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Chapter 1

Introduction

Many modern quantum optical experiments examine the interaction of one or a
few atoms with a quantized resonator mode of a cavity of very high quality. These
experiments allow one to study the coupling of radiation and matter in great
detail [10, 6, 38, 21]. The results of these experiments include the demonstration
of the quantum nature of light , the modification of spontaneous emission rates by
the resonant cavity and the production of light with nonclassical photon counting
statistics [32, 33] and even laser operation with one or a few atoms as active laser
medium [1].

If the atoms cross the resonator in an atomic beam there is always a nonvan-
ishing probability to find two or more atoms in the resonator. Furthermore, the
interaction of a cluster of atoms with the resonator mode is much stronger than
that of a single atom. Therefore it is highly desirable to be able to describe the
interaction of many atoms with a resonator mode fully quantum mechanically.

The theory of the interaction of many atoms with a quantized resonator mode
was originated by the work of Jaynes and Cummings [20] and extended by Tavis
and Cummings [36] to the case of many atoms. A collection of two-level-atoms
may be described conveniently by regarding the atoms as spin-1

2
particles and

using Clebsch-Gordan coefficients to couple the atoms to a collective angular mo-
mentum, as proposed by Dicke [11]. In his original publication Dicke considered
only the totally symmetric coupling, which corresponds to maximum angular
momentum. This is appropriate for systems without the influence of dissipa-
tive processes, as will be shown here. Because the interaction Hamiltonian has
the form of an angular momentum ladder operator the Dicke states simplify the
description of a many-atom problem considerably.

In the marginal case of infinitely many atoms the problems has been solved by
Davies [12] with the result that the light emitted by an infinite number of atoms
is a coherent state in the sense of Glauber [18, 17]. This raises the question of
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how many atoms are sufficient to treat the number as approximately infinite.

The situation becomes much more difficult if dissipative processes like sponta-
neous emission are considered. It is very common in maser theory to treat the
interaction time of the atoms with the maser mode as infinitely short. In this
treatment atomic dissipation is neglected. This is impossible when systems are
considered where the interaction of the atoms with the mode is not intermitted
by periods without atoms like it is the case if the flux of atoms is very large or in
the case of a ion-trap-laser. Here one has to treat the dissipative processes and
the interaction of the atoms with the resonator mode simultaneously.

At this point spontaneous emission causes a difficulty: The action of spontaneous
emission of photons on the eigenstates of angular momentum is quite complicated
and it seems that the presence of spontaneous emission makes it impossible to use
the angular momentum and its projection quantum numbers as collective atomic
variables.

The purpose of this work is to show that the collective atomic variables are
in fact compatible with the effects of spontaneous emission. This will make it
possible to describe experimental results like those of [32] where the interaction
of twenty to hundred atoms with a resonator cavity was used to obtain a light
source with interesting nonclassical properties. In this experiment the resonator
was permanently populated with atoms so that the neglection of spontaneous
emission becomes impossible.

The previous theoretical descriptions of this experiment are either restricted to
very low numbers of photons [7, 32, 3] oder very low numbers of atoms [26] if a full
quantum description of dissipative processes is required. Because the dimension of
the state space increases exponentially with the number of atoms it is impossible
to treat systems with five or more atoms without resorting to symmetrization.
Some work has been done on many-atom laser theory [15, 34, 35]. Here the
problem of the dimension of the state space arises also.

Using the theory developed here we will be able to lift these restrictions. This
makes it possible to treat systems with significant mean photon numbers as well
as large atom numbers.

A common approach to multi-atom problems of this kind is to eliminate the
atoms from the dynamics in order to obtain an approximate equation for the
resonator mode. This has been done for a classical resonator mode [19] as well as
for a quantized description of the resonator mode [13] only. In this approximation
one obtains the result that the atoms may be replaced by a single atom whose
coupling constant to the resonator mode has been multiplied by the square root of
the number of atoms. Other parameters like the intensity of the driving field have
to be scaled as well. This scaling behavior has also been observed experimentally
[32]. Using the techniques developed here we will compare exact multi-atom
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calculations with results obtained from those approximations in order to obtain
the range of validity of the approximation used in the elimination of the atoms.

Another approach is to restrict the number of photons in the resonator so that
only the lowest states of the atomic ensemble can be excited, as proposed by H.J.
Carmichael et al. [7]. They allowed up to two photons, because at least two
photons are necessary to obtain the conditional probability of detection a second
photon after a first photon has been detected. We will show that this weak field
limit is indeed justified, but only for very low values of the mean photon number.

The model (2.1) is not restricted to the interaction of atoms with photons. An
example of a different physical system which is described by the same master
equation is an array of quantum dots which interacts with phonons. This sys-
tem has been studied in the special case of four quantum dots by P. Zanardi et
al. [40]. Here one is interested in minimizing the coupling constant between the
dots and the phonons. This could be achieved by coupling the dots together in
order to obtain a dark state which is characterized by zero angular momentum.
In the correspondence between this system and the quantum optical system the
quantum dots take the place of the atoms and the phonons take the place of the
resonator mode. In a similar work it has been proposed [2] to use the symmet-
ric subspace under consideration in this manuscript to reduce the error rate in
quantum computation and quantum state storage.

An interesting quantum optical experiment is a micromaser which is pumped
not by single atoms but by clusters of atoms. We examine collective effects in
micromaser theory, especially on the trapped states. Here one has to distinguish
between theories that allow arbitrary atom entrance times [8, 22, 39] and theories
that assume that the atoms enter the maser in clusters. Theories of the first
type are restricted to very low numbers of atoms. Due to the symmetrization
used throughout this work we will focus on masers pumped by atoms arriving
in clusters. We will confirm that fluctuations of the atom number of the driving
clusters wash out the zero-photon trapped states [39]. In addition we will show
that masers which are pumped by large clusters of weakly excited atoms exhibit
a very regular behavior.

1.1 Overview

The difficulty in modeling a many-atom system exactly arises from the large state
space that is necessary to describe such a system. The main purpose of this work
is to show that if all atoms are coupled to the light mode with the same coupling
strength a collective description of the atoms is possible and the dimension of the
state space is 1

6
(Z + 1)(Z + 2)(Z + 3), even if all atoms are coupled to individual
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reservoirs. This is in contrast to the 4Z dimensional space needed to describe the
Z-Atom system without symmetrization.

The symmetrization procedure drops the information about which atom is excited
and which is not excited and keeps only the information about the number of
excited atoms. This is exactly the symmetrization procedure required for bosons,
but since the atoms can still be distinguished by their position, the spin-statistics
theorem does not apply here. Therefore we may apply this symmetrization if the
spin of the atoms is half-integer as well.

Assuming resonance between the atoms and the resonator mode the energy con-
tained in the system may appear as photons or excited states. If the number of
atoms is larger than the number of energy quanta and resonance is assumed, the
number of possible atomic states is no longer restricted by the number of atoms,
since there is not enough energy available to excite all atoms. The dimension of
the vector space therefore depends only on the total energy of the system.

Since the atoms have two states, excited or not excited, each of the atoms may
be described as a spin-1

2
-system. This spin will be referred to as angular mo-

mentum in the following. These spins may be coupled to an collective angular
momentum. The eigenvectors of this angular momentum are called Dicke states.
It is important to note that all Dicke vectors but the one with the largest possible
angular momentum are degenerate.

In analogy with angular momentum we introduce the collective operator L2 which
is constructed from the Z two-level-atoms in the same way as the angular mo-
mentum operator describing Z spin-1

2
-particles. In contrast to the usual angular

momentum operator L2 is dimensionless.

In order to describe spontaneous emission, one needs a dissipative generalization
of the Dicke vectors. We replace eigenvectors of L2 by operators ξ̂l which are
simultaneous left and right eigenstates of L2 in the sense that ξ̂lL

2 = L2ξ̂l =
l(l+1)ξ̂l. In analogy with Dicke states the quantum number l gives the symmetry
of the coupling of the individual spins.

In this basis the matrix elements of the Hamiltonian are calculated easily, since
the Hamiltonian has the form of an angular momentum ladder operator. In
contrast, the calculation of the matrix elements of the Lindblad operator used to
describe atomic baths and spontaneous emission is quite complicated.

The outline of this manuscript is the following: First, we solve the Hamiltonian
problem without dissipation in the marginal cases Z �M and Z �M where Z
is the number of atoms and M the number of energy quanta, i.e. the number of
photons plus the number of excited atoms. Since we restrict ourselves to exact
resonance between the atoms and the resonator mode the energy is determined
by the value of M . We will show that in the second case the many-atom sys-
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tem indeed corresponds to a one-atom system where the coupling constant g is
replaced by

√
Zg, while in the case Z � M the correct scaling is

√
Mg. In the

case Z �M one has to scale by the energy, not the atom number.

The case M ≈ Z can be treated with good accuracy if higher orders of the
perturbation expansion in Z

M
respectively M

Z
are included. These higher orders

do not exhibit any scaling behavior.

The inclusion of dissipative processes, especially of the spontaneous emission of
the atoms requires the introduction of a new set of basis states which is suitable
to the description of the interaction of the atoms with the resonator mode as well
as to the atomic dissipation. We will introduce three new sets of basis states. One
of these sets is a generalization of the Dicke vectors and the other two of these
sets are ancillary basis sets used to determine the properties of the generalized
Dicke vectors.

The first basis consists of eigenstates of the atomic dissipation. This set is only
used to determine the dimension of the minimal symmetric atomic subspace which
is closed under the action of the spontaneous emission. Unfortunately, these
states are not well suited for the description of the interaction of the atoms with
the resonator mode.

The second basis is a generalization of the Dicke states. This set of basis states
is very well suited to the description of the interaction of the atoms with the
resonator mode as well as the spontaneous emission of photons. Using these
basis states we will establish selection rules restricting the matrix elements of the
atomic dissipation with respect to these basis states.

The third basis is an auxiliary basis needed to make use of the permutation
symmetry of the atoms in the calculation of the matrix elements of spontaneous
emission. Using this basis we will derive and solve a recurrence relation for the
matrix elements of the spontaneous emission with respect to the Dicke states.
These matrix elements assume a simple form, despite their rather complicated
calculation.

The theory is applied to a micromaser which is pumped not by single atoms but
instead by a cluster of atoms. It will be shown that the irregular dependence
of the mean photon number on the velocity of the atoms turns into a regular
behavior where the time the atoms spend in the resonator is scaled by the square
root of the photon number under the condition that the number of atoms is
considerably larger than the mean number of photons. The effect of fluctuations
of the atom numbers in the driving clusters will be discussed.

Finally, we apply the theory to a system driven by a classical light field. It will be
shown that the theory reproduces experimentally measured intensity correlation
functions g(2). We determine the dependence of the stationary mean photon



10 Chapter 1. Introduction

number and the correlation function on the intensity of the driving field. If the
driving field is very low the correlation function does not depend on the intensity
of the driving field. The experiment [32] used a driving field beyond this limit.

Our exact solution makes it possible to test an approximate theory where the
atoms are adiabatically eliminated and the coupling constant and the intensity
of the driving field are scaled by the square root of the number of atoms. We
will give the range of validity of this approximation. Because of the scaling of
the driving field it is expected that the approximation fails at large numbers of
atoms. Our results show that it fails at low numbers of atoms, too. Investigating
the spectra of the resonator mode we find that the adiabatic elimination of the
atoms is only possible if the spectrum is essentially the spectrum of a single atom
interacting with the cavity.



Chapter 2

The Model

The theoretical model we use to describe the interaction of the atoms with the
resonator mode is the many-atom Jaynes-Cummings model. It consists of an
arbitrary number of two-level atoms which are in exact resonance with a quantized
resonator mode. All atoms and the resonator mode are coupled to heat baths.

The derivation of the Hamilton operator describing the interaction between the
atoms and the mode uses the dipole approximation and the rotating wave approx-
imation. The dipole approximation requires that the wavelength of the electro
magnetic field is much larger than the atomic dimensions such that the atom
may be replaced by its dipole moment. The rotating wave approximation takes
into account only the circular polarized component that couples dominantly to
the two-level system and neglects the other component. This is consistent with
the two-level description of the atom. For an introduction into the theory of the
interaction of atoms with an electromagnetic field see e.g. [25, 9, 27].

Since the model includes losses through the cavity mirrors and spontaneous emis-
sion we have to use a master equation in order to describe the time evolution
instead of a Schrödinger equation. The dissipative part of the dynamics is then
described by Lindblad operators [24]. The atoms are coupled to individual heat
baths. This is necessary since we have assumed that the atoms are distinguish-
able by their position. We assume that the fluctuations of the environments of
the atoms and the resonator mode are uncorrelated at different times and that
the internal states of the baths are not altered by the interaction with the atoms.
Under these assumptions the equation of motion may be formulated as a master
equation [28, 41].

All atoms couple to the resonator mode with the same coupling constant and
have the same spontaneous emission lifetimes.

It is not necessary that all atoms are located at the same place, since a flat
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resonator mode also gives the same coupling constants for all atoms. Also the
symmetrization postulate does not enter here, since the atoms are assumed to
be distinguishable by position. In particular we do not assume that the atomic
densities are sufficient for Bose-Einstein Condensation. Hence it is possible to
consider the symmetric atomic variables only, given that the initial condition is
symmetric.

If the temperature of the heat baths is zero, the stationary state of the system is
trivial with no photons in the resonator mode and no excited atoms. Therefore we
will include pump processes like a classical light source coupled into the resonator
through the mirrors or the maser pump process where atoms enter the resonator
in the upper state.

2.1 The Equation of Motion

Because of dissipation we have to describe the system with density operators
instead of wave functions. The appropriate generalization of the Schrödinger
equation is the master equation (For an introduction to master equations see e.g.
[14, 27]).

The model we discuss here is characterized by the master equation ˙̂ρ = Lρ̂ for
the density operator ρ̂ in Lindblad form [24], where

Lρ̂ =
1

i~
[H, ρ̂] + Laρ̂+ Lf ρ̂ (2.1)

with the Hamilton operator

H = ~ωa†a+
~Ω

2

∑
i

σ(i)
z −

~g

2

∑
i

(a†σ
(i)
− + aσ

(i)
+ )− ~ε

2
(eiwta+ e−iwta†) (2.2)

the resonator mode dissipation

Lf ρ̂ = −A
2

(1 + ν)(a†aρ̂+ ρ̂a†a− 2aρ̂a†)

− A

2
ν(aa†ρ̂+ aa†ρ̂− 2a†ρ̂a) (2.3)

and the atomic dissipation

Laρ̂ = −B
8

(1−s)
∑
i

(σ
(i)
+ σ

(i)
− ρ̂+ ρ̂σ

(i)
+ σ

(i)
− − 2σ

(i)
− ρ̂σ

(i)
+ )

−B
8
s
∑
i

(σ
(i)
− σ

(i)
+ ρ̂+ ρ̂σ

(i)
− σ

(i)
+ − 2σ

(i)
+ ρ̂σ

(i)
− ). (2.4)
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a† and a are the resonator mode annihilation and creation operators, σ
(i)
z and

σ±
(i) = σ

(i)
x ± σ

(i)
y are the atomic Pauli operators, and ε is the amplitude of a

classical light field used to drive the system.

The first three terms represent the commutator of the density operator with the
Hamiltonian of the system which contains the energy of the light mode, of the
atoms and their interaction. The terms proportional to A describe the damping of
the light mode caused by an imperfect cavity and the two last terms proportional
to B describe spontaneous emission of the atoms. Each atom is coupled to an
individual reservoir. The parameter s was introduced to allow for an inverted
atomic bath which might be used to obtain laser behavior For s > 1

2
the atoms

are inverted.

The second to last term proportional to B(1− s) will be referred to as La,− since
it is the atomic loss term and correspondingly the term proportional to Bs as
La,+ This term describes an atomic pump process, since the stationary state of
an atom with s > 0 describes an excited atom [16].

From now on a rotating frame will be used to eliminate the self-energy terms. The
dephasing term has been dropped, which amounts to the assumption B‖ = 2B⊥.
The method developed here could easily be generalized to include the dephasing
term.

It is possible to parameterize the spontaneous emission differently in order to de-
scribe the interaction of the atoms with a vacuum containing ν thermal photons:

Lν ρ̂ = −B
8

(1 + ν)
∑
i

(σ
(i)
+ σ

(i)
− ρ̂+ ρ̂σ

(i)
+ σ

(i)
− − 2σ

(i)
− ρ̂σ

(i
+)) (2.5)

−B
8
ν
∑
i

(σ
(i)
+ σ

(i)
− ρ̂+ ρ̂σ

(i)
+ σ

(i)
− − 2σ

(i)
+ ρ̂σ

(i
−)). (2.6)

The terms L−,ndρ̂ = σ
(i)
+ ρ̂σ

(i)
− and L+,ndρ̂ = σ

(i)
− ρ̂σ

(i)
+ make it difficult to describe

the system in a basis constructed from symmetrized state vectors, since the action
of these operators on symmetrized state vectors destroys the symmetry of the
vectors completely. The main purpose of this work is to show how this problem
can be solved.

The effect of spontaneous emission of one atom on the tensor product of Dicke
states leads to complicated expressions which contain explicitly the Clebsch-
Gordan-Coefficients. In order to avoid these involved expressions it is useful
to look for expressions that make no reference to an individual atom.
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2.2 Collective Damping of the Atoms

If one assumes that atomic dissipation does not occur as spontaneous emission
by individual atoms but as a collective process, one can write down the atomic
Liouville operator using the collective operators S± =

∑
i σ±(i) as

−D
8

(1 + ν) (S+S−ρ̂+ ρ̂S+S− − 2S−ρ̂S+)

−D
8
ν (S+S−ρ̂+ ρ̂S+S− − 2S−ρ̂S+) . (2.7)

This Liouville operator is very different from the atomic part of (2.1) because in
contrast to that model of the spontaneous the collective damping of the atoms
does not alter the symmetry of the atoms. In order to formalize this argument

we use the collective operator L2 =
(∑

i σ
(i)
)2

. Because the individual atoms
can be described as spin-1

2
-systems L2 is formally analogous to an angular mo-

mentum operator. In analogy with angular momentum we may use the operator
L2 to describe the symmetry of a state. Eigenstates of L2 with a large eigen-
value are highly symmetric, while eigenstates of L2 with a small eigenvalue are
unsymmetric.

The collective damping operator (2.7) commutes with the angular momentum
operator L2 while the individual damping operator (2.1) does not.

Because of this property the diagonalization of a Liouville operator containing
only collective atomic dissipation is much simpler than the treatment of indi-
vidual atomic spontaneous emissions. Yet, it is not clear which physical system
is properly described by (2.7) and this Liouville operator will not be treated in
detail.

2.3 The Eigenvalue Problem

The equation of motion ρ̇ = Lρ (2.1) can be interpreted as an eigenvalue problem:
We have to find λi, ρ̂i and ρ̌i such that

Lρ̂i = λiρ̂i,

Ľρ̌i = λiρ̌i (2.8)

where the adjoint Liouville operator Ľ is defined by its action on an arbitrary
observable O :

tr
(
(ĽO)ρ̂

)
= tr (O(Lρ̂)) . (2.9)
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This is the definition of the adjoint of a linear operator on a Hilbert Space. For
an introduction to the theory of operators on Hilbert spaces see e. g. [31].

For simplicity we will denote the ρ̂i and ρ̌i as “right and left eigenstates” of L
or short as “states”, although the precise wording would be “eigenoperators and
eigenobservables”. Likewise we will denote objects like L that act linearly on the
states ρ̂i or ρ̌i as operators and not as superoperators, as it would be appropriate
for objects that operate on operators.

Once these eigenvalues and eigenstates are known, all stationary and dynamic
properties of the system may be calculated easily.
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Chapter 3

Eigenvalues of the Hamilton
Operator

Before examining the full Liouville operator with the dissipative and driving terms
we first determine the eigenvalues of the interaction Hamiltonian only. We will
find that the scaling of g with the square root of the number of atoms Z does not
give correct results if M , the sum of photons and excited atoms, is larger than
Z. From this result we expect that in this regime the scaling will not give correct
results later when the dissipation and the driving field are included, as we will
confirm in chapter 8.

In this chapter we will derive approximative expressions for the eigenvalues of
the interaction Hamiltonian from (2.1) in the two marginal cases Z � M and
Z � M , where Z is the number of atoms and M is the number of photons plus
the number of excited atoms. We will derive an approximation for the eigenvalues
that is useful even if M ≈ Z. The analytical expressions will be used to examine
the validity of the system size scaling where one replaces a system consisting of
Z atoms interacting with the radiation field by a system with one atom. The
multitude of atoms is accounted for by scaling the coupling constant g → g

√
Z.

It will be shown that this scaling holds only for the largest eigenvalues and if
Z �M . If Z �M it is shown that the scaling parameter is not Z but M .

In contrast to the one-atom case, the Jaynes-Cummings-model, there is no ana-
lytical expression for the eigenvalues of the Liouville Operator (2.1) if the number
of atoms is larger than two. This is because the matrices whose eigenvalues and
eigenvectors are needed, are Z + 1-dimensional if there is enough energy present
to excite all atoms.

If A, B, and ε are zero and the atoms are in resonance with the resonator mode
the eigenstates are characterized by a parameter na + nf = M which gives the
total energy of the resonator mode and the atoms, in other words the sum of
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photons nf and exited atoms na. If M is fixed, nf is determined by na.

The remainder of the Hamilton operator in the case ε = 0 does not couple states
with different values of M . In order to simplify the notation we introduce the
operator HM which acts only on the subspace with total energy M and the
interaction Hamiltonian Ho which contains all terms of 2.1 proportional to g.

In the marginal cases M � Z or M � Z one can approximate HM by an
operator that can be identified with the z−component of an angular momentum
operator1. We will see that another component of this operator is diagonal such
that the diagonalization may be performed by a simple rotation. For the case
that Z � M this has been discussed by M. Kozierowski et al. [23]. Their work
will be generalized to the complementary case Z �M here.

The accuracy of the eigenvalues obtained by that procedure will be improved
using perturbation theory.

3.1 Dicke Vectors

In analogy to the collective angular momentum of a sample of spin-1
2
-particles a

cluster of two-level-atoms can be described collectively. The eigenstates of the

operator L2 =
(∑

i σ
(i)
)2

are represented by Dicke vectors |Z, l,m, r〉 as intro-
duced by R. Dicke in [11]. The quantum number l parametrises the eigenvalues
of L2:

L2 |Z, l,m, r〉 = l(l + 1) |Z, l,m, r〉 . (3.1)

The quantum number r is necessary because the coupling of the atoms is not
unique. This ambiguity has no effect on the eigenvalues of the Hamiltonian,
but it will later be important for the calculation of the matrix elements of the
Liouville operator.

The projection quantum number m runs from −l to l. It is related to the number
na of excited atoms by

na =
Z

2
+m. (3.2)

We recognise the atomic parts of the Hamiltonian,
∑

i σ
(i)
± , as the ladder operators

from angular momentum theory. Using the analogy to angular momentum we can

1This angular momentum operator has no direct connection to the angular momentum from
the Dicke states, since the procedure leading to the Dicke states is exact in contrast to the
approximation described here.
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easily determine the matrix elements of the Hamilton operator: In the general
case l < Z

2
the atomic matrix elements become

〈Z, l,m−1, r| 〈nf + 1| H |nf〉 |Z, l,m, r〉

=
~g

2

√
(l −m+ 1) (Z +m− l) (nf + 1), (3.3)

〈Z, l,m+1, r| 〈nf − 1| H |nf〉 |Z, l,m, r〉

=
~g

2

√
(l −m) (Z +m+ 1− l) (nf + 1), (3.4)

where |nf〉 denotes nf -photon Fock states of the resonator mode. Matrix elements
with |∆m| 6= 1 are zero.

We will now focus on the case l = Z
2
.

3.2 Lowest Order Perturbation Theory

The nonvanishing matrix elements of H in the case l = Z
2

〈na − 1| 〈nf + 1|H |nf〉 |na〉 =
~g

2

√
(Z − na + 1)na(nf + 1), (3.5)

〈na + 1| 〈nf − 1|H |nf〉N |na〉 =
~g

2

√
(Z − na)(na + 1)nf (3.6)

may be expanded in a Taylor series

√
1 + x ≈ 1 +

1

2
x− 1

8
x2. (3.7)

The states |na〉 are shorthand for Dicke vectors [11]. The Dicke vectors are
eigenvectors of the angular momentum operator which results from the coupling
of the Z spin-1

2
operators representing the individual atoms to a collective angular

momentum operator. Here all the Dicke vectors have the same maximal angular
momentum l = Z

2
. This restriction is only possible if no atomic spontaneous

emission occurs, as is the case considered in this chapter.

This approximated matrix element will be expressed in terms of the three com-
ponents of the angular momentum operator so that they can easily be rotated.

If M � Z the energy must be predominantly stored in the resonator mode such
that na � nf < M . In this case we approximate

√
nf + 1 =

√
M − na + 1 =

√
M

√
1− na − 1

M

≈
√
M

(
1− na − 1

2M
+

(na − 1)2

8M2

)
. (3.8)
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If M � Z mean excitation of the atoms will be low such that na � Z. In this
case we approximate (3.6) by√

Z − na + 1 =
√
Z

√
1− na − 1

Z
≈
√
Z

(
1− na − 1

2Z
+

(na − 1)2

8Z2

)
. (3.9)

In the first approximation we keep only the leading term of the expansion of the
square root. Hence, HM is approximated in the case of M � Z by the operator
H

(3)
M whose nonvanishing matrix elements are

〈nf + 1| 〈na − 1|H(3)
M |nf〉 |na〉 =

~g

2

√
M
√
na(Z − na + 1),

〈na| 〈nf |H(3)
M |nf + 1〉 |na − 1〉 =

~g

2

√
M
√
na(Z − na + 1), (3.10)

and in the case M � Z by

〈nf + 1| 〈na − 1|H(3)
M |nf〉 |na〉 =

~g

2

√
Z
√
na(M − na + 1),

〈nf | 〈na|H(3)
M |nf − 1〉 |na − 1〉 =

~g

2

√
Z
√
na(M − na + 1). (3.11)

This approximation gives reasonable results for M
>∼ 2Z respectively Z

>∼ 2M .

The dimension of H
(3)
M depends on the number of energy quanta M , if M < Z

and on the number of atoms Z, if M > Z. In the case M � Z the only effect
of M is a scaling of g, and similarly the only effect of Z in the case Z � M is
a scaling of g. The determination of the eigenvalues is completely analogous. In
the following we will focus on the case Z �M .

The eigenvalues and eigenvectors H
(3)
M can be easily determined with the help

of the algebraic properties of H(3). We will show that there are two additional
operators, H

(1)
M and H

(2)
M that form together with H

(3)
M the angular momentum

commutation algebra. In other words, these three operators fulfill the same com-
mutation relations as the three components of the angular momentum operator
Lx, Ly and Lz. It is well-known from the quantum theory of angular momentum
that this property alone is sufficient to determine the eigenvalues and eigenstates
of H

(3)
M (See any textbook on quantum mechanics, for a thorough introduction to

the quantum theory of angular momentum see [5]).

We define for Z > M additional hermitian operators H
(1)
M and H

(2)
M by

Z,M 〈na − 1|H(1)
M |na〉Z,M = i

~g

2

√
Z
√
na(M − na + 1),

Z,M 〈na|H
(1)
M |na − 1〉Z,M = −i~g

2

√
Z
√
na(M − na + 1),

Z,M 〈na|H
(2)
M |na〉Z,M =

~g

2

√
Z (−M + 2na) . (3.12)
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The other matrix elements of H
(2)
M and H

(1)
M are zero. We use the notation

|na〉Z,M = |na〉 |nf = M − na〉.

Since the matrix elements of H
(2)
M contain the number na of excited atoms in

a very simple form we can write any operator whose matrix elements are given
as a function of na as an operator function of H

(2)
M . In this way we obtain

a representation of the approximated Hamiltonian which is independent of the
basis in use.

In the following we will see that there are unitary transformations that permute
the H

(i)
M , i = 1, 2, 3. Therefore, these operators are different representations of

the same operator using different basis sets.

The commutation relation between the operators H
(1)
M , H

(2)
M and H

(3)
M are[

H
(i)
M , H

(j)
M

]
= i~g

√
ZεijkH

(k)
M . (3.13)

These commutation relations are exactly the commutation relations of angular
momentum. The number of atoms and the coupling constant appear here in the
form g

√
Z. This means that for the eigenvalues of H

(3)
M the scaling of the coupling

constant is exact.

From the theory of angular momentum we obtain immediately the eigenvalues of
the approximated Hamilton operator:

~g

2

√
Zk, k = −M,−M + 2, . . . ,M. (3.14)

The eigenvectors of H
(3)
M remain to be determined. Since H

(2)
M is diagonal the

eigenstates of H
(2)
M are the Dicke vectors. The eigenstates of H

(3)
M are then found

by applying a rotation that maps H
(2)
M onto H

(3)
M .

We choose an unitary transformation UMZ such that:

U †MZH
(1)
M UMZ = H

(1)
M ,

U †MZH
(2)
M UMZ = −H(3)

M , (3.15)

U †MZH
(3)
M UMZ = H

(2)
M .

Since the H
(1)
M , H

(2)
M and H

(3)
M are generators of the rotations in the space of the

Dicke vectors, we could express UMZ in terms of H
(1)
M , H

(2)
M and H

(3)
M .

There is another transformation that permutes the operators cyclically. This
transformation could be used here as well.

Figure 3.1 shows the approximate and exact eigenvalues for Z ≈ M = 4. The
exact eigenvalues have been obtained numerically. For Z < 4 there is qualitative
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Figure 3.1: The exact eigenvalues (triangles) and the approximative eigenvalues
from lowest order perturbation theory (lines) for M = 4, 1 ≤ Z ≤ 4 and l = Z

2

accordance between the exact and the approximative eigenvalues, but the errors
of the eigenvalues are of the order of the distance of the eigenvalues. For Z > 4
the lowest eigenvalues are in good agreement with the linear approximation while
the error of the approximation of the largest eigenvalues is of the order of the
distance of the eigenvalues. The vertical line marks the value of Z = M = 4
where the two approximations both become invalid. Even at this value of Z the
approximations do not diverge.

The exact eigenvalues and their lowest-order approximations for even atom num-
bers are displayed in figure 3.2 and the corresponding eigenvalues for odd atom
numbers in figure 3.3. The approximate expressions for the odd and even eigen-
values are the same. Here the eigenvalues for l < Z

2
are displayed also. While the

error is of the order of 10% at Z ≈ M = 4 the approximation is very good for
Z �M .

Obviously, (3.14) describes the eigenvalues very well if Z > 2M . Because g and
Z enter (3.14) only in the combination g

√
Z this means that the scaling describes

the eigenvalues correctly. On the other hand, if Z < 2M the scaling of g by the
square root of the number of atoms fails.
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Figure 3.2: All eigenvalues corresponding to even numbers of atoms (triangles)
and the approximative eigenvalues from linearization (lines) for M = 4, Z ≥ 10

-20

-15

-10

-5

0

5

10

15

20

10 20 30 40 50 60 70 80 90 100

λ�

Z

Eigenvalues

Figure 3.3: All eigenvalues corresponding to odd numbers of atoms (triangles)
and the approximative eigenvalues from linearisation (lines) for M = 4, Z ≥ 10

3.3 First Order Perturbation Theory

Now we proceed to improve the eigenvalues by a higher order of perturbation the-
ory. The expansion (3.8) respectively (3.9) can be used to expand the Hamilton
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in a Taylor series whose leading term is proportional to H
(3)
M . Using this expan-

sion we can approximate the eigenvalues to the second order of M
Z

respectively
Z
M

.

All nonzero matrix elements of HM are on the first side diagonal above ore be-
low the diagonal. We can express these matrix elements in terms of the ladder
operators

H+
M =

1

2

(
H

(3)
M + iH

(1)
M

)
,

H−M =
1

2

(
H

(3)
M − iH

(1)
M

)
. (3.16)

Using this substitution we can easily apply the transformation that diagonalizes
H

(2)
M .

The matrix elements of H are

MZ 〈na|H |ma〉MZ = δm,n−1

√
Z + 1− n

√
n(M − n+ 1)

+δm,n+1

√
Z − n

√
(n+ 1)(M − n)

= δm,n−1

√
Z − n 〈n|H+

M |m〉
+δm,n−1

√
Z − n 〈n|HM− |m〉 (3.17)

so that HM becomes

HM =
1

2

√
Z + 1− 1

2
(M −H(2)

M )
(
H

(3)
M + iH

(1)
M

)
+

1

2

√
Z − 1

2
(H

(2)
M +M)

(
H

(3)
M − iH

(1)
M

)
. (3.18)

This expression can easily be verified by taking its matrix elements with respect
to the Fock-Dicke vectors. Please note that it is only meaningful if M is fixed, in
order to obtain a corresponding expression for the unrestricted Hamilton operator
Ho we had to replace M by an appropriate operator.

Using the unitary transformation UMZ and inserting UMZU
†
MZ = 1 where neces-
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sary we obtain immediately an expression for the rotated Hamilton operator

U †MZHMUMZ =
1

2

√
Z + 1− 1

2

(
M −H(3)

M

)(
H

(2)
M + iH

(1)
M

)
+

1

2

√
Z − 1

2

(
M −H(3)

M

)(
H

(2)
M − iH

(1)
M

)
=

1

2

(√
Z + 1− 1

2

(
M −H(3)

M

)
+

√
Z − 1

2
(M −H(3)

M )

)
H

(2)
M

+
i

2

(√
Z + 1− 1

2

(
M −H(3)

M

)
−
√
Z − 1

2
(M −H(3)

M )

)
H

(1)
M .

(3.19)

Again we expand the square roots in a Taylor series (3.7) and treat the linear
and quadratic terms as a perturbation of the leading term which is proportional
to the diagonal operator H

(2)
M .

Inserting this approximation into (3.19) we obtain

U †MZHMUMZ ≈
~g

2

√
Z

((
1− M − 1

4Z
+
−M2 + 2M − 2

32Z2

)
H

(2)
M

+
1

4Z

(
1 +

M − 1

4Z

)(
H

(3)
M H

(2)
M + iH

(1)
M

)
− 1

32Z2

((
H

(3)
M

)2

H
(2)
M + 2iH

(3)
M H

(1)
M

))
. (3.20)

The first term of the right-hand side is proportional to the diagonal operator H
(2)
M

and the proportionality factor contains only the constants Z and M . Therefore
we can absorb it into the definition of the unperturbed operator. This means
that we have obtained an expression which is correct to the first order of M

Z
and

whose leading term is diagonal. The calculation of the matrix elements will show
that this operator is hermitian.

We will determine the approximate eigenvalues of (3.20) by treating the second
and third term as a perturbation of the first term. In order to do so we need
their matrix elements with respect to the eigenstates of H

(2)
M

In order to find the matrix elements of (3.20) we have to calculate the matrix

elements of the operators H
(3)
M H

(2)
M + iH

(1)
M and

(
H

(3)
M

)2

H
(2)
M + 2iH

(3)
M H

(1)
M with

respect to two Fock-Dicke vectors |m〉MZ and |n〉MZ . These matrix elements are
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nonzero only if |n−m| = 1. The nonzero matrix elements are

MZ 〈n|H(3)
M H

(2)
M + iH

(1)
M |m〉MZ

= δn,m−1(2m−M − 1)
√
m(M −m+ 1)

+ δn,m+1(2m−M + 1)
√

(m+ 1)(M −m) (3.21)

and

〈n|
(
H

(3)
M

)2

H
(2)
M + 2iH

(3)
M H

(1)
M |m〉

= δn,m((2n(n−M) +M − 2)(2n−M)

+ δn,m−2(2m−M − 2)
√
m(m− 1)(M −m+ 1)(M −m+ 2)

+ δn,m+2(2m−M + 2)
√

(m+ 1)(m+ 2)(M −m− 1)(M −m). (3.22)

Inserting these results into (3.20) of the Hamilton operator HMwe obtain the

matrix elements of H in the representation where H
(3)
M is approximately diagonal.

Since H
(3)
M is an approximation to H this representation of H is approximately

diagonal. For Z ≥M the diagonal matrix elements are

〈n|H |n〉 =
√
Z(2n−M)

(
1− M − 1

4Z
− 2n(M − n) +M(M − 1)

32Z2

)
(3.23)

and the matrix elements on the first side diagonal are

〈n|H |n+ 1〉 =

(
1

4
√
Z

+
M − 1

16Z3/2

)
(2n+ 1−M)

√
(n+ 1)(M − n), (3.24)

〈n+ 1|H |n〉 = 〈n|H |n+ 1〉 . (3.25)

There appear nonvanishing matrix elements on the second side diagonal which
will be neglected in our approximation, M � Z, since they are of the order(
M−1
Z

)5/2
and their contribution to the eigenvalues is of the order

(
M−1
Z

)7/2
. For

Z < M we find similar expressions with Z and M interchanged.

The second term of (3.20) has only matrix elements on the first side diagonal.
We obtain a correction ∆λn of the eigenvalues which is of second order in M

Z
,

∆λn =

∣∣∣〈n|H(3)
M H

(2)
M + iH

(1)
M |n− 1〉

∣∣∣2 − ∣∣∣〈n|H(3)
M H

(2)
M + iH

(1)
M |n+ 1〉

∣∣∣2(
1− M−1

4Z
+ −M2+2M−2

32Z2

) , (3.26)

where we have used the fact that the eigenvalues of H(2) are equidistant.
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The matrix elements of the third term of (3.20) are on the diagonal and the
second side diagonal. The matrix elements on the second side diagonal may be
neglected as we have seen above and the matrix elements on the main diagonal
are treated in first order perturbation theory.

Taking all together we obtain the eigenvalues in first order perturbation theory
in the case Z �M :

λn =
~g

2

√
Z

(
(2n−M)

(
1− M − 1

4Z
+
−M2 + 2M − 2

32Z2

)

+

(
1 + M−1

4Z

)2
((2n−M)(1 + (2n−M)2 − 4n(M − n)− 2M))

16Z2
(
1− M−1

4Z
+ −M2+2M−2

32Z2

)
− 2n(M − n) +M − 2

32Z3/2

)
. (3.27)

In the case Z � M we can obtain the eigenvalues by exchanging Z and M as
the comparison of (3.10) and (3.10) shows.

λn =
~g

2

√
M

(
(2n− Z)

(
1− M − 1

4Z
+
−M2 + 2M − 2

32Z2

)

+

(
1 + M−1

4Z

)2
((2n−M)(1 + (2n−M)2 − 4n(M − n)− 2M))

16Z2
(
1− M−1

4Z
+ −M2+2M−2

32Z2

)
− 2n(M − n) +M − 2

32Z3/2

)
, (3.28)

in the same way since in this case we only have to exchange Z and M as the
comparison of (3.10) and (3.11) shows.

We note that the scaling of the coupling is not possible in the regime Z < M . The
dependency of the eigenvalues on the number of atoms is approximately linear.
While in (3.27) for Z > M the coupling constant g appears in a term of the form
g
√
Z this term has the form g

√
M in (3.28) which holds for Z < M .

In the example M = 4 and 1 ≤ Z ≤ 100 we will compare the approximate
eigenvalues with the exact numerical solution.

Figure 3.4 shows the approximative and exact eigenvalues for Z ≈ M = 4. The
approximation gives good results for Z ≥ 8 and surprisingly does not break
down at Z = M . For Z < M only eigenvalues with the largest absolute values
are described well by the approximation.

Since in 3.4 the same value of g has been used for all atom numbers , the eigen-
values should be proportional to the square root of the number of atoms for
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Figure 3.4: The exact eigenvalues (triangles) and the approximative eigenvalues
from second order perturbation theory (lines) for M = 4, 1 ≤ Z ≤ 10 and l = Z

2
.

At Z = 4 the two approximations Z �M and Z �M are no longer applicable.
Nonetheless the approximative results are close to the exact results.

scaling behavior. This is not the case for Z < M where the largest eigenvalues
are approximately proportional to the number of atoms, as predicted by (3.28).

The exact eigenvalues and their second-order approximations for odd Z �M are
displayed in the figures 3.6 and 3.5. The eigenvalues corresponding to even and
odd atom numbers lie on the same curves, but they have been plotted separately
for graphical reasons. The approximation describes the eigenvalues very good.
The eigenvalues are distributed almost equidistantly.

These results lead to the expectation that the largest deviation from the scaling
behavior are found in the case Z ≈ M and in the case Z � M scaling behavior
dominates.

In the correction terms of (3.27) Z does not enter in the combination g2Z. We
conclude that that the scaling of the coupling constant is only correct to lowest
order of M

Z
, and that higher orders of M

Z
are not described properly by the scaling

of the coupling constant. This means that at M ≈ Z we do not expect that the
scaling of g gives correct answers.

Finally, if M > Z we expect to find a scaling in M and not in Z. This means
that, except for very low energies it is in general not possible to solve a Z-atom
problem by simply scaling the solution of a corresponding one-atom problem. We
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Figure 3.5: All eigenvalues corresponding to even numbers of atoms (triangles)
and the approximative eigenvalues from second order perturbation theory (lines)
for M = 4, Z ≥ 10
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Figure 3.6: All eigenvalues corresponding to odd numbers of atoms (triangles)
and the approximative eigenvalues from second order perturbation theory (lines)
for M = 4, Z ≥ 10
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will illustrate this statement later with an application of the complete Z-atom
solution.



Chapter 4

Symmetric Atomic Bases

In order to describe an experiment which measures only the state of the resonator
mode and not the state of the atoms it is not necessary to know the state of the
atoms involved in this experiment. This suggests that one could simplify the
description by eliminating the atoms. Unfortunately the exact elimination of the
atoms leads to to involved integro-differential equations [13].

The dimension of the state space of Z 2-level atoms is 4Z , since each of these
atoms is described by a 2−by−2-dimensional density operator. This number
increases very rapidly with increasing Z and makes it impossible to diagonalize
the Liouville operator of a system with a large number of atoms. But there are
two effects that reduce the number of dimensions: first, for low photon numbers
not all atoms can be excited because there is not enough energy present to excite
all atoms and, second, if one is only interested in the number of atoms found
in a particular state, it is possible to symmetrise the atomic state space over all
permutations of atoms.

We will use both of these effects in order to describe systems with many atoms.
We assume that the density operator of the atoms is symmetric with respect
to any permutation of the atoms. This is the case if the parameters describing
the coupling of the atoms to the resonator mode are the same for all atoms and
the atoms are prepared initially in a symmetric state. These symmetrized atomic
states depend on collective variables, thus any information about individual atoms
is lost and we keep only global information like the number of excited atoms.

This symmetrization procedure is possible if neither the initial state nor the
equations of motion distinguish between individual atoms. The second condition
is met since the Liouville operator commutes with the permutation operator.

This chapter will introduce three equivalent sets of basis operators, the atomic
damping bases, which are a straightforward generalization of the atomic damping
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bases introduced by H.J. Briegel in [4], the “spin flip” basis and the density
operator generalization of the well-known Dicke vectors. All of these bases make
use of the permutation symmetry of the atoms.

The purpose of introducing the atomic damping bases is to find the smallest
atomic subspace which is closed with respect to the action of atomic dissipation
and the interaction between the atoms and the resonator mode. This atomic
subspace is symmetric with respect to arbitrary permutations of atoms. The
dimension of this subspace is 1

6
(Z + 1)(Z + 2)(Z + 3) in contrast to 4Z without

symmetrization.

Unfortunately, the atomic damping bases are not very well suited for the descrip-
tion of systems where the interaction between the atoms and the resonator mode
is the dominant effect. We will introduce a dissipative generalization of the Dicke
vectors [11], the Dicke states1. Since the effect of the interaction Hamiltonian on
the Dicke states is the same as the effect of the interaction Hamiltonian on the
Dicke vectors the only remaining problem is the calculation of the effect of the
atomic dissipation, for example the spontaneous emission of photons by excited
atoms on the Dicke states.

In order to calculate these matrix element we we will need a third set of basis
states which are variants of the eigenstates of the atomic dissipation. Using these
states we will derive a recurrence relation for the matrix elements of the atomic
dissipation with respect to the basis of the Dicke states. This recurrence relation
will be used in the next chapter to finally obtain the Dicke state matrix elements
of the atomic Liouville Operator.

4.1 Damping Bases

The eigenoperators of the atomic dissipation at temperature T = 0 respectively
without atomic pump processes may be easily defined in terms of one-atom op-
erators. The σ̂o = 1

2
(1− σ̂z), σ̂z, σ̂+, σ̂− are eigenoperators of the atomic Lindblad

operator La with the eigenvalues 0,−B,−2B,−2B if s = 0. The last eigenvalue
is degenerate. The parameter s describes an effective atomic pump process: If
s 6= 0 the stationary state is σ̂o = 1

2
(1+(2s−1)σ̂z) instead of σ̂o

2. The eigenvalues
are not affected by s.

From these one-atom eigenstates one can easily construct the Z-atom eigenstates.
Since the atomic part of the Liouville operator is a sum of one-atom-operators

1Throughout this work, “Dicke states” denote density operators while “Dicke vectors” de-
notes bra or kets.

2This is impossible for a normal two-level atom. The parameter s describes an effective
model where the pump levels have been eliminated somehow.
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the direct product of these single-atom eigenstates is an eigenstate of the full
Z-atom Liouville operator.

Since La is not hermitian it has different left and right eigenstates denoted by Q̌
and Q̂ respectively.

In order to obtain eigenstates of La which are symmetric with respect to any
permutation of the atoms we sum over all permutations of atoms.

The resulting symmetric eigenstates of the atomic dissipation are

Q̂no,nz ,n−,n+ = S
no∏
i=1

σ̂(i)
o

no+nz∏
i=no+1

σ̂(i)
z

no+n+∏
i=no+nz+1

σ̂
(i)
+

Z∏
i=no+nz+n++1

σ̂
(i)
− , (4.1)

Q̌no,nz ,n−,n+ =
Q̂no,nz ,n+,n−

N(Z, nz, n+, n−)
, (4.2)

N(Z, nz, n+, n−) =

(
Z
nz

)(
Z − nz
n+

)(
Z − nz − n+

n−

)
, (4.3)

where

S =
1

Z!

∑
Permutations

is the atomic symmetrization operator. The numbers no, nz, n+, n− give the num-
ber of atoms in the corresponding states σ̂o, σ̂z, σ̂+, σ̂− and N(Z, nz, n+, n−) is a
normalization factor. The normalization factor counts the different possibilities
to distribute the 4 atomic basis states into the Z positions. Since we assumed that
the atoms are distinguishable by their positions, two states with the same num-
bers no, nz, n+, n− but different distributions are orthogonal. The symmetrization
was introduced because we want to drop the information about the state of an
atom at a given position and keep only the information about the number of
atoms in a given state. Any atomic state not contained in this set of basis state
is unsymmetric with respect to at least one atomic permutation.

The symmetrized states are still biorthogonal:

tr
(
Q̌n̄o,n̄z ,n̄−,n̄+Q̂no,nz ,n−,n+

)
= δn̄o,noδn̄z ,nzδn̄+,n+δn̄−,n− . (4.4)

The orthogonality of states with different indices is evident by definition of the
Q̌no,nz ,n−,n+ , Q̂no,nz ,n−,n+ and the inner product of states carrying the same index
is one because of the normalization factor N(Z, nz, n+, n−).

The dimension of the atomic state space under consideration in this manuscript is
the number of atomic basis states remaining after the symmetrization procedure.
We may find between 0 and Z atoms in the ground state. Having found no atoms
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in the ground state, we may find between 0 and Z−no atoms in the state σ̂z.
Accordingly, we may find between 0 and Z−no −nz atoms in the state σ̂+. The
number of atoms in the state σ̂− is fixed once three other numbers are fixed.
Therefore the eigenstates of atomic dissipation span a state of the dimension

Z∑
no=0

Z−no∑
nz=0

Z−no−nz∑
n+=0

1 =
1

6
(Z + 1)(Z + 2)(Z + 3). (4.5)

Without symmetrization the space spanned by the direct products of the Z single-
atom states is the 4Z dimensional space of all atomic variables. For large atom
numbers the dimension of the state space makes numerical calculations impos-
sible. In contrast, the dimension of the symmetric state space increases only as
Z3.

Unfortunately, the matrix elements of the interaction Hamiltonian with respect to
this basis set are very complicated. Therefore, they will not be used in practical
calculations. The main purpose of their introduction is to obtain a simple picture
of the state space under consideration: Since the atomic part of the interaction
Hamiltonian can be constructed from Q̂0,0,Z,0 and Q̂0,0,0,Z and the Q̂no,nz ,n−,n+ are

closed with respect to commutation, it is clear that the Q̂ span the state space
which is invariant under the action of L, i. e. form a basis of this state.

4.2 Dicke States

This set of basis states is named after R. H. Dicke who introduced these collective
states in order to describe superradiant emission by a cloud of excited two-level
systems [11].

A two-level system like an atom with two internal states may be formally de-
scribed as a particle of spin 1

2
. Therefore, a system of Z two-level systems may

be described collectively using the angular momentum obtained by coupling the
individual spins together using the Clebsch-Gordan coefficients. The resulting
state is an analog to an eigenstate of angular momentum with eigenvalue l.3 The
projection quantum number m gives the number of excited atoms The quantum
number l gives the maximum and minimum values of m. It can be interpreted
as the degree of symmetry of the collective atomic state.

Taking the sum over one-atom operators σ
(i)
+ = 1

2
(σx + σy) and σ

(i)
− = 1

2i
(σx− σy)

3The number l corresponds to the cooperativity number r in [11].
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we obtain collective operators

S− =
∑
i

σ
(i)
− ,

S+ =
∑
i

σ
(i)
+ ,

Sz =
1

2

∑
i

σ(i)
z

which have the same properties as the well-known angular momentum operators.

The atomic part
∑

i σ
(i)
± of the Hamilton operator acts on such an angular mo-

mentum eigenstate just like a ladder operator from the usual angular momentum
theory. In particular, the Hamilton operator does not change the quantum num-
ber l. In other words, the ladder operators commute with the angular momentum
operator

L2 =
Z

2
+ S2

z +
∑
i6=j

σ
(i)
+ σ

(j)
− . (4.6)

In the state with m = −Z
2

all atoms are in the ground state, while in a state
with m = Z

2
all atoms are excited. The general relation between the projection

quantum number m and the number na of excited atoms is

na = m+
Z

2
(4.7)

States with l < Z
2

cannot consist of completely excited atoms or atoms that are
all in the ground state. The most striking example is a state with l = 0 which
can occur if Z is an even number. Here Z

2
atoms are excited and Z

2
are in the

ground state. Such a state does not interact with the electro magnetic field and
is therefore called a dark state.

The symmetric basis vectors of the atomic subspace with l = Z
2

are∣∣∣∣Z, Z2 ,m
〉

:=
1√
(Zn)
S|+ · · ·+︸ ︷︷ ︸

n

− · · ·−︸ ︷︷ ︸
Z−n

〉

where S is the symmetrization operator. Alternatively, one could construct these
states by applying a ladder operator to the ground state |− − − · · · −〉. The most
symmetric states are unique, in contrast to the less symmetric states.

Since the action of the ladder operators

S− |l,m〉 =
√
l(l + 1)−m(m− 1) |l,m− 1〉 ,

S+ |l,m〉 =
√
l(l + 1)−m(m+ 1) |l,m+ 1〉
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which give the atomic part of the Hamiltonian depends on the quantum numbers
l and m one expects that the coupling of these collective states |Z, l,m〉 to the
electro magnetic field is very different from the one-atom theory of the usual
Jaynes-Cummings model.

The space spanned by the states with l = Z
2

is much too small to investigate the
effects of atomic spontaneous emission. This can be seen most easily by applying
the atomic Lindblad operator La to the density operator∣∣∣∣Z, Z2 ,m

〉〈
Z,
Z

2
,m′
∣∣∣∣ . (4.8)

The resulting operator is no longer a left or right eigenstate of the angular mo-
mentum, but becomes a mixture of eigenstates of different angular momenta.
Therefore a description that contains only the most symmetric states is incom-
plete. A complete description of the system suitable for calculating the effects of
spontaneous emission must contain all values of l or at least an approximation
where we can neglect some values of l.

In the previous section we have introduced the minimal state space sufficient to
describe atomic spontaneous emission. In the next step we will construct a set
of basis states of this space which consists of eigenoperators of L2. We will see
later that the unitary as well as the dissipative part of the Liouville operator have
simple expressions in this basis.

A first attempt to obtain the basis states with l < Z
2

would be a straightforward
application of the Clebsch-Gordan coefficients. These coefficients are well known
from atomic spectral theory. This approach has two drawbacks: first, these
Clebsch-Gordan Coefficients become increasingly involved when Z becomes large,
and secondly, the states characterized by Z,l and m are not unique.

For example, there are two states with Z = 3, l = 1
2
,m = 1

2
:∣∣∣∣3, 1

2
,
1

2
, 1

〉
=

1√
6

(|+ +−〉+ |+−+〉 − 2 |−+ +〉)∣∣∣∣3, 1

2
,
1

2
, 2

〉
=

1√
2

(|+ +−〉 − |+−+〉) .

The states |± ± ±〉 on the right hand side are uncoupled three-atom-states.

Because of this ambiguity it is necessary to introduce a fourth index ,r, in order
to label the different states |Z, l,m, r〉 with the same values of Z, l and m. The
state vectors depend on r in a very complicated way.

There exists a hermitian operator that commutes with L2 and Lz and such that
states with the same value of Z, l and m are eigenstates with different eigenval-
ues. This operator may be constructed by projecting out some atoms and using
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the angular momentum operator of the remaining atoms. In other words, this
operator contains the details of the coupling procedure. Since we are only inter-
ested in collective properties of the atoms we do not need the explicit form of
this operator which is given only for completeness’ sake.

Every state is now uniquely characterized by Z, l,m and the quantum number r
corresponding to the operator r̂. The interpretation of r is that r contains the
details of the coupling procedure.

With the definition

si :=

{
1, i-th atom symmetrically coupled

0, i-th atom antisymmetrically coupled
(4.9)

the quantum number r may defined as:

r :=
∑
i

2si . (4.10)

In order to construct the operator corresponding to the quantum number r one
needs operators that act only onto a fraction of the atoms, therefore one has to
label the atoms.

Let ~L(i,j) act as the angular momentum on the atoms labelled i, i + 1, ..j and as
the identity operator on the other atoms.

We may use these restricted operators to form a set of commuting nondegenerate
observables whose eigenvalues can be used to label the Dicke vectors.[(

L(1,j)
)2
,
(
L(1,i)

)2
]

=
[(
L(1,i)

)2
+
(
L(i+1,y)

)2
,
(
L(1,i)

)2
]

= 0, (4.11)

for i < j. The first commutator vanishes because both operators are the same and
the second commutator vanishes because the operators act on different atoms.
By the same argument we obtain[

L(1,j)
z ,

(
L(1,i)

)2
]

=
i∑

k=1

[
L(k,k)
z ,

(
L(k,k)

)2
]

= 0. (4.12)

The operators
(
L(1,i)

)2
, i = 1..Z and L

(1,i)
z form a complete set of commuting

observables on the space spanned by the Dicke vectors.

The operator r̂ corresponding to the quantum number r may be expressed from
the binary representation of (s1..sz):

r̂ =
∑
i

2(L(1,i))
2
−(L(1,i−1))

2
+ 1

2 . (4.13)
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L2, Lz and r̂ also form a complete set of commuting observables.

Any operator that is symmetric with respect to permutations of atoms commutes
with r̂. This holds in particular for the Hamilton operator due to the symmetry
of the ladder operators which are invariant under permutations of the atoms and
do not depend on r̂.

An Operator O that is symmetric under exchange of two atoms cannot mix the
quantum numbers r and l:

〈Z, l,m, r| O |Z ′, l′,m′, r′〉 = δZ,Z′δl,l′δr,r′fO(Z, l,m,m′). (4.14)

Dicke vectors with different values of r are orthogonal. This is because they are
eigenstates of the hermitian operator r̂ or, equivalently, because the Clebsch-
Gordan coefficients have been constructed so that these vectors are orthogonal.

From the Dicke vectors we construct symmetric density operators by taking the
sum over r:

ξ̂Z,l,m,m′ =
∑
r

|Z, l,m, r〉 〈Z, l,m′, r| (4.15)

ξ̌Z,l,m,m′ =
1

g(Z, l)

∑
r

|Z, l,m′, r〉 〈Z, l,m, r| . (4.16)

The number g(Z, l) is a normalization factor ensuring the normalization condition

tr
(
ξ̂Z,l,m,m′ ξ̌Z,l,m,m′

)
= 1. Note that m and m′ have been exchanged in the

definition of the dual basis states in order to ensure the biorthogonality of ξ̂Z,l,m,m′
and ξ̌Z,l,m,m′ . Note that this definition does not depend on properties of r̂.

The properties of these operators will be examined in depth later. The density
operators ξ̂ are the basis operators of the operator space under consideration, the
operators ξ̌ are the dual basis operators. Since L is not hermitian, one has to
distinguish between basis and dual eigenoperators.

The summation over r is in in fact a symmetrization procedure. The most general
simultaneous right and left eigenstate of L2 with eigenvalue l(l + 1) is a linear
combination of the dyadic products |Z, l,m, r〉 〈Z, l,m′, r′|, but because of the
permutation symmetry we need only a subset of these operators, namely those
defined in (4.16).

Since the ladder operators commute with L2 matrix elements between basis states
with m 6= m′ can be expressed by matrix elements with m = m′. Hence it is
sufficient to regard only the special case m = m′.

The states with r 6= r′ cancel out when the symmetrization over atomic exchange
is performed and the sum contains only contributions with r = r′.
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The example ξ̂3, 1
2
, 1
2
, 1
2

shall illustrate the symmetrization:

ξ̂3, 1
2
, 1
2
, 1
2

=
2

3
(|+ +−〉 〈+ +−|+ |+−+〉 〈+−+|+ |−+ +〉 〈−+ +|)

−1

3
(|+ +−〉 〈+−+|+ |+ +−〉 〈−+ +|+ |+−+〉 〈+ +−|

+ |+−+〉 〈−+ +|+ |−+ +〉 〈+ +−|+ |−+ +〉 〈+−+|)

If an arbitrary atomic permutation is applied simultaneously to the bras and the
kets of this example, the operator is reproduced. Therefore the operator of this
example is invariant under atomic permutations.

The states with l < Z
2

are

g(Z, l) =

(
Z − 1
Z
2
− l

)
−
(

Z − 1
Z
2
− l − 2

)
=

(
Z − 1
Z
2
− l

)
Z(2l + 1)

(Z
2

+ l + 1)(Z
2

+ l)

=
Z!(2l + 1)

(Z
2

+ l + 1)!(Z
2
− l)!

(4.17)

-fold degenerate, as can be seen as follows: A state with Z atoms and angular
momentum l may either be obtained by coupling a state with Z − 1 atoms and
angular momentum l − 1/2 to an additional atom symmetrically or by coupling
a state with Z − 1 atoms and angular momentum l + 1/2 to an additional atom
antisymmetrically. The number of possible combinations to do so is the number
of states with Z − 1 atoms and angular momentum l − 1/2 respectively with
angular momentum l+1/2 in the second case. This leads to a recurrence relation
for the number g(Z, l) of possible combinations:

g(Z, l) = g(Z − 1, l + 1/2) + g(Z − 1, l − 1/2). (4.18)

with the initial conditions

g(1, 1/2) = 1, (4.19)

g(Z,−1/2) = 0. (4.20)

The recurrence (4.18) reminds one of the calculation of the binomial coefficients
using Pascal’s Triangle. Indeed, the recurrence relation for g(Z,m) can be solved
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by subtracting two Pascal’s Triangles:

Z�l 2 3
2

1 1
2

0 (−1
2
)

0 1 −1
1 1 1−1 −1
2 1 2−1 1−2 −1
3 1 3−1 3−3 1−3 −1
4 1 4−1 6−4 4−6 1−4 −1
...

...

(4.21)

The left half of this diagram contains the g(Z, l), since the entries in the scheme
above solve the recurrence relation (4.18) with the start conditions (4.19,4.20) if
the line number counted from the top is taken as Z and the row number, counted
from the middle, as l. 4

In a system without atomic spontaneous emission this degeneracy has no con-
sequences, even if unsymmetric states like dark states are considered. But the
degeneracy enters explicitly into the calculation of the matrix elements of the
atomic Liouville operator, since this operator couples states with different values
of l.

The basis operators do not have trace one:

tr
(
ξ̂Z,l,m,m′

)
= g(Z, l), (4.22)

tr
(
ξ̌Z,l,m,m′

)
= 1. (4.23)

These definitions have been chosen because they simplify the calculation of the
matrix elements of the atomic dissipation.

The normalization condition is

tr
(
ξ̌Z,l,m,m′ ξ̂Z,l̄,m̄,m̄′

)
= δl,l̄δm,m̄δm′,m̄′ . (4.24)

The trace product of a Dicke basis state and its dual state contains two sym-
metrization sums, but one of them collapses because of the biorthogonality of the

4The result (4.17) can be found in [11], but no derivation is given there.
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Dicke vectors:

tr
(
ξ̌Z,l,m,m′ ξ̂Z,l̄,m̄,m̄′

)
=

1

g(Z, l)
tr

(∑
r,r′

|Z, l,m,m′, r〉 〈Z, l,m,m′, r| |Z, l,m,m′, r′〉 〈Z, l,m,m′, r′|

)

=
1

g(Z, l)
tr

(∑
r

|Z, l,m,m′, r〉 〈Z, l,m,m′, r| |Z, l,m,m′, r〉 〈Z, l,m,m′, r|

)

=
1

g(Z, l)
tr

(∑
r

|Z, l,m,m′, r〉 〈Z, l,m,m′, r|

)
= 1. (4.25)

One might think that there was another equivalent definition

ξ̃(Z,l,m,m′) =
∑
r,r′

|Z, l,m, r〉 〈Z, l,m′, r′| , (4.26)

but this definition does not satisfy the symmetrization requirement (4.30), since
S |Z, l,m, r〉 〈Z, l,m′, r′| = 0 for r 6= r′.

The space spanned by the Dicke states is identical to the space spanned by the
eigenstates of the atomic dissipation. To prove this claim we note that all Dicke
states are by construction symmetric with respect to exchange of atoms and
therefore the state spanned by the Dicke states is contained in the state spanned
by the eigenoperators of atomic dissipation. In order to complete the proof we
give the dimension of the state spanned by the Dicke states.

If Z is even, the Dicke states span a space of the dimension

Z/2∑
l=0

l∑
m=−l

l∑
m=−l

1 =
1

6
(Z + 1)(Z + 2)(Z + 3); (4.27)

and if Z is odd, the functional dependency of the dimension on Z is the same:

Z/2∑
l=1/2

l∑
m=−l

l∑
m=−l

1 =
1

6
(Z + 1)(Z + 2)(Z + 3). (4.28)

This is exactly the dimension of the space spanned by the eigenstates of atomic
dissipation.

We conclude that the space spanned by the Dicke states is the symmetric atomic
space.
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Density operators of the form |Z, l,m, r〉 〈Z, l′,m′, r′| , l 6= l′ or any linear com-
bination of density operators of this type are not contained in the symmetric
subspace. These operators are orthogonal to all Dicke states and therefore lin-
early independent from the Dicke states. If they were contained in the symmetric
subspace the space spanned by the Dicke states could not have the same dimen-
sion as the symmetric space.

In particular, the image of a state from the symmetric space under the action
of the Liouville operator L is contained in the symmetric space. Therefore the
expansion

Laξ̂Z,l,m,m′ =
∑

Z̄,l̄,m̄,m̄′

cZ,l,m,m′;Z̄,l̄,m̄,m̄′ ξ̂Z̄,l̄,m̄,m̄′ (4.29)

is possible.

Only very few of the coefficients cZ,l,m,m′;Z̄,l̄,m̄,m̄′ are nonzero. The selection rules
for these coefficients and their values will be derived in the chapter 5.

Alternatively one could introduce the Dicke states as simultaneous left and right
eigenoperators of the angular momentum:

L2ξ̂Z,l,m,m′ = l(l + 1)ξ̂Z,l,m,m′ ,

ξ̂Z,l,m,m′L
2 = l(l + 1)ξ̂Z,l,m,m′ ,

Lz ξ̂Z,l,m,m′ = mξ̂Z,l,m,m′ ,

ξ̂Z,l,m,m′Lz = m′ξ̂Z,l,m,m′ ,

S ξ̂Z,l,m,m′ = ξ̂Z,l,m,m′ ,

tr
(
ξ̌Z,l,m,m′ξZ,l̄,m̄,m̄′

)
= δl,l̄δm,m̄δm′,m̄′ . (4.30)

The operator S is the symmetrization operator. Since the Dicke states are sym-
metric with respect to any atomic permutation operation, they are eigenstates
of S with eigenvalue 1. S acts on its argument from the right and left side
simultaneously like the Liouville operator.

Because of the commutation relations (4.11,4.12) it is clear that such states exist.
Hence, the equations (4.30) are consistent. However, these states are only useful
in combination with the explicit expression (4.17) for the degeneracy g(Z, l) if
atomic dissipation is considered. The simple requirement that that basis states
should be biorthogonal is not sufficient since g(Z, l) will enter explicitly into the
calculation of the matrix elements of the atomic Liouville Operator.
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4.3 Spin Flip Basis

The transformation between Dicke states and the dissipation eigenstates is com-
plicated. The reason for this is that the damping eigenstates are not eigenstates
of Lz. In order to calculate these matrix elements we introduce a third set of
basis vectors which will be called spin flip basis. This basis set is very similar to
the damping basis, but it consists of eigenstates of Lz.

The only difference between this third basis and the atomic damping basis is that
the operators σo and σz have been replaced by projectors on the spin-up and
spin-down states. Since this has some important consequences we nevertheless
examine this new basis set in detail.

We start by grouping all states which can be constructed as the direct product
of single-atom state of the form |±〉 〈±| into groups which are invariant under
exchange or permutations of atoms performed simultaneously on the ket and the
bra of the state.

For example, for Z = 3,m = −1
2

such a group is

|+−−〉 〈−+−| , |+−−〉 〈− −+| ,
|−+−〉 〈+−−| , |−+−〉 〈− −+| ,
|− −+〉 〈−+−| , |− −+〉 〈− −+| .

In order to find this group one simply starts with the first state and then applies
all possible permutations. The properties of the states which are invariant under
permutations are the number of up and down states on each state and the number
of atoms which are flipped up or down by the action of this operator.

The above may be formalized by introducing the operators

R̂p+,p−,n−,n+ = S
p+∏
i=1

π
(i)
+

p++p−∏
i=p++1

π
(i)
−

p++p−+n+∏
i=p++p−+1

σ
(i)
+

Z∏
i=p++p−+n++1

σ
(i)
− , (4.31)

Řp+,p−,n−,n+ =
R̂p+,p−,n+,n−

N(p+, p−, n+, n−)
. (4.32)

The one-atom operators π
(i)
+ and π

(i)
− are projection operators on the upper re-

spectively lower state of the atom. The indices p+ and p− give the number of
upper respectively lower projectors contained in the state Rp+,p−,n+,n− and n+

gives the number of σ+-operators found in the state.

The normalization factor

N(p+, p−, n+, n−) =

(
p++p−+n++n−

p+

)(
p−+n++n−

p−

)(
n++n−
n+

)
(4.33)
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counts the different possibilities to distribute the 4 atomic basis states into the Z
positions. It is analogous to the normalization factor of the damping eigenstates.

Please note that in the dual basis states the meanings of n− and n+ have been
swapped.The index i labels the different atoms. π± are the projectors on the
upper respectively lower state of the atom labelled i.

The biorthogonality condition is

tr
(
Řp̄+,p̄−,n̄+,n̄−R̂p+,p−,n+,n−

)
= δp+p̄+δp−p̄−δn+n̄+δn−n̄− . (4.34)

The operators Řp+,p−,n−,n+ and R̂p+,p−,n+,n− are by definition eigenoperators of
the symmetrization operator S. The dimension of the space spanned by these
operators is the same as the dimension of the space spanned by the damping
eigenbasis, since they differ from those only in the one-atom operators used in the
construction. We conclude that they span the same space as the eigenoperators
of the atomic dissipation.

The operators R̂p+,p−,n−,n+ are eigenoperators of the operator Lz which measures
the number of excited atoms in a state vector:

LzR̂p+,p−,n−,n+ =

(
p+ + n+ +

Z

2

)
R̂p+,p−,n−,n+ ,

R̂p+,p−,n−,n+Lz =

(
p+ + n− +

Z

2

)
R̂p+,p−,n−,n+ .

The same holds for the adjoint operators. Z
2

has been added because of (4.7).

We introduce the operators C± and C = 1
2
(C+ + C−) by

C+R̂p+,p−,n+,n− = n+R̂p+,p−,n+,n− , (4.35)

C−R̂p+,p−,n+,n− = n−R̂p+,p−,n+,n− . (4.36)

These operators count the number of spin flip operators in the basis state. In the
picture of uncoupled atoms this means number of atoms which are in a different
state on the right side and the left side of the basis operator.

In the example of section 4.2 one finds

C−
∑

Permutations

|+ +−〉 〈+ +−| =
∑

Permutations

|+ +−〉 〈+ +−| , (4.37)

C+

∑
Permutations

|+ +−〉 〈+ +−| = 2
∑

Permutations

|+ +−〉 〈+ +−| , (4.38)

C−
∑

Permutations

|+ +−〉 〈+−+| = 0 (4.39)

C+

∑
Permutations

|+ +−〉 〈+−+| =
∑

Permutations

|+ +−〉 〈+ +−| . (4.40)
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The action of the atomic Lindblad operator La on the spin flip basis states

LaR̂p+,p−,n+,n− = −B
2

(1− s)(p+ + p− + n+)R̂p+,p−,n+,n−

−B(1− s)p+R̂p+−1,p−+1,n+,n−

−B
2
s(p+ + p− + n−)R̂p+,p−,n+,n−

−Bsp−R̂p++1,p−−1,n+,n− (4.41)

is easily calculated using the fact that the nondiagonal parts of the atomic Lind-
blad operator vanish when acting on σ+ or σ−:

σ−σ−σ+ = σ−σ+σ+ = σ−π−σ+ = σ−π+σ+ = 0. (4.42)

The atomic Liouville operator does not change the quantum numbers n+ and n−.
The operators C+ and C− do not change any of the quantum numbers p+, p−, n+

and n− and depend only on n+ and n−. Therefore La and C± commute in the
sense that

LaC±ρ = C±Laρ (4.43)

holds for any ρ from the symmetric space.

By the same reasoning C− commutes with the atomic dissipation and with the
part of the Liouville operator proportional to s.

In the following we will often use a simpler subset of the basis defined above.
Since the atomic ladder operators may be used to shift the quantum numbers n+

and n− it is sufficient to treat the case n+ = n−. Therefore, one can reduce the
bookkeeping by introducing for a fixed number Z of atoms a subset of the spin
flip basis by

χ̂m,c = R̂Z
2

+m−c,Z
2
−m−c,c,c, (4.44)

χ̌m,c = ŘZ
2

+m−c,Z
2
−m−c,c,c. (4.45)

The index m has the same interpretation as the m quantum number of the Dicke
states: in these states Z

2
+m atoms are excited.

The only nonzero matrix elements of the Lindblad operator between the χ̂m,c, χ̌m,c
basis states are

tr (χ̌m−1,cLa,−χ̂m,c) =
B

2

(
Z

2
− (m− 1)− c

)
, (4.46)

tr (χ̌m+1,cLa,+χ̂m,c) =
B

2

(
Z

2
+ (m+ 1)− c

)
, (4.47)

tr (χ̌m,cLa,dχ̂m,c) = −B
(
Z

2
+m

)
. (4.48)
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These matrix elements are found easily by inserting the uncoupled representation
of La and then counting the number of nonvanishing elements in the sum.

The dependence of these matrix elements on the spin flip index c can be under-
stood easily, because the nondiagonal part of the Liouville operator gives zero
when acting on the atomic states |+〉 〈−| and |−〉 〈+| and the index c counts the
number of atoms found in one of these two states.

4.4 Recurrence Relation between Dicke and Spin

Flip Basis States

In the following we will use the spin flip basis in an intermediate step of the
calculation of the matrix elements of the atomic Liouville operator. But the
explicit transformation between the two basis sets is very clumsy and involves
the explicit calculation of the Dicke vectors using the Clebsch-Gordan-coefficients.
Fortunately, we do not need to perform this calculation since a simple recurrence
relation for the transformation matrix elements

x(Z,l,m)
m,c = tr

(
ξ̂Z,l,m,mχ̌Z,m,c

)
(4.49)

is all we need.

Given these coefficients x
(Z,l,m)
m,c we may express the Dicke state as a linear com-

bination

ξ̂Z,l,m,m =

Z
2
−|m|∑
c=0

x(Z,l,m)
m,c χ̂Z,m,c (4.50)

of spin flip states.

The ξ̂Z,l,m,m are eigenoperators of

L2 =
Z

2
+ S2

z +
∑
i6=j

σ
(i)
+ σ

(j)
− (4.51)

with eigenvalue l(l + 1).

We apply the single-atom expansion (4.51) of L2 to the Dicke basis states and
insert the completeness relation for the spin flip states

ξ̂Z,l,m,m =

Z
2
−|m|∑
c=0

χ̂m,ctr
(
χ̌m,cξ̂Z,l,m,m

)
(4.52)
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to obtain a first expression for the transformation coefficients:

L2ξ̂Z,l,m,m =

(
Z

2
+m2 +

∑
i6=j

σ
(i)
+ σ

(j)
−

) Z
2
−|m|∑
c,=0

x(Z,l,m)
m,c χ̂m,c

=

(
Z

2
+m2

) Z
2
−|m|∑
c=0

x(Z,l,m)
m,c χ̂m,c

+

Z
2
−|m|∑

c,c′=0

x(Z,l,m)
m,c χ̂m,c′tr

(
χ̌m,c′

∑
i6=j

σ
(i)
+ σ

(j)
− χ̂m,c

)
. (4.53)

In order to eliminate L2 we need a second equation which we obtain from the
eigenvalue relation together with the expansion (4.50) of the Dicke basis states:

L2ξ̂Z,l,m,m = l(l + 1)ξ̂Z,l,m,m

=

l(l + 1))

Z
2
−|m|∑
c=0

x(Z,l,m)
m,c χ̂m,c

 . (4.54)

We project the two expressions for L2ξ̂Z,l,m,m onto χ̂m,c to obtain the relation

(
Z

2
+m2

)
x(Z,l,m)
m,c χ̂m,c +

Z
2
−|m|∑
c′=0

x(Z,l,m)
m,c χ̂m,c′tr

(
χ̌m,c′

∑
i6=j

σ
(i)
+ σ

(j)
− χ̂m,c

)
=
(
l(l + 1))x(Z,l,m)

m,c χ̂m,c
)

(4.55)

for the transformation coefficients x
(Z,l,m)
m,c .

The matrix elements tr
(
χ̌m,c̄

∑
i6=j σ

(i)
+ σ

(j)
− χ̂m,c

)
vanish if |c̄ − c| > 1 because

the operator exchanges at most two atoms5. In order to evaluate these matrix
elements, we simply have to count 6 the number of atomic indices i, j such that

tr
(
χ̌m,c̄σ

(i)
+ σ

(j)
− χ̂m,c

)
= 1. From the definition (4.32,4.44) of the χ̌m,c̄ it is clear

that these matrix elements can only assume the values 0 or 1.

5By definition of C± c changes by one, even though two atoms are involved.
6In order to perform this count, it is helpful to note that all three operators are symmetric

with respect to permutations of atoms. Therefore, we may drop one permutation and compen-
sate for that by dropping the normalization factor in χ̌m,c.
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Thus we obtain the matrix elements

tr

(
χ̌Z,m,c̄

∑
i6=j

σ
(i)
+ σ

(j)
− χ̌Z,m,c

)
=


c̄2, c = c̄− 1

Zc̄− 2c̄2, c = c̄(
Z
2

+m− c̄
) (

Z
2
−m− c̄

)
, c = c̄+ 1

0 else.

(4.56)

We need only the special case m = m′ because we will see that arbitrary matrix
elements can be reduced to this special case.

By comparing the coefficients of the expansion of the matrix elements of L2 one
obtains the following recurrence relation:

x
(Z,l,m,m)
m,c+1

(
Z

2
+m− c

)(
Z

2
−m− c

)
=

−
(
Z

2
+m2 + Zc− 2c2 − l(l + 1)

)
x(Z,l,m,m)
m,c + c2x

(Z,l,m,m)
m,c−1 . (4.57)

This still holds for c = 0, where (4.57) becomes

x
(Z,l,m,m)
m,1

(
Z

2
+m

)(
Z

2
−m

)
= −

(
Z

2
+m2 − l(l + 1)

)
x

(Z,l,m,m)
m,0 . (4.58)

The value of x
(Z,l,m)
m,0 may be fixed so that

tr
(
ξ̂Z,l,m,m

)
= tr

Z
2
−|m|∑
c=0

x(Z,l,m,m)
m,c,c χ̂m,c,c

 (4.59)

holds. Since tr (χ̂m,c,c) = 0 for c > 0 this condition simplifies to

x
(Z,l,m,m)
m,0,0 = tr

(
ξ̂Z,l,m,m

)
= g(Z, l). (4.60)

In principle one could solve the recurrence relation (4.57), thus obtaining all the

coefficients x
(Z,l,m)
m,c .

Since the calculation of the matrix elements of the atomic Liouville operator
with respect to the spin flip states is easy, this would yield the desired matrix
elements. But in chapter 5 we will see that we can obtain those matrix elements
even without solving the recurrence relation directly.
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4.5 Basis States of the Atoms and the Resonator

Mode

In order to describe the interaction between the atoms and the resonator mode
we need a basis of the product space of the atoms and the resonator mode. In
exact resonance the total energy

M =
1

2
(Z +m+ n+m′ + n′) (4.61)

contained in photons and excited atoms is invariant under the action of the
interaction Hamiltonian. Furthermore, the off-diagonality

K = (m+ n−m′ − n′) (4.62)

is also invariant under the action of the interaction Hamiltonian. Therefore we
will use the indices M,K,m,m′ instead of m,m′, n, n′. The new basis states are

ξ̂
(M,K)
Z,l,m,m′ =

∣∣∣∣M −m+
1

2
(K − Z)

〉〈
M −m′ + 1

2
(−K − Z)

∣∣∣∣ ξ̂Z,l,m,m′(4.63)

ξ̌
(M,K)
Z,l,m,m′ =

∣∣∣∣M −m′ + 1

2
(−K − Z)

〉〈
M −m+

1

2
(K − Z)

∣∣∣∣ ξ̌Z,l,m,m′ .(4.64)

The bras and kets here denote Fock states.

The biorthogonality relation

tr
(
ξ̌

(M̄,K̄)

Z,l̄,m̄,m̄′
ξ̂

(M,K)
Z,l,m,m′

)
= δM,M̄δK,K̄δl,l̄δm,m̄δm′m̄′ (4.65)

requires that we reverse the sign of K and the order of m and m′ in the dual
states.

The indices m and m′ run from −l to min(l,M − Z
2
). The second upper limit on

m and m′ expresses that at most M excited atoms are possible. For l < Z
2

the
atomic excitation is confined between Z

2
− l and Z

2
+ l. This fact may be used to

reduce the dimension of the state space significantly.
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Chapter 5

Matrix Elements of the Liouville
Operator

With the help of the spin flip basis (4.31) introduced in chapter 4 it is now possible
to calculate the matrix elements

tr
(
ξ̌Z,l̄,m̄,m̄′Lξ̂Z,l,m,m′

)
. (5.1)

of the atomic spontaneous emission with respect to the basis of Dicke states
(4.16).

As we will see, there are compact analytical expressions for these matrix elements.
Using this result we obtain a basis that is equally well suited to the description of
the dissipation as well as to the interaction between the atoms and the resonator
mode.

As a first step we will introduce selection rules for the matrix elements (5.1).
These selection rules remind one of the selection rules associated with the emission
of photons by atoms, but they are of completely different origin.

In the next step we will use the spin flip basis to derive a recurrence relation for
the matrix elements. The solution of this recurrence relation for its first three
elements is sufficient obtain the desired matrix elements.

In this chapter we also give the matrix elements of the Hamiltonian.

5.1 The Selection Rules

In quantum mechanics the matrix elements of operators may be restricted by
symmetry considerations. If an operator commutes with another operator the
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matrix elements between states corresponding to different eigenvalues of the other
operator must be zero.

The atomic Liouville operator La does not commute with the angular momentum
operator L2. But since the Liouville operator is a sum of single-atom operators
and each single-atom operator can change the angular momentum at most by
one we obtain an analog to the common selection rules from quantum electrody-
namics: Matrix elements of the atomic Liouville operator between Dicke states
that differ by more than 1 in their angular momentum quantum number l must
be zero.

Since the Hamilton operator commutes with L2 this holds also for the complete
Liouville operator.

This is the angular momentum selection rule: for the matrix element (5.1) to be
nonzero the condition

l − l̄ ∈ {−1, 01} (5.2)

must be met.

In the picture of uncoupled atoms the proof of this selection goes as follows: We
start with an cluster of atoms coupled to a Dicke state with angular momentum
l If a spontaneous emission or an absorption of a photon from the bath or the
pump source occurs, the atom affected by that process drops out of the Dicke
vector used in the construction of the Dicke states. The remaining atoms are a
linear combination of states with angular momentum l′ where |l − l′| = 1

2
. Upon

recombining the atom with the other atoms we obtain a linear combination of
states with angular momentum l̄ where |l′ − l̄| = 1

2
. Then the triangle inequality

gives the desired bound on l̄:

|l − l̄| = |l − l′ + l′ − l̄| ≤ |l − l′|+ |l′ − l̄| = 1. (5.3)

The difference l− l̄ must have integer values since the angular momenta are half-
integers if the number of atoms is odd and integers if the number of atoms is
even.

The arguments presented here do not establish that the action of the atomic
Liouville operator on a Dicke state returns a Dicke state. But this has been
shown in section 4.2.

This angular momentum selection rule is the crucial point for the calculation of
the matrix elements we are going to present here.

The Lindblad operator is a superoperator which acts in the same way from the
left side and the right side of a density operator. Therefore the off-diagonality
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m−m′ of a Dicke state ξZ,l,m,m′ is not altered by the dissipative dynamics. This
is the off-diagonality selection rule

m−m′ = m̄− m̄′. (5.4)

The processes under consideration here will not alter the number of photons
absorbed in the system by more than one. This is the energy selection rule:

m+m′ − (m̄+ m̄′) =


1 loss part

0 diagonal part,

−1 gain part.

(5.5)

For the combined Fock-Dicke states the last two rules map onto rules for the
off-diagonality index K defined in (4.62) and the total energy M (4.61). The
off-diagonality selection rule becomes:

K = K̄, (5.6)

and the energy selection rule becomes:

M − M̄ =


1 loss part,

0 diagonal part,

−1 gain part.

. (5.7)

5.2 The Hamilton Operator

In chapter 3 the matrix elements of the Hamilton operator with respect to the
Dicke states have been calculated. The atomic ladder operators S+ =

∑
i σ

(i)
+ ,

S− =
∑

i σ
(i)
− which represent the atomic part of the interaction Hamiltonian

act on the Dicke states |Z, l,m, r〉 like ordinary angular momentum operators.
Therefore the matrix elements are

tr
(
ξ̌Z,l,m̄,m̄′S+ξ̂Z,l′,m,m′

)
=√

(l − m̄′)(l + m̄′ + 1)δl,l′δm̄′+1,mδm̄,m, (5.8)

tr
(
ξ̌Z,l,m̄,m̄′S−ξ̂Z,l′,m,m′

)
=√

(l − m̄′ + 1)(l + m̄′)δl,l′δm̄′−1,mδm̄,m. (5.9)
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5.3 The Mode Dissipation

Since the basis used for resonator mode are Fock states the matrix elements of
the resonator mode are easily calculated. At a Temperature corresponding to nth
thermal photons the nonzero matrix elements of the mode dissipation Liouville
operator between the outer products of the Fock states |n〉 |n′〉 are:

tr (|n〉 〈n′| Lf |n〉 〈n′|) = A(n+ n′ + 2nth(n+m+ 1)),

tr (|n− 1〉 〈n′ − 1| Lf |n〉 〈n′|) = 2A(1 + nth)
√
nn′,

tr (|n+ 1〉 〈n′ + 1| Lf |n〉 〈n′|) = 2Anth
√

(n+ 1)(n′ + 1). (5.10)

5.4 Diagonal Part of the Atomic Dissipation

The atomic Liouville can be decomposed into two parts. The first is the anticom-
mutator with

∑
i σ

(i)
+ σ

(i)
− for the loss part and

∑
i σ

(i)
− σ

(i)
+ for the gain part. Both

of these operators are diagonal in any of the three bases introduced in chapter
4. Since we did not require the atomic states to be diagonal with respect to the
number of excited atoms, each basis operator depends on two numbers of excited
atoms. The anticommutator with

∑
i σ

(i)
+ σ

(i)
− is the sum of the number of excited

atoms from the row index and from the column index.

The matrix elements of this anticommutator are:

tr

(
ξ̌(Z,l̄,m̄,m̄′)

{∑
i

σ
(i)
+ σ

(i)
− , ξ̂Z,l,m,m′

})
= (Z +m+m′)δl,l̄δm,m̄δm′,m̄′ (5.11)

This part of the Lindblad operator will be denoted occasionally as La,d.

5.5 Gain and Loss Part of the Atomic Dissipa-

tion

The second part of the atomic Liouville operator is

La,lρ = B
∑
i

σ
(i)
+ ρaσ

(i)
− (5.12)

in case of the loss part and

La,gρ = B
∑
i

σ
(i)
− ρaσ

(i)
+ (5.13)
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in case of the gain part.

These are the parts of the atomic Liouville operator that do not commute with
the angular momentum. The calculation of its matrix elements will be performed
in the following steps: First, we will express the matrix elements of the gain part
through matrix elements of the loss part with the help of a symmetry operation.
Second, we will show that there are three representative matrix element, corre-
sponding to |l − l̄| = −1, 0 or 1 from which all other matrix elements can be
calculated with the help of ladder operators. Third, we will use the angular mo-
mentum selection rule (5.2) to establish that these representative matrix element
may be obtained from a set of three linearly independent equations. Fourth, we
will use the recurrence relation (4.57) to find these three equations.

The matrix elements of the loss part of the Lindblad operator will be denoted as

λ−(Z, l,m,m′) = tr
(
ξ̌(Z,l,m,m′)La,lξ̂(Z,l+1,m+1,m′+1)

)
,

λo(Z, l,m,m
′) = tr

(
ξ̌Z,l,m,m′La,lξ̂(Z,l,m+1,m′+1)

)
,

λ+(Z, l,m,m′) = tr
(
ξ̌Z,l,m,m′La,lξ̂(Z,l−1,m+1,m′+1)

)
. (5.14)

The index refers to the change in the angular momentum due to the action of
La,l. The angular momentum cannot change by more than one. This selection
rule looks completely analogous to the selection rule known from the interaction
of a single atom with an electromagnetic field, but it is of completely different
origin.

Analogous matrix elements are defined for the gain part:

λ′−(Z, l,m,m′) = tr
(
ξ̌(Z,l,m,m′)La,g ξ̂(Z,l+1,m+1,m′+1)

)
,

λ′o(Z, l,m,m
′) = tr

(
ξ̌(Z,l,m,m′)La,g ξ̂(Z,l,m+1,m′+1)

)
,

λ′+(Z, l,m,m′) = tr
(
ξ̌(Z,l,m,m′)La,g ξ̂(Z,l−1,m+1,m′+1)

)
. (5.15)

5.5.1 The Relation between the Gain and the Loss Part

The matrix elements λ of the loss part of the atomic Lindblad operator can be
expressed by the matrix elements λ′ of the gain part and vice versa. With the help
of this relation only half of the matrix elements actually have to be calculated.

We will establish this relation between the gain part and the loss part using
a simple symmetry relation. Let O({σ(i)

+ }, {σ
(i)
− }, {σ

(i)
z }) be some function of
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one-atom-operators. Then

tr
(
ξ̂Z,l,m,m′O({σ(i)

+ }, {σ
(i)
− }, {σ(i)

z })ξ̌Z,l,m̄,m̄′
)

= tr
(
ξ̂Z,l,−m,−m′O({σ(i)

− }, {σ
(i)
+ }, {−σ(i)

z })ξ̌Z,l,−m̄,−m̄′
)

(5.16)

holds. In order to prove this we first have to introduce the symmetry operator T
by the following five relations:

T |Z, l,m, r〉 = |Z, l,−m, r〉 ,
T 2 = 1l,

T † = T,

Tσi+T = σ
(i)
− , i = 1 · · ·Z,

Tσi−T = σ
(i)
+ , i = 1 · · ·Z,

TσizT = −σ(i)
z , i = 1 · · ·Z. (5.17)

The operator T simply flips all atomic spins.

Because of (5.17) the operator T maps any eigenvector of Lz with eigenvalue m
onto an eigenvector of Lz with eigenvalue −m. Furthermore, T does not act on
the index r from the Dicke vectors, as can be seen from the Clebsch-Gordan-
coefficients or the definition of the operator r̂ in (4.13). This establishes the
action of the symmetry operator T on the Dicke states

T ξ̌Z,l,m,m′T = ξ̌Z,l,−m,−m′ ,

T ξ̂Z,l,m,m′T = ξ̂Z,l,−m,−m′ . (5.18)

Using this transformation property of the Dicke states we establish equation
(5.16) by repeated insertion of the unit operator (5.17) into the trace in the right
hand side of (5.16) and using the cyclic property of the trace:

tr
(
ξ̂Z,l,−m,−m′O({σ(i)

− }, {σ
(i)
+ }, {−σ(i)

z })ξ̌Z,l̄,−m̄,−m̄′
)

= tr
(
ξ̂Z,l,−m,−m′O({Tσ(i)

+ T}, {Tσ(i)
− T}, {Tσ(i)

z T})ξ̌Z,l̄,−m̄,−m̄′
)

= tr
(
T ξ̂Z,l,−m,−m′TO({σ(i)

+ }, {σ
(i)
− }, {σ(i)

z })T ξ̌Z,l̄,−m̄,−m̄′T
)

= tr
(
ξ̂Z,l,m,m′O({σ(i)

+ }, {σ
(i)
− }, {σ(i)

z })ξ̌Z,l̄,m̄,m̄′
)
. (5.19)

In particular, the atomic parts of the Lindblad operator La is of the form O and
one can see immediately that TLa,lT = La,g holds, so that T maps the gain part
of the atomic Liouville operator onto its loss part and vice versa.
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Therefore, the desired relation between the matrix elements of the gain part and
the loss part of the atomic Liouville operator is a special case of (5.16) and we
obtain:

tr
(
ξ̂Z,l̄,m̄,m̄′La,g ξ̌Z,l,m,m′

)
= tr

(
ξ̂Z,l,−m̄,−m̄′La,lξ̌Z,l̄,−m,−m′

)
. (5.20)

The matrix element of the loss part are zero if m̄ 6= m or m̄′ 6= m′

5.5.2 The Three Representative Matrix Elements

The calculation of the matrix elements of the loss part can be reduced to the
calculation of three representative matrix elements. This reduction is performed
using the ladder operators L− =

∑
i σ

(i)
± .

The ladder operator L− commutes with the loss part of La,l of the dissipation,
since the relation

La,l
(
L

(ν)
− ρL

(µ)
+

)
= L

(ν)
− La,l (ρ)L

(µ)
+ (5.21)

holds for any atomic density operator ρ.

Using these relations, we can connect matrix elements with different values of
m,m′, m̄ and m̄′ by expressing the Dicke basis states by other Dicke states mul-
tiplied by ladder operators. Then we exchange these ladder operators with the
Liouville operator and finally apply them to the Dicke basis states of the matrix
element.

Now we have to consider the three cases l̄ = l− 1, l̄ = l− 1, l̄ = l+ 1. In the case
l̄ = l − 1, the maximal possible value of m̄ or m̄′ is l̄. But in the case l̄ = l, the
maximal possible value of m̄ or m̄′ is l̄ − 1 since the maximal possible value of
m respectively m′ is l and the atomic Liouville operator reduces the number of
excited atoms by 1. By the same argument, in the case l̄ = l + 1 the maximally
possible value of m̄ m̄′ is l̄ − 2. In each of these three case we express arbitrary
matrix elements by the one corresponding to the maximal value of m̄ and m̄′.

λ−(Z, l,m,m′) =

√
(l+m)(l+m−1)(l+m′)(l+m′−1)

2l(2l − 1)
λ−(Z, l, l, l),

λo(Z, l,m,m
′) =

√
(l−m+1)(l+m)(l−m′+1)(l+m′)

2l
λo(Z, l, l−1, l−1),

λ+(Z, l,m,m′) =

√
(l−m)(l−m−1)(l−m′)(l−m′−1)

2
λ+(Z, l, l−2, l−2).

(5.22)

The square roots are the remainders of the canceled ladder operators.
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These three matrix elements remain to be calculated. To proceed we note that
because of the angular momentum selection rule (5.2) and the fact that the atomic
Liouville Operator is a linear operator on the space spanned by the Dicke states
it follows that there are λ−, λo, λ+ such that

La,lξ̂(Z,l,m,m) = λ
(Z,l+1,m−1,m−1)
+ ξ̂(Z,l+1,m−1,m−1) (5.23)

+λ(Z,l,m−1,m−1)
o ξ̂(Z,l,m−1,m−1)

+λ
(Z,l−1,m−1,m−1)
− ξ̂(Z,l−1,m−1,m−1).

The difference between the angular momentum of the states on the right side
of equation (5.24) and the state on the left side cannot exceed one because of
the angular momentum selection rule. Other values of m on the right side are
impossible because the spontaneous emission emission of one photon reduces m
by one.

From this equation we obtain three linearly independent equations for the matrix
elements λ−, λ+ and λo if we project the equation on different spin flip basis states
using the expansion (4.44) of the Dicke states with respect to the spin flip states1.

The projected equation

xZ,l,mm,c tr (χ̌m,cLa,lχ̂m,c) = λ
(Z,l+1,m−1,m−1)
+ x

(Z,l+1,m−1)
m−1,c

+λ(Z,l,m−1,m−1)
o x

(Z,l,m−1)
m−1,c

+λ
(Z,l−1,m−1,m−1)
− x

(Z,l−1,m−1)
m−1,c (5.24)

is now taken for the three different values of c = 0, 1, 2. Thus we obtain the three
different equations for the matrix elements.

We write the equations (5.24) in compact matrix notation. With

λ =

 λ
(Z,l+1,m−1,m−1)
+

λ
(Z,l,m−1,m−1)
o

λ
(Z,l−1,m−1,m−1)
−

 , (5.25)

λ′ =

 xZ,l,mm,0 tr (χ̌m,0La,lχ̂m,0)

xZ,l,mm,1 tr (χ̌m,0La,lχ̂m,0)

xZ,l,mm,2 tr (χ̌m,0La,lχ̂m,0)

 , (5.26)

1This is the step that made the introduction of the spin flip states necessary. Since the
atomic damping bases are not eigenstates of Lz we cannot use them here. The sum over c
collapses because of the definition of the spin flip states.
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and

X =

 x
(Z,l−1,l−2)
l−2,0 x

(Z,l−1,l−2)
l−2,1 x

(Z,l−1,l−2)
l−2,2

x
(Z,l,l−2)
l−2,0 x

(Z,l,l−2)
l−2,1 x

(Z,l,l−2)
l−2,2

x
(Z,l+1,l−2)
l−2,0 x

(Z,l+1,l−2)
l−2,1 x

(Z,l+1,l−2)
l−2,2

 (5.27)

the equation 5.24 becomes λ′ = Xλ and the matrix element λ+(Z, l, l − 2, l − 2)
is finally found as the first element of the vector λ.

The matrix elements of X have been calculated in section 4.4. For c = 0 they are
given by g(Z, l), for c ≥ 1 they are calculated by solving the recurrence relations
(4.57) respectively (4.58).

The matrix X can be easily inverted using some computer algebra program. But
before doing so we well split it into a product of diagonal matrices and Hessenberg
matrices.

From the start condition (4.60) of the recurrence relation(4.57) and the explicit
form (4.17) of the g(Z, l) we note that

x
(Z,l+1,m)
m,c

x
(Z,l,m)
m,c

=
(Z/2− l) (2l + 2)

(Z/2 + l + 1) (Z/2 + l + 2)
. (5.28)

Furthermore, the x
(Z,l,m)
m,c , c = 1, 2 are multiples of x

(Z,l,m)
m,o . These relations may

be used to split off diagonal matrices from X. Splitting the remaining matrix in
a upper and a lower Hessenberg form, we obtain the product

X =


1
2

0 0

0 −Z−2l−2δ+2
4

0

0 0 (Z+2l+2δ−4)(Z+2l+2δ−2)
16




1 0 0

−1 1 0

1 −2 1




1 0 0

0 −1
4(l+δ)

0

0 0 Z−2 l−2 δ
8(l+δ+1)(2 l+2 δ+1)




1 −Z + 2 l + 2 δ − 2 (l+δ+1)(Z−2 l−2 δ+2)
l+δ

0 1 −2 l+2 δ+1
l+δ

0 0 1




Z+2 l+2 δ
2 l+2 δ−1

0 0

0 (Z+2 l+2 δ)(Z+2 l+2 δ+2)
2 l+2 δ+1

0

0 0 (Z+2 l+2 δ+4)(Z+2 l+2 δ+2)(Z+2 l+2 δ)
(2 l+2 δ+3)(Z−2 l−2 δ)

 , (5.29)

which is inverted easily.

In the same way the matrix elements of λ
(Z,l+1,l−1,l−1)
o and λ

(Z,l+1,l,l)
− are obtained.

The inversion procedure above must be repeated, because different values of m
are used in (5.24) and (5.24).
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Thus, we obtain the desired matrix elements

λ−(Z, l, l, l) =
Z

2
− l,

λo(Z, l, l − 1, l − 1) =
Z + 2

2(l + 1)
,

λ+(Z, l, l − 2, l − 2) =
Z
2

+ l + 1

l(2l + 1)
. (5.30)

5.5.3 Matrix Elements of the Atomic Liouville Operator

Inserting (5.30) into equation (5.22) which expresses arbitrary matrix elements of
the loss part of the atomic Liouville operator in terms of the three representative
matrix elements we obtain all other matrix elements:

tr
(
ξ̌(Z,l,m,m′)La,lξ̂(Z,l+1,m+1,m′+1)

)
=√

(l+m)(l+m−1)(l+m′)(l+m′−1)

2l(2l−1)

Z−2l

2
,

tr
(
ξ̌Z,l,m,m′La,lξ̂(Z,l,m+1,m′+1)

)
=√

(l−m+1)(l+m)(l−m′+1)(l+m′)

2l

Z+2

2(l+1)
,

tr
(
ξ̌Z,l,m,m′La,lξ̂(Z,l−1,m+1,m′+1)

)
=√

(l−m)(l−m−1)(l−m′)(l−m′−1)

2

Z
2

+l+1

l(2l+1)
. (5.31)

From these matrix elements we obtain immediately the matrix elements of the
gain part using the relation (5.20) which relates the matrix elements of the gain
and the loss part:

tr
(
ξ̌(Z,l,m,m′)La,g ξ̂(Z,l+1,m+1,m′+1)

)
=

tr
(
ξ̌(Z,l,−m,−m′)La,lξ̂(Z,l+1,−m−1,−m′−1)

)
,

tr
(
ξ̌Z,l,m,m′La,g ξ̂(Z,l,m+1,m′+1)

)
=

tr
(
ξ̌Z,l,−m,−m′La,lξ̂(Z,l,−m−1,−m′−1)

)
,

tr
(
ξ̌Z,l,m,m′La,g ξ̂(Z,l−1,m+1,m′+1)

)
=

tr
(
ξ̌Z,l,−m,−m′La,lξ̂(Z,l−1,−m−1,−m′−1)

)
. (5.32)
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This completes the calculation of the matrix elements.

The Dicke representation of the master equation is not in Lindblad form. Nev-
ertheless, using (4.17) one can still show that the trace of the contribution of La
to LaξZ,l,m,m is zero:

tr (LξZ,l,m,m) = 0. (5.33)

If this condition was violated, the time evolution would not conserve the trace of
the density operator. Since the original Liouville operator is in Lindblad form,
this result is expected and rather a control of the calculations presented here than
a test of the underlying model.

The trace above contains the degeneracy factors g(Z, l−1), g(Z, l) and g(Z, l+1)
because they do not contain the dual basis operator. In order to simplify it to
zero, the explicit form (4.17) of the g(Z, l) is used:

tr (LξZ,l,m,m)

= λ+(Z, l + 1,m− 1,m− 1)g(Z, l + 1)

+λo(Z, l,m− 1,m− 1)g(Z, l)

+λ−(Z, l − 1,m− 1,m− 1)g(Z, l − 1)

−
(
Z

2
+m

)
g(Z, l)

= g(Z, l)

(
λ+(Z, l + 1,m− 1,m− 1)

g(Z, l + 1)

g(Z, l)

+ λo(Z, l,m− 1,m− 1)

+ λ−(Z, l − 1,m− 1,m− 1)
g(Z, l − 1)

g(Z, l)

−
(
Z

2
+m

))

= g(Z, l)

(
(l − 2−m)(−l +m− 1)(Z − 2l)

4(l + 1)(2l + 1)

+
(l +m)(l +m− 1)(Z − 2l)

(l + 1)(2l + 1)

+
(l − 1 +m)(l +m)(Z + 2l + 2)

l(2l + 1)

−
(
Z

2
+m

))
= 0.
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5.6 Matrix Elements of the Complete Liouville

Operator

We combine the matrix elements of the atomic Liouville operator (5.30, 5.22),
the mode Liouville operator (5.10) and the matrix elements of the commutator
with the Hamilton operator and 5.20) to obtain the matrix elements of

tr
(
ξ̌

(Z,M̄,K)

l̄,m̄,m̄′
Lξ̂(Z,M,K)

l,m,m′

)
= − ig

2

√
(l̄−m̄)(l̄+m̄+1)(M̄−K−m̄)δl,l̄δm−1,m̄δm′,m̄′δM ′,M̄ ′

− ig
2

√
(l̄−m̄+1)(l̄+m̄)(M̄−K−m̄+ 1)δl,l̄δm+1,m̄δm′,m̄′δM ′,M̄ ′

+ ig
2

√
(l̄−m̄′)(l̄+m̄′+1)(M̄−K−m̄′)δl,l̄δm′−1,m̄′δm,m̄δM ′,M̄ ′

+ ig
2

√
(l̄−m̄′+1)(l̄+m̄′)(M̄−K−m̄′ + 1)δl,l̄δm′+1,m̄′δm,m̄δM ′,M̄ ′

−B
8

(Z +mi +mj + 2s)δl,l̄δm,m̄δm′,m̄′δM,M̄

+B
4

(1−s)
√

(l̄+m̄+1)(l̄+m̄+2)(l̄+m̄′+1)(l̄+m̄′+2)
2(2l̄+1)(l̄+1)

(
Z
2
− l̄
)
δl−1,l̄δm−1,m̄δm′−1,m̄′δM−1,M̄

+B
4

(1−s)
√

(l̄+m̄+1)(l̄−m̄)(l̄+m̄′+1)(l̄−m̄′)
2 l̄(l̄+1)

(
Z
2

+ 1
)
δl,l̄δm−1,m̄δm′−1,m̄′δM−1,M̄

+B
4

(1−s)
√

(l̄−m̄)(l̄−m̄−1)(l̄−m̄′)(l̄−m̄′−1̄)
2 l(2 l+1)

(
Z
2

+ l̄ + 1
)
δl+1,l̄δm+1,m̄δm′+1,m̄′δM+1,M̄

+B
4
s

√
(l̄−m̄)(l̄−m̄−1)(l̄−m̄′)(l̄−m̄′−1)

4l(2l−1)
(Z−2l̄+2)δl−1,l̄δm+1,m̄δm′+1,m̄′δM+1,M̄

+B
4
s

√
(l̄−m̄+1)(l̄+m̄)(l̄−m̄+1′)(l̄+m̄′)

4l̄(l+1)
(Z+2)δl,l̄δm+1,m̄δm′+1,m̄′δM+1,M̄

+B
4
s

√
(l̄+m̄+1)(l̄+m̄+2)(l̄+m̄′+1)(l̄+m′+2)

4l̄(2l̄+1)
(Z+2l̄+2)δl+1,l̄δm+1,m̄δm′+1,m̄′δM+1,M̄

−A
2
(1+ν)(2M+2K−m−m′)δl,l̄δm,m̄δm′,m̄′δM,M̄

+Aν
√

(M+K−m)(M+K−m′)δl,l̄δm,m̄δm′,m̄′δM+1,M̄

+A
√

(M+K−m+1)(M+K−m′+1)δl,l̄δm,m̄δm′,m̄′δM−1,M̄ . (5.34)



Chapter 6

Eigenvalues and Eigenvectors

6.1 The Matrix Recurrence Relation

I section 4.5 we introduced the combined indices M and K which depend the
numbers of photons of the resonator mode plus the number of photons absorbed
into an atomic excitation. M is half the sum of the row and column index and
K is the difference so that K gives the total distance of the index from the
diagonal which is invariant under the dissipation processes studies here and the
Jaynes-Cummings model.

The Liouville operator is diagonal in Z and K. At zero temperature nth = 0 and
without atomic pumping s = 0 the matrix elements ρ̌Z,M̄,K̄,l̄,m̄,m̄′Lρ̂Z,M,K,l,m,m′ are
zero if M̄ > M . Furthermore, the matrix elements are zero for M̄ −M > 1.

In order to simplify the notation one may combine all basis states with given
values of Z,M and K in a basis states Ξ̂Z,M,K and a corresponding dual basis
states Ξ̌Z,M,K . The Hamiltonian part of the Liouville operator and the diagonal
part of the atomic Lindblad operator have nonvanishing matrix elements only
between vectors having the same Z,M and K, while the gain part increases M
by 1 and the loss part reduces M by 1:

tr
(

Ξ̌Z̄,M̄,K̄La,lΞ̂Z,M,K
)

= 0, M̄ 6= M − 1, (6.1)

tr
(

Ξ̌Z̄,M̄,K̄La,gΞ̂Z,M,K
)

= 0, M̄ 6= M + 1. (6.2)

This is a straightforward generalisation of a well known result for Z = 1.

Now one may write the master equation

Lρ̂ = Λρ̂ (6.3)
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in the form of a linear equation system:

ΛΞ̂
(Z,M,K)
Λ = M(Z,M,K)Ξ̂

(Z,M,K)
Λ

+F (Z,M+1,K)Ξ̂
(Z,M+1,K)
Λ

+G(Z,M−1,K)Ξ̂
(Z,M−1,K)
Λ , (6.4)

where the operators M,F and G may be read off (5.34).

In particular, we find G = 0 if the thermal photon number nth and the atomic
pump parameter s are zero. In this case the recurrence relation reads

M(Z,M,K)Ξ
(Z,M,K) = Λ(Z,M,K)Ξ

(Z,M,K), (6.5)(
Λ(Z,M,K) −M(Z,M′,K)

)
Ξ(Z,M,K) = F(Z,M ′+1,K)Ξ

(Z,M ′+1,K) (6.6)

for M ′ < M .

In this case the eigenvalues may be obtained as the eigenvalues ofM(Z,M,K) and
the eigenstates from the eigenvectors. Because all eigenvalues are different, the
operator (

Λ(Z,M,K) −M(Z,M′,K)

)
F(Z,M ′+1,K) (6.7)

exists if M ′ < M and the eigenstates may be obtained by an iterative application
of (6.6)

The matrix elements ofM(Z,M,K) between generalised Dicke states with different
angular momentum l vanish because different values of l are coupled only by
the gain and loss part of the Liouville operator. The remaining matrix has the
dimension (l + 1)2, if M > 2l + 1 and M2 otherwise. In any case, there are four
indices, two for each generalised Dicke state. The matrix elements are

Mm,m′;m̄,m̄′ =


〈Z, l,m′|H + La,d |Z, l, m̄′〉 , if m = m̄,

〈Z, l,m| −H + La,d |Z, l, m̄〉 , if m′ = m̄′,

0, else.

(6.8)

6.2 The Degeneracy of the Eigenvalue Matrix

The eigenvalue matrixM shows a degeneracy which results from its construction
from the commutator with the Hamiltonian, H, and the anticommutator with the
diagonal part of the dissipation. H is the operator that maps any density operator
on its commutator with the Hamiltonian.
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In the generalised Dicke basis the symmetry operator S(M) of the degeneracy of
M has the matrix elements

S(M)
m,m′;m̄,m̄′ =

{
(−1)m−m

′
, if m = m̄,

0, else.
(6.9)

Using the fact that H is symmetric and that the number state representation of
H has nonvanishing matrix elements only on the first off-diagonal and La,d has
no nonzero off-diagonal matrix elements, it can be shown easily that[

S(M),M
]

= 0. (6.10)

The Dicke state representation of the eigenvectors |λ〉 of H may be chosen so
that

〈λ|Z,M,K, l,m〉 = (−1)m−1 〈−λ|Z,M,K, l,m〉 , (6.11)

as can be seen immediately from the matrix representation of the eigenvalue
equation.

Using these results we construct a new operator basis which consists of simulta-
neous eigenvectors of H and S.

The index m runs from −l which means that the amount energy that is not
absorbed by dark states of the cluster or atoms is contained in the resonator mode,
to d = min(l,M−Z

2
) which means that the atomic cluster contains as much energy

as consistent with its angular momentum all atoms are excited and the remaining
energy is contained in the resonator mode. There are 1

2
(d + l + 1)(d + l + 2)

eigenoperators of of S with eigenvalue 1. Their Dicke state representation is

ρ+,m = |Z,M,K, l,m〉 〈Z,M,K, l, d+ l + 2−m| , (6.12)

ρ+,m,m′ =
1√
2

(
|Z,M,K, l,m〉 〈Z,M,K, l,m′|

+ |Z,M,K, l, d+ 2−m〉 〈Z,M,K, l, d+ l + 2−m′|
)

(6.13)

with the auxiliary condition

m+ (l + d+ 1)(m′ − 1) < d+ l + 2−m+ (l + d+ 1)(d+ l + 2−m′ − 1)

that guarantees the uniqueness of the eigenvectors. The Dicke state representa-
tion of the 1

2
(d+ l + 1)(d+ l) eigenoperators of of S with eigenvalue −1 is

ρ−,m,m′ =
1√
2

(
|Z,M,K, l,m〉 〈Z,M,K, l,m′|

− |Z,M,K, l, d+ 2−m〉 〈Z,M,K, l, d+ l + 2−m′|
)
.

(6.14)
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The calculation of the eigenvectors may be significantly simplified with the help
of this symmetry, since the eigenvectors of a non-hermitian complex matrix are
not necessarily orthogonal, and therefore it is difficult to find a complete set of
eigenvectors of a degenerate nonsymmetric matrix.

6.3 The Stroboscopic Mode Propagator

By specifying the state in which the atoms enter the cavity and the procedure
applied to the atoms after they leave the resonator, on can trace out atomic
degrees of freedom.

If one chooses to measure the atoms after they leave the resonator, the atom will
be projected onto the corresponding eigenstate after it leaves the resonator. Since
the atom and the resonator mode are entangled at this moment, the resonator
will be projected on the corresponding state.

Using the eigenstates and eigenvalues of the coupled system of atoms one obtains
the map describing the time propagation from the moment when the cluster enters
the cavity to the moment when the cluster leaves the cavity. Shortly before the
cluster enters the cavity the atoms are described by an atomic density operator
ρ̂atom,in. The procedure applied to the atoms after they leave the resonator, for
example a measurement of the atomic states, may be described by a multiplication
by dual atomic density operator describing this procedure ρ̌atom,out followed by
tracing out the atoms, thus obtaining an operator containing mode variables only.

After the interaction of duration τ with the atoms a period of pure dissipation
follows.

Putting all together, one obtains

ρ(t+ τ) =
∑
i

tr
(
ρ̌Ξ̂i

)
eλiτ tr

(
Ξ̌iρ(t)ρ̂atom,in

)
,

ρ(t+ T ) =
∑
j

Ξ̌je
λj(T−τ)tr

(
Ξ̌jρ(t+ τ)

)
, (6.15)

where T is the cycle duration of the pump mechanism and Ξ̂iX̌ii are the left and
right eigenstates of the coupled system corresponding to the eigenvalue λi and
Ξ̂

(o)
j , X̌i

(o)
j , λ

(o)
j are the eigenstates and eigenvalues of pure mode dissipation.

Since ρ(t+ T ) depends linearly on ρ(t) (6.15) may be read as the definition of a
map M with

ρ(t+ T ) =Mρ(t). (6.16)
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6.3.1 The Eigenstate Dual to the Stationary State

The dual eigenstate corresponding to the eigenvalue 0 has the form tr
(
ξ̌Z,l,m,m′

)
=

g(Z, l) since any eigenstate ρ =
∑

i ciξ̂Z,li,mi,m′i corresponding to a nonzero eigen-

value is traceless and orthogonal to the stationary state ρ̂o =
∑

i diξ̌Z,li,mi,m′i .
Therefore

tr (ρ) =
∑
i

cig(Z, li) = 0,

tr (ρ̌oρ) =
∑
i

cidi = 0

hold. Since the ci are arbitrary otherwise, the second condition can only be
fulfilled if

di = g(Z, li). (6.17)

This result may be used to control numerical calculations of eigenstates: In the
calculations presented here the only normalization condition imposed artificially
is that tr (ρ̂o) = 1. The dual eigenstate corresponding to the eigenvalue 0 can
then be tested against (6.17).

6.4 Coherent Driving Field

If the cavity is driven by an external resonant coherent field the interaction picture
Hamiltonian contains the additional term

Hc = ε(a† + a) (6.18)

that describes the interaction of the field mode with the Hamiltonian.

In contrast to the atomic pump mechanism this mechanism connects different
values of K and any eigenstate of the Liouville operator contains all values of M
and K. Therefore, one has to diagonalize the full Liouville operator in one step.
In order to obtain a finite-dimensional Liouville operator the energy M has to be
cut off somewhere.

Not all eigenstates resulting from this procedure are physically correct. Only
those eigenstates with a negligible occupation probability at the cutoff may be
used in further calculations. In practice this is not a problem, since these states
are orthogonal to all relevant states if the cutoff has been chosen large enough.

In this case, the diagonalization of the Lindblad operator has to be performed by
one single diagonalization of a large nonsymmetric matrix.
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Chapter 7

Masers with many Atoms

A maser is a resonator cavity with a very long photon lifetime. The resonator
mode of this cavity is pumped by excited atoms crossing the cavity in an atomic
beam. The atoms emit and absorb photons during their flight through the res-
onator. The state in which the atoms leave the maser depends sensitively on the
number of atoms in the maser, the time the atoms need to traverse the maser [29]
and the state of the field in the resonator before the atoms entered the resonator.
For a review on micromaser physics see [30].

Now we will focus on the special case that the atoms enter the maser in clusters
and not individually. We examine the trapped states of the maser, i.e. cyclically
stationary states where the atom leaves the resonator in the excited state so that
the resonator is not excited. The map (6.16) describes a maser experiment where
a cluster of partially or completely excited atoms enter and leave the resonator
at the same time. A schematic drawing of this type of experiment is shown in
figure 7.1. We assume that the excitation of the atoms is selective on the velocity
of the atoms so that only clusters with a certain velocity are pumped into the
Rydberg state that interacts with the resonator. Please note that the effects of
the mode structure have been neglected. The state of the resonator mode just

Excitation Interaction

Detection

Figure 7.1: Schematic drawing of the maser.
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Figure 7.2: Mean photon number < nf > at g = 1/
√
Z, A = 0.008 and B = 0.004

and Z = 1, 2, 3, 4. The vacuum trapped states do not occur at the same time,
therefore the scaling of of g does not hold here.

before one atom enters the resonator is mapped onto the state of the mode just
before the next cluster enters the resonator. The eigenstate with eigenvalue 0 of
this map therefore describes a cyclically stationary state.

In the following we will examine the properties of these cyclically stationary
states.

7.1 All Atoms Initially Excited: Suppression of

the Trapped States

If all atoms enter the resonator in their excited state, the pump rate is pro-
portional to the number of atoms. Therefore, the mean photon number is pro-
portional to the number of atoms. With increasing Z the photon number may
become quite large in this case. Figure 7.2 shows the stationary photon number
at the moment when the cluster enters the resonator for clusters of one to four
atoms. The parameters are g = 1/

√
Z, A = B = 0.004. The arrival times of

the atoms are regularly distributed and the time difference between two arrivals
is 60 time units. The time units have been chosen so that the one-atom cou-
pling constant is exactly 1/

√
Z. After the interaction a period of pure resonator

damping follows. In the interaction picture used in this work the resonator mode
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Figure 7.3: The stationary photon number < nf > at uncertain atom number Z.
The atom number is Z = 1 with probability 1 − δ and Z = 2 with probability
δ as a function of the interaction time. All atoms are excited when entering the
cavity. For δ = 0.05 even the vacuum trapping states vanish.

has no self-energy. The interaction time of the atoms with the resonator mode is
between 0 and 20 time units.

The interaction time at which the maximum and the first minimum of the photon
number occurs, depends on the number of atoms. This means that the

√
Z-

scaling does not hold in this case. The explanation for this observation is that
the scaling behavior of g was derived in Section 3 under the assumption Z �M .
The trapped states vanish for Z > 2 as expected, since in this regime many
different oscillation frequencies are involved.

7.2 Atom Number Fluctuations

If the number of atoms of the individual cluster cannot be fixed exactly the
dependency of the oscillation frequency on the number of atoms causes a broad-
ening and therefore washes out the trapped states. This effect has been already
discussed by E. Wehner et al. in [39] using the assumption that the time the
atoms need to traverse the resonator is much smaller than the time between two
consecutive atomic clusters.

We assume that with probability δ not one but two excited atoms enter the
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Figure 7.4: The stationary photon number < nf > at uncertain atom number Z.
The atom number is Z = 1 with probability 1− δ and Z = 2 with probability δ
as a function of the interaction time. In the one-atom events and the two-atom
events only one atom is excited For δ = 0.05 the first vacuum trapping states
vanishes but the second and third persist.

resonator. In order to model this behavior we replace the map (6.16) with the
weighted mean of maps corresponding to different numbers of atoms.

The weighted means are

M = (1− δ)M1 atom + δM2 atoms, (7.1)

if one or two atoms arrive at one point in time respectively

M = (1− 2δ)MZ atoms + δMZ+1 atoms + δMZ−1 atoms, (7.2)

if Z − 1, Z or Z + 1 atoms enter the resonator at one point in time. Since
clusters where the atom number differs from the mean value by two or more have
been neglected, this does not correspond exactly to a poissonian distribution of
atomic numbers in the arriving clusters. We assume that all atoms used in one
experiment are of the same kind, therefore here we use the same value of g for
all atom numbers.

As shown in figure 7.3 even at a small value of δ = 0.05 the vacuum trapped
states are washed out if all atoms enter the resonator in the excited state.

The situation is slightly different if only one of the atoms of the two-atom-clusters
is excited when it enters the resonator. This means that the pump rate does not
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Figure 7.5: The stationary photon number < nf > at uncertain atom number Z.
The atom number is Z = 3, 4 and 5 with probability δ, 1 − 2δ and δ. The value
of δ is for the solid line comparison to fixed atom number Z = 4 (broken line).
The mean photon number is plotted as a function of the interaction time. The
zero-photon trapping states are washed out.

depend on the number of atoms. As figure 7.4 shows the first vacuum trapping
state vanishes if two-atom events occur, but the second and the third vacuum
trapping state persist. The reason for the different effect on the first and second
vacuum trapping state is that the frequency of the Rabi oscillations with two
atoms in the resonator is

√
2 times the frequency of the Rabi oscillations with

one atom in the resonator. This means that the interaction time of the second
vacuum trapping state of the one-atom case is approximately the interaction time
of the third vacuum trapping state in the two-atom case.

We do not find this effect in the case of figure 7.5 where the maser is pumped
by a clusters containing four atoms with probability 0.9 and three or five atoms
with probability 0.05. In this case the trapped states are washed out again.

7.3 One Atom Excited: Scaling and Limiting

Behavior

In order to observe quantum behavior of the resonator mode like trapped states,
we are interested in small photon numbers. Furthermore, we have seen that the
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Figure 7.6: Mean photon number < nf > at g = 1/
√
Z, A = 0.008, B = 0.004

and Z = 1, 2, 3, 4. Only one atom of each cluster is excited. The positions of the
vacuum trapping states are predicted accurately by the scaling of g.

suppression of trapped states by multi-atom events is less effective if the clusters
enter the resonator only partially excited. Therefore it is useful to consider the
case where only one of the many atoms entering the resonator is excited. In
this case the maximal photon number of the resonator will not increase with the
number of atoms.

Figure 7.6 shows the stationary photon number at the moment when the cluster
of atoms enter the resonator for the parameters g = 1/

√
Z, A = 0.008, B = 0.004

and Z = 1, 2, 3, 4. For small values of Z the curves show a strong dependency on
Z, while the curves for Z = 3 and Z = 4 are very well described by the scaling of
g. In contrast to the case of all atoms entering the resonator in their upper state,
the trapped states occur at the interaction times predicted by the scaling of g.
Even larger numbers of atoms are used in figure 7.7. Here the cluster consists of
Z = 8, 16, 32 or 64 atoms. The other parameters are the same as in figure 7.6.

For these large values of Z the mean photon number depends periodically on the
interaction time. This behavior is completely different from the one-atom case.
In this regime the scaling of g is nearly perfect, as can be seen from the fact that
the mean photon number for Z = 32 and Z = 64 are almost the same for any
value of the interaction time.
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Figure 7.7: Mean photon number < nf > at g = 1/
√
Z, A = 0.008, B = 0.004

and Z = 8, 16, 64 as a function of the interaction time. Only one atom of the
driving cluster is excited. For increasing Z the curves become more and more
regular. The positions of the vacuum trapping states and the form of the curves
are predicted by the scaling of g.
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Figure 7.8: Probabilities for finding n = 0, 1, 2, 3, 4 photons in the resonator
mode as a function of the interaction time. Only one atom of the driving cluster
is excited.

7.4 Trapped States

Figure 7.8 shows the stationary resonator mode distribution for Z = 1, g = 1 and
A = 0.008, B = 0.004. At short interaction time one finds contributions of large
photon numbers. The dependency on the interaction time is quite irregular. The
one-photon trapped state at tinteraction = 5/2π is completely washed out.

Figure 7.9 shows the stationary resonator mode distribution for Z = 64, g = 1/8
and A = 0.008, B = 0.004. In contrast to the one-atom-case there is never a
significant contribution of states with more than three photons and the interaction
time dependency is very regular.

In figure 7.9 the probability for finding one photon in the resonator never ap-
proaches unity. In order to demonstrate that this is mainly an effect of the
dissipation during the phase between the traversals of the atomic clusters, figure
7.10 shows the photon number distribution in the same system, but immediately
after after the atomic cluster has left the resonator. Here, the resonator mode
has no time to decay to the vacuum and therefore the peaks corresponding to the
one-photon Fock states are much more prominent than in the previous case.
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Figure 7.9: Probabilities for finding n = 0, 1, 2, 3, 4 photons in the resonator
mode as a function of the interaction time. Only one atom of the driving cluster
is excited. The probability of finding exactly one photon shows a prominent peak.
Here the resonator mode immediately before a new cluster enters the cavity is
shown.
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Figure 7.10: Probabilities for finding n = 0, 1, 2, 3, 4 photons in the resonator
mode as a function of the interaction time. Only one atom of the driving cluster
is excited. Here the resonator mode immediately after a new cluster leaves the
cavity is shown. The peak of the one-photon Fock state is even more prominent
than in the case of Figure 7.9.



Chapter 8

Coherently driven Systems

In order to obtain a nontrivial stationary state in the presence of dissipative
processes, we have to include a pump mechanism. In this chapter we assume
that classical laser light is coupled into the resonator through one of the mirrors.

The most interesting property of these system is that they can convert light
with classical statistic properties, the driving field, into light with nonclassical
statistical properties.

The normally-ordered second-order correlation function

g(2)(t) =

〈
a†(0)a†(t)a(t)a(0)

〉
〈a†(0)a(0)〉2

(8.1)

can be measured using fast electronic coincidence counters (see figure 8.1).

8.1 Classical Limits on the Intensity Correla-

tion Function

Following a well-known derivation [14],[37] one can establish a limit on the inten-
sity correlation function of a classical light source.

The classical joint probability distribution for finding the stationary field am-
plitude α1 at time t1 and α2 at time t2 is pcl(α1, t1, α2, t2). Here t1 is a time
when the system has reached its stationary state to sufficient accuracy. Using
this probability distribution one finds the classical intensity correlation functions

g(1)(t) =

∫
dα1

∫
dα2α

∗
1α2pcl(α1, t1, α2, t2), (8.2)

g
(2)
cl (t) =

1

|g(1)(0)|2

∫
dα1

∫
dα2|α1|2|α2|2pcl(I1, t1, I2, t2), (8.3)
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Figure 8.1: The experimental setup of Rempe et al. The cavity was stabilized
using the accousto-optic modulator AOM and the detector D4; the beamsplitter
BS and and the detectors D2 and D3 were used to measure the coincidence of
photon detections and therefore the correlation function.

with t = |t1− t2|. g(1)(0) is the stationary intensity of the field. Since a classical
probability distribution is assumed the Cauchy-Schwartz inequality〈

|α∗1α2|2
〉
≥ 〈α∗1α2〉2 (8.4)

holds and one obtains the classical limit

g(2)(t) ≥
(
g(1)(t)

g(1)(0)

)2

. (8.5)

A special case of this is g(2)(0) ≥ 1 for a classical intensity correlation function.
This phenomenon is called bunching and indicates a positive correlation of the
intensities for small times.

The contrary phenomenon, antibunching, is classically forbidden and hence a
pure quantum effect.

Such a coherently driven system has been studied experimentally [32]. The re-
sults were, among others, that light with nonclassical properties, namely with
antibunched photon counting statistics was emitted. The experimental setup
consisted of an atomic beam passing through a high-Q optical cavity. The cavity
was excited by a coherent signal beam. The correlation function of the output
of the cavity was measured using a coincidence counter. Figure 8.1 shows the
principal elements of the experiment.
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Figure 8.2: Reading points of the intensity correlation function for Z = 18, 45
and 110 atoms, as measured by Rempe et al. [32]. The solid line is a fit of a
function motivated by the weak-field theory [7]. See the text for a comment on
this fit.

The experiment was originally interpreted using a theory which is valid only in
the case ε � κ or equivalently y � 1

ns
i.e. the weak driving field limit. This is

the straight line in figure 8.2. ns = B2

8∗g2 is the saturation photon number, i.e. the
mean photon number of the resonator mode where the mean excitation of one
atom interacting with the mode is 1

2
. The atom number Z, the coupling constant

g and the damping constants A and B were determined by fitting correlation
functions from this approximation to the experimental data. The amplitude of
the oscillations in the correlation function was four times the observed amplitude
while the frequency of the oscillations was predicted correctly by the approxima-
tion.

Figure 8.2 shows the original experimental data of Rempe et al. [32] together
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with the scaled curve from the weak-field theory.

The explanation for the need to scale g(2)(t)− 1 by a factor of four, that Rempe
et al. gave is that [32] used driving fields y which were much stronger than the
damping rates, and therefore the weak-field approximation breaks down.

The solution to the many-atom problem presented here supports this explanation
and allows us to calculate the value of g(2)(0), as will be shown in the next section.

8.2 Calculation of the Correlation Functions and

the Spectrum

If all relevant eigenvalues and eigenstates of the Liouville operator are known, it
is possible to calculate dynamical statistical properties of the resonator mode.

The normally ordered intensity correlation function

g(2)(t) =

〈
a†(0)a†(t)a(t)a(0)

〉
〈a†(0)a(0)〉2

(8.6)

can be calculated using the spectral decomposition of the time propagator as a
sum over projections on the eigenstates ρ̌i, ρ̂i multiplied by exponentials of the
corresponding eigenvalues λi. For any initial value ρ(0) the propagated operator
is

ρ(t) = eLtρ(0) =
∑
i

ρ̂ie
λittr (ρ̌iρ(0)) . (8.7)

Although valid for any initial values ρ(0) this formula is particularly useful if ρ(0)
is an operator obtained from the stationary state by applying the operators that
make up the correlation function. The term eLt is a symbolic notation for the
propagator. The second equality can be shown by simply inserting the rightmost
term of (8.7) into the master equation.

We apply (8.7) to the special case of the correlation function g(2)(t) to express
the correlation in terms of eigenvalues λi , eigenvectors ρ̂i, ρ̌i and the stationary
state ρstat of the Liouville operator:

g(2)(t) =
tr
(
a†(0)a†(t)a(t)a(0)ρstat

)
tr (a†(0)a(0)ρstat)2

=
tr
(
a†(0)a(0)eLt

(
a(0)ρstata

†(0)
))

tr (a†(0)a(0)ρstat)2

=
∑
i

tr
(
a†(0)a(0)ρ̂i

)
eλittr

(
ρ̌ia(o)ρstata

†(0)
)

tr (a†(0)a(0)ρstat)2 . (8.8)
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The sum runs over all eigenstates of the Liouville operator and λi denotes the
eigenvalue corresponding to the eigenoperators ρ̌i, ρ̂i.

In practice, this is not possible since there is an infinite number of eigenstates.
Therefore, we introduce a maximal photon number well above the mean photon
number and one has to cut the eigenstates at that photon number, thus making
the problem finite dimensional. The validity of this procedure may be checked by
repeating the calculation with different cutoff energies and by requiring that the
matrix elements of the stationary state ρstat vanish at the cutoff energy. This
means in practice that the total energy of the stationary state should be signif-
icantly lower than the cutoff energy. Some of the eigenstates calculated using
the photon number cutoff are not even approximate eigenstates of the Liouville
operator if their mean energy of the order of the cutoff energy. These states have
the weight zero in the sum 8.8 because their mean photon number differs signifi-
cantly from the stationary state and therefore their weight tr

(
ρ̂ia(o)ρstata

†(0)
)

must be zero.

Since all eigenvalues corresponding to eigenstates other than the stationary state
have a negative real part, for large times t all contributions but the one from
the stationary state are zero. Because every eigenbasis of L corresponding to a
nonzero eigenvalue is traceless and orthogonal to the dual eigenbasis ρ̌o corre-
sponding to the eigenvalue 0 we conclude that ρ̌o = 1. Therefore the correlation
function factorises and

lim
t→∞

g(2)(t) = 1. (8.9)

This behavior can be used to test the accuracy of the numerical results. The
numerical calculations presented here reproduced this behavior exactly.

The fact that system operator correlation functions may be calculated using the
propagation of the system operators is known as the quantum regression theorem
[14],[37]. We do not use the Quantum regression theorem, since we calculate th
correlation functions directly using the eigenstates of L.

The same spectral decomposition may be used to calculate any other correlation
function. Since g(1)(t) has the form

g(1)(t) =
∑
i

tr
(
a†ρ̂i

)
tr (ρ̌iaρo) eλit (8.10)

the spectrum can be calculated immediately as a sum of lorentzians corresponding
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to the different eigenvalues:

S(ω) =
1

π
<
(∫

dtg(1)(t)eiωt
)

=
∑
i

tr
(
a†ρ̂i

)
tr (ρ̌iaρo)

<(λi)

2
√

2π(
1

<(λi)2 + (ω + =(λi))
+

1

<(λi)2 + (ω −=(λi))

)
. (8.11)

The coherent driving field contributes a delta peak at ω = 0 to the spectrum.
In the spectra shown throughout this work this peak has been suppressed. The
center of the spectra is at the common frequency of the resonator and the atoms.

Since the spectrum is the real part of the Fourier transform of the correlation
function g(1)(t) it includes the same information as the correlation functions.

The mean photon number at constant intensity of the driving field depends on
the number of atoms in the resonator. This can be understood by considering
the energy balance of the system in the stationary state. The cavity gains energy
through the driving field and loses energy through the mirrors and spontaneous
emission of the atoms, which is unlikely to occur into the resonator mode. Since
the atoms interact only with the resonator mode, and not with other atoms,
their state is completely determined by the resonator mode. This means that the
cavity losses increase with the number of atoms. In order to compensate for the
losses the intensity of the driving field must be increased.

We note that another consequence of this argument is that for large numbers of
atoms the energy is stored predominantly in the atoms. Therefore, large values
of M (number of excited atoms) are possible even if the mean photon number
is low. We have to make sure in our numerical calculations that the maximum
value of M is large enough, which can be easily controlled by verifying that the
stationary state has no occupation probability at the cutoff. Typical values are
Mmax = 7 which is more three hundred times more than the stationary photon
number, but only three to six times the mean atomic excitation.

Figure 8.3 shows the intensity correlation function g(2)(t) for Z = 1, 2, 3, 4 atoms,
coupling constant g = 1, A = 0.28, B = 1.6 and ε = 0.2 . The values of A and B
are taken from [32]. The amplitude of the oscillations in g(2)(t) increases with the
number of atoms while the period of the oscillations decreases as a consequence
of the scaling of g.

Calculations with different parameter sets have shown that photon antibunching
does not happen if B is not significantly larger than A.

The published experimental data of Rempe et al. were obtained for a significantly
larger number of atoms. Figure 8.4-8.7 show the intensity correlation function
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Figure 8.3: The intensity correlation function for Z = 1, 2, 3, 4 atoms, coupling
constant g = 1, A = 0.28, B = 1.6 and driving field ε = 0.2. The value of g2(0)
depends on the number of atoms for low number of atoms, but not for larger
numbers of atoms. The frequency of the oscillations increases with the square
root of the atom number, as expected.
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Figure 8.4: The intensity correlation function for Z = 10 atoms, coupling con-
stant g = 1, A = 0.28, B = 1.6 and ε = 0.2. The frequency of the oscillations
increases with the number of atoms while the amplitude does not change consid-
erably.
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Figure 8.5: The intensity correlation function for Z = 20 atoms, coupling con-
stant g = 1, A = 0.28, B = 1.6 and ε = 0.2.
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Figure 8.6: The intensity correlation function for Z = 40 atoms, coupling con-
stant g = 1, A = 0.28, B = 1.6 and ε = 0.2.
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Figure 8.7: The intensity correlation function for Z = 100 atoms, coupling con-
stant g = 1, A = 0.28, B = 1.6 and ε = 0.2.
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g(2)(t) for Z = 10, 20, 40and100. These values are taken from the experimental
data of figure 8.2. The oscillation frequency increases as

√
Z, as expected. In

contrast, the value of g(2)(0) depends on the number of atoms only very weakly.
This is because in the limit of a very weak driving field the value of g(2)(0) depends
only on the saturation photon number [7] which is kept constant in these plots.
The envelope of the oscillations does not depend on the number of atoms. The
reason for this behavior is that the real parts of the matrix elements (5.34) of the
Lindblad operator, which determine the rate of decay of the correlation functions,
do not depend on the number of atoms but instead on the number of excited
atoms1.

The experimental results 8.2 of Rempe et al. are not consistent with the weak-
field limit ε� A, because the experimentally measured value of 1−g(2)(0) is four
times smaller than calculated under the assumption of a weak driving field.

Rempe et al. have determined the numbers of atoms and the decay rate of
g(2)(t) by fits of correlation functions calculated in the weak field limit to the
experimental data. Since our results show that the period of the oscillations still
depends on g

√
Z even if ε is of the order of A or larger we will still use their

values of Z in comparing their experimental data with our results.

In the experiment of Rempe et al. the atoms did not stay permanently in the
cavity but crossed the cavity in an atomic beam. Since the inverse of the transit
time is much smaller than any of the rates g, A and B effects of the finite
transit time are neglected here. Since the experiments were performed at optical
frequencies, thermal photons may be neglected.

Figure 8.8 shows that g(2)(0) does depend on the strength of the driving field if
the intensity ε of the driving field is above a threshold. In our calculations, a
value of ε ≈ 2.5, which still leads to very low mean photon numbers gives the
experimentally found correlation function. In the regime ε < 2 the driving field
does not have any effect on the correlation functions. This is the regime where
the weak-field approximation of [7] is appropriate. In the regime 2 < ε < 2.8
the intensity correlation function is still antibunched, but now depends on the
intensity of the driving field. For even larger values of ε one observes photon
bunching g(2)(0) > 1.

Using the results from above, we may show now that the experimental values of
Rempe et al. are indeed consistent with the Jaynes-Cummings model if a finite
driving field is assumed.

Our calculations gave the same dependency of the oscillation frequency on the
number of atoms as the weak-field approximation. Therefore we will use the
number of atoms determined from the experimental data using the weak-field

1Remember that m = −Z2 if all atoms are in the ground state.
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and ns = 0.7. For low values of y the intensity correlation does not depend on
y. This is the regime where the weak-field approximation may be used to calcu-
late the intensity correlation function g(2). For larger values of y regime begins
where the intensity correlation g(2)(0) increases and finally becomes classical with
g(2)(0) > 1.
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Figure 8.9: The mean photon number at Z = 110, C = 1.0 and ns = 0.7. The
mean photon number depends quadratically on y. The driving field cannot be
neglected when calculating the mean photon number.
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Figure 8.10: The experimental values of the correlation function in comparison
with the theoretical results. The data points are taken from figure 8.2. The
straight line has been calculated using (8.8). The atom numbers is Z = 110 The
parameters C = 1, ns = 0.6, y = 10 have been chosen similarly to the values
reported in the experimental publication. The theory describes the experiment
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Figure 8.11: The spectrum corresponding to the correlation function of Figure
8.10. The two-peaked form of the spectrum indicates that the 110 atoms here
actually behave like one scaled atom.

approximation. At ns = 0.6 and C = 1.0 we find a good accordance between
experimental and theoretical data, as Figure 8.10 shows. The decay rate of the
envelope of the theoretical correlation function is somewhat larger than that of
the experimental correlation function. This could not be fixed since this decay
rate and g(2)(0) depend mostly on the saturation photon number so that they
cannot be changed independently. This observation is consistent with the the
weak driving field approximation where in the limit Z � 1 the same behavior is
predicted.

In figure 8.11 the spectrum corresponding to the theoretical correlation function
is displayed. The spectrum shows the Rabi splitting expected for a single atom
with coupling constant g

√
Z.

The following section will investigate the connection between the spectrum, the
number of atoms and the validity of the scaling of the coupling constant in detail.

8.3 Scaling Behavior

Many modern experiments use high-finesse cavities. This means that the damping
constant A of the resonator mode can be small in comparison to the atomic
damping constant B. This situation allows for adiabatic elimination of the atoms.
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The adiabatic elimination of the atoms has been performed in a semiclassical
theory where the resonator mode is treated classically [19] as well as in a full
quantum theory [13]. In the second case one obtains a simple scaling law that
reduces a Z-atom-model to a 1-atom model with a scaled coupling constant. In
this section we will compare this scaling law with exact results.

Using adiabatic elimination one obtains the equation of motion

d

dt
ρ(t) = Lmρ(t) + ZLiρ(t) (8.12)

for the density operator ρ(t) of the resonator mode. Here Liρ(t) contains all terms
that result from the interaction between the atoms and the resonator mode. These
terms are of the form

g2
(
aa†ρ̂+ aøa†P − 2a†ρ̂a

)
+ g4

(
a2a†

2
ρ̂+ a2a†

2
ρ̂− 2a†

2
ρ̂a2
)

+ · · · (8.13)

The first term Lmρ(t) of (8.12) contains the dissipation of the light mode and
the interaction of the light mode with the driving field. The derivation of 8.12 is
based on two assumptions: First, at most one of the many atoms is excited, and
second, adiabatic elimination of the atoms is possible, i.e. the decay rate of the
atoms is fast enough so that the state of the atoms is always determined by the
state of the resonator mode.

If we insert in equation 8.12 for the time, the intensity of the driving field, the
interaction constant and the mode operators scaled quantities defined by

t′ = Zt

g′ =
√
Zt

ε′ =
1√
Z
ε (8.14)

a =
1√
Z
a

a† =
1√
Z
a†

we obtain a new equation of motion

d

dt′
ρ(t′) = L′mρ(t) + L′iρ(t) (8.15)

which does not contain the number of atoms at all. We can now test the validity
of this approach by comparing the exact calculations with expectations from the
scaling theory.

Figure 8.12 shows the mean photon number for Z = 1, 2, 3, 4, 5, 10, 18, 55 and 110
atoms and a straight line through the origin. The intensity of driving field which
is chosen such that at Z = 110 approximately 2 atoms are excited.
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Figure 8.12: Double logarithmic plot of the mean photon number < nf > for
Z=1,2,3,4,5,10,18,55 and 110 atoms. The driving field parameter ε and the cou-
pling constant g are scaled according to (8.15). The adiabatic elimination predicts
that the mean photon number is proportional to the number of atoms. The plot
shows that this is the case if 1 � Z . 100.If the scaling was exact all points
would lie on a straight line. At large atom numbers the scaling theory breaks
down because in its derivation it was assumed that at most one atom is excited.
This is not the case for large atom numbers.
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Figure 8.13: Double logarithmic plot of the number < na > of excited atoms
for Z=1,2,3,4,5,10,18,55 and 110 atoms. The mean number of excited atoms
is proportional the number of atoms. This behavior is expected from energy
conservation arguments as explained in the text.

The adiabatic approximation 8.12 predicts that the mean photon number is pro-
portional to the number of atoms. For 1� Z . 100 atoms this is the case, while
for Z . 5 and Z & 5 the mean photon number is larger than consistent with
the scaling behavior. The adiabatic elimination of the atoms is only possible if
at most one atom is excited. Since the number of excited atoms increases with
the total number of atoms this condition is only met if the number of atoms is
smaller than an upper limit that depends on the intensity of the driving field.
The number of excited atoms is shown in figure 8.13 for Z = 1, 2, 3, 4, 5, 10, 18, 55
and 110. The mean atomic excitation does not depend on the number of atoms.
This behavior can be understood if looking at the energy balance of the combined
system of resonator mode and atoms: The energy pumped into the system is pro-
portional to the number of atoms, since the intensity |ε|2 of the driving field is
proportional to the number of atoms and the resonator losses are predominantly
caused by spontaneous emission of the atoms since the total energy is predomi-
nantly stored in the atoms. Therefore, the energy losses per atom and hence the
mean state of the atoms cannot depend on the number of atoms.

Please note that one cannot determine the mean photon number at large numbers
of atoms from the mean photon number at Z = 1, as equation (8.12) suggests.
Instead it is possible to obtain an approximation for the the mean photon number
from the value at another, sufficiently large atom number.



8.3 Scaling Behavior 95

0

5e-05

0.0001

0.00015

0.0002

0.00025

0.0003

0.00035

-40 -20 0 20 40

S
(ω

)

ω

Spectrum

Z=1 ε=0.667

Figure 8.14: Spectrum for 1 atom, A = 0.422577, B = 2.36643, ε = 0.667 and
g = 10.48. The Rabi splitting is clearly visible, but there is also a shoulder and
little extra peaks between the two main peaks.
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Figure 8.15: Spectrum for 2 atoms, A = 0.422577, B = 2.36643, ε = 0.943 and
g = 7.41. The Rabi splitting is clearly visible. The separation of the peaks is the
same as in figure 8.14 because the coupling constant g has been scaled by the
square root of the atom number.
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Figure 8.16: Spectrum for 3 atoms, A = 0.422577, B = 2.36643, ε = 1.155 and
g = 6.05.
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Figure 8.17: Spectrum for 4 atoms, A = 0.422577, B = 2.36643, ε = 2.11 and
g = 3.314.
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Figure 8.18: Spectrum for 18 atoms, A = 0.422577, B = 2.36643, ε = 2.83 and
g = 2.47.
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Figure 8.19: Spectrum for 55 atoms, A = 0.422577, B = 2.36643, ε = 4.947 and
g = 1.413.
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Figure 8.20: Spectrum for 110 atoms, A = 0.422577, B = 2.36643, ε = 7.0 and
g = 1.0. The dominant feature of the spectrum is the Rabi splitting, but there
are sidebands indicating that now more than one atom is excited.

The mean photon number and the number of excited atoms is a property of the
stationary state only. In contrast, the correlation functions and the spectrum,
i.e the Fourier transform of g(1), depend on all eigenvalues and eigenstates and
therefore contain dynamical information on the system. The scaling law (8.12)
implies that the spectrum does not depend on the number of atoms.

Figure 8.14-8.19 show the spectra corresponding to 8.12 respectively 8.13. At
Z = 1 and Z = 2 the spectra contain significant contributions at ω = 0. The
spectra corresponding to higher numbers of atoms have the typical two-peaked
form of the Rabi splitting. At Z = 110 where the mean number of excites atoms
approaches two, sidebands show up. The validity of the scaling law coincides
with the two-peaked form of the spectrum.

In order to verify that the upper bound of the validity of the adiabatic approx-
imation results from the large value of ε required at large numbers of atoms the
mean photon number and mean number of excited atoms has been calculated
for larger values the amplitude of the driving field. Again the values of ε and g
were chosen in accordance with the scaling prescriptions (8.15). The results are
shown in the figure 8.22. The deviation at low numbers of atoms now is much
larger than with the weaker driving field and the upper bound of the validity of
the adiabatic approximation is reached at Z ≈ 20. At this number of atoms the
mean number of excited atom now approaches two, as can be seen from figure
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Figure 8.21: Mean photon number < nf > for Z = 1, 2, 3, 4, 5, 7, 10, 14, 18 atoms
and a stronger driving field than in figure 8.12. The driving field parameter ε
and the coupling constant g are scaled according to (8.15). The deviations from
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Figure 8.22: Mean number < na > of excited atoms for Z =
1, 2, 3, 4, 5, 7, 10, 14, 18. The mean number of excited atoms is proportional the
number of atoms. This behavior is expected from energy conservation arguments
as explained in the text.
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Figure 8.23: Spectrum for 1 atom, A = 0.422577, B = 2.36643, ε = 1.414 and
g = 10.48.

8.22 which displays the number of excited atoms atoms as a function of the num-
ber of atoms in the cavity. We conclude that the adiabatic approximation indeed
requires that the number of excited atoms is less than two.

For Z = 4 atoms the Rabi splitting is clearly visible (8.18), but the central peak
is still dominant. The Rabi peaks in the spectrum become dominant at Z = 7.
This is the number of atoms where the scaling regime begins, as figure 8.21 shows.
As in the case of the lower driving field above the scaling behavior coincides with
the two-peaked form of the spectrum. Here the driving field is sufficiently large
to hide the Rabi splitting completely for Z = 1 (figure 8.23) and Z = 2 (figure
8.24).

The scaling regime ends at Z = 18 where the sidepeaks begin to show up in the
spectrum 8.28.

The results presented here do support the validity of the adiabatic approximation
if at most one atom is excited and the Rabi splitting is visible. The visibility of
the Rabi splitting sets a lower limit to the number of atoms for which the scaling
behavior can be observed.
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Figure 8.24: Spectrum for 2 atoms, A = 0.422577, B = 2.36643, ε = 2.0 and
g = 7.41.
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Figure 8.25: Spectrum for 4 atoms, A = 0.422577, B = 2.36643, ε = 2.0 and
g = 5.24.
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Figure 8.26: Spectrum for 7 atoms, A = 0.422577, B = 2.36643, ε = 3.74 and
g = 3.96.
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Figure 8.27: Spectrum for 14 atoms, A = 0.422577, B = 2.36643, ε = 5.29 and
g = 2.8. This spectrum is almost two-peaked and correspondingly at Z = 14 the
mean photon number scales with the number of atoms.
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Figure 8.28: Spectrum for 18 atoms, A = 0.422577, B = 2.36643, ε = 6.0 and
g = 2.47.
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Chapter 9

Summary

We have studied the interaction of an arbitrary number Z of atoms with a quan-
tized damped resonator mode. In order to reduce the dimension of the system we
employed a symmetrized density operator description. These density operators
are analogous to angular momentum eigenstates which are usually referred to as
Dicke states.

In this symmetric basis the dimension of the atomic system is only 1
6
(Z + 1)(Z +

2)(Z + 3) in contrast to 4Z without symmetrization. We have shown that the
symmetry is not broken by spontaneous emission. A simple analytical expression
for the matrix elements of the complete Liouville operator with respect to the
Dicke states was found.

Using these results we are able to study the interaction of the atoms with a
resonator mode without any further approximations. In particular, we do not
eliminate the atoms.

Two different experimentally motivated systems were examined:

A micromaser which is pumped by clusters of atoms and not by single atoms. If
the cluster enter the maser completely excited the pump rate is proportional to
the number of atoms and the mean number of photons in the resonator increases
accordingly with Z. In this case the zero-photon-trapped states vanish when the
number of atoms is increased. If the clusters enter the resonator only partially
excited such that any cluster deposits at most one photon in the resonator, the
trapped states do not vanish and even one-photon-trapped states appear. The
dependence of the mean photon number converges with increasing atom number
to a very regular curve in this case.

In the other system the maser pump process was replace by a coherent driv-
ing field. For the first time the experimental intensity correlation functions for
more than hundred atoms were reproduced. The dependence of the correlation
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functions on the number of atoms was studied. The weak-field regime where the
correlation function does not depend on the intensity of the driving field was es-
tablished. The exact results have been compared to an approximation where the
atoms are eliminated adiabatically and the number of atoms enters only as a scal-
ing factor. This approximation is neither valid for very low atom numbers nor for
very large atom numbers. The range of permissible atom numbers decreases with
increasing driving field. The spectra corresponding to different numbers of atoms
and driving fields were calculated. It was shown that the adiabatic elimination
is only valid if the spectrum has the form of single-atom Rabi splitting.

The Dicke state formalism developed in this work is very general and can be
applied to all systems where several atoms interact with one resonator under
the only condition that the Liouville operator is symmetric with respect to any
permutation of the atoms.



Chapter 10

Outlook

The methods developed in this work allow to find stationary as well as dynamical
properties of a system consisting of an arbitrary number of atoms interacting
with a resonator mode where each atom is coupled to an individual bath and
the resonator dissipates energy through imperfect mirrors. The new method has
been applied to a coherently driven system and a maser that is driven by atom
clusters instead of single atoms. At least three more applications are possible:

• Lasers: The simplest description of a laser uses an inverted heat bath de-
scribed by the parameter s in equation (5.34). Therefore, this equation
could serve as a starting point into a microlaser theory describing lasers
whose active medium consists of several atoms. But please note that the
implementation model with a large photon number and a large atom number
leads to a very large state space. The numerical solution of this problem
requires computers which large amounts of memory. One feature of the
atomic pump mechanism is advantageous when compared to the driving
field used in this work: The off-diagonal matrix elements remain zero for
all times. Since the failure of the adiabatic approximation at large numbers
of atoms can be attributed to the strong classical driving field that this
approximation requires at large numbers of atoms it is quite possible that
a laser theory with adiabatically eliminated atoms will not show this be-
havior. Hence we expect that the scaling works better in conjunction with
this pump process.

• Finite Temperatures: Finite temperatures are already contained in the
model, but at finite temperatures it is no longer possible to obtain the
eigenvalues from the matrixM only but from the complete Liouville oper-
ator.

• Generalization of the two-state atom model: The Dicke states served as a
motivation to introduce the symmetrized description of the atomic degrees



108 Chapter 10. Outlook

of freedom and were used in many steps of the derivation of equation (5.34).
Nevertheless, the most important assumption was the exchange symmetry
of the atoms. This symmetry could be reformulated in the case of realistic
multilevel atoms.

• Criteria for nonrelevant dimensions: The numerical calculations show that
not all basis states ξ̂Z,l,m,m′ have a relevant contribution to the correlation
function g(2)(t). Therefore, one probably may find a way to suppress these
irrelevant states, thus reducing the numerical complexity of the calculations,
if one is only interested in the two-point features only.

• Atomic correlation functions: Since the far field emitted from an atom is
proportional to its dipole moment there is a connection between atomic
and mode correlation functions which can be used to express one of theses
by the other one. Nevertheless, it is possible to take one atom out of
the symmetrization collective and couple it individually to its own bath
and the field mode. This leads to a state space of four times the size of
the symmetric state space and makes it possible to calculate atom-atom
correlation functions.

• Mode structure: One of the basic assumptions was that the frequencies g,
A and B are the same for all atoms. In the case of a ring resonator, this
assumption is justified, but in order to describe atoms interacting with a
standing wave one has to take into account the mode structure of the wave.
If it is possible to group the atoms into cluster experiencing approximately
the same interaction strength the methods developed in this work still apply
to those clusters.

• Decoupling of decoherence and interaction time scale: Since spontaneous
emission and coherent interaction of atoms with resonator modes are fun-
damentally the same process these two processes happen on the same time
scale. One possibility to separate these time scales is to use high-Q cavities
that enhance a selected mode. Since the correlation functions show that the
frequency of the collective dynamics may scale like the square root of the
number of atoms while the decay rate remains independent of the number
of atoms, clusters of atoms should be considered as a possibility to separate
interaction and decoherence time scales.
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