset symptoms, immunosuppression, ARDS, and outcome, etc., as well as the 

Elecsys Anti-SARS-CoV-2 ECLIA (Roche Diagnostics International, Switzerland) for both spike 

(S) and nucleocapsid (N) antigens. 

The Ethics Committee of LMU Munich (reference number 21‐0047) approved the anonymized 

analysis. The experiments adhered to the principles outlined in the WMA Declaration of Helsinki 

and the Department of Health and Human Services Belmont Report. 

2.2.1.  Experimental design 

To assess the heterogeneity within the Munich cohort and select samples and time points for 

longitudinal profiling, I applied the t-distributed Stochastic Neighbor Embedding (t-SNE) dimen-

sionality reduction method using the Rtsne package (v.0.16). This method utilizes the combination 

of both numerical and categorical clinical data parameters for dimensional reduction and cluster-

ing of patients, allowing us to further subdivide subgroups within a cohort that share similar clinical 

phenotypes. This way, clinical metadata and blood chemistry data from 29 individuals at the time 

of admission to the hospital were used as an input matrix. I performed separation of the patients 

based on categorical variables, such as sex, immunosuppression, covid-stage, extracorporeal 

membrane oxygenation (ECMO), acute respiratory distress syndrome (ARDS), etc., and numeri-

cal values: C-reactive protein (CRP) [mg/dl], Anti-SARS-CoV-2 antibody titers, aspartate ami-

notransferase (GOT) [U/l], alanine aminotransferase (GPT)[U/l], etc. Only numerical values that 

did not require imputation on the day of admission were used. First, I computed the Gower dis-

tance matrix to find the most similar and dissimilar patients. Then, the optimal number of clusters 

was selected based on the maximal silhouette width, which led to the 2 clusters. Finally, I manu-

ally calculated the perplexity and visualized the findings in the t-SNE embedding. This way, I 

ended up with ‘severe’ and ‘mild’ clusters. The ‘severe’ cluster was formed exclusively by patients 

with ARDS and exhibited higher levels of CRP, Interleukin-6, and anti-SARS-CoV-2 antibodies. 

The baseline characteristics of both clusters are presented in Table A2.  
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To define the timeline of the study, I performed longitudinal profiling of clinical metadata: anti-

SARS-CoV-2 N antibodies, anti-SARS-CoV-2 S antibodies, CRP [mg/dl], Creatinine Jaffe [mg/dl], 

Lymphocytes [g/l], and Leukocytes [g/l]. All the parameters were plotted longitudinally for both 

‘severe’ and ‘mild’ groups of COVID-19 patients defined by t-SNE analysis. The time points 

demonstrating the closest resemblance in clinical values between the two groups were selected 

as boundaries for the time windows: specifically, day 11, day 25, and day 36. Additionally, among 

the initial 29 patients, only those with at least three-time points in at least two-time windows were 

retained, resulting in a final cohort of 23 COVID-19 patients. 

For further analysis, individual serum aliquots from each patient were pooled in four defined time 

windows: 0-11 days, 12-25 days, 26-36 days, and 36-54 days. Within each window, three random 

samples were selected and combined in equal amounts, resulting in 59 serum samples. This way, 

each patient contributed from 2 to 4 time points.  

The final cohort consisted of 23 COVID-19 patients, among whom 16 were classified as ‘severe’ 

(admitted to ICU), and the remaining seven were categorized as ‘mild’ according to the t-SNE 

analysis. Both patient groups were matched in age, proportions of female and male patients as 

well as length of hospitalization (Table A2). However, 18.8% of the patients in the ‘severe’ group 

required ECMO support, and the administration of immunosuppression was doubled compared 

to the mild group (56.2% vs. 28.6%). Finally, 75% of the patients in the severe group exhibited 

signs of acute kidney injury, in contrast to 28.6 % in the mild group. 

2.2.2. Selection of the control samples: Munich cohort 

In addition to COVID-19 samples, I included serum aliquots from 262 PCR-negative controls ob-

tained from the same study cohort. These patients were admitted to the University Hospital of 

LMU Munich with possible symptoms of SARS‐CoV‐2 but with a negative PCR result. 

To separate auto-reactivities within the COVID-19 cohort arising from inflammatory processes 

within the patient's body and those specific to the viral infection, I subdivided these patients into 

two cohorts based on high and low proinflammatory blood chemistry parameters. To achieve that, 

I applied a hierarchical clustering approach using clinical parameters that did not require imputa-

tion: specifically, CRP, Creatinine, and Leukocyte counts. The analysis was conducted in the R 

environment (v.4.3.0) using pheatmap package (v.1.0.12).  

Patients falling within the third and fourth quantiles (50-75%) of the distribution for each of the 

clinical parameters mentioned above were assigned to the high inflammatory control group 

(n=23), while those within the first and second quantiles (0-50%) were defined as low inflamma-

tory control group (n=24) (Fig. 3.2.2). This approach facilitated the establishment of two distinct 

control groups to complement the longitudinal COVID-19 cohort (Munich). 
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Figure 2.2.2: Schema of control cohort selection (the Munich cohort). The procedure of se-

lection of control low inflammatory (n=24) and control high inflammatory (n=23) groups from 

SARS-CoV-2 negative patients (n=264) enrolled to the University Hospital of LMU based on the 

distribution of C-reactive protein (CRP), Creatinine and Leukocyte values.  
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2.3. Sample processing methods 

2.3.1. Protein extraction from donor lung tissue 

To obtain a protein lysate mixture further used for auto-antigen detection, proteins from the peri-

tumoral lung tissue samples of donors undergoing lung transplantation due to lung carcinoma 

were extracted. Following the lung transplantation, the lung tissue was preserved by CPC (Com-

prehensive Pneumology Center) BioArchive using a standardized procedure. Lung tissue was cut 

into pieces of 0.5 cm3, snap-frozen in liquid nitrogen, and stored at -80°C. 

In total, 32 samples from 18 male and 14 female donors were processed. The donor cohort was 

age-matched with a mean age of 63±10 years.  

Before protein extraction, lung tissue was homogenized using a dry pulverizer (CP02, Covaris, 

USA). The resulting powder was resuspended in RIPA buffer (50 mM Tris HCl pH 7.4, 150 mM 

NaCl, 1% Triton X100, 0.5% sodium deoxycholate, 1 mM EDTA, 0.1% SDS) containing protease 

inhibitors (cOmplete, Roche, Switzerland). Samples in the buffer were incubated on ice for 30 

min, followed by sonication (10 cycles, 30-sec power, 30-sec pause) (Bioruptor, Diagenode, Ger-

many). After sonication, unsolvable residues of the tissue were removed by centrifugation for 5 

minutes at 18,000 x g. The protein concentration of the samples was determined using Bicin-

chonic acid Assay (BCA) (Pierce, Thermo Fisher Scientific, Germany).  

2.3.2. Differential antigen capture assay (DAC) 

Auto-antibody-antigen complexes in the serum/plasma of pneumonia patients were detected with 

a DAC assay for both Munich and Chicago cohorts (137). The assay is based on immunoprecip-

itation and utilizes Protein L agarose-coupled beads (Pierce, Thermo Fisher Scientific, Germany) 

to capture antibodies of IgG, IgA, IgM, and IgD isotypes from serum. After purification, antibodies 

on the beads are incubated with a protein extract of ‘healthy’ lung tissue to initiate capture self-

antigens followed by mass spectrometric identification of the assembled protein complexes.  

Serum/plasma aliquots were thawed on ice and centrifuged at 2,500 x g for 5 min to remove a 

precipitate. As previously described, a 1.5 g protein lysate mixture from the peritumoral lung tissue 

of 32 age-matched patients was aliquoted and each aliquot was thawed on ice before the exper-

iment. As a first step, 20 ul of Protein L agarose beads (Pierce, Thermo Fisher Scientific, Ger-

many) were distributed in 96 well-filter plates (MultiScreenHTS-BV, 1.2 um, Millipore, Germany) 

and washed with 200 ul wash buffer (WB) (0.1% IGEPAL, 5% Glycerol, 50 mM Tris-HCl pH 7.4, 

150 mM NaCl, EDTA-free protease inhibitor cocktail (cOmplete, Roche, Switzerland)) followed by 

centrifugation at 100 x g for 1 min. 

Later, beads were resuspended in 195 ul of WB and supplemented with 5 ul of serum/plasma 

sample per well. Plates were incubated for 1 h at 700 rpm at room temperature (RT). As a next 
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step, plates were spun down at 100 x g for 1 min and washed 3x with WB. Beads with bound 

antibodies were later incubated with 150 mg of lung protein lysate mixture diluted with WB (200 

ul per well) and incubated for 1 h at RT and 700 rpm. Finally, plates were washed 3x with WB 

and 3 times with PBS (Gibco, Thermo Fisher Scientific, Germany) followed by protease digestion 

for bottom-up proteomic analysis.  

Firstly, beads were supplemented with 50 μl 8 M Urea Hepes pH8, 0.5 μg LysC,10 mM DTT 

(Pierce, Thermo Fisher Scientific, Germany) and incubated at 600 rpm for 1h at RT. Secondly, I 

added 200 μl 50 mM ammonium bicarbonate (= 50mM NH4HCO3), and 55 mM chloroacetamide 

with 0.5 μg trypsin (Pierce, Thermo Fisher Scientific, Germany) followed by incubation at 600 rpm 

for 1h at RT.  

As a next step, plates were centrifuged at 100 x g for 1 min and digested peptides were collected 

in the clean 96-well plate. Finally, beads were washed with 50μl quenching buffer (2M Urea, 50 

mM Thiourea, 2 mM HEPES in 50 mM ammonium bicarbonate). All three fractions were combined 

and digested overnight at 37°C, 600 rpm. The next day, digestion was stopped by adding 1% 

trifluoroacetic acid (TFA) to the samples. 

2.3.3. Fluid sample preparation 

Serum and plasma samples of Munich and Chicago cohorts were preprocessed for mass spec-

trometry analysis using automated workflow (138). Serum/plasma proteins in a 96-well format 

were denatured, alkylated, and digested with Trypsin and LysC, and peptides were purified using 

an automated liquid handling platform (Agilent Bravo, USA). Besides that, 20 serum samples 

were pooled and fractioned into 24 fractions using high pH‐reversed phase liquid chromatography 

for spectral library generation, which is later used as a reference to identify proteins in the other 

samples.  

BALF samples of the Chicago cohort were denatured with 4% SDS in Tris-HCL solution at 99 °C 

and further processed using the Protein Aggregation Capture (PAC) protocol (139). In brief, sam-

ples were precipitated on the magnetic beads (Sera-Mag, Cytiva, USA), and washed with multiple 

rounds of acetonitrile (ACN) and ethanol to denature and isolate protein aggregates bound to the 

beads. In the end, precipitated proteins were reduced and alkylated on the beads using tris(2-

carboxyethyl) phosphine (TCEP) and chloroacetaldehyde (CAA), followed by Trypsin and LysC 

digestion overnight at 37°C and 700rpm. For purification of peptides, stage tipping was performed 

with 3 layers of Octadecyl-bonded silica (C18). First, stage tips were activated with 100 ul MeOH, 

then equilibrated with buffer B++ (0.1% formic, 80% ACN) and A++(0.1 % formic acid). Samples 

with 1% TFA were loaded on the tips followed by elution with 60 ul buffer B++. Finally, samples 

were evaporated at 30°C (Eppendorf Evaporator Plus, Germany) and dissolved in 20 ul buffer 

A*(0.1% TFA, 2% ACN). Peptides were stored in the -20°C freezer until mass spectrometry was 

analyzed. 
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2.3.4. LC‐MS/MS analysis 

Following digestion, peptides underwent online separation through nanoflow reversed-phase 

chromatography using an Evosep One liquid chromatography (LC) system (Evosep). The sepa-

ration occurred on an 8 cm × 150 um column packed with 1.9 um ReproSil‐Pur C18‐AQ particles 

(Dr. Maisch) using the 60 SPD method with a 21-minute gradient. The Evosep One was con-

nected online to a timsTOF Pro mass spectrometer (Bruker Daltonics) operating in the DDA PA-

SEF mode (ref). Each acquisition cycle included 3 PASEF scans, and accumulation and ramp 

times were set to 100 ms each. Singly charged precursors were excluded, the “target value” was 

set to 15,000, and dynamic exclusion was activated with a duration of 0.4 min. The quadrupole 

isolation width was adjusted to 2 Th for m/z < 700 and 3 Th for m/z > 800. 

Digested peptides were separated by nanoflow reversed-phase chromatography for the DAC 

samples using an Evosep One liquid chromatography (LC) system (Evosep). The separation oc-

curred on an 8 cm × 150 um column packed with 1.9 um ReproSil‐Pur C18‐AQ particles (Dr. 

Maisch) applying the 60 SPD method with a 44-minute gradient. The mass spectrometer was 

operated in diaPASEF mode with a full scan range of 100–1,700 m/z with a ramp time of 100ms, 

ion mobility was set between 0.7 to 1.45 1/K0. 27 diaPASEF windows followed one full scan in 9 

acquisition frames. The DIA window ranged from 300 m/z to 1110 m/z with an isolation window 

of 30 Da. The collision energy was set dynamically.  

2.3.5. Proteomics raw data processing  

The standard pipeline for raw mass-spectrometry data processing in bottom-up proteomics con-

sists of several steps. First, individual peptide ions are recognized from the background signals 

by determining m/z values and intensities of the individual ions in the peak-picking process. This 

process is followed by a database search aiming to match experimental peptide masses with 

theoretical masses derived from protein sequences using software such as MaxQuant, Proteome 

Discoverer, or Mascot (140). Identified peptides are then aligned to MS/MS spectra and confirmed 

based on peptide sequence, mass accuracy, and fragmentation pattern similarity. As a next step, 

the software groups unique peptides together and assigns them to a certain protein. The last step 

is the quantitation of the proteins, which is performed by accessing the intensity or abundance of 

peptide ions in the MS data using quantification methods such as label-free quantification (LFQ) 

or intensity-based Absolute Quantification (IBAQ) (141). 

The MaxQuant software (version 1.6.17.0, (142)) was employed to analyze the mass spectrom-

etry raw files of BALF and plasma from the Chicago cohort. MS spectra were matched against 

the UniProt reference proteome FASTA file downloaded in January 2022. A contaminant data-

base, generated by the Andromeda search engine, and the human database were configured 
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with cysteine carbamidomethylation as a fixed modification and N‐terminal acetylation and methi-

onine oxidation as variable modifications. The false discovery rate (FDR) was set at 0.01 for both 

protein and peptide levels, with a minimum peptide length of seven amino acids. FDR determina-

tion involved searching a reversed sequence database. Enzyme specificity, expected to be C‐
terminal to arginine and lysine, was configured to trypsin and LysC proteases. Up to two missed 

cleavages were allowed, and proteins and peptides matching the reversed database were ex-

cluded. The mass tolerance for the main precursor search was set to 20 ppm, and a minimum of 

one peptide was required for protein quantification. 

The DAC raw mass spectrometry files were processed with DIA-NN (v.1.8.1), an open-source 

software designed for the processing of data-independent acquisition (DIA) proteomics data 

(143). This software employs a two-step spectral library refinement procedure (144). During pro-

cessing, filtering was applied at multiple levels, including precursor level q-value (1%), library q-

value (0.5%), and gene group q-value (1%). Enzymatic cleavage was defined by Trypsin/P and 

LysC proteases with match-between-runs (MBR) mode enabled for the library-free searches. Me-

thionine oxidation and N‐terminal acetylation were selected as variable modifications. All other 

processing parameters were kept by standard settings of the DIA-NN version utilized in the anal-

ysis.  

Output protein group matrixes from MaxQuant and DIA-NN were filtered (at least 3 proteins de-

tected per group), normalized, and imputed from the normal distribution using the standard pipe-

line of the DEP package (v.1.24.0). Visualization and additional statistical analysis of longitudinal 

samples were completed within the R environment (v.4.3.0). 

2.4. Proteomics data analysis 

2.4.1. Principal component analysis (PCA) 

Principal component analysis (PCA) is a linear dimensionality reduction technique that was ap-

plied to perform exploratory analysis of the Chicago cohort plasma and BALF proteomics data. 

To achieve the separation between the groups, I used the 10% most variable proteins across the 

conditions as input values for the analysis using the factoextra package (v.1.0.7). 

2.4.2. Co-expression network analysis 

Gene co-expression network analysis (GCNA) is an analytical tool aiming to identify groups of 

genes/proteins with similar expression patterns across different conditions. The identification is 

achieved by pair-wise comparison of genes/proteins with similar patterns across all samples and 

creating a co-expression network for each gene. This method is applied to explore gene/protein 
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expression groups (modules) that are correlated with specific disease conditions and can be con-

trolled by the same transcription regulators or have similar molecular functions (145). 

The GCNA was applied to the Chicago cohort plasma and BALF proteomics data for the identifi-

cation of protein clusters, that exhibit similar behavior within each pneumonia group and the in-

depth characterization of their functional properties. This analysis was conducted in the R envi-

ronment (v.4.3.0) using the CoCena2 package (https://github.com/MarieOestreich/hCoCena). 

Log2-transformed, normalized, and imputed protein intensity matrixes for plasma and BALF were 

used as input for the analysis (section 3.3.5).  

The correlation cut-off calculated through the weighted sum of the Multicriteria Decision Aiding 

(MCDA) output was applied to maximize the correlation coefficient (R2) and the number of 

edges/nodes while minimizing the number of independent networks resulting from the selected 

cut-off (146). The cut-off of 0.81 was applied to the BALF dataset and 0.74 to the plasma dataset.  

The network results were clustered using the Louvain algorithm (147) with a minimum cluster size 

of 10 nodes. The results were presented as a mean fold change for each module and condition 

in a heatmap with the module/condition setting.  

2.4.3. Over-representation analysis (ORA) 

Over-representation analysis (ORA) is a statistical method determining whether genes associated 

with specific molecular pathways are represented more than expected in the selected dataset. I 

employed ORA for each CoCena2 module of BALF (B1-B12) and plasma (S1-S7) independently 

to detect biological terms associated with these modules and thus with different disease condi-

tions. The analysis was performed using the clusterProfiler package (v.4.10.0) (148). As a refer-

ence for biological processes, I used the Reactome, an open-source pathway database of human 

pathways and processes (149). For each module, the top 5 overrepresented molecular terms with 

n >5 detected proteins per term and adjusted P-value <0.05 were presented as a grouped dot 

plot.  

2.4.4. Gene set variation analysis (GSVA) 

To access the variation in biological processes between patient groups in a longitudinal setting, I 

applied the GSVA approach to the imputed, log2-transformed protein intensity matrix of BALF 

samples (150). In summary, GSVA compares the expression levels of genes from a predefined 

gene set to the expression levels of all genes in each sample and calculates an individual enrich-

ment score. As gene sets, I used enriched Reactome terms from the ORA analysis of BALF sam-

ples and custom gene lists. To determine pathway activity scores for individual samples, I utilized 

the GSVA package (v.1.5.0) with a minimum pathway size corresponding to 3 genes. To visualize 

differential activities of molecular pathways between patient groups, I employed box plot charts 

using the ggplot2 (v.3.4.4) package. 
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2.4.5. Analysis of protein circulation between plasma and BALF in 

pneumonia patients 

To study the overlap of proteins in plasma and BALF fluids from the Chicago cohort, I created a 

custom plot by merging non-imputed, normalized plasma and BALF protein log2-transformed in-

tensity matrices using base R functions. Each matrix was scaled column-wise and then trans-

formed to the long format using group-specific annotation as a guide. Later, I calculated the mean 

value for each protein and each condition for both BALF and plasma tables separately. As a next 

step, I merged two tables based on proteins detected in both fluids and for all other proteins that 

were detected in one of the fluids, the missing value was assigned to 0. The distribution of the 

proteins was displayed as a dot plot in the ‘Scaled protein intensity BALF’ vs ‘Scaled protein 

intensity plasma’ axes. For each type of pneumonia, the plot was created separately. Proteins 

with ‘Scaled protein intensity BALF’ value >0 and ‘Scaled protein intensity plasma’ <0.5 were 

considered locally produced in BALF. Conversely, proteins that followed the rule: ‘Scaled protein 

intensity BALF’ value >0 and ‘Scaled protein intensity plasma’ >0.5 were considered circulating 

between both fluids.  

Overlap between ‘locally produced’ and ‘circulating’ immunoglobulin categories for all four patient 

groups in the Chicago cohort was visualized using the ComplexUpset package (v.1.3.5) in the R 

environment. 

2.4.6. Analysis of the autoreactivity data 

I evaluated the DAC assay's reliability by conducting receiver operator characteristic (ROC) anal-

ysis using the R package plotROC (v.2.3.1). Our objective was to compare the number of patients 

from the Chicago cohort with anti-IL6R antibodies detected and the clinical evidence of drug ad-

ministration (anti-IL6R monoclonal antibody) in severe COVID-19 cases. 

I compared COVID–19–specific autoreactivities (DAC data) of the Munich and Chicago cohorts 

separately and assessed the putative autoantigen overlap between them. For this purpose, pro-

tein intensity matrices were log2-transformed and selectively imputed following the rule that im-

putation takes place only if there are less than three values for control conditions. Log2-trans-

formed protein intensity values for COVID-19 groups were not imputed. This procedure was im-

plemented to ensure that only proteins appearing in at least three patients in the COVID-19 group 

and significantly enriched over at least one of the controls were interpreted as autoantigens (137). 

For further statistical testing, I defined the compared groups with four time windows for COVID-

19 patients of the Munich cohort, described earlier, and 4-time points for the COVID-19 patients 

of the Chicago cohort; each time point was composed by a selection of the consequent time point 

for each patient starting from the day of intubation. Only two time points were available for bacte-

rial pneumonia and influenza groups. Control high inflammatory(n=23) and low inflammatory 
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(n=24) from the Munich cohort and non-pneumonia control (n=7) from the Chicago cohort con-

tained a single sample per patient and were used as reference groups for each cohort in the 

following analysis.  

To reveal COVID-19-specific autoreactivities in the Chicago cohort, I performed a Welch non-

parametric test for the COVID-19 (n=13) samples against bacterial pneumonia (n=6), Influenza 

(n=7) and non-pneumonia control groups (n=7) separately for each time point. The protein was 

considered significantly enriched as an output if the FC >1.5 and the p-value <0.05.  

For the Munich cohort, I repeated the same procedures with the COVID-19 group against control 

high inflammatory (n=24) and control low inflammatory (n=23) separately for each time window. 

Additionally, the Munich COVID-19 patients were split on ARDS (n=16) and mild (n=7) to achieve 

compatibility of the results with the Chicago cohort.  

The lists of putative autoantigens from both cohorts, composed of significantly enriched proteins 

in the severe COVID-19 group in at least one condition and one time point, were compared to 

identify common autoreactivities in both cohorts. The output was visualized using a Euler diagram 

with the Eulerr (v.7.0.0) package. 

All the statistical and bioinformatics operations listed above were run with the Perseus software 

package (version 1.6.14.0) (151), and the results were visualized in the R (v.4.3.0) using the 

ggplot2 (v.3.4.4) packages. 

2.4.7. Modeling of time and severity effects on the autoreactivities in 

the Munich cohort 

Log2 transformed protein matrixes of 23 patients in a longitudinal setting of Munich cohort con-

taining 1,210 identified proteins were divided based on t-SNE analysis into two groups represent-

ing COVID-19 patients with different severity stages: ‘mild’ and ‘severe’. The linear mixed-effects 

model was used to identify differential protein expression profiles in each of these groups at four 

time points:  

 

Proteinij is the log2 transformed fold change between COVID-19 and averaged Control low in-

flammatory group of expression value for sample i in patient j for a single protein. Βoi is a random 

intercept for the ith patient, β1i is a random slope for the ith patient and β2 is a fixed coefficient for 

the severity group. Time windowij and Severity groupij represent the fixed effect for the time in the 

jth observation. The model was built in n the R environment (v.4.3.0) using lme4 (v.1.1-35.1), 

lmerTest (v.3.1-3), and psych (v.2.3.9) packages. The evaluation of the model was addressed 

using the performance package (v.0.10.8) with a focus on Akaike Information Criterion (AIC), 

Bayesian Information Criterion (BIC), Bayes Factor (BF) characteristics, and normality of distri-

bution of the residuals, as quality factors. The false discovery rate (FDR) adjusted P-value <0.05 
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was considered significant. The significance of each fixed effect on the protein levels was evalu-

ated using the ANOVA F-test. 

1.1.1 Calculation of the autoantigen score  

I calculated the autoantigen score to study the cumulative autoreactivity for each patient. It com-

prises a sum of all fold changes of all autoreactivities above the custom threshold. To start with, 

log2-transformed protein intensity matrixes for the Chicago and Munich cohorts were transformed 

into the fold change matrixes for each protein in the COVID-19 group by subtraction of the mean 

protein intensity of the non-pneumonia control group (n=7) in the case of the Chicago cohort, and 

control low inflammatory (n=23) in case of the Munich cohort. For the Munich cohort, the analysis 

was focused only on the severe COVID-19 patients (n=16).  

The threshold was defined manually based on the experimentally observed threshold for true 

positive control, IL6R, and comprised of fold changes above 3. This way, all the autoantigens with 

a fold change above 3, excluding immunoglobulins, were summarized for individual patients and 

time points in the Chicago and Munich cohorts.  

1.1.2 Analysis of the associations between autoantigens and clinical 

parameters 

To obtain associations between cumulative autoreactive background in COVID-19 patients and 

clinical manifestations, I performed Pearson correlation tests between available clinical values 

and autoantigen scores for the Chicago and Munich cohorts, selecting only first-time points for 

each patient. This analysis was conducted in R-environment (v.4.3.2) using ggpubr (v.0.6.0) and 

corrplot (v.0.92) packages. The results were visualized on the bar plot with an x-axis correspond-

ing to the clinical parameters and a y-axis correlation coefficient between each parameter with an 

autoantigen score. The bars were ordered from the strongest positive to the strongest negative 

correlation; the significant results (p<0.05) were highlighted with a star sign.  
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2.5. Single-cell RNA sequencing data analysis 

2.5.1. Pre-processing 

Data from the multi-omics single-cell atlas of peripheral blood immune cells from hospitalized 

COVID-19 patients and healthy control donors was downloaded from the ArrayExpress repository 

(E-MTAB-10026) in the h5ad format. This dataset contained transcriptomic raw gene expression 

counts, cellular indexing of transcriptomes, epitopes (CITE-seq) data, and lymphocyte immune 

receptors (152).  

CITE-seq is a sequencing-based method that enables the quantification of cell surface proteins 

alongside transcriptomic data within a single experiment. It uses antibodies tagged with unique 

oligonucleotides to identify surface proteins, with sequencing as a readout. Studying both tran-

scriptomic and surface protein modalities simultaneously enhances understanding of molecular 

mechanisms underlying certain disease conditions and provides insights into new cell types.  

The atlas contained several severity categories of COVID-19 patients: asymptomatic (n=12), mild 

(n=26), moderate (n=32), severe (n=15), critical (n=17), and three control types: healthy (n=24), 

hospitalized non-COVID-19 patients (n=5), lipopolysaccharide (LPS)-stimulated patients (n=12). 

The samples were collected in 3 different cities: Newcastle, London, and Cambridge, and each 

patient contributed one sample. The downloaded dataset contained 647,366 cells and 24929 

genes, and in the original publication, it was classified into 18 cell types.  

From the original object using scanpy (v.1.9.1) package, I removed LPS-stimulated and hospital-

ized non-COVID-19 patients to understand better the COVID-19 severity stages (n =102). The 

downstream preprocessing and analysis for the dataset were performed in the Seurat (v.4.2.1) I 

preprocessed combined raw data from the three centers to remove cells with >10% mitochondrial 

reads and <1000 unique feature counts using subset() function of the package. Data was normal-

ized using NormalizeData() function applying “LogNormalize” normalization method and scale 

factor 10000 and scaled afterward with the ScaleData(). 

2.5.2. Downstream analysis of single‐cell data 

As a next step, genes with the highest variation across all cells, and highly variable genes (HVGs) 

must be calculated. HVGs were calculated using scvi-tools (v.0.6.8) function scib.prepro-

cessing.hvg_batch() with patient ID as a batch factor. The target genes were set to reach 15% of 

the total number of genes in the object, excluding genes with an expression level equal to 0. In 

this case, 4000 HVGs were selected. I used an outside function to encompass the batch factor 

from processing patients in different centers. 
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As a next step, I integrated the dataset, using a computational approach to compare cellular en-

tities across various datasets or patients. HVGs were imported into the Seurat object, and data 

was scaled and normalized. I used Harmony (v.0.1.1) to adjust Principal components (PCs) by 

the patient ID and used it to generate the neighborhood graph and embeddings using Uniform 

Manifold Approximation and Projection (UMAP). Clustering was performed using the Louvain al-

gorithm with an initial resolution of 0.5 and 30 PCs. Differentially expressed genes were calculated 

for initial clustering using the Model-based Analysis of Single-cell Transcriptomics (MAST) algo-

rithm (153), a statistical test for characterizing transcriptional heterogeneity in single-cell data. As 

a next step, I manually annotated the clusters using marker genes for the PBMCs (154) and 

subsetted cells that expressed B and plasma marker genes (CD79A, MS4A1, CD19, CD22, 

JCHAIN, IGKC, IGHG1, IGHA1, IGHG4, IGHG3, IGHG2) for further analysis.  

HVGs for the B and Plasma cells subset were calculated analogously as previously described. 

After scaling the data and assigning PCs, I ran Harmony to align the data of the different patients 

better and avoid the batch effect.  

2.5.3. Annotation of B and plasma cells  

To annotate B and plasma cell subsets, I calculated new UMAP embeddings to separate cluster 

identities. For the final visualization of the B and Plasma cell dataset, the UMAP was generated 

using 20 PCs, resolution equal to 0.5, and harmony as a reduction component. 

This allowed us to identify cell states by exploring the differentially expressed genes (DEGs) per 

cluster via FindAllMarkers() Seurat function utilizing the MAST algorithm. Genes with > 0.25 log-

fold changes, at least 25% expressed in tested groups, and Bonferroni-corrected p values < 0.05 

were considered significant. The top 20 significant DEG per cluster were further used to manually 

annotate each cluster based on available in the literature B and plasma cell marker genes (155). 

To address the identity of each cluster, I utilized both transcriptomic and surface protein markers 

(CITE-seq) available in the dataset. The CITE-seq is based on antibodies against surface proteins 

of interest tagged with oligonucleotides, allowing their sequencing alongside single-cell tran-

scriptomics data. This method provides additional information for each cell, including the level of 

surface protein expression besides sequenced transcripts.  

The normalization of CITE-seq data was carried out using NormalizeData() function with a cen-

tered log ratio (CLR) normalization method, which aids in better separation of cell populations. 

Still, it does not directly estimate and correct specific sources of technical noise, including the 

apparent background noise, as in the case of transcriptomics data (156). To compute protein 

markers, I applied FindAllMarkers() using the MAST algorithm and the surface protein layer as 

input. For more detailed annotation, I utilized surface protein markers reported by Woodruff and 

colleagues (131) and B1 cell-specific markers: CD5, CD19 high, CD23 low, CD43 high, IgM high, 
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IgD low (157). The dataset was split into subsets for B1 cells, IgA high plasma cells, dividing 

Plasma blasts, Immature B cells, Naive B cells, and Memory B cells (Table 2.5.3). 
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Table 2.5.3: Transcriptomic markers of B and plasma cell subsets. The top 20 significantly 

differentially expressed genes per cluster are displayed. 

Cluster Maker Genes  

Immature B cells TCL1A, CXCR4, FCER2, CD69, BTG1, DUSP1, IL4R, LINC00926, 

FOS, TSC22D3, BACH2, LAPTM5, TUBA1A, HVCN1, CD37, 

ZFP36L1, FOXP1, TXNIP, HLA-DRA, CALHM6 

Memory B cells  CD82, LINC01781, CRIP1, AIM2, COTL1, GPR183, CAPG, 

TNFRSF13B, ACP5, S100A4, MS4A1, S100A6, PLEK, BLK, CIB1, 

SCIMP, BANK1, LTB, SPIB, CLECL1 

Naive B cells  TCL1A, IL4R, FCER2, BACH2, IGHD, CD69, CXCR4, FOS, FCRL1, 

CD83, HVCN1, COL19A1, AFF3, LINC00926, TSPAN13, TUBA1A, 

PLPP5, DUSP1, FOXP1, BTG1 

IgA high plasma cells  JCHAIN, MZB1, FKBP11, TXNDC5, SEC11C, IGHG1, MYDGF, 

XBP1, SDF2L1, CD38, ITM2C, DERL3, HSP90B1, SSR3, 

TNFRSF17, LMAN1, IGHA1, PDIA4, SPCS3, HM13 

B1 cells  LINC01857, FCRL2, ARHGAP24, GPR183, TTN, CD82, PARP15, 

RALGPS2, FCRLA, BANK1, MS4A1, NR4A2, KLF6, BLK, SYK, 

NAPSA, FCRL3, IL10RA, SLC2A3, COTL1 

Dividing plasmablasts RRM2, IGHG1, SDF2L1, JCHAIN, TXNDC5, MZB1, TYMS, STMN1, 

MYDGF, MANF, FKBP11, TUBA1B, FABP5, CCND2, TXN, MKI67, 

SSR3, SEC11C, HMGB2, HSP90B1 
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2.5.4. BCR-seq analysis 

The single-cell V(D)J data derived from multi-omics single-cell atlas of peripheral blood immune 

cells from hospitalized COVID-19 patients and healthy controls was initially processed with Cell 

Ranger vdj pipeline (4.0.0) (152). This processing involved filtering out reads with noisy barcodes 

and unique molecular identifiers (UMIs) while generating full-length transcripts (contigs) for each 

chain in all observed cells.  

For preprocessing and subsequent analysis, I utilized the ‘filtered_contig_annotations.csv’ file 

downloaded from the ArrayExpress repository (E-MTAB-10026), adhering to guidelines from the 

Single-cell best practices book (158). 

Subsequently, the contigs table was filtered within a python (v) environment using the Scirpy 

package (v.0.11.2). Specifically, I followed the selection criteria of only a single complete immune 

receptor (IR) per cell, thereby removing all the contigs for incomplete IR or ones containing extra 

chains. This process ensured the selection of cells containing a singular BCR per cell and a full 

set of VDJ chains required for receptor assembly.  

In the next step, I integrated the filtered contigs with the single-cell multi-omics B and plasma cell 

object described above using scirpy: ir.pp.merge_with_ir() and removed all the cells in the object, 

which did not have IR, resulting in 38 000 cells.  

2.5.5. B cell clone/clonotype definition 

The B cell receptor (BCR) consists of heavy and light chains (κ and λ), with the light chains formed 

by Vand J—genes and the heavy chain containing V-, D—and J—genes. This genetic construct 

confers high variability to the final receptor, providing flexibility to capture various antigens. 

The IR encompasses three regions of high variability known as the Complementary Determining 

Regions (CDRs) 1-3, which are detected per chain where the IR binds to its target antigen. The 

V-gene encodes CDR1 and CDR2, while CDR3 is at the intersection of V-, (D-), and J-genes, 

making it the most diverse element. Thus, it is considered that the specificity of the IR is deter-

mined by its CDR3 region (159).  

This way, the data obtained from VDJ-sequencing enables the study of cell functionality, which is 

directly connected to receptor specificity. Identifying cells with the same or similar IR allows the 

association with the same receptor specificity and molecular phenotype. Defining these groups 

facilitates the tracking of how infection induces transcriptomic changes in the immature B cell 

subsets and how the diversity of the immune cell repertoire changes after the immune response. 

The theoretical part behind the computational clonotype assignment relies on the following prin-

ciples: usage of identical V and J genes, matching CDR3 amino acid length, and 85% and higher 

https://sciwheel.com/work/citation?ids=10920300&pre=&suf=&sa=0
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similarity of amino acid sequence of the CDR3 junction (based on hamming distance). To assign 

a clonotype for each receptor, I used the Python-based package Dandelion (v.0.3.0), which pro-

vides a BCR distance-based clonotype definition method that searches for the similarity between 

CDR3 regions of the cells taking into consideration the possibility of the point mutations (160). 

The method considers all possible 5-mer combinations for the analogous mutation case, where 

the amino acid represented by the codon stays unmodified, making it especially helpful in dealing 

with somatic hypermutation of the B cells (160). For clonotype definition based on distance, I 

defined the separation threshold for close-related receptor sequences using ddl.pp.calcu-

late_threshold() to be able to assign which cells could be considered clones. As the distribution 

of the distances is expected to be binomial, the threshold is selected as a middle point between 

both modes (161). All clones/clonotypes were called across the entire dataset. All downstream 

visualization and gene segment usage analysis were performed using scirpy() and Seurat 

(v.4.2.1) plotting functions.  

https://sciwheel.com/work/citation?ids=3572160&pre=&suf=&sa=0
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3. Results 

3.1. Proteomic analysis of biofluids of patients with infectious 
lung diseases  

Infectious respiratory diseases comprise the 4th most fatal group of diseases worldwide, following 

ischemic heart disease, stroke, and chronic obstructive pulmonary disease (COPD), according to 

a recent World Health Organization (WHO) report (WHO, 2020). 

COVID-19 is an infectious respiratory disease affecting the lower respiratory tract caused by the 

SARS-CoV-2 virus (8). Compared to pneumonia cases caused by other respiratory pathogens, 

such as the Influenza virus, severe COVID-19 patients are characterized by profound systemic 

inflammation and distinct pathophysiology findings, including increased hypercoagulation and 

multi-organ damage (133). In the lung microenvironment, SARS-CoV-2 induces a gradual, local-

ized alveolitis where alveolar macrophages containing the virus and T cells create a feedback 

loop leading to persistent inflammation.  

COVID-19 patients exhibit unique pathophysiology, which is not observed in pneumonia caused 

by other respiratory viruses or bacterial pathogens with similar severity. The clinical picture of 

COVID-19 includes a prolonged incubation period, high mortality within the severe COVID-19 

patients (20-40%), the prevalence of extrapulmonary manifestations, which include deep vein 

thrombosis, AKI, and myocardial tissue damage (44,60,73). All of these features were specific for 

COVID-19 pneumonia, which creates an increasing need to comprehend the specific immune 

mechanisms associated with COVID-19 compared to other types of pneumonia with similar se-

verity. This can be accomplished by evaluating the SOFA score and Acute Physiology Score 

(APS) scores, considering the respiratory parameters of intubated patients, and examining the 

demographics of the cohort. 

To sum up, it is hypothesized that SARS-CoV-2 pneumonia has a distinctive pathobiology. In the 

following chapter, I compared the proteomic profiles of COVID-19 to other types of pneumonia 

with similar severity to elucidate unique molecular signatures observed in BALF and plasma of 

severe COVID-19 patients. 

3.1.1. Demographics of the SCRIPT cohort  

To address this question, I joined forces with colleagues from Northwestern Memorial Hospital in 

Chicago (NMH), who collected 73 longitudinal samples of bronchoalveolar lavage fluid (BALF) 

and matched plasma samples (n=73) from patients with respiratory failure secondary to the in-

fection. This cohort was assembled as a part of the Successful Clinical Response in Pneumonia 

Therapy (SCRIPT) study, which aims to improve treatment strategies for patients with severe 

pneumonia. 

https://sciwheel.com/work/citation?ids=8133897&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=10286927&pre=&suf=&sa=0
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Subsequent categorization of patients was based on the specific type of molecular pathogen de-

tected, employing various diagnostic tools for each type. The final cohort included the non-pneu-

monia control group (n=7), patients with severe non-COVID-19 viral pneumonia (influenza, n=7), 

patients with severe pneumonia caused by bacterial or fungal pathogens (bacterial pneumonia, 

n=6), and patients with severe SARS-CoV-2 pneumonia (COVID-19, n=13).  

According to the standard clinical protocols, BALF and plasma are routinely collected fluids in 

ICU-admitted patients, which can be screened for biomarkers predicting patient outcomes along-

side conventional blood chemistry parameters. One of the modern approaches allowing repro-

ductive and reliable discovery of such clinical biomarkers is mass–spectrometry–based prote-

omics (162). Considering this, I acquired BALF and plasma proteomes using high-resolution mass 

spectrometry to investigate the early pathogenesis in the pulmonary environment and the trajec-

tory of disease progression to reveal potential soluble biomarkers (Fig.3.1.1a).  

To elucidate pneumonia-specific responses in the bronchoalveolar space of the patients, I initially 

selected samples based on the following criteria: the earliest time of intubation, as well as the 

absence of secondary bacterial infection resulting from the mechanical lung ventilation at that 

specific time point (Fig.3.1.1b). Most viral pneumonia patients (COVID-19, influenza) acquired 

bacterial superinfection at later points in the ICU due to lung ventilation and were therefore ex-

cluded from further analysis. This selection procedure yielded ten COVID-19 patients, seven in-

fluenza patients, six bacterial pneumonia patients, and seven non-pneumonia control patients 

(Fig.3.1.1b).  

I ensured that all the pneumonia subgroups had compatible age, race, and sex profiles and di-

verse clinical outcomes (Fig.3.1.1c, Table A1). Notably, the percentage of deceased patients 

among the COVID-19 subgroup was the lowest (15%) in comparison with other types of pneumo-

nia, while the bacterial pneumonia subgroup comprised the highest (67%) (Table A1, Fig.3.1.1e). 

The severity assessment of the disease was estimated using the SOFA score, revealing a simi-

larity between COVID-19 patients and patients with other types of pneumonia (Fig.3.1.1e, Table 

A1). At the same time, COVID-19 patients exhibited prolonged lengths of stay in the ICU with 

significantly higher applied PEEP compared to other groups (Fig.3.1.1e), which indicates exces-

sive lung damage. Besides that, significant differences were observed in the macrophage and 

neutrophil counts in BALF. An elevated macrophage proportion was detected in the BALF of non-

pneumonia control patients, while the highest neutrophil counts were present in the bacterial 

pneumonia group (Fig.3.1.1e). 

Taken together, I introduced a cohort of patients with infectious lung diseases, including COVID-

19, influenza, and bacterial pneumonia patients, as well as non-pneumonia controls. All the pa-

tients were admitted to the ICU and were comparable concerning disease severity.  

https://sciwheel.com/work/citation?ids=7770048&pre=&suf=&sa=0
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Figure 3.1.1: The SCRIPT cohort demographics. a, Overview of study design. b, Overview of 

the samples of the Chicago cohort. Each point represents a BALF/plasma sample, the color cor-

responds to the pneumonia type, and the point shape refers to the presence of superinfection. c, 

Gender, and outcome composition of the samples selected for the analysis of the fluids on day 0 

of intubation. d, Smoking status and superinfection status of the samples selected for the analysis 
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of the fluids on day 0 of intubation. e, Clinical parameters for all four pneumonia groups (Kruskal-

Walli’s test applied to detect the differences). 
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3.1.2. Identification of pneumonia-specific molecular signatures 

upon the intubation 

BALF and plasma proteome profiles were first analyzed with principal component analysis (PCA) 

across all four patient subgroups to assess the systemic differences in proteomes of both biofluids 

(Fig. 3.1.2a). Notably, the proteome profiles of the COVID-19 patients, influenza, and bacterial 

pneumonia groups were well separated in the bronchoalveolar environment and the circulation. 

PC1 was defined by SDC1, PTGDS, SPARCL1, PA2G4, and S100A12, indicative of tissue dam-

age, while separation on the PC2 axes was due to variability of CA1, CA2, BLVRB, HBA2, IG-

FALS proteins between pneumonia subgroups. This suggests that diversity between pneumonia 

groups can be observed in both fluids upon intubation and is driven by soluble factors and immune 

effector proteins.  

I next identified BALF and plasma proteins that could reliably distinguish the specifics of the im-

mune response triggered by each type of pathogen. For this reason, I constructed a co-expres-

sion network analysis using the BALF and plasma proteomes from COVID-19 (n=10), bacterial 

pneumonia (n=5), and influenza (n=7) patients, as described in Fig.3.1.1 at the time of intubation 

to assess their proteome profiles before therapy administration. Proteins were organized into 

modules based on their relative expression levels, grouping ones with similar expression patterns 

among patients within each subgroup. I identified twelve protein modules in the BALF and seven 

in the plasma, each containing a minimum of 10 to a maximum of 60 proteins (Fig. 3.1.2 b, f).  

The analysis of the BALF modules' contents revealed that the B1-B6 protein modules were up-

regulated in bacterial pneumonia patients. They included members of the Rho GTPase effectors 

(MYH11, ACTR3, SPTBN1, RAC2, ARHGAP30, RHOA, MAPK14, ARPC4, LMNB1, ARPC2, 

RCC2, ARPC1B, ARPC5, S100A8, VIM, S100A9) (Fig.3.1.2c), neutrophil degranulation 

(S100A12, CTSG, RNASE2, ELANE, PGLYRP1, FCN1, CEACAM8, PRTN3, ITGAM, ARG1, 

OLFM4, ITGB2, RHOA, MAPK14, PGM1, BIN2, LAMTOR3, ARPC5, S100A8, ALDOA, S100P, 

PKM, S100A9), and proteins involved in glucose metabolism (GPI, PGAM1, PGK1, ALDOC, 

TPI1) (Fig.3.1.2d). These findings were validated by correlating the levels of neutrophil degranu-

lation proteins in the BALF of bacterial pneumonia patients with the corresponding neutrophil cell 

counts from the same individuals. The data showed a significant positive correlation with a corre-

lation coefficient (R2) of 0.75 and a p-value of 0.01, demonstrating my proteomic results a reflec-

tion of the neutrophilic inflammation in the lung microenvironment in bacterial pneumonia (Fig. 

3.1.2h). 

On the contrary, modules B8 and B9 were elevated in the BALF of COVID-19 patients and con-

sisted of proteins related to the regulation of the complement cascade (F2, CFI, C1S, VTN, C9, 

CFB, SERPING1, C4B), platelet activation, signaling, and aggregation (HRG, CLEC3B, F2, 

AHSG, ITIH4, SERPINF2, PLG, APOA1, ORM2, FN1, A1BG, ORM1, SERPING1, APOH, ECM1, 

ALB, A2M), and T53 regulation of metabolic genes (PRDX5, YWHAG, YWHAQ, TXN, PRDX1) 
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(Fig.3.1.2e). Module B11 exclusively comprised immunoglobulin variable heavy and light chains 

(IGHV1-69, IGKV1-39, IGHV3-15, IGLV3-10, IGLV1-47, IGLV1-40, IGLV3-16, IGLC7, IGKV2-30, 

IGJ, IGLL5, IGLV1-51, IGHM, IGHA1, IGHG3-1). Lastly, influenza-specific modules B7 and B12 

contained proteasome components (PSMD4, PSMC2) and extracellular space proteins (GLG1, 

TIMP2, GPC1, BAX, UBE2N, ATP6V1H, ATP1B1, FABP3, FBP2, YWHAZ, RPS8, TSTA3, 

ENO2, IGKV1D-33, PPT1) (Fig. 3.1.2c).  

Similar to the analysis conducted on BALF, examining plasma proteomes through co-expression 

network analysis also uncovered diverse patterns across different pneumonia subgroups. Specif-

ically, proteins associated with the complement cascade (CPN1, CFHR4, C9, CPN2, CFB, FCN3, 

C2, C4A, C4BPB, C4BPA, PROS1, CPB2, C3, CFI, C4B, SERPING1, C8A) and platelet degran-

ulation (FLNA, TAGLN2, PPIA, TMSB4X, VCL, ACTN1, CALM1, FERMT3, PPBP, CAP1) were 

upregulated in influenza patients (S5, S6, S7), whereas COVID-19-specific modules featured sig-

nal transduction proteins (FLNA, S100A8, TPM4, VCL, ACTN1, TPM3, RAP1B, CALM1, PPBP, 

ACTC1, ACTG1, ACTB; module S1) and immunoglobulins (P06889, IGKV2-24, IGLV1-36, SDC1, 

IGKV1-17, IGLV3-10, IGLV2-11, IGLV1-40, P01780, P01612, IGLV3-25, IGKV3-7, IGHV2-26, 

P04431, FAM153A, IGKV4-1, IGHV3-15, P04206, IGKV1-16, P01708, IGKV6D-21, IGKV1-5, 

IGHG4, IGKV2-40, IGKC-2, P01620, LYZ, P01619, IGKV1D-33, IGLV3-19, IGLV6-57, COPS3, 

IGKC-1, IGHV3OR16-9, IGLV1-47, P01596, P01717, P04430, IGKV2D-29, IGKV2D-28, P01598, 

IGHG1-2, IGHG3, P01594, P01611, IGHV3OR16-12, IGHV3-49, IGHV5-51, P01622, IGHV1-46, 

GP1BA, P01609, IGLL5; module S2). In contrast, plasma modules specific to bacterial pneumo-

nia consisted of proteins involved in the regulation of insulin-like growth factor (IGF) transport and 

uptake (IGFALS, ITIH2, APOA2, APOA1, SERPIND1, PLG, SERPINC1, F2; module S3) 

(Fig.3.1.2f).  

In conclusion, assessment of the proteomic profiles in BALF and plasma samples collected from 

patients suffering from COVID-19 revealed the upregulation of the complement cascade, platelet 

degranulation proteins, and immunoglobulins in the COVID-19 subgroup. Conversely, individuals 

with bacterial pneumonia exhibited elevated levels of proteins implicated in neutrophil degranula-

tion, glucose metabolism, and Rho GTPase effectors. In the case of Influenza infection, specific 

proteomic signatures were enriched in complement cascade and platelet degranulation proteins 

in the plasma, as well as proteasome components and extracellular space proteins in BALF. 

These findings highlight the initial distinctions between the bronchoalveolar environment and cir-

culation in the pneumonia-relevant molecular processes.  
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Figure 3.1.2: Pneumonia-specific protein signatures can be detected in BALF and plasma 

on the day of intubation. a, PCA of BALF, and plasma samples at the time of intubation. b, 

Hierarchical clustering of 12 BALF modules for the subset of pneumonia patients at day 0 of 
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intubation. The bar plot represents the number of proteins in each module, and the row annotation 

highlights the group specificity of the module. The color scale reflects the mean fold change of 

the proteins in the module. c, Reactome terms of over-representation analysis (ORA) enriched in 

BALF modules at day 0 of intubation. The top 5 enriched terms for each module are displayed (p. 

adj<0.05), color codes for adjusted p-value, and point size refers to the number of proteins de-

tected per term. Modules were assigned specific colors according to their specificity to the pneu-

monia group in BALF heatmaps on panel b. d, Reactome terms with proteins enriched in the 

bacterial pneumonia BALF modules from Fig.1e. The point size of the terms corresponds to the 

number of included proteins. e, Reactome terms with proteins enriched in the COVID-19 BALF 

modules from Fig.2b. The point size of the terms corresponds to the number of included proteins. 

f, Hierarchical clustering of 7 serum modules for the subset of pneumonia patients at day 0 of 

intubation. The bar plot represents the number of proteins in each module, and the row annotation 

highlights the group specificity of the module. The color scale reflects the mean fold change of 

the proteins in the module. g, Reactome terms of ORA enriched in serum and modules at day 0 

of intubation. The top 5 enriched terms for each module are displayed (p. adj<0.05), color codes 

for adjusted p-value, and point size refers to the number of proteins detected per term. Modules 

are assigned specific colors according to their specificity to the pneumonia group in serum 

heatmaps on panel f. h, Pearson correlation of enrichment score of ‘neutrophil degranulation’ 

term proteins and neutrophil cell counts in the BALF of bacterial pneumonia patients.  
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3.1.3. Dynamics of pneumonia-specific molecular signatures in BALF 

Subsequently, I followed up the significantly upregulated Reactome terms in BALF of pneumonia 

patients upon intubation longitudinally to investigate how pneumonia-specific immune responses 

develop over time. For this purpose, I applied the gene set variation analysis (GSVA) algorithm, 

enabling the exploration of variability within the biological processes across different conditions. 

GSVA generates an enrichment coefficient for a protein group at each time point and for each 

patient. This allowed me to group enrichment coefficients for pneumonia subgroups within se-

lected time frames, providing insights into the dynamics of specific biological processes during 

disease progression.  

First, I focused on the longitudinal behavior of bacterial pneumonia-specific molecular terms, spe-

cifically neutrophil degranulation and signaling by Rho GTPases. Both terms were elevated in the 

BALF of bacterial pneumonia patients on the day of intubation, persisting during the initial 0–15-

day period compared to influenza, COVID-19, and non-pneumonia control patients (Fig. 3.1.3a, 

b). However, over time, these protein sets exhibited downregulation in bacterial pneumonia pa-

tients while demonstrating an increase in the COVID-19 subgroup. This behavior may be at-

tributed to the resolution of bacterial pathogens in the bacterial pneumonia cohort and the devel-

opment of bacterial superinfection in the COVID-19 patients during later time points of the ICU 

stay.  

Secondly, platelet activation signaling and aggregation term was initially detected to be signifi-

cantly upregulated in the BALF of COVID-19 patients at the time of intubation and maintained an 

upward trajectory, reaching the peak levels during the 45-55 days period (Fig.3.1.3c) compared 

to other cases of pneumonia. Besides that, proteins involved in the regulation of complement 

cascade, initially upregulated during intubation, remained elevated in COVID-19 patients through-

out the 0-55 day of ICU stay (Fig. 3.1.3e). Furthermore, as part of the co-expression network 

analysis described earlier, one of the COVID-19-specific modules (B11) consisted of immuno-

globulins, which were elevated in BALF of COVID-19 patients. Following this, my data show that 

immunoglobulins peaked during the initial (0-15 day) period, with a resolving trajectory over time 

in the ICU among COVID-19 patients (Fig. 3.1.3d). Additionally, observations regarding the per-

sisting upregulation of complement, platelet degranulation proteins, as well as immunoglobulins 

in a bronchoalveolar environment of severe COVID-19 patients, were supported by existing sci-

entific evidence that highlighted them as a hallmark of the pathobiology of severe COVID-19 pa-

tients, often associated with hypercoagulopathy and multi-organ damage (14,35,46,59,70).  

Several reports have highlighted the increased deposition of extracellular matrix proteins in the 

lungs of severe COVID-19 patients, contributing to fibrosis (163). Leveraging my enrichment find-

ings of protein groups in my pneumonia proteomics dataset with GSVA, I further investigated the 

early signs of pulmonary fibrosis in COVID-19 patients by utilizing a biomarker panel derived from 

the BALF proteomic dataset of interventional lung fibrosis patients (IPF) (164). These biomarkers 

https://sciwheel.com/work/citation?ids=8261740,9256594,12836801,9866222,9710645&pre=&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&suf=&sa=0,0,0,0,0
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are significantly associated with IPF patients' lung function decline and increased mortality and 

include FN1, ITIH4, POSTN, APOE, KLKB1, FTL, and BASP1. Calculation of the enrichment 

score for each subgroup of pneumonia patients using those fibrotic markers revealed the in-

creased scores in the BALF of COVID-19 patients compared to influenza, bacterial pneumonia, 

and non-pneumonia control patients persisting longitudinally (Fig. 3.1.3f). Remarkably, only the 

bacterial pneumonia subgroup reached similar levels of fibrotic markers as COVID-19 during the 

latest time window (45-55 days). This observation suggests that early signs of pulmonary fibrosis 

can manifest in the lung microenvironment of COVID-19 patients shortly after intubation, con-

trasting with other types of pneumonia of similar severity. 

To conclude, proteins involved in regulating complement cascade and platelet activation signaling 

and aggregation displayed an unresolved trajectory in the BALF of COVID-19 patients during the 

first two months in the ICU, distinguishing this pneumonia type from influenza and bacterial pneu-

monia patients. Lastly, I observed an accumulation of immunoglobulins in the bronchoalveolar 

space of COVID-19 patients on the day of intubation, progressively decreasing over time in the 

ICU. This phenomenon can be supported by existing scientific reports revealing that hyperactiva-

tion of the immune system facilitates the early production of neutralizing antibodies against SARS-

CoV-2 with low specificity (165). 
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Figure 3.1.3: Pneumonia-specific signatures detected in BALF during intubation persist 

longitudinally. a, Box plot graph displaying longitudinal behavior for platelet activation signaling 

and aggregation Reactome term enriched in BALF of four pneumonia groups. Each dot repre-

sents the enrichment score for an individual patient, and the box color corresponds to the patient 

subgroup. Proteins for the term are displayed on the left side of the graph. b, Box plot graph 

displaying longitudinal behavior for immunoglobulins enriched in BALF of four different pneumo-

nia groups. c, Box plot graph displaying longitudinal behavior for regulation of complement cas-

cade Reactome term enriched in BALF of four pneumonia groups. d, Box plot graph displaying 

longitudinal behavior for fibrotic markers from (164) enriched in BALF of four different pneumonia 

groups. e, Box plot graph displaying longitudinal behavior for neutrophil degranulation Reactome 

term enriched in BALF of four pneumonia groups. f, Box plot graph displaying longitudinal behav-

ior for signaling by Rho GTPases Reactome term enriched in BALF of four pneumonia groups. 

https://sciwheel.com/work/citation?ids=10588340&pre=&suf=&sa=0
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3.1.4. Presence of plasma proteins in the lung environment in 

COVID-19 patients is associated with a decreased P/F ratio 

Upon observing an increased proportion of immunoglobulins and platelet-associated proteins in 

the BALF of COVID-19 patients at the time of intubation, I hypothesized that a breach in the 

endothelial integrity might lead to the leakage of plasma proteins and cells into the lung environ-

ment, thereby promoting inflammation and obstructing the recovery (166). 

To assess pulmonary damage severity in pneumonia patients, I focused on the longitudinal pro-

files of the partial pressure of oxygen in arterial blood (PaO2) to the fraction of inspiratory oxygen 

concentration (FiO2) ratio (P/F), commonly used to classify ARDS severity. Interestingly, the P/F 

ratio remained consistently lower in COVID-19 patients throughout the intubation period than in 

influenza and bacterial pneumonia patients (Fig. 3.1.4a), implying an expanded lung damage in 

this subgroup. Next, I followed up on the presence of plasma proteins in BALF across pneumonia 

types. I calculated enrichment scores for the hundred most abundant plasma proteins derived 

from the healthy controls for each sample, revealing that the plasma proteins in BALF peak during 

the 0-15 days period for the COVID-19 patients compared to bacterial pneumonia and influenza, 

and persist elevated throughout the stay in the ICU (Fig.3.1.4b).  

Lastly, to explore the association between these parameters, I performed pairwise Pearson cor-

relation tests between molecular terms specific to BALF of COVID-19 and bacterial pneumonia 

subgroups (as described in Fig.3.1.2 and Fig. 3.1.3) and clinical metadata, including respiratory 

parameters, BALF cell counts, severity parameters, and blood chemistry values (Fig.3.1.4c). My 

analysis revealed significant positive correlations (p<0.05) between plasma proteins in BALF of 

COVID-19 patients and Positive End Expiratory Pressure (PEEP), along with a significant nega-

tive correlation with the P/F ratio. Moreover, the presence of IPF fibrotic markers and upregulated 

complement cascade proteins in the BALF of COVID-19 were negatively associated with the P/F 

ratio. These findings suggest that the accumulation of the plasma proteins and proteins related 

to the regulation of complement cascade in the bronchoalveolar environment of COVID-19 pa-

tients is indicative of profound lung damage, possibly arising from endothelial dysfunction followed 

by plasma leakage, which distinctly affects the lung state in COVID-19 patients compared to other 

pneumonia groups with similar severity. 
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Figure 3.1.4: Elevated levels of plasma proteins in the bronchoalveolar environment of 

COVID-19 patients are associated with a decreased P/F ratio. a, Longitudinal box plot of P/F 

ratio in four groups of pneumonia patients. Each dot represents an enrichment score for an indi-

vidual patient and the box color corresponds to the patient subgroup. b, Box plot graph displaying 

longitudinal behavior for plasma proteins enriched in BALF of four pneumonia groups. Each dot 

represents an enrichment score for an individual patient, and the box color corresponds to the 

patient subgroup. c, The heatmap demonstrates Pearson correlation coefficients of molecular 

terms enriched in BALF samples and indicated clinical parameters. The color code represents 

the correlation coefficient, highlighting significant associations (p<0.05). d-e, Cumulative density 



3.1 Proteomic analysis of biofluids of patients with infectious lung diseases 

 

68 

 

plots depict the distribution of correlation coefficients for plasma proteins enrichment scores with 

Positive end-expiratory pressure (PEEP) and partial pressure of oxygen in arterial blood (PaO2) 

to the fraction of inspiratory oxygen concentration (FiO2) (P/F) ratio in BAL compared to all back-

ground proteins (black line).  
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3.1.5. The COVID-19-specific signature consists of lung-abundant 

and plasma-abundant proteins 

Prompted by the co-existence of plasma proteins in the bronchoalveolar space of COVID‐19 pa-

tients, I next investigated the relative abundance of COVID-specific proteins (described in chapter 

3.1.2) in BALF and plasma to subdivide the ones responsible for systemic effects and the ones 

providing the local immune response. 

To achieve this, I visualized the scaled mean intensity of proteins in BALF of COVID-19 patients 

upon the intubation on the x-axis and in plasma on the y-axis of a scatter plot. The proteins with 

a mean-scaled intensity in BALF above 0 and mean-scaled intensity in plasma above 0.5 were 

selected as ‘plasma-abundant’ proteins (Fig. 3.1.5 a). Among these proteins, I detected comple-

ment factors (C4B, C9, CFB, CFI), acute phase proteins (CRP, SERPINF2, SAA2, SAA4, ITIH4, 

A2M, F2, AHSG, ORM1, ORM2), apolipoproteins (APOA2, APOA1, APOC3), as well as a subset 

of immunoglobulins (IGHA1, IGHG2, IGHV3-72, IGJ, IGKV2D-28, IGKV2D-29, IGLC3, IGLL5), 

which are shared between both fluids and are considered to be a hallmark of the severe COVID-

19 infection (73).  

In contrast, ‘lung-abundant’ proteins in COVID-19 patients were involved in protection against 

oxidative stress (PRDX1, PRDX5, TXN), vitamin and hormone binding (GC, TTR), and signal 

transduction (PEBP1, YWHAG). Moreover, a distinct set of immunoglobulins dominated the bron-

choalveolar space of the COVID-19 patients (IGHV1-18, IGHV1-69, IGHV3-15, IGHV3-30, 

IGHV3-7, IGKC, IGKV1-16, IGKV1-17, IGKV1-39, IGKV1-8, IGKV1D-33, IGKV2-24, IGKV2-30, 

IGKV3-15, IGKV3-20, IGLC7, IGLV1-51, IGLV3-10, IGLV3-16, IGLV3-19). Adaptive immune re-

sponse was formed by the production of immunoglobulins, part of which can be found in circula-

tion already at the early stages of the disease (upon intubation), and another part, ‘lung-abundant,’ 

is produced as a local immune response to the virus evasion.  

Subsequently, I aimed to determine whether the detected immunoglobulin fragments were exclu-

sive for COVID-19 or could also be detected in other types of pneumonia, particularly of viral 

origin. To stratify lung and plasma-abundant immunoglobulins in COVID-19 and influenza sub-

groups, I compiled all the immunoglobulins detected in BALF and plasma proteomes. As de-

scribed, I visualized them on the scatter plots (Fig.3.1.5c, d) and observed that COVID-19 patients 

exhibited higher levels of locally produced immunoglobulins than the influenza subgroup.  

I compared immunoglobulins for COVID-19, bacterial, pneumonia, influenza, and non-pneumonia 

control groups. The results were visualized on upset plots (Fig. 3.1.5 e, f). COVID-19 patients 

contained the largest unique pool of lung-abundant immunoglobulins (n=15) compared to other 

types of pneumonia, specifically influenza (n=9), non-pneumonia control (n=10), and bacterial 

pneumonia (n=6) (Fig. 3.1.5 e). Additionally, all the groups shared 11 fragments detected in the 

https://sciwheel.com/work/citation?ids=12008760&pre=&suf=&sa=0


3.1 Proteomic analysis of biofluids of patients with infectious lung diseases 

 

70 

 

lung environment of each type of pneumonia. In contrast, among plasma-abundant immunoglob-

ulins, the biggest group of proteins was commonly detected in each patient category, with four 

unique fragments for the COVID-19 subgroup, three - for influenza patients, and one for bacterial 

pneumonia (Fig. 3.1.5 f).  

In COVID-19, I observed a specific group of immunoglobulin variable fragments detected upon 

intubation at the primary site of viral evasion. In contrast, plasma-abundant immunoglobulins for 

COVID-19 and other pneumonia types exhibited similarity to a certain extent (11 shared frag-

ments). That leads to the conclusion that the immune response in COVID-19 patients is charac-

terized by the production of lung-abundant antibodies, which are not observed in other pneumonia 

types. The presence of these immunoglobulins in the lung upon intubation can be explained by 

the early production of SARS-CoV2 neutralizing antibodies, which in several cases were de-

scribed as cross-reactive to the host antigens (167).  
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Figure 3.1.5: COVID-19 patients contain both plasma-abundant and lung-abundant immu-

noglobulins, distinguishing them from patients with other types of pneumonia. a, Scatter 

plot displaying the distribution of proteins between BALF on the x-axis and plasma on the y-axis. 

COVID-19-specific modules detected in BALF upon intubation are highlighted in green. A light 

blue box frames proteins shared between both fluids. A list of COVID-19-specific proteins shared 

between fluids is displayed in light blue on the right side of the plot. b, Scatter plot displaying the 

distribution of proteins between BALF on the x-axis and plasma on the y-axis. COVID-19-specific 

modules detected in BALF upon intubation are highlighted in green. A pink box frames proteins 

that are more abundant in the lung. A list of COVID-19-specific proteins more abundant in the 

lung is displayed in red on the right side of the plot. c, Scatter plot displaying the distribution of 
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immunoglobulins between BALF on the x-axis and plasma on the y-axis of the COVID-19 sub-

group. The point size corresponds to the number of patients for which this protein was detected. 

The color of the point highlights if the immunoglobulin is lung-abundant or plasma-abundant. d, 

Scatter plot displaying the distribution of immunoglobulins between BALF on the x-axis and 

plasma on the y-axis of the influenza subgroup. e, Upset plot depicting the intersection between 

lung-abundant immunoglobulins of COVID-19, influenza, bacterial pneumonia, and non-pneumo-

nia control subgroups. f, Upset plot depicting the intersection between plasma-abundant immu-

noglobulins of COVID-19, influenza, bacterial pneumonia, and non-pneumonia control subgroups. 
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3.2. Single-cell multi-omic analysis of COVID-19-induced B cell 
populations  

3.2.1. Molecular mechanisms of self-tolerance in B cells  

B cell-mediated immunity relies on the highly diverse repertoire of B cell receptors (BCR) ex-

pressed by naive B cells in the bone marrow. The BCR consists of a heavy and a light chain which 

define the structure and specificity of the receptor. BCRs are assembled via the process of V(D)J 

rearrangement, which provides diversity to the repertoire by pairing heavy (H) and light (L) chains 

in B cell precursors. As a result, the final receptor is composed of randomly selected H and L 

chains and possesses the ability to bind foreign antigens.  

During the maturation phase, hematopoietic stem cells (HSC) commit to the lymphoid lineage, 

divide, and eventually develop into naive B cells through a process tightly controlled by cytokines, 

independent from the foreign antigen. Originating in the bone marrow, HSCs undergo several 

transitional developmental stages, specifically the pro-B cell (progenitor B cell), the pre-B cell 

(precursor B cell), the immature naïve B cell, the transitional B cell, and the mature naïve B cell 

(168). Early pro-B cells, which are characterized by the expression of CD34 and CD45, give rise 

to late pro-B cells which undergo immunoglobulin heavy chain gene rearrangement, expressing 

CD19, CD79a, and CD79b (169). Upon successful rearrangement of the heavy chain, the pro-B 

cell transits into the pre-B cell, characterized by the expression of a functional pre-B receptor 

complex composed of surrogate light chains and the mu heavy chain. Pre-B cell rearranges the 

immunoglobulin light chain genes, forming the complete BCR and expressing the pre-B cell up-

regulate surface CD10 and CD20 alongside IgM (169). Immature B cells with functional BCRs 

migrate to the secondary lymphoid organs, such as the spleen and lymph nodes where they rec-

ognize antigens and undergo processes of positive and negative selection. Positive selection re-

lies on the recognition of specific foreign antigens by the immature B cells, while negative selec-

tion removes B cells that recognize self-antigens. The subsequent differentiation phase can be 

subdivided into the activation of mature naive B cells by their specific antigen and their transfor-

mation into antigen-specific plasma cells and memory B cells, capable of producing antibodies.  

Approximately 50% of primary BCRs carry certain degrees of autoreactivity, in other words, are 

specific against host antigens (170–172). This would be catastrophic for the host due to the un-

controlled presence of antibodies binding self-antigens which can lead to the development of 

autoimmune conditions and long-lasting tissue damage. Thankfully, with the help of self-tolerance 

mechanisms, only a small proportion of these B cells will reach the GC, where they will further 

differentiate and secrete ABs. Multiple mechanisms exist to eliminate auto-reactive B cells from 

the repertoire or limit their ability to produce auto-antibodies. the mechanisms that prevent the 
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spread of auto-reactive B cell clones could be further subdivided into central and peripheral toler-

ance (169). Central tolerance mechanisms remove self-reactive lymphocytes during their initial 

development in the bone marrow. In contrast, peripheral tolerance acts in the peripheral tissues 

and secondary lymphoid organs, suppressing escaped self-reactive B cells (169).  

Tolerance mechanisms include receptor editing, clonal deletion, clonal anergy, and clonal igno-

rance (173),(174). The first mechanism of central self-tolerance is clonal deletion. It removes B 

cells that strongly interact with self-antigens via induced apoptosis, preventing their migration to 

the secondary lymphoid organs (175). Secondly, self-reactive B cell clones may undergo receptor 

editing, which alters receptor specificity through further VJ rearrangements. This way, cells with 

a potentially autoreactive BCR may migrate into the periphery. However, clones that exhausted 

all the V segment rearrangement possibilities will be deleted (176). Moreover, auto-reactive B 

cells can develop in a functionally inactive clonal anergy state. A defined molecular feature of 

anergy is the non-responsiveness of the BCR to its antigen (177); alternative features may also 

include the down-regulation of IgM secretion, resistance to the activation with LPS, and resem-

blance of immature-like molecular phenotype (178,179). Finally, the last mechanism of self-toler-

ance is clonal ignorance. Auto-reactive B cell clones, which failed to encounter their antigen due 

to its availability in the primary lymphoid organs or are weakly crosslinked to the antigen, will still 

migrate to the periphery as non-self-reactive B cells (as their ligand stays unavailable) (180). The 

decision if self-reactive B cells undergo receptor editing, are removed, or become anergic relies 

on receptor avidity, with stronger signaling resulting in editing or deletion and weaker interaction 

permitting anergy (181). In summary, several central and peripheral tolerance mechanisms exist, 

from completely removing the clone from the repertoire to functional inactivation, shaping the B 

cell repertoire. 

Recent advancements in multi-omic techniques have proven highly effective in dissecting com-

plex biological processes that underlie adaptive immune responses. These techniques serve as 

a valuable tool for studying immune cell functions and communication circuits and can aid in 

biomarker implementation for translational research. One of the most noticeable aspects of 

COVID-19 was an autoimmune background in patients with acute disease after virus elimination. 

To elucidate the nature of such manifestations, researchers turned to single-cell transcriptomics, 

immune receptor profiling techniques, and proteomics for potential answers. However, they faced 

certain difficulties as the concept of auto-reactivity holds a degree of complexity due to the ab-

sence of the affinity cutoff, which can separate autoreactive BCRs (182). Autoreactivity is usually 

screened by in-vitro binding assays in the clinics, specifically enzyme-linked immunosorbent as-

say (ELISA), with a custom definition of ‘positive’ or in vitro via interaction of B cell clones with a 

self-target in the molecular biology field (183). Unfortunately, neither of these techniques gives 

an unbiased and comprehensive view of potential auto-antibody targets and their association with 

a patient’s prognosis.  
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One of the tools particularly useful in this context is single-cell B-cell receptor sequencing (scBCR-

seq), which allows interpreting immune responses to the infection by collecting information about 

BCR repertoire and gauging its diversity and clonal evolution. This method is based on isolating 

B cells from the sample of interest using microfluidic devices or fluorescence-activated cell sorting 

(FACS). As a next step, the BCR of each isolated cell, consisting of the V, D, and J segments of 

heavy and light chains, is amplified and sequenced using next-generation sequencing (NGS) 

technologies, resulting in millions of short reads. The high variability of each BCR, particularly in 

the complementarity-determining regions (CDRs) 1-3, makes this technique particularly useful for 

examining receptor specificity. The CDR3 region, formed at the intersection of V-, (D-), and J-

genes, is exceptionally diverse and crucial for receptor specificity. As a final step, several bioin-

formatics pipelines are applied to assemble the sequenced fragments into the full-length BCRs, 

which are then assigned to unique B cell clones, allowing the further exploration of the clonal 

diversity and B cell lineage development trajectories. In summary, scBCR-seq is particularly use-

ful at dissecting humoral immune responses at the single-cell resolution, allowing insights into 

antigen-specific responses during infectious disease (184).   
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Figure 3.2.1: B cell development. B cell development starts in the bone marrow and continues 

in the peripheral lymphoid tissues. The process begins with hematopoietic stem cells (HSCs) in 

the bone marrow, which differentiate into naive B cells through several stages, including pro-B 

and pre-B cells. The pre-B-cell receptor (pre-BCR) is generated during this differentiation, com-

posed of an Igμ heavy chain and surrogate light chains (VpreB or Vλ5). Subsequently, B-cells 

express mature BCR, organized with rearranged heavy- and light-chain genes and capable of 

recognizing foreign antigens. Simultaneously, immature B cells undergo a selection process to 

remove self-reactive B cells through central tolerance, including clonal deletion, anergy, and re-

ceptor editing. Cells that complete all checkpoints leave the bone marrow as transitional B cells. 

Later, upon recognizing the foreign antigen, they differentiate into plasma or memory B cells. The 

figure is taken from (185), copyright permission is acquired from the publisher.  
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3.2.2. COVID-19-specific antibody variable domains are associated 

with disease severity  

Upon performing longitudinal profiling of severe patients with infectious lung diseases biofluids, I 

revealed that antibody generation is essential to the immune response in severe COVID-19 pa-

tients. Antibodies are dominant in the bronchoalveolar environment and can be detected in the 

BALF and plasma of COVID-19 patients at the time of intubation. I was able to identify 15 unique 

COVID-19-specific antibody fragments, which were abundant in the lungs of severe COVID-19 

patients, specifically, IGHV1-24, IGHV1-69-2, IGHV3-15, IGHV3-23, IGHV3-30, IGKC, IGKV2-

24, IGKV3-15, IGLV10-54, IGLV1-44, IGLV3-1, IGLV3-10, IGLV3-12, IGLV3-19, IGLV3-25.  

Considering the abundance of immunoglobulins in the primary infection site of SARS-CoV-2, I 

hypothesized that a unique B cell population could produce these proteins. Several studies have 

suggested that dysregulated B-cell immunity plays a significant role in the pathogenesis of severe 

COVID-19 (167,185), therefore focusing on particular B-cell populations and clonotypes can pro-

vide more insight into the origin of antibody-mediated immunity and autoantibodies in particular.  

To address this question I retrieved B cells, which utilize any of the 15 lung-specific antibody 

fragments from severe COVID-19 patients of the Chicago cohort (Figure 3.2.2 a). As a reference 

dataset, I selected open-access peripheral blood mononuclear cells (PBMCs) single-cell multi-

omic atlas, consisting of different severity categories of COVID-19 patients (152). The dataset 

contained several modalities, such as single-cell transcriptomics, single-cell BCR, or cellular in-

dexing of transcriptomes and epitopes (CITE-Seq). The samples were obtained from three med-

ical facilities in Newcastle, London, and Cambridge. The initial dataset was re-integrated and re-

processed, selecting only B and plasma cells. The final object consisted of 38,063 B cells divided 

into six clusters based on the transcriptomic and surface protein markers (Table 2.5.3): memory 

B cells (CD82, LINC01781, CRIP1, AIM2, COTL1), immature B cells (TCL1A, CXCR4, FCER2, 

CD69, BTG1), naive B cells (TCL1A, IL4R, FCER2, BACH2, IGHD), B1 cells (LINC01857, 

FCRL2, ARHGAP24, GPR183, TTN), dividing plasmablasts (RRM2, IGHG1, SDF2L1, JCHAIN, 

TXNDC5) and IgA high plasma cells(JCHAIN, MZB1, FKBP11, TXNDC5, SEC11C) (Fig 3.2.2b). 

Additionally, the strength of this atlas is a representation of the patients with different COVID-19 

severity stages, specifically asymptomatic (n=9), mild (n=23), moderate (n=30), severe (n=13), 

critical (n=15), and healthy control samples (n=23), as B-cell mediated immune responses were 

demonstrated to vary according to the severity of the disease (81). Besides the single-cell tran-

scriptomics information, each cell contained information about a single BCR, which allowed me 

to detect and study particular clonotypes. 

I identified 12,302 cells that carried at least one of the selected fragments in their receptors and 

selected clonotypes that contained at least three cells, ending up with 41 clones (Fig. 3.2.2 c). 
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Detected clones mainly came from IgA high plasma cells and dividing plasmablast populations. 

Thus, I focused on these two clusters and continued the analysis in a separate object.  

As can be noticed, selected clones were detected only in the COVID-19 samples and not in the 

healthy controls. This supports my observations from the biofluid proteomics data and indicates 

that detected immunoglobulin fragments are indeed COVID-19-specific. Further analysis revealed 

that these cells mainly originated from severe study population patients (Fig. 3.2.2d). Further-

more, cells and clonotypes containing selected immunoglobulin fragments derived predominantly 

from severe patients, have a steadily increasing proportion with a COVID-19 severity from asymp-

tomatic to severe, followed by a reduction in the critical patient subgroup. This observation can 

be supported by various articles reporting that critical COVID-19 patients develop lymphopenia, 

a condition characterized by a reduced number of lymphocytes (71). 

Additionally, selected BCRs of the severe patients belonged to IgA and IgG isotypes, while those 

from mild and moderate patients also included IgD and IgM (Fig. 3.2.2 d). This gives us insight 

into the fact that B cells from severe patients already have a more differentiated B cell phenotype 

at the early stages of the infection. At the same time, mild and moderate patients also contain 

less-differentiated B cells secreting IgM. 

To sum up, I have demonstrated that immunoglobulin fragments detected in the bronchoalveolar 

space of the COVID-19 patients of the Chicago cohort are COVID-19-specific. Moreover, there is 

evidence that immunoglobulin variable fragments are biased towards disease severity. B cell 

clones containing selected immunoglobulin chains as a part of their BCRs originate from plasma 

cell and plasmablast groups, expressing mostly IgA and IgG isotypes as their receptor. 
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Figure 3.2.2: Variable fragments of BCR are predictive of the COVID-19 severity. a, Schema 

representing experimental workflow. b, UMAP visualization of B cell clusters from 38,063 B cells 

from PBMCs of 102 COVID-19 patients and healthy controls. c, UMAP visualization of plasma 

cell and plasmablasts 14 clusters from 8,599 cells from PBMCs of 90 COVID-19 patients and 23 

healthy controls. Cells from healthy donors and COVID-19 patients are separated. 41 clones con-

taining chains of interest as a part of their BCR are highlighted with color. d, Bar plot representing 

counts of cells and clones, which contain immunoglobulin fragments detected in BALF of the 

Chicago cohort of COVID-19 patients as a part of their BCR. Counts are displayed per severity 

category, and isotype status is defined by color.  
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3.2.3. Revealing cellular identities of COVID-19-specific B cell clones 

After discovering a bias in the repertoire of immunoglobulin variable domains and its correlation 

to COVID-19 severity, I decided to delve further into the molecular phenotypes of the identified 

B-cell clones. For this purpose, I calculated the top differentially expressed genes (DEGs) for 

cell clusters 0 to 13 of plasmablast/plasma cell origin. The top unique marker genes were dis-

played on the heatmap (Fig. 3.2.3a) and in table 3.2.3. Paying particular attention to the clusters 

containing higher proportions of the clones expressing immunoglobulins as a part of their BCR, 

I further focused on clusters 0, 1, 2, 3, 6, 7, 8, and 9 (Fig. 3.2.3b). More particularly, clusters 

0,1,2,3 consisted of a variety of smaller-sized clones, while clusters 6,7,9 were dominated by a 

few but more expanded clonal populations. 

Notably, cluster 3 had the most outstanding molecular phenotype. Alongside typical markers 

involved in B cell activation, such as KLF6, MS4A1 (CD20), cluster 3 also expressed elevated 

levels of NR4A2, LTB, AFF3, CD69, CD83, and HLA-DMB (MHC II). Orphan nuclear receptor 

NR4A2 and lymphotoxin β (LTB) were reported to be markers for RA-specific B cell population, 

responsible for the formation of ectopic lymphoid structures and pathological B cell responses 

(186). Additionally, researchers demonstrated that NR4a1-3 acts in conditions with the absence 

of co-stimulation (187). Besides that, AFF3 is a facilitator of class switch recombination and one 

of the susceptibility factors for RA and type I diabetes (188). CD69 and CD83 are B cell activa-

tion markers, while HLA-DMB is upregulated on the B cells upon antigen presentation. SCIB is 

a transcriptional factor that induces an anti-apoptotic program and promotes B cell survival. It 

controls the expression of proteins involved in the BCR signaling pathway, such as BAFFR and 

TLRs (189). Additionally, to the transcriptomic marks, differentially expressed surface proteins 

for cluster 3 supported autoimmune-like phenotype derived from the gene expression data. In 

this case, I observed elevated expression of the BAFF receptor, and pro-survival factor, which 

led to the development of autoreactive B cells (190), CD52, and CR-1, which are known to be 

expressed in the B cell subsets of RA and SLE patients and associated with the production of 

autoantibodies (Fig. 3.2.3c) (191,192). Cluster 3 expresses transcriptomic and surface protein 

markers related to molecular B cell phenotype observed in classical autoimmune diseases. 

Moreover, it possesses several activation and survival markers, which generally support the 

hypothesis of the existence of autoimmune-like B cells in COVID-19 patients. In comparison to 

cluster 3, clusters 6, 7, and 9 contained the largest proportions of cells with fragments of severe 

COVID-19 patients as a part of their BCR and mainly comprised one enlarged clone. Tran-

scriptomic markers for these clusters consisted mainly of variable domains: IGKV3D-15, IGKV3-

15, IGKV3D-11 - cluster 6, IGHV4-31, IGHV4-28, IGHV4-55, IGHV4-61, IGHV4-4 - for cluster 

7, and IGHV4-55, IGHV4-28, IGHV4-31, IGHV4-61 - for cluster 9, that participated in the for-

mation of BCR and antibody secretion.  
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In conclusion, following my previous findings, the humoral immune response dominates from 

the day of intubation in the lung environment of severe COVID-19 patients compared to bacterial 

pneumonia and influenza subgroups. By identifying 15 unique COVID-19-specific antibody frag-

ments abundant in severe patients' lungs, I followed up on the molecular phenotypes of B cells 

producing these antibodies using single-cell multi-omic datasets from COVID-19 patients of var-

ying severity. Subsequently, I characterized distinct plasma cell clusters, revealing bias in the 

BCR repertoire among severe patients. Notably, I described B cells exhibiting a molecular phe-

notype close to canonical autoimmune diseases, suggesting the presence of autoreactive B 

cells in severe COVID-19 patient repertoire. Besides that, most clusters containing enlarged 

clones carrying fragments of severe COVID-19 patients' BALF immunoglobulins displayed tran-

scriptomic markers associated with antibody secretion. Overall, this targeted analysis highlights 

the range of B cell reactivities and molecular phenotypes observed in severe COVID-19 pa-

tients, giving insights into potential B cell types participating in autoantibody production. 
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Table 3.2.3: Transcriptomic markers of dividing plasmablast and IgA high plasma cell 

clusters. The top 20 significantly differentially expressed genes per cluster are displayed.  

Cluster Marker genes 

0 UBE2C, PLK1, TOP2A, CKAP2L, CDCA8, HJURP, KIF20A, KIF23, CCNA2, KIF2C, 

AURKB, CDK1, CDCA2, SPC25, PBK, CDCA3, KIFC1, PKMYT1, CDC20, GTSE1 

1 IGLC2, IGLC3, IGHGP, CALCOCO1, P2RX1, IGHV6-1, IGHA1, BTG2, SDC1, IGHG4, 

PDK1, LINC02362, CPEB4, AC012236.1, FNDC3B, MBNL2, PECAM1, KLHL14, CD27, 

CNKSR1 

2 RGS1, FOSB, FOS, DUSP1, RGS2, MTRNR2L8, MTRNR2L12, PTP4A1, CD69, KLF6, 

JUN, CITED2, SPINT2, AC007952.4, IGHA2, ATP2B1-AS1, PPP1R15A, KLF2, 

TSC22D3, BCL2 

3 CD24, AFF3, SPIB, LTB, NR4A2, MS4A1, CD83, HLA-DMB, CD22, ALOX5, CCR7, 

ARHGAP24, LY86, HVCN1, MTSS1, VPREB3, DEK, BANK1, BCAS4, TUBA1A 

4 IGKV1-39, IGKV1D-39, IGKC, MXD4, GSTM2, LINC02362, SGK1, DLG1, BTG2, 

TRAPPC6A, SNX29, SLC12A6, RNASE6, FCHSD2, TP53INP1, GRINA, PCED1B, 

NMRK1, ARSA, TUT7 

5 IGHV3-43, IGHV3-20, AC233755.2, LINC01480, KLHL14, CCDC88A 

6 IGKV3D-15, IGKV3-15, IGKV3D-11, IGKC, APOO, SSR4 

7 IGHV4-31, IGHV4-28, IGHV4-55, IGHV4-61, AC233755.1, IGHV4-4, DERL3, BTG2, 

HERPUD1, NUCB2, SSR4, PSAP, JCHAIN, PRDX4, ERLEC1, HM13, MZB1, ITM2C, 

TMBIM6, FKBP11 

8 IGKV2-28, IGKV2D-28, IGHV2-5, IGKC, PECAM1, CCDC107, LHPP, POU2F1, FAM3A, 

UBR2, CCR10, NFX1, CHD9, KCNK6, BTG2, JARID2, TBL2, MSI2, PIP5K1B, OPTN 

9 IGHV4-55, IGHV4-28, IGHV4-31, IGHV4-61, COPRS, PAQR4, HPDL, PSMC3IP, 

UHRF1, MCM10, SUV39H1, TIMELESS, SLC43A3, ESCO2, GINS4, DONSON, 

CENPV, GINS2, AURKB, ACOT7 

10 IGKV2D-30, IGKV2-30, IGHV3-7, EPSTI1, S100A6, IGKC, HERPUD1, DERL3, CD27, 

HSH2D, JCHAIN, SSR4, UBE2J1 
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11 IGHV3-66, IGHV3-53, JCHAIN, MZB1 

12 IGKV2-30, IGKV2D-30, RAD54L, ORC1, CDK1, SPC25, HMMR, MIS18A, MCM10, 

RAD51, OIP5, UBE2T, CDCA3, RRM2, CCNB1, CENPP, AURKB, RAD51AP1, UBE2C, 

SKA3 

13 IGHV3-53, IGHV3-66, SKA3, POLD3, ASF1B, PXMP2, PKMYT1, NDC80, DHFR, 

CDCA5, DIAPH3, HPRT1, CENPN, CDC6, CHAF1A, TYMS, RRM2, AURKB, TACC3, 

GINS2 
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Figure 3.2.3: COVID-19-specific B cells display antibody-producing and autoimmune-like 

phenotypes. a, Heatmap displays each cell cluster's top differentially expressed genes (DEGs). 

The top unique DEGs of clusters 3, 6, 7, and 8 are magnified. b, Bar plot displays proportions 

of selected clones per cluster. c, Selected differentially expressed surface proteins for cluster 3. 

Color corresponds to the expression levels of each surface molecule.   
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3.3. Study of autoantibody binding repertoire of acute COVID-
19 patients 

3.3.1. COVID-19 and autoimmunity 

Upon SARS-CoV2 entry in the host cell, several immune cell subsets become activated and pro-

duce effector molecules, such as cytokines and antibodies which lead to the amplification of sig-

naling cascades and overall activation of the immune system. Therefore, the characterization of 

the immune cells, their communication, and effector functions is crucial for understanding mech-

anisms of molecular pathogenesis and regulatory processes of the immune system. Multi-omics 

techniques have proved to be particularly useful while dealing with complex biological processes. 

They serve as a powerful tool to unravel functions and communication circuits of immune cells 

and have great potential for implementation in translational medicine.  

During the recent COVID-19 pandemic, many multi-omic studies allowed the research community 

to get a comprehensive view of the pathogenic mechanisms associated with the severe and lethal 

cases of the novel virus. Utilizing single-cell RNA transcriptomics approaches, researchers have 

followed the dynamic changes in the composition of activated subsets of PBMCs throughout the 

severity stages of COVID-19. One of the crucial discoveries was the accumulation of CD8+ T cells 

in the repertoire of severe COVID-19 patients and an overall higher ratio of CD8+ to CD4+ T cells. 

In contrast, Tfh cells were detected in the circulation in mild disease cases while absent in severe 

patients (152). Additionally, several research groups reported enlarged proportions of plasma 

cells and plasmablasts in severe COVID-19 cases, which could contribute to the autoimmune-

like phenotype observed in some critical patients (152,193). The knowledge generated during the 

early stages of the COVID-19 pandemic and clinical observations provided valuable information 

for diagnostics and prognostic evaluation of COVID-19 patients (73,74).  

The hypothesis that autoimmune and inflammatory conditions can be caused by viral infection 

has been previously described; in the case of COVID-19, most of the autoimmune symptoms 

have an increased frequency in individuals during and after the acute phase of COVID-19 (90). 

One of the main concepts is immune system dysregulation, induced by COVID-19, which includes 

bystander activation of the immune cells, molecular mimicry by viral proteins, and systemic man-

ifestations caused by ubiquitous expression of ACE2 (SARS-CoV-2 receptor), as well as the re-

lease of autoantigens from damaged by virus tissues (194). Although the rates of COVID-19 in-

fection have been decreasing over recent years, I have witnessed the accumulation of patients 

with new-onset autoimmune and pro-inflammatory conditions acquired after the initial virus infec-

tion. However, up to date, there are no defined predictors of the risk of developing autoimmune 

disease post-COVID-19.  

https://sciwheel.com/work/citation?ids=10920300&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=10088436,10920300&pre=&pre=&suf=&suf=&sa=0,0
https://sciwheel.com/work/citation?ids=12008760,13342235&pre=&pre=&suf=&suf=&sa=0,0
https://sciwheel.com/work/citation?ids=14730258&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=2983110&pre=&suf=&sa=0
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While scBCR-seq provides information about particular receptors, it doesn't consider their speci-

ficity. An approach to discovering putative auto-antibody targets was described by Leuschner et 

al. in the context of fibrotic lung diseases (137). The authors introduced the Differential Antigen 

Capture (DAC) assay, which is based on the immunoprecipitation of human proteins obtained by 

the homogenization of lung tissue specimens by antibodies captured from the plasma. The as-

sembled complexes are washed and evaluated using quantitative shotgun proteomics. The assay 

has proven its sensitivity and specificity by predicting the enrichment of Scl-70 antigen in the Scl-

70-positive patients previously profiled with ELISA in the clinics. The main advantages of such a 

method over conventional assays are the reduced amount of plasma needed for the experiment 

and the possibility of exploration of autoantibody targets in a non-targeted fashion. Finally, the 

usage of the lysed tissue material allows the preservation of proteins in their native state with 

potential disease-associated post-translational protein modifications (PTMs), which cannot be ad-

dressed with assays using recombinant protein panels.  

3.3.2. Demographics of the Munich cohort 

To get insights into the antibody binding profiles of the patients, I utilized an additional longitudinal 

cohort from the University Hospital of Ludwig Maximilian University (LMU) in Munich. The latter 

consisted of patients admitted to the facility from March to June 2020 with a positive SARS-CoV-

2 PCR test. This way, the Munich cohort encompassed patients with varying severity stages of 

COVID-19, including those admitted to the regular wards. Upon admission to the hospital, the 

serum of the patients was collected longitudinally with the latest time point of 54 days.  

I performed a t-distributed Stochastic Neighbor Embedding (t-SNE) analysis of all patient 

metadata upon admission to the hospital to obtain a more detailed characterization of the cohort 

and stratify the initial heterogeneity within the patient pool. This analysis involved clustering the 

patients in two distinct clusters (Fig. 3.3.2 a). Cluster 2 included patients with ARDS requiring 

mechanical ventilation support, and cluster 1 consisted of the less severe patients with lower 

COVID-19 severity stages. Additionally, cluster 2 exhibited significantly higher levels of inflamma-

tory parameters, such as CRP and Interleukin-6 (Fig. 3.3.2 b), and was labeled as ‘severe’, while 

cluster 1 received a ‘mild’ label.  

I next established a timeline of the experiment and created comparative time windows for all 

patients. This was achieved by longitudinal profiling of the clinical parameters, specifically SARS-

CoV-2 anti-N antibodies, SARS-CoV-2 anti-S antibodies, CRP [mg/dl], Creatinine Jaffe [mg/dl], 

Lymphocytes [g/l], and Leukocytes [g/l] for severe and mild clusters (Fig. 3.3.2 c). The time points 

at which both clusters displayed similar values for each clinical parameter were selected as 

boundaries of the time windows. Finally, I stratified four time windows: 0-11 days, 12-25 days, 26-

36 days, and 36-54 days from the hospital admission so that each patient in the cohort would 

have from two to four time points in these defined intervals.  

https://sciwheel.com/work/citation?ids=15826943&pre=&suf=&sa=0
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Finally, the Munich cohort consisted of 23 COVID-19 patients, with 16 classified as severe (ad-

mitted to ICU) and 7 as mild. Both patient groups were composed of patients with a similar aver-

age age component of 66.3±19 for mild and 66.4±11.1 for severe, as well as sex composition of 

86% male and 14% female for the mild group and 81% male and 19% female for the severe 

patients (Table A2). The differences between the groups were caused by the immunosuppression 

component, which was doubled in the severe group (56.2% vs. 28.6%), and acute kidney injury, 

which reached 75% among severe patients compared to 28.5% in the mild group. Besides that, 

18.8% of the severe patients required ECMO support. Besides COVID-19 patients, the Munich 

cohort included two COVID-19 negative control groups: control low inflammatory (n=24), defined 

by low levels of CRP, Creatinine, and Leukocytes, and control high inflammatory (n=23), charac-

terized by high levels of mentioned blood parameters. These two controls were introduced to 

account for potential autoreactivities arising from the overall proinflammatory background of the 

patients.   
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Figure 3.3.2: Demographics of the Munich cohort. a, t-SNE plot of the Munich cohort patients on the 

day of hospital admission. Each dot represents a patient, and the color corresponds to the clinical param-

eter. b, Interleukin-6 and CRP box plots of the Munich cohort's mild and severe COVID-19 patient groups 

(Wilcoxon test). c, Longitudinal profiles of anti-COVID antibody titers, CRP, Creatinine, lymphocytes, and 

leukocytes. The X-axis is assigned to the day of hospitalization, and the line's color corresponds to the 

COVID-19 cluster, described at a. The color of the boxes highlights selected time windows for further 

analysis.  
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3.3.3. Comparative analysis of autoantibody repertoire of two 

independent COVID-19 cohorts  

To study potential autoantibody binding profiles, I leveraged two independent longitudinal cohorts 

of COVID-19 patients (Fig. 3.3.3 a). Cohort 1 (Chicago cohort) was introduced in chapter 3.1.1 

and consisted of COVID-19 (n=13), bacterial pneumonia (n=6), influenza (n=7), and non-pneu-

monia control (n=7) patients undergoing intubation procedures in the ICU. Cohort 2 (the Munich 

cohort), introduced in chapter 3.3.2, consisted of severe COVID-19 patients admitted to the ICU 

(n=16) and mild patients in the regular wards (n=7).  

I performed a DAC assay for both cohorts to obtain autoantibody binding profiles. In the case of 

the COVID-19 experiment, I selected the lung as a target tissue due to the high involvement in 

the pathology of this infection. The lung tissue pool was obtained by homogenizing peritumoral 

lung tissue from 32 donors (methods 2.3.1). After precipitation of the lung antigens, antibody-

antigen complexes were washed and processed for mass spectrometry detection (Fig. 3.3.3 b). 

Furthermore, to validate the assay's specificity I addressed a target of the monoclonal antibody 

Tocilizumab, administered to several COVID-19 patients in hospital care longitudinally. IL6R was 

detected via DAC assay in several patients of both cohorts. I compared the detection rates of the 

DAC assay and clinical records. Applying receiver operating characteristic (ROC) analysis, I con-

firmed the assay's accuracy with an area under the curve (AUC) characteristic equal to 0.89, 

corresponding to the high specificity. This way I can validate the reliability of the applied method 

and the observed results. 

In my analysis, I focused on screening for putative autoantigens in severe COVID-19 patients of 

the Chicago cohort (n=13) and severe COVID-19 cases from the Munich cohort (n=16) to have a 

compatible severity of the patients. I began this analysis by defining significantly enriched anti-

gens for severe COVID-19 patients of each cohort. For this purpose, I utilized the Welsch test on 

all the proteins detected in each cohort separately between COVID-19 patients and bacterial 

pneumonia (n=6), influenza (n=7), and non-pneumonia control (n=7) groups for the Chicago co-

hort, control low inflammatory (n=24) and control high inflammatory (n=23) groups for the Munich 

cohort at the earliest time point available. Considering that autoreactivities can exhibit non-linear 

temporal behavior, I also performed the same statistical test using reference groups specified 

earlier for the later time points: time points 2 and 3 for the Chicago cohort and time points 2, 3, 

and 4 for the Munich cohort. Together, I focused only on the antigens detected in at least 3 

COVID-19 patients at least one-time point.  

At the time of hospitalization, I could identify putative autoantibodies enriched exclusively in 

COVID-19 patients in the Chicago or Munich cohort (Fig. 3.3.3 c, d). In the Chicago cohort, puta-

tive autoantigens enriched in COVID-19 patients compared to influenza and bacterial pneumonia 

were against ABCC3 (n patients=8), ALAD (n patients=6), CCDC178 (n patients=4), CCT6B (n 
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patients=3), CFHR5 (n patients=7), HLA-G (n patients=3), HMBS (n patients=5), HSPA2 (n pa-

tients=3), IFIT1 (n patients=3), IGF1R (n patients=5), IL6R (n patients=5), KMT2C (n patients=3), 

KRT84 (n patients=3), KRT86 (n patients=4), KRT31 (n patients=3), TEP1 (n patients=3), TSKU 

(n patients=5). My mass spectrometry data also detected the presence of certain antibody varia-

ble domains, specifically IGHV7-4-1 (n patients=6), IGKV1D-17 (n patients=5), IGKV1D-43 (n 

patients=5), IGKV2-29 (n patients=6), IGLV3-1 (n patients=7), which could compose potential 

autoantibodies. Secondly, putative autoantibodies significantly enriched in COVID-19 patients of 

the Munich cohort upon hospitalization compared to control low and high inflammatory were 

against IL-6R (n patients=3), STAT6 (n patients=3), and TENM2 (n patients=4), KRT6B (n pa-

tients=7) and IGLV3-1 (n patients=8), IGHV3-30-3 (n patients=15).  

Upon assembling significant findings from all the time points, I developed comparative lists of 

putative antigens for both cohorts (Fig. 3.3.3 e). The results are displayed on the Venn diagram 

and highlighted as overlapping fractions (n=19) or as putative antigens specific for each cohort 

(n=95 for the Chicago cohort, n=63 for the Munich cohort). All the antigens were grouped accord-

ing to their origin or molecular function, with the most prominent groups being extracellular matrix 

proteins, proteins associated with or involved in the regulation of complement, nuclear antigens, 

receptors, and proteins related to signal transduction in the immune cells. Notably, among 19 

shared antigens, HAMP and SAA2 were involved in the acute phase response, CFHR2, MASP2, 

COLEC10 were associated with complement activation, FGL1, IFIT1, IL6R - with immune regu-

lation, IGHA2, IGHV1-58, IGHV3-30-3, IGLV3-1 - immunoglobulin domains, and CPS1, GSTO1, 

SERPINA10, ST3GAL6, SVEP1, TEP1, TSKU were associated with various other functions. Pre-

vious reports described the existence of autoantibodies against acute-phase proteins in systemic 

autoimmune diseases (195). Additionally, anti-glutathione S-transferase omega-1 (GSTO1) au-

toantibodies have been reported in patients with chronic inflammatory conditions, including RA 

and COVID-19, and signal extended tissue damage (196). Moreover, anti-complement antibodies 

were reported in complement-mediated autoimmune diseases such as SLE and RA, and autoan-

tibodies towards complement regulatory proteins were associated with increased kidney damage 

(197). Among other proteins, SVEP1 is an extracellular matrix protein that is associated with 

platelet reactivity in humans and known to promote atherosclerosis (198); TEP1 catalyzes the 

addition of new telomeres on the chromosome ends, CPS1 is an essential enzyme for the urea 

cycle ubiquitously expressed in the liver. Following the proteins associated with immune regula-

tion, FGL1 is secreted by the liver and is responsible for proliferation- and metabolism, FGL1 is a 

ligand for LAG3, and several studies consider targeting FGL1/LAG3 as the next generation of 

immune checkpoint therapies (199). Finally, IFIT1 is a signaling protein in the IFN I response, 

protecting from viral and bacterial infection, and autoantibodies interfering with IFN signaling have 

been described in severe COVID-19 patients (86,200).  

Among the putative autoantibodies detected only in one cohort, I discovered receptors and ac-

cessory proteins, such as human leukocyte antigen G (HLA-G) (201), insulin-like growth factor 1 

https://sciwheel.com/work/citation?ids=16192250&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=16192301&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=16192447&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=11169314&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=15796180&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=15617848,9716695&pre=&pre=&suf=&suf=&sa=0,0
https://sciwheel.com/work/citation?ids=16191928&pre=&suf=&sa=0
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receptor (IGF1R) (202), Insulin-like Growth Factor Binding Protein 6 (IGFBP6), IL-1 receptor ac-

cessory protein (IL1RAP), Lymphocyte antigen 96 (LY96), Protein kinase C and casein kinase 

substrate in neurons protein 2 (PACSIN2) (Chicago cohort). Furthermore, established antigens, 

specifically HSPA2, and LGALS7B are classical DAMPs, which are present in the blood of pa-

tients with excessive tissue damage. PPL autoantibodies were described in the context of pulmo-

nary fibrosis (203). Anti-U1 snRNP (SNRPC) are often linked to mixed connective tissue disease 

(MCTD) and SLE (204). Anti-SP100 are associated with primary biliary cholangitis (PBC), a 

chronic liver disease characterized by scarring of the liver tissue (205).  

To conclude, a comparative analysis of putative autoantibodies in two independent severe 

COVID-19 cohorts revealed 19 common antigens, including acute phase proteins, regulators of 

complement signaling, and regulators of the immune response, alongside other proteins with var-

ying molecular functions. Overall, observed putative antigens for two cohorts had majorly over-

lapping molecular origins, for example, ECM proteins, keratins, and actin-associated proteins, 

which support one of the autoimmunity hypotheses associated with the promotion of the autoan-

tibody production due to the chronic inflammation and extensive lung tissue damage, which are 

considered hallmarks for the severe COVID-19. Additionally, autoantibodies against complement 

and complement-regulating proteins can play a dual role in the pathogenesis of the disease, being 

as protective as pathogenic. The repertoire of the autoantigens of two severe COVID-19 cohorts 

exhibits overall high diversity, which the limited sizes of both cohorts can explain in the context of 

high variability of autoimmune phenotypes. However, I was able to identify novel and already 

known autoantibodies, which can have protective or harmful properties, interfering with the infec-

tion outcome.  

https://sciwheel.com/work/citation?ids=11312804&pre=&suf=&sa=0
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Figure 3.3.3: Comparative analysis of the putative auto-antigen repertoire of two independ-

ent COVID-19 cohorts. a, Schema with a composition of the Chicago and Munich cohorts. b, 

Overview of the Differential Antibody Capture assay (DAC) and benchmarking processes with anti-
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IL6R antibody (tocilizumab administration). c, Scatterplot displaying fold changes of individual an-

tigens in COVID-19 patients (n=13) of the Chicago cohort versus bacterial pneumonia patients 

(n=6) on the x-axis and influenza patients (n=7) on the y-axis upon intubation. The size of the dot 

and the color are responsible for the number of COVID-19 patients with a particular autoantigen. 

The enriched autoantigens enriched in the COVID-19 subgroup over bacterial pneumonia and in-

fluenza are placed in the red rectangular. d, Scatterplot displaying fold changes of individual anti-

gens in severe COVID-19 patients (n=16) of the Munich cohort versus control high inflammatory 

patients (n=23) on the x-axis and control low inflammatory patients (n=24) on the y-axis upon hos-

pitalization. The size of the dot and the color are responsible for the number of COVID-19 patients 

with a particular autoantigen. The enriched autoantigens in the COVID-19 subgroup over both con-

trols are placed in the red rectangular. e, Venn diagram demonstrating putative autoantigen reper-

toires of the Chicago and the Munich cohorts grouped by the protein origin or molecular function. 

Autoantigens displayed are significantly enriched at least at a one-time point over at least one 

control group and in at least 3 COVID-19 patients.   
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3.3.4. Dynamics of the autoimmune response in COVID-19 patients  

After defining the pool of the putative antigens for two independent COVID-19 cohorts, I followed 

up on the longitudinal trajectories of the autoantibodies. Assuming that different autoantibodies 

may have varying expression dynamics in individual patients, I aimed to infer groups of autoanti-

gens with similar temporal trajectories in the patients of the Munich cohort. This cohort was se-

lected as primary for the analysis due to the better longitudinal resolution, more significant number 

of patients, and different severity categories within the cohort. To define antibodies against self-

antigens associated with the time course or severity of the disease, I performed a mixed-effect 

linear model with fixed effects for time and severity and a random effect for the patient. As a result, 

I constructed a list of 52 autoantigens with significant associations (p<0.05) with one or both fixed 

effects of the model (Fig. 3.3.4 a).  

First, five autoantigens were significantly associated with both time and severity, SPTB, APOH, 

SELENOP, APOC3, and RBP4. SPTB was elevated at the initial time point in mild COVID-19 

patients. In contrast, APOH, SELENOP, APOC3, and RBP4 autoantibodies were prevalent in 

more severe patients and increased over hospitalization duration. Notably, SPTB is an intracellu-

lar red blood cell protein, and this autoreactivity was observed to a larger extent in mild COVID-

19 patients. Anti-APOH (phospholipid-binding protein β2 glycoprotein I) antibodies are an essen-

tial hallmark for APS and were broadly described in severe COVID-19 cases, where they poten-

tially interfere with the blood clotting pathways and contribute to deep vein thrombosis (206,207). 

Additionally, anti-SELENOP antibodies were elevated in severe COVID-19 patients and in-

creased over time during hospitalization. Strikingly, anti-SELENOP antibodies have been ob-

served in patients with chronic fatigue syndrome, where they impaired selenium transport (208).  

Regarding differences between mild and severe COVID-19 cases, I observed similar autoreac-

tivity levels against different protein targets. Severe COVID-19 patients had higher levels of anti-

F13 b (213), anti-CFHR1/CFHR2, and anti-GPX3 antibodies, while mild patients had higher levels 

of anti-TUBB1, anti-SAMM50, and anti-HSPA12 B (Hsp70 member) antibodies. Overall, I can 

conclude that despite the similar levels of autoreactivity in mild and severe patients, the targets 

of autoantibodies in mild and severe patients vary. 

Finally, among the autoantibodies associated with time course, the most prominent ones were 

against structural lung proteins, specifically MFAP5, LYVE1, RELN, and LTBP1, which were up-

regulated in both severe and mild patients and had an overall uprising trajectory with the disease 

course. Also, multiple putative autoantigens described earlier exhibited a linear behavior in both 

the Munich and Chicago cohorts, for example, FGL1, SAA2, and CFHR2, which were elevated at 

the initial timepoint and decreased over time (Fig. 3.3.4 b, c). Additionally, RELN - ECM protein, 

MMRN1 - platelet protein, and ALDOB - glucose metabolism enzyme, initially detected in the 

Chicago cohort, were associated with time or severity in the Munich cohort, and all three had a 

persisting trajectory.  
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To sum up, longitudinal analysis of autoreactivities in Munich and Chicago cohorts revealed au-

toantibody targets varied for both groups. Among the targets specific for severe patients were 

APOH, SELENOP, CFHR1/CFHR2, F13B, GPX3, and for mild patients TUBB1, SAMM50, CRYZ, 

SPTB. Notably, several detected antigens were reported to be associated with diseases with au-

toimmune backgrounds besides COVID-19. Additionally, both mild and severe groups had in-

creased levels of autoantibodies reactive to structural lung proteins, which can be explained by 

the increased release of these proteins from the lung due to the extended tissue damage. As a 

following step, it will be essential to classify the autoantibodies by their role in the pathogenesis 

of COVID-19, elucidating their potential protective or harmful properties.   
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Figure 3.3.4: Longitudinal profiling of autoreactivities in mild and severe COVID-19 patients. 

a, Heatmap with results of mixed effect model for time and severity. Only significant results are dis-

played. Column names represent time intervals from 0 to 65 days, rows show autoantigens. Row 

annotation highlights if the antigen is significantly changing with time or if it differs between mild and 

severe COVID-19 groups. Column annotation displays severity groups and synchronized time 

frames of hospitalization. b, Individual box plots for the antigens of the Munich cohort. The x-axis 

represents the time of hospitalization in a time frame, the y-axis is a fold change of COVID-19 patients 

to the average protein expression of the control low inflammatory. Severe and mild COVID-19 patient 

groups are defined with color. c, Individual box plots for the antigens of the Chicago cohort. The x-

axis represents the time of intubation in a time frame, the y-axis is a fold change of COVID-19 patients 

to the average protein expression of the non-pneumonia controls. 
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3.3.5. Associations between putative autoantigens and clinical 

parameters 

Lastly, I followed the individual and cumulative effects of the autoantibodies on the clinical mani-

festations in severe COVID-19 patients. To achieve this, I performed statistical testing using the 

Wilcoxon signed-rank test to stratify the differences caused by the detection of each autoantibody 

from the list described earlier (Fig. 3.3.3e) on blood chemistry values, respiratory parameters, cell 

counts, cumulative length of stay in the ICU, as well as the SOFA score and patient-specific pa-

rameters, such as age and BMI for the Chicago cohort and blood chemistry values, cell counts, 

COVID-19 stage, length of stay in the hospital, as well as anti-SARS-CoV2 antibody titers and 

patient age for the Munich cohort. The analysis was inspired by the notion that detecting autoan-

tibodies upon hospitalization can be prognostic of the patient status and overall disease course. 

I anticipated discovering two groups of autoantibodies, one with protective qualities and the other 

correlating with a worsened patient prognosis (104). 

Firstly, the results of the statistical testing for the Munich and Chicago cohorts were depicted as 

heatmaps, where putative autoantigens were grouped according to their specificity to the cohort, 

and p-values of the test were highlighted by color with red tones corresponding to the significant 

findings (p-value <0.05) (Fig 3.3.5 a, b). In both cohorts of severe COVID-19 patients, I identified 

a broad spectrum of associations between putative autoantigens and clinical parameters upon 

admission to the hospital. My previous analysis identified 19 putative autoantigens, which were 

significantly upregulated in both cohorts in at least 3 COVID-19 patients at least one time point 

over selected controls for each cohort. Among these 19 autoantigens, several were associated 

with various clinical manifestations in COVID-19 patients in both cohorts (Fig.3.3.5 c, d). For ex-

ample, IL-6R used as a true positive before, is a binding target of therapeutic monoclonal anti-

bodies administered to several severe COVID-19 patients. IL-6R-positive patients of the Chicago 

cohort had increased cumulative ICU days (p=0.016) and plateau pressure (p=0.04). This sup-

ports the hypothesis that COVID-19 patients who are administered tocilizumab have more severe 

respiratory conditions and, thus, prolonged hospital stays. Besides that, I observed reduced levels 

of D-dimer, a clinical marker for blood clotting, in patients positive for anti-FGL1 antibodies 

(p=0.028) (Fig. 3.3.5 c). Notably, recent studies revealed that FGL1 performs a modulator function 

for the D-dimer levels, as mutations in the FGL1 led to increased D-dimer in the circulation (209). 

This way detected autoantibodies can interfere with the soluble FGL1 form, resulting in decreased 

D-dimer in FGL1-positive patients. Additionally, FGL1 is considered the next molecular target for 

the immune checkpoint blockade in cancer patients, and elevated FGL1 plasma levels are asso-

ciated with a poor treatment prognosis (199). Furthermore, I discovered that patients positive for 

GSTO1 had a significantly lower P/F ratio in the Chicago cohort, underscoring expended lung 

damage. Previous reports described anti-GSTO1 autoantibodies that were detectable in multiple 

autoimmune and inflammatory conditions, including COVID-19, as indicative of extended tissue 

https://sciwheel.com/work/citation?ids=11070361&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=11728011&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=15796180&pre=&suf=&sa=0
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damage and, reduction of respiratory function. GSTO1 is expressed by hepatocytes in the liver 

and later released in the circulation upon tissue damage. It is also detected in alveolar macro-

phage populations in the lung (210). Finally, SVEP1-positive patients in the Chicago cohort had 

an increased proportion of lymphocytes compared to those without this autoantibody. SVEP1 is 

an ECM protein that plays an important role in lymphatic vessel development (211). Studies of 

coronary artery disease shed light on how the deficiency in SVEP1 promotes leukocyte recruit-

ment in vitro via the upregulation of CXCL1 (212). Autoantibodies could trigger a similar mecha-

nism via functional inhibition of SVEP1. 

Furthermore, I noted different associations between clinical parameters and shared autoantibod-

ies regarding the Munich cohort. For instance, IL-6R-positive patients had decreased levels of 

CRP (p=0.022). Unfortunately, there was no longitudinal metadata covering drug administration 

in the Munich cohort so the therapeutic after-effect of the IL6R blockade can create the observed 

effect. Moreover, elevated amounts of aspartate aminotransferase (AST), a marker of liver dam-

age, were detected in patients with anti-COLEC10 antibodies (Fig. 3.3.5 d). COLEC10 is a protein 

mainly expressed in the liver and is reported to be associated with liver fibrosis (213). Further-

more, anti-COLEC10 antibodies in severe COVID-19 patients were also linked to increased leu-

kocytes. Here, I hypothesize that the COLEC10-autoantibodies can play a potential role in liver 

damage in severe COVID-19 patients. Notably, among putative autoantigens described earlier, I 

observed a similar tendency with IL1RAP, the downstream target of the IL-1 signaling pathway. 

Patients with anti-ILRAP autoantibodies exhibited elevated levels of alanine transaminase (ALT), 

another liver enzyme prognostic for liver dysfunction. Hepatocytes ubiquitously express IL1RAP, 

and autoantibodies binding to it could lead to liver damage. Besides that, anti-ST3GAL6-positive 

patients had increased creatinine levels, which are indicative of kidney failure. Taking a precise 

look at the tissue expression of ST3GAL6, it can be observed that the liver and kidney predomi-

nantly express the enzyme. Finally, SERPINA10 is a serine protease inhibitor that inhibits the 

activity of factor Xa and prevents thrombosis. Notably, anti-SERPINA10 autoantibodies were de-

tected in patients with elevated fibrinogen levels, which are commonly used in clinics as an indi-

cator of thrombotic activity. The presence of anti-SERPINA10 antibodies can interfere with the 

functionality of the proteins, leading to an increased risk of blood clot formation. 

Finally, I investigated the connections between the cumulative degree of autoreactivity in severe 

COVID-19 patients and its effect on their clinical picture. To achieve this, I calculated the autoan-

tigen coefficient, a custom metric representing the sum of fold changes over the control for each 

potential autoantigen identified in the patients. Thus, a higher coefficient indicated a more signif-

icant number of autoreactivities present in an individual patient. In the Chicago cohort, the auto-

antigen coefficient ranged from 14 to 94, while in the Munich cohort, it ranged from 27 to 164. 

Notably, although the Chicago cohort exhibited more unique putative autoantigens (Fig. 3.3.5 e), 

the overall range of autoreactivities was higher among the severe COVID-19 patients in the Mu-

nich cohort.  

https://sciwheel.com/work/citation?ids=16212256&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=16192545&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=11372105&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=16212292&pre=&suf=&sa=0
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To investigate the associations between the autoantigen score for individual patients and clinical 

parameters across both cohorts, I performed a pairwise Pearson correlation analysis between 

these values at the time of admission to the hospital. The study revealed significant positive cor-

relations of autoantigen coefficient with procalcitonin (R=0.86, p=0.00019), cumulative intubation 

days (R=0.67, pl=0.013), cumulative ICU days (R=0.63, p=0.02), amylase (R=0.64, p=0.018) and 

troponin I (R=0.58, p=0.039) in the Chicago cohort (Fig. 3.3.5 e). Considering the biological func-

tions of autoantibodies, it is plausible to hypothesize that increased autoreactivity may lead to a 

higher possibility of secondary bacterial infection, as indicated by the strong correlation between 

the autoantigen coefficient and procalcitonin. Procalcitonin is a blood marker for systemic bacte-

rial or fungal infection, suggesting a link between autoantibody presence and susceptibility to 

secondary infections. Additionally, clinical evidence suggests that individuals with pre-existing 

autoimmune conditions are more susceptible to bacterial lung infections due to impaired local 

host defenses caused by the disease (214). Furthermore, a positive association between in-

creased autoreactivity and extended ICU stays underscores the potential pathological impact of 

autoantibodies in the persistence of severe disease, whereas a robust positive relationship be-

tween the autoantigen score and Troponin I level in severe COVID-19 patients from the Chicago 

cohort suggests that myocardial injury may be induced in individuals with elevated autoantibody 

levels. Lastly, the coefficient exhibited positive correlations with SOFA score and LDH, indicating 

that heightened autoantibody levels in COVID-19 patients may correlate with increased disease 

severity and tissue damage.  

In the Munich cohort, the autoantigen score was significantly positively correlated with liver en-

zymes AST and ALT and anti-N protein SARS-CoV2 antibody titers (Fig. 3.3.5 f). These findings 

shed light on the potential involvement of autoantibodies in the hepatic injury predominantly ob-

served in severe COVID-19 cases compared to mild conditions (215). 

Collectively, I hypothesized that autoantibodies targeting shared putative autoantigens in both the 

Munich and Chicago cohorts might disrupt molecular processes and contribute to the pathologies 

observed in severe COVID-19 patients. This was achieved by examining the association between 

autoantibody presence and various clinical parameters in autoantibody-positive and -negative 

patients. Notably, autoantigens discussed in this chapter are not restricted to the lung environ-

ment; many are liver or kidney enzymes or secreted proteins. However, scientific evidence re-

garding the functionalities and tissue localization of these proteins suggests that detected auto-

antibodies can interfere with several molecular functions, leading to multi-organ damage and 

blood clotting pathologies commonly observed in severe COVID-19 cases. Moreover, the analysis 

revealed significant associations between the overall level of autoantibodies and several clinical 

parameters, including cumulative intubation days, cumulative ICU days, procalcitonin, amylase, 

troponin I, AST, ALT, and anti-N ABs. These observations suggest that elevated autoantibody 

levels contribute to prolonged intubation periods, susceptibility to secondary bacterial infections, 

https://sciwheel.com/work/citation?ids=16214989&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=15884789&pre=&suf=&sa=0
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and multi-organ damage, aligning with existing scientific knowledge for severe COVID-19 and 

common autoimmune diseases.  
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Figure 3.3.5: Associations between the presence of putative autoantigens and clinical pa-

rameters of two independent severe COVID-19 cohorts. a, Heatmap presenting the associa-

tions between clinical parameters on the y-axis of the Chicago cohort and detection of the putative 

autoantigens in COVID-19 patients (n=13) on the x-axis upon the intubation. The color decodes 

the output of the Wilcoxon test (p-value), demonstrating the difference between groups of COVID-

19 patients with (+) and without (-) autoantigen. Values below the 0.05 threshold are depicted in 

red. The dark grey color corresponds to the absence of the test results due to the missing values. 

The column annotation highlights in which cohort the autoantigen was detected. b, Heatmap pre-

senting the associations between clinical parameters on the y-axis of the Munich cohort and de-

tection of the putative autoantigens in COVID-19 patients (n=16) on the x-axis upon the intubation. 

The color decodes the output of the Wilcoxon test (p-value), demonstrating the difference be-

tween groups of COVID-19 patients with (+) and without (-) autoantigen. Values below the 0.05 

threshold are depicted in red. The dark grey color corresponds to the absence of the test results 

due to the missing values. The column annotation highlights in which cohort the autoantigen was 

detected. c, Box plots representing the significant associations between putative autoantigens 

shared between cohort 1 and cohort 2 and clinical parameters in the Chicago cohort. The x-axis 

displays groups of COVID-19 patients (n=13) with (+) detected autoantigen and without (-) upon 

the intubation. d, Box plots representing significant associations between putative autoantigens 

shared between cohort 1 and cohort 2 and clinical parameters in the Munich cohort. The x-axis 

displays groups of COVID-19 patients (n=16) with (+) detected autoantigen and without (-) upon 

the intubation. e, The bar plot shows the pairwise Pearson correlation analysis results between 

the Autoantigen coefficient of the Chicago cohort and clinical parameters. The y-axis shows the 

correlation coefficient (R), and a significant correlation is depicted with a star sign. The bar's color 

indicates a positive (red) or negative (blue) correlation. f, The bar plot shows the results of the 

pairwise Pearson correlation analysis between the autoantigen coefficient of the Munich cohort 

and clinical parameters. The y-axis shows the correlation coefficient (R), and a significant corre-

lation is depicted with a star sign. The bar's color indicates a positive (red) or negative (blue) 

correlation.  
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Limitations of the study 

This thesis has several limitations, which will be discussed hereby. First, the two COVID-19 co-

horts described in the study are heterogeneous regarding the received treatments and other clin-

ical care procedures. As both cohorts were assembled during the initial phase of the COVID-19 

pandemic, it gave us an advantage due to the absence of previous infections with SARS-CoV-2; 

however, the novelty of the pathogen also contributed to the variability in the treatment strategies 

and hospital admission guidelines. One way to avoid it would be to utilize COVID-19 cohorts 

acquired at the later stages of the pandemic when the treatment guidelines were established and 

uniform. However, this approach would include patients with a history of SARS-COV-2 infections, 

which is also essential in studying newly emerged autoreactivities.  

Secondly, in the Chicago cohort, my collaborators from NWMH attempted to standardize the 

BALF volumes, but the number of alveoli sampled and the return volumes varied. Also, the Chi-

cago cohort was biased toward more severe patients; as part of clinical care, the sick patients 

were sampled more frequently. Unfortunately, according to standard critical care guidelines, 

BALF and plasma samples are collected from patients with indefinite or rapidly worsening clinical 

conditions to adjust the treatment strategy and prevent fast decay. This way, recovering patients 

stay under-sampled, and proteomic observations described in this thesis are biased toward pa-

tients with obstructed recovery trajectories.  

A few considerations must be made concerning the DAC method employed in this thesis to iden-

tify putative autoantigens. First of all, the detection of the antigens can be affected by several 

factors: titers of the specific antibody in the plasma of the patient, affinity of the antibody, and 

abundance of the autoantigen in the tissue lysate. By adhering to particular conditions of the DAC 

protocol, specifically the selection of the target tissue, I expect to miss some possible autoanti-

body targets. In the case of COVID-19, the clinical manifestations spread outside the primary 

infection site and affect multiple other organs. This way, using the ‘healthy’ lung bait in the assay 

limited our findings toward the autoantigens available in lung tissue. Besides that, getting lung 

tissue from individuals not infected with SARS-CoV-2 may also restrict our conclusions by missing 

the targets carrying post-translational modification imposed by the virus on the host proteome. To 

overcome these limitations, the experiment's design should consider a lung tissue pool from indi-

viduals infected with SARS-CoV-2; ideally, the lung samples should be paired with the plasma/se-

rum samples. Regrettably, this can only be accomplished in deceased COVID-19 patients, which 

restricts our findings to a specific severity group. 

Furthermore, I noticed numerous proteins specific to the kidneys and liver among the putative 

autoantigens. This could be due to the assay's ability to enrich molecular complexes of the auto-

antibody-autoantigen present in the bloodstream.  
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Finally, I observed heterogeneity in DAC results between the Munich and the Chicago cohorts. 

This could be partially affected by the type of samples used. In the case of the Munich cohort, the 

received samples were serum, and in the Chicago cohort, they were plasma. Additionally, the 

sizes of both cohorts limited our findings regarding the putative autoantigens: 23 COVID-19 pa-

tients in the Munich cohort and 13 in Chicago. Several studies claimed that the high heterogeneity 

of the autoantibody targets among COVID-19 patients and a low detection rate of the specific 

autoantibodies in severe COVID-19 patients makes this research particularly challenging 

(216),(200). To ensure a comprehensive follow-up of the findings, it is recommended that the 

validation cohort be composed of a minimum of 100 COVID-19 patients with varying severity 

levels and longitudinal samples obtained after the acute phase of infection. This will enable a 

better understanding of common autoantibody targets in a larger group of patients and the role 

played by specific autoreactivities in the development of PASC.  

https://sciwheel.com/work/citation?ids=9716696&pre=&suf=&sa=0
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Discussion 

The humoral immune response is an essential aspect of the adaptive immune system. It is in-

volved in recognizing and neutralizing pathogens, activating the accessory cells via antibody-

coated pathogens, enabling their effector functions, and activating complement (217). Neverthe-

less, antibodies can contribute to autoimmunity, commonly reported in many infectious diseases, 

including COVID-19(88). SARS-CoV-2-induced pneumonia, as well as other highly inflammatory 

diseases, have been associated with the presence of autoantibodies (85,218). Notably, the role 

of the autoantibodies during the infection and their contribution to the outcome of the disease are 

emerging topics of interest. For example, the study of anti-phospholipid antibodies isolated from 

COVID-19 patients applied in a mouse model revealed that these antibodies can promote patho-

logical coagulation events highly relevant to severe COVID-19 infection (102). Moreover, autoan-

tibodies against cytokines and other immune signaling molecules have become a hallmark of 

severe COVID-19 (200).  

Secondly, severe infection leads to hyperactivated immune responses, which, due to the circula-

tion of pro-inflammatory mediators, yield a loss of tolerance mechanisms and a reduction of T-

cell help requirement (219). Several studies revealed the expansion of autoimmune and atypical 

B cells in COVID-19 patients, which was explained by the enhancement of the extrafollicular B 

cell activation pathway (131), characterized by expanded populations of B cells and plasmablasts 

and loss of germinal centers. Besides that, antibody repertoires of hospitalized COVID-19 patients 

consisted of expanded clones with elongated CDR3 sequences and low levels of somatic hyper-

mutation (81,220), which can be polyreactive (221) and resemble phenotype observed in other 

infections like acute Ebola (222) and salmonella infection (223). Strikingly, the latest evidence 

suggests that these responses in COVID-19 overlap with autoreactive B cells in SLE, which are 

also activated via an extrafollicular pathway through TLR-7 (224). Besides that, SARS-CoV-2 

genomic RNA can costimulate TLR7, and many of the autoantigens identified in COVID-19 pa-

tients are capable of binding structural RNA, specifically U1-snRNA (found in Sm/RNP com-

plexes), 7S RNA (a component of SRP), and tRNAs (Jo-1, PL-7, and PL-12) (223,225). Addition-

ally, such ‘relaxation’ of B cell tolerance was suggested as one of the mechanisms promoting 

autoreactivity and autoantibody secretion in COVID-19 patients(219). These findings indicate the 

connection between immune responses during infection and autoimmune disorders, shedding 

light on common molecular mechanisms (224,226).  

As part of my PhD project, I utilized a DAC assay to detect circulating antibodies among COVID-

19 patients with varying degrees of severity. Combining the results of two distinct COVID-19 co-

horts, I could identify autoantigens associated with the disease and correlate them with the pa-

tient's phenotype. Aligning with previous studies, I detected several autoantibodies targeting IFN 

I signaling pathway proteins (anti-ILRAP, anti-IFIT1) (86), which are considered the hallmark of 

https://sciwheel.com/work/citation?ids=16358972&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=8226029&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=16232057,14481025&pre=&pre=&suf=&suf=&sa=0,0
https://sciwheel.com/work/citation?ids=10059730&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=15617848&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=12827762&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=9785817&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=9290850,9586811&pre=&pre=&suf=&suf=&sa=0,0
https://sciwheel.com/work/citation?ids=55750&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=7238370&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=492675&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=5873242&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=713576,492675&pre=&pre=&suf=&suf=&sa=0,0
https://sciwheel.com/work/citation?ids=12827762&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=13540912,5873242&pre=&pre=&suf=&suf=&sa=0,0
https://sciwheel.com/work/citation?ids=9716695&pre=&suf=&sa=0
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severe COVID-19 leading to disruption of the IFN signaling pathway and hindering the antiviral 

response. Some other findings highlight the role of anti-C1q (SLE autoantigen), anti-β2GP1 

(which is thrombogenic), anti-SERPINA10, and anti-SVEP1 are predicted to exacerbate COVID-

19-related pathogenic processes, such as hyper coagulopathy and microvascular injury 

(102,206,227). Other detected putative autoantigens were various tissue-associated proteins, 

such as COLEC10, RELN, ST3GAL6, MFAP5, MMRN1, MMRN2, and correlations between these 

autoantibodies and clinical markers such as CRP, creatinine, liver damage markers (AST and 

ALT), as well as respiratory parameters in the Chicago cohort, signal about the potential involve-

ment of these autoantibodies in the extensive tissue damage. Moreover, total levels of autoreac-

tivity for each patient were correlated to prolonged ICU stays and increased susceptibility to sec-

ondary bacterial infections. Importantly, my study partially explained the origin of specific autoan-

tigens targeted in severe COVID-19 patients. Most of the newly triggered autoantigens result from 

severe disease with high levels of pro-inflammatory cytokines and chemokines, active spread of 

the virus, and associated tissue injury.  

Moreover, in the case of severe COVID-19 infection, increased levels of autoantibodies are not a 

consequence of total immunoglobulin production, as they represent only a proportion of the over-

all antibody pool. In my study, the detection of a various number of autoantigens targeted in indi-

vidual patients, together with the presence of a B cell phenotype resembling one in SLE and other 

canonical autoimmune diseases, supports the hypothesis of loss of self-tolerance in contrast to 

global increase in autoantibody production.  

Multiple reports cover the hypothesis of the underlying autoimmune pathology in severe COVID-

19 cases. Our study examined the impact of COVID-19 on autoantibody production, identifying 

putative antigens specific to mild and severe COVID-19 cases and following their behavior 

throughout the disease. This project contributes to our understanding of the role of autoantibodies 

in COVID-19 pathogenesis and suggests that reducing the autoreactive background could pre-

vent the development of severe disease courses and lead to more favorable clinical outcomes. 

This aspect might benefit translational medicine and requires further investigation. Concerning 

the project's perspectives, it is important to consider implementing the results obtained from the 

study of acute COVID-19 patients in the independent cohort of long COVID-19 patients with pul-

monary and extrapulmonary manifestations based on the existing theory that autoreactive as-

pects of long COVID-19 emerge as a result of an unresolved acute phase of the infection. 

https://sciwheel.com/work/citation?ids=5221197,16196037,10059730&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0
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Appendix 

Table A1: Baseline characteristics of the Chicago cohort on the initial day of the intubation 

 COVID-19 

n=13 

Non-pneumo-

nia control 

n=7 

Bacterial pneu-

monia 

n=6 

Influenza 

n=7 

Age 61.2±11.3 66.5±4.9 57.1±13.7 56.2±10.6 

Sex 10 male (77%),  

3 female (23%) 

3 male (43%),  

4 female (57%) 

4 male (67%), 

2 female (33%) 

4 male (57%),  

3 female (43%) 

Day of intubation 

[days] 

5.1±7.3 5.6±6.2 20.5±16.4 7.4±8.5 

ARDS 13 (100%) 7 (100%) 6 (100%) 7 (100%) 

Deceased 2 (15%) 3 (43%) 4 (67%) 4 (57%) 

Superinfection 3 (23%) NA NA 0 (0%) 

Smoking status 4 never smokers 

(31%), 4 past 

smokers (31%),  

5 NA (38%) 

5 never smokers 

(71%), 2 past 

smokers (29%) 

3 never smokers 

(50%), 1 past 

smoker (17%), 2 

NA (33%) 

5 never smokers 

(71%), 2 past 

smokers (29%) 

Cumulative ICU days 

[days] 

30.2±26 11.7±5.65 28.5±13.7 16.9±8.67 

PaO2/FIO2 ratio 148±52.2 248±105 212±60.1 209±68.9 

SOFA score  11.8±3.7 10.6±4 11.8±5 11.4±3.5 

 

Data is presented as mean (±SD) or n (%). Abbreviations: ARDS- acute respiratory distress syn-

drome, SOFA score- Sequential Organ Failure Assessment score.  
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Table A2: Baseline characteristics of the Munich cohort at the first time window (0-11 days) 

 Mild 

 n=7 

Severe 

 n=16 

Age 66.3±19 66.4±11.1 

Sex 6 male (86%),  

1 female (14%) 

13 male (81%), 

 3 female (19%) 

ARDS 0 (0%) 16 (100%) 

ECMO 0 (0%) 3 (18.8%) 

Deceased 0 (0%) 6 (37.5%) 

Immunosuppression 2 (28.6%) 9 (56.2%) 

Acute Kidney Injury 2 (28.6%) 12 (75%) 

Length of hospitalization [days] 33.4±12.9 32.6±11.9 

CRP [mg/dl] 7.0±6.8 13.3±9.0 

Interleukin 6 [pg/ml] 52.9±32.6 602.2±1188.0 

 

Data are presented as mean (±SD) or n (%). Abbreviations: ARDS-acute respiratory distress syn-

drome, ECMO - extracorporeal membrane oxygenation, CRP- C-reactive protein. 
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