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Summary

The sequence contained in the 3.2 Gb long haploid stretches of our DNA has been registered

but we are still far from having decoded the information that it contains. Among the

approaches that facilitate a closer insight into the relevance of individual elements for existent

phenotypes is the comparative approach. It extends beyond focusing solely on one species,

instead exploiting the knowledge gained from investigating patterns of evolutionary change.

Evolutionary comparisons have an advantage over other techniques that rely on genetic

change, in that they inform on the types of changes that have evidently occurred in nature.

In this thesis, I bridge advances made in gathering genetic information and in generating

high-throughput functional assays in a cross-species context to answer fundamental questions

in evolutionary genomics.

To be able to rely on recently developed genome-wide functional assays like RNA-seq, we

should know the amount of error that these measurements contain. Using genetic variation

between species, I contribute to estimating the precision with which we measure expression.

We further evaluate and compare computational methods that are designed to remove this

noise, using our substitution-based error estimates as the ground truth.

Then, I study multiple aspects of gene and regulatory evolution by leveraging cross-species

data on DNA, expression, accessibility and the activity of regulatory and protein sequences.

An important current task in genomics is to improve our ability to read and interpret the

regulatory code that governs expression. Therefore, I study how constraint is reflected in a

range of functional properties of cis-regulatory elements (CREs), using their tissue-specificity

as a proxy for functional importance. Based on theoretical considerations and patterns seen

in the case of genes, pleiotropic CREs that are utilized in all or the majority of tissues

are expected to be under most constraint. This turns out to be true for the conservation
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patterns of transcription factor binding site repertoires, whereas the exact binding sites as

well as the underlying sequences show even lower conservation than that of tissue-specific

CREs. Considering the highly conserved accessibility of pleiotropic CREs and the conserved

downstream gene expression, these findings suggest pervasive compensatory evolution acting

within the sequences of pleiotropic CREs and, likely, across functionally orthologous tissue-

specific CREs. This study underlines the importance to evaluate CRE conservation and

functionality using metrics beyond simple sequence conservation.

Further, I touch another currently highly debated aspect of genome evolution: The role of

newly evolved elements in species-specific rewiring of gene regulatory networks. Transpos-

able element-derived regulatory and gene sequences are gaining increasing attention due

to their ability to expand the genome in a clade- or species-specific manner. In addition,

some types of TEs, such as long terminal repeat (LTR) elements, carry binding sites for

important transcription factors active in pluripotent stem or other cell types. This leads

to new regulatory sequences and transcripts. While some of these have been proposed or

indeed shown to contribute to the cellular phenotypes, in the current study we revisit one

such candidate long non-coding gene, ESRG, and find that in spite of its high expression in

human pluripotent stem cells, it is dispensable to the function of these cells. We also find no

evidence for selection using sequence divergence and polymorphism-based analyses. This

study is a reminder to be careful in interpreting expression as a sign of function.

Finally, I combine evolutionary and functional measures to assess the association between

genetic and phenotypic evolution. Specifically, I focus on the association between brain

evolution and the evolution of a particular brain developmental gene TRNP1 across over

30 mammalian species. I find that TRNP1 coding sequence evolution, TRNP1 -dependent

proliferation rates and the activity of a cis-regulatory element of TRNP1 co-evolve with

brain size and the degree of gyrification. These findings advance our evolutionary and neu-

rodevelopmental understanding of how larger and more folded brains evolve. Moreover, with

the increasing availability of high-quality genomes and possibilities to assay genetic variants

in massively parallel assays, this and similar studies are demonstrations of how evolutionary

information can be leveraged by combining phylogenetic approaches with functional assays.



1 | Introduction

The extraordinary precision and far reach of our ability to process, preserve and spread

information is among the key capabilities of the human species that has allowed us to build up

on the knowledge of many generations1,2. Indeed, everything in the human world increasingly

relies on and evolves around it. In the era of information, the genetic code still remains

among the most relevant, mysterious and surprising sources of information that contains the

full instructions to create a whole organism and to generate offsprings. The genetic code can

be seen as a likely accidental, self-preserving machine containing sets of instructions to be

executed at a particular time in a particular space. It is written using sequences of a simple

4-letter code which is so powerful that it enables the development of such complex structures

as our brains, able to process the intense information flow as it does on an every-day-life

basis. Therefore, genetics, and biology in general, have inspired many fields beyond medicine
3,4,5, adding to the motivation to study it.

Among the most challenging tasks in biology is to identify causal variants that are responsible

for diverged organismal phenotypes within and across species. This is particularly difficult in

higher complexity organisms like mammals, and even more challenging across primates where

genetic manipulations are out of discussion due to clear ethical issues. Studying natural

genetic variation and selectional signatures across regions of the genome can tell us a lot about

how to interpret a certain genetic change6. Moreover, approaches that rely on natural genetic

and phenotypic variation can be combined with molecular assays and known functional

features of the elements. In this thesis, I combine evolutionary, molecular and functional

measures to study multiple aspects of genome evolution and how these contribute to the

evolution of (molecular) phenotypes. Because I focus on the interpretation of the human
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genome, information about genetic change is mainly derived from within-human variation

and species genetically closely related to the human - other primates. In the following

sections I provide background information that is important to understand the context of

my work. First, I give an overview on the genetic elements that are relevant for this thesis

in the sections Central regulatory mechanisms governing the tissue-specificity of

gene expression and Emergence of novel elements through the activity of mobile

genetic elements. In the section Evolutionary forces shaping genome evolution, I

briefly explain basic population genetic and evolutionary concepts relevant for adequately

interpreting genetic change. I also outline the evolutionary modes under which primate

genomes generally evolve. In the following chapter, Studying the mode of evolution in

different modalities, I discuss specific molecular assays and evolutionary measures which,

if combined properly, can inform on the type of selection acting on a genetic or molecular

element. I discuss important measures of protein, gene expression and regulatory evolution

and introduce frameworks using which genotype-phenotype co-evolution can be investigated.
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1.1 Central regulatory mechanisms governing
the tissue-specificity of gene expression

While all cells of the same multicellular organism contain nearly identical genetic information,

distinguished sets of information are utilized in different cells yielding distinct cellular

phenotypes. This is enabled through gene expression regulation happening on multiple

levels. Firstly, sequence of the particular gene and the genetic elements that regulate

its expression have to be accessible to the transcription machinery. This is controlled by

epigenetic modifications to DNA, such as DNA methylation that affects gene silencing7, and

modifications to histone proteins that regulate the compactness of the DNA8,9. Moreover,

the required regulatory RNA and proteins including transcription factors (TFs), co-factors

and the right type of RNA-polymerase all have to be present in the cell and bind regulatory

DNA to initiate transcription of the gene10,11 (Figure 1.1). The specificity of gene regulation

is to a good part attributed to the specificity of the transcription factors present in the

cell and their binding to accessible cis-regulatory elements (CREs), commonly classified as

promoters, enhancers, silencers and insulators12. Notably, further important regulation of

the gene product happens also at post-transcriptional and post-translational stages, however

those processes are beyond the scope of this thesis. Altogether these mechanisms control

cell fate determination during development through complex interplay between external

signals, chromatin remodelling and temporal patterns of regulatory protein activity, affecting

expression networks of other genes and properties of the cell.

1.1.1 Trans-regulation by transcription factors

Transcription factors are regulatory proteins that bind cis-regulatory elements, often in

the vicinity of a gene, and other transcription factors and co-factors, thereby enabling the

positioning of transcription machinery and suitable DNA conformation to induce or suppress

expression13. The estimated total number of human TFs is ∼1,60013. One way to detect

their presence in a specific cellular context of interest is by quantifying their expression using

RNA-seq14,15. TFs tend to be expressed at lower levels than other genes, possibly to establish
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Figure 1.1. Overview of the interplay between chromatin accessibility, transcription factor
binding, and transcriptional machinery in regulating gene expression. Proximal and distal
cis-regulatory elements (CREs) bind transcription factors (TFs) and co-factors, facilitating
the positioning of the transcription machinery near the promoter and transcription start site
(TSS) to initiate expression. Pairs of CTCF proteins, in combination with cohesin rings, define
the topologically associating domain (TAD) compartments of the DNA, allowing specific
regions to interact more frequently within these domains. TF binding can be measured
using ChIP-seq targeting the respective TFs. Chromatin accessibility can be measured using
DNase-seq and ATAC-seq, while gene expression is commonly quantified using RNA-seq.
TAD boundaries and overall 3D genome organization are often measured using Hi-C.

binding specificity16. Historically, TFs have been classified as activators or repressors of

gene expression17, however evidence is accumulating that their function is rarely binary

as many TFs have been shown to act as repressors or activators in a context-dependent

manner18,19,20. TFs can bind regulatory sequences as monomers, homo- or hetero-dimers, or

multi-mers21, in the latter cases meaning that they form larger regulatory protein complexes.

These complexes can have their own specific effect on gene regulation. Importantly, TFs

bind selected, typically ∼6-12 bp long DNA sequences of a particular composition which

are embedded in the CREs. In some cases, the preferred binding sequence can have a more

strictly defined composition, but empirical experimental findings show frequent binding site

degeneracy, i.e. that most TF-DNA interactions are robust to some or even large variation in

the binding sequence22,23. Moreover, weak binding of TFs to flanking sequences surrounding
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the target regulatory sequences can also be advantageous for more stable gene expression
24,25.

TFs can be classified into ∼54 families based on their structural and DNA binding site

domain similarity26. Some classes are associated with particular developmental processes, for

example, HOX TF family governs cell fates27 and the rapidly evolving zinc finger TF family

controls the activity of transposable elements28. TFs can also be classified by their cellular

function. For example, pioneer factors such as MYOD129, PAX530, FOXA131 are known to

control or interact with histone modifications and recruit chromatin-remodelling complexes,

subsequently initiating chromatin accessibility and the binding of other regulators. Another

relevant recently identified group of TFs are the so-called ’Universal stripe factors’32 that

facilitate stable and prolonged CRE accessibility and the binding of other TFs, likely leading

to more stable downstream gene expression. A groundbreaking discovery, that also affects

the cellular systems used in this thesis, has been the identification of pluripotency factors

OCT3/4, SOX2, c-MYC and KLF4 that are sufficient to reprogram differentiated cells into

induced pluripotent stem cells (iPSCs)33. In summary, the cellular presence and binding

of TFs to CREs is central for cell-specific gene regulation. The downstream effects of TF

binding does not have a fit-for-all rulebook, instead it depends on the overall combinatorial

binding across TFs and the cellular context.

1.1.2 Cis-regulatory elements

Historically, CREs were identified through their proximity to gene sequences and through

their sequence conservation, as it is in average higher than that of non-functional sequences

but lower than that of protein-coding sequences34,35. However, CRE landscapes have proven

to be highly dynamic across tissues and developmental stages within and across species36,37.

The advent of high-throughput assays has enabled more direct ways for active CRE detection

in the specific cellular context of interest. DNase I hypersensitive sites sequencing (DNase-seq)
38 and Assay for Transposase-Accessible Chromatin using sequencing (ATAC-seq)39,40 are

among the most popular assays for mapping the location of accessible chromatin, large part

of which is accessible because of its regulatory activity. Another, more direct way to identify
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active or primed CREs is by targeting certain combinations of histone modifications41 or

TF binding using Chromatin immunoprecipitation followed by sequencing (ChIP-Seq)42,43,

however this assay tends to generate larger peaks making it more difficult to identify the

exact sequence that is the source of the regulatory activity.

Knowing the complex nature of TF binding, it also comes as no surprise that the regulatory

element architectures and sequences that are bound by TFs can be fairly variable. Promoters

are the core regulatory units required for trancription initiation, located within few kilobases

from or even overlapping the transcription start site(s) of the gene35. Promoters that are

utilized across a broader range of tissues tend to be large, CpG-rich and often accessible

even if the gene is not extensively transcribed35,44. A possible reason for the more stable

accessibility is to set the baseline requirements ready for the transcription once it is necessary.

Tissue-specific promoters tend to be narrower and less CpG-rich, for example TATA-box

promoters that regulate tissue-specific, inducible response genes45. Enhancers and silencers

are more distal regulatory elements that are in average shorter than promoters, often less

CpG-rich and accessible in a more cell-type specific fashion46,47,48. While enhancers con-

tribute to gene transcription activation, silencers repress transcription initiation. However,

quantification of silencer activity is challenging49,50. In practice, the distinction between

CRE functional classes is often unclear, because the same regulatory sequence can possess the

activity of a promoter, enhancer or silencer depending on the cellular context51,52. Moreover,

CREs often show functional redundancy53, for example, the activity of some individual

enhancers appears to be buffered by equally functional so-called shadow enhancers54,55.

Experimental evidence suggests that distal enhancers physically contact promoters by chro-

matin looping during transcription initiation, enabling regulator interactions and better DNA

conformation for efficient transcription56. The range of possible genomic region interactions

are controlled by another important class of CREs called insulators that define the bound-

aries of a higher-level spatial chromatin organization into context-dependent topologically

associated domains (TADs)57,58,59. They are bound by a special zinc finger TF called

CCCTC-binding factor (CTCF)60 and thought to contribute to gene expression regulation

by limiting the possible interactions between different CREs and genes.

Knowing the boundaries of TADs can also help in narrowing down the possible search space
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for identifying CRE-to-gene associations. The overall simplest strategy for this task is to

associate CREs to genes based on their genomic proximity61,62, further pruned for being

within the same TAD compartment if this information is available. When working with many

samples as in the case of single cell data, methods that rely on accessibility and expression

co-variation can also be utilized63,64,65. Machine learning-based models trained on published

data can also be considered for this task66,67. Having identified CRE-to-gene associations,

various aspects on regulatory principles can be studied.

To summarize, genes and the associated regulatory mechanisms are central to the function-

ality of the genome. Evolutionary change in their sequence or accessibility can have direct

consequences for the phenotype.

1.1.3 Constraint on genetic elements imposed by pleiotropy

The ability of a genetic element to evolve is influenced by the number of molecular contexts in

which it is utilized. This phenomenon is widely recognised as pleiotropy, commonly quantified

as the number of cell types or tissues in which the element is used. While in some cases

better fitness could be achieved by adjusting a particular phenotype, the underlying genetic

element(s) may also be essential in another phenotypic context and, hence, lead to detrimental

outcome in case of change, thus imposing constraint on its evolution. Therefore, pleiotropic

elements are expected to be under more constraint than tissue-specific elements. In recent

years, evidence has accumulated that genes with more pleiotropic expression patterns indeed

have more conserved protein sequences68,69. Moreover, pleiotropic genes also tend to be

evolutionary older70 and show more conserved, i.e. more similar expression patterns across

species71,72,73. In summary, tissue-specificity is generally a good predictor for constraint74.

Given this prior information, it is reasonable to assume that also cis-regulatory elements

(CREs) that are pleiotropic are on average under more constraint than tissue-specific CREs.

However, given that CREs are in many aspects different from genes, it is an open and

relevant question how constraint imposed by pleiotropy is reflected in the properties of CREs.

Answering this question also brings us closer to understanding the principles that relate CRE

sequence evolution to gene expression evolution.
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1.2 Emergence of novel elements through the
activity of mobile genetic elements

A major contributor to the total content of eukaryotic genomes, and primate genomes in par-

ticular, is the activity of mobile genetic elements, also called transposable elements (TEs)75,76.

TEs can be classified into two main types by their mechanism of activity: DNA-transposons

(’cut-and-paste’) and RNA-transposons, also called retrotransposons (’copy-and-paste’). It

follows that the latter type contributes considerably more to the genome content (∼ 45%)77.

The main types of retrotransposons of a potential importance for primate evolution due to

their abundance are endogenous retroviruses (ERVs), autonomous long interspersed nuclear

elements (LINEs), non-autonomous short interspersed nuclear elements (SINEs), that include

primate-specific Alu elements (Figure 1.2A), and the primate-specific SINE variable-number

tandem-repeat Alu elements (SINE-VNTR-Alu or SVA), which are composites of ERV and

Alu elements78,76,79,80.

In order for these insertions to be heritable, they generally have to happen in the germline

or the pre-implantation embryo. Although the identified TE sequences constitute around

half of the human genome, by taking into account the likely byproducts of their activity

such as pseudogenes and by now unrecognizable products of their ancient activity, their

actual contribution might be even around 75%79. While most of the fixed TE insertions

are thought to be (nearly) neutral, in some cases there can be larger fitness and phenotypic

consequences. On one hand, the mutagenic effect of these insertions can have detrimental

effects on genome stability and interrupt sequences of functional importance82. Additionally,

some of these elements are linked to health issues, many of which manifest later in life when

stringent regulation does not result in enhanced reproductive success. On the other hand,

through the regulatory potential of these sequences, some of the insertions result in novel,

potentially functional CREs83,84 and new genes85, including regulatory RNAs and expressed

chimeric products fused with downstream neighbor sequences called long-non-coding RNAs

(lncRNAs)86 (Figure 1.2C). Indeed, some TE-derived elements have been shown to regulate

important processes, including placental development, immune response and the cell-type

complexity and signalling in the brain82. Some famous functional examples include XIST
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Figure 1.2. A Transposable element content in the genomes of a mouse (Mus musculus),
rhesus macaque (Macaca mulatta) and human (Homo sapiens)81,76. B Intact LTR/ERVs
consist of gag, pol and env genes, surrounded by two identical LTR elements that function as
promoters. The subclass of LTR7 elements have binding sites for important pluripotency
TFs including OCT3/4, SOX2 and NANOG. C Possible effects of TE jumping and insertions,
exemplified for the case of HERVH/LTR7. It can lead to insertions of new copies of a gene,
processed pseudogenes with polyA-tails, altered expression of existing genes or the generation
of chimeric, expressed products containing parts of the TE and parts of the genomic sequence.

RNA that regulates X chromosome silencing87,88,89,90, Syncytin genes that allow for nutrient

and gas exchange between the mother and the fetus during pregnancy91,92 and the Arc

protein involved in synaptic plasticity93,94.

Particularly relevant for primate- or human-specific regulatory evolution might be the ERV-

derived long terminal repeat (LTR) retrotransposons. They are characterized by identical

LTR elements at both ends of the retrotransposal element-specific genes that facilitate tran-

scription of the retroelement and integration of the new copy into the host DNA. ERV/LTR



12 1. Introduction

elements are thought to have arisen as a result of ancient and ongoing viral infections of

the germline. Estimates based on their age suggest waves of higher activity and fixation

around 50 MYA and multiple later waves on the branches leading to Old World monkeys

and great apes79,95. A relevant subclass are the human ERVs (HERVs), that were found in

humans but some of which are also present in other primates. Approximately 8% of the

human genome is estimated to stem from HERVs77, showing great diversity81. Different

classes carry different sets of transcription factor binding sites in their LTR sequences and

show increased regulatory activity in different cell types, such as pluripotent, embryonic

endoderm/mesoderm, hematopoetic and immune cells96. In the context of pluripotency,

particularly relevant are the LTR7 elements that have binding sites for key pluripotency

transcription factors (Figure 1.2B). These include OCT3/4 (POU5F1), SOX2, and NANOG,

making these elements a potent source of novel CREs96,97. A knock-down of LTR7-derived

elements was shown to impair cell reprogramming to iPSCs98. Some other studies suggest

that HERVH-derived enhancers are involved in chromatin opening in human embryonic

stem cells (hESCs), followed by the activation of evolutionarily similarly old classes of

Krüppel-associated box zinc finger TFs that repress their activity. Later during development,

the same enhancers are utilized during cell-type specific differentiation processes99,100,101,28.

Hence, by some, TE-derived elements are considered a major source of gene regulatory

innovations102,99,103, whereas others have not found evidence for such rewiring104 or consider

it rather an obstacle where a possible rewiring is at most a result of compensation for the

disruptions79. Whether functional or not, it is clear that TE activity is a major source for

the emergence of species-specific elements. Overall, our genome is exposed to factors beyond

instantaneous functionality that have and might inevitably happen, all of which can be either

removed, coped with, tolerated or utilized105,100.
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1.3 Evolutionary forces shaping genome evolu-

tion

If much of the genome is not functional or even slightly disadvantageous, how come it is

there and how come the process of genome expansion is happening? The answer becomes

obvious through the basic principles of genome evolution. These also elucidate the necessity

to interpret the meaning of genetic change cautiously and underlines the importance of

carefully designed statistical evolutionary tests of constraint and adaptation that take into

account varying population sizes and local mutation rates.

1.3.1 Effective population size

The effective population size (Ne) is among the key factors affecting the relative contributions

of selection versus random drift to the genetic material of a species. The types of evolution

that can occur within a species depend strongly on it, e.g., if Ne is sufficiently small, the

noise associated with random sampling of alleles can influence their fixation probability

to the extent as if selection was virtually absent79. It is almost always smaller than the

total population, partially because 1) some individuals do not contribute to the following

generation, 2) sex ratios that deviate from 1:1 reduce Ne, 3) individuals tend to mate with

locally related individuals, especially spatial semi-isolated patches decrease the variability.

The previous bottlenecks in species variability have large, long lasting effects on its Ne

106,107,108.

Hence, in many cases Ne is considerably smaller than the observed population. For example,

the estimated average Ne across vertebrate species is only around 10% of the total number

of breeding adults (N)109,110. Ignoring this discrepancy would lead to serious errors, while

using Ne instead of N has practical advantages as it permits the application of population

genetics models that assume the population to behave as an ideal Wright-Fisher population.
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1.3.2 Random genetic drift and mutation

The initial spread of all genetic mutations during the first few generations in diploid organisms

is mainly determined by drift which is inversely proportional to the population size, i.e. 1
2N .

A certain variant, independently of its long-term neutral, advantageous or disadvantageous

effects, has to first survive the stage of being a transient polymorphism. Mutations arise at

the frequency of µ2N where µ indicates the mutation rate. Hence, in the complete absence

of selection, the total rate of fixation of neutral alleles is equal to the product of the number

arising per generation and the fixation probability of individual mutations, where both

depend on 2N in opposing ways111. Therefore, the long-term rate of neutral evolution is

equal to the genetic mutation rate of the species, e.g.,

p0 = µ2N

2N
= µ

While the fixation probability of neutral mutations does not depend on Ne, the time that it

will take until fixation does, which is in average 4Ne generations. This implies that larger

Ne results in elevated amount of within-species variation.

To make things more complicated, germline mutation rates vary between different organisms,

up to a factor of 40 across vertebrates112. Moreover, mutation rate is not uniformly distributed

across the genome, instead it depends on multiple local genomic characteristics including

structural features such as GC content, chromatin organization, mismatch repair efficiency

and recombination rates113,114,115. Taking these factors into account is important when

looking for selectional signatures between or within species.

1.3.3 Variation in strength and efficacy of selection

Understanding the type of selection acting on genetic elements is a core interest in biology as

it informs on their importance and helps connecting genotypes to function and phenotypes.

Negative selection, also called purifying selection, constraints the change in functional genetic

elements116. Given a set of random possible mutations in a functional genetic element,
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the overall likelihood that many of these will be (weakly) disadvantageous is high, thus

decreasing the fixation probability of such changes117. In general, disadvantageous mutations

are indicated by a negative selection coefficient s < 0. The amount of purifying selection

tends to be higher in more essential elements, thus serving as an approximation for the

importance of the element and as a guidance for prioritising certain genetic regions in case

of disease. Overall, non-synonymous sites in protein-coding sequences tend to be under most

constraint118, i.e., most possible changes are associated with relatively large, negative s.

For the case of CREs, a few ultra-conserved elements appear to be under strong negative

selection119. However, most individual CREs might be associated with rather small selection

coefficients, possibly due to their redundancy and the potential presence of proto-CREs
120,121, allowing for high turnover rates. Therefore, the majority of protein-coding sequences,

including the ones encoding most transcription factors, evolve considerably slower than CRE

sequences118. The constraint is also generally expected to be higher in pleiotropic elements,

functional in multiple cellular or developmental contexts, than in elements that are functional

only one or a few contexts122.

Positive selection, also called directional selection, implies that a genetic change is advanta-

geous for the survival or the reproductive potential of a species and thus have higher fixation

probability than a neutral mutation117, indicated by a positive selection coefficient s > 0. A

special case of positive selection is the compensatory evolution that can happen because of

prior fixation of slightly deleterious alleles123,124 due to drift or fluctuating selection pres-

sures. Detection of positive selection can help identify the genetic source of species-specific

characteristics. Only a few non-synonymous sites of protein-coding sequences appear to

evolve under positive selection, but this proportion can vary considerably depending on

their structural properties and function122. However, even though these events are rare, the

selection strength and the resulting adaptive changes can have large phenotypic effects. In

comparison, the possibilities for adaptive changes in CREs might be more frequent but each

individual change is likely associated with smaller selection coefficients118. Hence, overall

only a small amount of substitutions is thought to have arisen through positive selection116.

In addition, it can be challenging to distinguish the actual mutations under positive selection

that rapidly increase in frequency through selective sweep from the ones that are dragged
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along to fixation simply because of being in the genetic vicinity of the selected position and

thereby linked, coined as hitchhiking125.

In general, while the fixation probability of neutral mutations does not depend on Ne, Ne

does have an impact on the fixation probability of advantageous and deleterious mutations,

i.e., the efficacy of selection after these mutations have survived the first random spread

across a few generations. For the scenario where alleles have an additive effect, the selection

coefficient is |s| < 0.1 (which is mostly the case) and Ne << N , the probability of fixation is

approximated as follows126,127:

pf ≈ (2sNe/N)
1 − e−4Nes

Thus, if the absolute selection coefficient is sufficiently large relative to random drift, e.g., if

4Nes >> 1, the fixation probability is different to the neutral expectation by 4Nes. This

means that the same coefficient s will have a different fixation probability depending on the

Ne of the population, in which higher Ne boosts the efficacy of selection128. With sufficiently

small Ne, the same mutant allele with a certain s can appear nearly identical to a neutral

allele, thereby possessing effective neutrality129,130,131.

1.3.4 Evolutionary modes in primates

Primate, and human evolution in particular, appears to be strongly influenced by non-adaptive

evolution, i.e., drift and mutation. The effective population sizes in primates, especially great

apes, are estimated to be significantly smaller than the number of breeding individuals. This

difference appears to be more drastic than in many other animal clades. These estimates are

based on the low amount of polymorphisms within humans132,133,134,135 and phylogenetic

gene comparisons across great apes136,137. The reconstructed Ne during human evolution

indicates a ≈ 10-fold reduction since the common ancestor of humans and chimpanzees
137,138, resulting in the estimated current Ne ≈ 10, 000139,134,140,138. In comparison, these

numbers are moderately larger for macaques (Ne ≈ 70, 000)141,138 and much larger for the
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rodent species (Ne ≈ 450, 000 − 820, 000)142. This implies that the efficacy of selection in

primates is lower than in other species, including model organisms like mice or flies with

larger Ne, limiting the fixation of weakly adaptive mutations. Also, neutral mutations get

fixed quicker due to drift, therefore the genetic variability is low. Importantly, small Ne also

promotes the accumulation of weakly deleterious mutations in short term, altogether leading

to an increased fixation of non-adaptive genetic changes including point mutations, gene

duplications, TE-derived insertions and even whole chromosome rearrangements as observed

for the human. Although potentially disadvantageous at first, in the long run the resultant

alterations can give a fertile ground for secondary adaptive or compensatory changes and

morphological evolution that is infeasible in large populations79,143.
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1.4 Studying the mode of evolution in different
modalities

1.4.1 Quantification of protein evolution rates

Learning to properly read protein-coding sequences and to interpret their change have been

important tasks long before any vertebrate genome was fully sequenced144. Therefore, these

are among the best understood types of elements. Briefly, protein-coding sequences contain

codons (triplets of DNA), where each triplet translates to a certain amino acid (AA) in the

resulting protein. The beginning, the end and the intron-exon boundaries of the coding

sequences are marked by distinct sets of codons or bases145. The resulting product can also

be detected using the transcribed sequence or the translated protein, altogether alleviating

the identification of protein-coding sequences.

It follows that rules for sequence-based quantification of protein evolution rates have also

been long studied and certain metrics have been established. The consensus way to quantify

the evolutionary rates of a protein is to calculate the ratio of non-synonymous (dN) to

synonymous (dS) substitutions, i.e. dN/dS 68,69,146. Non-synonymous substitutions in the

codon sequence change the resulting AA, whereas synonymous substitutions do not affect

the AA, thereby serving as a local baseline approximation of the sequence change that is

unrelated to the protein evolution. dN/dS values close to 0 indicate slow protein evolution

rates (i.e., strong negative selection), while values around 1 suggest nearly-neutral evolution

rates and values > 1 suggest the possibility of positive selection147,148.

Given this useful metric, many protein sequences have been screened across the mammalian

or the primate phylogeny149,150 using maximum likelihood-based phylogenetic frameworks

of which the most frequently used is PAML151,149. Multiple assumptions regarding the

evolution of the protein across the phylogeny need to be made, including but not limited

to the presence of a molecular clock, codon frequency and AA distance matrix. In general,

most screened proteins appear to evolve under strong negative selection, yielding an overall

dN/dS close to zero152,118. If positive selection happens, for most proteins it tends to be

concentrated in certain functional domains and only stands out when specifically looking
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at the particular positions using the so-called site model. It can also be limited to certain

branches of the phylogenetic tree (branch model, branch-site model). Different tests have

been implemented to test the likelihood of these alternative hypotheses relative to a respective

null hypothesis153. However, these tests are rather conservative and underpowered, detecting

adaptive evolution only if dN is higher than dS. Therefore, the case where positive selection

has happened in only few lineages and few AAs is difficult to detect153, particularly between

closely related species where the accumulation of synonymous mutations might also be low.

Another, less conservative metric for detecting positive or negative selection in protein-coding

Neutral Negative selection Positive selection

πN /πS

dN/dS
3/5
4/3= < 1

πN /πS

dN/dS
3/5
1/3= > 1πN /πS

dN/dS
3/5
2/3= > 1

Figure 1.3. A visual depiction of McDonald-Kreitman test where an outgroup species is used
to estimate the number of fixed substitutions across non-synonymous (dN) and synonymous
(dS) sites, while the number of polymorphisms (πN , πS) within the same functional categories
provide an estimate for the variation within the species.

sequences is the McDonald-Kreitman test154 (Figure 1.3) which also relies on dN and dS,

but adds interpretability and better control over varying Ne by normalizing the cross-species

estimates by the within-species variability, i.e. polymorphisms πN and πS , at the same sites.

The null hypothesis is that the ratio of non-synonynonymous to synonymous variation within

species is the same as between species. This can be summarized using a neutrality index:

NI = πN /πS

dN/dS

An NI>1 indicates negative selection, whereas NI<1 positive selection. Limitations of this

approach are related to the fact that the levels of polymorphisms might be influenced by

demographic effects or weak negative selection155,156, thereby breaking the assumption of
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the approximate neutrality.

Although informative, the evolution rate alone does not tell much about the potential role of

the protein changes for phenotypic evolution. If the trait of interest can be quantified as a

categorical or continuous characteristic of the species, methods that jointly reconstruct genetic

and phenotypic ancestral states across a phylogeny can be used to infer their correlation.

Bayesian phylogenetic approaches such as Coevol157 have an advantage over frequentist

methods that the uncertainty in the reconstructed values can be carried along during

reconstruction and taken into account when inferring the probability of co-evolution. Clearly,

such methods need to be codon- and phylogeny-aware. In theory, different assumptions

about the correlation structure between species can be made. The currently implemented

(and simplest) correlation structure is the Brownian Motion (Figure 1.4A) as it is aligns with

the assumptions of normality158 and implies that the substitution rates and the continuous

traits are evolving with no mean shift and variance σ2.

While these metrics are well established, they depend heavily on the assumption that the

alignments are correct. A small misalignment can cause a frame shift, thereby changing

the whole interpretation of the resulting translated protein sequence. Hence, establishing

the correct exon-intron boundaries in different species at least for the consensus transcripts

is a central and non-trivial task. Currently, many individual studies simply focus on the

more easily alignable proteins or subparts of the protein150,159, which might bias the analysis

towards lower dN/dS. Long-read sequencing technologies and recent additional efforts like

the mammalian consortium Zoonomia160 or Vertebrate Genomes Project161 are important

to improve the quality of such analyses.

Beyond comparing protein-coding sequences, functional properties of the orthologous proteins

can also be compared using phylogenetic frameworks such as their activity. For this, a

thoughtful design of the functional assay is necessary that fits the function of the protein in

the relevant cellular system.
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1.4.2 Quantification of gene expression divergence

A large part of the diversity observed on the phenotypic level across species is thought to be

attributable to differential regulation of genes, particularly during the development162,10,163.

To investigate a dynamic process in cellular systems or tissues, the compared cell states and

the mixture of cell types at hand need to be orthologous between the species164. While this

is a valid consideration also for comparisons between different human individuals, generation

of comparable cross-species systems is even more challenging due to potential systematic

differences in differentiation speed, cell type diversity and the fact that most workflows and

reagents are generally optimized for human (or mouse) samples. Hence, systematic technical

differences that might be associated with the cross-species approach need to be eliminated

during the experimental part of the research or later computationally.

Technological advances facilitating high-throughput measurements of gene expression enable

quantitative comparisons of the whole transcriptome between different species in tissues or

cell types of interest. The most recent and widely used technique is RNA-seq165,14,15 that

involves converting RNA to complementary DNA (cDNA), adding a sample- or cell-specific

barcode and amplifying the cDNA molecules to improve their detection. RNA-seq can be

used to capture the full sequence of the transcript or, for the sake of sequencing costs, can

be targeted to capture only the 5’ or 3’ end of the transcribed sequence166.

After gene expression in orthologous cell types has been quantified, statistical approaches

that enable unbiased cross-species investigation of gene expression evolution are necessary.

Assuming that one-to-one orthologous genes are of interest (and readily identified), simple

differential expression analysis167,168 can be used for comparisons that involve only two or a

few species that are evolutionarily similarly distant from each other169,170. The simplest type

of analysis measures the absolute expression differences between species. This can be used

to compare groups of genes, however requires a particularly carefully designed experimental

setup as the comparison can be influenced by technical batches that coincide with the species

origin of the samples171. In addition, the biological interpretation of the absolute expression

differences can be difficult even under well controlled conditions. Comparisons of relative

expression change across conditions such as a differentiation timeline can be interpreted as
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differential regulation between species, thus often more informative. Differential regulation

can be inferred by specifying an interaction term between species and time or condition. In

general, measurements from multiple different individuals within each species should be used

to establish a baseline variation, explained by factors other than species divergence. Mixed

effects models172 offer an extension to account for clustered expression data.

To compare expression differences across many species with large divergence times, more

sophisticated evolutionary models designed for modelling continuous trait evolution are

appropriate. Here, species topology and thereby their non-independence is explicitly taken

into account through inclusion of a correlation structure. Popular approaches are phylogenetic

ANOVA173 and phylogenetic regression models174, including phylogenetic generalized least

squares175,176. Evolutionary modes can be investigated by comparing the likelihoods or

performing an F-test between models that make different assumptions about the expression

variance across evolutionary time158,177,178,72,179. Random drift is commonly modelled

Figure 1.4. Evolutionary models used for modeling continuous trait evolution across time.
A Brownian Motion is used to model drift, e.g., X ∼ N (θ, σ2). B Ornstein Uhlenbeck process
can be used to model negative selection with a ’pull’ parameter α describing the selection
strength towards the optimum, e.g., X ∼ N (θ, σ2/2α). C Ornstein Uhlenbeck process
with two optimas that can be used to model directional selection, e.g., X1 ∼ N (θ1, σ2/2α),
X2 ∼ N (θ2, σ2/2α).

using Brownian motion (BM) where the rate of expression change per unit of time is

constant and shows no directionality (Figure 1.4A). As evolutionary time goes to infinity,

expression values can be modelled as normally distributed with mean θ and variance σ2, e.g.,

X ∼ N (θ, σ2). Ornstein Uhlenbeck (OU) process can be used to model drift and stabilizing
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(negative) selection where α indicates the selection strength towards the optimum, e.g.,

X ∼ N (θ, σ2/2α) (Figure 1.4B). Furthermore, multivariate OU can be applied to test for

directional selection on certain branches of the phylogeny by assuming simultaneous existence

of different optimal values for different clades, e.g., X1 ∼ N (θ1, σ2/2α), X2 ∼ N (θ2, σ2/2α)
179 (Figure 1.5C). Moreover, because these frameworks are based on regression, they can also

be used to measure whether certain covariates can explain some of the remaining variation.

Important to note, the more complex the alternative hypothesis, the more species need

to be included to have sufficient statistical power. Although overall still simplistic180,181,

these models are useful tools to approximate evolutionary modes of continuous traits like

expression.

1.4.3 Measuring cis-regulatory element evolution

To understand the sources of expression patterns across species, we need to be able to read the

regulatory code that governs expression in orthologous cell stages, much of which is contained

in cis-regulatory elements. The ultimate function of CREs is to enable the binding of the

context-relevant TF, co-factors and transcription machinery, contributing to the required

DNA conformation that facilitates expression of the associated gene(s)35,13.

As noted previously, the basic rules for interpreting protein-coding sequence change are

rather clear, where discrete changes in the DNA sequence result in known, discrete changes

in the protein sequence. In contrast, establishing rules for CRE sequence change appears

to be a more complex task due to their inherent flexibility in position and combinatorial

usage that can be different for the same gene depending on the cellular context. Moreover,

not all nucleotides within a CRE are equally functional - the sequence at some positions

of TF binding motifs do not seem to matter182,183 and TF motif orientation, spacing and

composition can be rather flexible - often it is enough with cooperative binding of multiple

relevant TFs184,185,186,187,188,189. Hence, TF binding potential to a CRE can be seen as a

continuous property and certain sequence change does not have discrete nor linear effects

on TF binding or expression in most cases. Therefore, CRE evolution rates should be

investigated on multiple functional levels beyond sequence, including their transcription
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factor binding site (TFBS) repertoire, position and regulatory activity conservation (Figure

1.5).

Figure 1.5. Different functional levels that can be used and combined to understand the
evolutionary modes of cis-regulatory elements.

Sequence To quantify regulatory sequence evolution and compare it across different

regions of the genome, the local mutation rate variation that depends on GC content,

chromatin organization, mismatch repair efficiency and recombination rates should be

incorporated in the statistical frameworks113,114,115. The detection of selectional signatures

in the sites of interest can be improved by contrasting them to the evolution rates of nearby

putatively-neutrally evolving sites190,191,192,193. Moreover, principles similar to McDonald-

Kreitman test can be applied also for regulatory sequences where signatures of recent natural

selection and effects of random drift are disentangled using patterns of polymorphism and

divergence194,192.

Transcription factor binding sites TFBS repertoires are quantified by scoring

the match between position weight matrices (PWMs) of the screened TFs to the CRE

sequence of interest. Selecting only expressed TF motifs can increase the interpretability

for a specific cellular context. To estimate the specificity of a PWM-CRE match, the base

composition of the respective CRE and the nearby flanking sequences can serve as a baseline
195,196,197. However, this type of contrast is still up to debate, as some studies have indicated

functional relevance of surrounding weak binding sites in flanking sequences for attracting

TFs and helping stabilizing TF binding to the strongest sites24,25. Methods that evaluate
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the strength of motif clusters, composed of multiple different binding sequences, can be used

to estimate the total regulatory potential of the CRE. Another, more specific experimental

way to investigate TF binding is through ChIP-seq screens targeting TFs198,199. However,

the availability of such cross-species assays is currently still limited to only few tissues,

species and TFs200,198,102,199. For pairwise comparisons across species, simple distance-based

metrics can be used for the calculation of binding divergence. In the case of multiple species

comparisons, evolutionary models intended for continuous traits that account for species

divergence can be applied here similarly to expression158.

Regulatory activity Finally, a comparison of CRE regulatory activity across species

is a powerful approach to establish CRE functional divergence. This level of characterization

can also be useful to connect different sequence or TFBS properties to functional evolution

and thereby study the rules of the regulatory code. An indirect strategy to quantify regulatory

activity is by associating CREs to their putative target genes and modeling the observed

expression conservation of the respective gene using the different features of the CRE

landscape as predictors62,201,104,202,52. Since CREs are investigated in their natural genomic

location, allowing for their correct 3D interaction with each other and cellular regulators, this

analysis can yield meaningful interpretation of their combinatorial effects on gene expression.

On the other hand, it is difficult to distinguish the contributions of individual CREs in

modulating gene expression.

A direct way to quantify regulatory change of individual CREs between species or conditions is

to assay orthologous CRE activity in the selected cell type(s) of different species. Historically,

this was done using reporter assays where the CRE of interest and a fluorescent or luminescent

reporter gene, typically luciferase, are cloned into a plasmid203. Here, CRE activity is reflected

in the amount of the reporter gene product. More recent approaches enable quantification

of the activity of thousands of CREs simultaneously. Massively Parallel Reporter Assay

(MPRA), which relies on barcode detection to quantify the activity204,48, was used for the

evolutionary analyses in this thesis. It requires in silico synthesis of the CRE sequences

that is currently limited to a length of around 300 bases. This is below the average size of

enhancers (∼420 bp) and especially promoters, that can be up to three times larger205,206,207.
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Thus, tiling of the CREs is necessary. The final activity of a CRE can be calculated by

summarizing across the tiles covering it, however such back-calculated additive activity is

not necessarily the same as the activity of the full, intact CRE. In addition, the process of

DNA synthesis is costly, limiting the number of CREs that can be assayed. However, the

sequence synthesis step of an MPRA has the advantage that the effect of a specific sequence

change at specific positions, e.g., an in silico mutation, can also be measured in a specific

cellular context of interest208.

1.5 Aims of this thesis

In this thesis, by combining evolutionary, molecular and functional measures, I aim to

contribute to answering questions related to the following ongoing research:

1. Estimation of the amount of error in expression measurements using RNA-seq

2. Tissue-specificity of regulatory elements and how it relates to functional importance

and evolutionary constraint

3. The role of recently evolved elements in species-specific rewiring of gene regulatory

networks

4. The association between genotype with a phenotype of interest across a phylogeny.

This work should be informative for domain specialists interested in the specific case

studies that are included in this thesis. It could also be interesting to molecular and

evolutionary biologists in a broader sense as it touches a range of generally relevant aspects

of genome evolution and possible ways to study it.
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Abstract 

Background:  In droplet-based single-cell and single-nucleus RNA-seq experiments, 
not all reads associated with one cell barcode originate from the encapsulated cell. 
Such background noise is attributed to spillage from cell-free ambient RNA or barcode 
swapping events.

Results:  Here, we characterize this background noise exemplified by three scRNA-
seq and two snRNA-seq replicates of mouse kidneys. For each experiment, cells from 
two mouse subspecies are pooled, allowing to identify cross-genotype contaminat-
ing molecules and thus profile background noise. Background noise is highly variable 
across replicates and cells, making up on average 3–35% of the total counts (UMIs) per 
cell and we find that noise levels are directly proportional to the specificity and detect-
ability of marker genes. In search of the source of background noise, we find multiple 
lines of evidence that the majority of background molecules originates from ambient 
RNA. Finally, we use our genotype-based estimates to evaluate the performance of 
three methods (CellBender, DecontX, SoupX) that are designed to quantify and remove 
background noise. We find that CellBender provides the most precise estimates of 
background noise levels and also yields the highest improvement for marker gene 
detection. By contrast, clustering and classification of cells are fairly robust towards 
background noise and only small improvements can be achieved by background 
removal that may come at the cost of distortions in fine structure.

Conclusions:  Our findings help to better understand the extent, sources and impact 
of background noise in single-cell experiments and provide guidance on how to deal 
with it.
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Background
Single cell and single nucleus RNA-seq (scRNA-seq, snRNA-seq) are in the process of 
revolutionizing medical and biological research. The typically sparse coverage per cell 
and gene is compensated by the capability of analyzing thousands of cells in one experi-
ment. In droplet-based protocols such as 10x  Chromium, this is achieved by encap-
sulating single cells in droplets together with beads that carry oligonucleotides. These 
usually consist of a oligo(dT) sequence which is used for priming reverse transcription, 
a bead-specific barcode that tags all transcripts encapsulated within the droplet as well 
as unique molecular identifiers (UMIs) that enable the removal of amplification noise 
[1–3]. As proof of principle that each droplet encapsulates only one cell, it is common to 
use mixtures of cells from human and mouse [3]. Thus doublets, i.e., droplets containing 
two cells, can be readily identified as they have an approximately even mixture of mouse 
and human transcripts. However, barcodes for which the clear majority of reads is either 
mouse or human, still contain a small fraction of reads from the other species [3–5]. Fur-
thermore, presumably empty droplets also yield sequence reads [4].

One potential source of such contaminating reads or background noise is cell-free 
“ambient” RNA that leaked from broken cells into the suspension. The other potential 
source are chimeric cDNA molecules that can arise during library preparation due to 
so-called ’barcode swapping’. The pooling of barcode tagged cDNA after reverse tran-
scription but before PCR amplification, is a decisive step to achieve high throughput. 
However, if amplification of tagged cDNA molecules occurs from unremoved oligo-
nucleotides from other beads or from incompletely extended PCR products (originally 
called template jumping [6]), this generates a chimeric molecule with a “swapped” bar-
code and UMI [7, 8]. When sequencing this molecule, the cDNA is assigned to the wrong 
barcode and hence “contaminates” the expression profile of a cell. However, unless the 
swapping occurs between two different genes, the barcode and UMI will still be counted 
correctly. Another type of barcode swapping can occur during PCR amplification on a 
patterned Illumina flowcell before sequencing [9] with the same effects, although double 
indexing of Illumina libraries has reduced this problem substantially. This said, here we 
focus on barcode swapping that occurs during library preparation.

Irrespective of the source of background noise, its presence can interfere with analy-
ses. For starters, background noise reduces the separability of cell type clusters as well 
as the power to pinpoint important (marker) genes via differential expression analysis. 
Moreover, reads from cell type-specific marker genes spill over to cells of other types, 
thus yielding novel marker combinations and hence implying the presence of novel 
cell types [8, 10]. Besides, background noise can also confound differential expression 
analysis between samples, e.g., when looking for expression changes within a cell type 
between two conditions. Varying amounts of background noise or differences in the 
cell type composition between conditions can result in dissimilar background profiles, 
which might generate false positives when identifying differentially expressed genes. To 
alleviate such problems during downstream analysis, algorithms to estimate and correct 
for the amounts of background noise have been developed.

SoupX estimates the contamination fraction per cell using marker genes and then 
deconvolutes the expression profiles using empty droplets as an estimate of the back-
ground noise profile [11]. In contrast, DecontX defaults to model the fraction of 
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background noise in a cell by fitting a mixture distribution based on the clusters of good 
cells [8], but also allows the user to provide a custom background profile, e.g., from 
empty droplets. CellBender requires the expression profiles measured in empty drop-
lets to estimate the mean and variance of the background noise profile originating from 
ambient RNA. In addition, CellBender explicitly models the barcode swapping contribu-
tion using mixture profiles of the ’good’ cells [4].

In order to evaluate method performance, one dataset of an even mix between one 
mouse and one human cell line [3] is commonly used to get an experimentally deter-
mined lower bound of background noise levels that is identified as counts covering genes 
from the other species [4, 8, 11, 12]. Since this dataset is lacking in cell type diversity, it is 
common to additionally evaluate performance based on other datasets that have a com-
plex cell type mixture and where most cell types have well known profiles with exclusive 
marker genes. In such studies the performance test is whether the model removes the 
expression of the exclusive marker genes from the other cell types. In both cases, the fea-
ture space of the contamination does not overlap with the endogenous cell feature space. 
Mouse and human are too diverged, so that mouse reads only map to mouse genes and 
human reads only to human genes. Similarly, when using marker genes it is assumed that 
they are exclusively expressed in only one cell type, hence the features that are used for 
background inference are again not overlapping. However, in reality background noise 
will mostly induce shifts in expression levels that cannot be described in a binary on or 
off sense and it remains unclear how background correction will affect those profiles.

Here, we use a mouse kidney dataset representing a complex cell type mixture from 
three mouse strains of two subspecies, Mus musculus domesticus and M. m. castaneus. 
From both subspecies, inbred strains were used and thus we can distinguish exogenous 
and endogenous counts for the same features using known homozygous SNPs [13]. 
Hence, this dataset serves as a much more realistic experimental standard, providing a 
ground truth in a complex setting with multiple cell types which allows to analyze the 
variability, the source and the impact of background noise on single cell analysis. Moreo-
ver, this dataset enables us to better benchmark existing background removal methods.

Results
Mouse kidney single cell and single nucleus RNA‑seq data

We obtained three replicates for single cell RNA-seq (rep1-3) data and two replicates 
for single nucleus RNA-seq (snRNA-seq, nuc2 and nuc3) data from the same samples 
that were used in scRNA-seq replicates 2 and 3, respectively. Each replicate consists of 
one channel of 10× [3] in which cells from dissociated kidneys of three mice each were 
pooled: one M. m. castaneus from the strain CAST/EiJ (CAST) and two M. m. domes-
ticus, one from the strain C57BL/6J (BL6) and one from the strain 129S1/SvImJ (SvImJ) 
(Fig.  1A). Based on known homozygous SNPs that distinguish subspecies and strains, 
we assigned cells to mice (Fig. 1B). In total, we identified > 40, 000 informative SNPs of 
which the majority (32,000) separates the subspecies and ∼ 10, 000 SNPs distinguish the 
two M. m. domesticus strains (Fig. 1C). On average, each cell had sufficient coverage for 
∼ 1, 000 informative SNPs ( ∼ 20% of total UMIs per cell) to provide us with unambigu-
ous genotype calls for those sites. The coverage for the nuc2 data was much lower with 
only ∼ 100 SNPs (Fig. 1D).
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Overall, each experiment yielded 5000–20,000 good cells with 9–43% M. m. castaneus 
(Fig. 1B). Thus, the majority of background noise in any M. m. castaneus cell is expected 
to be from M. m. domesticus (Additional file 1: Fig. S1B) and therefore we expect that 
genotype-based estimates of cell-wise amounts of background noise for M. m. castaneus 
to be fairly accurate (Additional file 1: Fig. S2). Hence from here on out we focus on M. 
m. castaneus cells for the analysis of the origins of background noise and also as the 
ground truth for benchmarking background removal methods.

This dataset has two advantages over the commonly used mouse-human mix [3]. 
Firstly, the kidney data have a high cell type diversity. Using the data from Denisenko 
et  al. [14] as reference dataset for kidney cell types, we could identify 13 cell types. 

Fig. 1  Generation of mouse strain mixture datasets to quantify background noise. A Experimental 
design (created with BioRender.com). B Strain composition in 5 different replicates, subjected to scRNA-seq 
(rep1-3) or snRNA-seq (nuc2, nuc3). The replicates rep2 and nuc2 and rep3 and nuc3 were generated 
from the same samples each. CAST: CAST/EiJ strain; BL6: C57BL/6J strain; SvImJ: 129S1/SvImJ. C Number of 
homozygous SNPs with a coverage of more than 100 UMIs that distinguish one strain from the other two. 
D Per cell coverage in M. m. castaneus cells of informative variants that distinguish M. m. castaneus and M. 
m. domesticus. E Cell type composition per replicate and strain; labels were obtained by reference-based 
classification using mouse kidney data from Denisenko et al. [14] as reference. F UMAP visualization of M. m. 
castaneus cells in single-cell replicate 2, colored by assigned cell type. PT, proximal tubule; CD_IC, intercalated 
cells of collecting duct; CD_PC, principal cells of collecting duct; CD_Trans, transitional cells of collecting 
duct; CNT, connecting tubule; DCT, distal convoluted tubule; Endo, endothelial; Fib, fibroblasts; aLOH, 
ascending loop of Henle; dLOH, descending loop of Henle; MC, mesangial cells; Podo, podocytes
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Encouragingly, the cell type composition is very similar across mouse strains as well as 
replicates with proximal tubule cells constituting 66–89% of the cells (Fig. 1E, F; Addi-
tional file 1: Fig. S3). Secondly, due to the higher similarity of the mouse subspecies, we 
can identify contaminating reads for the same features. ∼ 7, 000 genes carry at least one 
informative SNP about the subspecies. Because so many genes have informative SNPs, 
the fraction of UMIs that cover an informative SNP is a little higher for PTs, the most 
frequent cell type, but very comparable across all other cell types, allowing us to quantify 
contaminating reads (Additional file 1: Fig. S1A).

Background noise fractions differ between replicates and cells

Around 5–20% of the UMI counts are from molecules that contain a SNP that is inform-
ative about the subspecies of origin. We quantify in each M. m. castaneus cell how often 
an endogenous M. m. castaneus allele or a foreign M. m. domesticus allele was covered. 
Assuming that the count fractions covering the SNPs are representative of the whole cell, 
we detect a median of 2–27% counts from the foreign genotype over all cells per experi-
ment (Additional file 1: Fig. S1C). This observed cross-genotype contamination fraction 
represents a lower bound of the overall amounts of background noise. As suggested in 
Heaton et al. [15], we then integrate over the foreign allele fractions of all informative 
SNPs to obtain a maximum likelihood estimate of the background noise fraction ( ρcell ) 
of each cell that extrapolates to also include contamination from the same genotype 
(see the “Methods” section, Additional file 1: Fig. S2). Based on these estimates, we find 
that background noise levels vary considerably between replicates and do not appear 
to depend on the overall success of the experiment measured as the cell yield per lane 
(Fig. 2). For example in scRNA-seq rep3 (3900 cells), we detected overall the fewest good 
cells, but most of those cells had less than 3% background noise, while the much more 
successful rep2 (15,000 cells) we estimated the median background noise level at around 
11% (Fig. 2A). This said, the snRNA-seq data generated from frozen tissue have much 
higher background levels than the corresponding scRNA-seq replicates — 35% in nuc2 
vs. 11% rep2 and 17% in nuc3 vs. 3% in rep3. How we define good cells based on the UMI 
counts has little impact on this variability. We still find by far the highest background 
levels in nuc2 and the lowest in rep3 (Additional file 1: Fig. S4). This high variability is 
not very surprising. This being a real life experiment and experimental conditions were 
improved for nuc3 based on the experience with nuc2 (see the “Methods” section). The 

Fig. 2  The level of background noise is variable across replicates and single cells. A Estimated fraction 
of background noise per cell. The replicates on the x-axis are ordered by ascending median background 
noise fraction. B In M. m. castaneus cells both endogenous M. m. castaneus specific alleles (x-axis) and M. m. 
domesticus specific alleles (y-axis) have coverage in each cell. The detection of M. m. domesticus specific alleles 
can be seen as background noise originating from cells of a different mouse
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number of contaminating RNA-molecules (UMIs) depends only weakly on the total 
UMI counts covering informative variants as a proxy for sequencing depth of the cell 
(Fig. 2B, Additional file 1: Table S1). Such a weak correlation could be explained by vari-
ation in the capture efficiency in each droplet. An alternative, but not mutually exclusive 
explanation of such a correlation could be that the source of some contaminating mol-
ecules is barcode swapping that can occur during library amplification.

However, by and large the absolute amount of background noise is approximately con-
stant across cells and thus the contamination fraction mainly depends on the amount of 
endogenous RNA: the larger the cell, the smaller the fraction of background noise, point-
ing towards ambient RNA as the major source of the detected background (Fig. 2B).

Contamination profiles show a high similarity to ambient RNA profiles

In order to better understand the effects of background noise, it is helpful to understand 
its origins and composition. To this end, we constructed profiles representing endog-
enous, contaminating and ambient expression profiles by using M. m. domesticus allele 
counts in M. m. domesticus cells (endogenous), M. m. domesticus allele counts in M. m. 
castaneus cells (contamination) and M. m. domesticus allele counts in empty droplets 
(empty) (Fig. 3A , B; Additional file 1: Fig. S5A-E).

The number of contaminating UMI counts per cell is at a similar level as the UMI 
counts in empty droplets in all replicates (Fig. 3C, Additional file 1: Fig. S5F). Moreover, 
if the median UMI count in empty droplets is high for one replicate, we also observe 

Fig. 3  Characterization of ambient RNA in cells and empty droplets. A Ordering droplet barcodes by their 
total UMI count to distinguish cell-containing droplets with high UMI counts from empty droplets that only 
contain cell-free ambient RNA and are identifiable as a plateau in the UMI curve, shown here for replicate 
2. B UMI counts of reads covering M. m. domesticus specific alleles were used to construct three profiles 
depending on whether they were associated with M. m. domesticus cell barcodes (endogenous counts, 
endo), M. m. castaneus cell barcodes (contaminating counts, cont) or empty droplet barcodes (empty). 
Counts from droplets that are not clearly assignable as cell-containing or empty were excluded from further 
analysis (other). C UMI counts per cell for each of the three profiles. D Spearman rank correlation between 
pseudobulk profiles. Error bars indicate 95% confidence intervals obtained by bootstrapping over genes. E 
Deconvolution of cell type contributions to each pseudobulk profile, exemplified by replicates rep2 and nuc2. 
The stacked barplots depict the estimated fraction of each cell type in the profile as inferred by SCDC using 
the annotated single cell data of each replicate as reference. PT, proximal tubule; CD_IC, intercalated cells of 
collecting duct; CD_PC, principal cells of collecting duct; CD_Trans, transitional cells of collecting duct; CNT, 
connecting tubule; DCT, distal convoluted tubule; Endo, endothelial; Fib, fibroblasts; aLOH, ascending loop of 
Henle; dLOH, descending loop of Henle; MC, mesangial cells; Podo, podocytes. F Fraction of reads covering 
intronic variants in each of the three profiles
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more contaminating UMIs, which is also consistent with ambient RNA as the main 
source for background noise.

In addition, when comparing pseudobulk aggregates of the three scRNA-seq replicates, 
we find that the contamination profiles correlate highly and similarly well with empty 
(Spearman’s ρ = 0.73− 0.85 ) and endogenous profiles (Spearman’s ρ = 0.70− 0.87 ), 
while for the nuc2 and nuc3 the contamination profiles are clearly more similar to the 
empty (Spearman’s ρ ∼ 0.85 ) than to the endogenous profiles (Spearman’s ρ ∼ 0.50 ) 
(Fig. 3B).

Using deconvolution analysis[16], we reconstructed the cell type composition from 
the pseudobulk profiles. In agreement with the correlation analysis, we find that in our 
scRNA-seq data the cell type compositions inferred for endogenous, contamination and 
empty counts are by and large similar with a slight increase in the PT-profile in empty 
droplets, suggesting that this cell type is more vulnerable to dissociation procedure than 
other cell types. In contrast, deconvolution of the empty droplet and contamination 
fraction of nuc2 and nuc3, that in contrast to the scRNA-seq data were prepared from 
frozen samples, shows a clear shift in cell type composition with a decreased PT fraction 
(Fig. 3C, Additional file 1: Fig. S6).

Moreover, we expect that cytosolic mRNA contributes more to the contaminat-
ing profile than to the endogenous profile. Indeed, in our snRNA-seq data we find that 
in good nuclei (endogenous molecules) more than 25% of the allele counts fall within 
introns, while out of the molecules from empty droplets less than 18% fall within introns 
(Fig. 3D). Similarly also in the scRNA-seq data, we find with ∼ 14% more intron vari-
ants than in empty droplets. The intron fraction of the contaminating molecules lies in-
between the endogenous and the empty droplet fraction, but is in all cases much closer 
to the empty intron fraction, thus suggesting again that the majority of the background 
noise likely originates from ambient RNA.

Only little evidence for barcode swapping

In addition to ambient RNA, barcode swapping resulting from chimera formation dur-
ing PCR amplification can also contribute to background noise. With the 12bp UMIs 
from 10x, the probability that we capture the same UMI-cell barcode combination 
twice independently is very low, hence how often we find the same combination of cell 
barcode and UMI associated with more than one gene is a good measure for barcode 
swapping [7]. The median fraction of such chimeric molecules varies between 0.2% for 
rep3 and 0.7% for nuc3 (Additional file 1: Fig. S7A). In line with our expectations out-
lined before, the absolute amount of swapping per cell correlates strongly with the total 
molecule count (Additional file 1: Table S1). In combination with the weak correlation 
between the number of contaminating with endogenous molecule counts, this supports 
the notion that the majority of background noise does not come from swapping. To be 
more quantitative, we combine the swapping and the total background fractions to esti-
mate how much swapping could contribute to the total background and find that the 
median contribution of barcode swapping to background noise is lower than 10% for all 
replicates (Additional file 1: Fig. S7B).

Furthermore, molecules with a swapped barcode are expected to have a lower aver-
age number of reads per UMI. This is because chimera that are formed late during PCR 
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subsequently undergo less amplification [7]. Thus, if the majority of contaminating 
reads were to originate from barcode swapping, we would expect that the distribution 
of reads per UMI for cross-genotype contaminating molecules (cont) is similar to that 
of observed chimeras. This is not what we see (Additional file 1: Fig. S7C): The distribu-
tion of reads per UMI for contaminating reads is much more distinct from the distri-
bution for chimeras (Kolmogorov-Smirnov distance, �n = 0.381 (rep3) to 0.595 (nuc3)) 
than for endogenous reads ( �n = 0.008 (rep2) to 0.046 (rep3)). In summary, we find that 
barcode swapping during library preparation only contributes little to the overall back-
ground noise in this data.

The impact of contamination on marker gene analyses

The ability to distinguish hitherto unknown cell types and states is one of the greatest 
achievements made possible by single cell transcriptome analyses. To this end, marker 
genes are commonly used to annotate cell clusters for which available classifications 
appear insufficient. An ideal marker gene would be expressed in all cells of one type 
but in none of the other present cell types. Thus, when comparing expression levels of 
one cell type versus all others, we expect high log2-fold changes, the higher the change 
the more reliable the marker. However, such a reliance on marker genes also makes this 
type of analysis vulnerable to background noise. Our whole kidney data can illustrate 
this problem well, because with the very frequent proximal tubular (PT) cells we have 
a dominant cell type for which rather specific marker genes are known [17]. Slc34a1 
encodes a phosphate transporter that is known to be expressed exclusively in PT cells 
[18, 19]. As expected, it is expressed highly in PT cells, but it is also present in a high 
fraction of other cells (Fig.  4A, E; Additional file  1: Fig. S8). Moreover, the log2-fold 
changes of Slc34a1 are smaller in replicates with larger background noise, indicating that 

Fig. 4  Background noise affects differential expression and specificity of cell type specific marker genes. 
A UMAP representation of replicate 2 colored by the expression of Slc34a1, a marker gene for cells of the 
proximal tubule (PT). Besides high counts in a cluster of PT cells, Slc34a1 is also detected in other cell type 
clusters. Differential expression analysis between PT and all other cells shows a decrease of the detected log 
fold change of Slc34a1 (B) at higher background noise levels, as well as an increase of the fraction of non PT 
cells in which UMI counts of Slc34a1 were detected (C). D Estimation of the background noise fraction of 
Slc34a1 expression indicates that the majority of counts in non PT cells originates from background noise. 
Error bars indicate 90% profile likelihood confidence intervals. E Heatmap of marker gene expression for 
four cell types in replicate 2, downsampled to a maximum of 100 cells per cell type. F Comparison across 
replicates of log2 fold changes of 10 PT marker genes calculated based on the mean expression in PT cells 
against mean expression in all other cells. G For the same set of genes as in E, the log ratio of fraction of cells 
in which a gene was detected in others and PT cells shows how specific the gene is for PT cells
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the detection of Slc34a1 in non-PT cells is likely due to contamination (Fig. 4B–D). We 
observe the same pattern for other marker genes as well: they are detected across all 
cell types (Fig. 4E, Additional file 1: Fig. S9) and an increase of background noise levels 
goes along with decreasing log2-fold changes and increasing detection rates in other cell 
types (Fig.  4F,G). Thus, the power to accurately detect marker genes decreases in the 
presence of background noise.

Benchmark of background noise estimation tools

Given that background noise will be present to varying degrees in almost all scRNA-
seq and snRNA-seq replicates, the question is whether background removal methods 
can alleviate the problem without the information from genetic variants. SoupX [11], 
DecontX [16] and CellBender [4], all provide an estimate of the background noise level 
per cell. Here, we use our genotype-based background estimates as ground truth to 
compare it to the estimates of the three background removal methods (Fig. 5A, Addi-
tional file  1: Fig. S10). All methods have adjustable parameters, but also provide a set 
of defaults. For CellBender the user can adjust the nominal false positive rate to put 
a cap on losing information from true counts. For SoupX and DecontX the resolu-
tion of the clustering of cells that is later used to model the endogenous counts can be 
adjusted. In addition, SoupX can be provided with an expected background level and 
for DecontX the user can provide a custom background profile rather than using the 

Fig. 5  Accuracy of computational background noise estimation. A Estimated background noise levels 
per cell based on genetic variants (gray) and different computational tools. B Taking the genotype-based 
estimates as ground truth, Root Mean Squared Logarithmic Error (RMSLE) and Kendall rank correlation serve 
as evaluation metrics for cell-wise background noise estimates of different methods. Low RMSLE values 
indicate high similarity between estimated values and the assumed ground truth. High values of Kendall’s τ 
correspond to good representation of cell to cell variability in the estimated values
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default estimation strategy for the background profile. At least with our reference data-
set, CellBender does not seem to profit from changing the defaults, while SoupX’s per-
formance is boosted, if provided with realistic background levels (Additional file 1: Fig. 
S15). Because in a real case scenario, the true background level is unknown, we decided 
to report the SoupX performance metrics under default settings. DecontX defaults to 
estimating the putative background profile from averaging across intact cells. To ensure 
comparability, we report DecontX’s performance with empty droplets as background 
profile (DecontXbackground ) in addition to DecontX with default settings (DecontXdefault).

We find that CellBender and DecontX can estimate background noise levels similarly 
well for the scRNA-seq replicates, while SoupX tends to underestimate background 
levels and also cannot capture the cell to cell variation as measured by the correlation 
with the ground truth (Fig. 5B). For nuc2 and nuc3 , SoupX performs better at estimat-
ing global background levels, but as for the scRNA-seq still cannot capture cell to cell 
variation. In contrast, both CellBender and DecontX perform worse for nuc2 and nuc3. 
Moreover for nuc2 and nuc3, DecontX with default setting provides worse estimates 
than with empty droplets as background profile.

All in all, CellBender shows the most robust performance across replicates with default 
settings, while DecontX’ and SoupX’ performance seems to require parameter tuning. 
A drawback of CellBender is its runtime. While SoupX and DecontX take seconds and 
minutes to process one 10× channel, CellBender takes ∼ 45 CPU hours. However, paral-
lelization is possible.

All methods struggled most with the nuc3 replicate that has the fewest M. m. cas-
taneus cells and the lowest cell type diversity among our five data sets (Fig. 1B, E). This 
also presents a problem for other downstream analyses and thus we do not consider 
nuc3 further.

Effect of background noise removal on marker gene detection

Above we have shown that computational methods can estimate background noise lev-
els per cell. Moreover, all three methods provide the user with a background corrected 
count matrix for downstream analysis. Here, we compare the outcomes of marker 
gene detection, clustering and classification when using corrected count matrices from 
SoupX, DecontX, and CellBender (Fig. 6A, Additional file 1: Fig. S11). To characterize 
the impact on marker gene detection, we first check in how many cells an unexpected 
marker gene was detected; for example, how often Slc34a1 was detected in cells other 
than PTs (Fig. 6B). Without correction we find Slc34a1 reads in ∼ 60% of non-PT cells 
of rep2, SoupX reduces this rate to 54%, CellBender to 7% and DecontXbackground to 
9%. DecontXdefault manages to remove most contaminating reads reducing the Slc34a1 
detection rate outside PTs to 2%. While we find a similar ranking when averaging across 
several marker genes from the PanglaoDB database [17] and scRNA-seq replicates 
(Fig. 6C), the ranking changes for nuc2: DecontXdefault fails: after correction, Slc34a1 is 
still found in 87% of non-PT cells while DecontXbackground is better with a rate of 20%. 
Here, CellBender and SoupX are clearly better with reducing the Slc34a1 detection rate 
to 4% and < 1% , respectively (Additional file 1: Fig. S12).

Even though the changes in the marker gene detection rates outside the designated 
cell type seem dramatic (Additional file 1: Fig. S13A), the identification of marker genes 
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[21] is affected only a little. CellBender correction has the largest effect on marker gene 
detection, yet 8 from the top 10 genes without correction remain marker genes with 
CellBender correction (Spearman’s correlation for top 100 ρ = 0.84 ). In contrast, in 
the nuc2 data with high background levels, the change in marker gene detection is dra-
matic. Here, only one of the top 10 marker genes remains after correction (Spearman’s 

Fig. 6  Effect of background removal on downstream analysis. A UMAP representation of replicate 2 
single-cell data before and after background noise correction, colored by cell type labels obtained from 
reference based classification. Individual cells that received a new label after correction are highlighted. 
PT, proximal tubule; CD_IC, intercalated cells of collecting duct; CD_PC, principal cells of collecting duct; 
CD_Trans, transitional cells of collecting duct; CNT, connecting tubule; DCT, distal convoluted tubule; Endo, 
endothelial; Fib, fibroblasts; aLOH, ascending loop of Henle; dLOH, descending loop of Henle; MC, mesangial 
cells; Podo, podocytes. B Expression of the PT cell marker Slc34a1 before and after background noise 
correction in replicate 2. Cells that were classified as PT cells in the uncorrected data, but got reassigned after 
correction, are highlighted. C, D Differential expression analysis of 10 PT markers, evaluating the expression 
fraction in non-PT cells (C) and the log2 fold change between PT and all other cells (D). E Evaluation metrics 
for the effect of background noise correction on classification and clustering. For each metric the change 
relative to the uncorrected data is depicted. The values were scaled by the possible range of each metric. 
Prediction score: cell-wise score “delta” of reference based classification with SingleR [20]. Average silhouette: 
Mean of silhouette widths per cell type. Purity: Cluster purity calculated on cell type labels as ground truth 
and Louvain clusters as test labels. k-NN overlap: overlap of the k=50 nearest neighbors per cell compared to 
genotype-cleaned reference k-NN graph
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correlation for top 100 ρ = 0.04 ). The largest improvement is achieved with CellBender: 
After correction, four out of the top 10 were known marker genes [17], while this over-
lap amounted to only one in the raw data (Additional file 1: Fig. S13B). Moreover, we 
find that background removal also increases the detected log-fold-changes of known 
marker genes across all replicates and methods, with CellBender providing the largest 
improvement (Fig. 6D, Additional file 1: Fig. S13C).

Effect of background noise removal on classification and clustering

One of the first and most important tasks in single cell analysis is the classification of cell 
types. As described above, we could identify 13 cell types in our uncorrected data using 
an external single cell reference dataset [14, 20]. Going through the same classification 
procedure after correction for background noise, changes the classification of only very 
few cells (Fig. 6A, Additional file 1: Fig. S11). For the scRNA-seq experiments < 1% and 
for the nuc2 up to 1.3% of cells change labels after background removal compared to the 
classification using raw data. Before correction, these cells are mostly located in clusters 
dominated by a different cell type (Fig. 6A). Moreover, these cells tend to have higher 
background levels as exemplified by the PT-marker gene Slc34a1 (Fig. 6B). Finally, back-
ground removal —  irrespective of the method - improves the classification prediction 
scores (Fig.  6E, Additional file  1: Fig. S14). Together, this indicates that background 
removal improves cell type classification.

Similarly, background removal also results in more distinct clusters. Here, we reason 
that cells of the same cell type should cluster together and evaluate the impact of back-
ground removal (1) on the silhouette scores for cell types and (2) on the cell type purity 
of each cluster using unsupervised clustering (Fig. 6E). For the scRNA-seq data DecontX 
results in the purest and most distinct clusters, while for the nuc2 data SoupX wins in 
these categories.

All in all, it seems clear that all background removal methods sharpen the broad struc-
ture of the data a little, but how about fine structure? To answer this question, we turn 
again to the genotype cleaned data to obtain a ground truth for the k-nearest neighbors 
of a cell and calculate how much higher the overlap of the background corrected data is 
with this ground truth as compared to using the raw data (Fig. 6E). For the scRNA-seq 
data, DecontX has the largest improvement on the broad structure, but at same time 
in particular DecontXbackground lowers the overlap in k-NN with our assumed ground 
truth, suggesting that this change in structure is a distortion rather than an improve-
ment. SoupX leaves the fine structure by and large unchanged in the scRNA-seq data, 
while both CellBender and DecontX make the fine structure slightly worse. In contrast, 
for the high background levels of the nuc2, all background removal methods achieve an 
improvement, with SoupX and CellBender performing best.

Discussion
Here we provide a dataset for the characterization of background noise in 10× Genom-
ics data that is ideal to benchmark background removal methods. The mixture of cell 
types in our kidney data provides us with realistic cell type diversity and the mixture of 
mouse subspecies enables us to identify foreign alleles in a cell, thus resulting in a data-
set that allows us to quantify background noise across diverse cell types and features. In 
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addition, the replicates exhibit varying degrees of contamination, enabling us to evaluate 
the effects of low, intermediate, and high background levels. Given that every sample 
poses new challenges for the preparation of a suspension of intact cells or nuclei that 
is needed for a 10× experiment, we expect that such variability in sample quality is not 
unusual. Consequently, marker gene identification is affected and markers appear less 
specific, as they are detected in cell types where they are not expressed. The degree of 
this issue directly depends on background noise levels (Fig. 4). This particular problem 
has been observed previously and has been used as a premise to develop background 
correction methods [4, 11, 22].

The novelty of this analysis is that —  thanks to the mix of mouse subspecies — we 
are able to obtain expression profiles that describe the source of contamination in each 
sample and also have a ground truth for a more realistic dataset. We started to char-
acterize background noise by comparing the contamination profile with the profile of 
empty droplets and that of endogenous counts of good cells. In agreement with the idea 
that ambient RNA is due to leakage of cytosol, we find that empty droplets show less 
evidence for unspliced mRNA molecules and that the unspliced fraction in the contami-
nation profiles is similar to that of empty droplets. This is a first hint that a large pro-
portion of the background noise is ambient RNA. In addition, we find only little direct 
evidence for barcode swapping as provided by chimeric UMIs, which only explains up 
to 10% of background noise (Additional file 1: Fig. S7B). Hence, also the observed cor-
relation between cell size and the absolute amounts of background noise per cell in most 
of the replicates is likely due to variation in dropout rates [4] (Fig. 2B, Additional file 1: 
Table S1).

Another important insight from comparing contamination, empty and endogenous 
profiles is that we can deduce the origin of the contamination. While for rep1-3 all three 
profiles are highly correlated and are the result of very similar cell type mixtures, for 
nuc2 and nuc3 the empty and the contamination profiles are distinct from the expected 
endogenous mixture profile. Encouragingly the endogenous profiles of all replicates 
agree well with one another as well as with the cell type proportions from the literature 
[14, 23]. Moreover, the higher similarity of the contamination to the empty than to the 
endogenous profile supports the notion that the majority of background noise is ambi-
ent RNA and hence using the empty rather than the endogenous profile as a reference 
to model background noise is the better choice for our data. Indeed, the performance 
of DecontX for nuc2 is improved by providing the empty droplet profile as compared 
to the endogenous profile which is the default (Fig. 5A). We also observed that SoupX 
performs much better for the snRNA-seq data than the scRNA-seq data. We speculate 
that the marker gene identification that is the basis for estimating the experiment-wide 
average contamination is hampered by the fact that our dataset has one very dominant 
cell type that has the same prevalence in the empty droplets, thus masking all back-
ground. However, even if SoupX gets the overall background levels right, it by design 
grossly underestimates the variance among cells and cannot capture the cell to cell vari-
ation (Fig. 5B, C). Overall CellBender provides the most accurate estimates of the back-
ground noise levels and also captures the cell to cell variation rather well. We note that 
this finding is largely due to the robustness of CellBender to cell type composition and 
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the source of contamination, that determines the similarity between the contamination 
and the endogenous profiles.

In line with this, also marker gene detection is most improved by CellBender, which 
is the only method that removes marker gene molecules from other cell types and 
increases the log-fold-change consistently well. The effect of background removal on 
other downstream analyses is much more subtle. For starters, classification using an 
external reference is rather robust. Even with high levels of background noise, back-
ground removal improves classification only for a handful of cells and we cannot say 
that one method outperforms the others (Fig. 6E, Additional file 1: Fig. S14). Similarly, 
the broad structure of the data improves only minimally and this minimal improvement 
comes at the cost of disrupting fine structure (Fig. 6E). Here, again CellBender strikes 
the best balance between removing variation but preserving the fine structure, while 
DecontX tends to remove too much within-cluster variability, as the k-NN overlap with 
the genotype-based ground truth for DecontX is even lower than for the raw data. All in 
all, CellBender shows the best performance in removing background noise.

Conclusions
Levels of background noise can be highly variable within and between replicates and 
the contamination profiles do not always reflect the cell type proportions of the sam-
ple. Marker gene detection is affected most by this issue, in that known cell type spe-
cific marker genes can be detected in cell clusters where they do not belong. Existing 
methods for background removal are good at removing such stray marker gene molecule 
counts. In contrast, classification and clustering of cells is rather robust even at high 
levels of background noise. Consequently, background removal improves the classifica-
tion of only few cells. Moreover, it seems that for low and moderate background levels 
the tightening of existing broad structures may go at the cost of fine structure. In sum-
mary, for marker gene analysis, we would always recommend background removal, but 
for classification, clustering and pseudotime analyses, we would only recommend back-
ground removal when background noise levels are high.

Methods
Mice

Three mouse strains were ordered from Jackson Laboratory at 6–8 weeks of age: 
C57BL/6J (000664), CAST/EiJ (000928), and 129S1/SvlmJ (002448). All animals were 
subjected to intracardiac perfusion of PBS to remove blood. Kidneys were dissected, 
divided into 1/4s, and subjected to the tissue dissociation protocol, stored in RNAlater, 
or snap-frozen in liquid nitrogen.

Tissue dissociation for single cell isolation

The single cell suspensions were prepared following an established protocol [24] with 
minor modifications. In detail, one of each kidney sagittal quarter from three perfused 
mice of different strains C57BL/6, CAST/EiJ and 129S1/SvImJ were harvested into 
cold RPMI (Thermo Fisher Scientific, 11875093) with 2% heat-inactivated Fetal Bovine 
Serum (Gibco, Thermo Fisher Scientific, 16140-071; FBS) and 1% penicillin/strepto-
mycin (Gibco, Thermo Fisher Scientific, 15140122). Each piece of the tissue was then 
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minced for 2 min with a razor blade in 0.5 ml 1x liberase TH dissociation medium (10x 
concentrated solution from Millipore Sigma, 05401135001, reconstituted in DMEM/
F12(Gibco, Thermo Fisher Scientific, 11320-033 in a petri dish on ice. The chopped tis-
sue pieces were then pooled into one 1.5 ml Eppendorf tube and incubated in a ther-
momixer at 37◦ C for 1 hour at 600rpm with gentle pipetting for trituration every 10 
min. The digestion mix was then transferred to a 15 ml conical tube and mixed with 10 
ml 10% FBS RPMI. After centrifugation in a swinging bucket rotor at 500g for 5 min at 
4 °C and supernatant removal, the pellet was resuspended in 1ml red blood cell lysing 
buffer (Sigma Aldrich, R7757). The suspension was spun down at 500g for 5 min at 4 °C 
followed by supernatant removal. The pellet cleared of the red blood cell ring was then 
resuspended in 250 µ l Accumax (Stemcell Technologies, 7921) and incubated at 37 °C 
for 3 mins. The reaction was stopped by mixing with 5 ml 10% FBS RPMI and spinning 
down at 500g for 5 min at 4 °C followed by supernatant removal. The cell pellet was then 
resuspended in PBS with 0.4% BSA (Sigma, B8667) and passed through a 30 µ m filter 
(Sysmex, 04-004-2326). The cell suspension was then assessed for viability and concen-
tration using the K2 Cellometer (Nexcelom Bioscience) with the AOPIcell stain (Nexce-
lom Bioscience, CS2-0106-5ML).

Nuclei isolation from RNAlater preserved frozen tissue

The single nuclei suspensions were prepared following an established protocol [25] with 
minor modifications. In detail, the RNAlater reserved frozen tissue of 3 mice kidney 
quarters were thawed and transferred to one petri dish preloaded with 1 ml TST buffer 
containing 10 mM Tris, 146 mM NaCl, 1 mM CaCl2, 21 mM MgCl2, 0.03% Tween-20 
(Roche, 11332465001), and 0.01% BSA (Sigma, B8667). It was minced with a razor blade 
for 10 min on ice. The homogenized tissue was then passed through a 40 µ m cell strainer 
(VWR, 21008-949) into a 50 ml conical tube. One ml TST buffer was used to rinse the 
petri dish and collect the remaining tissue into the same tube. It was then mixed with 3 
ml of ST buffer containing 10 mM Tris, 146 mM NaCl, 1 mM CaCl2, and 21 mM MgCl2 
and spun down at 500g for 5 min at 4 °C followed by supernatant removal. In the second 
experiment this washing step was repeated 2 more times. The pellet was resuspended in 
100 µ l ST buffer and passed through a 35 µ m filter. The nuclei concentration was meas-
ured using the K2 Cellometer (Nexcelom Bioscience) with the AO nuclei stain (Nexce-
lom Bioscience, CS1-0108-5ML).

Single‑cell and single‑nucleus RNA‑seq

The cells or nuclei were loaded onto a 10× Chromium Next GEM G chip (10x Genom-
ics, 1000120) aiming for recovery of 10,000 cells or nuclei. The RNA-seq libraries were 
prepared using the Chromium Next GEM Single Cell 3’ Reagent kit v3.1 (10× Genom-
ics, 1000121) following vendor protocols. The libraries were pooled and sequenced on 
NovaSeq S1 100c flow cells (Illumina) with 28 bases for read1, 55 bases for read2 and 8 
bases for index1 and aiming for 20,000 reads per cell.

Processing and annotation of scRNA‑seq and snRNA‑seq data

The scRNA-seq and snRNA-seq data were processed using Cell Ranger 3.0.2 using as 
reference genome and annotation mm10 version 2020A for the scRNA-seq data and and 

2.1 The effect of background noise and its removal on the analysis of
single-cell expression data 45



Page 16 of 22Janssen et al. Genome Biology          (2023) 24:140 

a pre-mRNA version of mm10 2.1.0 as reference for snRNA-seq. In order to identify cell 
containing droplets we processed the raw UMI matrices with the DropletUtils package 
[5]. The function barcodeRanks was used to identify the inflection point on the total 
UMI curve and the union of barcodes with a total UMI count above the inflection point 
and Cell Ranger cell call were defined as cells.

For cell type assignment we used 3 scRNA-seq and 4 snRNA-seq experiments from 
Denisenko et al. [14] as a reference. Cells labeled as “Unknown” (n=46), “Neut” (n=17) 
and “Tub” (n=1) were removed. The reference was log-normalized and split into seven 
count matrices based on chemistry, preservation and dissociation protocol. Subse-
quently, a multi-reference classifier was trained using the function trainSingleR with 
default parameters of the R package SingleR version 1.8.1 [20]. After this processing, we 
could use the data to classify our log-normalized data using the classifySingleR function 
without fine-tuning (fine.tune = F). Hereby, each cell is compared to all seven references 
and the label from the highest-scoring reference is assigned. Some cell type labels were 
merged into broader categories after classification: cells annotated as “CD_IC,” “CD_
IC_A,” or “CD_IC_B” were relabeled as “CD_IC,” cells annotated as “T,” “NK,” “B,” or 
“MPH” were relabeled as “Immune.” Cells that were unassigned after pruning of assign-
ments based on classification scores were removed for subsequent analyses.

Demultiplexing of mouse strains

A list of genetic variants between mouse strains was downloaded in VCF format from 
the Mouse Genomes Project [13], accessed on 21 October 2020. This reference VCF file 
was filtered for samples CAST_EiJ, C57BL_6NJ and 129S1_SvImJ and chromosomes 
1–19. Genotyping of single barcodes was performed with cellsnp-lite [26], filtering for 
positions in the reference VCF with a coverage of at least 20 UMIs and a minor allele fre-
quency of at least 0.1 in the data (–minCOUNT 20, –minMAF 0.1). Vireo [22] was used 
to demultiplex and label cells based on their genotypes. Only cells that could be unam-
biguously assigned to CAST_EiJ (CAST), C57BL_6NJ (BL6) or 129S1_SvImJ (SvImJ) 
were kept, cells labeled as doublet or unassigned were removed.

Genotype‑based estimation of background noise

Based on the coverage filtered VCF-file (see above), we identified homozygous SNPs that 
distinguish the three strains and removed SNPs that had predominantly coverage in only 
one of the strains (1st percentile of allele frequency).

In most parts of the analysis, we focused on the comparison between the mouse sub-
species, M. m. domesticus and M. m. castaneus. To this end, we subseted reads (UMI-
counts) that overlap with SNPs that distinguish the two mouse subspecies.

To estimate background noise levels based on allele counts of genetic variants, an 
approach described in Heaton et  al.[15] was adapted to estimate the total amount of 
background noise for each cells. First, the abundance of endogenous and foreign allele 
counts (i.e., cross-genotype background noise) was quantified per cell. Because of the 
filter for homozygous variants, there are two possible genotypes for each locus, denoted 
as 0 for the endogenous allele, i.e., the expected allele based on the strain assignment of 
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the cell, and 1 for the foreign allele. The probability for observable background noise at 
each locus l in cell c is given by

where ρc is the total background noise fraction in a cell and the experiment wide (over 
cells and empty droplets) foreign allele fraction is calculated from the foreign allele 
counts Al,1 and the endogenous allele counts Al,0 . The foreign allele fraction is then used 
to account for intra-genotype background noise (contamination within endogenous 
allele counts).

The observed allele counts Ac per cell are modeled as draws from a binomial distribu-
tion with the likelihood function:

A maximum likelihood estimate of ρc was obtained using one dimensional optimiza-
tion in the interval [0,1].

The 95% confidence interval of each ρc estimate was calculated as the profile likelihood 
using the function uniroot of the R package stats [27].

Comparison of endogenous, contamination, and empty droplet profiles

Empty droplets were defined based on the UMI curve of the barcodes ranked by UMI 
counts, thus selecting barcodes from a plateau with ∼ 500− 1000 UMIs (Additional 
file 1: Fig. S5). For the following analysis, the presence of M. m. domesticus alleles in M. 
m. domesticus cells (i.e., endogenous), in M. m. castaneus cells (i.e., contamination) and 
empty droplets was compared. After this filtering, we summarized counts per gene and 
across barcodes of the same category to generate pseudobulk profiles.

In order to estimate cell type composition in the empty and contamination profiles, we 
used the deconvolution method implemented in SCDC[16], the endogenous single cell 
allele counts from the respective replicate were used as reference (qcthreshold = 0.6). 
In addition, cell type filtering (frequency>0.75%) was applied. Endogenous, contamina-
tion and empty pseudobulk profiles from each replicate were deconvoluted using their 
respective single cell/single nucleus reference.

To compare the correlation between the different profiles, pseudobulk counts were 
downsampled to the same total size.

Detection of barcode swapping events

Information about the number of reads per molecule and the combination of cell bar-
code (CB), UMI and gene were extracted from the molecule info file in the Cellranger 
output. We assume that a combination of CB and UMI corresponds to a single origi-
nal molecule. Thus we define a PCR chimera as a non-unique CB-UMI combination in 
which multiple genes were associated with the same CB and UMI. Since we can only 
detect PCR chimera, if we detect at least 2 reads for a CB-UMI combination, we also 

(1)p = ρc ∗
Al,1

Al,0 + Al,1

(2)P(Ac|ρc) =

l∈L

Al,c,0 + Al,c,1

Al,c,1
pAl,1(1− p)Al,0
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restrict the total molecule count to CB-UMI combinations with at least 2 reads for the 
calculation of the chimera fraction.

For the comparison of reads/UMI the identified chimera were intersected with iden-
tified cross-genotype contamination. To this end, the the analysis was restricted to M. 
m. castaneus cells and CB-UMI-gene combinations which can be associated with an 
informative SNP. The number of reads/UMI was summarized per CB-UMI-gene com-
bination for chimera (as defined above), unique CB-UMI-gene combinations with cov-
erage for an endogenous allele (endo) and unique CB-UMI-gene combinations with 
coverage for a foreign allele (cont).

Evaluation of marker gene expression

A list of marker genes for Proximal tubule cells (PT), Principal cells (CD_PC), Interca-
lated cells (CD_IC), and Endothelial cells (Endo) was downloaded from the public data-
base PanglaoDB [17], accessed on 13 May 2022.

Log2 fold changes contrasting PT cells against all other cells were calculated with 
Seurat using the function FindMarkers after normalization with NormalizeData. The 
expression fraction e of PT markers was calculated as the fraction of cells for which 
at least 1 count of that gene was detected. To contrast expression fraction in PT cells 
against non-PT, the negative log-ratio was calculated as −log((ePT + 1)/(enon−PT + 1)).

Computational background noise estimation and correction methods

CellBender [4] makes use of a deep generative model to include various potential sources 
of background noise. Cell states are encoded in a lower-dimensional space and an inte-
ger matrix of noise counts is inferred, which is subsequently subtracted from the input 
count matrix to generate a corrected matrix.

The remove-background module of CellBender v0.2.0 was run on the raw feature bar-
code matrix as input, with a default fpr value of 0.01. For the comparison of different 
parameter settings, fpr values of 0.05 and 0.1 were also included in the analysis. For the 
parameter expected-cells the number of cells after cell calling and filtering in each repli-
cate was provided. The parameter total-droplets-included was set to 25,000.

SoupX [11] estimates the experiment-wide amount of background noise based on the 
expression of strong marker genes that are expected to be expressed exclusively in one 
cell type. These genes can either be provided by the user or identified from the data. A 
profile of background noise is inferred from empty droplets. This profile is subsequently 
removed from each cell after aggregation into clusters to generate a corrected count 
matrix.

Cluster labels for SoupX were generated by Louvain clustering on 30 principal compo-
nents and a resolution of 1 as implemented by FindClusters in Seurat after normalization 
and feature selection of 5000 genes. Providing the CellRanger output and cluster labels 
as input, data were imported into SoupX version 1.6.1 and the background noise profile 
was inferred with load10X. The contamination fraction was estimated using autoEst-
Cont and background noise was removed using adjustCounts with default parameters.

For the comparison of parameter settings, different resolution values (0.5, 1, 2) for 
Louvain clustering were tested, alongside with manually specifying the contamination 
fraction (0.1, 0.2).
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DecontX  [8] is a Bayesian method that estimates and removes background noise by 
modeling the expression in each cell as a mixture of multinomial distributions, one 
native distribution cell’s population and one contamination distribution from all other 
cell populations. The main inputs are a filtered count matrix only containing barcodes 
that were called as cells and a vector of cluster labels. The contamination distribution is 
inferred as a weighted combination of multiple cell populations. Alternatively, it is also 
possible to obtain an empirical estimation of the contamination distribution from empty 
droplets in cases where the background noise is expected to differ from the profile of 
filtered cells.

The function decontX from the R package celda version 1.12.0 was run on the filtered, 
unnormalized count matrix and clusters were inferred with the implemented default 
method based on UMAP dimensionality reduction and dbscan [28] clustering. For the 
“DecontX_default” results the parameter “background” was set to NULL, i.e., estimating 
background noise based on cell populations in the filtered data only. “DecontX_back-
ground” results were obtained by providing an unfiltered count matrix including all 
detected barcodes as “background” to empirically estimate the contamination distri-
bution. Besides the default clustering method implemented in DecontX, cluster labels 
obtained from Louvain clustering (resolution 0.5, 1, and 2) were also provided to test 
different parameter settings.

Evaluation metrics

Estimation accuracy

The genotype-based estimates ρc for M. m. castaneus cells served as ground truth to 
evaluate the estimation accuracy of different methods. For each method cell-wise back-
ground noise fractions ac were calculated from the corrected count matrix X and the 
uncorrected (“raw”) count matrix R as

for cells c and genes g.
RMSLE The Root Mean Squared Logarithmic Error (RMSLE) is a lower bound metric 

that we use to quantify the difference between estimated background noise fractions per 
cell ac from different computational background correction methods and the genotype-
based estimates ρc , obtained from genotype based estimation. It is calculated as:

Kendall’s 
 τ To evaluate how well cell-to-cell variation of the background noise fraction is cap-

tured by the estimated values ac , the Kendall rank correlation coefficient τ to the geno-
type-based estimates ρc was computed using the implementation in the R package stats 
[27] as τ = cor(ac, ρc,method = “kendall′′).

(3)ac = 1−

∑

g xc,g
∑

g rc,g

(4)RMSLE =

√

√

√

√

1

n

n
∑

c=1

(log(ac + 1)− log(ρc + 1))2
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Marker gene detection

The same set of 10 PT marker genes from PanglaoDB as in the “Evaluation of marker 
gene expression” section was used to evaluate the improvement on marker gene detec-
tion on corrected count matrices.

Log2 fold change for each gene between the average expression in PT cells and aver-
age expression in other cells were obtained using the NormalizeData and FindMarkers 
functions in Seurat version 4.1.1.

Expression fraction Entries in each corrected count matrix were first rounded to the 
nearest integer. The expression fraction of each gene in a cell population was calculated 
as the fraction of cells for which at least 1 count of that gene was detected. For evalu-
ation of PT marker genes, unspecific detection is defined as the expression fraction in 
non-PT cells.

Cell type identification

Prediction score Each corrected count matrix was log-normalized and reference-based 
classification in SingleR [20] was performed with a pre-trained model (see “Processing 
and annotation of scRNA-seq and snRNA-seq data” section) on data from Denisenko 
et al. [14]. SingleR provides delta values as a measure for classification confidence, which 
depicts the difference of the assignment score for the assigned label and the median 
score across all labels. The delta values for each cell were retrieved using the function 
getDeltaFromMedian relative to the cells highest-scoring reference. A prediction score 
per cell type was calculated by averaging delta values across individual cells and a global 
prediction score per replicate was calculated by averaging across cell type prediction 
scores.

Average silhouette The silhouette width is an internal cluster evaluation metric to 
contrast similarity within a cluster with similarity to the nearest cluster. The cell type 
annotations from reference-based classification were used as cluster labels here. Count 
matrices were filtered to select for M. m. castaneus cells and cell types with more than 
10 cells. Distance matrices were computed on the first 30 principal components using 
euclidean distance as distance measure. Using the cell type labels and distance matrix as 
input, the average silhouette width per cell type was computed with the R package clus-
ter version 2.1.4. An Average silhouette per replicate was calculated as the mean of cell 
type silhouette widths.

Purity Purity is an external cluster evaluation metric to evaluate how well a clustering 
recovers known classes. Here, Purity was used to assess to what extent unsupervised 
cluster labels correspond to cell types. Count matrices were filtered to select for M. m. 
castaneus cells and cell types with more than 10 cells and Louvain clustering as imple-
mented in FindClusters of Seurat version 4.1.1 on the first 30 principal components and 
with a resolution parameter of 1 was used to get a cluster label for each cell. Provid-
ing cell type annotations as true labels alongside the cluster labels, Purity was computed 
with the R package ClusterR version 1.2.6 [29].

k-NN overlap To evaluate the lower-dimensional structure in the data beyond clus-
ters and cell-types k-NN overlap was used as described in Ahlmann-Eltze and Huber 
[30]. A ground truth reference k-NN graph was constructed on a ’genotype-cleaned’ 
count matrix, only counting molecules that carry a subspecies-endogenous allele. Raw 
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and corrected count matrices were filtered to contain the same genes as in the reference 
and a query k-NN graph was computed on the first 30 principal components. The k-NN 
overlap summarizes the overlap of the 50 nearest neighbors of each cell in the query 
with the reference k-NN graph.
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Abstract

Pleiotropy, measured as expression breadth across tissues, is one of the best predictors

for protein sequence and expression conservation. In this study, we investigated its effect

on the evolution of cis-regulatory elements (CREs). To this end, we carefully reanalyzed

the Epigenomics Roadmap data for nine fetal tissues, assigning a measure of pleiotropic

degree to nearly half a million CREs. To assess the functional conservation of CREs, we

generated ATAC-seq and RNA-seq data from humans and macaques. We found that more

pleiotropic CREs exhibit greater conservation in accessibility, and the mRNA expression

levels of the associated genes are more conserved. This trend of higher conservation for higher

degrees of pleiotropy persists when analyzing the transcription factor binding repertoire. In

contrast, simple DNA sequence conservation of orthologous sites between species tends to

be even lower for pleiotropic CREs than for species-specific CREs. Combining various lines

of evidence, we suggest that the lack of sequence conservation for functionally conserved

pleiotropic elements is due to compensatory evolution within these large pleiotropic CREs.

Furthermore, for less pleiotropic CREs, we find an indication of compensation across CREs.

This suggests that pleiotropy is also a good predictor for the functional conservation of

CREs, but this is not reflected in the sequence conservation for pleiotropic CREs.
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Introduction

One of the initial perplexing revelations of the human genome project was the seemingly 1

limited number of genes, which did not align with the increase in complexity compared to 2

organisms such as yeast, worms, and flies. It became evident that this complexity must stem 3

from gene regulation, with the probability that most genes play roles in multiple contexts 4

throughout development and in various tissues. 5

Considering the varying contexts of utilization in terms of location as well as timing, 6

it follows that mutations within the same gene can exert influence on multiple traits. 7

This phenomenon is widely recognized as pleiotropy. In a molecular context, pleiotropy is 8

frequently measured as the number of tissues in which a gene is expressed, a metric called 9

expression breadth (Hastings 1996; Duret and Mouchiroud 2000). 10

The advent of microarrays and subsequent RNA-seq technology allowed for an impartial, 11

genome-wide evaluation of expression breadth. As data accumulated, it became evident 12

that expression breadth is in fact a very good predictor of the conservation of protein 13

sequences. In particular, the ratio of the non-synonymous over synonymous substitution 14

rate (da/ds) shows that pleiotropic genes tend to be more conserved than tissue-specific 15

genes (Hastings 1996; Duret and Mouchiroud 2000; Zhang and WH Li 2004). Moreover, 16

the amount of constraint added varies across tissues: Genes expressed in the brain tend 17

to be more conserved than genes specific to other tissues, such as the liver (Kuma et al. 18

1995; HY Wang et al. 2007; Khaitovich et al. 2005). A similar pattern emerges in terms 19

of expression level conservation; also brain-expressed as well as pleiotropic genes tend to 20

have more similar expression levels across species than other genes (Khaitovich et al. 2005; 21

Brawand et al. 2011; ZY Wang et al. 2020). 22

Naively, one would expect that a higher level of conservation of expression levels would be 23

achieved via a higher level of conservation of the sequences of cis-regulatory elements (CREs). 24

The resulting expectation would be that, if the same relationship between conservation and 25
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pleiotropy also applies to CREs and thus that CREs active in multiple tissues are also more 26

conserved. However, most enhancers are tissue-specific (Gasperini et al. 2020) and show little 27

conservation across species, although target gene expression appears conserved (Villar et al. 28

2014; Berthelot et al. 2018). Using a rather stringent definition of pleiotropy, a selection of 29

a couple of hundred highly active pleiotropic enhancers was previously identified in humans 30

and was found to have higher sequence conservation than tissue-specific enhancers across 31

a large phylogeny (Andersson, Gebhard, et al. 2014; Singh and Yi 2021) and also over a 32

much shorter evolutionary time scale focusing on genomic data from the human population 33

(Huang et al. 2017). 34

Promoters are much more likely to be functionally conserved than enhancers (Berthelot 35

et al. 2018). In addition, promoters are more pleiotropic than enhancers, which is probably 36

due to the fact that core promoters are more restricted in their spatial genomic location 37

than enhancers which can be located megabases away from the targeted transcription start 38

sites (TSS). Promoters are further distinguished by their shape: Broad promoters are large, 39

thought to harbor multiple TSS and tend to be more pleiotropic. In contrast, narrow 40

promoters are small, probably have only one TSS and are more likely to be tissue-specific 41

(Andersson and Sandelin 2020). Furthermore, evidence suggests that expression from broad 42

promoters is less noisy and more robust towards mutations (Carninci et al. 2006; Schor 43

et al. 2017; Sigalova et al. 2020; Floc’hlay et al. 2020) and in humans these broad promoters 44

also show strong enrichment for CpG islands (Morgan and Marioni 2018). At least in flies, 45

this results in the counter-intuitive observation that although broad promoters are more 46

robust and thus also more likely to be functionally conserved across species, overall they 47

exhibit lower sequence conservation between species than narrow promoters (Schor et al. 48

2017). In summary, the relationship between pleiotropy and sequence conservation for CREs 49

appears to be much more complicated than that between pleiotropy and coding sequence 50

conservation. 51

4

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 11, 2024. ; https://doi.org/10.1101/2024.01.10.575014doi: bioRxiv preprint 

58 2. Results



Here, we investigate the impact of pleiotropy on sequence and functional conservation 52

in primates. To gauge pleiotropy, we thoroughly re-analyzed DNase hypersensitivity data 53

from 9 primary fetal tissues (Bernstein et al. 2010), integrating across a minimal number of 54

replicates to also identify tissue-specific CREs robustly. To assess functional conservation of 55

the identified CREs, we obtained RNA-seq and ATAC-seq data from two human and two 56

cynomolgus macaque neural progenitor cell lines. Furthermore, we obtained four different 57

measures of sequence conservation: 1) a population genomic measure, 2) a conservation 58

measure for the human lineage since the most recent common ancestor of humans and 59

chimpanzees (Gronau et al. 2013), 3) a conservation score calculated for the primate 60

phylogeny (Pollard et al. 2010) and 4) a scaled measure of transcription factor binding site 61

(TFBS) conservation. 62

Results 63

In order to investigate different aspects associated with varying degrees of regulatory 64

pleiotropy, we identified putative CREs as DNase hypersensitive sites (DHS) in the Roadmap 65

Epigenomics Data, which provide comparable experiments for a wide selection of tissues 66

(Bernstein et al. 2010). To ensure reproducibility, we included only tissues for which at least 67

seven biological replicates of DNase-seq data were available, leaving us with nine tissues: 68

adrenal gland, brain, heart, kidney, large intestine, lung, muscle, stomach and thymus (Fig. 69

1A,B). We called DHS for each tissue separately using a peak caller that utilizes replicate 70

information to gauge certainty (Ibrahim et al. 2015), resulting in a total of > 1.1 million 71

DHS ranging from ∼ 80, 000 sites detected in the large intestine to ∼ 175, 000 sites detected 72

in the stomach (Fig. 1C). In analogy to how expression breadth has been used as a proxy 73

for pleiotropy of genes, we merge overlapping DHS from different tissues and define the 74

Pleiotropic Degree (PD) as the number of tissues in which we found a DHS, resulting in 75

∼ 460, 000 union CREs stratified by PD. We distinguish promoters and enhancers based on 76
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genomic distance, while we designate CREs within 2kb of an active annotated TSS (Gencode 77

v.32) as promoters and all other CREs within 1Mb as enhancers (Fishilevich et al. 2017; 78

McLean et al. 2010). 79
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Figure 1. Study overview. (A) Open chromatin and expression data from the Roadmap Epigenomics
Project (Bernstein et al. 2010) were used to infer the effect of pleiotropy on sequence and TFBS
evolution, and associated gene expression in primates. Overlapping DHS peaks between tissues were
merged to determine the degree of tissue-specificity per CRE. (B) DHS-data from 9 human fetal
tissues. The number of biological replicates per tissue varies between 7 and 34. (C ) The number
of CREs per tissue varies 2.3-fold. There is no association between the number of replicates and
the number of accessible regions per tissue, suggesting that with > 7 replicates per tissue, sufficient
saturation is reached in peak detection. (D) Most enhancers (dotted line) are tissue-specific, while
promoters (solid line) are mostly pleiotropic. The colors represent the tissues as introduced in (A,B).
(E ) CRE length increases with the number of tissues, particularly at the promoters. This increase was
also observed at the peak level prior to merging (Supplemental Figure S1A). (F ) The majority of PD9
CREs are CpG-island promoters (solid blue), while tissue-specific elements are rarely CpG-Islands
and mainly enhancers (transparent green). (G) Scaled coefficients of a linear mixed model to predict
gene expression levels using distance scaled CRE counts of different types. (H ) Pleiotropic promoters
are more commonly associated with pleiotropic gene expression patterns. The promoter PD indicates
the highest PD of the associated promoters per gene. The y-axis shows the proportions of those
x-categories (promoter PD) with associated gene expression pleiotropy ranging from 1 to 9.
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Consistent with expectations, the majority of enhancers are tissue-specific (PD1) (Gasperini 81

et al. 2020), while promoters are more likely to be pleiotropic (PD9) and CREs with an 82

intermediate PD (1 < PD < 9) are rare among both promoters and enhancers (Fig. 1D). 83

With a median size of 1.2kb, PD9 promoters are the largest CREs (Fig. 1E, Supplemental 84

Fig. S1A) and also the overlap among the DHS inferred for each tissue is highest in PD9 85

promoters (Supplemental Fig. S1B), suggesting that their larger size is due to a higher 86

content of information rather than being an artifact of concatenation. They probably 87

correspond to the broad promoters observed in humans (Andersson, Gebhard, et al. 2014) 88

and fruit flies (Schor et al. 2017). A large proportion of the pleiotropic promoters are 89

CpG islands (76.7%) and the proportion of CpG island promoters generally decreases with 90

increasing specificity (Fig. 1F). The same is true for enhancers, although enhancers are 91

only very rarely CpG islands (3.2%). Next, we wanted to investigate whether the PD of a 92

CRE has an impact on the expression of the associated genes. To this end, we integrated 93

DNase-seq with gene expression estimates from matching samples that are also provided 94

by the Epigenomics Roadmap Project (Supplemental Fig. S2). As expected, we find a 95

strong enrichment for PD9 promoters to be associated with genes that are expressed in all 9 96

tissues, while we find an over-representation of tissue-specific promoters in tissue-specific 97

genes (Fig. 1H). Moreover, we find that the pleiotropic degree of enhancers and promoters 98

associated with a gene also has an impact on the gene’s expression level. The amount of 99

variation in expression levels that can be explained by the number and distance of CpG 100

island and non-CpG island CREs of varying PD is 24% (CI: 23.8-24.3%), while the number, 101

distance and type of CRE without the pleiotropy information can only explain 19% (CI: 102

18.8-19.8%)(see Methods). Inspecting the scaled coefficients of the mixed effects model 103

reveals that PD9 promoters have the largest activating effect on expression, followed by 104

PD9 and PD1 enhancers. While for PD9 promoters, the signal is clearly due to CpG-island 105

CREs, for enhancers the many non-CpG-islands CREs appear to have a larger activating 106
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effect in total (Fig. 1G; Supplemental Fig. S1C). We take this as evidence that our PD9 107

category as well as CREs that were found in only one tissue are likely to be functional. 108

Characterization of transcription factor binding site repertoire across 109

pleiotropic degrees 110

Under the premise that CREs regulate gene expression by binding transcription factors, we 111

continued to characterize TFBS associated with CREs of varying pleiotropic degrees. To this 112

end, we collected non-redundant position weight matrices (PWMs) of 643 binding motifs 113

(Fornes et al. 2020) belonging to 561 TFs that we found to be expressed in at least one of 114

the investigated tissues (Fig. 2A). Almost half of all expressed TFs (237 out of 561, 42%) 115

were present in all tissues, i.e. pleiotropic, while 94 (17%) showed tissue-specific expression. 116

Interestingly, we found that the brain has the highest proportion of tissue-specific TFs. Next, 117

we evaluated the overall binding potential of a TF to a CRE using Cluster-Buster (Frith et al. 118

2003) (see Methods for details). Unsurprisingly, we found that TFBS diversity increases 119

with pleiotropy for both enhancers and promoters. This is at least partially explained by 120

the increase in CRE size, which is in turn likely linked to a broader functionality (Fig. 2B). 121

Still, the question remains whether tissue-specific and pleiotropic CREs are regulated by the 122

same TFs or whether preferences exist. For the majority of TFs we do not find a binding 123

preference: 159 (24.7%) are over-represented in CREs specific for one of the tissues (Fig. 124

2C) and 84 (13.1%) motifs are enriched in the PD9 CREs. In line with our expectations, 125

gene-set enrichment analysis shows that motifs enriched in brain-specific CREs are for TFs 126

that are associated with neuron differentiation. Most prominently, this is driven by OLIG1 127

and OLIG2 that are essential for oligodendrocyte development (Zhou and Anderson 2002; 128

Jakovcevski et al. 2009; Yu et al. 2013), as well as by NEUROD1, NEUROD2 and NEUROG1 129

that are important for neuron development (Olson et al. 2001; Sun et al. 2001; Messmer et al. 130

2012; Pataskar et al. 2016) (Fig. 2E). Other tissues also showed a specific enrichment: For 131
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example, TFBS that are overrepresented in heart-specific CREs include motifs of MEF2C, 132

TBX20 and NKX2-5 (Fig. 2F), which are essential for cardiac muscle development (He et al. 133

2011; Schlesinger et al. 2011; Grunert et al. 2016). 134
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Figure 2. TFBS repertoire diversity and enrichment across tissue-specific and pleiotropic CREs.
(A) An overview of TF expression across tissues. (B) TFBS repertoire diversity increases with PD,
particularly across promoters. Depicted are mean +/- SEM. (C ) Overview of the over-represented
motifs in PD9 and PD1 CRE sequences. (D) Top 5 categories of gene set enrichment analysis of
PD9-enriched motifs using all motifs as background (Gene ontology, Biological Process, Fisher’s
exact p-value< 0.05). (E, F ) Top 4 categories of gene set enrichment analysis of tissue-specific PD1
enriched motifs using all motifs as background (Gene ontology, Biological Process, Fisher’s exact
p-value< 0.05). Fold change depicts the proportion of tissue-specific PD1 CREs with the motif over
the global average proportion for that motif. (E ) Brain-specific PD1 over-represented motifs. (F )
Heart-specific PD1 over-represented motifs.

In contrast, TFs that show a binding preference for PD9 CREs appear to be associated 135

with more basic cellular processes such as transcription regulation in connection with cell 136

cycle and and stress response (Fig. 2D). These motifs are more GC-rich and tend to have 137

a higher information content than PD1-enriched motifs or motifs without any preference 138
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(Supplemental Fig. S5A,B). In addition, these elements are enriched for TFs that were shown 139

to co-localize with most other TFs (Odds Ratio = 10.51, Fisher’s exact p-value= 3e− 12) 140

(Zhao et al. 2022). These so called ”Stripe” TFs include SP, KLF and ZBTB family members, 141

all of them recognize GC-rich sequences. Moreover, ”Stripe” factors were experimentally 142

shown to have a strong positive impact on prolonged CRE accessibility and the dynamics of 143

most other TF proteins by stabilizing and prolonging their retention time at their binding 144

site within the same CRE. Enrichment for binding sites for these universal and highly 145

cooperative TFBS in PD9 CRE sequences is in line with the broad openness of these CREs 146

and their high gene expression activating effects (Fig. 1G). 147

The impact of pleiotropy on the evolutionary conservation of regulatory 148

activity 149

To get a first glimpse of the interaction between the degree of pleiotropic and the evolutionary 150

conservation of the CREs in our data, we generated RNA-seq and ATAC-seq data from 151

iPSC-derived neural progenitor cell lines (NPCs) from humans and cynomolgus macaques 152

(Supplemental Fig. S3A,B). We then intersected the detected genes and accessible peaks 153

with the processed Epigenomics Roadmap data to assign a pleiotropic degree to the genes 154

and peaks (Fig. 3A). As expected, the amount of CRE overlap with NPC ATAC-seq peaks 155

increases with increasing PD and is generally higher for promoters than for enhancers (Fig. 156

3B). Moreover, the activity of PD9 CREs is also more conserved between humans and 157

macaques. Of all the overlapping PD9 CREs, 88% were detected to be active in NPCs 158

from both species, while this was only the case for 15% of the PD1 CREs. The observed 159

dependence of PD on conservation levels is not only due to the increased activity that might 160

generate a higher probability of PD9 elements being detected as peaks (Fig. 3 B). Instead, 161

even without stratifying by whether a peak was called, we observe a decrease in differential 162

activity with increasing PD, measured by absolute log2-fold changes (Fig. 3C). 163

10

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 11, 2024. ; https://doi.org/10.1101/2024.01.10.575014doi: bioRxiv preprint 

64 2. Results



Next, we wanted to investigate which changes in CRE activity have an impact on the 164

expression of the associated genes. To this end, we tested whether differentially accessible 165

(DA) promoters and enhancers (BH-adjusted Wald test p-value <= 0.1) of a PD category 166

are more likely to be associated with a differentially expressed (DE) gene (BH-adjusted Wald 167

test p-value <= 0.1). Indeed, we find that DA promoters are more likely to be associated 168

with a DE gene (BH adjusted Fisher’s exact test). There is a clear enrichment for all 169

promoter PD categories, showing a 2-3 times enrichment (Fig. 3D). Moreover, when we 170

further distinguish CpG island promoters, it turns out that the activity changes there have 171

the greatest potential for downstream effects (Supplemental Fig. S3C,D). 172
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Figure 3. Pleiotropic degree and evolutionary conservation of expression and accessibility between
humans and cynomolgus macaques. (A,B) The fraction of enhancers and promoters of different
pleiotropic degrees (PD) as defined using data from 9 tissues from the Epigenomics Roadmap project,
which overlapped with ATAC-seq peaks called in neural progenitor cell lines (NPCs) from cynomolgus
macaques and humans. The colors indicate whether a human DHS-derived CRE overlapped with a
NPC ATAC-seq peak from humans, cynomolgus macaques, or both. (C ) Mean absolute log2-fold
changes of gene expression and activities between humans and cynomolgus macaques. The error bars
represent 95% bootstrap confidence intervals. PD9 genes (CREs) have more conserved expression
(activity) than more tissue-specific genes. (D) We tested for enrichment (odds ratio >1) or depletion
(odds ratio <1) of differentially accessible CREs with significantly differentially expressed genes
between humans and cynomolgus macaques. Error bars represent the 95% confidence intervals of the
odd ratio, and the stars indicate the significance level with Benjamini-Hochberg correction ( . < 0.1,
∗ < 0.05, ∗∗ < 0.01, ∗∗∗ < 0.001 ).
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This picture changes slightly for the association of enhancers: Although highly pleiotropic 174

DA enhancers (PD8-9) are still more likely to be associated with a DE gene, for more 175

tissue-specific DA enhancers, we observe a significant depletion in the associated DE genes 176

(Figure 3D). In other words, genes with tissue-specific DA enhancers tend to have a more 177

conserved expression. Generally, expression levels and robustness increase with increasing 178

number of enhancers (Berthelot et al. 2018). Thus, if there are many enhancers, each 179

has only a relatively small effect on expression and overall fitness, allowing these CREs 180

to fluctuate between different possible genomic locations, resulting in different CREs for 181

different species that can compensate for one another (Ludwig et al. 2000; Bradley et al. 182

2010; Doniger and Fay 2007; Arnold et al. 2014). In summary, the activity of pleiotropic 183

CREs is evolutionarily more conserved between species than the activity of tissue-specific 184

CREs. Moreover, if the activity of a pleiotropic CRE changes, such changes are also more 185

likely to have downstream effects, i.e. to impact the expression of associated genes. 186

Sequence conservation is lowest in pleiotropic CREs 187

So far, pleiotropy has the expected effect on gene regulation in that pleiotropic CREs tend 188

to be more conserved. Here, we investigate how this functional conservation is reflected in 189

the underlying DNA sequence. We focus on three measures of sequence conservation: 1) the 190

number of weakly deleterious sites in humans (E.W. (Gronau et al. 2013), Fig. 4A,B), 2) 191

the fraction of sites under (strong) negative selection (ρ (Gronau et al. 2013), Fig. 4C,D) 192

and 3) the average phyloP and PhastCons scores across a primate phylogeny (Supplemental 193

Fig. S4A,B) (Pollard et al. 2010). The main difference among the three measures is the 194

evolutionary time across which sequence conservation is averaged. This ranges from recent 195

selection within human populations (E.W.) via selection on the lineage since the most 196

recent common ancestor of humans and chimpanzees (ρ), to the average across the primate 197

phylogeny (phyloP, PhastCons). Since pleiotropic degree (PD) was assessed in human 198
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samples, the E.W measure provides the closest match to our measure of pleiotropy. For 199

ρ and phyloP, we average the strength of selection over longer evolutionary times, and 200

it is unclear whether the PD determined in humans has been constant. Additionally, it 201

should be noted that variants emerging within a population may undergo recombination, 202

whereas mutations occurring after speciation remain on separate haplotypes. In line with 203

our expectations, we indeed find that the number of weakly deleterious sites increases with 204

the pleiotropic degree for both promoters and enhancers (Fig. 4A). This observation aligns 205

well with the conservation of CRE accessibility, which we assessed using the ATAC-seq 206

data described above: Across all PD categories, we observe a higher prevalence of weakly 207

deleterious sites in CREs that are open in both species (Fig. 4B). In contrast, when using ρ 208

as a measure of conservation, we only find a higher sequence conservation for tissue-specific 209

CREs (PD1-3) with conserved accessibility, while it appears that accessibility conservation is 210

not reflected in the sequence conservation of pleiotropic CREs (Fig. 4D). Overall ρ suggests 211

that PD9 CREs have the lowest fraction of negatively selected sites compared to other 212

PD-categories (Fig. 4C). This surprising result remains when we use the average phyloP or 213

average PhastCons score across a 10-species primate phylogeny as a measure of conservation, 214

which confirms PD9 CREs as the PD category with the lowest conservation (Supplemental 215

Fig. S4A,B). In summary, even though the number of weakly deleterious sites within a CRE 216

increases with pleiotropy, this is not reflected in sequence conservation across species. 217

Tissue-specific effects 218

So far, we have not considered what happens if the different tissues would add different 219

amounts of constraint. Indeed, when CREs are separated by the tissues in which they are 220

utilized, the brain utilizes CREs that are clearly under more constraint than CREs of other 221

tissues. Nevertheless, also for brain the number of weakly deleterious sites increases with 222

PD, showing that although to smaller amounts, activity in other tissues still adds to the 223
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Figure 4. CRE sequence conservation patterns across varying degrees of pleiotropy. (A,B) Weak
negative selection inferred based on human polymorphisms increases with increasing pleiotropic
degree (PD). (A) Separated by enhancers / promoters. (B) Separated by human-macaque accessibility
conservation in NPCs. (C,D) (Strong) negative selection is the highest at the intermediately-specific
CREs and lowest in the pleiotropic CRE sequences. (C ) Separated by enhancers / promoters. (D)
Separated by human-macaque accessibility conservation in NPCs. (A,B,C,D) Depicted are mean
estimates per PD category. Error bars indicate SEM.

overall constraint (Fig. 5A). Again, this is not true when considering substitutions on the 224

human lineage as used in the measure ρ (Fig. 5B). Here brain-specific CREs show most 225

constraint on the human lineage, much more than pleiotropic PD9 CREs, which are by 226

definition also utilized in the brain. 227

To exclude the possibility that the brain effect on the PD9 elements is diluted by the 228

merging of DHS across tissues, we contrast the ρ of the brain peak sequence with adjacent 229

sequences that are part of the same merged CRE but are open in other tissues (Fig. 5C). 230

We find that for PD9 CREs, brain peak sequences show lower sequence conservation on 231

the human lineage than the adjacent sequence utilized only by other tissues, while for 232

less pleiotropic CREs the part that is used in the brain is under much more constraint 233

(Fig. 5D). In summary, even though we find tissue-specific effects, in particular a higher 234
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Figure 5. CRE sequence conservation patterns per tissue. (A) Weak negative selection inferred
based on human polymorphisms separated by the tissue that utilizes the CREs. (B) All negative
selection separated by the tissue that utilizes the CREs. (C ) Brain CRE sequences, which showed
the highest conservation across tissues, were separated into peak and adjacent sequences. (D) The
part of the sequence that is used by the brain shows much higher fraction of sites under negative
selection than the respective adjacent sequences. (A,B,D) Depicted are mean estimates per PD
category. Error bars indicate SEM.

constraint for brain CREs, this cannot explain the overall pattern of the relatively low 235

sequence conservation of pleiotropic CREs. It remains that for pleiotropic CREs there is no 236

simple relationship between sequence and functional conservation between species. 237

Pleiotropic CRE TF repertoire is conserved, not the binding sites 238

In order to explain the apparent mismatch between functional and sequence conservation in 239

PD9 CREs across primates, we continued to analyze levels that are intermediate between 240

sequence conservation (less functional) and accessibility conservation (more functional), 241

which are CpG content, TFBS repertoire and position conservation between human CREs 242

and their orthologous sequences in cynomolgus macaques. To begin with, we find that 243

conservation of CpG content increases with PD and is highest for pleiotropic promoters 244
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(Supplemental Fig. S4E). This coincides with the increase in CpG island CREs with PD 245

(Fig. 1F) and suggests that the CpG island properties are conserved across species, landing 246

closer to the functional side. Next, we calculated the binding potential for all expressed 247

TFs and calculated the average pairwise Canberra distance between species (dCMH
). We 248

then approximate TFBS repertoire conservation as 1 − dCMH
. To ensure that repertoire 249

conservation is not dominated by differences in diversity between PDs, we shuffled the CRE 250

identifiers of the macaque profiles within the respective PD class and calculated the average 251

random TFBS profile similarity between species (Supplemental Fig. S5C,D). Furthermore, 252

when we contrast CREs with conserved and non-conserved openness between humans and 253

macaques, we find that for all PD categories, functionally conserved CREs also show a 254

higher repertoire conservation (Fig. 6B). 255

With respect to the PD categories, we found that repertoire conservation generally 256

increases with pleiotropy in all tissues (Fig. 6A,C). However, while there is a simple 257

relationship for promoters for which repertoire conservation is highest for PD9 and lowest 258

for PD1 CREs, this is not the case for enhancers among which CREs with intermediate 259

PDs show the highest conservation. This said, also for enhancers repertoire conservation 260

in PD9 CREs (0.66) is considerably higher than PD1 TFBS repertoire conservation (0.62), 261

which is in contrast to what we observed for sequence conservation, again showing overall a 262

higher similarity to the functional pattern of conservation (Fig. 3D, 6F). To answer in more 263

detail how for PD9 CREs a relatively high repertoire conservation is achieved in spite of 264

a low sequence conservation, we analyzed the positional conservation of TFBS as a third 265

intermediate metric. We calculated the per-motif position conservation as the fraction of 266

conserved binding sites between both species (intersection) over the total binding sites per 267

motif across species (union) (Jaccard similarity index IoUMH) (Fig. 6D). Surprisingly, 268

we find that the average repertoire conservation appears to be unrelated to the positional 269

conservation in high PD categories (Fig. 6E). The positional conservation seems to be more 270
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Figure 6. TFBS repertoire and position conservation between orthologous human and macaque
CREs. (A,B,C ) TFBS repertoire conservation across PDs. Depicted are mean +/- SEM. (A) TFBS
repertoire conservation increases with higher PD among promoters, however, it decreases slightly at
high PD-enhancers. (B) CREs that overlap NPC peaks with conserved openness show higher TFBS
repertoire conservation than species-specific NPC peaks. (C ) TFBS repertoire conservation differs
across tissues, where brain shows the highest conservation at lower PDs. (D) Simplified schematic
of the measures of repertoire and position conservation. (E ) TFBS position conservation versus
repertoire conservation across PD categories. Depicted are mean values +/- SEM. (F ) Standardized
scores (z-scores) of sequence (primate phyloP), TFBS repertoire and binding site conservation between
human and cynomolgus macaque. (G) A schematic depicting how lower sequence conservation might
lead to higher TFBS repertoire conservation through compensatory mechanisms. (H ) A summary of
the scaled average conservation metric scores across PDs. Sequence: primate phyloP scores, TFBS
position: IoUMH scores, TFBS repertoire: 1-dCMH

, CpG observed/expected: |CpG obs
expM

−CpG obs
expH

|,
accessibility: —LFC— of NPC-DA results, downstream expression: —LFC— of NPC-DE.

related to sequence conservation, thus landing on the less functional side (Fig. 6F). In 271

summary, while CRE sequence and TFBS positions are least conserved in PD9 elements, CpG 272

content and TFBS-repertoire are in agreement with the more functional metrics accessibility 273
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and expression conservation in that they show the highest conservation in PD9 elements. 274

These puzzling patterns would be consistent with a mechanism of compensatory evolution. 275

In a simplified scenario, if a certain TF binding site is lost in a more tissue-specific CRE and 276

no new binding site is fixed to compensate for this, this would lead to fewer substitutions 277

than in the case where the loss of a binding site is compensated by the fixation of a new 278

binding site (Fig. 6G). Such compensation in the latter case would lead to a low sequence 279

and positional, but high repertoire conservation. Many genome-wide studies have confirmed 280

that TFBS have a high turnover rate (Dermitzakis and Clark 2002; Paris et al. 2013; Domené 281

et al. 2013), which is buffered by compensation. Here, we describe the evolutionary patterns 282

where this compensation likely happens within the same CRE. 283

PD9 promoter of Ataxin-3 gene as an example 284

To illustrate within CRE compensatory evolution of TFBS within a PD9 promoter, we took 285

a closer look at the promoter of the ubiquitously-expressed protein-coding gene ATXN3 286

(Ataxin-3). Ataxin-3 is an important factor for the regulation of the degradation of damaged 287

proteins (Schmitt et al. 2007; Gao et al. 2015; Feng et al. 2018). This gene plays an 288

important role for the brain, as its malfunction can lead to neurodegenerative diseases such 289

as spinocerebellar ataxia (Evers et al. 2014). The ATXN3-promoter shows low sequence 290

conservation (34%) and low TFBS binding site conservation (49%), but high TFBS repertoire 291

(77%), accessibility and expression conservation (Fig. 7A-E). 292

To investigate a few likely relevant TFs closer, we overlapped our TFBS data with 293

published ChIP-seq data from human neural cells available in the GTRD database (Yevshin 294

et al. 2018) and visualized the binding sites of the 2 TFs (MYCN, POU3F2) annotated to 295

be involved in neurogenesis (Gene Ontology biological process term GO:0022008) (Fig. 7H). 296

Both of their motifs are moderately complex as shown by their information content (MYCN: 297

IC=11.8, POU3F2: IC=13.7, Fig. 7I,J). Both promoter orthologues show strong binding 298
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Figure 7. Ranks of ATXN3 PD9 promoter compared to other CREs in terms of (A) sequence con-
servation (mean PhastCons), (B) TFBS binding site conservation, (C ) TFBS repertoire conservation,
(D) CRE openness conservation between human and cynomolgus macaque in NPCs and (E ) ATXN3
gene expression conservation between human and cynomolgus macaque in NPCs. (F, G) ATXN3
PD9 promoter is accessible in both species. (H ) ATXN3 promoter shows diverged TFBS positions
between species among validated TFs involved in neurogenesis. (I, J ) PWM logos of the investigated
TF motifs with ChIP-seq data available: MYCN (I ), POU3F2 (J ).

positions for both TFs. Humans have 6 and macaques 5 MYCN binding sites and both have 299

one POU3F2 binding site, suggesting a rather high repertoire conservation, which is also 300

reflected in similar ATAC-seq peak-shapes (Fig. 7F,G). However, only 3 of the 10 binding 301

sites are positionally conserved between the species. This serves as an example of how the 302

large disagreement between sequence, TF binding site conservation and TFBS repertoire 303

might co-occur. 304
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Discussion 305

Pleiotropy has been shown to be the best predictor of both protein coding sequence con- 306

servation (Hastings 1996; Duret and Mouchiroud 2000; Zhang and WH Li 2004) and gene 307

expression levels (Khaitovich et al. 2005; Brawand et al. 2011; ZY Wang et al. 2020). Here, 308

we investigate the effect of pleiotropy on the evolution of cis-regulatory elements (CRE) 309

and find that measures close to CRE function, such as accessibility and TFBS repertoire 310

conservation, indeed show the expected higher conservation for more pleiotropic CREs. 311

Similarly, a measure of conservation based on human diversity data also shows a trend 312

for higher conservation in more pleiotropic CREs. However, surprisingly, we found that 313

this higher conservation of pleiotropic CREs is not reflected in the sequence and positional 314

conservation of TFBS between macaques and humans. These observations imply that a 315

simple model of purifying selection alone is insufficient to explain the effect of pleiotropy on 316

CRE evolution and suggest a role for compensatory evolution. 317

Zooming into tissue effects, in line with previous investigations on brain evolution (Kuma 318

et al. 1995; HY Wang et al. 2007; Brawand et al. 2011), we find that the activity in the 319

brain exerts more constraint on a CRE than the activity in other tissues. There are many 320

reasons why the brain is special and requires particularly tight regulation, including its high 321

complexity consisting of precise neural networks (Geschwind and Rakic 2013). Hence, it 322

comes as no surprise that brain-specific CREs show by far the highest sequence conservation 323

irrespective of the measure. However, following the logic that brain expression induces a lot 324

of constraint, this should also impact the pleiotropic, i.e. PD9 elements. Looking at the 325

between-species sequence conservation measure, the sequences of PD9 CREs that are open 326

in the brain are even less conserved than the adjacent sequences (Fig. 6D). This confirms 327

the notion that the structure and evolution of PD9 CREs is inherently different, in that it 328

allows for functional conservation without much sequence conservation. 329

Indeed, we find several basic structural properties of PD9 elements that distinguish them 330
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from less pleiotropic CREs. They tend to be larger, have more CpGs and a higher GC 331

content. Moreover, PD9 elements show an over-representation of GC-rich motifs that are 332

associated with TFs that tend to be involved in more basic cellular processes. Among those, 333

we also find enrichment for binding sites of a recently described group of highly cooperative 334

TFs (Universal Stripe factors) that prolong CRE openness (Zhao et al. 2022). In concordance 335

with the idea that these Stripe factors facilitate the binding of most other TFs, we observe 336

that PD9 CREs are more diverse in their TFBS. It should also be noted that the majority of 337

PD9 CREs are promoters and PD9 promoters share many properties with broad promoters 338

that were defined via the shape of CAGE peaks (Andersson, Gebhard, et al. 2014). Even 339

though this classification is based on a completely different concept, also broad promoters 340

were shown to be more pleiotropic, active and CpG-rich. Indeed, as observed for PD9 341

CREs, broad promoters also tend to show an increased substitution rate. Moreover, broad 342

promoters have been shown to be more robust than narrow promoters, in that they show less 343

expression noise across haplotypes in Drosophila (Floc’hlay et al. 2020; Schor et al. 2017). 344

Similarly, in humans CpG island promoters have also been found to induce more stable 345

expression (Morgan and Marioni 2018). Mechanistically, this picture fits nicely with the 346

notion that Stripe factors bind to GC-rich regions, thus facilitating combinatorial binding, 347

which has been shown to lead to evolutionarily more stable TF binding across mouse species 348

(Stefflova et al. 2013). In the same vein, Hagai et al. 2018 found that the regulatory response 349

of genes associated with CpG islands to an immune stimulus is more conserved than that of 350

genes associated with a TATA-box. In summary, there is ample evidence that large CpG 351

island promoters are functionally robust while having high substitution rates. 352

Nearly as pronounced as for promoters, we also find high substitution rates in PD9 353

enhancers, which also share most of the other features with PD9 promoters, suggesting that 354

similar evolutionary mechanisms apply to both promoters and enhancers. We suggest that 355

the main differences in the evolutionary patterns observed for promoters and enhancers are 356
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closely linked to the degree of pleiotropy. Most enhancers show strong tissue preferences, 357

placing them in our PD1 category. Consistent with multiple other studies investigating CRE 358

conservation in mammalian genomes (Danko et al. 2018; Berthelot et al. 2018), we find 359

that only a relatively small fraction of enhancers is conserved between species in terms of 360

accessibility and that these fractions show a strong association with the pleiotropic degree 361

irrespective of their classification as enhancers or promoters. In fact, the CRE conservation 362

across the genome is so puzzlingly low (Doniger and Fay 2007; Crocker et al. 2016; Horton et 363

al. 2023), implying such high TFBS turn-over rates beyond what simple models of evolution 364

can explain (Tuğrul et al. 2015). 365

In addition, the observed high TFBS turnover rates appear to be inconsistent with the 366

relatively low rates of change in gene expression levels. This discrepancy has prompted the 367

proposal of compensatory evolution as a prevalent mechanism for CREs. The phenomenon of 368

CREs at non-orthologous genomic positions in different species exhibiting the same function 369

and being able to compensate for one another has been documented for several cases (Ludwig 370

et al. 2000; Arnold et al. 2014; Domené et al. 2013). Also in our data, we find hints that 371

the between-CRE compensation impacts the evolution of cis-regulatory networks between 372

humans and macaques. The positions of more tissue-specific enhancers appear to be less 373

conserved for genes with conserved expression (Fig. 5D). This phenomenon is related to the 374

observation that a lot of function is encoded redundantly also within a gene’s regulatory 375

landscape by the so called shadow enhancers (Hong et al. 2008; Osterwalder et al. 2018; 376

Wunderlich et al. 2016). Osterwalder et al. 2018 showed that the deletion of one strong 377

enhancer did not have an effect on the phenotype as long as the shadow enhancer was still 378

active. This clearly demonstrates the presence of epistasis, which suggests that multiple 379

equally fit haplotypes exist and a different ones can get fixed in each species, which is then 380

perceived as compensatory evolution across CREs. 381

Several other properties of CREs suggest that there is a lot of epistasis also within one 382
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CRE. The billboard model (Kulkarni and Arnosti 2003; Arnosti and Kulkarni 2005) and 383

the TF-collective model (Junion et al. 2012) of enhancer activity suggest that two CRE 384

haplotypes with shifted but similar TFBSs should be functionally equivalent. It follows 385

that the mutations that create these two haplotypes will also have a non-additive effect on 386

fitness. Moreover, some studies showed that binding to a high-affinity site is facilitated by 387

many neighboring low-affinity binding sites, thus providing the raw material for high TFBS 388

turnover rates (Tuğrul et al. 2015). 389

Thus, we suggest that within-element compensation of TFBS is a common mode of 390

evolution for pleiotropic CREs. This would explain the apparent disparity between the 391

cross-species sequence conservation and the within-species constraint measure E.W. (Fig. 392

4). Moreover, it would also explain the disparity between the low sequence and the high 393

functional conservation between species as observed in our ATAC-seq and RNA-seq data: If 394

different, functionally equivalent haplotypes got fixed in different species, this would lead to 395

a high sequence divergence while the open chromatin state and downstream gene expression 396

remained conserved (Fig. 6H). Furthermore, we show that even though PD9 TFBS may not 397

have a high positional conservation, the overall binding potential for various TFs across a 398

pleiotropic CRE tends to be conserved. 399

In summary, we think that compensatory evolution is a prevalent mode for evolution of 400

regulatory elements and goes along with the number of contexts in which the element is 401

utilized. The structure of cis-regulatory networks lends itself to high levels of negative epistasis 402

across more distal CREs, while for the complex, large pleiotropic CREs epistatic interactions 403

are more likely to occur within the same element. The within-element compensation is 404

possibly facilitated by higher spatial restrictions on TFBS locations: Promoters are likely 405

more restricted spatially than enhancers. However, we observe similar patterns for pleiotropic 406

enhancers as well, albeit less pronounced. We speculate that they are also spatially more 407

restricted than less pleiotropic enhancers due to their higher sequence complexity, which is 408
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probably due to highly cooperative binding at the pleiotropic sites. Such complex element 409

structures are less likely to spontaneously occur at distal sites than it is observed for 410

tissue-specific elements. 411
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Methods 412

Human DNase-seq and RNA-seq data 413

DNase-seq and RNA-seq data from human fetal tissues of week 10-20 generated within the 414

Roadmap Epigenomics project (Bernstein et al. 2010) were downloaded from the NCBI’s 415

Sequence Read Archive (Dec. 15, 2014, summary table on github). We included only 416

tissues for which at least 7 biological DNase-seq replicates from primary tissue samples were 417

available. This left us with 9 different tissues: adrenal glands, brain, heart, kidney, large 418

intestine, lung, muscle, stomach, and thymus. 419

Cis-regulatory element (CRE) region determination and tissue-specificity scoring 420

DNase-seq reads were mapped to human genome version hg19 using NextGenMap (Sedlazeck 421

et al. 2013, version 0.0.1). Aside from a few exceptions (dualstrand = 1; min identity = 422

0.9; min residues = 0.5), the default parameters were used. PCR duplicates were removed 423

using samtools rmdup (H Li and Durbin 2009, version 1.1). We used JAMM (Ibrahim 424

et al. 2015, version 1.0.7) to call peaks per tissue considering the biological replicates for 425

the DNase-seq data using the recommended settings. To compare peaks across tissues, 426

we merged overlapping peaks using the resulting union peaks as putative CRE, which are 427

the basis of most further analyses. We removed peaks mapping to Y or MT chromosomes. 428

Furthermore, we removed 26 CREs whose width exceeded 5000 bp (< 0.0001%), resulting in 429

a set of 465,281 CREs. We then used the number of overlapping peaks, i.e the number of 430

tissues in which a CRE is accessible as a proxy for pleiotropy. This score ranges between 1 431

(tissue-specific) to 9 (ubiquitously open). 432

CRE annotation and association with genes 433

We used transcript annotation for hg19 from Gencode v.32 (Harrow et al. 2012) where we 434

considered each transcript 5’ end as a transcription start site (TSS). For each tissue we only 435
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considered TSSs of the expressed genes in the complementary RNA-seq data. CREs within 436

2 kb of a TSS are designated as promoters and associated with all TSSs within that distance. 437

All other CREs within 1 Mb of a TSS are deemed to be enhancers and are associated with 438

the 2 closest TSSs (one in each direction), unless the distance to one TSS is at least 10x 439

smaller than to the other TSS - in that case only the closest TSS is assigned. In total, we 440

could assign 443,322 out of 465,281 CREs (95.3%). 441

CRE effect on gene expression across tissues 442

For each of the included tissues, RNA-seq RPKM expression matrix was filtered to include

only genes that are detected with >1 count in 50% of the samples in that tissue. Number

of included genes varies from 12,283 (brain) to 19,382 (lung). Log mean expression was

modeled as a linear mixed model with tissues as a random effect and the distance to TSS

weighted (d) numbers of CpG Island and non-CpG Island promoters and enhancers that

was fit using the lme4 function from the lmer package (version 1.1-30) in REML mode:

log2(e) ∼
∑

i∈PD

∑

P/E

∑

CG−I

βi
∑

CREsgene

1

log2(d+ 2)
+ Zbtissue (1)

For the comparability, we report the standardized coefficients βscaled = βsx/sy and the 443

marginal coefficient of variation as calculated for generalized linear mixed models was done 444

with the R-package part2 (Nakagawa et al. 2017, version 0.9.1.9000). In order to assess 445

the effect of PD independently of the distance and number of CREs, we shuffle the PD 446

across all CREs while keeping all other parameters constant and calculate and compare 447

those estimates. 448

Human and cynomolgus macaque iPSC differentiation into NPCs 449

Previously generated urinary stem cell derived iPS-cells of 3 human individuals (Homo 450

sapiens) and fibroblast derived cynomolgus macaque iPSCs (Macaca fascicularis) of 2 451
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individuals (Geuder et al. 2021) were differentiated to neural progenitor cells via dual-SMAD 452

inhibition as three-dimensional aggregation culture (Chambers et al. 2009; Ohnuki et al. 453

2014). Briefly, iPSCs were dissociated and 9x103 iPSCs were seeded in a low attachment 454

U-bottom 96-well-plate in 8GMK medium consisting of GMEM (Thermo Fisher), 8% KSR 455

(Thermo Fisher), 5.5 ml 100× NEAA (Thermo Fisher), 100 mM Sodium Pyruvate (Thermo 456

Fisher), 50 mM 2-Mercaptoethanol (Thermo Fisher) supplemented with 500 nM A-83–01 457

(Sigma Aldrich), 100 nM LDN 193189 (Sigma Aldrich) and 30 µM Y27632 (biozol). Culture 458

medium of the spheres was changed every second day until they were harvested or plated for 459

further culture. In order to obtain stable NPC lines, spheres were dissociated on day 7 of the 460

differentiation process using Accumax (Sigma Aldrich) and plated onto Geltrex (Thermo 461

Fisher) coated dishes. NPCs were subsequently cultured in NPC proliferation medium 462

(DMEM F12 (Fisher Scientific) supplemented with 2 mM GlutaMAX-I (Fisher Scientific), 463

20 ng/mL bFGF (Peprotech), 20 ng/mL hEGF (Miltenyi Biotec), 2% B-27 supplement 464

(50×) minus vitamin A (Gibco), 1% N2 supplement 100× (Gibco), 200 µM L-ascorbic acid 465

2-phosphate (Sigma), and 100U/ml 100µg/ml penicillin-streptomycin). All cell lines have 466

been authenticated using RNA sequencing (RNA-seq) (Geuder et al. 2021), and the current 467

study. 468

RNA-seq data generation and processing 469

Samples for RNA-seq were taken from 3 clones of 3 human individuals and 4 clones of 2 470

cynomolgus macaque individuals at the iPSC stage (time point 0) and after 1, 5, 7 and 9 471

days during the neural maturation process. Spheres were dissociated at each time point 472

using Accumax (Sigma Aldrich) and live cells were sorted using the BD FACS Aria II. 473

cDNA libraries for samples from the different species and differentiation time points were 474

generated using the prime-seq protocol (Janjic et al. 2022) and we obtained 100bp cDNA 475

reads from a Illumina HiSeq 1500 and another read containing a 10 bp UMI and a 6 bp 476
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sample barcode. To obtain digital exon count matrices, we first used functions bbduk to filter 477

out reads that have low sequence complexity (estimated entropy<0.5) and repair to pair the 478

remaining reads from BBTools, BBMap v. 38.02 (Bushnell 2014). Then we applied zUMIs 479

with default parameters (Parekh et al. 2018, version 2.9.7c, STAR v.2.6.2). Human samples 480

were mapped to hg38 with annotations from Gencode v.32. Cynomolgus Macaca fascicularis 481

samples were mapped to macFas6 (Jayakumar et al. 2021) and for gene annotation, we 482

transferred human Gencode v.32 gene models to macFas6 using Liftoff v1.6.3 (Shumate and 483

Salzberg 2021). All samples from time points 0 and 1 were rather homogeneous and showed 484

iPSC characteristics, while all later samples were neural progenitor cells (NPCs). Hence for 485

all analyses, we refer to NPCs as the time points 5, 7, 9. The counts were filtered for UMI 486

counts in at least 28.57% of NPCs (6/21 samples), resulting in a set of 14,608 genes. 487

ATAC-seq data generation and processing 488

Data generation iPSCs of 2 clones from 2 human individuals and 2 clones of 2 cynomolgus 489

macaque individuals were differentiated using the protocol as described above. The NPC 490

lines were cultured in NPC proliferation medium and passaged 2 - 4 times until they were 491

dissociated and subjected to ATAC-seq together with the respective iPSC clones. 492

ATAC-seq libraries were generated using the Omni-ATAC protocol (Corces et al. 2017) 493

with minor modifications. In brief, cells were washed with PBS and dissociated using 494

Accumax (Sigma Aldrich) for iPSCs or TrypleSelect (Thermo Fisher) for NPCs at 37°C for 495

5 - 10 min. After cells were counted, 100,000 cells were pelleted at 500 rcf for 5 min, washed 496

with 1 ml PBS and pelleted at 500 rcf for 5 min at 4 °C. The supernatant was removed 497

completely and cells were resuspended in 100 µl chilled nuclei lysis buffer (10 mM Tris-HCl 498

pH7.4, 10 mM NaCl, 3 mM MgCl2 in water, supplemented with 0.1% Tween-20, 0.1% NP40, 499

0.01% Digitonin and 1% BSA) by pipetting up and down three times, followed by incubation 500

on ice for 3 min. After lysis, 1 ml of lysis wash buffer (10 mM Tris-HCl pH7.4, 10 mM NaCl, 501
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3 mM MgCl2 in water, supplemented with 0.1% Tween-20 and 1% BSA) was added, and 502

tubes were inverted three times. After counting, 50,000 nuclei were pelleted at 500 rcf for 10 503

min at 4°C, the supernatant was removed and nuclei were resuspended in 50 µl transposition 504

mix (25 µl 2x TD buffer, 2.5 µl TDE1, 16.5 µl PBS, 0.5 µl 1% digitonin, 0.5 µl 10% Tween-20 505

and 5 µl ddH2O) by pipetting six times. Transposition reactions were incubated at 37 °C for 506

1 h at 1000 rpm shaking, followed by a clean-up using the DNA Clean & Concentrator-5 kit 507

(Zymo). For library generation, 20 µl of the transposed sample was mixed with 2.5 µl 25µl 508

p5 custom primer, 2.5 µl 25µl p7 custom primer (Buenrostro et al. 2013) and 25 µl NEBNext 509

Ultra II Q5 2x Master Mix (NEB) and a PCR with 10 cycles was conducted as stated in the 510

Omni-ATAC protocol. Libraries were purified using the DNA Clean & Concentrator-5 kit, 511

run on a 2% E-Gel (Thermo Fisher) and gel excision of DNA between 150 bp and 1,500 512

bp was performed using the Monarch DNA Gel Excision Kit (NEB). Concentrations of the 513

purified libraries were measured using PicoGreen (Thermo Fisher) and quality was assessed 514

using a Bioanalyzer High-Sensitivity DNA Analysis Kit (Agilent). Libraries were pooled 515

and sequenced on NovaSeq 6000 instrument with the following setup: R1: 151, i7: 8, R2: 516

151 cycles. 517

Data processing Sequenced human and cynomolgus macaque reads were mapped to 518

hg38 and macFas6 genomes, respectively. For mapping, we used bwa-mem2 (Vasimuddin 519

et al. 2019, version 2.0pre2), using the following command: bwa-mem2 mem -M -t 20 -I 520

250,150. Furthermore, samtools fixmate -m - - and samtools sort commands were 521

applied (H Li and Durbin 2009, version 1.11). Peak calling was performed using Genrich 522

(https://github.com/jsh58/Genrich) on the 2 biological replicates per species per cell type. 523

We applied the following parameter settings: -j -y -r -q 0.05 -a 200 -e MT,Y -E 524

$blacklist -s 20, where as a $blacklist the ENCODE blacklist with hg38 coordinates 525

(Amemiya et al. 2019) was supplied for human (910 regions), and a reciprocal lift-over version 526
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of it to macFas6 (558 regions) was supplied for the peak-calling in macFas6 genome space. 527

Lift-over file generation and usage 528

Lift-over files hg19toHg38 and hg38ToHg19 were downloaded from USCS 529

(https://hgdownload.soe.ucsc.edu/gbdb/hg19/liftOver/hg19ToHg38.over.chain.gz, 530

https://hgdownload.soe.ucsc.edu/goldenPath/hg38/liftOver/hg38ToHg19.over.chain.gz). Lift- 531

over files hg38toMacFas6 and macFas6toHg38 were generated from blastz alignments 532

(Schwartz et al. 2003; Kent et al. 2003) of the canonical chromosomes from both genomes, 533

as reported here(https://genomewiki.ucsc.edu/index.php?title=DoBlastzChainNet.pl). 534

Reciprocal lift-over (RLO) was used to lift CRE coordinates from hg19 over to hg38 and 535

from hg38 over to macFas6. In both cases, the coordinates from X were lifted to Y, then 536

the matches in Y that carried the same CRE identifier and were < 40bp distant from each 537

other were merged and lifted back to X. For further analyses, we kept the CREs of which 538

the reciprocal lift-over coordinates in X overlapped the original sequence coordinates in X. 539

We identified RLO matches for 99.7% of the CREs in hg38 and 87.1% in macFas6. We 540

further removed CREs of which the RLO match width was beyond the following boundaries: 541

[1.2 x hg19; 0.8 x hg19]. We also removed 36 of the remaining CREs that contained Ns 542

in the sequence of either species genome. This resulted in an orthologous set containing 543

401,389 CREs. 544

Cross-species accessibility and gene expression analysis 545

ATAC-seq reads from cynomolgus macaque NPCs mapping to macFas6 and from human 546

NPCs mapping to hg38 genomes were counted within the lift-overed PD-CRE coordinates. 547

Only CREs that overlapped with an ATAC-seq peak by 10% relative to the width of 548

both the DHS and the ATAC-seq peak in at least one species were kept for differential 549

accessibility (DA) analysis (n=61,379). Differential gene expression (DGE) and accessibility 550
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(DA) analyses were both performed separately using DESeq2 (Love et al. 2014, version 551

1.38.3), using species as the predictor. A significance level of Benjamini-Hochberg adjusted 552

p−value of 0.1 was used to detect DA or DGE. 553

For further downstream analysis where we used the state of the ATAC-seq peak (open / 554

closed) as the indicator for peak conservation, we furthermore required that conserved peaks 555

need to overlap by 10% of their width between the lifted human peaks to macaque genome 556

and the macaque peaks. In addition, we excluded cases where, in either species, multiple 557

ATAC-seq peaks overlapped the same DHS or vice versa to avoid multi-to-1 and 1-to-multi 558

peak overlaps, leaving us with a set of 1-to-1, 0-to-1, 1-to-0 and 0-to-0 overlaps between 559

DHS-CREs and ATAC-seq peaks in either species. 560

Evolutionary sequence analysis of CREs 561

To be able to intepret evolution rates as a result of the genetic element’s CRE activity, we 562

excluded all CREs that overlapped CDSs (Gencode v.19) in all sequence evolution analyses 563

(6.6% of the gene-assigned CREs). 564

INSIGHT We ran the web tool INSIGHT (Gronau et al. 2013) on the CRE or peak 565

coordinates of each PD class in hg19 using the default settings. To re-calculate the evo- 566

lutionary rates on various CRE subsets more efficiently, we downloaded the INSIGHT 567

script runINSIGHT-EM.sh that applies expectation-maximization (EM) algorithm on the 568

provided INSIGHT files (.ins) and the complementary flanking sequence INSIGHT files 569

(.flankPoly.forBetas.ins). The scripts for subsetting the INSIGHT output files and 570

re-calculating the evolutionary rates can be found on github. 571

phastCons and phyloP Pre-calculated 46-way hg19 phastCons and phyloP scores for 572

the 10 primate subset were downloaded from 573

http://hgdownload.cse.ucsc.edu/goldenpath/hg19/phastCons46way/ and 574
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http://hgdownload.cse.ucsc.edu/goldenpath/hg19/phyloP46way/ 575

(versions from 2009-11-11) in a big-wig file format. For each CRE, the average conservation 576

score was calculated for each conservation metric. 577

Quantification of transcription factor binding 578

Two sets of TF Position Weight Matrices (PWMs) of the 1) expressed TFs in 9 tissues from 579

Epigenomics Roadmap project (Bernstein et al. 2010) (643 motifs from 561 TFs) and 2) 580

expressed TFs in our human and cynomolgus macaque NPCs (521 motifs from 446 TFs) 581

were generated by downloading and subsetting JASPAR 2020 collection, core vertebrate set 582

(Fornes et al. 2020) using R packages JASPAR2020 (version 0.99.10) and TFBSTools (Tan and 583

Lenhard 2016, version 1.36.0). These PWMs were provided to Cluster-buster (Frith et al. 584

2003, downloaded on 2020-05-07). Cluster-Buster was ran on each set with the following 585

settings: -c0 -m0 -r10000 -b500 -f5. The orthologous human and cynomolgus macaque 586

CRE input sequences were extended by 500 bp in each direction, allowing cluster-buster 587

to have a better approximation of the background base composition (parameter -b500). In 588

each species for each TFBS cluster of a CRE, we ranked TF motifs based on their strongest 589

binding site. For all subsequent analyses, for each CRE we only considered TF binding 590

motifs that were among the 10% strongest in at least one cluster in at least one species. 591

TFBS diversity and divergence between human and macaque orthologous CREs 592

For each CRE in each species, we measured TFBS diversity by Shannon entropy (H) 593

(Shannon 1948) where we considered a CRE as a collection of i = 1, 2, .., n motifs of varying 594

frequency (p): 595

H = −
n∑

i

pi ln pi (2)

For each CRE, motif scores were estimated for each enriched motif (see Methods section 596

Quantification of transcription factor binding) along the sequence by Cluster-Buster (Frith 597
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et al. 2003) and they were used as a proxy for TF binding potential. We summed up the 598

motif scores for each motif to obtain the cumulative motif score. We then used it to calculate 599

p in relation to the total cumulative score of all motifs combined. As entropy is an index of 600

diversity instead of diversity itself, H was converted to what is known as true diversity or 601

Hill number of order 1 (Hill 1973; Jost 2006) simply by 602

D = eH (3)

which measures the effective cumulative motif score. 603

In order to measure how TFBS repertoires diverge between the two species, we calculated 604

the average Canberra distance (dCMH
) for each CRE across the i = 1, 2, .., n motif cumulative 605

scores (S) as follows: 606

dCMH
=

1

n

n∑

i

|SM,i − SH,i|
(SM,i + SH,i)

(4)

where M indicates the orthologous CRE in macaque and H in human. Further, we used 607

1− dCMH
(5)

as a proxy for TFBS repertoire conservation. 608

CRE PD ranking per motif to detect over-represented motifs 609

Per tissue We first identified the expressed TFs and their respective motifs and considered 610

only their binding to the CREs that are open in that tissue. For each PD category and 611

motif, the relative binding frequency was obtained as the fraction of CREs that have binding 612

sites for that motif, e.g. 613

fPD,i =
CPD,i

CPD
(6)
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where PD indicates a PD category, i indicates a motif, CPD,i is the count of CREs with 614

motif i binding site(s) present in the particular PD category, CPD is the total CRE count 615

in that PD category. Having obtained these relative frequencies per PD, we then ranked 616

PD categories for each motif. Fold changes of the binding fraction of rank-1 PD relative to 617

the average fraction were calculated for each motif i as: 618

FCPD(1),i =
fPD(1),i

1
9

∑9
rank=1 fPD(rank),i

(7)

Across tissues To summarise motif-PD enrichment across tissues, we focused on motifs 619

that had the highest binding fractions (rank-1) to either PD9 or PD1. To obtain the 620

PD9-enriched motifs, we identified TF motifs for which PD9 CREs had rank-1 in all tissues. 621

As the PD1-tissue-specific motifs we considered the ones that have PD1 with rank-1 only in 622

that particular tissue, but not in the other tissues. Gene-set enrichment analysis contrasting 623

the respective TF groups with the rest of the expressed TFs was conducted using the 624

Bioconductor package topGO (Alexa and Rahnenfuhrer n.d., version 2.50.0), setting the 625

following parameters: ontology="BP", nodeSize = 10, algorithm = "elim", statistic 626

= "fisher". 627

Stripe factor enrichment analysis 628

Stripe factor annotation table was obtained from Zhao et al. 2022. We selected the stripe 629

factors detected in human (”Human Stripe Factors”) and to subset the universal stripe 630

factors, we used a cutoff of 0.9 for the proportion of total samples in which this TF was 631

detected to be a stripe factor. 632

TFBS position overlap between human and macaque orthologous CREs 633

Orthologous human and macaque CRE sequences were pairwise aligned using mafft (Ka- 634

toh and Standley 2013, version 7) using the following parameters --adjustdirection 635
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--maxiterate 1000 --auto. We quantified alignment length (median 1273, 90% CI [1133, 636

1790]), fraction of mismatches in bp (median: 0.058, 90% CI [0.0357, 0.1432]), the fraction 637

of indels in bp (median: 0.018, 90% CI [0.0031, 0.0916]) and the number of indels (median 638

6, 90% CI [2, 13]). We subsequently trimmed gaps in the remaining CRE alignments. 639

Using the alignment of a CRE, the positions of TFBS that had a motif binding score of >=3 640

in either species were projected onto the common alignment space. Binding site agreement 641

per motif i was calculated as the intersection of binding positions in bp between species over 642

the union, also known as Jaccard similarity coefficient, and summarized by taking the mean 643

across all i = 1, 2, .., n motifs that bind to the particular CRE: 644

IoUMH =
1

n

n∑

i

BM,i ∩BH,i

BM,i ∪BH,i
(8)

where B is a set of positions in the alignment that overlap with a binding site of motif i in 645

the respective species macaque M or human H. 646

Quantification and Statistical Analysis 647

Data visualizations and statistical analysis was performed using R (version 4.2.3) (R Core 648

Team 2023), session info can be accessed on GitHub. Details of the statistical tests performed 649

in this study can be found in the main text as well as the method details section. Schematics 650

were made using bioRender. 651

Data and Code Access 652

RNA-seq and ATAC-seq data are available under ArrayExpress accessions E-MTAB-13494 653

and E-MTAB-13373. A compendium containing processing scripts, important tables and 654

detailed instructions to reproduce the analysis for this manuscript is available from the 655

following GitHub repository: 656
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Supplemental Figure S1. Peak widths per tissue and overlaps across tissues. A. Average peak
width per tissue across specificity groups prior to cross-tissue merging. B. Pairwise overlap fraction
between overlapping peaks that were later merged into the same CRE. C. Observed coefficients for
the CREs from different PDs (thin line with colored points) are different from the control estimates
(90% CI, in gray) where PD labels were shuffled 30 times across the CREs.
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Supplemental Figure S2. CRE to gene association across tissues. A. Expression data overview:
Number of replicates and number of expressed genes for each tissue. B-C. Distance distribution of
CREs annotated as enhancers (B) and promoters (C) to their closest gene. D. Number of associated
genes per CRE. Enhancers were associated with up to 2 genes, promoters: up to 5. E. Associated
number of CREs per gene is comparable across tissues.
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Supplemental Figure S3. Cross-species NPC expression and accessibility. A. Heatmap of the top
1000 most variable CREs across the ATAC-seq data in terms of their openness (Euclidean distance,
method: complete). B. Heatmap of the top 1000 most variable genes across the RNA-seq data
(Euclidean distance, method: complete). C. Odds ratios of differential accessiblity of enhancers
vs. the associated gene differential expression results between humans and cynomolgus macaques,
split between CGI and non-CGI CREs. D. Odds ratios of differential accessiblity of promoters vs.
the associated gene differential expression results between humans and cynomolgus macaques, split
between CGI and non-CGI CREs. C,D. Error bars represent the 95% confidence intervals of the odd
ratio, the stars indicate the significance level after Benjamini-Hochberg correction ( . < 0.1, ∗ < 0.05,
∗∗ < 0.01, ∗∗∗ < 0.001 ). E. Hierarchical clustering (method = ”binary”, distance = ”complete”)
of human and macaque NPC ATAC-seq samples together with human tissue CREs based on the
variable CRE binary openness across tissues (PD1-8).
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Supplemental Figure S4. Evolutionary sequence analysis of CREs across tissue specificity groups.
A. PhastCons conservation scores based on a 10-species primate tree. B. PhyloP conservation
scores based on a 10-species primate tree. C. Weak negative selection patterns between CGI and
non-CGI CREs suggest an increasing weak selection with higher PD in both groups. D. (Strong)
negative selection patterns between CGI and non-CGI CREs show similar trend across PDs. E.
Absolute pairwise distance in CpG expected/observed ratio between human and cynomolgus macaque
orthologous CREs. F. Absolute pairwise distance in GC content between human and cynomolgus
macaque orthologous CREs. A,B,C,D,E,F. Depicted are mean estimates per PD category. Error
bars indicate SEM.
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Supplemental Figure S5. TFBS repertoire diversity and conservation. A. Motif information
content of the PD1-enriched, PD9-enriched and other motifs, classified as in 2D. B. Motif GC content
of the PD1-enriched, PD9-enriched and other motifs, classified as in 2D. C,D. 95% confidence
intervals of the average TFBS repertoire conservation when shuffling macaque CRE identifiers within
the respective PD class 10 times (grey line). Random CRE similarity is below 10% and does not
increase with PD. In comparison, the real observed enhancer and promoter repertoire conservation is
depicted in green (C.) and blue (D.), respectively.
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Abstract

Human pluripotent stem cells (PSCs) express human endogenous retrovirus type-H

(HERV-H), which exists as more than a thousand copies on the human genome and fre-

quently produces chimeric transcripts as long-non-coding RNAs (lncRNAs) fused with

downstream neighbor genes. Previous studies showed that HERV-H expression is required

for the maintenance of PSC identity, and aberrant HERV-H expression attenuates neural

differentiation potentials, however, little is known about the actual of function of HERV-H. In

this study, we focused on ESRG, which is known as a PSC-related HERV-H-driven lncRNA.

The global transcriptome data of various tissues and cell lines and quantitative expression

analysis of PSCs showed that ESRG expression is much higher than other HERV-Hs and

tightly silenced after differentiation. However, the loss of function by the complete excision

of the entire ESRG gene body using a CRISPR/Cas9 platform revealed that ESRG is dis-

pensable for the maintenance of the primed and naïve pluripotent states. The loss of ESRG

hardly affected the global gene expression of PSCs or the differentiation potential toward tri-

lineage. Differentiated cells derived from ESRG-deficient PSCs retained the potential to be

reprogrammed into induced PSCs (iPSCs) by the forced expression of OCT3/4, SOX2, and

KLF4. In conclusion, ESRG is dispensable for the maintenance and recapturing of human

pluripotency.

Author summary

We have been interested in the role of human endogenous retrovirus (HERVs) in human

pluripotent stem cells (PSCs). Although we and others have demonstrated that HERV

expression is crucial for somatic cell reprogramming to a pluripotent state and the

characteristics of PSCs. Little is known which one of more than 1,000 copies of HERVs is

important. Thus, in this study, we focused on a HERV-related gene, ESRG which is

expressed strongly and specifically in human PSCs but not in differentiated cells. Using a
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CRISPR/Cas9 platform, we generated complete knockout cell lines by deleting the entire

gene body of ESRG.
Our results demonstrate that ESRG is dispensable for the PSC characters such as gene

expression, self-renewing capacity, and differentiation potential. In addition, ESRG does

not contribute to the reprogramming of differentiated cells to a pluripotent state. Alto-

gether, we concluded that ESRG is an excellent marker of pluripotency but dispensable

for the PSC identity.

Introduction

Human pluripotent stem cells (PSCs) express several types of human endogenous retroviruses

(HERV) [1–3]. The HERV type-H (HERV-H) family is a primate-specific ERV element that

was first integrated prior to the New World/Old World divergence. During further primate

evolution, this family’s major expansion occurred after the branch of Old World monkeys

[4]. The typical structure of a HERV-H consists of an interior component, HERV-H-int,

flanked by two long terminal repeat 7 (LTR7), which have promoter activity [5,6]. Recent stud-

ies have demonstrated that the activity of LTR7 is highly specific in established human PSCs

and relatively absent in early human embryos. In contrast, other LTR7 variants such as

LTR7B, C, and Y are activated in broad types of early human embryos from the 8-cell to epi-

blast stages [7].

The importance of HERV-Hs in human PSCs has been shown. The knockdown (KD) of

pan HERV-Hs using short hairpin RNAs (shRNAs) against conserved sequences in LTR7 or

HERV-H-int regions revealed that HERV-H expression is required for the self-renewal of

human PSCs [8,9] and somatic cell reprogramming toward pluripotency [8–14]. In addition

to self-renewal, the precise expression of HERV-Hs is crucial for the neural differentiation

potential of human PSCs [10,15]. In this way, HERV-H expression contributes to the PSC

identity.

The transcription of HERV-H frequently produces a chimeric transcript fused with a

downstream neighbor gene, which diversifies HERV-H-driven transcripts. Therefore, many

HERV-H-driven RNAs contain unique sequences aside from HERV-H consensus sequences.

Indeed, PSC-associated HERV-H-containing long non-coding RNAs (lncRNAs) have been

reported [15–17]. One of them, ESRG (embryonic stem cell-related gene; also known as

HESRG) was identified as a transcript that is predominantly expressed in undifferentiated

human embryonic stem cells (ESCs) [18,19]. ESRG is transcribed from a HERV-H LTR7 pro-

moter [8,20] and is activated in an early stage of somatic cell reprogramming induced by the

forced expression of OCT3/4, SOX2, and KLF4 (OSK) [12,13,20]. One previous study showed

that the shRNA-mediated KD of ESRG induces the loss of PSC characters such as colony mor-

phology and PSC markers along with the activation of differentiation markers, suggesting the

indispensability of ESRG for human pluripotency [8]. However, despite these characteriza-

tions, the function of ESRG is still unknown.

In this study, we analyzed the conservation of ESRG to infer its functional importance.

Then we completely deleted ESRG alleles to analyze ESRG function in human PSCs with no

off-target risk. The loss of ESRG, which is thought to be an essential lncRNA for the PSC iden-

tity [8], exhibited no impact on the self-renewal or differentiation potentials of both primed

and naïve human PSCs. Neural progenitor cells (NPCs) derived from ESRG-deficient PSCs

could be reprogrammed into induced PSC (iPSC) by OSK expression. Altogether, this study

revealed that ESRG is dispensable for human pluripotency.
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Results

No evidence for ESRG conservation

A large proportion of the ESRG lncRNA-gene is derived from a HERV-H insertion event that

happened after the orangutan split from the other great ape lineages leading to humans and

chimpanzees [21]. The entire first exon and part of the second exon of ESRG are encoded by

this HERV-H element (Fig 1A). Accordingly, the conservation as determined by PhastCons

scores [22,23] is low throughout the transcript (0.7% of sites with PhastCons>0.9), even when

compared to other lncRNA-genes (Fig 1A and S1 Table). In humans, chimpanzees, and bono-

bos, the entire element is present, while in gorilla only partial sequences of the LTR7 flanks are

left. However, even though ESRG is present in chimpanzees, it shows a much lower expression

in iPSCs than in humans (Fig 1B and S2 Table). As expected, ESRG is highly expressed in

iPSCs and then downregulated upon differentiation as can be seen in the iPSC-derived cardio-

myocytes [24]. Indeed, in human iPSCs, ESRG is alongside OCT3/4 and GAPDH among the

5% most highly expressed genes but ranks lower than 50% in chimpanzees (S3 Table). Hence,

even though ESRG is present in chimpanzees, its expression pattern is not conserved.

However, also transcripts that are not phylogenetically conserved can be of functional

importance. Such transcripts should carry signatures of negative selection. If ESRG had an

important function in human populations, then we should find signs for deleterious and

slightly deleterious alleles which can segregate at low frequencies within a population but are

less likely to get fixed [25,26]. Unfortunately, the power to detect negative selection in popula-

tion genetics data is relatively low, in particular, if only a small proportion of sites is expected

to be under selection. For example, only 8% of sites in HOTAIR, a well-documented lncRNA

[27] are notably conserved (PhastCons>0.9). To detect deleterious sites, we compared human-

chimpanzee divergence of exon and intron sequences and find that divergence in exons is not

significantly lower than in the introns of ESRG (Fisher’s-Exact test, dexon/dintron = 0.85, p = 0.51;

Fig 1C and S4 Table). To detect slightly deleterious sites, we checked for a left shift of the site

frequency spectrum [25] and found that the proportion of singletons in ESRG exons is much

lower than for the on average highly conserved non-synonymous SNVs and similar to SNVs in

other non-coding exons and synonymous sites (Fig 1D). Also compared to other lncRNAs,

both conserved and nonconserved, ESRG has no shift towards rare alleles (Fig 1E). Next, we

looked for a lower fixation rate of mutations occurring in ESRG exons as compared to introns

by contrasting the number of human SNVs [28] with the number of single nucleotide substitu-

tions (SNS) between humans and the common ancestor of chimpanzees and bonobos (Fig 1C).

Even though the intronic sequences have a slightly higher fixation rate than the exon the differ-

ence is not significant (Fisher’s-Exact test, (SNSexon/SNVexon)/(SNSintron/SNVintron) = 0.74,

p = 0.21). All in all, we do not find any compelling evidence for selection.

ESRG is robustly expressed in human PSCs and tightly silenced after

differentiation

To acquire an in-depth understanding as to the ESRG expression in humans, we analyzed the

expression and epigenetic statuses of the ESRG gene in human PSCs and human dermal fibro-

blasts (HDFs). The RNA sequencing (RNA-seq) and chromatin immunoprecipitation

sequencing (ChIP-seq) of histone H3 modifications [10] indicated that the ESRG locus is open

and actively transcribed in human PSCs but not in differentiated cells such as human dermal

fibroblasts (HDFs) (Fig 2A). As well as other HERV-H-related genes, LTR7 elements in the

ESRG gene are occupied by pluripotency-associated transcription factors (TFs) such as OSK

[9,10] (Fig 2A). Little or no ESRG expression was detected in 24 human adult tissues and five

PLOS GENETICS ESRG’s role in human pluripotency
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Fig 1. Conservation analysis of ESRG. (A) Modified screenshot from the UCSC genome browser showing the ESRG transcript in context to the RepeatMasker

annotation, primate phastCons scores, and great ape and primate multiz-alignments. Note that the missing data in the chimpanzee were available in a newer

chimpanzee assembly (panTro6) and was included in our later analysis. (B) DESeq2 normalized and variance stabilized expression in human and chimpanzee

iPSCs and iPSC-derived cardiomyocytes (iPSC-CM). In iPSCs ESRG is similarly highly expressed as OCT3/4 and GAPDH, and completely downregulated in

iPSC-CM. Moreover, in iPSCs ESRG is significantly higher expressed in humans than in chimpanzees (log2 fold change = 3.85; p-adj<10−17; S2 Table). (C) Fraction

of substitutions and SNVs across exons and introns of ESRG. Both diversity and divergence are highest in the LTR-region of exon 1. (D) Site frequency spectrum

across 30,000 chromosomes across human populations for ESRG exons, other non-coding exons, synonymous and nonsynonymous sites of next gene CACNA2D3

and across the genome. (E) Distribution of the fraction of singletons for conserved lncRNAs (>5% sites with PhastCons>0.9) and other lncRNAs with at least 50

SNVs. Only very few have a singleton fraction that differs significantly from the neutral expectation as derived from synonymous sites (χ2-test; p<0.05, red tick-

marks on the x-axis).

https://doi.org/10.1371/journal.pgen.1009587.g001
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Fig 2. ESRG is dispensable for primed pluripotency. (A) Epigenetic status of the ESRG locus. We used the published RNA-seq (GSE56568) and ChIP-seq

(GSE56567, GSE89976) data to confirm the RNA expression and the statuses of histone modifications and PSC core transcription factor (TF) binding on the

ESRG locus in HDFs and iPSCs on human genome assembly hg19. The green arrowheads at the bottom indicate the location of the LTR7 elements. (B)

Expression of PSC-associated mRNAs and HERV-H chimeric RNAs. Shown are the averaged expressions of the indicated transcripts in H9 ESCs, 585A1
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fetal tissues (S1A Fig). Compared to other PSC-associated HERV-H chimeric transcripts,

ESRG expression exhibits a sharp contrast between human PSCs and somatic tissues [8,10,15–

17]. Furthermore, ESRG is expressed in human PSCs, including embryonic carcinoma cell

(ECC) lines, but is silenced in four cancer cell lines and ten cell lines derived from normal tis-

sues (S1B Fig). Quantitative reverse transcription-polymerase chain reaction (qRT-PCR)

revealed that the ESRG expression is significantly higher than the expression of other

HERV-H-related transcripts and is comparable to the expression of SOX2 and NANOG,

which play essential roles in pluripotency, in three independent human PSC lines (Fig 2B).

These data suggest that ESRG expression is abundant in human PSCs and is tightly silenced in

differentiated states.

ESRG is dispensable for human pluripotency

The above results showing low conservation but high expression in humans led us to test the

function of ESRG in human PSCs. To make a complete loss of function of the lncRNA ESRG,

we employed a CRISPR/Cas9 platform and two small guide RNAs (sgRNAs) to delete ~8,400

bp of the genomic region including the entire ESRG gene (Figs 2A and S2A). As a result, we

obtained multiple independent ESRG knockout (KO) PSC lines that exhibit complete deletion

of the gene body with unique minor deletion patterns in both alleles under a primed PSC cul-

ture condition (S2B and S2C Fig). In this study, we used three clones as wild-type (WT) con-

trols carrying intact ESRG alleles with no or minor deletions at the sgRNA recognition sites

(S2D Fig). The expression of ESRG was undetectable in the KO clones by qRT-PCR (Fig 2C).

Immunocytochemistry showed that ESRG KO PSCs express the PSC core transcription factors

(Fig 2D) and PSC-specific surface antigens (Fig 2E). The loss of ESRG made no impact on the

expression of neighbor genes located within 10 Mbp of ESRG (Fig 2F). Global transcriptome

analysis by microarray revealed that the loss of ESRG altered the expression of only six genes

(10 probes in microarray) such as ESRG (Chr. 3), TMLHE (Chr. X), LDHC (Chr. 11),

LOC339975 (Chr. 4), AIFM2 (Chr. 10), XLOC_L2_01411 (Chr. 4) and lnc-CDKAL1-1 (Chr.

6) between ESRG WT and KO PSCs in primed condition (Fig 2G). We also confirmed that

loss of ESRG affects the expression of 36 genes which are located widely on different chromo-

somes by RNA-seq (S3 Fig). Only THELE, LDHC, and ESRG itself were found as differentially

expressed genes (DEGs) common in microarray and RNA-seq data. These data suggest that

ESRG has no apparent cis-acting lncRNA function by interacting with neighbor genes. More-

over, ESRG KO PSCs normally survived while maintaining the undifferentiated state as judged

by alkaline phosphatase (AP) activity and the absence of any apparent genomic abnormalities

(Figs 2H and S4). Altogether, these data suggest that loss of ESRG does not affect the self-

renewal of human primed PSCs.

We revisited the shRNA-mediated KD of ESRG to confirm the consistency with the pheno-

type of ESRG loss. Three independent shRNAs [8,9] decreased the ESRG expression to

16.38~32.55% compared to the parental line (S5A Fig). After 20 days of shRNA transduction,

the RNA expression of POU5F1 and/or NANOG were reduced by two of three shRNAs

iPSCs, and 201B7 iPSCs. Error bars and white lines indicate min. to max. and the mean of each gene expression, respectively. Values are compared to GAPDH.

n = 3. (C) Expression of ESRG in ESRG WT and KO PSC clones. Values are normalized by GAPDH and compared with primed H9 ESCs. n = 3. (D)

Expression of PSC core transcription factors. Bars,100 μm. (E) Expression of PSC-specific surface antigens. Bars, 100 μm. (F) Expression of neighbor genes<10

Mbp apart from ESRG gene. Values are normalized by GAPDH and compared with parental primed H9 ESCs. n = 3. (G) Global gene expression. Scatter plots

compare the microarray data of ESRG WT and KO primed PSCs. The colored plots indicate differentially expressed genes (DEGs) with statistical significance

(FC>2.0, FDR, 0.05). The numbers of DEGs (FC>2.0, FDR,0.05) are shown in the figure. n = 3. (H) Plating efficiency. Shown are the number of AP (+)

colonies raised from 100 or 200 ESRG WT and KO PSCs. n = 3. Numerical values for B, C, F, and H are available in S1 Data.

https://doi.org/10.1371/journal.pgen.1009587.g002
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(shESRG-4 and 5), although the most effective shRNA (shESRG-2) against ESRG did not alter

them (S5A Fig). None of ESRG shRNAs induced the expression of early differentiation mark-

ers such as T (mesendoderm) and NES (neuroectoderm) (S5A Fig). The ESRG KD PSCs grew

normally with expressing NANOG protein (S5B Fig). These data suggest that ESRG KD by

shRNAs does not induce the differentiation of human PSCs in the primed state. We and others

previously reported the effects of shRNA-mediated pan HERV-H KD on human PSC charac-

teristics [8–10]. Three shRNAs against the conserved regions of HERV-Hs decreased to

29.06~56.48% compared to the parental line (S6A Fig). One of them (shHERVH-1), as similar

efficiency of the ESRG shRNAs, finely knocked down the ESRG expression to 14.55% of the

parental line (S5B and S6B Figs). Microarray data suggested that no noticeable changes were

detected in the expression of PSC markers and lineage markers (S6B Fig). In addition to the

transcriptome data, we confirmed that all three HERV-H KD PSC lines were able to expand

with maintaining the stem cell morphologies and NANOG protein expression (S6C Fig).

These data support that ESRG is dispensable for the self-renewing of primed PSCs.

In addition to the primed state, we tested if ESRG is required for another state of pluripo-

tency, the so-called naïve state, which also expresses ESRG but at a significantly lower level

than the primed state (Fig 3A). Regardless of the ESRG expression, naïve PSCs could be estab-

lished by switching the media composition and could self-renew while keeping a tightly packed

colony formation (Fig 3B) [29–31]. Furthermore, they exhibited a significantly high expression

of the naïve pluripotency markers KLF4 and KLF17 and attenuated the expression of the

primed PSC marker ZIC2 (Fig 3C) [32,33]. Twenty-nine genes including ESRG and

CNCNA2D3 were found as DEGs between ESRG WT and KO PSCs in naïve condition by

RNA-seq (S3 Fig), although microarray analysis revealed that ESRG had no effect on the global

gene expression of naïve PSCs (Fig 3D). Altogether, these data suggest that ESRG does not

contribute to self-renewal and gene expression of human naïve PSCs.

We also differentiated ESRG WT and KO naïve PSCs to the primed pluripotent state. As a

result, irrespective of the ESRG genotype, we detected the hallmarks of primed pluripotency

such as flatter colony formation, the reactivation of ZIC2 and the suppression of KLF4 and

KLF17, suggesting the bidirectional transition between naïve and primed pluripotency does

not require ESRG (Fig 3E and 3F). Taken together, these data demonstrate that ESRG is dis-

pensable for the maintenance of human PSCs.

ESRG is not involved in differentiation

Next, we analyzed whether ESRG is required for the differentiation of human primed PSCs by

embryoid body (EB) formation. The absence of ESRG had no effect on EB formation by float-

ing culture or differentiation into trilineage such as alpha-fetoprotein (AFP) positive (+) endo-

derm, smooth muscle actin (SMA) (+) mesoderm, and βIII-TUBULIN (+) ectoderm (Fig 4A

and 4B). Other lineage markers such as DCN (endoderm), MSX1 (mesoderm) and MAP2

(ectoderm) were also well induced in EBs derived from either ESRG WT or KO primed PSCs

(Fig 4C). Global transcriptome analysis by microarray indicated the loss of ESRG caused no

significant gene expression changes during EB differentiation (Fig 4D). These data suggest that

ESRG KO PSCs retained the potential to differentiate into all three germ layers.

Previous studies showed that HERV-H expression regulates the neural differentiation

potential of human PSCs [10,15,34]. Thus, in addition to the random differentiation by EB for-

mation, we tested whether ESRG contributes to the directed differentiation of human primed

PSCs into NPCs by the dual SMAD inhibition method [35,36]. Both ESRG WT and KO PSCs

were able to differentiate into expandable NPCs, which expressed the early neural lineage

marker PAX6 but not OCT3/4 (Fig 4E). Other NPC markers such as SOX1 and NES were well
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induced, whereas the PSC marker NANOG was silenced (Fig 4F). These data suggest that

ESRG is not responsible for HERV-H-regulated neural differentiation. Taken together, we

concluded that ESRG is not required for the differentiation of human PSCs.

Fig 3. No impact of ESRG on naïve pluripotency. (A) The ESRG expression. Shown are relative expressions of ESRG in primed PSCs, naïve PSCs, NPCs and HDFs.

Values are normalized by GAPDH and compared with the primed 585A1 iPSC line. �P<0.05 vs. primed PSCs by unpaired t-test. n = 3. (B) Conversion to naïve

pluripotency. Shown are representative images of ESRG WT and KO primed and naïve PSCs under phase contrast and of immunocytochemistry for KLF17 (red) and

OCT3/4 (green). Bars, 200 μm. (C) The expression of primed and naïve PSC markers. Shown are the relative expressions of common PSC markers (POU5F1 and

NANOG), a primed PSC marker (ZIC2) and naïve PSC markers (KLF4 and KLF17). Values are normalized by GAPDH and compared with primed H9 ESCs. n = 3. (D)

Global transcriptome. Scatter plots comparing the microarray data of ESRG WT and KO naïve PSCs. The colored plot indicates DEG with statistical significance

(FC>2.0, FDR,0.05). The numbers of DEGs (FC>2.0, FDR,0.05) are shown in the figure. n = 3. (E) Differentiation to primed pluripotency. Representative images of

ESRG WT and KO naïve PSCs before and after conversion to the primed pluripotent state are shown. Bars, 200 μm. (F) The expression of primed and naïve PSC

markers. Shown are the relative expressions of the marker genes in (C) in ESRG WT and KO naïve PSCs before and after the differentiation to the primed pluripotent

state. Values are normalized by GAPDH and compared with primed H9 ESCs. n = 3. Numerical values for A, C, and F are available in S1 Data.

https://doi.org/10.1371/journal.pgen.1009587.g003
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ESRG is not required for somatic cell reprogramming toward pluripotency

A previous study showed that the overexpression of ESRG improves iPSC generation [8], sug-

gesting a positive effect on somatic cell reprogramming toward pluripotency. The activation of

ESRG in the early stage of reprogramming and the high expression of ESRG during repro-

gramming support this hypothesis (Fig 5A) [20]. Therefore, we reprogrammed ESRG WT and

KO NPCs to iPSCs by introducing OSK. iPSCs emerged from ESRG WT and KO NPCs with

Fig 4. ESRG-deficient PSCs are capable of differentiating. (A) Differentiation by EB formation. Bars, 500 μm. (B) Trilineage differentiation. Bars, 200 μm. (C) The

expression of differentiation markers. Shown are the relative expressions of PSC markers (POU5F1 and NANOG) and differentiation markers (DCN, MSX1, and MAP2)

on days 8 and 16 of EB differentiation. Values are normalized by GAPDH and compared with primed H9 ESCs. n = 3. (D) Global gene expression of differentiation

derivatives. Scatter plots compare the microarray data of ESRG WT and KO PSC-derived EBs on days 8 and 16. The numbers of DEGs (FC>2.0, FDR,0.05) are shown in

the figure. n = 3. (E) NPC differentiation. Representative images of ESRG WT and KO PSCs and NPCs under phase contrast and of immunocytochemistry for PAX6 (red)

and OCT3/4 (green) are shown. Bars, 200 μm. (F) The expression of NSC markers. Shown are the relative expressions of PSC markers (POU5F1 and NANOG) and NPC

markers (PAX6, SOX1, and NES) in ESRG WT and KO PSCs and NPCs. Values are normalized by GAPDH and compared with primed H9 ESCs. n = 3. Numerical values

for C and F are available in S1 Data.

https://doi.org/10.1371/journal.pgen.1009587.g004
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comparable efficiency (Fig 5B). This observation suggests that ESRG is dispensable for iPSC

generation. In addition, along with OSK, we transduced c-MYC, a potent enhancer of iPSC

generation [37,38], or exogenous ESRG. c-MYC but not exogenous ESRG increased the effi-

ciency of the iPSC generation from ESRG WT and KO NPCs equally (Fig 5B). Taken together,

these data suggest that ESRG has no impact on somatic cell reprogramming toward iPSCs.

Discussion

In this study, we completely excised the entire ESRG gene to understand its role in human PSCs

while avoiding residual expression and off-target effects. As a result, ESRG KO PSCs showed no

apparent phenotypes in self-renewal and differentiation potential. A previous study showed the

importance of ESRG in human PSC identity by using an shRNA-mediated KD approach [8].

Although we used the same H9 ESC line as that study, the different strategies for the loss of func-

tion and subsequent experiments, such as KD and KO, may explain the different results. There-

fore, this study revisited the ESRG KD by using three shRNAs including published sequences [8].

Indeed, two published shRNAs (shESRG-4 and 5) decreased POU5F1 (84.28 and 55.28% of the

parental line) and NANOG (52.66 and 67.14% of the parental line), respectively, whereas

shESRG-2 that is newly designed in this study did not change their expression (103.54 (POU5F1)

and 106.64% (NANOG) of the parental line) (S5A Fig). The reduction of PSC marker expression

that varied among shRNAs was not enough to induce the differentiation of human PSCs (S5C

Fig). In addition to the ESRG KD, we also showed the effects of pan HERV-H KD in human

PSCs in primed condition (S6 Fig). We previously showed that the suppression of HERV-H

expression using shRNA did not disrupt the self-renewal of human PSCs [10,34]. A recent paper

by Zhang et al. showed that pan-HERV-H KD in human PSCs by using CRISPR interference did

not induce spontaneous differentiation like we observed [39]. However, since other groups con-

cluded that HERV-H KD induced differentiation [8,9], further studies are required to understand

what HERV-H is doing. One possibility that may explain the discrepancy of the results between

previous and current studies [8] is the off-target effect of RNAi. Similar observations have been

found for the role of lncRNA Cyrano that is highly conserved in mice and humans. Knockdown

by using shRNA suggested Cyrano lncRNA maintains mouse PSC identity [40], but targeted dele-

tion of the Cyrano gene and gene silencing by CRISPR interference demonstrated no impact on

Fig 5. ESRG is dispensable for iPSC reprogramming. (A) The expression of ESRG during reprogramming. The

heatmap generated by using the dataset (GSE54848) shows the normalized intensities of ESRG, POU5F1

(endogenous), SOX2 (endogenous), and NANOG expression from microarray data in the time course of iPSC

reprogramming (days 0–49) and established iPSCs (far right). n = 3. (B) The effect of ESRG on iPSC generation.

Shown are the numbers of AP (+) iPSC colonies 24 days after the transduction of OSK along with Mock (n = 4), ESRG

(n = 4), and c-MYC (n = 5). Numerical values for A and B are available in S1 Data.

https://doi.org/10.1371/journal.pgen.1009587.g005
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the mouse or human PSC identity [41–43]. Further, it has been argued that the shRNA-mediated

KD of nuclear lncRNAs might be difficult or inefficient compared to cytoplasmic RNAs such as

mRNAs [44,45]. In addition, while small nucleotide insertions or deletions causing frameshift of

the reading frames work well for the loss of function of protein-coding genes, the same is not true

for non-coding RNAs. In this context, our study succeeded in generating the complete deletion of

ESRG gene alleles, providing highly reliable results.

This study clearly demonstrated that ESRG is dispensable for human PSC identity. Neither

primed nor naïve PSCs require ESRG for their identities, such as colony morphology or gene

expression signatures, meaning ESRG is dispensable for human pluripotency, at least in an in

vitro culture environment. However, since ESRG is expressed in epiblast-stage human

embryos [8,46], it might be involved in early human embryogenesis.

ESRG is stochastically activated by OSK in rare reprogrammed intermediates that have the

potential to become bona fide iPSCs and is highly expressed throughout the process of repro-

gramming toward iPSCs [20]. In the present study, we showed that ESRG KO NPCs can be

reprogrammed with the same efficiency as ESRG WT NPCs. These data suggest that ESRG is a

good marker of the intermediate cells in the early stage of reprogramming rather than a func-

tional molecule that is needed for iPSC generation.

In summary, this study provides clear evidence of the dispensability of ESRG for human

PSC identities, such as global gene expressions and differentiation potentials, in two distinct

types of pluripotent states. We also demonstrated that the function of ESRG is not required for

recapturing pluripotency via somatic cell reprogramming. Finally, the tightly regulated and

high expression of ESRG promises to make an excellent marker of undifferentiated human

PSCs both in basic research and clinical application [20,47].

Methods

Expression conservation

To investigate ESRG expression, we used an RNA-seq data set that investigated cardiomyocyte

differentiation from human and chimpanzee iPSCs [24]. Read count matrices were down-

loaded from Gene Expression Omnibus (GSE110471). We selected iPSC and iPSC-derived

cardiomyocyte samples and filtered the data for genes that were detected in at least 40% of the

samples and had an average expression of at least 5 counts, yielding a final matrix with 17,213

genes. Differential expression analyses and variance-stabilizing transformation were per-

formed using DESeq2 v.1.30.0 [48], using a model including the factors ~cell type: species

+ species. iPSC-specific differential expression between human and chimpanzee was inferred

via the interaction term identifying iPSC-specific differences between human and chimpanzee.

Multiple sequence alignment

We used the human ESRG sequence (+20 kb in each direction) (NCBI 105.20190906 Refer-

ence Sequence NR_027122.1; hg19) to search orthologous sequence in the great apes genomes:

chimpanzee (Pan troglodytes, GCF_002880755.1), bonobo (Pan paniscus, GCF_013052645.1),

gorilla (Gorilla gorilla, GCA_900006655.3) and orang (Pongo abelii, GCF_002880775.1) using

dc-megablast with default options [49]. Finally, the identified regions were aligned into a mul-

tiple sequence alignment using mafft [50] and manual inspection.

Human polymorphism data

We identified the polymorphic sites based on gnomAD v2.1.1 database [28]. We downloaded

the vcf-file and tsv coverage files derived from whole-genome sequencing of 15,708 unrelated
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individuals. For further analyses, we only used bi-allelic single nucleotide variants (SNVs) that

also passed the quality criteria of gnomAD and had at least 15x coverage in at least 95% of the

individuals. To balance small differences in the numbers of chromosomes sampled at each

polymorphic site, we downsampled it to 30,000. In the following, we analyze synonymous and

non-synonymous SNVs and SNVs falling into the exons of long non-coding RNAs (Gencode

version 35, transcript type ‘lncRNA’, lifted over to hg19 using hg38ToHg19 UCSC chain file

[51]). For ESRG, we distinguish SNPs falling into exons, introns, and LTR-derived sequences

and compare them to the surrounding protein-coding gene CACNA2D3.

The culture of primed PSCs

H9 ESC (RID:CVCL_9773) [52] and 585A1 iPSC (RRID:CVCL_DQ06) [53] lines were main-

tained in StemFiT AK02 media (Ajinomoto) supplemented with 100 ng/ml recombinant

human basic fibroblast growth factor (bFGF, Peprotech) (hereafter F/A media) on a tissue cul-

ture plate coated with Laminin 511 E8 fragment (LN511E8, NIPPI) [54,55]. N18 iPSC line was

maintained in F/A media supplemented with 1 μg/ml of doxycycline on a tissue culture plate

coated with LN511E8 [34]. 201B7 iPSC (RRID:CVCL_A324) line was cultured on mitomycin

C (MMC)-inactivated SNL mouse feeder cells (RRID:CVCL_K227) in Primate ESC Culture

medium (ReproCELL) supplemented with 4 ng/ml bFGF [12].

Induction and maintenance of naïve PSCs

The conversion of primed PSCs to the naïve state was performed as described previously [31].

Prior to naïve conversion, primed PSCs were maintained on MMC-treated primary mouse

embryonic fibroblasts (PMEFs) in DFK20 media consisting of DMEM/F12 (Thermo Fisher

Scientific), 20% Knockout Serum Replacement (KSR, Thermo Fisher Scientific), 1% MEM

non-essential amino acids (NEAA, Thermo Fisher Scientific), 1% GlutaMax (Thermo Fisher

Scientific) and 0.1 mM 2-mercaptoethanol (2-ME, Thermo Fisher Scientific)) supplemented

with 4 ng/ml bFGF. The cells were harvested using CTK solution (ReproCELL) and dissoci-

ated into single cells. One hundred thousand cells were plated onto MMC-treated PMEFs in a

well of a 6-well plate in DFK20 media plus bFGF and 10 μM Y-27632. Thereafter, the cells

were incubated in hypoxic condition (5% O2). On the next day, the media was replaced with

NDiff227 (Takara) supplemented with 1 μM PD325901 (Stemgent), 10 ng/ml of recombinant

human leukemia inhibitory factor (LIF, EMD Millipore), and 1 mM Valproic acid (Wako).

Three days later, the media was switched to PXGL media (NDiff227 supplemented with 1 μM

PD325901, 2 μM XAV939 (Wako), 2 μM Gö6983 (Sigma Aldrich), and 10 ng/ml of LIF).

When round shape colonies were visible (around day 9 of the conversion), the cells were

dissociated using TrypLE Express (Thermo Fisher Scientific) and plated onto a new PMEF

feeder plate in PXGL media plus 10 μM Y-27632. The media was changed daily, and the cells

were passaged every 4–5 days. Cells after at least 30 days of the conversion were used for the

assays.

Differentiation of naïve PSCs to the primed state

Naïve PSCs were harvested using TrypLE Express and plated at 5 x 105 cells onto a well of a

LN511E8-coated 6-well plate in PXGL media supplemented with 10 μM Y-27632. On the next

day, the media was replaced with F/A media. After 2 and 8 days, the cells were harvested and

split to a new LN511E8-coated plate in F/A media plus 10 μM Y-27632. On day 16 of the dif-

ferentiation, the cells were fixed for immunocytochemistry, and RNA samples were collected

to analyze the marker gene expression.
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Induction and maintenance of NPCs

Primed PSCs were differentiated into expandable NPCs by using the STEMdiff SMADi Neural

Induction Kit (Stem Cell Technologies) as previously described [34–36]. In brief, primed PSCs

were maintained on a Matrigel (Corning)-coated plate in mTeSR1 media (Stem Cell Technol-

ogies) prior to the NPC induction. The cells were harvested using Accutase (EMD Millipore)

and transferred at 3 x 106 cells to a well of an AgrreWell800 plate (Stem Cell Technologies) in

STEMdiff Neural Induction Medium + SMADi (Stem Cell Technologies) supplemented with

10 μM Y-27632. Five days later, uniformly sized aggregates were collected using a 37 μm

Reversible Strainer (Stem Cell Technologies) and plated onto a Matrigel-coated 6-well plate in

STEMdiff Neural Induction Medium + SMADi. Seven days later, neural rosette structures

were selectively removed by using STEMdiff Neural Rosette Selection Reagent (Stem Cell

Technologies) and plated onto a new Matrigel-coated 6-well plate in STEMdiff Neural Induc-

tion Medium + SMADi. After that, the cells were passaged every 2–3 days until day 30 post-

differentiation. The established NPCs were maintained on a Matrigel-coated plate in STEMdiff

Neural Progenitor Medium (Stem Cell Technologies) and passaged every 3–4 days.

The culture of other cells

HDFs and PLAT-GP packaging cells (RRID:CVCL_B490) were cultured in DMEM (Thermo

Fisher Scientific) containing 10% fetal bovine serum (FBS, Thermo Fisher Scientific).

Embryoid body (EB) differentiation

PSCs were cultured on a Matrigel-coated plate in mTeSR1 media until reaching confluency

prior to EB formation. The cells were harvested using CTK solution (ReproCELL), and cell

clumps were transferred onto an ultra-low binding plate (Corning) in DFK20 media. For the

first 2 days, 10 μM Y-27362 was added to the media to improve cell survival. The media was

changed every other day. After 8 days of floating culture, the EBs were transferred onto a tissue

culture plate coated with 0.1% gelatin (EMD Millipore) and maintained in DFK20 media for

another 8 days.

Plasmid

Full-length ESRG complementary DNA (cDNA) was amplified using ESRG-S and ESRG-AS

primers and inserted into the BamHI/NotI site of a pMXs retroviral vector [56] using In-

Fusion technology (Clontech). The primer sequences for the cloning are available in S5 Table.

For the KD experiments, we used transposon vectors such as Sleeping Beauty (SB) and Piggy-

Bac (PB) that contain mouse U6 promoter, drug selection markers and the genes encoding

fluorescent proteins [34]. The shRNA sequences are provided in S5 Table.

Reprogramming

Retroviral transduction of the reprogramming factors was performed as described previously

[12,20]. A pMXs retroviral vector encoding human OCT3/4 (RRID:Addgene_17217), human

SOX2 (RRID:Addgene_17218), human KLF4 (RRID:Addgene_17219), human c-MYC (RRID:

Addgene_17220) and ESRG (6 μg each) along with 3 μg of pMD2.G (gift from Dr. D. Trono;

RRID:Addgene_12259) was transfected into PLAT-GP packaging cells, which were plated at

3.6 x 106 cells per 100 mm dish the day before transfection, using FuGENE6 transfection

reagent (Promega). Two days after the transfection, virus-containing supernatant was collected

and filtered through a 0.45 μm-pore size cellulose acetate filter to remove the cell debris. Viral

particles were precipitated using Retro-X Concentrator (Clontech) and resuspended in
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STEMdiff Neural Progenitor Medium containing 8 μg/ml Polybrene (EMD Millipore). Then,

appropriate combinations of viruses were mixed and used for the transduction to NPCs. This

point was designated day 0. The cells were harvested on day 3 post-transduction and replated

at 5 x 104 cells per well of a LN511E8-coated 6-well plate in STEMdiff Neural Progenitor

Medium. The following day (day 4), the medium was replaced with F/A media, and the

medium was changed every other day. The iPSC colonies were counted on day 24 post-trans-

duction. Bona fide iPSC colonies were distinguished from non-iPSC colonies by their morpho-

logical differences and/or alkaline phosphatase activity.

Deletion of ESRG gene

Two days before a ribonucleoprotein (RNP) complex transfection, we introduced a small

interfering RNA (siRNA) against TP53 gene (s605, Thermo Fisher Scientific) to H9 ESCs (pas-

sage number 49) using Lipofectamine RNAi Max (Thermo Fisher Scientific) according to the

manufacturer’s protocol [57,58]. An RNP complex consisting of 40 pmol of Alt-R S.p. HiFi

Cas9 Nuclease V3 (Integrated DNA Technologies) and two single guide RNAs (sgRNAs:

sgESRG-U (5’-AGAGAAUACGAAGCUAAGUG-3’) and sgESRG-L (5’-AUUGCAGUU

GUCACAUGACA-3’), 150 pmol each; SYNTHEGO) was introduced into 5 x 105 of siRNA-

transfected cells using a 4D-Nucleofector System with X Unit (Lonza) and P3 Primary Cell

4D-Nucleofector Kit S (Lonza) with the CA173 program. Three days after the nucleofection,

the cells were harvested and replated at 500 cells onto a LN511E8-coated 100 mm dish in F/A

media supplemented with 10 μM Y-27632. The cells were maintained until the colonies grew

big enough for subcloning. The colonies were mechanically picked up, dissociated using Try-

pLE select, and plated onto a LN511E8-coated 12-well plate in F/A media supplemented with

10 μM Y-27632.

The genomic DNA of the expanded clones was purified using the DNeasy Blood & Tissue

Kit (QIAGEN). Fifty nanograms of purified DNA was used for quantitative polymerase chain

reaction (PCR) using TaqMan Genotyping Master Mix (Thermo Fisher Scientific) on an

ABI7900HT Real Time PCR System (Applied Biosystems). TaqMan Assays (Thermo Fisher

Scientific) such as ESRG_cn1 (Hs05898393_cn) and ESRG_cn2 (Hs06675423_cn) detected the

ESRG locus and TaqMan Copy Number Reference Assay human RNase P (4403326, Thermo

Fisher Scientific) was used as an endogenous control. To verify the indel patterns in wild-type

clones, fragments around the sgESRG-U and sgESRG-L recognition sites were amplified with

ESRG-U-S/ESRG-U-AS and ESRG-L-S/ESRG-L-AS primer sets, respectively. The amplicons

were purified using the QIAquick PCR Purification Kit (QIAGEN) and subjected to sequenc-

ing. To check the deleted sequences in the knockout clones, a fragment with ESRG-U-S/ESR-

G-L-AS primers was amplified. Conventional PCR was performed using KOD Xtreme Hot

Start DNA Polymerase (EMD Millipore). The fragments were cloned into pCR-Blunt II TOPO

using the Zero Blunt TOPO PCR Cloning Kit (Thermo Fisher Scientific), and the sequencing

was verified using M13 forward and M13 reverse universal primers. The sequence data was

analyzed using SnapGene software (GSL Biotech LLC). The primer sequences are provided in

S5 Table.

RNA isolation and reverse-transcription polymerase chain reaction

The cells were lysed with QIAzol reagent (QIAGEN), and the total RNA was purified using a

miRNeasy Mini Kit (QIAGEN) according to the manufacturer’s protocol. The reverse tran-

scription (RT) of 1 μg of purified RNA was done by using SuperScript III First-Strand Synthe-

sis SuperMix (Thermo Fisher Scientific). Quantitative RT-PCR was performed using TaqMan

Assays with TaqMan Universal Master Mix II, no UNG (Applied Biosystems) or using gene-
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specific primers with THUNDERBIRD Next SYBR qPCR Mix (TOYOBO) on an ABI7900HT

or a QuantoStudio 5 Real Time PCR System (Applied Biosystems). The Ct values of the unde-

termined signals caused by too low expression were set at 40. The levels of mRNA were nor-

malized to the ACTB or GAPDH expression, and the relative expression was calculated as the

fold-change from the control. Information about the primers and TaqMan Assays are shown

in S5 and S6 Tables, respectively.

Gene expression analysis by microarray

The total RNA samples were purified using the miRNeasy Mini Kit, and the quality was evalu-

ated using a 2100 Bioanalyzer (Agilent Technologies). Two hundred nanograms of total RNA

was labeled with Cyanine 3-CTP and used for hybridization with SurePrint G3 Human GE

8x60K (version 1 (G4851A) and version 3 (G4851C), Agilent Technologies) and the one-color

protocol. The hybridized arrays were scanned with a Microarray Scanner System (G2565BA,

Agilent Technologies), and the extracted signals were analyzed using the GeneSpring version

14.6 software program (Agilent Technologies). Gene expression values were normalized by

75th percentile shifts. Differentially expressed genes between ESRG WT and KO ESCs were

extracted by t-tests with Benjamini and Hochberg corrections [fold change (FC) > 2.0, false-

discovery rate (FDR) < 0.05].

RNA sequencing (RNA-seq) and data analysis

Total RNAs were extracted and purified using the miRNeasy Mini kit and RNase-Free DNase

Set (QIAGEN) according to the manufacturer’s manuals. Libraries were constructed by Tru-

Seq Stranded total RNA with the Ribo-Zero Gold LT Sample Prep Kit, Set A and B (Illumina),

according to the manufacturer’s manual. For sequencing by using NovaSeq 6000, the NovaSeq

6000 S1 Reagent Kit v1.5 (100 cycle) (Illumina) was used. We trimmed adapter sequences by

using cutadapt-1.18 [59], removed the reads mapped to ribosomal RNA by using bowtie2 (ver-

sion 2.2.5) and samtools (version 1.7) [60,61], mapped the reads to the human genome (hg38

from the UCSC Genome Browser) by using STAR (version 2.5.3a) [62], conducted a quality

check by using RSeQC (version 2.6.4) [63], counted the reads by using HTSeq (version 0.11.2)

with the GENCODE annotation file (version 27) [64,65], and normalized the counts by using

DESeq2 (version 1.24.0) in R (version 3.6.1) [48]. Using the DESeq2 package, Wald tests were

performed.

Immunocytochemistry

The cells were washed once with PBS, fixed with fixation buffer (BioLegend) for 15 min at

room temperature and blocked in PBS containing 1% bovine serum albumin (BSA, Thermo

Fisher Scientific) and 2% normal donkey serum (Sigma-Aldrich) for 45 min at room tempera-

ture. For the staining of intracellular proteins, the fixed cells were permeabilized by adding

0.2% TritonX-100 (Teknova) during the blocking process. Then the cells were incubated with

primary antibodies diluted in PBS containing 1% BSA at 4˚C overnight. After washing with

PBS, the cells were incubated with secondary antibodies diluted in PBS containing 1% BSA

and 1 μg/ml Hoechst 33342 (Thermo Fisher Scientific) for 45 min at room temperature in the

dark. The fluorescent signals were detected using a BZ-X710 imaging system (KEYENCE).

The antibodies and dilution rate were as follows: anti-OCT3/4 (1:250, 611203, BD Biosci-

ences), anti-SOX2 (1:100, ab97959, Abcam), anti-NANOG (1:100, ab21624, Abcam), anti-

KLF17 (1:100, HPA024629, Atlas Antibodies), anti-PAX6 (1:1,000, 901301, BioLegend),

SSEA3 (1:100, 09–0044, Stemgent), SSEA4 (1:100, 09–0006, Stemgent), SSEA5 (1:100, 355201,

BioLegend), TRA-1-60 (1:100, MAB4360, EMD Millipore), TRA-2-49/6E (1:100, 358702,
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BioLegend), anti-AFP (1:200, GTX15650, GeneTex), anti-SMA (1:200, CBL171-I, EMD Milli-

pore), anti-βIII-TUBULIN (1:1,000, XMAB1637, EMD Millipore), Alexa 488 Plus anti-mouse

IgG (1:500, A32766, Thermo Fisher Scientific), Alexa 647 Plus anti-mouse IgG (1:500, A32787,

Thermo Fisher Scientific), Alexa 647 Plus anti-rabbit IgG (1:500, A32795, Thermo Fisher Sci-

entific), Alexa 594 anti-rat IgM (1:500, A21213, Thermo Fisher Scientific) and Alexa 555 anti-

mouse IgM (1:500, A21426, Thermo Fisher Scientific).

Quantification and statistical analysis

Data are presented as the mean ± standard deviation unless otherwise noted. Sample number

(n) indicates the number of replicates in each experiment. The number of experimental repeats

is indicated in the figure legends. To determine statistical significance, we used the unpaired t-

test for comparisons between two groups using Excel Microsoft 365 (Microsoft). Statistical sig-

nificance was set at p< 0.05. Graphs and heatmaps were generated using GraphPad Prism 8

software (GraphPad).

Supporting information

S1 Fig. ESRG expression profiles. Expression of ESRG in human tissues. (A) Shown are the

normalized intensities of ESRG expression from the microarray data of PSC (H9 ESC), 24

human adult tissues, and five fetal tissues. (B) Expression of ESRG in human cell lines. The

normalized intensities of ESRG expression from the microarray data of several PSC lines

including H9 ESC, 201B7 iPSC, 585A1 iPSC, 2102Ep embryonic carcinoma cells (ECC) and

NTERA-2 ECC, cancer cell lines such as MCF7, HepG2, HeLa and Jurkat, and normal tissue-

derived cells such as adipose tissue-derived mesenchymal stem cells (AdMSC), dental pulp-

derived MSCs (DpMSC), human dermal fibroblasts (HDF), peripheral blood mononuclear

cells (PBMC), bronchial epithelial cells (BrEC), prostate epithelial cells (PrEC), hepatocytes

(Hep), epidermal keratinocytes (EKc), neural progenitor cells (NPC) and astrocytes (Astro-

cyte) are shown. Numerical values for A and B are available in S1 Data.

(TIF)

S2 Fig. Deletion of ESRG locus. (A) The scheme of ESRG targeting. The locations of sgRNAs

for targeting (sgESRG-U and -L), primers for genotyping (U-S/AS and L-S/AS) and TaqMan

Assays for copy number analyses (cn1 and cn2) are shown. The sequences of sgRNAs and

primers are provided in the Methods section and S5 Table. (B) The copy number of the ESRG

gene. The copy number of ESRG gene in ESRG WT (clones 1, 21 and, 28), a heterozygous

clone (Het) that lacks one ESRG allele and KO (clones 10, 18 and, 23) were quantified by

qPCR using TaqMan Copy Number Assays (cn1 and 2). Values are normalized by RNase P

and compared with parental H9 ESCs. n = 3. (C) The sequences around the deletion sites in

ESRG KO ESC clones verified by Sanger sequencing. (D) The sequences around the sgRNA

recognition sites upstream (sgESRG-U) and downstream (sgESRG-L) of the ESRG locus in

ESRG WT ESC clones verified by Sanger sequencing. Numerical values for B are available in

S1 Data.

(TIF)

S3 Fig. Validation of microarray results with RNA sequencing. Global gene expression.

Scatter plots compare log2 (Normalized count) of the RNA-seq data of ESRG WT and KO

primed (left and naïve (right) PSCs. The colored plots indicate differentially expressed genes

(DEGs) with statistical significance (FC>2.0, adjusted p-value <0.05). Three clones of ESRG

WT and KO PSCs at different three passage numbers were analyzed in each condition.

(TIF)
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S4 Fig. Karyotypes of PSC clones used in the study. Representative images of G-band stain-

ing show that all clones used in the study maintained normal female karyotypes (46XX).

(TIF)

S5 Fig. Knockdown of ESRG did not induce differentiation of human PSCs. (A) Shown are

relative expressions of ESRG, POU5F1, NANOG, T, and NES in primed H9 ESCs transduced

with empty vector (shNC), and shRNAs against ESRG (2, 4, and 5). Values are normalized by

GAPDH or ACTB and compared with the primed H9 ESC line. �P<0.05 vs. primed H9 ESC

line by unpaired t-test. n = 3. (B) Representative images of ESRG KD cells of immunocyto-

chemistry for NANOG. Bars, 200 μm. Numerical values for A are available in S1 Data.

(TIF)

S6 Fig. Knockdown of HERV-Hs did not induce differentiation of human PSCs. (A) The

KD efficiencies of pan HERV-Hs. Shown are relative expressions of pan HERV-Hs and ESRG

in primed N18 iPSCs transduced with empty vector (Mock), and shRNAs against HERV-Hs

(1, 2 and 3). Values are normalized by GAPDH and compared with the primed N18 iPSC line.
�P<0.05 vs. primed N18 iPSC line by unpaired t-test. n = 3. (B) The expression of PSC and dif-

ferentiation markers in HERV-H KD cells. The heatmap shows the normalized intensity of the

indicated genes analyzed by microarray. Each value is the average of biological triplicates. (C)

Representative images of HERV-H KD cells of immunocytochemistry for NANOG. Bars,

200 μm. Numerical values for A and B are available in S1 Data.

(TIF)
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Abstract Brain size and cortical folding have increased and decreased recurrently during 
mammalian evolution. Identifying genetic elements whose sequence or functional properties 
co-evolve with these traits can provide unique information on evolutionary and developmental 
mechanisms. A good candidate for such a comparative approach is TRNP1, as it controls prolifera-
tion of neural progenitors in mice and ferrets. Here, we investigate the contribution of both regu-
latory and coding sequences of TRNP1 to brain size and cortical folding in over 30 mammals. We 
find that the rate of TRNP1 protein evolution (ω) significantly correlates with brain size, slightly less 
with cortical folding and much less with body size. This brain correlation is stronger than for >95% 
of random control proteins. This co-evolution is likely affecting TRNP1 activity, as we find that 
TRNP1 from species with larger brains and more cortical folding induce higher proliferation rates in 
neural stem cells. Furthermore, we compare the activity of putative cis-regulatory elements (CREs) 
of TRNP1 in a massively parallel reporter assay and identify one CRE that likely co-evolves with 
cortical folding in Old World monkeys and apes. Our analyses indicate that coding and regulatory 
changes that increased TRNP1 activity were positively selected either as a cause or a consequence 
of increases in brain size and cortical folding. They also provide an example how phylogenetic 
approaches can inform biological mechanisms, especially when combined with molecular pheno-
types across several species.
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tigate the role of protein-coding and regulatory changes at TRNP1 in mammalian brain evolution. 
The evidence supporting a contribution of TRNP1 is convincing, although the strength of the link 
between protein-coding changes and trait evolution is stronger and more readily interpretable than 
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Introduction
Understanding the genetic basis of complex phenotypes within and across species is central for 
biology. Brain phenotypes – even when as simple as size or folding – are of particular interest to many 
fields, because they are linked to cognitive abilities, which are of particular interest to humans (Reader 
et al., 2011; DeCasien et al., 2022).

Brain size and cortical folding show extensive variation across mammals, including recurrent inde-
pendent increases and decreases (Montgomery et al., 2016; Boddy et al., 2012; Lewitus et al., 
2013; Smaers et al., 2021). For example, most rodents have a small brain and an unfolded cortex 
(Kelava et al., 2013), while carnivores, cetaceans, and primates generally have enlarged and folded 
cortices, peaking in dolphin and human. Also within primates these traits vary, showing an increase 
on the great ape branch, but also decreases in several New World monkey species. Using compar-
ative, that is, phylogenetic, approaches across primates and mammals, these variations have been 
correlated with different life history traits, such as longevity, diet, or energetic constraints (DeCasien 
et al., 2017; DeCasien et al., 2022; Heldstab et al., 2022) revealing underlying ecological factors 
that drive selection for larger brains.

The underlying genetic and cellular factors that are associated with these evolutionary variations in 
brain size and folding have not been studied across such large phylogenies. However, observational 
and experimental studies, especially in mice, but increasingly also in other systems like the ferret, 
macaques and humans, have led to major insights into the genetic and cellular mechanisms of cortical 
development (Pinson and Huttner, 2021; Del-Valle-Anton and Borrell, 2022; Villalba et al., 2021). 
Briefly, proliferation of neuroepithelial stem cells (NECs) that have contacts with the apical surface 
and basal lamina leads to the formation of the neuroepithelium during early development. NECs then 
become Pax6-positive apical radial glia cells (aRGCs), that continue to self-amplify before producing 
basal progenitors (BPs). BPs include basal radial glia cells (bRGCs) that remain Pax6 positive, loose the 
apical contact, and – depending on the species – can also self-amplify before eventually producing 
neurons. The extent of proliferation of all these neural progenitors is also influenced by their cell cycle 
length where a short cell cycle leads to more cycles of symmetric divisions, a delayed onset of neuro-
genesis, and subsequently to more neurons and a bigger cortex. Notably, proliferation of bRGCs at a 
particular cortical location is thought to be crucial to generate a cortical fold at this location. Hence, 
genes that influence the proliferation of these neural progenitors to evolutionary changes in brain size 
and folding.

The major focus in this respect has been on identifying and functionally characterizing genetic 
changes on the human or primate lineage. For example, the human-specific gene ARHGAP11B was 
found to induce bRGC proliferation and folding in cortices of mice, ferrets, and marmosets (Florio 
et al., 2015; Kalebic et al., 2018; Heide et al., 2020). Other examples include an amino acid substi-
tution specific to modern humans in TKTL1 (Pinson et al., 2022), human-specific NOTCH2 paralogs 
(Fiddes et al., 2018; Suzuki et al., 2018), the primate-specific genes TMEM14B and TBC1D3 (Liu 
et al., 2017; Ju et al., 2016), and an enhancer of FZD8, a receptor of the Wnt pathway (Boyd et al., 
2015). While mechanistically convincing, it is unclear whether the proposed evolutionary link can be 
generalized as only one evolutionary lineage is investigated. Conversely, comparative approaches that 
correlate sequence changes with brain size changes have investigated more evolutionary lineages 
(Boddy et al., 2017; Montgomery et al., 2016), but these studies lack mechanistic evidence and are 
limited to the analysis of protein-coding regions. Here, we combine mechanistic and phylogenetic 
approaches to study TRNP1, a gene that is known to be important for cortical growth and folding by 
influencing aRGC and bRGC proliferation and differentiation in mice (Stahl et al., 2013; Pilz et al., 
2013; Kerimoglu et al., 2021) and ferrets (Martínez-Martínez et al., 2016).

On a cellular level, expressing Trnp1 in neural stem cells (NSCs) isolated from mouse cortices 
induces phase separation, accelerates mitosis, and increases proliferation (Stahl et al., 2013; Esgleas 
et al., 2020). Increasing Trnp1 expression by in utero electroporation in mice and ferrets (embryonic 
day 13 [E13] in mice) leads to increased proliferation of aRGCs (Stahl et al., 2013; Martínez-Martínez 
et al., 2016). Decreasing Trnp1 expression levels in mice or ferrets (E13) reduces aRGC proliferation, 
increases their differentiation into BPs, and induces cortical folding (Stahl et al., 2013; Pilz et al., 
2013; Martínez-Martínez et al., 2016). Notably, increasing Trnp1 expression levels by in utero elec-
troporation at E14.5 increases bRGC proliferation (Kerimoglu et al., 2021) and also induces cortical 
folding.
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Hence, Trnp1 levels can alter proliferation and differentiation of neural progenitors and in turn 
alter brain size and folding in mice and ferrets. However, whether genetic changes in TRNP1 did alter 
cortical size and folding during mammalian evolution is unclear. Here, we analyse the evolution of 
TRNP1 regulatory and coding sequences across mammals and investigate their link to the evolution 
of brain size and cortical folding.

Results
TRNP1 amino acid substitution rates co-evolve with rates of change in 
brain size and cortical folding in mammals
We experimentally and computationally collected (Camacho et al., 2009) and aligned (Löytynoja, 
2021) 45 mammalian TRNP1 coding sequences, including dolphin and 18 primates (99.0% complete-
ness, Figure 1—figure supplement 1A). For 30 of those species, we could also compile estimates 
for brain size and cortical folding, as well as body mass as a potentially confounding parameter 
(Figure 1A; Supplementary file 1c). We quantify brain size as its weight and cortical folding as the 
ratio of the cortical surface over the perimeter of the brain surface, the gyrification index (GI), where 
a GI ‍= 1‍ indicates a completely smooth brain and a GI gt1 indicates higher levels of cortical folding 
(Zilles et al., 1989). This phenotypic data together with the coding sequences are the basis for our 
investigation in the evolutionary relation between the rate of TRNP1 protein evolution and the evolu-
tion of brain size and gyrification.

The ratio of the non-synonymous (non-neutral) and the synonymous substitution rates, ‍ω‍, is easily 
accessible and hence one of the most widespread measures of selection on protein-coding sequences, 
despite its limitations (Yang, 2006; Nei et al., 2000). In the absence of additional evidence, only 
an ‍ω > 1‍ can be interpreted as proof of positive selection. However, an ‍ω‍gt1 requires many recur-
rent selective events and hence is underpowered to detect moderate amounts of positive selection. 
Therefore, it has become common practice to identify increases of ‍ω‍ on certain branches or subtrees 
relative to the remainder of the tree. For our question, we are analyzing the variation of ‍ω‍ across 
branches. To this end, we use the software Coevol that allows estimating the co-variance between 
rates of phenotypic and evolutionary sequence changes (‍ω‍), while both types of information go into 
the optimization of branch length estimates of the underlying phylogenetic tree (Lartillot and Poujol, 
2011). This allows to detect a correlation between the strength of selection (‍ω‍) and a phenotypic trait. 
The question remains whether this correlation is directly caused by selection on that trait, or what we 
observe are indirect effects. This is not uncommon, because the strength of selection depends on 
the effective population size (‍Ne‍) of a species, which is often linked to life history traits and body size 
(Ohta, 1987; Lynch and Walsh, 2007). For example, species with a large body size tend to have a 
small ‍Ne‍ and thus a low efficacy of selection (Figuet et al., 2016; Lartillot and Poujol, 2011). With 
purifying selection being the dominant force in protein sequence evolution, we would thus expect a 
positive correlation between ‍ω‍ and body size due to indirect effects of ‍Ne‍. However, in contrast to 
directed selection on one trait which is targeted to specific genes, a lower efficacy in purifying selec-
tion due to ‍Ne‍ will have an impact on all genes.

Therefore, we compiled a set of control genes in the same 30 species for which we have TRNP1 
sequences and phenotypic data. We started with all human autosomal genes that – as TRNP1 – have 
only one coding exon (n=1997; Human CCDS; Pujar et  al., 2018) and a similar length (n=1088; 
291–999 bp vs. 682 bp of TRNP1). For 133 (12.3%) of these we could find full-length high-quality 
one-to-one orthologous sequences for all 30 species (Figure 1—figure supplement 3A; Supplemen-
tary file 1f; Materials and methods). To ensure the quality of the resulting multiple sequence align-
ments, all of them were manually inspected. Based on the overall tree length we removed one outlier 
(‍σlog(dS) > 3‍) leaving us with 132 control proteins that are well comparable to TRNP1 with respect 
to tree length, alignment quality, and ω (Figure 1—figure supplement 3B). Eight rather conserved 
genes (six with ω<0.04 and two with ‍ω‍<0.19) did not show an acceptable parameter convergence 
between runs of Coevol, leaving 124 control genes well comparable to TRNP1 (Supplementary file 
1f). If a species such as human or dolphin evolved a large, gyrified brain due to positive selection on 
TRNP1, we expect those lineages to show an increased rate of phenotype (brain size and GI) change 
and an increased ‍ω‍. If this pattern is consistent across the majority of branches, Coevol would infer a 
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Figure 1. TRNP1 amino acid substitution rates co-evolve with brain size and cortical folding in mammals. (A) Mammalian species for which body 
mass, brain size, gyrification index (GI) measurements, and TRNP1 coding sequences were available (n=30)(Figure 1—figure supplement 1). Log2-
transformed units: body mass and brain size in kg; GI is a ratio (cortical surface/perimeter of the brain surface). (B) Estimated marginal and partial 
correlation between ω of TRNP1 and the three traits using Coevol (Lartillot and Poujol, 2011). Size indicates posterior probability (pp). (C) TRNP1 
protein substitution rates (ω) significantly correlate with brain size (‍r = 0.83‍, ‍pp‍ = 0.97).(D) The average correlation across 124 control proteins with 
brain size (‍r ‍=0.10). (E) TRNP1 ω correlation with GI compared to the average across control proteins. (F) TRNP1 ω correlation with body mass compared 
to the average across control proteins. (C, D, E, F) Error bars indicate standard errors. (G) Distribution of partial correlations between ω and brain size 
of the control proteins and TRNP1. (H) Distribution of partial correlations between ω and GI of the control proteins and TRNP1. (I) Scheme of the mouse 
TRNP1 protein (223 amino acids [AAs]) with intrinsically disordered regions (orange) and sites (red lines) subject to positive selection in mammals (ω > 1, 

‍pp > 0.95‍Figure 1—figure supplement 1). Letter size of the depicted AAs represents the abundance of AAs at the positively selected sites.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. TRNP1 protein-coding sequence analysis.

Figure supplement 2. Estimated marginal (A) and partial (B) correlation matrices of the combined Coevol model including the three traits and 
substitution rates of TRNP1.

Figure supplement 3. Control protein evolution rate correlation with brain size, gyrification, and body mass.
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positive correlation between ‍ω‍ and the trait. Moreover, if this correlation is stronger than that for the 
average control protein, we can exclude that this is solely due to variation in the efficacy of selection.

Indeed, we find that ω of TRNP1 positively correlates with brain size (r=0.83; p=0.97), GI (r=0.75; 
p=0.98), and also body mass (r=0.76; p=0.97) and that these correlations are stronger than those of 
the average control protein (Figure 1C–F, Figure 1—figure supplement 3C), showing that the inter-
action between TRNP1 and the phenotypes goes beyond pure efficacy of selection effects. All three 
traits are highly correlated with one another. It is well known that brain and body size are not inde-
pendent, and the same is true for GI and brain size (Montgomery et al., 2016; Smaers et al., 2021). 
To disentangle which trait is most likely to be causal for the observed correlation with ω, we compare 
the partial correlations and find that brain size has the highest partial correlation (r=0.4), followed by 
GI (r=0.34), while the partial correlation with body mass (r=0.19) has a much larger drop compared to 
the marginals (Figure 1B, Figure 1—figure supplement 3C), making selection on brain size and/or 
GI the more likely causes for the variation in ω. This said, TRNP1 is unlikely to be the sole evolutionary 
modifier of such an important and complex phenotype as brain size and gyrification. Because our 
control proteins represent a random selection of genes that based on sequence properties should 
give us comparable power to detect a link to these phenotypes, we can use the distribution of partial 
correlations of ω of the controls with brain size and GI to gauge the relative importance of TRNP1 for 
brain evolution (Figure 1G and H; Supplementary file 1g). We find that TRNP1 protein evolution is 
among 4.0% and 6.4% of the most correlated proteins for brain size and GI, respectively.

Having established that the rate of protein evolution of TRNP1 is linked to brain size evolution, we 
now want to pinpoint the relevant sites or domains in the protein to facilitate further functional studies. 
Using the site model of PAML (Yang, 1997), we find 9.8% of the codons to show signs of recurrent 
positive selection (i.e., ‍ω > 1‍, site models M8 vs. M7, ‍χ

2
‍-value <0.001, df = 2). Eight codons with a 

selection signature could be pinpointed with high confidence (Supplementary file 1d). Seven out of 
those eight reside within the first intrinsically disordered region (IDR) and one in the second IDR of 
the protein (Figure 1I; Figure 1—figure supplement 1B). The IDRs of TRNP1 are thought to mediate 
homotypic and heterotypic protein-protein interactions and are relevant for TRNP1-dependent phase 
separation, nuclear compartment size regulation, and M‐phase length regulation (Esgleas et  al., 
2020). Hence, the positively selected sites indicate that these IDR-mediated TRNP1 functions were 
repeatedly adapted during mammalian evolution and the identified sites are candidates for further 
functional studies.

TRNP1 proliferative activity co-evolves with brain size and cortical 
folding in mammals
Next, we investigated whether the correlation between TRNP1 protein evolution and cortical pheno-
types can be linked to functional properties of TRNP1 at a cellular level. A central property of TRNP1 
is to promote proliferation of aRGC (Stahl et al., 2013; Esgleas et al., 2020) and also of BPs (Keri-
moglu et al., 2021). This proliferative activity can be assessed in an in vitro assay in which TRNP1 is 
transfected into NSCs isolated from E14 mouse cortices (Stahl et al., 2013; Esgleas et al., 2020).

To compare TRNP1 orthologues in this assay, we synthesized and cloned the TRNP1 coding 
sequence of human, rhesus macaque, galago, mouse, and dolphin that cover the observed range 
of ‍ω‍ (Figure  1C). After co-transfection with green fluorescent protein (GFP), we quantified the 
number of proliferating (Ki67+, GFP+) over all transfected (GFP+) NSCs for each TRNP1 orthologue 
in ≥7 replicates (Figure 2A and B). We confirmed that TRNP1 transfection does increase prolifer-
ation compared to a GFP-only control (p-value ‍< 2 × 10−16‍; Figure 2—figure supplement 1A) as 
shown in previous studies (Stahl et al., 2013; Esgleas et al., 2020). Remarkably, the proportion of 
proliferating cells was highest in cells transfected with dolphin TRNP1 followed by human, which was 
significantly higher than the two other primates, galago and macaque (Figure 2C; Figure 2—figure 
supplement 1B; Supplementary file 2a-c). Indeed, the proliferative activity of TRNP1 is a significant 
predictor for brain size (BH-adjusted p-value = 0.0018, ‍R2 = 0.89‍) and GI (BH-adjusted p-value = 
0.016, ‍R2 = 0.69‍) of its species of origin (phylogenetic generalized least squares [PGLS], likelihood 
ratio test [LRT]; Figure 2C). Note that the three primates and the dolphin are phylogenetically equally 
distant to the mouse (Figure 2C) and hence a bias due to the murine assay system cannot explain 
the observed correlations with brain size and GI. Hence, these results further support that the TRNP1 
protein co-evolves with brain size and cortical folding.
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Figure 2. TRNP1 proliferative activity correlates with brain size and cortical folding. (A) Five different TRNP1 orthologues were transfected into 
neural stem cells (NSCs) isolated from cerebral cortices of 14-day-old mouse embryos and proliferation rates were assessed after 48 hr using Ki67 
immunostaining as proliferation marker and green fluorescent protein (GFP) as transfection marker in 7–12 independent biological replicates. 
(B) Representative image of the transfected cortical NSCs immunostained for GFP and Ki67. Arrows indicate three transfected cells of which two (solid 

Figure 2 continued on next page
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Activity of a cis-regulatory element of TRNP1 likely co-evolves with 
cortical folding in catarrhines
Experimental manipulation of Trnp1 expression levels alters proliferation and differentiation of aRGC 
and bRGC in mice and ferrets (Stahl et al., 2013; Martínez-Martínez et al., 2016; Kerimoglu et al., 
2021). Therefore, we next investigated whether changes in TRNP1 regulation may also be associated 
with the evolution of cortical folding and brain size by analyzing co-variation in the activity of TRNP1 
associated cis-regulatory elements (CREs), using massively parallel reporter assays (MPRAs). To this 
end, a library of putative regulatory sequences is cloned into a reporter vector and their activity is 
quantified simultaneously by the expression levels of element-specific barcodes (Inoue and Ahituv, 
2015). To identify putative CREs of TRNP1, we used DNase hypersensitive sites (DHS) from human 
foetal brain (Bernstein et al., 2010) and found three upstream CREs, the promoter-including exon 
1, an intron CRE, one CRE overlapping the second exon, and one downstream CRE (Figure 3A). We 
obtained the orthologous sequences of the human CREs using a reciprocal best blat (RBB) strategy 
across additional mammalian species either from genome databases or by sequencing, yielding a total 
of 351 putative CREs in a panel of 75 mammalian species (Figure 3—figure supplement 1).

Due to limitations in the length of oligonucleotide synthesis, we split each orthologous putative 
CRE into highly overlapping, 94 bp fragments. The resulting 4950 sequence tiles were synthesized 
together with a barcode unique for each tile. From those, we constructed a complex and unbiased 
lentiviral plasmid library containing at least 4251 (86%) CRE sequence tiles (Figure 3B and C). Next, 
we stably transduced this library into neural progenitor cells (NPCs) derived from two humans and one 
cynomolgus macaque (Geuder et al., 2021). We calculated the activity per CRE sequence tile as the 
read-normalized reporter gene expression over the read-normalized input plasmid DNA (Figure 3A, 
Materials and methods). Finally, we use the per-tile activities (Figure 3—figure supplement 2A) to 
reconstruct the activities of the putative CREs. To this end, we summed all tile sequence activities for 
a given CRE while correcting for the built-in sequence overlap (Figure 3D; Materials and methods). 
CRE activities correlate well within the two human NPC lines and between the human and cynomo-
lgus macaque NPC lines, indicating that the assay is robust across replicates and species (Pearson’s 
‍r‍ 0.85–0.88; Figure 3—figure supplement 2B). The CREs covering exon 1, the intron, and the CRE 
downstream of TRNP1 show the highest total activity across species while the CREs upstream of 
TRNP1 show the lowest activity (Figure 3E).

Next, we tested whether CRE activity is associated with either brain size or GI across the 45 of the 
75 mammalian species for which these phenotypes were available (Figure 3D). None of the CREs 
showed a significant association with brain size or GI (PGLS, LRT uncorrected p-value > 0.05) and 
only the intron CRE had a tendency to be positively associated with gyrification (PGLS, uncorrected 
LRT p-value=0.097, Figure 3F, left; Supplementary file 3b). Our power to detect such associations 
might be considerably lower than for coding sequences also because regulatory elements have a 
high turn-over rate (Danko et  al., 2018; Berthelot et  al., 2018; Huber et  al., 2020). Hence, we 
expect that some orthologous DNA sequences that are CREs in one species do not function as CREs 
in others and can even be lost. The latter effect might explain why the sequences orthologous to 
human CREs are shorter in non-primate species more distantly related to humans (Figure 3—figure 
supplement 1). So phylogenetic comparisons of regulatory elements might be more powerful when 
restricted to species closely related to the species from which the CRE annotation is derived (humans 
in our case). Indeed, when we restrict our analysis to the catarrhine clade that encompasses Old 
World monkeys, great apes, and humans, the association between intron CRE activity and GI becomes 
considerably stronger (PGLS, uncorrected LRT p-value=0.003, Bonferroni-corrected for seven regions 

arrows) are Ki67-positive (Figure 2—figure supplement 1). (C) Induced proliferation in NSCs transfected with TRNP1 orthologues from five different 
species (Supplementary file 2). Proliferation rates are a significant predictor for brain size (‍χ

2
‍=10.04, df = 1, BH-adjusted p-value = 0.0018 = 11.75 ± 

2.412, ‍R2‍ = 0.89) and GI (‍χ
2
‍=5.85, df = 1, BH-adjusted p-value = 0.016 = 16.97 ± 6.568, ‍R2‍ = 0.69) in the respective species (phylogenetic generalized 

least squares [PGLS], likelihood ratio test [LRT]). Error bars indicate standard errors. Included species: human (Homo sapiens), rhesus macaque (Macaca 
mulatta), northern greater galago (Otolemur garnettii), house mouse (Mus musculus), common bottlenose dolphin (Tursiops truncatus).

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Proliferation induced by TRNP1.
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p-value=0.02, Figure 3F, right; Supplementary file 3). To validate that our model results are rather 
specific, we generated a null distribution for the observed correlation across catharrines, permuting 
the activities of all other CREs of this study. In agreement with our model results, we find 8/1000 
(0.8%) of the random CRE combinations to have such a significant association of p ≤ 0.003. Moreover, 
the intron CRE activity-GI association was consistently detected across all three cell lines including the 
cynomolgus macaque NPCs (Supplementary file 3). Furthermore, Reilly et al. compared enhancer 
activity by histone modifications in the developing cortex of humans, rhesus macaques, and mice and 
found a gain in activity on the human lineage in a region overlapping the intron CRE (Reilly et al., 
2015). Thus, while the statistical evidence from our MPRA data alone is limited, we consider the 

Figure 3. Activity of a cis-regulatory element (CRE) of TRNP1 correlates with cortical folding in catarrhines. (A) Experimental setup of the massively 
parallel reporter assay (MPRA). Regulatory activity of seven putative TRNP1 CREs from 75 species were assayed in neural progenitor cells (NPCs) 
derived from human and cynomolgus macaque induced pluripotent stem cells. (Figure 3—figure supplement 1). (B) Fraction of the detected CRE 
tiles in the plasmid library per species across regions. The detection rates are unbiased and uniformly distributed across species and clades with only 
one extreme outlier Dipodomys ordii. (C) Fraction of the detected CRE tiles in the plasmid library per region across species. (D) Log-transformed total 
regulatory activity per CRE in human NPCs across species with available brain size and gyrification index (GI) measurements (n=45). (E) Total activity per 
CRE across species. Exon 1 (E1), intron (I), and the downstream (D) regions are more active and longer than other regions. (B, C, E) Each box represents 
the median and first and third quartiles with the whiskers indicating the furthest value no further than 1.5 * IQR from the box. Individual points indicate 
outliers. Figure 3—figure supplement 2 (F) Regulatory activity of the intron CRE is weakly associated with gyrification across mammals (phylogenetic 
generalized least squares [PGLS], likelihood ratio test [LRT] p-value=0.097, R2=0.07, n=37) and strongest across great apes and Old World monkeys, that 
is, catarrhines (PGLS, LRT p-value=0.003, R2=0.58, n=10).

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Length of the covered cis-regulatory element (CRE) sequences in the massively parallel reporter assay (MPRA) library across the 
tree.

Figure supplement 2. Analysis of massively parallel reporter assay (MPRA) data.
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GI association in catarrhines together with the additional evidence from Reilly et al., 2015, strong 
enough to warrant a more detailed analysis of the intron CRE.

Transcription factors with binding site enrichment on intron CREs 
regulate cell proliferation and are candidates to explain the observed 
activity across catarrhines
Reasoning that differences in CRE activities will likely be mediated by differences in their interac-
tions with transcription factors (TF), we analysed the sequence evolution of putative TF binding 
sites (Figure 4A). First, we performed RNA-seq on the same samples that were used for the MPRA. 
Notably, also TRNP1 was expressed (Figure  4B), supporting the relevance of our cellular system. 
Moreover, TRNP1 expression was significantly higher in human NPC lines than that of cynomolgus 
macaque’s (BH-adjusted p-value <0.05, Figure 4—figure supplement 1A–C), consistent with higher 
intron CRE activity. Among the 392 expressed TFs with known binding motifs, we identified 22 with an 
excess of binding sites (Frith et al., 2003) within the catarrhine intron CRE sequences (Figure 4B and 
D). In agreement with TRNP1 itself being involved in the regulation of cell proliferation (Volpe et al., 
2006; Stahl et al., 2013; Esgleas et al., 2020), these 22 TFs are enriched in biological processes 
regulating cell proliferation, neuron apoptotic process, and hormone levels (Gene Ontology, Fisher’s 
exact p-value <0.05, background: 392 expressed TFs; Figure 4C; Supplementary file 3).

To further prioritize these 22 TFs, we used the motif binding scores in the 10 catarrhine intron 
CREs to predict the observed intron CRE activity in the MPRA and to predict the GI of the respective 
species. We found three TFs (CTCF, ZBTB26, SOX8) to be the best candidates to explain the variation 
in the intron CRE activity and one TF (CTCF) to co-vary with GI (PGLS, uncorrected LRT p-value <0.05, 
Figure 4D–F). While the statistical support for this association is not strong, which is expected given 
that we were screening 22 candidate TFs in only 10 species, CTCF ChIP-seq data from the relevant 
cell types suggests that this particular CTCF binding site is indeed bound by CTCF in human NPCs 
(ChiP-seq, Encode Project Consortium, 2012, Figure 4—figure supplement 2). Moreover, HiC data 
show a topologically associated domain (TAD) boundary just upstream of TRNP1 in the germinal zone 
of the developing human brain (postconception week 8, Won et al., 2016). Hence, variations in the 
binding strength of CTCF across species might likely have consequences for the stability of the TAD 
boundary and TRNP1 expression, affecting the associated phenotypes given its crucial role for brain 
development (Stahl et al., 2013).

In summary, we find a suggestive correlation between the activity of the intron CRE and gyrifica-
tion in catarrhines, indicating that also regulatory changes of TRNP1 might have contributed to the 
evolution of gyrification.

Discussion
Previous studies in mice and ferrets have elucidated mechanisms how Trnp1 is necessary for prolifera-
tion and differentiation of neural progenitors and how it could contribute to the evolution of brain size 
and cortical folding. We applied phylogenetic methods to explore associations between sequence 
and trait evolution and found that the rate of protein evolution and the proliferative activity of TRNP1 
positively correlate with brain size and gyrification in mammals. Moreover, we find tentative evidence 
that the activity of a regulatory element in the intron of TRNP1 might be associated with gyrification 
in catarrhines. At the sequence level, such a correlation could also be caused by confounding factors 
that affect the efficacy of natural selection such as the effective population size (Ohta, 1987; Lynch 
and Walsh, 2007). However, body size – a reasonable proxy for effective population size (Figuet 
et al., 2016; Lartillot and Poujol, 2011) – correlates much less with TRNP1 protein evolution than 
brain size or gyrification. Even more convincingly, the correlation of TRNP1 with brain size and gyrifica-
tion is much stronger than the average correlation of these traits with the evolution of other proteins, 
that would have had to experience the same population size changes. Furthermore, it is unclear how 
an increased proliferative activity of TRNP1 or an increased CRE activity could be caused by a reduced 
efficacy of selection or other confounding factors. Together with the known role of TRNP1 in brain 
development, we think that the observed correlations are best interpreted as co-evolution of TRNP1 
activity with brain size and gyrification, that is, that more active TRNP1 alleles were selected because 
they were advantageous to increase brain size and/or gyrification.
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Of note, the effect of structural changes appears stronger than the effect of regulatory changes. 
This is contrary to the notion that regulatory changes should be the more likely targets of selection as 
they are more cell-type specific (Carroll, 2008) (but see also Hoekstra and Coyne, 2007). However, 
current measures of regulatory activity are inherently less precise than counting amino acid changes, 
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Figure 4. Transcription factors (TFs) with binding site enrichment on intron cis-regulatory elements (CREs) regulate cell proliferation and are candidates 
to explain the observed activity across catarrhines. (A) Orthologous intron CRE sequences show different regulatory activities under the same cellular 
conditions, suggesting variation in cis regulation across species. (B) Variance-stabilized expression in neural progenitor cells (NPCs) of TRNP1 and the 
22 TFs with enriched binding sites (motif weight ≥ 1) on the intron CREs. Each box represents the median, first and third quartiles with the whiskers 
indicating the furthest value no further than 1.5 * IQR from the box. Points indicate individual expression values. Vertical line indicates average 
expression across all 392 TFs (5.58), grey area: standard deviation (1.61). (C) Eight top enriched biological processes (Gene Ontology, Fisher’s exact 
test p-value <0.05) of the 22 TFs. Background: all expressed TFs (392). (D) Variation in binding scores of the enriched TFs across catarrhines. Heatmaps 
indicate standardized binding scores (grey), gyrification index (GI) values (blue) and intron CRE activities (yellow) from the respective species. TF 
background colour indicates gene ontology assignment of the TFs to the two most significant biological processes. The bottom panel indicates the 
spatial position of the top binding site (motif score >3) for each TF on the human sequence. (E) Binding scores of three TFs (CTCF, ZBTB26, SOX8) are 
the best candidates to explain intron CRE activity, whereas only CTCF binding shows an association with the GI (phylogenetic generalized least squares 
[PGLS], likelihood ratio test [LRT] p-value <0.05). (F) Predicted intron CRE activity by the binding scores of the three TFs vs. the measured intron CRE 
activity across catarrhines.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. TRNP1 expression in human and cynomolgus macaque (Macaca fascicularis) cell lines.

Figure supplement 2. Human genome tracks for the TRNP1 locus (hg19).
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which will necessarily deflate the estimated association strength (Danko et al., 2018; Berthelot et al., 
2018; Huber et al., 2020). Not only is gene regulation cell-type and time-dependent, but regulatory 
elements also evolve much faster, making a comprehensive and informative comparison across large 
phylogenies much more difficult. Moreover, while MPRAs function well in deciphering the regulatory 
activities of individual CREs, they are still limited in their in vivo interpretation. In any case, our analysis 
suggests that evolution likely combined both regulatory and structural evolution to modulate TRNP1 
activity.

The MPRA also allowed to identify TFs that have a binding site enrichment to the intron CRE and 
are likely direct regulators of TRNP1. These include INSM1 (Tavano et al., 2018), which also has been 
shown to control NEC-to-neural-progenitor transition, as well as other relevant factors with increased 
activity in human neural stem and progenitor cells during early cortical development compared to 
later stages, such as TFAP2A, NFIC, TCF3, KLF12, and again INSM1 (Trevino et al., 2021; de la Torre-
Ubieta et al., 2018). Among the enriched TFs that bind to the intron CRE, CTCF had the strongest 
association with gyrification. Although CTCF is best known for its insulating properties, it can also act 
as transcriptional activator and recruit co-factors in a lineage-specific manner (Arzate-Mejía et al., 
2018). In neural progenitors, CTCF loss causes severe impairment in proliferative capacity through 
the increase in premature cell cycle exit, which results in drastically reduced progenitor pool and early 
differentiation (Watson et al., 2014). The overlapping molecular roles of TRNP1 and CTCF in neural 
progenitors support the possibility that TRNP1 is among the cell-fate determinants downstream of 
CTCF (Wu et al., 2006; Delgado-Olguín et al., 2011). Differences between species in CTCF binding 
strength and/or length to the intron CRE might have direct consequences for the binding of additional 
TFs, TRNP1 expression, and the resulting progenitor pool. However, the effects of CTCF binding 
in vitro and in vivo might differ and the exact mechanism, including the developmental timing and 
cellular context in which this might be relevant, is yet to be disentangled.

Independent from the mechanisms and independent whether caused by regulatory or structural 
changes, it is relevant how an increased TRNP1 activity could alter brain development. When overex-
pressing Trnp1 in aRGCs of developing mice (E13) and ferrets (E30), aRGC proliferation increases (Stahl 
et al., 2013; Pilz et al., 2013; Martínez-Martínez et al., 2016). Similarly, overexpression of Trnp1 
increases proliferation in vitro in NSCs (Stahl et al., 2013; Esgleas et al., 2020) or breast cancer cells 
(Volpe et al., 2006). Hence, TRNP1 evolution could contribute to evolving a larger brain by increasing 
the pool of aRGCs. In addition, increases in brain size and especially increases in cortical folding are 
highly dependent on increases in proliferation of BPs, in particular bRGCs (Pinson and Huttner, 2021; 
Del-Valle-Anton and Borrell, 2022; Villalba et al., 2021). Remarkably, recent evidence indicates that 
Trnp1 could be important also for the proliferation of BPs (Kerimoglu et al., 2021): Firstly, in contrast 
to non-proliferating BPs from mice, proliferating BPs from human do express TRNP1 (Kerimoglu 
et al., 2021). Furthermore, when activating expression of Trnp1 using CRISPRa at E14.5, more prolif-
erating BPs and induction of cortical folding is observed (Kerimoglu et al., 2021). Hence, a more 
active TRNP1 can increase proliferation in aRGCs and BPs and this could cause the observed co-evo-
lution with brain size and cortical folding. TRNP1 is the first case where analyses of protein sequence, 
regulatory activity, and protein activity across a larger phylogeny have been combined to investigate 
the role of a candidate gene in brain evolution. Functional evidence from evolutionary changes on the 
human lineage, for example, for ARHGAP11B and NOTCH2NL, but also phylogenetic evidence from 
correlating sequence changes with brain size changes (Montgomery et al., 2016; Boddy et al., 2017) 
indicate that a substantial number of genes could adapt their function when brain size changes in 
mammalian lineages. Improved genome assemblies (Rhie et al., 2021) will decisively improve phylo-
genetic approaches (Cavassim et al., 2022; Stephan et al., 2022; Jourjine and Hoekstra, 2021; 
Smith et al., 2020). In combination with the increased possibilities for functional assays due to DNA 
synthesis (Chari and Church, 2017) and comparative cellular resources across many species (Enard, 
2012; Housman and Gilad, 2020; Geuder et al., 2021), this offers exciting possibilities to study the 
genetic basis of complex phenotypes within and across species.
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Materials and methods
Sample collection and cell culture
Mouse strain and handling
Mouse handling and experimental procedures were performed in accordance with German and Euro-
pean Union guidelines and were approved by the State of upper Bavaria. All efforts were made to 
minimize suffering and number of animals. Two- to three-month female C57BL/6J wild-type mice were 
maintained in specific pathogen-free conditions in the animal facility, in 12:12 hr light/dark cycles and 
bred under standard housing conditions in the animal facility of the Helmholtz Center Munich and the 
Biomedical Center Munich. The day of the vaginal plug was considered E0.

Primary cerebral cortex harvesting and culture
E14 mouse (M. musculus) cerebral cortices were dissected, removing the ganglionic eminence, the 
olfactory bulb, the hippocampal anlage, and the meninges. Cells were mechanically dissociated with a 
fire polish Pasteur pipette. Cells were then seeded onto poly-D-lysine (PDL)-coated glass coverslips in 
DMEM-GlutaMAX (Dulbeccos’s modified Eagles’s medium) supplemented with 10% foetal calf serum 
(FCS) and 100 µg/mL Pen. Strep. and cultured at 37°C in a 5% CO2 incubator.

Culture of HEK293T cells
HEK 293T cells (H. sapiens) were grown in DMEM supplemented with 10% FCS and 1% Pen. Strep. 
Cells were cultured in 10 cm flat-bottom dishes at 37°C in a 5% CO2 environment and split every 2–3 
days in a 1:10 ratio using 5 mL PBS to wash and 0.5 mL 0.25% Trypsin to detach the cells.

Culture of Neuro-2A cells
Neuro-2A cells (N2A) (ATCC; CCL-131, M. musculus) were cultured in Eagle’s minimum essential 
medium (Thermo Fisher Scientific) with 10% FCS (Thermo Fisher Scientific) at 37°C in a 5% CO2 incu-
bator and split every 2–3 days in a 1:5 ratio using 5 mL PBS (Thermo Fisher Scientific) to wash and 
0.5 mL 0.25% Trypsin (Thermo Fisher Scientific) to detach the cells.

Culture of neural progenitor cells
Neural progenitor cells of two human (H. sapiens) and one cynomolgus monkey (M. fascicularis) cell line 
(Geuder et al., 2021) were cultured at 37°C in a 5% CO2 incubator on Geltrex (Thermo Fisher Scien-
tific) in DMEM F12 (Fisher Scientific) supplemented with 2 mM GlutaMAX-I (Fisher Scientific), 20 ng/
µL bFGF (Peprotech), 20 ng/µL hEGF (Miltenyi Biotec), 2% B-27 supplement (50×) minus vitamin A 
(Gibco), 1% N2 supplement 100× (Gibco), 200 μM L-ascorbic acid 2-phosphate (Sigma), and 100 μg/
mL penicillin-streptomycin (Pen. Strep.) with medium change every second day. For passaging, NPCs 
were washed with PBS and then incubated with TrypLE Select (Thermo Fisher Scientific) for 5 min at 
37°C. Culture medium was added and cells were centrifuged at 200 × g for 5 min. Supernatant was 
replaced by fresh culture medium and cells were transferred to a new Geltrex-coated dish. The cells 
were split every 2–3 days in a ratio of 1:3. All cell lines have been authenticated using RNA sequencing 
(RNA-seq), see Geuder et al., 2021, and the current study. Mycoplasma is regularly tested for using 
PCR-based test.

Sequencing of TRNP1 for primate species
Identification of CREs of TRNP1
DHS in the proximity to TRNP1 (25 kb upstream, 3 kb downstream) were identified in human foetal 
brain and mouse embryonic brain DNase-seq datasets (Vierstra et al., 2014; Bernstein et al., 2010) 
downloaded from NCBI’s Sequence Read Archive (see Appendix 1—key resources table ). Reads were 
mapped to human genome version hg19 and mouse genome version mm10 using NextGenMap with 
default parameters (NGM; version 0.0.1) (Sedlazeck et al., 2013). Peaks were identified with Hotspot 
version 4.0.0 using default parameters (John et al., 2011). Overlapping peaks were merged, and the 
union per species was taken as putative CREs of TRNP1 (Supplementary file 3a). The orthologous 
regions of human TRNP1 DNase peaks in 49 mammalian species were identified with reciprocal best 
hit using BLAT (v. 35x1) (Kent, 2002). Firstly, sequences of human TRNP1 DNase peaks were extended 
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by 50 bases down- and upstream of the peak and the best matching sequence per peak region 
were identified with BLAT using the following settings: -t=DNA -q=DNA -stepSize=5 -repMatch=2253 
-minScore=0 -minIdentity=0 -extendThroughN. These sequences were aligned back to hg19 using 
the same settings as above. The resulting best matching hits were considered reciprocal best hits 
if they fell into the original human TRNP1 CREs. In total, 351 putative TRNP1 CRE sequences were 
identified, including human, mouse, and orthologous sequences.

Cross-species primer design for sequencing
We sequenced TRNP1 coding sequences in six primates for which reference genome assemblies 
were either unavailable or very sparse and the ferret (Mustela putorius furo) where the sequence 
was incomplete (see Supplementary file 1a). For the missing primate sequences we used NCBI’s 
tool Primer Blast (Ye et al., 2012) with the human TRNP1 gene locus as a reference. Primer spec-
ificity was confirmed using the predicted templates in 12 other primate species available in Primer 
Blast. Following primers were used as they worked reliably in all six species (forward primer, ​GGGA​​
GGAG​​TAAA​​CACG​​AGCC​; reverse primer, ​AGCC​​AGGT​​CATT​​CACA​​GTGG​). For the ferret sequence, 
the genome sequence (MusPutFur1.0,) contained a gap in the TRNP1 coding sequence leading to a 
truncated protein. To recover the full sequence of TRNP1 we used the conserved sequence 5’ of the 
gap and 3’ of the gap as input for primer blast (primer sequences can be found in the analysis GitHub, 
see Data availability).

In order to obtain TRNP1 CREs for the other primate species, we designed primers using primux 
(Hysom et al., 2012) based on the species with the best genome assemblies and subsequently tested 
them in closely related species in multiplexed PCRs. A detailed list of designed primer pairs per CRE 
and reference genome can be found in the analysis GitHub (see Data availability).

Sequencing of target regions for primate species
Primate gDNAs were obtained from Deutsches Primaten Zentrum, DKFZ, and MPI Leipzig (see 
Supplementary file 1b). Depending on concentration, gDNAs were whole genome amplified prior 
to sequencing library preparation using GenomiPhi V2 Amplification Kit (Sigma). After amplification, 
gDNAs were cleaned up using SPRI beads (CleaNA). Both TRNP1 coding regions and CREs were 
resequenced starting with a touchdown PCR to amplify the target region followed by a ligation and 
Nextera XT library construction. TRNP1 coding regions were sequenced as 250 bases paired end with 
dual indexing on an Illumina MiSeq, the CRE libraries libraries were sequenced 50 bp paired end on 
an Illumina HiSeq 1500.

Assembly of sequenced regions
Reads were demultiplexed using deML (Renaud et al., 2015). The resulting sequences per species 
were subsequently trimmed to remove PCR handles using cutadapt (version 1.6) (Martin, 2011). For 
sequence reconstruction, Trinity (version 2.0.6) in reference-guided mode was used (Grabherr et al., 
2011). The reference here is defined as the mapping of sequences to the closest reference genome 
with NGM (version 0.0.1) (Sedlazeck et al., 2013). Furthermore, read normalization was enabled and 
a minimal contig length of 500 was set. The sequence identity of the assembled contigs was validated 
by BLAT (Kent, 2002) alignment to the closest reference TRNP1 as well as to the human TRNP1. The 
assembled sequence with the highest similarity and expected length was selected per species.

The same strategy was applied to the resequenced ferret genomic sequence, except that we used 
bwa-mem2 (Vasimuddin et al., 2019) for mapping and for the assembly with Trinity we set minimal 
contig length to 300 (reference genome musFur1). Only the part covering the 3’ end (specifically, 
the last 107 AAs) was successfully assembled, however, luckily, MusFur1 genome assembly already 
provides a good-quality assembly for the 5’ end of the protein. The overlapping 36 AAs (108 nucle-
otides) between both sources had a 100% agreement on the nucleotide sequence level, hence we 
collapsed the sequences from both sources to yield a full-length protein-coding sequence. In a neigh-
bour joining tree, where we included the nucleotide sequences from all 30 mammalian TRNP1 ortho-
logues, ferret sequence was placed within the other carnivore sequences (between cat and a branch 
leading to seal, sea lion) as expected given the phylogenetic relationships of these species.
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TRNP1 coding sequence retrieval and alignment
Human TRNP1 protein sequence was retrieved from UniProt database (UniProt Consortium, 2019) 
under accession number Q6NT89. We used the human TRNP1 in a tblastn (Camacho et al., 2009) 
search of genomes from 45 species, without any repeat masking specified in Supplementary file 1a 
(R-package rBLAST version 0.99.2). The resulting sequences were re-aligned with PRANK (Löytynoja, 
2021) (version 150803), using the mammalian tree from Bininda-Emonds et al., 2007.

Control gene set selection and alignment
Control genes were selected using consensus coding sequence (CCDS) dataset for human GRCh38.
p12 genome (35,138 coding sequences, release 23) (Pujar et al., 2018). RBB (Kent, 2002) strategy 
was applied to identify the orthologous sequences in the other 29 species using -q=prot -t=dnax blat 
settings. We picked the best matching sequence per CDS in each species using a score based on the 
BLOSUM62 substitution matrix (Henikoff and Henikoff, 1992) and gapOpening = 3, gapExtension 
= 1 penalties, and requiring at least 30% of the human sequence to be found in the other species. 
This sequence was extracted and the same strategy was applied when blatting the orthologous 
sequence to the human genome. If the target sequence with the best score overlaps at least 10% of 
the original CDS positions, it was kept. To have a comparable gene set to TRNP1 in terms of statis-
tical power and alignment quality, we selected all genes that had a similar human coding sequence 
length as TRNP1 (≥291 and ≤999 nucleotides) and 1 coding exon (322 out of the total of 1088 1-exon 
similar-length candidates prior to RBB). If RBB returned multiple matches per species per sequence 
with the same highest alignment score to the human sequence, we kept these only if the matching 
sequences were identical, which resulted in 274 genes. We further filtered for genes with all ortholo-
gous sequences of length at least 50% and below 200% relative to the length of the respective human 
protein-coding orthologue (257 genes). These were aligned using PRANK (Löytynoja, 2021) as for 
TRNP1, and manually inspected. One hundred and twelve alignments were optimal, and we could get 
additional 22 high-quality alignments by searching orthologues in additional genome versions using 
the previously described RBB strategy (gorilla ​gorGor5.​fa, dolphin GCF_011762595.1_mTurTru1, wild 
boar GCF_000003025.6_Sscrofa11.1, rhesus macaque GCF_003339765.1_Mmul_10, olive baboon 
GCA_000264685.2_Panu_3.0) and redoing the alignment. Gene TREX1 turned out to have two CCDS 
included: CCDS2769.1, CCDS59451.1. As these are not independent, we randomly kept only one 
CCDS (CCDS2769.1). Alignment information content per protein-coding sequence (TRNP1 and 133 
controls) was quantified as the average total branch length reduction across positions as a result of 
gaps using the following formula:

	﻿‍
λred = 1

p

p∑

i=1

λi
λt

,
‍�

where i to p is alignment position, ‍λi‍ is the total branch length at position i, ‍λt‍ is the total branch 
length of the full 30 species tree. All branch lengths were taken from the pruned mammalian tree from 
Bininda-Emonds et al., 2007. This information per protein can be found in Supplementary file 1f, 
column AlnInfoContent.

Evolutionary sequence analysis
For all evolutionary analyses, the pruned mammalian tree from Bininda-Emonds et al., 2007, was 
provided to the respective program.

Estimation of the total tree length for dS and dN/dS
Program codeml from PAML software (Yang, 1997) (version 4.8) was used to obtain the total tree 
length for dS and dN. dN/dS was calculated as the ratio between the two parameters. Branch free-
ratio model was ran on TRNP1 and 133 control protein-coding sequences using the following settings 
seqtype = 1, CodonFreq = 2, clock = 0, aaDist = 0, model = 1. We required the log(dS) tree length to 
be <3× SD away from the average, leading to the exclusion of one protein CCDS34575.1, resulting in 
a set containing 132 control sequence alignments and TRNP1.
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Inferring correlated evolution using Coevol
Coevol (Lartillot and Poujol, 2011) (version 1.4) was utilized to infer the covariance between TRNP1 
and control protein evolutionary rate ‍ω‍ with three morphological traits (brain size, GI, and body mass) 
across species (Supplementary file 1c). Coevol is a Bayesian phylogenetic approach that jointly 
models substitution rates and continuous trait changes as a multivariate Brownian motion, yielding an 
estimate of the correlation structure between these variables, while reconstructing divergence times 
and ancestral traits. Simultaneous parameter estimation within the same framework helps avoiding 
error propagation.

For each model, the MCMC was run three times for at least 10,000 cycles, using the first 1000 
as burn-in. For TRNP1 and 124 control proteins all parameters have a relative difference <0.3 and 
effective size >50, indicating good convergence, 8 control proteins did not reach convergence and 
were thereby excluded from further analyses. We report the average posterior probabilities (‍pp‍), the 
average marginal and partial correlations of the full model (Supplementary file 1e) and the separate 
models where including only either one of the three traits (Supplementary file 1e). The PP for a nega-
tive correlation are given by ‍1 − pp‍. These were back-calculated to make them directly comparable, 
independently of the correlation direction, that is, higher ‍pp‍ means more statistical support for the 
respective correlation.

Identification of sites under positive selection
Program codeml from PAML software (Yang, 1997) (version 4.8) was used to infer whether a significant 
proportion of TRNP1 protein sites evolve under positive selection across the phylogeny of 45 species, 
setting seqtype = 1, CodonFreq = 2, clock = 0, aaDist = 0, model = 0. Site models M8 (NSsites = 
8) and M7 (NSsites = 7) were compared (Yang et al., 2000), that allow ‍ω‍ to vary among sites across 
the phylogenetic tree, but not between branches. M7 and M8 are nested with M8 allowing for sites 
under positive selection with ‍ωs‍. LRT with 2 degrees of freedom was used to compare these models. 
Naive empirical Bayes (NEB) analysis was used to identify the specific sites under positive selection 
(Pr(‍ω > 1‍)>0.95).

Proliferation assay
Plasmid construction
The five TRNP1 orthologous sequences containing the restriction sites BamHI and XhoI were synthe-
sized by GeneScript. All plasmids for expression were first cloned into a pENTR1a gateway plasmid 
described in Stahl et al., 2013, and then into a Gateway (Invitrogen) form of pCAG-GFP (kind gift of 
Paolo Malatesta). The gateway LR-reaction system was used to then sub-clone the different TRNP1 
orthologues into the pCAG destination vectors.

Primary cerebral cortex transfection
Primary cerebral cortex cultures were established as outlined under experimental model and subject 
details. Plasmids were transfected with Lipofectamine 2000 (Life Technologies) according to the 
manufacturer’s instruction 2 hr after seeding the cells onto PDL-coated coverslips. One day later cells 
were washed with phosphate buffered saline (PBS) and then fixed in 4% paraformaldehyde (PFA) in 
PBS and processed for immunostaining.

Immunostaining
Cells plated on PDL-coated glass coverslips were blocked with 2% BSA, 0.5% Triton-X (in PBS) for 
1  hr prior to immunostaining. Primary antibodies (chicken alpha-GFP, Aves Labs: GFP-1010 and 
rabbit alpha-Ki67, abcam: ab92742) were applied in blocking solution overnight at 4°C. Fluores-
cent secondary antibodies were applied in blocking solution for 1  hr at room temperature. DAPI 
(4’,6-diamidin-2-phenylindol, Sigma) was used to visualize nuclei. Stained cells were mounted in Aqua 
Polymount (Polysciences). All secondary antibodies were purchased from Life Technologies. Repre-
sentative high-quality images were taken using an Olympus FV1000 confocal laser‐scanning micro-
scope using 20×/0.85 NA water immersion objective. Images used for quantification were taken using 
an epifluorescence microscope (Zeiss, Axio ImagerM2) equipped with a 20×/0.8 NA and 63×/1.25 NA 
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oil immersion objectives. Postimage processing with regard to brightness and contrast was carried out 
where appropriate to improve visualization, in a pairwise manner.

Proliferation rate calculation using logistic regression
The proportion of successfully transfected cells that proliferate under each condition (Ki67-positive/
GFP-positive) was modeled using logistic regression (R-package stats (version 4.0.3), glm function) 
with logit link function ‍logit(p) = log( p

1−p ),‍ for ‍0≤p≤1,‍ where ‍p‍ is the probability of success. The abso-
lute number of GFP-positive cells were added as weights. Model selection was done using LRT within 
ANOVA function from stats. Adding the donor mouse as a batch improved the models (Supplemen-
tary file 2a).

To back-calculate the absolute proliferation probability (i.e., rate) under each condition, intercept 

of the respective model was set to zero and the inverse logit function ‍
eβiXi

1+eβiXi ‍ was used, where ‍i‍ indi-
cates condition (Supplementary file 2b). Two-sided multiple comparisons of means between the 
conditions of interest were performed using glht function (Tukey test, user-defined contrasts) from R 
package multcomp (version 1.4-13) (Supplementary file 2c).

Phylogenetic modeling of proliferation rates using generalized least squares
The association between the induced proliferation rates for each TRNP1 orthologue and the brain 
size or GI of the respective species was analysed using generalized least squares (R-package nlme, 
version 3.1-143), while correcting for the expected correlation structure due to phylogenetic relation 
between the species. The expected correlation matrix for the continuous trait was generated using a 
Brownian motion (Felsenstein, 1985; Martins and Hansen, 1997) (ape [version 5.4], using function 
corBrownian). The full model was compared to a null model using the LRT. Residual ‍R2‍ values were 
calculated using ​R2.​resid function from R package RR2 (version 1.0.2).

Massively parallel reporter assay
MPRA library design
A total of 351 potential TRNP1 CRE sequences were identified as outlined before. Based on these, 
the MPRA oligos were designed as 94mers, where larger sequences were covered by sliding window 
by 40 bases, resulting in 4950 oligonucleotide sequences, that are flanked by upstream and down-
stream priming sites and KpnI/Xbal restriction cut sites as in the original publication (Melnikov et al., 
2012). Barcode tag sequences were designed so that they contain all four nucleotides at least once, 
do not contain stretches of four identical nucleotides, do not contain microRNA seed sequences 
(retrieved from microRNA Bioconductor R package, version 1.28.0), and do not contain restriction cut 
site sequences for KpnI nor Xbal. The full library of designed oligonucleotides can be found on GitHub 
(see Data availability).

MPRA library construction
We modified the original MPRA protocol (Melnikov et al., 2012) by using a lentiviral delivery system 
as previously described (Inoue et al., 2017), introducing GFP instead of nanoluciferase and changing 
the sequencing library preparation strategy. In brief, oligonucleotide sequences (Custom Array) were 
amplified using emulsion PCR (Micellula Kit, roboklon) and introduced into the pMPRA plasmid as 
described previously. The nanoluciferase sequence used in the original publication was replaced 
by EGFP using Gibson cloning and subsequent insertion into the enhancer library using restriction 
enzyme digest as in the original publication. Using SFiI the assembled library was transferred into a 
suitable lentiviral vector (pMPRAlenti1, Addgene #61600).

Primer sequences and plasmids used in the MPRA can be found in the analysis GitHub (see Data 
availability). To ensure maximum library complexity, transformations that involved the CRE library were 
performed using electroporation (NEB 10-beta electrocompetent Escherichia coli), in all other cloning 
steps chemically competent E. coli (NEB 5-alpha) were used.

Lentiviral particles were produced according to standard methods in HEK 293T cells (Dull et al., 
1998). The MPRA library was co-transfected with third generation lentiviral plasmids (pMDLg/pRRE, 
pRSV-Rev, pMD2.G; Addgene #12251, #12253, #12259) using Lipofectamine 3000. The lentiviral 
particle containing supernatant was harvested 48 hr post transfection and filtered using 0.45 μm PES 
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syringe filters. Viral titer was determined by infecting N2A cells (ATCC CCL-131) and counting GFP-
positive cells. To this end, N2A cells were infected with a 50/50 volume ratio of viral supernatant to cell 
suspension with addition of 8 μg/mL Polybrene. Cells were exposed to the lentiviral particles for 24 hr 
until medium was exchanged. Selection was performed using blasticidin starting 48 hr after infection.

MPRA lentiviral transduction
The transduction of the MPRA library was performed in triplicates on two H. sapiens and one M. 
fascicularis NPC lines generated as described previously (Geuder et al., 2021). 2.5 × 105 NPCs per 
line and replicate were dissociated, dissolved in 500 µL cell culture medium containing 8 μg/mL Poly-
brene and incubated with virus at MOI 12.7 for 1 hr at 37°C in suspension (Nakai et al., 2018). There-
after, cells were seeded on Geltrex and cultured as described above. Virus containing medium was 
replaced the next day and cells were cultured for additional 24 hr. Cells were collected, lysed in 100 
μL TRI reagent, and frozen at –80°C.

MPRA sequencing library generation
As input control for RNA expression, DNA amplicon libraries were constructed using 100–500 pg 
plasmid DNA. Library preparation was performed in two successive PCRs. A first PCR introduced the 5’ 
transposase mosaic end using overhang primers, this was used in the second PCR (Index PCR) to add 
a library-specific index sequence and Illumina Flow Cell adapters. The Adapter PCR was performed in 
triplicates using DreamTaq polymerase (Thermo Fisher Scientific). Subsequently 1–5 ng of the Adapter 
PCR product were subjected to the Index PCR using Q5 polymerase.

Total RNA from NPCs was extracted using the Direct-zol RNA Microprep Kit (Zymo Research). Five 
hundred ng of RNA were subjected to reverse transcription using Maxima H Minus RT (Thermo Fisher 
Scientific) with oligo-dT primers. Fifty ng of cDNA were used for library preparation and processed as 
described for plasmid DNA.

Plasmid and cDNA libraries were pooled and quality was evaluated using capillary gel electropho-
resis (Agilent Bioanalyzer 2100). Sequencing was performed on an Illumina HiSeq 1500 instrument 
using a single-index, 50 bp, paired-end protocol.

MPRA data processing and analysis
MPRA reads were demultiplexed with deML (Renaud et al., 2015) using i5 and i7 adapter indices 
from Illumina. Next, we removed barcodes with low sequence quality, requiring a minimum Phred 
quality score of 10 for all bases of the barcode (zUMIs, ​fqfilter.​pl script; Parekh et al., 2018). Further-
more, we removed reads that had mismatches to the constant region (the first 20 bases of the GFP 
sequence ​TCTA​​GAGT​​CGCG​​GCCT​​TACT​). The remaining reads that matched one of the known CRE-
tile barcodes were tallied up resulting in a count table. Next, we filtered out CRE tiles that had been 
detected in only one of the three input plasmid library replicates (4202/4950). Counts per million were 
calculated per CRE tile per library (median counts: ∼900k range: 590–1050k). Macaque replicate 3 was 
excluded due to its unusually low correlation with the other samples (Pearson’s r). The final regulatory 
activity for each CRE tile per cell line was calculated as:

	﻿‍
ai = median(CPMi)

median(CPMi)p
,
‍�

(1)

where ‍a‍ is regulatory activity, ‍i‍ indicates CRE tile, and ‍p‍ is the input plasmid library. Median was calcu-
lated across the replicates from each cell line.

Given that each tile was overlapping with two other tiles upstream and two downstream, we calcu-
lated the total regulatory activity per CRE region in a coverage-sensitive manner, that is, for each posi-
tion in the original sequence, mean per-bp-activity across the detected tiles covering it was calculated. 
The final CRE region activity is the sum across all base positions.

	﻿‍
ar =

k∑

b=1

1
n

n∑

i=1

ai
li

,
‍�

(2)

where ar is regulatory activity of CRE region ‍r‍, ‍b = 1, ..., k‍ is the base position of region ‍r‍, ‍i, ..., n‍ are tiles 
overlapping the position ‍b‍, ai is tile activity from Equation 1 and li is tile length. CRE activity and brain 
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phenotypes were associated with one another using PGLS analysis (see above). The number of species 
varied for each phenotype-CRE pair (brain size: min. 37 for exon 1, max. 48 for intron and downstream 
regions; GI: min. 32 for exon2, max. 37 for intron), therefore the activity of each of the seven CRE 
regions was used separately to predict either GI or brain size of the respective species.

TF analysis
RNA-seq library generation
RNA-seq was performed using the prime-seq method (Janjic et al., 2022). The full prime-seq protocol 
including primer sequences can be found at protocols.io (https://www.protocols.io/view/prime-seq-​
s9veh66). Here, we used 10 ng of the isolated RNA from the MPRA experiment and subjected it to 
the prime-seq protocol. Sequencing was performed on an Illumina HiSeq 1500 instrument with the 
following setup: read 1 16 bases, read 2 50 bases, and i7 index read 8 bases.

RNA-seq data processing
Bulk RNA-seq data was generated from the same nine samples (three cell lines, three biological repli-
cates each) that were assayed in the MPRA. Raw read fastq files were pre-processed using zUMIs 
(version 2.4.5b) (Parekh et al., 2018) together with STAR (version STAR_2.6.1c) (Dobin et al., 2013) 
to generate expression count tables for barcoded UMI data. Reads were mapped to human refer-
ence genome (hg38, Ensembl annotation GRCh38.84). Further filtering was applied keeping genes 
that were detected in at least 7/9  samples and had on average more than 7 counts, resulting in 
17,306 genes. For further analysis, we used normalized and variance stabilized expression estimates 
as provided by DESeq2 (Love et al., 2014), using a model ~0+ clone. Differential expression testing 
between clone pairs was carried out using Benjamini and Hochberg-corrected Wald test as imple-
mented in DESeq2.

TFBS motif analysis on the intron CRE sequence
TF position frequency matrices were retrieved from JASPAR CORE 2020 (Fornes et  al., 2020), 
including only non-redundant vertebrate motifs (746 in total). These were filtered for the expression 
in our NPC RNA-seq data, leaving 392 TFs with 462 motifs in total.

A hidden Markov model-based program Cluster-Buster (Frith et al., 2003) (compiled on 13 June 
2019) was used to infer the enriched TF binding motifs on the intron sequence. Firstly, the auxiliary 
program Cluster-Trainer was used to find the optimal gap parameter between motifs of the same 
cluster and to obtain weights for each TF based on their motif abundance per kb across catharrine 
intron CREs from 10 species with available GI measurements. Weights for each motif suggested by 
Cluster-Trainer were supplied to Cluster-Buster that we used to find clusters of regulatory binding sites 
and to infer the enrichment score for each motif on each intron sequence. The program was run with 
the following parameters: –g3 –c5 –m3.

To identify the most likely regulators of TRNP1 that bind to its intron sequence and might influence 
the evolution of gyrification, we filtered for the motifs that were most abundant across the intron 
sequences (Cluster-Trainer weights >1). These motifs were distinct from one another (mean pairwise 
distance 0.72). Gene set enrichment analysis contrasting the TFs with the highest binding potential 
with the other expressed TFs was conducted using the Bioconductor package topGO (Alexa, 2009) 
(version 2.40.0) (Supplementary file 3), setting the following parameters: ontology=‘BP’, nodeSize 
= 20, algorithm = ‘elim’, statistic = ‘fisher’. PGLS model was applied as previously described, using 
Cluster-Buster binding scores across catharrine intron CRE sequences as predictors and predicting 
either intron activity or GI from the respective species. The relevance of the three TFs that were associ-
ated with intron activity was then tested using an additive model and comparing the model likelihoods 
with reduced models where either of these were dropped.

Retrieving public data
Annotations and coordinates of enhancers showing gained activity in humans based on H3K27ac and 
H3K4me2 histone marks were downloaded from GSE63648 (Reilly et al., 2015) as bed files from the 
section Supplementary files.
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CTCF ChiP-seq data from human neural progenitor cells (line H9) was retrieved from ENCODE 
(Encode Project Consortium, 2012) (doi:10.17989/ENCSR125NBL). All samples were consistent 
regarding TRNP1 CTCF ChIP-seq landscape. We depict read distribution using BigWig file of sample 
ENCFF896TQG.

Human Hi-C data (Won et al., 2016) on TAD positions in germinal zone at week 8 was retrieved as 
a coordinate file in bed format using GEO accession GSE77565.

Quantification and statistical analysis
Data visualizations and statistical analysis was performed using R (version 4.0) (R Development Core 
Team, 2019). Details of the statistical tests performed in this study can be found in the main text as 
well as the Materials and methods section and Supplementary files 1–3. For display items all relevant 
parameters like sample size (n), type of statistical test, significance thresholds, degrees of freedom, as 
well as standard deviations can be found in the figure legends.
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M, Götz M, Hellmann 
I, Enard W

2021 RNA-seq of two human 
and one cynomologous 
NPC line to assay activity 
of DNAse1 hypersensitive 
sites in the proximity of the 
Trnp1 gene
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experiments/​E-​
MTAB-​9951/

ArrayExpress, E-MTAB-9951

Kliesmete Z, Wange 
LE, Vieth B, Esgleas 
M, Radmer J, 
Hülsmann M, Geuder 
J, Richter D, Ohnuki 
M, Götz M, Hellmann 
I, Enard W

2021 MPRA of two human and 
one cynomologous NPC 
line to assay activity of 
DNAse1 hypersensitive 
sites in the proximity of the 
Trnp1 gene

https://www.​ebi.​ac.​
uk/​arrayexpress/​
experiments/​E-​
MTAB-​9952/

ArrayExpress, E-MTAB-9952

Kliesmete Z, 
Wange LE, Vieth B, 
Esgleas M, Radmer 
J, Huelsmann M, 
Geuder J, Richter D, 
Ohnuki M, Hellmann 
I, Enard W

2021 Homo sapiens TMF-
regulated nuclear protein 
1 (TRNP1) gene, complete 
cds

https://www.​ncbi.​
nlm.​nih.​gov/​nuccore/​
MW373535

NCBI Nucleotide, 
MW373535

Kliesmete Z, 
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I, Enard W

2021 Papio anubis TMF-
regulated nuclear protein 
1 (TRNP1) gene, complete 
cds

https://www.​ncbi.​
nlm.​nih.​gov/​nuccore/​
MW373538
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The following previously published datasets were used:
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JA

2014 Mouse regulatory DNA 
landscapes reveal global 
principles of cis-regulatory 
evolution

https://www.​ncbi.​
nlm.​nih.​gov/​geo/​
query/​acc.​cgi?​acc=​
GSE51336

NCBI Gene Expression 
Omnibus, GSE51336

Stamatoyannopoulos 
JA

2014 Conservation of mouse-
human trans-regulatory 
circuitry despite high cis-
regulatory divergence

https://www.​ncbi.​
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query/​acc.​cgi?​acc=​
GSE51341

NCBI Gene Expression 
Omnibus, GSE51341
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Appendix 1

Appendix 1 Continued on next page

Appendix 1—key resources table 
Reagent type 
(species) or resource Designation Source or reference Identifiers Additional information

Gene (45 mammal 
species) TRNP1 See Supplementary file 1a

See Supplementary 
file 1a See Supplementary file 1a

Strain, strain 
background (E. coli)

NEB 10-beta New England Biolabs; Rowley, MA,  
United States

Cat# C3020K
Electrocompetent E. coli

Strain, strain 
background (E. coli)

NEB 5-alpha High Efficiency New England Biolabs; Rowley, MA,  
United States

Cat# C2987I
Chemically competent E. coli

Cell line (Macaca 
fascicularis)

Cynomolgus Macaque NPC This paper, based on Geuder et al., 
2021

N15_39B2
Macaca fascicularis neural progenitor cells

Cell line (Mus 
musculus)

N2A ATCC; Manassas, VA,  
United States

CCL-131

Cell line (Homo 
sapiens)

HEK293T ATCC; Manassas, VA,  
United States

CRL-11268

Cell line (Homo 
sapiens, female)

Human NPC 1 This paper, based on 
 Geuder et al., 2021

N4_29B5
Human neural progenitor cells

Cell line (Homo 
sapiens, male)

Human NPC 2 This paper, based on 
 Geuder et al., 2021

N4_12 C2
Human neural progenitor cells

Biological sample (Mus 
musculus)

Primary murine cerebral cortex 
cells (NSC)

This paper, based on 
 Esgleas et al., 2020

primary
See Methods

Sequence-based 
reagent MPRA oligo Library Trnp1 CRE

Custom Array; Redmond, WA,  
United States custo

See https://github.com/Hellmann-Lab/Co-​
evolution-TRNP1-and-GI

Transfected construct 
(multiple species)

MPRA Library in lentiviral 
particles This paper custom

Lentiviral particles with pMPRA-lenti and TRNP1 
CRE library

Antibody rabbit anti Ki67 (monoclonal)
Abcam; Waltham, MA,  
United States

Cat# ab92742, Clone 
EPR3610 1:100

Antibody chicken anti-GFP (polyclonal)
Aves Labs; Davis, CA,  
United States

RRID: AB_2307313, Cat# 
GFP-1010, Polyclonal 1:500

Recombinant DNA 
reagent

pCAG-GFP_Gateway plasmid Dr. Paolo Malatesta NA
Kind gift of Dr. Paolo Malatesta

Recombinant DNA 
reagent

pMDLg/pRRE plasmid Addgene; Waterton, MA,  
United States

Addgene 12251

Recombinant DNA 
reagent

pRSV-Rev plasmid Addgene; Waterton, MA,  
United States

Addgene 12253

Recombinant DNA 
reagent

pMD2.G plasmid Addgene; Waterton, MA,  
United States

Addgene 12259

Recombinant DNA 
reagent

pMPRAlenti1 plasmid Addgene; Waterton, MA,  
United States

Addgene 61600
Kind gift of Dr. Davide Cacchiarelli

Recombinant DNA 
reagent

pNL3.1[Nluc/minP] plasmid, SfiI 
restriction site mutated

Dr. Davide Cacchiarelli NA
Kind gift of Dr. Davide Cacchiarelli

Recombinant DNA 
reagent

pMPRA1 plasmid Addgene; Waterton, MA,  
United States

Addgene 49349
Kind gift of Dr. Davide Cacchiarelli

Recombinant DNA 
reagent

pENTR1a plasmid Stahl et al., 2013 pENTR1a

Peptide, recombinant 
protein

hEGF Miltenyi Biotec; Bergisch Gladbach,  
Germany

Cat#130-093-825

Peptide, recombinant 
protein

B-27 Supplement Thermo Fisher Scientific;  
Waltham, MA,  
United States

Cat#12587–010

Peptide, recombinant 
protein

N2 Supplement Thermo Fisher Scientific;  
Waltham, MA,  
United States

Cat#17502048
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Reagent type 
(species) or resource Designation Source or reference Identifiers Additional information

Peptide, recombinant 
protein

L-Ascorbic acid 2-phosphate Sigma/Merck; St. Louis, MO,  
United States

Cat#A8960-5G

Peptide, recombinant 
protein

poly-D-lysine Sigma/Merck; St. Louis, MO,  
United States

Cat# A-003-E

Peptide, recombinant 
protein

bFGF PeproTech, Cranbury, New Jersey,  
United States

Cat#100-18B

Commercial assay or kit
GenomiPhi V2 DNA-
Amplification Kit

Sigma/Merck; St. Louis, MO,  
United States

Cat# GE25-6600-32

Commercial assay or kit Gateway LR Clonase Enzyme 
mix

Thermo Fisher Scientific; Waltham, 
MA,  
United States

Cat# 11791019

Commercial assay or kit Lipofectamine 2000 Thermo Fisher Scientific; Waltham,  
MA, United States

Cat# 11668019

Commercial assay or kit Lipofectamine 3000 Thermo Fisher Scientific; Waltham,  
MA, United States

Cat# L3000015

Commercial assay or kit Micellula DNA Emulsion & 
Purification Kit

Roboklon; Berlin, Germany Cat# E3600-01

Commercial assay or kit Agilent High Sensitivity DNA 
Kit

Agilent; Santa Clara, CA,  
United States

Cat# 5067–4626

Commercial assay or kit Nextera XT DNA Library 
Preparation Kit

Illumina; San Diego, CA,  
United States

Cat# FC-131–1024

Chemical compound, 
drug

GlutaMax-I Thermo Fisher Scientific;  
Waltham, MA, United States

Cat# 35050038

Chemical compound, 
drug

Blasticidin S HCl Thermo Fisher Scientific;  
Waltham, MA, United States

Cat# R21001

Chemical compound, 
drug

DMEM-GlutaMAX Thermo Fisher Scientific;  
Waltham, MA, United States

Cat# 10566016

Chemical compound, 
drug

Polybrene Sigma/Merck; St. Louis, MO,  
United States

Cat# TR-1003-G

Chemical compound, 
drug

TRI reagent Sigma/Merck; St. Louis, MO,  
United States

Cat# T9424-200ML

Chemical compound, 
drug

Geltrex Thermo Fisher Scientific;  
Waltham, MA, United States

Cat# A1413302

Sequence-based 
reagent

Trnp1 CRE resequencing 
primers

Integrated DNA Technologies,  
Coralville, IO,  
United States

custom
See https://github.com/Hellmann-Lab/Co-​
evolution-TRNP1-and-GI

Sequence-based 
reagent

Trnp1 coding resequencing 
forward primer

Integrated DNA Technologies,  
Coralville, IO,  
United States

custom

​GGGAGGAGTAAACACGAGCC

Sequence-based 
reagent

Trnp1 coding resequencing 
reverse primer

Integrated DNA Technologies,  
Coralville, IO,  
United States

custom

​AGCCAGGTCATTCACAGTGG

Software, algorithm
Hotspot version 4.0.0 John et al., 2011, http://www.​

uwencode.org/software/hotspot
NA

Software, algorithm BLAT version 35x1 Kent, 2002,  
https://github.com/djhshih/blat

NA

Software, algorithm PriMux, compiled on 20 July 
2014

Hysom et al., 2012, https://​
sourceforge.net/projects/primux/

NA

Software, algorithm deML version 1.1.3 Renaud et al., 2015,  
https://github.com/grenaud/deml

NA

Software, algorithm cutadapt version 1.6 Martin, 2011,  
https://anaconda.org/bioconda/​
cutadapt

NA
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Reagent type 
(species) or resource Designation Source or reference Identifiers Additional information

Software, algorithm Trinity version 2.0.6 Grabherr et al., 2011, https://github.​
com/trinityrnaseq/trinityrnaseq/​
releases

NA

Software, algorithm rBLAST version 0.99.2 https://github.com/mhahsler/rBLAST NA

Software, algorithm PRANK version 150803 Löytynoja, 2021,  
http://wasabiapp.org/software/prank/

NA

Software, algorithm PAML version 4.8 Yang, 1997,  
http://abacus.gene.ucl.ac.uk/​
software/paml.html

NA

Software, algorithm Coevol version 1.4 Lartillot and Poujol, 2011, https://​
megasun.bch.umontreal.ca/People/​
lartillot/www/downloadcoevol.html

NA

Software, algorithm NextGenMap (NGM) version 
0.0.1

Sedlazeck et al., 2013, http://cibiv.​
github.io/NextGenMap/

NA

Software, algorithm Primer Blast Ye et al., 2012 NA

Software, algorithm zUMIs version 2.4.5b Parekh et al., 2018,  
https://github.com/sdparekh/zUMIs

NA

Software, algorithm STAR version STAR_2.6.1 c Dobin et al., 2013,  
https://github.com/alexdobin/STAR

NA

Software, algorithm DESeq2 version 1.26.0 Love et al., 2014, Bioconductor NA

Software, algorithm Cluster Buster, compiled on 
Jun 13 2019

Frith et al., 2003, http://cagt.bu.edu/​
page/ClusterBuster_download

NA

Software, algorithm R version 3.6/4 https://www.r-project.org/ NA

Software, algorithm nlme version 3.1–143 https://cran.r-project.org/web/​
packages/nlme/index.html

NA

Software, algorithm topGO version 2.40.0 Alexa, 2009, https://bioconductor.​
org/packages/release/bioc/html/​
topGO.html

NA

Software, algorithm ape version 5.4 https://cran.r-project.org/web/​
packages/ape/index.html

NA

Software, algorithm multcomp version 1.4–13 https://cran.r-project.org/web/​
packages/multcomp/index.html

NA

Software, algorithm RR2 version 1.0.2 https://cran.r-project.org/web/​
packages/rr2/index.html

NA

Appendix 1 Continued

2.4 Regulatory and coding sequences of TRNP1 co-evolve with brain
size and cortical folding in mammals 157



158 2. Results



3 | Discussion

There has been a long standing interest for biologists from different fields to answer questions

related to the role of species-specific elements in generating species-specific functional

novelties, deriving the function and importance of tissue-specific and pleiotropic elements for

complex multicellular organisms and connecting genetic changes to molecular or organismal

phenotypes. With the technological advances made in the last decades and the large amounts

of recently available data, we can now revisit these questions on a genome-wide scale in a

less biased manner than ever before. Genome-wide assays on different functional levels can

be combined to get a more complete picture of the patterns of genome evolution, not limited

to a few selected genetic regions or model organisms.

However, analysing such data also proposes challenges of its own. Firstly, the validity and

the amount of error made using recent technologies need to be assessed. Secondly, workflows

for unbiased cross-species comparisons using the newly emerging data types need to be

established. Thirdly, the information from different modalities needs to be incorporated

in a meaningful, informative way. Finally, evolutionary frameworks have to be selected to

accommodate the types of available omics data. In this thesis, I tackled these challenges and

addressed case-specific questions on the evolution and importance of regulatory pleiotropy,

newly emerging elements and the association between genetic and phenotypic change.
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3.1 Error rate estimation in RNA-seq assays
using cross-species genetic variation

When interpreting data from high-throughput assays like (single-cell) RNA-seq that simul-

taneously yield information on expression from multiple cells/samples and conditions, we

generally assume that the counted RNA molecules come from the cell or sample they are

assigned to. However, as any method, RNA-seq is not perfect. Errors affecting the precision

in the measurements can come from the process of amplification of the cDNA molecules

during library generation and in droplet-based methods, such as 10x Chromium, also from

freely swimming RNA molecules present in the sample that arise through damaged cell bursts
209,210. If these errors are random across the different cells/samples and RNA molecules,

this should lead to shifts in the detected transcripts towards the mean. Random noise can

decrease the power to detect differentially expressed genes between conditions or marker

genes of certain cell types211,212. In addition to random errors, some RNA molecules might

be more likely to swap during the amplification process, potentially generating non-uniformly

distributed presence of chimeric molecules213,214. Such non-random errors across genes or

cells can lead to biases in the expression profiles.

To account for unequal amplification of sequences, adding a random RNA molecule-specific

barcode, called unique molecular identifier (UMI), during cDNA generation serves as a

molecular stamp215,216,217. This allows to trace back the original RNA molecule and thereby

avoid counting the same molecule multiple times. However, it does not correct for the RNA

molecules that are swapped during the amplification or that get assigned a cellular barcode

although they come from extracellular sources. Available approaches to quantify background

noise rely on marker gene expression218, BC-UMI-gene complexity214 or RNA quantification

in empty droplets209,210 for droplet-based methods. We used a cross-species setup219,210 that

can offer further insight by combining samples from different closely related species: Based

on the sequence of the transcript and (known) substitutions, the (sub-)species and thereby

the sample origin of the RNA molecule can be identified. If it mismatches the sample origin

of the majority of the reads carrying the same barcode, this molecule likely did not originally

come from the same sample/cell.
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Using these principles, we quantified the error made across samples generated using droplet-

based RNA-seq and benchmarked methods that aim to remove background noise. Hence,

genetic divergence is not only informative for understanding selective forces acting on genetic

elements and thereby inferring functional importance, but it can also help in answering more

technical questions regarding the reliability of the recent techniques we use for measuring

different modalities. Using a similar approach, the error present in other genome-wide

assays such as (single-cell) ATAC-seq could be further estimated in the future, including the

benchmarking of recently emerging background removal methods220.

3.2 Regulatory code as revealed through strat-
ification of tissue-specificity

As a part of this thesis, I systematically studied the effects of pleiotropy on CRE conservation

in primates across multiple functional levels. Contrary to genes, pleiotropic CREs show lower

sequence conservation than tissue-specific CREs. Pleiotropic degree (PD) also goes along

with increasing CRE width and CpG island content. Noteworthy, by distinguishing between

types of di-nucleotide substitutions, we found that pleiotropic CREs show a decrease in CpG-

depleting and an increase in non-CpG-related and CpG-creating substitutions, suggesting an

underlying mechanism that facilitates constant di-nucleotide content of the sequences. A

comparison of CpG observed / expected ratio between orthologous CREs from human and

macaque validates that this property is indeed better conserved in the pleiotropic CREs. I

further investigated transcription factor binding site conservation between orthologous CREs

and found that the exact binding positions are also less conserved in pleiotropic CREs than

in any other PD group, including tissue-specific CREs. According to the Billboard model
184,185,188,221, whether the required TFs bind a particular CRE a few tens of bases up- or

downstream within the CRE sequence might not make much of a difference in many cases, as

long as the TF repertoire is contained. Indeed, TFBS repertoire, measured as the cumulative

binding potential per motif across the different TFs, is highly conserved at the pleiotropic

CREs. This higher-level TFBS property also appears to induce highly conserved downstream

gene expression, most of which also show pleiotropic expression patterns across tissues.
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Pleiotropic CREs are enriched in GC-rich TF binding motifs belonging to the ’Stripe factor’

class32, that were experimentally shown to stabilize and prolong the binding of other TFs

and thereby CRE accessibility. The binding of these and similar TFs could be the key to

connect the different patterns we observe: CpG conservation facilitates conserved binding

of the accessibility-stabilizing TFs leading to conserved expression. The larger width of the

pleiotropic CREs assures the presence of sufficiently strong binding sites for the expressed

TFs across different cellular environments. The exact binding position does not matter, hence

the sequence conservation is relatively low222.

At this point, we can speculate about the likely evolutionary mechanisms underlying the

observed patterns. Given the known features of CRE landscapes, the expected selection

coefficients associated with each individual binding site are, in average, not high. This

creates a fertile ground for compensatory evolution223, where a weakly deleterious loss

of a binding site due to drift might be compensated by fixation of one out of multiple

possible compensatory binding sites, each of which could lead to an equally good fitness
224. This facilitates a potential existance of multiple equally fit haplotypes. During gradual

species divergence, it is not unlikely that for many CREs, a different similarly fit haplotype

accidentally becomes the most frequent one. Experimental evidence supports such a scenario,

where orthologous CRE sequences from related species with diverged binding positions

but conserved binding repertoires lead to highly conserved downstream expression225,226.

When assessing a hybrid sequence containing half of each orthologous CRE, and thereby

both binding sites, it leads to over-expression. This is in agreement with the idea that the

total binding potential matters more than the exact position of individual sites. Such a

general mechanism would also explain how the seemingly lowly conserved CRE sequences

can achieve highly conserved expression patterns in the case of pleiotropic house-keeping

genes that are governed by particularly diverged CRE sequences. The existing theoretical

models simulating CRE evolution and turnover of TFBS support the notion that the drafted

mechanism is common120,36. Further simulations that incorporate the PD and our multi-level

characterization of primate CREs, including the downstream gene expression, would be an

informative further step to understand the within-CRE functional compensation.

The high evolutionary turnover of tissue-specific elements is another highly interesting
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aspect that could be further studied. Our and many other studies198,226,37,202,48 have found

hints towards potential between-CRE compensation across tissue-specific elements. In

order to understand to what extent a species- and tissue-specific CRE is compensated by

another CRE in another species or cellular context, we need to map and characterize the

CRE landscapes associated with a specific gene across multiple species and employ more

sophisticated models that build up on previous work120,227. By simultaneously considering

various aspects of higher and lower level functional similarity between CREs could help

identify functionally-orthologous CREs that might not necessarily be the sequence orthologues.

Also the quantification of CRE activity of each individual element of the regulatory landscape

is a helpful aspect to include in future statistical models228.

3.3 The role of TE-derived elements in species-
specific rewiring of gene regulation

In the previous section, I discussed how compensatory evolution acting on CRE sequences

shapes the landscape of gene regulation. Compensatory evolution can also be relevant for

coping with the disruptions imposed by transposable elements (TEs)229. There is an ongoing

and controversial discussion in the scientific community about the role of TE elements in

general, and LTR elements specifically, in rewiring gene expression networks in primates.

There are different views, some proposing that successful adaptation of the genome is highly

dependent on TE-derived sequences and the molecular novelties they induce76,103,101,230.

Arguments supporting this possibility include the fact that the de novo inserted sequences

initially do not have a concrete, important role in gene regulatory networks. Therefore, these

might be more amenable to drift and positive selection to facilitate adaptations to changing

environments or to compensate for other slightly deleterious changes in the genome. Another,

more sceptical view mainly considers TE insertions as neutral or destabilizing events for the

genome and its evolution. While TE activity might lead to new transcripts in some cells,

it is not necessarily indicative of function. Even if the TE insertion in a few cases indeed

leads to changes in expression networks, it is merely to compensate for the inconveniences

that were introduced through the perturbations. Accidentally, the newly generated CRE or
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transcript might even be chosen over the original pathway, however this rewiring is more of

an obstacle rather than an innovation229,231.

Given the fitness landscapes observed in lower complexity organisms that are easier to ma-

nipulate in the lab, some truth probably lies in both of these views. The expected proportion

of the alleles that are immediately fixed due to positive selection is low79. The considerable

expansion of TE elements in primates is likely a consequence of the small effective population

sizes that enable higher fixation of slightly-deleterious variants because of the large impact of

genetic drift. Still, fixation of slightly deleterious alleles can also lead to secondary fixations

that might in long term prove advantageous for the species. In addition, the estimates

that as much as 75% of our genome might actually have emerged as a result of TE activity

allows for the possibility that we still underestimate the contribution of TE sequences for

regulatory and gene coding sequences in a longer evolutionary run. Moreover, as discussed

in the previous chapter, the constraint on the exact genetic location or exact sequence in

the case of CREs appears to be rather low. This sets a perfect stage for the emergence of

potentially functional TE-derived CREs, particularly from LTR elements that carry TFBS.

I contributed to deciphering the evolutionary and functional importance of a human endoge-

nous retrovirus type-H (HERVH)-derived long non-coding RNA called Embryonic Stem Cell

Related Gene (ESRG). Its promoter, the whole exon 1 and a part of exon 2 are LTR7-derived

and contain binding sites for pluripotency factors such as OCT3/4. ESRG was identified

through its high and specific expression in human ESCs and iPSCs232,233,234. Previous

studies, based on knock-downs of ESRG, had concluded that its expression is required for

the maintenance of pluripotency and self-renewal232,233. In this study, ESRG contribution

to pluripotency was investigated using knock-outs combined with differentiation assays and

evolutionary approaches. None of the previously suggested molecular phenotypes could be

experimentally captured using independent replicates of the complete ESRG locus deletion.

Still, it can be argumented that differences in experimental setups or the knock-out strategy

could affect the cell state to begin with235. Here, evolutionary and population genetic ap-

proaches can be helpful to further investigate the functional relevance of an element beyond

relying on a specific cellular context. Like many TE-derived elements proposed to possess

clade- or species-specific function, ESRG is only present in few species - humans, bonobos
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and chimpanzees, but not in the other primates. This limits the analysis and thereby the

statistical power to frequency-based metrics and contrasting rates of substitutions to rates of

polymorphisms. Using the available large human-polymorphism database gnomAD236, we

compared polymorphism frequencies and divergence between ESRG exons vs. introns and

to coding gene and other lncRNA sequences to detect signatures of selection. None of the

comparisons showed compelling evidence for selection, aligning with the lack of experimental

evidence for ESRG role in pluripotency networks. Moreover, although ESRG shows among

the 5% highest expression levels across all genes in human iPCSs, its high expression is not

present in the chimpanzee iPSCs, suggesting non-conserved expression patterns.

Although the functional relevance of ESRG is still being debated235,237, this study exemplifies

the general importance of multiple functional validations, ideally by independent research

groups using independent experimental setups and the added value of evolutionary and

population genetic approaches. It also shows that the presence of TF binding sites and

high expression levels is not necessarily equivalent to function231. Overall, the extent to

which TE-derived species- or clade-specific elements are responsible for the emergence of

species-specific molecular networks and phenotypes is still unclear. Improved long read

sequencing that allows for improved mapping of these elements across different species, as

well as cellular assays and silencing technologies like CRISPR/Cas9 are aiding in rapid

progress to further clarify the roles of many of these elements.

3.4 The central task of studying genotype con-
tribution to phenotypes

The mammalian brain is arguably among the most interesting tissues to investigate using

comparative approaches, because it is linked to cognitive abilities and behavioural complexity
238 and because of its remarkable diversity. Particularly the outer layer called cerebral

cortex shows an extraordinary phenotypic diversity in size and shape across vertebrates239,

reaching its highest complexity on the mammalian branch where cortical folding has emerged
240,241. Also within mammals, brain size and folding show extensive variation, including

recurrent independent increases and decreases242,243,244. This natural variability can be used
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to investigate the genetic sources of this intricate phenotype245.

TMF-regulated nuclear protein 1 (TRNP1) is known to be essential for cortical development

in model organisms like ferrets246 and mice247,248,249 by controlling neural stem cell prolif-

eration250,251. Its knock-down as well as over-expression have clear phenotypic effects on

the resulting cortical size and folding. The prior knowledge on the decisive role of TRNP1

in brain developmental processes puts TRNP1 among the prime candidates to study across

the mammalian phylogeny. Cross-species genotype-phenotype association studies allow to

investigate to what extent conclusions from experimental findings in few species can be

extended to a larger phylogeny by performing sequence, regulatory and cellular activity

analyses.

These types of analyses impose multiple challenges. To study protein-coding sequence co-

evolution with a trait157, high-quality coding sequences and evolutionarily most plausible

alignments need to be generated252. It is also necessary to control for the potential confound-

ing effects emerging through differing effective population sizes between species157,138, which

is essential for investigating traits like brain size that correlate with body size253. To get the

full sequence of TRNP1, we resequenced TRNP1 of many primates. I chose control proteins

with similar turn-over rates and length, coming from genomic regions of good sequence

quality in all included species of the phylogeny. In all comparisons, I also included body

size as a control trait. Moreover, to establish functional evolutionary relevance, I quantified

TRNP1 cellular activity of six different orthologues in vivo at the relevant developmental

stage.

To investigate the evolution of regulatory activity, we need to identify orthologous CREs

and develop unbiased assays. We assayed the activity of orthologous CREs in cellular

trans-environments of humans and cynomolgus macaques in a cell type that is close to

the relevant in vivo cell type - neural progenitor cells (NPCs). The most recent assay for

regulatory activity at the time was MPRA204, which is limited in length, therefore requiring

tiling of the sequences. The back-calculated total CRE activity is only an approximation

of the exact activity of the whole element. Another limitation of our approach is imposed

by the lack of full regulatory landscape from each species, thereby likely leading to missing

other TRNP1 CREs active in species for which we did not have accessibility or histone
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modification data. In this context, a helpful additional confirmation of the observed activity

patterns in our MPRA data is the fact that cellular TRNP1 expression levels differ between

NPCs of humans and macaques and across the brain organoids of humans and two other

primates in the expected direction254.

Combining these different approaches and lines of evidence, I found that the evolution of

TRNP1 coding sequences correlate with brain size and folding across mammalian phylogeny

strongly above the average protein association (top 5%), also reflected in a correlated change

of its cellular activity. Because TRNP1 is expressed in various proliferating cell types, it

is important that the association with body size is considerably lower than with brain,

indicating certain specificity in brain-related evolutionary change. In addition, I identified

one CRE located in the intron of TRNP1 with correlated regulatory activity with brain

folding across primates. I also pinpoint candidate TFs, the binding of which might generate

the observed regulatory divergence. These findings strengthen the proposed evolutionary

role of TRNP1 for cortical evolution across mammals (Figure 3.1).

Figure 3.1. Summary of the findings regarding TRNP1 protein and regulatory sequence
co-evolution with brain size and folding across mammals.

There has been a long existing discussion on what type of genetic change is more central

for phenotypic evolution: Gene or regulatory evolution, where regulation is proposed to

have a larger total contribution due to less-constrained adaptation to different cellular and

temporal contexts162. Among the reasons for lower flexibility in protein-coding evolution is
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the constrained functional 3D protein structure that can affect their folding, activity and

interactions with other proteins or DNA255,256,257,258. While the total absolute contributions

of protein and regulatory evolution are still difficult to quantify and therefore up to debate,

it is clear that these are not necessarily mutually exclusive scenarios. Instead, if a certain

gene facilitates a certain phenotype, it is possible that the resulting protein’s activity as

well as the amount of the protein product are tuned, thereby presenting two sides of the

same coin. The study on TRNP1 represents such a case, where both the protein and the

regulatory activity facilitate the same phenotype. According to our findings, change in the

protein is correlated with brain phenotypes across a deeper phylogeny, i.e., larger time scales,

whereas the consistent co-variation for regulation was detected to be considerably stronger

within apes and Old world monkeys, i.e., shorter time scales. This is in agreement with

the expectations that regulatory turnover is much higher due to less unconstrained genomic

positions. The observed evolutionary flexibility of TRNP1 could be partially explained by

the high amount of intrinsically disordered regions (IDRs) in its sequence118. IDR-rich

proteins have been shown to lack a fixed or ordered 3D structure, thereby allowing for more

relaxed evolutionary modes and enabling positive selection to, e.g., facilitate interaction with

other proteins of the particular cellular environment259,260,261,262. Further improvement in

protein-coding sequence alignments, boosted by better genome and annotation qualities, will

allow comparisons of the less conserved parts of proteins. Combined with accumulation of

quantitative phenotype annotations, this could accelerate the identification of other genotypic

and phenotypic cross-species associations.
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The progress that we have made in the last decades in clarifying and mapping the functionality

of our genome is already immense. Still, there are several limitations that I encountered

in my attempts to quantify regulatory and gene evolution rates across primates and other

mammals and in connecting these to phenotypes, which require further improvements in the

future.

To have more high-throughput screens of protein sequence co-evolution with traits, more

sophisticated codon-aware alignment algorithms will be necessary. Algorithms like PRANK
252 are readily aware of the phylogeny when finding the optimal alignment of the protein-

coding sequences. However, this is after manually removing the intronic sequences by the

user. Further extension of the phylogenetic alignment frameworks boosted by expectation

maximization algorithms, Bayesian frameworks or machine learning could add the recognition

of potential exon-intron boundaries, where the known protein sequence and exon-intron

structure from some species and the known typical bases at these boundaries could be used to

automatically extract the orthologous protein-coding sequences from the orthologous DNA.

To my knowledge, the current implementation of evolutionary models that accommodate

different modes of evolution, such as Brownian Motion or Ornstein Uhlenbeck process
263,264, do not allow for multiple replicates per species. These frameworks could be extended

to replicated experiments and measurements in the future. As an example, for a more

quantitative detection of evolutionary modes of expression, the current developments in

high-throughput single-cell RNA sequencing are offering exciting possibilities to compare

orthologous cell type expression profiles across orthologous developmental stages between

species. Evolutionary longitudinal models that account for the non-independence that arises
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through the species and subject source of the cell will be essential to unbiasedly identify

diverged and conserved gene expression by appropriately utilizing the statistical power offered

by repeated measurements, while accounting for the phylogenetic relationships.

Finally, there is a lot of exciting work in the future to better understand CRE evolution. Since

regulatory sequence turnover does not appear to be a good predictor for the activity, focusing

on assays that measure TF binding or CRE activity turn-over might be more informative.

ATAC-STARR41,265,266,267 proposes a more inclusive approach than a classic MPRA to

assay the regulatory activity of individual CREs from certain species and cellular contexts.

ATAC-STARR combines and alleviates two steps that have been part of a common workflow

during my thesis: 1) Analyse ATAC-seq data from a species and cell-type of interest, 2) Select

certain CRE sequences that will be assayed for their activity. ATAC-STARR uses enrichment

technique by transposase as in ATAC-seq, followed by cloning of the sequences into plasmids

containing a reporter gene to assay their activity. Hence, automatically, more accessible

peaks will be more present in the assay, requiring no prior selection of individual CREs. If a

sufficient number of cells is available from each species (and a sufficiently large budget for

sequencing), this might be the most unbiased CRE activity approach to date, as long as

orthologous cell types are available. Such data allows to characterize the genomic location,

sequence, TFBS repertoire and activity of whole regulatory landscapes. This combined

information could be further used to identify functionally-orthologous CREs, that are not

necessary sequence orthologues, using a combination of advanced clustering and, potentially,

deep learning approaches.
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