Graphical Representations of Data in STEM Education

Investigation of Graphing and Graph Comprehension

Dissertation zum Erwerb des Doctor of Philosophy (Ph.D.)
am Munich Center of the Learning Sciences
der Ludwig-Maximilians-Universitit

Miinchen

Vorgelegt von

Verena Ruf

aus Lauingen (Donau)

Miinchen, den 8. November 2023



Ist supervisor / Erstgutachter: Prof. Dr. Jochen Kuhn, LMU Miinchen

2nd supervisor / Zweitgutachter: PD Dr. Sarah Malone, Universitit des Saarlandes
Weitere Mitglieder der Priifungskommission:
Prof. Dr. Frank Fischer, LMU Miinchen

Prof. Dr. Martin Fischer, LMU Klinikum

Tag der miindlichen Priifung: 26.03.2024



Acknowledgements

There are a lot of people I would like to thank for their support. First, my sincere
gratitude to my supervisors. Thank you for being my sounding board during the entire
process and helping me plan during the final stages. To my first supervisor Jochen Kuhn:
thank you for your help in structuring my thesis, your inspiration for finding new
fascinating areas of research, and imagining new ways of teaching. Another thank you
belongs to my second supervisor Sarah Malone: thank you for putting things into
perspective and for your insightful questions during our discussions that always made me
think one step further. I learned a lot from both of you. Another thank you to the third
member of my supervisory committee, Frank Fischer, for your comments regarding the
articles and for your immediate commitment when I was looking for a third supervisor on
such short notice. To Stefan Kiichemann: thank you for helping me every step of the way,
always being open to answering any questions, and being my daily supervisor.
Furthermore, thank you to Martin Fischer, for your support during the writing process of
the articles and for being the final member of my examination committee.

I would also like to thank every member of my group — both in Munich and in
Kaiserslautern — for all their help. A special thank you to Eva Rexigel for your support
during work and your friendship outside of it. I very much appreciate you listening to all
my concerns and always offering a helpful solution. Thank you to Steffen Steinert for
helping me with coding-related questions and suggesting new directions. I would also like
to thank my colleagues in Munich: Tatjana Lamparter and Yavuz Dinc, the former,
particularly for our writing retreats and the latter for not being annoyed with me for
talking to my computer and bringing gingerbread cookies. Thank you to all the girls from
the DTP: I haven’t known you long but you’ve been an inspiration.

Besides my colleagues, I would like to thank all my family and friends. Pia Adam,
for all her advice and encouragement. A special thank you to my parents: for being there
during the COVID-19 pandemic and for their continuous support. Thank you to my
sisters, Miriam and Theresa for always being there to talk. And thank you to my
grandparents, especially my grandmother, Sophie Stadter, for showing me that anything is

possible and always having my back.






Executive Summary

Learning materials usually consist of various types of representations. For
example, graphical representations, such as illustrations or graphs, are often used in
instructions in combination with text. Graphical representations of data are a subgroup of
graphical representation that is common not only in education but also in news media.
These types of representations depict data and can be informative to learners when
presenting them solely or in addition to text. Dealing with such information is a key skill
of the 21% century and has been frequently researched. Skills dealing with graphs can be
summarised under the term graphing competence, describing the creation (graphing) and
the comprehension of graphs. However, graphing competence is not an easy skill for
students to learn and students’ difficulties are frequently reported. This thesis presents
research that aims to contribute to previous findings regarding graphing competence,
thereby enhancing the use of graphs as an educational tool. Both aspects of graphing
competence — graphing and graph comprehension — are addressed in this thesis. The first
research direction concerns graphing; how graphing is investigated, what benefits it has,
and the types of difficulties students have during graphing. The second research direction
addresses the second aspect of graphing competence: graph comprehension. Graph
comprehension skills change with varying levels of expertise. Expertise differences can
be analysed using eye movements as indicators of cognitive processing.

Therefore, this thesis analyses eye movements during learning and
problem-solving with graphs, specifically paying attention to the differences between the
visual processing of experts and non-experts. Furthermore, differences in graph
comprehension between various study disciplines are examined. Based on current
empirical research, physics students can be considered experts compared to students of
other disciplines, because they seem to solve graph comprehension tasks better,
independently of the task context. Building on previous research, the visual behaviour of
physics and non-physics students is studied. Extending previous research,
machine-learning methods are used to predict correct and incorrect solvers based on their
eye movements.

The three research directions are addressed in the three studies presented in this
thesis. The first study describes a systematic literature review of the empirical research on
graphing in K-12 science, technology, engineering, and maths (STEM) education. The

second study reviews the literature comparing experts’ and non-experts’ visual processing



during learning and problem-solving with graphs. The third study investigates the
differences in learning gain and visual behaviour between physics and non-physics
students solving graph comprehension tasks.

The first study narratively summarises how graphing is implemented in studies
researching graphing in K-12 education. Furthermore, information on the added value of
graphing and students’ difficulties during graphing are considered. Fourty-four studies
investigated this topic published from 1979 until March 2022, when the search was
conducted. Many studies instructed the graphing of line graphs over more than one
lesson. The synthesis of the study results indicates that different types of graphing
instruction have a positive effect not only on graphing skills but also on graph
comprehension. However, the review findings indicate that students have difficulties both
with the graphing conventions as well as with the theoretical implications of the data
depicted in the graph. As theoretical difficulties are also common in graph
comprehension, this indicates that both types of difficulties influence graphing skills.
Furthermore, the two aspects of graphing competence — graphing and graph
comprehension — might affect each other.

The second study presents a literature review of studies comparing the visual
processing of experts and non-experts during learning and problem-solving with graphs.
Thirty-two studies published between 2003 and 2022 were analysed regarding the eye-
tracking metrics used to investigate visual behaviour and the reported differences between
experts and non-experts. Most studies used more than one eye-tracking metric. The
findings indicate that experts pay more attention to relevant areas of the graph than non-
experts. This is in line with the information-reduction hypothesis, suggesting that experts
can ignore irrelevant information on a perceptual level. Definitions of expertise vary,
implying that an overarching definition of expertise is missing. However, over the course
of this review, four possibly relevant factors for expertise in graph comprehension were
identified: (1) graphical literacy, (2) domain knowledge, (3) prior mathematical
knowledge, and (4) task knowledge.

The third study empirically investigates differences in learning gain and visual
behaviour of physics and medical or veterinary students. Twelve physics and twelve
non-physics students, respectively, voluntarily solved 24 graph comprehension tasks in
the contexts of math, physics, and medicine at the beginning and the end of their first
semester. There were no statistically significant differences in learning gain between

groups. This might indicate similar transfer skills between these study disciplines as both



participant groups took STEM courses. Correct and incorrect solvers could be predicted
via machine learning based on their eye movements. Therefore, machine learning
optimised for small datasets can be a valuable tool for assessing expertise by analysing
eye movements.

The research presented in this thesis supports the relevance of instructing graphing
competence. Both aspects of graphing competence, graphing and graph comprehension,
should be considered during teaching. In particular, graphing instruction could be
beneficial for students because it does not only seem to facilitate graphing skills but also
graph comprehension. Furthermore, graphing instruction seems relatively easy to
implement as the findings indicated that it was advantageous in various forms. However,
students had difficulties during graphing. Student difficulties based on graphing
conventions or based on theoretical aspects, such as with interpretation, were reported in
many studies, indicating that both types of student difficulties should be considered
during instruction. Furthermore, future research should consider the visual behaviour of
K-12 students and experts during graphing because eye movements can indicate expertise
in processing graphs.

During learning and problem-solving with graphs, a comparison of the visual
processing of experts and non-experts supports the information-reduction hypothesis.
This indicates that experts can ignore irrelevant information on a perceptual level and
process information more efficiently than non-experts. Showing students experts’
strategies might, therefore, be beneficial for them by guiding their focus to relevant
information. Future research should consider levels of expertise based on measurable
factors due to the diverse possibilities in which graph comprehension might be facilitated.
For example, STEM instruction could promote the transfer of problem-solving skills,
such as graph comprehension, to other domains. In summary, the results of this thesis
highlight influencing factors for graphing competence, both graphing and graph

comprehension, not only in K-12 but also in higher education.
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Deutsche Zusammenfassung

Lernmaterial enthélt normalerweise verschiedene Arten von Représentationen.
Beispielsweise werden in Lernmaterialien neben Text oft graphische Représentationen,
wie Abbildungen oder Graphen, verwendet. Eine Untergruppe graphischer Reprédsentation
sind graphische Représentationen von Daten; sie sind nicht nur in der Bildung sondern
auch in den Nachrichten verbreitet. Reprisentationen von Daten konnen fiir Lernende
sowohl alleine, als auch in Kombination mit Text, informativ sein. Der Umgang mit
solchen Reprisentationen ist eine Schliisselkompetenz des 21. Jahrhunderts und wurde oft
untersucht. Die Fahigkeit, mit Graphen umzugehen, kann unter dem Begriff
Graphing-Kompetenz zusammengefasst werden. Dieser beschreibt nicht nur die Fahigkeit
Graphen zu erstellen (Graphing), sondern auch die Fahigkeit Graphen zu verstehen.
Graphing-Kompetenz ist allerdings keine leicht erlernbare Fahigkeit und tiber
Schwierigkeiten damit wird haufig berichtet. Diese Dissertation priasentiert Forschung,
die bisherige Erkenntnisse zu Graphing-Kompetenz erweitern und die Verwendung von
Graphen als paddagogisches Hilfsmittel in der Lehre verbessern mochte. Beide Aspekte
von Graphing-Kompetenz — Graphing und Graphenverstindnis — werden in dieser
Dissertation adressiert. Die erste Forschungsrichtung ist die Untersuchung von Graphing,
wie Graphing untersucht wurde, welche Vorteile es hat, und die Arten von
Schwierigkeiten von Schiilerlnnen wéhrend des Erstellens von Graphen. Die zweite
Forschungsrichtung adressiert den zweiten Aspekt von Graphing-Kompetenz: das
Graphenverstindnis. Die Fahigkeit Graphen zu verstehen dndert sich je nach Expertise.
Visuelles Verhalten kann anhand von Augenbewegungen untersucht werden und
unterschiedliche Level von Expertise konnen mittels kognitiver Prozesse analysiert
werden.

Deswegen befasst sich diese Dissertation mit der Analyse von Augenbewegungen
wihrend des Lernens und Problemldsens mit Graphen, mit einem Fokus auf den
Unterschieden in visuellem Verhalten von ExpertInnen und Nicht-ExpertInnen.
AulBlerdem werden Unterschiede im Graphenverstdndnis zwischen verschiedenen
Studienfachern untersucht. Physikstudierende werden im Vergleich zu Studierenden
anderer Fachrichtungen in aktuellen Studien als ExpertInnen betrachtet, weil sie
Aufgaben zum Graphenverstindnis besser 16sen konnen, unabhéngig vom Kontext der
Aufgabe. Basierend auf bisheriger Forschung wird das visuelle Verhalten von Physik-

und Nicht-Physik-Studierenden untersucht. Die bisherige Forschung wird durch eine
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Analyse mittels maschinellem Lernen erweitert, durch die korrekte und inkorrekte
LoserInnen anhand ihrer Augenbewegungen pradiziert werden.

Die drei Forschungsrichtungen werden in den drei Studien dieser Dissertation
adressiert. Die erste Studie beschreibt ein systematisches Literatur-Review iiber die
Forschung zu Graphing in der schulischen Mathematik, Informatik, Naturwissenschaften
und Technik (MINT) Bildung. Die zweite Studie ist eine Ubersicht iiber Literatur, die das
visuelle Verhalten von ExpertInnen und Nicht-Expertlnnen wihrend des Lernens und
Problemlosens mit Graphen vergleicht. Die dritte Studie untersucht Unterschiede im
Lernfortschritt und visuellen Verhalten zwischen Physik und Studierenden anderer
Fachrichtungen beim Losen von Aufgaben zum Graphenverstindnis.

Die erste Studie ist ein systematisches Review tliber die Implementation von
Graphing in der schulischen Bildung in Studien zu diesem Thema. Aullerdem werden
Informationen {iber den Wert von Graphing und Schwierigkeiten von Schiilerlnnen dabei
beriicksichtigt. Vierundvierzig Studien wurden zwischen 1979 und der Literatursuche im
Mirz 2022 zu diesem Thema verdffentlicht. Bei vielen dieser Studien wurde das Erstellen
von Liniengraphen wihrend einer Instruktion {iber mehrere Unterrichtsstunden hinweg
untersucht. Die Synthese der Ergebnisse deutet darauf hin, dass verschiedene Arten von
Instruktionen von Graphing nicht nur einen positiven Effekt auf die Fihigkeit, Graphen
zu erstellen, sondern auch auf das Graphenverstidndnis haben. Allerdings zeigen die
Ergebnisse des Reviews, dass Schiilerlnnen sowohl Schwierigkeiten mit den
gebrauchlichen Konventionen fiir das Graphing als auch mit der theoretischen Bedeutung
der im Graphen gezeigten Daten haben. Da Schwierigkeiten mit der theoretischen
Bedeutung auch beim Graphenverstindnis vorkommen, konnten beide Arten von
Schwierigkeiten einen Einfluss auf die Graphing-Fahigkeiten haben. Aulerdem konnten
die beiden Aspekte von Graphing-Kompetenz — Graphing und Graphenverstandnis —
einander beeinflussen.

Die zweite Studie prasentiert eine Literaturrecherche von Studien, die das visuelle
Verhalten von ExpertInnen und Nicht-ExpertInnen wéhrend des Lernens und
Problemlosens mit Graphen vergleichen. Zweiundreiflig Studien wurden zwischen 2003
und 2022 publiziert und in dieser Arbeit anhand ihrer Eye-Tracking Metriken untersucht
und Unterschiede im visuellen Verhalten von Expertlnnen und Nicht-Expertlnnen wurden
verglichen. Die meisten Studien haben mehrere Eye-Tracking Metriken verwendet. Die
Ergebnisse zeigen, dass Expertlnnen ldnger auf relevante Bereiche von Graphen

fokussieren als Nicht-ExpertInnen. Dies unterstiitzt die
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Informations-Reduktions-Hypothese, was darauf hinweist, dass ExpertInnen unwichtige
Informationen auf einer wahrnehmungsbezogenen Ebene ignorieren konnen. Expertise
wurde in den Studien auf unterschiedliche Arten ermittelt, was darauf hindeutet, dass es
keine iibergreifende Definition von Expertise gibt. Allerdings wurden im Laufe des
Reviews vier Faktoren als mogliche Indikatoren von Graphenverstiandnis identifiziert: (1)
Lese- und Schreibkompetenz fiir Graphen, (2) Doménenwissen, (3) mathematisches
Vorwissen und (3) Wissen iiber die Aufgabe.

Die dritte Studie untersucht empirisch Unterschiede im Lernzuwachs und im
visuellen Verhalten von Physik und (Tier-)Medizin Studierenden. Je zwolf Physik und
zwolf Nicht-Physik Studierende haben freiwillig insgesamt 24 Aufgaben zum
Graphenverstindnis in Mathe, Physik und Medizin am Anfang und am Ende ihres ersten
Semesters beantwortet. Es wurden keine statistisch signifikanten Unterschiede im
Lernzuwachs zwischen den Gruppen gefunden. Dies konnte daran liegen, dass
Studierende aller Disziplinen MINT-Kurse belegt haben und die Probandengruppen daher
dhnliche Transfer-Fahigkeiten zwischen den Kontexten entwickeln konnten. Korrekte und
inkorrekte Loser konnten anhand ihres visuellen Verhaltens mit maschinellem Lernen
vorhergesagt werden. Dies zeigt, dass maschinelles Lernen mittels eines fiir kleine
Datensitze optimierter Algorithmus ein gutes Werkzeug zur Auswertung von Expertise
mittels einer Analyse von Augenbewegungen sein kann.

Die in dieser Dissertation priasentierte Forschung betont die Relevanz, Lernenden
Graphing-Kompetenz zu vermitteln. Beide Aspekte von Graphing-Kompetenz, Graphing
und Graphenverstdndnis, sollten dabei wéahrend des Unterrichts beriicksichtigt werden.
Besonders eine Instruktion von Graphing kann dabei fiir SchiilerInnen hilfreich sein, weil
dadurch nicht nur die Fahigkeit Graphen zu erstellen gefordert wird, sondern auch das
Graphenverstindnis. AuBBerdem scheinen verschiedene Arten von Graphing-Instruktionen
lernforderlich zu sein, was darauf hindeutet, dass eine solche Anleitung einfach zu
implementieren ist. Allerdings hatten Schiilerlnnen Schwierigkeiten beim Erstellen von
Graphen. Thre Schwierigkeiten basierten entweder auf den der Graphenerstellung
zugrundeliegenden Konventionen oder waren in theoretischen Aspekten begriindet,
beispielsweise Schwierigkeiten bei der Interpretation. Diese Schwierigkeiten wurden in
vielen Studien berichtet, was darauf hindeutet, dass die Schwierigkeiten wahrend der
Instruktion beriicksichtigt werden sollten. Zukiinftige Forschung sollte aulerdem das

visuelle Verhalten von SchiilerInnen und ExpertInnen wihrend des Erstellens von



Graphen analysieren, da Augenbewegungen ein Indikator fiir Expertise wihrend der
Verarbeitung von Graphen sein konnen.

Ein Vergleich des visuellen Verhaltens von Expertlnnen und Nicht-ExpertInnen
wihrend des Lernens und Problemldsens mit Graphen hat die
Informations-Reduktions-Hypothese gestiitzt. Dies deutet darauf hin, dass Expertlnnen
unwichtige Informationen wahrnehmungsbezogen ignorieren konnen und Informationen
dadurch effizienter als Nicht-Expertlnnen verarbeiten. Es konnte daher hilfreich fiir
Lernende sein, wenn sie Strategien von Expertlnnen sehen, um auf relevante
Informationen zu achten. Zukiinftige Forschung sollte verschiedene Level von Expertise
anhand messbarer Faktoren beriicksichtigen, da es verschiedene Mdglichkeiten zur
Forderung von Graphenverstindnis gibt. Beispielsweise konnte MINT-Instruktion
womdglich hilfreich sein, um Ubertragungvon Problemldse-Fihigkeiten, wie
beispielsweise Graphenverstindnis, zwischen Domédnen zu lernen. Zusammenfassend
heben die Ergebnisse dieser Dissertation Einflussfaktoren fiir Graphing-Kompetenz, fiir
Graphing und fiir Graphenverstandnis, nicht nur fiir die schulischen Bildung, sondern

auch fiir die hohere Bildung, hervor.
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1. General Introduction



1.1. Aims and Outline of the Thesis

Graphical representations, such as images or pictures, are common in many media.
For example, graphical representations of numerical data (graphs) are used in countless
aspects of everyday life, such as newspapers. They are crucial tools for conveying
information (Mahmoud & Zoghaib, 2023). Especially during the COVID-19 pandemic,
graphs were widespread, for example, to visualise the number of COVID-19 cases
(Engledowl & Weiland, 2021). Representations of data are also used in scientific
publications (Midway, 2020). They can, for example, to show the relation of variables
(Lachmayer et al., 2007). Graphs are often easier to interpret than other types of data
representations, such as verbal descriptions, because they can show relations more
explicitly (Larkin & Simon, 1987). Therefore, graphs are well-suited for educational
purposes (Shah & Hoeffner, 2002). However, not all types of graphs are equally
appropriate for conveying information (Mahmoud & Zoghaib, 2023). Consequently, the
ability to judge the quality of a graph depending on its context is a valuable one (Rubel et
al., 2021). Furthermore, using information is a key skill of the 21* century (Program for
International Student Assessment, 2022). Using information includes correctly employing
mathematical representations, such as graphs, extracting information from them, and
interpreting the results correctly (Program for International Student Assessment, 2022).
Therefore, an essential aspect of education is teaching students how to use graphs
(Glazer, 2011) and graphs are accepted tools in education (e.g., Shah & Hoeftner, 2002),
especially in science, technology, engineering, and mathematics (STEM) subjects (Fyfe et
al., 2014).

This thesis describes research on how graphs are used in educational STEM
practice. The main foci are (a) analysing graph creation as an educational tool, (b)
investigating expertise differences in visual processing during learning and
problem-solving with graphs, and (c) exploring differences between study disciplines
during problem-solving with graphs.

Students can use graphs in various ways during learning and problem-solving
(Leinhardt et al., 1990). Graph comprehension skills are necessary to successfully use
graphs (Shah, 1997). Many studies analyse how to facilitate students’ graph
comprehension skills (e.g., Strobel et al., 2019) and although the terms used by the
authors can vary — such as graph interpretation (e.g., Smit et al., 2016), graph
understanding (e.g., Klein et al., 2020), or graph reading (Ludewig et al., 2020) — the

described skills are all essentially similar. Graph creation is another aspect of graph



interpretation (Glazer, 2011). There is much previous research on graph comprehension
skills, including reviews (Shah & Hoeffner, 2002), case studies (Roth & Bowen, 2001),
and comparisons between countries (Galesic & Garcia-Retamero, 2011). Although there
are reviews about drawing in education (Cromley et al., 2020; Van Meter & Garner,
2005; Y. Zhang et al., 2021), a review about how the creation of graphs is implemented in
research has not been published so far. Such a review could provide much insight into
possible overarching benefits for students and difficulties they might have (aim a).

Students’ difficulties can also be identified by looking at their visual processing
indicated by eye movements. There have been differences in the visual processing of
experts and non-experts when looking at graphs. For example, science and non-science
undergraduate students, science graduate students, and science faculty reported similar
strategies to solve graph-based tasks (Harsh et al., 2019). However, only faculty and
graduate students seemed to implement their plan whereas the undergraduate students’
procedures varied (Harsh et al., 2019). In physics, the answer correctness of the
participants could be predicted based on their eye movements (Kiichemann et al., 2020,
2021). Paying attention to the task-irrelevant parts of the graph might be due to
misconceptions (Klein, Kiichemann, et al., 2019; Wang et al., 2022). Misconceptions are
wrong beliefs due to prior knowledge or intuition (Leinhardt et al., 1990). Misconceptions
about graphs are often based on a misunderstanding of previous instruction (Leinhardt et
al., 1990) and using incorrect strategies can lead to misinterpretations of the depicted data
(Clement, 1989). Student understanding can improve if students overcome
misconceptions and learn the right concepts (Marisda et al., 2020), although this may be
difficult (Lem et al., 2013). Differences in visual processing between experts and
non-experts when learning and problem-solving with graphs could help identify
problems. A review of this topic considering various types of graphs could fill this gap
(aim b).

For line graphs, previous research has shown that physics students outperform
psychology (Susac et al., 2018) and economics (Briickner et al., 2020; Klein, Kiichemann,
et al., 2019) students in problem-solving tasks independently of the task context. The
main difference between physics and the other subjects is that physics students have
physics courses. Therefore, expertise differences between physics students and other
students also taking STEM courses should be smaller than between students of other
subjects. A comparison of physics and medical students could provide valuable insights

(aim c¢).



The thesis is structured in three parts. The first part describes the theories of
learning with graphical representations (see section 1.2). Theories about learning with
multimedia, such as the cognitive theory of multimedia learning (Mayer, 2014a), are
introduced. These theories apply to theories of how learners can generate graphical
representations themselves, which is, for example, useful to externalise information
(Schmidgall et al., 2019). This practice is common in many subjects, such as using graphs
in STEM problem-solving (Zacks & Tversky, 1999). Theories of multimedia learning
relate to cognitive processes (see section 1.3) which can be analysed via visual processing
as indicated by eye movements (Alemdag & Cagiltay, 2018). For example, previous
research has found that experts’ and non-experts’ visual processing differs in visualisation
comprehension (e.g., Gegenfurtner et al., 2011). Based on previous research, the research
aims of the articles included in this thesis as well as a short overview of every study are
presented (see section 1.4).

The second part of this thesis describes the two literature reviews and the
empirical study conducted to address the research aims. First, a systematic literature
review about generating graphical representations of numerical data in STEM education
is presented (see section 2). The second article is a literature review about differences in
the visual processing of experts and non-experts when learning and problem-solving with
graphs (see section 3). Third, an article describing an empirical study comparing physics
and medical students’ visual behaviour during problem-solving with graphs is included
(see section 4).

The last section of this thesis summarises the results of the three studies (see
section 5). The findings are assimilated with the theory as well as the educational
practice. The thesis ends with a conclusion after considering the limitations and future
research.

1.2. Graphical Representations in Education

There is various research about the theoretical background for learning and
problem-solving with graphical representations. This section first presents general
theories for learning with more than one representations, such as graphs and text, for
example, the cognitive theory of multimedia learning (CTML) (Mayer, 2014a). Learners
cannot only learn by learning with provided graphical representations but also by
generating them (aim a). This aspect is elaborated in the following before describing
learning with graphs, specifically generating (aim a) and comprehending (aims b and c)

them, as defined by the term graphing competence.



1.2.1. Theories of Learning with Multimedia

Presenting multiple types of representations in combination is considered
multimedia learning. During instruction, graphical representations are usually presented
in combination with other types of representations, such as text (Mayer, 2014c). In STEM
education, graphs are typically presented with text or equations (e.g., Diaz-Levicoy et al.,
2018). Learning with multimedia describes the construction of a mental representation
based on learning material consisting of words, such as text, and pictures, such as
illustrations (Mayer, 2014b). The goal of learning is to build a mental model of the
represented information (Mayer, 2021). The multimedia assumption expects that learning
with multimedia, such as words and pictures, is more effective than learning only from
text (Butcher, 2014). There are several theories about learning and problem-solving with
multiple representations (Ayres, 2015), that also apply to learning in STEM education.

The cognitive theory of multimedia learning (CTML) (Mayer, 2014a, 2021) is
based on three assumptions: that the auditorial or verbal and the visual or pictorial
information-processing channels process information separately (Baddeley, 2012; Camp
et al., 2021; Paivio, 1969), that each channel has a limited capacity (Camp et al., 2021;
Chandler & Sweller, 1991), and that processing information, as is necessary for learning,
is an active process (Wittrock, 1974). Learners need to select relevant information,
organise the selected information, and integrate it with each other and with their prior
knowledge in order to construct a mental model (Mayer, 2014a, 2021). Therefore, the
goal of learning about topics in a particular domain is to transfer information from
limited-capacity working memory to unlimited long-term memory. Cognitive load theory
can be employed to facilitate this process by improving the instructional design (Sweller,
2020). According to the original theory (Sweller et al., 1998), cognitive load can be split
into three separate categories (Orru & Longo, 2019; Paas et al., 2003; Sweller et al.,
1998): Extraneous cognitive load is based on the way information is represented and is
not related to the learning aim, intrinsic cognitive load is related to task difficulty and the
amount of relevant information that has to be processed, and germane cognitive load is
needed to understand the learning material and learn effectively. In a review, Kalyuga
(2011) argued that germane and intrinsic cognitive load are related. Consequently, in
current interpretations of cognitive load theory, germane cognitive load is not viewed as a
separate type of cognitive load but as a working memory resource allocating capacity
from extraneous to intrinsic processing (Sweller et al., 2019). Current reviews continue to

differentiate between the three types of cognitive load (Mutlu-Bayraktar et al., 2019; Orru



& Longo, 2019; Skulmowski & Xu, 2022). Effective learning should use mostly intrinsic
and germane cognitive load and little extraneous cognitive load (Orru & Longo, 2019),
although a small amount of extraneous cognitive load related to creating an appealing
learning environment might be beneficial (Skulmowski & Xu, 2022). Cognitive load,
therefore, plays an important role in learning environments containing multiple
representations, such as text and pictures (Mutlu-Bayraktar et al., 2019).

Similarly to the CTML, the integrated model of text and picture comprehension
(ITPC) assumes different ways of processing text and pictures (Schnotz, 2014). First,
learners analyse textual and pictorial features and then process them on a deeper cognitive
level (Schnotz, 2014). The resulting propositional representation of the text and the
mental model of the pictures are integrated during information processing (Schnotz,
2014). In this context, graphs would be considered pictorial information. The different
functions of representations in this process constitute the main difference between the
CTML and ITPC (Ayres, 2015).

Principles of multimedia learning have been formulated based on the CTML and
the effects of cognitive load, which can be used for designing learning material (Mayer,
2014c). One example is the signalling (or cueing) principle (Mayer, 2014c). This
principle uses signals (cues) to draw learners’ attention to relevant information or
highlight the organisation of important information (van Gog, 2014, 2021) and can
facilitate learning (Alpizar et al., 2020) by supporting learners’ cognitive processes,
especially selecting information (van Gog, 2021). Various multimedia learning principles
have been adopted in multiple STEM contexts (Herrlinger et al., 2017; Klein, Viiri, et al.,
2019; Rodemer et al., 2021; Ruf et al., 2022). These principles can be transferred to other
educational situations, for example, to computer-based testing environments (Dirkx et al.,
2021). It is therefore important to consider multimedia principles not only during
instruction but also in the context of a testing environment (Lindner et al., 2021) because
cognitive processes during problem-solving happening in testing are similar to those
found during multimedia learning (Lindner et al., 2017).

Besides the principles of multimedia learning, the design, function and task
framework (DeFT) can be used to construct supportive learning material containing
various representations (Ainsworth, 2006). This framework is based on the functions
multiple representations fulfil during learning as well as relevant tasks and design
considerations (Ainsworth, 1999). Representations can have three main functions during

learning: (1) they can complement each other, for example, by providing different



information, e.g., in real and virtual experiments (Flegr et al., 2023); (2) they can
constrain each other, such as one familiar representation constraining an unfamiliar
representation, which, e.g., is the case in concreteness fading where learners first see
concrete pictures of a situation that become more abstract during the learning process
(Kokkonen & Schalk, 2021); and (3) representations can construct deeper understanding,
e.g., during constructive learning activities (Chi & Wylie, 2014). This is the case when

students generate graphical representations, such as graphs.

1.2.2. Generating Graphical Representations

Generating information during the learning process can be more useful for
learners than merely reading the material (Bertsch et al., 2007). This is called the
generation effect (Slamucka & Fevreiski, 1983). The generation effect is related to the
generative theory (Wittrock, 1974), which theoretically grounds the effectiveness of
active processing in the CTML (Mayer, 2014a). Creating graphical representations, such
as diagrams or graphs, is termed, for example, drawing, sketching, or graphing. Drawing
can facilitate generative learning (Fiorella & Mayer, 2016). Thus, actively presenting
information can promote learning more effectively than passively committing information
to memory (Chi & Wylie, 2014; Fiorella & Zhang, 2018). This is in line with the
interactive, constructive, active, passive (ICAP) framework positing that active learning is
better than passive learning, which in turn is superseded by constructive followed by
interactive learning (Chi & Wylie, 2014). With each level, learning is assumed to be more
effective because learner engagement increases.

Furthermore, creating a new representation from a provided representation can
potentially fulfil each of the functions described in the DeFT framework (Ainsworth,
2006): The representations can complement each other as the generated representation is
based on the provided representation, they can constrain each other, for example, the
generated representation can clarify a process described in a text, and generation can
create deeper understanding because learners have to actively engage with the material.
Generating representations based on provided representations involves more than one
type of representation (e.g., the graph and text) and is consequently part of learning with
multimedia. Generation is also connected to the cognitive processes of selecting,
organising, and integrating information (Fiorella & Mayer, 2016; Mayer, 2014a; Van
Meter & Garner, 2005) because the information presented in additionally generated

representations has to be selected from the provided representation and the selected



information has to be organised into a fitting format for the generated representation.
Generating representations aids in prior knowledge activation (Wetzels et al., 2010),
because learners have to integrate their prior knowledge with the provided information
during the construction process.

The generative sense-making framework (Fiorella, 2023) focuses on how internal
and external representations interact to facilitate sense-making processes. It follows
similar assumptions as the ICAP framework (Chi & Wylie, 2014) and those based on
cognitive processes (Fiorella & Mayer, 2016; Van Meter & Garner, 2005). This
framework describes how sense-making and learner characteristics as well as the
generated representations influence each other. The generated representations shape the
instruction, which in turn can affect sense-making. Learning outcomes depend on the
success of sense-making processes. Generative learning activities consist of explaining,
visualising, and enacting (Fiorella & Mayer, 2016, 2021). In the generative sense-making
framework, each activity has a function, for example, visualising can help organise
knowledge (Fiorella, 2023). The generative sense-making framework, therefore, specifies
constructive activities in the ICAP framework (Chi & Wylie, 2014).

Constructing representations, such as graphs, can have many advantages
(Ainsworth et al., 2011; Ainsworth & Scheiter, 2021). By generating representations
learners can represent visuo-spatial information (Scheiter et al., 2017) as well as make
inferences visible (Larkin & Simon, 1987). Generating representations also improves
self-regulation (Kollmer et al., 2020). For example, drawing can encourage learners to
provide detailed explanations (Fiorella & Kuhlmann, 2020). Furthermore, learners use the
generated representations as visualisations of information and to externalise information

(Schmidgall et al., 2019).

Generation can be implemented in teaching in various ways, for example, by
generating a representation before comparing it to a provided representation (Q. Zhang &
Fiorella, 2021). Instructional support for the generation of representations can further
facilitate learning (Cromley et al., 2020; Fiorella & Zhang, 2018; Van Meter et al., 2006;
Wu & Rau, 2019). However, the generation of new representations takes up cognitive
resources (Schwamborn et al., 2011) and has to be implemented carefully (Fiorella &
Zhang, 2018). For example, drawing seems to be especially helpful for older students in
secondary or higher education (Brod, 2021; Y. Zhang et al., 2021) and for undergraduate

students with low prior knowledge (Lin et al., 2017). Older learners seem to have the



necessary cognitive skills to deal with generation tasks (Brod, 2021) but should not have
so much prior knowledge that generating representations would be redundant (Lin et al.,
2017).

In secondary education, drawing has been researched in multiple ways: Drawing
tools have been developed to compare the representational competence of high school
students in chemistry and biology education (Chang, 2018) and the sketching of functions
in mathematics by pre-university students has been analysed to gain insights into what
mathematical connections students make during these tasks (Garcia-Garcia & Dolores-
Flores, 2021). Generation activities are also used at universities, for example, sketching
tasks as part of a quantum education curriculum (Kohnle et al., 2020) and drawing of
best-fit lines has been analysed during physics lab activities (Nixon et al., 2016).

Technological tools can support generating graphical representations (Cromley et
al., 2020; Donnelly-Hermosillo et al., 2020). For example, graphing calculators have been
common tools in the last decades (Kastberg & Leatham, 2005; Penglase & Arnold, 1996).
Technological tools also include digital drawing tools, such as GraphSmarts, in
comparisons of paper-and-pencil with technology-based drawing (Gardner et al., 2021) or
providing drawing prompts, for example, in interactive chemistry tutorials (Wu & Rau,
2018). Computer software, such as Excel (Aberg-Bengtsson, 2006), has also been used to

research graph generation.

1.2.3. Graphing Competence

Generating graphs is a part of graphing competence (Glazer, 2011). Students learn
and generate representations in many subjects. In STEM disciplines, graphical
representations often depict numerical data (graphs). Graphing is, therefore, defined as
generating convention-based graphs. Learning with graphs is theoretically based on
learning with multimedia (see section 1.2.1) and generating graphs is also grounded in
theories about generating graphical representation (see section 1.2.3). Apart from
graphing, graphing competence includes the ability to analyse graphs (Glazer, 2011).

The ability to analyse graphs is often referred to as either “graph comprehension”
(Curcio, 1987; Kanzaki & Miwa, 2011; Zacks & Tversky, 1999) or “graph interpretation”
(Boels et al., 2019; Giiltepe, 2016; Lachmayer et al., 2007; Nixon et al., 2016; Roth &
Bowen, 2001). Using information — a key skill of the 21 century (Program for
International Student Assessment, 2022) — is an integral part of graph comprehension.

Various factors are important for graph comprehension (Friel et al., 2001): the tasks in
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which graphs are used as well as their purpose, the discipline/ context of the graphs, and
the characteristics of the learner. This is an important topic in education and has been
analysed in various ways in multiple reviews (Boels et al., 2019; Glazer, 2011; Leinhardt
et al., 1990; Shah & Hoeftner, 2002). In their review, Leinhardt et al. (1990) focus on
functions in the context of mathematics education with a special view on students’
misconceptions and difficulties with graphs. Misconceptions are defined as a “reasonably
well-formulated system of ideas” (Leinhardt et al., 1990, p. 5) consisting of explicit
pieces of knowledge. Misconceptions can be related to difficulties but do not necessarily
cause them. Leinhard et al. (1990) distinguish three types of tasks which can include the
construction of a graph: prediction tasks concerning the data pattern, translation tasks
between types of representations, and scaling tasks involving the scales and units of the
depicted data. Besides constructions, all types of tasks include interpretation. Another
review addresses the instructional implications of students’ graph comprehension (Shah
& Hoeftner, 2002). They analyse three factors that can influence interpretations: visual
characteristics of the graphs, students’ prior knowledge about graphs, and “expectations
about the content of the data in a graph” (Shah & Hoeffner, 2002, p. 47). They
recommend four aspects for teaching graphical literacy: (1) Teaching graphical literacy in
a specific context, (2) using translation tasks, (3) focusing on linking the visual features
with the meaning in the context, and (4) viewing graph comprehension not as simple fact
retrieval but as an evaluation activity. Other reviews focus on challenges (Glazer, 2011)
or misconceptions (Clement, 1985) with graph comprehension, sometimes examining
only specific types of graphs, such as histograms (Boels et al., 2019). Most of these
reviews refer in various ways to generating graphs as well as analysing them (Boels et al.,
2019; Clement, 1985; Leinhardt et al., 1990). However, their focus is not exclusively on
graphing although researchers recommend that the creation of graphs “should be
explicitly taught given its importance and its complexity” (Glazer, 2011, p. 183).
Therefore, constructing graphs is a common topic in research and many studies
specifically analyse students’ difficulties with graphing. Typical errors include confusing
the slope and the height of a graph as well as interpreting the graph like a picture
(Clement, 1985). Undergraduate students taking an introductory physics course seemed to
have both of these difficulties in the context of kinematics (McDermott et al., 1987). This
indicates that students have trouble connecting the graph to the underlying concept
(McDermott et al., 1987). A study with 32 undergraduate students taking an introductory

physics lab course, also found that students had trouble connecting the data to the physics
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concept and often used “rote procedures” (Nixon et al., 2016, p. 11) instead of strategies
involving a deeper understanding during lab activities including the construction of
best-fit lines. Other errors that students have made in the context of graph creation are
related to scaling (von Kotzebue et al., 2015) or finding the best type of graph for given
data (Ozmen et al., 2020). These difficulties are comparable between contexts. For
example, Dewi et al. (2018) and Gultepe and Kilic (2015) reported corresponding
graphing difficulties in physics and chemistry, respectively. They are also similar among
learners of various ages: Scaling difficulties were found in a study with 437 university
science students solving problems in a biology context (von Kotzebue et al., 2015) as well
as in a study with 40 elementary school students in the context of math (Aberg-
Bengtsson, 2006). These examples indicate that students' difficulties with generating
graphs can be persistent across contexts and different learning levels, although students
improve with higher grades (Wavering, 1985).

This demonstrates the prevalence of students’ difficulties during the generation of
graphical representation. One possible reason could be that students have difficulties
processing such tasks. The CTML posits three relevant cognitive processes performed
during learning with multiple representations: selection, organisation, and integration
(Mayer, 2014a; see also section 1.2.1). These cognitive processes can be analysed by

looking at learners’ eye movements (Alemdag & Cagiltay, 2018).

1.3. Cognitive Processes and Eye Movements During Learning with Graphical
Representations

Learners’ eye movements can indicate their cognitive processes and can be
employed to analyse multimedia learning processes (see section 1.3.1). Using eye
tracking as an investigative technique for recording eye movements, previous research
has found differences between the eye movements of experts and non-experts when
learning or problem-solving with graphs (see section 1.3.2). Eye movements have also
been used to predict performance, for example in graph comprehension tasks (see section
1.3.3).
1.3.1. Eye Movements and Cognitive Processes

Eye movements are useful process measures because they can indicate attention
(Just & Carpenter, 1980). This is called the eye-mind hypothesis. Although this
hypothesis is based on reading research, its assumptions also hold in other circumstances

(Schindler & Lilienthal, 2019), and eye tracking is often used as a method to analyse
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visual attention during learning processes (Alemdag & Cagiltay, 2018; Hahn & Klein,
2022; Lai et al., 2013; Strohmaier et al., 2020). Eye movements are either recorded via
stationary eye trackers, which are used during computer-based studies (Strohmaier et al.,
2020), or via mobile eye-tracking glasses, which are used, for example, during
experimenting (Kumari et al., 2021). Mobile eye-tracking is also relevant in other
learning environments, for example, in learning applications in augmented reality
(Fleischer et al., 2023).

Various eye-tracking metrics can be used to analyse eye movements. Interesting
areas of the stimulus are called areas of interest (AOIs) and they are the basis for
calculating various eye-tracking metrics, such as fixations, for example, as sums or
averages (Holmqvist & Andersson, 2017). Among the most common metrics are longer
stops at a location — called fixations — and small movements between fixations — called
saccades (Holmqvist & Andersson, 2017; Salvucci & Goldberg, 2000). Fixation durations
or fixation counts can indicate how much attention is spent on various areas. For example,
Malone et al. (2020) compared single representations with heterogeneous and
homogeneous multiple representations consisting of text, an equation, and a graphical
representation to determine which type of representations were most beneficial for
problem-solving. This was indicated by the fixations on the representations, which
suggested that the graphical representation was the most helpful one in that specific task.
It should be noted that fixation durations and fixation counts can be correlated (Atkins &
McNeal, 2018). There are also eye-tracking metrics that are more dynamic and include
information about how the focus of attention changes over time, such as saccades and
transitions. For example, when comparing students learning with animation or with
interactive feedback, the animated group was more likely to fixate after a short saccade
(Hoyer & Girwidz, 2020). In contrast, the interactive feedback group was more likely to
fixate after a long saccade indicating an influence of the group on visual behaviour
(Hoyer & Girwidz, 2020). Combined with an increased performance, these results
indicate that longer saccades are related to deeper processing. Other, more static, metrics
are roughly based on fixations, such as dwell time, which includes the duration of the
saccades and can include multiple fixations (Holmqvist & Andersson, 2017). Dwell time
is used similarly to fixations, for example, to analyse the effectiveness of animating
contextual elements in learning games, with longer dwell times indicating attention
(Javora et al., 2021). Transitions describe gaze switches between certain AOIs (Holmqvist

& Andersson, 2017). They can indicate whether students connect pieces of information,
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for example, by comparing the portion of transitions between different combinations of
representations, such as text and graph (Bayri & Kurnaz, 2015). A large number of
transitions suggests that information is being integrated with each other and this can be
used, for example, for developing adaptive learning systems (Kennel, 2022).

Information processing is a common topic in educational eye-tracking studies (Lai
et al., 2013). A literature review of 57 studies analysing animations in multimedia
learning found that most studies investigated cognitive processes (Coskun & Cagiltay,
2022). In the context of multimedia learning (see section 1.2.1), eye movements can be
indicators of cognitive processes, such as selection, organisation, and integration
(Alemdag & Cagiltay, 2018). Researchers assume that the percentages of, for example,
fixation durations or counts, can illustrate selection, whereas average and total fixation
duration can signify organisation (Alemdag & Cagiltay, 2018; Coskun & Cagiltay, 2022).
Percentages of fixation duration contain the distribution of attention over AOIs, indicating
relative (proportional) visual attention (Ruf et al., 2022; van Meeuwen et al., 2014). This
could imply that one area is perceived as more important than another to the viewer. For
example, middle-school students who solved a physics task correctly paid more relative
attention to relevant areas than those who solved the task incorrectly (Wang et al., 2022).
The number of transitions can indicate integration processes (Alemdag & Cagiltay, 2018;
Coskun & Cagiltay, 2022).

Selection processes are important to find relevant information (Mayer, 2014a).
They are used, for example, in eye-movement modelling examples by showing students
the eye movements of an expert and drawing their attention to relevant information
(Tunga & Cagiltay, 2023). In multiple-choice questions, this includes selecting the correct
answer, which students tend to fixate longer (Tsai et al., 2012). The selection process can,
for example, be facilitated by using the singalling principle (van Gog, 2021).

The most commonly examined processes are organisational processes (Coskun &
Cagiltay, 2022). Organisation is needed to coherently structure the selected information
(Mayer, 2014a). Organisation can be fostered via various means, such as providing
information about the structure of a video (Cojean & Jamet, 2022). When using the
signalling principle a combination of text-based cues and reflection prompts as well as
visual cues facilitated students’ understanding (Zheng et al., 2023). This combination of
text-based cues and reflection prompts seemed to foster reorganisation and integration of

information and was especially helpful in a transfer test.
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Integration processes are needed to integrate the organised information with prior
knowledge and — in the case of multiple representations — integrate different
representations, such as verbal and graphical ones, with each other (Mayer, 2014a).
Similar to organisation, integration processes have also been investigated in the context of
instructional videos, for example, the integration between textual (speech) and pictorial
information (Schiiler & Merkt, 2021). Results indicate that inconsistent information
between speech and pictures influences the participants’ visual behaviour but not the
learning outcome. Few participants noticed the discrepancies and they generally recalled
more pictorial than speech information, which could explain the equal learning outcomes.
Integration between text and other related representations is also important outside of
instructional videos. For example, in a study investigating fourth-graders’ processing of a
scientific text, those who made more integrative transitions between the text and the
pictorial representation learned better than those who did not (Mason et al., 2013). There
are ways to promote integration: For example, cues have proven effective in facilitating
integration processes between the vector field representation and the equation and text
also presented (Klein, Viiri, et al., 2019).

Cognitive processes can change with increasing expertise, for example, experts
encode information in long-term working memory differently than non-experts (Ericsson
& Kintsch, 1995). As cognitive processes can be distinguished via eye movements, it is

possible to analyse expertise differences this way (Gegenfurtner et al., 2011).

1.3.2. Expertise Differences in Eye Movements

Expertise is a common topic in STEM education research, for example, the
differences in visual processing between experts and non-experts are often investigated
(Hahn & Klein, 2022). Performance differences between experts and non-experts are
probably due to differences in the cognitive processes they execute when dealing with
information (Ericsson & Kintsch, 1995; Guida et al., 2012). Differences in visual
processing are discernible in the eye movements of experts and non-experts (Brams et al.,
2019; Gegenfurtner et al., 2011). Several theories can be used to interpret such
differences based on various eye-tracking metrics.

The information-reduction hypothesis states that experts can ignore information
that is irrelevant to the task at a perceptual level (Haider & Frensch, 1999). Therefore,
experts can more efficiently assign attentional resources to the relevant parts of a stimulus

(Brams et al., 2019; Gegenfurtner et al., 2011). This type of behaviour can be learned via
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repetition (Haider & Frensch, 1999). Based on this hypothesis, more and longer fixations
on task-relevant areas can indicate expertise compared to more fixations on
task-irrelevant areas indicating inexperience (Gegenfurtner et al., 2011). The
information-reduction hypothesis can be used in learning environments, for example, eye-
movement modelling examples helping non-experts recognise relevant areas more
quickly (Xie et al., 2021). It is supported by studies across various domains (Brams et al.,
2019). For example, in a study comparing advanced chemistry students with novice
second-semester chemistry students, Topczewski et al. (2017) found that for nuclear
magnetic resonance spectroscopy items novice students fixated more on the distractors
compared to expert students. In a study comparing participants with high and low graph
literacy, participants with high graph literacy paid more attention to relevant information
necessary for correctly interpreting the data (Okan et al., 2016). These findings support
the information-reduction hypothesis. However, research findings did not support the
information-reduction hypothesis in the domain of medicine (Brams et al., 2019). In
medicine, the holistic model of image perception seems to better explain differences in
eye movements between experts and non-experts (Brams et al., 2019).

The holistic model of image perception proposes that experts can process images
globally (Kundel et al., 2007). This may be due to parafoveal processing (Sheridan &
Reingold, 2017). Global perception of the image influences future search processes,
making experts more efficient (Gegenfurtner et al., 2011). Consequently, experts are
expected to fixate on relevant AOIs more quickly than non-experts (Brams et al., 2019;
Gegenfurtner et al., 2011). As mentioned above, the holistic model of image perception is
prevalent in research about medical expertise (Brams et al., 2019). However, a concept of
professional vision with experts being better at distributing their attention has also been
found in experienced teachers when assessing classroom situations (Huang et al., 2023)
and in pilots (Lounis et al., 2021).

Another assumption is that experts efficiently encode and store information in
their long-term working memory (Ericsson & Kintsch, 1995). Novices start grouping
information in working memory and, with practice, these so-called chunks move to long-
term memory (Guida et al., 2012), where experts can access them via retrieval cues
(Ericsson & Kintsch, 1995). Chunks can contain more familiar than unfamiliar or
nonsensical information (Simon, 1974). Consequently, researchers assume that experts
can concentrate more information in chunks than novices (Maries & Singh, 2023).

Novices have less experience and are less knowledgeable about the topic and can,
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therefore, hold less information in working memory (Guida et al., 2012). As a result,
novices process information less efficiently than experts (Ericsson & Kintsch, 1995;
Guida et al., 2012). Evidence for chunking has, for example, been found in expert chess
players (Chase & Simon, 1973). Foreign language learners can also use chunking
strategies (Albelihi, 2022). According to the theory of long-term working memory,
experts are assumed to have shorter fixation durations because they need less time to
retrieve information (Gegenfurtner et al., 2011). Support for perceptual chunking was, for
example, found in a study comparing novice, intermediate, and expert air traffic
controllers as novices focused longer on irrelevant information than experts and
intermediates (van Meeuwen et al., 2014).

Based on the CTML (see section 1.2.1) and these theories of expertise,
Gegenfurtner et al. (Gegenfurtner et al., 2023). The authors propose a cognitive theory of
visual expertise (CTVE) with three assumptions: First, that experts have a larger capacity
for domain-specific information processing (e.g., Ericsson & Kintsch, 1995). Second, that
visual processing of information changes with increased expertise (Haider & Frensch,
1999; Sheridan & Reingold, 2017) from a bottom-up to a top-down procedure. Third, that
“experts interact with their environment when processing information of a visual scene”
(Gegenfurtner et al., 2023, p. 153) and that they use meta-cognitive processes to evaluate
information based on the current task. Apart from long-term working memory storing
image chunks and prior knowledge, the CTVE proposes a visual register for (para-)foveal
processing temporarily holding visual images. During information processing, experts use
their meta-cognitive knowledge to monitor the cognitive processes processes proposed in
the CTML: selecting, organising, and integrating information. These processes are refined
and extended using the assumptions of the CTVE: Experts use para-foveal processing and
are able to ignore irrelevant information. During this, they use their prior knowledge to
determine which information is relevant. Experts also use their meta-cognitive knowledge
to monitor their cognitive processes and apply domain knowledge to construct their visual
field. The CTVE considers “educational usability” (Gegenfurtner et al., 2023, p. 150) and
can, therefore, be applied to educational contexts.

Education researchers have compared differences in the visual behaviour of
experts and non-experts in learning situations, for example, in the context of physics
(Hahn & Klein, 2022). In this thesis, this is especially relevant in the context of graph
comprehension. Previous research has found expertise-based differences in the visual

processing of graphs. For example, differences in graph interpretation (Bowen et al.,
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1999) and strategy during the process of solving graph-based tasks (Harsh et al., 2019)
have been found between students and faculty. Although all participants reported using a
comparable strategy, only experts implemented this strategy during their visual
processing (Harsh et al., 2019). This is in line with the monitoring assumption proposed
in the CTVE (Gegenfurtner et al., 2023) Undergraduate students seemed to learn their
professor's interpretation instead of learning how to come to the right conclusion
themselves (Bowen et al., 1999). Differences have also been found between science and
engineering students considered experts and students studying other disciplines
considered non-experts (Yen et al., 2012). When they first saw a graph problem, science
students paid more attention to the question and less attention to the answers than non-
science students. Presumably, the question area holds a lot of relevant information.
Therefore, these results are in line with the information-reduction hypothesis
(Gegenfurtner et al., 2011; Haider & Frensch, 1999). However, there were no statistically
significant differences between science and non-science students in the viewing time on
the graph (Yen et al., 2012). Another study compared the visual behaviour of
professionals and students solving engineering problems (Ahmed et al., 2021). The results
indicated that students fixated for a shorter time than professionals, although they seemed
to make more fixations. The findings indicating longer fixations for experts are in line
with the information-reduction hypothesis (Gegenfurtner et al., 2011; Haider & Frensch,
1999). However, experts making fewer fixations than non-experts indicates a slower
visual search rate, which is in line with findings of previous reviews regarding decision
tasks (Brams et al., 2019). This corresponds to the experts’ ability to ignore irrelevant
information (Brams et al., 2019) and is in agreement with the top-down procedure of
experts as described in the CTVE (Gegenfurtner et al., 2023). A special focus of previous
research has been on comparing physics students with students of different subjects
during problem-solving with graphs: all studies found that physics students performed
better than non-physics students independently of the task context (Briickner et al., 2020;
Klein, Kiichemann, et al., 2019; Susac et al., 2018). For example, physics students
outperformed economics students in a post-replication study in both physics and finance
tasks (Briickner et al., 2020). This might be due to the focus on graphs and their formulas
in multiple topics of physics education (Pospiech et al., 2019). However, irrespective of
the participants' subject, correct solvers focused more closely on relevant areas than
incorrect solvers (Klein, Kiichemann, et al., 2019), which is in line with the

information-reduction hypothesis (Gegenfurtner et al., 2011; Haider & Frensch, 1999).



18

Solving domain-specific tasks correctly, therefore, seems to be an indicator of experience
in a specific context as demonstrated by the differences in visual processing. This
indicates that successful learners can use visual chunking strategies although more
practice might be needed for brain reorganisation as indicated by neuroimaging experts
(Guida et al., 2012). Consequently, the inferences of expertise theories regarding visual
processing should be transferable to comparisons of correct and incorrect solvers.

Studies not only compared the differences between experts and non-experts to
interpret their visual strategies. Eye movements were also used as predictors of

performance (Klein, Kiichemann, et al., 2019).

1.3.3. Predictivity of Eye Movements

Eye movements have been used to predict the answer correctness of students
using statistical models (Becker et al., 2022; Chen et al., 2014; Klein, Kiichemann, et al.,
2019). For example, Chen et al. (2014) analysed 64 students’ responses to computer-
based textual or pictorial physics questions and found their performance could be
predicted via their eye movements. Students seemed to look longer at their correct
responses than at their incorrect responses. As a prediction model, Chen et al. (2014) used
generalised estimating equations as extensions for generalised linear models (Liang &
Zeger, 1986). There is also research on predicting students’ performance on graph
comprehension tasks using their eye movements: For example, using multiple regression,
students’ performance could be predicted for items of the Test of Understanding Graphs
in Kinematics (TUG-K) (Beichner, 1994) via visual attention as indicated by total visit
duration on relevant areas and those that were irrelevant to the solution of the tasks
(Becker et al., 2022). Klein, Kiichemann, et al., (2019) used the dwell time on concept-
specific AOIs to predict solution correctness for graph comprehension tasks employing
multiple ANOVAS as a statistical method.

Besides statistical methods, participants’ performance on graph tasks can be
predicted via machine-learning algorithms trained on the participants’ eye movements
(Dzsotjan et al., 2021; Kiichemann et al., 2020, 2021). High-school students’ (N=115)
performance on items of the TUG-K could be predicted based on the students’ visual
behaviour, specifically the total dwell time (Kiichemann et al., 2020) on and the number
of transitions between AOIs on the graph (Kiichemann et al., 2021). In a pilot study, the
learning gain of 36 participants walking the shapes of acceleration-time graphs could be

successfully predicted based on various eye-tracking metrics (Dzsotjan et al., 2021).
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In contrast to statistical methods, which are used to evaluate known datasets, the
goal of machine learning is to predict unknown outcomes based on known input data
(Géron, 2019). In doing so, machine learning enables transfer to unknown and new
datasets in a way that is not possible for statistical models. In an educational context,
supervised learning algorithms are frequently used to predict students’ performance
(Namoun & Alshangqiti, 2021). Kiichemann et al. (2020, 2021) used a Support Vector
Machine (SVM) as a machine-learning algorithm. This is a supervised classification
algorithm for categorising groups of an unknown test dataset based on the labels of the
training dataset (Géron, 2019). SVM tries to find the best function separating the groups
with the largest margin of error based on the training data (Géron, 2019). Dzsotjan et al.
(2021) found that SVM was the best predictor compared to k-nearest neighbour and
random forest. K-nearest neighbour groups data based on the data points' distance to each
other (Theodoridis, 2020). Random forest uses an ensemble of decision trees for
classification (Géron, 2019). The advantage of machine-learning algorithms, such as
SVM, k-nearest neighbour and random forest, compared to statistical models is that they
can also be used to predict complex non-linear relations between multiple features as they
function independently of the data’s distribution.

Which eye-tracking metrics should be used as input features can be analysed by
evaluating feature importance. Using feature importance can also increase the
interpretability of algorithms by indicating the importance of individual features for the
prediction. For example, the error of the eye-tracker calibration was a relevant feature for
the model trained by Caruso et al. (2022). They conducted a study with 147 university
students investigating their reading comprehension and could predict this based on
multiple eye-tracking metrics, such as fixation duration and saccades. In the context of
graph comprehension, Dzsotjan et al. (2021) made similar analyses of feature importance.
They found that adding more eye-tracking features does not necessarily improve the
algorithms’ performance.

Although machine learning has become more common in educational applications
in recent years (Hilbert et al., 2021; Zawacki-Richter et al., 2019), using
machine-learning methods can be difficult in an educational context, especially using eye
movements as input features. This is due to the commonly small size of such datasets,
frequently consisting of data of less than 100 participants (Hahn & Klein, 2022;
Strohmaier et al., 2020). Small datasets can be difficult to analyse due to the limited
number of data points (Rincén-Flores et al., 2022; Smith et al., 2014). A current study
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introduces a technique to judge the quality of machine-learning models and recommends
a method to evaluate small datasets (Steinert et al., 2024): To reduce bias,
machine-learning models are evaluated on various datasets using repeated nested cross-
validation in combination with permutation tests. The latter established a probability of
how generalizable the model is. The Matthews-Correlation-Coefficient (MCC) is the
recommended metric for evaluating binary classification (Chicco & Jurman, 2020;
Steinert et al., 2024). The MCC assesses the difference between actual and predicted
variables and is not influenced by class imbalances which is valuable for doing machine
learning with unbalanced datasets (Chicco & Jurman, 2020). This method could be
particularly relevant for using machine-learning methods on educational eye-tracking

datasets.

1.4. General Research Questions, Methodology, and Outline of the Studies

This thesis describes studies intended to contribute to facilitating graph use in
educational practice by analysing how graphs are created as a tool in learning and
problem-solving (research aim a), how graphs are visually processed by participants with
varying expertise (research aim b), and what effect the study discipline has during
problem-solving with graphs (research aim c). The theoretical foundation of all studies is
the CTML (Mayer, 2014a) introduced in section 1.2.1 because all studies are concerned
with learning with multiple representations including graphs. The first study is a
systematic review of generating convention-based graphical representations of numerical
data, defined as graphing, and connects to previous research on drawing (see section
1.2.2). Students often have difficulties during graphing (Clement, 1989; Leinhardt et al.,
1990). 1t is in the nature of expertise, that experts have fewer difficulties. As expertise can
be distinguished via eye movements (see section 1.3.2), a review of differences in visual
processing between experts and non-experts during learning and problem-solving with
graphs is presented as the second study of this thesis. The findings of the study support
the information-reduction hypothesis (Haider & Frensch, 1999). This hypothesis was also
supported by a study investigating graph comprehension in a physics context (Klein,
Kiichemann, et al., 2019). Although there does not seem to be an overarching definition
of expertise in the context of graph comprehension (see section 3), physics students are a
convenient comparison group for expertise research, because physics students are often
considered experts compared to students of different disciplines (Briickner et al., 2020;

Klein, Kiichemann, et al., 2019; Susac et al., 2018). Furthermore, expertise is a common
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topic in physics education research (Hahn & Klein, 2022). The third study presents an
eye-tracking study comparing first-year physics with medical students — both groups
taking physics courses during the first semester. An analysis of the participants’ eye
movements indicates that there are differences in visual processing between correct and
incorrect solvers. Results regarding performance differences between these groups are
presented in Study 3 (see section 4).

The following sections provide short overviews of the three articles as well as
brief clarifications of the specific theory and the methodology used. The detailed results
are presented in the articles included in the following sections as well as in a brief

overview of the findings of every study in section 5.1.

1.4.1. Outline of Study 1

Creating graphical representations is an important aspect of education (see section
1.2.2). Graphing falls under this description. Many studies have analysed graphing (see
section 1.2.3). There are many educational contexts in which students can create graphs,
for example, during problem-solving (Kanzaki & Miwa, 2011) or test-taking (Curcio,
1987), as well as during graphing instruction (Harsh & Schmitt-Harsh, 2016). Instruction
might be combined with problem-solving activities, for example, by allowing students to
revise graphs based on their ideas as part of an instruction regarding density concepts
(Vitale et al., 2019). Graphing has also been investigated during lab activities (Adams &
Shrum, 1990). For example, undergraduate students taking a physics lab course had
difficulties finding the correct scale when constructing the frame for a graph in a study
about finding best-fit lines (Nixon et al., 2016). Students also had trouble connecting the
graph with the underlying concept, although they could successfully construct the line
(Nixon et al., 2016). A special research focus has been on difficulties during graphing
(e.g., McDermott et al., 1987), such as student misconceptions (Clement, 1985). Common
student misconceptions include graph-as-picture errors, which, for example, is the case
when students create a pictorial representation of a situation instead of a position-time
graph based on data representing the situation (Gerard et al., 2012; Harrison et al., 2019).
Extracting and appropriately representing data can, therefore, be difficult for students
(Oslington et al., 2020). As graphs are an important representation not only in education
and creating graphs is a relevant aspect of graphing competence (see section 1.2.3), it is

important to know how graphing is instructed and what difficulties students may have.
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However, there has not yet been a systematic review of the literature on this topic.
Therefore, the first study aims to fill this research gap. The following research questions
(RQ) were considered:

RQ 1: How is the graphing implemented in studies on this activity in K-12 STEM

education?

RQ 2: What is the added value of graphing in K-12 STEM education?

RQ 3: Which difficulties can arise when graphing in K-12 STEM education?

To answer these research questions, a systematic literature review according to
guidelines of preferred reporting items for systematic reviews and meta-analyses
(PRISMA) 2020 (Page et al., 2021) was conducted. First, terms in the relevant categories
of graph creation, STEM education, and numerical data as the basis of graphs were used
for a search of several databases (ERIC, Psychilnfo, Scopus). The literature search found
10,296 articles. Two raters then screened the titles and abstracts of these articles in
duplicate with a machine-learning-based software called ASReview (Utrecht University,
2021). This software can reduce the work needed for screening by approximately 80%
(van de Schoot et al., 2021). Of the initially discovered articles, 394 were included in the
full-text screening. This resulted in 41 included studies. Afterwards, additional forward-
and backwards-snowball searches were conducted during which three additional eligible
studies were found. Two coders coded relevant variables for all included articles to

answer the research questions.

1.4.2. Outline of Study 2

The final research question of Study 1 focused on student difficulties during
graphing. However, students not only have difficulties during graphing but also when
learning and problem-solving with graphs (see section 1.2.3). Per definition, experts do
not have the same problems as non-experts. This could be due to the more efficient
information processing of experts compared to non-experts (see section 1.3.2). Cognitive
processes can be inferred from eye movements (see section 1.3.1) and expertise
differences can also be seen in visual processing (see section 1.3.2). Various reviews
analysed differences in visual behaviour between experts and non-experts (Brams et al.,
2019; Gegenfurtner et al., 2011; Sheridan & Reingold, 2017). This is also a common
research topic in STEM education, such as physics (Hahn & Klein, 2022). As graphs are a
common topic in STEM education, visual differences between experts and non-experts

during learning and problem-solving with graphs have been a common research topic. An
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overview of visual differences between experts and non-experts in this area could help
facilitate student learning as these can be used to develop support for students.

The second study presents a review of the literature investigating differences in
the visual processing of experts and non-experts during learning and problem-solving
with graphs. We had two research aims:

Research aim 1: Provide an overview of the eye-tracking metrics used to

distinguish experts and non-experts.

Research aim 2: Provide an overview of differences in visual behaviour between

experts and non-experts.

We analysed 32 studies published between 2003 and 2022 to answer these
research questions. All studies compared the visual behaviour of experts and non-experts
learning or problem-solving with graphs in STEM contexts. We coded relevant
information including the graph subject, the type of graph used, the type of eye-tracking
metric, and how many eye-tracking metrics were analysed. The literature review includes
a summary and narrative analysis of these results. We distinguished between eye-tracking
metrics and the size of the AOIs because the calculation of various eye movements, such
as fixation duration, is based on the AOIs (see section 1.3.1). Three sizes can be
distinguished: micro-level AOIs consist of very small areas, such as individual ticks on
the x-axis of a graph; meso-level AOIs are bigger, for example, consisting of the entire
x-axis of a graph; macro-level AOIs distinguish between large parts of a stimulus, such as
between an entire graph and corresponding text (André et al., 2015). An example of these
AOIs is depicted in Figure 1: The entire graph is considered a macro-level AOI, the
functions combined with the x-axes and y-axes depicted in green are meso-level AOlIs.

The function and axes labels as well as small task-relevant areas are micro-level AOIs.
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Figure 1
Macro-Level AOI (Entire Graph), Meso-Level AOls in Green, Micro-Level AQIs in

Blue.

1.4.3. Outline of Study 3

Graph comprehension in the context of learning and problem-solving can be
investigated with eye movements. Eye movements can indicate visual processing (see
section 1.3.1) and expertise (see section 1.3.2). There are attempts to define expertise; for
example, expert students should use knowledge intelligently and wisely, combining not
only the application of knowledge but also the use of creative strategies and a successful
transfer to practice (Sternberg, 2003). Other research considered specific disciplines, for
example, physics experts might know how to approach a problem with an obvious
solution without having to use the same problem-solving processes as physics novices
(Maries & Singh, 2023). Further insights into problem-solving practices of various
disciplines could lead to insights about expertise regarding the solution process of various

types of problems, such as graph comprehension tasks, and how to facilitate those skills.
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Several studies have compared physics students as experts with non-physics
students as non-experts during problem-solving with graphs (Briickner et al., 2020; Klein,
Kiichemann, et al., 2019; Susac et al., 2018). All studies found that physics students
outperformed non-physics students in graphs of physics and non-physics contexts
(Briickner et al., 2020; Klein, Kiichemann, et al., 2019; Susac et al., 2018). There were
also differences in visual behaviour between correct and incorrect solvers (Klein,
Kiichemann, et al., 2019). With this study, we extend previous research by comparing
physics students with medical students who also take physics courses during the first
semester. We aimed to answer the following research questions:

RQ 1: Are there differences in learning gain between physics and medical students?
RQ 2: Are there differences in the visual behaviour of students solving tasks correctly
or incorrectly?

We conducted a pretest-posttest study with first-semester medical and physics
students. Students participated in November 2022 at the beginning of their first semester
and again in March 2023 at the end of the first semester. They completed isomorphic
items in physics and mathematics as in the previous studies (Briickner et al., 2020; Klein,
Kiichemann, et al., 2019) based on approved tests (Ceuppens et al., 2019; Susac et al.,
2018). We designed similar isomorphic items for a medical context. The complete test
material is available under

https://osf.io/dgx3p/?view_only=515ffd3eclbc474abtd7f1c2778d721e. The eye

movements of the participants were recorded with Tobii Pro Nano eye trackers. We
analysed dwell time to compare our results with previous studies (Briickner et al., 2020;
Klein, Kiichemann, et al., 2019; Susac et al., 2018).

Statistical analyses of learning gain and dwell time were conducted in R. Learning
gain consisted of the difference between the percentage of correct items in the posttest
and the percentage of correct items in the pretest. A factorial ANOVA was conducted to
analyse differences in learning gain depending on the study subject (physics vs. medicine)
and item context (mathematics vs. physics vs. medicine). Dwell time was analysed via
multiple linear regression to analyse the effect of study discipline (physics vs. medicine),
the specific AOIs (text vs. answers vs. graph vs. axes vs. axes labels), the context
(mathematics vs. physics vs. medicine), the test (pretest vs. posttest), and the concept of
the task (area vs. slope).

Previous studies found differences in visual behaviour, specifically in dwell times,

between correct and incorrect solvers (Klein, Kiichemann, et al., 2019). We aimed to


https://osf.io/dgx3p/?view_only=515ffd3ec1bc474abfd7f1c2778d721e
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replicate these findings with machine learning algorithms as this is assumed to be a
suitable method to analyse eye movements (see section 1.3.3). Answer correctness via the
participants’ dwell times on the AOIs. Machine learning analyses were carried out in
Python in the Jupyter Notebook environment. The machine learning algorithms used were

optimised for small datasets (Steinert et al., 2024).
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2. Study 1: A Systematic Review of Empirical Research
on Graphing Numerical Data in K-12 STEM

Education

Reference: Ruf, V., Thiis, D., Malone, S., Kiichemann, S., Becker, S., Vogel, M.,
Briinken, R., & Kuhn, J. (2024). 4 Systematic Review of Empirical Research on Graphing
Numerical Data in STEM Education. ArXiv.

https://doi.org/10.48550/arXiv.2411.13195

Copyright © Ruf, Thiis, Malone, Kiichemann, Becker, Vogel, Briinken and Kuhn. This
article is an open access article distributed under the terms and conditions of the Creative

Commons Attribution (CC BY) license (https://creativeco mmons.org/licenses/by/4.0/).
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Abstract

Graphs are essential representations in the professions and education concerning the science,
technology, engineering, and mathematics (STEM) disciplines. Beyond their academic
relevance, graphs find extensive utility in everyday scenarios, ranging from news media to
educational materials. This underscores the importance of people’s being able to understand
graphs. However, the ability to understand graphs is connected to the ability to create graphs.
Therefore, in school education, particularly in STEM subjects, not only the understanding but
also the skill of constructing graphs from numerical data is emphasized. Although
constructing graphs is a skill that most people do not require in their everyday lives and
professions, it is a well-established student activity that has been empirically studied several
times. Therefore, since a synthesis of the research findings on this topic has not yet been
conducted, a summary of the studies investigating graphing via various viewpoints and
differing methods could be a valuable contribution. To provide an overview of the empirical
literature on this important topic, our systematic review identifies how the construction of
convention-based graphical representations of numerical data, referred to as graphing, has
been studied in previous research, how effective graphing is, and which types of difficulties
are encountered by students. Based on these aspects, we defined inclusion criteria that led to
50 peer-reviewed empirical studies on graphing in K-12 STEM education found in SCOPUS,
ERIC, and Psychlnfo. Graphing instruction seemed to be beneficial for student learning, not
only improving graph construction but also graph interpretation skills. However, the students
experienced various difficulties during graphing, both during graph construction and the

interpretation and usage of data.

Keywords: systematic review; STEM education; graphing; numerical data
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Introduction

General mathematical skills, such as the competent handling of numerical data and
their external representations (Chalkiadaki, 2018), are key skills in the 21* century for
thinking critically and using information adequately (Program for International Student
Assessment, 2021). Numerical data are often represented graphically to provide a
comprehensive and easily accessible overview of a topic. Unlike informal representations,
such as sketches, formal graphical data representations follow certain conventions, and to
extract information correctly, it is necessary to be familiar with these conventions. We define
graphing as the construction of convention-based graphical representations of numerical data,
a key aspect of graphing competence (Glazer, 2011). Graphing competence contains both the
interpretation and creation of convention-based graphical representations (Glazer, 2011) and
is an important skill in K—12 education, especially in science, technology, engineering, and
mathematics (STEM) disciplines. Consequently, both activities should be practiced
extensively in class (Diaz-Levicoy et al., 2018; Dossey et al., 2016; Glazer, 2011;
Kultusministerkonferenz, 2012). In addition, the ability to interpret numerical data is
fundamental to understanding everyday statistical phenomena, such as stock markets, the
progression of a pandemic, and risk evaluation (Schiiller et al., 2019). Therefore, numerical
data are highly relevant beyond STEM fields, and the ability to understand data is an essential
part of everyday life (Friedrich et al., 2024). Several theoretical scientific works and multiple
empirical studies have examined this graphing as a student activity in K—12 education.
However, empirical research on this topic is diverse using different study designs and
analysis methods. In this systematic review, we aim to synthesize existing empirical research
on the use of student graphing of numerical data in K-12 STEM education and its

effectiveness as an educational method by reviewing how this skill has been employed in
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various contexts, what its effectiveness has been in terms of different learning outcomes, and

which difficulties students and teachers have reported.

Representations in STEM Education

Representations are common in STEM education (Rau, 2017) and serve multiple
functions, such as memory support, facilitating inferences, or making discoveries (Tversky,
1997). Learning material can, for example, consist of text, equations, and graphical
representations — such as pictorial or graphical representations of numerical data. Therefore,
such learning material can be considered in the context of learning with multiple
representations.
Multiple Representations in Education

Two prominent theoretical models that deal with multiple representations in learning
are the Integrated Model of Text and Picture Comprehension (ITPC; Schnotz, 2005) and the
Cognitive Theory of Multimedia Learning (CTML; Mayer, 2005, 2014). Both models,
distinguish between symbolic and analogue representations (usually text and pictures) and
predict the learning benefits of the simultaneous use of both types of representations owing to
the construction of dual mental representations, which enhances the storage and retrieval of
information (the multimedia effect; Mayer, 2005). Ott et al. (2018) showed that the
multimedia effect also accounts for problem-solving using text and symbolic mathematical
representations. Different types of representations accentuate different information (Zhang &
Norman, 1994) thus activating different cognitive functions (Zhang, 1997). Understanding
this thinking process is also important when considering graphical representations of data in
STEM education (Duval, 2006). For example, data is interpreted differently depending on

whether it is presented in a bar or a line graph (Shah & Freedman, 2011).
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Besides their representational advantages, multiple representations can fulfil various
other pedagogical functions. Ainsworth (1999) defined three different functions that provided
or self-generated multiple representations can have during learning. First, two (or more)
representations can complement each other. In this regard, Ainsworth (1999) distinguished
between representations that involve complementary processes and those that contain
complementary information. In complementary processes, diverse representations may help
perform different tasks, support unique learners’ characteristics, or accommodate specific
strategies that learners may want to use. Multiple representations with complementary
information are not redundant; rather, each individual representation provides unique
essential information for learning. Second, multiple representations can constrain one
another’s interpretations to prevent misunderstandings—for example, by adding a familiar
type of representation to the introduction of a new one. Moreover, representations constrain
one another via their properties—for example, if one representation is more specific than
another (Ainsworth, 1999). Third, representations can be used to deepen understanding via
abstraction, extension, or relations. Abstraction, as a function of representations, entails the
reorganization of information. If the reason for using multiple representations is extension,
then knowledge is enhanced—for example, by being transferred to another context. Relating
information between representations means translating between representations. Finally,

representations can be used for more than one function simultaneously (Ainsworth, 2006).

These functions are also a part of Ainsworth’s (2006) design, function, and task
(DeFT) framework. This framework proposes that aspects of design, functions, and tasks
should influence the creation of learning material that includes multiple representations.
Apart from the aforementioned functions, DeFT considers the following five design
parameters: the number of representations, how the information is distributed across

representations, the types of representations, the order of representations, and the amount of
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support needed to translate between representations (Ainsworth, 2006). The cognitive tasks
that learners are presented with when they encounter a (novel) representation include
understanding how information is represented, how this information relates to the
corresponding domain, how to choose a suitable representation, and how to construct a
representation (Ainsworth, 2006). Self-generated graphs have the potential to serve all the
functions from Ainsworth’s approach, depending on the characteristics of the visualized
information, such as design, the relation to other given representations, and learner
characteristics. Moreover, graphing might include all cognitive tasks suggested by
Ainsworth’s framework (2006), as learners have to first choose and then correctly generate a
graphical representation, which requires knowledge of how to correctly present information
and relate the information to the domain as well as to other representations. Graphing thus
leads to learners handling multiple external representations, which can promote learning in

different ways.

Students need certain competencies to effectively learn with multiple representations,
such as the ability to describe and use (multiple) representations appropriately, which
involves the ability to choose a representation based on the context, task demands, as well as
on personal ability and goals (Rau, 2017). This is an important instructional goal for students
(diSessa, 2004), especially due to its relevance for scientific education (diSessa & Bruce,
2000) and practice (Gooding, 2004). The ability to use multiple representations is an essential
skill for communicating information (de Vries & Masclet, 2013) and solving problems
(Duval, 2006; Zhang, 1997). For example, sixth-grade students were more likely to solve
math problems when they used schematic instead of pictorial representations (Hegarty &
Kozhevnikov, 1999). Difficulties in dealing with representations might be due to lacking
metarepresentational competence (diSessa, 2004). For example, Duval (2006) distinguishes

between two different cognitive processes when transforming representations: transforming
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representations in one register (such as creating a graph based on a table, called treatments)
and between registers (i.e., creating a function graph based on an equation, called

conversions). This review considers only the first type of transformation.
Graphs of Numerical Data

Graphical representations of numerical data (graphs) are generally based on
conventions, such as depicting the dependent variable on the y-axis (Lachmayer et al., 2007),
which is particularly important for their function of conveying information (de Vries &
Masclet, 2013). Graphs are widespread and frequently used representations that display the
variance of a single variable (univariate) or the dependence of two (bivariate) or more
(multivariate) variables (Eichler & Vogel, 2012). Numerical data often represent an observed
phenomenon, including randomly caused variances, and functional graphs are used to model
the structure of a bivariate (or multivariate) dataset via certain mathematical functions
(Eichler & Vogel, 2012; Engel, 2018). Interpreting unknown graphs is an important skill
because it denotes an act of learning — moving between abstract and concrete representations
(Roth & Hwang, 2006). Functional graphs, which in a narrow sense are considered pure
mathematical objects without contextual information, are not part of this review because such
graphs can be constructed without numerical data using a mathematical equation alone.
Graphing draws information from another source of numerical data (e.g., creating a line
graph based on a data table). Generating such graphical representations is assumed to
improve understanding, as the generation process requires engaging deeply with the structure
of the represented numerical data, and the relevant characteristics of datasets can be
communicated very effectively via graphical representations (Ainsworth et al., 2011).
Therefore, we include studies on self-generated or partially completed graphical
representations and exclude those that exclusively address the interpretation of or learning

with provided graphs in our review.
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Although numerous scientific studies have examined student graphing, to the best of
our knowledge, scholars have not conducted a systematic review to synthesize the findings.
The present review aims to synthesize the existing results, both positive and negative,
regarding the construction of convention-based graphical representations based on numerical

data.
Graphing in STEM Education

Graphing competence covers both the interpretation and creation of graphical
representations (Glazer, 2011). Graphing competence is necessary for STEM learning—for
example, students should be able to relate the data depicted in a graph to the phenomenon
that it describes (Glazer, 2011). The definition of graphing competence also incorporates such
concepts as “graph comprehension” (e.g., Curcio, 1987; Kanzaki & Miwa, 2012; Zacks &
Tversky, 1999), “graph interpretation” (e.g., Biehler, 2006; Boels et al., 2019; Ergiil, 2018;
Gaona et al., 2021; Lachmayer et al., 2007; Nixon et al., 2016; Roth & Bowen, 2001), and
selecting an appropriate graph type for a certain task (e.g., Baker et al., 2001; Kanzaki &
Miwa, 2012; von Kotzebue et al., 2014). The term “graphical literacy” is also related to
graphing competence and includes the skill of constructing graphs (Subali et al., 2017); in
addition, it influences graph comprehension (Freedman & Shah, 2002).

Theoretical Framework of Graphing

Several theoretical approaches can be employed to predict the positive effects of
graphing on learning. These approaches can be distinguished in terms of two aspects of
graphing: graphing as learning using multiple representations (see above) and graphing as an
active generative activity. The first perspective assumes that learning with more than one
representation facilitates learning, as is the case when creating a second (graphical)

representation that complements the first (often numerical) representation (Mayer, 2005,



36

2014; Schnotz, 2005). Theories on active generative activities argue that learners are more

engaged when they generate representations (Chi & Wylie, 2014).

An educationally relevant aspect of graphing is that, for learners, it is an active
generative process. Consequently, being located at the high end of Chi and Wylie’s (2014)
Interactive, Constructive, Active, and Passive (ICAP) framework, graphing has several
advantages. The ICAP framework states that the effectiveness of learning activities decreases
from interactive to constructive and from active to passive activities as learner engagement
declines. According to the ICAP framework, generating a graphical representation that
learners have not seen during learning and that is solely based on numerical data is a
constructive activity and should be associated with considerable benefits.

This is supported by generative learning theory, in which Wittrock (1974) suggested
that understanding is closely related to generation. He assumed that there are “organizational
structures for storing and retrieving information” (p. 182) as well as mechanisms for
retrieving stored (prior) knowledge and integrating new material. Wittrock (1992) explicitly
stated that the aim of learning is not to store information but to build meaningful connections.
This includes paying attention to and making sense of the learning material (Wittrock, 1992).
Accordingly, instruction should focus on teaching learners to generate meaning. The overall
benefit of generation activities, such as finding synonyms instead of merely reading a text,
has also been called the “generation effect” and can be found in literature reviews (e.g.,
Bertsch et al., 2007). In their meta-analysis, Bertsch et al. (2007) found evidence that the
generation effect increased with higher mental effort. When performing an active generation
activity during learning, such as constructing a graphical representation based on the
provided information, close attention should be paid to the presented information—for
example, to the structure of the provided numerical data. This information is then connected

to prior knowledge, such as previously learned conventions for interpreting graphical
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representations. Based on this research, one can assume that graphing is more advantageous
to learners than merely looking at graphs and practicing graph comprehension. However, it is
difficult to determine the effectiveness of graphing as an instructional method in general
based on individual studies, especially because the way graphing is conducted (e.g., manually

or via tools) might also influence the learning outcome.

There are numerous ways in which graphing activities can be implemented in
education. In our review, we are interested in not only how graphing has been examined in
studies but also whether and how authors embedded graphing into existing theories. As
theoretical contextualization may depend on the purpose of education, analyzing the possible
implications of this link could produce valuable insights for educators. The purpose and
advantages of graphing in the STEM context may differ from the results found regarding the

generation of external representations in general.
Previous Research on Graphing

Previous literature reviews have focused on students “drawing” or “sketching” during
learning (Cromley, Du, & Dane, 2020; Fiorella & Zhang, 2018; van Meter & Garner, 2005;
Wu & Rau, 2019), which, as generative processes, have certain similarities to graphing.
According to van Meter and Garner (2005), sketches of various activities, such as swimming
(Schmidgall et al., 2019), are representations of a mental image; therefore, the designs of
representations can vary between learners. However, graphing follows general construction
conventions, which means that graphing, when done correctly based on numerical data for a
specific purpose, leads to comparable results regardless of the learner. Despite this, graphing
is not a simple procedure, as even scientists sometimes do not choose the most appropriate
graph type to display their data and, for example, seem to prefer line graphs to other types of

graphs (Weissgerber et al., 2015).
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The generation of representations is used to visualize and externalize information
(Schmidgall et al., 2019). According to Stern et al. (2003), active graph generation supports
an understanding of how graph design is generally related to the contents represented,
compared with just exploring a given graph. This general understanding is transferable across
domains. Furthermore, Stern et al. (2003) found that due to an enhanced examination of the
material (generation effect), learners benefitted from generating graphs during a problem-
solving task involving graphing in stock-keeping. In her review of graph interpretation,
Glazer (2011) recommended instructing students in graph interpretation and graph creation
(see also Cox, 1999). Such focused instruction can guide the generation of graphs, improve
their accuracy, and highlight key points in graph design as well as the relationships between
graphical representations (van Meter & Garner, 2005). Support during graphing can facilitate
comprehension, although generation increases students’ cognitive load compared to learning
with provided representations (Zhang & Fiorella, 2021). Generating external representations
also improves problem-solving (Cox, 1999), deep understanding, and knowledge transfer
(Chi & Wylie, 2014).

In educational practice, generating graphical representations is relevant to several
disciplines, most notably STEM subjects. Diaz-Levicoy et al. (2018) evaluated statistical
graphs in mathematics textbooks for first- to sixth-grade students in primary education and
found that generating graphs was the second most frequently taught activity (after basic
mathematical operations, such as addition). A previous review by Leinhardt et al. (1990) of
the literature on graphing and graph interpretation of functions also highlighted the
importance of the ability to construct graphs because it “can be seen as one of the critical
moments in early mathematics” (p. 2). Convention-based graphical representations of
numerical data are used not only in mathematics but also in other contexts, such as physics,

and research on graphing focuses on diverse learning objectives.
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Using a pretest-posttest design, Mevarech and Kramarsky (1997) noticed a positive
effect of graphing instruction on eighth-grade students’ manual graphing abilities but also
identified persistent difficulties. In a three-year-long study that analyzed students’ reasoning
when constructing line graphs, Wavering (1989) found that students’ reasoning ability
increased over time. This is particularly important because graphing is a relevant aspect of
scientific inquiry (Gooding, 2010). For example, Schultheis et al. (2023) used authentic
research experiences (Data Nuggets), which included graphing authentic datasets, in the
context of biology and found that students improved in using scientific constructing scientific
explanations. They were also more interested in STEM careers. Bahtaji (2020) compared
undergraduate students’ learning in the following three conditions, examining the conditions’
effects on conceptual knowledge and graphing skills: (a) with provided graphs, (b) with self-
constructed graphs, and (c¢) with self-constructed graphs made using explicit graphing
instruction. He found that although all interventions facilitated conceptual knowledge
acquisition, only explicit instruction developed graphing skills. Similarly, Harsh and Schmitt-
Harsh (2016) used an instructional design to enhance graphing skills during a general
education science course at a university and found that students improved between the pretest
and the posttest. Angra and Gardner (2016) discovered differences between novices and
experts in the construction of graphical representations based on tables. Along the same lines,
experts’ explanations were consistent with the graphs that they generated, which was not
necessarily the case for novices (Kanzaki & Miwa, 2012). Based on a qualitative analysis,
Angra and Gardner (2016) developed a step-by-step guide for teaching students how to
choose a graph type, construct the graph after planning each step, and, finally, critically
reflect on the graph choice. Based on these steps, teachers can adapt their instructions in

relation to students” answers, and students can develop a clear process for graphing.
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Furthermore, graphing can be performed manually as well as with the help of
software tools. For example, in a qualitative analysis, Parnafes and Digoodi (2004) found that
reasoning type was related to representation type when middle school students interacted in
groups with the software environment NumberSpeed. The students used content-based
reasoning when working with number—list representations and more model-based reasoning
when working with spatial and dynamic motion representations. Nixon et al. (2016) noted
that undergraduate students’ understanding of best-fit lines changed depending on the physics
lab activity. Biehler’s (2006) results indicated that students had difficulties interpreting
graphical representations in the context of a task during a qualitative analysis of students’

group work with Fathom software.

Overall, previous studies in STEM education have revealed (a) a variety of
educational settings in which the graphing of numerical data is useful (Bahtaji, 2020; Harsh
& Schmitt-Harsh, 2016), (b) the cognitive aspects necessary for and during graphing (e.g.,
Mevarech & Kramarsky, 1997; Wavering, 1989), and (c) students’ graphing strategies and
their interpretations in the context of physics lab activities (Nixon et al., 2016). In the present
review, we aim to systematically synthesize and summarize studies on the graphing of
numerical data to facilitate the comparison of various methods across different STEM

contexts in terms of their similarities, differences, and effectiveness.
Students’ Difficulties

Understanding students’ difficulties is important to facilitate graphing competence. In
a literature review, Boels (2019) described conceptual difficulties when interpreting
histograms related to the interpretation of data and distribution. Moreover, von Kotzebue et
al. (2014) investigated the mistakes made by 437 science students when constructing
diagrams in the context of biology. Students had trouble in all analyzed categories, such as

choosing the correct diagram type, assigning variables to axes, and scaling. Nixon et al.
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(2016) observed that determining the axes’ scaling posed a problem for students when
graphing during physics lab activities. Baker et al. (2001) asked eighth and ninth graders to
select, interpret, and construct graphs. Most students’ performance seemed to depend on their
ability to transfer knowledge from bar graphs to other graphical representations of data. Bayri
and Kurnaz (2015) examined eighth-grade students who constructed different types of
graphical representations and concluded that students had difficulty shifting between different
types of representations. The authors assumed this to indicate that, for students, various types
of graphical representations could have different meanings. One reason for this could be that
students see representations as analogue reflections of reality rather than representations of a
symbolic character (graph-as-picture error; Clement, 1989).

These studies show how difficult graphing can be for students and how important it is
for instructors to be aware of these difficulties. Therefore, it is important to consider not only
how graphing is implemented in various studies and its effectiveness in these contexts but
also the possible problems faced by students.

Research Questions

Based on previous research, our literature review aims to systematically examine
graphing in STEM subjects in K-12 education. This is the context in which students learn
how to construct graphs and where graphing is often assessed (i.e., in exams). This review
therefore addresses the following questions:

(1) How is graphing implemented in studies on this activity in K-12 STEM education?
(2) What is the effectiveness of graphing as an instructional method in K-12 STEM

education?

(3) Which difficulties can arise when graphing in K-12 STEM education?
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This systematic review is documented and reported according to the guidelines for

preferred reporting items for systematic reviews and meta-analyses 2020 (PRISMA, Page et

al., 2021). In the following section, we present the exact method.

Inclusion and Exclusion Criteria

An article’s suitability was judged based on the inclusion criteria. We were interested

in all studies that examined the graphing in K—12 STEM education. Participants were

students in K-12 education who participated in studies with a STEM topic. We were only

interested in self-generated or partially completed graphical representations rather than pure

graph interpretations. The representations should be based on convention; completely new or

made-up representations were not included. Furthermore, the generated graphs should be

based on numerical data. Studies that investigated graphing based on given verbal—textual or

mathematical-symbolical information were excluded. All criteria are summarized in Table 1.

Table 1

Criteria for Inclusion and Examples of Exclusion

Criterion Inclusion Exclusion examples
Subjects K-12 students University students
STEM Education STEM topic Liberal arts topic
Graphing Self-produced graph Provided graphs
STEM practice Convention-based graph Self-invented
representations
Numerical data Data-based graph Function graph not based on

data
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Publication language English Korean
Publication type Empirical research Theoretical research
Scientific evaluation Peer review Grey literature

Literature search

The search was conducted in March 2022 using the following three major scientific
databases selected by our interdisciplinary review team due to the high quantity of
educational research in various disciplines: Scopus, ERIC, and PsycInfo. ERIC and PsycInfo
were accessed via EbscoHost. Relevant terms in the categories of Education, Graphing, and
Data use were based on previous scoping searches to form a complete yet economical search
term. The full search term was (educat* OR student*) AND (graphing OR graph OR graphs
OR plotting OR plot OR plots) AND (data* OR variable* OR construct*). We considered the

title, abstract, and keywords in the systematic search.

Exported records were saved, managed, and deduplicated using the reference
management software Mendeley. After deduplication, the records were screened. In the first
step of the screening, only the title and abstract were considered. For this, we used ASReview
(Utrecht University, 2021). ASReview speeds screening by using machine learning to
prioritize the articles found during the systematic search (van de Schoot et al., 2021). The
software continuously updates the order of the titles and shows the most relevant studies first.
The algorithm was first trained using included and excluded articles, which were found
during scoping searches and discussed by the review team. Each user decision
(include/exclude) made in ASReview was used to improve the model during the entire
screening process. Two coders from the review group trained the algorithm up to a
termination criterion (<5 relevant titles in 100). The same two raters then manually screened

the studies that were judged relevant when considering the full text using the software
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Rayyan (Ouzzani et al., 2016). Any discrepancies were solved via discussions between the
two raters and, if necessary, with the broader review group. Therefore, we reached complete
agreement between the two raters. In the next step, relevant conferences in the psychological
and educational contexts were reviewed for the relevant proceedings according to the
following eligibility criteria: We looked for international conferences in a (STEM) education
context, with English abstracts, and full papers published as part of the proceedings. The
conferences should also be peer-reviewed. Seven conferences matched these criteria: the
International Conference of the Learning Sciences (ICLS), the International Conference on
Teaching Statistics (ICOTS), and the meetings of the American Educational Research
Association (AERA), the European Association for Research on Learning and Instruction
(EARLI), the European Science Education Research Association (ESERA), the Cognitive
Science Society, and the National Association for Research in Science Teaching (NARST).
We restricted our search to start from the year 2019 because we assumed that relevant
research would be published as a paper that would be found in the normal search process. For
articles included after the full-text screening, a forward and backward search for further
potentially relevant articles was conducted. A second search for papers published after the
initial search was conducted in April 2024 to update the results. A complete overview of the

literature search and screening process can be seen in Figure 1.
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Data Extraction and Coding Schemes

In our literature review, we summarize and synthesize studies that deal with the

contexts, effects, and difficulties of graphing in K—-12 STEM education. For each included

study, we extracted relevant data (see Table 2 for an overview of example codes). Two

coders coded all studies, and possible disagreements were resolved via discussion.
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We extracted information about the sample and the general study characteristics to
structure the body of the research. We classified the selected studies according to the
addressed topic, as research indicates that students’ representation use and graph
interpretation can differ between domains and contexts (Chang, 2018; Roth & Bowen, 2001).
Furthermore, we are interested in the types of graphical representations that students
generated to compare the graphing of univariate (e.g., bar graphs) and multivariate data (e.g.,
scatter plots). This could be relevant because, for example, bar and line graphs are associated
with different concepts, such as discrete comparisons and trends (Zacks & Tversky, 1999).
For graphing, it may be important whether the learners generated the data themselves, as
described by Nixon et al. (2016), or whether they were provided with the data (e.g., Bahtaji,
2020). This might be relevant as self-generated and provided data have different learning
benefits (Hug & McNeill, 2008). With the availability of computers and other technical tools,
there might be differences due to technological difficulties (Chang et al., 2024) between
manual graphing (e.g., Wavering, 1989; Subali et al., 2017) and the construction of graphical
representations via programs, whose availability has increased in recent years (e.g., Kohnle et
al., 2020; Lee & Lee, 2018). This might influence the perspective from which students view
data because it might be easier to create representations of aggregate data, such as box plots,
with tools than manually (Konold et al., 2015). Moreover, we would like to know whether a
gender-balanced study design is comparable to, for example, an unbalanced design (e.g.,
Castro-Alonso et al., 2019). For each included study, the ratio of male to female participants
was coded. This allowed us to assess whether gender was considered in the research, the
extent to which the effects found might be generalized across genders, and whether
participants’ gender was a possible moderator of the effects. All themes, categories, and
example codes for the coded variables are shown in Table 2. If variables were not reported,

they were coded as “NR.”
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Themes, Categories, and Example Codes From the Data Analysis

Theme Category Example Code
. . Pre-school, primary school (approx. age
Population Children 5-10), high school (age >10/11)
Balanced, unbalanced (female skew),
Gender
General unbalanced (male skew)
information Country Germany, the USA, the Netherlands
N 92,110
. Biology, chemistry, physics, computer
Topic STEM science, engineering, math, technology
Method Manual, tool-based
Histogram, box plot, line graph, scatter
Graphing Graph type plot
Guidance Mlnlmgl, explicit, completing,
comparison
) Collection Self-generated, given
Numerical data
Data type Univariate, bivariate, multivariate
Activity Problenjl-solvmg, experiment,
instruction
Study design Study setting Lab, lesson, course
Moderating variable Prior knowledge, motivation, spatial,
load
Analvsis Quantitative, qualitative, mixed
y methods
Results Overall effect of graphing Positive, negative, inconclusive

Effect size

Hypothesis

r, d

Confirmed, unclear
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CTML/ITPC, generative learning,

Theory Cognitive theory for graphing ICAP, other®

Construction difficulties Graph construction; Variable ordering;
Difficulties Data translation

Theoretical difficulties Connection to concepts; Interpretation

Note. CTML: Cognitive theory of multimedia learning (e.g., Mayer, 2014), ITPC: Integrated
model of text and picture comprehension (Schnotz, 2005), ICAP: Interactive, active,

constructive passive framework (Chi & Wylie, 2014).

Data Analysis

The data extracted from the included studies were saved and processed in Microsoft
Excel and Access. In addition to answering the research questions, we performed a narrative
comparison of the studies in terms of their use of univariate versus multivariate data.

Publication bias is indicated by the systematic difference between published and
unpublished research (Vevea et al., 2019). As this is, to the best of our knowledge, the first
literature review of graphing in STEM subjects, we wanted to ensure high quality by only
including peer-reviewed studies. We believe that bias was sufficiently reduced by using
multiple search engines and covering various topics and journals, as well as by including
proceedings from conferences judged relevant by experts in various STEM fields.

Results

In the following sections, we present the results according to the codes (see Table 2).
Sometimes, the authors did not explicitly mention the information encoded for our review;
these studies are not reported below. An overview of all the studies included in the literature
review can be seen in Table 3. A complete overview of all codes is provided in the tables of

the supplementary material.
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Table 3
Overview of the Relevant Codes for the Included Studies
Data Construction  Theoretical
Authors Year STEM Topic
Collection Difficulties Difficulties

i Part vs.
Aberg-Bengtsson 2006 Math Both® GC¢

Whole
Adams & Shrum 1990 Biology SG¢ NR NR
Arteaga et al. 2020 Math Both GC NR
Ates & Stevens 2003 Chemistry SG NR NR
Aydin-Giig et al. 2022 Math Given DT Ph
Berg & Phillips 1994 NR? Given GC Concept
Branisa & Jenisova 2015 Chemistry Given GC, DT! 1P, Concept
Brasell & Rowe 1993 Physics Given GC, VO# Concept
Detiana et al. 2020 Math SG NR NR
Dewi et al. 2018 Physics NR GC, VO 1P, Concept
Dimas et al. 2018 Physics Given GC Concept
English & Watson 2015 Math SG GC NR
English 2022 Physics SG NR Concept

Concept, Part
English 2023 Math SG NR

vs. Whole
Fielding-Wells 2018 Math SG NR P
Garcfa-Garcia & Dolores- 2019 Math SG DT NR
Flores
Garcia-Mila et al. (Study 1) 2014 Math Given GC, VO,DT NR
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Garcia-Mila et al. (Study 2)

Gardenia et al.
Gerard et al.

Gultepe & Kilic

Giiltepe

Harrison et al.

Jackson et al.

Jackson et al.

Karplus

Kramarski

Meisadewi et al.
Mevarech & Kramarsky
Moritz

Ng & Nicholas (Study 2)
Nurrahmawati et al.
Onwu

Oslington et al.

Ozmen et al.

Padilla et al.

Pols

Pospiech et al. (Study 1)
Pratt

Rahmawati et al.

Saldanha & McAllister

2014

2021

2012

2015

2016

2019

1992

1993

1979

1999

2017

1997

2003

2011

2021

1993

2020

2020

1986

2019

2019

1995

2020

2016

Math
Math
NR

Chemistry

Chemistry

NR

Csb

CS
Math
Math
Biology
Math
Math
Biology
Math
Various
Math
Math
Various
Physics
Physics
Math
Math

Math

Given

SG

SG

Given

NR

SG

Given

Given

Given

SG

NR

SG

Both

SG

SG

Given

Both

Given

Given

SG

Both

SG

SG

Given

GC, VO
DT
NR

GC, VO

DT

VO

GC

GC

VO

GC, DT
NR

GC, VO
GC, VO, DT
NR

VR, DT
GC, VO
GC, DT
GC, VO
GC, VO
GC

NR

VO

NR

NR

23

NR

NR
Concept
NR

1P, Concept,
GT

1P

GT

1P, GT
Concept
NR

NR

NR

NR

NR

P

P
Concept
GT

NR
Concept
NR

1P

NR

NR



Stephens

Struck & Yerrick
Tairab & Al-Nagbi
Vitale et al.
Watson

Watson et al.
Wavering

Webb & Boltt

Wu & Krajcik

2024

2010

2004

2019

2022

2023

1989

1991

2006

Physics
Physics
Biology
Physics
Physics
Physics
Math

Biology

Various

SG

SG

Given

Both

SG

SG

Given

Given

SG

NR

VO

DT

NR

NR

GC

GC

NR

GC
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24

1P, Concept
NR

1P

Concept

1P

NR

NR

1P

1P

Note: *NR: None reported, ® CS: computer science, © given as well as self-generated

data: Both, ¢ self-generated: SG, © graph construction: GC, fdata translation: DT, ¢ variable

ordering: VO, ! interpretation: IP, { graph type: GT

General Information

The studies included in the review were published between 1979 and 2024, which is

the last year in which we identified relevant articles in the literature review (see Figure 2).

The rate of publications on graphing seems to have reached its maximum in the years 2019

and 2020.
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Figure 2

Overview of the Publication Years of the Included Studies
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Most of the studies were conducted in the USA, followed by Indonesia and Australia

(see Figure 3). Few studies were published in Europe, which is surprising because other

studies reference, e.g., the German curriculum (Meisadewi et al., 2017).

Figure 3

Overview of the Countries Where the Studies were Published
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Most studies did not base their research on a theory specific to graphing (n=23). Two
studies referred to generative learning (Aberg-Bengtsson, 2006; Vitale et al., 2019).
Additionally, 27 studies referred to other theories. For example, Ainsworth’s (2006) design,
function, and task (DeFT) framework, which is based on the functions that representations
have during instruction, was referenced for this purpose (Dimas et al., 2018), but it was also
used in one study as a theoretical basis for translating between two types of representations,
such as the “mathematical representation translation from verbal to graph” (p. 401,
Rahmawati et al., 2020). Similarly, English (2022) referred to metarepresentational
competence and the need to connect graphical representations to the represented concept (see
also Vitale et al., 2019), as well as transform types of representations (Garcia-Mila et al.,
2014). Other tool-based studies have argued that computer-based graphing frees up cognitive
resources (Jackson et al., 1992, 1993). Another perspective includes a theoretical background
based on the progression of logical thinking abilities indicated by graphing (Berg & Phillips,
1994). Graphing has also been used as a good research tool to capture “students’ thinking

processes” (Ng & Nicholas, 2011, p. 79).

Another study used active learning as its theoretical basis (Pratt, 1995). One study
used a pedagogical approach called Active Graphing (Aberg-Bengtsson, 2006), introduced in
previous research (Ainley, 2000). For microcomputer-based laboratories (MBLs), authors
based their research on the benefit of having a “genuine scientific experience” (p.778, Adams
& Shrum, 1990) or on the view of “graphing as practice” (p.57, Ates & Stevens, 2003) and
did not consider graphing from a cognitive perspective. This scientific (Fielding-Wells, 2018;
Stephens, 2024; Watson et al., 2023; Wu & Krajcik, 2005) and practical (Aydin-Giig et al.,
2022; Giiltepe, 2016; Harrison et al., 2019; Oslington et al., 2020) view is stated similarly in
other studies, for example, as part of problem-solving (Bransia & Janisova, 2015; Pospiech et

al., 2018).
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Implementation of Graphing
Study Design and Context

Most authors analyzed graphing in a problem-solving environment (n=36), although
participants received graphing instruction during some studies (n=6). For example, Mevarech
and Kramarsky (1997) asked 92 eighth-grade students to construct graphs before and after a
graphing unit and qualitatively analyzed their progress based on the students’ responses.
Several studies investigated graphing in the context of experimentation (n=10), such as
investigating tool-based graphing in the context of oscillation using a spring-mass simulation
(Stephens, 2024). Meisadewi et al. (2017) found that lab-based activities could improve
students’ graphing skills [see also Struck & Yerrick (2009) for similar results, as well as
Gerard et al. (2012) for a mixed-methods analysis]. Three studies used an instructional
context combined with problem-solving (Aberg-Bengtsson, 2006; Gerard et al., 2012; Vitale
et al., 2019), for example, Aberg-Bengtsson (2006) instructed elementary students on how to
use the software Excel in a collaborative setting and investigated their reasoning during graph
construction.

Studies were most often conducted in more than one lesson (n=22), followed by a
single lesson (n=17) and interviews (n=5). Interviews were sometimes conducted
concurrently with lessons (Aydin-Giig et al., 2022; Karplus, 1979); for example, Karplus
(1979) asked 414 high-school students to solve “functionality puzzles” (p. 398) during a
lesson and investigated the answers of 37 students during interviews to “clarify the written
answers” (p. 398). Only one study was conducted in the researchers’ lab (Pospiech et al.,
2019).

The number of participants differed greatly between studies, from three (Detiana et
al., 2020; Gardenia et al., 2021) to 745 (Arteaga et al., 2020). On average, 116 students

participated (SD = 174). Students in high school participated in most studies (n=43), with
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only six studies analyzing graphing in primary schools. One study analyzed students from
grades three to seven, spanning both primary and high school (Moritz, 2003). The gender of
the students was often not reported (n=31). Six studies had an equal number of female and
male participants and in nine studies more males than females participated. There were four

studies where more females than males participated.

The STEM topics varied between studies (see Figure 4). Graphing was mostly
conducted on the topic of mathematics (n=22); for example, Moritz (2003) examined how
primary and high-school students constructed coordinate graphs during their mathematics
lessons. Other studies were conducted in biology, physics, chemistry, and computer science.
In three studies, students constructed various contexts (Onwu, 1993; Padilla et al., 1986; Wu
& Krajcik, 2006) — for example, by “incorporat[ing] fundamental science concepts across
several science disciplines” (p.66, Wu & Krajcik, 2006).

Figure 4

STEM Topics Used for Graphing
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Graph Types, Graphing Method, and Graphing Guidance

Students constructed numerous types of graphs (see Figure 5). The most frequently
constructed graph type was a line graph (n=27). Other studies let students decide the type of
graphs, e.g., for a task during a test (Ozmen et al., 2020). Bar graphs and tables were also
common types of graphs. Two studies did not specifically state which types of graphs they

used (Branisa & Jenisova, 2015; Meisadewi et al., 2017).
Figure 5
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During most studies, participants created graphs by hand (n=29); for example,
Nurrahmawati et al. (2021) investigated high-school students” errors when translating
between mathematical representations, such as between tables and line graphs. Nine studies
analyzed graphs created via tools (Gerard et al., 2012; Harrison et al., 2019; Jackson et al.,
1992; Jackson et al., 1993; Ng & Nicholas, 2011; Pratt, 1995; Saldanha & McAllister, 2016;
Stephens, 2024; Vitale et al., 2019). Ten studies examined graphs created both manually and

via tools (Aberg-Bengtsson, 2006; Adams & Shrum, 1990; Ates & Stevens, 2003; Brasell &
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Rowe, 1993; English & Watson, 2015; English, 2022; Kramarski, 1999; Watson et al., 2022;
Wu & Krajcik, 2006). All studies examining tool-based graphing used various computer
applications, such as TinkerPlots (English & Watson, 2015; Saldanha & McAllister, 2016;
‘Watson et al., 2022; Watson et al., 2023), the web-based inquiry science environments WISE
(Gerard et al., 2012; Harrison et al., 2019; Vitale et al., 2019), the web-based data exploration
environment CODAP (Stephens, 2024), CricketGraph (Jackson et al., 1992, 1993), or Excel
(Aberg-Bengtsson, 2006; English, 2022).

Participants often did not receive any guidance about how to create graphs, although
ten studies provided explicit instructions (see Figure 6). For example, Detiana & Mailizar
(2020) showed high-school students instructional video tutorials on function graphs before
asking them to manually construct their own graphs. Participants received minimal
instruction in five studies (Brasell & Rowe, 1993; Jackson et al., 1993; Karplus, 1979; Pratt,
1995; Webb & Boltt, 1991), which included providing participants with worksheets,
including frameworks for the graphs (Webb & Boltt, 1991). In one study, the students were
asked to complete a representation consisting of a table with corresponding graphs (Aberg-
Bengtsson, 2006). In two other studies, students were asked to compare their representations
to graphs created by fictional students (Harrison et al., 2019) or to compare their graphs with
teacher-generated graphs constructed with TinkerPlots (Watson et al., 2022). Guidance was
coded as “student-based” for a study in which participants were interviewed while they
constructed graphs and received feedback based on their progress (Garcia-Garcia & Dolores-

Flores, 2019).
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Figure 6

Types of Guidance for Graphing
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Numerical Data Used for Graphing

The data that the students used for graphing varied. Participants mostly created the
data themselves (n=23), either during experiments by measuring variables or by creating the
data for graphing, e.g., based on problem statements (Gardenia et al., 2021). Eighteen studies
provided participants with the data to create graphs, and some studies used a combination of
both (n=6). For example, Oslington et al. (2020) provided third-graders with temperature data
and asked them to predict future temperatures before constructing a graphical representation

of the data.

Most of the numerical data used for graphing was bivariate (n=34), compared to
univariate (n=6) and multivariate (n=3) data. Two studies provided students with a variety of

data; for example, Jackson et al. (1992) provided students with graphing instruction for

hTM

Cricket Graph™ in a computer science course using a variety of contexts and data.
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Effectiveness of Graphing as an Instructional Method
Study Results and Moderators

Most studies reported no hypothesis (n=45) and no effect sizes (n=49) or results
regarding the benefits of graphing or their instruction (n=38). This might be due to the
number of qualitative (n=22) and mixed-methods analyses (n=19). Nine studies analyzed
their data quantitatively (Adams & Shrum, 1990; Ates & Stevens, 2003; Harrison et al., 2019;
Meisadewi et al., 2017; Onwu, 1993; Padilla et al., 1986; Struck & Yerrick, 2010; Wavering,

1989; Webb & Boltt, 1991).

Eleven studies reported positive effects (Adams & Shrum, 1990; Branisa & Jenisova,
2015; Karplus, 1979; Gerard et al., 2012; Gultepe & Kilic, 2015; Meisadewi et al., 2017;
Mevarech & Kramarsky, 1997; Padilla et al., 1986; Struck & Yerrick, 2010; Vitale et al.,
2019; Wu & Krajcik, 2006). Two studies reported positive effects for manual graphing
(Adams & Shrum, 1990; Branisa & Jenisova, 2015). Branisa and Jenisova (2015) compared
manual graphing with automatically generated graphs and found that students practiced
manual graph construction based on experimental data performed better than students who
were provided with computer-constructed graphs. Adams and Shrum (1990) found that
conventional graphing instruction was better than instruction with microcomputers. They
were the only authors who reported an effect size (—1.01). Some studies reported positive
effects of various types of instruction (Gerard et al., 2012; Gultepe & Kilic, 2015; Meisadewi
et al., 2017; Mevarech & Kramarsky, 1997; Struck & Yerrick, 2010; Wu & Krajcik, 2006) on
graphing skills. For example, Gerard et al. (2012) compared drawing tools with probe-based
tools and found that probe-based tools might be better for learning how not to see graphs as
pictures but as representations of data. However, students who drew instead of using motion
sensors “constructed more precise graphs and verbal interpretations” (Gerard et al., 2012, p.

569). Another possible moderator of graphing skills might be the level of education because
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Karplus (1979) and Padilla et al., (1986) reported an increase in skills with a progression
between grades. While Karplus (2006) compared students between sixth and eighth grade
who constructed function graphs based on data pairs, his results correspond to the results of a
mixed-methods approach by Mevarech and Kramarsky (1997), who found that instruction
improved students’ graphing performance. The goal of instruction varied between studies:
some specifically wanted to improve students’ graphing skills (Gerard et al., 2012;
Meisadewi et al., 2017; Mevarech & Kramarsky, 1997), whereas others taught specific
topics, such as kinetics (Struck & Yerrick, 2010) or water quality (Wu & Krajcik, 2006). One
study aimed to improve students’ scientific argumentation skills (Gultepe & Kilic, 2015).
Furthermore, students benefited from graphing data that illustrated their ideas and revising
their graphs based on scientific concepts (Vitale et al., 2019). Of the studies reporting
positive effects, five analyzed their results quantitatively (Adams & Shrum, 1990; Meisadewi
et al., 2017; Padilla et al., 1986; Struck & Yerrick, 2010) and one qualitatively (Wu &
Krajcik, 2006). Six studies used a mixed-methods approach (Branisa & Jenisova, 2015;
Gerard et al., 2012; Gultepe & Kilic, 2015; Karplus, 1979; Mevarech & Kramarsky, 1997,
Vitale et al., 2019). One study reported inconclusive results (Ates & Stevens, 2003). None of

the included studies reported any negative effects of graphing.

Most studies (n=37) did not document specific participant characteristics influencing
graphing skills. Thirteen studies reported possible moderators. Most effects were reported for
age or grade (n=7) and types of mathematical understanding (n=3). For example, Gardenia et
al. (2020) found that students with high mathematical skills were better able to construct
mathematical representations than students with low or medium skills. Other studies
mentioned moderating effects due to cognitive development (n=4), such as reasoning skills

(Ates & Stevens, 2014; Berg & Phillips, 1997; Wavering, 1989). One study described results
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dependent on gender with males performing better than females(Wavering, 1989), maybe due

to advanced reasoning skills (Berg & Phillips, 1994).

Difficulties During Graphing
Diffficulties with Graphing Conventions

Most studies reported that their participants had difficulties creating graphs that could
be attributed to graphing conventions (n=34). Several studies noted more than one difficulty.
As the studies varied extensively, we distinguished between three broad categories of
difficulties. The first two types of difficulties are based on structural models that describe the
graph construction process (Lachmayer et al., 2007). Graph construction difficulties are
concerned with constructing the structure of the graphs, such as scaling the axes and
assigning variables to the appropriate axes, whereas variable ordering difficulties describe
problems, such as charting points at the correct locations in the graphs. For example, Watson
et al. (2023) found that students sometimes had trouble scaling the axes when using
TinkerPlots. Onwu (2014) reported that only 38% of the 366 junior high school students had
could correctly determine the x- and y-coordinates of data points. An example graph for a
variable translation difficulty can be seen in Figure 7. Data translation difficulties were found
the least (n=11); they describe difficulties translating from one representation to another. For
example, third graders seem to have trouble translating self-constructed tables into suitable
graphical representations (Oslington et al., 2020). An overview of students’ graphing

difficulties due to the conventions can be seen in Figure 8.
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Figure 7

Example of a graphical representation with variable ordering difficulties (based on

Mevarech & Kramarsky, 1997)
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Theoretical Difficulties During Graphing

Some students also faced theoretical difficulties (see Figure 9); however, almost half
of the studies reported no difficulties (n=28). Conceptual understanding and interpretation
were the most common theoretical difficulties described in the included studies. Fourteen
studies reported difficulties connecting the graphs to the depicted STEM concept, such as
graph-as-picture errors (Gerard et al., 2012). Other students had trouble interpreting the data,
for example, to make predictions (Webb & Boltt, 1991). Four studies documented difficulties
in choosing the correct graph type for a task (Giiltepe, 2016; Jackson et al., 1992; Jackson et
al., 1993; Ozmen et al., 2020), although this difficulty seemed to lessen with increasing
experience (Karplus, 2006).
Figure 9
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Twenty studies reported both theoretical difficulties and difficulties associated with
graph construction; for example, in a study with 10th-grade students, Dimas et al. (2018)
reported that some students could not create a correct table for data from an oscillator
experiment. The students also had trouble connecting the data to the concept of harmonic

motion (Dimas et al., 2018). Interpretation difficulties were reported in combination with all
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types of difficulties. They were described in combination with graph construction difficulties
(Branisa & Jenisova, 2015; Jackson et al., 1993; Wu & Krajcik, 2006), variable ordering
difficulties (Harrison et al., 2019; Nurrahmawati et al., 2021; Pratt, 1995), or both (Dewi et
al., 2018; Onwu, 1993). Interpretation-related difficulties were also found in combination
with data translation difficulties (Aydin-Giig et al., 2022; Branisa & Jenisova, 2015; Giiltepe,
2016; Nurrahmawati et al., 2021). Several studies reported difficulties in combination with
the STEM concept, e.g., graph construction (Berg & Phillips, 1994; Dimas et al., 2018),
variable ordering (Karplus, 1979), or both (Brasell & Rowe, 1993). Furthermore, conceptual
difficulties were found in combination with data translation difficulties (Oslington et al.,
2020). Two studies identified student difficulties related to finding the correct graph type in
combination with graph construction and variable ordering difficulties (Jackson et al., 1992;
Ozmen et al., 2020). One study reported a part vs. whole difficulty in combination with graph

construction difficulties (Aberg-Bengtsson, 2006).

Discussion

This article presents a systematic review of empirical research on graphing in K-12
STEM education. A systematic search of three scientific databases found 12,945 records
matching the search term. In total, we identified 50 relevant studies using our inclusion
criteria, which were included in the review. Based on the codes presented above, we answer
our research questions as follows. First, we summarize how graphing was implemented in the
studies included in the literature review. Second, we condense the effectiveness of graphing
as an instructional method, as reported in the studies. Third, we gather the reported student

difficulties during graphing.
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Implementation of Graphing in K-12 STEM Education

The theoretical foundation of graphing varied between studies: Many studies did not
include a theoretical background, making an interpretation of the overarching results difficult
because the study designs differed accordingly. A few studies included graphing from a
cognitive perspective to construct a deeper understanding, e.g., by referring to the generation
effect or the DeFT framework (Dimas et al., 2018; Rahmawati et al., 2020). In addition to the
learning mechanisms during generative learning mentioned by Schmidgall et al. (2019),
constructed graphs might offer additional cognitive functions by allowing learners to execute
different cognitive strategies. For example, graphs can make inferences visible (Larkin &
Simon, 1987). However, most studies investigate graphing owing to its relevance in
professional or educational practices — that is, the aim is to learn graphing rather than using
graphing as a learning method. Practices might vary between disciplines and between
curricula, which in all likelihood played a role when investigating graphing in K—12 STEM
education. Although most of the studies were conducted in the context of mathematics, a
possible influence of the curriculum or the connection between graphing practices between
disciplines could not be investigated in this review.

Regarding the specific aspects of graphing, line graphs were the most common type of
graph constructed in our review. This could relate to the prevalence of bivariate data, which
are often used to characterize relationships between two variables. Regarding the graphing
method, there was no clear trend toward manual or tool-based graphing. However, a
combination of tool-based and manual graphing seemed to facilitate graphing (Aberg—
Bengtsson, 2006; Adams & Shrum, 1990; Ates & Stevens, 2003; English & Watson, 2015;
Kramarski, 1999; Wu & Krajcik, 2006). Tool-based graphing was also used to analyze
manually created graphs (Watson et al., 2022) or as an instructional method. For example,

students who collected data via data acquisition probeware and used digital video analysis
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software in a physics course improved their graphing skills during the study (Struck &

Yerrick, 2009).

Therefore, there was no typical study design that most of the studies used. However,
an example of a common study design in this review would be an investigation of the
effectiveness of graphing instruction for line graphs in the context of a regular class (during
one or multiple lessons).

Effectiveness of Graphing as an Instructional Method

The second aim of this review was to outline the effectiveness of graphing as an
instructional method, as described in the studies included in the literature review. This is
challenging due to the differences in study design and methodology, e.g., tool-based vs.
manual graphing and quantitative vs. qualitative analysis methods. Furthermore, several
studies did not explicitly state a research hypothesis with clear results regarding the possible
advantages of graphing.

Some studies reported that instruction helped students develop graphing skills (Gerard
et al., 2012; Gultepe & Kilic, 2015; Meisadewi et al., 2017; Mevarech & Kramarsky, 1997,
Struck & Yerrick, 2010; Wu & Krajcik, 2006). This is in line with Glazer (2011). However,
the types of instruction varied between these studies and not all instructions referred
specifically to graphing skills; other types of instructions, for example, in the context of
specific topics (Struck & Yerrick, 2010; Wu & Krajcik, 2006) or scientific argumentation
skills (Gultepe & Kilic, 2015), also facilitated students’ graphing skills. This indicates that
graphing skills can be improved using a broad range of instructions, provided that graphing is

considered in some way during instruction.

Instruction was not only valuable to develop graphing skills but was also found to
improve interpretation (Gerard et al., 2012; Gultepe & Kilic, 2015; Struck & Yerrick, 2010)

and scientific process skills, such as developing hypotheses (Gultepe & Kilic, 2015).
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Therefore, a focus on improving scientific process skills could be advantageous compared to
traditional teaching (Gultepe & Kilic, 2015). Qualitative analyses reported similar results
(Vitale et al., 2019; Wu & Krajcik, 2005). Due to the relevance of graphing for scientific
inference (Gooding, 2010), this is an important aspect for teachers to consider during lesson
planning.

Graphing skills seem to improve with grade level and age. In addition to Karplus
(1979), six other studies considered this proposition (Garcia-Mila et al., 2014; Onwu, 1993;
Padilla et al., 1986; Wavering, 1989; Webb & Boltt, 1991). This is related to mathematical
understanding, which is also an important factor in graphing (Leinhardt et al., 1990). Two
studies reported positive effects for manual graphing compared to tool-based graphing
(Adams & Shrum, 1990; Branisa & Jenisova, 2015). Both studies compared manual graphing
to graphing with (micro) computers. As there were 25 years between studies, and because
technology evolved during this time, the benefit of manual graphing compared to letting a
computer create a graph seems consistent, but the scant number of studies makes drawing

conclusions difficult.

Several studies mention variables that might have a moderating effect on graphing
skills, such as mathematical communication skills (Gardenia et al., 2021), statistical inference
(Oslington et al., 2020), graph interpretation levels (Moritz, 2003), or cognitive development
(Adams & Shrum, 1990), including mental structure (Berg & Phillips, 1994; Wavering, 1989)
and scientific reasoning levels (Ates & Stevens, 2003). Unfortunately, due to the variance in
the study designs and the low number of studies reporting moderators, a more detailed

analysis of the effects of these moderators is not possible.
In conclusion, there seem to be multiple benefits of including graphing in K-12 STEM

education (Glazer, 2011), such as improving graph interpretation skills. Graphing skills might

also have the potential to facilitate scientific process skills. However, it should be noted that
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investigating the effects of graphing was not the main goal of most of the studies and there
out of 50 included studies only nine had a control or comparison group. Most of the included
studies investigated graphing in education from a practical perspective and focused on
reporting the performance of their students.

Difficulties During Graphing

Out of 50 included studies, 42 reported graphing difficulties. Difficulties during graph
construction were reported the most frequently. This included trouble with scaling (Aberg-
Bengtsson, 2006) or labeling the axes (Berg & Phillips, 1994). Variable ordering, such as
sketching data points at the correct coordinates (Mevarech & Kramarsky, 1997), was also
common. Furthermore, data translation, for example, translating data from a table to a graph,
seemed to cause students problems (Tairab & Khalaf Al-Nagbi, 2004). These results
highlight the relevance of metarepresentational competence (diSessa, 2004; Rau, 2017). This
is also reflected in students’ strategies, such as constructing appropriate data visualizations
using self-questioning and reflecting (Chang et al., 2024).

Theoretical difficulties were not reported as often but were also found repeatedly. The
most common types of theoretical student difficulties were difficulties with interpretation
(n=12) and concept (n=11). For example, students chose the wrong graph type for the data or
STEM concept because they seemed to have problems connecting it to the context of the task
and therefore could not construct a fitting graph (Jackson et al., 1992; Ozmen et al., 2020).
Similarly, students seemed to have trouble determining the x- and y-coordinates (Dewi et al.,
2018; Onwu, 1993), which could lead to “misunderstanding the graph” (p. 3, Dewi et al.,
2018). A possible reason for missing graph interpretation and construction skills could be
missing practice (Tairab & Al-Nagbi, 2004).

In total, 20 studies reported difficulties in both categories (see Supplementary

Material). Therefore, theoretical difficulties might be related to construction difficulties. One
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study determined that “students with good levels of conceptual understanding were
concluded to have strong graphing skills” (Giiltepe, 2016, p. 53), whereas the opposite was
found for students with low conceptual understanding. This connection between construction
and theoretical difficulties is in line with Duval (2006) who considered translations within
one register to be a possible cause of comprehension difficulties.

In summary, difficulties during the construction of a graph were consistently
observed. Many of the included studies reported theoretical difficulties related to interpreting
the data as well as convention-based difficulties during construction. This is in line with
previous reviews that have also reported student difficulties; however, to our knowledge,
none have specifically analyzed this connection (Clement, 1985; Leinhardt et al., 1990; Boels
et al., 2019). These results indicate that students might have difficulty during graphing not
only due to trouble understanding the conventions but also because they might not be able to
correctly understand the data and its relevance and therefore might not know how to best

display it.

Implications for Practice

Based on our review results, we can join previous research (e.g., Glazer, 2011;
Leinhardt et al., 1990) in emphasizing the relevance of graphing and encouraging teachers to
add graphing activities to their lessons. The difficulties students experience during graphing
exemplify the importance of graphing instruction. Graphing activities during the instruction
of scientific argumentation (Gultepe & Kilic, 2015) might be an effective tool for improving
science learning (Gerard et al., 2012). Similarly, comparing students who plotted the given
data with those who plotted imagined data indicated that the first activity led to more
integration between students’ ideas and scientific evidence and, therefore, to a deeper
exploration of the graphs (Vitale et al., 2019). This relates to the relevance of using authentic,

real-world data that students can relate to when instructing data literacy (Friedrich et al.,
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2024). However, students analyzing the provided data graphed more accurately (Vitale et al.,
2019). This suggests that students might benefit (1) from graphing their perception of
scientific principles before traditional instruction about a topic and (2) from an in-depth
analysis of the provided data.

Limitations and Future Research

Limitations

This research has several limitations. The most relevant one might be the large
number of studies found in the initial search. Due to the large number of studies, we had to
limit the included studies to those with a precise focus on graphing. However, there are many
more studies in which students construct graphs—for example, as part of studies more
broadly analyzing scientific inquiry skills—that might have provided valuable contributions
to the topic. Furthermore, we included only peer-reviewed studies and no gray literature as
quality control, and all included studies were written in English. As the publication years
ranged from 1979 to 2024, these criteria may have changed and influenced our study
selection. The choice of codes could have also led to limitations. The included studies often
reported specific student difficulties. Due to the number of specific difficulties reported, we
considered only overarching categories of difficulties in this review. The coding of these
difficulties was often a part of the discussion between raters. Although raters always reached
an agreement, a more fine-grained analysis might provide further insights.

Future Research

Graphing as a method was often not based on theoretical research, but was justified
due to its use in school (e.g., Moritz, 2003). We believe that more hypothesis-based testing
grounded in theory in future research could provide valuable insights into the specific
benefits of graphing in education. Additionally, more longitudinal research starting with

younger students could generate a deeper understanding of the development of graphing
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skills. Further information about the influence of possible moderating variables could help
improve instruction for students. Additionally, considering the function of graphing —
whether students graph for themselves during learning, create a graph for others to explain
something, or use a graph to compute a result during problem-solving — could play a role in
interpreting the results. A future meta-analysis of empirical qualitative studies should take the

effectiveness of graphing in these contexts into account.
Conclusion

Understanding graphical representations of data is an important skill, and graphing is
arelevant part of graph interpretation competence. Therefore, graphing has been examined in
many studies. In this systematic literature review of 50 studies, we aimed to provide an
overview of current research findings on graphing in K-12 education. We focus on the
possible benefits of and difficulties faced by students during graphing, as well as how
graphing is implemented in research studies. Studies have frequently analyzed graphing in
the context of a course and have often found graphing instruction beneficial for not only
improving graphing skills but also graph interpretation. However, the students experienced
various graphing difficulties, such as correctly sketching data points and interpreting the
graph. Therefore, the difficulties encountered during the construction of graphs might be
related to the theoretical understanding of the data. Consequently, both types of difficulties
should be considered during instruction, for example, first by graphing students’ perceptions
of a scientific phenomenon and then independently revising the graph based on the data

measured during an experiment.
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T

Abstract: The interpretation of graphs plays a pivotal role in education because it is relevant for
understanding and representing data and comprehending concepts in various domains. Accordingly,
many studies examine students’ gaze behavior by comparing different levels of expertise when
interpreting graphs. This literature review presents an overview of 32 articles comparing the gaze
behavior of experts and non-experts during problem-solving and learning with graphs up to January
2022, Most studies analyzed students” dwell time, fixation duration, and fixation count on macro- and
meso-, as well as on micro-level areas of interest. Experts seemed to pay more attention to relevant
parts of the graph and less to irrelevant parts of a graph, in line with the information-reduction
hypothesis. Experts also made more integrative eye movements within a graph in terms of dynamic
metrics. However, the determination of expertise is inconsistent. Therefore, we recommend four
factors that will help to better determine expertise. This review gives an overview of evaluation
strategies for different types of graphs and across various domains, which could facilitate instructing
students in evaluating graphs.

Keywords: literature review; eye tracking; STEM education; graphical representation; expertise

1. Introduction

Interpreting data presented in graphs is essential to understanding concepts across
domains [1,2], especially for learning mathematics [3], to interpret and represent data [4,5],
as well as to use media [6]. Therefore, graph interpretation was highlighted as a valuable
skill in PISA and as a 21st-century workforce skill [7]. Graph-comprehension skills differ
across individuals and depend on multiple factors: (1) graphical literacy, meaning the abil-
ity to interpret information represented in graphical form, for instance, identifying relevant
features in any context [8-10]; (2) domain knowledge about the represented topic [9,11];
(3) prior knowledge about the underlying mathematical concepts of the graph [8]; (4) task
knowledge, such as using a graph to solve a problem or identifying specific data points [12].
It is reasonable to assume that experts should have higher levels of graph-comprehension
skills than non-experts. However, the determination of expertise can differ (see section
Determination of Expertise). This is an important aspect to keep in mind, as the interpre-
tation of differences in the visual behavior of experts and non-experts may depend on
how expertise is determined. This holds true for this review when comparing the visual
behavior of experts and non-experts during problem-solving and learning with graphs.

Visual processing of the graph is very important for graph comprehension. We use
the term visual processing to emphasize that not only seeing the relevant information,
but also actively processing is important for comprehending the depicted information.
There is evidence that the visual processing of external representations changes with
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increasing expertise [13,14]. The underlying assumption is that people mentally process
the information they look at [15] (eye-mind hypothesis).

There are various theories why the way we distribute attention might change with
increasing expertise. Several of those theories have been supported by eye-tracking studies
and literature reviews. For example, the holistic model of image perception states that
experts can process an image more efficiently than non-experts [16,17]. This is explained
by the enhanced parafoveal processing of experts [16,18]. Experts can analyze an entire
image and fixate relevant information earlier than non-experts [16]. Furthermore, experts
seem to process information faster than non-experts, as evidenced by shorter fixation
durations (see the meta-analysis of Gegenfurtner et al. [17]). This supports the theory of
long-term working memory. This theory states that experts learn how to store and retrieve
information more effectively, which results in enhanced short-term memory processing [19].
Additionally, the findings of Gegenfuriner et al. [17] support the information-reduction
hypothesis [20]. With increasing practice, participants focused more on task-relevant
information and less on information that was not relevant to the task [20]. This is called
selective attention [10]. These results suggest differences in the visual behavior between
experts and non-experts when viewing external representations, such as graphs.

The difference between experts and non-experts’ viewing behaviors can be important
in the context of education. For example, experts’ eye movements could be used as visual
instructions to help learners make sense of external representations [21]. Knowledge
about how experts read graphs could also be used to facilitate students” information
processing [22] or to identify student difficulties in problem-solving or learning with
graphs. However, the theories mentioned above use various eye-tracking metrics, such
as time to first fixation [16], the fixation count [20], total viewing time [10], or fixation
duration [17]. There are similarities between different metrics, e.g., a correlation between
total viewing times and fixation count [10] (see also [23] for similar results), but there are
also conflicting relations between theoretical models and eye-tracking metrics. For instance,
the theory of long-term memory predicts a shorter fixation duration for experts. This,
however, is only consistent with the information-reduction hypothesis if experts fixate
shorter on irrelevant areas, as this hypothesis predicts more fixations on task-relevant areas
for experts than for non-experts [17]. Such possible inconsistencies make it more difficult
to interpret how these metrics relate to the differences between experts and non-experts in
viewing graphs or diagrams. Furthermore, the way experts and non-experts are defined
should be acknowledged, especially in the context of education.

There have been previous literature reviews of eye-tracking in education with various
research foci, for example, to summarize the eye-tracking research in physics education [24],
to review the scenarios of eye tracking in mathematics education research [25], to compare
experts and novices’ gaze behavior in sports and medical education research [26], to present
a summary of eye-tracking research within the “Psychology of Mathematics Education”
conference [27], to investigate the relation between eye movements and cognitive processes
during multimedia learning [28], or to provide an overview of the applications of eye
tracking in education [29]. None of these review articles focuses on a single type of
representation, and regarding the pivotal role of graphs in education, we intend to fill this
gap with our review.

We hence aim to (1) provide an overview of eye-tracking metrics that have been used
to compare the visual processing of experts and non-experts during problem-solving and
learning with graphs. We also (2) summarize the previously found differences in visual
behavior between experts and non-experts during learning or problem-solving with graphs.

Knowing how experts view graphs can provide guidelines to support students’ visual
processing of graphs. For instance, it allows the identification of suitable eye movement
modelling examples [30] or relevant areas for signaling support [31]. Moreover, such
knowledge can be used to evaluate students’ fluency in the visual processing of graphs [32].
In this literature review, we provide an overview of the domains, the types of graphs, the
eye-tracking metrics, and how experts are distinguished in the studies.
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2. Materials and Methods

A literature review typically consists of three parts. First, the literature search. This
is followed by the data extraction, which is then analyzed in the third part of a literature
review. In the following we first present the search process of our literature review and
then continue with the method used for data extraction. The results based on the data
extraction are shown in the Results section.

2.1. Literature Review

The literature search aimed to find articles that analyzed visual behavior when looking
at graphs in the context of problem-solving and learning in Science, Technology, Engineer-
ing, and Math (STEM) subjects. All included articles should fulfil the following criteria:

Comparison of experts vs. non-experts (population)

STEM subject (domain)

Learning or problem-solving with graphs, diagrams, or functions (intervention)
Analysis of visual behavior via eye-tracking metrics (outcome)

Empirical study

Full text available in English

This resulted in the following categories and terms (see Table 1). In the search string,
categories were linked with the Boolean operator AND and terms with the Boolean opera-
tor OR.

Table 1. Categories and terms used for searching.

Categories Terms
Visual behavior “eye tracking”, “viewing behavior”, “visual attention”
Graphs “graph”, “diagram”, “function”

To identify relevant articles, we searched for titles and abstracts in the databases ERIC,
Scopus, Pedocs, and SpringerLink. One possible search string for Scopus would be (“eye
tracking” OR “viewing behavior” OR “visual attention”) AND (“graph” OR “diagram” OR
“function”). As search algorithms differed between databases, key terms in the search string
were sometimes replaced with corresponding adjectives or adverbs to include alternative
phrasings. This search was conducted in February 2022. Therefore, the publication deadline
for relevant publications was 31 January 2022. After the screening process, 24 empirical
studies met the inclusion criteria and were included. We then conducted a backwards
snowball search using Google Scholar for all included articles and found eight more articles.
In total, 32 articles were included in this review.

2.2. Data Extraction

Once the search was completed, relevant data were extracted. Based on our research fo-
cus on the differences in visual behavior between experts and non-experts during problem-
solving or learning with graphs, we extracted the following data:

Year of publication

STEM subject in which the study was conducted

Type of graph

Eye-tracking metrics

Areas of interest (AOls) used for the analysis of eye-tracking metrics
Expertise determination

Key findings

To analyze differences in visual behavior between experts and non-experts, we coded
the way authors determined expertise. Furthermore, we coded the domain (STEM subject)
and type of graph, as well as the analyzed eye-tracking metrics. To analyze eye-tracking
data, the stimuli are split into areas of interest (AOls). This is useful to investigate the
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distribution of eye movements across relevant and irrelevant areas. The distribution of
eye movements can give insights into the relevance of a representation’s components.
Depending on the research aim, an AQI can consist of an entire representation, such as
a graph, or smaller components, for example, the axes. Furthermore, the analysis of
eye-tracking metrics depends on the granularity of the AOIs.

In this review, we differentiate between macro- and meso-level AQIs and micro-level
AOQOIls when analyzing the gaze behavior of experts and non-experts [33]. We used this
distinction to code AQOIs based on descriptions in the included studies. Macro-level AOIs
consist of an entire graph. These AOIs can be useful to research how graphs are embedded
in the learning material, e.g., between questions and answers. Meso-level AQOIls divide
the graph into large components, such as dividing the graph from the x- and y-axes. This
means that more than one AOI covers the graph area, but there are separate information
sources, such as single-axis values that are included in the same AOL Micro-level AOIs split
a comprehensive representation into particular elements, that can be based, for example,
on specific information that is relevant to study specific sections of a graph, such as an axis
with separate numbers on it.

3. Results

We identified 32 articles in our review, that analyzed the visual behavior of experts
and non-experts when looking at graphs in the context of problem-solving and learning.
An overview of all included studies can be found in Table 2. This table surveys authors,
publication years, subjects, graph types, measurements to determine expertise and analyzed
eye-tracking metrics.

Table 2. Overview over studies included in the literature review, including eye-tracking metrics (FD:
fixation duration, FC: fixation count; DT: dwell time; S: saccades; FG: first gaze; PS: pupil size; T:
transitions; NRV: number of revisits; AQT: area of interest; SD: standard deviation).

Year of . Determination of . .
Reference Publication Subject Graph Type Expertise Eye-Tracking Metrics
. - . ) " FD (average, total), FC
Ahmed et al. 2021 Engineering Line graphs Professionals (average, total)
Atkins and 2018 Geoscience Line and bar Pre-test FD (normalized, total)
McNeal graphs
. Physics, . . DT (total, on relevant
Briickner et al. 2020 Fonomics Line graphs Domain AOIS)
Multiple features
Dzsotjan et al. 2021 Physics Line graphs Learning gain including DT (total,
mean; SD of both)
Line graphs FC (normalized), DT
Harsh et al. 2019 Biology ne graphs, Level of study (normalized), S
diagrams .
(normalized)
. . DT (average), FC (total
Huang and Chen 2016 Physics Diagram Spatial working stimulus, on AQTs), FG,
memory
PS, S
Ho et al. 2014 Biology Line graphs Prior knowledge FD (total), T, NRV
Kekule 2014 Physics Line graphs Performance Heat maps based on FC
Keller and . . FD (relative), FC
Junghans 2017 Medicine Line graphs Numeracy (relative)
Kim et al. 2014 Math Line graphs Dyslexia DT, FG.
Kim and Wisehart 2017 Math Bar graphs Dyslexia DT, T
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Table 2. Cont.

Year of

Determination of

Reference Publication Subject Graph Type Expertise Eye-Tracking Metrics
DT (total; AOI and
Klein et al. 2019 Physics, Finance Line graphs Domain entire stimulus), FC
(average; AOI), S
Klein et al. 2020 Physics Line graphs Performance DT
Kozhevnikov et al. 2007 Physics Line graphs Spatial ability FD (relative)
Kiichemann et al. 2020 Physics Line graphs Performance DT
Kuichemann et al. 2021 Physics Line graphs Performance DT (total, relative), T
Madsen et al. 2012 Physics Diagrams, line Performance D (.n ormalized; overall,
graphs first two seconds)
Okan et al. 2016a Medicine Line and bar Graph literacy FD (total)
graphs
.. Line and bar .
Okan et al. 2016b Medicine Graph literacy FD
graphs
Peebles and Cheng 2003 Economics Line graphs NA* Not applicable
Richter et al. 2021 Economics Line graphs Prior knowledge DT, FG, T, PS
Domain relative ration
Rouinfar et al. 2014 Physics Diagram Performance (relative dwell time
/relative area of AQI)
Skrabankova et al. 2020 Physics Line graphs Teacher’s opinion T, FC
Strobel et al. 2019 Various topics Bar graphs Working memory FD (total)
capacity
Susac et al. 2018 Physics, Finance Line graphs Domain DT
Tai et al. 2006 Various topics Line graphs Domain FD, DT, 5
Evaluating student Bar and radar Worlzl:l gaf:f ;oY D (total, relative, mean,
Toker et al. 2013 & © capaciy, SD), FC (total, relative),
petformance graphs visualization ST
experience ’
Toker and Conati 2014 Data analysis Bar graphs PerceP tual speed, FC,FD, S
working memory
Viiri et al. 2017 Physics Line graphs Performance Heat maps
Vila and Gomez 2016 Economics Bar graphs Performance DT
D 2o N o
Yen et al. 2012 ! hyb]ti;;i\;:ﬂom Line graphs Domain DT (normalized), FC
Zhu and Feng 2015 Math Line graphs Performance T
Viiri et al. 2017 Physics Line graphs Performance Heat maps
Vila and Gomez 2016 Economics Bar graphs Performance DT
Yen et al. 2012 Physifﬁ,i\éznous Line graphs Domain DT (normalized), FC
Zhu and Feng 2015 Math Line graphs Performance T

t Comparison with a scanpath assumed optimal for the task.

An overview of the analyzed variables can be seen in the graphs depicted in Figure 1.
The included experiments are described in more detail regarding the individual variables
in the following sections, starting with the publication period of the included studies.



97

Educ. Sci. 2023, 13, 216 60f 19
6 18
: 2
b=
w
2 212
5 4 « 10
- o
w 1—8
u— @
o 3 o 6
3 5 4
£’ =2 Il
> 0 | I
Z1
S & 285 & L AL 9 Lo
FESFSTEIESE
écﬁ@@éé““’é"&@
0 Y VLSS S
N OIS M S WO O o o) TR T S
OO0 O d o oo d-dd-d &N & F &S o
O CO0O0COO00000 00 F o
NN N NN NN NN NN NN
Year of Publication Subject
30 1

Number of studies
OFRrNWBRUONOOWOLO

Number of studies

[ = S ]

o v o un o wu

%
% -

. — — Q(g, OQ\ Q}Qa?/ _-p’b \0(\ \)S\ ’bc\ &
© © & o ° & & F S &
& & S & @ & WoOR &7 &
) R I & R & FE VY O
o DS A & & P 8 & &
& S W \ Q & oy b2
S g o &Y
RV 2% @ 3 ] K&
Graph Type Determination of Expertise
18 20
g 16 18
T 14
21 p 16
5 10 5 14
= 8 2
T % 12
a 6 —
E 4 I 210
=1
=z 2 2 8
: .. 2 .
XN o el ol
& é\o“ & %g? q;bm"f\;_}@ & Z 4
¢‘é\ S -@00@&\ (9%‘:5‘ Q\*c;&'qx‘»@ Q‘e\zg?k 2 I
X
) 'x\°°<<‘ & A 0 .
«® 1 2 3 4 5
Eye-Tracking Metric Number of Eye-Tracking Metrics

Figure 1. Overview of the number of studies related to the visual behavior of experts and non-experts’
during learning and problem-solving with graphs per year (top left); number of studies using graphs
of a certain subject (multiple mentions are possible, top right); types of graphs used in the studies
(middle left); overview of the measure for determining expertise (multiple mentions are possible,
middle right); overview of eye-tracking metrics used in the studies included in the literature review
(low left); number of eye-tracking metrics used for analyzing visual behavior when looking at graphs
(low right).
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3.1. Publication Period

Of the 32 included articles, the first study was published in 2003 (see Figure 1, top
left). In the first decade starting from 2003, only a limited number of six studies were
published, whereas most studies (1 = 26) were published after 2013. The number of studies
in our review did not increase uniformly, as we identified six years between 2003 and 2013
in which no studies with eye tracking that examined the visual behavior of experts and
non-experts during problem-solving and learning with graphs were published. After 2014,
we could see an increase in the number of publications about visual behavior when looking
at graphs, with five publications in 2014 and four each in 2016, 2020, and 2021. Starting in
2018, a more constant number of studies comparing experts and non-experts when learning
or solving problems with graphs were published.

This distribution is comparable to other reviews about eye tracking in education. Be-
fore 2006, only a few eye-tracking studies were published in math education research [25],
increasing until the year 2018. The authors stated that this increase could be due to the tech-
nical advances in eye-tracking technology and therefore easier usage [25]. Correspondingly,
more terms related to eye tracking (“eye[-]tracking”, “eye[-lmovement”, “gaze[-|tracking”,
“gaze[-]movement”) were identified via content analysis in the proceedings of the Inter-
national Group for the Psychology of Mathematics Education, indicating an increased
relevance of eye-tracking technology in education research [27].

3.2. Domains and Types of Graphs

In education research, eye-tracking studies about experts and non-experts learning and
solving problems with graphs have been conducted in various STEM subjects (see Figure 1,
top right). Out of 32 studies, 16 presented graphs based on the subject of physics, for
example, works by Dzsotjan et al. [34] or Kozhevnikov et al. [35]. Out of these, three articles
compared physics with economics graphs [1,11,36]. Following physics and economics,
the second most studies were conducted in medicine [10,37], mathematics [38-40], and
biology [41-43] with three published experiments per subject.

Most of the studies (1 = 25) used line graphs (Figure 1, middle left). This finding holds
when locking at specific STEM subjects. For example, 13 out of the 16 physics studies pre-
sented line graphs. This corresponds to the common topic of kinematics [44,45]. Studies on
visual behavior in graphs in a biological domain also used line graphs exclusively [41-43].
Studies in a mathematics and medical domain also mostly used line graphs (math: [38,40];
medicine: [10,37]). However, Okan et al. [10] analyzed the visual processing of line and bar
graphs in a medical domain. Likewise, bar graphs in combination with line graphs were
the focus of studies in a geoscience domain [23]. Furthermore, bar graphs were used in
combination with radar graphs [46]. Studies using only bar graphs ranged in topic from
economics [47] to data analysis [48].

3.3. Determination of Expertise

To compare the visual behavior of participants of various expertise levels during
problem-solving and learning with graphs, researchers classified their participants accord-
ing to different measures. An overview of the measures used for expertise determination
across all experiments can be seen in Figure 1 (middle right). An overview of the expertise
determination in individual studies can be found in Table 2. Please note that we cannot
identify potential differences and overlaps between the measures used to determine exper-
tise because not all test materials were publicly available. In the Introduction we presented
four factors that are often used to determine expertise: (1) graphical literacy, (2) domain
knowledge, (3) mathematical prior knowledge, and (4) task knowledge. However, some of
the measures used to determine expertise in the studies examined in this review cannot
be categorized as one of these four. Clear discrimination between these factors may not
always be possible and mapping them with the indicators of expertise used in the studies
is complex. For example, an item in which students solve a problem with a graph may
contain information about students’ prior knowledge in both domain and math contexts
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as well as a certain level of graphical literacy skills and task knowledge. In such a case,
the performance when solving the item would measure all four factors. Similarly, learning
gain [34], teacher’s opinion [49], level of study [41], comparison with professionals [50] and
pretest score (e.g., in graph understanding [23]) may all cover the four factors. In contrast,
working memory [51], spatial abilities [35], and dyslexia [38,39] do not address any of these
factors, whereas the remaining determinators cover only parts of the factors, although one
might argue that the latter contains the factor of task knowledge, as dyslexic participants
had trouble with reading.

Most researchers determined expertise post-hoc based on participants’ performance
in the learning or problem-solving task (e.g., [52-54]). Determining expertise a priori based
on their domain of study was performed when comparing students of different subjects
(e.g., [1,11]) or science with non-science students [55].

Moreover, some authors used multiple measures, for example, working memory
capacity and subjective assessments of visualization experience [46].

Although there was a clear preference to use performance and domain to determine
experts, other—sometimes unusual—measures were also employed. Many studies com-
pared experts and non-experts via students” performance on specific tasks, where expertise
might be located on a continuous scale, instead of comparing groups with clear distinctions.
The variety of ways expertise was determined should be kept in mind when interpret-
ing the eye-tracking metrics and comparing experts and non-experts as described in the
next sections.

3.4. Eye-Tracking Metrics

Previous studies used various eye-tracking metrics to compare the visual processes of
experts and non-experts during problem-solving and learning with graphs. In the following,
we aim to provide an overview of the analyzed eye-tracking metrics in the included studies
(research aim 1).

Figure 1 (lower left) shows the eye-tracking metrics that the authors of the 32 included
studies used to compare the visual behavior of experts and non-experts. Eye-tracking
metrics can be grouped into static and dynamic metrics. The sum of static metrics or the
average of eye movements over time, for example, attained by calculating the duration
someone fixated on a stimulus for the entire time the stimulus, is shown. Dynamic metrics
include information about the change in visual attention over time, e.g., the number of
eye-movement switches from one part of the stimulus to another (gaze transitions) or
the duration between two fixations (saccadic duration). Static eye-tracking metrics in the
included studies were based on fixations. These metrics were evaluated by most studies,
e.g., mean fixation duration (e.g., [23,56]) or the fixation count. Another popular static
metric was dwell time, which describes the sum of total fixation durations and the total
duration of saccades within an AQI [57]. However, definitions of dwell time in the articles
differ. Whereas some defined it as the “viewing time” [36] (p. 4), others used more specific
definitions, such as “eye movements below an acceleration of 8500° /s2 and a velocity below
30°/s” [11] (p. 5). In some cases, we coded metrics as dwell time based on the description
in the papers (e.g., “gaze duration”, p. 335, [58]), although, in general, we classified the
used eye-tracking metrics based on the terms the authors used. Dwell time was also used
to calculate new metrics, such as the so-called domain-relative attention, which is defined
by dividing the relative dwell time of an AOI by the relative area of the AOI [59]. Other
static eye-tracking metrics were the mean time to first fixation on an AOI [60], the pupil
size (e.g., [58]), and the number of revisits on AQIs [42]. Dynamic eye-tracking metrics that
were used to distinguish the visual processing of experts and non-experts during problem-
solving and learning with graphs included transitions (e.g., [40]), and saccades (gaze jumps
between two fixations, e.g., saccade duration [43]; absolute saccadic direction [1]). One
study qualitatively analyzed heat maps without specifying on what metric they were
constructed [54].
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Since there are noticeable differences in the type of metric between studies, we also
analyzed how many eye-tracking metrics were used in each study. We found that most
studies examined more than one eye-tracking metric (M = 1.92, SD = 0.9) but this value
differed across domains (see Figure 1, lower right). An exception was one study that
used five metrics (fixation duration, fixation count, initial gaze, pupil size, and saccade
counts [58]). Three studies used four eye-tracking metrics, e.g., for analyzing individual
user characteristics when evaluating student performance (fixation count, fixation duration,
saccades, and transitions [46]).

As physics is the most common domain in this review (1 = 16, see section Domains
and Types of Graphs), we wanted to take a closer look at the eye-tracking metrics used
in physics studies. An overview of the metrics used to compare experts and non-experts’
visual behaviors when looking at graphs in the domain of physics can be seen in Figure 2.
As studies usually collected several eye-tracking metrics (e.g., [34]), the reported number
of metrics exceeds the actual number of studies. In all these studies, participants were
supposed to solve problems. One exception was a study that analyzed differences in gaze
behavior between experts and non-experts before walking the shape of a graph [34]. Static
metrics were used to analyze differences in the visual attention of experts and non-experts
on relevant and irrelevant areas [1,56]. Comparable to the overall distribution, most studies
analyzed dwell time, often comparing physics and non-physics students [1,36]. Both
studies found that physics students locked longer at the graph (see section Gaze Behavior
below for a closer analysis). Dynamic metrics, such as transitions, were used to predict
the performance of students solving the Test of Understanding Graphs in Kinematics
(TUG-K [53]).

12

=
(=)

Number of studies
[o)]

Physics

Figure 2. The number and types of eye-tracking metrics used in studies investigating the visual
behavior of experts and non-experts learning or problem-solving with physics graphs.

3.5. Gaze Behavior of Experts and Non-Experts

To summarize the previously found differences in visual behavior between experts
and non-experts during problem-solving or learning with graphs (research aim 2), we
differentiated the analysis of eye-tracking metrics, whether static or dynamic, depending
on the granularity of the AOIs. We therefore consider results based on the way AOls are
defined: at macro- or meso-level and at micro-level (see also section Data Extraction). We
first present the results based on the bigger macro- and meso-level AQIs and then go on to
the smaller micro-level AOls.



Edue. Sci. 2023, 13, 216

101

10 of 19

3.5.1. Macro- and Meso-Level

Macro- and meso-level AOIs consist of an entire graph or analyze mid-sized sections
of a graph, such as the axes and the graph. Results of studies using meso- and micro-level
AQIs can be seen in Table 3.

Table 3. Overview of findings of studies analyzing eye-tracking metrics based on meso- and macro-
level AQOIs.

Dependent Variable

Findings and References

Fixation duration

Experts have longer average fixation durations, but spend a shorter time on the graph than
non-experts [50]
Experts have the same fixation duration on a graph as non-experts [55,58]
Experts fixate less on seductive details [54]
Experts pay more attention to trends than non-experts, but non-experts pay more attention to the title
and the axes [23]
Experts look longer at the graph than non-experts ([42]; [10], experiment 2, only for
conflicting graphs)
Experts look longer at relevant areas (experiment 1 [10]; [59])
Experts look less at irrelevant axes’ labels [54,55]

Fixation count

On average, experts fixate less often on graphs than non-experts [43,58]
Experts and non-experts make the same number of fixations [49]
Experts look less often at irrelevant regions [55]

Transitions

Experts transitioned less often between a graph and text [39,51]
Experts switch more often between graphs and between graphics and text than non-experts [42]
Experts made “more strategic transitions among AOI triples” [40] (p. 1)
Experts made fewer transitions than non-experts on harder tasks [45]
Experts made the same relative number of transitions as non-experts (experiment 1 [10])

Experts initially spend more time on the graph than non-experts [58]

First vaze /fixati

irst gaze/fixation Experts look at the graph data later than non-experts [60]
Non-experts spend more time on the graph than experts [36,38]
) There are no differences in total dwell time between experts and non-experts [11]
Dwell time -
Experts look longer at the correct answer [45]
Experts (i.e., students without dyslexia) paid less attention to the x-axis [39]
Saccades Experts make fewer saccades than non-experts [43]

Revisits Experts visit the graph more often than non-experts [42]

Regarding the analysis of meso- and macro-level AQIs, there were varying results
when looking at fixation duration, the fixation count, transitions, and dwell time (see
Table 3). First, we look at the static metrics that many studies analyzed: fixation duration,
fixation count and dwell time. In general, it seems as if experts pay more attention to rele-
vant areas than non-experts (experiment 1 [10], [23,45,59]) and less attention to irrelevant ar-
eas [51,54,55]. Experts might also attend less to the graph than non-experts [36,38,43,50,58],
although this finding is unclear, as other studies found no differences [11,49,55,58] or con-
cluded that experts look longer at the graph than non-experts ([42]; [10], experiment 2, only
for conflicting graphs).

One study with results that contradict other studies in several instances is the one by
Huang and Chen [58]. In this case, expertise was based on gender under the assumption
that the gender difference in spatial working memory might influence the integration
between text and diagram [58]. However, the authors did not find gender differences in
this task. Additionally, only one of the three diagrams analyzed together was a graph [58].
The operationalization of expertise could also not be categorized based on the four factors.
The results of this experiment might not match the others due to differences in determining
expertise. Similarly, another experiment compared the expertise as determined by the
teacher [49]. The authors also concluded that the teacher’s opinion was not well suited
for grouping students according to performance [49]. The same might hold true for using
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dyslexia as a determinator of expertise [38]. The reasons for the varying results of the
other studies are less clear. Some compared science and non-science students [11,36,55].
Briickner et al. [11] compared physics and economics students, whereas Susac et al. [36]
compared physics and psychology students. Although these student groups had different
domain knowledge, one could assume that economics students might have more expe-
rience with reading graphs (factor graph literacy) as well as more experience with math
lectures (factor math prior knowledge). Economics students might have been more similar
to physics students than psychology students in this regard, leading to varying results.
Tai et al. [43] compared biology, chemistry, and physics students. Besides the differences
in expertise determination, the sample sizes might also play a role in the results (e.g.,
N =6 [43]).

There were not as many experiments analyzing dynamic eye-tracking metrics as there
were for static eye-tracking metrics (see Table 2). Since transitions were the most used
dynamic eye-tracking metric, we will take a closer look at them. Two studies found that
experts transitioned less often than non-experts between graphs and text [39,58], whereas
others found the opposite [42]. An explanation could be that the transitions of experts were
more strategic during problem-solving [40], which could lead to experts making the same
relative number of transitions as non-experts, taking the total number of transitions into
account [10] (experiment 1).

3.5.2. Micro-Level

In contrast to macro- and meso-level AOIs, AOls at the micro-level are very small and
include specific parts of the graph, for example, certain sections of the x-axis. In this section,
we will consider experts’ strategies solely on the graph area (i.e., without the question
or answer choices). To get an understanding of experts’ strategies at this level, a finer
classification of AOIs in the graph domain is warranted, typically considering individual
values separately. The results of studies using these types of AQOIs can be seen in Table 4.

Table 4. Overview of findings of studies analyzing eye-tracking metrics based on micro-level AQIs.

Dependent Variable

Findings and References

Fixation duration

Experts spend more time on graph information (such as title and variables) than non-experts [41,46]
Experts look at the entire graph [1]
Experts spend more time on relevant areas [1,37,47]

Fixation count

Experts fixate on the axes more often [35]
Experts visit graph information (such as title and variables) more often than non-experts [41]
Experts fixate more often on task-relevant AOls [37]

Transitions Experts transition more often between conceptually relevant areas [53]
Revisits Experts study the axes, axes labels and line segments more often [35]
Experts look longer at conceptually relevant areas [52,53,56]
Dwell time Experts spend less time on areas that can be used to calculate the solution [53]
Experts spend less time on areas found relevant for non-experts [56]
Saccades Experts look along the graph slope [1]

Similarly, to meso- and macro-level AOIs, regarding static eye-tracking metrics, ex-
periments analyzing micro-level AOIs also found that experts paid more attention to
relevant AOIs [1,37,47,52,53,56], including graph information [35,41,46]. Furthermore, ex-
perts looked at the entire graph [1]. Moreover, experts seemed to systematically distribute
their gaze not only spatially but also temporally [41]. In one example, a faculty member
analyzed a graph and the authors showed that efficient information processing meant
specifically evaluating graph information and related data at the beginning of viewing. In
contrast, inexperienced students jumped between information sources and especially back
to the task and the answer choices in no particular order [41].
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Few experiments analyzed dynamic eye-tracking metrics in a micro-level analysis (see
Table 4). It is difficult to draw a conclusion from such a small sample. In the following
section we therefore aim to summarize the visual strategies of experts and non-experts
during problem-solving and learning with graphs over the bigger (meso- and macro-level)
and smaller (micro-level) AOIs.

4. Discussion

The aim of the present literature review was twofold: (1) We wanted to give an
overview of the eye-tracking metrics used to compare experts and non-experts when
problem-solving and learning with graphs. Furthermore, we focused on the visual strate-
gies of experts and non-experts guided by the research foci of the identified research
articles (2). We further categorized AOIs based on their size, as it might influence the
analysis of whether the AOIs are at the bigger meso- and macro-level or at the smaller
micro-level.

4.1. Summary of Experts’ and Non-Experts” Visual Strategies

To analyze the visual strategies of experts and non-experts during problem-solving
and learning with graphs, we first summarize the eye-tracking metrics used in the studies
and the according experiments included in this literature review (research aim 1). As there
were differences between meso-/macro- and micro-level eye-movement analyses of eye-
tracking metrics, we examine those separately before summarizing the visual strategies of
experts and non-experts (research aim 2). Finally, we discuss the various ways expertise
was determined and how this might influence the interpretation of eye-tracking results.

4.1.1. Overview of Eye-Tracking Metrics

Most experiments compared static metrics, such as dwell time, and fixation duration
or fixation count, to analyze visual behavior (i = 39). In comparison, only 15 experiments
analyzed dynamic eye-tracking metrics, such as transitions and saccades. Static metrics
are useful to analyze the visual behavior over the entire time participants looked at stimuli
(e.g., see section Eye-Tracking Metrics). Dynamic metrics can be used to analyze the
(temporal) strategy of participants when looking at a stimulus. Although many studies
only measured one metric (n = 18), researchers analyzed two eye-tracking metrics on
average. Four out of 32 experiments used four or more eye-tracking metrics.

Fixation duration and fixation count were useful for both small and large AOIs.
Using two or more (uncorrelated) metrics might give researchers more insight into the
visual behavior, especially in a combination of static and dynamic metrics. Regarding
transitions between AQIs, we recommend a micro-level analysis, because it is very sensitive
to differences between experts and non-experts in more detail. As was common in most
studies, we also recommend distinguishing between task- or conceptually relevant and
irrelevant AOIs.

4.1.2. Meso-and Macro- vs. Micro-Level AOIs

The distinction between relevant and irrelevant AOls was quite common in the experi-
ments included in the literature review. However, there might be differences when taking
the size of the AOIs into account.

In general, the findings between macro- or meso-level AOIs and micro-level AOIs
were very similar (e.g., for fixation duration and fixation count, see Tables 3 and 4), but
there were contrary findings when analyzing transitions at different levels. At the meso-
and macro-level, experts seemed to make fewer transitions than non-experts (see Table 3).
In contrast, at the micro-level, experts made more transitions than non-experts between
conceptually relevant AOIs (see Table 4). On a micro-level analysis, experts transitioned
more between AQOIs, whereas experts seemed to make fewer transitions between AOIs
when looking at macro- and meso-level AOIs. One reason could be that experts seemed to
pay closer attention to the relevant details of the graph (e.g., [52,53,56]). However, only one
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experiment analyzed transitions at the micro-level [53]; consequently, it will be necessary
to confirm these results before a conclusion can be drawn. We nevertheless can make some
statements taking previous theories into account.

As mentioned in the Introduction, there are several theories why there are differences
in the visual behavior of experts and non-experts. The results of some experiments in-
cluded in the literature review support several of those theories. For example, at macro-
and meso-level AOIls, Okan et al. [10] demonstrated the so-called information-reduction
hypothesis [17,20] in a comparison of participants with high and low graph literacy as inves-
tigated in a pre-test. In two studies, AOIs were defined at the meso-level and experts were
classified using a graph comprehension test [10]. Consistent with the information-reduction
hypothesis, the authors observed that experts were better at identifying task-relevant areas
in a graph, which allowed them to spend a greater relative amount of time evaluating
relevant information. Specifically, the authors showed that participants with high graph
understanding reviewed axes’ labels and scaling more frequently to avoid errors [10]
(experiment 1). This corresponds to results by Rouinfar and colleagues [59], who found
that participants who solved the problem correctly paid more attention to relevant areas of a
diagram than incorrect solvers. Rouinfar et al. compared the influence of color highlighting
on information extraction with 80 physics students and they stressed the importance of
the ability to organize and integrate information to solve a problem correctly. This result
confirmed that the improved performance was caused by a learned automatism in task
performance (automatism hypothesis) and not by increased awareness of the relevant
domains [59] (priority hypothesis). Similarly, Okan et al. [10] observed that the highest
number of transitions seemed to occur between the graph region and the question and
between the graph region and the axes [10] (experiment 1), which are relevant areas as well.
At the micro-level, experts also paid more attention to relevant AQOIs, which is in line with
the results at the meso- and macro-level and the information-reduction hypothesis [17].

There were not enough experiments to conclusively identify distinct differences be-
tween experts and non-experts for specific measures. However, taken together the results
of these experiments are in line with existing hypotheses. We therefore believe that we
can make some statements about the visual strategies of experts and non-experts during
problem-solving and learning with graphs that we will present in the following.

4.1.3. Visual Strategies of Experts and Non-Experts during Problem-Solving and Learning
with Graphs

Based on our results, we can make a statement about what distinguishes visual
expertise in problem-solving and learning with graphs. Experts systematically looked at
relevant information, such as scales as well as labels (e.g., experiment 1 [10]), and performed
more integrative eye movements within a graph in terms of dynamic metrics (see Table 3,
transitions, revisits, saccades). Therefore, in addition to the formation of chunks [61],
information reduction [17,20] is central to expertise related to graphs.

There were some conclusions regarding differences between experts and non-experts
viewing specific AOIs. First, experts seemed to spend a relatively short amount of time
on the task and answer choices during problem-solving [36,43,50,53], which might also be
attributed to the fact that experts did not (or hardly) perform comparisons between answer
choices [45]. Instead, experts paid more relative attention to axis scaling, axis labels, and
graph progression [53], as well as to conceptually relevant AOIs [37].

Moreover, at least in data extraction, an order of information extraction appeared
by comparing several works [41,46,62]. The most efficient order of information extraction
seemed to emerge when participants looked at the given variables early on (if this indication
existed) and directly identified them in the graph [41,46]. Thereby, a recognition of the
respective axis and its scaling could take place (experiment 1 [10]; [53]), followed by a
jump back to the task [41] to identify the target variable, which is then looked for directly
in the graph [62]. Depending on cognitive abilities and the task difficulty, one may jump
back to variable information [41]. The expertise seems easily transferable to other styles of
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graphs (e.g., linear vs. radial) but not (or only by further training) to other types of graphs
(e.g., line and bar graphs) [63].

However, possible deviations from this strategy at high expertise have not been
identified yet. Furthermore, influences or trade-offs that lead to deviation from this optimal
strategy in experts remain unclear. In addition, the optimal temporal sequence for more
complex tasks was not determined. A complex task would be, for example, determining
the slope or the area underneath a graph. So far, in two tasks, it seemed that students with
correct solutions looked longer along the graph (when determining the slope) and into the
areas below and above the graph (when determining the area) [52].

There have also been some inconsistencies in our results (see Gaze Behavior of Experts
and Non-Experts). These might be due to the determination of expertise in individual
studies. As mentioned in the beginning, four factors are important when determining
expertise in this area: (1) graphical literacy [8-10]; (2) domain knowledge [9,11]; (3) math
prior knowledge [8]; (4) task knowledge [12].

In our review, performance, learning gain, level of study, comparison with profession-
als, and a pretest were measures used to determine expertise that may have fulfilled all
four factors of graph-comprehension skills. A teacher’s opinion may also consider all four
factors. However, this did not prove to be a good indicator of expertise. Of these measures,
performance was the most common one (Figure 1, middle right). Learning gain, level of
study, comparison with professionals, and pretest were only used to determine expertise in
one study, respectively (see Table 2). A direct comparison between studies using the same
expertise determinator is generally possible, but the nine studies using performance vary
strongly regarding AOI sizes and eye-tracking metrics, which makes them unsuitable for
direct comparison. However, there are no conflicts in the findings. In sum, we recommend
using objective measures for determining expertise and using tests that explicitly address
all four factors to allow for replicability and comparability.

4.2. Limitations

Our review of the literature about visual processing comparing experts and non-
experts during problem-solving and learning with graphs has several limitations. First,
we did not concentrate on one specific definition of expertise determination. Therefore,
studies used various measures to define and compare groups of varying expertise. This
could be one reason for the contrasting results. It also made drawing overarching
conclusions difficult.

Second, there were some inconsistencies in using terms for eye-tracking metrics. For
example, the difference between dwell time and viewing time was not always clear. In one
case, the basis for the calculation of heat maps was not reported [54].

Third, in analyzing the various articles on eye tracking during learning and problem-
solving with graphs, the resolution of the eye-tracking systems was not considered. This
means that the accuracy with which the results were reported may be subject to variation.
An increase in spatial and temporal resolution, as well as accuracy, over the period studied
may well be expected due to technological advancements in eye-tracking devices.

We do not claim completeness for the studies included in our review. Our search
process was not entirely systematic, which might have led to an incomplete list of included
studies. We also did not include grey literature, which might have resulted in a publication
bias towards positive and significant results. Moreover, results were only coded by the first
author; we could therefore not assess the validity of our codes. However, the codes were
straightforward, apart from the eye-tracking metrics concerning dwell time, which made
coding relatively easy.

4.3. Future Research

We aimed to examine relevant articles that investigated gaze behavior during problem-
solving and learning with graphs. One of the main limitations of this literature review was
the differing definitions of expertise determination. We therefore suggest the consideration
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of the four factors (1) graphical literacy, (2) domain knowledge, (3) mathematical prior
knowledge, and (4) task knowledge. For example, expertise is sometimes established
only based on the study progress [41]. This leaves it unclear to the reader to what extent
participants are truly experts. Ideally, a criterion based on an assessment that tests the
four factors would be established. In addition to these four factors, efficiency in visual
processing, if applicable, may also be used as a criterion of expertise determination [32].

In general, it is probably the best idea to find a field consensus for the definition of
experts. In the case of graphs, it might be difficult to identify the specific field to which
graphs belong, and to find a consortium of researchers that represents all relevant fields.
Therefore, we suggest an iterative empirical approach: Due to the lack of consensus
for the definition of experts, we propose a research-informed and domain-independent
identification of a group of experts. As a next step, it is necessary to verify and consequently
to refine such identification of experts, which in turn needs to be tested again.

In the case of graphs, we believe that the most important variables are the AOIs that
experts used to solve the task for various types of graphs and domains, how long they need
to focus on it, and how they connect these areas (in terms of gaze transitions). Once there is
such validated definition of experts, the visual processes of those experts would be a great
implementation for teaching the understanding and efficient processing of graphs, how to
approach graphs in unknown fields, i.e., to transfer the skills to other domains, how to best
implement information in graphs, and how to design graphs.

We assumed that the articles identified in this review would be largely limited to sta-
tionary eye-tracking systems, as graphs in experiments in education research are primarily
presented digitally on a computer screen. In fact, only three studies examined gaze behav-
ior during problem-solving or learning with mobile eye-tracking systems [34,38,50]. This
observation could be expected given the more diverse technological solutions and easier
feasibility of stationary eye-tracking studies. As most studies with mobile eye tracking
were published recently, we believe that their number will increase in the future. In terms
of analysis of eye-tracking metrics, graphs mainly analyze spatial distributions of gaze.
We could identify only one paper [41] that evaluated a temporal sequence of attention in
problem-solving with graphs. However, others made the first steps, such as looking at the
total fixation time on an AQOI vs. the fixation time in the first two seconds in an AQI [56].
Accordingly, the evidence on expert strategies is also limited only to the spatial distribution
of gaze. It would be interesting to see whether there are also temporal differences between
experts and non-experts during problem-solving or learning with graphs.

We found two papers that depicted an evolution in subjects’ gaze behavior while
problem-solving or learning with graphs [11,59]. In both cases, there was no specific
instruction to influence gaze behavior. Accordingly, the extent to which learning gains
in graph comprehension are associated with changes in gaze behavior is currently under
research. Furthermore, studying whether the results of problem-solving activities are
transferable to learning would be very valuable. In this way, it would also be interesting
to analyze the various phases of problem-solving separately. As mentioned above, there
could be an ideal strategy to extract information from graphs and a closer look at these
phases could be interesting.

Visual processing during problem-solving and learning might also depend on the
education level of the participants. Most studies were conducted with college or university
students; there are currently only three studies that investigate the gaze behavior of high
school students during graph viewing [40,45,52]. Consequently, most papers have investi-
gated an advanced stage of gaze behavior in graphs; there were no studies that analyzed
the gaze behavior of children just learning about graphs. An account of the gaze behavior of
students, who are just acquiring the understanding of graphs, and appropriate instructional
suggestions based on this, are therefore currently missing. Our sample might also be biased
towards physics because half of the included experiments (n = 16) used graphs in this
domain. Although some studies compared various STEM contexts (e.g., biology, chemistry,
and physics [43]), future research would benefit from comparisons in more domains as
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well as more types of graphs, since most experiments analyzed line graphs. Due to our
limited sample, replication studies of the experiments presented here, for example with
differing eye-tracking metrics or in other domains, might further strengthen the current
evidence base.

5. Conclusions

Experts and non-experts differ in the way they interpret graphs. We reviewed 32 articles
about experts and non-experts solving problems and learning with graphs. Most commonly
examined eye-tracking metrics were static, such as fixation duration and fixation count.
Experts seemed to focus longer on relevant areas and to identify the relevant variables
in the graphs faster than non-experts. Their visual processing also seemed to be more
systematic than that of non-experts: first identifying the given variables and then directly
looking for the target variable in the task and the graph. Regarding dynamic process
metrics, we suggest studying transitions between small areas of interest, and we encourage
considering temporal metrics in future research. Furthermore, expertise was determined
in different ways across studies, which are partially not in line with previous determina-
tors of expertise in graph comprehension, limiting the replicability and comparability of
findings. As a starting point for future research, we therefore recommend a clear definition
of expertise and propose four factors of graph-comprehension skills as a starting point
for consideration: (1) graphical literacy, (2) domain knowledge, (3) mathematical prior

knowledge, and (4) task knowledge.
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Graphical representations of data are common in many disciplines. Previous research has found that
physics students appear to have better graph comprehension skills than students from social science
disciplines, regardless of the task context. However, the graph comprehension skills of physics students
have not yet been compared with (veterinary) medicine students, both of which are disciplines that require
multiple science, technology, engineering, and mathematics (STEM) courses. This study extends previous
research on this subject by exploring whether physics majors possess superior graph comprehension skills
due to their study discipline. Here, participants solved 24 graph comprehension tasks across various
subjects, including mathematics, physics, and medicine; these tests were conducted at the beginning and
end of their first semester. Graph comprehension gain was calculated based on the percentage of correct and
incorrect answers in the pretest and the post-test. In addition to these comparisons, we replicated previous
research that successfully distinguished correct and incorrect solvers based on their visual behavior by
using a novel machine-learning method tailored to small datasets. Through this replication of statistical
analyses, we aim to ensure the reliability of adaptive learning systems in the future, regardless of data size,
using the same machine-learning method. Physics and medical students were found to exhibit relatively
similar graph comprehension gain; this is in contrast to previous research comparing physics and non-
STEM students. Our results also revealed that both physics and medical students use similar visual
strategies to solve these tasks. However, correct and incorrect solvers could be distinguished via machine-
learning methods regardless of their discipline. Our research suggests that visual behavior is a good
predictor of graph comprehension skills.

DOI: 10.1103/PhysRevPhysEducRes.20.020138

I. INTRODUCTION documented both theoretically

and empirically

Graphical representations are common in daily life. They
are also often used in educational contexts, most notably in
science, technology, engineering, and mathematics (STEM)
education. Graphical representations are frequently found in
learning environments and their benefits to learners are well
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Graphical representations of data (i.e., graphs) are important,
particularly in disciplines where the use of data is common,
such as the aforementioned STEM disciplines. As dealing
with information is one of the key competencies of the 21st
century [2], the ability to handle information is a crucial
learning point in students” education. However, many
students can encounter difficulties when dealing with
graphical representations of data, such as interpreting the
represented data [3-5].

Previous research has shown that physics students have a
definitive advantage when solving problems associated with
graphical information compared to students from social
sciences disciplines [6-8]. As these studies compared

Published by the American Physical Society
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physics majors with students from non-STEM disciplines,
the specific reasons for the advantages exhibited by physics
majors are unclear. For example, physics students could be
better at solving graphical problems due to their chosen
discipline or other factors (e.g., because they study a STEM
discipline that requires the more frequent handling of data
compared to social science disciplines). Other factors, such
as higher mathematical skills, could also improve graph
comprehension skills.

To extend previous research on this subject, we con-
ducted a pretest-post-test study comparing physics majors
to a group of non-STEM students that consistently engage
with several STEM courses: veterinary medicine and
medicine students. Both physics and (veterinary) medicine
students are voluntarily enrolled in disciplines with many
courses that engage with data and require a high level of
mathematical knowledge. In this study, we investigate
whether the discipline itself—i.e., whether the difference
between physics majors, which consist mainly of math-
ematics and physics courses, and (veterinary) medicine
majors, which contain physics, biology, and chemistry
courses—plays a key role in the difference in students’
graph comprehension skills.

Previous research also compared the eye movements of
students from physics majors with those of students of
other disciplines as they were solving graphical tasks from
both their respective disciplines [6—8]. The results revealed
that correct and incorrect solvers could be distinguished
based on their eye movements using statistical analyses [7].

Eye movements can also be valuable inputs for adaptive
learning systems [9]. These systems will probably become
more common, especially with the advent of web-based eye
tracking [10]. Adaptive learning systems use machine-
learning methods to analyze data instead of statistical
analyses and can provide immediate feedback and scatfold-
ing to students during the learning and problem-solving
processes [ 11]. Process measures, such as eye-tracking data,
are ideally suited as input for machine-learning models
because they not only act as indicators of a student’s
performance [12] but also provide insights into their prob-
lem-solving strategies [13]. However, machine-learning
methods must be able to accurately and reliably replicate
the results of statistical analyses to ensure the reliability of
adaptive learning systems. As a first step, this study attempts
to previous results by using machine-learning techniques to
predict students’ performance based on their eye movements.

This manuscript is organized as follows: we first intro-
duce the relevant literature (Sec. II) before describing our
methodology (Sec. 1II). We then present our results on the
differences in the participants’ graph comprehension gain
as well as an analysis of the eye movement data collected
during the study (Sec. IV). We proceed to discuss the
results, possible implications for educational practice, and
the study’s limitations (Sec. V). Finally, we present our
conclusions (Sec. VI).

II. LITERATURE REVIEW
A. Learning with graphs

Many STEM disciplines use graphical representations of
data within their learning environments, such as velocity-
time diagrams in physics courses. Previous research sug-
gests that such representations facilitate data processing
and comparison [14]. Consequently, graph comprehension
is a common research topic on which multiple reviews have
been published [3-5,15]. In the literature, two terms
referring to the same skill are often used interchangeably:
graph interpretation (e.g., [3]) and graph comprehension
(e.g., [16]). This skill describes one’s ability to “obtain
meaning from graphs™ [4] (p. 190), which either can be
constructed by oneself or provided by others. Graph
comprehension is a crucial ability for many students
[2.4] and often requires domain knowledge, knowledge
about the context of the graph, graphical skills (e.g.,
knowledge about the axes), and explanatory skills [17].
Shah and Hoeffner [15] described three general steps of
graph comprehension: (i) identifying the relevant visual
features, (ii) relating those features to the “conceptual
relations that are represented by those features” [15]
(p. 53), and (iii)) connecting this information to the
appropriate domain concepts. Prior knowledge can also
influence a viewer’s interpretations of a graph [4,15].

Interpreting graphs is a challenging activity for students
[4]. The most common difficulties faced by students
include interpreting a graph as a picture (graph-as-picture
errors) [5,18] or understanding functions (e.g., translating
between a function graph and the corresponding equation)
[5]. For example, 10th-grade students, who were asked to
create a position-time graph, did not recognize graph-as-
picture errors even when revising the line of their graph
[18]. In physics, additional difficulties include identifying
the relevant features of a graph or interpreting the data
depicted in a graph [19]. Graph comprehension difficulties
are also common in medical fields: for example, participants
had trouble identifying conflicting information in graphs that
presented medical information, such as treatment effects
[20]. Furthermore, relating mathematical concepts with their
contextual meaning is often not intuitive [21].

The context and characteristics of a discipline can
influence graph comprehension [16]. Due to its importance
across many disciplines, it is important to ensure that
students can interpret graphical representations independ-
ently of their context. Representational competence refers
to a student’s knowledge of how content is presented in
visual representations. It involves visual understanding,
including the ability to identify relevant variables and
information, as well as the ability to connect these
representations to their respective concepts [22]. The ability
to use representations and understand their meaning inde-
pendently of the context is a part of meta-representational
competence [23]—this is a key aspect of representational
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competence [22] and is a valuable skill in the context of
graph comprehension [24]. However, students gain content
knowledge at the same time as they acquire representational
competence [22]; this prior knowledge and experience can
contribute to learning. This is often assumed to be the case
when utilizing previously learned procedures in a new
situation [25], such as when students use the same method
to calculate the slope of a function in both math and physics
problems. Ideally, students should be able to apply their
prior knowledge of problem-solving routines across multi-
ple disciplines, such as calculating the slope of a line graph
in both math and physics using the correct units. Once
again, this requires representational competence, such as
the ability to correctly identify which variables should be
present on each axis, their units, and domain knowledge
about the relationship between those variables. Cognitive
processes during problem solving, such as identifying
relevant features in a graph and the relationship between
those features, can be inferred from eye movements [26].

B. Eye movements

Eye movement analyses, such as the length of fixations,
are often used in educational research [26,27] because they
can indicate attentional processes (eye-mind hypothesis,
[28]). Education studies frequently analyze the differences
between experts and nonexperts in the context of STEM
education; for example, in terms of domain knowledge,
e.g., physics education research [29] or graph comprehen-
sion skills [30]. In particular, information processing can
differ between experts and nonexperts. There are several
theories as to why this might be the case: these include the
theory of long-term working memory [31], the model of
holistic image processing [32], and the information-
reduction hypothesis [33]. All theories imply that experts
engage in more efficient information processing, which can
be investigated via their eye movements. According to the
theory of long-term working memory, experts store larger
chunks of information in working memory compared to
nonexperts [34] and they access these chunks via retrieval
cues [31]. Consequently, experts” fixation durations should
be shorter due to the reduced time needed to retrieve
information [35]. In contrast, the holistic model of image
perception approaches the issue from a perceptual level:
experts process images globally [32], which leads to more
efficient searches [35]. This is assumed to lead to quicker
fixations on relevant information [35,36]. Finally, the
information-reduction hypothesis states that experts can
focus on relevant information by ignoring information
irrelevant to the current task [33]; this suggests that experts
should fixate on relevant information longer [35].

Such differences in expertise were also found in the
visual strategies used during graph comprehension
[30,35,36]. Experts paid more attention to relevant infor-
mation than nonexperts during learning and problem-
solving involving graphs [30]. This is consistent with

the information-reduction hypothesis [33]. Previous
research compared participants with varying levels of
expertise as they solved science-related problems that used
conventional representations of data: they found that
participants of differing expertise levels used different
visual strategies [37]. Okan er al. [20] observed that
participants with high graph literacy looked at relevant
graphical information for longer periods when making their
interpretations. Differences in expertise may also be influ-
enced by specific disciplines. In a study on 131 high-school
students, Becker ef al. [38] found that the participants had
problems applying mathematical knowledge to a kinematic
context, especially for line graphs with negative gradients.
Similar results were reported by Ceuppens er al. [39].
Furthermore, students tended to look along the line of the
function when attempting math problems while instead
choosing to pay closer attention to the axes when attempt-
ing kinematics problems [38]. In previous studies with
higher-education participants, physics students solved
graphical problems better than both economics students
[6.7] and psychology students [8], regardless of the subject.
Susac ef al. [8] measured and compared the performance
and viewing times of psychology (N = 45) and physics
(N = 45) students as they attempted to solve isomorphic
physics and finance problems. An analysis of students’
strategies indicated that physics students relied on equa-
tions for a solution, while psychology students used more
“common-sense strategies” [8] (p. 1) (i.e., rise over run)
that were more likely to lead to errors, such as confusing
points and intervals [8]. Klein et al. [7] replicated these
results and found that physics students (N = 29) performed
better than economics students (N = 40) on the same
isomorphic test items even though the finance problems
were, from a content perspective, more closely related to
the field of study of the economics students. They also
found that students who solved the tasks correctly focused
longer on concept-specific areas than those who did not [7].
This was consistent with Susac er al. [8] who found that
physics students analyzed the actual graph more carefully
compared to psychology students. Students were also asked
to report their confidence in their answers—these scores
revealed that physics students were better judges of the
correctness of their answers compared to economics
students, although the scores did not differ significantly
between groups [7]. These results were replicated in a
postreplication study employing a pretest-posttest design
[6]. Both physics (N =20) and economics (N = 21)
students solved the same problems as participants in the
previous studies both at the beginning and the end of their
first semester. Importantly, the participants were a matched
sample to the participants in the pretest study conducted by
Klein et al. [7]. In the post-test, it was once again observed
that physics students performed better than economics
students. However, “students from both domains showed
a similar increase in the overall test score” [6] (p. 8).
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In addition, there were no differences in visual behavior
between the correct and incorrect solvers from different
disciplines, although physics students tended to be over-
confident in their answers during the post-test [6].

C. Machine learning using eye movements

Previous studies used statistical methods to compare
correct and incorrect solvers’ eye movements and visual
processing. For example, Klein et al. [7] used ANOVAs to
compare the eye movements of physics and economics
students. Statistical tests, such as regression analyses (i.e.,
ANOVAs), can be used to predict the influence of indepen-
dent variables, such as eye movements, on the dependent
variable, such as problem-solving performance [40].
Whereas statistical tests are a well-established method to
analyze data for hypothesis testing [41], adaptive learning
systems often use large datasets with many independent
variables and possibly complex correlations [42]. Therefore,
such adaptive systems frequently employ machine-learning
techniques, because they outperform statistical methods [42].
This is probably due to the advantages of machine learning
when analyzing complex nonlinear relations between vari-
ables. Such considerations need to be kept in mind, consid-
ering the increasing number of personalized and adaptive
learning systems [43].

Statistical tests, such as ANOVAs—that were previously
used to analyze eye movements [7], assume that data are
based on underlying stochastic models [44]. In contrast,
algorithmic models employing machine-learning methods
assume that the underlying data distribution is unknown
[44]. Machine-learning methods can use training data to
generate generalizable and scalable models, which can be
applied to unknown datasets of different sizes [45]. Such
models are more robust to changes if the distribution of new
incoming data differs strongly from the original data on
which the model is trained. Machine learning can also be
used to investigate complex (e.g., nonlinear or unknown)
correlations [45], allowing users to find new patterns in the
data without making previous assumptions regarding the
data’s distribution. An overview comparing statistical
and machine-learning methods is presented in Table I.

Combining the two approaches—statistical modeling and
machine learning—in a hybrid approach can have various
advantages, such as investigating causal effects while
leveraging the benefits of machine learning by identifying
the most predictive variables [41]. In this way, causality can
be examined by comparing models trained with multiple
variables and based on various assumptions; additionally,
the predictive power of scientific theories can be tested
[41]. This approach is suitable due to the increasing use of
machine-learning techniques for complex analyses with
real-time predictions on large datasets and the benefits of
statistical methods employed to test hypotheses. Currently,
datasets in education are often small (i.e., 29 physics
students and 40 economics students [7]), whereas we
believe that large amounts of data will be available to
future adaptive learning systems. At the moment, small
datasets make applying machine-learning techniques more
difficult due to the limited amount of training data, which
increases the necessity of testing the suitability of machine
learning in a hybrid approach—including the benefits of
both statistical and machine-learning analyses. Using an
optimized method specifically designed for small datasets
(i.e., Ref. [46]) in such an approach can lead to even more
reliable results.

Most machine-learning methods used in educational
contexts are supervised machine-learning models [42]; this
refers to algorithms that can predict the outcome of
unknown data based on labeled training data [45]. Only
a portion of the collected data is used for training; in
general, only 80% of the data is used as training data, with
the remaining 20% withheld as test data [45]. Machine-
learning tools can be applied to evaluate eye-tracking data:
Supervised machine-learning methods have previously
been employed to predict performance based on eye-
tracking metrics [12,49,50]. Kiichemann et al. [12] suc-
cessfully predicted the performance of 11th-grade
high-school students’ (N = 115) on the Test of Students’
Understanding of Graphs in Kinematics [51] based on the
total visit duration on areas of interest (AOIs) and the
frequency of gaze switches between AOIs with a support
vector machine (SVM). Mozaffari er al. [52] and Rebello

et al. [53] achieved similar results when students attempted

TABLE 1. An overview of statistical and machine-learning methods.
Statistical methods Machine-learning methods
Purpose Hypothesis testing [41] Model complex relationships [44.,45]
Statistical inference [41] Discover new patterns
Focus Investigating the influence of relation Making accurate predictions [41,44]

between individual variables [44]

Measurement of variable importance Exact coefficients [47]
Proposed application
Recommended use cases Simple assumptions

Complex assumptions

Theory-based research [41.44]

Feature importance based on the trained model [45]
Adaptive learning systems [42,48]
Large dataset with complex assumptions
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physics-based tasks. In addition to duration metrics,
machine-learning models can predict performance using
other eye-tracking metrics, such as the number of saccades
and pupil size [54]. From an educational perspective, this
research is highly relevant to adaptive learning systems,
which have become more relevant due to the increasing use
of artificial intelligence in education [48]. For example,
adaptive learning systems can support students during
problem-solving tasks by prompting them if they do not
look at relevant areas.

In this study, we compare several machine-learning
algorithms, including an SVM. SVMs have already been
successfully applied to learning analytics [55] and have
also been used in studies attempting to predict task
performance based on visual behavior [12,49,52,53].
SVMs can be used as binary classifiers, capable of
separating two groups by defining a boundary that attempts
to maximize the margin of error on either side [45]. They
can also be used in real time [55,56]. Other classification
algorithms include the k-nearest neighbor (KNN), which
forms groups based on the distance between data points and
random forest (RF) models, which separate data points into
groups based on an ensemble of decision trees [45].
Dzsotjan et al. [49] compared the accuracy of various
machine-learning algorithms trained to predict performance
based on visual behavior in an interactive augmented reality
environment finding that SVMs returned high F1 scores.
This suggests that eye movements are suitable inputs that can
be used to predict students” performance on graph compre-
hension tasks using machine-learning techniques such
as SVMs.

D. Research questions

Previous studies have compared physics students with
non-STEM students in terms of their performance at graph
comprehension tasks and found that physics students
outperformed non-STEM students regardless of context
[6-8]. In this study, we extend this research comparing
physics majors with non-STEM students [6-8] by compar-
ing the graph comprehension skills of physics majors with
non-STEM students who also take STEM-related courses.
To the best of our knowledge, no studies have compared the
visual behavior of physics majors (STEM students) with
that of (veterinary) medicine students (non-STEM students)
who take STEM courses, such as anatomy, chemistry, and
physics. In particular, while mathematics is a key subject
for physics majors, medical students do not take any math
classes. Based on the results of previous studies, we pose
the following research questions:

(1) Are there differences in graph comprehension gain

of physics and non-physics majors?

(2) Can differences in students’ performance be accu-

rately identified via machine-learning models trained
on students’ visual behavior?

If physics students perform better due to their discipline
rather than the amount or type of STEM courses taken, then
physics students should outperform medicine students as
was found in previous studies comparing physics students
to social sciences students [6-8]. However, if STEM
courses are relevant to graph comprehension capabilities
in general, then both the physics and veterinary medicine/
medical students in this study should exhibit equal graph
comprehension.

To answer the second research question, we replicated
the results of Klein er al. [7] and assessed the visual
differences between correct and incorrect solvers with
machine-learning methods. Eye movements can be used
as input for adaptive learning systems [9] and as a predictor
of performance (Sec. 11 C). However, machine-learning
models must be both accurate and reliable in order for
them to be successfully employed as personalized systems
in educational environments. In other words, it must be
possible to replicate the statistical findings of machine-
learning methods, even for small datasets common in
educational contexts.

III. METHODS

We recruited first-semester students as participants in our
pretest-post-test study. The participants’ demographics,
study design, test materials, apparatus used in the study,
and machine-learning techniques used in this study are
described in the following sections.

A. Participants

Twenty-four first-semester students from the Ludwig-
Maximilians-Universitit Miinchen (LMU Munich) volun-
tarily participated in the study at the beginning and the end
of the semester. The students were enrolled in the physics
(N =9), physics education (N = 3), medicine (N = 4), or
veterinary (N = 8) programs. A typical first semester in
physics includes only STEM courses: experimental phys-
ics, mathematics, and physics labs. Both medical and
veterinary students take the chemistry and anatomy
STEM courses as well as an additional STEM course
(medicine: biology, veterinary medicine: physics) and non-
STEM course (medicine: medical terminology, veterinary
medicine: zoology), depending on their vocation. In particu-
lar, mathematics is typically not part of the medical curricu-
lum. Physics majors (u = 19.25 years) were the same age as
the veterinary and medical students (u = 19.75 years);
#(15.177) = —0.62, p = 0.55. Participants received €20
for their participation in both the pretest and the post-test.
Most students were native German speakers; one student
spoke German at the C1 level. The participants’ mean A-level
grade was 1.5 (i.e., the middle grade between A and B in the
United States). There was no significant difference between
the grades of physics majors (4 = 1.72) and medical students
(u=134), W =44, p =0.30.
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(a)

The graph shows the position x of two bikers on a straight path over the time. Which biker has

a lower velocity?

x (m)

t(s)

(b)

3. Both equal

4. | don't know

The figure shows a graph of two functions f and g. Which of the functions has the smallest

slope?

(©)

2. g

3. Both equal

4. | don't know

The graph shows the mortality in Somalia and Rwanda over the last 40 years. In which country

did the mortality decrease the most2

Percentag (per 1000 inhabitants)

Somalia

Rwanda

1. Somalia

2. Rwanda

3. Both equally

4. | don't know

t (year)

FIG. 1.
translated from the original German (Fig. 2).

B. Procedures and study design

The ethics committee of the mathematics, computer
science, and statistics faculty found the pretest and the
post-test to be ethically sound (EK-MIS-2022-122, EK-
MIS-2023-143). Students from introductory physics and
medicine courses at LMU Munich were recruited in the
winter semester of the 2022/23 academic year. Participants

Example math (a) and physics (b) items from Ceuppens et al. [39] as well as (c) the isomorphic medical item. The text is

answered the same questions at the beginning and end of
the semester. The pretest took place in November 2022,
while the post-test was conducted in February 2023.
Students signed a consent form and created a pseudony-
mized code they used to take the pretest and the post-test.
The pretest also included a demographic questionnaire.
Following this, the students attempted the given tasks.
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Der Graph zeigt die Mortalitdt von Somalia und Ruanda Uber die letzten 40 Jahre.
In welchem Land nahm die Mortalitdt am stérksten ab?

Anteil (pro 1000 Einwohner)

t (Jahr)

1. Somalia
2. Ruanda
3. beide gleich stark

4. weiB ich nicht

FIG. 2. The areas of interest (AOIs) on an exemplary test item. Selected AOIs include the text, answers, graph, labels, and axes (item

presented in German, see Fig. 1(c) for the English translation).

C. Test material

The test material was based on instruments used in
previous studies [8,39] and focused on assessing graph
comprehension (Sec. I A). The test consisted of 24 items,
composed of eight mathematics, physics, and medical
items (subjects), respectively. Physics and medical items
were posed in the context of their respective fields, while
mathematical items were not presented in the form of a real-
world scenario. Of the eight items in each of the three
subjects, four were concerned with the area under the
graph, while the other four were related to the slope of the
graph (concepts). Example items are presented in Fig. 1.
The complete test is available in Supplemental Material
[57]. The participants’ answers were rated as either correct
(1) or incorrect (0).

D. Eye-tracking apparatus and measurements

Participants sat in front of a 24-inch computer screen
with a resolution of 1920 x 1200 pixels and a refresh rate
of 75 Hz. The distance to the screen was about 60 cm. A
Tobii Nano eye tracker with a sampling frequency of 60 Hz
and an ideal accuracy of 0.30° of the visual angle
(according to the manufacturer) was used to collect eye
movement data. The system allows for a high degree of
movement; consequently, a chin rest was not necessary.
More information on the eye tracker used in this study can
be found in Tobii [58]. Fixations were detected using an
1-VT algorithm [59].

Eye-tracking metrics were calculated based on specific
stimulus regions that were identified as areas of interest
(AOIs) [60]. We chose the areas around the text, the graph,
and the answers as AOIs (Fig. 2). We also extracted the total
viewing time (also known as “dwell time,” see Ref. [6]) for
these AOISs for comparison with the previous research [6-8].

E. Classification via machine learning

This study aimed to replicate the findings of Klein et al.
[7];1.e., it aimed to distinguish correct and incorrect solvers
based on their eye movements—using machine-learning
methods. In line with the hybrid modeling approach
combining statistical and machine-learning methods [41],
we used a two-step process: First, we conducted a statistical
linear regression analysis, allowing us to account for the
statistical influence of independent variables, such as study
discipline and the type of AOI, on visual behavior (de-
pendent variable). Additionally, possibly nonrelevant var-
iables can be excluded to improve the efficiency of the
machine-learning model [12,61]. All statistical analyses
were conducted in R. The package “Im.beta” was used for
regression analyses.

Second, this statistical analysis was extended using an
analysis based on machine-learning methods to answer the
second research question: Can differences in students’
performance be accurately identified via machine-learning
models trained on students’ visual behavior? We aimed to
replicate the results of Klein et al. [7] using machine-
learning techniques and trained various machine-learning
models to predict the participants’ performance (indepen-
dent variable) based on their total viewing time on the AOIs
(dependent variable). We (a) compare several models
(SVM, KNN, and RF; Sec. I1C) to assess the models’
performances and (b) compare a conventionally trained
SVM with an optimized model [46]. We adopted a
machine-learning method suited to small datasets that
improves reliability and reduces bias [46]. We used fivefold
cross-validation in conjunction with permutation tests and
hyperparameter tuning to train the algorithm and evaluate
its performance using the Matthews correlation coefficient
(MCC). This method is particularly suited to small datasets
[46]. We compared this optimized method with a simple
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TABLE II.  An overview of the results of the multiple linear regression used to assess the importance of the
independent variables on viewing time, including study discipline (step 1), AOI (step 2), test date (pretest vs post-
test; step 3), as well as the subject (mathematics vs physics vs medicine; step 4) and concept tested by each task (area
vs slope; step 5), Note: “The adjusted R? indicates how well the model explains the observed outcome. "SE B is the
standard error of the unstandardized beta, which indicates whether the b-value differs significantly from 0. © g
indicates how important a predicts is. For further information regarding these metrics, please refer to Ref. [47].

Adjusted R?" SE B i I
Step | 0.0002 0.15
Constant 4.06 (0.11) <0.001*
Physics 0.23 (0.16) 0.02 0.15
Step 2 0.2 <0.0001***
Constant 2.71 (0.19) <0.001***
Physics 0.22 (0.14) 0.02 0.11
AOI axes 0.84 (0.24) 0.05 0.01%*
AOI graph 5.79 (0.24) 0.33 <0.001***
AOI text 4,62 (0.24) 0.27 <0.0017*
AOI x-label —1.32 (0.24) —0.08 <0.001*
AOI y-label —1.82 (0.24) —0.10 <0.001*
Step 3 0.2 <0.001***
Constant 2.17 (0.2) <0.0017*
Physics 0.18 (0.14) 0.01 0.2
AOI axes 0.84 (0.24) 0.05 0.01%*
AOI graph 4.62 (0.24) 0.33 <0.001*
AOI text 5.79 (0.24) 0.27 <0.001*
AOI x-label —1.32 (0.24) —0.08 <0.001%
AOI y-label —1.82 (0.24) —0.10 <0.001*
Test pre 1.09 (0.14) 0.08 <0.001***
Step 4 0.23 <0.001**
Constant 0.8 (0.2) <0.001*
Physics 0.18 (0.14) 0.14 0.2
AOI axes 0.84 (0.24) 0.04 <0.001*
AOI graph 4.62 (0.24) 0.33 <0.001**
AOI text 5.79 (0.24) 0.27 <0.001**
AOI x-label —1.32 (0.24) —0.08 <0.001**
AOI y-label —1.82 (0.14) —0.10 <0.0017
Test pre 1.09 (0.14) 0.08 <0.001*
Subject medicine 2.61 (0.17) 0.19 <0.001***
Subject physics 1.48 (0.17) 0.11 <0.001***
Step 5 0.23 <0.0017
Constant 1.04 (0.23) <0.001*
Physics 0.18 (0.14) 0.14 0.19
AOI axes 0.84 (0.24) 0.05 <0.001*
AOI graph 4.62 (0.24) 0.33 <0.001*
AOI text 5.79 (0.24) 0.27 <0.001*
AOI x-label —1.32 (0.24) —0.08 <0.0017*
AOI y-label —1.82 (0.24) —0.10 <0.001*
Test pre 1.09 (0.14) 0.08 <0.001*+
Subject medicine 2.61 (0.17) 0.19 <0.001**
Subject physics 1.49 (0.17) 0.11 <0.001***
Concept slope —0.5 (0.14) —0.04 <0.0017

SVM trained on 60% of the dataset and tested on the  participants’ total viewing time on specific AOIs because
remaining 40% of the data. This split was used to ensure  previous studies have shown that this algorithm can be
that there was enough data to calculate feature importance. successfully applied to similar tasks [52,53]. In the context
We used an SVM to predict performance based on the  of binary classification, SVMs attempt to find the ideal
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hyperplane that separates groups of data points by maxi-
mizing the margin between the data and the hyperplane
[45]; consequently, SVMs can be considered to be a type of
regression analysis. Due to its ability to transferability to
unknown data and identify patterns in complex data
(Table II), we believe that implementing an SVM would
be an ideal way of comparing the results of machine-
learning regression techniques to statistical regression. This
will allow us to compare the variable (statistics) and feature
importance (machine learning) of both types of analyses.

IV. RESULTS

Here, we present the results of the participants’ answers
and the analysis of their visual behavior. A p value of less
than 0.05 was used as the threshold for a statistically
significant test statistic [47]. The assumptions of all
statistical tests, such as normal distribution, were checked
and nonparametric tests were used if these assumptions
were violated.

A. Graph comprehension gain

The participants answered the same items in both the
pretest and the post-test. A Wilcoxon signed-rank test
revealed that students took significantly longer to solve
the pretest (4 = 16.8 min, ¢ =5.1) than the post-test
(= 13.2 min, ¢ = 3.5); V=40, p =0.001. 916 items
were answered correctly, while 236 items were answered
incorrectly. The graph comprehension gain was assessed by
subtracting the percentage of correct answers in the pretest
from the percentage of correct answers in the post-test.
Across the entire sample, a dependent r test showed no
significant difference in the graph comprehension gain of
students on the area under the curve and the slope tasks;
H(45.98) = 0.42, p = 0.68. A Wilcoxon signed-rank test
revealed that physics majors exhibited improved graph
comprehension gain with respect to the tasks associated
with the area under the curve (u = 0.11, 6 = 0.18) com-
pared to tasks associated with the slope of the graph
(= —-0.02, 6 =0.19); W= 166663020, p < 0.001. In
contrast, the opposite was observed for (veterinary) medi-
cine students, who exhibited improved performance on the
slope tasks (¢ = 0.05, ¢ =(0.2) compared to the tasks
associated with the area under the curve (u = —0.01,
o =0.24); W = 81328200, p < 0.001. As there were no
overall differences across the sample, and because the
improvements in the performance of the students on
different types of graph comprehension tasks were in
opposition, we used the mean graph comprehension gain
between the slope and area tasks for the remaining
analyses. The mean graph comprehension gain for physics
and (veterinary) medicine students across the three subjects
tested is presented in Fig. 3.

The graph comprehension gain of physics and medical
students across the three different subjects assessed by the
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FIG. 3. Mean graph comprehension gain for students from each

discipline across the different subjects. Error bars indicate the
standard deviation of the results.

test material (mathematics, physics, and medicine) was
compared via a 2 (discipline) x 3 (subject) ANOVA. Graph
comprehension gain did not differ between physics
(=005 o6=0.14) and medical students (u = 0.03,
6=0.19; F(1,48)=0.01, p=0.9, w? =—.02). However,
graph comprehension gain did differ significantly between
subjects; F(2,48) = 4.11, p = 0.02", @* = 0.11; this can
be considered a medium effect [62]. Bonferroni post hoc
tests showed that the graph comprehension gain in medical
items (¢ = —0.02, 6 = 0.19) was significantly smaller than
the graph comprehension gain in physics items (u = 0.13,
o = 0.16).

B. Total viewing time

This section presents the results of the viewing times
analyses conducted on the eye-tracking data. The effects of
the independent variables on the viewing time were first
assessed using linear regression. This revealed several
independent variables that should be considered when
designing the machine-learning model, specifically view-
ing times on AOIs and the test date. Based on these results,
an SVM was trained and the results were compared with
optimized and non-optimized machine-learning algorithms
as described in Section IIL E [46]. We also investigated the
feature importance of the final SVM model.

1. Statistical analysis

We used multiple linear regression to determine the
effects of the following independent variables on the total
viewing time (dependent variable): the students’ discipline,
parameters associated with specific AOIs (Fig. 2), the test
date, the subject of each task (Fig. 1), and the concept
tested. In this way, the effects of all possible influences on
visual behavior were evaluated. The results of linear
regression models are presented in Table I1I. An ANOVA
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revealed that each step significantly improved the fit;
p < 0.001. The first model—which only included the
participants’ discipline to predict their viewing time—did
not perform well, adjusted R> = 0.0002. The model’s
performance was significantly increased by adding the
AOI as a predictor variable, adjusted R?> = 0.02. Adding
the test date as a variable did not increase performance,
adjusted R*> = 0.02. However, adding the subject assessed
by each item improved the model, adjusted R> = 0.023.
Adding the specific graph comprehension concept tested
did not improve the model. These results suggest that 23%
of the variance in viewing time can be explained by this
linear regression model, which includes the viewing time
associated with each AOI and the subject assessed by
the task.

2. Machine-learning analysis

The insights gained from the multiple linear regression
were used to guide the design of the machine-learning
algorithm by looking at the influence of the individual
variables. Participants’ performance was predicted using
the viewing time on each AOI for every item because this
seemed to be the most relevant variable based on the linear
regression results. Reducing the number of features can
also increase the efficiency of the machine-learning model
[12,61]. Separate models were built for the pretest and post-
test datasets, as this was a significant variable in the
regression analysis. This study aimed to replicate the
results of Klein ef al. [7] via machine-learning methods.
Specifically, we used a machine-learning method tailored to
small datasets to train an SVM; the final model was
evaluated using MCC to judge its performance on unbal-
anced datasets and to reduce bias [46]. The results revealed
that correct and incorrect solvers could be distinguished
based on the AOIs, although the MCC values of the final
model were low (pretest results: MCC = 0.23, p = 0.001;
post-test results: MCC = 0.22, p = 0.001). The perfor-
mance of the SVM was compared to a KNN and an RF
model; these models had slightly lower MCC scores (KNN
pretest results: MCC = 0.08, p = 0.02; KNN post-test

results: MCC = 0.13, p =0.01; rf pretest results:
MCC = 0.14, p = 0.01; rf post-test results: MCC = 0.18,
p =0.01).

It is important to note that the method used to generate
these models (Sec. IIIE) was designed specifically for
small datasets and is not a conventional practice. Analyses
using classical train-test-split methods led to different
results. Using a simple SVM without cross validation with
a 6040 train-test split, produced a model that scored well
on a variety of performance metrics (pretest metrics:
accuracy = 0.78, F1 = 0.87.; post-test metrics: accuracy
= 0.82, FI =0.90). However, the MCC of the model
was 0.0 in both cases, which suggests that the method
developed for small datasets led to more reliable results.

Graph - 1

x_Label

Text A
Answers -
y_Label A

Axes | _

-0.04 -0.03 -0.02 -0.01 0.00 0.01 002 003 0.04

FIG. 4. Feature importance coefficients derived from the simple
SVM.

The feature importance of the simple SVM instantiated
with a linear kernel supported these results. Feature
importance coefficients suggested that the x-label and
the axes were the most important features when attempting
to distinguish correct from incorrect solvers based on their
visual behavior (Fig. 4). It is important to note that these
coefficients were calculated on the training data.

Permutation feature importance uses the test data to
calculate feature importance; this technique randomly
shuffles the features, which generally causes the model
to perform worse. A feature’s relevance is determined by
how much worse the model performs on the test set when
the feature is randomly permutated. Permutation feature
importance for the simple SVM revealed that the viewing
time on the axes was the most important feature in
distinguishing between correct and incorrect solvers, fol-
lowed by the viewing time spent on the graph (Fig. 5).
Notably, the feature importance coefficient regarding view-
ing time spent on the AOIs associated with the axes of the
graph changed from negative to positive when permutation
feature importance was considered; in addition, the high
x-label coefficient observed in the standard feature impor-
tance was not observed when permutation feature impor-
tance analysis was conducted. These results suggest that the
simple SVM was not optimally trained, although the
prediction’s accuracy appeared to be high.

V. DISCUSSION

This section discusses the first-semester physics majors
and (veterinary) medicine students. We investigated graph
comprehension gain and differences in visual behavior for
students faced with math, physics, or medical graph
comprehension tasks. We first compare the task perfor-
mance of the physics and (veterinary) medicine students for
each of the three subjects (math, physics, and medicine).
We then evaluate the participants’ visual behavior based on
their total viewing time on each AOI (Fig. 2).
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FIG. 5. Permutation feature importance of the simple SVM.

A. Comparison of graph comprehension gain
between physics and medical students

Previous research found that physics students performed
better at graph comprehension tasks than psychology [8]
and economics students [6,7]. In this study, we compared
physics with (veterinary) medicine students and found no
significant differences in graph comprehension gain over
the first semester. These results suggest that first-semester
physics and medicine students have similar graph compre-
hension skills when faced with problems associated with
mathematics, physics, and medicine.

The participants were tasked with solving isomorphic
graph comprehension problems across three subjects and
used the same visual behavior to solve each question.
Participants’ equal performance across different subjects
suggests that all participants—i.e., both physics majors and
(veterinary) medicine students—were able to apply the
solution strategy regardless of subject. This also suggests
that students were able to identify the relevant variables in
all graphs regardless of subject and were able to relate the
data presented in each graph to the subject of the question
being asked. One explanation for this observation is that
both physics majors and (veterinary) medicine students
possessed a similar level of representational competence:
Both physics and medicine students appeared to exhibit a
comparable ability in terms of the use of problem-solving
strategies in isomorphic representations across different
subjects (i.e., familiarity with graphing conventions and
connecting the representations to the concepts).

Another reason for the comparable performance between
the physics majors and (veterinary) medicine students in
this study compared to the social science students assessed
in previous studies [6-8] could be the access to STEM
courses: social sciences students typically only have one
STEM course during the first semester (statistics). In
contrast, all students participating in this study attended
more than one STEM course. STEM courses provide
students with a real-world context for the abstract math-
ematical concepts taught in their respective disciplines; this
may occur concurrently with learning about their

application through experimentation themselves, such as
in physics labs. Thus, the description of phenomena in
abstract mathematical terms could potentially enhance a
student’s ability to transfer these problem-solving skills to
other subjects.

Each item was relatively simple (see examples in Fig. 1);
some tasks were intended for 9th-grade students [39]—i.e.,
first-semester university students would be expected to
solve them without much difficulty. This was reflected in
the high degree of accuracy across all subjects and
disciplines: 80% of the items were solved correctly.
Another potential reason for this similar performance
among the participants could be their relatively equal skill
level as shown by comparable A-level grades of students
from both disciplines. Furthermore, both physics majors
and (veterinary) medicine students voluntarily chose dis-
ciplines that require a high degree of graph comprehension
skills: the study of physics generally involves graphs
containing experimental data, while graphs that depict
patient data are common in medicine. Physics and (vet-
erinary) medicine students would presumably also be
familiar with the STEM courses that are taken as part of
their degree and can be assumed to be proficient STEM
learners. For example, physics majors are believed to have
an aptitude for science [63]. Finally, students did not appear
to improve between the pretest and post-test, which could
indicate that they possessed an overall high level of graph
comprehension skills even before starting their university
studies.

In contrast to previous studies [6—8], we did not find any
significant differences in graph comprehension between
physics majors and medical students. This suggests that
students who take STEM courses have a similar level of
graph comprehension skills. Although we have assumed
that STEM courses play a role in facilitating graph
comprehension, we cannot conclude that STEM courses
are the sole reason for the participants’ comparable graph
comprehension skills: Other factors, such as aptitude and
self-selection of the university discipline, may also play a
role. However, we did find that correct solvers used
different visual processes to solve the graph comprehension
tasks compared to incorrect solvers. This suggests that
some students are more successful in identifying the
relevant variables (correct solvers) compared to others
(incorrect solvers), suggesting different levels of represen-
tational competence.

B. Viewing times of correct and incorrect solvers

The second research question posed in this study
concerns the total viewing time on specific AOISs for correct
and incorrect solvers: Can differences in students’ perfor-
mance be accurately identified via machine-learning mod-
els trained on students’ visual behavior? We addressed this
question in two ways (Sec. IIIE): We first conducted a
statistical analysis to determine the relative influence of
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each independent variable on the dependent variable view-
ing time. We then used the total viewing time on each AOI
to predict performance. Finally, we compared several
machine-learning models, which included an SVM trained
using a method developed specifically for small datasets
[46]. An SVM, a type of machine-learning-based regres-
sion, ensures that the models’ feature importance is
comparable to the variable importance obtained from a
statistical regression.

Multiple linear regression revealed that the total viewing
time did not depend on the participants’ discipline, instead,
it was most strongly influenced by the different AOIs
(Table II). Specifically, longer viewing times were asso-
ciated with increased time spent looking at the graph and
the text and reduced time spent looking at the axes labels.
The model’s accuracy increased when the subject tested by
the item was added as a variable (from adjusted R> = 0.2 to
adjusted R? = 0.23; Table II). In particular, tasks that posed
problems related to medicine and physics appeared to
influence the viewing time; medical items required slightly
longer viewing compared to physics items. These results
were consistent with our overall observations on graph
comprehension gain: medical tasks appeared to be more
difficult than physics tasks (Fig. 3). Consequently,
participants are likely to spend more time on tasks with
greater difficulty. Participants’ graph comprehension gain
did not differ between physics, medicine, and mathematics
(Sec. IVA).

This study also aimed to replicate previous findings
regarding the differences in the visual behavior of correct
and incorrect solvers [7] with machine-learning methods.
The SVM model performed better than the KNN and rf
models. We also found significant differences between
correct and incorrect solvers in the pretest and the post-test.
This suggests that machine-learning algorithms can dis-
tinguish between participants who either correctly or
incorrectly approached a graphical comprehension task.
These results are consistent with previous research, sug-
gesting that the total viewing time spent on concept-
specific areas can differ between correct and incorrect
solvers [7,30]. Although the performance of the optimized
machine-learning algorithm was not as good as the models
presented in previous research, the results remained sat-
isfactory. For example, Dzsotjan et al. [49] reported an F1
score of (.66 when using a combination of the best features,
which included features other than the viewing time on
AOIs. It should be noted that an F1 score is also more likely
to support the null hypothesis than an MCC score [46]. This
is supported by the high accuracy (pretest: (.78, posttest:
0.82) and F1 scores (pretest: 0.87, posttest: 0.90) obtained
when using a simple SVM to predict participant perfor-
mance. These results would suggest that a simple SVM
might be a good model for the data; however, the MCC of
the SVM model was 0.00 for both pretest and post-test
datasets, indicating that this was not the case. In contrast,

the MCC for the optimized model, which used cross-
validation techniques and permutation tests, was much
higher, suggesting that it is better suited to predict perfor-
mance based on eye-tracking data.

It is important to note that the feature importance of the
simple SVM model changed depending on how it was
calculated. The coefficients used by the SVM for the
training data suggested that the viewing time on the
x-label and the axes were the most important features
(Fig. 4). However, when feature importance was calculated
using permutation tests on the test data, the second most
relevant feature was the viewing time spent on the graph
(though the axes were the most relevant features; Fig. 5).
These observations were more consistent with the results of
the multiple linear regression, which suggested that the
viewing time spent on the graph was the most important
variable. Therefore, we confirmed that machine learning
seems to be a valid method to predict students’ performance
based on their visual behavior [12,49,50]; particularly, with
an optimized machine-learning method developed for small
datasets [46], which yields results comparable to classical
statistical methods. The accuracy of the feature importance
tests depends on the size of the test set; this study used a test
set size of 40% to ensure there was enough data to calculate
feature importance. As the feature importances derived
from the simple SVM were similar but not identical to the
results of multiple linear regression analysis, the size of the
dataset appears to be too small for simple machine-learning
algorithms. This highlights the importance of using an
appropriate method to analyze small datasets.

C. Implications for practice

This study investigated the differences in graph com-
prehension skills between physics majors and (veterinary)
medicine students and found that students from the two
disciplines had relatively similar graph comprehension
skills. This was in contrast to prior research that reported
that STEM majors tended to outperform non-STEM social
science students who traditionally do not take STEM
courses as part of their curriculum [6-8]. The common-
alities of the disciplines in our study and the differences in
the results between our study and previous research suggest
that students might benefit from taking courses that involve
the graphical representation of data associated with specific
real-world concepts [21] as is often the case in STEM
courses. Nevertheless, there are likely to be other factors
that influence students’” graph comprehension skills, such
as personal interest.

This study replicated previous studies [7] distinguishing
correct and incorrect solvers based on their eye movements
using machine-learning methods. This suggests that
machine learning has the potential to be successfully
applied as a tool in STEM education research, especially
in the context of eye movement analyses. A comparison
with simple algorithms suggests that the method proposed
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by Steinert et al. [40] is appropriate for analyzing small
datasets, such as those used in this study. These results
suggest that eye-tracking measurements can be used as
inputs for adaptive learning systems [9]. Applications that
use eye-tracking metrics will likely become increasingly
relevant for teachers, especially in conjunction with per-
sonalized systems that can support individual learners. For
example, machine-learning applications could help teach-
ers identify students encountering problems with the course
content.

D. Limitations and future research

There are several limitations to this research. The most
relevant limitation is the low number of participants.
Another limitation is that the medical items used in the
pretest and post-test had not been previously tested, which
may affect the comparability with the isomorphic items
associated with mathematics and physics. Furthermore,
other factors that may influence graph comprehension skills
—such as self-selection of the study discipline or the
number of STEM courses that each student took—were
not addressed in our research questions. Future research
should extend this research into other potential variables
that could influence the development of graph compre-
hension skills.

Future research should also validate the medical test
items used in this study to assess their comparability with
test instruments used in previous research. Comparisons
with other STEM disciplines, such as mathematics or
computer science students, could also provide further
insights as to why students of some disciplines outperform
others in graph comprehension tasks.

While SVMs appear to be well suited to making
predictions about correct and incorrect solvers, this study
indicated a relatively low MCC score; future research may
wish to improve the model presented in this study by
testing other types of machine-learning algorithms, such as
neural networks. The model performance may also improve
by adding more features.

Finally, future research should consider the real-world
application of eye-tracking data in adaptive learning sys-
tems and their ability to support students during the
learning process. These systems should ideally be acces-
sible and capable of operating in real time. Indeed, SVMs
can be used in real time [55,56] and web-based eye tracking

can now be easily implemented on certain websites [10].
These tools would provide students with individual support
while also providing teachers with immediate information
on whether students have issues with a specific type of
problem or whether a particular student needs more
assistance.

VI. CONCLUSION

Graph comprehension is an important skill for students
of various disciplines. Physics majors appear to have better
graph comprehension skills compared to students from
social sciences disciplines. This study compared the graph
comprehension skills of physics and medical students
across three different subjects: math, physics, and medi-
cine. Each participant attempted these tasks at the begin-
ning and the end of the first semester. There were no
significant differences in graph comprehension gain or
visual behavior between physics majors and medical
students, suggesting that students from these disciplines
had similar graph comprehension skills. One reason for this
finding could be that physics majors and medicine students
often engage with graphs due to the multitude of STEM
courses in their respective disciplines.

An investigation of the visual processing of correct and
incorrect solvers across both disciplines using a novel
machine-learning approach tailored to small datasets
revealed that eye movements could be used as a predictor
for performance. This demonstrates that machine-learning
analyses can be a valuable tool for education research even
for small datasets, as long as this is accounted for during the
analysis.
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This thesis aimed to (a) analyse graphing as a tool in learning and
problem-solving, (b) investigate expertise in learning and problem-solving with graphs,
and (c) explore differences between study disciplines during problem-solving with
graphs. The theoretical and empirical background of this research was discussed in
section 1. All studies fall under the broader scope of exploring the two aspects of
graphing competence (see section 1.2.3): the aspect of creating graphs by reviewing
graphing and the aspect of graph comprehension by investigating expertise differences in
visual behaviour and comparing the problem-solving skills of students of two disciplines.
The first study presented a synthesis of empirical studies on graphing in K-12 education
as a systematic literature review (see section 2). The second study focused on the second
aim by investigating expertise differences in visual processing during learning and
problem-solving with graphs (see section 3). The last study addressed graph
comprehension by comparing the performance and the visual behaviour of physics and
non-physics students solving graph tasks (see section 4).

The results of all three studies are summarised in section 5.1. Then, the theoretical
(see section 5.2) and practical (see section 5.3) implications are discussed. Limitations

and future research are described afterwards (see sections 5.45.4 and 5.5, respectively).

5.1. Summary of the Results of the Articles
5.1.1. Results of Study 1

The first study (see section 2) presented a systematic review of the empirical
research on graphing statistical data in STEM education. This literature review identified
44 peer-reviewed studies published between 1979 and 2021 investigating this topic. From
these studies, information about the population (e.g., high-school students), the STEM
discipline (e.g., physics), the graphing method (e.g., manual) and guidance (e.g., explicit),
the type of graph (e.g., line graphs) and the types of data (e.g., bivariate), the study design
(e.g., problem-solving), the results (e.g., positive), and the students’ difficulties (e.g.,
scaling the axes) were extracted. All extracted codes are available under

https://osf.io/4wtac/?view_only=137943ec30ee47fd98950aef2cef43a0. The studies

included in the review were analysed regarding the implementation of graphing in STEM
education research (RQ 1), the added value of graphing in STEM education (RQ 2), and
students’ difficulties during graphing (RQ 3).

Results indicated that most studies were conducted during more than one lesson

and that graphing was often analysed in the context of problem-solving (RQ 1 of study 1,


https://osf.io/4wtac/?view_only=137943ec30ee47fd98950aef2cef43a0
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see section 1.4.1). There seemed to be no preference for either manual or tool-based
graphing. The most common types of graphs were line graphs. A typical study design
included instruction over multiple lessons to investigate the effectiveness of such
instruction on graphing skills for line graphs. Several studies reported positive effects of
various kinds of graphing instruction that indicated the benefit of graphing. Additionally,
instructing graphing was beneficial for graph comprehension (RQ 2 of study 1, see
section 1.4.1). The included studies reported various student difficulties (RQ 3 of study 1,
see section 1.4.1). Student difficulties with graph construction can be sorted into three
categories: (1) difficulties during graph construction, (2) difficulties during variable
ordering, or (3) difficulties with translating data between types of representations.
Theoretical difficulties during graphing, for example, with interpretation or connecting
the data to the underlying concept, were also reported frequently. However, difficulties
during graph construction were the most common. Many studies reported both
conventional and theoretical student difficulties. The prevalence of both types of

difficulties in multiple studies suggests a possible connection between them.

5.1.2. Results of Study 2

The second study (see section 3) reviewed literature comparing the visual
behaviour of experts and non-experts during learning and problem-solving with graphs.
Thirty-two articles exploring this topic were included in the review. From these studies,
the STEM discipline (e.g., mathematics), the type of graph (e.g., line graphs), the type of
eye-tracking metric (e.g., fixations), and key findings were extracted. The findings of the
included studies were analysed regarding the types of eye-tracking metrics used (research
aim 1) and differences in visual behaviour between experts and non-experts were
synthesised (research aim 2). Eye-tracking metrics were distinguished not only by their
types but also based on the size of the areas of interest (AOIs) used to calculate them. The
outcomes reported in the studies were investigated for micro-level as well as meso- and
macro-level AOIs (André et al., 2015). An example of these AOIs can be seen in Figure 1
(see section 1.4.2). Furthermore, the method of expertise determination in the included
studies was extracted and analysed.

Dwell time, fixation duration, and fixation count were typical eye-tracking
metrics, independent of AOI size (research aim 1 of Study 2, see section 1.4.2). The
results indicated that experts paid more attention to relevant parts of a graph than non-

experts (research aim 2 of study 2, see section 1.4.2). This is in line with the
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information-reduction hypothesis (Haider & Frensch, 1999). Experts also seemed to make
more gaze switches between the areas of a graph. Participants who looked at the relevant
variables early on and afterwards identified them in the graphs had the most efficient

strategy to extract such data.

5.1.3. Results of Study 3

The third study (see section 4) investigated the effect of context and discipline on
learning gain and visual behaviour during graph comprehension tasks. Differences in
learning gain (RQ 1) and visual behaviour (RQ 2) were compared between participants of
varying disciplines. Twelve medical/veterinary and twelve physics students participated
in the data collection at both the beginning and the end of the semester. The participants
answered the same 24 isomorphic questions in the context of mathematics, physics, and
medicine at both times.

There were no differences in learning gain between physics and non-physics first-
semester students (RQ 1 of Study 3, see section 1.4.3). However, there was a statistically
significant difference between contexts: participants improved more between the pretest
and posttest in items in the context of physics compared to items in a medical context.
Visual behaviour between correct and incorrect solvers differed in both the pretest and the
posttest as indicated by a significant p-value (RQ 2 of study 3, see section 1.4.3). In a
comparison of various machine-learning algorithms and an examination of their
performance metrics, an SVM optimised for small datasets (Steinert et al., 2024) seemed
to be best suited for analysing eye-tracking results. This replicated previous results
calculated via statistical methods (Klein, Kiichemann, et al., 2019) using
machine-learning techniques. In line with the information-reduction hypothesis (Haider &
Frensch, 1999), Klein, Kiichemann, et al. (2019) found that correct solvers paid more
attention than incorrect solvers to relevant areas. An investigation of the feature
importance of the machine-learning algorithm identified that the dwell time on the axes
and the graph were the most important AOIs for predicting the participants’ performance.
Additional statistical analyses using multiple linear regression suggested that the area of a
graph that participants paid attention to was related to the total dwell time on a stimulus.

In contrast, looking at the axes labels seemed to indicate less time spent on the task.
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5.2. Theoretical Implications

Graphical representations are crucial educational tools (see section 1.2). Being
able to use numerical information and interpret data are important skills for students as
well as communicating with data (Program for International Student Assessment, 2022).
Therefore, students should learn how to comprehend graphs as well as how to create them
(Glazer, 2011). This is called graphing competence. A high graphing competence enables
students to interpret data correctly as well as to efficiently convey information in the form
of graphs. The focus of the three studies of this thesis is on graphing (Study 1) and graph
comprehension (Studies 2 and 3). Based on the results of these studies (see section 5.1),
theoretical implications in the context of graphing and graph comprehension can be

drawn.

5.2.1.  Student Difficulties With Graphing
One of the aspects of graphing competence is creating graphs (Glazer, 2011).

Graphing is a constructive learning activity (Chi & Wylie, 2014). Constructing graphical
representations has multiple benefits for learners (see section 1.2.2): It is a generative
activity during which learners can visualise and externalise information (Schmidgall et
al., 2019). During generation activities, learners have the chance for detailed self-
explanations (Fiorella & Kuhlmann, 2020) or to represent information only implicitly
mentioned in the text (Scheiter et al., 2017). However, generation should be taught
carefully (Fiorella & Zhang, 2018; Scheiter et al., 2017) because learners need enough
cognitive resources to generate representations (Schwamborn et al., 2011). As a
generative activity, these advantages should also apply to the generation of graphs. The
findings of the first study indicated that graphing instruction can improve not only
learners' graphing skills but also their graph comprehension. Students seem to pay close
attention to a graph’s details during graphing (Gerard et al., 2012), which could lead to an
improvement in their graph comprehension. An examination of the data (points) making
up a graph could facilitate graph interpretation on a local level (Leinhardt et al., 1990).
This is supported by the assumption that visualising can help organise knowledge
(Fiorella, 2023). Furthermore, the findings of the review on graphing indicate that
graphing instruction could also facilitate scientific skills, such as generating hypotheses
(Gultepe & Kilic, 2015). These results are in line with the benefits of construction

activities described in the ICAP framework (Chi & Wylie, 2014).
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Study 1 also synthesised results regarding students’ difficulties during graphing
(RQ 3). This has been a focus of research on graphing competence (see section 1.2.3), as
both graphing and graph comprehension are not easy for students (Glazer, 2011;
Leinhardt et al., 1990). For example, Leinhardt et al. (1990) investigated students'
misconceptions about graphs. These misconceptions can be based on misunderstanding
previous instructions (Leinhardt et al., 1990). Using the wrong strategies can cause
students to misinterpret the data, such as interpreting a graph as a picture of a situation
(Clement, 1985). Difficulties have also been found during graphing (e.g., Wavering,
1985). Therefore, good instruction regarding graphing competence is crucial for dealing
with students’ difficulties. Although difficulties during graph comprehension have been
reviewed previously (Boels et al., 2019; Clement, 1985; Glazer, 2011; Leinhardt et al.,
1990), so far, there have been no extensive reviews regarding students’ difficulties
specifically during graphing.

The difficulties during graphing reported in the studies included in the systematic
review (see section 2) varied. For example, students have trouble with scaling the axes
(Aberg-Bengtsson, 2006; von Kotzebue et al., 2015) or graphing the data points, for
example, because they forget to consider possible deviations (Dewi et al., 2018). These
difficulties can be considered in the framework of the graph construction process
(Lachmayer et al., 2007): problems during scaling are construction difficulties because
they concern the structure of the graph, and difficulties with data points are variable
ordering difficulties due to the affiliation with charting the points. Another difficulty is
translating data from one type of representation to another, such as from a table to a graph
(Oslington et al., 2020). Difficulties during the construction process were the most
frequently reported type of student difficulties in Study 1. Students can also have
difficulties relating to theoretical aspects of graphing: For example, connecting the data to
the underlying concept, as is the case for graph-as-picture errors (Clement, 1985; Gerard
et al., 2012). Other theoretical difficulties include interpreting the data, such as
misinterpreting the relationship between the variables indicated by the x-axis and y-axis
(Dewi et al., 2018) and finding the correct type of graph for plotting the data (Ozmen et
al., 2020). Such theoretical difficulties should be addressed by teachers in order to solve
them (Boels et al., 2019).

Eighteen of the studies included in the literature review of graphing reported that
students had both conventional and theoretical difficulties. This indicated a possible

relation between these two types of difficulties. For example, one study, that also
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investigated the conceptual understanding of students, found that high conceptual
understanding was related to high graphing skills (Giiltepe, 2016). Students’ graphing
difficulties might therefore not only be due to not understanding graphing conventions but
also due to not being able to to comprehend the data. In turn, this might influence how
students choose to display data during graphing. As both aspects, graphing and graph
comprehension, are part of graphing competence (Glazer, 2011), it seems reasonable to
assume that both conventional and theoretical difficulties play a role in graphing. On the
other hand, students who can correctly graph data might have a better grasp on its
interpretation as well. How graphing skill and graph comprehension influence each other

and whether this relationship is directional, has not yet been investigated.

5.2.2.  Visual Behaviour During Graph Comprehension
One method to investigate learning and problem-solving processes during graph

comprehension is eye tracking (see section 1.3.1). Eye tracking is a method for
investigating visual behaviour. This can be useful, e.g., to investigate expertise
differences (see section 1.3.2). Experts process information more efficiently than
non-experts (Ericsson & Kintsch, 1995). There are three main theories about expertise
that lead to distinct assumptions regarding the visual processing of experts: (1) The
information-reduction hypothesis assumes that experts focus more on relevant
information by ignoring irrelevant information on a perceptual level (Haider & Frensch,
1999). Based on this hypothesis, experts should focus more and longer on relevant
information (Gegenfurtner et al., 2011). (2) The holistic model of image perception states
that experts process images globally (Kundel et al., 2007) and therefore fixate on relevant
information more quickly than non-experts (Gegenfurtner et al., 2011). (3) According to
the assumption of long-term working memory, experts store information more efficiently
than non-experts (Ericsson & Kintsch, 1995; Guida et al., 2012). Consequently, experts
should spend less time on relevant information (Gegenfurtner et al., 2011). Previous
research found support for all theories (Brams et al., 2019; Gegenfurtner et al., 2011;
Sheridan & Reingold, 2017). However, the holistic model of image perception seems to
be most prevalent in the medical field (Brams et al., 2019; Sheridan & Reingold, 2017),
although para-foveal processing necessary for global image is also one of the processes

mentioned in the CTVE (Gegenfurtner et al., 2023).
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This thesis analyses expertise in the context of graph comprehension by
investigating the visual processing of experts and non-experts during learning and
problem-solving with graphs (research aim b). The second study presents a systematic
review of studies comparing the visual behaviour of participants with various expertise
levels during learning and problem-solving with graphs (see section 3). It should be
noted, that, unlike previous reviews of graph interpretation (Boels et al., 2019), this study
does not focus on a specific type of graph, but includes all types of graphs. When
investigating visual processing based on eye movements, the size of the AOIs should be
considered because eye-tracking metrics are calculated for AOIs (Holmqvist &
Andersson, 2017). Therefore, the studies’ findings were analysed based on the size of the
AOIs used by the studies’ authors. The review analysed two categories of AOI sizes:
AOIs based on larger areas, such as the entire graph or large parts of it (macro- and
meso-level AOIs), as well as AOIs separating very small areas, such as individual ticks
on the axes (micro-level AOIs).

Overall, the findings at the macro- and meso-level were similar to those at the
micro-level. At all levels, experts seem to fixate longer on relevant information. This
result is in line with the information-reduction hypothesis (Gegenfurtner et al., 2011;
Haider & Frensch, 1999). Therefore, experts seem to be able to ignore the irrelevant
information in graph comprehension tasks to better focus on the relevant information. The
analysis of macro- and meso-level AOIs also indicated that experts made more dynamic
eye movements, such as revisits and saccades, related to integrating information. Building
connections is also an indicator of expertise (Gegenfurtner et al., 2023). This process is,
for example, important during the organisation of image chunks (Gegenfurtner et al.,
2023). Consequently, eye movements seem to be valid indicators for expertise
determination in the context of graph comprehension.

Expertise, as indicated by solution corrects, has been extensively researched in
various studies. For example, physics students outperformed both psychology (Susac et
al., 2018) and economics (Briickner et al., 2020; Klein, Kiichemann, et al., 2019) students
in graph comprehension tasks in both their familiar (physics) and unfamiliar (finance)
disciplines. Klein et al. (2019) could distinguish participants based on their performance
in solving a task correctly and incorrectly via their dwell time on concept-specific AOIs.
Other studies also used statistical methods to predict performance based on dwell time in
relevant areas (Becker et al., 2022) or average fixation duration (Chen et al., 2014).

Besides statistical methods, machine-learning algorithms can be used to predict
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performance (see section 1.3.3). Supervised machine-learning methods are common in
educational research (Namoun & Alshanqiti, 2021). Supervised methods use labelled
training data to train an algorithm to label unknown test data (Géron, 2019), such as
predicting a correct or incorrect solution based on eye movements. For example,
Kiichemann et al. (2021) could predict high-school students’ performance on graph
comprehension tasks based on their transition frequency and their dwell time on the graph
using an SVM. Dzsotjan et al. (2021) also used an SVM to predict participants’ learning
gain based on their eye movements for participants walking the shape of a position-time
graph. These results indicate that machine-learning methods are suitable methods to
analyse eye movements. Unlike statistical models, machine-learning methods can, for
example, be used to analyse complex relationships between the predicted variable and its
predictors which can be transferred to unknown datasets due to the split between training
and test data. Furthermore, feature relevance can indicate how important input parameters
were for the alogrithms’ performance which can add a level of interpretability to
machine-learning algorithms.

The third study included in this thesis investigated differences between physics
and non-physics students during problem-solving with graphs (research aim c). The setup
was analogous to previous studies (Briickner et al., 2020; Klein, Kiichemann, et al., 2019;
Susac et al., 2018). In this study, physics and non-physics students were asked to solve
graph tasks at the beginning and end of their first semester. Unlike previous research on
performance differences (Briickner et al., 2020; Klein, Kiichemann, et al., 2019; Susac et
al., 2018), there were no differences in learning gain between students of different
disciplines. However, non-physics students were not economics or psychology students
but medical and veterinary students who also took STEM courses. These courses might
teach problem-solving routines which could be transferable to other problem-solving
tasks (see section 4). However, there were differences in visual behaviour between correct
and incorrect solvers that could be predicted using machine-learning methods. This
supports the assumption that visual processing differs between correct and incorrect
solvers, indicating that expertise theories (see section 1.3.2) can be applied to comparing
the visual behaviour of correct and incorrect solvers during graph comprehension tasks.
Previous results by Klein, Kiichemann et al. (2019) supporting the information-reduction
hypothesis (Haider & Frensch, 1999) could be replicated using machine-learning
methods. This is in line with the second study of this thesis, which also found support for

the information-reduction hypothesis during the visual processing of graph tasks. Correct
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solvers seem to pay more attention to task-relevant areas (Klein, Kiichemann, et al.,
2019). In the context of machine learning, the participants’ dwell time on the graph seems
to be a particularly important predictor of their performance. The algorithm used was an
SVM optimised for small datasets that included repeated-nested cross-validation in
combination with permutation tests (Steinert et al., 2024). The optimised methods
performed better on the data compared to regular applications of an SVM without
cross-validation or permutation tests. This indicates that such an optimised method is a
suitable tool for investigating eye movements, even in the context of small datasets. Such
an analysis could be useful for future research, for example, for developing adaptive
learning systems based on eye movements that could give students real-time feedback

about their performance.

5.3. Implications for Practice

The studies presented in this thesis reported empirical results, interpretations, and
theoretical implications that have implications for teaching practice. All studies consider
graphing competence. Practical implications for teaching concern dealing with students’
difficulties during graphing as well as increasing students' level of expertise during graph
comprehension.

Graphing instruction has previously been recommended (Glazer, 2011). Based on
the literature review presented in Study 1, we found that various types of instruction were
beneficial for students, such as instruction to improve graphing skills, for example, during
lab-based activities (Gerard et al., 2012), as well as instruction to improve scientific
argumentation (Gultepe & Kilic, 2015). Although most studies specifically focused on
improving the students’ graphing skills, not only those skills benefitted from instruction.
For example, graphing instruction also had a positive effect on graph comprehension
(Gerard et al., 2012). These two skills are both considered in graphing competence
(Glazer, 2011). Due to the relevance of graphing competence in education (see section
1.2.3), graphing instruction seems a valuable aspect of education.

Teachers should consider students’ difficulties during graphing instruction. This is
especially relevant for STEM education because graphing plays an important role there
(Leinhardt et al., 1990). The findings of the first study of this thesis indicated that
students' difficulties with graphing conventions and their difficulties with theoretical
aspects might be related. Therefore, both aspects should be considered in graphing

instruction. Students benefit from exploring their scientific ideas before conventional
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instruction on a topic as well as from a deep analysis of provided data (Vitale et al.,
2019). A combination of those activities might address both theoretical difficulties, such
as graph-as-picture errors (Clement, 1985), by explicitly demonstrating which aspects of
a concept students might have difficulties understanding, and students’ difficulties with
graphing conventions, such as scaling (Lachmayer et al., 2007), as a deep analysis of the
data might give students the chance to revise their graphs.

Students’ level of expertise regarding graphing competence can be facilitated in
other ways as well. As eye movements can be indicators of expertise for graph tasks (see
section 3), instruction based on experts’ eye movements might also be beneficial for
students. For example, eye-movement modelling examples can help students find relevant
areas more quickly (Xie et al., 2021) by drawing their attention to them (Tunga &
Cagiltay, 2023). This is in line with the information--reduction hypothesis (Haider &
Frensch, 1999), the expertise theory supported by the second study of this thesis. Apart
from learning the visual strategy, students should know how to implement it (Harsh et al.,
2019). They should not merely learn the teacher’s interpretation instead of learning the
process of coming to the correct conclusion themselves (Bowen et al., 1999). Teachers
should instruct students in the correct strategies for interpreting a graph while being
careful that students learn how to determine the correct solution themselves.
Eye-movement modelling examples could be a good way to teach students the correct
strategy without necessarily giving students the exact answer.

Students could also be supported using machine learning. Eye movements can be
useful indicators of expertise (see section 3) and performance (see section 4) in graph
comprehension tasks. Furthermore, eye movements can be used to improve adaptive
learning environments (Kennel, 2022). A good performance prediction based on students’
eye movements, ideally in real-time, could be used to diagnose students’ difficulties and

offer personalised learning support.
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5.4. Limitations

This thesis presented three studies, whose methodologies might lead to limitations
regarding the theoretical and practical implications presented above.

First, the focus of all three studies was on graphs depicting bivariate data. This
limits the overall generalizability of the results, as other types of representations, such as
3D representations might have other difficulties or necessitate divergent visual strategies.
For example, constructing graphs in a 3D environment might necessitate using
construction software and visual processing in a 3D environment, such as virtual reality,
which might require different strategies for finding relevant information as the graph
would be more complex. Study 1 presented a literature review of graphing in K-12 STEM
education (see section 2). The inclusion criteria did not exclude multivariate data and
graphs of multivariate data were considered in the analysis. For example, students were
asked to graph objects of varying buoyancy (sink, float) in volume-mass graphs (Vitale et
al., 2019). However, graphs depicting bivariate data were the most common type of
graphs. The second study reviewed existing literature that analysed eye-tracking results.
There were no 3D representations of graphs used as stimuli in the studies included in this
review although they were not explicitly excluded. One reason for the lack of 3D
representations might be the study prerequisites: Eye-tracking is often conducted
stationary in front of a screen and metrics are calculated based on AOIs (see section
1.3.1). For analysing graphs of multivariate data, these AOIs would have to be adapted
accordingly. As AOIs should encompass relevant information with enough space to
resolve eye movements as recorded by the eye tracker (Holmqvist & Andersson, 2017), a
detailed analysis of graphs depicting multivariate data might be difficult. Additionally,
previously used test items, such as the items used in Study 3 (Ceuppens et al., 2019;
Susac et al., 2018), are often designed with graphs based on bivariate data. The results of
the reviews presented in this thesis nevertheless are robust across various types of graphs
as no graph type was excluded in either review and neither review was limited to a
specific type of graph. Additionally, the theoretical difficulties reported in this thesis are
in line with the results of previous reviews of misconceptions (Clement, 1985) and
interpretation of histograms (Boels et al., 2019). This is also the case for two of the three
conventional difficulties of graph construction, that are based on a structural model
describing the graph construction process (Lachmayer et al., 2007). Moreover, all
difficulties have been inductively determined based on the difficulties reported in the

studies included in the review on graphing. The visual strategies of experts and
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non-experts identified in the second review were also reported across various types of
graphs. The results confirmed the information-reduction hypothesis (Haider & Frensch,
1999). The results of this thesis therefore seem stable across various types of graphs.
However, generalisability to, for example, 3D graphs depicting multivariate data cannot
be guaranteed. This should be considered in future research.

Other limitations are based on the methodology of the specific studies reported in
this thesis. This limitation concerns specifically Study 1. The study presented a review of
graphing in K-12 STEM education. A systematic search identified 44 studies meeting the
inclusion criteria. The underlying theories used in all included studies were analysed.
However, this proved difficult as very few studies provided a theoretical basis for their
study design and most justified their design based on the practical applications of
graphing. Therefore, the study design varied considerably between the included studies.
This made it difficult to evaluate the added value of graphing (RQ 2 of Study 1) because
there were no consistent group comparisons and analysis methods varied. Although the
benefits of graphing were found across various types of instructions, there might be
distinct boundary conditions for different kinds of instruction that could not be
investigated in this review: None of the studies included in the literature review presented
in Study 1 analysed boundary conditions for effective graphing. For example, previous
research on drawing found that this generative activity was more effective for older
students (Brod, 2021; Y. Zhang et al., 2021) and for students with low prior knowledge
(Lin et al., 2017). Similar boundary conditions might apply for graphing. For a stringent
investigation, a comparison of pretest — posttest studies including effect sizes would be
ideal because these could also be used for a meta-analysis. However, only one study
included in this review reported an effect size (Adams & Shrum, 1990) and such an
analysis was therefore not possible in Study 1.

A similar limitation applies to Study 2. This review compared the visual
processing of experts and non-experts. However, the categorisation of expertise depended
solely on descriptions of the authors of the studies included in this review, such as the
comparison of correct and incorrect solvers (Klein, Kiichemann, et al., 2019). Another
limitation therefore concerns the definition of expertise: There does not seem to be a
comprehensive, overarching definition of expertise. Sternberg (2003) described an expert
student as a student who can intelligently use their knowledge and solve tasks creatively
with the ability to successfully transfer learned information to practice. However, this

definition only refers to students and many studies included professionals, such as
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university faculty (Harsh et al., 2019). Various groups of participants were therefore
considered as experts and non-experts. However, four important factors when
determining expertise in graph comprehension were identified based on previous
literature: (1) graphical literacy (Shah & Hoeffner, 2002), (2) knowledge about the
domain (Briickner et al., 2020), (3) prior mathematical knowledge (Curcio, 1987), and (4)
task knowledge (Friel et al., 2001). However, these factors have not been empirically
tested.

Further limitations concern the methodology of the third study presented in this
thesis. This study aimed to explore differences between study disciplines during problem-
solving with graphs (research aim c). To achieve this, physics and non-physics students
were asked to solve previously employed graph tasks in the context of physics and math
(Ceuppens et al., 2019; Susac et al., 2018) as well as in the context of medicine at the
beginning and the end of their first semester. This approach was analogous to that of
Briickner et al. (2020). Therefore, analysing the expertise of first-semester students who
were the participants in Study 3 restricts the generalisability of the results. It would be
very difficult for students to achieve expertise during their first semester in their
respective disciplines. This could lead to difficulties interpreting the learning gain
investigated in Study 3 because all participants had the same educational level at the
beginning of the semester. However, differences in performance have been found in
comparisons of first-semester students of different disciplines earlier (Klein, Kiichemann,
et al., 2019; Susac et al., 2018). Study 3 is therefore comparable to previous research
regarding the choice of participants. For the analysis of the participants’ visual behaviour,
performance was chosen and based on this the visual behaviour of correct and incorrect
solvers was analysed. This criterion has also been used previously (Klein, Kiichemann, et
al., 2019). However, a replication of Study 3 under consideration of the four factors that
might be relevant for determining expertise in graph comprehension might provide

further insights into the visual processing of experts during graph comprehension tasks.
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An additional limitation also involves the methodology of Study 3, specifically the
graph comprehension tasks used as test items and the number of participants. None of the
task items of any context were validated test instruments. However, the physics and math
items have been used in previous studies (Ceuppens et al., 2019; Susac et al., 2018). The
medical items were developed for this study based on these examples. Although the test
should be validated in future research, a comparability of the results is ensured by the
tasks’ use in previous studies, specifically in the mathematical and physics contexts

(Briickner et al., 2020; Klein, Kiichemann, et al., 2019; Susac et al., 2018).

5.5. Directions for Future Research

There are various directions for future research on graphing competence, both for
graphing and graph comprehension. Research aspects include the definition of expertise,
for either both graphing and graph comprehension or individually for the two aspects of
graphing competence. Such a definition of expertise might influence how graphing
competence is instructed and investigated as it would make study results more
comparable. Graphing competence might also vary depending on the visualisation of the
graph, for example, whether a graph is depicted in 2D or 3D. Visual behaviour might also
differ between these types of visualisation. Furthermore, an analysis of participants’ eye
movements during graphing could provide valuable insight into the graphing process. In
the following section, each of these aspects is elaborated.

One of the most relevant aspects for future research is the definition of expertise.
There are four important aspects of graph comprehension: graphical literacy (Shah &
Hoeftner, 2002) and knowledge about (2) the domain (Briickner et al., 2020), (3) the
underlying math (Curcio, 1987), and (4) the task (Friel et al., 2001). However, these
factors have not yet been systematically investigated. The impact of these factors on
graph comprehension skills could vary, for example, knowledge about the domain of the
graph comprehension task might be more important than knowledge about the underlying
math. These could also vary depending on the kind of graph comprehension task, for
example, there might be differences in determining the relation between variables and for
extracting a value. Possible correlations between factors could be relevant as well.
Furthermore, these factors could vary based on the type of the graph, for example,
knowledge about the underlying math might be less relevant for comprehending
histograms but very relevant for comprehending complex graphs with multiple variables.

Additionally, the transferability of the four factors from graph comprehension to graphing
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should be investigated. Although all factors seem relevant in the context of graphing
competence and theoretical and conventional difficulties seem to be connected, there
could be variations between graphing and graph comprehension, for example, they might
have differing boundary conditions. It would also be interesting to analyse how expertise
in graphing competence develops. Starting with the four proposed factors, relevant
aspects for future research could be the knowledge about the underlying math, the task,
and the domain and how they should be taught, for example, whether they should be
instructed in the same step or whether some of these factors might build on one another.
Again, these factors could be investigated separately for graphing and graph
comprehension as there might be differences in the development of these two skills.

These directions for future research highlight another open question: How are
graphing and graph comprehension related and how should they be taught? They both
should be instructed (Glazer, 2011) because they are both relevant in education
(Leinhardt et al., 1990). Based on the research presented in this thesis, it seems that a
certain level of graph comprehension is necessary for successful graphing; however,
graphing instruction also seems to facilitate graph comprehension. This indicates that it
might be beneficial for students to instruct these two skills of graphing competence
together.

These findings were based on the review of graphing in K-12 STEM education.
However, graphing competence is also relevant in university education (Nixon et al.,
2016) and in professional praxis, such as engineering (Ahmed et al., 2021). For example,
Nixon et al. (2016) investigated university students constructing best-fit lines in a physics
lab course. In this study, university students had similar difficulties as K-12 students, such
as connecting the data to the underlying concept. A systematic investigation of graphing
in university education could provide further insights into how graphing skills develop
after receiving formal instruction in school. Additionally, there is research where
participants create graphs with their body movements. For example, Dzsotjan et al.
(2021) developed a virtual reality environment where participants are supposed to
recreate a position-time graph with their body motion. This study was based on
embodiment because a “user physically experiences the mapping between real-world
movement and kinematic graphs” (Dzsotjan et al., 2021, p. 468). Enacting movements

like this can also be considered a generative learning activity (Fiorella, 2023).
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Using the body is a new way of graphing that should be considered in future
research; for example, it could be useful to teach students how data is connected to
concepts via direct experience.

Moreover, the reviews presented the first two studies of this thesis concentrate on
graphs in 2D. There was no preference for either manual or tool-based graphing in the
studies included in the review. Furthermore, the data used for graphing was mostly
bivariate. 3D graphs are probably more common in computer-based learning
environments working with more than two variables. Additionally, there might be
differences during the graphing process between 2D and 3D graphs. The review of
literature analysing differences in visual behaviour between experts and non-experts
during learning and problem-solving with graphs also focused on 2D representations. Eye
movements are analysed for specific regions of a stimulus, which could make it
complicated to design 3D representations with fitting relevant areas that can be
constructively interpreted for analysing the visual strategy of participants. Furthermore,
3D graphs are not common in educational contexts included in the review, which might
make it difficult to find participants with sufficient expertise.

Finally, this thesis can be extended via research investigating the visual strategies
of students during the graphing process. Such research could provide insights into the
strategies students use to create a graph. It would also be interesting to compare students’
graphing strategies with those of experts. Knowing students’ graphing strategies could be
useful for improving graphing instruction. For example, one could give students support
before they make mistakes due to misconceptions. An idea would be to show students
help statements in an artificial reality environment which is also capable of recording and

analysing eye movements in real time.
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6. Conclusion
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Dealing with data is an important aspect of everyday life as well as education,
especially in a STEM context. Data is often presented in the form of graphs. To
proficiently utilise graphs, one needs graphing competence; this describes the ability to
comprehend and create graphs (Glazer, 2011). This thesis therefore analyses these aspects
of graphing competence in the context of education.

Graphing is a constructive activity and requires learners to actively engage in the
activity (Chi & Wylie, 2014). Graphing has multiple benefits and is frequently
researched, especially in the context of STEM education. The findings of the systematic
review on graphing presented in this thesis indicate, that graphing instruction is often
investigated throughout more than one lesson and conducted with line graphs. The
review’s findings indicate that instruction can facilitate graphing skills. Graphing
instruction can also improve graph comprehension. However, students frequently seem to
have trouble constructing graphs. Students' difficulties can be categorised into two types:
The first type of difficulties can be based on graphing conventions, such as constructing a
graph. Additionally, students can have theoretical difficulties during graphing, such as
interpreting the data. Conventional and theoretical difficulties are often jointly reported.
This indicates that both types of difficulties influence students’ graphing and instruction
should therefore include both graphing and graph comprehension.

Eye movements can be an indicator of expertise during learning and
problem-solving with graphs. During these activities, the findings of the second study
indicate that experts pay more attention to relevant areas than non-experts. This supports
the information-reduction hypothesis (Haider & Frensch, 1999). Additionally, the results
indicate that eye movements based on fixations, such as fixation duration, are suited to
investigate expertise in graph comprehension. Physics students are assumed to have a
high level of expertise in graph comprehension as they performed better in graph
comprehension tasks than students of other disciplines (Briickner et al., 2020; Klein et al.,
2019; Susac et al., 2018). Correct and incorrect solvers can be distinguished based on
their eye movements (Becker et al., 2022; Chen et al., 2014; Klein, Kiichemann, et al.,
2019). These results could be replicated with a machine-learning method optimised for
small datasets (Steinert et al., 2024) in a study comparing physics and medical students’
eye movements in graph comprehension tasks. The results suggest that machine-learning
algorithms for small datasets are well suited for assessing expertise by analysing eye-
tracking data. This could be useful for future research, for example, in developing

adaptive learning systems.
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