
 
 

 

 

Graphical Representations of Data in STEM Education 

Investigation of Graphing and Graph Comprehension 

 

 

 

 

 

 

Dissertation zum Erwerb des Doctor of Philosophy (Ph.D.) 

am Munich Center of the Learning Sciences 

der Ludwig-Maximilians-Universität 

München 

 

Vorgelegt von 

 

Verena Ruf 

aus Lauingen (Donau) 

 

München, den 8. November 2023 
  



ii 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1st supervisor / Erstgutachter: Prof. Dr. Jochen Kuhn, LMU München 

2nd supervisor / Zweitgutachter: PD Dr. Sarah Malone, Universität des Saarlandes 

 

Weitere Mitglieder der Prüfungskommission: 

Prof. Dr. Frank Fischer, LMU München 

Prof. Dr. Martin Fischer, LMU Klinikum 

 

Tag der mündlichen Prüfung: 26.03.2024 



i 
 

Acknowledgements 

There are a lot of people I would like to thank for their support. First, my sincere 

gratitude to my supervisors. Thank you for being my sounding board during the entire 

process and helping me plan during the final stages. To my first supervisor Jochen Kuhn: 

thank you for your help in structuring my thesis, your inspiration for finding new 

fascinating areas of research, and imagining new ways of teaching. Another thank you 

belongs to my second supervisor Sarah Malone: thank you for putting things into 

perspective and for your insightful questions during our discussions that always made me 

think one step further. I learned a lot from both of you. Another thank you to the third 

member of my supervisory committee, Frank Fischer, for your comments regarding the 

articles and for your immediate commitment when I was looking for a third supervisor on 

such short notice. To Stefan Küchemann: thank you for helping me every step of the way, 

always being open to answering any questions, and being my daily supervisor. 

Furthermore, thank you to Martin Fischer, for your support during the writing process of 

the articles and for being the final member of my examination committee. 

I would also like to thank every member of my group – both in Munich and in 

Kaiserslautern – for all their help. A special thank you to Eva Rexigel for your support 

during work and your friendship outside of it. I very much appreciate you listening to all 

my concerns and always offering a helpful solution. Thank you to Steffen Steinert for 

helping me with coding-related questions and suggesting new directions. I would also like 

to thank my colleagues in Munich: Tatjana Lamparter and Yavuz Dinc, the former, 

particularly for our writing retreats and the latter for not being annoyed with me for 

talking to my computer and bringing gingerbread cookies. Thank you to all the girls from 

the DTP: I haven’t known you long but you’ve been an inspiration. 

Besides my colleagues, I would like to thank all my family and friends. Pia Adam, 

for all her advice and encouragement. A special thank you to my parents: for being there 

during the COVID-19 pandemic and for their continuous support. Thank you to my 

sisters, Miriam and Theresa for always being there to talk. And thank you to my 

grandparents, especially my grandmother, Sophie Stadter, for showing me that anything is 

possible and always having my back. 

 

 



ii 
 

  



iii 
 

Executive Summary 

Learning materials usually consist of various types of representations. For 

example, graphical representations, such as illustrations or graphs, are often used in 

instructions in combination with text. Graphical representations of data are a subgroup of 

graphical representation that is common not only in education but also in news media. 

These types of representations depict data and can be informative to learners when 

presenting them solely or in addition to text. Dealing with such information is a key skill 

of the 21st century and has been frequently researched. Skills dealing with graphs can be 

summarised under the term graphing competence, describing the creation (graphing) and 

the comprehension of graphs. However, graphing competence is not an easy skill for 

students to learn and students’ difficulties are frequently reported. This thesis presents 

research that aims to contribute to previous findings regarding graphing competence, 

thereby enhancing the use of graphs as an educational tool. Both aspects of graphing 

competence – graphing and graph comprehension – are addressed in this thesis. The first 

research direction concerns graphing; how graphing is investigated, what benefits it has, 

and the types of difficulties students have during graphing. The second research direction 

addresses the second aspect of graphing competence: graph comprehension. Graph 

comprehension skills change with varying levels of expertise. Expertise differences can 

be analysed using eye movements as indicators of cognitive processing.  

Therefore, this thesis analyses eye movements during learning and 

problem-solving with graphs, specifically paying attention to the differences between the 

visual processing of experts and non-experts. Furthermore, differences in graph 

comprehension between various study disciplines are examined. Based on current 

empirical research, physics students can be considered experts compared to students of 

other disciplines, because they seem to solve graph comprehension tasks better, 

independently of the task context. Building on previous research, the visual behaviour of 

physics and non-physics students is studied. Extending previous research, 

machine-learning methods are used to predict correct and incorrect solvers based on their 

eye movements. 

The three research directions are addressed in the three studies presented in this 

thesis. The first study describes a systematic literature review of the empirical research on 

graphing in K-12 science, technology, engineering, and maths (STEM) education. The 

second study reviews the literature comparing experts’ and non-experts’ visual processing 
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during learning and problem-solving with graphs. The third study investigates the 

differences in learning gain and visual behaviour between physics and non-physics 

students solving graph comprehension tasks. 

The first study narratively summarises how graphing is implemented in studies 

researching graphing in K-12 education. Furthermore, information on the added value of 

graphing and students’ difficulties during graphing are considered. Fourty-four studies 

investigated this topic published from 1979 until March 2022, when the search was 

conducted. Many studies instructed the graphing of line graphs over more than one 

lesson. The synthesis of the study results indicates that different types of graphing 

instruction have a positive effect not only on graphing skills but also on graph 

comprehension. However, the review findings indicate that students have difficulties both 

with the graphing conventions as well as with the theoretical implications of the data 

depicted in the graph. As theoretical difficulties are also common in graph 

comprehension, this indicates that both types of difficulties influence graphing skills. 

Furthermore, the two aspects of graphing competence – graphing and graph 

comprehension – might affect each other.  

The second study presents a literature review of studies comparing the visual 

processing of experts and non-experts during learning and problem-solving with graphs. 

Thirty-two studies published between 2003 and 2022 were analysed regarding the eye-

tracking metrics used to investigate visual behaviour and the reported differences between 

experts and non-experts. Most studies used more than one eye-tracking metric. The 

findings indicate that experts pay more attention to relevant areas of the graph than non-

experts. This is in line with the information-reduction hypothesis, suggesting that experts 

can ignore irrelevant information on a perceptual level. Definitions of expertise vary, 

implying that an overarching definition of expertise is missing. However, over the course 

of this review, four possibly relevant factors for expertise in graph comprehension were 

identified: (1) graphical literacy, (2) domain knowledge, (3) prior mathematical 

knowledge, and (4) task knowledge.  

The third study empirically investigates differences in learning gain and visual 

behaviour of physics and medical or veterinary students. Twelve physics and twelve 

non-physics students, respectively, voluntarily solved 24 graph comprehension tasks in 

the contexts of math, physics, and medicine at the beginning and the end of their first 

semester. There were no statistically significant differences in learning gain between 

groups. This might indicate similar transfer skills between these study disciplines as both 
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participant groups took STEM courses. Correct and incorrect solvers could be predicted 

via machine learning based on their eye movements. Therefore, machine learning 

optimised for small datasets can be a valuable tool for assessing expertise by analysing 

eye movements. 

The research presented in this thesis supports the relevance of instructing graphing 

competence. Both aspects of graphing competence, graphing and graph comprehension, 

should be considered during teaching. In particular, graphing instruction could be 

beneficial for students because it does not only seem to facilitate graphing skills but also 

graph comprehension. Furthermore, graphing instruction seems relatively easy to 

implement as the findings indicated that it was advantageous in various forms. However, 

students had difficulties during graphing. Student difficulties based on graphing 

conventions or based on theoretical aspects, such as with interpretation, were reported in 

many studies, indicating that both types of student difficulties should be considered 

during instruction. Furthermore, future research should consider the visual behaviour of 

K-12 students and experts during graphing because eye movements can indicate expertise 

in processing graphs.  

During learning and problem-solving with graphs, a comparison of the visual 

processing of experts and non-experts supports the information-reduction hypothesis. 

This indicates that experts can ignore irrelevant information on a perceptual level and 

process information more efficiently than non-experts. Showing students experts’ 

strategies might, therefore, be beneficial for them by guiding their focus to relevant 

information. Future research should consider levels of expertise based on measurable 

factors due to the diverse possibilities in which graph comprehension might be facilitated. 

For example, STEM instruction could promote the transfer of problem-solving skills, 

such as graph comprehension, to other domains. In summary, the results of this thesis 

highlight influencing factors for graphing competence, both graphing and graph 

comprehension, not only in K-12 but also in higher education. 
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Deutsche Zusammenfassung 

Lernmaterial enthält normalerweise verschiedene Arten von Repräsentationen. 

Beispielsweise werden in Lernmaterialien neben Text oft graphische Repräsentationen, 

wie Abbildungen oder Graphen, verwendet. Eine Untergruppe graphischer Repräsentation 

sind graphische Repräsentationen von Daten; sie sind nicht nur in der Bildung sondern 

auch in den Nachrichten verbreitet. Repräsentationen von Daten können für Lernende 

sowohl alleine, als auch in Kombination mit Text, informativ sein. Der Umgang mit 

solchen Repräsentationen ist eine Schlüsselkompetenz des 21. Jahrhunderts und wurde oft 

untersucht. Die Fähigkeit, mit Graphen umzugehen, kann unter dem Begriff 

Graphing-Kompetenz zusammengefasst werden. Dieser beschreibt nicht nur die Fähigkeit 

Graphen zu erstellen (Graphing), sondern auch die Fähigkeit Graphen zu verstehen. 

Graphing-Kompetenz ist allerdings keine leicht erlernbare Fähigkeit und über 

Schwierigkeiten damit wird häufig berichtet. Diese Dissertation präsentiert Forschung, 

die bisherige Erkenntnisse zu Graphing-Kompetenz erweitern und die Verwendung von 

Graphen als pädagogisches Hilfsmittel in der Lehre verbessern möchte. Beide Aspekte 

von Graphing-Kompetenz – Graphing und Graphenverständnis – werden in dieser 

Dissertation adressiert. Die erste Forschungsrichtung ist die Untersuchung von Graphing, 

wie Graphing untersucht wurde, welche Vorteile es hat, und die Arten von 

Schwierigkeiten von SchülerInnen während des Erstellens von Graphen. Die zweite 

Forschungsrichtung adressiert den zweiten Aspekt von Graphing-Kompetenz: das 

Graphenverständnis. Die Fähigkeit Graphen zu verstehen ändert sich je nach Expertise. 

Visuelles Verhalten kann anhand von Augenbewegungen untersucht werden und 

unterschiedliche Level von Expertise können mittels kognitiver Prozesse analysiert 

werden.  

Deswegen befasst sich diese Dissertation mit der Analyse von Augenbewegungen 

während des Lernens und Problemlösens mit Graphen, mit einem Fokus auf den 

Unterschieden in visuellem Verhalten von ExpertInnen und Nicht-ExpertInnen. 

Außerdem werden Unterschiede im Graphenverständnis zwischen verschiedenen 

Studienfächern untersucht. Physikstudierende werden im Vergleich zu Studierenden 

anderer Fachrichtungen in aktuellen Studien als ExpertInnen betrachtet, weil sie 

Aufgaben zum Graphenverständnis besser lösen können, unabhängig vom Kontext der 

Aufgabe. Basierend auf bisheriger Forschung wird das visuelle Verhalten von Physik- 

und Nicht-Physik-Studierenden untersucht. Die bisherige Forschung wird durch eine 
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Analyse mittels maschinellem Lernen erweitert, durch die korrekte und inkorrekte 

LöserInnen anhand ihrer Augenbewegungen prädiziert werden. 

Die drei Forschungsrichtungen werden in den drei Studien dieser Dissertation 

adressiert. Die erste Studie beschreibt ein systematisches Literatur-Review über die 

Forschung zu Graphing in der schulischen Mathematik, Informatik, Naturwissenschaften 

und Technik (MINT) Bildung. Die zweite Studie ist eine Übersicht über Literatur, die das 

visuelle Verhalten von ExpertInnen und Nicht-ExpertInnen während des Lernens und 

Problemlösens mit Graphen vergleicht. Die dritte Studie untersucht Unterschiede im 

Lernfortschritt und visuellen Verhalten zwischen Physik und Studierenden anderer 

Fachrichtungen beim Lösen von Aufgaben zum Graphenverständnis. 

Die erste Studie ist ein systematisches Review über die Implementation von 

Graphing in der schulischen Bildung in Studien zu diesem Thema. Außerdem werden 

Informationen über den Wert von Graphing und Schwierigkeiten von SchülerInnen dabei 

berücksichtigt. Vierundvierzig Studien wurden zwischen 1979 und der Literatursuche im 

März 2022 zu diesem Thema veröffentlicht. Bei vielen dieser Studien wurde das Erstellen 

von Liniengraphen während einer Instruktion über mehrere Unterrichtsstunden hinweg 

untersucht. Die Synthese der Ergebnisse deutet darauf hin, dass verschiedene Arten von 

Instruktionen von Graphing nicht nur einen positiven Effekt auf die Fähigkeit, Graphen 

zu erstellen, sondern auch auf das Graphenverständnis haben. Allerdings zeigen die 

Ergebnisse des Reviews, dass SchülerInnen sowohl Schwierigkeiten mit den 

gebräuchlichen Konventionen für das Graphing als auch mit der theoretischen Bedeutung 

der im Graphen gezeigten Daten haben. Da Schwierigkeiten mit der theoretischen 

Bedeutung auch beim Graphenverständnis vorkommen, könnten beide Arten von 

Schwierigkeiten einen Einfluss auf die Graphing-Fähigkeiten haben. Außerdem könnten 

die beiden Aspekte von Graphing-Kompetenz – Graphing und Graphenverständnis – 

einander beeinflussen.  

Die zweite Studie präsentiert eine Literaturrecherche von Studien, die das visuelle 

Verhalten von ExpertInnen und Nicht-ExpertInnen während des Lernens und 

Problemlösens mit Graphen vergleichen. Zweiundreißig Studien wurden zwischen 2003 

und 2022 publiziert und in dieser Arbeit anhand ihrer Eye-Tracking Metriken untersucht 

und Unterschiede im visuellen Verhalten von ExpertInnen und Nicht-ExpertInnen wurden 

verglichen. Die meisten Studien haben mehrere Eye-Tracking Metriken verwendet. Die 

Ergebnisse zeigen, dass ExpertInnen länger auf relevante Bereiche von Graphen 

fokussieren als Nicht-ExpertInnen. Dies unterstützt die 
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Informations-Reduktions-Hypothese, was darauf hinweist, dass ExpertInnen unwichtige 

Informationen auf einer wahrnehmungsbezogenen Ebene ignorieren können. Expertise 

wurde in den Studien auf unterschiedliche Arten ermittelt, was darauf hindeutet, dass es 

keine übergreifende Definition von Expertise gibt. Allerdings wurden im Laufe des 

Reviews vier Faktoren als mögliche Indikatoren von Graphenverständnis identifiziert: (1) 

Lese- und Schreibkompetenz für Graphen, (2) Domänenwissen, (3) mathematisches 

Vorwissen und (3) Wissen über die Aufgabe.  

Die dritte Studie untersucht empirisch Unterschiede im Lernzuwachs und im 

visuellen Verhalten von Physik und (Tier-)Medizin Studierenden. Je zwölf Physik und 

zwölf Nicht-Physik Studierende haben freiwillig insgesamt 24 Aufgaben zum 

Graphenverständnis in Mathe, Physik und Medizin am Anfang und am Ende ihres ersten 

Semesters beantwortet. Es wurden keine statistisch signifikanten Unterschiede im 

Lernzuwachs zwischen den Gruppen gefunden. Dies könnte daran liegen, dass 

Studierende aller Disziplinen MINT-Kurse belegt haben und die Probandengruppen daher 

ähnliche Transfer-Fähigkeiten zwischen den Kontexten entwickeln konnten. Korrekte und 

inkorrekte Löser konnten anhand ihres visuellen Verhaltens mit maschinellem Lernen 

vorhergesagt werden. Dies zeigt, dass maschinelles Lernen mittels eines für kleine 

Datensätze optimierter Algorithmus ein gutes Werkzeug zur Auswertung von Expertise 

mittels einer Analyse von Augenbewegungen sein kann. 

Die in dieser Dissertation präsentierte Forschung betont die Relevanz, Lernenden 

Graphing-Kompetenz zu vermitteln. Beide Aspekte von Graphing-Kompetenz, Graphing 

und Graphenverständnis, sollten dabei während des Unterrichts berücksichtigt werden. 

Besonders eine Instruktion von Graphing kann dabei für SchülerInnen hilfreich sein, weil 

dadurch nicht nur die Fähigkeit Graphen zu erstellen gefördert wird, sondern auch das 

Graphenverständnis. Außerdem scheinen verschiedene Arten von Graphing-Instruktionen 

lernförderlich zu sein, was darauf hindeutet, dass eine solche Anleitung einfach zu 

implementieren ist. Allerdings hatten SchülerInnen Schwierigkeiten beim Erstellen von 

Graphen. Ihre Schwierigkeiten basierten entweder auf den der Graphenerstellung 

zugrundeliegenden Konventionen oder waren in theoretischen Aspekten begründet, 

beispielsweise Schwierigkeiten bei der Interpretation. Diese Schwierigkeiten wurden in 

vielen Studien berichtet, was darauf hindeutet, dass die Schwierigkeiten während der 

Instruktion berücksichtigt werden sollten. Zukünftige Forschung sollte außerdem das 

visuelle Verhalten von SchülerInnen und ExpertInnen während des Erstellens von 
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Graphen analysieren, da Augenbewegungen ein Indikator für Expertise während der 

Verarbeitung von Graphen sein können.  

Ein Vergleich des visuellen Verhaltens von ExpertInnen und Nicht-ExpertInnen 

während des Lernens und Problemlösens mit Graphen hat die 

Informations-Reduktions-Hypothese gestützt. Dies deutet darauf hin, dass ExpertInnen 

unwichtige Informationen wahrnehmungsbezogen ignorieren können und Informationen 

dadurch effizienter als Nicht-ExpertInnen verarbeiten. Es könnte daher hilfreich für 

Lernende sein, wenn sie Strategien von ExpertInnen sehen, um auf relevante 

Informationen zu achten. Zukünftige Forschung sollte verschiedene Level von Expertise 

anhand messbarer Faktoren berücksichtigen, da es verschiedene Möglichkeiten zur 

Förderung von Graphenverständnis gibt. Beispielsweise könnte MINT-Instruktion 

womöglich hilfreich sein, um Übertragungvon Problemlöse-Fähigkeiten, wie 

beispielsweise Graphenverständnis, zwischen Domänen zu lernen. Zusammenfassend 

heben die Ergebnisse dieser Dissertation Einflussfaktoren für Graphing-Kompetenz, für 

Graphing und für Graphenverständnis, nicht nur für die schulischen Bildung, sondern 

auch für die höhere Bildung, hervor. 
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1.1. Aims and Outline of the Thesis 

Graphical representations, such as images or pictures, are common in many media. 

For example, graphical representations of numerical data (graphs) are used in countless 

aspects of everyday life, such as newspapers. They are crucial tools for conveying 

information (Mahmoud & Zoghaib, 2023). Especially during the COVID-19 pandemic, 

graphs were widespread, for example, to visualise the number of COVID-19 cases 

(Engledowl & Weiland, 2021). Representations of data are also used in scientific 

publications (Midway, 2020). They can, for example, to show the relation of variables 

(Lachmayer et al., 2007). Graphs are often easier to interpret than other types of data 

representations, such as verbal descriptions, because they can show relations more 

explicitly (Larkin & Simon, 1987). Therefore, graphs are well-suited for educational 

purposes (Shah & Hoeffner, 2002). However, not all types of graphs are equally 

appropriate for conveying information (Mahmoud & Zoghaib, 2023). Consequently, the 

ability to judge the quality of a graph depending on its context is a valuable one (Rubel et 

al., 2021). Furthermore, using information is a key skill of the 21st century (Program for 

International Student Assessment, 2022). Using information includes correctly employing 

mathematical representations, such as graphs, extracting information from them, and 

interpreting the results correctly (Program for International Student Assessment, 2022). 

Therefore, an essential aspect of education is teaching students how to use graphs 

(Glazer, 2011) and graphs are accepted tools in education (e.g., Shah & Hoeffner, 2002), 

especially in science, technology, engineering, and mathematics (STEM) subjects (Fyfe et 

al., 2014).  

This thesis describes research on how graphs are used in educational STEM 

practice. The main foci are (a) analysing graph creation as an educational tool, (b) 

investigating expertise differences in visual processing during learning and 

problem-solving with graphs, and (c) exploring differences between study disciplines 

during problem-solving with graphs. 

Students can use graphs in various ways during learning and problem-solving 

(Leinhardt et al., 1990). Graph comprehension skills are necessary to successfully use 

graphs (Shah, 1997). Many studies analyse how to facilitate students’ graph 

comprehension skills (e.g., Strobel et al., 2019) and although the terms used by the 

authors can vary – such as graph interpretation (e.g., Smit et al., 2016), graph 

understanding (e.g., Klein et al., 2020), or graph reading (Ludewig et al., 2020) – the 

described skills are all essentially similar. Graph creation is another aspect of graph 
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interpretation (Glazer, 2011). There is much previous research on graph comprehension 

skills, including reviews (Shah & Hoeffner, 2002), case studies (Roth & Bowen, 2001), 

and comparisons between countries (Galesic & Garcia-Retamero, 2011). Although there 

are reviews about drawing in education (Cromley et al., 2020; Van Meter & Garner, 

2005; Y. Zhang et al., 2021), a review about how the creation of graphs is implemented in 

research has not been published so far. Such a review could provide much insight into 

possible overarching benefits for students and difficulties they might have (aim a).  

Students’ difficulties can also be identified by looking at their visual processing 

indicated by eye movements. There have been differences in the visual processing of 

experts and non-experts when looking at graphs. For example, science and non-science 

undergraduate students, science graduate students, and science faculty reported similar 

strategies to solve graph-based tasks (Harsh et al., 2019). However, only faculty and 

graduate students seemed to implement their plan whereas the undergraduate students’ 

procedures varied (Harsh et al., 2019). In physics, the answer correctness of the 

participants could be predicted based on their eye movements (Küchemann et al., 2020, 

2021). Paying attention to the task-irrelevant parts of the graph might be due to 

misconceptions (Klein, Küchemann, et al., 2019; Wang et al., 2022). Misconceptions are 

wrong beliefs due to prior knowledge or intuition (Leinhardt et al., 1990). Misconceptions 

about graphs are often based on a misunderstanding of previous instruction (Leinhardt et 

al., 1990) and using incorrect strategies can lead to misinterpretations of the depicted data 

(Clement, 1989). Student understanding can improve if students overcome 

misconceptions and learn the right concepts (Marisda et al., 2020), although this may be 

difficult (Lem et al., 2013). Differences in visual processing between experts and 

non-experts when learning and problem-solving with graphs could help identify 

problems. A review of this topic considering various types of graphs could fill this gap 

(aim b).  

For line graphs, previous research has shown that physics students outperform 

psychology (Susac et al., 2018) and economics (Brückner et al., 2020; Klein, Küchemann, 

et al., 2019) students in problem-solving tasks independently of the task context. The 

main difference between physics and the other subjects is that physics students have 

physics courses. Therefore, expertise differences between physics students and other 

students also taking STEM courses should be smaller than between students of other 

subjects. A comparison of physics and medical students could provide valuable insights 

(aim c).  
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The thesis is structured in three parts. The first part describes the theories of 

learning with graphical representations (see section 1.2). Theories about learning with 

multimedia, such as the cognitive theory of multimedia learning (Mayer, 2014a), are 

introduced. These theories apply to theories of how learners can generate graphical 

representations themselves, which is, for example, useful to externalise information 

(Schmidgall et al., 2019). This practice is common in many subjects, such as using graphs 

in STEM problem-solving (Zacks & Tversky, 1999). Theories of multimedia learning 

relate to cognitive processes (see section 1.3) which can be analysed via visual processing 

as indicated by eye movements (Alemdag & Cagiltay, 2018). For example, previous 

research has found that experts’ and non-experts’ visual processing differs in visualisation 

comprehension (e.g., Gegenfurtner et al., 2011). Based on previous research, the research 

aims of the articles included in this thesis as well as a short overview of every study are 

presented (see section 1.4). 

The second part of this thesis describes the two literature reviews and the 

empirical study conducted to address the research aims. First, a systematic literature 

review about generating graphical representations of numerical data in STEM education 

is presented (see section 2). The second article is a literature review about differences in 

the visual processing of experts and non-experts when learning and problem-solving with 

graphs (see section 3). Third, an article describing an empirical study comparing physics 

and medical students’ visual behaviour during problem-solving with graphs is included 

(see section 4). 

The last section of this thesis summarises the results of the three studies (see 

section 5). The findings are assimilated with the theory as well as the educational 

practice. The thesis ends with a conclusion after considering the limitations and future 

research.  

1.2. Graphical Representations in Education 

There is various research about the theoretical background for learning and 

problem-solving with graphical representations. This section first presents general 

theories for learning with more than one representations, such as graphs and text, for 

example, the cognitive theory of multimedia learning (CTML) (Mayer, 2014a). Learners 

cannot only learn by learning with provided graphical representations but also by 

generating them (aim a). This aspect is elaborated in the following before describing 

learning with graphs, specifically generating (aim a) and comprehending (aims b and c) 

them, as defined by the term graphing competence. 
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1.2.1. Theories of Learning with Multimedia 

Presenting multiple types of representations in combination is considered 

multimedia learning. During instruction, graphical representations are usually presented 

in combination with other types of representations, such as text (Mayer, 2014c). In STEM 

education, graphs are typically presented with text or equations (e.g., Díaz-Levicoy et al., 

2018). Learning with multimedia describes the construction of a mental representation 

based on learning material consisting of words, such as text, and pictures, such as 

illustrations (Mayer, 2014b). The goal of learning is to build a mental model of the 

represented information (Mayer, 2021). The multimedia assumption expects that learning 

with multimedia, such as words and pictures, is more effective than learning only from 

text (Butcher, 2014). There are several theories about learning and problem-solving with 

multiple representations (Ayres, 2015), that also apply to learning in STEM education.  

The cognitive theory of multimedia learning (CTML) (Mayer, 2014a, 2021) is 

based on three assumptions: that the auditorial or verbal and the visual or pictorial 

information-processing channels process information separately (Baddeley, 2012; Camp 

et al., 2021; Paivio, 1969), that each channel has a limited capacity (Camp et al., 2021; 

Chandler & Sweller, 1991), and that processing information, as is necessary for learning, 

is an active process (Wittrock, 1974). Learners need to select relevant information, 

organise the selected information, and integrate it with each other and with their prior 

knowledge in order to construct a mental model (Mayer, 2014a, 2021). Therefore, the 

goal of learning about topics in a particular domain is to transfer information from 

limited-capacity working memory to unlimited long-term memory. Cognitive load theory 

can be employed to facilitate this process by improving the instructional design (Sweller, 

2020). According to the original theory (Sweller et al., 1998), cognitive load can be split 

into three separate categories (Orru & Longo, 2019; Paas et al., 2003; Sweller et al., 

1998): Extraneous cognitive load is based on the way information is represented and is 

not related to the learning aim, intrinsic cognitive load is related to task difficulty and the 

amount of relevant information that has to be processed, and germane cognitive load is 

needed to understand the learning material and learn effectively. In a review, Kalyuga 

(2011) argued that germane and intrinsic cognitive load are related. Consequently, in 

current interpretations of cognitive load theory, germane cognitive load is not viewed as a 

separate type of cognitive load but as a working memory resource allocating capacity 

from extraneous to intrinsic processing (Sweller et al., 2019). Current reviews continue to 

differentiate between the three types of cognitive load (Mutlu-Bayraktar et al., 2019; Orru 
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& Longo, 2019; Skulmowski & Xu, 2022). Effective learning should use mostly intrinsic 

and germane cognitive load and little extraneous cognitive load (Orru & Longo, 2019), 

although a small amount of extraneous cognitive load related to creating an appealing 

learning environment might be beneficial (Skulmowski & Xu, 2022). Cognitive load, 

therefore, plays an important role in learning environments containing multiple 

representations, such as text and pictures (Mutlu-Bayraktar et al., 2019). 

Similarly to the CTML, the integrated model of text and picture comprehension 

(ITPC) assumes different ways of processing text and pictures (Schnotz, 2014). First, 

learners analyse textual and pictorial features and then process them on a deeper cognitive 

level (Schnotz, 2014). The resulting propositional representation of the text and the 

mental model of the pictures are integrated during information processing (Schnotz, 

2014). In this context, graphs would be considered pictorial information. The different 

functions of representations in this process constitute the main difference between the 

CTML and ITPC (Ayres, 2015). 

Principles of multimedia learning have been formulated based on the CTML and 

the effects of cognitive load, which can be used for designing learning material (Mayer, 

2014c). One example is the signalling (or cueing) principle (Mayer, 2014c). This 

principle uses signals (cues) to draw learners’ attention to relevant information or 

highlight the organisation of important information (van Gog, 2014, 2021) and can 

facilitate learning (Alpizar et al., 2020) by supporting learners’ cognitive processes, 

especially selecting information (van Gog, 2021). Various multimedia learning principles 

have been adopted in multiple STEM contexts (Herrlinger et al., 2017; Klein, Viiri, et al., 

2019; Rodemer et al., 2021; Ruf et al., 2022). These principles can be transferred to other 

educational situations, for example, to computer-based testing environments (Dirkx et al., 

2021). It is therefore important to consider multimedia principles not only during 

instruction but also in the context of a testing environment (Lindner et al., 2021) because 

cognitive processes during problem-solving happening in testing are similar to those 

found during multimedia learning (Lindner et al., 2017). 

Besides the principles of multimedia learning, the design, function and task 

framework (DeFT) can be used to construct supportive learning material containing 

various representations (Ainsworth, 2006). This framework is based on the functions 

multiple representations fulfil during learning as well as relevant tasks and design 

considerations (Ainsworth, 1999). Representations can have three main functions during 

learning: (1) they can complement each other, for example, by providing different 
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information, e.g., in real and virtual experiments (Flegr et al., 2023); (2) they can 

constrain each other, such as one familiar representation constraining an unfamiliar 

representation, which, e.g., is the case in concreteness fading where learners first see 

concrete pictures of a situation that become more abstract during the learning process 

(Kokkonen & Schalk, 2021); and (3) representations can construct deeper understanding, 

e.g., during constructive learning activities (Chi & Wylie, 2014). This is the case when 

students generate graphical representations, such as graphs.  

 

1.2.2. Generating Graphical Representations 

Generating information during the learning process can be more useful for 

learners than merely reading the material (Bertsch et al., 2007). This is called the 

generation effect (Slamucka & Fevreiski, 1983). The generation effect is related to the 

generative theory (Wittrock, 1974), which theoretically grounds the effectiveness of 

active processing in the CTML (Mayer, 2014a). Creating graphical representations, such 

as diagrams or graphs, is termed, for example, drawing, sketching, or graphing. Drawing 

can facilitate generative learning (Fiorella & Mayer, 2016). Thus, actively presenting 

information can promote learning more effectively than passively committing information 

to memory (Chi & Wylie, 2014; Fiorella & Zhang, 2018). This is in line with the 

interactive, constructive, active, passive (ICAP) framework positing that active learning is 

better than passive learning, which in turn is superseded by constructive followed by 

interactive learning (Chi & Wylie, 2014). With each level, learning is assumed to be more 

effective because learner engagement increases.  

Furthermore, creating a new representation from a provided representation can 

potentially fulfil each of the functions described in the DeFT framework (Ainsworth, 

2006): The representations can complement each other as the generated representation is 

based on the provided representation, they can constrain each other, for example, the 

generated representation can clarify a process described in a text, and generation can 

create deeper understanding because learners have to actively engage with the material. 

Generating representations based on provided representations involves more than one 

type of representation (e.g., the graph and text) and is consequently part of learning with 

multimedia. Generation is also connected to the cognitive processes of selecting, 

organising, and integrating information (Fiorella & Mayer, 2016; Mayer, 2014a; Van 

Meter & Garner, 2005) because the information presented in additionally generated 

representations has to be selected from the provided representation and the selected 
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information has to be organised into a fitting format for the generated representation. 

Generating representations aids in prior knowledge activation (Wetzels et al., 2010), 

because learners have to integrate their prior knowledge with the provided information 

during the construction process.  

The generative sense-making framework (Fiorella, 2023) focuses on how internal 

and external representations interact to facilitate sense-making processes. It follows 

similar assumptions as the ICAP framework (Chi & Wylie, 2014) and those based on 

cognitive processes (Fiorella & Mayer, 2016; Van Meter & Garner, 2005). This 

framework describes how sense-making and learner characteristics as well as the 

generated representations influence each other. The generated representations shape the 

instruction, which in turn can affect sense-making. Learning outcomes depend on the 

success of sense-making processes. Generative learning activities consist of explaining, 

visualising, and enacting (Fiorella & Mayer, 2016, 2021). In the generative sense-making 

framework, each activity has a function, for example, visualising can help organise 

knowledge (Fiorella, 2023). The generative sense-making framework, therefore, specifies 

constructive activities in the ICAP framework (Chi & Wylie, 2014). 

Constructing representations, such as graphs, can have many advantages 

(Ainsworth et al., 2011; Ainsworth & Scheiter, 2021). By generating representations 

learners can represent visuo-spatial information (Scheiter et al., 2017) as well as make 

inferences visible (Larkin & Simon, 1987). Generating representations also improves 

self-regulation (Kollmer et al., 2020). For example, drawing can encourage learners to 

provide detailed explanations (Fiorella & Kuhlmann, 2020). Furthermore, learners use the 

generated representations as visualisations of information and to externalise information 

(Schmidgall et al., 2019). 

 

Generation can be implemented in teaching in various ways, for example, by 

generating a representation before comparing it to a provided representation (Q. Zhang & 

Fiorella, 2021). Instructional support for the generation of representations can further 

facilitate learning (Cromley et al., 2020; Fiorella & Zhang, 2018; Van Meter et al., 2006; 

Wu & Rau, 2019). However, the generation of new representations takes up cognitive 

resources (Schwamborn et al., 2011) and has to be implemented carefully (Fiorella & 

Zhang, 2018). For example, drawing seems to be especially helpful for older students in 

secondary or higher education (Brod, 2021; Y. Zhang et al., 2021) and for undergraduate 

students with low prior knowledge (Lin et al., 2017). Older learners seem to have the 
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necessary cognitive skills to deal with generation tasks (Brod, 2021) but should not have 

so much prior knowledge that generating representations would be redundant (Lin et al., 

2017). 

In secondary education, drawing has been researched in multiple ways: Drawing 

tools have been developed to compare the representational competence of high school 

students in chemistry and biology education (Chang, 2018) and the sketching of functions 

in mathematics by pre-university students has been analysed to gain insights into what 

mathematical connections students make during these tasks (García-García & Dolores-

Flores, 2021). Generation activities are also used at universities, for example, sketching 

tasks as part of a quantum education curriculum (Kohnle et al., 2020) and drawing of 

best-fit lines has been analysed during physics lab activities (Nixon et al., 2016). 

Technological tools can support generating graphical representations (Cromley et 

al., 2020; Donnelly-Hermosillo et al., 2020). For example, graphing calculators have been 

common tools in the last decades (Kastberg & Leatham, 2005; Penglase & Arnold, 1996). 

Technological tools also include digital drawing tools, such as GraphSmarts, in 

comparisons of paper-and-pencil with technology-based drawing (Gardner et al., 2021) or 

providing drawing prompts, for example, in interactive chemistry tutorials (Wu & Rau, 

2018). Computer software, such as Excel (Åberg-Bengtsson, 2006), has also been used to 

research graph generation.  

 

1.2.3. Graphing Competence 

Generating graphs is a part of graphing competence (Glazer, 2011). Students learn 

and generate representations in many subjects. In STEM disciplines, graphical 

representations often depict numerical data (graphs). Graphing is, therefore, defined as 

generating convention-based graphs. Learning with graphs is theoretically based on 

learning with multimedia (see section 1.2.1) and generating graphs is also grounded in 

theories about generating graphical representation (see section 1.2.3). Apart from 

graphing, graphing competence includes the ability to analyse graphs (Glazer, 2011).  

The ability to analyse graphs is often referred to as either “graph comprehension” 

(Curcio, 1987; Kanzaki & Miwa, 2011; Zacks & Tversky, 1999) or “graph interpretation” 

(Boels et al., 2019; Gültepe, 2016; Lachmayer et al., 2007; Nixon et al., 2016; Roth & 

Bowen, 2001). Using information – a key skill of the 21st century (Program for 

International Student Assessment, 2022) – is an integral part of graph comprehension. 

Various factors are important for graph comprehension (Friel et al., 2001): the tasks in 
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which graphs are used as well as their purpose, the discipline/ context of the graphs, and 

the characteristics of the learner. This is an important topic in education and has been 

analysed in various ways in multiple reviews (Boels et al., 2019; Glazer, 2011; Leinhardt 

et al., 1990; Shah & Hoeffner, 2002). In their review, Leinhardt et al. (1990) focus on 

functions in the context of mathematics education with a special view on students’ 

misconceptions and difficulties with graphs. Misconceptions are defined as a “reasonably 

well-formulated system of ideas” (Leinhardt et al., 1990, p. 5) consisting of explicit 

pieces of knowledge. Misconceptions can be related to difficulties but do not necessarily 

cause them. Leinhard et al. (1990) distinguish three types of tasks which can include the 

construction of a graph: prediction tasks concerning the data pattern, translation tasks 

between types of representations, and scaling tasks involving the scales and units of the 

depicted data. Besides constructions, all types of tasks include interpretation. Another 

review addresses the instructional implications of students’ graph comprehension (Shah 

& Hoeffner, 2002). They analyse three factors that can influence interpretations: visual 

characteristics of the graphs, students’ prior knowledge about graphs, and “expectations 

about the content of the data in a graph” (Shah & Hoeffner, 2002, p. 47). They 

recommend four aspects for teaching graphical literacy: (1) Teaching graphical literacy in 

a specific context, (2) using translation tasks, (3) focusing on linking the visual features 

with the meaning in the context, and (4) viewing graph comprehension not as simple fact 

retrieval but as an evaluation activity. Other reviews focus on challenges (Glazer, 2011) 

or misconceptions (Clement, 1985) with graph comprehension, sometimes examining 

only specific types of graphs, such as histograms (Boels et al., 2019). Most of these 

reviews refer in various ways to generating graphs as well as analysing them (Boels et al., 

2019; Clement, 1985; Leinhardt et al., 1990). However, their focus is not exclusively on 

graphing although researchers recommend that the creation of graphs “should be 

explicitly taught given its importance and its complexity” (Glazer, 2011, p. 183). 

Therefore, constructing graphs is a common topic in research and many studies 

specifically analyse students’ difficulties with graphing. Typical errors include confusing 

the slope and the height of a graph as well as interpreting the graph like a picture 

(Clement, 1985). Undergraduate students taking an introductory physics course seemed to 

have both of these difficulties in the context of kinematics (McDermott et al., 1987). This 

indicates that students have trouble connecting the graph to the underlying concept 

(McDermott et al., 1987). A study with 32 undergraduate students taking an introductory 

physics lab course, also found that students had trouble connecting the data to the physics 
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concept and often used “rote procedures” (Nixon et al., 2016, p. 11) instead of strategies 

involving a deeper understanding during lab activities including the construction of 

best-fit lines. Other errors that students have made in the context of graph creation are 

related to scaling (von Kotzebue et al., 2015) or finding the best type of graph for given 

data (Ozmen et al., 2020). These difficulties are comparable between contexts. For 

example, Dewi et al. (2018) and Gultepe and Kilic (2015) reported corresponding 

graphing difficulties in physics and chemistry, respectively. They are also similar among 

learners of various ages: Scaling difficulties were found in a study with 437 university 

science students solving problems in a biology context (von Kotzebue et al., 2015) as well 

as in a study with 40 elementary school students in the context of math (Åberg-

Bengtsson, 2006). These examples indicate that students' difficulties with generating 

graphs can be persistent across contexts and different learning levels, although students 

improve with higher grades (Wavering, 1985). 

This demonstrates the prevalence of students’ difficulties during the generation of 

graphical representation. One possible reason could be that students have difficulties 

processing such tasks. The CTML posits three relevant cognitive processes performed 

during learning with multiple representations: selection, organisation, and integration 

(Mayer, 2014a; see also section 1.2.1). These cognitive processes can be analysed by 

looking at learners’ eye movements (Alemdag & Cagiltay, 2018). 

 

1.3. Cognitive Processes and Eye Movements During Learning with Graphical 

Representations 

Learners’ eye movements can indicate their cognitive processes and can be 

employed to analyse multimedia learning processes (see section 1.3.1). Using eye 

tracking as an investigative technique for recording eye movements, previous research 

has found differences between the eye movements of experts and non-experts when 

learning or problem-solving with graphs (see section 1.3.2). Eye movements have also 

been used to predict performance, for example in graph comprehension tasks (see section 

1.3.3). 

1.3.1. Eye Movements and Cognitive Processes 

Eye movements are useful process measures because they can indicate attention 

(Just & Carpenter, 1980). This is called the eye-mind hypothesis. Although this 

hypothesis is based on reading research, its assumptions also hold in other circumstances 

(Schindler & Lilienthal, 2019), and eye tracking is often used as a method to analyse 
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visual attention during learning processes (Alemdag & Cagiltay, 2018; Hahn & Klein, 

2022; Lai et al., 2013; Strohmaier et al., 2020). Eye movements are either recorded via 

stationary eye trackers, which are used during computer-based studies (Strohmaier et al., 

2020), or via mobile eye-tracking glasses, which are used, for example, during 

experimenting (Kumari et al., 2021). Mobile eye-tracking is also relevant in other 

learning environments, for example, in learning applications in augmented reality 

(Fleischer et al., 2023). 

Various eye-tracking metrics can be used to analyse eye movements. Interesting 

areas of the stimulus are called areas of interest (AOIs) and they are the basis for 

calculating various eye-tracking metrics, such as fixations, for example, as sums or 

averages (Holmqvist & Andersson, 2017). Among the most common metrics are longer 

stops at a location – called fixations – and small movements between fixations – called 

saccades (Holmqvist & Andersson, 2017; Salvucci & Goldberg, 2000). Fixation durations 

or fixation counts can indicate how much attention is spent on various areas. For example, 

Malone et al. (2020) compared single representations with heterogeneous and 

homogeneous multiple representations consisting of text, an equation, and a graphical 

representation to determine which type of representations were most beneficial for 

problem-solving. This was indicated by the fixations on the representations, which 

suggested that the graphical representation was the most helpful one in that specific task. 

It should be noted that fixation durations and fixation counts can be correlated (Atkins & 

McNeal, 2018). There are also eye-tracking metrics that are more dynamic and include 

information about how the focus of attention changes over time, such as saccades and 

transitions. For example, when comparing students learning with animation or with 

interactive feedback, the animated group was more likely to fixate after a short saccade 

(Hoyer & Girwidz, 2020). In contrast, the interactive feedback group was more likely to 

fixate after a long saccade indicating an influence of the group on visual behaviour 

(Hoyer & Girwidz, 2020). Combined with an increased performance, these results 

indicate that longer saccades are related to deeper processing. Other, more static, metrics 

are roughly based on fixations, such as dwell time, which includes the duration of the 

saccades and can include multiple fixations (Holmqvist & Andersson, 2017). Dwell time 

is used similarly to fixations, for example, to analyse the effectiveness of animating 

contextual elements in learning games, with longer dwell times indicating attention 

(Javora et al., 2021). Transitions describe gaze switches between certain AOIs (Holmqvist 

& Andersson, 2017). They can indicate whether students connect pieces of information, 
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for example, by comparing the portion of transitions between different combinations of 

representations, such as text and graph (Bayri & Kurnaz, 2015). A large number of 

transitions suggests that information is being integrated with each other and this can be 

used, for example, for developing adaptive learning systems (Kennel, 2022). 

Information processing is a common topic in educational eye-tracking studies (Lai 

et al., 2013). A literature review of 57 studies analysing animations in multimedia 

learning found that most studies investigated cognitive processes (Coskun & Cagiltay, 

2022). In the context of multimedia learning (see section 1.2.1), eye movements can be 

indicators of cognitive processes, such as selection, organisation, and integration 

(Alemdag & Cagiltay, 2018). Researchers assume that the percentages of, for example, 

fixation durations or counts, can illustrate selection, whereas average and total fixation 

duration can signify organisation (Alemdag & Cagiltay, 2018; Coskun & Cagiltay, 2022). 

Percentages of fixation duration contain the distribution of attention over AOIs, indicating 

relative (proportional) visual attention (Ruf et al., 2022; van Meeuwen et al., 2014). This 

could imply that one area is perceived as more important than another to the viewer. For 

example, middle-school students who solved a physics task correctly paid more relative 

attention to relevant areas than those who solved the task incorrectly (Wang et al., 2022). 

The number of transitions can indicate integration processes (Alemdag & Cagiltay, 2018; 

Coskun & Cagiltay, 2022). 

Selection processes are important to find relevant information (Mayer, 2014a). 

They are used, for example, in eye-movement modelling examples by showing students 

the eye movements of an expert and drawing their attention to relevant information 

(Tunga & Cagiltay, 2023). In multiple-choice questions, this includes selecting the correct 

answer, which students tend to fixate longer (Tsai et al., 2012). The selection process can, 

for example, be facilitated by using the singalling principle (van Gog, 2021). 

The most commonly examined processes are organisational processes (Coskun & 

Cagiltay, 2022). Organisation is needed to coherently structure the selected information 

(Mayer, 2014a). Organisation can be fostered via various means, such as providing 

information about the structure of a video (Cojean & Jamet, 2022). When using the 

signalling principle a combination of text-based cues and reflection prompts as well as 

visual cues facilitated students’ understanding (Zheng et al., 2023). This combination of 

text-based cues and reflection prompts seemed to foster reorganisation and integration of 

information and was especially helpful in a transfer test.  
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Integration processes are needed to integrate the organised information with prior 

knowledge and – in the case of multiple representations – integrate different 

representations, such as verbal and graphical ones, with each other (Mayer, 2014a). 

Similar to organisation, integration processes have also been investigated in the context of 

instructional videos, for example, the integration between textual (speech) and pictorial 

information (Schüler & Merkt, 2021). Results indicate that inconsistent information 

between speech and pictures influences the participants’ visual behaviour but not the 

learning outcome. Few participants noticed the discrepancies and they generally recalled 

more pictorial than speech information, which could explain the equal learning outcomes. 

Integration between text and other related representations is also important outside of 

instructional videos. For example, in a study investigating fourth-graders’ processing of a 

scientific text, those who made more integrative transitions between the text and the 

pictorial representation learned better than those who did not (Mason et al., 2013). There 

are ways to promote integration: For example, cues have proven effective in facilitating 

integration processes between the vector field representation and the equation and text 

also presented (Klein, Viiri, et al., 2019). 

Cognitive processes can change with increasing expertise, for example, experts 

encode information in long-term working memory differently than non-experts (Ericsson 

& Kintsch, 1995). As cognitive processes can be distinguished via eye movements, it is 

possible to analyse expertise differences this way (Gegenfurtner et al., 2011). 

 

1.3.2. Expertise Differences in Eye Movements 

Expertise is a common topic in STEM education research, for example, the 

differences in visual processing between experts and non-experts are often investigated 

(Hahn & Klein, 2022). Performance differences between experts and non-experts are 

probably due to differences in the cognitive processes they execute when dealing with 

information (Ericsson & Kintsch, 1995; Guida et al., 2012). Differences in visual 

processing are discernible in the eye movements of experts and non-experts (Brams et al., 

2019; Gegenfurtner et al., 2011). Several theories can be used to interpret such 

differences based on various eye-tracking metrics. 

The information-reduction hypothesis states that experts can ignore information 

that is irrelevant to the task at a perceptual level (Haider & Frensch, 1999). Therefore, 

experts can more efficiently assign attentional resources to the relevant parts of a stimulus 

(Brams et al., 2019; Gegenfurtner et al., 2011). This type of behaviour can be learned via 
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repetition (Haider & Frensch, 1999). Based on this hypothesis, more and longer fixations 

on task-relevant areas can indicate expertise compared to more fixations on 

task-irrelevant areas indicating inexperience (Gegenfurtner et al., 2011). The 

information-reduction hypothesis can be used in learning environments, for example, eye-

movement modelling examples helping non-experts recognise relevant areas more 

quickly (Xie et al., 2021). It is supported by studies across various domains (Brams et al., 

2019). For example, in a study comparing advanced chemistry students with novice 

second-semester chemistry students, Topczewski et al. (2017) found that for nuclear 

magnetic resonance spectroscopy items novice students fixated more on the distractors 

compared to expert students. In a study comparing participants with high and low graph 

literacy, participants with high graph literacy paid more attention to relevant information 

necessary for correctly interpreting the data (Okan et al., 2016). These findings support 

the information-reduction hypothesis. However, research findings did not support the 

information-reduction hypothesis in the domain of medicine (Brams et al., 2019). In 

medicine, the holistic model of image perception seems to better explain differences in 

eye movements between experts and non-experts (Brams et al., 2019). 

The holistic model of image perception proposes that experts can process images 

globally (Kundel et al., 2007). This may be due to parafoveal processing (Sheridan & 

Reingold, 2017). Global perception of the image influences future search processes, 

making experts more efficient (Gegenfurtner et al., 2011). Consequently, experts are 

expected to fixate on relevant AOIs more quickly than non-experts (Brams et al., 2019; 

Gegenfurtner et al., 2011). As mentioned above, the holistic model of image perception is 

prevalent in research about medical expertise (Brams et al., 2019). However, a concept of 

professional vision with experts being better at distributing their attention has also been 

found in experienced teachers when assessing classroom situations (Huang et al., 2023) 

and in pilots (Lounis et al., 2021). 

Another assumption is that experts efficiently encode and store information in 

their long-term working memory (Ericsson & Kintsch, 1995). Novices start grouping 

information in working memory and, with practice, these so-called chunks move to long-

term memory (Guida et al., 2012), where experts can access them via retrieval cues 

(Ericsson & Kintsch, 1995). Chunks can contain more familiar than unfamiliar or 

nonsensical information (Simon, 1974). Consequently, researchers assume that experts 

can concentrate more information in chunks than novices (Maries & Singh, 2023). 

Novices have less experience and are less knowledgeable about the topic and can, 
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therefore, hold less information in working memory (Guida et al., 2012). As a result, 

novices process information less efficiently than experts (Ericsson & Kintsch, 1995; 

Guida et al., 2012). Evidence for chunking has, for example, been found in expert chess 

players (Chase & Simon, 1973). Foreign language learners can also use chunking 

strategies (Albelihi, 2022). According to the theory of long-term working memory, 

experts are assumed to have shorter fixation durations because they need less time to 

retrieve information (Gegenfurtner et al., 2011). Support for perceptual chunking was, for 

example, found in a study comparing novice, intermediate, and expert air traffic 

controllers as novices focused longer on irrelevant information than experts and 

intermediates (van Meeuwen et al., 2014).  

Based on the CTML (see section 1.2.1) and these theories of expertise, 

Gegenfurtner et al. (Gegenfurtner et al., 2023). The authors propose a cognitive theory of 

visual expertise (CTVE) with three assumptions: First, that experts have a larger capacity 

for domain-specific information processing (e.g., Ericsson & Kintsch, 1995). Second, that 

visual processing of information changes with increased expertise (Haider & Frensch, 

1999; Sheridan & Reingold, 2017) from a bottom-up to a top-down procedure. Third, that 

“experts interact with their environment when processing information of a visual scene” 

(Gegenfurtner et al., 2023, p. 153) and that they use meta-cognitive processes to evaluate 

information based on the current task. Apart from long-term working memory storing 

image chunks and prior knowledge, the CTVE proposes a visual register for (para-)foveal 

processing temporarily holding visual images. During information processing, experts use 

their meta-cognitive knowledge to monitor the cognitive processes processes proposed in 

the CTML: selecting, organising, and integrating information. These processes are refined 

and extended using the assumptions of the CTVE: Experts use para-foveal processing and 

are able to ignore irrelevant information. During this, they use their prior knowledge to 

determine which information is relevant. Experts also use their meta-cognitive knowledge 

to monitor their cognitive processes and apply domain knowledge to construct their visual 

field. The CTVE considers “educational usability” (Gegenfurtner et al., 2023, p. 150) and 

can, therefore, be applied to educational contexts. 

Education researchers have compared differences in the visual behaviour of 

experts and non-experts in learning situations, for example, in the context of physics 

(Hahn & Klein, 2022). In this thesis, this is especially relevant in the context of graph 

comprehension. Previous research has found expertise-based differences in the visual 

processing of graphs. For example, differences in graph interpretation (Bowen et al., 
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1999) and strategy during the process of solving graph-based tasks (Harsh et al., 2019) 

have been found between students and faculty. Although all participants reported using a 

comparable strategy, only experts implemented this strategy during their visual 

processing (Harsh et al., 2019). This is in line with the monitoring assumption proposed 

in the CTVE (Gegenfurtner et al., 2023) Undergraduate students seemed to learn their 

professor's interpretation instead of learning how to come to the right conclusion 

themselves (Bowen et al., 1999). Differences have also been found between science and 

engineering students considered experts and students studying other disciplines 

considered non-experts (Yen et al., 2012). When they first saw a graph problem, science 

students paid more attention to the question and less attention to the answers than non-

science students. Presumably, the question area holds a lot of relevant information. 

Therefore, these results are in line with the information-reduction hypothesis 

(Gegenfurtner et al., 2011; Haider & Frensch, 1999). However, there were no statistically 

significant differences between science and non-science students in the viewing time on 

the graph (Yen et al., 2012). Another study compared the visual behaviour of 

professionals and students solving engineering problems (Ahmed et al., 2021). The results 

indicated that students fixated for a shorter time than professionals, although they seemed 

to make more fixations. The findings indicating longer fixations for experts are in line 

with the information-reduction hypothesis (Gegenfurtner et al., 2011; Haider & Frensch, 

1999). However, experts making fewer fixations than non-experts indicates a slower 

visual search rate, which is in line with findings of previous reviews regarding decision 

tasks (Brams et al., 2019). This corresponds to the experts’ ability to ignore irrelevant 

information (Brams et al., 2019) and is in agreement with the top-down procedure of 

experts as described in the CTVE (Gegenfurtner et al., 2023). A special focus of previous 

research has been on comparing physics students with students of different subjects 

during problem-solving with graphs: all studies found that physics students performed 

better than non-physics students independently of the task context (Brückner et al., 2020; 

Klein, Küchemann, et al., 2019; Susac et al., 2018). For example, physics students 

outperformed economics students in a post-replication study in both physics and finance 

tasks (Brückner et al., 2020). This might be due to the focus on graphs and their formulas 

in multiple topics of physics education (Pospiech et al., 2019). However, irrespective of 

the participants' subject, correct solvers focused more closely on relevant areas than 

incorrect solvers (Klein, Küchemann, et al., 2019), which is in line with the 

information-reduction hypothesis (Gegenfurtner et al., 2011; Haider & Frensch, 1999). 
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Solving domain-specific tasks correctly, therefore, seems to be an indicator of experience 

in a specific context as demonstrated by the differences in visual processing. This 

indicates that successful learners can use visual chunking strategies although more 

practice might be needed for brain reorganisation as indicated by neuroimaging experts 

(Guida et al., 2012). Consequently, the inferences of expertise theories regarding visual 

processing should be transferable to comparisons of correct and incorrect solvers. 

Studies not only compared the differences between experts and non-experts to 

interpret their visual strategies. Eye movements were also used as predictors of 

performance (Klein, Küchemann, et al., 2019). 

 

1.3.3. Predictivity of Eye Movements 

Eye movements have been used to predict the answer correctness of students 

using statistical models (Becker et al., 2022; Chen et al., 2014; Klein, Küchemann, et al., 

2019). For example, Chen et al. (2014) analysed 64 students’ responses to computer-

based textual or pictorial physics questions and found their performance could be 

predicted via their eye movements. Students seemed to look longer at their correct 

responses than at their incorrect responses. As a prediction model, Chen et al. (2014) used 

generalised estimating equations as extensions for generalised linear models (Liang & 

Zeger, 1986). There is also research on predicting students’ performance on graph 

comprehension tasks using their eye movements: For example, using multiple regression, 

students’ performance could be predicted for items of the Test of Understanding Graphs 

in Kinematics (TUG-K) (Beichner, 1994) via visual attention as indicated by total visit 

duration on relevant areas and those that were irrelevant to the solution of the tasks 

(Becker et al., 2022). Klein, Küchemann, et al., (2019) used the dwell time on concept-

specific AOIs to predict solution correctness for graph comprehension tasks employing 

multiple ANOVAs as a statistical method. 

Besides statistical methods, participants’ performance on graph tasks can be 

predicted via machine-learning algorithms trained on the participants’ eye movements 

(Dzsotjan et al., 2021; Küchemann et al., 2020, 2021). High-school students’ (N=115) 

performance on items of the TUG-K could be predicted based on the students’ visual 

behaviour, specifically the total dwell time (Küchemann et al., 2020) on and the number 

of transitions between AOIs on the graph (Küchemann et al., 2021). In a pilot study, the 

learning gain of 36 participants walking the shapes of acceleration-time graphs could be 

successfully predicted based on various eye-tracking metrics (Dzsotjan et al., 2021).  
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In contrast to statistical methods, which are used to evaluate known datasets, the 

goal of machine learning is to predict unknown outcomes based on known input data 

(Géron, 2019). In doing so, machine learning enables transfer to unknown and new 

datasets in a way that is not possible for statistical models. In an educational context, 

supervised learning algorithms are frequently used to predict students’ performance 

(Namoun & Alshanqiti, 2021). Küchemann et al. (2020, 2021) used a Support Vector 

Machine (SVM) as a machine-learning algorithm. This is a supervised classification 

algorithm for categorising groups of an unknown test dataset based on the labels of the 

training dataset (Géron, 2019). SVM tries to find the best function separating the groups 

with the largest margin of error based on the training data (Géron, 2019). Dzsotjan et al. 

(2021) found that SVM was the best predictor compared to k-nearest neighbour and 

random forest. K-nearest neighbour groups data based on the data points' distance to each 

other (Theodoridis, 2020). Random forest uses an ensemble of decision trees for 

classification (Géron, 2019). The advantage of machine-learning algorithms, such as 

SVM, k-nearest neighbour and random forest, compared to statistical models is that they 

can also be used to predict complex non-linear relations between multiple features as they 

function independently of the data’s distribution. 

Which eye-tracking metrics should be used as input features can be analysed by 

evaluating feature importance. Using feature importance can also increase the 

interpretability of algorithms by indicating the importance of individual features for the 

prediction. For example, the error of the eye-tracker calibration was a relevant feature for 

the model trained by Caruso et al. (2022). They conducted a study with 147 university 

students investigating their reading comprehension and could predict this based on 

multiple eye-tracking metrics, such as fixation duration and saccades. In the context of 

graph comprehension, Dzsotjan et al. (2021) made similar analyses of feature importance. 

They found that adding more eye-tracking features does not necessarily improve the 

algorithms’ performance.  

Although machine learning has become more common in educational applications 

in recent years (Hilbert et al., 2021; Zawacki-Richter et al., 2019), using 

machine-learning methods can be difficult in an educational context, especially using eye 

movements as input features. This is due to the commonly small size of such datasets, 

frequently consisting of data of less than 100 participants (Hahn & Klein, 2022; 

Strohmaier et al., 2020). Small datasets can be difficult to analyse due to the limited 

number of data points (Rincón-Flores et al., 2022; Smith et al., 2014). A current study 
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introduces a technique to judge the quality of machine-learning models and recommends 

a method to evaluate small datasets (Steinert et al., 2024): To reduce bias, 

machine-learning models are evaluated on various datasets using repeated nested cross-

validation in combination with permutation tests. The latter established a probability of 

how generalizable the model is. The Matthews-Correlation-Coefficient (MCC) is the 

recommended metric for evaluating binary classification (Chicco & Jurman, 2020; 

Steinert et al., 2024). The MCC assesses the difference between actual and predicted 

variables and is not influenced by class imbalances which is valuable for doing machine 

learning with unbalanced datasets (Chicco & Jurman, 2020). This method could be 

particularly relevant for using machine-learning methods on educational eye-tracking 

datasets. 

 

1.4. General Research Questions, Methodology, and Outline of the Studies 

This thesis describes studies intended to contribute to facilitating graph use in 

educational practice by analysing how graphs are created as a tool in learning and 

problem-solving (research aim a), how graphs are visually processed by participants with 

varying expertise (research aim b), and what effect the study discipline has during 

problem-solving with graphs (research aim c). The theoretical foundation of all studies is 

the CTML (Mayer, 2014a) introduced in section 1.2.1 because all studies are concerned 

with learning with multiple representations including graphs. The first study is a 

systematic review of generating convention-based graphical representations of numerical 

data, defined as graphing, and connects to previous research on drawing (see section 

1.2.2). Students often have difficulties during graphing (Clement, 1989; Leinhardt et al., 

1990). It is in the nature of expertise, that experts have fewer difficulties. As expertise can 

be distinguished via eye movements (see section 1.3.2), a review of differences in visual 

processing between experts and non-experts during learning and problem-solving with 

graphs is presented as the second study of this thesis. The findings of the study support 

the information-reduction hypothesis (Haider & Frensch, 1999). This hypothesis was also 

supported by a study investigating graph comprehension in a physics context (Klein, 

Küchemann, et al., 2019). Although there does not seem to be an overarching definition 

of expertise in the context of graph comprehension (see section 3), physics students are a 

convenient comparison group for expertise research, because physics students are often 

considered experts compared to students of different disciplines (Brückner et al., 2020; 

Klein, Küchemann, et al., 2019; Susac et al., 2018). Furthermore, expertise is a common 
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topic in physics education research (Hahn & Klein, 2022). The third study presents an 

eye-tracking study comparing first-year physics with medical students – both groups 

taking physics courses during the first semester. An analysis of the participants’ eye 

movements indicates that there are differences in visual processing between correct and 

incorrect solvers. Results regarding performance differences between these groups are 

presented in Study 3 (see section 4). 

The following sections provide short overviews of the three articles as well as 

brief clarifications of the specific theory and the methodology used. The detailed results 

are presented in the articles included in the following sections as well as in a brief 

overview of the findings of every study in section 5.1. 

 

1.4.1. Outline of Study 1 

Creating graphical representations is an important aspect of education (see section 

1.2.2). Graphing falls under this description. Many studies have analysed graphing (see 

section 1.2.3). There are many educational contexts in which students can create graphs, 

for example, during problem-solving (Kanzaki & Miwa, 2011) or test-taking (Curcio, 

1987), as well as during graphing instruction (Harsh & Schmitt-Harsh, 2016). Instruction 

might be combined with problem-solving activities, for example, by allowing students to 

revise graphs based on their ideas as part of an instruction regarding density concepts 

(Vitale et al., 2019). Graphing has also been investigated during lab activities (Adams & 

Shrum, 1990). For example, undergraduate students taking a physics lab course had 

difficulties finding the correct scale when constructing the frame for a graph in a study 

about finding best-fit lines (Nixon et al., 2016). Students also had trouble connecting the 

graph with the underlying concept, although they could successfully construct the line 

(Nixon et al., 2016). A special research focus has been on difficulties during graphing 

(e.g., McDermott et al., 1987), such as student misconceptions (Clement, 1985). Common 

student misconceptions include graph-as-picture errors, which, for example, is the case 

when students create a pictorial representation of a situation instead of a position-time 

graph based on data representing the situation (Gerard et al., 2012; Harrison et al., 2019). 

Extracting and appropriately representing data can, therefore, be difficult for students 

(Oslington et al., 2020). As graphs are an important representation not only in education 

and creating graphs is a relevant aspect of graphing competence (see section 1.2.3), it is 

important to know how graphing is instructed and what difficulties students may have.  
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However, there has not yet been a systematic review of the literature on this topic. 

Therefore, the first study aims to fill this research gap. The following research questions 

(RQ) were considered: 

RQ 1: How is the graphing implemented in studies on this activity in K-12 STEM 

education? 

RQ 2: What is the added value of graphing in K-12 STEM education? 

RQ 3: Which difficulties can arise when graphing in K-12 STEM education? 

To answer these research questions, a systematic literature review according to 

guidelines of preferred reporting items for systematic reviews and meta-analyses 

(PRISMA) 2020 (Page et al., 2021) was conducted. First, terms in the relevant categories 

of graph creation, STEM education, and numerical data as the basis of graphs were used 

for a search of several databases (ERIC, PsychInfo, Scopus). The literature search found 

10,296 articles. Two raters then screened the titles and abstracts of these articles in 

duplicate with a machine-learning-based software called ASReview (Utrecht University, 

2021). This software can reduce the work needed for screening by approximately 80% 

(van de Schoot et al., 2021). Of the initially discovered articles, 394 were included in the 

full-text screening. This resulted in 41 included studies. Afterwards, additional forward- 

and backwards-snowball searches were conducted during which three additional eligible 

studies were found. Two coders coded relevant variables for all included articles to 

answer the research questions.  

 

1.4.2. Outline of Study 2 

The final research question of Study 1 focused on student difficulties during 

graphing. However, students not only have difficulties during graphing but also when 

learning and problem-solving with graphs (see section 1.2.3). Per definition, experts do 

not have the same problems as non-experts. This could be due to the more efficient 

information processing of experts compared to non-experts (see section 1.3.2). Cognitive 

processes can be inferred from eye movements (see section 1.3.1) and expertise 

differences can also be seen in visual processing (see section 1.3.2). Various reviews 

analysed differences in visual behaviour between experts and non-experts (Brams et al., 

2019; Gegenfurtner et al., 2011; Sheridan & Reingold, 2017). This is also a common 

research topic in STEM education, such as physics (Hahn & Klein, 2022). As graphs are a 

common topic in STEM education, visual differences between experts and non-experts 

during learning and problem-solving with graphs have been a common research topic. An 
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overview of visual differences between experts and non-experts in this area could help 

facilitate student learning as these can be used to develop support for students.  

The second study presents a review of the literature investigating differences in 

the visual processing of experts and non-experts during learning and problem-solving 

with graphs. We had two research aims: 

Research aim 1: Provide an overview of the eye-tracking metrics used to 

distinguish experts and non-experts. 

Research aim 2: Provide an overview of differences in visual behaviour between 

experts and non-experts. 

We analysed 32 studies published between 2003 and 2022 to answer these 

research questions. All studies compared the visual behaviour of experts and non-experts 

learning or problem-solving with graphs in STEM contexts. We coded relevant 

information including the graph subject, the type of graph used, the type of eye-tracking 

metric, and how many eye-tracking metrics were analysed. The literature review includes 

a summary and narrative analysis of these results. We distinguished between eye-tracking 

metrics and the size of the AOIs because the calculation of various eye movements, such 

as fixation duration, is based on the AOIs (see section 1.3.1). Three sizes can be 

distinguished: micro-level AOIs consist of very small areas, such as individual ticks on 

the x-axis of a graph; meso-level AOIs are bigger, for example, consisting of the entire 

x-axis of a graph; macro-level AOIs distinguish between large parts of a stimulus, such as 

between an entire graph and corresponding text (Andrá et al., 2015). An example of these 

AOIs is depicted in Figure 1: The entire graph is considered a macro-level AOI, the 

functions combined with the x-axes and y-axes depicted in green are meso-level AOIs. 

The function and axes labels as well as small task-relevant areas are micro-level AOIs. 
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1.4.3. Outline of Study 3 

Graph comprehension in the context of learning and problem-solving can be 

investigated with eye movements. Eye movements can indicate visual processing (see 

section 1.3.1) and expertise (see section 1.3.2). There are attempts to define expertise; for 

example, expert students should use knowledge intelligently and wisely, combining not 

only the application of knowledge but also the use of creative strategies and a successful 

transfer to practice (Sternberg, 2003). Other research considered specific disciplines, for 

example, physics experts might know how to approach a problem with an obvious 

solution without having to use the same problem-solving processes as physics novices 

(Maries & Singh, 2023). Further insights into problem-solving practices of various 

disciplines could lead to insights about expertise regarding the solution process of various 

types of problems, such as graph comprehension tasks, and how to facilitate those skills. 

Figure 1  

Macro-Level AOI (Entire Graph), Meso-Level AOIs in Green, Micro-Level AOIs in 

Blue. 



25 
 

Several studies have compared physics students as experts with non-physics 

students as non-experts during problem-solving with graphs (Brückner et al., 2020; Klein, 

Küchemann, et al., 2019; Susac et al., 2018). All studies found that physics students 

outperformed non-physics students in graphs of physics and non-physics contexts 

(Brückner et al., 2020; Klein, Küchemann, et al., 2019; Susac et al., 2018). There were 

also differences in visual behaviour between correct and incorrect solvers (Klein, 

Küchemann, et al., 2019). With this study, we extend previous research by comparing 

physics students with medical students who also take physics courses during the first 

semester. We aimed to answer the following research questions: 

RQ 1: Are there differences in learning gain between physics and medical students? 

RQ 2: Are there differences in the visual behaviour of students solving tasks correctly 

or incorrectly? 

We conducted a pretest-posttest study with first-semester medical and physics 

students. Students participated in November 2022 at the beginning of their first semester 

and again in March 2023 at the end of the first semester. They completed isomorphic 

items in physics and mathematics as in the previous studies (Brückner et al., 2020; Klein, 

Küchemann, et al., 2019) based on approved tests (Ceuppens et al., 2019; Susac et al., 

2018). We designed similar isomorphic items for a medical context. The complete test 

material is available under 

https://osf.io/dgx3p/?view_only=515ffd3ec1bc474abfd7f1c2778d721e. The eye 

movements of the participants were recorded with Tobii Pro Nano eye trackers. We 

analysed dwell time to compare our results with previous studies (Brückner et al., 2020; 

Klein, Küchemann, et al., 2019; Susac et al., 2018). 

Statistical analyses of learning gain and dwell time were conducted in R. Learning 

gain consisted of the difference between the percentage of correct items in the posttest 

and the percentage of correct items in the pretest. A factorial ANOVA was conducted to 

analyse differences in learning gain depending on the study subject (physics vs. medicine) 

and item context (mathematics vs. physics vs. medicine). Dwell time was analysed via 

multiple linear regression to analyse the effect of study discipline (physics vs. medicine), 

the specific AOIs (text vs. answers vs. graph vs. axes vs. axes labels), the context 

(mathematics vs. physics vs. medicine), the test (pretest vs. posttest), and the concept of 

the task (area vs. slope). 

Previous studies found differences in visual behaviour, specifically in dwell times, 

between correct and incorrect solvers (Klein, Küchemann, et al., 2019). We aimed to 

https://osf.io/dgx3p/?view_only=515ffd3ec1bc474abfd7f1c2778d721e


26 
 

replicate these findings with machine learning algorithms as this is assumed to be a 

suitable method to analyse eye movements (see section 1.3.3). Answer correctness via the 

participants’ dwell times on the AOIs. Machine learning analyses were carried out in 

Python in the Jupyter Notebook environment. The machine learning algorithms used were 

optimised for small datasets (Steinert et al., 2024). 
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2. Study 1: A Systematic Review of Empirical Research 

on Graphing Numerical Data in K-12 STEM 

Education 

Reference: Ruf, V., Thüs, D., Malone, S., Küchemann, S., Becker, S., Vogel, M., 

Brünken, R., & Kuhn, J. (2024). A Systematic Review of Empirical Research on Graphing 

Numerical Data in STEM Education. ArXiv.    

https://doi.org/10.48550/arXiv.2411.13195 

Copyright © Ruf, Thüs, Malone, Küchemann, Becker, Vogel, Brünken and Kuhn. This 

article is an open access article distributed under the terms and conditions of the Creative 

Commons Attribution (CC BY) license (https://creativeco mmons.org/licenses/by/4.0/). 
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3. Study 2: A Literature Review Comparing Experts’ 

and Non-Experts’ Visual Processing of Graphs 

during Problem-Solving and Learning 

Reference: Ruf, V., Horrer, A., Berndt, M., Hofer, S. I., Fischer, F., Fischer, M. R., 

Zottmann, J. M., Kuhn, J., & Küchemann, S. (2023). A Literature Review Comparing 

Experts’ and Non-Experts’ Visual Processing of Graphs during Problem-Solving and 

Learning. Education Sciences, 13(2), 216. https://doi.org/10.3390/educsci13020216 

Copyright: © Ruf, Horrer, Berndt, Hofer, Fischer, Fischer, Zottmann, Kuhn, and 

Küchemann. Licensee MDPI, Basel, Switzerland. This article is an open access article 

distributed under the terms and conditions of the Creative Commons Attribution (CC BY) 

license (https://creativeco mmons.org/licenses/by/4.0/). 
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4. Study 3: Comparison and AI-based Prediction of 

Graph Comprehension Skills based on the Visual 

Strategies of First-Year Physics and Medicine 

Students 

Reference: Ruf, V., Dinc, Y., Küchemann, S., Berndt, M., Steinert, S., Kugelmann, D., 

Bortfeldt, J., Schreiber, J., Fischer, M. R., & Kuhn, J. (2024). Comparison and AI-based 

prediction of graph comprehension skills based on the visual strategies of first-year 

physics and medicine students. Physical Review Physics Education Research, 20(2), 1-15. 

https://doi.org/10.1103/physrevphyseducres.20.020138 

Copyright © Ruf, Dinc, Küchemann, Berndt, Steinert, Kugelmann, Bortfeldt, Schreiber, 

Fischer, and Kuhn. Licensee APS, College Park, USA. This article is an open access 

article distributed under the terms and conditions of the Creative Commons Attribution 

(CC BY) license (https://creativeco mmons.org/licenses/by/4.0/). 
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5. General Discussion 
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This thesis aimed to (a) analyse graphing as a tool in learning and 

problem-solving, (b) investigate expertise in learning and problem-solving with graphs, 

and (c) explore differences between study disciplines during problem-solving with 

graphs. The theoretical and empirical background of this research was discussed in 

section 1. All studies fall under the broader scope of exploring the two aspects of 

graphing competence (see section 1.2.3): the aspect of creating graphs by reviewing 

graphing and the aspect of graph comprehension by investigating expertise differences in 

visual behaviour and comparing the problem-solving skills of students of two disciplines. 

The first study presented a synthesis of empirical studies on graphing in K-12 education 

as a systematic literature review (see section 2). The second study focused on the second 

aim by investigating expertise differences in visual processing during learning and 

problem-solving with graphs (see section 3). The last study addressed graph 

comprehension by comparing the performance and the visual behaviour of physics and 

non-physics students solving graph tasks (see section 4). 

The results of all three studies are summarised in section 5.1. Then, the theoretical 

(see section 5.2) and practical (see section 5.3) implications are discussed. Limitations 

and future research are described afterwards (see sections 5.45.4 and 5.5, respectively). 

 

5.1. Summary of the Results of the Articles 

5.1.1. Results of Study 1 

The first study (see section 2) presented a systematic review of the empirical 

research on graphing statistical data in STEM education. This literature review identified 

44 peer-reviewed studies published between 1979 and 2021 investigating this topic. From 

these studies, information about the population (e.g., high-school students), the STEM 

discipline (e.g., physics), the graphing method (e.g., manual) and guidance (e.g., explicit), 

the type of graph (e.g., line graphs) and the types of data (e.g., bivariate), the study design 

(e.g., problem-solving), the results (e.g., positive), and the students’ difficulties (e.g., 

scaling the axes) were extracted. All extracted codes are available under 

https://osf.io/4wtac/?view_only=137943ec30ee47fd98950aef2cef43a0. The studies 

included in the review were analysed regarding the implementation of graphing in STEM 

education research (RQ 1), the added value of graphing in STEM education (RQ 2), and 

students’ difficulties during graphing (RQ 3).  

Results indicated that most studies were conducted during more than one lesson 

and that graphing was often analysed in the context of problem-solving (RQ 1 of study 1, 

https://osf.io/4wtac/?view_only=137943ec30ee47fd98950aef2cef43a0
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see section 1.4.1). There seemed to be no preference for either manual or tool-based 

graphing. The most common types of graphs were line graphs. A typical study design 

included instruction over multiple lessons to investigate the effectiveness of such 

instruction on graphing skills for line graphs. Several studies reported positive effects of 

various kinds of graphing instruction that indicated the benefit of graphing. Additionally, 

instructing graphing was beneficial for graph comprehension (RQ 2 of study 1, see 

section 1.4.1). The included studies reported various student difficulties (RQ 3 of study 1, 

see section 1.4.1). Student difficulties with graph construction can be sorted into three 

categories: (1) difficulties during graph construction, (2) difficulties during variable 

ordering, or (3) difficulties with translating data between types of representations. 

Theoretical difficulties during graphing, for example, with interpretation or connecting 

the data to the underlying concept, were also reported frequently. However, difficulties 

during graph construction were the most common. Many studies reported both 

conventional and theoretical student difficulties. The prevalence of both types of 

difficulties in multiple studies suggests a possible connection between them. 

 

5.1.2. Results of Study 2 

The second study (see section 3) reviewed literature comparing the visual 

behaviour of experts and non-experts during learning and problem-solving with graphs. 

Thirty-two articles exploring this topic were included in the review. From these studies, 

the STEM discipline (e.g., mathematics), the type of graph (e.g., line graphs), the type of 

eye-tracking metric (e.g., fixations), and key findings were extracted. The findings of the 

included studies were analysed regarding the types of eye-tracking metrics used (research 

aim 1) and differences in visual behaviour between experts and non-experts were 

synthesised (research aim 2). Eye-tracking metrics were distinguished not only by their 

types but also based on the size of the areas of interest (AOIs) used to calculate them. The 

outcomes reported in the studies were investigated for micro-level as well as meso- and 

macro-level AOIs (Andrá et al., 2015). An example of these AOIs can be seen in Figure 1 

(see section 1.4.2). Furthermore, the method of expertise determination in the included 

studies was extracted and analysed. 

Dwell time, fixation duration, and fixation count were typical eye-tracking 

metrics, independent of AOI size (research aim 1 of Study 2, see section 1.4.2). The 

results indicated that experts paid more attention to relevant parts of a graph than non-

experts (research aim 2 of study 2, see section 1.4.2). This is in line with the 
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information-reduction hypothesis (Haider & Frensch, 1999). Experts also seemed to make 

more gaze switches between the areas of a graph. Participants who looked at the relevant 

variables early on and afterwards identified them in the graphs had the most efficient 

strategy to extract such data. 

 

5.1.3. Results of Study 3 

The third study (see section 4) investigated the effect of context and discipline on 

learning gain and visual behaviour during graph comprehension tasks. Differences in 

learning gain (RQ 1) and visual behaviour (RQ 2) were compared between participants of 

varying disciplines. Twelve medical/veterinary and twelve physics students participated 

in the data collection at both the beginning and the end of the semester. The participants 

answered the same 24 isomorphic questions in the context of mathematics, physics, and 

medicine at both times.  

There were no differences in learning gain between physics and non-physics first-

semester students (RQ 1 of Study 3, see section 1.4.3). However, there was a statistically 

significant difference between contexts: participants improved more between the pretest 

and posttest in items in the context of physics compared to items in a medical context. 

Visual behaviour between correct and incorrect solvers differed in both the pretest and the 

posttest as indicated by a significant p-value (RQ 2 of study 3, see section 1.4.3). In a 

comparison of various machine-learning algorithms and an examination of their 

performance metrics, an SVM optimised for small datasets (Steinert et al., 2024) seemed 

to be best suited for analysing eye-tracking results. This replicated previous results 

calculated via statistical methods (Klein, Küchemann, et al., 2019) using 

machine-learning techniques. In line with the information-reduction hypothesis (Haider & 

Frensch, 1999), Klein, Küchemann, et al. (2019) found that correct solvers paid more 

attention than incorrect solvers to relevant areas. An investigation of the feature 

importance of the machine-learning algorithm identified that the dwell time on the axes 

and the graph were the most important AOIs for predicting the participants’ performance. 

Additional statistical analyses using multiple linear regression suggested that the area of a 

graph that participants paid attention to was related to the total dwell time on a stimulus. 

In contrast, looking at the axes labels seemed to indicate less time spent on the task.  
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5.2. Theoretical Implications 

Graphical representations are crucial educational tools (see section 1.2). Being 

able to use numerical information and interpret data are important skills for students as 

well as communicating with data (Program for International Student Assessment, 2022). 

Therefore, students should learn how to comprehend graphs as well as how to create them 

(Glazer, 2011). This is called graphing competence. A high graphing competence enables 

students to interpret data correctly as well as to efficiently convey information in the form 

of graphs. The focus of the three studies of this thesis is on graphing (Study 1) and graph 

comprehension (Studies 2 and 3). Based on the results of these studies (see section 5.1), 

theoretical implications in the context of graphing and graph comprehension can be 

drawn.  

 

5.2.1. Student Difficulties With Graphing 

One of the aspects of graphing competence is creating graphs (Glazer, 2011). 

Graphing is a constructive learning activity (Chi & Wylie, 2014). Constructing graphical 

representations has multiple benefits for learners (see section 1.2.2): It is a generative 

activity during which learners can visualise and externalise information (Schmidgall et 

al., 2019). During generation activities, learners have the chance for detailed self-

explanations (Fiorella & Kuhlmann, 2020) or to represent information only implicitly 

mentioned in the text (Scheiter et al., 2017). However, generation should be taught 

carefully (Fiorella & Zhang, 2018; Scheiter et al., 2017) because learners need enough 

cognitive resources to generate representations (Schwamborn et al., 2011). As a 

generative activity, these advantages should also apply to the generation of graphs. The 

findings of the first study indicated that graphing instruction can improve not only 

learners' graphing skills but also their graph comprehension. Students seem to pay close 

attention to a graph’s details during graphing (Gerard et al., 2012), which could lead to an 

improvement in their graph comprehension. An examination of the data (points) making 

up a graph could facilitate graph interpretation on a local level (Leinhardt et al., 1990). 

This is supported by the assumption that visualising can help organise knowledge 

(Fiorella, 2023). Furthermore, the findings of the review on graphing indicate that 

graphing instruction could also facilitate scientific skills, such as generating hypotheses 

(Gultepe & Kilic, 2015). These results are in line with the benefits of construction 

activities described in the ICAP framework (Chi & Wylie, 2014). 
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Study 1 also synthesised results regarding students’ difficulties during graphing 

(RQ 3). This has been a focus of research on graphing competence (see section 1.2.3), as 

both graphing and graph comprehension are not easy for students (Glazer, 2011; 

Leinhardt et al., 1990). For example, Leinhardt et al. (1990) investigated students' 

misconceptions about graphs. These misconceptions can be based on misunderstanding 

previous instructions (Leinhardt et al., 1990). Using the wrong strategies can cause 

students to misinterpret the data, such as interpreting a graph as a picture of a situation 

(Clement, 1985). Difficulties have also been found during graphing (e.g., Wavering, 

1985). Therefore, good instruction regarding graphing competence is crucial for dealing 

with students’ difficulties. Although difficulties during graph comprehension have been 

reviewed previously (Boels et al., 2019; Clement, 1985; Glazer, 2011; Leinhardt et al., 

1990), so far, there have been no extensive reviews regarding students’ difficulties 

specifically during graphing.  

The difficulties during graphing reported in the studies included in the systematic 

review (see section 2) varied. For example, students have trouble with scaling the axes 

(Åberg-Bengtsson, 2006; von Kotzebue et al., 2015) or graphing the data points, for 

example, because they forget to consider possible deviations (Dewi et al., 2018). These 

difficulties can be considered in the framework of the graph construction process 

(Lachmayer et al., 2007): problems during scaling are construction difficulties because 

they concern the structure of the graph, and difficulties with data points are variable 

ordering difficulties due to the affiliation with charting the points. Another difficulty is 

translating data from one type of representation to another, such as from a table to a graph 

(Oslington et al., 2020). Difficulties during the construction process were the most 

frequently reported type of student difficulties in Study 1. Students can also have 

difficulties relating to theoretical aspects of graphing: For example, connecting the data to 

the underlying concept, as is the case for graph-as-picture errors (Clement, 1985; Gerard 

et al., 2012). Other theoretical difficulties include interpreting the data, such as 

misinterpreting the relationship between the variables indicated by the x-axis and y-axis 

(Dewi et al., 2018) and finding the correct type of graph for plotting the data (Ozmen et 

al., 2020). Such theoretical difficulties should be addressed by teachers in order to solve 

them (Boels et al., 2019).  

Eighteen of the studies included in the literature review of graphing reported that 

students had both conventional and theoretical difficulties. This indicated a possible 

relation between these two types of difficulties. For example, one study, that also 
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investigated the conceptual understanding of students, found that high conceptual 

understanding was related to high graphing skills (Gültepe, 2016). Students’ graphing 

difficulties might therefore not only be due to not understanding graphing conventions but 

also due to not being able to to comprehend the data. In turn, this might influence how 

students choose to display data during graphing. As both aspects, graphing and graph 

comprehension, are part of graphing competence (Glazer, 2011), it seems reasonable to 

assume that both conventional and theoretical difficulties play a role in graphing. On the 

other hand, students who can correctly graph data might have a better grasp on its 

interpretation as well. How graphing skill and graph comprehension influence each other 

and whether this relationship is directional, has not yet been investigated. 

 

5.2.2. Visual Behaviour During Graph Comprehension 

One method to investigate learning and problem-solving processes during graph 

comprehension is eye tracking (see section 1.3.1). Eye tracking is a method for 

investigating visual behaviour. This can be useful, e.g., to investigate expertise 

differences (see section 1.3.2). Experts process information more efficiently than 

non-experts (Ericsson & Kintsch, 1995). There are three main theories about expertise 

that lead to distinct assumptions regarding the visual processing of experts: (1) The 

information-reduction hypothesis assumes that experts focus more on relevant 

information by ignoring irrelevant information on a perceptual level (Haider & Frensch, 

1999). Based on this hypothesis, experts should focus more and longer on relevant 

information (Gegenfurtner et al., 2011). (2) The holistic model of image perception states 

that experts process images globally (Kundel et al., 2007) and therefore fixate on relevant 

information more quickly than non-experts (Gegenfurtner et al., 2011). (3) According to 

the assumption of long-term working memory, experts store information more efficiently 

than non-experts (Ericsson & Kintsch, 1995; Guida et al., 2012). Consequently, experts 

should spend less time on relevant information (Gegenfurtner et al., 2011). Previous 

research found support for all theories (Brams et al., 2019; Gegenfurtner et al., 2011; 

Sheridan & Reingold, 2017). However, the holistic model of image perception seems to 

be most prevalent in the medical field (Brams et al., 2019; Sheridan & Reingold, 2017), 

although para-foveal processing necessary for global image is also one of the processes 

mentioned in the CTVE (Gegenfurtner et al., 2023).  
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This thesis analyses expertise in the context of graph comprehension by 

investigating the visual processing of experts and non-experts during learning and 

problem-solving with graphs (research aim b). The second study presents a systematic 

review of studies comparing the visual behaviour of participants with various expertise 

levels during learning and problem-solving with graphs (see section 3). It should be 

noted, that, unlike previous reviews of graph interpretation (Boels et al., 2019), this study 

does not focus on a specific type of graph, but includes all types of graphs. When 

investigating visual processing based on eye movements, the size of the AOIs should be 

considered because eye-tracking metrics are calculated for AOIs (Holmqvist & 

Andersson, 2017). Therefore, the studies’ findings were analysed based on the size of the 

AOIs used by the studies’ authors. The review analysed two categories of AOI sizes: 

AOIs based on larger areas, such as the entire graph or large parts of it (macro- and 

meso-level AOIs), as well as AOIs separating very small areas, such as individual ticks 

on the axes (micro-level AOIs). 

Overall, the findings at the macro- and meso-level were similar to those at the 

micro-level. At all levels, experts seem to fixate longer on relevant information. This 

result is in line with the information-reduction hypothesis (Gegenfurtner et al., 2011; 

Haider & Frensch, 1999). Therefore, experts seem to be able to ignore the irrelevant 

information in graph comprehension tasks to better focus on the relevant information. The 

analysis of macro- and meso-level AOIs also indicated that experts made more dynamic 

eye movements, such as revisits and saccades, related to integrating information. Building 

connections is also an indicator of expertise (Gegenfurtner et al., 2023). This process is, 

for example, important during the organisation of image chunks (Gegenfurtner et al., 

2023). Consequently, eye movements seem to be valid indicators for expertise 

determination in the context of graph comprehension. 

Expertise, as indicated by solution corrects, has been extensively researched in 

various studies. For example, physics students outperformed both psychology (Susac et 

al., 2018) and economics (Brückner et al., 2020; Klein, Küchemann, et al., 2019) students 

in graph comprehension tasks in both their familiar (physics) and unfamiliar (finance) 

disciplines. Klein et al. (2019) could distinguish participants based on their performance 

in solving a task correctly and incorrectly via their dwell time on concept-specific AOIs. 

Other studies also used statistical methods to predict performance based on dwell time in 

relevant areas (Becker et al., 2022) or average fixation duration (Chen et al., 2014). 

Besides statistical methods, machine-learning algorithms can be used to predict 
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performance (see section 1.3.3). Supervised machine-learning methods are common in 

educational research (Namoun & Alshanqiti, 2021). Supervised methods use labelled 

training data to train an algorithm to label unknown test data (Géron, 2019), such as 

predicting a correct or incorrect solution based on eye movements. For example, 

Küchemann et al. (2021) could predict high-school students’ performance on graph 

comprehension tasks based on their transition frequency and their dwell time on the graph 

using an SVM. Dzsotjan et al. (2021) also used an SVM to predict participants’ learning 

gain based on their eye movements for participants walking the shape of a position-time 

graph. These results indicate that machine-learning methods are suitable methods to 

analyse eye movements. Unlike statistical models, machine-learning methods can, for 

example, be used to analyse complex relationships between the predicted variable and its 

predictors which can be transferred to unknown datasets due to the split between training 

and test data. Furthermore, feature relevance can indicate how important input parameters 

were for the alogrithms’ performance which can add a level of interpretability to 

machine-learning algorithms.  

The third study included in this thesis investigated differences between physics 

and non-physics students during problem-solving with graphs (research aim c). The setup 

was analogous to previous studies (Brückner et al., 2020; Klein, Küchemann, et al., 2019; 

Susac et al., 2018). In this study, physics and non-physics students were asked to solve 

graph tasks at the beginning and end of their first semester. Unlike previous research on 

performance differences (Brückner et al., 2020; Klein, Küchemann, et al., 2019; Susac et 

al., 2018), there were no differences in learning gain between students of different 

disciplines. However, non-physics students were not economics or psychology students 

but medical and veterinary students who also took STEM courses. These courses might 

teach problem-solving routines which could be transferable to other problem-solving 

tasks (see section 4). However, there were differences in visual behaviour between correct 

and incorrect solvers that could be predicted using machine-learning methods. This 

supports the assumption that visual processing differs between correct and incorrect 

solvers, indicating that expertise theories (see section 1.3.2) can be applied to comparing 

the visual behaviour of correct and incorrect solvers during graph comprehension tasks. 

Previous results by Klein, Küchemann et al. (2019) supporting the information-reduction 

hypothesis (Haider & Frensch, 1999) could be replicated using machine-learning 

methods. This is in line with the second study of this thesis, which also found support for 

the information-reduction hypothesis during the visual processing of graph tasks. Correct 
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solvers seem to pay more attention to task-relevant areas (Klein, Küchemann, et al., 

2019). In the context of machine learning, the participants’ dwell time on the graph seems 

to be a particularly important predictor of their performance. The algorithm used was an 

SVM optimised for small datasets that included repeated-nested cross-validation in 

combination with permutation tests (Steinert et al., 2024). The optimised methods 

performed better on the data compared to regular applications of an SVM without 

cross-validation or permutation tests. This indicates that such an optimised method is a 

suitable tool for investigating eye movements, even in the context of small datasets. Such 

an analysis could be useful for future research, for example, for developing adaptive 

learning systems based on eye movements that could give students real-time feedback 

about their performance. 

 

5.3. Implications for Practice 

The studies presented in this thesis reported empirical results, interpretations, and 

theoretical implications that have implications for teaching practice. All studies consider 

graphing competence. Practical implications for teaching concern dealing with students’ 

difficulties during graphing as well as increasing students' level of expertise during graph 

comprehension. 

Graphing instruction has previously been recommended (Glazer, 2011). Based on 

the literature review presented in Study 1, we found that various types of instruction were 

beneficial for students, such as instruction to improve graphing skills, for example, during 

lab-based activities (Gerard et al., 2012), as well as instruction to improve scientific 

argumentation (Gultepe & Kilic, 2015). Although most studies specifically focused on 

improving the students’ graphing skills, not only those skills benefitted from instruction. 

For example, graphing instruction also had a positive effect on graph comprehension 

(Gerard et al., 2012). These two skills are both considered in graphing competence 

(Glazer, 2011). Due to the relevance of graphing competence in education (see section 

1.2.3), graphing instruction seems a valuable aspect of education. 

Teachers should consider students’ difficulties during graphing instruction. This is 

especially relevant for STEM education because graphing plays an important role there 

(Leinhardt et al., 1990). The findings of the first study of this thesis indicated that 

students' difficulties with graphing conventions and their difficulties with theoretical 

aspects might be related. Therefore, both aspects should be considered in graphing 

instruction. Students benefit from exploring their scientific ideas before conventional 
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instruction on a topic as well as from a deep analysis of provided data (Vitale et al., 

2019). A combination of those activities might address both theoretical difficulties, such 

as graph-as-picture errors (Clement, 1985), by explicitly demonstrating which aspects of 

a concept students might have difficulties understanding, and students’ difficulties with 

graphing conventions, such as scaling (Lachmayer et al., 2007), as a deep analysis of the 

data might give students the chance to revise their graphs.  

Students’ level of expertise regarding graphing competence can be facilitated in 

other ways as well. As eye movements can be indicators of expertise for graph tasks (see 

section 3), instruction based on experts’ eye movements might also be beneficial for 

students. For example, eye-movement modelling examples can help students find relevant 

areas more quickly (Xie et al., 2021) by drawing their attention to them (Tunga & 

Cagiltay, 2023). This is in line with the information--reduction hypothesis (Haider & 

Frensch, 1999), the expertise theory supported by the second study of this thesis. Apart 

from learning the visual strategy, students should know how to implement it (Harsh et al., 

2019). They should not merely learn the teacher’s interpretation instead of learning the 

process of coming to the correct conclusion themselves (Bowen et al., 1999). Teachers 

should instruct students in the correct strategies for interpreting a graph while being 

careful that students learn how to determine the correct solution themselves. 

Eye-movement modelling examples could be a good way to teach students the correct 

strategy without necessarily giving students the exact answer. 

Students could also be supported using machine learning. Eye movements can be 

useful indicators of expertise (see section 3) and performance (see section 4) in graph 

comprehension tasks. Furthermore, eye movements can be used to improve adaptive 

learning environments (Kennel, 2022). A good performance prediction based on students’ 

eye movements, ideally in real-time, could be used to diagnose students’ difficulties and 

offer personalised learning support.  
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5.4. Limitations 

This thesis presented three studies, whose methodologies might lead to limitations 

regarding the theoretical and practical implications presented above.  

First, the focus of all three studies was on graphs depicting bivariate data. This 

limits the overall generalizability of the results, as other types of representations, such as 

3D representations might have other difficulties or necessitate divergent visual strategies. 

For example, constructing graphs in a 3D environment might necessitate using 

construction software and visual processing in a 3D environment, such as virtual reality, 

which might require different strategies for finding relevant information as the graph 

would be more complex. Study 1 presented a literature review of graphing in K-12 STEM 

education (see section 2). The inclusion criteria did not exclude multivariate data and 

graphs of multivariate data were considered in the analysis. For example, students were 

asked to graph objects of varying buoyancy (sink, float) in volume-mass graphs (Vitale et 

al., 2019). However, graphs depicting bivariate data were the most common type of 

graphs. The second study reviewed existing literature that analysed eye-tracking results. 

There were no 3D representations of graphs used as stimuli in the studies included in this 

review although they were not explicitly excluded. One reason for the lack of 3D 

representations might be the study prerequisites: Eye-tracking is often conducted 

stationary in front of a screen and metrics are calculated based on AOIs (see section 

1.3.1). For analysing graphs of multivariate data, these AOIs would have to be adapted 

accordingly. As AOIs should encompass relevant information with enough space to 

resolve eye movements as recorded by the eye tracker (Holmqvist & Andersson, 2017), a 

detailed analysis of graphs depicting multivariate data might be difficult. Additionally, 

previously used test items, such as the items used in Study 3 (Ceuppens et al., 2019; 

Susac et al., 2018), are often designed with graphs based on bivariate data. The results of 

the reviews presented in this thesis nevertheless are robust across various types of graphs 

as no graph type was excluded in either review and neither review was limited to a 

specific type of graph. Additionally, the theoretical difficulties reported in this thesis are 

in line with the results of previous reviews of misconceptions (Clement, 1985) and 

interpretation of histograms (Boels et al., 2019). This is also the case for two of the three 

conventional difficulties of graph construction, that are based on a structural model 

describing the graph construction process (Lachmayer et al., 2007). Moreover, all 

difficulties have been inductively determined based on the difficulties reported in the 

studies included in the review on graphing. The visual strategies of experts and 
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non-experts identified in the second review were also reported across various types of 

graphs. The results confirmed the information-reduction hypothesis (Haider & Frensch, 

1999). The results of this thesis therefore seem stable across various types of graphs. 

However, generalisability to, for example, 3D graphs depicting multivariate data cannot 

be guaranteed. This should be considered in future research.  

Other limitations are based on the methodology of the specific studies reported in 

this thesis. This limitation concerns specifically Study 1. The study presented a review of 

graphing in K-12 STEM education. A systematic search identified 44 studies meeting the 

inclusion criteria. The underlying theories used in all included studies were analysed. 

However, this proved difficult as very few studies provided a theoretical basis for their 

study design and most justified their design based on the practical applications of 

graphing. Therefore, the study design varied considerably between the included studies. 

This made it difficult to evaluate the added value of graphing (RQ 2 of Study 1) because 

there were no consistent group comparisons and analysis methods varied. Although the 

benefits of graphing were found across various types of instructions, there might be 

distinct boundary conditions for different kinds of instruction that could not be 

investigated in this review: None of the studies included in the literature review presented 

in Study 1 analysed boundary conditions for effective graphing. For example, previous 

research on drawing found that this generative activity was more effective for older 

students (Brod, 2021; Y. Zhang et al., 2021) and for students with low prior knowledge 

(Lin et al., 2017). Similar boundary conditions might apply for graphing. For a stringent 

investigation, a comparison of pretest – posttest studies including effect sizes would be 

ideal because these could also be used for a meta-analysis. However, only one study 

included in this review reported an effect size (Adams & Shrum, 1990) and such an 

analysis was therefore not possible in Study 1.  

A similar limitation applies to Study 2. This review compared the visual 

processing of experts and non-experts. However, the categorisation of expertise depended 

solely on descriptions of the authors of the studies included in this review, such as the 

comparison of correct and incorrect solvers (Klein, Küchemann, et al., 2019). Another 

limitation therefore concerns the definition of expertise: There does not seem to be a 

comprehensive, overarching definition of expertise. Sternberg (2003) described an expert 

student as a student who can intelligently use their knowledge and solve tasks creatively 

with the ability to successfully transfer learned information to practice. However, this 

definition only refers to students and many studies included professionals, such as 
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university faculty (Harsh et al., 2019). Various groups of participants were therefore 

considered as experts and non-experts. However, four important factors when 

determining expertise in graph comprehension were identified based on previous 

literature: (1) graphical literacy (Shah & Hoeffner, 2002), (2) knowledge about the 

domain (Brückner et al., 2020), (3) prior mathematical knowledge (Curcio, 1987), and (4) 

task knowledge (Friel et al., 2001). However, these factors have not been empirically 

tested. 

Further limitations concern the methodology of the third study presented in this 

thesis. This study aimed to explore differences between study disciplines during problem-

solving with graphs (research aim c). To achieve this, physics and non-physics students 

were asked to solve previously employed graph tasks in the context of physics and math 

(Ceuppens et al., 2019; Susac et al., 2018) as well as in the context of medicine at the 

beginning and the end of their first semester. This approach was analogous to that of 

Brückner et al. (2020). Therefore, analysing the expertise of first-semester students who 

were the participants in Study 3 restricts the generalisability of the results. It would be 

very difficult for students to achieve expertise during their first semester in their 

respective disciplines. This could lead to difficulties interpreting the learning gain 

investigated in Study 3 because all participants had the same educational level at the 

beginning of the semester. However, differences in performance have been found in 

comparisons of first-semester students of different disciplines earlier (Klein, Küchemann, 

et al., 2019; Susac et al., 2018). Study 3 is therefore comparable to previous research 

regarding the choice of participants. For the analysis of the participants’ visual behaviour, 

performance was chosen and based on this the visual behaviour of correct and incorrect 

solvers was analysed. This criterion has also been used previously (Klein, Küchemann, et 

al., 2019). However, a replication of Study 3 under consideration of the four factors that 

might be relevant for determining expertise in graph comprehension might provide 

further insights into the visual processing of experts during graph comprehension tasks. 
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An additional limitation also involves the methodology of Study 3, specifically the 

graph comprehension tasks used as test items and the number of participants. None of the 

task items of any context were validated test instruments. However, the physics and math 

items have been used in previous studies (Ceuppens et al., 2019; Susac et al., 2018). The 

medical items were developed for this study based on these examples. Although the test 

should be validated in future research, a comparability of the results is ensured by the 

tasks’ use in previous studies, specifically in the mathematical and physics contexts 

(Brückner et al., 2020; Klein, Küchemann, et al., 2019; Susac et al., 2018).  

 

5.5. Directions for Future Research 

There are various directions for future research on graphing competence, both for 

graphing and graph comprehension. Research aspects include the definition of expertise, 

for either both graphing and graph comprehension or individually for the two aspects of 

graphing competence. Such a definition of expertise might influence how graphing 

competence is instructed and investigated as it would make study results more 

comparable. Graphing competence might also vary depending on the visualisation of the 

graph, for example, whether a graph is depicted in 2D or 3D. Visual behaviour might also 

differ between these types of visualisation. Furthermore, an analysis of participants’ eye 

movements during graphing could provide valuable insight into the graphing process. In 

the following section, each of these aspects is elaborated. 

One of the most relevant aspects for future research is the definition of expertise. 

There are four important aspects of graph comprehension: graphical literacy (Shah & 

Hoeffner, 2002) and knowledge about (2) the domain (Brückner et al., 2020), (3) the 

underlying math (Curcio, 1987), and (4) the task (Friel et al., 2001). However, these 

factors have not yet been systematically investigated. The impact of these factors on 

graph comprehension skills could vary, for example, knowledge about the domain of the 

graph comprehension task might be more important than knowledge about the underlying 

math. These could also vary depending on the kind of graph comprehension task, for 

example, there might be differences in determining the relation between variables and for 

extracting a value. Possible correlations between factors could be relevant as well. 

Furthermore, these factors could vary based on the type of the graph, for example, 

knowledge about the underlying math might be less relevant for comprehending 

histograms but very relevant for comprehending complex graphs with multiple variables. 

Additionally, the transferability of the four factors from graph comprehension to graphing 
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should be investigated. Although all factors seem relevant in the context of graphing 

competence and theoretical and conventional difficulties seem to be connected, there 

could be variations between graphing and graph comprehension, for example, they might 

have differing boundary conditions. It would also be interesting to analyse how expertise 

in graphing competence develops. Starting with the four proposed factors, relevant 

aspects for future research could be the knowledge about the underlying math, the task, 

and the domain and how they should be taught, for example, whether they should be 

instructed in the same step or whether some of these factors might build on one another. 

Again, these factors could be investigated separately for graphing and graph 

comprehension as there might be differences in the development of these two skills.  

These directions for future research highlight another open question: How are 

graphing and graph comprehension related and how should they be taught? They both 

should be instructed (Glazer, 2011) because they are both relevant in education 

(Leinhardt et al., 1990). Based on the research presented in this thesis, it seems that a 

certain level of graph comprehension is necessary for successful graphing; however, 

graphing instruction also seems to facilitate graph comprehension. This indicates that it 

might be beneficial for students to instruct these two skills of graphing competence 

together.  

These findings were based on the review of graphing in K-12 STEM education. 

However, graphing competence is also relevant in university education (Nixon et al., 

2016) and in professional praxis, such as engineering (Ahmed et al., 2021). For example, 

Nixon et al. (2016) investigated university students constructing best-fit lines in a physics 

lab course. In this study, university students had similar difficulties as K-12 students, such 

as connecting the data to the underlying concept. A systematic investigation of graphing 

in university education could provide further insights into how graphing skills develop 

after receiving formal instruction in school. Additionally, there is research where 

participants create graphs with their body movements. For example, Dzsotjan et al. 

(2021) developed a virtual reality environment where participants are supposed to 

recreate a position-time graph with their body motion. This study was based on 

embodiment because a “user physically experiences the mapping between real-world 

movement and kinematic graphs” (Dzsotjan et al., 2021, p. 468). Enacting movements 

like this can also be considered a generative learning activity (Fiorella, 2023).  
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Using the body is a new way of graphing that should be considered in future 

research; for example, it could be useful to teach students how data is connected to 

concepts via direct experience.  

Moreover, the reviews presented the first two studies of this thesis concentrate on 

graphs in 2D. There was no preference for either manual or tool-based graphing in the 

studies included in the review. Furthermore, the data used for graphing was mostly 

bivariate. 3D graphs are probably more common in computer-based learning 

environments working with more than two variables. Additionally, there might be 

differences during the graphing process between 2D and 3D graphs. The review of 

literature analysing differences in visual behaviour between experts and non-experts 

during learning and problem-solving with graphs also focused on 2D representations. Eye 

movements are analysed for specific regions of a stimulus, which could make it 

complicated to design 3D representations with fitting relevant areas that can be 

constructively interpreted for analysing the visual strategy of participants. Furthermore, 

3D graphs are not common in educational contexts included in the review, which might 

make it difficult to find participants with sufficient expertise.  

Finally, this thesis can be extended via research investigating the visual strategies 

of students during the graphing process. Such research could provide insights into the 

strategies students use to create a graph. It would also be interesting to compare students’ 

graphing strategies with those of experts. Knowing students’ graphing strategies could be 

useful for improving graphing instruction. For example, one could give students support 

before they make mistakes due to misconceptions. An idea would be to show students 

help statements in an artificial reality environment which is also capable of recording and 

analysing eye movements in real time.  
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6. Conclusion 
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Dealing with data is an important aspect of everyday life as well as education, 

especially in a STEM context. Data is often presented in the form of graphs. To 

proficiently utilise graphs, one needs graphing competence; this describes the ability to 

comprehend and create graphs (Glazer, 2011). This thesis therefore analyses these aspects 

of graphing competence in the context of education.  

Graphing is a constructive activity and requires learners to actively engage in the 

activity (Chi & Wylie, 2014). Graphing has multiple benefits and is frequently 

researched, especially in the context of STEM education. The findings of the systematic 

review on graphing presented in this thesis indicate, that graphing instruction is often 

investigated throughout more than one lesson and conducted with line graphs. The 

review’s findings indicate that instruction can facilitate graphing skills. Graphing 

instruction can also improve graph comprehension. However, students frequently seem to 

have trouble constructing graphs. Students' difficulties can be categorised into two types: 

The first type of difficulties can be based on graphing conventions, such as constructing a 

graph. Additionally, students can have theoretical difficulties during graphing, such as 

interpreting the data. Conventional and theoretical difficulties are often jointly reported. 

This indicates that both types of difficulties influence students’ graphing and instruction 

should therefore include both graphing and graph comprehension.  

Eye movements can be an indicator of expertise during learning and 

problem-solving with graphs. During these activities, the findings of the second study 

indicate that experts pay more attention to relevant areas than non-experts. This supports 

the information-reduction hypothesis (Haider & Frensch, 1999). Additionally, the results 

indicate that eye movements based on fixations, such as fixation duration, are suited to 

investigate expertise in graph comprehension. Physics students are assumed to have a 

high level of expertise in graph comprehension as they performed better in graph 

comprehension tasks than students of other disciplines (Brückner et al., 2020; Klein et al., 

2019; Susac et al., 2018). Correct and incorrect solvers can be distinguished based on 

their eye movements (Becker et al., 2022; Chen et al., 2014; Klein, Küchemann, et al., 

2019). These results could be replicated with a machine-learning method optimised for 

small datasets (Steinert et al., 2024) in a study comparing physics and medical students’ 

eye movements in graph comprehension tasks. The results suggest that machine-learning 

algorithms for small datasets are well suited for assessing expertise by analysing eye-

tracking data. This could be useful for future research, for example, in developing 

adaptive learning systems.  
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