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Summary

The sequence contained in the 3.2 Gb long haploid stretches of our DNA has been registered
but we are still far from having decoded the information that it contains. Among the
approaches that facilitate a closer insight into the relevance of individual elements for existent
phenotypes is the comparative approach. It extends beyond focusing solely on one species,
instead exploiting the knowledge gained from investigating patterns of evolutionary change.
Evolutionary comparisons have an advantage over other techniques that rely on genetic
change, in that they inform on the types of changes that have evidently occurred in nature.
In this thesis, I bridge advances made in gathering genetic information and in generating
high-throughput functional assays in a cross-species context to answer fundamental questions
in evolutionary genomics.

To be able to rely on recently developed genome-wide functional assays like RNA-seq, we
should know the amount of error that these measurements contain. Using genetic variation
between species, I contribute to estimating the precision with which we measure expression.
We further evaluate and compare computational methods that are designed to remove this
noise, using our substitution-based error estimates as the ground truth.

Then, I study multiple aspects of gene and regulatory evolution by leveraging cross-species
data on DNA, expression, accessibility and the activity of regulatory and protein sequences.
An important current task in genomics is to improve our ability to read and interpret the
regulatory code that governs expression. Therefore, I study how constraint is reflected in a
range of functional properties of cis-regulatory elements (CREs), using their tissue-specificity
as a proxy for functional importance. Based on theoretical considerations and patterns seen
in the case of genes, pleiotropic CREs that are utilized in all or the majority of tissues

are expected to be under most constraint. This turns out to be true for the conservation



2 Summary

patterns of transcription factor binding site repertoires, whereas the exact binding sites as
well as the underlying sequences show even lower conservation than that of tissue-specific
CREs. Considering the highly conserved accessibility of pleiotropic CREs and the conserved
downstream gene expression, these findings suggest pervasive compensatory evolution acting
within the sequences of pleiotropic CREs and, likely, across functionally orthologous tissue-
specific CREs. This study underlines the importance to evaluate CRE conservation and
functionality using metrics beyond simple sequence conservation.

Further, I touch another currently highly debated aspect of genome evolution: The role of
newly evolved elements in species-specific rewiring of gene regulatory networks. Transpos-
able element-derived regulatory and gene sequences are gaining increasing attention due
to their ability to expand the genome in a clade- or species-specific manner. In addition,
some types of TEs, such as long terminal repeat (LTR) elements, carry binding sites for
important transcription factors active in pluripotent stem or other cell types. This leads
to new regulatory sequences and transcripts. While some of these have been proposed or
indeed shown to contribute to the cellular phenotypes, in the current study we revisit one
such candidate long non-coding gene, ESRG, and find that in spite of its high expression in
human pluripotent stem cells, it is dispensable to the function of these cells. We also find no
evidence for selection using sequence divergence and polymorphism-based analyses. This
study is a reminder to be careful in interpreting expression as a sign of function.

Finally, I combine evolutionary and functional measures to assess the association between
genetic and phenotypic evolution. Specifically, I focus on the association between brain
evolution and the evolution of a particular brain developmental gene TRNP1 across over
30 mammalian species. I find that TRNP1 coding sequence evolution, TRNP1-dependent
proliferation rates and the activity of a cis-regulatory element of TRNP1 co-evolve with
brain size and the degree of gyrification. These findings advance our evolutionary and neu-
rodevelopmental understanding of how larger and more folded brains evolve. Moreover, with
the increasing availability of high-quality genomes and possibilities to assay genetic variants
in massively parallel assays, this and similar studies are demonstrations of how evolutionary

information can be leveraged by combining phylogenetic approaches with functional assays.



1 Introduction

The extraordinary precision and far reach of our ability to process, preserve and spread
information is among the key capabilities of the human species that has allowed us to build up
on the knowledge of many generations2. Indeed, everything in the human world increasingly
relies on and evolves around it. In the era of information, the genetic code still remains
among the most relevant, mysterious and surprising sources of information that contains the
full instructions to create a whole organism and to generate offsprings. The genetic code can
be seen as a likely accidental, self-preserving machine containing sets of instructions to be
executed at a particular time in a particular space. It is written using sequences of a simple
4-letter code which is so powerful that it enables the development of such complex structures
as our brains, able to process the intense information flow as it does on an every-day-life
basis. Therefore, genetics, and biology in general, have inspired many fields beyond medicine
345 adding to the motivation to study it.

Among the most challenging tasks in biology is to identify causal variants that are responsible
for diverged organismal phenotypes within and across species. This is particularly difficult in
higher complexity organisms like mammals, and even more challenging across primates where
genetic manipulations are out of discussion due to clear ethical issues. Studying natural
genetic variation and selectional signatures across regions of the genome can tell us a lot about
how to interpret a certain genetic change®. Moreover, approaches that rely on natural genetic
and phenotypic variation can be combined with molecular assays and known functional
features of the elements. In this thesis, I combine evolutionary, molecular and functional
measures to study multiple aspects of genome evolution and how these contribute to the

evolution of (molecular) phenotypes. Because I focus on the interpretation of the human
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genome, information about genetic change is mainly derived from within-human variation
and species genetically closely related to the human - other primates. In the following
sections I provide background information that is important to understand the context of
my work. First, I give an overview on the genetic elements that are relevant for this thesis
in the sections Central regulatory mechanisms governing the tissue-specificity of
gene expression and Emergence of novel elements through the activity of mobile
genetic elements. In the section Evolutionary forces shaping genome evolution, I
briefly explain basic population genetic and evolutionary concepts relevant for adequately
interpreting genetic change. I also outline the evolutionary modes under which primate
genomes generally evolve. In the following chapter, Studying the mode of evolution in
different modalities, I discuss specific molecular assays and evolutionary measures which,
if combined properly, can inform on the type of selection acting on a genetic or molecular
element. I discuss important measures of protein, gene expression and regulatory evolution

and introduce frameworks using which genotype-phenotype co-evolution can be investigated.
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1.1 Central regulatory mechanisms governing
the tissue-specificity of gene expression

While all cells of the same multicellular organism contain nearly identical genetic information,
distinguished sets of information are utilized in different cells yielding distinct cellular
phenotypes. This is enabled through gene expression regulation happening on multiple
levels. Firstly, sequence of the particular gene and the genetic elements that regulate
its expression have to be accessible to the transcription machinery. This is controlled by
epigenetic modifications to DNA, such as DNA methylation that affects gene silencing”, and
modifications to histone proteins that regulate the compactness of the DNA®?. Moreover,
the required regulatory RNA and proteins including transcription factors (TFs), co-factors
and the right type of RNA-polymerase all have to be present in the cell and bind regulatory
DNA to initiate transcription of the gene!®!! (Figure 1.1). The specificity of gene regulation
is to a good part attributed to the specificity of the transcription factors present in the
cell and their binding to accessible cis-regulatory elements (CREs), commonly classified as
promoters, enhancers, silencers and insulators'?. Notably, further important regulation of
the gene product happens also at post-transcriptional and post-translational stages, however
those processes are beyond the scope of this thesis. Altogether these mechanisms control
cell fate determination during development through complex interplay between external
signals, chromatin remodelling and temporal patterns of regulatory protein activity, affecting

expression networks of other genes and properties of the cell.

1.1.1 Trans-regulation by transcription factors

Transcription factors are regulatory proteins that bind cis-regulatory elements, often in
the vicinity of a gene, and other transcription factors and co-factors, thereby enabling the
positioning of transcription machinery and suitable DNA conformation to induce or suppress
expression . The estimated total number of human TFs is ~1,6003. One way to detect
their presence in a specific cellular context of interest is by quantifying their expression using

RNA-seq !>, TFs tend to be expressed at lower levels than other genes, possibly to establish
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proximal

Promoter

ChlP-seq DNase-seq RNA-seq Hi-C
ATAC-seq

Figure 1.1. Overview of the interplay between chromatin accessibility, transcription factor
binding, and transcriptional machinery in regulating gene expression. Proximal and distal
cis-regulatory elements (CREs) bind transcription factors (TFs) and co-factors, facilitating
the positioning of the transcription machinery near the promoter and transcription start site
(TSS) to initiate expression. Pairs of CTCF proteins, in combination with cohesin rings, define
the topologically associating domain (TAD) compartments of the DNA, allowing specific
regions to interact more frequently within these domains. TF binding can be measured
using ChIP-seq targeting the respective TFs. Chromatin accessibility can be measured using
DNase-seq and ATAC-seq, while gene expression is commonly quantified using RNA-seq.
TAD boundaries and overall 3D genome organization are often measured using Hi-C.

binding specificity 6. Historically, TFs have been classified as activators or repressors of
gene expression'’, however evidence is accumulating that their function is rarely binary
as many TFs have been shown to act as repressors or activators in a context-dependent
manner #1920 TFs can bind regulatory sequences as monomers, homo- or hetero-dimers, or

multi-mers?2

L in the latter cases meaning that they form larger regulatory protein complexes.
These complexes can have their own specific effect on gene regulation. Importantly, TFs
bind selected, typically ~6-12 bp long DNA sequences of a particular composition which
are embedded in the CREs. In some cases, the preferred binding sequence can have a more
strictly defined composition, but empirical experimental findings show frequent binding site

degeneracy, i.e. that most TF-DNA interactions are robust to some or even large variation in

the binding sequence??23. Moreover, weak binding of TFs to flanking sequences surrounding
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the target regulatory sequences can also be advantageous for more stable gene expression
24,25

TFs can be classified into ~54 families based on their structural and DNA binding site
domain similarity?6. Some classes are associated with particular developmental processes, for
example, HOX TF family governs cell fates?” and the rapidly evolving zinc finger TF family
controls the activity of transposable elements?®. TFs can also be classified by their cellular
function. For example, pioneer factors such as MYOD12?, PAX53%, FOXA13! are known to
control or interact with histone modifications and recruit chromatin-remodelling complexes,
subsequently initiating chromatin accessibility and the binding of other regulators. Another
relevant recently identified group of TFs are the so-called 'Universal stripe factors’32 that
facilitate stable and prolonged CRE accessibility and the binding of other TFs, likely leading
to more stable downstream gene expression. A groundbreaking discovery, that also affects
the cellular systems used in this thesis, has been the identification of pluripotency factors
0OCT3/4, SOX2, c-MYC and KLF4 that are sufficient to reprogram differentiated cells into
induced pluripotent stem cells (iPSCs)33. In summary, the cellular presence and binding
of TFs to CREs is central for cell-specific gene regulation. The downstream effects of TF
binding does not have a fit-for-all rulebook, instead it depends on the overall combinatorial

binding across TFs and the cellular context.

1.1.2 Cis-regulatory elements

Historically, CREs were identified through their proximity to gene sequences and through
their sequence conservation, as it is in average higher than that of non-functional sequences
but lower than that of protein-coding sequences3*3°. However, CRE landscapes have proven
to be highly dynamic across tissues and developmental stages within and across species36-37.
The advent of high-throughput assays has enabled more direct ways for active CRE detection
in the specific cellular context of interest. DNase I hypersensitive sites sequencing (DNase-seq)
38 and Assay for Transposase-Accessible Chromatin using sequencing (ATAC-seq) 3940 are

among the most popular assays for mapping the location of accessible chromatin, large part

of which is accessible because of its regulatory activity. Another, more direct way to identify
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active or primed CREs is by targeting certain combinations of histone modifications*! or

TF binding using Chromatin immunoprecipitation followed by sequencing (ChIP-Seq) 4243,
however this assay tends to generate larger peaks making it more difficult to identify the
exact sequence that is the source of the regulatory activity.

Knowing the complex nature of TF binding, it also comes as no surprise that the regulatory
element architectures and sequences that are bound by TFs can be fairly variable. Promoters
are the core regulatory units required for trancription initiation, located within few kilobases
from or even overlapping the transcription start site(s) of the gene®. Promoters that are
utilized across a broader range of tissues tend to be large, CpG-rich and often accessible
even if the gene is not extensively transcribed3®%4. A possible reason for the more stable
accessibility is to set the baseline requirements ready for the transcription once it is necessary.
Tissue-specific promoters tend to be narrower and less CpG-rich, for example TATA-box
promoters that regulate tissue-specific, inducible response genes*®. Enhancers and silencers
are more distal regulatory elements that are in average shorter than promoters, often less
CpG-rich and accessible in a more cell-type specific fashion46:4748 While enhancers con-
tribute to gene transcription activation, silencers repress transcription initiation. However,
quantification of silencer activity is challenging?:°°. In practice, the distinction between
CRE functional classes is often unclear, because the same regulatory sequence can possess the
activity of a promoter, enhancer or silencer depending on the cellular context®52. Moreover,
CREs often show functional redundancy®3, for example, the activity of some individual
enhancers appears to be buffered by equally functional so-called shadow enhancers®*?°.
Experimental evidence suggests that distal enhancers physically contact promoters by chro-
matin looping during transcription initiation, enabling regulator interactions and better DNA
conformation for efficient transcription®®. The range of possible genomic region interactions
are controlled by another important class of CREs called insulators that define the bound-
aries of a higher-level spatial chromatin organization into context-dependent topologically
associated domains (TADs)?7%%:59  They are bound by a special zinc finger TF called
CCCTC-binding factor (CTCF) %" and thought to contribute to gene expression regulation
by limiting the possible interactions between different CREs and genes.

Knowing the boundaries of TADs can also help in narrowing down the possible search space
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for identifying CRE-to-gene associations. The overall simplest strategy for this task is to
associate CREs to genes based on their genomic proximity 52, further pruned for being
within the same TAD compartment if this information is available. When working with many
samples as in the case of single cell data, methods that rely on accessibility and expression
co-variation can also be utilized 53:54:55 Machine learning-based models trained on published
data can also be considered for this task 67, Having identified CRE-to-gene associations,
various aspects on regulatory principles can be studied.

To summarize, genes and the associated regulatory mechanisms are central to the function-
ality of the genome. Evolutionary change in their sequence or accessibility can have direct

consequences for the phenotype.

1.1.3 Constraint on genetic elements imposed by pleiotropy

The ability of a genetic element to evolve is influenced by the number of molecular contexts in
which it is utilized. This phenomenon is widely recognised as pleiotropy, commonly quantified
as the number of cell types or tissues in which the element is used. While in some cases
better fitness could be achieved by adjusting a particular phenotype, the underlying genetic
element(s) may also be essential in another phenotypic context and, hence, lead to detrimental
outcome in case of change, thus imposing constraint on its evolution. Therefore, pleiotropic
elements are expected to be under more constraint than tissue-specific elements. In recent
years, evidence has accumulated that genes with more pleiotropic expression patterns indeed

68,69 Moreover, pleiotropic genes also tend to be

have more conserved protein sequences
evolutionary older "° and show more conserved, i.e. more similar expression patterns across
species 17273 In summary, tissue-specificity is generally a good predictor for constraint 74
Given this prior information, it is reasonable to assume that also cis-regulatory elements
(CREs) that are pleiotropic are on average under more constraint than tissue-specific CREs.
However, given that CREs are in many aspects different from genes, it is an open and
relevant question how constraint imposed by pleiotropy is reflected in the properties of CREs.

Answering this question also brings us closer to understanding the principles that relate CRE

sequence evolution to gene expression evolution.
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1.2 Emergence of novel elements through the
activity of mobile genetic elements

A major contributor to the total content of eukaryotic genomes, and primate genomes in par-
ticular, is the activity of mobile genetic elements, also called transposable elements (TEs) 7576,
TEs can be classified into two main types by their mechanism of activity: DNA-transposons
(’cut-and-paste’) and RNA-transposons, also called retrotransposons ("copy-and-paste’). It
follows that the latter type contributes considerably more to the genome content (~ 45%)77.
The main types of retrotransposons of a potential importance for primate evolution due to
their abundance are endogenous retroviruses (ERVs), autonomous long interspersed nuclear
elements (LINESs), non-autonomous short interspersed nuclear elements (SINEs), that include
primate-specific Alu elements (Figure 1.2A), and the primate-specific SINE variable-number
tandem-repeat Alu elements (SINE-VNTR-Alu or SVA), which are composites of ERV and
Alu elements 7876,79,80

In order for these insertions to be heritable, they generally have to happen in the germline
or the pre-implantation embryo. Although the identified TE sequences constitute around
half of the human genome, by taking into account the likely byproducts of their activity
such as pseudogenes and by now unrecognizable products of their ancient activity, their
actual contribution might be even around 75% ™. While most of the fixed TE insertions
are thought to be (nearly) neutral, in some cases there can be larger fitness and phenotypic
consequences. On one hand, the mutagenic effect of these insertions can have detrimental
effects on genome stability and interrupt sequences of functional importance®?. Additionally,
some of these elements are linked to health issues, many of which manifest later in life when
stringent regulation does not result in enhanced reproductive success. On the other hand,
through the regulatory potential of these sequences, some of the insertions result in novel,

83,84 and new genes®®, including regulatory RNAs and expressed

potentially functional CREs
chimeric products fused with downstream neighbor sequences called long-non-coding RNAs
(IncRNAs) 86 (Figure 1.2C). Indeed, some TE-derived elements have been shown to regulate

important processes, including placental development, immune response and the cell-type

complexity and signalling in the brain®?. Some famous functional examples include XIST
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Figure 1.2. A Transposable element content in the genomes of a mouse (Mus musculus),
rhesus macaque (Macaca mulatta) and human (Homo sapiens)®175. B Intact LTR/ERVs
consist of gag, pol and env genes, surrounded by two identical LTR elements that function as
promoters. The subclass of LTR7 elements have binding sites for important pluripotency
TFs including OCT3/4, SOX2 and NANOG. C Possible effects of TE jumping and insertions,
exemplified for the case of HERVH/LTRY7. It can lead to insertions of new copies of a gene,
processed pseudogenes with polyA-tails, altered expression of existing genes or the generation
of chimeric, expressed products containing parts of the TE and parts of the genomic sequence.

RNA that regulates X chromosome silencing 87888990 Syncytin genes that allow for nutrient
and gas exchange between the mother and the fetus during pregnancy?'?? and the Arc
protein involved in synaptic plasticity ?3:°%.

Particularly relevant for primate- or human-specific regulatory evolution might be the ERV-
derived long terminal repeat (LTR) retrotransposons. They are characterized by identical

LTR elements at both ends of the retrotransposal element-specific genes that facilitate tran-

scription of the retroelement and integration of the new copy into the host DNA. ERV/LTR
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elements are thought to have arisen as a result of ancient and ongoing viral infections of
the germline. Estimates based on their age suggest waves of higher activity and fixation
around 50 MYA and multiple later waves on the branches leading to Old World monkeys
and great apes™9. A relevant subclass are the human ERVs (HERVs), that were found in
humans but some of which are also present in other primates. Approximately 8% of the
human genome is estimated to stem from HERVs"", showing great diversity®!. Different
classes carry different sets of transcription factor binding sites in their LTR sequences and
show increased regulatory activity in different cell types, such as pluripotent, embryonic
endoderm/mesoderm, hematopoetic and immune cells?. In the context of pluripotency,
particularly relevant are the LTR7 elements that have binding sites for key pluripotency
transcription factors (Figure 1.2B). These include OCT3/4 (POU5F1), SOX2, and NANOG,
making these elements a potent source of novel CREs?%?7. A knock-down of LTR7-derived
elements was shown to impair cell reprogramming to iPSCs“. Some other studies suggest
that HERVH-derived enhancers are involved in chromatin opening in human embryonic
stem cells (hESCs), followed by the activation of evolutionarily similarly old classes of
Kriippel-associated box zinc finger TFs that repress their activity. Later during development,
the same enhancers are utilized during cell-type specific differentiation processes??:100,101,28
Hence, by some, TE-derived elements are considered a major source of gene regulatory

innovationg102:99,103

, whereas others have not found evidence for such rewiring'%* or consider
it rather an obstacle where a possible rewiring is at most a result of compensation for the
disruptions ™. Whether functional or not, it is clear that TE activity is a major source for
the emergence of species-specific elements. Overall, our genome is exposed to factors beyond
instantaneous functionality that have and might inevitably happen, all of which can be either

removed, coped with, tolerated or utilized 105:109.
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1.3 Evolutionary forces shaping genome evolu-

tion

If much of the genome is not functional or even slightly disadvantageous, how come it is
there and how come the process of genome expansion is happening? The answer becomes
obvious through the basic principles of genome evolution. These also elucidate the necessity
to interpret the meaning of genetic change cautiously and underlines the importance of
carefully designed statistical evolutionary tests of constraint and adaptation that take into

account varying population sizes and local mutation rates.

1.3.1 Effective population size

The effective population size (N, ) is among the key factors affecting the relative contributions
of selection versus random drift to the genetic material of a species. The types of evolution
that can occur within a species depend strongly on it, e.g., if N, is sufficiently small, the
noise associated with random sampling of alleles can influence their fixation probability
to the extent as if selection was virtually absent™. It is almost always smaller than the
total population, partially because 1) some individuals do not contribute to the following
generation, 2) sex ratios that deviate from 1:1 reduce N, 3) individuals tend to mate with
locally related individuals, especially spatial semi-isolated patches decrease the variability.
The previous bottlenecks in species variability have large, long lasting effects on its N,
106,107,108

Hence, in many cases N, is considerably smaller than the observed population. For example,
the estimated average N, across vertebrate species is only around 10% of the total number
of breeding adults (N)19%119  [gnoring this discrepancy would lead to serious errors, while
using N, instead of N has practical advantages as it permits the application of population

genetics models that assume the population to behave as an ideal Wright-Fisher population.
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1.3.2 Random genetic drift and mutation

The initial spread of all genetic mutations during the first few generations in diploid organisms
is mainly determined by drift which is inversely proportional to the population size, i.e. ﬁ
A certain variant, independently of its long-term neutral, advantageous or disadvantageous
effects, has to first survive the stage of being a transient polymorphism. Mutations arise at
the frequency of 2N where p indicates the mutation rate. Hence, in the complete absence
of selection, the total rate of fixation of neutral alleles is equal to the product of the number
arising per generation and the fixation probability of individual mutations, where both
depend on 2N in opposing ways!!!. Therefore, the long-term rate of neutral evolution is
equal to the genetic mutation rate of the species, e.g.,
_ H2N

Po = oON
While the fixation probability of neutral mutations does not depend on N, the time that it
will take until fixation does, which is in average 4N, generations. This implies that larger
N, results in elevated amount of within-species variation.
To make things more complicated, germline mutation rates vary between different organisms,
up to a factor of 40 across vertebrates ''2. Moreover, mutation rate is not uniformly distributed
across the genome, instead it depends on multiple local genomic characteristics including
structural features such as GC content, chromatin organization, mismatch repair efficiency

113,114,115

and recombination rates Taking these factors into account is important when

looking for selectional signatures between or within species.

1.3.3 Variation in strength and efficacy of selection

Understanding the type of selection acting on genetic elements is a core interest in biology as
it informs on their importance and helps connecting genotypes to function and phenotypes.

Negative selection, also called purifying selection, constraints the change in functional genetic

116

elements Given a set of random possible mutations in a functional genetic element,
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the overall likelihood that many of these will be (weakly) disadvantageous is high, thus
decreasing the fixation probability of such changes''”. In general, disadvantageous mutations
are indicated by a negative selection coefficient s < 0. The amount of purifying selection
tends to be higher in more essential elements, thus serving as an approximation for the
importance of the element and as a guidance for prioritising certain genetic regions in case
of disease. Overall, non-synonymous sites in protein-coding sequences tend to be under most
constraint ''®, i.e., most possible changes are associated with relatively large, negative s.
For the case of CREs, a few ultra-conserved elements appear to be under strong negative
selection '?. However, most individual CREs might be associated with rather small selection
coefficients, possibly due to their redundancy and the potential presence of proto-CREs
120,121 " allowing for high turnover rates. Therefore, the majority of protein-coding sequences,
including the ones encoding most transcription factors, evolve considerably slower than CRE
sequences '8, The constraint is also generally expected to be higher in pleiotropic elements,
functional in multiple cellular or developmental contexts, than in elements that are functional
only one or a few contexts22.

Positive selection, also called directional selection, implies that a genetic change is advanta-
geous for the survival or the reproductive potential of a species and thus have higher fixation
probability than a neutral mutation'7, indicated by a positive selection coefficient s > 0. A
special case of positive selection is the compensatory evolution that can happen because of
prior fixation of slightly deleterious alleles 23124 due to drift or fluctuating selection pres-
sures. Detection of positive selection can help identify the genetic source of species-specific
characteristics. Only a few non-synonymous sites of protein-coding sequences appear to
evolve under positive selection, but this proportion can vary considerably depending on
their structural properties and function'?2. However, even though these events are rare, the
selection strength and the resulting adaptive changes can have large phenotypic effects. In
comparison, the possibilities for adaptive changes in CREs might be more frequent but each
individual change is likely associated with smaller selection coefficients!'8. Hence, overall
only a small amount of substitutions is thought to have arisen through positive selection 6.

In addition, it can be challenging to distinguish the actual mutations under positive selection

that rapidly increase in frequency through selective sweep from the ones that are dragged
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along to fixation simply because of being in the genetic vicinity of the selected position and
thereby linked, coined as hitchhiking2°.

In general, while the fixation probability of neutral mutations does not depend on N, N,
does have an impact on the fixation probability of advantageous and deleterious mutations,
i.e., the efficacy of selection after these mutations have survived the first random spread
across a few generations. For the scenario where alleles have an additive effect, the selection
coefficient is |s| < 0.1 (which is mostly the case) and N, << N, the probability of fixation is

approximated as follows 126:127:

_ (2sN¢/N)
™ ] ¢—4Nes

Thus, if the absolute selection coefficient is sufficiently large relative to random drift, e.g., if
4N.s >> 1, the fixation probability is different to the neutral expectation by 4N.s. This
means that the same coefficient s will have a different fixation probability depending on the
N, of the population, in which higher N, boosts the efficacy of selection 2%, With sufficiently
small N., the same mutant allele with a certain s can appear nearly identical to a neutral

allele, thereby possessing effective neutrality 129139131,

1.3.4 Evolutionary modes in primates

Primate, and human evolution in particular, appears to be strongly influenced by non-adaptive
evolution, i.e., drift and mutation. The effective population sizes in primates, especially great
apes, are estimated to be significantly smaller than the number of breeding individuals. This

difference appears to be more drastic than in many other animal clades. These estimates are

132,133,134,135

based on the low amount of polymorphisms within humans and phylogenetic

136,137

gene comparisons across great apes . The reconstructed N, during human evolution

indicates a =~ 10-fold reduction since the common ancestor of humans and chimpanzees
137,138 ' resulting in the estimated current N, ~ 10,000 39134140138 Ty comparison, these

numbers are moderately larger for macaques (N, ~ 70,000) 41138 and much larger for the
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rodent species (N, ~ 450,000 — 820,000) 142, This implies that the efficacy of selection in
primates is lower than in other species, including model organisms like mice or flies with
larger N., limiting the fixation of weakly adaptive mutations. Also, neutral mutations get
fixed quicker due to drift, therefore the genetic variability is low. Importantly, small N, also
promotes the accumulation of weakly deleterious mutations in short term, altogether leading
to an increased fixation of non-adaptive genetic changes including point mutations, gene
duplications, TE-derived insertions and even whole chromosome rearrangements as observed
for the human. Although potentially disadvantageous at first, in the long run the resultant
alterations can give a fertile ground for secondary adaptive or compensatory changes and

morphological evolution that is infeasible in large populations 143,
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1.4 Studying the mode of evolution in different
modalities

1.4.1 Quantification of protein evolution rates

Learning to properly read protein-coding sequences and to interpret their change have been
important tasks long before any vertebrate genome was fully sequenced 44, Therefore, these
are among the best understood types of elements. Briefly, protein-coding sequences contain
codons (triplets of DNA), where each triplet translates to a certain amino acid (AA) in the
resulting protein. The beginning, the end and the intron-exon boundaries of the coding
sequences are marked by distinct sets of codons or bases'4®. The resulting product can also
be detected using the transcribed sequence or the translated protein, altogether alleviating
the identification of protein-coding sequences.

It follows that rules for sequence-based quantification of protein evolution rates have also
been long studied and certain metrics have been established. The consensus way to quantify
the evolutionary rates of a protein is to calculate the ratio of non-synonymous (dN) to
synonymous (dS) substitutions, i.e. dN/dS 5809146 Non-synonymous substitutions in the
codon sequence change the resulting AA, whereas synonymous substitutions do not affect
the AA, thereby serving as a local baseline approximation of the sequence change that is
unrelated to the protein evolution. dN/dS values close to 0 indicate slow protein evolution
rates (i.e., strong negative selection), while values around 1 suggest nearly-neutral evolution
rates and values > 1 suggest the possibility of positive selection '47-148,

Given this useful metric, many protein sequences have been screened across the mammalian

149,150 yy5ing maximum likelihood-based phylogenetic frameworks

or the primate phylogeny
of which the most frequently used is PAML %1149 Multiple assumptions regarding the
evolution of the protein across the phylogeny need to be made, including but not limited
to the presence of a molecular clock, codon frequency and AA distance matrix. In general,
most screened proteins appear to evolve under strong negative selection, yielding an overall

dN/dS close to zero'52118 If positive selection happens, for most proteins it tends to be

concentrated in certain functional domains and only stands out when specifically looking
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at the particular positions using the so-called site model. It can also be limited to certain
branches of the phylogenetic tree (branch model, branch-site model). Different tests have
been implemented to test the likelihood of these alternative hypotheses relative to a respective
null hypothesis 3. However, these tests are rather conservative and underpowered, detecting
adaptive evolution only if dN is higher than dS. Therefore, the case where positive selection
has happened in only few lineages and few AAs is difficult to detect %3, particularly between
closely related species where the accumulation of synonymous mutations might also be low.

Another, less conservative metric for detecting positive or negative selection in protein-coding

Neutral Negative selection Positive selection
— — —r — ——— -
o — — o— —0—
——oo —o—» OO —
—— — O —
80— 0O W#—— 0O #8080
—— 8 — 8 — 0
mms _ 35 g /s _ 305 o 4 mims _ 35 4
dN/dS™ T 273 dN/dS™ T 73 dN/dS = 43

Figure 1.3. A visual depiction of McDonald-Kreitman test where an outgroup species is used
to estimate the number of fixed substitutions across non-synonymous (dN) and synonymous
(dS) sites, while the number of polymorphisms (7, mg) within the same functional categories
provide an estimate for the variation within the species.

sequences is the McDonald-Kreitman test'®* (Figure 1.3) which also relies on dN and dS,
but adds interpretability and better control over varying N, by normalizing the cross-species
estimates by the within-species variability, i.e. polymorphisms 7y and 7g, at the same sites.
The null hypothesis is that the ratio of non-synonynonymous to synonymous variation within

species is the same as between species. This can be summarized using a neutrality index:

TN/Ts
NI =
dN/dS
An NI>1 indicates negative selection, whereas NI<1 positive selection. Limitations of this
approach are related to the fact that the levels of polymorphisms might be influenced by

demographic effects or weak negative selection ®>1%6 thereby breaking the assumption of
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the approximate neutrality.

Although informative, the evolution rate alone does not tell much about the potential role of
the protein changes for phenotypic evolution. If the trait of interest can be quantified as a
categorical or continuous characteristic of the species, methods that jointly reconstruct genetic
and phenotypic ancestral states across a phylogeny can be used to infer their correlation.
Bayesian phylogenetic approaches such as Coevol®7 have an advantage over frequentist
methods that the uncertainty in the reconstructed values can be carried along during
reconstruction and taken into account when inferring the probability of co-evolution. Clearly,
such methods need to be codon- and phylogeny-aware. In theory, different assumptions
about the correlation structure between species can be made. The currently implemented
(and simplest) correlation structure is the Brownian Motion (Figure 1.4A) as it is aligns with

158 and implies that the substitution rates and the continuous

the assumptions of normality
traits are evolving with no mean shift and variance o2.

While these metrics are well established, they depend heavily on the assumption that the
alignments are correct. A small misalignment can cause a frame shift, thereby changing
the whole interpretation of the resulting translated protein sequence. Hence, establishing
the correct exon-intron boundaries in different species at least for the consensus transcripts
is a central and non-trivial task. Currently, many individual studies simply focus on the

150,159

more easily alignable proteins or subparts of the protein , which might bias the analysis

towards lower dN/dS. Long-read sequencing technologies and recent additional efforts like

the mammalian consortium Zoonomia '°

O or Vertebrate Genomes Project %! are important
to improve the quality of such analyses.

Beyond comparing protein-coding sequences, functional properties of the orthologous proteins
can also be compared using phylogenetic frameworks such as their activity. For this, a

thoughtful design of the functional assay is necessary that fits the function of the protein in

the relevant cellular system.



1.4 Studying the mode of evolution in different modalities 21

1.4.2 Quantification of gene expression divergence

A large part of the diversity observed on the phenotypic level across species is thought to be
attributable to differential regulation of genes, particularly during the development 162:10:163,
To investigate a dynamic process in cellular systems or tissues, the compared cell states and
the mixture of cell types at hand need to be orthologous between the species'%4. While this
is a valid consideration also for comparisons between different human individuals, generation
of comparable cross-species systems is even more challenging due to potential systematic
differences in differentiation speed, cell type diversity and the fact that most workflows and
reagents are generally optimized for human (or mouse) samples. Hence, systematic technical
differences that might be associated with the cross-species approach need to be eliminated
during the experimental part of the research or later computationally.

Technological advances facilitating high-throughput measurements of gene expression enable
quantitative comparisons of the whole transcriptome between different species in tissues or
cell types of interest. The most recent and widely used technique is RNA-seq 651415 that
involves converting RNA to complementary DNA (cDNA), adding a sample- or cell-specific
barcode and amplifying the cDNA molecules to improve their detection. RNA-seq can be
used to capture the full sequence of the transcript or, for the sake of sequencing costs, can
be targeted to capture only the 5" or 3’ end of the transcribed sequence %6,

After gene expression in orthologous cell types has been quantified, statistical approaches
that enable unbiased cross-species investigation of gene expression evolution are necessary.
Assuming that one-to-one orthologous genes are of interest (and readily identified), simple

167,168 can be used for comparisons that involve only two or a

differential expression analysis
few species that are evolutionarily similarly distant from each other 16170, The simplest type
of analysis measures the absolute expression differences between species. This can be used
to compare groups of genes, however requires a particularly carefully designed experimental
setup as the comparison can be influenced by technical batches that coincide with the species
origin of the samples!”'. In addition, the biological interpretation of the absolute expression

differences can be difficult even under well controlled conditions. Comparisons of relative

expression change across conditions such as a differentiation timeline can be interpreted as
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differential regulation between species, thus often more informative. Differential regulation
can be inferred by specifying an interaction term between species and time or condition. In
general, measurements from multiple different individuals within each species should be used

to establish a baseline variation, explained by factors other than species divergence. Mixed

172

effects models**“ offer an extension to account for clustered expression data.

To compare expression differences across many species with large divergence times, more
sophisticated evolutionary models designed for modelling continuous trait evolution are
appropriate. Here, species topology and thereby their non-independence is explicitly taken

into account through inclusion of a correlation structure. Popular approaches are phylogenetic

174

ANOVA ' and phylogenetic regression models!'™, including phylogenetic generalized least

175,176

squares Evolutionary modes can be investigated by comparing the likelihoods or

performing an F-test between models that make different assumptions about the expression

158,177,178,72,179

variance across evolutionary time Random drift is commonly modelled
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Figure 1.4. Evolutionary models used for modeling continuous trait evolution across time.
A Brownian Motion is used to model drift, e.g., X ~ AN (#,5?). B Ornstein Uhlenbeck process
can be used to model negative selection with a ’pull” parameter « describing the selection
strength towards the optimum, e.g., X ~ N(6,0%/2a). C Ornstein Uhlenbeck process
with two optimas that can be used to model directional selection, e.g., X1 ~ N (61,02 /2a),
X2 ~ /\/(92, 02/20[).

using Brownian motion (BM) where the rate of expression change per unit of time is
constant and shows no directionality (Figure 1.4A). As evolutionary time goes to infinity,
expression values can be modelled as normally distributed with mean 6 and variance o2, e.g.,

X ~ N(6,0?). Ornstein Uhlenbeck (OU) process can be used to model drift and stabilizing
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(negative) selection where « indicates the selection strength towards the optimum, e.g.,
X ~ N(0,0%/2a) (Figure 1.4B). Furthermore, multivariate OU can be applied to test for
directional selection on certain branches of the phylogeny by assuming simultaneous existence
of different optimal values for different clades, e.g., X1 ~ N (01,02%/2a), Xo ~ N (02,02 /2a)
179 (Figure 1.5C). Moreover, because these frameworks are based on regression, they can also
be used to measure whether certain covariates can explain some of the remaining variation.
Important to note, the more complex the alternative hypothesis, the more species need
to be included to have sufficient statistical power. Although overall still simplistic 189181,

these models are useful tools to approximate evolutionary modes of continuous traits like

expression.

1.4.3 Measuring cis-regulatory element evolution

To understand the sources of expression patterns across species, we need to be able to read the
regulatory code that governs expression in orthologous cell stages, much of which is contained
in cis-regulatory elements. The ultimate function of CREs is to enable the binding of the
context-relevant TF, co-factors and transcription machinery, contributing to the required
DNA conformation that facilitates expression of the associated gene(s)3%13.

As noted previously, the basic rules for interpreting protein-coding sequence change are
rather clear, where discrete changes in the DNA sequence result in known, discrete changes
in the protein sequence. In contrast, establishing rules for CRE sequence change appears
to be a more complex task due to their inherent flexibility in position and combinatorial
usage that can be different for the same gene depending on the cellular context. Moreover,
not all nucleotides within a CRE are equally functional - the sequence at some positions

182,183 and TF motif orientation, spacing and

of TF binding motifs do not seem to matter
composition can be rather flexible - often it is enough with cooperative binding of multiple
relevant TFs184185,186,187,188,189 " Hence, TF binding potential to a CRE can be seen as a
continuous property and certain sequence change does not have discrete nor linear effects

on TF binding or expression in most cases. Therefore, CRE evolution rates should be

investigated on multiple functional levels beyond sequence, including their transcription
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factor binding site (TFBS) repertoire, position and regulatory activity conservation (Figure

1.5).
Sequence TFBS Accessibility ~ Expression
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Figure 1.5. Different functional levels that can be used and combined to understand the
evolutionary modes of cis-regulatory elements.

Sequence To quantify regulatory sequence evolution and compare it across different
regions of the genome, the local mutation rate variation that depends on GC content,
chromatin organization, mismatch repair efficiency and recombination rates should be
incorporated in the statistical frameworks 3114115 The detection of selectional signatures
in the sites of interest can be improved by contrasting them to the evolution rates of nearby
putatively-neutrally evolving sites!99191:192:193 Moreover, principles similar to McDonald-
Kreitman test can be applied also for regulatory sequences where signatures of recent natural
selection and effects of random drift are disentangled using patterns of polymorphism and
divergence 194,192

Transcription factor binding sites TFBS repertoires are quantified by scoring
the match between position weight matrices (PWMs) of the screened TFs to the CRE
sequence of interest. Selecting only expressed TF motifs can increase the interpretability
for a specific cellular context. To estimate the specificity of a PWM-CRE match, the base
composition of the respective CRE and the nearby flanking sequences can serve as a baseline
195,196,197 " However, this type of contrast is still up to debate, as some studies have indicated
functional relevance of surrounding weak binding sites in flanking sequences for attracting

TFs and helping stabilizing TF binding to the strongest sites?42%. Methods that evaluate
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the strength of motif clusters, composed of multiple different binding sequences, can be used
to estimate the total regulatory potential of the CRE. Another, more specific experimental
way to investigate TF binding is through ChIP-seq screens targeting TFs!198:199 However,
the availability of such cross-species assays is currently still limited to only few tissues,
species and TFs200:198:102,199 ' Eor pairwise comparisons across species, simple distance-based
metrics can be used for the calculation of binding divergence. In the case of multiple species
comparisons, evolutionary models intended for continuous traits that account for species

divergence can be applied here similarly to expression'°8.

Regulatory activity Finally, a comparison of CRE regulatory activity across species
is a powerful approach to establish CRE functional divergence. This level of characterization
can also be useful to connect different sequence or TFBS properties to functional evolution
and thereby study the rules of the regulatory code. An indirect strategy to quantify regulatory
activity is by associating CRESs to their putative target genes and modeling the observed
expression conservation of the respective gene using the different features of the CRE

62,201,104,202,52 " Qince CREs are investigated in their natural genomic

landscape as predictors
location, allowing for their correct 3D interaction with each other and cellular regulators, this
analysis can yield meaningful interpretation of their combinatorial effects on gene expression.
On the other hand, it is difficult to distinguish the contributions of individual CREs in
modulating gene expression.

A direct way to quantify regulatory change of individual CREs between species or conditions is
to assay orthologous CRE activity in the selected cell type(s) of different species. Historically,
this was done using reporter assays where the CRE of interest and a fluorescent or luminescent
reporter gene, typically luciferase, are cloned into a plasmid ?°3. Here, CRE activity is reflected
in the amount of the reporter gene product. More recent approaches enable quantification
of the activity of thousands of CREs simultaneously. Massively Parallel Reporter Assay

204,48

(MPRA), which relies on barcode detection to quantify the activity , was used for the

evolutionary analyses in this thesis. It requires in silico synthesis of the CRE sequences
that is currently limited to a length of around 300 bases. This is below the average size of

enhancers (~420 bp) and especially promoters, that can be up to three times larger 205,206,207,
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Thus, tiling of the CREs is necessary. The final activity of a CRE can be calculated by
summarizing across the tiles covering it, however such back-calculated additive activity is
not necessarily the same as the activity of the full, intact CRE. In addition, the process of
DNA synthesis is costly, limiting the number of CREs that can be assayed. However, the
sequence synthesis step of an MPRA has the advantage that the effect of a specific sequence
change at specific positions, e.g., an in silico mutation, can also be measured in a specific

cellular context of interest 208,

1.5 Aims of this thesis

In this thesis, by combining evolutionary, molecular and functional measures, I aim to

contribute to answering questions related to the following ongoing research:

1. Estimation of the amount of error in expression measurements using RNA-seq

2. Tissue-specificity of regulatory elements and how it relates to functional importance

and evolutionary constraint

3. The role of recently evolved elements in species-specific rewiring of gene regulatory

networks
4. The association between genotype with a phenotype of interest across a phylogeny.

This work should be informative for domain specialists interested in the specific case
studies that are included in this thesis. It could also be interesting to molecular and
evolutionary biologists in a broader sense as it touches a range of generally relevant aspects

of genome evolution and possible ways to study it.
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Abstract

Background: In droplet-based single-cell and single-nucleus RNA-seq experiments,
not all reads associated with one cell barcode originate from the encapsulated cell.
Such background noise is attributed to spillage from cell-free ambient RNA or barcode
swapping events.

Results: Here, we characterize this background noise exemplified by three scRNA-
seq and two snRNA-seq replicates of mouse kidneys. For each experiment, cells from
two mouse subspecies are pooled, allowing to identify cross-genotype contaminat-
ing molecules and thus profile background noise. Background noise is highly variable
across replicates and cells, making up on average 3-35% of the total counts (UMIs) per
cell and we find that noise levels are directly proportional to the specificity and detect-
ability of marker genes. In search of the source of background noise, we find multiple
lines of evidence that the majority of background molecules originates from ambient
RNA. Finally, we use our genotype-based estimates to evaluate the performance of
three methods (CellBender, DecontX, SoupX) that are designed to quantify and remove
background noise. We find that CellBender provides the most precise estimates of
background noise levels and also yields the highest improvement for marker gene
detection. By contrast, clustering and classification of cells are fairly robust towards
background noise and only small improvements can be achieved by background
removal that may come at the cost of distortions in fine structure.

Conclusions: Our findings help to better understand the extent, sources and impact
of background noise in single-cell experiments and provide guidance on how to deal
with it.

Keywords: Single-cell RNA-sequencing, Background noise, Ambient RNA, Barcode
swapping, Correction method comparison, (Gold) standard scRNA-seq data set
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Background

Single cell and single nucleus RNA-seq (scRNA-seq, snRNA-seq) are in the process of
revolutionizing medical and biological research. The typically sparse coverage per cell
and gene is compensated by the capability of analyzing thousands of cells in one experi-
ment. In droplet-based protocols such as 10x Chromium, this is achieved by encap-
sulating single cells in droplets together with beads that carry oligonucleotides. These
usually consist of a oligo(dT) sequence which is used for priming reverse transcription,
a bead-specific barcode that tags all transcripts encapsulated within the droplet as well
as unique molecular identifiers (UMIs) that enable the removal of amplification noise
[1-3]. As proof of principle that each droplet encapsulates only one cell, it is common to
use mixtures of cells from human and mouse [3]. Thus doublets, i.e., droplets containing
two cells, can be readily identified as they have an approximately even mixture of mouse
and human transcripts. However, barcodes for which the clear majority of reads is either
mouse or human, still contain a small fraction of reads from the other species [3-5]. Fur-
thermore, presumably empty droplets also yield sequence reads [4].

One potential source of such contaminating reads or background noise is cell-free
“ambient” RNA that leaked from broken cells into the suspension. The other potential
source are chimeric cDNA molecules that can arise during library preparation due to
so-called 'barcode swapping’ The pooling of barcode tagged cDNA after reverse tran-
scription but before PCR amplification, is a decisive step to achieve high throughput.
However, if amplification of tagged cDNA molecules occurs from unremoved oligo-
nucleotides from other beads or from incompletely extended PCR products (originally
called template jumping [6]), this generates a chimeric molecule with a “swapped” bar-
code and UMI [7, 8]. When sequencing this molecule, the cDNA is assigned to the wrong
barcode and hence “contaminates” the expression profile of a cell. However, unless the
swapping occurs between two different genes, the barcode and UMI will still be counted
correctly. Another type of barcode swapping can occur during PCR amplification on a
patterned Illumina flowcell before sequencing [9] with the same effects, although double
indexing of Illumina libraries has reduced this problem substantially. This said, here we
focus on barcode swapping that occurs during library preparation.

Irrespective of the source of background noise, its presence can interfere with analy-
ses. For starters, background noise reduces the separability of cell type clusters as well
as the power to pinpoint important (marker) genes via differential expression analysis.
Moreover, reads from cell type-specific marker genes spill over to cells of other types,
thus yielding novel marker combinations and hence implying the presence of novel
cell types [8, 10]. Besides, background noise can also confound differential expression
analysis between samples, e.g., when looking for expression changes within a cell type
between two conditions. Varying amounts of background noise or differences in the
cell type composition between conditions can result in dissimilar background profiles,
which might generate false positives when identifying differentially expressed genes. To
alleviate such problems during downstream analysis, algorithms to estimate and correct
for the amounts of background noise have been developed.

SoupX estimates the contamination fraction per cell using marker genes and then
deconvolutes the expression profiles using empty droplets as an estimate of the back-
ground noise profile [11]. In contrast, DecontX defaults to model the fraction of
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background noise in a cell by fitting a mixture distribution based on the clusters of good
cells [8], but also allows the user to provide a custom background profile, e.g., from
empty droplets. CellBender requires the expression profiles measured in empty drop-
lets to estimate the mean and variance of the background noise profile originating from
ambient RNA. In addition, CellBender explicitly models the barcode swapping contribu-
tion using mixture profiles of the ‘good’ cells [4].

In order to evaluate method performance, one dataset of an even mix between one
mouse and one human cell line [3] is commonly used to get an experimentally deter-
mined lower bound of background noise levels that is identified as counts covering genes
from the other species [4, 8, 11, 12]. Since this dataset is lacking in cell type diversity, it is
common to additionally evaluate performance based on other datasets that have a com-
plex cell type mixture and where most cell types have well known profiles with exclusive
marker genes. In such studies the performance test is whether the model removes the
expression of the exclusive marker genes from the other cell types. In both cases, the fea-
ture space of the contamination does not overlap with the endogenous cell feature space.
Mouse and human are too diverged, so that mouse reads only map to mouse genes and
human reads only to human genes. Similarly, when using marker genes it is assumed that
they are exclusively expressed in only one cell type, hence the features that are used for
background inference are again not overlapping. However, in reality background noise
will mostly induce shifts in expression levels that cannot be described in a binary on or
off sense and it remains unclear how background correction will affect those profiles.

Here, we use a mouse kidney dataset representing a complex cell type mixture from
three mouse strains of two subspecies, Mus musculus domesticus and M. m. castaneus.
From both subspecies, inbred strains were used and thus we can distinguish exogenous
and endogenous counts for the same features using known homozygous SNPs [13].
Hence, this dataset serves as a much more realistic experimental standard, providing a
ground truth in a complex setting with multiple cell types which allows to analyze the
variability, the source and the impact of background noise on single cell analysis. Moreo-

ver, this dataset enables us to better benchmark existing background removal methods.

Results

Mouse kidney single cell and single nucleus RNA-seq data

We obtained three replicates for single cell RNA-seq (rep1-3) data and two replicates
for single nucleus RNA-seq (snRNA-seq, nuc2 and nuc3) data from the same samples
that were used in scRNA-seq replicates 2 and 3, respectively. Each replicate consists of
one channel of 10x [3] in which cells from dissociated kidneys of three mice each were
pooled: one M. m. castaneus from the strain CAST/Ei] (CAST) and two M. m. domes-
ticus, one from the strain C57BL/6] (BL6) and one from the strain 129S1/Svim]J (Svim])
(Fig. 1A). Based on known homozygous SNPs that distinguish subspecies and strains,
we assigned cells to mice (Fig. 1B). In total, we identified > 40, 000 informative SNPs of
which the majority (32,000) separates the subspecies and ~ 10,000 SNPs distinguish the
two M. m. domesticus strains (Fig. 1C). On average, each cell had sufficient coverage for
~ 1,000 informative SNPs (~ 20% of total UMISs per cell) to provide us with unambigu-
ous genotype calls for those sites. The coverage for the nuc2 data was much lower with
only ~ 100 SNPs (Fig. 1D).
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Fig. 1 Generation of mouse strain mixture datasets to quantify background noise. A Experimental
design (created with BioRender.com). B Strain composition in 5 different replicates, subjected to scRNA-seq
(rep1-3) or snRNA-seq (nuc2, nuc3). The replicates rep2 and nuc2 and rep3 and nuc3 were generated
from the same samples each. CAST: CAST/EJ strain; BL6: C57BL/6J strain; SvimJ: 12951/SvimJ. € Number of
homozygous SNPs with a coverage of more than 100 UMIs that distinguish one strain from the other two.
D Per cell coverage in M. m. castaneus cells of informative variants that distinguish M. m. castaneus and M.
m. domesticus. E Cell type composition per replicate and strain; labels were obtained by reference-based
classification using mouse kidney data from Denisenko et al. [14] as reference. F UMAP visualization of M. m.
castaneus cells in single-cell replicate 2, colored by assigned cell type. PT, proximal tubule; CD_IC, intercalated
cells of collecting duct; CD_PC, principal cells of collecting duct; CD_Trans, transitional cells of collecting
duct; CNT, connecting tubule; DCT, distal convoluted tubule; Endo, endothelial; Fib, fibroblasts; aLOH,
ascending loop of Henle; dLOH, descending loop of Henle; MC, mesangial cells; Podo, podocytes

Overall, each experiment yielded 5000-20,000 good cells with 9-43% M. m. castaneus
(Fig. 1B). Thus, the majority of background noise in any M. m. castaneus cell is expected
to be from M. m. domesticus (Additional file 1: Fig. S1B) and therefore we expect that
genotype-based estimates of cell-wise amounts of background noise for M. m. castaneus
to be fairly accurate (Additional file 1: Fig. S2). Hence from here on out we focus on M.
m. castaneus cells for the analysis of the origins of background noise and also as the
ground truth for benchmarking background removal methods.

This dataset has two advantages over the commonly used mouse-human mix [3].
Firstly, the kidney data have a high cell type diversity. Using the data from Denisenko
et al. [14] as reference dataset for kidney cell types, we could identify 13 cell types.
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Encouragingly, the cell type composition is very similar across mouse strains as well as
replicates with proximal tubule cells constituting 66—89% of the cells (Fig. 1E, F; Addi-
tional file 1: Fig. S3). Secondly, due to the higher similarity of the mouse subspecies, we
can identify contaminating reads for the same features. ~ 7,000 genes carry at least one
informative SNP about the subspecies. Because so many genes have informative SNPs,
the fraction of UMIs that cover an informative SNP is a little higher for PTs, the most
frequent cell type, but very comparable across all other cell types, allowing us to quantify
contaminating reads (Additional file 1: Fig. S1A).

Background noise fractions differ between replicates and cells

Around 5-20% of the UMI counts are from molecules that contain a SNP that is inform-
ative about the subspecies of origin. We quantify in each M. m. castaneus cell how often
an endogenous M. m. castaneus allele or a foreign M. m. domesticus allele was covered.
Assuming that the count fractions covering the SNPs are representative of the whole cell,
we detect a median of 2—-27% counts from the foreign genotype over all cells per experi-
ment (Additional file 1: Fig. S1C). This observed cross-genotype contamination fraction
represents a lower bound of the overall amounts of background noise. As suggested in
Heaton et al. [15], we then integrate over the foreign allele fractions of all informative
SNPs to obtain a maximum likelihood estimate of the background noise fraction (o)
of each cell that extrapolates to also include contamination from the same genotype
(see the “Methods” section, Additional file 1: Fig. S2). Based on these estimates, we find
that background noise levels vary considerably between replicates and do not appear
to depend on the overall success of the experiment measured as the cell yield per lane
(Fig. 2). For example in scRNA-seq rep3 (3900 cells), we detected overall the fewest good
cells, but most of those cells had less than 3% background noise, while the much more
successful rep2 (15,000 cells) we estimated the median background noise level at around
11% (Fig. 2A). This said, the snRNA-seq data generated from frozen tissue have much
higher background levels than the corresponding scRNA-seq replicates — 35% in nuc2
vs. 11% rep2 and 17% in nuc3 vs. 3% in rep3. How we define good cells based on the UMI
counts has little impact on this variability. We still find by far the highest background
levels in nuc2 and the lowest in rep3 (Additional file 1: Fig. S4). This high variability is
not very surprising. This being a real life experiment and experimental conditions were
improved for nuc3 based on the experience with nuc2 (see the “Methods” section). The
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Fig. 2 The level of background noise is variable across replicates and single cells. A Estimated fraction

of background noise per cell. The replicates on the x-axis are ordered by ascending median background
noise fraction. B In M. m. castaneus cells both endogenous M. m. castaneus specific alleles (x-axis) and M. m.
domesticus specific alleles (y-axis) have coverage in each cell. The detection of M. m. domesticus specific alleles
can be seen as background noise originating from cells of a different mouse
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number of contaminating RNA-molecules (UMIs) depends only weakly on the total
UMI counts covering informative variants as a proxy for sequencing depth of the cell
(Fig. 2B, Additional file 1: Table S1). Such a weak correlation could be explained by vari-
ation in the capture efficiency in each droplet. An alternative, but not mutually exclusive
explanation of such a correlation could be that the source of some contaminating mol-
ecules is barcode swapping that can occur during library amplification.

However, by and large the absolute amount of background noise is approximately con-
stant across cells and thus the contamination fraction mainly depends on the amount of
endogenous RNA: the larger the cell, the smaller the fraction of background noise, point-
ing towards ambient RNA as the major source of the detected background (Fig. 2B).

Contamination profiles show a high similarity to ambient RNA profiles
In order to better understand the effects of background noise, it is helpful to understand
its origins and composition. To this end, we constructed profiles representing endog-
enous, contaminating and ambient expression profiles by using M. m. domesticus allele
counts in M. m. domesticus cells (endogenous), M. m. domesticus allele counts in M. m.
castaneus cells (contamination) and M. m. domesticus allele counts in empty droplets
(empty) (Fig. 3A, B; Additional file 1: Fig. S5A-E).

The number of contaminating UMI counts per cell is at a similar level as the UMI
counts in empty droplets in all replicates (Fig. 3C, Additional file 1: Fig. S5F). Moreover,
if the median UMI count in empty droplets is high for one replicate, we also observe

A D
1es05] | Gl g —— rop3 | ©®
£ o | e cont vs empty
S tew0s) ® endo cont vs endo
8 oy Ca——— S
S 1e+034 ® empty ol | e | 3@ o ® endo
g other e cont
B oo e w2y e 4 ® emply
0 025 05 075 01 02 03 04
1es01] Spearman's p Fraction of intronic variants
8 c E
g 100007 rep2 nuc2
=
®
£ 2 10001 endo PT Fib
g8 ; co_ic aLOH
S8 ‘» CD_PC dLOH
2§ 00 —— emply CD_Trans [ MC
>3 T Podo
E ! DCT | Immune
cont- Endo
ol |
o esdo0 s000 75000 100000 o & 5 055 05 075 10 055 05 05 |
& Proportion
Droplet rank

Fig. 3 Characterization of ambient RNA in cells and empty droplets. A Ordering droplet barcodes by their
total UMI count to distinguish cell-containing droplets with high UMI counts from empty droplets that only
contain cell-free ambient RNA and are identifiable as a plateau in the UMI curve, shown here for replicate

2. B UMI counts of reads covering M. m. domesticus specific alleles were used to construct three profiles
depending on whether they were associated with M. m. domesticus cell barcodes (endogenous counts,
endo), M. m. castaneus cell barcodes (contaminating counts, cont) or empty droplet barcodes (empty).
Counts from droplets that are not clearly assignable as cell-containing or empty were excluded from further
analysis (other). € UMI counts per cell for each of the three profiles. D Spearman rank correlation between
pseudobulk profiles. Error bars indicate 95% confidence intervals obtained by bootstrapping over genes. E
Deconvolution of cell type contributions to each pseudobulk profile, exemplified by replicates rep2 and nuc2.
The stacked barplots depict the estimated fraction of each cell type in the profile as inferred by SCDC using
the annotated single cell data of each replicate as reference. PT, proximal tubule; CD_IC, intercalated cells of
collecting duct; CD_PC, principal cells of collecting duct; CD_Trans, transitional cells of collecting duct; CNT,
connecting tubule; DCT, distal convoluted tubule; Endo, endothelial; Fib, fibroblasts; aLOH, ascending loop of
Henle; dLOH, descending loop of Henle; MC, mesangial cells; Podo, podocytes. F Fraction of reads covering
intronic variants in each of the three profiles
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more contaminating UMIs, which is also consistent with ambient RNA as the main
source for background noise.

In addition, when comparing pseudobulk aggregates of the three scRNA-seq replicates,
we find that the contamination profiles correlate highly and similarly well with empty
(Spearman’s p = 0.73 — 0.85) and endogenous profiles (Spearman’s p = 0.70 — 0.87),
while for the nuc2 and nuc3 the contamination profiles are clearly more similar to the
empty (Spearman’s p ~ 0.85) than to the endogenous profiles (Spearman’s p ~ 0.50)
(Fig. 3B).

Using deconvolution analysis[16], we reconstructed the cell type composition from
the pseudobulk profiles. In agreement with the correlation analysis, we find that in our
scRNA-seq data the cell type compositions inferred for endogenous, contamination and
empty counts are by and large similar with a slight increase in the PT-profile in empty
droplets, suggesting that this cell type is more vulnerable to dissociation procedure than
other cell types. In contrast, deconvolution of the empty droplet and contamination
fraction of nuc2 and nuc3, that in contrast to the scRNA-seq data were prepared from
frozen samples, shows a clear shift in cell type composition with a decreased PT fraction
(Fig. 3C, Additional file 1: Fig. S6).

Moreover, we expect that cytosolic mRNA contributes more to the contaminat-
ing profile than to the endogenous profile. Indeed, in our snRNA-seq data we find that
in good nuclei (endogenous molecules) more than 25% of the allele counts fall within
introns, while out of the molecules from empty droplets less than 18% fall within introns
(Fig. 3D). Similarly also in the scRNA-seq data, we find with ~ 14% more intron vari-
ants than in empty droplets. The intron fraction of the contaminating molecules lies in-
between the endogenous and the empty droplet fraction, but is in all cases much closer
to the empty intron fraction, thus suggesting again that the majority of the background
noise likely originates from ambient RNA.

Only little evidence for barcode swapping
In addition to ambient RNA, barcode swapping resulting from chimera formation dur-
ing PCR amplification can also contribute to background noise. With the 12bp UMIs
from 10x, the probability that we capture the same UMI-cell barcode combination
twice independently is very low, hence how often we find the same combination of cell
barcode and UMI associated with more than one gene is a good measure for barcode
swapping [7]. The median fraction of such chimeric molecules varies between 0.2% for
rep3 and 0.7% for nuc3 (Additional file 1: Fig. S7A). In line with our expectations out-
lined before, the absolute amount of swapping per cell correlates strongly with the total
molecule count (Additional file 1: Table S1). In combination with the weak correlation
between the number of contaminating with endogenous molecule counts, this supports
the notion that the majority of background noise does not come from swapping. To be
more quantitative, we combine the swapping and the total background fractions to esti-
mate how much swapping could contribute to the total background and find that the
median contribution of barcode swapping to background noise is lower than 10% for all
replicates (Additional file 1: Fig. S7B).

Furthermore, molecules with a swapped barcode are expected to have a lower aver-

age number of reads per UML This is because chimera that are formed late during PCR
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subsequently undergo less amplification [7]. Thus, if the majority of contaminating
reads were to originate from barcode swapping, we would expect that the distribution
of reads per UMI for cross-genotype contaminating molecules (cont) is similar to that
of observed chimeras. This is not what we see (Additional file 1: Fig. S7C): The distribu-
tion of reads per UMI for contaminating reads is much more distinct from the distri-
bution for chimeras (Kolmogorov-Smirnov distance, A, = 0.381 (rep3) to 0.595 (nuc3))
than for endogenous reads (A, = 0.008 (rep2) to 0.046 (rep3)). In summary, we find that
barcode swapping during library preparation only contributes little to the overall back-
ground noise in this data.

The impact of contamination on marker gene analyses

The ability to distinguish hitherto unknown cell types and states is one of the greatest
achievements made possible by single cell transcriptome analyses. To this end, marker
genes are commonly used to annotate cell clusters for which available classifications
appear insufficient. An ideal marker gene would be expressed in all cells of one type
but in none of the other present cell types. Thus, when comparing expression levels of
one cell type versus all others, we expect high log2-fold changes, the higher the change
the more reliable the marker. However, such a reliance on marker genes also makes this
type of analysis vulnerable to background noise. Our whole kidney data can illustrate
this problem well, because with the very frequent proximal tubular (PT) cells we have
a dominant cell type for which rather specific marker genes are known [17]. Slc34al
encodes a phosphate transporter that is known to be expressed exclusively in PT cells
[18, 19]. As expected, it is expressed highly in PT cells, but it is also present in a high
fraction of other cells (Fig. 4A, E; Additional file 1: Fig. S8). Moreover, the log2-fold
changes of Slc34al are smaller in replicates with larger background noise, indicating that
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Fig. 4 Background noise affects differential expression and specificity of cell type specific marker genes.

A UMAP representation of replicate 2 colored by the expression of Slc34a1, a marker gene for cells of the
proximal tubule (PT). Besides high counts in a cluster of PT cells, Slc34a is also detected in other cell type
clusters. Differential expression analysis between PT and all other cells shows a decrease of the detected log
fold change of Slc34a1 (B) at higher background noise levels, as well as an increase of the fraction of non PT
cells in which UMI counts of Slc34a1 were detected (C). D Estimation of the background noise fraction of
Slc34a1 expression indicates that the majority of counts in non PT cells originates from background noise.
Error bars indicate 90% profile likelihood confidence intervals. E Heatmap of marker gene expression for
four cell types in replicate 2, downsampled to a maximum of 100 cells per cell type. F Comparison across
replicates of log2 fold changes of 10 PT marker genes calculated based on the mean expression in PT cells
against mean expression in all other cells. G For the same set of genes as in E, the log ratio of fraction of cells
in which a gene was detected in others and PT cells shows how specific the gene is for PT cells
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the detection of Slc34al in non-PT cells is likely due to contamination (Fig. 4B-D). We
observe the same pattern for other marker genes as well: they are detected across all
cell types (Fig. 4E, Additional file 1: Fig. S9) and an increase of background noise levels
goes along with decreasing log2-fold changes and increasing detection rates in other cell
types (Fig. 4EG). Thus, the power to accurately detect marker genes decreases in the
presence of background noise.

Benchmark of background noise estimation tools

Given that background noise will be present to varying degrees in almost all scRNA-
seq and snRNA-seq replicates, the question is whether background removal methods
can alleviate the problem without the information from genetic variants. SoupX [11],
DecontX [16] and CellBender [4], all provide an estimate of the background noise level
per cell. Here, we use our genotype-based background estimates as ground truth to
compare it to the estimates of the three background removal methods (Fig. 5A, Addi-
tional file 1: Fig. S10). All methods have adjustable parameters, but also provide a set
of defaults. For CellBender the user can adjust the nominal false positive rate to put
a cap on losing information from true counts. For SoupX and DecontX the resolu-
tion of the clustering of cells that is later used to model the endogenous counts can be
adjusted. In addition, SoupX can be provided with an expected background level and
for DecontX the user can provide a custom background profile rather than using the
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default estimation strategy for the background profile. At least with our reference data-
set, CellBender does not seem to profit from changing the defaults, while SoupX’s per-
formance is boosted, if provided with realistic background levels (Additional file 1: Fig.
S15). Because in a real case scenario, the true background level is unknown, we decided
to report the SoupX performance metrics under default settings. DecontX defaults to
estimating the putative background profile from averaging across intact cells. To ensure
comparability, we report DecontX’s performance with empty droplets as background
profile (DecontXp,cxgrouna) in addition to DecontX with default settings (DecontX gefuir)-

We find that CellBender and DecontX can estimate background noise levels similarly
well for the scRNA-seq replicates, while SoupX tends to underestimate background
levels and also cannot capture the cell to cell variation as measured by the correlation
with the ground truth (Fig. 5B). For nuc2 and nuc3 , SoupX performs better at estimat-
ing global background levels, but as for the scRNA-seq still cannot capture cell to cell
variation. In contrast, both CellBender and DecontX perform worse for nuc2 and nuc3.
Moreover for nuc2 and nuc3, DecontX with default setting provides worse estimates
than with empty droplets as background profile.

Allin all, CellBender shows the most robust performance across replicates with default
settings, while DecontX’ and SoupX’ performance seems to require parameter tuning.
A drawback of CellBender is its runtime. While SoupX and DecontX take seconds and
minutes to process one 10x channel, CellBender takes ~ 45 CPU hours. However, paral-
lelization is possible.

All methods struggled most with the nuc3 replicate that has the fewest M. m. cas-
taneus cells and the lowest cell type diversity among our five data sets (Fig. 1B, E). This
also presents a problem for other downstream analyses and thus we do not consider
nuc3 further.

Effect of background noise removal on marker gene detection
Above we have shown that computational methods can estimate background noise lev-
els per cell. Moreover, all three methods provide the user with a background corrected
count matrix for downstream analysis. Here, we compare the outcomes of marker
gene detection, clustering and classification when using corrected count matrices from
SoupX, DecontX, and CellBender (Fig. 6A, Additional file 1: Fig. S11). To characterize
the impact on marker gene detection, we first check in how many cells an unexpected
marker gene was detected; for example, how often Slc34al was detected in cells other
than PTs (Fig. 6B). Without correction we find Slc34al reads in ~ 60% of non-PT cells
of rep2, SoupX reduces this rate to 54%, CellBender to 7% and DecontXpackground to
9%. DecontX ez, Manages to remove most contaminating reads reducing the Slc34al
detection rate outside PTs to 2%. While we find a similar ranking when averaging across
several marker genes from the PanglaoDB database [17] and scRNA-seq replicates
(Fig. 6C), the ranking changes for nuc2: DecontX ey, fails: after correction, Slc34al is
still found in 87% of non-PT cells while DecontXpackgrouna is better with a rate of 20%.
Here, CellBender and SoupX are clearly better with reducing the Slc34al detection rate
to 4% and < 1%, respectively (Additional file 1: Fig. S12).

Even though the changes in the marker gene detection rates outside the designated
cell type seem dramatic (Additional file 1: Fig. S13A), the identification of marker genes
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Fig. 6 Effect of background removal on downstream analysis. A UMAP representation of replicate 2
single-cell data before and after background noise correction, colored by cell type labels obtained from
reference based classification. Individual cells that received a new label after correction are highlighted.
PT, proximal tubule; CD_IC, intercalated cells of collecting duct; CD_PC, principal cells of collecting duct;
CD_Trans, transitional cells of collecting duct; CNT, connecting tubule; DCT, distal convoluted tubule; Endo,
endothelial; Fib, fibroblasts; aLOH, ascending loop of Henle; dLOH, descending loop of Henle; MC, mesangial
cells; Podo, podocytes. B Expression of the PT cell marker Slc34a1 before and after background noise
correction in replicate 2. Cells that were classified as PT cells in the uncorrected data, but got reassigned after
correction, are highlighted. C, D Differential expression analysis of 10 PT markers, evaluating the expression
fraction in non-PT cells (C) and the log2 fold change between PT and all other cells (D). E Evaluation metrics
for the effect of background noise correction on classification and clustering. For each metric the change
relative to the uncorrected data is depicted. The values were scaled by the possible range of each metric.
Prediction score: cell-wise score ‘delta” of reference based classification with SingleR [20]. Average silhouette:
Mean of silhouette widths per cell type. Purity: Cluster purity calculated on cell type labels as ground truth
and Louvain clusters as test labels. &-NN overlap: overlap of the k=50 nearest neighbors per cell compared to
genotype-cleaned reference k-NN graph

[21] is affected only a little. CellBender correction has the largest effect on marker gene
detection, yet 8 from the top 10 genes without correction remain marker genes with
CellBender correction (Spearman’s correlation for top 100 p = 0.84). In contrast, in
the nuc2 data with high background levels, the change in marker gene detection is dra-
matic. Here, only one of the top 10 marker genes remains after correction (Spearman’s
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correlation for top 100 p = 0.04). The largest improvement is achieved with CellBender:
After correction, four out of the top 10 were known marker genes [17], while this over-
lap amounted to only one in the raw data (Additional file 1: Fig. S13B). Moreover, we
find that background removal also increases the detected log-fold-changes of known
marker genes across all replicates and methods, with CellBender providing the largest
improvement (Fig. 6D, Additional file 1: Fig. S13C).

Effect of background noise removal on classification and clustering

One of the first and most important tasks in single cell analysis is the classification of cell
types. As described above, we could identify 13 cell types in our uncorrected data using
an external single cell reference dataset [14, 20]. Going through the same classification
procedure after correction for background noise, changes the classification of only very
few cells (Fig. 6A, Additional file 1: Fig. S11). For the scRNA-seq experiments < 1% and
for the nuc2 up to 1.3% of cells change labels after background removal compared to the
classification using raw data. Before correction, these cells are mostly located in clusters
dominated by a different cell type (Fig. 6A). Moreover, these cells tend to have higher
background levels as exemplified by the PT-marker gene Slc34al (Fig. 6B). Finally, back-
ground removal — irrespective of the method - improves the classification prediction
scores (Fig. 6E, Additional file 1: Fig. S14). Together, this indicates that background
removal improves cell type classification.

Similarly, background removal also results in more distinct clusters. Here, we reason
that cells of the same cell type should cluster together and evaluate the impact of back-
ground removal (1) on the silhouette scores for cell types and (2) on the cell type purity
of each cluster using unsupervised clustering (Fig. 6E). For the scRNA-seq data DecontX
results in the purest and most distinct clusters, while for the nuc2 data SoupX wins in
these categories.

Allin all, it seems clear that all background removal methods sharpen the broad struc-
ture of the data a little, but how about fine structure? To answer this question, we turn
again to the genotype cleaned data to obtain a ground truth for the k-nearest neighbors
of a cell and calculate how much higher the overlap of the background corrected data is
with this ground truth as compared to using the raw data (Fig. 6E). For the scRNA-seq
data, DecontX has the largest improvement on the broad structure, but at same time
in particular DecontXpackgrouna lowers the overlap in k-NN with our assumed ground
truth, suggesting that this change in structure is a distortion rather than an improve-
ment. SoupX leaves the fine structure by and large unchanged in the scRNA-seq data,
while both CellBender and DecontX make the fine structure slightly worse. In contrast,
for the high background levels of the nuc2, all background removal methods achieve an
improvement, with SoupX and CellBender performing best.

Discussion

Here we provide a dataset for the characterization of background noise in 10x Genom-
ics data that is ideal to benchmark background removal methods. The mixture of cell
types in our kidney data provides us with realistic cell type diversity and the mixture of
mouse subspecies enables us to identify foreign alleles in a cell, thus resulting in a data-
set that allows us to quantify background noise across diverse cell types and features. In

Page 12 of 22




2.1 The effect of background noise and its removal on the analysis of
single-cell expression data 43

Janssen et al. Genome Biology ~ (2023) 24:140 Page 13 of 22

addition, the replicates exhibit varying degrees of contamination, enabling us to evaluate
the effects of low, intermediate, and high background levels. Given that every sample
poses new challenges for the preparation of a suspension of intact cells or nuclei that
is needed for a 10x experiment, we expect that such variability in sample quality is not
unusual. Consequently, marker gene identification is affected and markers appear less
specific, as they are detected in cell types where they are not expressed. The degree of
this issue directly depends on background noise levels (Fig. 4). This particular problem
has been observed previously and has been used as a premise to develop background
correction methods [4, 11, 22].

The novelty of this analysis is that — thanks to the mix of mouse subspecies — we
are able to obtain expression profiles that describe the source of contamination in each
sample and also have a ground truth for a more realistic dataset. We started to char-
acterize background noise by comparing the contamination profile with the profile of
empty droplets and that of endogenous counts of good cells. In agreement with the idea
that ambient RNA is due to leakage of cytosol, we find that empty droplets show less
evidence for unspliced mRNA molecules and that the unspliced fraction in the contami-
nation profiles is similar to that of empty droplets. This is a first hint that a large pro-
portion of the background noise is ambient RNA. In addition, we find only little direct
evidence for barcode swapping as provided by chimeric UMIs, which only explains up
to 10% of background noise (Additional file 1: Fig. S7B). Hence, also the observed cor-
relation between cell size and the absolute amounts of background noise per cell in most
of the replicates is likely due to variation in dropout rates [4] (Fig. 2B, Additional file 1:
Table S1).

Another important insight from comparing contamination, empty and endogenous
profiles is that we can deduce the origin of the contamination. While for rep1-3 all three
profiles are highly correlated and are the result of very similar cell type mixtures, for
nuc2 and nuc3 the empty and the contamination profiles are distinct from the expected
endogenous mixture profile. Encouragingly the endogenous profiles of all replicates
agree well with one another as well as with the cell type proportions from the literature
[14, 23]. Moreover, the higher similarity of the contamination to the empty than to the
endogenous profile supports the notion that the majority of background noise is ambi-
ent RNA and hence using the empty rather than the endogenous profile as a reference
to model background noise is the better choice for our data. Indeed, the performance
of DecontX for nuc2 is improved by providing the empty droplet profile as compared
to the endogenous profile which is the default (Fig. 5A). We also observed that SoupX
performs much better for the snRNA-seq data than the scRNA-seq data. We speculate
that the marker gene identification that is the basis for estimating the experiment-wide
average contamination is hampered by the fact that our dataset has one very dominant
cell type that has the same prevalence in the empty droplets, thus masking all back-
ground. However, even if SoupX gets the overall background levels right, it by design
grossly underestimates the variance among cells and cannot capture the cell to cell vari-
ation (Fig. 5B, C). Overall CellBender provides the most accurate estimates of the back-
ground noise levels and also captures the cell to cell variation rather well. We note that
this finding is largely due to the robustness of CellBender to cell type composition and
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the source of contamination, that determines the similarity between the contamination
and the endogenous profiles.

In line with this, also marker gene detection is most improved by CellBender, which
is the only method that removes marker gene molecules from other cell types and
increases the log-fold-change consistently well. The effect of background removal on
other downstream analyses is much more subtle. For starters, classification using an
external reference is rather robust. Even with high levels of background noise, back-
ground removal improves classification only for a handful of cells and we cannot say
that one method outperforms the others (Fig. 6E, Additional file 1: Fig. S14). Similarly,
the broad structure of the data improves only minimally and this minimal improvement
comes at the cost of disrupting fine structure (Fig. 6E). Here, again CellBender strikes
the best balance between removing variation but preserving the fine structure, while
DecontX tends to remove too much within-cluster variability, as the k<-NN overlap with
the genotype-based ground truth for DecontX is even lower than for the raw data. All in

all, CellBender shows the best performance in removing background noise.

Conclusions

Levels of background noise can be highly variable within and between replicates and
the contamination profiles do not always reflect the cell type proportions of the sam-
ple. Marker gene detection is affected most by this issue, in that known cell type spe-
cific marker genes can be detected in cell clusters where they do not belong. Existing
methods for background removal are good at removing such stray marker gene molecule
counts. In contrast, classification and clustering of cells is rather robust even at high
levels of background noise. Consequently, background removal improves the classifica-
tion of only few cells. Moreover, it seems that for low and moderate background levels
the tightening of existing broad structures may go at the cost of fine structure. In sum-
mary, for marker gene analysis, we would always recommend background removal, but
for classification, clustering and pseudotime analyses, we would only recommend back-

ground removal when background noise levels are high.

Methods

Mice

Three mouse strains were ordered from Jackson Laboratory at 6-8 weeks of age:
C57BL/6] (000664), CAST/Ei] (000928), and 129S1/Svlm] (002448). All animals were
subjected to intracardiac perfusion of PBS to remove blood. Kidneys were dissected,
divided into 1/4s, and subjected to the tissue dissociation protocol, stored in RNAlater,

or snap-frozen in liquid nitrogen.

Tissue dissociation for single cell isolation

The single cell suspensions were prepared following an established protocol [24] with
minor modifications. In detail, one of each kidney sagittal quarter from three perfused
mice of different strains C57BL/6, CAST/Ei] and 129S1/SvIim] were harvested into
cold RPMI (Thermo Fisher Scientific, 11875093) with 2% heat-inactivated Fetal Bovine
Serum (Gibco, Thermo Fisher Scientific, 16140-071; FBS) and 1% penicillin/strepto-
mycin (Gibco, Thermo Fisher Scientific, 15140122). Each piece of the tissue was then
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minced for 2 min with a razor blade in 0.5 ml 1x liberase TH dissociation medium (10x
concentrated solution from Millipore Sigma, 05401135001, reconstituted in DMEM/
F12(Gibco, Thermo Fisher Scientific, 11320-033 in a petri dish on ice. The chopped tis-
sue pieces were then pooled into one 1.5 ml Eppendorf tube and incubated in a ther-
momixer at 37°C for 1 hour at 600rpm with gentle pipetting for trituration every 10
min. The digestion mix was then transferred to a 15 ml conical tube and mixed with 10
ml 10% FBS RPMI. After centrifugation in a swinging bucket rotor at 500g for 5 min at
4°C and supernatant removal, the pellet was resuspended in 1ml red blood cell lysing
buffer (Sigma Aldrich, R7757). The suspension was spun down at 500g for 5 min at 4°C
followed by supernatant removal. The pellet cleared of the red blood cell ring was then
resuspended in 250 pl Accumax (Stemcell Technologies, 7921) and incubated at 37°C
for 3 mins. The reaction was stopped by mixing with 5 ml 10% FBS RPMI and spinning
down at 500g for 5 min at 4°C followed by supernatant removal. The cell pellet was then
resuspended in PBS with 0.4% BSA (Sigma, B8667) and passed through a 30 um filter
(Sysmex, 04-004-2326). The cell suspension was then assessed for viability and concen-
tration using the K2 Cellometer (Nexcelom Bioscience) with the AOPIcell stain (Nexce-
lom Bioscience, CS2-0106-5ML).

Nuclei isolation from RNAlater preserved frozen tissue

The single nuclei suspensions were prepared following an established protocol [25] with
minor modifications. In detail, the RNAlater reserved frozen tissue of 3 mice kidney
quarters were thawed and transferred to one petri dish preloaded with 1 ml TST buffer
containing 10 mM Tris, 146 mM NaCl, 1 mM CaCl2, 21 mM MgCl2, 0.03% Tween-20
(Roche, 11332465001), and 0.01% BSA (Sigma, B8667). It was minced with a razor blade
for 10 min on ice. The homogenized tissue was then passed through a 40 um cell strainer
(VWR, 21008-949) into a 50 ml conical tube. One ml TST buffer was used to rinse the
petri dish and collect the remaining tissue into the same tube. It was then mixed with 3
ml of ST buffer containing 10 mM Tris, 146 mM NaCl, 1 mM CaCl2, and 21 mM MgCl2
and spun down at 500g for 5 min at 4°C followed by supernatant removal. In the second
experiment this washing step was repeated 2 more times. The pellet was resuspended in
100 pl ST buffer and passed through a 35 pum filter. The nuclei concentration was meas-
ured using the K2 Cellometer (Nexcelom Bioscience) with the AO nuclei stain (Nexce-
lom Bioscience, CS1-0108-5ML).

Single-cell and single-nucleus RNA-seq

The cells or nuclei were loaded onto a 10x Chromium Next GEM G chip (10x Genom-
ics, 1000120) aiming for recovery of 10,000 cells or nuclei. The RNA-seq libraries were
prepared using the Chromium Next GEM Single Cell 3’ Reagent kit v3.1 (10x Genom-
ics, 1000121) following vendor protocols. The libraries were pooled and sequenced on
NovaSeq S1 100c flow cells (Illumina) with 28 bases for readl, 55 bases for read2 and 8
bases for index1 and aiming for 20,000 reads per cell.

Processing and annotation of scRNA-seq and snRNA-seq data
The scRNA-seq and snRNA-seq data were processed using Cell Ranger 3.0.2 using as

reference genome and annotation mm10 version 2020A for the scRNA-seq data and and
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a pre-mRNA version of mm10 2.1.0 as reference for snRNA-seq. In order to identify cell
containing droplets we processed the raw UMI matrices with the DropletUtils package
[5]. The function barcodeRanks was used to identify the inflection point on the total
UMI curve and the union of barcodes with a total UMI count above the inflection point
and Cell Ranger cell call were defined as cells.

For cell type assignment we used 3 scRNA-seq and 4 snRNA-seq experiments from
Denisenko et al. [14] as a reference. Cells labeled as “Unknown” (n=46), “Neut” (n=17)
and “Tub” (n=1) were removed. The reference was log-normalized and split into seven
count matrices based on chemistry, preservation and dissociation protocol. Subse-
quently, a multi-reference classifier was trained using the function trainSingleR with
default parameters of the R package SingleR version 1.8.1 [20]. After this processing, we
could use the data to classify our log-normalized data using the classifySingleR function
without fine-tuning (fine.tune = F). Hereby, each cell is compared to all seven references
and the label from the highest-scoring reference is assigned. Some cell type labels were
merged into broader categories after classification: cells annotated as “CD_IC,” “CD_
IC_A or “CD_IC_B” were relabeled as “CD_IC; cells annotated as “T,” “NK;” “B,” or
“MPH” were relabeled as “Immune” Cells that were unassigned after pruning of assign-
ments based on classification scores were removed for subsequent analyses.

Demultiplexing of mouse strains

A list of genetic variants between mouse strains was downloaded in VCF format from
the Mouse Genomes Project [13], accessed on 21 October 2020. This reference VCF file
was filtered for samples CAST_EiJ, C57BL_6N]J and 129S1_Svim] and chromosomes
1-19. Genotyping of single barcodes was performed with cellsnp-lite [26], filtering for
positions in the reference VCF with a coverage of at least 20 UMIs and a minor allele fre-
quency of at least 0.1 in the data (-minCOUNT 20, -minMAF 0.1). Vireo [22] was used
to demultiplex and label cells based on their genotypes. Only cells that could be unam-
biguously assigned to CAST_EiJ (CAST), C57BL_6N] (BL6) or 129S1_SvIm]J (SvIm])

were kept, cells labeled as doublet or unassigned were removed.

Genotype-based estimation of background noise

Based on the coverage filtered VCF-file (see above), we identified homozygous SNPs that
distinguish the three strains and removed SNPs that had predominantly coverage in only
one of the strains (1st percentile of allele frequency).

In most parts of the analysis, we focused on the comparison between the mouse sub-
species, M. m. domesticus and M. m. castaneus. To this end, we subseted reads (UMI-
counts) that overlap with SNPs that distinguish the two mouse subspecies.

To estimate background noise levels based on allele counts of genetic variants, an
approach described in Heaton et al.[15] was adapted to estimate the total amount of
background noise for each cells. First, the abundance of endogenous and foreign allele
counts (i.e., cross-genotype background noise) was quantified per cell. Because of the
filter for homozygous variants, there are two possible genotypes for each locus, denoted
as 0 for the endogenous allele, i.e., the expected allele based on the strain assignment of
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the cell, and 1 for the foreign allele. The probability for observable background noise at
each locus /in cell ¢ is given by

Ay

P = pPc* Ail,o AL, (1)

where p, is the total background noise fraction in a cell and the experiment wide (over
cells and empty droplets) foreign allele fraction is calculated from the foreign allele
counts A;; and the endogenous allele counts A; . The foreign allele fraction is then used
to account for intra-genotype background noise (contamination within endogenous
allele counts).

The observed allele counts A, per cell are modeled as draws from a binomial distribu-
tion with the likelihood function:

Ao+ AL
P(Aclpe) = H < 10 T AL ’l>pAl,1(1 — pytio @

A
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A maximum likelihood estimate of p. was obtained using one dimensional optimiza-
tion in the interval [0,1].

The 95% confidence interval of each p, estimate was calculated as the profile likelihood
using the function uniroot of the R package stats [27].

Comparison of endogenous, contamination, and empty droplet profiles

Empty droplets were defined based on the UMI curve of the barcodes ranked by UMI
counts, thus selecting barcodes from a plateau with ~ 500 — 1000 UMIs (Additional
file 1: Fig. S5). For the following analysis, the presence of M. m. domesticus alleles in M.
m. domesticus cells (i.e., endogenous), in M. m. castaneus cells (i.e., contamination) and
empty droplets was compared. After this filtering, we summarized counts per gene and
across barcodes of the same category to generate pseudobulk profiles.

In order to estimate cell type composition in the empty and contamination profiles, we
used the deconvolution method implemented in SCDCI[16], the endogenous single cell
allele counts from the respective replicate were used as reference (gcthreshold = 0.6).
In addition, cell type filtering (frequency>0.75%) was applied. Endogenous, contamina-
tion and empty pseudobulk profiles from each replicate were deconvoluted using their
respective single cell/single nucleus reference.

To compare the correlation between the different profiles, pseudobulk counts were
downsampled to the same total size.

Detection of barcode swapping events

Information about the number of reads per molecule and the combination of cell bar-
code (CB), UMI and gene were extracted from the molecule info file in the Cellranger
output. We assume that a combination of CB and UMI corresponds to a single origi-
nal molecule. Thus we define a PCR chimera as a non-unique CB-UMI combination in
which multiple genes were associated with the same CB and UMI. Since we can only
detect PCR chimera, if we detect at least 2 reads for a CB-UMI combination, we also
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restrict the total molecule count to CB-UMI combinations with at least 2 reads for the
calculation of the chimera fraction.

For the comparison of reads/UMI the identified chimera were intersected with iden-
tified cross-genotype contamination. To this end, the the analysis was restricted to M.
m. castaneus cells and CB-UMI-gene combinations which can be associated with an
informative SNP. The number of reads/UMI was summarized per CB-UMI-gene com-
bination for chimera (as defined above), unique CB-UMI-gene combinations with cov-
erage for an endogenous allele (endo) and unique CB-UMI-gene combinations with

coverage for a foreign allele (cont).

Evaluation of marker gene expression

A list of marker genes for Proximal tubule cells (PT), Principal cells (CD_PC), Interca-
lated cells (CD_IC), and Endothelial cells (Endo) was downloaded from the public data-
base PanglaoDB [17], accessed on 13 May 2022.

Log2 fold changes contrasting PT cells against all other cells were calculated with
Seurat using the function FindMarkers after normalization with NormalizeData. The
expression fraction e of PT markers was calculated as the fraction of cells for which
at least 1 count of that gene was detected. To contrast expression fraction in PT cells
against non-PT, the negative log-ratio was calculated as —log ((epr + 1)/(€non—pr + 1)).

Computational background noise estimation and correction methods

CellBender [4] makes use of a deep generative model to include various potential sources
of background noise. Cell states are encoded in a lower-dimensional space and an inte-
ger matrix of noise counts is inferred, which is subsequently subtracted from the input
count matrix to generate a corrected matrix.

The remove-background module of CellBender v0.2.0 was run on the raw feature bar-
code matrix as input, with a default fpr value of 0.01. For the comparison of different
parameter settings, fpr values of 0.05 and 0.1 were also included in the analysis. For the
parameter expected-cells the number of cells after cell calling and filtering in each repli-
cate was provided. The parameter fotal-droplets-included was set to 25,000.

SoupX [11] estimates the experiment-wide amount of background noise based on the
expression of strong marker genes that are expected to be expressed exclusively in one
cell type. These genes can either be provided by the user or identified from the data. A
profile of background noise is inferred from empty droplets. This profile is subsequently
removed from each cell after aggregation into clusters to generate a corrected count
matrix.

Cluster labels for SoupX were generated by Louvain clustering on 30 principal compo-
nents and a resolution of 1 as implemented by FindClusters in Seurat after normalization
and feature selection of 5000 genes. Providing the CellRanger output and cluster labels
as input, data were imported into SoupX version 1.6.1 and the background noise profile
was inferred with load10X. The contamination fraction was estimated using autoEst-
Cont and background noise was removed using adjustCounts with default parameters.

For the comparison of parameter settings, different resolution values (0.5, 1, 2) for
Louvain clustering were tested, alongside with manually specifying the contamination
fraction (0.1, 0.2).
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DecontX [8] is a Bayesian method that estimates and removes background noise by
modeling the expression in each cell as a mixture of multinomial distributions, one
native distribution cell’s population and one contamination distribution from all other
cell populations. The main inputs are a filtered count matrix only containing barcodes
that were called as cells and a vector of cluster labels. The contamination distribution is
inferred as a weighted combination of multiple cell populations. Alternatively, it is also
possible to obtain an empirical estimation of the contamination distribution from empty
droplets in cases where the background noise is expected to differ from the profile of
filtered cells.

The function decontX from the R package celda version 1.12.0 was run on the filtered,
unnormalized count matrix and clusters were inferred with the implemented default
method based on UMAP dimensionality reduction and dbscan [28] clustering. For the
“DecontX_default” results the parameter “background” was set to NULL, i.e., estimating
background noise based on cell populations in the filtered data only. “DecontX_back-
ground” results were obtained by providing an unfiltered count matrix including all
detected barcodes as “background” to empirically estimate the contamination distri-
bution. Besides the default clustering method implemented in DecontX, cluster labels
obtained from Louvain clustering (resolution 0.5, 1, and 2) were also provided to test

different parameter settings.

Evaluation metrics

Estimation accuracy

The genotype-based estimates p, for M. m. castaneus cells served as ground truth to
evaluate the estimation accuracy of different methods. For each method cell-wise back-
ground noise fractions a, were calculated from the corrected count matrix X and the
uncorrected (“raw”) count matrix R as

Z g X, &
Sy ree @)

a.=1

for cells ¢ and genes g.

RMSLE The Root Mean Squared Logarithmic Error (RMSLE) is a lower bound metric
that we use to quantify the difference between estimated background noise fractions per
cell a. from different computational background correction methods and the genotype-

based estimates p, obtained from genotype based estimation. It is calculated as:

RMSLE = % Z;(lag(ac +1) — log(pe + 1)? @

Kendall’s

7 To evaluate how well cell-to-cell variation of the background noise fraction is cap-
tured by the estimated values 4., the Kendall rank correlation coefficient  to the geno-
type-based estimates p, was computed using the implementation in the R package stats
[27] as T = cor(ac, pc, method = “kendall’).
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Marker gene detection

The same set of 10 PT marker genes from PanglaoDB as in the “Evaluation of marker
gene expression” section was used to evaluate the improvement on marker gene detec-
tion on corrected count matrices.

Log?2 fold change for each gene between the average expression in PT cells and aver-
age expression in other cells were obtained using the NormalizeData and FindMarkers
functions in Seurat version 4.1.1.

Expression fraction Entries in each corrected count matrix were first rounded to the
nearest integer. The expression fraction of each gene in a cell population was calculated
as the fraction of cells for which at least 1 count of that gene was detected. For evalu-
ation of PT marker genes, unspecific detection is defined as the expression fraction in
non-PT cells.

Cell type identification

Prediction score Each corrected count matrix was log-normalized and reference-based
classification in SingleR [20] was performed with a pre-trained model (see “Processing
and annotation of scRNA-seq and snRNA-seq data” section) on data from Denisenko
et al. [14]. SingleR provides delta values as a measure for classification confidence, which
depicts the difference of the assignment score for the assigned label and the median
score across all labels. The delta values for each cell were retrieved using the function
getDeltaFromMedian relative to the cells highest-scoring reference. A prediction score
per cell type was calculated by averaging delta values across individual cells and a global
prediction score per replicate was calculated by averaging across cell type prediction
scores.

Average silhouette The silhouette width is an internal cluster evaluation metric to
contrast similarity within a cluster with similarity to the nearest cluster. The cell type
annotations from reference-based classification were used as cluster labels here. Count
matrices were filtered to select for M. m. castaneus cells and cell types with more than
10 cells. Distance matrices were computed on the first 30 principal components using
euclidean distance as distance measure. Using the cell type labels and distance matrix as
input, the average silhouette width per cell type was computed with the R package clus-
ter version 2.1.4. An Average silhouette per replicate was calculated as the mean of cell
type silhouette widths.

Purity Purity is an external cluster evaluation metric to evaluate how well a clustering
recovers known classes. Here, Purity was used to assess to what extent unsupervised
cluster labels correspond to cell types. Count matrices were filtered to select for M. m.
castaneus cells and cell types with more than 10 cells and Louvain clustering as imple-
mented in FindClusters of Seurat version 4.1.1 on the first 30 principal components and
with a resolution parameter of 1 was used to get a cluster label for each cell. Provid-
ing cell type annotations as true labels alongside the cluster labels, Purity was computed
with the R package ClusterR version 1.2.6 [29].

k-NN overlap To evaluate the lower-dimensional structure in the data beyond clus-
ters and cell-types k-NN overlap was used as described in Ahlmann-Eltze and Huber
[30]. A ground truth reference k<-NN graph was constructed on a ‘genotype-cleaned’

count matrix, only counting molecules that carry a subspecies-endogenous allele. Raw
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and corrected count matrices were filtered to contain the same genes as in the reference
and a query k-NN graph was computed on the first 30 principal components. The k-NN
overlap summarizes the overlap of the 50 nearest neighbors of each cell in the query
with the reference k-NN graph.
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Abstract

Pleiotropy, measured as expression breadth across tissues, is one of the best predictors
for protein sequence and expression conservation. In this study, we investigated its effect
on the evolution of cis-regulatory elements (CREs). To this end, we carefully reanalyzed
the Epigenomics Roadmap data for nine fetal tissues, assigning a measure of pleiotropic
degree to nearly half a million CREs. To assess the functional conservation of CREs, we
generated ATAC-seq and RNA-seq data from humans and macaques. We found that more
pleiotropic CREs exhibit greater conservation in accessibility, and the mRNA expression
levels of the associated genes are more conserved. This trend of higher conservation for higher
degrees of pleiotropy persists when analyzing the transcription factor binding repertoire. In
contrast, simple DNA sequence conservation of orthologous sites between species tends to
be even lower for pleiotropic CREs than for species-specific CREs. Combining various lines
of evidence, we suggest that the lack of sequence conservation for functionally conserved
pleiotropic elements is due to compensatory evolution within these large pleiotropic CREs.
Furthermore, for less pleiotropic CREs, we find an indication of compensation across CREs.
This suggests that pleiotropy is also a good predictor for the functional conservation of

CREs, but this is not reflected in the sequence conservation for pleiotropic CREs.
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Introduction

One of the initial perplexing revelations of the human genome project was the seemingly 1
limited number of genes, which did not align with the increase in complexity compared to 2
organisms such as yeast, worms, and flies. It became evident that this complexity must stem 3
from gene regulation, with the probability that most genes play roles in multiple contexts
throughout development and in various tissues. 5

Considering the varying contexts of utilization in terms of location as well as timing,
it follows that mutations within the same gene can exert influence on multiple traits. 7
This phenomenon is widely recognized as pleiotropy. In a molecular context, pleiotropy is s
frequently measured as the number of tissues in which a gene is expressed, a metric called o
expression breadth (Hastings 1996; Duret and Mouchiroud 2000). 10

The advent of microarrays and subsequent RNA-seq technology allowed for an impartial, u
genome-wide evaluation of expression breadth. As data accumulated, it became evident 12
that expression breadth is in fact a very good predictor of the conservation of protein 13
sequences. In particular, the ratio of the non-synonymous over synonymous substitution 1
rate (dy/ds) shows that pleiotropic genes tend to be more conserved than tissue-specific 15
genes (Hastings 1996; Duret and Mouchiroud 2000; Zhang and WH Li 2004). Moreover, 16
the amount of constraint added varies across tissues: Genes expressed in the brain tend 17
to be more conserved than genes specific to other tissues, such as the liver (Kuma et al. 1s
1995; HY Wang et al. 2007; Khaitovich et al. 2005). A similar pattern emerges in terms 1o
of expression level conservation; also brain-expressed as well as pleiotropic genes tend to 20
have more similar expression levels across species than other genes (Khaitovich et al. 2005; =
Brawand et al. 2011; ZY Wang et al. 2020). 2

Naively, one would expect that a higher level of conservation of expression levels would be 23
achieved via a higher level of conservation of the sequences of cis-regulatory elements (CREs). 2

The resulting expectation would be that, if the same relationship between conservation and 25
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pleiotropy also applies to CREs and thus that CREs active in multiple tissues are also more 26
conserved. However, most enhancers are tissue-specific (Gasperini et al. 2020) and show little 27
conservation across species, although target gene expression appears conserved (Villar et al. 2
2014; Berthelot et al. 2018). Using a rather stringent definition of pleiotropy, a selection of 20
a couple of hundred highly active pleiotropic enhancers was previously identified in humans 30
and was found to have higher sequence conservation than tissue-specific enhancers across s
a large phylogeny (Andersson, Gebhard, et al. 2014; Singh and Yi 2021) and also over a 32
much shorter evolutionary time scale focusing on genomic data from the human population 33
(Huang et al. 2017). £

Promoters are much more likely to be functionally conserved than enhancers (Berthelot 35
et al. 2018). In addition, promoters are more pleiotropic than enhancers, which is probably 36
due to the fact that core promoters are more restricted in their spatial genomic location 37
than enhancers which can be located megabases away from the targeted transcription start 3s
sites (TSS). Promoters are further distinguished by their shape: Broad promoters are large, 30
thought to harbor multiple T'SS and tend to be more pleiotropic. In contrast, narrow 4
promoters are small, probably have only one T'SS and are more likely to be tissue-specific a1
(Andersson and Sandelin 2020). Furthermore, evidence suggests that expression from broad
promoters is less noisy and more robust towards mutations (Carninci et al. 2006; Schor a3
et al. 2017; Sigalova et al. 2020; Floc’hlay et al. 2020) and in humans these broad promoters 4
also show strong enrichment for CpG islands (Morgan and Marioni 2018). At least in flies, s
this results in the counter-intuitive observation that although broad promoters are more 4
robust and thus also more likely to be functionally conserved across species, overall they a7
exhibit lower sequence conservation between species than narrow promoters (Schor et al. s
2017). In summary, the relationship between pleiotropy and sequence conservation for CREs 4
appears to be much more complicated than that between pleiotropy and coding sequence  so

conservation. 51
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Here, we investigate the impact of pleiotropy on sequence and functional conservation s
in primates. To gauge pleiotropy, we thoroughly re-analyzed DNase hypersensitivity data s3
from 9 primary fetal tissues (Bernstein et al. 2010), integrating across a minimal number of s
replicates to also identify tissue-specific CREs robustly. To assess functional conservation of s
the identified CREs, we obtained RNA-seq and ATAC-seq data from two human and two  s6
cynomolgus macaque neural progenitor cell lines. Furthermore, we obtained four different sz
measures of sequence conservation: 1) a population genomic measure, 2) a conservation ss
measure for the human lineage since the most recent common ancestor of humans and  so
chimpanzees (Gronau et al. 2013), 3) a conservation score calculated for the primate 6o
phylogeny (Pollard et al. 2010) and 4) a scaled measure of transcription factor binding site e

(TFBS) conservation. 62

Results 6

In order to investigate different aspects associated with varying degrees of regulatory e
pleiotropy, we identified putative CREs as DNase hypersensitive sites (DHS) in the Roadmap
Epigenomics Data, which provide comparable experiments for a wide selection of tissues 6
(Bernstein et al. 2010). To ensure reproducibility, we included only tissues for which at least o7
seven biological replicates of DNase-seq data were available, leaving us with nine tissues: 6
adrenal gland, brain, heart, kidney, large intestine, lung, muscle, stomach and thymus (Fig. e
1A,B). We called DHS for each tissue separately using a peak caller that utilizes replicate 7o
information to gauge certainty (Ibrahim et al. 2015), resulting in a total of > 1.1 million =
DHS ranging from ~ 80,000 sites detected in the large intestine to ~ 175,000 sites detected 72
in the stomach (Fig. 1C). In analogy to how expression breadth has been used as a proxy 73
for pleiotropy of genes, we merge overlapping DHS from different tissues and define the 7
Pleiotropic Degree (PD) as the number of tissues in which we found a DHS, resulting in 7

~ 460,000 union CREs stratified by PD. We distinguish promoters and enhancers based on 7
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genomic distance, while we designate CREs within 2kb of an active annotated TSS (Gencode

v.32) as promoters and all other CREs within 1Mb as enhancers (Fishilevich et al. 2017; 7

McLean et al. 2010). 79
80
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Figure 1. Study overview. (4) Open chromatin and expression data from the Roadmap Epigenomics
Project (Bernstein et al. 2010) were used to infer the effect of pleiotropy on sequence and TFBS
evolution, and associated gene expression in primates. Overlapping DHS peaks between tissues were
merged to determine the degree of tissue-specificity per CRE. (B) DHS-data from 9 human fetal
tissues. The number of biological replicates per tissue varies between 7 and 34. (C) The number
of CREs per tissue varies 2.3-fold. There is no association between the number of replicates and
the number of accessible regions per tissue, suggesting that with > 7 replicates per tissue, sufficient
saturation is reached in peak detection. (D) Most enhancers (dotted line) are tissue-specific, while
promoters (solid line) are mostly pleiotropic. The colors represent the tissues as introduced in (4,B).
(E) CRE length increases with the number of tissues, particularly at the promoters. This increase was
also observed at the peak level prior to merging (Supplemental Figure S1A). (F') The majority of PD9
CREs are CpG-island promoters (solid blue), while tissue-specific elements are rarely CpG-Islands
and mainly enhancers (transparent green). (G) Scaled coefficients of a linear mixed model to predict
gene expression levels using distance scaled CRE counts of different types. (H) Pleiotropic promoters
are more commonly associated with pleiotropic gene expression patterns. The promoter PD indicates
the highest PD of the associated promoters per gene. The y-axis shows the proportions of those
x-categories (promoter PD) with associated gene expression pleiotropy ranging from 1 to 9.
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Consistent with expectations, the majority of enhancers are tissue-specific (PD1) (Gasperini s
et al. 2020), while promoters are more likely to be pleiotropic (PD9) and CREs with an &
intermediate PD (1 < PD < 9) are rare among both promoters and enhancers (Fig. 1D). s
With a median size of 1.2kb, PD9 promoters are the largest CREs (Fig. 1E, Supplemental s
Fig. S1A) and also the overlap among the DHS inferred for each tissue is highest in PD9 s
promoters (Supplemental Fig. S1B), suggesting that their larger size is due to a higher s
content of information rather than being an artifact of concatenation. They probably s
correspond to the broad promoters observed in humans (Andersson, Gebhard, et al. 2014) s
and fruit flies (Schor et al. 2017). A large proportion of the pleiotropic promoters are s
CpG islands (76.7%) and the proportion of CpG island promoters generally decreases with o
increasing specificity (Fig. 1F). The same is true for enhancers, although enhancers are o
only very rarely CpG islands (3.2%). Next, we wanted to investigate whether the PD of a o
CRE has an impact on the expression of the associated genes. To this end, we integrated o
DNase-seq with gene expression estimates from matching samples that are also provided o4
by the Epigenomics Roadmap Project (Supplemental Fig. S2). As expected, we find a o5
strong enrichment for PD9 promoters to be associated with genes that are expressed in all 9 o
tissues, while we find an over-representation of tissue-specific promoters in tissue-specific o7
genes (Fig. 1H). Moreover, we find that the pleiotropic degree of enhancers and promoters s
associated with a gene also has an impact on the gene’s expression level. The amount of 9
variation in expression levels that can be explained by the number and distance of CpG 100
island and non-CpG island CREs of varying PD is 24% (CI: 23.8-24.3%), while the number, 10
distance and type of CRE without the pleiotropy information can only explain 19% (CIL: 102
18.8-19.8%)(see Methods). Inspecting the scaled coefficients of the mixed effects model 103
reveals that PD9 promoters have the largest activating effect on expression, followed by 104
PD9 and PD1 enhancers. While for PD9 promoters, the signal is clearly due to CpG-island 105

CRES, for enhancers the many non-CpG-islands CREs appear to have a larger activating 10
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effect in total (Fig. 1G; Supplemental Fig. S1C). We take this as evidence that our PD9 107

category as well as CREs that were found in only one tissue are likely to be functional. 108

Characterization of transcription factor binding site repertoire across 1w

pleiotropic degrees 110

Under the premise that CREs regulate gene expression by binding transcription factors, we 11
continued to characterize TFBS associated with CREs of varying pleiotropic degrees. To this 112
end, we collected non-redundant position weight matrices (PWMs) of 643 binding motifs 13
(Fornes et al. 2020) belonging to 561 TFs that we found to be expressed in at least one of 114
the investigated tissues (Fig. 2A). Almost half of all expressed TFs (237 out of 561, 42%) us
were present in all tissues, i.e. pleiotropic, while 94 (17%) showed tissue-specific expression. 11
Interestingly, we found that the brain has the highest proportion of tissue-specific TFs. Next, 17
we evaluated the overall binding potential of a TF to a CRE using Cluster-Buster (Frith et al. 1
2003) (see Methods for details). Unsurprisingly, we found that TFBS diversity increases o
with pleiotropy for both enhancers and promoters. This is at least partially explained by 12
the increase in CRE size, which is in turn likely linked to a broader functionality (Fig. 2B). 1z
Still, the question remains whether tissue-specific and pleiotropic CREs are regulated by the 12
same TFs or whether preferences exist. For the majority of TFs we do not find a binding 123
preference: 159 (24.7%) are over-represented in CREs specific for one of the tissues (Fig. 124
2C) and 84 (13.1%) motifs are enriched in the PD9 CREs. In line with our expectations, 12
gene-set enrichment analysis shows that motifs enriched in brain-specific CREs are for TFs 126
that are associated with neuron differentiation. Most prominently, this is driven by OLIG1 127
and OLIG2 that are essential for oligodendrocyte development (Zhou and Anderson 2002; 12
Jakovcevski et al. 2009; Yu et al. 2013), as well as by NEUROD1, NEUROD2 and NEUROG1 120
that are important for neuron development (Olson et al. 2001; Sun et al. 2001; Messmer et al. 130

2012; Pataskar et al. 2016) (Fig. 2E). Other tissues also showed a specific enrichment: For s
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example, TFBS that are overrepresented in heart-specific CREs include motifs of MEF2C, 132

TBX20 and NKX2-5 (Fig. 2F), which are essential for cardiac muscle development (He et al. 133

2011; Schlesinger et al. 2011; Grunert et al. 2016). 134
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Figure 2. TFBS repertoire diversity and enrichment across tissue-specific and pleiotropic CREs.
(A) An overview of TF expression across tissues. (B) TFBS repertoire diversity increases with PD,
particularly across promoters. Depicted are mean +/- SEM. (C') Overview of the over-represented
motifs in PD9 and PD1 CRE sequences. (D) Top 5 categories of gene set enrichment analysis of
PD9-enriched motifs using all motifs as background (Gene ontology, Biological Process, Fisher’s
exact p-value< 0.05). (E, F') Top 4 categories of gene set enrichment analysis of tissue-specific PD1
enriched motifs using all motifs as background (Gene ontology, Biological Process, Fisher’s exact
p-value< 0.05). Fold change depicts the proportion of tissue-specific PD1 CREs with the motif over
the global average proportion for that motif. (E) Brain-specific PD1 over-represented motifs. (F)
Heart-specific PD1 over-represented motifs.

In contrast, TFs that show a binding preference for PD9 CREs appear to be associated 135
with more basic cellular processes such as transcription regulation in connection with cell 136
cycle and and stress response (Fig. 2D). These motifs are more GC-rich and tend to have 137

a higher information content than PD1-enriched motifs or motifs without any preference 138
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(Supplemental Fig. S5A,B). In addition, these elements are enriched for TFs that were shown 13
to co-localize with most other TFs (Odds Ratio = 10.51, Fisher’s exact p-value= 3e — 12) 10
(Zhao et al. 2022). These so called ”Stripe” TFs include SP, KLF and ZBTB family members, 1
all of them recognize GC-rich sequences. Moreover, ”Stripe” factors were experimentally 14
shown to have a strong positive impact on prolonged CRE accessibility and the dynamics of 13
most other TF proteins by stabilizing and prolonging their retention time at their binding 14
site within the same CRE. Enrichment for binding sites for these universal and highly s
cooperative TFBS in PD9 CRE sequences is in line with the broad openness of these CREs 146

and their high gene expression activating effects (Fig. 1G). 147

The impact of pleiotropy on the evolutionary conservation of regulatory s

act iVity 149

To get a first glimpse of the interaction between the degree of pleiotropic and the evolutionary 1so
conservation of the CREs in our data, we generated RNA-seq and ATAC-seq data from 15
iPSC-derived neural progenitor cell lines (NPCs) from humans and cynomolgus macaques 152
(Supplemental Fig. S3A,B). We then intersected the detected genes and accessible peaks 153
with the processed Epigenomics Roadmap data to assign a pleiotropic degree to the genes 154
and peaks (Fig. 3A). As expected, the amount of CRE overlap with NPC ATAC-seq peaks 155
increases with increasing PD and is generally higher for promoters than for enhancers (Fig. 156
3B). Moreover, the activity of PD9 CREs is also more conserved between humans and 1s7
macaques. Of all the overlapping PD9 CREs, 88% were detected to be active in NPCs 158
from both species, while this was only the case for 15% of the PD1 CREs. The observed 1so
dependence of PD on conservation levels is not only due to the increased activity that might 1e0
generate a higher probability of PD9 elements being detected as peaks (Fig. 3 B). Instead, 16
even without stratifying by whether a peak was called, we observe a decrease in differential 162

activity with increasing PD, measured by absolute logs-fold changes (Fig. 3C). 163

10
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Next, we wanted to investigate which changes in CRE activity have an impact on the 164
expression of the associated genes. To this end, we tested whether differentially accessible 165
(DA) promoters and enhancers (BH-adjusted Wald test p-value <= 0.1) of a PD category 166
are more likely to be associated with a differentially expressed (DE) gene (BH-adjusted Wald 167
test p-value <= 0.1). Indeed, we find that DA promoters are more likely to be associated 168
with a DE gene (BH adjusted Fisher’s exact test). There is a clear enrichment for all 16
promoter PD categories, showing a 2-3 times enrichment (Fig. 3D). Moreover, when we 170
further distinguish CpG island promoters, it turns out that the activity changes there have 1n
the greatest potential for downstream effects (Supplemental Fig. S3C,D). 172
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Figure 3. Pleiotropic degree and evolutionary conservation of expression and accessibility between
humans and cynomolgus macaques. (A,B) The fraction of enhancers and promoters of different
pleiotropic degrees (PD) as defined using data from 9 tissues from the Epigenomics Roadmap project,
which overlapped with ATAC-seq peaks called in neural progenitor cell lines (NPCs) from cynomolgus
macaques and humans. The colors indicate whether a human DHS-derived CRE overlapped with a
NPC ATAC-seq peak from humans, cynomolgus macaques, or both. (C') Mean absolute logs-fold
changes of gene expression and activities between humans and cynomolgus macaques. The error bars
represent 95% bootstrap confidence intervals. PD9 genes (CREs) have more conserved expression
(activity) than more tissue-specific genes. (D) We tested for enrichment (odds ratio >1) or depletion
(odds ratio <1) of differentially accessible CREs with significantly differentially expressed genes
between humans and cynomolgus macaques. Error bars represent the 95% confidence intervals of the
odd ratio, and the stars indicate the significance level with Benjamini-Hochberg correction ( - < 0.1,
* < 0.05, ** < 0.01, *** < 0.001 ).

Odds Ratio (DA vs. DE)

J310W01d

11




2. Results

bioRxiv preprint doi: https://doi.org/10.1101/2024.01.10.575014; this version posted January 11, 2024. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

This picture changes slightly for the association of enhancers: Although highly pleiotropic 174
DA enhancers (PD8-9) are still more likely to be associated with a DE gene, for more 175
tissue-specific DA enhancers, we observe a significant depletion in the associated DE genes 176
(Figure 3D). In other words, genes with tissue-specific DA enhancers tend to have a more 177
conserved expression. Generally, expression levels and robustness increase with increasing 178
number of enhancers (Berthelot et al. 2018). Thus, if there are many enhancers, each 179
has only a relatively small effect on expression and overall fitness, allowing these CREs 130
to fluctuate between different possible genomic locations, resulting in different CREs for 1s
different species that can compensate for one another (Ludwig et al. 2000; Bradley et al. 152
2010; Doniger and Fay 2007; Arnold et al. 2014). In summary, the activity of pleiotropic 183
CREs is evolutionarily more conserved between species than the activity of tissue-specific 14
CREs. Moreover, if the activity of a pleiotropic CRE changes, such changes are also more 1ss

likely to have downstream effects, i.e. to impact the expression of associated genes. 186

Sequence conservation is lowest in pleiotropic CREs 187

So far, pleiotropy has the expected effect on gene regulation in that pleiotropic CREs tend 1ss
to be more conserved. Here, we investigate how this functional conservation is reflected in 180
the underlying DNA sequence. We focus on three measures of sequence conservation: 1) the 190
number of weakly deleterious sites in humans (E.W. (Gronau et al. 2013), Fig. 4A,B), 2) 1
the fraction of sites under (strong) negative selection (p (Gronau et al. 2013), Fig. 4C,D) 1
and 3) the average phyloP and PhastCons scores across a primate phylogeny (Supplemental 103
Fig. S4A,B) (Pollard et al. 2010). The main difference among the three measures is the 10
evolutionary time across which sequence conservation is averaged. This ranges from recent 195
selection within human populations (E.W.) via selection on the lineage since the most 1
recent common ancestor of humans and chimpanzees (p), to the average across the primate 197

phylogeny (phyloP, PhastCons). Since pleiotropic degree (PD) was assessed in human 1

12
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samples, the E.W measure provides the closest match to our measure of pleiotropy. For 199
p and phyloP, we average the strength of selection over longer evolutionary times, and 200
it is unclear whether the PD determined in humans has been constant. Additionally, it 20
should be noted that variants emerging within a population may undergo recombination, 202
whereas mutations occurring after speciation remain on separate haplotypes. In line with 20
our expectations, we indeed find that the number of weakly deleterious sites increases with 204
the pleiotropic degree for both promoters and enhancers (Fig. 4A). This observation aligns 205
well with the conservation of CRE accessibility, which we assessed using the ATAC-seq 20
data described above: Across all PD categories, we observe a higher prevalence of weakly 207
deleterious sites in CREs that are open in both species (Fig. 4B). In contrast, when using p 208
as a measure of conservation, we only find a higher sequence conservation for tissue-specific 200
CREs (PD1-3) with conserved accessibility, while it appears that accessibility conservation is 210
not reflected in the sequence conservation of pleiotropic CREs (Fig. 4D). Overall p suggests 2
that PD9 CREs have the lowest fraction of negatively selected sites compared to other 212
PD-categories (Fig. 4C). This surprising result remains when we use the average phyloP or 23
average PhastCons score across a 10-species primate phylogeny as a measure of conservation, 214
which confirms PD9 CREs as the PD category with the lowest conservation (Supplemental 215
Fig. S4A,B). In summary, even though the number of weakly deleterious sites within a CRE 216

increases with pleiotropy, this is not reflected in sequence conservation across species. 217

Tissue-specific effects 218

So far, we have not considered what happens if the different tissues would add different 21
amounts of constraint. Indeed, when CREs are separated by the tissues in which they are 220
utilized, the brain utilizes CREs that are clearly under more constraint than CREs of other 2z
tissues. Nevertheless, also for brain the number of weakly deleterious sites increases with 222

PD, showing that although to smaller amounts, activity in other tissues still adds to the 22

13
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Figure 4. CRE sequence conservation patterns across varying degrees of pleiotropy. (A,B) Weak
negative selection inferred based on human polymorphisms increases with increasing pleiotropic
degree (PD). (A) Separated by enhancers / promoters. (B) Separated by human-macaque accessibility
conservation in NPCs. (C,D) (Strong) negative selection is the highest at the intermediately-specific
CREs and lowest in the pleiotropic CRE sequences. (C') Separated by enhancers / promoters. (D)
Separated by human-macaque accessibility conservation in NPCs. (4,B,C,D) Depicted are mean
estimates per PD category. Error bars indicate SEM.

overall constraint (Fig. 5A). Again, this is not true when considering substitutions on the 224
human lineage as used in the measure p (Fig. 5B). Here brain-specific CREs show most 2
constraint on the human lineage, much more than pleiotropic PD9 CREs, which are by 26
definition also utilized in the brain. 27

To exclude the possibility that the brain effect on the PD9 elements is diluted by the 208
merging of DHS across tissues, we contrast the p of the brain peak sequence with adjacent 220
sequences that are part of the same merged CRE but are open in other tissues (Fig. 5C). 230
We find that for PD9 CREs, brain peak sequences show lower sequence conservation on 23
the human lineage than the adjacent sequence utilized only by other tissues, while for 23
less pleiotropic CREs the part that is used in the brain is under much more constraint 233

(Fig. 5D). In summary, even though we find tissue-specific effects, in particular a higher 2u:
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Figure 5. CRE sequence conservation patterns per tissue. (4) Weak negative selection inferred
based on human polymorphisms separated by the tissue that utilizes the CREs. (B) All negative
selection separated by the tissue that utilizes the CREs. (C') Brain CRE sequences, which showed
the highest conservation across tissues, were separated into peak and adjacent sequences. (D) The
part of the sequence that is used by the brain shows much higher fraction of sites under negative
selection than the respective adjacent sequences. (A4,B,D) Depicted are mean estimates per PD
category. Error bars indicate SEM.

constraint for brain CREs, this cannot explain the overall pattern of the relatively low 235
sequence conservation of pleiotropic CREs. It remains that for pleiotropic CREs there is no 236

simple relationship between sequence and functional conservation between species. 237

Pleiotropic CRE TF repertoire is conserved, not the binding sites 238

In order to explain the apparent mismatch between functional and sequence conservation in 230
PD9 CREs across primates, we continued to analyze levels that are intermediate between 240
sequence conservation (less functional) and accessibility conservation (more functional), 2u
which are CpG content, TFBS repertoire and position conservation between human CREs 22
and their orthologous sequences in cynomolgus macaques. To begin with, we find that 2

conservation of CpG content increases with PD and is highest for pleiotropic promoters 24

15




70

2. Results

bioRxiv preprint doi: https://doi.org/10.1101/2024.01.10.575014; this version posted January 11, 2024. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

(Supplemental Fig. S4E). This coincides with the increase in CpG island CREs with PD 25
(Fig. 1F) and suggests that the CpG island properties are conserved across species, landing 246
closer to the functional side. Next, we calculated the binding potential for all expressed a7
TFs and calculated the average pairwise Canberra distance between species (dc,,,). We s
then approximate TFBS repertoire conservation as 1 — ECM - To ensure that repertoire s
conservation is not dominated by differences in diversity between PDs, we shuffled the CRE 250
identifiers of the macaque profiles within the respective PD class and calculated the average 251
random TFBS profile similarity between species (Supplemental Fig. S5C,D). Furthermore, 25
when we contrast CREs with conserved and non-conserved openness between humans and 253
macaques, we find that for all PD categories, functionally conserved CREs also show a 25
higher repertoire conservation (Fig. 6B). 255

With respect to the PD categories, we found that repertoire conservation generally 256
increases with pleiotropy in all tissues (Fig. 6A,C). However, while there is a simple s
relationship for promoters for which repertoire conservation is highest for PD9 and lowest 258
for PD1 CREs, this is not the case for enhancers among which CREs with intermediate 250
PDs show the highest conservation. This said, also for enhancers repertoire conservation 260
in PD9 CREs (0.66) is considerably higher than PD1 TFBS repertoire conservation (0.62), 26
which is in contrast to what we observed for sequence conservation, again showing overall a 2
higher similarity to the functional pattern of conservation (Fig. 3D, 6F). To answer in more 263
detail how for PD9 CREs a relatively high repertoire conservation is achieved in spite of 264
a low sequence conservation, we analyzed the positional conservation of TFBS as a third 2es
intermediate metric. We calculated the per-motif position conservation as the fraction of 266
conserved binding sites between both species (intersection) over the total binding sites per 267
motif across species (union) (Jaccard similarity index IToUrg) (Fig. 6D). Surprisingly, s
we find that the average repertoire conservation appears to be unrelated to the positional 29

conservation in high PD categories (Fig. 6E). The positional conservation seems to be more 270
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Figure 6. TFBS repertoire and position conservation between orthologous human and macaque
CREs. (4,B,C) TFBS repertoire conservation across PDs. Depicted are mean +/- SEM. (4) TFBS
repertoire conservation increases with higher PD among promoters, however, it decreases slightly at
high PD-enhancers. (B) CREs that overlap NPC peaks with conserved openness show higher TFBS
repertoire conservation than species-specific NPC peaks. (C) TFBS repertoire conservation differs
across tissues, where brain shows the highest conservation at lower PDs. (D) Simplified schematic
of the measures of repertoire and position conservation. (£) TFBS position conservation versus
repertoire conservation across PD categories. Depicted are mean values +/- SEM. (F) Standardized
scores (z-scores) of sequence (primate phyloP), TFBS repertoire and binding site conservation between
human and cynomolgus macaque. (G) A schematic depicting how lower sequence conservation might
lead to higher TFBS repertoire conservation through compensatory mechanisms. (H) A summary of
the scaled average conservation metric scores across PDs. Sequence: primate phyloP scores, TFBS
position: ToU yrg scores, TFBS repertoire: 1-dc,,,;, CpG observed/expected: \CpG(‘j_,’T‘:MprG {"I;;HL
accessibility: —LFC— of NPC-DA results, downstream expression: —LFC— of NPC-DE.

related to sequence conservation, thus landing on the less functional side (Fig. 6F). In on
summary, while CRE sequence and TFBS positions are least conserved in PD9 elements, CpG 22

content and TFBS-repertoire are in agreement with the more functional metrics accessibility 273
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and expression conservation in that they show the highest conservation in PD9 elements. 27
These puzzling patterns would be consistent with a mechanism of compensatory evolution. 275
In a simplified scenario, if a certain TF binding site is lost in a more tissue-specific CRE and 276
no new binding site is fixed to compensate for this, this would lead to fewer substitutions 277
than in the case where the loss of a binding site is compensated by the fixation of a new 27
binding site (Fig. 6G). Such compensation in the latter case would lead to a low sequence 27
and positional, but high repertoire conservation. Many genome-wide studies have confirmed 2s0
that TFBS have a high turnover rate (Dermitzakis and Clark 2002; Paris et al. 2013; Domené 281
et al. 2013), which is buffered by compensation. Here, we describe the evolutionary patterns 2s2

where this compensation likely happens within the same CRE. 283

PD9 promoter of Ataxin-3 gene as an example 284

To illustrate within CRE compensatory evolution of TFBS within a PD9 promoter, we took 2ss
a closer look at the promoter of the ubiquitously-expressed protein-coding gene ATXN3 286
(Ataxin-3). Ataxin-3 is an important factor for the regulation of the degradation of damaged 27
proteins (Schmitt et al. 2007; Gao et al. 2015; Feng et al. 2018). This gene plays an 2ss
important role for the brain, as its malfunction can lead to neurodegenerative diseases such 289
as spinocerebellar ataxia (Evers et al. 2014). The ATXN3-promoter shows low sequence 200
conservation (34%) and low TFBS binding site conservation (49%), but high TFBS repertoire 201
(77%), accessibility and expression conservation (Fig. 7TA-E). 202

To investigate a few likely relevant TFs closer, we overlapped our TFBS data with 203
published ChIP-seq data from human neural cells available in the GTRD database (Yevshin 20
et al. 2018) and visualized the binding sites of the 2 TFs (MYCN, POU3F2) annotated to 205
be involved in neurogenesis (Gene Ontology biological process term G0O:0022008) (Fig. 7TH). 206
Both of their motifs are moderately complex as shown by their information content (MYCN: 2907

IC=11.8, POU3F2: IC=13.7, Fig. 71,J). Both promoter orthologues show strong binding 20
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Figure 7. Ranks of ATXN3 PD9 promoter compared to other CREs in terms of (A4) sequence con-
servation (mean PhastCons), (B) TFBS binding site conservation, (C') TFBS repertoire conservation,
(D) CRE openness conservation between human and cynomolgus macaque in NPCs and (E) ATXN3
gene expression conservation between human and cynomolgus macaque in NPCs. (F, G) ATXN3
PD9 promoter is accessible in both species. (H) ATXN3 promoter shows diverged TFBS positions
between species among validated TFs involved in neurogenesis. (I, J) PWM logos of the investigated
TF motifs with ChIP-seq data available: MYCN (I), POU3F2 (J).
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positions for both TFs. Humans have 6 and macaques 5 MYCN binding sites and both have
one POU3F2 binding site, suggesting a rather high repertoire conservation, which is also
reflected in similar ATAC-seq peak-shapes (Fig. 7F,G). However, only 3 of the 10 binding
sites are positionally conserved between the species. This serves as an example of how the
large disagreement between sequence, TF binding site conservation and TFBS repertoire

might co-occur.
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Discussion 305

Pleiotropy has been shown to be the best predictor of both protein coding sequence con- 306
servation (Hastings 1996; Duret and Mouchiroud 2000; Zhang and WH Li 2004) and gene 307
expression levels (Khaitovich et al. 2005; Brawand et al. 2011; ZY Wang et al. 2020). Here, 308
we investigate the effect of pleiotropy on the evolution of cis-regulatory elements (CRE) 30
and find that measures close to CRE function, such as accessibility and TFBS repertoire 310
conservation, indeed show the expected higher conservation for more pleiotropic CREs. su
Similarly, a measure of conservation based on human diversity data also shows a trend s
for higher conservation in more pleiotropic CREs. However, surprisingly, we found that 313
this higher conservation of pleiotropic CREs is not reflected in the sequence and positional 314
conservation of TFBS between macaques and humans. These observations imply that a a5
simple model of purifying selection alone is insufficient to explain the effect of pleiotropy on 316
CRE evolution and suggest a role for compensatory evolution. 317

Zooming into tissue effects, in line with previous investigations on brain evolution (Kuma s
et al. 1995; HY Wang et al. 2007; Brawand et al. 2011), we find that the activity in the 31
brain exerts more constraint on a CRE than the activity in other tissues. There are many 32
reasons why the brain is special and requires particularly tight regulation, including its high sz
complexity consisting of precise neural networks (Geschwind and Rakic 2013). Hence, it 32
comes as no surprise that brain-specific CREs show by far the highest sequence conservation 323
irrespective of the measure. However, following the logic that brain expression induces a lot 32
of constraint, this should also impact the pleiotropic, i.e. PD9 elements. Looking at the 32
between-species sequence conservation measure, the sequences of PD9 CREs that are open 32
in the brain are even less conserved than the adjacent sequences (Fig. 6D). This confirms s
the notion that the structure and evolution of PD9 CREs is inherently different, in that it s
allows for functional conservation without much sequence conservation. 329

Indeed, we find several basic structural properties of PD9 elements that distinguish them 330
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from less pleiotropic CREs. They tend to be larger, have more CpGs and a higher GC 31
content. Moreover, PD9 elements show an over-representation of GC-rich motifs that are 332
associated with TF's that tend to be involved in more basic cellular processes. Among those, 333
we also find enrichment for binding sites of a recently described group of highly cooperative 33
TFs (Universal Stripe factors) that prolong CRE openness (Zhao et al. 2022). In concordance 335
with the idea that these Stripe factors facilitate the binding of most other TFs, we observe 33
that PD9 CREs are more diverse in their TFBS. It should also be noted that the majority of 337
PD9 CREs are promoters and PD9 promoters share many properties with broad promoters s
that were defined via the shape of CAGE peaks (Andersson, Gebhard, et al. 2014). Even s
though this classification is based on a completely different concept, also broad promoters 3:«
were shown to be more pleiotropic, active and CpG-rich. Indeed, as observed for PD9 su
CREs, broad promoters also tend to show an increased substitution rate. Moreover, broad s
promoters have been shown to be more robust than narrow promoters, in that they show less 33
expression noise across haplotypes in Drosophila (Floc’hlay et al. 2020; Schor et al. 2017). 34
Similarly, in humans CpG island promoters have also been found to induce more stable 3
expression (Morgan and Marioni 2018). Mechanistically, this picture fits nicely with the 34
notion that Stripe factors bind to GC-rich regions, thus facilitating combinatorial binding, s«
which has been shown to lead to evolutionarily more stable TF binding across mouse species 34
(Stefflova et al. 2013). In the same vein, Hagai et al. 2018 found that the regulatory response 349
of genes associated with CpG islands to an immune stimulus is more conserved than that of s
genes associated with a TATA-box. In summary, there is ample evidence that large CpG 351
island promoters are functionally robust while having high substitution rates. 352

Nearly as pronounced as for promoters, we also find high substitution rates in PD9 353
enhancers, which also share most of the other features with PD9 promoters, suggesting that sss
similar evolutionary mechanisms apply to both promoters and enhancers. We suggest that 3ss

the main differences in the evolutionary patterns observed for promoters and enhancers are 356
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closely linked to the degree of pleiotropy. Most enhancers show strong tissue preferences, 357
placing them in our PD1 category. Consistent with multiple other studies investigating CRE 358
conservation in mammalian genomes (Danko et al. 2018; Berthelot et al. 2018), we find 35
that only a relatively small fraction of enhancers is conserved between species in terms of 360
accessibility and that these fractions show a strong association with the pleiotropic degree se
irrespective of their classification as enhancers or promoters. In fact, the CRE conservation 362
across the genome is so puzzlingly low (Doniger and Fay 2007; Crocker et al. 2016; Horton et 363
al. 2023), implying such high TFBS turn-over rates beyond what simple models of evolution 36
can explain (Tugrul et al. 2015). 365

In addition, the observed high TFBS turnover rates appear to be inconsistent with the e
relatively low rates of change in gene expression levels. This discrepancy has prompted the 367
proposal of compensatory evolution as a prevalent mechanism for CREs. The phenomenon of 368
CREs at non-orthologous genomic positions in different species exhibiting the same function ss
and being able to compensate for one another has been documented for several cases (Ludwig 370
et al. 2000; Arnold et al. 2014; Domené et al. 2013). Also in our data, we find hints that sn
the between-CRE compensation impacts the evolution of cis-regulatory networks between 37
humans and macaques. The positions of more tissue-specific enhancers appear to be less 373
conserved for genes with conserved expression (Fig. 5D). This phenomenon is related to the 37
observation that a lot of function is encoded redundantly also within a gene’s regulatory s
landscape by the so called shadow enhancers (Hong et al. 2008; Osterwalder et al. 2018; 376
Wunderlich et al. 2016). Osterwalder et al. 2018 showed that the deletion of one strong a7
enhancer did not have an effect on the phenotype as long as the shadow enhancer was still 378
active. This clearly demonstrates the presence of epistasis, which suggests that multiple 370
equally fit haplotypes exist and a different ones can get fixed in each species, which is then 3z
perceived as compensatory evolution across CREs. 381

Several other properties of CREs suggest that there is a lot of epistasis also within one s
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CRE. The billboard model (Kulkarni and Arnosti 2003; Arnosti and Kulkarni 2005) and  3s3
the TF-collective model (Junion et al. 2012) of enhancer activity suggest that two CRE 384
haplotypes with shifted but similar TFBSs should be functionally equivalent. It follows sss
that the mutations that create these two haplotypes will also have a non-additive effect on 386
fitness. Moreover, some studies showed that binding to a high-affinity site is facilitated by 3s7
many neighboring low-affinity binding sites, thus providing the raw material for high TFBS s
turnover rates (Tugrul et al. 2015). 389

Thus, we suggest that within-element compensation of TFBS is a common mode of 30
evolution for pleiotropic CREs. This would explain the apparent disparity between the 3o
cross-species sequence conservation and the within-species constraint measure E-W. (Fig. 30
4). Moreover, it would also explain the disparity between the low sequence and the high 30
functional conservation between species as observed in our ATAC-seq and RNA-seq data: If 30
different, functionally equivalent haplotypes got fixed in different species, this would lead to 305
a high sequence divergence while the open chromatin state and downstream gene expression 3o
remained conserved (Fig. 6H). Furthermore, we show that even though PD9 TFBS may not s
have a high positional conservation, the overall binding potential for various TFs across a 39
pleiotropic CRE tends to be conserved. 399

In summary, we think that compensatory evolution is a prevalent mode for evolution of 400
regulatory elements and goes along with the number of contexts in which the element is 40
utilized. The structure of cis-regulatory networks lends itself to high levels of negative epistasis 02
across more distal CREs, while for the complex, large pleiotropic CREs epistatic interactions o3
are more likely to occur within the same element. The within-element compensation is a0
possibly facilitated by higher spatial restrictions on TFBS locations: Promoters are likely 405
more restricted spatially than enhancers. However, we observe similar patterns for pleiotropic o6
enhancers as well, albeit less pronounced. We speculate that they are also spatially more o7

restricted than less pleiotropic enhancers due to their higher sequence complexity, which is 08
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probably due to highly cooperative binding at the pleiotropic sites. Such complex element 09
structures are less likely to spontaneously occur at distal sites than it is observed for a0

tissue-specific elements. a1
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Methods 412

Human DNase-seq and RNA-seq data 413

DNase-seq and RNA-seq data from human fetal tissues of week 10-20 generated within the 414
Roadmap Epigenomics project (Bernstein et al. 2010) were downloaded from the NCBI’s a5
Sequence Read Archive (Dec. 15, 2014, summary table on github). We included only 41
tissues for which at least 7 biological DNase-seq replicates from primary tissue samples were 47
available. This left us with 9 different tissues: adrenal glands, brain, heart, kidney, large 45

intestine, lung, muscle, stomach, and thymus. 419

Cis-regulatory element (CRE) region determination and tissue-specificity scoring 4

DNase-seq reads were mapped to human genome version hgl9 using NextGenMap (Sedlazeck 421
et al. 2013, version 0.0.1). Aside from a few exceptions (dualstrand = 1; min_identity = 2
0.9; min _residues = 0.5), the default parameters were used. PCR duplicates were removed 423
using samtools rmdup (H Li and Durbin 2009, version 1.1). We used JAMM (Ibrahim s
et al. 2015, version 1.0.7) to call peaks per tissue considering the biological replicates for
the DNase-seq data using the recommended settings. To compare peaks across tissues, 42
we merged overlapping peaks using the resulting union peaks as putative CRE, which are 47
the basis of most further analyses. We removed peaks mapping to Y or MT chromosomes. s
Furthermore, we removed 26 CREs whose width exceeded 5000 bp (< 0.0001%), resulting in 420
a set of 465,281 CREs. We then used the number of overlapping peaks, i.e the number of 430
tissues in which a CRE is accessible as a proxy for pleiotropy. This score ranges between 1 431

(tissue-specific) to 9 (ubiquitously open). 432

CRE annotation and association with genes 433

We used transcript annotation for hgl9 from Gencode v.32 (Harrow et al. 2012) where we 434

considered each transcript 5’ end as a transcription start site (T'SS). For each tissue we only a3
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considered TSSs of the expressed genes in the complementary RNA-seq data. CREs within 436
2 kb of a TSS are designated as promoters and associated with all TSSs within that distance. 437
All other CREs within 1 Mb of a TSS are deemed to be enhancers and are associated with 438
the 2 closest TSSs (one in each direction), unless the distance to one TSS is at least 10x 430
smaller than to the other TSS - in that case only the closest TSS is assigned. In total, we a0

could assign 443,322 out of 465,281 CREs (95.3%). a1

CRE effect on gene expression across tissues a2

For each of the included tissues, RNA-seq RPKM expression matrix was filtered to include
only genes that are detected with >1 count in 50% of the samples in that tissue. Number
of included genes varies from 12,283 (brain) to 19,382 (lung). Log mean expression was
modeled as a linear mixed model with tissues as a random effect and the distance to TSS
weighted (d) numbers of CpG Island and non-CpG Island promoters and enhancers that

was fit using the lme4 function from the lmer package (version 1.1-30) in REML mode:

tom(@) ~ SN B Y o+ b ()

i€PDP/ECG—I CREsgene

For the comparability, we report the standardized coefficients Bycgica = B5z/sy and the 4
marginal coefficient of variation as calculated for generalized linear mixed models was done s
with the R-package part2 (Nakagawa et al. 2017, version 0.9.1.9000). In order to assess s
the effect of PD independently of the distance and number of CREs, we shuffle the PD s
across all CREs while keeping all other parameters constant and calculate and compare a7

those estimates. 448

Human and cynomolgus macaque iPSC differentiation into NPCs 449

Previously generated urinary stem cell derived iPS-cells of 3 human individuals (Homo 450

sapiens) and fibroblast derived cynomolgus macaque iPSCs (Macaca fascicularis) of 2 s
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individuals (Geuder et al. 2021) were differentiated to neural progenitor cells via dual-SMAD 42
inhibition as three-dimensional aggregation culture (Chambers et al. 2009; Ohnuki et al. 43
2014). Briefly, iPSCs were dissociated and 9x10% iPSCs were seeded in a low attachment ase
U-bottom 96-well-plate in 8GMK medium consisting of GMEM (Thermo Fisher), 8% KSR 4
(Thermo Fisher), 5.5 ml 100x NEAA (Thermo Fisher), 100 mM Sodium Pyruvate (Thermo ss6
Fisher), 50 mM 2-Mercaptoethanol (Thermo Fisher) supplemented with 500 nM A-83-01 47
(Sigma Aldrich), 100 nM LDN 193189 (Sigma Aldrich) and 30 pM Y27632 (biozol). Culture ass
medium of the spheres was changed every second day until they were harvested or plated for aso
further culture. In order to obtain stable NPC lines, spheres were dissociated on day 7 of the 460
differentiation process using Accumax (Sigma Aldrich) and plated onto Geltrex (Thermo s
Fisher) coated dishes. NPCs were subsequently cultured in NPC proliferation medium 42
(DMEM F12 (Fisher Scientific) supplemented with 2 mM GlutaMAX-I (Fisher Scientific), 43
20 ng/mL bFGF (Peprotech), 20 ng/mL hEGF (Miltenyi Biotec), 2% B-27 supplement s
(50x) minus vitamin A (Gibco), 1% N2 supplement 100x (Gibco), 200 pM L-ascorbic acid a5
2-phosphate (Sigma), and 100U/ml 100pg/ml penicillin-streptomycin). All cell lines have 466

been authenticated using RNA sequencing (RNA-seq) (Geuder et al. 2021), and the current 67

study. 468

RNA-seq data generation and processing 469

Samples for RNA-seq were taken from 3 clones of 3 human individuals and 4 clones of 2 70
cynomolgus macaque individuals at the iPSC stage (time point 0) and after 1, 5, 7 and 9
days during the neural maturation process. Spheres were dissociated at each time point 472
using Accumax (Sigma Aldrich) and live cells were sorted using the BD FACS Aria II. 473

c¢DNA libraries for samples from the different species and differentiation time points were 474
generated using the prime-seq protocol (Janjic et al. 2022) and we obtained 100bp ¢cDNA 475

reads from a Illumina HiSeq 1500 and another read containing a 10 bp UMI and a 6 bp 47
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sample barcode. To obtain digital exon count matrices, we first used functions bbduk to filter 77
out reads that have low sequence complexity (estimated entropy<0.5) and repair to pair the 478
remaining reads from BBTools, BBMap v. 38.02 (Bushnell 2014). Then we applied zUMIs 47
with default parameters (Parekh et al. 2018, version 2.9.7¢c, STAR v.2.6.2). Human samples aso
were mapped to hg38 with annotations from Gencode v.32. Cynomolgus Macaca fascicularis s
samples were mapped to macFas6 (Jayakumar et al. 2021) and for gene annotation, we s
transferred human Gencode v.32 gene models to macFas6 using Liftoff v1.6.3 (Shumate and 483
Salzberg 2021). All samples from time points 0 and 1 were rather homogeneous and showed s
iPSC characteristics, while all later samples were neural progenitor cells (NPCs). Hence for 4ss
all analyses, we refer to NPCs as the time points 5, 7, 9. The counts were filtered for UMI 6

counts in at least 28.57% of NPCs (6/21 samples), resulting in a set of 14,608 genes. a7

ATAC-seq data generation and processing 488

Data generation iPSCs of 2 clones from 2 human individuals and 2 clones of 2 cynomolgus s
macaque individuals were differentiated using the protocol as described above. The NPC 90
lines were cultured in NPC proliferation medium and passaged 2 - 4 times until they were 40
dissociated and subjected to ATAC-seq together with the respective iPSC clones. 492

ATAC-seq libraries were generated using the Omni-ATAC protocol (Corces et al. 2017) 403
with minor modifications. In brief, cells were washed with PBS and dissociated using 4
Accumax (Sigma Aldrich) for iPSCs or TrypleSelect (Thermo Fisher) for NPCs at 37°C for 495
5 - 10 min. After cells were counted, 100,000 cells were pelleted at 500 rcf for 5 min, washed 96
with 1 ml PBS and pelleted at 500 rcf for 5 min at 4 °C. The supernatant was removed ao
completely and cells were resuspended in 100 pl chilled nuclei lysis buffer (10 mM Tris-HCl = 408
pHT7.4, 10 mM NaCl, 3 mM MgCI2 in water, supplemented with 0.1% Tween-20, 0.1% NP40, a0
0.01% Digitonin and 1% BSA) by pipetting up and down three times, followed by incubation s

on ice for 3 min. After lysis, 1 ml of lysis wash buffer (10 mM Tris-HCI pH7.4, 10 mM NaCl, so:
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3 mM MgCl2 in water, supplemented with 0.1% Tween-20 and 1% BSA) was added, and s
tubes were inverted three times. After counting, 50,000 nuclei were pelleted at 500 rcf for 10  so3
min at 4°C, the supernatant was removed and nuclei were resuspended in 50 pl transposition sos
mix (25 pl 2x TD buffer, 2.5 ul TDEL, 16.5 pl PBS, 0.5 ul 1% digitonin, 0.5 nl 10% Tween-20  sos
and 5 pl ddH20) by pipetting six times. Transposition reactions were incubated at 37 °C for  sos
1 h at 1000 rpm shaking, followed by a clean-up using the DNA Clean & Concentrator-5 kit so7
(Zymo). For library generation, 20 pl of the transposed sample was mixed with 2.5 pl 25ul  ses
p5 custom primer, 2.5 pl 25pl p7 custom primer (Buenrostro et al. 2013) and 25 pl NEBNext  so0
Ultra II Q5 2x Master Mix (NEB) and a PCR with 10 cycles was conducted as stated in the s
Omni-ATAC protocol. Libraries were purified using the DNA Clean & Concentrator-5 kit, su
run on a 2% E-Gel (Thermo Fisher) and gel excision of DNA between 150 bp and 1,500 si2
bp was performed using the Monarch DNA Gel Excision Kit (NEB). Concentrations of the si3
purified libraries were measured using PicoGreen (Thermo Fisher) and quality was assessed sia
using a Bioanalyzer High-Sensitivity DNA Analysis Kit (Agilent). Libraries were pooled sis
and sequenced on NovaSeq 6000 instrument with the following setup: R1: 151, i7: 8, R2: s

151 cycles. 517

Data processing Sequenced human and cynomolgus macaque reads were mapped to sis
hg38 and macFas6 genomes, respectively. For mapping, we used bwa-mem?2 (Vasimuddin s
et al. 2019, version 2.0pre2), using the following command: bwa-mem2 mem -M -t 20 -I s
250,150. Furthermore, samtools fixmate -m - - and samtools sort commands were sz
applied (H Li and Durbin 2009, version 1.11). Peak calling was performed using Genrich sz
(https://github.com/jsh58/Genrich) on the 2 biological replicates per species per cell type. s
We applied the following parameter settings: -j -y -r -q 0.05 -a 200 -e MT,Y -E s
$blacklist -s 20, where as a $blacklist the ENCODE blacklist with hg38 coordinates sz

(Amemiya et al. 2019) was supplied for human (910 regions), and a reciprocal lift-over version s
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of it to macFas6 (558 regions) was supplied for the peak-calling in macFas6 genome space. s

Lift-over file generation and usage 528
Lift-over files hg19toHg38 and hg38ToHgl9 were downloaded from USCS 529
(https://hgdownload.soe.ucsc.edu/ghdb/hgl9/liftOver /hg19ToHg38.over.chain.gz, 530

https://hgdownload.soe.ucsc.edu/goldenPath /hg38/lift Over /hg38ToHg19.over.chain.gz). Lift- sa
over files hg38toMacFas6 and macFas6toHg38 were generated from blastz alignments s3
(Schwartz et al. 2003; Kent et al. 2003) of the canonical chromosomes from both genomes, s
as reported here(https://genomewiki.ucsc.edu/index.php?title=DoBlastzChainNet.pl). s3
Reciprocal lift-over (RLO) was used to lift CRE coordinates from hgl9 over to hg38 and s3s
from hg38 over to macFas6. In both cases, the coordinates from X were lifted to Y, then 53
the matches in Y that carried the same CRE identifier and were < 40bp distant from each s37
other were merged and lifted back to X. For further analyses, we kept the CREs of which s3s
the reciprocal lift-over coordinates in X overlapped the original sequence coordinates in X. s39
We identified RLO matches for 99.7% of the CREs in hg38 and 87.1% in macFas6. We s
further removed CREs of which the RLO match width was beyond the following boundaries: sa
[1.2 x hgl9; 0.8 x hgl9]. We also removed 36 of the remaining CREs that contained Ns s«
in the sequence of either species genome. This resulted in an orthologous set containing s

401,389 CREs. 544

Cross-species accessibility and gene expression analysis 545

ATAC-seq reads from cynomolgus macaque NPCs mapping to macFas6 and from human s
NPCs mapping to hg38 genomes were counted within the lift-overed PD-CRE coordinates. s47
Only CREs that overlapped with an ATAC-seq peak by 10% relative to the width of s
both the DHS and the ATAC-seq peak in at least one species were kept for differential ss0

accessibility (DA) analysis (n=61,379). Differential gene expression (DGE) and accessibility sso
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(DA) analyses were both performed separately using DESeq2 (Love et al. 2014, version ss
1.38.3), using species as the predictor. A significance level of Benjamini-Hochberg adjusted s
p—value of 0.1 was used to detect DA or DGE. 553
For further downstream analysis where we used the state of the ATAC-seq peak (open / sss
closed) as the indicator for peak conservation, we furthermore required that conserved peaks sss
need to overlap by 10% of their width between the lifted human peaks to macaque genome  sss
and the macaque peaks. In addition, we excluded cases where, in either species, multiple ss7
ATAC-seq peaks overlapped the same DHS or vice versa to avoid multi-to-1 and 1-to-multi sss
peak overlaps, leaving us with a set of 1-to-1, 0-to-1, 1-to-0 and 0-to-0 overlaps between sso

DHS-CREs and ATAC-seq peaks in either species. 560

Evolutionary sequence analysis of CREs 561

To be able to intepret evolution rates as a result of the genetic element’s CRE activity, we se
excluded all CREs that overlapped CDSs (Gencode v.19) in all sequence evolution analyses se3

(6.6% of the gene-assigned CREs). 564

INSIGHT We ran the web tool INSIGHT (Gronau et al. 2013) on the CRE or peak ses
coordinates of each PD class in hgl9 using the default settings. To re-calculate the evo- ses
lutionary rates on various CRE subsets more efficiently, we downloaded the INSIGHT ser
script runINSIGHT-EM.sh that applies expectation-maximization (EM) algorithm on the ses
provided INSIGHT files (.1ins) and the complementary flanking sequence INSIGHT files  seo
(.flankPoly.forBetas.ins). The scripts for subsetting the INSIGHT output files and sw

re-calculating the evolutionary rates can be found on github. 571

phastCons and phyloP Pre-calculated 46-way hgl9 phastCons and phyloP scores for s»
the 10 primate subset were downloaded from 573

http://hgdownload.cse.ucsc.edu/goldenpath/hgl9/phastConsd6way,/ and 574
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http://hgdownload.cse.ucsc.edu/goldenpath /hgl9/phyloP46way/ 575
(versions from 2009-11-11) in a big-wig file format. For each CRE, the average conservation s

score was calculated for each conservation metric. 577

Quantification of transcription factor binding 578

Two sets of TF Position Weight Matrices (PWMs) of the 1) expressed TFs in 9 tissues from s
Epigenomics Roadmap project (Bernstein et al. 2010) (643 motifs from 561 TFs) and 2) sso
expressed TFs in our human and cynomolgus macaque NPCs (521 motifs from 446 TFs) sa
were generated by downloading and subsetting JASPAR 2020 collection, core vertebrate set ss
(Fornes et al. 2020) using R packages JASPAR2020 (version 0.99.10) and TFBSTools (Tan and  sss
Lenhard 2016, version 1.36.0). These PWMs were provided to Cluster-buster (Frith et al. sss
2003, downloaded on 2020-05-07). Cluster-Buster was ran on each set with the following sss
settings: -c@ -m@ -r10000 -b500 -f5. The orthologous human and cynomolgus macaque ss
CRE input sequences were extended by 500 bp in each direction, allowing cluster-buster ssz
to have a better approximation of the background base composition (parameter -b500). In  sss
each species for each TFBS cluster of a CRE, we ranked TF motifs based on their strongest sso
binding site. For all subsequent analyses, for each CRE we only considered TF binding se0

motifs that were among the 10% strongest in at least one cluster in at least one species. 501

TFBS diversity and divergence between human and macaque orthologous CREs 50

For each CRE in each species, we measured TFBS diversity by Shannon entropy (H) s
(Shannon 1948) where we considered a CRE as a collection of ¢ = 1,2, ..,n motifs of varying s
frequency (p): 595

Hzfzpilnpi (2)

For each CRE, motif scores were estimated for each enriched motif (see Methods section s

Quantification of transcription factor binding) along the sequence by Cluster-Buster (Frith —so7
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et al. 2003) and they were used as a proxy for TF binding potential. We summed up the s
motif scores for each motif to obtain the cumulative motif score. We then used it to calculate s
p in relation to the total cumulative score of all motifs combined. As entropy is an index of 00

diversity instead of diversity itself, H was converted to what is known as true diversity or co

Hill number of order 1 (Hill 1973; Jost 2006) simply by 602
D=¢ (3)
which measures the effective cumulative motif score. 603

In order to measure how TFBS repertoires diverge between the two species, we calculated 604
the average Canberra distance (dc,,,, ) for each CRE across the i = 1,2, ..,n motif cumulative eos

scores (S) as follows: 606

n

= 1 [Sanri — Shy
Aoy, = - Z 1My 7 PHil
i

(Sm,i+ SHy) @)

where M indicates the orthologous CRE in macaque and H in human. Further, we used 607

1- EC}\JH (5)
as a proxy for TFBS repertoire conservation. 608
CRE PD ranking per motif to detect over-represented motifs 609

Per tissue We first identified the expressed TFs and their respective motifs and considered 610
only their binding to the CREs that are open in that tissue. For each PD category and eu
motif, the relative binding frequency was obtained as the fraction of CREs that have binding ez

sites for that motif, e.g. 613

Cprp;i
(6)

fppi= Cr
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where PD indicates a PD category, 7 indicates a motif, Cpp ; is the count of CREs with 61
motif ¢ binding site(s) present in the particular PD category, Cpp is the total CRE count es
in that PD category. Having obtained these relative frequencies per PD, we then ranked o6
PD categories for each motif. Fold changes of the binding fraction of rank-1 PD relative to e

the average fraction were calculated for each motif i as: 618

IPDaysi

FCPD(I)vi = (7

1 9
9 ZrankZI fPD(runk)vi

Across tissues To summarise motif-PD enrichment across tissues, we focused on motifs 619
that had the highest binding fractions (rank-1) to either PD9 or PD1. To obtain the e
PD9-enriched motifs, we identified TF motifs for which PD9 CREs had rank-1 in all tissues. ez
As the PD1-tissue-specific motifs we considered the ones that have PD1 with rank-1 only in 622
that particular tissue, but not in the other tissues. Gene-set enrichment analysis contrasting ez
the respective TF groups with the rest of the expressed TFs was conducted using the 62
Bioconductor package topGO (Alexa and Rahnenfuhrer n.d., version 2.50.0), setting the o2
following parameters: ontology="BP", nodeSize = 10, algorithm = "elim", statistic e

= "fisher". 627

Stripe factor enrichment analysis 628

Stripe factor annotation table was obtained from Zhao et al. 2022. We selected the stripe 62
factors detected in human ("Human Stripe Factors”) and to subset the universal stripe 30
factors, we used a cutoff of 0.9 for the proportion of total samples in which this TF was e

detected to be a stripe factor. 632

TFBS position overlap between human and macaque orthologous CREs 633

Orthologous human and macaque CRE sequences were pairwise aligned using mafft (Ka- e

toh and Standley 2013, version 7) using the following parameters --adjustdirection e
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--maxiterate 1000 --auto. We quantified alignment length (median 1273, 90% CI [1133, 63
1790]), fraction of mismatches in bp (median: 0.058, 90% CI [0.0357, 0.1432]), the fraction e
of indels in bp (median: 0.018, 90% CI [0.0031, 0.0916]) and the number of indels (median e
6, 90% CI [2, 13]). We subsequently trimmed gaps in the remaining CRE alignments. 639
Using the alignment of a CRE, the positions of TFBS that had a motif binding score of >=3 e
in either species were projected onto the common alignment space. Binding site agreement s
per motif ¢ was calculated as the intersection of binding positions in bp between species over a2

the union, also known as Jaccard similarity coefficient, and summarized by taking the mean s

across all ¢ = 1,2, ..,n motifs that bind to the particular CRE: 644
— 1 <~ Bu,i N Buy
IoU g = — - 8
MH n Z B]\,[’i @] BHJ' ( )

i

where B is a set of positions in the alignment that overlap with a binding site of motif ¢ in s

the respective species macaque M or human H. 646

Quantification and Statistical Analysis 647

Data visualizations and statistical analysis was performed using R (version 4.2.3) (R Core o
Team 2023), session info can be accessed on GitHub. Details of the statistical tests performed o4
in this study can be found in the main text as well as the method details section. Schematics eso

were made using bioRender. 651

Data and Code Access 652

RNA-seq and ATAC-seq data are available under ArrayExpress accessions E-MTAB-13494  es3
and E-MTAB-13373. A compendium containing processing scripts, important tables and s
detailed instructions to reproduce the analysis for this manuscript is available from the ess

following GitHub repository: 656
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https://github.com/Hellmann-Lab/The-effects-of-pleiotropy-on-regulatory-evolutionsz

Data files and tables are deposited on zenodo (DOI: 10.5281/zenodo.10471368). 658
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Supplemental Figure S1. Peak widths per tissue and overlaps across tissues. A. Average peak
width per tissue across specificity groups prior to cross-tissue merging. B. Pairwise overlap fraction
between overlapping peaks that were later merged into the same CRE. C. Observed coefficients for
the CREs from different PDs (thin line with colored points) are different from the control estimates
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Supplemental Figure S4. Evolutionary sequence analysis of CREs across tissue specificity groups.
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Abstract

Human pluripotent stem cells (PSCs) express human endogenous retrovirus type-H
(HERV-H), which exists as more than a thousand copies on the human genome and fre-
quently produces chimeric transcripts as long-non-coding RNAs (IncRNAs) fused with
downstream neighbor genes. Previous studies showed that HERV-H expression is required
for the maintenance of PSC identity, and aberrant HERV-H expression attenuates neural
differentiation potentials, however, little is known about the actual of function of HERV-H. In
this study, we focused on ESRG, which is known as a PSC-related HERV-H-driven IncRNA.
The global transcriptome data of various tissues and cell lines and quantitative expression
analysis of PSCs showed that ESRG expression is much higher than other HERV-Hs and
tightly silenced after differentiation. However, the loss of function by the complete excision
of the entire ESRG gene body using a CRISPR/Cas9 platform revealed that ESRG is dis-
pensable for the maintenance of the primed and naive pluripotent states. The loss of ESRG
hardly affected the global gene expression of PSCs or the differentiation potential toward tri-
lineage. Differentiated cells derived from ESRG-deficient PSCs retained the potential to be
reprogrammed into induced PSCs (iPSCs) by the forced expression of OCT3/4, SOX2, and
KLF4. In conclusion, ESRG is dispensable for the maintenance and recapturing of human
pluripotency.

Author summary

We have been interested in the role of human endogenous retrovirus (HERVs) in human
pluripotent stem cells (PSCs). Although we and others have demonstrated that HERV
expression is crucial for somatic cell reprogramming to a pluripotent state and the
characteristics of PSCs. Little is known which one of more than 1,000 copies of HERVs is
important. Thus, in this study, we focused on a HERV-related gene, ESRG which is
expressed strongly and specifically in human PSCs but not in differentiated cells. Using a
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CRISPR/Cas9 platform, we generated complete knockout cell lines by deleting the entire

gene body of ESRG.
Our results demonstrate that ESRG is dispensable for the PSC characters such as gene

expression, self-renewing capacity, and differentiation potential. In addition, ESRG does
not contribute to the reprogramming of differentiated cells to a pluripotent state. Alto-
gether, we concluded that ESRG is an excellent marker of pluripotency but dispensable
for the PSC identity.

Introduction

Human pluripotent stem cells (PSCs) express several types of human endogenous retroviruses
(HERV) [1-3]. The HERV type-H (HERV-H) family is a primate-specific ERV element that
was first integrated prior to the New World/Old World divergence. During further primate
evolution, this family’s major expansion occurred after the branch of Old World monkeys

[4]. The typical structure of a HERV-H consists of an interior component, HERV-H-int,
flanked by two long terminal repeat 7 (LTR7), which have promoter activity [5,6]. Recent stud-
ies have demonstrated that the activity of LTR7 is highly specific in established human PSCs
and relatively absent in early human embryos. In contrast, other LTR7 variants such as
LTR7B, C, and Y are activated in broad types of early human embryos from the 8-cell to epi-
blast stages [7].

The importance of HERV-Hs in human PSCs has been shown. The knockdown (KD) of
pan HERV-Hs using short hairpin RNAs (shRNAs) against conserved sequences in LTR7 or
HERV-H-int regions revealed that HERV-H expression is required for the self-renewal of
human PSCs [8,9] and somatic cell reprogramming toward pluripotency [8-14]. In addition
to self-renewal, the precise expression of HERV-Hs is crucial for the neural differentiation
potential of human PSCs [10,15]. In this way, HERV-H expression contributes to the PSC
identity.

The transcription of HERV-H frequently produces a chimeric transcript fused with a
downstream neighbor gene, which diversifies HERV-H-driven transcripts. Therefore, many
HERV-H-driven RNAs contain unique sequences aside from HERV-H consensus sequences.
Indeed, PSC-associated HERV-H-containing long non-coding RNAs (IncRNAs) have been
reported [15-17]. One of them, ESRG (embryonic stem cell-related gene; also known as
HESRG) was identified as a transcript that is predominantly expressed in undifferentiated
human embryonic stem cells (ESCs) [18,19]. ESRG is transcribed from a HERV-H LTR7 pro-
moter [8,20] and is activated in an early stage of somatic cell reprogramming induced by the
forced expression of OCT3/4, SOX2, and KLF4 (OSK) [12,13,20]. One previous study showed
that the shRNA-mediated KD of ESRG induces the loss of PSC characters such as colony mor-
phology and PSC markers along with the activation of differentiation markers, suggesting the
indispensability of ESRG for human pluripotency [8]. However, despite these characteriza-
tions, the function of ESRG is still unknown.

In this study, we analyzed the conservation of ESRG to infer its functional importance.
Then we completely deleted ESRG alleles to analyze ESRG function in human PSCs with no
off-target risk. The loss of ESRG, which is thought to be an essential IncRNA for the PSC iden-
tity [8], exhibited no impact on the self-renewal or differentiation potentials of both primed
and naive human PSCs. Neural progenitor cells (NPCs) derived from ESRG-deficient PSCs
could be reprogrammed into induced PSC (iPSC) by OSK expression. Altogether, this study
revealed that ESRG is dispensable for human pluripotency.
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Results
No evidence for ESRG conservation

A large proportion of the ESRG IncRNA-gene is derived from a HERV-H insertion event that
happened after the orangutan split from the other great ape lineages leading to humans and
chimpanzees [21]. The entire first exon and part of the second exon of ESRG are encoded by
this HERV-H element (Fig 1A). Accordingly, the conservation as determined by PhastCons
scores [22,23] is low throughout the transcript (0.7% of sites with PhastCons>0.9), even when
compared to other IncRNA-genes (Fig 1A and S1 Table). In humans, chimpanzees, and bono-
bos, the entire element is present, while in gorilla only partial sequences of the LTR7 flanks are
left. However, even though ESRG is present in chimpanzees, it shows a much lower expression
in iPSCs than in humans (Fig 1B and S2 Table). As expected, ESRG is highly expressed in
iPSCs and then downregulated upon differentiation as can be seen in the iPSC-derived cardio-
myocytes [24]. Indeed, in human iPSCs, ESRG is alongside OCT3/4 and GAPDH among the
5% most highly expressed genes but ranks lower than 50% in chimpanzees (S3 Table). Hence,
even though ESRG is present in chimpanzees, its expression pattern is not conserved.
However, also transcripts that are not phylogenetically conserved can be of functional
importance. Such transcripts should carry signatures of negative selection. If ESRG had an
important function in human populations, then we should find signs for deleterious and
slightly deleterious alleles which can segregate at low frequencies within a population but are
less likely to get fixed [25,26]. Unfortunately, the power to detect negative selection in popula-
tion genetics data is relatively low, in particular, if only a small proportion of sites is expected
to be under selection. For example, only 8% of sites in HOTAIR, a well-documented IncRNA
[27] are notably conserved (PhastCons>0.9). To detect deleterious sites, we compared human-
chimpanzee divergence of exon and intron sequences and find that divergence in exons is not
significantly lower than in the introns of ESRG (Fisher’s-Exact test, deyon/dintron = 0.85, p = 0.51;
Fig 1C and S4 Table). To detect slightly deleterious sites, we checked for a left shift of the site
frequency spectrum [25] and found that the proportion of singletons in ESRG exons is much
lower than for the on average highly conserved non-synonymous SNVs and similar to SNVs in
other non-coding exons and synonymous sites (Fig 1D). Also compared to other IncRNAs,
both conserved and nonconserved, ESRG has no shift towards rare alleles (Fig 1E). Next, we
looked for a lower fixation rate of mutations occurring in ESRG exons as compared to introns
by contrasting the number of human SNV [28] with the number of single nucleotide substitu-
tions (SNS) between humans and the common ancestor of chimpanzees and bonobos (Fig 1C).
Even though the intronic sequences have a slightly higher fixation rate than the exon the differ-
ence is not significant (Fisher’s-Exact test, (SNSexon/SNVexon)/(SNSintron/SNVintron) = 0.74,
p =0.21). All in all, we do not find any compelling evidence for selection.

ESRG is robustly expressed in human PSCs and tightly silenced after
differentiation

To acquire an in-depth understanding as to the ESRG expression in humans, we analyzed the
expression and epigenetic statuses of the ESRG gene in human PSCs and human dermal fibro-
blasts (HDFs). The RNA sequencing (RNA-seq) and chromatin immunoprecipitation
sequencing (ChIP-seq) of histone H3 modifications [10] indicated that the ESRG locus is open
and actively transcribed in human PSCs but not in differentiated cells such as human dermal
fibroblasts (HDFs) (Fig 2A). As well as other HERV-H-related genes, LTR7 elements in the
ESRG gene are occupied by pluripotency-associated transcription factors (TFs) such as OSK
[9,10] (Fig 2A). Little or no ESRG expression was detected in 24 human adult tissues and five
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iPSCs, and 201B7 iPSCs. Error bars and white lines indicate min. to max. and the mean of each gene expression, respectively. Values are compared to GAPDH.
n = 3. (C) Expression of ESRG in ESRG WT and KO PSC clones. Values are normalized by GAPDH and compared with primed H9 ESCs. n = 3. (D)
Expression of PSC core transcription factors. Bars,100 um. (E) Expression of PSC-specific surface antigens. Bars, 100 um. (F) Expression of neighbor genes <10
Mbp apart from ESRG gene. Values are normalized by GAPDH and compared with parental primed H9 ESCs. n = 3. (G) Global gene expression. Scatter plots
compare the microarray data of ESRG WT and KO primed PSCs. The colored plots indicate differentially expressed genes (DEGs) with statistical significance
(FC>2.0, FDR, 0.05). The numbers of DEGs (FC>2.0, FDR,0.05) are shown in the figure. n = 3. (H) Plating efficiency. Shown are the number of AP (+)
colonies raised from 100 or 200 ESRG WT and KO PSCs. n = 3. Numerical values for B, C, F, and H are available in S1 Data.

https://doi.org/10.1371/journal.pgen.1009587.9002

fetal tissues (S1A Fig). Compared to other PSC-associated HERV-H chimeric transcripts,
ESRG expression exhibits a sharp contrast between human PSCs and somatic tissues [8,10,15-
17]. Furthermore, ESRG is expressed in human PSCs, including embryonic carcinoma cell
(ECC) lines, but is silenced in four cancer cell lines and ten cell lines derived from normal tis-
sues (S1B Fig). Quantitative reverse transcription-polymerase chain reaction (QRT-PCR)
revealed that the ESRG expression is significantly higher than the expression of other
HERV-H-related transcripts and is comparable to the expression of SOX2 and NANOG,
which play essential roles in pluripotency, in three independent human PSC lines (Fig 2B).
These data suggest that ESRG expression is abundant in human PSCs and is tightly silenced in
differentiated states.

ESRG is dispensable for human pluripotency

The above results showing low conservation but high expression in humans led us to test the
function of ESRG in human PSCs. To make a complete loss of function of the IncRNA ESRG,
we employed a CRISPR/Cas9 platform and two small guide RNAs (sgRNAs) to delete ~8,400
bp of the genomic region including the entire ESRG gene (Figs 2A and S2A). As a result, we
obtained multiple independent ESRG knockout (KO) PSC lines that exhibit complete deletion
of the gene body with unique minor deletion patterns in both alleles under a primed PSC cul-
ture condition (S2B and S2C Fig). In this study, we used three clones as wild-type (WT) con-
trols carrying intact ESRG alleles with no or minor deletions at the sgRNA recognition sites
(S2D Fig). The expression of ESRG was undetectable in the KO clones by qRT-PCR (Fig 2C).
Immunocytochemistry showed that ESRG KO PSCs express the PSC core transcription factors
(Fig 2D) and PSC-specific surface antigens (Fig 2E). The loss of ESRG made no impact on the
expression of neighbor genes located within 10 Mbp of ESRG (Fig 2F). Global transcriptome
analysis by microarray revealed that the loss of ESRG altered the expression of only six genes
(10 probes in microarray) such as ESRG (Chr. 3), TMLHE (Chr. X), LDHC (Chr. 11),
LOC339975 (Chr. 4), AIFM2 (Chr. 10), XLOC_L2_01411 (Chr. 4) and Inc-CDKALI-1 (Chr.
6) between ESRG WT and KO PSCs in primed condition (Fig 2G). We also confirmed that
loss of ESRG affects the expression of 36 genes which are located widely on different chromo-
somes by RNA-seq (S3 Fig). Only THELE, LDHC, and ESRG itself were found as differentially
expressed genes (DEGs) common in microarray and RNA-seq data. These data suggest that
ESRG has no apparent cis-acting IncRNA function by interacting with neighbor genes. More-
over, ESRG KO PSCs normally survived while maintaining the undifferentiated state as judged
by alkaline phosphatase (AP) activity and the absence of any apparent genomic abnormalities
(Figs 2H and S4). Altogether, these data suggest that loss of ESRG does not affect the self-
renewal of human primed PSCs.

We revisited the sstRNA-mediated KD of ESRG to confirm the consistency with the pheno-
type of ESRG loss. Three independent shRNAs [8,9] decreased the ESRG expression to
16.38~32.55% compared to the parental line (S5A Fig). After 20 days of shRNA transduction,
the RNA expression of POU5F1 and/or NANOG were reduced by two of three sShRNAs
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(shESRG-4 and 5), although the most effective sShRNA (shESRG-2) against ESRG did not alter
them (S5A Fig). None of ESRG shRNAs induced the expression of early differentiation mark-
ers such as T (mesendoderm) and NES (neuroectoderm) (S5A Fig). The ESRG KD PSCs grew
normally with expressing NANOG protein (S5B Fig). These data suggest that ESRG KD by
shRNAs does not induce the differentiation of human PSCs in the primed state. We and others
previously reported the effects of siRNA-mediated pan HERV-H KD on human PSC charac-
teristics [8-10]. Three shRNAs against the conserved regions of HERV-Hs decreased to
29.06~56.48% compared to the parental line (S6A Fig). One of them (shHERVH-1), as similar
efficiency of the ESRG shRNAs, finely knocked down the ESRG expression to 14.55% of the
parental line (S5B and S6B Figs). Microarray data suggested that no noticeable changes were
detected in the expression of PSC markers and lineage markers (S6B Fig). In addition to the
transcriptome data, we confirmed that all three HERV-H KD PSC lines were able to expand
with maintaining the stem cell morphologies and NANOG protein expression (S6C Fig).
These data support that ESRG is dispensable for the self-renewing of primed PSCs.

In addition to the primed state, we tested if ESRG is required for another state of pluripo-
tency, the so-called naive state, which also expresses ESRG but at a significantly lower level
than the primed state (Fig 3A). Regardless of the ESRG expression, naive PSCs could be estab-
lished by switching the media composition and could self-renew while keeping a tightly packed
colony formation (Fig 3B) [29-31]. Furthermore, they exhibited a significantly high expression
of the naive pluripotency markers KLF4 and KLF17 and attenuated the expression of the
primed PSC marker ZIC2 (Fig 3C) [32,33]. Twenty-nine genes including ESRG and
CNCNA2D3 were found as DEGs between ESRG WT and KO PSCs in naive condition by
RNA-seq (S3 Fig), although microarray analysis revealed that ESRG had no effect on the global
gene expression of naive PSCs (Fig 3D). Altogether, these data suggest that ESRG does not
contribute to self-renewal and gene expression of human naive PSCs.

We also differentiated ESRG WT and KO naive PSCs to the primed pluripotent state. As a
result, irrespective of the ESRG genotype, we detected the hallmarks of primed pluripotency
such as flatter colony formation, the reactivation of ZIC2 and the suppression of KLF4 and
KLF17, suggesting the bidirectional transition between naive and primed pluripotency does
not require ESRG (Fig 3E and 3F). Taken together, these data demonstrate that ESRG is dis-
pensable for the maintenance of human PSCs.

ESRG is not involved in differentiation

Next, we analyzed whether ESRG is required for the differentiation of human primed PSCs by
embryoid body (EB) formation. The absence of ESRG had no effect on EB formation by float-
ing culture or differentiation into trilineage such as alpha-fetoprotein (AFP) positive (+) endo-
derm, smooth muscle actin (SMA) (+) mesoderm, and BIII-TUBULIN (+) ectoderm (Fig 4A
and 4B). Other lineage markers such as DCN (endoderm), MSX1 (mesoderm) and MAP2
(ectoderm) were also well induced in EBs derived from either ESRG WT or KO primed PSCs
(Fig 4C). Global transcriptome analysis by microarray indicated the loss of ESRG caused no
significant gene expression changes during EB differentiation (Fig 4D). These data suggest that
ESRG KO PSCs retained the potential to differentiate into all three germ layers.

Previous studies showed that HERV-H expression regulates the neural differentiation
potential of human PSCs [10,15,34]. Thus, in addition to the random differentiation by EB for-
mation, we tested whether ESRG contributes to the directed differentiation of human primed
PSCs into NPCs by the dual SMAD inhibition method [35,36]. Both ESRG WT and KO PSCs
were able to differentiate into expandable NPCs, which expressed the early neural lineage
marker PAX6 but not OCT3/4 (Fig 4E). Other NPC markers such as SOX1 and NES were well
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https://doi.org/10.1371/journal.pgen.1009587.9003

induced, whereas the PSC marker NANOG was silenced (Fig 4F). These data suggest that
ESRG is not responsible for HERV-H-regulated neural differentiation. Taken together, we
concluded that ESRG is not required for the differentiation of human PSCs.
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https://doi.org/10.1371/journal.pgen.1009587.g004

ESRG is not required for somatic cell reprogramming toward pluripotency

A previous study showed that the overexpression of ESRG improves iPSC generation [8], sug-
gesting a positive effect on somatic cell reprogramming toward pluripotency. The activation of
ESRG in the early stage of reprogramming and the high expression of ESRG during repro-
gramming support this hypothesis (Fig 5A) [20]. Therefore, we reprogrammed ESRG WT and
KO NPCs to iPSCs by introducing OSK. iPSCs emerged from ESRG WT and KO NPCs with
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comparable efficiency (Fig 5B). This observation suggests that ESRG is dispensable for iPSC
generation. In addition, along with OSK, we transduced c-MYC, a potent enhancer of iPSC
generation [37,38], or exogenous ESRG. c-MYC but not exogenous ESRG increased the effi-
ciency of the iPSC generation from ESRG WT and KO NPCs equally (Fig 5B). Taken together,
these data suggest that ESRG has no impact on somatic cell reprogramming toward iPSCs.

Discussion

In this study, we completely excised the entire ESRG gene to understand its role in human PSCs
while avoiding residual expression and off-target effects. As a result, ESRG KO PSCs showed no
apparent phenotypes in self-renewal and differentiation potential. A previous study showed the
importance of ESRG in human PSC identity by using an shRNA-mediated KD approach [8].
Although we used the same H9 ESC line as that study, the different strategies for the loss of func-
tion and subsequent experiments, such as KD and KO, may explain the different results. There-
fore, this study revisited the ESRG KD by using three shRNAs including published sequences [8].
Indeed, two published shRNAs (shESRG-4 and 5) decreased POU5F1 (84.28 and 55.28% of the
parental line) and NANOG (52.66 and 67.14% of the parental line), respectively, whereas
shESRG-2 that is newly designed in this study did not change their expression (103.54 (POU5F1)
and 106.64% (NANOG) of the parental line) (S5A Fig). The reduction of PSC marker expression
that varied among shRNAs was not enough to induce the differentiation of human PSCs (S5C
Fig). In addition to the ESRG KD, we also showed the effects of pan HERV-H KD in human
PSCs in primed condition (S6 Fig). We previously showed that the suppression of HERV-H
expression using sShRNA did not disrupt the self-renewal of human PSCs [10,34]. A recent paper
by Zhang et al. showed that pan-HERV-H KD in human PSCs by using CRISPR interference did
not induce spontaneous differentiation like we observed [39]. However, since other groups con-
cluded that HERV-H KD induced differentiation [8,9], further studies are required to understand
what HERV-H is doing. One possibility that may explain the discrepancy of the results between
previous and current studies [8] is the off-target effect of RNAi. Similar observations have been
found for the role of IncRNA Cyrano that is highly conserved in mice and humans. Knockdown
by using shRNA suggested Cyrano IncRNA maintains mouse PSC identity [40], but targeted dele-
tion of the Cyrano gene and gene silencing by CRISPR interference demonstrated no impact on
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the mouse or human PSC identity [41-43]. Further, it has been argued that the ssRNA-mediated
KD of nuclear IncRNAs might be difficult or inefficient compared to cytoplasmic RNAs such as
mRNAs [44,45]. In addition, while small nucleotide insertions or deletions causing frameshift of
the reading frames work well for the loss of function of protein-coding genes, the same is not true
for non-coding RNAs. In this context, our study succeeded in generating the complete deletion of
ESRG gene alleles, providing highly reliable results.

This study clearly demonstrated that ESRG is dispensable for human PSC identity. Neither
primed nor naive PSCs require ESRG for their identities, such as colony morphology or gene
expression signatures, meaning ESRG is dispensable for human pluripotency, at least in an in
vitro culture environment. However, since ESRG is expressed in epiblast-stage human
embryos [8,46], it might be involved in early human embryogenesis.

ESRG is stochastically activated by OSK in rare reprogrammed intermediates that have the
potential to become bona fide iPSCs and is highly expressed throughout the process of repro-
gramming toward iPSCs [20]. In the present study, we showed that ESRG KO NPCs can be
reprogrammed with the same efficiency as ESRG WT NPCs. These data suggest that ESRG is a
good marker of the intermediate cells in the early stage of reprogramming rather than a func-
tional molecule that is needed for iPSC generation.

In summary, this study provides clear evidence of the dispensability of ESRG for human
PSC identities, such as global gene expressions and differentiation potentials, in two distinct
types of pluripotent states. We also demonstrated that the function of ESRG is not required for
recapturing pluripotency via somatic cell reprogramming. Finally, the tightly regulated and
high expression of ESRG promises to make an excellent marker of undifferentiated human
PSCs both in basic research and clinical application [20,47].

Methods
Expression conservation

To investigate ESRG expression, we used an RNA-seq data set that investigated cardiomyocyte
differentiation from human and chimpanzee iPSCs [24]. Read count matrices were down-
loaded from Gene Expression Omnibus (GSE110471). We selected iPSC and iPSC-derived
cardiomyocyte samples and filtered the data for genes that were detected in at least 40% of the
samples and had an average expression of at least 5 counts, yielding a final matrix with 17,213
genes. Differential expression analyses and variance-stabilizing transformation were per-
formed using DESeq2 v.1.30.0 [48], using a model including the factors ~cell type: species

+ species. iPSC-specific differential expression between human and chimpanzee was inferred
via the interaction term identifying iPSC-specific differences between human and chimpanzee.

Multiple sequence alignment

We used the human ESRG sequence (+20 kb in each direction) (NCBI 105.20190906 Refer-
ence Sequence NR_027122.1; hg19) to search orthologous sequence in the great apes genomes:
chimpanzee (Pan troglodytes, GCF_002880755.1), bonobo (Pan paniscus, GCF_013052645.1),
gorilla (Gorilla gorilla, GCA_900006655.3) and orang (Pongo abelii, GCF_002880775.1) using
dc-megablast with default options [49]. Finally, the identified regions were aligned into a mul-
tiple sequence alignment using mafft [50] and manual inspection.

Human polymorphism data

We identified the polymorphic sites based on gnomAD v2.1.1 database [28]. We downloaded
the vcf-file and tsv coverage files derived from whole-genome sequencing of 15,708 unrelated
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individuals. For further analyses, we only used bi-allelic single nucleotide variants (SNVs) that
also passed the quality criteria of gnomAD and had at least 15x coverage in at least 95% of the
individuals. To balance small differences in the numbers of chromosomes sampled at each
polymorphic site, we downsampled it to 30,000. In the following, we analyze synonymous and
non-synonymous SNVs and SNV falling into the exons of long non-coding RNAs (Gencode
version 35, transcript type ‘IncRNA’, lifted over to hg19 using hg38ToHg19 UCSC chain file
[51]). For ESRG, we distinguish SNPs falling into exons, introns, and LTR-derived sequences
and compare them to the surrounding protein-coding gene CACNA2D3.

The culture of primed PSCs

H9 ESC (RID:CVCL_9773) [52] and 585A1 iPSC (RRID:CVCL_DQ06) [53] lines were main-
tained in StemFiT AK02 media (Ajinomoto) supplemented with 100 ng/ml recombinant
human basic fibroblast growth factor (bFGF, Peprotech) (hereafter F/A media) on a tissue cul-
ture plate coated with Laminin 511 E8 fragment (LN511E8, NIPPI) [54,55]. N18 iPSC line was
maintained in F/A media supplemented with 1 pug/ml of doxycycline on a tissue culture plate
coated with LN511E8 [34]. 201B7 iPSC (RRID:CVCL_A324) line was cultured on mitomycin
C (MMC)-inactivated SNL mouse feeder cells (RRID:CVCL_K227) in Primate ESC Culture
medium (ReproCELL) supplemented with 4 ng/ml bFGF [12].

Induction and maintenance of naive PSCs

The conversion of primed PSCs to the naive state was performed as described previously [31].
Prior to naive conversion, primed PSCs were maintained on MMC-treated primary mouse
embryonic fibroblasts (PMEFs) in DFK20 media consisting of DMEM/F12 (Thermo Fisher
Scientific), 20% Knockout Serum Replacement (KSR, Thermo Fisher Scientific), 1% MEM
non-essential amino acids (NEAA, Thermo Fisher Scientific), 1% GlutaMax (Thermo Fisher
Scientific) and 0.1 mM 2-mercaptoethanol (2-ME, Thermo Fisher Scientific)) supplemented
with 4 ng/ml bFGF. The cells were harvested using CTK solution (ReproCELL) and dissoci-
ated into single cells. One hundred thousand cells were plated onto MMC-treated PMEFs in a
well of a 6-well plate in DFK20 media plus bFGF and 10 uM Y-27632. Thereafter, the cells
were incubated in hypoxic condition (5% O,). On the next day, the media was replaced with
NDiff227 (Takara) supplemented with 1 uM PD325901 (Stemgent), 10 ng/ml of recombinant
human leukemia inhibitory factor (LIF, EMD Millipore), and 1 mM Valproic acid (Wako).
Three days later, the media was switched to PXGL media (NDiff227 supplemented with 1 uM
PD325901, 2 uM XA V939 (Wako), 2 uM G66983 (Sigma Aldrich), and 10 ng/ml of LIF).
When round shape colonies were visible (around day 9 of the conversion), the cells were
dissociated using TrypLE Express (Thermo Fisher Scientific) and plated onto a new PMEF
feeder plate in PXGL media plus 10 uM Y-27632. The media was changed daily, and the cells
were passaged every 4-5 days. Cells after at least 30 days of the conversion were used for the
assays.

Differentiation of naive PSCs to the primed state

Naive PSCs were harvested using TrypLE Express and plated at 5 x 10> cells onto a well of a
LN511E8-coated 6-well plate in PXGL media supplemented with 10 pM Y-27632. On the next
day, the media was replaced with F/A media. After 2 and 8 days, the cells were harvested and
split to a new LN511E8-coated plate in F/A media plus 10 uM Y-27632. On day 16 of the dif-
ferentiation, the cells were fixed for immunocytochemistry, and RNA samples were collected
to analyze the marker gene expression.

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1009587 May 25, 2021 12/21




2.3 The pluripotent stem cell-specific transcript ESRG is
dispensable for human pluripotency 117

PLOS GENETICS

ESRG's role in human pluripotency

Induction and maintenance of NPCs

Primed PSCs were differentiated into expandable NPCs by using the STEMdiff SMADi Neural
Induction Kit (Stem Cell Technologies) as previously described [34-36]. In brief, primed PSCs
were maintained on a Matrigel (Corning)-coated plate in mTeSR1 media (Stem Cell Technol-
ogies) prior to the NPC induction. The cells were harvested using Accutase (EMD Millipore)
and transferred at 3 x 10° cells to a well of an AgrreWell800 plate (Stem Cell Technologies) in
STEMdiff Neural Induction Medium + SMADi (Stem Cell Technologies) supplemented with
10 uM Y-27632. Five days later, uniformly sized aggregates were collected using a 37 um
Reversible Strainer (Stem Cell Technologies) and plated onto a Matrigel-coated 6-well plate in
STEMdiff Neural Induction Medium + SMADI. Seven days later, neural rosette structures
were selectively removed by using STEMdiff Neural Rosette Selection Reagent (Stem Cell
Technologies) and plated onto a new Matrigel-coated 6-well plate in STEMdiff Neural Induc-
tion Medium + SMADI. After that, the cells were passaged every 2-3 days until day 30 post-
differentiation. The established NPCs were maintained on a Matrigel-coated plate in STEMdiff
Neural Progenitor Medium (Stem Cell Technologies) and passaged every 3-4 days.

The culture of other cells

HDFs and PLAT-GP packaging cells (RRID:CVCL_B490) were cultured in DMEM (Thermo
Fisher Scientific) containing 10% fetal bovine serum (FBS, Thermo Fisher Scientific).

Embryoid body (EB) differentiation

PSCs were cultured on a Matrigel-coated plate in mTeSR1 media until reaching confluency
prior to EB formation. The cells were harvested using CTK solution (ReproCELL), and cell
clumps were transferred onto an ultra-low binding plate (Corning) in DFK20 media. For the
first 2 days, 10 uM Y-27362 was added to the media to improve cell survival. The media was
changed every other day. After 8 days of floating culture, the EBs were transferred onto a tissue
culture plate coated with 0.1% gelatin (EMD Millipore) and maintained in DFK20 media for
another 8 days.

Plasmid

Full-length ESRG complementary DNA (cDNA) was amplified using ESRG-S and ESRG-AS
primers and inserted into the BamHI/NotI site of a pMXs retroviral vector [56] using In-
Fusion technology (Clontech). The primer sequences for the cloning are available in S5 Table.
For the KD experiments, we used transposon vectors such as Sleeping Beauty (SB) and Piggy-
Bac (PB) that contain mouse U6 promoter, drug selection markers and the genes encoding
fluorescent proteins [34]. The shRNA sequences are provided in S5 Table.

Reprogramming

Retroviral transduction of the reprogramming factors was performed as described previously
[12,20]. A pMXs retroviral vector encoding human OCT3/4 (RRID:Addgene_17217), human
SOX2 (RRID:Addgene_17218), human KLF4 (RRID:Addgene_17219), human c-MYC (RRID:
Addgene_17220) and ESRG (6 pg each) along with 3 ug of pMD2.G (gift from Dr. D. Trono;
RRID:Addgene_12259) was transfected into PLAT-GP packaging cells, which were plated at
3.6 x 10° cells per 100 mm dish the day before transfection, using FUuGENES transfection
reagent (Promega). Two days after the transfection, virus-containing supernatant was collected
and filtered through a 0.45 pm-pore size cellulose acetate filter to remove the cell debris. Viral
particles were precipitated using Retro-X Concentrator (Clontech) and resuspended in
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STEMdiff Neural Progenitor Medium containing 8 pg/ml Polybrene (EMD Millipore). Then,
appropriate combinations of viruses were mixed and used for the transduction to NPCs. This
point was designated day 0. The cells were harvested on day 3 post-transduction and replated
at 5 x 10 cells per well of a LN511E8-coated 6-well plate in STEMdiff Neural Progenitor
Medium. The following day (day 4), the medium was replaced with F/A media, and the
medium was changed every other day. The iPSC colonies were counted on day 24 post-trans-
duction. Bona fide iPSC colonies were distinguished from non-iPSC colonies by their morpho-
logical differences and/or alkaline phosphatase activity.

Deletion of ESRG gene

Two days before a ribonucleoprotein (RNP) complex transfection, we introduced a small
interfering RNA (siRNA) against TP53 gene (s605, Thermo Fisher Scientific) to H9 ESCs (pas-
sage number 49) using Lipofectamine RNAi Max (Thermo Fisher Scientific) according to the
manufacturer’s protocol [57,58]. An RNP complex consisting of 40 pmol of Alt-R S.p. HiFi
Cas9 Nuclease V3 (Integrated DNA Technologies) and two single guide RNAs (sgRNAs:
sgESRG-U (5-AGAGAAUACGAAGCUAAGUG-3) and sgESRG-L (5-AUUGCAGUU
GUCACAUGACA-3’), 150 pmol each; SYNTHEGO) was introduced into 5 x 10° of siRNA-
transfected cells using a 4D-Nucleofector System with X Unit (Lonza) and P3 Primary Cell
4D-Nucleofector Kit S (Lonza) with the CA173 program. Three days after the nucleofection,
the cells were harvested and replated at 500 cells onto a LN511E8-coated 100 mm dish in F/A
media supplemented with 10 uM Y-27632. The cells were maintained until the colonies grew
big enough for subcloning. The colonies were mechanically picked up, dissociated using Try-
PLE select, and plated onto a LN511E8-coated 12-well plate in F/A media supplemented with
10 uM Y-27632.

The genomic DNA of the expanded clones was purified using the DNeasy Blood & Tissue
Kit (QIAGEN). Fifty nanograms of purified DNA was used for quantitative polymerase chain
reaction (PCR) using TagMan Genotyping Master Mix (Thermo Fisher Scientific) on an
ABI7900HT Real Time PCR System (Applied Biosystems). TagMan Assays (Thermo Fisher
Scientific) such as ESRG_cn1 (Hs05898393_cn) and ESRG_cn2 (Hs06675423_cn) detected the
ESRG locus and TagMan Copy Number Reference Assay human RNase P (4403326, Thermo
Fisher Scientific) was used as an endogenous control. To verify the indel patterns in wild-type
clones, fragments around the sgESRG-U and sgESRG-L recognition sites were amplified with
ESRG-U-S/ESRG-U-AS and ESRG-L-S/ESRG-L-AS primer sets, respectively. The amplicons
were purified using the QIAquick PCR Purification Kit (QTAGEN) and subjected to sequenc-
ing. To check the deleted sequences in the knockout clones, a fragment with ESRG-U-S/ESR-
G-L-AS primers was amplified. Conventional PCR was performed using KOD Xtreme Hot
Start DNA Polymerase (EMD Millipore). The fragments were cloned into pCR-Blunt II TOPO
using the Zero Blunt TOPO PCR Cloning Kit (Thermo Fisher Scientific), and the sequencing
was verified using M13 forward and M13 reverse universal primers. The sequence data was
analyzed using SnapGene software (GSL Biotech LLC). The primer sequences are provided in
S5 Table.

RNA isolation and reverse-transcription polymerase chain reaction

The cells were lysed with QIAzol reagent (QIAGEN), and the total RNA was purified using a
miRNeasy Mini Kit (QIAGEN) according to the manufacturer’s protocol. The reverse tran-
scription (RT) of 1 pg of purified RNA was done by using SuperScript III First-Strand Synthe-
sis SuperMix (Thermo Fisher Scientific). Quantitative RT-PCR was performed using TagMan
Assays with TagMan Universal Master Mix II, no UNG (Applied Biosystems) or using gene-
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specific primers with THUNDERBIRD Next SYBR qPCR Mix (TOYOBO) on an ABI7900HT
or a QuantoStudio 5 Real Time PCR System (Applied Biosystems). The C, values of the unde-
termined signals caused by too low expression were set at 40. The levels of mRNA were nor-
malized to the ACTB or GAPDH expression, and the relative expression was calculated as the
fold-change from the control. Information about the primers and TagMan Assays are shown
in S5 and S6 Tables, respectively.

Gene expression analysis by microarray

The total RNA samples were purified using the miRNeasy Mini Kit, and the quality was evalu-
ated using a 2100 Bioanalyzer (Agilent Technologies). Two hundred nanograms of total RNA
was labeled with Cyanine 3-CTP and used for hybridization with SurePrint G3 Human GE
8x60K (version 1 (G4851A) and version 3 (G4851C), Agilent Technologies) and the one-color
protocol. The hybridized arrays were scanned with a Microarray Scanner System (G2565BA,
Agilent Technologies), and the extracted signals were analyzed using the GeneSpring version
14.6 software program (Agilent Technologies). Gene expression values were normalized by
75th percentile shifts. Differentially expressed genes between ESRG WT and KO ESCs were
extracted by t-tests with Benjamini and Hochberg corrections [fold change (FC) > 2.0, false-
discovery rate (FDR) < 0.05].

RNA sequencing (RNA-seq) and data analysis

Total RNAs were extracted and purified using the miRNeasy Mini kit and RNase-Free DNase
Set (QIAGEN) according to the manufacturer’s manuals. Libraries were constructed by Tru-
Seq Stranded total RNA with the Ribo-Zero Gold LT Sample Prep Kit, Set A and B (Illumina),
according to the manufacturer’s manual. For sequencing by using NovaSeq 6000, the NovaSeq
6000 S1 Reagent Kit v1.5 (100 cycle) (Illumina) was used. We trimmed adapter sequences by
using cutadapt-1.18 [59], removed the reads mapped to ribosomal RNA by using bowtie2 (ver-
sion 2.2.5) and samtools (version 1.7) [60,61], mapped the reads to the human genome (hg38
from the UCSC Genome Browser) by using STAR (version 2.5.3a) [62], conducted a quality
check by using RSeQC (version 2.6.4) [63], counted the reads by using HTSeq (version 0.11.2)
with the GENCODE annotation file (version 27) [64,65], and normalized the counts by using
DESeq2 (version 1.24.0) in R (version 3.6.1) [48]. Using the DESeq2 package, Wald tests were
performed.

Immunocytochemistry

The cells were washed once with PBS, fixed with fixation buffer (BioLegend) for 15 min at
room temperature and blocked in PBS containing 1% bovine serum albumin (BSA, Thermo
Fisher Scientific) and 2% normal donkey serum (Sigma-Aldrich) for 45 min at room tempera-
ture. For the staining of intracellular proteins, the fixed cells were permeabilized by adding
0.2% TritonX-100 (Teknova) during the blocking process. Then the cells were incubated with
primary antibodies diluted in PBS containing 1% BSA at 4°C overnight. After washing with
PBS, the cells were incubated with secondary antibodies diluted in PBS containing 1% BSA
and 1 pg/ml Hoechst 33342 (Thermo Fisher Scientific) for 45 min at room temperature in the
dark. The fluorescent signals were detected using a BZ-X710 imaging system (KEYENCE).
The antibodies and dilution rate were as follows: anti-OCT3/4 (1:250, 611203, BD Biosci-
ences), anti-SOX2 (1:100, ab97959, Abcam), anti-NANOG (1:100, ab21624, Abcam), anti-
KLF17 (1:100, HPA024629, Atlas Antibodies), anti-PAX6 (1:1,000, 901301, BioLegend),
SSEA3 (1:100, 09-0044, Stemgent), SSEA4 (1:100, 09-0006, Stemgent), SSEA5 (1:100, 355201,
BioLegend), TRA-1-60 (1:100, MAB4360, EMD Millipore), TRA-2-49/6E (1:100, 358702,
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BioLegend), anti-AFP (1:200, GTX15650, GeneTex), anti-SMA (1:200, CBL171-I, EMD Milli-
pore), anti-BIII-TUBULIN (1:1,000, XMAB1637, EMD Millipore), Alexa 488 Plus anti-mouse
IgG (1:500, A32766, Thermo Fisher Scientific), Alexa 647 Plus anti-mouse IgG (1:500, A32787,
Thermo Fisher Scientific), Alexa 647 Plus anti-rabbit IgG (1:500, A32795, Thermo Fisher Sci-
entific), Alexa 594 anti-rat IgM (1:500, A21213, Thermo Fisher Scientific) and Alexa 555 anti-
mouse IgM (1:500, A21426, Thermo Fisher Scientific).

Quantification and statistical analysis

Data are presented as the mean + standard deviation unless otherwise noted. Sample number
(n) indicates the number of replicates in each experiment. The number of experimental repeats
is indicated in the figure legends. To determine statistical significance, we used the unpaired t-
test for comparisons between two groups using Excel Microsoft 365 (Microsoft). Statistical sig-
nificance was set at p < 0.05. Graphs and heatmaps were generated using GraphPad Prism 8
software (GraphPad).

Supporting information

S1 Fig. ESRG expression profiles. Expression of ESRG in human tissues. (A) Shown are the
normalized intensities of ESRG expression from the microarray data of PSC (H9 ESC), 24
human adult tissues, and five fetal tissues. (B) Expression of ESRG in human cell lines. The
normalized intensities of ESRG expression from the microarray data of several PSC lines
including H9 ESC, 201B7 iPSC, 585A1 iPSC, 2102Ep embryonic carcinoma cells (ECC) and
NTERA-2 ECC, cancer cell lines such as MCF7, HepG2, HeLa and Jurkat, and normal tissue-
derived cells such as adipose tissue-derived mesenchymal stem cells (AdMSC), dental pulp-
derived MSCs (DpMSC), human dermal fibroblasts (HDF), peripheral blood mononuclear
cells (PBMC), bronchial epithelial cells (BrEC), prostate epithelial cells (PrEC), hepatocytes
(Hep), epidermal keratinocytes (EKc), neural progenitor cells (NPC) and astrocytes (Astro-
cyte) are shown. Numerical values for A and B are available in S1 Data.

(TIF)

S2 Fig. Deletion of ESRG locus. (A) The scheme of ESRG targeting. The locations of sgRNAs
for targeting (sgESRG-U and -L), primers for genotyping (U-S/AS and L-S/AS) and TagMan
Assays for copy number analyses (cnl and cn2) are shown. The sequences of sgRNAs and
primers are provided in the Methods section and S5 Table. (B) The copy number of the ESRG
gene. The copy number of ESRG gene in ESRG WT (clones 1, 21 and, 28), a heterozygous
clone (Het) that lacks one ESRG allele and KO (clones 10, 18 and, 23) were quantified by
qPCR using TagMan Copy Number Assays (cnl and 2). Values are normalized by RNase P
and compared with parental H9 ESCs. n = 3. (C) The sequences around the deletion sites in
ESRG KO ESC clones verified by Sanger sequencing. (D) The sequences around the sgRNA
recognition sites upstream (sgESRG-U) and downstream (sgESRG-L) of the ESRG locus in
ESRG WT ESC clones verified by Sanger sequencing. Numerical values for B are available in
S1 Data.

(TIF)

S3 Fig. Validation of microarray results with RNA sequencing. Global gene expression.
Scatter plots compare log, (Normalized count) of the RNA-seq data of ESRG WT and KO
primed (left and naive (right) PSCs. The colored plots indicate differentially expressed genes
(DEGs) with statistical significance (FC>2.0, adjusted p-value <0.05). Three clones of ESRG
WT and KO PSCs at different three passage numbers were analyzed in each condition.

(TIF)
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S4 Fig. Karyotypes of PSC clones used in the study. Representative images of G-band stain-
ing show that all clones used in the study maintained normal female karyotypes (46XX).
(TIF)

S5 Fig. Knockdown of ESRG did not induce differentiation of human PSCs. (A) Shown are
relative expressions of ESRG, POU5F1, NANOG, T, and NES in primed H9 ESCs transduced
with empty vector (shNC), and shRNAs against ESRG (2, 4, and 5). Values are normalized by
GAPDH or ACTB and compared with the primed H9 ESC line. *P<0.05 vs. primed H9 ESC
line by unpaired t-test. n = 3. (B) Representative images of ESRG KD cells of immunocyto-
chemistry for NANOG. Bars, 200 um. Numerical values for A are available in S1 Data.

(TIF)

S6 Fig. Knockdown of HERV-Hs did not induce differentiation of human PSCs. (A) The
KD efficiencies of pan HERV-Hs. Shown are relative expressions of pan HERV-Hs and ESRG
in primed N18 iPSCs transduced with empty vector (Mock), and shRNAs against HERV-Hs
(1, 2 and 3). Values are normalized by GAPDH and compared with the primed N18 iPSC line.
*P<0.05 vs. primed N18 iPSC line by unpaired t-test. n = 3. (B) The expression of PSC and dif-
ferentiation markers in HERV-H KD cells. The heatmap shows the normalized intensity of the
indicated genes analyzed by microarray. Each value is the average of biological triplicates. (C)
Representative images of HERV-H KD cells of immunocytochemistry for NANOG. Bars,

200 pm. Numerical values for A and B are available in S1 Data.

(TIF)

S1 Table. Summarized phastCons conservation scores and proportion of singletons across
lincRNAs.
(XLSX)

S2 Table. Differential expression between human and chimpanzee specific for iPSC stage
(interaction term cell type:species).
(XLSX)

S3 Table. Normalized mean expression per gene in the human and chimpanzee iPSCs.
(XLSX)

$4 Table. The number of polymorphisms and substitutions in the human ESRG.
(XLSX)

S5 Table. Oligo DNA sequences used in this study.
(XLSX)

S6 Table. TagMan Assays used in this study.
(XLSX)

S1 Data. In separate sheets, the excel spreadsheet contains the numerical values for Figs
2B, 2C, 2F, 2H, 3A, 3G, 3F, 4C, 4F, 5A, 5B, S1A, S1B, S2B, S5A, S6A and S6B.
(XLSX)
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Abstract Brain size and cortical folding have increased and decreased recurrently during
mammalian evolution. Identifying genetic elements whose sequence or functional properties
co-evolve with these traits can provide unique information on evolutionary and developmental
mechanisms. A good candidate for such a comparative approach is TRNP1, as it controls prolifera-
tion of neural progenitors in mice and ferrets. Here, we investigate the contribution of both regu-
latory and coding sequences of TRNP1 to brain size and cortical folding in over 30 mammals. We
find that the rate of TRNP1 protein evolution (o) significantly correlates with brain size, slightly less
with cortical folding and much less with body size. This brain correlation is stronger than for >95%
of random control proteins. This co-evolution is likely affecting TRNP1 activity, as we find that
TRNP1 from species with larger brains and more cortical folding induce higher proliferation rates in
neural stem cells. Furthermore, we compare the activity of putative cis-regulatory elements (CREs)
of TRNP1 in a massively parallel reporter assay and identify one CRE that likely co-evolves with
cortical folding in Old World monkeys and apes. Our analyses indicate that coding and regulatory
changes that increased TRNP1 activity were positively selected either as a cause or a consequence
of increases in brain size and cortical folding. They also provide an example how phylogenetic
approaches can inform biological mechanisms, especially when combined with molecular pheno-
types across several species.

Editor's evaluation

This is an important paper that combines comparative analysis and experimental assays to inves-
tigate the role of protein-coding and regulatory changes at TRNP1 in mammalian brain evolution.
The evidence supporting a contribution of TRNP1 is convincing, although the strength of the link
between protein-coding changes and trait evolution is stronger and more readily interpretable than
the data on gene regulation. The work will be of interest to researchers interested in mammalian
evolution, brain evolution, and evolutionary genetics.
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Introduction

Understanding the genetic basis of complex phenotypes within and across species is central for
biology. Brain phenotypes — even when as simple as size or folding — are of particular interest to many
fields, because they are linked to cognitive abilities, which are of particular interest to humans (Reader
et al., 2011; DeCasien et al., 2022).

Brain size and cortical folding show extensive variation across mammals, including recurrent inde-
pendent increases and decreases (Montgomery et al., 2016; Boddy et al., 2012; Lewitus et al.,
2013; Smaers et al., 2021). For example, most rodents have a small brain and an unfolded cortex
(Kelava et al., 2013), while carnivores, cetaceans, and primates generally have enlarged and folded
cortices, peaking in dolphin and human. Also within primates these traits vary, showing an increase
on the great ape branch, but also decreases in several New World monkey species. Using compar-
ative, that is, phylogenetic, approaches across primates and mammals, these variations have been
correlated with different life history traits, such as longevity, diet, or energetic constraints (DeCasien
et al., 2017; DeCasien et al., 2022; Heldstab et al., 2022) revealing underlying ecological factors
that drive selection for larger brains.

The underlying genetic and cellular factors that are associated with these evolutionary variations in
brain size and folding have not been studied across such large phylogenies. However, observational
and experimental studies, especially in mice, but increasingly also in other systems like the ferret,
macaques and humans, have led to major insights into the genetic and cellular mechanisms of cortical
development (Pinson and Huttner, 2021; Del-Valle-Anton and Borrell, 2022; Villalba et al., 2021).
Briefly, proliferation of neuroepithelial stem cells (NECs) that have contacts with the apical surface
and basal lamina leads to the formation of the neuroepithelium during early development. NECs then
become Paxé-positive apical radial glia cells (aRGCs), that continue to self-amplify before producing
basal progenitors (BPs). BPs include basal radial glia cells (bRGCs) that remain Paxé positive, loose the
apical contact, and - depending on the species - can also self-amplify before eventually producing
neurons. The extent of proliferation of all these neural progenitors is also influenced by their cell cycle
length where a short cell cycle leads to more cycles of symmetric divisions, a delayed onset of neuro-
genesis, and subsequently to more neurons and a bigger cortex. Notably, proliferation of bRGCs at a
particular cortical location is thought to be crucial to generate a cortical fold at this location. Hence,
genes that influence the proliferation of these neural progenitors to evolutionary changes in brain size
and folding.

The major focus in this respect has been on identifying and functionally characterizing genetic
changes on the human or primate lineage. For example, the human-specific gene ARHGAP11B was
found to induce bRGC proliferation and folding in cortices of mice, ferrets, and marmosets (Florio
et al., 2015; Kalebic et al., 2018; Heide et al., 2020). Other examples include an amino acid substi-
tution specific to modern humans in TKTL1 (Pinson et al., 2022), human-specific NOTCH2 paralogs
(Fiddes et al., 2018; Suzuki et al., 2018), the primate-specific genes TMEM14B and TBC1D3 (Liu
et al., 2017, Ju et al., 2016), and an enhancer of FZD8, a receptor of the Wnt pathway (Boyd et al.,
2015). While mechanistically convincing, it is unclear whether the proposed evolutionary link can be
generalized as only one evolutionary lineage is investigated. Conversely, comparative approaches that
correlate sequence changes with brain size changes have investigated more evolutionary lineages
(Boddy et al., 2017, Montgomery et al., 2016), but these studies lack mechanistic evidence and are
limited to the analysis of protein-coding regions. Here, we combine mechanistic and phylogenetic
approaches to study TRNP1, a gene that is known to be important for cortical growth and folding by
influencing aRGC and bRGC proliferation and differentiation in mice (Stahl et al., 2013; Pilz et al.,
2013; Kerimoglu et al., 2021) and ferrets (Martinez-Martinez et al., 2016).

On a cellular level, expressing Trnp1 in neural stem cells (NSCs) isolated from mouse cortices
induces phase separation, accelerates mitosis, and increases proliferation (Stahl et al., 2013; Esgleas
et al., 2020). Increasing Trnp1 expression by in utero electroporation in mice and ferrets (embryonic
day 13[E13]in mice) leads to increased proliferation of aRGCs (Stahl et al., 2013; Martinez-Martinez
et al., 2016). Decreasing Trnp1 expression levels in mice or ferrets (E13) reduces aRGC proliferation,
increases their differentiation into BPs, and induces cortical folding (Stahl et al., 2013; Pilz et al.,
2013; Martinez-Martinez et al., 2016). Notably, increasing Trnp1 expression levels by in utero elec-
troporation at E14.5 increases bRGC proliferation (Kerimoglu et al., 2021) and also induces cortical
folding.

Kliesmete, Wange et al. eLife 2023;12:e83593. DOI: https://doi.org/10.7554/eLife.83593 2 of 29




2.4 Regulatory and coding sequences of TRNP1 co-evolve with brain
size and cortical folding in mammals 131

eLIfe Research article

Genetics and Genomics | Evolutionary Biology

Hence, Trnp1 levels can alter proliferation and differentiation of neural progenitors and in turn
alter brain size and folding in mice and ferrets. However, whether genetic changes in TRNP1 did alter
cortical size and folding during mammalian evolution is unclear. Here, we analyse the evolution of
TRNP1 regulatory and coding sequences across mammals and investigate their link to the evolution
of brain size and cortical folding.

Results

TRNP1 amino acid substitution rates co-evolve with rates of change in
brain size and cortical folding in mammals

We experimentally and computationally collected (Camacho et al., 2009) and aligned (Léytynoja,
2021) 45 mammalian TRNP1 coding sequences, including dolphin and 18 primates (99.0% complete-
ness, Figure 1—figure supplement 1A). For 30 of those species, we could also compile estimates
for brain size and cortical folding, as well as body mass as a potentially confounding parameter
(Figure 1A; Supplementary file 1¢). We quantify brain size as its weight and cortical folding as the
ratio of the cortical surface over the perimeter of the brain surface, the gyrification index (Gl), where
a Gl = 1 indicates a completely smooth brain and a Gl gt; indicates higher levels of cortical folding
(Zilles et al., 1989). This phenotypic data together with the coding sequences are the basis for our
investigation in the evolutionary relation between the rate of TRNP1 protein evolution and the evolu-
tion of brain size and gyrification.

The ratio of the non-synonymous (non-neutral) and the synonymous substitution rates, w, is easily
accessible and hence one of the most widespread measures of selection on protein-coding sequences,
despite its limitations (Yang, 2006; Nei et al., 2000). In the absence of additional evidence, only
an w > 1 can be interpreted as proof of positive selection. However, an wgt; requires many recur-
rent selective events and hence is underpowered to detect moderate amounts of positive selection.
Therefore, it has become common practice to identify increases of w on certain branches or subtrees
relative to the remainder of the tree. For our question, we are analyzing the variation of w across
branches. To this end, we use the software Coevol that allows estimating the co-variance between
rates of phenotypic and evolutionary sequence changes (w), while both types of information go into
the optimization of branch length estimates of the underlying phylogenetic tree (Lartillot and Poujol,
2011). This allows to detect a correlation between the strength of selection (w) and a phenotypic trait.
The question remains whether this correlation is directly caused by selection on that trait, or what we
observe are indirect effects. This is not uncommon, because the strength of selection depends on
the effective population size (Ne) of a species, which is often linked to life history traits and body size
(Ohta, 1987; Lynch and Walsh, 2007). For example, species with a large body size tend to have a
small Ne and thus a low efficacy of selection (Figuet et al., 2016; Lartillot and Poujol, 2011). With
purifying selection being the dominant force in protein sequence evolution, we would thus expect a
positive correlation between w and body size due to indirect effects of N.. However, in contrast to
directed selection on one trait which is targeted to specific genes, a lower efficacy in purifying selec-
tion due to N, will have an impact on all genes.

Therefore, we compiled a set of control genes in the same 30 species for which we have TRNP1
sequences and phenotypic data. We started with all human autosomal genes that — as TRNP1 — have
only one coding exon (n=1997; Human CCDS; Pujar et al., 2018) and a similar length (n=1088;
291-999 bp vs. 682 bp of TRNP1). For 133 (12.3%) of these we could find full-length high-quality
one-to-one orthologous sequences for all 30 species (Figure 1—figure supplement 3A; Supplemen-
tary file 1f, Materials and methods). To ensure the quality of the resulting multiple sequence align-
ments, all of them were manually inspected. Based on the overall tree length we removed one outlier
(0l0g(ds) > 3) leaving us with 132 control proteins that are well comparable to TRNP1 with respect
to tree length, alignment quality, and » (Figure 1—figure supplement 3B). Eight rather conserved
genes (six with ©<0.04 and two with w<0.19) did not show an acceptable parameter convergence
between runs of Coevol, leaving 124 control genes well comparable to TRNP1 (Supplementary file
11). If a species such as human or dolphin evolved a large, gyrified brain due to positive selection on
TRNP1, we expect those lineages to show an increased rate of phenotype (brain size and GI) change
and an increased w. If this pattern is consistent across the majority of branches, Coevol would infer a
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Figure 1. TRNP1 amino acid substitution rates co-evolve with brain size and cortical folding in mammals. (A) Mammalian species for which body

mass, brain size, gyrification index (Gl) measurements, and TRNP1 coding sequences were available (n=30)(Figure 1—figure supplement 1). Log2-
transformed units: body mass and brain size in kg; Gl is a ratio (cortical surface/perimeter of the brain surface). (B) Estimated marginal and partial
correlation between w of TRNP1 and the three traits using Coevol (Lartillot and Poujol, 2011). Size indicates posterior probability (pp). (C) TRNP1
protein substitution rates () significantly correlate with brain size (r = 0.83, pp = 0.97).(D) The average correlation across 124 control proteins with
brain size (7=0.10). (E) TRNP1 w correlation with Gl compared to the average across control proteins. (F) TRNP1 w correlation with body mass compared
to the average across control proteins. (C, D, E, F) Error bars indicate standard errors. (G) Distribution of partial correlations between w and brain size
of the control proteins and TRNP1. (H) Distribution of partial correlations between w and Gl of the control proteins and TRNP1. (I) Scheme of the mouse
TRNP1 protein (223 amino acids [AAs]) with intrinsically disordered regions (orange) and sites (red lines) subject to positive selection in mammals (w > 1,
pp > 0.95Figure 1—figure supplement 1). Letter size of the depicted AAs represents the abundance of AAs at the positively selected sites.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. TRNP1 protein-coding sequence analysis.

Figure supplement 2. Estimated marginal (A) and partial (B) correlation matrices of the combined Coevol model including the three traits and
substitution rates of TRNP1.

Figure supplement 3. Control protein evolution rate correlation with brain size, gyrification, and body mass.
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positive correlation between w and the trait. Moreover, if this correlation is stronger than that for the
average control protein, we can exclude that this is solely due to variation in the efficacy of selection.

Indeed, we find that @ of TRNP1 positively correlates with brain size (r=0.83; p=0.97), GI (r=0.75;
p=0.98), and also body mass (r=0.76; p=0.97) and that these correlations are stronger than those of
the average control protein (Figure 1C-F, Figure 1—figure supplement 3C), showing that the inter-
action between TRNP1 and the phenotypes goes beyond pure efficacy of selection effects. All three
traits are highly correlated with one another. It is well known that brain and body size are not inde-
pendent, and the same is true for Gl and brain size (Montgomery et al., 2016; Smaers et al., 2021).
To disentangle which trait is most likely to be causal for the observed correlation with », we compare
the partial correlations and find that brain size has the highest partial correlation (r=0.4), followed by
Gl (r=0.34), while the partial correlation with body mass (r=0.19) has a much larger drop compared to
the marginals (Figure 1B, Figure 1—figure supplement 3C), making selection on brain size and/or
Gl the more likely causes for the variation in w. This said, TRNP1 is unlikely to be the sole evolutionary
modifier of such an important and complex phenotype as brain size and gyrification. Because our
control proteins represent a random selection of genes that based on sequence properties should
give us comparable power to detect a link to these phenotypes, we can use the distribution of partial
correlations of w of the controls with brain size and Gl to gauge the relative importance of TRNP1 for
brain evolution (Figure 1G and H; Supplementary file 1g). We find that TRNP1 protein evolution is
among 4.0% and 6.4% of the most correlated proteins for brain size and Gl, respectively.

Having established that the rate of protein evolution of TRNP1 is linked to brain size evolution, we
now want to pinpoint the relevant sites or domains in the protein to facilitate further functional studies.
Using the site model of PAML (Yang, 1997), we find 9.8% of the codons to show signs of recurrent
positive selection (i.e., w > 1, site models M8 vs. M7, Xz—value <0.001, df = 2). Eight codons with a
selection signature could be pinpointed with high confidence (Supplementary file 1d). Seven out of
those eight reside within the first intrinsically disordered region (IDR) and one in the second IDR of
the protein (Figure 1I; Figure 1—figure supplement 1B). The IDRs of TRNP1 are thought to mediate
homotypic and heterotypic protein-protein interactions and are relevant for TRNP1-dependent phase
separation, nuclear compartment size regulation, and M-phase length regulation (Esgleas et al.,
2020). Hence, the positively selected sites indicate that these IDR-mediated TRNP1 functions were
repeatedly adapted during mammalian evolution and the identified sites are candidates for further
functional studies.

TRNP1 proliferative activity co-evolves with brain size and cortical
folding in mammals
Next, we investigated whether the correlation between TRNP1 protein evolution and cortical pheno-
types can be linked to functional properties of TRNP1 at a cellular level. A central property of TRNP1
is to promote proliferation of aRGC (Stahl et al., 2013; Esgleas et al., 2020) and also of BPs (Keri-
moglu et al., 2021). This proliferative activity can be assessed in an in vitro assay in which TRNP1 is
transfected into NSCs isolated from E14 mouse cortices (Stahl et al., 2013; Esgleas et al., 2020).
To compare TRNP1 orthologues in this assay, we synthesized and cloned the TRNP1 coding
sequence of human, rhesus macaque, galago, mouse, and dolphin that cover the observed range
of w (Figure 1C). After co-transfection with green fluorescent protein (GFP), we quantified the
number of proliferating (Ki67+, GFP+) over all transfected (GFP+) NSCs for each TRNP1 orthologue
in >7 replicates (Figure 2A and B). We confirmed that TRNP1 transfection does increase prolifer-
ation compared to a GFP-only control (p-value < 2 x 10~!%; Figure 2—figure supplement 1A) as
shown in previous studies (Stahl et al., 2013; Esgleas et al., 2020). Remarkably, the proportion of
proliferating cells was highest in cells transfected with dolphin TRNP1 followed by human, which was
significantly higher than the two other primates, galago and macaque (Figure 2C; Figure 2—figure
supplement 1B; Supplementary file 2a-c). Indeed, the proliferative activity of TRNP1 is a significant
predictor for brain size (BH-adjusted p-value = 0.0018, R? = 0.89) and Gl (BH-adjusted p-value =
0.016, R = 0.69) of its species of origin (phylogenetic generalized least squares [PGLS], likelihood
ratio test [LRT]; Figure 2C). Note that the three primates and the dolphin are phylogenetically equally
distant to the mouse (Figure 2C) and hence a bias due to the murine assay system cannot explain
the observed correlations with brain size and Gl. Hence, these results further support that the TRNP1
protein co-evolves with brain size and cortical folding.
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Figure 2. TRNP1 proliferative activity correlates with brain size and cortical folding. (A) Five different TRNP1 orthologues were transfected into

neural stem cells (NSCs) isolated from cerebral cortices of 14-day-old mouse embryos and proliferation rates were assessed after 48 hr using Kié7
immunostaining as proliferation marker and green fluorescent protein (GFP) as transfection marker in 7-12 independent biological replicates.

(B) Representative image of the transfected cortical NSCs immunostained for GFP and Kié7. Arrows indicate three transfected cells of which two (solid

Figure 2 continued on next page
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arrows) are Ki67-positive (Figure 2—figure supplement 1). (C) Induced proliferation in NSCs transfected with TRNP1 orthologues from five different
species (Supplementary file 2). Proliferation rates are a significant predictor for brain size (X2=1O,04, df = 1, BH-adjusted p-value = 0.0018 = 11.75 +
2412, R? = 0.89) and Gl (X2=5.85, df = 1, BH-adjusted p-value = 0.016 = 16.97 + 6.568, R? =0.69)in the respective species (phylogenetic generalized
least squares [PGLS], likelihood ratio test [LRT]). Error bars indicate standard errors. Included species: human (Homo sapiens), rhesus macaque (Macaca
mulatta), northern greater galago (Otolemur garnettii), house mouse (Mus musculus), common bottlenose dolphin (Tursiops truncatus).

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Proliferation induced by TRNP1.

Activity of a cis-regulatory element of TRNP1 likely co-evolves with
cortical folding in catarrhines

Experimental manipulation of Trnp1 expression levels alters proliferation and differentiation of aRGC
and bRGC in mice and ferrets (Stahl et al., 2013; Martinez-Martinez et al., 2016; Kerimoglu et al.,
2021). Therefore, we next investigated whether changes in TRNP1 regulation may also be associated
with the evolution of cortical folding and brain size by analyzing co-variation in the activity of TRNP1
associated cis-regulatory elements (CREs), using massively parallel reporter assays (MPRAs). To this
end, a library of putative regulatory sequences is cloned into a reporter vector and their activity is
quantified simultaneously by the expression levels of element-specific barcodes (Inoue and Ahituv,
2015). To identify putative CREs of TRNP1, we used DNase hypersensitive sites (DHS) from human
foetal brain (Bernstein et al., 2010) and found three upstream CREs, the promoter-including exon
1, an intron CRE, one CRE overlapping the second exon, and one downstream CRE (Figure 3A). We
obtained the orthologous sequences of the human CREs using a reciprocal best blat (RBB) strategy
across additional mammalian species either from genome databases or by sequencing, yielding a total
of 351 putative CREs in a panel of 75 mammalian species (Figure 3—figure supplement 1).

Due to limitations in the length of oligonucleotide synthesis, we split each orthologous putative
CRE into highly overlapping, 94 bp fragments. The resulting 4950 sequence tiles were synthesized
together with a barcode unique for each tile. From those, we constructed a complex and unbiased
lentiviral plasmid library containing at least 4251 (86%) CRE sequence tiles (Figure 3B and C). Next,
we stably transduced this library into neural progenitor cells (NPCs) derived from two humans and one
cynomolgus macaque (Geuder et al., 2021). We calculated the activity per CRE sequence tile as the
read-normalized reporter gene expression over the read-normalized input plasmid DNA (Figure 3A,
Materials and methods). Finally, we use the per-tile activities (Figure 3—figure supplement 2A) to
reconstruct the activities of the putative CREs. To this end, we summed all tile sequence activities for
a given CRE while correcting for the built-in sequence overlap (Figure 3D; Materials and methods).
CRE activities correlate well within the two human NPC lines and between the human and cynomo-
Igus macaque NPC lines, indicating that the assay is robust across replicates and species (Pearson’s
r 0.85-0.88; Figure 3—figure supplement 2B). The CREs covering exon 1, the intron, and the CRE
downstream of TRNP1 show the highest total activity across species while the CREs upstream of
TRNP1 show the lowest activity (Figure 3E).

Next, we tested whether CRE activity is associated with either brain size or Gl across the 45 of the
75 mammalian species for which these phenotypes were available (Figure 3D). None of the CREs
showed a significant association with brain size or Gl (PGLS, LRT uncorrected p-value > 0.05) and
only the intron CRE had a tendency to be positively associated with gyrification (PGLS, uncorrected
LRT p-value=0.097, Figure 3F, left; Supplementary file 3b). Our power to detect such associations
might be considerably lower than for coding sequences also because regulatory elements have a
high turn-over rate (Danko et al., 2018; Berthelot et al., 2018; Huber et al., 2020). Hence, we
expect that some orthologous DNA sequences that are CREs in one species do not function as CREs
in others and can even be lost. The latter effect might explain why the sequences orthologous to
human CREs are shorter in non-primate species more distantly related to humans (Figure 3—figure
supplement 1). So phylogenetic comparisons of regulatory elements might be more powerful when
restricted to species closely related to the species from which the CRE annotation is derived (humans
in our case). Indeed, when we restrict our analysis to the catarrhine clade that encompasses Old
World monkeys, great apes, and humans, the association between intron CRE activity and Gl becomes
considerably stronger (PGLS, uncorrected LRT p-value=0.003, Bonferroni-corrected for seven regions
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Figure 3. Activity of a cis-regulatory element (CRE) of TRNP1 correlates with cortical folding in catarrhines. (A) Experimental setup of the massively
parallel reporter assay (MPRA). Regulatory activity of seven putative TRNP1 CREs from 75 species were assayed in neural progenitor cells (NPCs)
derived from human and cynomolgus macaque induced pluripotent stem cells. (Figure 3—figure supplement 1). (B) Fraction of the detected CRE
tiles in the plasmid library per species across regions. The detection rates are unbiased and uniformly distributed across species and clades with only
one extreme outlier Dipodomys ordiii. (C) Fraction of the detected CRE tiles in the plasmid library per region across species. (D) Log-transformed total
regulatory activity per CRE in human NPCs across species with available brain size and gyrification index (Gl) measurements (n=45). (E) Total activity per
CRE across species. Exon 1 (E1), intron (1), and the downstream (D) regions are more active and longer than other regions. (B, C, E) Each box represents
the median and first and third quartiles with the whiskers indicating the furthest value no further than 1.5 * IQR from the box. Individual points indicate
outliers. Figure 3—figure supplement 2 (F) Regulatory activity of the intron CRE is weakly associated with gyrification across mammals (phylogenetic
generalized least squares [PGLS], likelihood ratio test [LRT] p-value=0.097, R?=0.07, n=37) and strongest across great apes and Old World monkeys, that

is, catarrhines (PGLS, LRT p-value=0.003, R?=0.58, n=10).

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Length of the covered cis-regulatory element (CRE) sequences in the massively parallel reporter assay (MPRA) library across the

tree.

Figure supplement 2. Analysis of massively parallel reporter assay (MPRA) data.

p-value=0.02, Figure 3F, right; Supplementary file 3). To validate that our model results are rather
specific, we generated a null distribution for the observed correlation across catharrines, permuting
the activities of all other CREs of this study. In agreement with our model results, we find 8/1000
(0.8%) of the random CRE combinations to have such a significant association of p < 0.003. Moreover,
the intron CRE activity-Gl association was consistently detected across all three cell lines including the
cynomolgus macaque NPCs (Supplementary file 3). Furthermore, Reilly et al. compared enhancer
activity by histone modifications in the developing cortex of humans, rhesus macaques, and mice and
found a gain in activity on the human lineage in a region overlapping the intron CRE (Reilly et al.,
2015). Thus, while the statistical evidence from our MPRA data alone is limited, we consider the
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Gl association in catarrhines together with the additional evidence from Reilly et al., 2015, strong
enough to warrant a more detailed analysis of the intron CRE.

Transcription factors with binding site enrichment on intron CREs
regulate cell proliferation and are candidates to explain the observed
activity across catarrhines

Reasoning that differences in CRE activities will likely be mediated by differences in their interac-
tions with transcription factors (TF), we analysed the sequence evolution of putative TF binding
sites (Figure 4A). First, we performed RNA-seq on the same samples that were used for the MPRA.
Notably, also TRNP1 was expressed (Figure 4B), supporting the relevance of our cellular system.
Moreover, TRNP1 expression was significantly higher in human NPC lines than that of cynomolgus
macaque'’s (BH-adjusted p-value <0.05, Figure 4—figure supplement 1A-C), consistent with higher
intron CRE activity. Among the 392 expressed TFs with known binding motifs, we identified 22 with an
excess of binding sites (Frith et al., 2003) within the catarrhine intron CRE sequences (Figure 4B and
D). In agreement with TRNP1 itself being involved in the regulation of cell proliferation (Volpe et al.,
2006; Stahl et al., 2013; Esgleas et al., 2020), these 22 TFs are enriched in biological processes
regulating cell proliferation, neuron apoptotic process, and hormone levels (Gene Ontology, Fisher's
exact p-value <0.05, background: 392 expressed TFs; Figure 4C; Supplementary file 3).

To further prioritize these 22 TFs, we used the motif binding scores in the 10 catarrhine intron
CREs to predict the observed intron CRE activity in the MPRA and to predict the Gl of the respective
species. We found three TFs (CTCF, ZBTB26, SOX8) to be the best candidates to explain the variation
in the intron CRE activity and one TF (CTCF) to co-vary with GI (PGLS, uncorrected LRT p-value <0.05,
Figure 4D-F). While the statistical support for this association is not strong, which is expected given
that we were screening 22 candidate TFs in only 10 species, CTCF ChIP-seq data from the relevant
cell types suggests that this particular CTCF binding site is indeed bound by CTCF in human NPCs
(ChiP-seq, Encode Project Consortium, 2012, Figure 4—figure supplement 2). Moreover, HiC data
show a topologically associated domain (TAD) boundary just upstream of TRNP1 in the germinal zone
of the developing human brain (postconception week 8, Won et al., 2016). Hence, variations in the
binding strength of CTCF across species might likely have consequences for the stability of the TAD
boundary and TRNP1 expression, affecting the associated phenotypes given its crucial role for brain
development (Stahl et al., 2013).

In summary, we find a suggestive correlation between the activity of the intron CRE and gyrifica-
tion in catarrhines, indicating that also regulatory changes of TRNP1 might have contributed to the
evolution of gyrification.

Discussion

Previous studies in mice and ferrets have elucidated mechanisms how Trnp1 is necessary for prolifera-
tion and differentiation of neural progenitors and how it could contribute to the evolution of brain size
and cortical folding. We applied phylogenetic methods to explore associations between sequence
and trait evolution and found that the rate of protein evolution and the proliferative activity of TRNP1
positively correlate with brain size and gyrification in mammals. Moreover, we find tentative evidence
that the activity of a regulatory element in the intron of TRNP1 might be associated with gyrification
in catarrhines. At the sequence level, such a correlation could also be caused by confounding factors
that affect the efficacy of natural selection such as the effective population size (Ohta, 1987, Lynch
and Walsh, 2007). However, body size — a reasonable proxy for effective population size (Figuet
et al., 2016; Lartillot and Poujol, 2011) — correlates much less with TRNP1 protein evolution than
brain size or gyrification. Even more convincingly, the correlation of TRNP1 with brain size and gyrifica-
tion is much stronger than the average correlation of these traits with the evolution of other proteins,
that would have had to experience the same population size changes. Furthermore, it is unclear how
an increased proliferative activity of TRNP1 or an increased CRE activity could be caused by a reduced
efficacy of selection or other confounding factors. Together with the known role of TRNP1 in brain
development, we think that the observed correlations are best interpreted as co-evolution of TRNP1
activity with brain size and gyrification, that is, that more active TRNP1 alleles were selected because
they were advantageous to increase brain size and/or gyrification.
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Figure 4. Transcription factors (TFs) with binding site enrichment on intron cis-regulatory elements (CREs) regulate cell proliferation and are candidates
to explain the observed activity across catarrhines. (A) Orthologous intron CRE sequences show different regulatory activities under the same cellular
conditions, suggesting variation in cis regulation across species. (B) Variance-stabilized expression in neural progenitor cells (NPCs) of TRNP1 and the
22 TFs with enriched binding sites (motif weight > 1) on the intron CREs. Each box represents the median, first and third quartiles with the whiskers
indicating the furthest value no further than 1.5 * IQR from the box. Points indicate individual expression values. Vertical line indicates average
expression across all 392 TFs (5.58), grey area: standard deviation (1.61). (C) Eight top enriched biological processes (Gene Ontology, Fisher's exact

test p-value <0.05) of the 22 TFs. Background: all expressed TFs (392). (D) Variation in binding scores of the enriched TFs across catarrhines. Heatmaps
indicate standardized binding scores (grey), gyrification index (Gl) values (blue) and intron CRE activities (yellow) from the respective species. TF
background colour indicates gene ontology assignment of the TFs to the two most significant biological processes. The bottom panel indicates the
spatial position of the top binding site (motif score >3) for each TF on the human sequence. (E) Binding scores of three TFs (CTCF, ZBTB26, SOX8) are
the best candidates to explain intron CRE activity, whereas only CTCF binding shows an association with the Gl (phylogenetic generalized least squares
[PGLS], likelihood ratio test [LRT] p-value <0.05). (F) Predicted intron CRE activity by the binding scores of the three TFs vs. the measured intron CRE
activity across catarrhines.

The online version of this article includes the following figure supplement(s) for figure 4:
Figure supplement 1. TRNP1 expression in human and cynomolgus macaque (Macaca fascicularis) cell lines.

Figure supplement 2. Human genome tracks for the TRNP1 locus (hg19).

Of note, the effect of structural changes appears stronger than the effect of regulatory changes.
This is contrary to the notion that regulatory changes should be the more likely targets of selection as
they are more cell-type specific (Carroll, 2008) (but see also Hoekstra and Coyne, 2007). However,
current measures of regulatory activity are inherently less precise than counting amino acid changes,
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which will necessarily deflate the estimated association strength (Danko et al., 2018; Berthelot et al.,
2018; Huber et al., 2020). Not only is gene regulation cell-type and time-dependent, but regulatory
elements also evolve much faster, making a comprehensive and informative comparison across large
phylogenies much more difficult. Moreover, while MPRAs function well in deciphering the regulatory
activities of individual CREs, they are still limited in their in vivo interpretation. In any case, our analysis
suggests that evolution likely combined both regulatory and structural evolution to modulate TRNP1
activity.

The MPRA also allowed to identify TFs that have a binding site enrichment to the intron CRE and
are likely direct regulators of TRNP1. These include INSM1 (Tavano et al., 2018), which also has been
shown to control NEC-to-neural-progenitor transition, as well as other relevant factors with increased
activity in human neural stem and progenitor cells during early cortical development compared to
later stages, such as TFAP2A, NFIC, TCF3, KLF12, and again INSM1 (Trevino et al., 2021; de la Torre-
Ubieta et al., 2018). Among the enriched TFs that bind to the intron CRE, CTCF had the strongest
association with gyrification. Although CTCF is best known for its insulating properties, it can also act
as transcriptional activator and recruit co-factors in a lineage-specific manner (Arzate-Mejia et al.,
2018). In neural progenitors, CTCF loss causes severe impairment in proliferative capacity through
the increase in premature cell cycle exit, which results in drastically reduced progenitor pool and early
differentiation (Watson et al., 2014). The overlapping molecular roles of TRNP1 and CTCF in neural
progenitors support the possibility that TRNP1 is among the cell-fate determinants downstream of
CTCF (Wu et al., 2006; Delgado-Olguin et al., 2011). Differences between species in CTCF binding
strength and/or length to the intron CRE might have direct consequences for the binding of additional
TFs, TRNP1 expression, and the resulting progenitor pool. However, the effects of CTCF binding
in vitro and in vivo might differ and the exact mechanism, including the developmental timing and
cellular context in which this might be relevant, is yet to be disentangled.

Independent from the mechanisms and independent whether caused by regulatory or structural
changes, it is relevant how an increased TRNP1 activity could alter brain development. When overex-
pressing Trnp1in aRGCs of developing mice (E13) and ferrets (E30), aRGC proliferation increases (Stahl
et al., 2013; Pilz et al., 2013; Martinez-Martinez et al., 2016). Similarly, overexpression of Trnp1
increases proliferation in vitro in NSCs (Stahl et al., 2013; Esgleas et al., 2020) or breast cancer cells
(Volpe et al., 2006). Hence, TRNP1 evolution could contribute to evolving a larger brain by increasing
the pool of aRGCs. In addition, increases in brain size and especially increases in cortical folding are
highly dependent on increases in proliferation of BPs, in particular bRGCs (Pinson and Huttner, 2021,
Del-Valle-Anton and Borrell, 2022; Villalba et al., 2021). Remarkably, recent evidence indicates that
Trnp1 could be important also for the proliferation of BPs (Kerimoglu et al., 2021): Firstly, in contrast
to non-proliferating BPs from mice, proliferating BPs from human do express TRNP1 (Kerimoglu
et al., 2021). Furthermore, when activating expression of Trnp1 using CRISPRa at E14.5, more prolif-
erating BPs and induction of cortical folding is observed (Kerimoglu et al., 2021). Hence, a more
active TRNP1 can increase proliferation in aRGCs and BPs and this could cause the observed co-evo-
lution with brain size and cortical folding. TRNP1 is the first case where analyses of protein sequence,
regulatory activity, and protein activity across a larger phylogeny have been combined to investigate
the role of a candidate gene in brain evolution. Functional evidence from evolutionary changes on the
human lineage, for example, for ARHGAP11B and NOTCH2NL, but also phylogenetic evidence from
correlating sequence changes with brain size changes (Montgomery et al., 2016; Boddy et al., 2017)
indicate that a substantial number of genes could adapt their function when brain size changes in
mammalian lineages. Improved genome assemblies (Rhie et al., 2021) will decisively improve phylo-
genetic approaches (Cavassim et al., 2022; Stephan et al., 2022; Jourjine and Hoekstra, 2021;
Smith et al., 2020). In combination with the increased possibilities for functional assays due to DNA
synthesis (Chari and Church, 2017) and comparative cellular resources across many species (Enard,
2012; Housman and Gilad, 2020; Geuder et al., 2021), this offers exciting possibilities to study the
genetic basis of complex phenotypes within and across species.
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Materials and methods
Sample collection and cell culture

Mouse strain and handling

Mouse handling and experimental procedures were performed in accordance with German and Euro-
pean Union guidelines and were approved by the State of upper Bavaria. All efforts were made to
minimize suffering and number of animals. Two- to three-month female C57BL/6J wild-type mice were
maintained in specific pathogen-free conditions in the animal facility, in 12:12 hr light/dark cycles and
bred under standard housing conditions in the animal facility of the Helmholtz Center Munich and the
Biomedical Center Munich. The day of the vaginal plug was considered EO.

Primary cerebral cortex harvesting and culture

E14 mouse (M. musculus) cerebral cortices were dissected, removing the ganglionic eminence, the
olfactory bulb, the hippocampal anlage, and the meninges. Cells were mechanically dissociated with a
fire polish Pasteur pipette. Cells were then seeded onto poly-D-lysine (PDL)-coated glass coverslips in
DMEM-GlutaMAX (Dulbeccos's modified Eagles’s medium) supplemented with 10% foetal calf serum
(FCS) and 100 pg/mL Pen. Strep. and cultured at 37°C in a 5% CO; incubator.

Culture of HEK293T cells

HEK 293T cells (H. sapiens) were grown in DMEM supplemented with 10% FCS and 1% Pen. Strep.
Cells were cultured in 10 cm flat-bottom dishes at 37°C in a 5% CO, environment and split every 2-3
days in a 1:10 ratio using 5 mL PBS to wash and 0.5 mL 0.25% Trypsin to detach the cells.

Culture of Neuro-2A cells

Neuro-2A cells (N2A) (ATCC; CCL-131, M. musculus) were cultured in Eagle’s minimum essential
medium (Thermo Fisher Scientific) with 10% FCS (Thermo Fisher Scientific) at 37°C in a 5% CO, incu-
bator and split every 2-3 days in a 1:5 ratio using 5 mL PBS (Thermo Fisher Scientific) to wash and
0.5 mL 0.25% Trypsin (Thermo Fisher Scientific) to detach the cells.

Culture of neural progenitor cells

Neural progenitor cells of two human (H. sapiens) and one cynomolgus monkey (M. fascicularis) cell line
(Geuder et al., 2021) were cultured at 37°C in a 5% CO, incubator on Geltrex (Thermo Fisher Scien-
tific) in DMEM F12 (Fisher Scientific) supplemented with 2 mM GlutaMAX-I (Fisher Scientific), 20 ng/
pL bFGF (Peprotech), 20 ng/pL hEGF (Miltenyi Biotec), 2% B-27 supplement (50x) minus vitamin A
(Gibco), 1% N2 supplement 100x (Gibco), 200 pM L-ascorbic acid 2-phosphate (Sigma), and 100 ug/
mL penicillin-streptomycin (Pen. Strep.) with medium change every second day. For passaging, NPCs
were washed with PBS and then incubated with TrypLE Select (Thermo Fisher Scientific) for 5 min at
37°C. Culture medium was added and cells were centrifuged at 200 x g for 5 min. Supernatant was
replaced by fresh culture medium and cells were transferred to a new Geltrex-coated dish. The cells
were split every 2-3 days in a ratio of 1:3. All cell lines have been authenticated using RNA sequencing
(RNA-seq), see Geuder et al., 2021, and the current study. Mycoplasma is regularly tested for using
PCR-based test.

Sequencing of TRNP1 for primate species

Identification of CREs of TRNP1

DHS in the proximity to TRNP1 (25 kb upstream, 3 kb downstream) were identified in human foetal
brain and mouse embryonic brain DNase-seq datasets (Vierstra et al., 2014; Bernstein et al., 2010)
downloaded from NCBI's Sequence Read Archive (see Appendix 1—key resources table ). Reads were
mapped to human genome version hg19 and mouse genome version mm10 using NextGenMap with
default parameters (NGM; version 0.0.1) (Sedlazeck et al., 2013). Peaks were identified with Hotspot
version 4.0.0 using default parameters (John et al., 2011). Overlapping peaks were merged, and the
union per species was taken as putative CREs of TRNP1 (Supplementary file 3a). The orthologous
regions of human TRNP1 DNase peaks in 49 mammalian species were identified with reciprocal best
hit using BLAT (v. 35x1) (Kent, 2002). Firstly, sequences of human TRNP1 DNase peaks were extended
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by 50 bases down- and upstream of the peak and the best matching sequence per peak region
were identified with BLAT using the following settings: -t=DNA -q=DNA -stepSize=5 -repMatch=2253
-minScore=0 -minldentity=0 -extendThroughN. These sequences were aligned back to hg19 using
the same settings as above. The resulting best matching hits were considered reciprocal best hits
if they fell into the original human TRNP1 CREs. In total, 351 putative TRNP1 CRE sequences were
identified, including human, mouse, and orthologous sequences.

Cross-species primer design for sequencing

We sequenced TRNP1 coding sequences in six primates for which reference genome assemblies
were either unavailable or very sparse and the ferret (Mustela putorius furo) where the sequence
was incomplete (see Supplementary file 1a). For the missing primate sequences we used NCBI's
tool Primer Blast (Ye et al., 2012) with the human TRNP1 gene locus as a reference. Primer spec-
ificity was confirmed using the predicted templates in 12 other primate species available in Primer
Blast. Following primers were used as they worked reliably in all six species (forward primer, GGGA
GGAGTAAACACGAGCC; reverse primer, AGCCAGGTCATTCACAGTGG). For the ferret sequence,
the genome sequence (MusPutFur1.0,) contained a gap in the TRNP1 coding sequence leading to a
truncated protein. To recover the full sequence of TRNP1 we used the conserved sequence 5’ of the
gap and 3’ of the gap as input for primer blast (primer sequences can be found in the analysis GitHub,
see Data availability).

In order to obtain TRNP1 CREs for the other primate species, we designed primers using primux
(Hysom et al., 2012) based on the species with the best genome assemblies and subsequently tested
them in closely related species in multiplexed PCRs. A detailed list of designed primer pairs per CRE
and reference genome can be found in the analysis GitHub (see Data availability).

Sequencing of target regions for primate species

Primate gDNAs were obtained from Deutsches Primaten Zentrum, DKFZ, and MPI Leipzig (see
Supplementary file 1b). Depending on concentration, gDNAs were whole genome amplified prior
to sequencing library preparation using GenomiPhi V2 Amplification Kit (Sigma). After amplification,
gDNAs were cleaned up using SPRI beads (CleaNA). Both TRNP1 coding regions and CREs were
resequenced starting with a touchdown PCR to amplify the target region followed by a ligation and
Nextera XT library construction. TRNP1 coding regions were sequenced as 250 bases paired end with
dual indexing on an lllumina MiSeq, the CRE libraries libraries were sequenced 50 bp paired end on
an lllumina HiSeq 1500.

Assembly of sequenced regions

Reads were demultiplexed using deML (Renaud et al., 2015). The resulting sequences per species
were subsequently trimmed to remove PCR handles using cutadapt (version 1.6) (Martin, 2011). For
sequence reconstruction, Trinity (version 2.0.6) in reference-guided mode was used (Grabherr et al.,
2011). The reference here is defined as the mapping of sequences to the closest reference genome
with NGM (version 0.0.1) (Sedlazeck et al., 2013). Furthermore, read normalization was enabled and
a minimal contig length of 500 was set. The sequence identity of the assembled contigs was validated
by BLAT (Kent, 2002) alignment to the closest reference TRNP1 as well as to the human TRNP1. The
assembled sequence with the highest similarity and expected length was selected per species.

The same strategy was applied to the resequenced ferret genomic sequence, except that we used
bwa-mem2 (Vasimuddin et al., 2019) for mapping and for the assembly with Trinity we set minimal
contig length to 300 (reference genome musFur1). Only the part covering the 3' end (specifically,
the last 107 AAs) was successfully assembled, however, luckily, MusFur1 genome assembly already
provides a good-quality assembly for the 5’ end of the protein. The overlapping 36 AAs (108 nucle-
otides) between both sources had a 100% agreement on the nucleotide sequence level, hence we
collapsed the sequences from both sources to yield a full-length protein-coding sequence. In a neigh-
bour joining tree, where we included the nucleotide sequences from all 30 mammalian TRNP1 ortho-
logues, ferret sequence was placed within the other carnivore sequences (between cat and a branch
leading to seal, sea lion) as expected given the phylogenetic relationships of these species.
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TRNP1 coding sequence retrieval and alignment

Human TRNP1 protein sequence was retrieved from UniProt database (UniProt Consortium, 2019)
under accession number Q6NT89. We used the human TRNP1 in a tblastn (Camacho et al., 2009)
search of genomes from 45 species, without any repeat masking specified in Supplementary file 1a
(R-package rBLAST version 0.99.2). The resulting sequences were re-aligned with PRANK (L&ytynoja,
2021) (version 150803), using the mammalian tree from Bininda-Emonds et al., 2007.

Control gene set selection and alignment

Control genes were selected using consensus coding sequence (CCDS) dataset for human GRCh38.
p12 genome (35,138 coding sequences, release 23) (Pujar et al., 2018). RBB (Kent, 2002) strategy
was applied to identify the orthologous sequences in the other 29 species using -q=prot -t=dnax blat
settings. We picked the best matching sequence per CDS in each species using a score based on the
BLOSUM®62 substitution matrix (Henikoff and Henikoff, 1992) and gapOpening = 3, gapExtension
= 1 penalties, and requiring at least 30% of the human sequence to be found in the other species.
This sequence was extracted and the same strategy was applied when blatting the orthologous
sequence to the human genome. If the target sequence with the best score overlaps at least 10% of
the original CDS positions, it was kept. To have a comparable gene set to TRNP1 in terms of statis-
tical power and alignment quality, we selected all genes that had a similar human coding sequence
length as TRNP1 (2291 and <999 nucleotides) and 1 coding exon (322 out of the total of 1088 1-exon
similar-length candidates prior to RBB). If RBB returned multiple matches per species per sequence
with the same highest alignment score to the human sequence, we kept these only if the matching
sequences were identical, which resulted in 274 genes. We further filtered for genes with all ortholo-
gous sequences of length at least 50% and below 200% relative to the length of the respective human
protein-coding orthologue (257 genes). These were aligned using PRANK (Léytynoja, 2021) as for
TRNP1, and manually inspected. One hundred and twelve alignments were optimal, and we could get
additional 22 high-quality alignments by searching orthologues in additional genome versions using
the previously described RBB strategy (gorilla gorGor5.fa, dolphin GCF_011762595.1_mTurTru1, wild
boar GCF_000003025.6_Sscrofa11.1, rhesus macaque GCF_003339765.1_Mmul_10, olive baboon
GCA_000264685.2_Panu_3.0) and redoing the alignment. Gene TREX1 turned out to have two CCDS
included: CCDS2769.1, CCDS59451.1. As these are not independent, we randomly kept only one
CCDS (CCDS2769.1). Alignment information content per protein-coding sequence (TRNP1 and 133
controls) was quantified as the average total branch length reduction across positions as a result of
gaps using the following formula:

where i to p is alignment position, J; is the total branch length at position i, A; is the total branch
length of the full 30 species tree. All branch lengths were taken from the pruned mammalian tree from
Bininda-Emonds et al., 2007. This information per protein can be found in Supplementary file 1f,
column AlninfoContent.

Evolutionary sequence analysis
For all evolutionary analyses, the pruned mammalian tree from Bininda-Emonds et al., 2007, was
provided to the respective program.

Estimation of the total tree length for dS and dN/dS

Program codeml from PAML software (Yang, 1997) (version 4.8) was used to obtain the total tree
length for dS and dN. dIN/dS was calculated as the ratio between the two parameters. Branch free-
ratio model was ran on TRNP1 and 133 control protein-coding sequences using the following settings
seqtype = 1, CodonFreq = 2, clock = 0, aaDist = 0, model = 1. We required the log(dS) tree length to
be <3x SD away from the average, leading to the exclusion of one protein CCDS34575.1, resulting in
a set containing 132 control sequence alignments and TRNP1.
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Inferring correlated evolution using Coevol

Coevol (Lartillot and Poujol, 2011) (version 1.4) was utilized to infer the covariance between TRNP1
and control protein evolutionary rate w with three morphological traits (brain size, Gl, and body mass)
across species (Supplementary file 1c). Coevol is a Bayesian phylogenetic approach that jointly
models substitution rates and continuous trait changes as a multivariate Brownian motion, yielding an
estimate of the correlation structure between these variables, while reconstructing divergence times
and ancestral traits. Simultaneous parameter estimation within the same framework helps avoiding
error propagation.

For each model, the MCMC was run three times for at least 10,000 cycles, using the first 1000
as burn-in. For TRNP1 and 124 control proteins all parameters have a relative difference <0.3 and
effective size >50, indicating good convergence, 8 control proteins did not reach convergence and
were thereby excluded from further analyses. We report the average posterior probabilities (pp), the
average marginal and partial correlations of the full model (Supplementary file 1e) and the separate
models where including only either one of the three traits (Supplementary file 1e). The PP for a nega-
tive correlation are given by 1 — pp. These were back-calculated to make them directly comparable,
independently of the correlation direction, that is, higher pp means more statistical support for the
respective correlation.

Identification of sites under positive selection

Program codeml from PAML software (Yang, 1997) (version 4.8) was used to infer whether a significant
proportion of TRNP1 protein sites evolve under positive selection across the phylogeny of 45 species,
setting seqtype = 1, CodonFreq = 2, clock = 0, aaDist = 0, model = 0. Site models M8 (NSsites =
8) and M7 (NSsites = 7) were compared (Yang et al., 2000), that allow w to vary among sites across
the phylogenetic tree, but not between branches. M7 and M8 are nested with M8 allowing for sites
under positive selection with ws. LRT with 2 degrees of freedom was used to compare these models.
Naive empirical Bayes (NEB) analysis was used to identify the specific sites under positive selection
(Pr(w > 1)>0.95).

Proliferation assay

Plasmid construction

The five TRNP1 orthologous sequences containing the restriction sites BamHI and Xhol were synthe-
sized by GeneScript. All plasmids for expression were first cloned into a pENTR1a gateway plasmid
described in Stahl et al., 2013, and then into a Gateway (Invitrogen) form of pCAG-GFP (kind gift of
Paolo Malatesta). The gateway LR-reaction system was used to then sub-clone the different TRNP1
orthologues into the pCAG destination vectors.

Primary cerebral cortex transfection

Primary cerebral cortex cultures were established as outlined under experimental model and subject
details. Plasmids were transfected with Lipofectamine 2000 (Life Technologies) according to the
manufacturer’s instruction 2 hr after seeding the cells onto PDL-coated coverslips. One day later cells
were washed with phosphate buffered saline (PBS) and then fixed in 4% paraformaldehyde (PFA) in
PBS and processed for immunostaining.

Immunostaining

Cells plated on PDL-coated glass coverslips were blocked with 2% BSA, 0.5% Triton-X (in PBS) for
1 hr prior to immunostaining. Primary antibodies (chicken alpha-GFP, Aves Labs: GFP-1010 and
rabbit alpha-Kié7, abcam: ab92742) were applied in blocking solution overnight at 4°C. Fluores-
cent secondary antibodies were applied in blocking solution for 1 hr at room temperature. DAPI
(4',6-diamidin-2-phenylindol, Sigma) was used to visualize nuclei. Stained cells were mounted in Aqua
Polymount (Polysciences). All secondary antibodies were purchased from Life Technologies. Repre-
sentative high-quality images were taken using an Olympus FV1000 confocal laser-scanning micro-
scope using 20x/0.85 NA water immersion objective. Images used for quantification were taken using
an epifluorescence microscope (Zeiss, Axio ImagerM2) equipped with a 20x/0.8 NA and 63x/1.25 NA
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oil immersion objectives. Postimage processing with regard to brightness and contrast was carried out
where appropriate to improve visualization, in a pairwise manner.

Proliferation rate calculation using logistic regression

The proportion of successfully transfected cells that proliferate under each condition (Ki67-positive/
GFP-positive) was modeled using logistic regression (R-package stats (version 4.0.3), glm function)
with logit link function logir(p) = log(lpfp), for 0<p<1, where p is the probability of success. The abso-
lute number of GFP-positive cells were added as weights. Model selection was done using LRT within
ANOVA function from stats. Adding the donor mouse as a batch improved the models (Supplemen-
tary file 2a).

To back-calculate the absolute proliferation probability (i.e., rate) under each condition, intercept
of the respective model was set to zero and the inverse logit function lfr/:—gl‘x‘ was used, where i indi-
cates condition (Supplementary file 2b). Two-sided multiple comparisons of means between the
conditions of interest were performed using glht function (Tukey test, user-defined contrasts) from R
package multcomp (version 1.4-13) (Supplementary file 2c).

Phylogenetic modeling of proliferation rates using generalized least squares
The association between the induced proliferation rates for each TRNP1 orthologue and the brain
size or Gl of the respective species was analysed using generalized least squares (R-package nlme,
version 3.1-143), while correcting for the expected correlation structure due to phylogenetic relation
between the species. The expected correlation matrix for the continuous trait was generated using a
Brownian motion (Felsenstein, 1985; Martins and Hansen, 1997) (ape [version 5.4], using function
corBrownian). The full model was compared to a null model using the LRT. Residual R? values were
calculated using R2.resid function from R package RR2 (version 1.0.2).

Massively parallel reporter assay
MPRA library design

A total of 351 potential TRNP1 CRE sequences were identified as outlined before. Based on these,
the MPRA oligos were designed as 94mers, where larger sequences were covered by sliding window
by 40 bases, resulting in 4950 oligonucleotide sequences, that are flanked by upstream and down-
stream priming sites and Kpnl/Xbal restriction cut sites as in the original publication (Melnikov et al.,
2012). Barcode tag sequences were designed so that they contain all four nucleotides at least once,
do not contain stretches of four identical nucleotides, do not contain microRNA seed sequences
(retrieved from microRNA Bioconductor R package, version 1.28.0), and do not contain restriction cut
site sequences for Kpnl nor Xbal. The full library of designed oligonucleotides can be found on GitHub
(see Data availability).

MPRA library construction

We modified the original MPRA protocol (Melnikov et al., 2012) by using a lentiviral delivery system
as previously described (Inoue et al., 2017), introducing GFP instead of nanoluciferase and changing
the sequencing library preparation strategy. In brief, oligonucleotide sequences (Custom Array) were
amplified using emulsion PCR (Micellula Kit, roboklon) and introduced into the pMPRA plasmid as
described previously. The nanoluciferase sequence used in the original publication was replaced
by EGFP using Gibson cloning and subsequent insertion into the enhancer library using restriction
enzyme digest as in the original publication. Using SFil the assembled library was transferred into a
suitable lentiviral vector (pMPRAlenti1, Addgene #61600).

Primer sequences and plasmids used in the MPRA can be found in the analysis GitHub (see Data
availability). To ensure maximum library complexity, transformations that involved the CRE library were
performed using electroporation (NEB 10-beta electrocompetent Escherichia coli), in all other cloning
steps chemically competent E. coli (NEB 5-alpha) were used.

Lentiviral particles were produced according to standard methods in HEK 293T cells (Dull et al.,
1998). The MPRA library was co-transfected with third generation lentiviral plasmids (pMDLg/pRRE,
pRSV-Rev, pMD2.G; Addgene #12251, #12253, #12259) using Lipofectamine 3000. The lentiviral
particle containing supernatant was harvested 48 hr post transfection and filtered using 0.45 um PES
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syringe filters. Viral titer was determined by infecting N2A cells (ATCC CCL-131) and counting GFP-
positive cells. To this end, N2A cells were infected with a 50/50 volume ratio of viral supernatant to cell
suspension with addition of 8 pg/mL Polybrene. Cells were exposed to the lentiviral particles for 24 hr
until medium was exchanged. Selection was performed using blasticidin starting 48 hr after infection.

MPRA lentiviral transduction

The transduction of the MPRA library was performed in triplicates on two H. sapiens and one M.
fascicularis NPC lines generated as described previously (Geuder et al., 2021). 2.5 x 10° NPCs per
line and replicate were dissociated, dissolved in 500 pL cell culture medium containing 8 pg/mL Poly-
brene and incubated with virus at MOI 12.7 for 1 hr at 37°C in suspension (Nakai et al., 2018). There-
after, cells were seeded on Geltrex and cultured as described above. Virus containing medium was
replaced the next day and cells were cultured for additional 24 hr. Cells were collected, lysed in 100
pL TRI reagent, and frozen at -80°C.

MPRA sequencing library generation

As input control for RNA expression, DNA amplicon libraries were constructed using 100-500 pg
plasmid DNA. Library preparation was performed in two successive PCRs. A first PCR introduced the 5
transposase mosaic end using overhang primers, this was used in the second PCR (Index PCR) to add
a library-specific index sequence and lllumina Flow Cell adapters. The Adapter PCR was performed in
triplicates using DreamTaq polymerase (Thermo Fisher Scientific). Subsequently 1-5 ng of the Adapter
PCR product were subjected to the Index PCR using Q5 polymerase.

Total RNA from NPCs was extracted using the Direct-zol RNA Microprep Kit (Zymo Research). Five
hundred ng of RNA were subjected to reverse transcription using Maxima H Minus RT (Thermo Fisher
Scientific) with oligo-dT primers. Fifty ng of cDNA were used for library preparation and processed as
described for plasmid DNA.

Plasmid and cDNA libraries were pooled and quality was evaluated using capillary gel electropho-
resis (Agilent Bioanalyzer 2100). Sequencing was performed on an lllumina HiSeq 1500 instrument
using a single-index, 50 bp, paired-end protocol.

MPRA data processing and analysis

MPRA reads were demultiplexed with deML (Renaud et al., 2015) using i5 and i7 adapter indices
from lllumina. Next, we removed barcodes with low sequence quality, requiring a minimum Phred
quality score of 10 for all bases of the barcode (zUMs, fdfilter.pl script; Parekh et al., 2018). Further-
more, we removed reads that had mismatches to the constant region (the first 20 bases of the GFP
sequence TCTAGAGTCGCGGCCTTACT). The remaining reads that matched one of the known CRE-
tile barcodes were tallied up resulting in a count table. Next, we filtered out CRE tiles that had been
detected in only one of the three input plasmid library replicates (4202/4950). Counts per million were
calculated per CRE tile per library (median counts: ~900k range: 590-1050k). Macaque replicate 3 was
excluded due to its unusually low correlation with the other samples (Pearson’s r). The final regulatory
activity for each CRE tile per cell line was calculated as:

' median(CPM,),’ U]

where a is regulatory activity, i indicates CRE tile, and p is the input plasmid library. Median was calcu-
lated across the replicates from each cell line.

Given that each tile was overlapping with two other tiles upstream and two downstream, we calcu-
lated the total regulatory activity per CRE region in a coverage-sensitive manner, that is, for each posi-
tion in the original sequence, mean per-bp-activity across the detected tiles covering it was calculated.
The final CRE region activity is the sum across all base positions.

k
a=> 1% @

where a, is regulatory activity of CRE region r, b = 1,....k is the base position of region r, i, ...,n are tiles
overlapping the position b, a; is tile activity from Equation 1 and |;is tile length. CRE activity and brain
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phenotypes were associated with one another using PGLS analysis (see above). The number of species
varied for each phenotype-CRE pair (brain size: min. 37 for exon 1, max. 48 for intron and downstream
regions; Gl: min. 32 for exon2, max. 37 for intron), therefore the activity of each of the seven CRE
regions was used separately to predict either Gl or brain size of the respective species.

TF analysis

RNA-seq library generation

RNA-seq was performed using the prime-seq method (Janjic et al., 2022). The full prime-seq protocol
including primer sequences can be found at protocols.io (https://www.protocols.io/view/prime-seq-
s9vehé6b). Here, we used 10 ng of the isolated RNA from the MPRA experiment and subjected it to
the prime-seq protocol. Sequencing was performed on an lllumina HiSeq 1500 instrument with the
following setup: read 1 16 bases, read 2 50 bases, and i7 index read 8 bases.

RNA-seq data processing

Bulk RNA-seq data was generated from the same nine samples (three cell lines, three biological repli-
cates each) that were assayed in the MPRA. Raw read fastq files were pre-processed using zUMls
(version 2.4.5b) (Parekh et al., 2018) together with STAR (version STAR_2.6.1¢c) (Dobin et al., 2013)
to generate expression count tables for barcoded UMI data. Reads were mapped to human refer-
ence genome (hg38, Ensembl annotation GRCh38.84). Further filtering was applied keeping genes
that were detected in at least 7/9 samples and had on average more than 7 counts, resulting in
17,306 genes. For further analysis, we used normalized and variance stabilized expression estimates
as provided by DESeq2 (Love et al., 2014), using a model ~0+ clone. Differential expression testing
between clone pairs was carried out using Benjamini and Hochberg-corrected Wald test as imple-
mented in DESeq2.

TFBS motif analysis on the intron CRE sequence

TF position frequency matrices were retrieved from JASPAR CORE 2020 (Fornes et al., 2020),
including only non-redundant vertebrate motifs (746 in total). These were filtered for the expression
in our NPC RNA-seq data, leaving 392 TFs with 462 motifs in total.

A hidden Markov model-based program Cluster-Buster (Frith et al., 2003) (compiled on 13 June
2019) was used to infer the enriched TF binding motifs on the intron sequence. Firstly, the auxiliary
program Cluster-Trainer was used to find the optimal gap parameter between motifs of the same
cluster and to obtain weights for each TF based on their motif abundance per kb across catharrine
intron CREs from 10 species with available Gl measurements. Weights for each motif suggested by
Cluster-Trainer were supplied to Cluster-Buster that we used to find clusters of regulatory binding sites
and to infer the enrichment score for each motif on each intron sequence. The program was run with
the following parameters: -g3 —-c5 -m3.

To identify the most likely regulators of TRNP1 that bind to its intron sequence and might influence
the evolution of gyrification, we filtered for the motifs that were most abundant across the intron
sequences (Cluster-Trainer weights >1). These motifs were distinct from one another (mean pairwise
distance 0.72). Gene set enrichment analysis contrasting the TFs with the highest binding potential
with the other expressed TFs was conducted using the Bioconductor package topGO (Alexa, 2009)
(version 2.40.0) (Supplementary file 3), setting the following parameters: ontology='BP’, nodeSize
= 20, algorithm = ‘elim’, statistic = ‘fisher’. PGLS model was applied as previously described, using
Cluster-Buster binding scores across catharrine intron CRE sequences as predictors and predicting
either intron activity or Gl from the respective species. The relevance of the three TFs that were associ-
ated with intron activity was then tested using an additive model and comparing the model likelihoods
with reduced models where either of these were dropped.

Retrieving public data
Annotations and coordinates of enhancers showing gained activity in humans based on H3K27ac and
H3K4me2 histone marks were downloaded from GSE63648 (Reilly et al., 2015) as bed files from the
section Supplementary files.
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CTCF ChiP-seq data from human neural progenitor cells (line H9) was retrieved from ENCODE
(Encode Project Consortium, 2012) (doi:10.17989/ENCSR125NBL). All samples were consistent
regarding TRNP1 CTCF ChlIP-seq landscape. We depict read distribution using BigWig file of sample
ENCFF896TQG.

Human Hi-C data (Won et al., 2016) on TAD positions in germinal zone at week 8 was retrieved as
a coordinate file in bed format using GEO accession GSE77565.

Quantification and statistical analysis

Data visualizations and statistical analysis was performed using R (version 4.0) (R Development Core
Team, 2019). Details of the statistical tests performed in this study can be found in the main text as
well as the Materials and methods section and Supplementary files 1-3. For display items all relevant
parameters like sample size (n), type of statistical test, significance thresholds, degrees of freedom, as
well as standard deviations can be found in the figure legends.
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Materials availability
Plasmids and cell lines used in this work will be available upon request.
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Kliesmete Z, Wange 2021 RNA-seq of two human https://www.ebi.ac.  ArrayExpress, E-MTAB-9951
LE, Vieth B, Esgleas and one cynomologous uk/arrayexpress/

M, Radmer J, NPC line to assay activity ~ experiments/E-

Hilsmann M, Geuder of DNAse1 hypersensitive  MTAB-9951/

J, Richter D, Ohnuki sites in the proximity of the

M, Gétz M, Hellmann Trmp1 gene

I, Enard W

Kliesmete Z, Wange 2021 MPRA of two human and  https://www.ebi.ac. ~ ArrayExpress, E-MTAB-9952
LE, Vieth B, Esgleas one cynomologous NPC  uk/arrayexpress/

M, Radmer J, line to assay activity of experiments/E-

Hilsmann M, Geuder DNAse1 hypersensitive MTAB-9952/

J, Richter D, Ohnuki sites in the proximity of the

M, Gétz M, Hellmann Trnp1 gene

I, Enard W

Kliesmete Z, 2021 Homo sapiens TMF- https://www.ncbi. NCBI Nucleotide,
Wange LE, Vieth B, regulated nuclear protein  nlm.nih.gov/nuccore/ MW373535
Esgleas M, Radmer 1 (TRNP1) gene, complete  MW373535

J, Huelsmann M, cds

Geuder J, Richter D,

Ohnuki M, Hellmann

|, Enard W

Kliesmete Z, 2021 Chlorocebus aethiops TMF- https://www.ncbi. NCBI Nucleotide,
Wange LE, Vieth B, regulated nuclear protein  nlm.nih.gov/nuccore/ MW373536
Esgleas M, Radmer 1 (TRNP1) gene, complete  MW373536

J, Huelsmann M, cds

Geuder J, Richter D,

Ohnuki M, Hellmann

|, Enard W

Kliesmete Z, 2021 Cercopithecus mitis TMF-  https://www.ncbi. NCBI Nucleotide,
Wange LE, Vieth B, regulated nuclear protein 1 nlm.nih.gov/nuccore/ MW373537
Esgleas M, Radmer (TRNP1) gene, partial cds ~ MW373537

J, Huelsmann M,

Geuder J, Richter D,

Ohnuki M, Goetz M,

Hellmann I, Enard W

Kliesmete Z, 2021 Papio anubis TMF- https://www.ncbi. NCBI Nucleotide,
Wange LE, Vieth B, regulated nuclear protein  nlm.nih.gov/nuccore/ MW373538
Esgleas M, Radmer 1 (TRNP1) gene, complete  MW373538

J, Huelsmann M, cds

Geuder J, Richter D,

Ohnuki M, Hellmann

|, Enard W

Kliesmete Z, 2021 Mandrillus sphinx TMF- https://www.ncbi. NCBI Nucleotide,
Wange LE, Vieth B, regulated nuclear protein  nlm.nih.gov/nuccore/ MW373539
Esgleas M, Radmer 1 (TRNP1) gene, complete  MW373539

J, Huelsmann M, cds

Geuder J, Richter D,

Ohnuki M, Goetz M,

Hellmann |, Enard W

Kliesmete Z, 2021 Macaca leonina TMF- https://www.ncbi. NCBI Nucleotide,
Wange LE, Vieth B, regulated nuclear protein 1 nlm.nih.gov/nuccore/ MW373540
Esgleas M, Radmer (TRNP1) gene, partial cds ~ MW373540

J, Huelsmann M,

Geuder J, Richter D,

Ohnuki M, Goetz M,

Hellmann I, Enard W

Kliesmete Z, 2022 Mustela putorius TMF- https://www.uniprot. ~ UniProt, OP484343

Wange LE, Vieth B,
Esgleas M, Radmer
J, Huelsmann M,
Geuder J, Richter D,
Ohnuki M, Goetz M,
Hellmann |, Enard w

regulated nuclear protein 1
(TRNP1) gene, partial cds
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Author(s) Year Dataset title Dataset URL Database and Identifier

Vierstra J, Rynes 2014 Mouse regulatory DNA https://www.ncbi.
E, Sandstrom R, landscapes reveal global ~ nlm.nih.gov/geo/
Thurman RE, Zhang principles of cis-regulatory  query/acc.cgi?acc=
M, Canfield T, evolution GSE51336

Sabo PJ, Byron R,

Hansen RS, Johnson

AK, Vong S, Lee

K, Bates D, Neri F,

Diegel M, Giste E,

Haugen E, Dunn D,

Humbert R, Wilken

MS, Josefowicz S,

Samstein R, Chang

K, Levassuer D,

Disteche C, De

Bruijn M, Rey TA,

Skoultchi A, Rudensky

A, Orkin SH,

Papayannopoulou

T, Treuting P, Selleri

L, Kaul R, Bender

MA, Groudine M,

Stamatoyannopoulos

JA

NCBI Gene Expression
Omnibus, GSE51336

Stamatoyannopoulos 2014 Conservation of mouse- https://www.ncbi.

JA human trans-regulatory nlm.nih.gov/geo/
circuitry despite high cis-  query/acc.cgi?acc=
regulatory divergence GSE51341

NCBI Gene Expression
Omnibus, GSE51341
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(species) or resource  Designation Source or reference Identifiers Additional information

Gene (45 mammal See Supplementary

species) TRNP1 See Supplementary file 1a file 1a See Supplementary file 1a

Strain, strain NEB 10-beta New England Biolabs; Rowley, MA, Cat# C3020K

background (E. coli) United States Electrocompetent E. coli

Strain, strain NEB 5-alpha High Efficiency New England Biolabs; Rowley, MA, Cat# C29871

background (E. coli) United States Chemically competent E. coli

Cell line (Macaca Cynomolgus Macaque NPC This paper, based on Geuder et al.,  N15_39B2

fascicularis) 2021 Macaca fascicularis neural progenitor cells
Cell line (Mus N2A ATCC; Manassas, VA, CCL-131

musculus) United States

Cell line (Homo HEK293T ATCC; Manassas, VA, CRL-11268

sapiens) United States

Cell line (Homo Human NPC 1 This paper, based on N4_29B5

sapiens, female) Geuder et al., 2021 Human neural progenitor cells

Cell line (Homo Human NPC 2 This paper, based on N4_12 C2

sapiens, male) Geuder et al., 2021 Human neural progenitor cells

Biological sample (Mus Primary murine cerebral cortex This paper, based on primary

musculus) cells (NSC) Esgleas et al., 2020 See Methods

Sequence-based Custom Array; Redmond, WA, See https://github.com/Hellmann-Lab/Co-
reagent MPRA oligo Library Trnp1 CRE  United States custo evolution-TRNP1-and-GlI

Transfected construct ~ MPRA Library in lentiviral Lentiviral particles with pMPRA-lenti and TRNP1
(multiple species) particles This paper custom CRE library

Abcam; Waltham, MA,

Cat# ab92742, Clone

Antibody rabbit anti Ki6é7 (monoclonal)  United States EPR3610 1:100
Aves Labs; Davis, CA, RRID: AB_2307313, Cat#
Antibody chicken anti-GFP (polyclonal)  United States GFP-1010, Polyclonal 1:500

Recombinant DNA
reagent

pCAG-GFP_Gateway plasmid

Dr. Paclo Malatesta

NA

Kind gift of Dr. Paolo Malatesta

Recombinant DNA
reagent

pMDLg/pRRE plasmid

Addgene; Waterton, MA,
United States

Addgene 12251

Recombinant DNA
reagent

PRSV-Rev plasmid

Addgene; Waterton, MA,
United States

Addgene 12253

Recombinant DNA
reagent

pMD2.G plasmid

Addgene; Waterton, MA,
United States

Addgene 12259

Recombinant DNA pMPRAlenti1 plasmid Addgene; Waterton, MA, Addgene 61600

reagent United States Kind gift of Dr. Davide Cacchiarelli
Recombinant DNA PNL3.1[Nluc/minP] plasmid, Sfil Dr. Davide Cacchiarelli NA

reagent restriction site mutated Kind gift of Dr. Davide Cacchiarelli
Recombinant DNA PMPRA1 plasmid Addgene; Waterton, MA, Addgene 49349

reagent United States Kind gift of Dr. Davide Cacchiarelli
Recombinant DNA pENTR1a plasmid Stahl et al., 2013 pENTR1a

reagent

Peptide, recombinant
protein

hEGF

Miltenyi Biotec; Bergisch Gladbach,
Germany

Cat#130-093-825

Peptide, recombinant
protein

B-27 Supplement

Thermo Fisher Scientific;
Waltham, MA,
United States

Cat#12587-010

Peptide, recombinant
protein

N2 Supplement

Thermo Fisher Scientific;
Waltham, MA,
United States

Cat#17502048
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Source or reference
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Identifiers Additional information

Peptide, recombinant
protein

L-Ascorbic acid 2-phosphate

Sigma/Merck; St. Louis, MO,
United States

Cat#A8960-5G

Peptide, recombinant  poly-D-lysine Sigma/Merck; St. Louis, MO, Cat# A-003-E
protein United States
Peptide, recombinant  bFGF PeproTech, Cranbury, New Jersey, Cat#100-18B

protein

United States

Commercial assay or kit

GenomiPhi V2 DNA-
Amplification Kit

Sigma/Merck; St. Louis, MO,
United States

Cat# GE25-6600-32

Commercial assay or kit

Gateway LR Clonase Enzyme
mix

Thermo Fisher Scientific; Waltham,
MA,
United States

Cat# 11791019

Commercial assay or kit

Lipofectamine 2000

Thermo Fisher Scientific; Waltham,
MA, United States

Cat# 11668019

Commercial assay or kit

Lipofectamine 3000

Thermo Fisher Scientific; Waltham,
MA, United States

Cat# 13000015

Commercial assay or kit

Micellula DNA Emulsion &
Purification Kit

Roboklon; Berlin, Germany

Cat# E3600-01

Commercial assay or kit

Agilent High Sensitivity DNA
Kit

Agilent; Santa Clara, CA,
United States

Cat# 5067-4626

Commercial assay or kit

Nextera XT DNA Library
Preparation Kit

lllumina; San Diego, CA,
United States

Cat# FC-131-1024

Chemical compound,
drug

GlutaMax-I

Thermo Fisher Scientific;
Waltham, MA, United States

Cat# 35050038

Chemical compound,
drug

Blasticidin S HCI

Thermo Fisher Scientific;
Waltham, MA, United States

Cat# R21001

Chemical compound,
drug

DMEM-GlutaMAX

Thermo Fisher Scientific;
Waltham, MA, United States

Cat# 10566016

Chemical compound,  Polybrene Sigma/Merck; St. Louis, MO, Cat# TR-1003-G
drug United States
Chemical compound, TRl reagent Sigma/Merck; St. Louis, MO, Cat# T9424-200ML
drug United States
Chemical compound, ~ Geltrex Thermo Fisher Scientific; Cat# A1413302
drug Waltham, MA, United States
Sequence-based Trnp1 CRE resequencing Integrated DNA Technologies, custom
reagent primers Coralville, 10, See https://github.com/Hellmann-Lab/Co-
United States evolution-TRNP1-and-GlI
Sequence-based Trnp1 coding resequencing Integrated DNA Technologies, custom
reagent forward primer Coralville, 10,
United States GGGAGGAGTAAACACGAGCC
Sequence-based Trnp1 coding resequencing Integrated DNA Technologies, custom
reagent reverse primer Coralville, 10,
United States AGCCAGGTCATTCACAGTGG
Hotspot version 4.0.0 John et al., 2011, http://www. NA
Software, algorithm uwencode.org/software/hotspot
Software, algorithm BLAT version 35x1 Kent, 2002, NA
https://github.com/djhshih/blat
Software, algorithm PriMux, compiled on 20 July ~ Hysom et al., 2012, https:/ NA
2014 sourceforge.net/projects/primux/
Software, algorithm deML version 1.1.3 Renaud et al., 2015, NA
https://github.com/grenaud/deml
Software, algorithm cutadapt version 1.6 Martin, 2011, NA

https://anaconda.org/bioconda/
cutadapt
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Reagent type

(species) or resource  Designation Source or reference Identifiers Additional information

Software, algorithm Trinity version 2.0.6 Grabherr et al., 2011, https://github. NA
com/trinityrnaseqg/trinityrnaseq/
releases

Software, algorithm rBLAST version 0.99.2 https://github.com/mhahsler/rBLAST NA

Software, algorithm PRANK version 150803 Léytynoja, 2021, NA
http://wasabiapp.org/software/prank/

Software, algorithm PAML version 4.8 Yang, 1997, NA
http://abacus.gene.ucl.ac.uk/
software/paml.html

Software, algorithm Coevol version 1.4 Lartillot and Poujol, 2011, https:// NA
megasun.bch.umontreal.ca/People/
lartillot/www/downloadcoevol.html

Software, algorithm NextGenMap (NGM) version  Sedlazeck et al., 2013, http://cibiv. ~ NA

0.0.1 github.io/NextGenMap/

Software, algorithm Primer Blast Ye et al., 2012 NA

Software, algorithm zUMs version 2.4.5b Parekh et al., 2018, NA
https://github.com/sdparekh/zUMIs

Software, algorithm STAR version STAR_2.6.1 ¢ Dobin et al., 2013, NA
https://github.com/alexdobin/STAR

Software, algorithm DESeq2 version 1.26.0 Love et al., 2014, Bioconductor NA

Software, algorithm Cluster Buster, compiled on

Frith et al., 2003, http://cagt.bu.edu/

NA

Jun 132019 page/ClusterBuster_download

Software, algorithm R version 3.6/4 https://www.r-project.org/ NA

Software, algorithm nlme version 3.1-143 https://cran.r-project.org/web/ NA
packages/nlme/index.html

Software, algorithm topGO version 2.40.0 Alexa, 2009, https://bioconductor. NA
org/packages/release/bioc/html/
topGO.html

Software, algorithm ape version 5.4 https://cran.r-project.org/web/ NA
packages/ape/index.html

Software, algorithm multcomp version 1.4-13 https://cran.r-project.org/web/ NA
packages/multcomp/index.html

Software, algorithm RR2 version 1.0.2 https://cran.r-project.org/web/ NA

packages/rr2/index.html
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3 Discussion

There has been a long standing interest for biologists from different fields to answer questions
related to the role of species-specific elements in generating species-specific functional
novelties, deriving the function and importance of tissue-specific and pleiotropic elements for
complex multicellular organisms and connecting genetic changes to molecular or organismal
phenotypes. With the technological advances made in the last decades and the large amounts
of recently available data, we can now revisit these questions on a genome-wide scale in a
less biased manner than ever before. Genome-wide assays on different functional levels can
be combined to get a more complete picture of the patterns of genome evolution, not limited
to a few selected genetic regions or model organisms.

However, analysing such data also proposes challenges of its own. Firstly, the validity and
the amount of error made using recent technologies need to be assessed. Secondly, workflows
for unbiased cross-species comparisons using the newly emerging data types need to be
established. Thirdly, the information from different modalities needs to be incorporated
in a meaningful, informative way. Finally, evolutionary frameworks have to be selected to
accommodate the types of available omics data. In this thesis, I tackled these challenges and
addressed case-specific questions on the evolution and importance of regulatory pleiotropy,

newly emerging elements and the association between genetic and phenotypic change.



160 3. Discussion

3.1 Error rate estimation in RN A-seq assays
using cross-species genetic variation

When interpreting data from high-throughput assays like (single-cell) RNA-seq that simul-
taneously yield information on expression from multiple cells/samples and conditions, we
generally assume that the counted RNA molecules come from the cell or sample they are
assigned to. However, as any method, RNA-seq is not perfect. Errors affecting the precision
in the measurements can come from the process of amplification of the cDNA molecules
during library generation and in droplet-based methods, such as 10x Chromium, also from
freely swimming RNA molecules present in the sample that arise through damaged cell bursts
209,210 " 1f these errors are random across the different cells/samples and RNA molecules,
this should lead to shifts in the detected transcripts towards the mean. Random noise can
decrease the power to detect differentially expressed genes between conditions or marker
genes of certain cell types?!':212. In addition to random errors, some RNA molecules might
be more likely to swap during the amplification process, potentially generating non-uniformly
distributed presence of chimeric molecules?'32!4, Such non-random errors across genes or
cells can lead to biases in the expression profiles.

To account for unequal amplification of sequences, adding a random RNA molecule-specific
barcode, called unique molecular identifier (UMI), during cDNA generation serves as a
molecular stamp21%:216:217  This allows to trace back the original RNA molecule and thereby
avoid counting the same molecule multiple times. However, it does not correct for the RNA
molecules that are swapped during the amplification or that get assigned a cellular barcode

although they come from extracellular sources. Available approaches to quantify background

218 214

noise rely on marker gene expression“*®, BC-UMI-gene complexity “** or RNA quantification
in empty droplets209:210 for droplet-based methods. We used a cross-species setup 219210 that
can offer further insight by combining samples from different closely related species: Based
on the sequence of the transcript and (known) substitutions, the (sub-)species and thereby
the sample origin of the RNA molecule can be identified. If it mismatches the sample origin
of the majority of the reads carrying the same barcode, this molecule likely did not originally

come from the same sample/cell.



3.2 Regulatory code as revealed through stratification of
tissue-specificity 161

Using these principles, we quantified the error made across samples generated using droplet-
based RNA-seq and benchmarked methods that aim to remove background noise. Hence,
genetic divergence is not only informative for understanding selective forces acting on genetic
elements and thereby inferring functional importance, but it can also help in answering more
technical questions regarding the reliability of the recent techniques we use for measuring
different modalities. Using a similar approach, the error present in other genome-wide
assays such as (single-cell) ATAC-seq could be further estimated in the future, including the

benchmarking of recently emerging background removal methods?2°.

3.2 Regulatory code as revealed through strat-
ification of tissue-specificity

As a part of this thesis, I systematically studied the effects of pleiotropy on CRE conservation
in primates across multiple functional levels. Contrary to genes, pleiotropic CREs show lower
sequence conservation than tissue-specific CREs. Pleiotropic degree (PD) also goes along
with increasing CRE width and CpG island content. Noteworthy, by distinguishing between
types of di-nucleotide substitutions, we found that pleiotropic CREs show a decrease in CpG-
depleting and an increase in non-CpG-related and CpG-creating substitutions, suggesting an
underlying mechanism that facilitates constant di-nucleotide content of the sequences. A
comparison of CpG observed / expected ratio between orthologous CREs from human and
macaque validates that this property is indeed better conserved in the pleiotropic CREs. I
further investigated transcription factor binding site conservation between orthologous CREs
and found that the exact binding positions are also less conserved in pleiotropic CREs than
in any other PD group, including tissue-specific CREs. According to the Billboard model
184,185,188,221 ' \whether the required TFs bind a particular CRE a few tens of bases up- or
downstream within the CRE sequence might not make much of a difference in many cases, as
long as the TF repertoire is contained. Indeed, TFBS repertoire, measured as the cumulative
binding potential per motif across the different TFs, is highly conserved at the pleiotropic
CREs. This higher-level TFBS property also appears to induce highly conserved downstream

gene expression, most of which also show pleiotropic expression patterns across tissues.
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Pleiotropic CREs are enriched in GC-rich TF binding motifs belonging to the 'Stripe factor
class3?, that were experimentally shown to stabilize and prolong the binding of other TFs
and thereby CRE accessibility. The binding of these and similar TFs could be the key to
connect the different patterns we observe: CpG conservation facilitates conserved binding
of the accessibility-stabilizing TFs leading to conserved expression. The larger width of the
pleiotropic CREs assures the presence of sufficiently strong binding sites for the expressed
TFs across different cellular environments. The exact binding position does not matter, hence
the sequence conservation is relatively low 222,

At this point, we can speculate about the likely evolutionary mechanisms underlying the
observed patterns. Given the known features of CRE landscapes, the expected selection
coefficients associated with each individual binding site are, in average, not high. This
creates a fertile ground for compensatory evolution???, where a weakly deleterious loss
of a binding site due to drift might be compensated by fixation of one out of multiple
possible compensatory binding sites, each of which could lead to an equally good fitness
224 This facilitates a potential existance of multiple equally fit haplotypes. During gradual
species divergence, it is not unlikely that for many CREs, a different similarly fit haplotype
accidentally becomes the most frequent one. Experimental evidence supports such a scenario,
where orthologous CRE sequences from related species with diverged binding positions
but conserved binding repertoires lead to highly conserved downstream expression 225226,
When assessing a hybrid sequence containing half of each orthologous CRE, and thereby
both binding sites, it leads to over-expression. This is in agreement with the idea that the
total binding potential matters more than the exact position of individual sites. Such a
general mechanism would also explain how the seemingly lowly conserved CRE sequences
can achieve highly conserved expression patterns in the case of pleiotropic house-keeping
genes that are governed by particularly diverged CRE sequences. The existing theoretical
models simulating CRE evolution and turnover of TFBS support the notion that the drafted
mechanism is common 2936, Further simulations that incorporate the PD and our multi-level
characterization of primate CREs, including the downstream gene expression, would be an
informative further step to understand the within-CRE functional compensation.

The high evolutionary turnover of tissue-specific elements is another highly interesting
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aspect that could be further studied. Our and many other studies 198:226:37:202:48 haye found
hints towards potential between-CRE compensation across tissue-specific elements. In
order to understand to what extent a species- and tissue-specific CRE is compensated by
another CRE in another species or cellular context, we need to map and characterize the
CRE landscapes associated with a specific gene across multiple species and employ more
sophisticated models that build up on previous work 20227 By simultaneously considering
various aspects of higher and lower level functional similarity between CREs could help
identify functionally-orthologous CREs that might not necessarily be the sequence orthologues.
Also the quantification of CRE activity of each individual element of the regulatory landscape

is a helpful aspect to include in future statistical models?28.

3.3 The role of TE-derived elements in species-
specific rewiring of gene regulation

In the previous section, I discussed how compensatory evolution acting on CRE sequences
shapes the landscape of gene regulation. Compensatory evolution can also be relevant for
coping with the disruptions imposed by transposable elements (TEs)?2. There is an ongoing
and controversial discussion in the scientific community about the role of TE elements in
general, and LTR elements specifically, in rewiring gene expression networks in primates.

There are different views, some proposing that successful adaptation of the genome is highly
dependent on TE-derived sequences and the molecular novelties they induce 76:103:101,230,
Arguments supporting this possibility include the fact that the de novo inserted sequences
initially do not have a concrete, important role in gene regulatory networks. Therefore, these
might be more amenable to drift and positive selection to facilitate adaptations to changing
environments or to compensate for other slightly deleterious changes in the genome. Another,
more sceptical view mainly considers TE insertions as neutral or destabilizing events for the
genome and its evolution. While TE activity might lead to new transcripts in some cells,
it is not necessarily indicative of function. Even if the TE insertion in a few cases indeed
leads to changes in expression networks, it is merely to compensate for the inconveniences

that were introduced through the perturbations. Accidentally, the newly generated CRE or
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transcript might even be chosen over the original pathway, however this rewiring is more of
an obstacle rather than an innovation 229231,

Given the fitness landscapes observed in lower complexity organisms that are easier to ma-
nipulate in the lab, some truth probably lies in both of these views. The expected proportion
of the alleles that are immediately fixed due to positive selection is low”®. The considerable
expansion of TE elements in primates is likely a consequence of the small effective population
sizes that enable higher fixation of slightly-deleterious variants because of the large impact of
genetic drift. Still, fixation of slightly deleterious alleles can also lead to secondary fixations
that might in long term prove advantageous for the species. In addition, the estimates
that as much as 75% of our genome might actually have emerged as a result of TE activity
allows for the possibility that we still underestimate the contribution of TE sequences for
regulatory and gene coding sequences in a longer evolutionary run. Moreover, as discussed
in the previous chapter, the constraint on the exact genetic location or exact sequence in
the case of CREs appears to be rather low. This sets a perfect stage for the emergence of
potentially functional TE-derived CREs, particularly from LTR elements that carry TFBS.
I contributed to deciphering the evolutionary and functional importance of a human endoge-
nous retrovirus type-H (HERVH)-derived long non-coding RNA called Embryonic Stem Cell
Related Gene (ESRG). Its promoter, the whole exon 1 and a part of exon 2 are LTR7-derived
and contain binding sites for pluripotency factors such as OCT3/4. ESRG was identified

232,233,234 Provious

through its high and specific expression in human ESCs and iPSCs
studies, based on knock-downs of ESRG, had concluded that its expression is required for
the maintenance of pluripotency and self-renewal?32-233, In this study, ESRG contribution
to pluripotency was investigated using knock-outs combined with differentiation assays and
evolutionary approaches. None of the previously suggested molecular phenotypes could be
experimentally captured using independent replicates of the complete ESRG locus deletion.
Still, it can be argumented that differences in experimental setups or the knock-out strategy
could affect the cell state to begin with23°. Here, evolutionary and population genetic ap-
proaches can be helpful to further investigate the functional relevance of an element beyond

relying on a specific cellular context. Like many TE-derived elements proposed to possess

clade- or species-specific function, ESRG is only present in few species - humans, bonobos
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and chimpanzees, but not in the other primates. This limits the analysis and thereby the
statistical power to frequency-based metrics and contrasting rates of substitutions to rates of
polymorphisms. Using the available large human-polymorphism database gnomAD %3¢, we
compared polymorphism frequencies and divergence between ESRG exons vs. introns and
to coding gene and other IncRNA sequences to detect signatures of selection. None of the
comparisons showed compelling evidence for selection, aligning with the lack of experimental
evidence for ESRG role in pluripotency networks. Moreover, although ESRG shows among
the 5% highest expression levels across all genes in human iPCSs, its high expression is not
present in the chimpanzee iPSCs, suggesting non-conserved expression patterns.

Although the functional relevance of ESRG is still being debated 23%237, this study exemplifies
the general importance of multiple functional validations, ideally by independent research
groups using independent experimental setups and the added value of evolutionary and
population genetic approaches. It also shows that the presence of TF binding sites and
high expression levels is not necessarily equivalent to function23'. Owverall, the extent to
which TE-derived species- or clade-specific elements are responsible for the emergence of
species-specific molecular networks and phenotypes is still unclear. Improved long read
sequencing that allows for improved mapping of these elements across different species, as
well as cellular assays and silencing technologies like CRISPR/Cas9 are aiding in rapid

progress to further clarify the roles of many of these elements.

3.4 The central task of studying genotype con-
tribution to phenotypes

The mammalian brain is arguably among the most interesting tissues to investigate using

comparative approaches, because it is linked to cognitive abilities and behavioural complexity

238 and because of its remarkable diversity. Particularly the outer layer called cerebral

cortex shows an extraordinary phenotypic diversity in size and shape across vertebrates?3?,

reaching its highest complexity on the mammalian branch where cortical folding has emerged
240,241 Also within mammals, brain size and folding show extensive variation, including

recurrent independent increases and decreases 242:243:244 " This natural variability can be used
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to investigate the genetic sources of this intricate phenotype24°.
TMF-regulated nuclear protein 1 (TRNP1) is known to be essential for cortical development

246

in model organisms like ferrets24® and mice 247248249 by controlling neural stem cell prolif-

250,251 Ttg knock-down as well as over-expression have clear phenotypic effects on

eration
the resulting cortical size and folding. The prior knowledge on the decisive role of TRNP1
in brain developmental processes puts TRNP1 among the prime candidates to study across
the mammalian phylogeny. Cross-species genotype-phenotype association studies allow to
investigate to what extent conclusions from experimental findings in few species can be
extended to a larger phylogeny by performing sequence, regulatory and cellular activity
analyses.

These types of analyses impose multiple challenges. To study protein-coding sequence co-
evolution with a trait!°”, high-quality coding sequences and evolutionarily most plausible
alignments need to be generated 2°2. Tt is also necessary to control for the potential confound-
ing effects emerging through differing effective population sizes between species®7:138  which
is essential for investigating traits like brain size that correlate with body size2%3. To get the
full sequence of TRNP1, we resequenced TRNPI1 of many primates. I chose control proteins
with similar turn-over rates and length, coming from genomic regions of good sequence
quality in all included species of the phylogeny. In all comparisons, I also included body
size as a control trait. Moreover, to establish functional evolutionary relevance, I quantified
TRNP1 cellular activity of six different orthologues in vivo at the relevant developmental
stage.

To investigate the evolution of regulatory activity, we need to identify orthologous CREs
and develop unbiased assays. We assayed the activity of orthologous CREs in cellular
trans-environments of humans and cynomolgus macaques in a cell type that is close to
the relevant in vivo cell type - neural progenitor cells (NPCs). The most recent assay for
regulatory activity at the time was MPRA 24, which is limited in length, therefore requiring
tiling of the sequences. The back-calculated total CRE activity is only an approximation
of the exact activity of the whole element. Another limitation of our approach is imposed
by the lack of full regulatory landscape from each species, thereby likely leading to missing

other TRNP1 CREs active in species for which we did not have accessibility or histone
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modification data. In this context, a helpful additional confirmation of the observed activity
patterns in our MPRA data is the fact that cellular TRNP1 expression levels differ between
NPCs of humans and macaques and across the brain organoids of humans and two other
primates in the expected direction?®?.

Combining these different approaches and lines of evidence, I found that the evolution of
TRNP1 coding sequences correlate with brain size and folding across mammalian phylogeny
strongly above the average protein association (top 5%), also reflected in a correlated change
of its cellular activity. Because TRNP1I is expressed in various proliferating cell types, it
is important that the association with body size is considerably lower than with brain,
indicating certain specificity in brain-related evolutionary change. In addition, I identified
one CRE located in the intron of TRNPI with correlated regulatory activity with brain

folding across primates. I also pinpoint candidate TFs, the binding of which might generate

the observed regulatory divergence. These findings strengthen the proposed evolutionary

TRNP1 CRE activity Brain size & Gyrification

)

role of TRNP1 for cortical evolution across mammals (Figure 3.1).
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There has been a long existing discussion on what type of genetic change is more central
for phenotypic evolution: Gene or regulatory evolution, where regulation is proposed to
have a larger total contribution due to less-constrained adaptation to different cellular and

temporal contexts 2. Among the reasons for lower flexibility in protein-coding evolution is
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the constrained functional 3D protein structure that can affect their folding, activity and
interactions with other proteins or DNA 255:256,257,258 \Whjile the total absolute contributions
of protein and regulatory evolution are still difficult to quantify and therefore up to debate,
it is clear that these are not necessarily mutually exclusive scenarios. Instead, if a certain
gene facilitates a certain phenotype, it is possible that the resulting protein’s activity as
well as the amount of the protein product are tuned, thereby presenting two sides of the
same coin. The study on TRNP1 represents such a case, where both the protein and the
regulatory activity facilitate the same phenotype. According to our findings, change in the
protein is correlated with brain phenotypes across a deeper phylogeny, i.e., larger time scales,
whereas the consistent co-variation for regulation was detected to be considerably stronger
within apes and Old world monkeys, i.e., shorter time scales. This is in agreement with
the expectations that regulatory turnover is much higher due to less unconstrained genomic
positions. The observed evolutionary flexibility of TRNP1 could be partially explained by
the high amount of intrinsically disordered regions (IDRs) in its sequence!!®. IDR-rich
proteins have been shown to lack a fixed or ordered 3D structure, thereby allowing for more
relaxed evolutionary modes and enabling positive selection to, e.g., facilitate interaction with
other proteins of the particular cellular environment259,260,261,262 " Eyrther improvement in
protein-coding sequence alignments, boosted by better genome and annotation qualities, will
allow comparisons of the less conserved parts of proteins. Combined with accumulation of
quantitative phenotype annotations, this could accelerate the identification of other genotypic

and phenotypic cross-species associations.
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The progress that we have made in the last decades in clarifying and mapping the functionality
of our genome is already immense. Still, there are several limitations that I encountered
in my attempts to quantify regulatory and gene evolution rates across primates and other
mammals and in connecting these to phenotypes, which require further improvements in the
future.

To have more high-throughput screens of protein sequence co-evolution with traits, more
sophisticated codon-aware alignment algorithms will be necessary. Algorithms like PRANK
252 are readily aware of the phylogeny when finding the optimal alignment of the protein-
coding sequences. However, this is after manually removing the intronic sequences by the
user. Further extension of the phylogenetic alignment frameworks boosted by expectation
maximization algorithms, Bayesian frameworks or machine learning could add the recognition
of potential exon-intron boundaries, where the known protein sequence and exon-intron
structure from some species and the known typical bases at these boundaries could be used to
automatically extract the orthologous protein-coding sequences from the orthologous DNA.
To my knowledge, the current implementation of evolutionary models that accommodate
different modes of evolution, such as Brownian Motion or Ornstein Uhlenbeck process
263,264 o not allow for multiple replicates per species. These frameworks could be extended
to replicated experiments and measurements in the future. As an example, for a more
quantitative detection of evolutionary modes of expression, the current developments in
high-throughput single-cell RNA sequencing are offering exciting possibilities to compare

orthologous cell type expression profiles across orthologous developmental stages between

species. Evolutionary longitudinal models that account for the non-independence that arises
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through the species and subject source of the cell will be essential to unbiasedly identify
diverged and conserved gene expression by appropriately utilizing the statistical power offered
by repeated measurements, while accounting for the phylogenetic relationships.

Finally, there is a lot of exciting work in the future to better understand CRE evolution. Since
regulatory sequence turnover does not appear to be a good predictor for the activity, focusing
on assays that measure TF binding or CRE activity turn-over might be more informative.
ATAC-STARR #1+265,266,267 ,roh0ses a more inclusive approach than a classic MPRA to
assay the regulatory activity of individual CREs from certain species and cellular contexts.
ATAC-STARR combines and alleviates two steps that have been part of a common workflow
during my thesis: 1) Analyse ATAC-seq data from a species and cell-type of interest, 2) Select
certain CRE sequences that will be assayed for their activity. ATAC-STARR uses enrichment
technique by transposase as in ATAC-seq, followed by cloning of the sequences into plasmids
containing a reporter gene to assay their activity. Hence, automatically, more accessible
peaks will be more present in the assay, requiring no prior selection of individual CREs. If a
sufficient number of cells is available from each species (and a sufficiently large budget for
sequencing), this might be the most unbiased CRE activity approach to date, as long as
orthologous cell types are available. Such data allows to characterize the genomic location,
sequence, TFBS repertoire and activity of whole regulatory landscapes. This combined
information could be further used to identify functionally-orthologous CREs, that are not
necessary sequence orthologues, using a combination of advanced clustering and, potentially,

deep learning approaches.
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